Science.gov

Sample records for fuel element heat

  1. Nuclear reactor fuel element having improved heat transfer

    DOEpatents

    Garnier, J.E.; Begej, S.; Williford, R.E.; Christensen, J.A.

    1982-03-03

    A nuclear reactor fuel element having improved heat transfer between fuel material and cladding is described. The element consists of an outer cladding tube divided into an upper fuel section containing a central core of fissionable or mixed fissionable and fertile fuel material, slightly smaller in diameter than the inner surface of the cladding tube and a small lower accumulator section, the cladding tube being which is filled with a low molecular weight gas to transfer heat from fuel material to cladding during irradiation. A plurality of essentially vertical grooves in the fuel section extend downward and communicate with the accumulator section. The radial depth of the grooves is sufficient to provide a thermal gradient between the hot fuel surface and the relatively cooler cladding surface to allow thermal segregation to take place between the low molecular weight heat transfer gas and high molecular weight fission product gases produced by the fuel material during irradiation.

  2. Induction Heating Model of Cermet Fuel Element Environmental Test (CFEET)

    NASA Technical Reports Server (NTRS)

    Gomez, Carlos F.; Bradley, D. E.; Cavender, D. P.; Mireles, O. R.; Hickman, R. R.; Trent, D.; Stewart, E.

    2013-01-01

    Deep space missions with large payloads require high specific impulse and relatively high thrust to achieve mission goals in reasonable time frames. Nuclear Thermal Rockets (NTR) are capable of producing a high specific impulse by employing heat produced by a fission reactor to heat and therefore accelerate hydrogen through a rocket nozzle providing thrust. Fuel element temperatures are very high (up to 3000 K) and hydrogen is highly reactive with most materials at high temperatures. Data covering the effects of high-temperature hydrogen exposure on fuel elements are limited. The primary concern is the mechanical failure of fuel elements due to large thermal gradients; therefore, high-melting-point ceramics-metallic matrix composites (cermets) are one of the fuels under consideration as part of the Nuclear Cryogenic Propulsion Stage (NCPS) Advance Exploration System (AES) technology project at the Marshall Space Flight Center. The purpose of testing and analytical modeling is to determine their ability to survive and maintain thermal performance in a prototypical NTR reactor environment of exposure to hydrogen at very high temperatures and obtain data to assess the properties of the non-nuclear support materials. The fission process and the resulting heating performance are well known and do not require that active fissile material to be integrated in this testing. A small-scale test bed; Compact Fuel Element Environmental Tester (CFEET), designed to heat fuel element samples via induction heating and expose samples to hydrogen is being developed at MSFC to assist in optimal material and manufacturing process selection without utilizing fissile material. This paper details the analytical approach to help design and optimize the test bed using COMSOL Multiphysics for predicting thermal gradients induced by electromagnetic heating (Induction heating) and Thermal Desktop for radiation calculations.

  3. Natural convection heat transfer analysis of ATR fuel elements

    SciTech Connect

    Langerman, M.A.

    1992-05-01

    Natural convection air cooling of the Advanced Test Reactor (ATR) fuel assemblies is analyzed to determine the level of decay heat that can be removed without exceeding the melting temperature of the fuel. The study was conducted to assist in the level 2 PRA analysis of a hypothetical ATR water canal draining accident. The heat transfer process is characterized by a very low Rayleigh number (Ra {approx} 10{sup {minus}5}) and a high temperature ratio. Since neither data nor analytical models were available for Ra < 0.1, an analytical approach is presented based upon the integral boundary layer equations. All assumptions and simplifications are presented and assessed and two models are developed from similar foundations. In one model, the well-known Boussinesq approximations are employed, the results from which are used to assess the modeling philosophy through comparison to existing data and published analytical results. In the other model, the Boussinesq approximations are not used, thus making the model more general and applicable to the ATR analysis.

  4. Modeling of the heat transfer performance of plate-type dispersion nuclear fuel elements

    NASA Astrophysics Data System (ADS)

    Ding, Shurong; Huo, Yongzhong; Yan, XiaoQing

    2009-08-01

    Considering the mutual actions between fuel particles and the metal matrix, the three-dimensional finite element models are developed to simulate the heat transfer behaviors of dispersion nuclear fuel plates. The research results indicate that the temperatures of the fuel plate might rise more distinctly with considering the particle swelling and the degraded surface heat transfer coefficients with increasing burnup; the local heating phenomenon within the particles appears when their thermal conductivities are too low. With rise of the surface heat transfer coefficients, the temperatures within the fuel plate decrease; the temperatures of the fuel plate are sensitive to the variations of the heat transfer coefficients whose values are lower, but their effects are weakened and slight when the heat transfer coefficients increase and reach a certain extent. Increasing the heat generation rate leads to elevating the internal temperatures. The temperatures and the maximum temperature differences within the plate increase along with the particle volume fractions. The surface thermal flux goes up along with particle volume fractions and heat generation rates, but the effects of surface heat transfer coefficients are not evident.

  5. FUEL ELEMENT

    DOEpatents

    Bean, R.W.

    1963-11-19

    A ceramic fuel element for a nuclear reactor that has improved structural stability as well as improved cooling and fission product retention characteristics is presented. The fuel element includes a plurality of stacked hollow ceramic moderator blocks arranged along a tubular raetallic shroud that encloses a series of axially apertured moderator cylinders spaced inwardly of the shroud. A plurality of ceramic nuclear fuel rods are arranged in the annular space between the shroud and cylinders of moderator and appropriate support means and means for directing gas coolant through the annular space are also provided. (AEC)

  6. Design and experimental investigation into fuel element melting during pulsed heating in the IGRIK

    SciTech Connect

    Levakov, B.G.; Andreev, V.V.; Vasilyev, A.P.

    1995-12-31

    Research has been performed on reactor fuel melting with pulsed input of energy in fuel elements up to 1.3 kj/g. The following were determined: energy input in fuel elements and energy input tempo; fission number distribution by the radius of the fuel element; the temperature of fuel and ampoule walls; and displacement of fuel boundaries.

  7. FUEL ELEMENT

    DOEpatents

    Fortescue, P.; Zumwalt, L.R.

    1961-11-28

    A fuel element was developed for a gas cooled nuclear reactor. The element is constructed in the form of a compacted fuel slug including carbides of fissionable material in some cases with a breeder material carbide and a moderator which slug is disposed in a canning jacket of relatively impermeable moderator material. Such canned fuel slugs are disposed in an elongated shell of moderator having greater gas permeability than the canning material wherefore application of reduced pressure to the space therebetween causes gas diffusing through the exterior shell to sweep fission products from the system. Integral fission product traps and/or exterior traps as well as a fission product monitoring system may be employed therewith. (AEC)

  8. NUCLEAR REACTOR FUEL ELEMENT

    DOEpatents

    Wheelock, C.W.; Baumeister, E.B.

    1961-09-01

    A reactor fuel element utilizing fissionable fuel materials in plate form is described. This fuel element consists of bundles of fuel-bearing plates. The bundles are stacked inside of a tube which forms the shell of the fuel element. The plates each have longitudinal fins running parallel to the direction of coolant flow, and interspersed among and parallel to the fins are ribs which position the plates relative to each other and to the fuel element shell. The plate bundles are held together by thin bands or wires. The ex tended surface increases the heat transfer capabilities of a fuel element by a factor of 3 or more over those of a simple flat plate.

  9. FUEL ELEMENT

    DOEpatents

    Howard, R.C.; Bokros, J.C.

    1962-03-01

    A fueled matrlx eontnwinlng uncomblned carbon is deslgned for use in graphlte-moderated gas-cooled reactors designed for operatlon at temperatures (about 1500 deg F) at which conventional metallic cladding would ordlnarily undergo undesired carburization or physical degeneratlon. - The invention comprlses, broadly a fuel body containlng uncombined earbon, clad with a nickel alloy contalning over about 28 percent by' weight copper in the preferred embodlment. Thls element ls supporirted in the passageways in close tolerance with the walls of unclad graphite moderator materlal. (AEC)

  10. NEUTRONIC REACTOR FUEL ELEMENT

    DOEpatents

    Shackleford, M.H.

    1958-12-16

    A fuel element possessing good stability and heat conducting properties is described. The fuel element comprises an outer tube formed of material selected from the group consisting of stainhess steel, V, Ti. Mo. or Zr, a fuel tube concentrically fitting within the outer tube and containing an oxide of an isotope selected from the group consisting of U/sup 235/, U/sup 233/, and Pu/sup 239/, and a hollow, porous core concentrically fitting within the fuel tube and formed of an oxide of an element selected from the group consisting of Mg, Be, and Zr.

  11. Applying Thermodynamics to Fossil Fuels: Heats of Combustion from Elemental Compositions.

    ERIC Educational Resources Information Center

    Lloyd, William G.; Davenport, Derek A.

    1980-01-01

    Discussed are the calculations of heats of combustions of some selected fossil fuel compounds such as some foreign shale oils and United States coals. Heating values for coal- and petroleum-derived fuel oils are also presented. (HM)

  12. JACKETED FUEL ELEMENT

    DOEpatents

    Wigner, E.P.; Szilard, L.; Creutz, E.C.

    1959-02-01

    These fuel elements are comprised of a homogeneous metallic uranium body completely enclosed and sealed in an aluminum cover. The uranium body and aluminum cover are bonded together by a layer of zinc located between them. The bonding layer serves to improve transfer of heat, provides an additional protection against corrosion of the uranium by the coolant, and also localizes any possible corrosion by preventing travel of corrosive material along the surface of the fuel element.

  13. Performance optimization considerations for thermionic fuel elements in a heat pipe cooled thermionic reactor

    NASA Astrophysics Data System (ADS)

    Bellis, Elizabeth A.

    1992-01-01

    A heat pipe-cooled, in-core thermionic (HPTI) reactor design has been proposed in support of the Air Force Thermionic Space Nuclear Power Program. As part of this design, the performance of the power conversion system has been characterized. This paper focuses on the performance optimization studies carried out of a thermionic fuel element (TFE) which will be used in a reactor design capable of producing 40 kWe over a 10 year operating life. The technical approach to the optimization studies closely couples converter lifetime constraints with converter performance to produce the best possible design choice.

  14. Nuclear fuel element

    DOEpatents

    Meadowcroft, Ronald Ross; Bain, Alastair Stewart

    1977-01-01

    A nuclear fuel element wherein a tubular cladding of zirconium or a zirconium alloy has a fission gas plenum chamber which is held against collapse by the loops of a spacer in the form of a tube which has been deformed inwardly at three equally spaced, circumferential positions to provide three loops. A heat resistant disc of, say, graphite separates nuclear fuel pellets within the cladding from the plenum chamber. The spacer is of zirconium or a zirconium alloy.

  15. Two-dimensional steady-state analysis of an electrically heated thermionic fuel element

    SciTech Connect

    Huimin Xue; El-Genk, M.S.; Paramonov, D. )

    1993-01-20

    A two-dimensional transient model of a single cell, long Thermionic Fuel Element (TFE) is developed and its predictions are compared with published calculations and experimental data on steady-state operation of electrically heated, TOPAZ-II type TFEs. The operation parameters of the TFE, such as axial distributions of the emitter temperature, emission current density, and the electrode voltage are calculated and discussed. Results show that despite the excellent agreement between the model predictions of the axial distribution of the emitter temperature, its predictions of the maximum emission current density was lower by about 17%. This difference is attributed primarily to the J-V characteristics in the model, which could be different than those of the TOPAZ-II TFE, hence additional data on the latter is needed. When compared with experimental data, the model predictions of the electric power output are in excellent agreement with the data at thermal power input of 3.5 kW or higher, but within 10% of the data at lower thermal power.

  16. FUEL ELEMENT FOR NUCLEAR REACTORS

    DOEpatents

    Dickson, J.J.

    1963-09-24

    A method is described whereby fuel tubes or pins are cut, loaded with fuel pellets and a heat transfer medium, sealed at each end with slotted fittings, and assembled into a rectangular tube bundle to form a fuel element. The tubes comprising the fuel element are laterally connected between their ends by clips and tabs to form a linear group of spaced parallel tubes, which receive their vertical support by resting on a grid. The advantages of this method are that it permits elimination of structural material (e.g., fuel-element cans) within the reactor core, and removal of at least one fuel pin from an element and replacement thereof so that a burnable poison may be utilized during the core lifetime. (AEC)

  17. A Multi-Dimensional Heat Transfer Model of a Tie-Tube and Hexagonal Fuel Element for Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Gomez, C. F.; Mireles, O. R.; Stewart, E.

    2016-01-01

    The Space Capable Cryogenic Thermal Engine (SCCTE) effort considers a nuclear thermal rocket design based around a Low-Enriched Uranium (LEU) design fission reactor. The reactor core is comprised of bundled hexagonal fuel elements that directly heat hydrogen for expansion in a thrust chamber and hexagonal tie-tubes that house zirconium hydride moderator mass for the purpose of thermalizing fast neutrons resulting from fission events. Created 3D steady state Hex fuel rod model with 1D flow channels. Hand Calculation were used to set up initial conditions for fluid flow. The Hex Fuel rod uses 1D flow paths to model the channels using empirical correlations for heat transfer in a pipe. Created a 2-D axisymmetric transient to steady state model using the CFD turbulent flow and Heat Transfer module in COMSOL. This model was developed to find and understand the hydrogen flow that might effect the thermal gradients axially and at the end of the tie tube where the flow turns and enters an annulus. The Hex fuel rod and Tie tube models were made based on requirements given to us by CSNR and the SCCTE team. The models helped simplify and understand the physics and assumptions. Using pipe correlations reduced the complexity of the 3-D fuel rod model and is numerically more stable and computationally more time-efficient compared to the CFD approach. The 2-D axisymmetric tie tube model can be used as a reference "Virtual test model" for comparing and improving 3-D Models.

  18. COMPARTMENTED REACTOR FUEL ELEMENT

    DOEpatents

    Cain, F.M. Jr.

    1962-09-11

    A method of making a nuclear reactor fuel element of the elongated red type is given wherein the fissionable fuel material is enclosed within a tubular metal cladding. The method comprises coating the metal cladding tube on its inside wall with a brazing alloy, inserting groups of cylindrical pellets of fissionable fuel material into the tube with spacing members between adjacent groups of pellets, sealing the ends of the tubes to leave a void space therewithin, heating the tube and its contents to an elevated temperature to melt the brazing alloy and to expand the pellets to their maximum dimensions under predetermined operating conditions thereby automatically positioning the spacing members along the tube, and finally cooling the tube to room temperature whereby the spacing disks become permanently fixed at their edges in the brazing alloy and define a hermetically sealed compartment for each fl group of fuel pellets. Upon cooling, the pellets contract thus leaving a space to accommodate thermal expansion of the pellets when in use in a reactor. The spacing members also provide lateral support for the tubular cladding to prevent collapse thereof when subjected to a reactor environment. (AEC)

  19. Neutronic fuel element fabrication

    DOEpatents

    Korton, George

    2004-02-24

    This disclosure describes a method for metallurgically bonding a complete leak-tight enclosure to a matrix-type fuel element penetrated longitudinally by a multiplicity of coolant channels. Coolant tubes containing solid filler pins are disposed in the coolant channels. A leak-tight metal enclosure is then formed about the entire assembly of fuel matrix, coolant tubes and pins. The completely enclosed and sealed assembly is exposed to a high temperature and pressure gas environment to effect a metallurgical bond between all contacting surfaces therein. The ends of the assembly are then machined away to expose the pin ends which are chemically leached from the coolant tubes to leave the coolant tubes with internal coolant passageways. The invention described herein was made in the course of, or under, a contract with the U.S. Atomic Energy Commission. It relates generally to fuel elements for neutronic reactors and more particularly to a method for providing a leak-tight metal enclosure for a high-performance matrix-type fuel element penetrated longitudinally by a multiplicity of coolant tubes. The planned utilization of nuclear energy in high-performance, compact-propulsion and mobile power-generation systems has necessitated the development of fuel elements capable of operating at high power densities. High power densities in turn require fuel elements having high thermal conductivities and good fuel retention capabilities at high temperatures. A metal clad fuel element containing a ceramic phase of fuel intimately mixed with and bonded to a continuous refractory metal matrix has been found to satisfy the above requirements. Metal coolant tubes penetrate the matrix to afford internal cooling to the fuel element while providing positive fuel retention and containment of fission products generated within the fuel matrix. Metal header plates are bonded to the coolant tubes at each end of the fuel element and a metal cladding or can completes the fuel-matrix enclosure

  20. COMPOSITE FUEL ELEMENT

    DOEpatents

    Hurford, W.J.; Gordon, R.B.; Johnson, W.A.

    1962-12-25

    A sandwich-type fuel element for a reactor is described. This fuel element has the shape of an elongated flat plate and includes a filler plate having a plurality of compartments therein in which the fuel material is located. The filler plate is clad on both sides with a thin cladding material which is secured to the filler plate only to completely enclose the fuel material in each compartment. (AEC)

  1. Nuclear fuel element

    DOEpatents

    Zocher, Roy W.

    1991-01-01

    A nuclear fuel element and a method of manufacturing the element. The fuel element is comprised of a metal primary container and a fuel pellet which is located inside it and which is often fragmented. The primary container is subjected to elevated pressure and temperature to deform the container such that the container conforms to the fuel pellet, that is, such that the container is in substantial contact with the surface of the pellet. This conformance eliminates clearances which permit rubbing together of fuel pellet fragments and rubbing of fuel pellet fragments against the container, thus reducing the amount of dust inside the fuel container and the amount of dust which may escape in the event of container breach. Also, as a result of the inventive method, fuel pellet fragments tend to adhere to one another to form a coherent non-fragmented mass; this reduces the tendency of a fragment to pierce the container in the event of impact.

  2. Compact Fuel Element Environment Test

    NASA Technical Reports Server (NTRS)

    Bradley, D. E.; Mireles, O. R.; Hickman, R. R.; Broadway, J. W.

    2012-01-01

    Deep space missions with large payloads require high specific impulse (I(sub sp)) and relatively high thrust to achieve mission goals in reasonable time frames. Conventional, storable propellants produce average I(sub sp). Nuclear thermal rockets (NTRs) capable of high I(sub sp) thrust have been proposed. NTR employs heat produced by fission reaction to heat and therefore accelerate hydrogen, which is then forced through a rocket nozzle providing thrust. Fuel element temperatures are very high (up to 3,000 K) and hydrogen is highly reactive with most materials at high temperatures. Data covering the effects of high-temperature hydrogen exposure on fuel elements are limited. The primary concern is the mechanical failure of fuel elements that employ high melting point metals, ceramics, or a combination (cermet) as a structural matrix into which the nuclear fuel is distributed. It is not necessary to include fissile material in test samples intended to explore high-temperature hydrogen exposure of the structural support matrices. A small-scale test bed designed to heat fuel element samples via noncontact radio frequency heating and expose samples to hydrogen for typical mission durations has been developed to assist in optimal material and manufacturing process selection without employing fissile material. This Technical Memorandum details the test bed design and results of testing conducted to date.

  3. FUEL ELEMENT FOR NUCLEAR REACTOR

    DOEpatents

    Carney, K.G. Jr.

    1959-07-14

    A nuclear fuel element comprising a large number og wafers of fissionable material and a protective jacket having compartments holding these wafers is described. The compartments of the jacket aid the removal of heat from the wafers, keep the wafers or fragments thereof from migrating in the jacket, and permit the escape of gaseous fission products.

  4. NEUTRONIC REACTOR FUEL ELEMENT

    DOEpatents

    Picklesimer, M.L.; Thurber, W.C.

    1961-01-01

    A chemically nonreactive fuel composition for incorporation in aluminum- clad, plate type fuel elements for neutronic reactors is described. The composition comprises a mixture of aluminum and uranium carbide particles, the uranium carbide particles containing at least 80 wt.% UC/sub 2/.

  5. NEUTRONIC REACTOR FUEL ELEMENT

    DOEpatents

    Gurinsky, D.H.; Powell, R.W.; Fox, M.

    1959-11-24

    A nuclear fuel element comprising a plurality of nuclear fuel bearing strips is presented. The strips are folded along their longitudinal axes to an angle of about 60 deg and are secured at each end by ferrule to form an elongated assembly suitable for occupying a cylindrical coolant channel.

  6. CONCENTEIC TUBULAR FUEL ELEMENT

    DOEpatents

    Wheelock, C.W.

    1960-08-16

    An improved fuel element for an organic-moderated reactor was designed that comprises an inner and an outer container tube, a plurality of spaced, concentric fuel tubes positioned between the container tubes, each of the fuel tubes comprising a core of fissionable material with cladding on the sides thereof, each of the sides having a plurality of fins, the fuel tubes and the container tubes defining annular spaces for coolant flow, and the inner container tube defining a channel for a reactor moderator.

  7. CONSTRUCTION OF NUCLEAR FUEL ELEMENTS

    DOEpatents

    Weems, S.J.

    1963-09-24

    >A rib arrangement and an end construction for nuclearfuel elements laid end to end in a coolant tube are described. The rib arrangement is such that each fuel element, when separated from other fuel elements, fits loosely in the coolant tube and so can easily be inserted or withdrawn from the tube. The end construction of the fuel elements is such that the fuel elements when assembled end to end are keyed against relative rotation, and the ribs of each fuel element cooperate with the ribs of the adjacent fuel elements to give the assembled fuel elements a tight fit with the coolant tube. (AEC)

  8. FUEL ELEMENT CONSTRUCTION

    DOEpatents

    Simnad, M.T.

    1961-08-15

    A method of preventing diffusible and volatile fission products from diffusing through a fuel element container and contaminating reactor coolant is described. More specifically, relatively volatile and diffusible fission products either are adsorbed by or react with magnesium fluoride or difluoride to form stable, less volatile, less diffusible forms. The magnesium fluoride or difluoride is disposed anywhere inwardly from the outer surface of the fuel element container in order to be contacted by the fission products before they reach and contaminate the reactor coolant. (AEC)

  9. FUEL ELEMENT CONSTRUCTION

    DOEpatents

    Zumwalt, L.R.

    1961-08-01

    Fuel elements having a solid core of fissionable material encased in a cladding material are described. A conversion material is provided within the cladding to react with the fission products to form stable, relatively non- volatile compounds thereby minimizing the migration of the fission products into the coolant. The conversion material is preferably a metallic fluoride, such as lead difluoride, and may be in the form of a coating on the fuel core or interior of the cladding, or dispersed within the fuel core. (AEC)

  10. NEUTRONIC REACTOR FUEL ELEMENT

    DOEpatents

    Stacy, J.T.

    1958-12-01

    A reactor fuel element having a core of molybdenum-uranium alloy jacketed in stainless steel is described. A barrier layer of tungsten, tantalum, molybdenum, columbium, or silver is interposed between the core and jacket to prevent formation of a low melting eutectic between uranium and the varlous alloy constituents of the stainless steel.

  11. JACKETED REACTOR FUEL ELEMENT

    DOEpatents

    Smith, K.F.; Van Thyne, R.J.

    1958-12-01

    A fuel element is described for fast reactors comprised of a core of uranium metal containing material and a jacket around the core, the jacket consisting of from 2.5 to 15 percent of titanium, from 1 to 5 percent of niobium, and from 80 to 96.5 percent of vanadium.

  12. TWISTED RIBBON FUEL ELEMENT

    DOEpatents

    Breden, C.R.; Schultz, A.B.

    1961-06-01

    A reactor core formed of bundles of parallel fuel elements in the form of ribbons is patented. The fuel ribbons are twisted about their axes so as to have contact with one another at regions spaced lengthwise of the ribbons and to be out of contact with one another at locations between these spaced regions. The contact between the ribbons is sufficient to allow them to be held together in a stable bundle in a containing tube without intermediate support, while permitting enough space between the ribbon for coolant flowing.

  13. Nuclear reactor fuel element

    DOEpatents

    Johnson, Carl E.; Crouthamel, Carl E.

    1980-01-01

    A nuclear reactor fuel element is described which has an outer cladding, a central core of fissionable or mixed fissionable and fertile fuel material and a layer of oxygen gettering material on the inner surface of the cladding. The gettering material reacts with oxygen released by the fissionable material during irradiation of the core thereby preventing the oxygen from reacting with and corroding the cladding. Also described is an improved method for coating the inner surface of the cladding with a layer of gettering material.

  14. Protected Nuclear Fuel Element

    DOEpatents

    Kittel, J. H.; Schumar, J. F.

    1962-12-01

    A stainless steel-clad actinide metal fuel rod for use in fast reactors is reported. In order to prevert cladding failures due to alloy formation between the actinide metal and the stainless steel, a mesh-like sleeve of expanded metal is interposed between them, the sleeve metal being of niobium, tantalum, molybdenum, tungsten, zirconium, or vanadium. Liquid alkali metal is added as a heat transfer agent. (AEC)

  15. Solid fuel heating device

    SciTech Connect

    Rice, J.S.; Eavenson, B.; Eavenson, G.; Bryson, T.A.

    1986-08-26

    A heating device is described which consists of: a forced air stove adapted to burn solid fuel; the stove being at least partially made of a double-wall construction forming an air space so that air may be forced along the hot portions of the stove; a metal box defining a partial parallel piped shaped enclosure, the front of the box being open for receiving the stove, with the front of the stove substantially filling the front open space of the box; the top of the box having a hole therein for venting smoke and gases from the stove; a layer of thermal insulation attached to and covering substantially the entire inside surface of the box; the stove being removably positioned within the box so as to leave a second air space at least between the thermal insulation on the respective side, top and rear walls of the box, and the outer side, top and rear walls of the stove, there being no substantial heat conducting connecting elements between the insulation and the walls of the stove.

  16. Heating element support clip

    DOEpatents

    Sawyer, William C.

    1995-01-01

    An apparatus for supporting a heating element in a channel formed in a heater base is disclosed. A preferred embodiment includes a substantially U-shaped tantalum member. The U-shape is characterized by two substantially parallel portions of tantalum that each have an end connected to opposite ends of a base portion of tantalum. The parallel portions are each substantially perpendicular to the base portion and spaced apart a distance not larger than a width of the channel and not smaller than a width of a graphite heating element. The parallel portions each have a hole therein, and the centers of the holes define an axis that is substantially parallel to the base portion. An aluminum oxide ceramic retaining pin extends through the holes in the parallel portions and into a hole in a wall of the channel to retain the U-shaped member in the channel and to support the graphite heating element. The graphite heating element is confined by the parallel portions of tantalum, the base portion of tantalum, and the retaining pin. A tantalum tube surrounds the retaining pin between the parallel portions of tantalum.

  17. Heating element support clip

    DOEpatents

    Sawyer, W.C.

    1995-08-15

    An apparatus for supporting a heating element in a channel formed in a heater base is disclosed. A preferred embodiment includes a substantially U-shaped tantalum member. The U-shape is characterized by two substantially parallel portions of tantalum that each have an end connected to opposite ends of a base portion of tantalum. The parallel portions are each substantially perpendicular to the base portion and spaced apart a distance not larger than a width of the channel and not smaller than a width of a graphite heating element. The parallel portions each have a hole therein, and the centers of the holes define an axis that is substantially parallel to the base portion. An aluminum oxide ceramic retaining pin extends through the holes in the parallel portions and into a hole in a wall of the channel to retain the U-shaped member in the channel and to support the graphite heating element. The graphite heating element is confined by the parallel portions of tantalum, the base portion of tantalum, and the retaining pin. A tantalum tube surrounds the retaining pin between the parallel portions of tantalum. 6 figs.

  18. NUCLEAR REACTOR FUEL-BREEDER FUEL ELEMENT

    DOEpatents

    Currier, E.L. Jr.; Nicklas, J.H.

    1962-08-14

    A fuel-breeder fuel element was developed for a nuclear reactor wherein discrete particles of fissionable material are dispersed in a matrix of fertile breeder material. The fuel element combines the advantages of a dispersion type and a breeder-type. (AEC)

  19. Nuclear fuel element

    DOEpatents

    Armijo, Joseph S.; Coffin, Jr., Louis F.

    1983-01-01

    A nuclear fuel element for use in the core of a nuclear reactor is disclosed and has a composite cladding having a substrate and a metal barrier metallurgically bonded on the inside surface of the substrate so that the metal barrier forms a shield between the substrate and the nuclear fuel material held within the cladding. The metal barrier forms about 1 to about 30 percent of the thickness of the cladding and is comprised of a low neutron absorption metal of substantially pure zirconium. The metal barrier serves as a preferential reaction site for gaseous impurities and fission products and protects the substrate from contact and reaction with such impurities and fission products. The substrate of the composite cladding is selected from conventional cladding materials and preferably is a zirconium alloy. Methods of manufacturing the composite cladding are also disclosed.

  20. Nuclear fuel element

    DOEpatents

    Armijo, Joseph S.; Coffin, Jr., Louis F.

    1980-04-29

    A nuclear fuel element for use in the core of a nuclear reactor is disclosed and has an improved composite cladding comprised of a moderate purity metal barrier of zirconium metallurgically bonded on the inside surface of a zirconium alloy tube. The metal barrier forms a shield between the alloy tube and a core of nuclear fuel material enclosed in the composite cladding. There is a gap between the cladding and the core. The metal barrier forms about 1 to about 30 percent of the thickness of the composite cladding and has low neutron absorption characteristics. The metal barrier serves as a preferential reaction site for gaseous impurities and fission products and protects the alloy tube from contact and reaction with such impurities and fission products. Methods of manufacturing the composite cladding are also disclosed.

  1. METHOD OF MAKING FUEL ELEMENTS

    DOEpatents

    Bean, C.H.; Macherey, R.E.

    1959-12-01

    A method is described for fabricating fuel elements, particularly for enclosing a plate of metal with a second metal by inserting the plate into an aperture of a frame of a second plate, placing a sheet of the second metal on each of opposite faces of the assembled plate and frame, purging with an inert gas the air from the space within the frame and the sheets while sealing the seams between the frame and the sheets, exhausting the space, purging the space with air, re-exhausting the spaces, sealing the second aperture, and applying heat and pressure to bond the sheets, the plate, and the frame to one another.

  2. NEUTRONIC REACTOR AND FUEL ELEMENT THEREFOR

    DOEpatents

    Szilard, L.; Young, G.J.

    1958-03-01

    This patent relates to a reactor design of the type which employs solid fuel elements disposed in channels within the moderator through which channels and around the fuel elements is conveyed a coolant fiuid. The coolant channels are comprised of aluminum tubes extending through a solid moderator such as graphite and the fuel elements are comprised of an elongated solid body of natural uranium jacketed in an aluminum jacket with the ends thereof closed by aluminum caps of substantially greater thickness than the jacket was and in good thermal contact with the fuel material to facilitate the conduction of heat from the central portion of said ends to the coolant surrounding the fuel element to prevent overheating of said central portion.

  3. Prediction of the start-up characteristics of a heat pipe-cooled thermionic fuel element (TFE)

    NASA Astrophysics Data System (ADS)

    Lieb, David; Witt, Tony; Lee, Celia; Miskolczy, Gabor; McVey, John

    A computer thermal model is used to predict the start-up characteristics of a heat pipe-cooled TFE. During start-up, the emitter temperature will increase, and heat will be radiated across the cesium gap to the collector/heat pipe and conducted from the top thermionic cell to the cesium-graphite reservoir through the emitter stem. A transient, finite element computer model of the top thermionic cell and the cesium-graphite reservoir was programmed to simulate the behavior of the collector heat pipe and reservoir. With the modeled cell configuration, the heat-choke coupling aids in heating the reservoir but is not extremely important. The calculation shows there is nearly enough direct heating of the collector-heat-pipe system to warm the TFE without requiring electron cooling. It is found that the thermal time constraints of the converter-reservoir system are well within 15 min and therefore will not be a limiting factor for rapid start-up of the reactor.

  4. RECONDITIONING FUEL ELEMENTS

    DOEpatents

    Brandt, H.L.

    1962-02-20

    A process is given for decanning fuel elements that consist of a uranium core, an intermediate section either of bronze, silicon, Al-Si, and uranium silicide layers or of lead, Al-Si, and uranium silicide layers around said core, and an aluminum can bonded to said intermediate section. The aluminum can is dissolved in a solution of sodium hydroxide (9 to 20 wt%) and sodium nitrate (35 to 12 wt %), and the layers of the intermediate section are dissolved in a boiling sodium hydroxide solution of a minimum concentration of 50 wt%. (AEC) A method of selectively reducing plutonium oxides and the rare earth oxides but not uranium oxides is described which comprises placing the oxides in a molten solvent of zinc or cadmium and then adding metallic uranium as a reducing agent. (AEC)

  5. FUEL ELEMENT FOR NUCLEAR REACTORS

    DOEpatents

    Bassett, C.H.

    1961-05-16

    A fuel element particularly adapted for use in nuclear reactors of high power density is offered. It has fissionable fuel pellet segments mounted in a tubular housing and defining a central passage in the fuel element. A burnable poison element extends through the central passage, which is designed to contain more poison material at the median portion than at the end portions thereby providing a more uniform hurnup and longer reactivity life.

  6. FUEL ELEMENTS FOR NUCLEAR REACTORS

    DOEpatents

    Blainey, A.; Lloyd, H.

    1961-07-11

    A method of sheathing a tubular fuel element for a nuclear reactor is described. A low melting metal core member is centered in a die, a layer of a powdered sheathing substance is placed on the bottom of the die, the tubular fuel element is inserted in the die, the space between the tubular fuel element and the die walls and core member is filled with the same powdered sheathing substance, a layer of the same substance is placed over the fissile material, and the charge within the die is subjected to pressure in the direction of the axis of the fuel element at the sintering temperature of the protective substance.

  7. 15. VIEW OF DUMMY FUEL ELEMENT ON FUEL ELEMENT HOLDER. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. VIEW OF DUMMY FUEL ELEMENT ON FUEL ELEMENT HOLDER. SHOWS AIR FORCE MAN AT EDGE OF TANK. INEL PHOTO NUMBER 65-6176, TAKEN NOVEMBER 10, 1965. - Idaho National Engineering Laboratory, Advanced Reentry Vehicle Fusing System, Scoville, Butte County, ID

  8. HEAT2. Two-Dimensional Heat Transfer Finite Element Code

    SciTech Connect

    Charman, C.

    1993-08-01

    HEAT2 is a finite element program for the transient and steady-state, thermal analysis of two-dimensional solids. Calculates detailed temperature distributions in MHTGR prismatic fuel elements side reflector and core support blocks. Non-linear effects of time and temperature dependent boundary conditions, and heat source generation and material properties are included with user supplied subroutines NPBC, QAREA, SOURCE, and MPROP.

  9. Development of variable-width ribbon heating elements for liquid-metal and gas-cooled fast breeder reactor fuel-pin simulators

    SciTech Connect

    McCulloch, R.W.; Post, D.W.; Lovell, R.T.; Snyder, S.D.

    1981-04-01

    Variable-width ribbon heating elements that provide a chopped-cosine variable heat flux profile have been fabricated for fuel pin simulators used in test loops by the Breeder Reactor Program Thermal-Hydraulic Out-of-Reactor Safety test facility and the Gas-Cooled Fast Breeder Reactor-Core Flow Test Loop. Thermal, mechanical, and electrical design considerations are used to derive an analytical expression that precisely describes ribbon contour in terms of the major fabrication parameters. These parameters are used to generate numerical control tapes that control ribbon cutting and winding machines. Infrared scanning techniques are developed to determine the optimum transient thermal profile of the coils and relate this profile to that generated by the coils in completed fuel pin simulators.

  10. Vented nuclear fuel element

    DOEpatents

    Grossman, Leonard N.; Kaznoff, Alexis I.

    1979-01-01

    A nuclear fuel cell for use in a thermionic nuclear reactor in which a small conduit extends from the outside surface of the emitter to the center of the fuel mass of the emitter body to permit escape of volatile and gaseous fission products collected in the center thereof by virtue of molecular migration of the gases to the hotter region of the fuel.

  11. FUEL ELEMENT FOR NUCLEAR REACTORS

    DOEpatents

    Bassett, C.H.

    1961-11-21

    A fuel element is designed which is particularly adapted for reactors of high power density used to generate steam for the production of electricity. The fuel element consists of inner and outer concentric tubes forming an annular chamber within which is contained fissionable fuel pellet segments, wedge members interposed between the fuel segments, and a spring which, acting with wedge members, urges said fuel pellets radially into contact against the inner surface of the outer tube. The wedge members may be a fertile material convertible into fissionable fuel material by absorbing neutrons emitted from the fissionable fuel pellet segments. The costly grinding of cylindrical fuel pellets to close tolerances for snug engagement is reduced because the need to finish the exact size is eliminated. (AEC)

  12. NUCLEAR REACTOR FUEL ELEMENT ASSEMBLY

    DOEpatents

    Stengel, F.G.

    1963-12-24

    A method of fabricating nuclear reactor fuel element assemblies having a plurality of longitudinally extending flat fuel elements in spaced parallel relation to each other to form channels is presented. One side of a flat side plate is held contiguous to the ends of the elements and a welding means is passed along the other side of the platertransverse to the direction of the longitudinal extension of the elements. The setting and speed of travel of the welding means is set to cause penetration of the side plate with welds at bridge the gap in each channel between adjacent fuel elements with a weld-through bubble of predetermined size. The fabrication of a high strength, dependable fuel element is provided, and the reduction of distortion and high production costs are facilitated by this method. (AEC)

  13. REACTOR FUEL ELEMENTS TESTING CONTAINER

    DOEpatents

    Whitham, G.K.; Smith, R.R.

    1963-01-15

    This patent shows a method for detecting leaks in jacketed fuel elements. The element is placed in a sealed tank within a nuclear reactor, and, while the reactor operates, the element is sparged with gas. The gas is then led outside the reactor and monitored for radioactive Xe or Kr. (AEC)

  14. Thermoelectric heat exchange element

    DOEpatents

    Callas, James J.; Taher, Mahmoud A.

    2007-08-14

    A thermoelectric heat exchange module includes a first substrate including a heat receptive side and a heat donative side and a series of undulatory pleats. The module may also include a thermoelectric material layer having a ZT value of 1.0 or more disposed on at least one of the heat receptive side and the heat donative side, and an electrical contact may be in electrical communication with the thermoelectric material layer.

  15. FUEL ELEMENT AND METHOD OF PREPARATION

    DOEpatents

    Kingston, W.E.

    1961-04-25

    A nuclear fuel element in the form of a wire is reported. A bar of uranium is enclosed in a thin layer of aluminum and the composite is sheathed in beryllium, zirconium, or stainnless steel. The sheathed article is then drawn to wire form, heated to alloy the aluminum with both uranium and sheath, and finally cold worked.

  16. Spent graphite fuel element processing

    SciTech Connect

    Holder, N.D.; Olsen, C.W.

    1981-07-01

    The Department of Energy currently sponsors two programs to demonstrate the processing of spent graphite fuel elements. General Atomic in San Diego operates a cold pilot plant to demonstrate the processing of both US and German high-temperature reactor fuel. Exxon Nuclear Idaho Company is demonstrating the processing of spent graphite fuel elements from Rover reactors operated for the Nuclear Rocket Propulsion Program. This work is done at Idaho National Engineering Laboratory, where a hot facility is being constructed to complete processing of the Rover fuel. This paper focuses on the graphite combustion process common to both programs.

  17. NUCLEAR REACTOR FUEL ELEMENT

    DOEpatents

    Currier, E.L. Jr.; Nicklas, J.H.

    1963-06-11

    A fuel plate is designed for incorporation into control rods of the type utilized in high-flux test reactors. The fuel plate is designed so that the portion nearest the poison section of the control rod contains about one-half as much fissionable material as in the rest of the plate, thereby eliminating dangerous flux peaking in that portion. (AEC)

  18. NEUTRONIC REACTOR FUEL ELEMENT

    DOEpatents

    Horning, W.A.; Lanning, D.D.; Donahue, D.J.

    1959-10-01

    A fuel slug for a reactor which acts as a safety device is described. The fuel slug is an aluminum tube with a foil lining the inside surface of the tube, the foil being fabricated of uranium in a lead matrix.

  19. FUEL ELEMENTS FOR NEUTRONIC REACTORS

    DOEpatents

    Foote, F.G.; Jette, E.R.

    1963-05-01

    A fuel element for a nuclear reactor is described that consists of a jacket containing a unitary core of fissionable material and a filling of a metal of the group consisting of sodium and sodium-potassium alloys. (AEC)

  20. Dryout of BWR fuel elements

    SciTech Connect

    Reisch, Frigyes

    2006-07-01

    To increase the power output of the presently operating power reactors is a worldwide trend. One limiting factor from the safety and commercial point of views is the maximum allowable thermal load of the fuel. The findings of the presented loop experiments are that the margin to the burnout of the fuel elements can be defined by a single parameter the void. (authors)

  1. FUEL ELEMENT FOR NUCLEAR REACTORS

    DOEpatents

    Bassett, C.H.

    1961-05-01

    A nuclear reactor fuel element comprising high density ceramic fissionable material enclosed in a tubular cladding of corrosion-resistant material is described. The fissionable material is in the form of segments of a tube which have cooperating tapered interfaces which produce outward radial displacement when the segments are urged axially together. A resilient means is provided within the tubular housing to constantly urge the fuel segments axially. This design maintains the fuel material in tight contacting engagement against the inner surface of the outer cladding tube to eliminate any gap therebetween which may be caused by differential thermal expansion between the fuel material and the material of the tube.

  2. NUCLEAR REACTOR AND THERMIONIC FUEL ELEMENT THEREFOR

    DOEpatents

    Rasor, N.S.; Hirsch, R.L.

    1963-12-01

    The patent relates to the direct conversion of fission heat to electricity by use of thermionic plasma diodes having fissionable material cathodes, said diodes arranged to form a critical mass in a nuclear reactor. The patent describes a fuel element comprising a plurality of diodes each having a fissionable material cathode, an anode around said cathode, and an ionizable gas therebetween. Provision is made for flowing the gas and current serially through the diodes. (AEC)

  3. Monitoring arrangement for vented nuclear fuel elements

    DOEpatents

    Campana, Robert J.

    1981-01-01

    In a nuclear fuel reactor core, fuel elements are arranged in a closely packed hexagonal configuration, each fuel element having diametrically opposed vents permitting 180.degree. rotation of the fuel elements to counteract bowing. A grid plate engages the fuel elements and forms passages for communicating sets of three, four or six individual vents with respective monitor lines in order to communicate vented radioactive gases from the fuel elements to suitable monitor means in a manner readily permitting detection of leakage in individual fuel elements.

  4. Low cost, lightweight fuel cell elements

    NASA Technical Reports Server (NTRS)

    Kindler, Andrew (Inventor)

    2001-01-01

    New fuel cell elements for use in liquid feed fuel cells are provided. The elements including biplates and endplates are low in cost, light in weight, and allow high efficiency operation. Electrically conductive elements are also a part of the fuel cell elements.

  5. Fuel elements of thermionic converters

    SciTech Connect

    Hunter, R.L.; Gontar, A.S.; Nelidov, M.V.; Nikolaev, Yu.V.; Schulepov, L.N.

    1997-01-01

    Work on thermionic nuclear power systems has been performed in Russia within the framework of the TOPAZ reactor program since the early 1960s. In the TOPAZ in-core thermionic convertor reactor design, the fuel element`s cladding is also the thermionic convertor`s emitter. Deformation of the emitter can lead to short-circuiting and is the primary cause of premature TRC failure. Such deformation can be the result of fuel swelling, thermocycling, or increased unilateral pressure on the emitter due to the release of gaseous fission products. Much of the work on TRCs has concentrated on preventing or mitigating emitter deformation by improving the following materials and structures: nuclear fuel; emitter materials; electrical insulators; moderator and reflector materials; and gas-exhaust device. In addition, considerable effort has been directed toward the development of experimental techniques that accurately mimic operational conditions and toward the creation of analytical and numerical models that allow operational conditions and behavior to be predicted without the expense and time demands of in-pile tests. New and modified materials and structures for the cores of thermionic NPSs and new fabrication processes for the materials have ensured the possibility of creating thermionic NPSs for a wide range of powers, from tens to several hundreds of kilowatts, with life spans of 5 to 10 years.

  6. FUEL-BREEDER FUEL ELEMENT FOR NUCLEAR REACTOR

    DOEpatents

    Abbott, W.E.; Balent, R.

    1958-09-16

    A fuel element design to facilitate breeding reactor fuel is described. The fuel element is comprised of a coatainer, a central core of fertile material in the container, a first bonding material surrounding the core, a sheet of fissionable material immediately surrounding the first bonding material, and a second bonding material surrounding the fissionable material and being in coniact with said container.

  7. Heating subsurface formations by oxidizing fuel on a fuel carrier

    SciTech Connect

    Costello, Michael; Vinegar, Harold J.

    2012-10-02

    A method of heating a portion of a subsurface formation includes drawing fuel on a fuel carrier through an opening formed in the formation. Oxidant is supplied to the fuel at one or more locations in the opening. The fuel is combusted with the oxidant to provide heat to the formation.

  8. Self supporting heat transfer element

    DOEpatents

    Story, Grosvenor Cook; Baldonado, Ray Orico

    2002-01-01

    The present invention provides an improved internal heat exchange element arranged so as to traverse the inside diameter of a container vessel such that it makes good mechanical contact with the interior wall of that vessel. The mechanical element is fabricated from a material having a coefficient of thermal conductivity above about 0.8 W cm.sup.-1.degree. K.sup.-1 and is designed to function as a simple spring member when that member has been cooled to reduce its diameter to just below that of a cylindrical container or vessel into which it is placed and then allowed to warm to room temperature. A particularly important application of this invention is directed to a providing a simple compartmented storage container for accommodating a hydrogen absorbing alloy.

  9. FUEL ELEMENT FOR A NEUTRONIC REACTOR

    DOEpatents

    McGeary, R.K.; Winslow, F.R.

    1963-08-13

    A method of making fuel elements wherein several individual fuel pellets are positioned into a cladding tube and the tape stretched longitudinally until the cladding tube grips each pellet and, in addition, necks down between each pellet is described. (AEC)

  10. Automated Fuel Element Closure Welding System

    SciTech Connect

    Wahlquist, D.R.

    1993-01-01

    The Automated Fuel Element Closure Welding System is a robotic device that will load and weld top end plugs onto nuclear fuel elements in a highly radioactive and inert gas environment. The system was developed at Argonne National Laboratory-West as part of the Fuel Cycle Demonstration. The welding system performs four main functions, it (1) injects a small amount of a xenon/krypton gas mixture into specific fuel elements, and (2) loads tiny end plugs into the tops of fuel element jackets, and (3) welds the end plugs to the element jackets, and (4) performs a dimensional inspection of the pre- and post-welded fuel elements. The system components are modular to facilitate remote replacement of failed parts. The entire system can be operated remotely in manual, semi-automatic, or fully automatic modes using a computer control system. The welding system is currently undergoing software testing and functional checkout.

  11. Automated Fuel Element Closure Welding System

    SciTech Connect

    Wahlquist, D.R.

    1993-03-01

    The Automated Fuel Element Closure Welding System is a robotic device that will load and weld top end plugs onto nuclear fuel elements in a highly radioactive and inert gas environment. The system was developed at Argonne National Laboratory-West as part of the Fuel Cycle Demonstration. The welding system performs four main functions, it (1) injects a small amount of a xenon/krypton gas mixture into specific fuel elements, and (2) loads tiny end plugs into the tops of fuel element jackets, and (3) welds the end plugs to the element jackets, and (4) performs a dimensional inspection of the pre- and post-welded fuel elements. The system components are modular to facilitate remote replacement of failed parts. The entire system can be operated remotely in manual, semi-automatic, or fully automatic modes using a computer control system. The welding system is currently undergoing software testing and functional checkout.

  12. Rack for storing spent nuclear fuel elements

    DOEpatents

    Rubinstein, Herbert J.; Clark, Philip M.; Gilcrest, James D.

    1978-06-20

    A rack for storing spent nuclear fuel elements in which a plurality of aligned rows of upright enclosures of generally square cross-sectional areas contain vertically disposed fuel elements. The enclosures are fixed at the lower ends thereof to a base. Pockets are formed between confronting walls of adjacent enclosures for receiving high absorption neutron absorbers, such as Boral, cadmium, borated stainless steel and the like for the closer spacing of spent fuel elements.

  13. DISSOLUTION OF ZIRCONIUM-CONTAINING FUEL ELEMENTS

    DOEpatents

    Horn, F.L.

    1961-12-12

    Uranium is recovered from spent uranium fuel elements containing or clad with zirconium. These fuel elements are placed in an anhydrous solution of hydrogen fluoride and nitrogen dioxide. Within this system uranium forms a soluble complex and zirconium forms an insoluble complex. The uranium can then be separated, treated, and removed from solution as uranium hexafluoride. (AEC)

  14. Low Cost Nuclear Thermal Rocket Cermet Fuel Element Environment Testing

    NASA Technical Reports Server (NTRS)

    Bradley, David E.; Mireles, Omar R.; Hickman, Robert R.

    2011-01-01

    Deep space missions with large payloads require high specific impulse (Isp) and relatively high thrust in order to achieve mission goals in reasonable time frames. Conventional, storable propellants produce average Isp. Nuclear thermal rockets (NTR) capable of high Isp thrust have been proposed. NTR employs heat produced by fission reaction to heat and therefore accelerate hydrogen which is then forced through a rocket nozzle providing thrust. Fuel element temperatures are very high (up to 3000K) and hydrogen is highly reactive with most materials at high temperatures. Data covering the effects of high temperature hydrogen exposure on fuel elements is limited. The primary concern is the mechanical failure of fuel elements which employ high-melting-point metals, ceramics or a combination (cermet) as a structural matrix into which the nuclear fuel is distributed. It is not necessary to include fissile material in test samples intended to explore high temperature hydrogen exposure of the structural support matrices. A small-scale test bed designed to heat fuel element samples via non-contact RF heating and expose samples to hydrogen is being developed to assist in optimal material and manufacturing process selection without employing fissile material. This paper details the test bed design and results of testing conducted to date.

  15. 35. DETAILS AND SECTIONS OF FUEL ELEMENT SUPPORT PLATFORM, FUEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    35. DETAILS AND SECTIONS OF FUEL ELEMENT SUPPORT PLATFORM, FUEL ELEMENT HOLDER, TRIP MECHANISM COVER, AND OTHER DETAILS. F.C. TORKELSON DRAWING NUMBER 842-ARVFS-701-S-3. INEL INDEX CODE NUMBER: 075 0701 60 851 151977. - Idaho National Engineering Laboratory, Advanced Reentry Vehicle Fusing System, Scoville, Butte County, ID

  16. MRT fuel element inspection at Dounreay

    SciTech Connect

    Gibson, J.

    1997-08-01

    To ensure that their production and inspection processes are performed in an acceptable manner, ie. auditable and traceable, the MTR Fuel Element Fabrication Plant at Dounreay operates to a documented quality system. This quality system, together with the fuel element manufacturing and inspection operations, has been independently certified to ISO9002-1987, EN29002-1987 and BS5750:Pt2:1987 by Lloyd`s Register Quality Assurance Limited (LRQA). This certification also provides dual accreditation to the relevant German, Dutch and Australian certification bodies. This paper briefly describes the quality system, together with the various inspection stages involved in the manufacture of MTR fuel elements at Dounreay.

  17. Identification of failed fuel element

    DOEpatents

    Fryer, Richard M.; Matlock, Robert G.

    1976-06-22

    A passive fission product gas trap is provided in the upper portion of each fuel subassembly in a nuclear reactor. The gas trap consists of an inverted funnel of less diameter than the subassembly having a valve at the apex thereof. An actuating rod extends upwardly from the valve through the subassembly to a point where it can be contacted by the fuel handling mechanism for the reactor. Interrogation of the subassembly for the presence of fission products is accomplished by lowering the fuel handling machine onto the subassembly to press down on the actuating rod and open the valve.

  18. Numerical simulation of gas dynamics and heat exchange tasks in fuel assemblies of the nuclear reactors

    SciTech Connect

    Zhuchenko, S. V.

    2014-11-12

    This report presents a PC-based program for solution gas dynamics and heat exchange mathematical tasks in fuel assemblies of the fast-neutron nuclear reactors. A fuel assembly consisting of bulk heat-generating elements, which are integrated together by the system of supply and pressure manifolds, is examined. Spherical heat-generating microelements, which contain nuclear fuel, are pulled into the heat-generating elements. Gaseous coolant proceed from supply manifolds to heat-generating elements, where it withdraws the nuclear reaction heat and assembles in pressure manifolds.

  19. Apparatus for inspecting fuel elements

    DOEpatents

    Oakley, David J.; Groves, Oliver J.; Kaiser, Bruce J.

    1986-01-01

    Disclosed is an alpha monitor usable in an automated nuclear fuel pin loading and processing unit. Fuel pins or other elongated pins are fed laterally into the alpha monitor in a singular fashion and are translated by a first roller assembly into a weld flare machining and decontamination substation not forming a part of the invention. Pins return and are lifted upwardly and transferred across to a combined pin lifting and electrode operating means which lifts the pins upwardly into a clamshell electrode assembly which is spread open by a combined pin lifting and electrode operating means. Once inserted the clamshell type electrode arrangement closes around the fuel pins so that inspection can occur. Fuel pins are inspected by charging electrodes to a negative potential and measuring the change in charge occurring when positively charged alpha particles strike the negatively charged electrodes. After inspection, the fuel pins are lowered by the pin lifting and electrode operating means into a second roller assembly which longitudinally conveys approved pins from the airtight enclosure in which the alpha monitor is mounted. If the fuel pins are rejected then they are moved laterally by a second transfer means and onto another system for further processing.

  20. Apparatus for inspecting fuel elements

    DOEpatents

    Kaiser, B.J.; Oakley, D.J.; Groves, O.J.

    1984-12-21

    This disclosure describes an alpha monitor usable in an automated nuclear fuel pin loading and processing unit. Fuel pins or other elongated pins are fed laterally into the alpha monitor in a singular fashion and are translated by a first roller assembly into a weld flare machining and decontamination substation not forming a part of the invention. Pins return and are lifted upwardly and transferred across to a combined pin lifting and electrode operating means which lifts the pins upwardly into a clamshell electrode assembly which is spread open by a combined pin lifting and electrode operating means. Once inserted the clamshell type electrode arrangement closes around the fuel pins so that inspection can occur. Fuel pins are inspected by charging electrodes to a negative potential and measuring the change in charge occurring when positively charged alpha particles strike the negatively charged electrodes. After inspection, the fuel pins are lowered by the pin lifting and electrode operating means into a second roller assembly which longitudinally conveys approved pins from the airtight enclosure in which the alpha monitor is mounted. If the fuel pins are rejected then they are moved laterally by a second transfer means and onto another system for further processing.

  1. Fuel elements of research reactor CM

    SciTech Connect

    Kozlov, A.V.; Morozov, A.V.; Vatulin, A.V.; Ershov, S.A.

    2013-07-01

    In 1961 the CM research reactor was commissioned at the Research Institute of Atomic Reactors (Dimitrovgrad, Russia), it was intended to carry on investigations and the production of transuranium nuclides. The reactor is of a tank type. Original fuel assembly contained plate fuels that were spaced with vanes and corrugated bands. Nickel was used as a cladding material, fuel meat was produced from UO{sub 2} + electrolytic nickel composition. Fuel plates have been replaced by self-spacing cross-shaped dispersion fuels clad in stainless steel. In 2005 the reactor was updated. The purpose of this updating was to increase the quantity of irradiation channels in the reactor core and to improve the neutron balance. The updating was implemented at the expense of 20 % reduction in the quantity of fuel elements in the core which released a space for extra channels and decreased the mass of structural materials in the core. The updated reactor is loaded with modified standard fuel elements with 20 % higher uranium masses. At the same time stainless steel in fuel assembly shrouds was substituted by zirconium alloy. Today in progress are investigations and work to promote the second stage of reactor updating that involve developments of cross-shaped fuel elements having low neutron absorption matrix materials. This article gives an historical account of the design and main technical changes that occurred for the CM reactor since its commissioning.

  2. FABRICATION OF TUBE TYPE FUEL ELEMENT FOR NUCLEAR REACTORS

    DOEpatents

    Loeb, E.; Nicklas, J.H.

    1959-02-01

    A method of fabricating a nuclear reactor fuel element is given. It consists essentially of fixing two tubes in concentric relationship with respect to one another to provide an annulus therebetween, filling the annulus with a fissionablematerial-containing powder, compacting the powder material within the annulus and closing the ends thereof. The powder material is further compacted by swaging the inner surface of the inner tube to increase its diameter while maintaining the original size of the outer tube. This process results in reduced fabrication costs of powdered fissionable material type fuel elements and a substantial reduction in the peak core temperatures while materially enhancing the heat removal characteristics.

  3. Low Cost Nuclear Thermal Rocket Cermet Fuel Element Environment Testing

    NASA Technical Reports Server (NTRS)

    Bradley, D. E.; Mireles, O. R.; Hickman, R. R.

    2011-01-01

    Deep space missions with large payloads require high specific impulse and relatively high thrust to achieve mission goals in reasonable time frames.1,2 Conventional storable propellants produce average specific impulse. Nuclear thermal rockets capable of producing high specific impulse are proposed. Nuclear thermal rockets employ heat produced by fission reaction to heat and therefore accelerate hydrogen, which is then forced through a rocket nozzle providing thrust. Fuel element temperatures are very high (up to 3000 K), and hydrogen is highly reactive with most materials at high temperatures. Data covering the effects of high-temperature hydrogen exposure on fuel elements are limited.3 The primary concern is the mechanical failure of fuel elements that employ high-melting-point metals, ceramics, or a combination (cermet) as a structural matrix into which the nuclear fuel is distributed. The purpose of the testing is to obtain data to assess the properties of the non-nuclear support materials, as-fabricated, and determine their ability to survive and maintain thermal performance in a prototypical NTR reactor environment of exposure to hydrogen at very high temperatures. The fission process of the planned fissile material and the resulting heating performance is well known and does not therefore require that active fissile material be integrated in this testing. A small-scale test bed designed to heat fuel element samples via non-contact radio frequency heating and expose samples to hydrogen is being developed to assist in optimal material and manufacturing process selection without employing fissile material. This paper details the test bed design and results of testing conducted to date.

  4. NEUTRONIC REACTOR FUEL ELEMENT AND CORE SYSTEM

    DOEpatents

    Moore, W.T.

    1958-09-01

    This patent relates to neutronic reactors and in particular to an improved fuel element and a novel reactor core system for facilitating removal of contaminating fission products, as they are fermed, from association with the flssionable fuel, so as to mitigate the interferent effects of such fission products during reactor operation. The fuel elements are comprised of tubular members impervious to fluid and contatning on their interior surfaces a thin layer of fissionable material providing a central void. The core structure is comprised of a plurality of the tubular fuel elements arranged in parallel and a closed manifold connected to their ends. In the reactor the core structure is dispersed in a water moderator and coolant within a pressure vessel, and a means connected to said manifuld is provided for withdrawing and disposing of mobile fission product contamination from the interior of the feel tubes and manifold.

  5. Heat exchanger with ceramic elements

    DOEpatents

    Corey, John A.

    1986-01-01

    An annular heat exchanger assembly includes a plurality of low thermal growth ceramic heat exchange members with inlet and exit flow ports on distinct faces. A mounting member locates each ceramic member in a near-annular array and seals the flow ports on the distinct faces into the separate flow paths of the heat exchanger. The mounting member adjusts for the temperature gradient in the assembly and the different coefficients of thermal expansion of the members of the assembly during all operating temperatures.

  6. IMPROVED TYPE OF FUEL ELEMENT

    DOEpatents

    Monson, H.O.

    1961-01-24

    A radiator-type fuel block assembly is described. It has a hexagonal body of neutron fissionable material having a plurality of longitudinal equal- spaced coolant channels therein aligned in rows parallel to each face of the hexagonal body. Each of these coolant channels is hexagonally shaped with the corners rounded and enlarged and the assembly has a maximum temperature isothermal line around each channel which is approximately straight and equidistant between adjacent channels.

  7. Local Heat Flux Measurements with Single Element Coaxial Injectors

    NASA Technical Reports Server (NTRS)

    Jones, Gregg; Protz, Christopher; Bullard, Brad; Hulka, James

    2006-01-01

    To support the mission for the NASA Vision for Space Exploration, the NASA Marshall Space Flight Center conducted a program in 2005 to improve the capability to predict local thermal compatibility and heat transfer in liquid propellant rocket engine combustion devices. The ultimate objective was to predict and hence reduce the local peak heat flux due to injector design, resulting in a significant improvement in overall engine reliability and durability. Such analyses are applicable to combustion devices in booster, upper stage, and in-space engines, as well as for small thrusters with few elements in the injector. In this program, single element and three-element injectors were hot-fire tested with liquid oxygen and ambient temperature gaseous hydrogen propellants at The Pennsylvania State University Cryogenic Combustor Laboratory from May to August 2005. Local heat fluxes were measured in a 1-inch internal diameter heat sink combustion chamber using Medtherm coaxial thermocouples and Gardon heat flux gauges. Injectors were tested with shear coaxial and swirl coaxial elements, including recessed, flush and scarfed oxidizer post configurations, and concentric and non-concentric fuel annuli. This paper includes general descriptions of the experimental hardware, instrumentation, and results of the hot-fire testing for three of the single element injectors - recessed-post shear coaxial with concentric fuel, flush-post swirl coaxial with concentric fuel, and scarfed-post swirl coaxial with concentric fuel. Detailed geometry and test results will be published elsewhere to provide well-defined data sets for injector development and model validatation.

  8. Element-by-element factorization algorithms for heat conduction

    NASA Technical Reports Server (NTRS)

    Hughes, T. J. R.; Winget, J. M.; Park, K. C.

    1983-01-01

    Element-by-element solution strategies are developed for transient heat conduction problems. Results of numerical tests indicate the effectiveness of the procedures proposed. The small database requirements and attractive architectural features of the algorithms suggest considerable potential for solving large scale problems.

  9. Nuclear fuel elements having a composite cladding

    DOEpatents

    Gordon, Gerald M.; Cowan, II, Robert L.; Davies, John H.

    1983-09-20

    An improved nuclear fuel element is disclosed for use in the core of nuclear reactors. The improved nuclear fuel element has a composite cladding of an outer portion forming a substrate having on the inside surface a metal layer selected from the group consisting of copper, nickel, iron and alloys of the foregoing with a gap between the composite cladding and the core of nuclear fuel. The nuclear fuel element comprises a container of the elongated composite cladding, a central core of a body of nuclear fuel material disposed in and partially filling the container and forming an internal cavity in the container, an enclosure integrally secured and sealed at each end of said container and a nuclear fuel material retaining means positioned in the cavity. The metal layer of the composite cladding prevents perforations or failures in the cladding substrate from stress corrosion cracking or from fuel pellet-cladding interaction or both. The substrate of the composite cladding is selected from conventional cladding materials and preferably is a zirconium alloy.

  10. HTGR fuel element structural design considerations

    SciTech Connect

    Alloway, R.; Gorholt, W.; Ho, F.; Vollman, R.; Yu, H.

    1986-09-01

    The structural design of the large HTGR prismatic core fuel elements involve the interaction of four engineering disciplines: nuclear physics, thermo-hydraulics, structural and material science. Fuel element stress analysis techniques and the development of structural criteria are discussed in the context of an overview of the entire design process. The core of the proposed 2240 MW(t) HTGR is described as an example where the design process was used. Probabalistic stress analysis techniques coupled with probabalistic risk analysis (PRA) to develop structural criteria to account for uncertainty are described. The PRA provides a means for ensuring that the proposed structural criteria are consistent with plant investment and safety risk goals. The evaluation of cracked fuel elements removed from the Fort St. Vrain reactor in the USA is discussed in the context of stress analysis uncertainty and structural criteria development.

  11. REGENERATION OF REACTOR FUEL ELEMENTS

    DOEpatents

    Lyon, W.L.

    1960-04-01

    A process is described for concentrating uranium and/or plutonium metal in aluminum alloys in which the actinide content was partially consumed by neutron bombardinent. Two embodiments are claimed: Either the alloy is heated, together with zinc chloride to at least 1000 deg C whereby some aluminum, in the form of aluminum chloride, and any zinc formed volatilize; or else aluminum fluoride is added and reacted at 800 to 1000 deg O and substmospheric pressure whereby pant of the aluminum volatilizes and aluminum subfluoride.

  12. Upgraded HFIR Fuel Element Welding System

    SciTech Connect

    Sease, John D

    2010-02-01

    The welding of aluminum-clad fuel plates into aluminum alloy 6061 side plate tubing is a unique design feature of the High Flux Isotope Reactor (HFIR) fuel assemblies as 101 full-penetration circumferential gas metal arc welds (GMAW) are required in the fabrication of each assembly. In a HFIR fuel assembly, 540 aluminum-clad fuel plates are assembled into two nested annular fuel elements 610 mm (24-inches) long. The welding process for the HFIR fuel elements was developed in the early 1960 s and about 450 HFIR fuel assemblies have been successfully welded using the GMAW process qualified in the 1960 s. In recent years because of the degradation of the electronic and mechanical components in the old HFIR welding system, reportable defects in plate attachment or adapter welds have been present in almost all completed fuel assemblies. In October 2008, a contract was awarded to AMET, Inc., of Rexburg, Idaho, to replace the old welding equipment with standard commercially available welding components to the maximum extent possible while maintaining the qualified HFIR welding process. The upgraded HFIR welding system represents a major improvement in the welding system used in welding HFIR fuel elements for the previous 40 years. In this upgrade, the new inner GMAW torch is a significant advancement over the original inner GMAW torch previously used. The innovative breakthrough in the new inner welding torch design is the way the direction of the cast in the 0.762 mm (0.030-inch) diameter aluminum weld wire is changed so that the weld wire emerging from the contact tip is straight in the plane perpendicular to the welding direction without creating any significant drag resistance in the feeding of the weld wire.

  13. Nuclear fuel elements made from nanophase materials

    DOEpatents

    Heubeck, N.B.

    1998-09-08

    A nuclear reactor core fuel element is composed of nanophase high temperature materials. An array of the fuel elements in rod form are joined in an open geometry fuel cell that preferably also uses such nanophase materials for the cell structures. The particular high temperature nanophase fuel element material must have the appropriate mechanical characteristics to avoid strain related failure even at high temperatures, in the order of about 3000 F. Preferably, the reactor type is a pressurized or boiling water reactor and the nanophase material is a high temperature ceramic or ceramic composite. Nanophase metals, or nanophase metals with nanophase ceramics in a composite mixture, also have desirable characteristics, although their temperature capability is not as great as with all-ceramic nanophase material. Combinations of conventional or nanophase metals and conventional or nanophase ceramics can be employed as long as there is at least one nanophase material in the composite. The nuclear reactor so constructed has a number of high strength fuel particles, a nanophase structural material for supporting a fuel rod at high temperature, a configuration to allow passive cooling in the event of a primary cooling system failure, an ability to retain a coolable geometry even at high temperatures, an ability to resist generation of hydrogen gas, and a configuration having good nuclear, corrosion, and mechanical characteristics. 5 figs.

  14. Nuclear fuel elements made from nanophase materials

    DOEpatents

    Heubeck, Norman B.

    1998-01-01

    A nuclear reactor core fuel element is composed of nanophase high temperature materials. An array of the fuel elements in rod form are joined in an open geometry fuel cell that preferably also uses such nanophase materials for the cell structures. The particular high temperature nanophase fuel element material must have the appropriate mechanical characteristics to avoid strain related failure even at high temperatures, in the order of about 3000.degree. F. Preferably, the reactor type is a pressurized or boiling water reactor and the nanophase material is a high temperature ceramic or ceramic composite. Nanophase metals, or nanophase metals with nanophase ceramics in a composite mixture, also have desirable characteristics, although their temperature capability is not as great as with all-ceramic nanophase material. Combinations of conventional or nanophase metals and conventional or nanophase ceramics can be employed as long as there is at least one nanophase material in the composite. The nuclear reactor so constructed has a number of high strength fuel particles, a nanophase structural material for supporting a fuel rod at high temperature, a configuration to allow passive cooling in the event of a primary cooling system failure, an ability to retain a coolable geometry even at high temperatures, an ability to resist generation of hydrogen gas, and a configuration having good nuclear, corrosion, and mechanical characteristics.

  15. Some parametric flow analyses of a particle bed fuel element

    SciTech Connect

    Dobranich, D.

    1993-05-01

    Parametric calculations are performed, using the SAFSIM computer program, to investigate the fluid mechanics and heat transfer performance of a particle bed fuel element. Both steady-state and transient calculations are included, addressing such issues as flow stability, reduced thrust operation, transpiration drag, coolant conductivity enhancement, flow maldistributions, decay heat removal, flow perturbations, and pulse cooling. The calculations demonstrate the dependence of the predicted results on the modeling assumptions and thus provide guidance as to where further experimental and computational investigations are needed. The calculations also demonstrate that both flow instability and flow maldistribution in the fuel element are important phenomena. Furthermore, results are encouraging that geometric design changes to the element can significantly reduce problems related to these phenomena, allowing improved performance over a wide range of element power densities and flow rates. Such design changes will help to maximize the operational efficiency of space propulsion reactors employing particle bed fuel element technology. Finally, the results demonstrate that SAFSIM is a valuable engineering tool for performing quick and inexpensive parametric simulations addressing complex flow problems.

  16. JACKETED FUEL ELEMENTS FOR GRAPHITE MODERATED REACTORS

    DOEpatents

    Szilard, L.; Wigner, E.P.; Creutz, E.C.

    1959-05-12

    Fuel elements for a heterogeneous, fluid cooled, graphite moderated reactor are described. The fuel elements are comprised of a body of natural uranium hermetically sealed in a jacket of corrosion resistant material. The jacket, which may be aluminum or some other material which is non-fissionable and of a type having a low neutron capture cross-section, acts as a barrier between the fissioning isotope and the coolant or moderator or both. The jacket minimizes the tendency of the moderator and coolant to become radioactive and/or contaminated by fission fragments from the fissioning isotope.

  17. Modeling and Simulation of a Nuclear Fuel Element Test Section

    NASA Technical Reports Server (NTRS)

    Moran, Robert P.; Emrich, William

    2011-01-01

    "The Nuclear Thermal Rocket Element Environmental Simulator" test section closely simulates the internal operating conditions of a thermal nuclear rocket. The purpose of testing is to determine the ideal fuel rod characteristics for optimum thermal heat transfer to their hydrogen cooling/working fluid while still maintaining fuel rod structural integrity. Working fluid exhaust temperatures of up to 5,000 degrees Fahrenheit can be encountered. The exhaust gas is rendered inert and massively reduced in temperature for analysis using a combination of water cooling channels and cool N2 gas injectors in the H2-N2 mixer portion of the test section. An extensive thermal fluid analysis was performed in support of the engineering design of the H2-N2 mixer in order to determine the maximum "mass flow rate"-"operating temperature" curve of the fuel elements hydrogen exhaust gas based on the test facilities available cooling N2 mass flow rate as the limiting factor.

  18. Fuel delivery system including heat exchanger means

    NASA Technical Reports Server (NTRS)

    Coffinberry, G. A. (Inventor)

    1978-01-01

    A fuel delivery system is presented wherein first and second heat exchanger means are each adapted to provide the transfer of heat between the fuel and a second fluid such as lubricating oil associated with the gas turbine engine. Valve means are included which are operative in a first mode to provide for flow of the second fluid through both first and second heat exchange means and further operative in a second mode for bypassing the second fluid around the second heat exchanger means.

  19. Heating Values of Fuels: An Introductory Experiment.

    ERIC Educational Resources Information Center

    Rettlich, Timothy R.; And Others

    1988-01-01

    Describes a simple, inexpensive experiment in which students determine the heats of combustion of common solid, liquid, and gaseous fuels. The experimental apparatus, procedures, calculations and results are discussed. (CW)

  20. Code System for Spent Fuel Heating Analysis.

    1999-05-24

    Version 00 SFHA calculates steady-state fuel rod temperatures for hexagon and square-fuel bundles. The code is used to perform sensitivity studies and confirmatory analyses of results submitted by applicants for spent fuel storage licenses. All three modes of heat transfer are considered; radiation, convection, and conduction. Each is modeled separately. SFHA benchmark calculations were made with test data to validate the use of a simple one-dimensional heat transfer model for estimating fuel rod temperatures. Benchmarkmore » results show that SFHA is capable of calculating spent fuel rod temperatures for square and hexagonal fuel bundles under various environments for the consolidated or unconsolidated condition. The program is menu-driven and executes automatically after all required information is entered.« less

  1. Heated transportable fuel cell cartridges

    DOEpatents

    Lance, Joseph R.; Spurrier, Francis R.

    1985-01-01

    A fuel cell stack protective system is made where a plurality of fuel cells, each containing liquid electrolyte subject to crystallization, is enclosed by a containing vessel, and where at least one electric heater is placed in the containing vessel and is capable of preventing electrolyte crystallization.

  2. Heat Transfer to Fuel Sprays Injected into Heated Gases

    NASA Technical Reports Server (NTRS)

    Selden, Robert F; Spencer, Robert C

    1938-01-01

    This report presents the results of a study made of the influence of several variables on the pressure decrease accompanying injection of a relatively cool liquid into a heated compressed gas. Indirectly, this pressure decrease and the time rate of change of it are indicative of the total heat transferred as well as the rate of heat transfer between the gas and the injected liquid. Air, nitrogen, and carbon dioxide were used as ambient gases; diesel fuel and benzene were the injected liquids. The gas densities and gas-fuel ratios covered approximately the range used in compression-ignition engines. The gas temperatures ranged from 150 degrees c. to 350 degrees c.

  3. Heat Exchanger With Internal Pin Elements

    DOEpatents

    Gerstmann, Joseph; Hannon, Charles L.

    2004-01-13

    A heat exchanger/heater comprising a tubular member having a fluid inlet end, a fluid outlet end and plurality of pins secured to the interior wall of the tube. Various embodiments additionally comprise a blocking member disposed concentrically inside the pins, such as a core plug or a baffle array. Also disclosed is a vapor generator employing an internally pinned tube, and a fluid-heater/heat-exchanger utilizing an outer jacket tube and fluid-side baffle elements, as well as methods for heating a fluid using an internally pinned tube.

  4. METHOD OF MAKING WIRE FUEL ELEMENTS

    DOEpatents

    Zambrow, J.L.

    1960-08-01

    A method is given for making a nuclear reactor fuel element in the form of a uranium-bearing wire clad with zirconium. A uranium bar is enclosed in a zirconium sheath which is coated with an oxide of magnesium, beryllium, or zirconium. The sheathed bar is then placed in a steel tube and reduced to the desired diameter by swaging at 800 to 900 deg C, after which the steel and oxide are removed.

  5. CONCENTRIC TUBE FUEL ELEMENT SPRING ALIGNMENT SPACER DEVICE

    DOEpatents

    Weems, S.J.

    1963-09-24

    A rib construction for a nuclear-fuel element is described, in which one of three peripherally spaced ribs adjacent to each end of the fuel element is mounted on a radially yielding spring that embraces the fuel element. This spring enables the fuel element to have a good fit with a coolant tube and yet to be easily inserted in and withdrawn from the tube. (AEC)

  6. A mechanistic code for intact and defective nuclear fuel element performance

    NASA Astrophysics Data System (ADS)

    Shaheen, Khaled

    During reactor operation, nuclear fuel elements experience an environment featuring high radiation, temperature, and pressure. Predicting in-reactor performance of nuclear fuel elements constitutes a complex multi-physics problem, one that requires numerical codes to be solved. Fuel element performance codes have been developed for different reactor and fuel designs. Most of these codes simulate fuel elements using one-or quasi-two-dimensional geometries, and some codes are only applicable to steady state but not transient behaviour and vice versa. Moreover, while many conceptual and empirical separate-effects models exist for defective fuel behaviour, wherein the sheath is breached allowing coolant ingress and fission gas escape, there have been few attempts to predict defective fuel behaviour in the context of a mechanistic fuel performance code. Therefore, a mechanistic fuel performance code, called FORCE (Fuel Operational peRformance Computations in an Element) is proposed for the time-dependent behaviour of intact and defective CANDU nuclear fuel elements. The code, which is implemented in the COMSOL Multiphysics commercial software package, simulates the fuel, sheath, and fuel-to-sheath gap in a radial-axial geometry. For intact fuel performance, the code couples models for heat transport, fission gas production and diffusion, and structural deformation of the fuel and sheath. The code is extended to defective fuel performance by integrating an adapted version of a previously developed fuel oxidation model, and a model for the release of radioactive fission product gases from the fuel to the coolant. The FORCE code has been verified against the ELESTRES-IST and ELESIM industrial code for its predictions of intact fuel performance. For defective fuel behaviour, the code has been validated against coulometric titration data for oxygen-to-metal ratio in defective fuel elements from commercial reactors, while also being compared to a conceptual oxidation model

  7. Finite Element Heat & Mass Transfer Code

    1996-10-10

    FEHM is a numerical simulation code for subsurface transport processes. It models 3-D, time-dependent, multiphase, multicomponent, non-isothermal, reactive flow through porous and fractured media. It can accurately represent complex 3-D geologic media and structures and their effects on subsurface flow and transport. Its capabilities include flow of gas, water, and heat; flow of air, water, and heat; multiple chemically reactive and sorbing tracers; finite element/finite volume formulation; coupled stress module; saturated and unsaturated media; andmore » double porosity and double porosity/double permeability capabilities.« less

  8. Heat exchanger for fuel cell power plant reformer

    DOEpatents

    Misage, Robert; Scheffler, Glenn W.; Setzer, Herbert J.; Margiott, Paul R.; Parenti, Jr., Edmund K.

    1988-01-01

    A heat exchanger uses the heat from processed fuel gas from a reformer for a fuel cell to superheat steam, to preheat raw fuel prior to entering the reformer and to heat a water-steam coolant mixture from the fuel cells. The processed fuel gas temperature is thus lowered to a level useful in the fuel cell reaction. The four temperature adjustments are accomplished in a single heat exchanger with only three heat transfer cores. The heat exchanger is preheated by circulating coolant and purge steam from the power section during startup of the latter.

  9. Selection of Isotopes and Elements for Fuel Cycle Analysis

    SciTech Connect

    Steven J. Piet

    2009-04-01

    Fuel cycle system analysis simulations examine how the selection among fuel cycle options for reactors, fuel, separation, and waste management impact uranium ore utilization, waste masses and volumes, radiotoxicity, heat to geologic repositories, isotope-dependent proliferation resistance measures, and so forth. Previously, such simulations have tended to track only a few actinide and fission product isotopes, those that have been identified as important to a few criteria from the standpoint of recycled material or waste, taken as a whole. After accounting for such isotopes, the residual mass is often characterized as “fission product other” or “actinide other”. However, detailed assessment of separation and waste management options now require identification of key isotopes and residual mass for Group 1A/2A elements (Rb, Cs, Sr, Ba), inert gases (Kr, Xe), halogens (Br, I), lanthanides, transition metals, transuranic (TRU), uranium, actinide decay products. The paper explains the rationale for a list of 81 isotopes and chemical elements to better support separation and waste management assessment in dynamic system analysis models such as Verifiable Fuel Cycle Simulation (VISION)

  10. Shielded regeneration heating element for a particulate filter

    DOEpatents

    Gonze, Eugene V [Pinckney, MI; Ament, Frank [Troy, MI

    2011-01-04

    An exhaust system includes a particulate filter (PF) that is disposed downstream from an engine. The PF filters particulates within an exhaust from the engine. A heating element heats particulate matter in the PF. A catalyst substrate or a flow converter is disposed upstream from said heating element. The catalyst substrate oxidizes the exhaust prior to reception by the heating element. The flow converter converts turbulent exhaust flow to laminar exhaust flow prior to reception by the heating element.

  11. Ceramic fuel pellets for isotopic heat sources

    SciTech Connect

    Rankin, D.T.; Congdon, J.W.; Livingston, J.T.; Duncan, N.D.

    1980-01-01

    The General-Purpose Heat Source (GPHS) will supply power for future space missions. The GPHS fuel pellets are fabricated by hot pressing a blended mixture of /sup 238/PuO/sub 2/ granules prepared from calcined plutonium oxalate. Results of a test program which led to the development of the production process are described.

  12. Fuel cell system with combustor-heated reformer

    DOEpatents

    Pettit, William Henry

    2000-01-01

    A fuel cell system including a fuel reformer heated by a catalytic combustor fired by anode effluent and/or fuel from a liquid fuel supply providing fuel for the fuel cell. The combustor includes a vaporizer section heated by the combustor exhaust gases for vaporizing the fuel before feeding it into the combustor. Cathode effluent is used as the principle oxidant for the combustor.

  13. METHOD OF PREPARING A CERAMIC FUEL ELEMENT

    DOEpatents

    Ross, W.T.; Bloomster, C.H.; Bardsley, R.E.

    1963-09-01

    A method is described for preparing a fuel element from -325 mesh PuO/ sub 2/ and -20 mesh UO/sub 2/, and the steps of screening --325 mesh UO/sub 2/ from the -20 mesh UO/sub 2/, mixing PuO/sub 2/ with the --325 mesh UO/sub 2/, blending this mixture with sufficient --20 mesh UO/sub 2/ to obtain the desired composition, introducing the blend into a metal tube, repeating the procedure until the tube is full, and vibrating the tube to compact the powder are included. (AEC)

  14. Microfabricated fuel heating value monitoring device

    DOEpatents

    Robinson, Alex L.; Manginell, Ronald P.; Moorman, Matthew W.

    2010-05-04

    A microfabricated fuel heating value monitoring device comprises a microfabricated gas chromatography column in combination with a catalytic microcalorimeter. The microcalorimeter can comprise a reference thermal conductivity sensor to provide diagnostics and surety. Using microfabrication techniques, the device can be manufactured in production quantities at a low per-unit cost. The microfabricated fuel heating value monitoring device enables continuous calorimetric determination of the heating value of natural gas with a 1 minute analysis time and 1.5 minute cycle time using air as a carrier gas. This device has applications in remote natural gas mining stations, pipeline switching and metering stations, turbine generators, and other industrial user sites. For gas pipelines, the device can improve gas quality during transfer and blending, and provide accurate financial accounting. For industrial end users, the device can provide continuous feedback of physical gas properties to improve combustion efficiency during use.

  15. Method and apparatus for fuel gas moisturization and heating

    DOEpatents

    Ranasinghe, Jatila; Smith, Raub Warfield

    2002-01-01

    Fuel gas is saturated with water heated with a heat recovery steam generator heat source. The heat source is preferably a water heating section downstream of the lower pressure evaporator to provide better temperature matching between the hot and cold heat exchange streams in that portion of the heat recovery steam generator. The increased gas mass flow due to the addition of moisture results in increased power output from the gas and steam turbines. Fuel gas saturation is followed by superheating the fuel, preferably with bottom cycle heat sources, resulting in a larger thermal efficiency gain compared to current fuel heating methods. There is a gain in power output compared to no fuel heating, even when heating the fuel to above the LP steam temperature.

  16. Preparation of high temperature gas-cooled reactor fuel element

    DOEpatents

    Bradley, Ronnie A.; Sease, John D.

    1976-01-01

    This invention relates to a method for the preparation of high temperature gas-cooled reactor (HTGR) fuel elements wherein uncarbonized fuel rods are inserted in appropriate channels of an HTGR fuel element block and the entire block is inserted in an autoclave for in situ carbonization under high pressure. The method is particularly applicable to remote handling techniques.

  17. 3-D Finite Element Heat Transfer

    1992-02-01

    TOPAZ3D is a three-dimensional implicit finite element computer code for heat transfer analysis. TOPAZ3D can be used to solve for the steady-state or transient temperature field on three-dimensional geometries. Material properties may be temperature-dependent and either isotropic or orthotropic. A variety of time-dependent and temperature-dependent boundary conditions can be specified including temperature, flux, convection, and radiation. By implementing the user subroutine feature, users can model chemical reaction kinetics and allow for any type of functionalmore » representation of boundary conditions and internal heat generation. TOPAZ3D can solve problems of diffuse and specular band radiation in an enclosure coupled with conduction in the material surrounding the enclosure. Additional features include thermal contact resistance across an interface, bulk fluids, phase change, and energy balances.« less

  18. Coking of JP-4 fuels in electrically heated metal tubes

    NASA Technical Reports Server (NTRS)

    Smith, Arthur L; Cook, William P; Hlavin, Vincent F

    1956-01-01

    A limited exploratory investigation of the rate of coking of four JP-4 fuels in electrically heated metal tubes was conducted in order to provide design information for fuel prevaporizers for turbojet-engine combustors. The fuels tested included two production and two minimum-quality JP-4 type fuels. The heating tube was operated at fuel pressures of approximately 500, 400, and 50 pounds per square inch. The operating fuel temperature was varied between approximately 600 degrees and 1200 degrees F.

  19. Fuel element concept for long life high power nuclear reactors

    NASA Technical Reports Server (NTRS)

    Mcdonald, G. E.; Rom, F. E.

    1969-01-01

    Nuclear reactor fuel elements have burnups that are an order of magnitude higher than can currently be achieved by conventional design practice. Elements have greater time integrated power producing capacity per unit volume. Element design concept capitalizes on known design principles and observed behavior of nuclear fuel.

  20. Nuclear fuel element with axially aligned fuel pellets and fuel microspheres therein

    DOEpatents

    Sease, J.D.; Harrington, F.E.

    1973-12-11

    Elongated single- and multi-region fuel elements are prepared by replacing within a cladding container a coarse fraction of fuel material which includes plutonium and uranium in the appropriate regions of the fuel element and then infiltrating with vibration a fine-sized fraction of uranium-containing microspheres throughout all interstices in the coarse material in a single loading. The fine, rigid material defines a thin annular layer between the coarse fraction and the cladding to reduce adverse mechanical and chemical interactions. (Official Gazette)

  1. 2-D Finite Element Heat Conduction

    1989-10-30

    AYER is a finite element program which implicitly solves the general two-dimensional equation of thermal conduction for plane or axisymmetric bodies. AYER takes into account the effects of time (transient problems), in-plane anisotropic thermal conductivity, a three-dimensional velocity distribution, and interface thermal contact resistance. Geometry and material distributions are arbitrary, and input is via subroutines provided by the user. As a result, boundary conditions, material properties, velocity distributions, and internal power generation may be mademore » functions of, e.g., time, temperature, location, and heat flux.« less

  2. Study of fuel cell powerplant with heat recovery

    NASA Technical Reports Server (NTRS)

    King, J. M.; Grasso, A. P.; Clausi, J. V.

    1975-01-01

    It was shown that heat can be recovered from fuel cell power plants by replacing the air-cooled heat exchangers in present designs with units which transfer the heat to the integrated utility system. Energy availability for a 40-kW power plant was studied and showed that the total usable energy at rated power represents 84 percent of the fuel lower heating value. The effects of design variables on heat availability proved to be small. Design requirements were established for the heat recovery heat exchangers, including measurement of the characteristics of two candidate fuel cell coolants after exposure to fuel cell operating conditions. A heat exchanger test program was defined to assess fouling and other characteristics of fuel cell heat exchangers needed to confirm heat exchanger designs for heat recovery.

  3. Local Measurement of Fuel Energy Deposition and Heat Transfer Environment During Fuel Lifetime Using Controlled Calorimetry

    SciTech Connect

    Don W. Miller; Andrew Kauffmann; Eric Kreidler; Dongxu Li; Hanying Liu; Daniel Mills; Thomas D. Radcliff; Joseph Talnagi

    2001-12-31

    A comprehensive description of the accomplishments of the DOE grant titled, ''Local Measurement of Fuel Energy Deposition and Heat Transfer Environment During Fuel Lifetime using Controlled Calorimetry''.

  4. High performance fuel element with end seal

    DOEpatents

    Lee, Gary E.; Zogg, Gordon J.

    1987-01-01

    A nuclear fuel element comprising an elongate block of refractory material having a generally regular polygonal cross section. The block includes parallel, spaced, first and second end surfaces. The first end surface has a peripheral sealing flange formed thereon while the second end surface has a peripheral sealing recess sized to receive the flange. A plurality of longitudinal first coolant passages are positioned inwardly of the flange and recess. Elongate fuel holes are separate from the coolant passages and disposed inwardly of the flange and the recess. The block is further provided with a plurality of peripheral second coolant passages in general alignment with the flange and the recess for flowing coolant. The block also includes two bypasses for each second passage. One bypass intersects the second passage adjacent to but spaced from the first end surface and intersects a first passage, while the other bypass intersects the second passage adjacent to but spaced from the second end surface and intersects a first passage so that coolant flowing through the second passages enters and exits the block through the associated first passages.

  5. 2-D Time-Dependent Fuel Element, Thermal Analysis Code System.

    2001-09-24

    Version 00 WREM-TOODEE2 is a two dimensional, time-dependent, fuel-element thermal analysis program. Its primary purpose is to evaluate fuel-element thermal response during post-LOCA refill and reflood in a pressurized water reactor (PWR). TOODEE2 calculations are carried out in a two-dimensional mesh region defined in slab or cylindrical geometry by orthogonal grid lines. Coordinates which form order pairs are labeled x-y in slab geometry, and those in cylindrical geometry are labeled r-z for the axisymmetric casemore » and r-theta for the polar case. Conduction and radiation are the only heat transfer mechanisms assumed within the boundaries of the mesh region. Convective and boiling heat transfer mechanisms are assumed at the boundaries. The program numerically solves the two-dimensional, time-dependent, heat conduction equation within the mesh region. KEYWORDS: FUEL MANAGEMENT; HEAT TRANSFER; LOCA; PWR« less

  6. Means for supporting fuel elements in a nuclear reactor

    DOEpatents

    Andrews, Harry N.; Keller, Herbert W.

    1980-01-01

    A grid structure for a nuclear reactor fuel assembly comprising a plurality of connecting members forming at least one longitudinally extending opening peripheral and inner fuel element openings through each of which openings at least one nuclear fuel element extends, said connecting members forming wall means surrounding said each peripheral and inner fuel element opening, a pair of rigid projections longitudinally spaced from one another extending from a portion of said wall means into said each peripheral and inner opening for rigidly engaging said each fuel element, respectively, yet permit individual longitudinal slippage thereof, and resilient means formed integrally on and from said wall means and positioned in said each peripheral and inner opening in opposed relationship with said projections and located to engage said fuel element to bias the latter into engagement with said rigid projections, respectively

  7. Multiphysics Modeling of a Single Channel in a Nuclear Thermal Propulsion Grooved Ring Fuel Element

    NASA Technical Reports Server (NTRS)

    Kim, Tony; Emrich, William J., Jr.; Barkett, Laura A.; Mathias, Adam D.; Cassibry, Jason T.

    2013-01-01

    In the past, fuel rods have been used in nuclear propulsion applications. A new fuel element concept that reduces weight and increases efficiency uses a stack of grooved discs. Each fuel element is a flat disc with a hole on the interior and grooves across the top. Many grooved ring fuel elements for use in nuclear thermal propulsion systems have been modeled, and a single flow channel for each design has been analyzed. For increased efficiency, a fuel element with a higher surface-area-to-volume ratio is ideal. When grooves are shallower, i.e., they have a lower surface area, the results show that the exit temperature is higher. By coupling the physics of turbulence with those of heat transfer, the effects on the cooler gas flowing through the grooves of the thermally excited solid can be predicted. Parametric studies were done to show how a pressure drop across the axial length of the channels will affect the exit temperatures of the gas. Geometric optimization was done to show the behaviors that result from the manipulation of various parameters. Temperature profiles of the solid and gas showed that more structural optimization is needed to produce the desired results. Keywords: Nuclear Thermal Propulsion, Fuel Element, Heat Transfer, Computational Fluid Dynamics, Coupled Physics Computations, Finite Element Analysis

  8. TACO: a finite element heat transfer code

    SciTech Connect

    Mason, W.E. Jr.

    1980-02-01

    TACO is a two-dimensional implicit finite element code for heat transfer analysis. It can perform both linear and nonlinear analyses and can be used to solve either transient or steady state problems. Either plane or axisymmetric geometries can be analyzed. TACO has the capability to handle time or temperature dependent material properties and materials may be either isotropic or orthotropic. A variety of time and temperature dependent loadings and boundary conditions are available including temperature, flux, convection, and radiation boundary conditions and internal heat generation. Additionally, TACO has some specialized features such as internal surface conditions (e.g., contact resistance), bulk nodes, enclosure radiation with view factor calculations, and chemical reactive kinetics. A user subprogram feature allows for any type of functional representation of any independent variable. A bandwidth and profile minimization option is also available in the code. Graphical representation of data generated by TACO is provided by a companion post-processor named POSTACO. The theory on which TACO is based is outlined, the capabilities of the code are explained, the input data required to perform an analysis with TACO are described. Some simple examples are provided to illustrate the use of the code.

  9. NEUTRON REACTOR FUEL ELEMENT UTILIZING ZIRCONIUM-BASE ALLOYS

    DOEpatents

    Saller, H.A.; Keeler, J.R.; Szumachowski, E.R.

    1957-11-12

    This patent relates to clad fuel elements for use in neutronic reactors and is drawn to such a fuel element which consists of a core of fissionable material, comprised of an alloy of zirconium and U/sup 235/ enriched uranium, encased in a jacket of a binary zirconium-tin alloy in which the tin content ranges between 1 and 15% by weight.

  10. Fuel cell elements with improved water handling capacity

    NASA Technical Reports Server (NTRS)

    Kindler, Andrew (Inventor); Lee, Albany (Inventor)

    2001-01-01

    New fuel cell components for use in liquid feed fuel cell systems are provided. The components include biplates and endplates, having a hydrophilic surface and allow high efficiency operation. Conductive elements and a wicking device also form a part of the fuel cell components of the invention.

  11. Spring element for holding down nuclear reactor fuel assembly

    SciTech Connect

    Steinke, A.

    1981-07-14

    Spring element is described for holding down and bracing a fuel assembly against a hold-down plate upwardly limiting the reactor core of a nuclear reactor. Includes a spring-loaded rod-shaped member separately formed independently of the fuel assembly and being slidable axially and form-lockingly into the fuel assembly.

  12. Fuel type impact at heat exchanger performance

    NASA Astrophysics Data System (ADS)

    Durčanský, Peter; Patsch, Marek; Jandačka, Jozef

    2016-06-01

    Possible solution to the increasing energy consumption in the world may be use of alternative energy sources in micro-cogeneration in combination with increasing energy effectiveness. The use of renewable sources, such as biomass, represents an important contribution to possible solution of this problem. When designing a new heat source it is required to follow a number of technical regulations and recommendations. The proposed combustion furnace is intended for combustion of biomass, either piece, or in the form of wood biomass. But the combustion is not only affected by design of furnace, but also by fuel and its properties.

  13. IN-CELL visual examinations of K east fuel elements

    SciTech Connect

    Pitner, A.L.; Pyecha, T.D., Fluor Daniel Hanford

    1997-03-06

    Nine outer fuel elements were recovered from the K East Basin and transferred to a hot cell for examination. Extensive testing planned for these elements will support the process design for the Integrated Process Strategy (IPS), with emphasis on drying and conditioning behavior. Visual examinations of the fuel elements confirmed that they are appropriate to meet testing objectives to provide design guidance for IPS processing parameters.

  14. Heat transfer to a supercritical hydrocarbon fuel with endothermic reaction.

    SciTech Connect

    Yu, W.; France, D. M.; Wambsganss, M. W.; Energy Technology; Univ. of Illinois at Chicago

    2000-01-01

    Supercritical fuel reforming is being studied as a technology for reducing emissions of industrial gas turbine engines. In this study, experiments were performed in a 2.67-mm-inside-diameter stainless steel tube with a heated length of 0.610 m for the purpose of investigating the characteristics of supercritical heat transfer with endothermic fuel reforming. Thermocouples were positioned along the tube both in the fluid stream and on the heated wall for local heat transfer measurements. Both heat transfer coefficients and endotherms were calculated from the measured results. State-of-the-art correlations for heat transfer were evaluated, and a correlation for supercritical heat transfer to hydrocarbon fuel has been developed. The results provide a basis for supercritical fuel heat-exchanger/reactor design and its practical applications, in an area that has received relatively little attention in the engineering literature, viz., supercritical forced convection heat transfer with endothermic chemical reaction.

  15. Combined Heat and Power Market Potential for Opportunity Fuels

    SciTech Connect

    Jones, David; Lemar, Paul

    2015-12-01

    This report estimates the potential for opportunity fuel combined heat and power (CHP) applications in the United States, and provides estimates for the technical and economic market potential compared to those included in an earlier report. An opportunity fuel is any type of fuel that is not widely used when compared to traditional fossil fuels. Opportunity fuels primarily consist of biomass fuels, industrial waste products and fossil fuel derivatives. These fuels have the potential to be an economically viable source of power generation in various CHP applications.

  16. Nuclear fuel elements and method of making same

    DOEpatents

    Schweitzer, Donald G.

    1992-01-01

    A nuclear fuel element for a high temperature gas nuclear reactor that has an average operating temperature in excess of 2000.degree. C., and a method of making such a fuel element. The fuel element is characterized by having fissionable fuel material localized and stabilized within pores of a carbon or graphite member by melting the fissionable material to cause it to chemically react with the carbon walls of the pores. The fissionable fuel material is further stabilized and localized within the pores of the graphite member by providing one or more coatings of pyrolytic carbon or diamond surrounding the porous graphite member so that each layer defines a successive barrier against migration of the fissionable fuel from the pores, and so that the outermost layer of pyrolytic carbon or diamond forms a barrier between the fissionable material and the moderating gases used in an associated high temperature gas reactor. The method of the invention provides for making such new elements either as generally spherically elements, or as flexible filaments, or as other relatively small-sized fuel elements that are particularly suited for use in high temperature gas reactors.

  17. Heat Transfer Variation on Protuberances and Surface Roughness Elements

    NASA Technical Reports Server (NTRS)

    Henry, Robert C.; Hansman, R. John, Jr.; Breuer, Kenneth S.

    1995-01-01

    In order to determine the effect of surface irregularities on local convective heat transfer, the variation in heat transfer coefficients on small (2-6 mm diam) hemispherical roughness elements on a flat plate has been studied in a wind funnel using IR techniques. Heat transfer enhancement was observed to vary over the roughness elements with the maximum heat transfer on the upstream face. This heat transfer enhancement increased strongly with roughness size and velocity when there was a laminar boundary layer on the plate. For a turbulent boundary layer, the heat transfer enhancement was relatively constant with velocity, but did increase with element size. When multiple roughness elements were studied, no influence of adjacent roughness elements on heat transfer was observed if the roughness separation was greater than approximately one roughness element radius. As roughness separation was reduced, less variation in heat transfer was observed on the downstream elements. Implications of the observed roughness enhanced heat transfer on ice accretion modeling are discussed.

  18. Liquid Metal Bond for Improved Heat Transfer in LWR Fuel Rods

    SciTech Connect

    Donald Olander

    2005-08-24

    A liquid metal (LM) consisting of 1/3 weight fraction each of Pb, Sn, and Bi has been proposed as the bonding substance in the pellet-cladding gap in place of He. The LM bond eliminates the large AT over the pre-closure gap which is characteristic of helium-bonded fuel elements. Because the LM does not wet either UO2 or Zircaloy, simply loading fuel pellets into a cladding tube containing LM at atmospheric pressure leaves unfilled regions (voids) in the bond. The HEATING 7.3 heat transfer code indicates that these void spaces lead to local fuel hot spots.

  19. NUCLEAR REACTOR FUEL ELEMENT AND METHOD OF MANUFACTURE

    DOEpatents

    Brooks, H.

    1960-04-26

    A description is given for a fuel element comprising a body of uranium metal or an uranium compound dispersed in a matrix material made from magnesium, calcium, or barium and a stainless steel jacket enclosing the body.

  20. Design and Testing of Prototypic Elements Containing Monolithic Fuel

    SciTech Connect

    N.E. Woolstenhulme; M.K. Meyer; D.M. Wachs

    2011-10-01

    The US fuel development team has performed numerous irradiation tests on small to medium sized specimens containing low enriched uranium fuel designs. The team is now focused on qualification and demonstration of the uranium-molybdenum Base Monolithic Design and has entered the next generation of testing with the design and irradiation of prototypic elements which contain this fuel. The designs of fuel elements containing monolithic fuel, such as AFIP-7 (which is currently under irradiation) and RERTR-FE (which is currently under fabrication), are appropriate progressions relative to the technology life cycle. The culmination of this testing program will occur with the design, fabrication, and irradiation of demonstration products to include the base fuel demonstration and design demonstration experiments. Future plans show that design, fabrication, and testing activities will apply the rigor needed for a demonstration campaign.

  1. FUEL ELEMENTS FOR THERMAL-FISSION NUCLEAR REACTORS

    DOEpatents

    Flint, O.

    1961-01-10

    Fuel elements for thermal-fission nuclear reactors are described. The fuel element is comprised of a core of alumina, a film of a metal of the class consisting of copper, silver, and nickel on the outer face of the core, and a coating of an oxide of a metal isotope of the class consisting of Un/sup 235/, U/ sup 233/, and Pu/sup 239/ on the metal f ilm.

  2. Control apparatus and method for efficiently heating a fuel processor in a fuel cell system

    DOEpatents

    Doan, Tien M.; Clingerman, Bruce J.

    2003-08-05

    A control apparatus and method for efficiently controlling the amount of heat generated by a fuel cell processor in a fuel cell system by determining a temperature error between actual and desired fuel processor temperatures. The temperature error is converted to a combustor fuel injector command signal or a heat dump valve position command signal depending upon the type of temperature error. Logic controls are responsive to the combustor fuel injector command signals and the heat dump valve position command signal to prevent the combustor fuel injector command signal from being generated if the heat dump valve is opened or, alternately, from preventing the heat dump valve position command signal from being generated if the combustor fuel injector is opened.

  3. The quantification of mixture stoichiometry when fuel molecules contain oxidizer elements or oxidizer molecules contain fuel elements.

    SciTech Connect

    Mueller, Charles J.

    2005-05-01

    The accurate quantification and control of mixture stoichiometry is critical in many applications using new combustion strategies and fuels (e.g., homogeneous charge compression ignition, gasoline direct injection, and oxygenated fuels). The parameter typically used to quantify mixture stoichiometry (i.e., the proximity of a reactant mixture to its stoichiometric condition) is the equivalence ratio, /gf. The traditional definition of /gf is based on the relative amounts of fuel and oxidizer molecules in a mixture. This definition provides an accurate measure of mixture stoichiometry when the fuel molecule does not contain oxidizer elements and when the oxidizer molecule does not contain fuel elements. However, the traditional definition of /gf leads to problems when the fuel molecule contains an oxidizer element, as is the case when an oxygenated fuel is used, or once reactions have started and the fuel has begun to oxidize. The problems arise because an oxidizer element in a fuel molecule is counted as part of the fuel, even though it acts as an oxidizer. Similarly, if an oxidizer molecule contains fuel elements, the fuel elements in the oxidizer molecule are misleadingly lumped in with the oxidizer in the traditional definition of /gf. In either case, use of the traditional definition of /gf to quantify the mixture stoichiometry can lead to significant errors. This paper introduces the oxygen equivalence ratio, /gf/gV, a parameter that properly characterizes the instantaneous mixture stoichiometry for a broader class of reactant mixtures than does /gf. Because it is an instantaneous measure of mixture stoichiometry,/gf/gV can be used to track the time-evolution of stoichiometry as a reaction progresses. The relationship between /gf/gV and /gf is shown. Errors are involved when the traditional definition of /gf is used as a measure of mixture stoichiometry with fuels that contain oxidizer elements or oxidizers that contain fuel elements; /gf/gV is used to quantify

  4. Low NOx heavy fuel combustor concept program addendum: Low/mid heating value gaseous fuel evaluation

    NASA Technical Reports Server (NTRS)

    Novick, A. S.; Troth, D. L.

    1982-01-01

    The combustion performance of a rich/quench/lean (RQL) combustor was evaluated when operated on low and mid heating value gaseous fuels. Two synthesized fuels were prepared having lower heating values of 10.2 MJ/cu m. (274 Btu/scf) and 6.6 MJ/cu m (176 Btu/scf). These fuels were configured to be representative of actual fuels, being composed primarily of nitrogen, hydrogen, carbon monoxide, and carbon dioxide. A liquid fuel air assist fuel nozzle was modified to inject both of the gaseous fuels. The RQL combustor liner was not changed from the configuration used when the liquid fuels were tested. Both gaseous fuels were tested over a range of power levels from 50 percent load to maximum rated power of the DDN Model 570-K industrial gas turbine engine. Exhaust emissions were recorded for four power level at several rich zone equivalence ratios to determine NOx sensitivity to the rich zone operating point. For the mid Btu heating value gas, ammonia was added to the fuel to simulate a fuel bound nitrogen type gaseous fuel. Results at the testing showed that for the low heating value fuel NOx emissions were all below 20 ppmc and smoke was below a 10 smoke number. For the mid heating value fuel, NOx emissions were in the 50 to 70 ppmc range with the smoke below a 10 smoke number.

  5. Failed MTR Fuel Element Detect in a Sipping Tests

    SciTech Connect

    Zeituni, C.A.; Terremoto, L.A.A.; da Silva, J.E.R.

    2004-10-06

    This work describes sipping tests performed on Material Testing Reactor (MTR) fuel elements of the IEA-R1 research reactor, in order to find out which one failed in the core during a routine operation. Radioactive iodine isotopes {sup 131}I and {sup 133}I, employed as failure monitors, were detected in samples corresponding to the failed fuel element. The specific activity of each sample, as well as the average leaking rate, were measured for {sup 137}Cs. The nuclear fuels U{sub 3}O{sub 8} - Al dispersion and U - Al alloy were compared concerning their measured average leaking rates of {sup 137}Cs.

  6. Moving-Temperature-Gradient Heat-Pipe Furnace Element

    NASA Technical Reports Server (NTRS)

    Gillies, Donald C.; Lehoczky, Sandor L.; Gernert, Nelson J.

    1993-01-01

    In improved apparatus, ampoule of material directionally solidified mounted in central hole of annular heat pipe, at suitable axial position between heated and cooled ends. Heated end held in fixed position in single-element furnace; other end left in ambient air or else actively cooled. Gradient of temperature made to move along heat pipe by changing pressure of noncondensable gas. In comparison with prior crystal-growing apparatuses, this one simpler, smaller, and more efficient.

  7. Nuclear breeder reactor fuel element with silicon carbide getter

    DOEpatents

    Christiansen, David W.; Karnesky, Richard A.

    1987-01-01

    An improved cesium getter 28 is provided in a breeder reactor fuel element or pin in the form of an extended surface area, low density element formed in one embodiment as a helically wound foil 30 located with silicon carbide, and located at the upper end of the fertile material upper blanket 20.

  8. PROCESS OF DISSOLVING FUEL ELEMENTS OF NUCLEAR REACTORS

    DOEpatents

    Wall, E.M.V.; Bauer, D.T.; Hahn, H.T.

    1963-09-01

    A process is described for dissolving stainless-steelor zirconium-clad uranium dioxide fuel elements by immersing the elements in molten lead chloride, adding copper, cuprous chloride, or cupric chloride as a catalyst and passing chlorine through the salt mixture. (AEC)

  9. Simulation on reactor TRIGA Puspati core kinetics fueled with thorium (Th) based fuel element

    NASA Astrophysics Data System (ADS)

    Mohammed, Abdul Aziz; Pauzi, Anas Muhamad; Rahman, Shaik Mohmmed Haikhal Abdul; Zin, Muhamad Rawi Muhammad; Jamro, Rafhayudi; Idris, Faridah Mohamad

    2016-01-01

    In confronting global energy requirement and the search for better technologies, there is a real case for widening the range of potential variations in the design of nuclear power plants. Smaller and simpler reactors are attractive, provided they can meet safety and security standards and non-proliferation issues. On fuel cycle aspect, thorium fuel cycles produce much less plutonium and other radioactive transuranic elements than uranium fuel cycles. Although not fissile itself, Th-232 will absorb slow neutrons to produce uranium-233 (233U), which is fissile. By introducing Thorium, the numbers of highly enriched uranium fuel element can be reduced while maintaining the core neutronic performance. This paper describes the core kinetic of a small research reactor core like TRIGA fueled with a Th filled fuel element matrix using a general purpose Monte Carlo N-Particle (MCNP) code.

  10. Local Burn-Up Effects in the NBSR Fuel Element

    SciTech Connect

    Brown N. R.; Hanson A.; Diamond, D.

    2013-01-31

    This study addresses the over-prediction of local power when the burn-up distribution in each half-element of the NBSR is assumed to be uniform. A single-element model was utilized to quantify the impact of axial and plate-wise burn-up on the power distribution within the NBSR fuel elements for both high-enriched uranium (HEU) and low-enriched uranium (LEU) fuel. To validate this approach, key parameters in the single-element model were compared to parameters from an equilibrium core model, including neutron energy spectrum, power distribution, and integral U-235 vector. The power distribution changes significantly when incorporating local burn-up effects and has lower power peaking relative to the uniform burn-up case. In the uniform burn-up case, the axial relative power peaking is over-predicted by as much as 59% in the HEU single-element and 46% in the LEU single-element with uniform burn-up. In the uniform burn-up case, the plate-wise power peaking is over-predicted by as much as 23% in the HEU single-element and 18% in the LEU single-element. The degree of over-prediction increases as a function of burn-up cycle, with the greatest over-prediction at the end of Cycle 8. The thermal flux peak is always in the mid-plane gap; this causes the local cumulative burn-up near the mid-plane gap to be significantly higher than the fuel element average. Uniform burn-up distribution throughout a half-element also causes a bias in fuel element reactivity worth, due primarily to the neutronic importance of the fissile inventory in the mid-plane gap region.

  11. Behaviour of irradiated PHWR fuel pins during high temperature heating

    NASA Astrophysics Data System (ADS)

    Viswanathan, U. K.; Unnikrishnan, K.; Mishra, Prerna; Banerjee, Suparna; Anantharaman, S.; Sah, D. N.

    2008-12-01

    Fuel pins removed from an irradiated pressurised heavy water reactor (PHWR) fuel bundle discharged after an extended burn up of 15,000 MWd/tU have been subjected to isothermal heating tests in temperature range 700-1300 °C inside hot-cells. The heating of the fuel pins was carried out using a specially designed remotely operable furnace, which allowed localized heating of about 100 mm length of the fuel pin at one end under flowing argon gas or in air atmosphere. Post-test examination performed in the hot-cells included visual examination, leak testing, dimension measurement and optical and scanning electron microscopy. Fuel pins having internal pressure of 2.1-2.7 MPa due to fission gas release underwent ballooning and micro cracking during heating for 10 min at 800 °C and 900 °C but not at 700 °C. Fuel pin heated at 1300 °C showed complete disruption of cladding in heating zone, due to the embrittlement of the cladding. The examination of fuel from the pin tested at 1300 °C showed presence of large number of bubbles; both intragranular as well as intergranular bubbles. Details of the experiments and the results are presented in this paper.

  12. Analysis of the ATR fuel element swaging process

    SciTech Connect

    Richins, W.D.; Miller, G.K.

    1995-12-01

    This report documents a detailed evaluation of the swaging process used to connect fuel plates to side plates in Advanced Test Reactor (ATR) fuel elements. The swaging is a mechanical process that begins with fitting a fuel plate into grooves in the side plates. Once a fuel plate is positioned, a lip on each of two side plate grooves is pressed into the fuel plate using swaging wheels to form the joints. Each connection must have a specified strength (measured in terms, of a pullout force capacity) to assure that these joints do not fail during reactor operation. The purpose of this study is to analyze the swaging process and associated procedural controls, and to provide recommendations to assure that the manufacturing process produces swaged connections that meet the minimum strength requirement. The current fuel element manufacturer, Babcock and Wilcox (B&W) of Lynchburg, Virginia, follows established procedures that include quality inspections and process controls in swaging these connections. The procedures have been approved by Lockheed Martin Idaho Technologies and are designed to assure repeatability of the process and structural integrity of each joint. Prior to July 1994, ATR fuel elements were placed in the Hydraulic Test Facility (HTF) at the Idaho National Engineering Laboratory (AGNAIL), Test Reactor Area (TRA) for application of Boehmite (an aluminum oxide) film and for checking structural integrity before placement of the elements into the ATR. The results presented in this report demonstrate that the pullout strength of the swaged connections is assured by the current manufacturing process (with several recommended enhancements) without the need for- testing each element in the HTF.

  13. The manufacture of LEU fuel elements at Dounreay

    SciTech Connect

    Gibson, J.

    1997-08-01

    Two LEU test elements are being manufactured at Dounreay for test irradiation in the HFR at Petten, The Netherlands. This paper describes the installation of equipment and the development of the fabrication and inspection techniques necessary for the manufacture of LEU fuel plates. The author`s experience in overcoming the technical problems of stray fuel particles, dog-boning, uranium homogeneity and the measurement of uranium distribution is also described.

  14. Method and apparatus for diagnosing breached fuel elements

    DOEpatents

    Gross, K.C.; Lambert, J.D.B.; Nomura, S.

    1987-03-02

    The invention provides an apparatus and method for diagnosing breached fuel elements in a nuclear reactor. A detection system measures the activity of isotopes from the cover gas in the reactor. A data acquisition and processing system monitors the detection system and corrects for the effects of the cover-gas clean up system on the measured activity and further calculates the derivative curve of the corrected activity as a function of time. A plotting system graphs the derivative curve, which represents the instantaneous release rate of fission gas from a breached fuel element. 8 figs.

  15. Expert system for surveillance and diagnosis of breach fuel elements

    DOEpatents

    Gross, Kenny C.

    1989-01-01

    An apparatus and method are disclosed for surveillance and diagnosis of breached fuel elements in a nuclear reactor. A delayed neutron monitoring system provides output signals indicating the delayed neutron activity and age and the equivalent recoil areas of a breached fuel element. Sensors are used to provide outputs indicating the status of each component of the delayed neutron monitoring system. Detectors also generate output signals indicating the reactor power level and the primary coolant flow rate of the reactor. The outputs from the detectors and sensors are interfaced with an artificial intelligence-based knowledge system which implements predetermined logic and generates output signals indicating the operability of the reactor.

  16. Expert system for surveillance and diagnosis of breach fuel elements

    DOEpatents

    Gross, K.C.

    1988-01-21

    An apparatus and method are disclosed for surveillance and diagnosis of breached fuel elements in a nuclear reactor. A delayed neutron monitoring system provides output signals indicating the delayed neutron activity and age and the equivalent recoil area of a breached fuel element. Sensors are used to provide outputs indicating the status of each component of the delayed neutron monitoring system. Detectors also generate output signals indicating the reactor power level and the primary coolant flow rate of the reactor. The outputs from the detectors and sensors are interfaced with an artificial intelligence-based knowledge system which implements predetermined logic and generates output signals indicating the operability of the reactor. 2 figs.

  17. Cryogenic Thermal Expansion of Y-12 Graphite Fuel Elements

    SciTech Connect

    Eash, D. T.

    2013-07-08

    Thermal expansion measurements betwccn 20°K and 300°K were made on segments of three uranium-loaded Y-12 uncoated graphite fuel elements. The thermal expansion of these fuel elements over this temperature range is represented by the equation: {Delta}L/L = -39.42 x 10{sup -5} + 1.10 x 10{sup -7} T + 6.47 x 10{sup -9} T{sup 2} - 8.30 x 10{sup -12} T{sup 3}.

  18. Method and apparatus for diagnosing breached fuel elements

    DOEpatents

    Gross, Kenny C.; Lambert, John D. B.; Nomura, Shigeo

    1988-01-01

    The invention provides an apparatus and method for diagnosing breached fuel elements in a nuclear reactor. A detection system measures the activity of isotopes from the cover-gas in the reactor. A data acquisition and processing system monitors the detection system and corrects for the effects of the cover-gas clean up system on the measured activity and further calculates the derivative cure of the corrected activity as a function of time. A plotting system graphs the derivative curve, which represents the instantaneous release rate of fission gas from a breached fuel element.

  19. Methods for making a porous nuclear fuel element

    DOEpatents

    Youchison, Dennis L; Williams, Brian E; Benander, Robert E

    2014-12-30

    Porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's), and to processes for fabricating them. Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, the nuclear fuel may be deposited inside of a highly porous skeletal structure made of, for example, reticulated vitreous carbon foam.

  20. High temperature electrically conducting ceramic heating element and control system

    NASA Technical Reports Server (NTRS)

    Halbach, C. R.; Page, R. J.

    1975-01-01

    Improvements were made in both electrode technology and ceramic conductor quality to increase significantly the lifetime and thermal cycling capability of electrically conducting ceramic heater elements. These elements were operated in vacuum, inert and reducing environments as well as oxidizing atmospheres adding to the versatility of the conducting ceramic as an ohmic heater. Using stabilized zirconia conducting ceramic heater elements, a furnace was fabricated and demonstrated to have excellent thermal response and cycling capability. The furnace was used to melt platinum-20% rhodium alloy (melting point 1904 C) with an isothermal ceramic heating element having a nominal working cavity size of 2.5 cm diameter by 10.0 cm long. The furnace was operated to 1940 C with the isothermal ceramic heating element. The same furnace structure was fitted with a pair of main heater elements to provide axial gradient temperature control over a working cavity length of 17.8 cm.

  1. Characterization of Fuel Cell Vehicle Duty Cycle Elements

    SciTech Connect

    MAISH, ALEXANDER B.; NILAN, ERIC J.; BACA, PAUL M.

    2002-12-01

    This report covers research done as part of US Department of Energy contract DE-PS26-99FT14299 with the Fuel Cell Propulsion Institute on the fuel cell RATLER{trademark} vehicle, Lurch, as well as work done on the fuel cells designed for the vehicle. All work contained within this report was conducted at the Robotic Vehicle Range at Sandia National Laboratories in Albuquerque New Mexico. The research conducted includes characterization of the duty cycle of the robotic vehicle. This covers characterization of its various abilities such as hill climbing and descending, spin-turns, and driving on level ground. This was accomplished with the use of current sensors placed in the vehicle in conjunction with a Data Acquisition System (DAS), which was also created at Sandia Labs. Characterization of the two fuel cells was accomplished using various measuring instruments and techniques that will be discussed later in the report. A Statement of Work for this effort is included in Appendix A. This effort was able to complete characterization of vehicle duty cycle elements using battery power, but problems with the fuel cell control systems prevented completion of the characterization of the fuel cell operation on the benchtop and in the vehicle. Some data was obtained characterizing the fuel cell current-voltage performance and thermal rise rate by bypassing elements of the control system.

  2. Role of fuel chemical properties on combustor radiative heat load

    NASA Technical Reports Server (NTRS)

    Rosfjord, T. J.

    1984-01-01

    In an attempt to rigorously study the fuel chemical property influence on combustor radiative heat load, UTRC has conducted an experimental program using 25 test fuels. The burner was a 12.7-cm dia cylindrical device fueled by a single pressure-atomizing injector. Fuel physical properties were de-emphasized by selecting injectors which produced highly-atomized, and hence rapidly-vaporizing sprays. The fuels were specified to cover the following wide ranges of chemical properties: hydrogen, 9.1 to 15- (wt) pct; total aromatics, 0 to 100 (vol) pct; and naphthalene, 0 to 30 (vol) pct. They included standard fuels, specialty products and fuel blends. Fuel naphthalene content exhibited the strongest influence on radiation of the chemical properties investigated. Smoke point was a good global indicator of radiation severity.

  3. Role of fuel chemical properties on combustor radiative heat load

    NASA Technical Reports Server (NTRS)

    Rosfjord, T. J.

    1984-01-01

    In an attempt to rigorously study the fuel chemical property influence on combustor radiative heat load, United Technologies Research Center (UTRC) has conducted an experimental program using 25 test fuels. The burner was a 12.7-cm dia cylindrical device fueled by a single pressure-atomizing injector. Fuel physical properties were de-emphasized by selecting injectors which produced high-atomized, and hence rapidly-vaporizing sprays. The fuels were specified to cover the following wide ranges of chemical properties; hydrogen, 9.1 to 15- (wt) pct; total aromatics, 0 to 100 (vol) pct; and naphthalene, 0 to 30 (vol) pct. They included standard fuels, specialty products and fuel blends. Fuel naphthalene content exhibited the strongest influence on radiation of the chemical properties investigated. Smoke point was a good global indicator of radiation severity.

  4. NUCLEAR REACTOR FUEL ELEMENTS AND METHOD OF PREPARATION

    DOEpatents

    Kingston, W.E.; Kopelman, B.; Hausner, H.H.

    1963-07-01

    A fuel element consisting of uranium nitride and uranium carbide in the form of discrete particles in a solid coherent matrix of a metal such as steel, beryllium, uranium, or zirconium and clad with a metal such as steel, aluminum, zirconium, or beryllium is described. The element is made by mixing powdered uranium nitride and uranium carbide with powdered matrix metal, then compacting and sintering the mixture. (AEC)

  5. Deposit formation and heat transfer in hydrocarbon rocket fuels

    NASA Technical Reports Server (NTRS)

    Giovanetti, A. J.; Spadaccini, L. J.; Szetela, E. J.

    1983-01-01

    An experimental research program was undertaken to investigate the thermal stability and heat transfer characteristics of several hydrocarbon fuels under conditions that simulate high-pressure, rocket engine cooling systems. The rates of carbon deposition in heated copper and nickel-plated copper tubes were determined for RP-1, propane, and natural gas using a continuous flow test apparatus which permitted independent variation and evaluation of the effect on deposit formation of wall temperature, fuel pressure, and fuel velocity. In addition, the effects of fuel additives and contaminants, cryogenic fuel temperatures, and extended duration testing with intermittent operation were examined. Parametric tests to map the thermal stability characteristics of RP-1, commercial-grade propane, and natural gas were conducted at pressures of 6.9 to 13.8 MPa, bulk fuel velocities of 30 to 90 m/s, and tube wall temperatures in the range of 230 to 810 K. Also, tests were run in which propane and natural gas fuels were chilled to 230 and 160 K, respectively. Corrosion of the copper tube surface was detected for all fuels tested. Plating the inside of the copper tubes with nickel reduced deposit formation and eliminated tube corrosion in most cases. The lowest rates of carbon deposition were obtained for natural gas, and the highest rates were obtained for propane. For all fuels tested, the forced-convection heat transfer film coefficients were satisfactorily correlated using a Nusselt-Reynolds-Prandtl number equation.

  6. Local Heat Flux Measurements with Single and Small Multi-element Coaxial Element-Injectors

    NASA Technical Reports Server (NTRS)

    Jones, Gregg; Protz, Christopher; Bullard, Brad; Hulka, James

    2006-01-01

    To support NASA's Vision for Space Exploration mission, the NASA Marshall Space Flight Center conducted a program in 2005 to improve the capability to predict local thermal compatibility and heat transfer in liquid propellant rocket engine combustion devices. The ultimate objective was to predict and hence reduce the local peak heat flux due to injector design, resulting in a significant improvement in overall engine reliability and durability. Such analyses are applicable to combustion devices in booster, upper stage, and in-space engines with regeneratively cooled chamber walls, as well as in small thrust chambers with few elements in the injector. In this program, single and three-element injectors were hot-fire tested with liquid oxygen and gaseous hydrogen propellants at The Pennsylvania State University Cryogenic Combustor Laboratory from May to August 2005. Local heat fluxes were measured in a 1-inch internal diameter heat sink combustion chamber using Medtherm coaxial thermocouples and Gardon heat flux gauges, Injector configurations were tested with both shear coaxial elements and swirl coaxial elements. Both a straight and a scarfed single element swirl injector were tested. This paper includes general descriptions of the experimental hardware, instrumentation, and results of the hot-fire testing for three coaxial shear and swirl elements. Detailed geometry and test results the for shear coax elements has already been published. Detailed test result for the remaining 6 swirl coax element for the will be published in a future JANNAF presentation to provide well-defined data sets for development and model validation.

  7. 36. DETAILS AND SECTIONS OF SHIELDING TANK, FUEL ELEMENT SUPPORT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    36. DETAILS AND SECTIONS OF SHIELDING TANK, FUEL ELEMENT SUPPORT FRAME AND SUPPORT PLATFORM, AND SAFETY MECHANISM ASSEMBLY (SPRING-LOADED HINGE). F.C. TORKELSON DRAWING NUMBER 842-ARVFS-701-S-1. INEL INDEX CODE NUMBER: 075 0701 60 851 151975. - Idaho National Engineering Laboratory, Advanced Reentry Vehicle Fusing System, Scoville, Butte County, ID

  8. 34. DETAILS AND SECTIONS OF SHIELDING TANK FUEL ELEMENT SUPPORT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    34. DETAILS AND SECTIONS OF SHIELDING TANK FUEL ELEMENT SUPPORT FRAME. F.C. TORKELSON DRAWING NUMBER 842-ARVFS-701-S-4. INEL INDEX CODE NUMBER: 075 0701 60 851 151978. - Idaho National Engineering Laboratory, Advanced Reentry Vehicle Fusing System, Scoville, Butte County, ID

  9. METHOD OF FORMING A FUEL ELEMENT FOR A NUCLEAR REACTOR

    DOEpatents

    Layer, E.H. Jr.; Peet, C.S.

    1962-01-23

    A method is given for preparing a fuel element for a nuclear reactor. The method includes the steps of sandblasting a body of uranium dioxide to roughen the surface thereof, depositing a thin layer of carbon thereon by thermal decomposition of methane, and cladding the uranium dioxide body with zirconium by gas pressure bonding. (AEC)

  10. METHOD OF PREPARING A FUEL ELEMENT FOR A NUCLEAR REACTOR

    DOEpatents

    Hauth, J.J.; Anicetti, R.J.

    1962-12-01

    A method is described for preparing a fuel element for a nuclear reactor. According to the patent uranium dioxide is compacted in a metal tabe by directlng intense sound waves at the tabe prior to tamp packing or vibration compaction of the powder. (AEC)

  11. Particulate Emissions Hazards Associated with Fueling Heat Engines

    NASA Technical Reports Server (NTRS)

    Hendricks, Robert C.; Bushnell, Dennis M.

    2010-01-01

    All hydrocarbon- (HC-) fueled heat engine exhaust (tailpipe) emissions (<10 to 140 nm) contribute as health hazards, including emissions from transportation vehicles (e.g., aircraft) and other HC-fueled power systems. CO2 emissions are tracked, and when mapped, show outlines of major transportation routes and cities. Particulate pollution affects living tissue and is found to be detrimental to cardiovascular and respiratory systems where ultrafine particulates directly translocate to promote vascular system diseases potentially detectable as organic vapors. This paper discusses aviation emissions, fueling, and certification issues, including heat engine emissions hazards, detection at low levels and tracking of emissions, and alternate energy sources for general aviation.

  12. WORKING PARK-FUEL CELL COMBINED HEAT AND POWER SYSTEM

    SciTech Connect

    Allan Jones

    2003-09-01

    This report covers the aims and objectives of the project which was to design, install and operate a fuel cell combined heat and power (CHP) system in Woking Park, the first fuel cell CHP system in the United Kingdom. The report also covers the benefits that were expected to accrue from the work in an understanding of the full technology procurement process (including planning, design, installation, operation and maintenance), the economic and environmental performance in comparison with both conventional UK fuel supply and conventional CHP and the commercial viability of fuel cell CHP energy supply in the new deregulated energy markets.

  13. Electrical and Joule heating relationship investigation using Finite Element Method

    NASA Astrophysics Data System (ADS)

    Thangaraju, S. K.; Munisamy, K. M.

    2015-09-01

    The finite element method is vastly used in material strength analysis. The nature of the finite element solver, which solves the Fourier equation of stress and strain analysis, made it possible to apply for conduction heat transfer Fourier Equation. Similarly the Current and voltage equation is also liner Fourier equation. The nature of the governing equation makes it possible to numerical investigate the electrical joule heating phenomena in electronic component. This paper highlights the Finite Element Method (FEM) application onto semiconductor interconnects to determine the specific contact resistance (SCR). Metal and semiconductor interconnects is used as model. The result confirms the possibility and validity of FEM utilization to investigate the Joule heating due electrical resistance.

  14. Small Externally-fueled Heat Pipe Thermionic Reactor (SEHPTR) for dual mode applications

    NASA Astrophysics Data System (ADS)

    Malloy, John; Jacox, Michael; Zubrin, Robert

    1992-07-01

    The Small Externally Fueled Heat-Pipe Thermionic Reactor (SEHPTR) is described in the context of applications as a dual-mode nuclear power source for satellites. The SEHPTR is a thermionic power system based on a reactor with modular fuel elements around cylindrical thermionic heat-pipe modules with diodes for heat rejection. The SEHPTR concept is theorized to be suitable for directly heating hydrogen gas in the core to increase propulsion and reduce orbit-transfer times. The advantages of dual-mode operation of the SEHPTR are listed including enhanced mission safety and performance at relatively low costs. The SEHPTR could provide direct thermal thrust and an integrated stage that symbiotically utilizes electric power, direct thrust, and hydrogen arcjets. The system is argued to be more effective than a nuclear power system designed solely for electrical power production.

  15. Small Externally-fueled Heat Pipe Thermionic Reactor (SEHPTR) for dual mode applications

    SciTech Connect

    Malloy, J.; Jacox, M.; Zubrin, R. Idaho National Engineering Laboratory, Idaho Falls Martin Marietta Astronautics Group, Denver, CO )

    1992-07-01

    The Small Externally Fueled Heat-Pipe Thermionic Reactor (SEHPTR) is described in the context of applications as a dual-mode nuclear power source for satellites. The SEHPTR is a thermionic power system based on a reactor with modular fuel elements around cylindrical thermionic heat-pipe modules with diodes for heat rejection. The SEHPTR concept is theorized to be suitable for directly heating hydrogen gas in the core to increase propulsion and reduce orbit-transfer times. The advantages of dual-mode operation of the SEHPTR are listed including enhanced mission safety and performance at relatively low costs. The SEHPTR could provide direct thermal thrust and an integrated stage that symbiotically utilizes electric power, direct thrust, and hydrogen arcjets. The system is argued to be more effective than a nuclear power system designed solely for electrical power production. 7 refs.

  16. Study of the Heat-Transfer Processes of Tubular Elements of Ground Heat Exchangers

    NASA Astrophysics Data System (ADS)

    Kusaiynov, K.; Shuyushbayeva, N. N.; Shaimerdenova, K. M.; Nurgalieva, Zh. G.; Omarov, N. N.

    2015-05-01

    In this paper, consideration is given to the efficiency of utilization of the low-potential heat of the ground. Also, the advantages and distinctive features of polyethylene tubes used in vertical tubular elements of heat pumps are described. This paper gives the results of investigation of the heat transfer of tubular elements of ground heat exchangers. The dependences of the temperature distributions in the ground in the vicinity of a tube and the change in the temperature with time in dry and moist grounds are determined.

  17. Method of locating a leaking fuel element in a fast breeder power reactor

    DOEpatents

    Honekamp, John R.; Fryer, Richard M.

    1978-01-01

    Leaking fuel elements in a fast reactor are identified by measuring the ratio of .sup.134 Xe to .sup.133 Xe in the reactor cover gas following detection of a fuel element leak, this ratio being indicative of the power and burnup of the failed fuel element. This procedure can be used to identify leaking fuel elements in a power breeder reactor while continuing operation of the reactor since the ratio measured is that of the gases stored in the plenum of the failed fuel element. Thus, use of a cleanup system for the cover gas makes it possible to identify sequentially a multiplicity of leaking fuel elements without shutting the reactor down.

  18. Monticello BWR spent fuel assembly decay heat predictions and measurements

    SciTech Connect

    McKinnon, M.A.; Doman, J.W.; Heeb, C.M.; Creer, J.M.

    1986-06-01

    This report compares pre-calorimetry predictions of rates of six 7 x 7 boiling water reactor (BWR) spent fuel assemblies with measured decay heat rates. The assemblies were from Northern States Power Company's Monticello Nuclear Generating Plant and had burnups of 9 to 21 GWd/MTU and cooling times of 9 to 10 years. Conclusions are: The agreement between ORIGEN2 predictions and decay heat measurements of Monticello spent fuel is dependent on the method used to calibrate the calorimeter and to make the decay heat measurements. The agreement between predictions and measurements of decay heat rates of Monticello fuel is the same as that for Cooper and Dresden fuel if the same measurement method is used. The predictions are within a standard deviation of +-15 W of the measurements. Using a different measurement method, ORIGEN2 underpredicts the measured decay heat output of Monticello fuel assemblies by a constant 20 +- 2 W. The 20-W offset appears to be an artifact of the calibration procedure. The constant term in the calibration curve (i.e., q/sub DH/ = mx + b) can account for measurement differences of 40 W based on the 1983, 1984, and 1985 calibration curves. The difference between ORIGEN2 predictions and calorimeter decay heat measurements does not appear to be dependent on the magnitude of decay heat output. Predicted axial decay heat profiles are in good agreement with measured axial gamma radiation profiles. Recommendations are: Predictions using other decay heat codes should be compared to experimental data contained in this report, to evaluate prediction capabilities. The source of the differences that exist among calorimeter calibration curves needs to be determined. Calorimeter operational methods need to be investigated further to determine cause and effect relationships between operational method and calorimeter precision and accuracy.

  19. Hierarchicalp-version finite elements for radiation heat transfer

    NASA Astrophysics Data System (ADS)

    Gould, Dana Craig

    Methods to compute surface-to-surface radiation heat transfer between diffuse-gray surfaces using hierarchical p-version finite elements have been developed and applied to the analysis of a high-speed aircraft wing. A review of traditional methods for surface-to-surface radiation exchange is given. Traditional methods rely on the assumption of isothermal surfaces with incoming and outgoing radiation heat flux assumed constant over the surface. These assumptions are not appropriate for p-version finite elements, so new methods for evaluating the incoming and outgoing radiation flux over a finite element surface were required. Two methods for computing the surface-to-surface radiation heat transfer that do not rely on the above assumptions are developed and validated. The first approach uses traditional methods to compute the radiation exchange on an element sub-mesh, then transfers this data back to the parent element for the computation of the radiation heat flux. The second method requires the numerical integration of the net radiation exchange equation for each element. The methods are validated and evaluated using simple problems with analytical solutions. The radiation sub-element method is less costly than the direct integration method, but it is also less accurate. Both methods are computationally more expensive than traditional methods for a given number of degrees of freedom; however, for a given accuracy, they are less expensive. The new methods are used to analyze the wing of a High Speed Civil Transport vehicle. The p-elements were effective in capturing significant temperature variations over large sections of the wing and reduced the mesh complexity and associated modeling time while maintaining accuracy.

  20. Nuclear reactor fuel element with vanadium getter on cladding

    DOEpatents

    Johnson, Carl E.; Carroll, Kenneth G.

    1977-01-01

    A nuclear reactor fuel element is described which has an outer cladding, a central core of fissionable or mixed fissionable and fertile fuel material and a layer of vanadium as an oxygen getter on the inner surface of the cladding. The vanadium reacts with oxygen released by the fissionable material during irradiation of the core to prevent the oxygen from reacting with and corroding the cladding. Also described is a method for coating the inner surface of small diameter tubes of cladding with a layer of vanadium.

  1. Development of Passive Fuel Cell Thermal Management Heat Exchanger

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth A.; Jakupca, Ian J.; Colozza, Anthony J.

    2010-01-01

    The NASA Glenn Research Center is developing advanced passive thermal management technology to reduce the mass and improve the reliability of space fuel cell systems for the NASA Exploration program. The passive thermal management system relies on heat conduction within highly thermally conductive cooling plates to move the heat from the central portion of the cell stack out to the edges of the fuel cell stack. Using the passive approach eliminates the need for a coolant pump and other cooling loop components within the fuel cell system which reduces mass and improves overall system reliability. Previous development demonstrated the performance of suitable highly thermally conductive cooling plates that could conduct the heat, provide a sufficiently uniform temperature heat sink for each cell of the fuel cell stack, and be substantially lighter than the conventional thermal management approach. Tests were run with different materials to evaluate the design approach to a heat exchanger that could interface with the edges of the passive cooling plates. Measurements were made during fuel cell operation to determine the temperature of individual cooling plates and also to determine the temperature uniformity from one cooling plate to another.

  2. Thermoacoustic sensor for nuclear fuel temperaturemonitoring and heat transfer enhancement

    SciTech Connect

    James A. Smith; Dale K. Kotter; Randall A. Alli; Steven L. Garrett

    2013-05-01

    A new acoustical sensing system for the nuclear power industry has been developed at The Pennsylvania State University in collaboration with Idaho National Laboratories. This sensor uses the high temperatures of nuclear fuel to convert a nuclear fuel rod into a standing-wave thermoacoustic engine. When a standing wave is generated, the sound wave within the fuel rod will be propagated, by acoustic radiation, through the cooling fluid within the reactor or spent fuel pool and can be monitored a remote location external to the reactor. The frequency of the sound can be correlated to an effective temperature of either the fuel or the surrounding coolant. We will present results for a thermoacoustic resonator built into a Nitonic-60 (stainless steel) fuel rod that requires only one passive component and no heat exchangers.

  3. Fuel quality issues in the oil heat industry

    SciTech Connect

    Litzke, Wai-Lin

    1992-12-01

    The quality of fuel oil plays an essential role in combustion performance and efficient operation of residential heating equipment. With the present concerns by the oil-heat industry of declining fuel-oil quality, a study was initiated to identify the factors that have brought about changes in the quality of distillate fuel. A background of information will be provided to the industry, which is necessary to deal with the problems relating to the fuel. The high needs for servicing heating equipment are usually the result of the poor handling characteristics of the fuel during cold weather, the buildup of dirt and water in storage tanks, and microbial growth. A discussion of how to deal with these problems is presented in this paper. The effectiveness of fuel additives to control these problems of quality is also covered to help users better understand the functions and limitations of chemical treatment. Test data have been collected which measure and compare changes in the properties of fuel using selected additives.

  4. Method for measuring recovery of catalytic elements from fuel cells

    SciTech Connect

    Shore, Lawrence; Matlin, Ramail

    2011-03-08

    A method is provided for measuring the concentration of a catalytic clement in a fuel cell powder. The method includes depositing on a porous substrate at least one layer of a powder mixture comprising the fuel cell powder and an internal standard material, ablating a sample of the powder mixture using a laser, and vaporizing the sample using an inductively coupled plasma. A normalized concentration of catalytic element in the sample is determined by quantifying the intensity of a first signal correlated to the amount of catalytic element in the sample, quantifying the intensity of a second signal correlated to the amount of internal standard material in the sample, and using a ratio of the first signal intensity to the second signal intensity to cancel out the effects of sample size.

  5. VIEW OF THE HEATING ELEMENTS AND VACUUM GAUGE OF A ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF THE HEATING ELEMENTS AND VACUUM GAUGE OF A PUMP-DOWN STATION IN BUILDING 991. THE PUMP-DOWN STATION REMOVED OUT-GASES FROM INSIDE THE TRIGGERS. (9/26/61) - Rocky Flats Plant, Final Assembly & Shipping, Eastern portion of plant site, south of Spruce Avenue, east of Tenth Street & north of Central Avenue, Golden, Jefferson County, CO

  6. Fabrication procedures for manufacturing High Flux Isotope Reactor fuel elements - 2

    SciTech Connect

    Knight, R.W.; Morin, R.A.

    1999-12-01

    The original fabrication procedures written in 1968 delineated the manufacturing procedures at that time. Since 1968, there have been a number of procedural changes. This rewrite of the fabrication procedures incorporates these changes. The entire fuel core of this reactor is made up of two fuel elements. Each element consists of one annular array of fuel plates. These annuli are identified as the inner and outer fuel elements, since one fits inside the other. The inner element consists of 171 identical fuel plates, and the outer element contains 369 identical fuel plates differing slightly from those in the inner element. Both sets of fuel plates contain U{sub 3}O{sub 8} powder as the fuel, dispersed in an aluminum powder matrix and clad with aluminum. Procedures for manufacturing and inspection of the fuel elements are described and illustrated.

  7. METHOD AND APPARATUS FOR EXAMINING FUEL ELEMENTS FOR LEAKAGE

    DOEpatents

    Smith, R.R.; Echo, M.W.; Doe, C.B.

    1963-12-31

    A process and a device for the continuous monitoring of fuel elements while in use in a liquid-metal-cooled, argonblanketed nuclear reactor are presented. A fraction of the argon gas is withdrawn, contacted with a negative electrical charge for attraction of any alkali metal formed from argon by neutron reaction, and recycled into the reactor. The electrical charge is introduced into water, and the water is examined for radioactive alkali metals. (AEC)

  8. FUEL ELEMENTS FOR NUCLEAR REACTORS AND PROCESS OF MAKING

    DOEpatents

    Roake, W.E.

    1958-08-19

    A process is described for producing uranium metal granules for use in reactor fuel elements. The granules are made by suspending powdered uramiunn metal or uranium hydride in a viscous, non-reactive liquid, such as paraffin oil, aad pouring the resulting suspension in droplet, on to a bed of powdered absorbent. In this manner the liquid vehicle is taken up by the sorbent and spherical pellets of uranium metal are obtained. The

  9. Fuel Cell Combined Heat and Power Commercial Demonstration

    SciTech Connect

    Brooks, Kriston P.; Makhmalbaf, Atefe

    2014-09-02

    This is the annual report for the Market Transformation project as required by DOE EERE's Fuel Cell Technologies Office. We have been provided with a specific format. It describes the work that was done in developing evaluating the performance of 5 kW stationary combined heat and power fuel cell systems that have been deployed in Oregon and California. It also describes the business case that was developed to identify markets and address cost.

  10. Remote real time x-ray examination of fuel elements in a hot cell environment

    SciTech Connect

    Yapuncich, F.L.

    1993-03-01

    This report discusses the Remote Real Time X-ray System which will allow for detailed examination of fuel elements. This task will be accomplished in a highly radioactive hot cell environment. Two remote handling systems win be utilized at the examination station. One handling system will transfer the fuel element to and from the shielded x-ray system. A second handling system will allow for vertical and rotational inspection of the fuel elements. The process win include removing a single nuclear fuel element from a element fabrication magazine(EFM), positioning the fuel element within the shielding envelope of the x-ray system and transferring the fuel element from the station manipulator to the x-ray system manipulator, performing the x-ray inspection, and then transferring the fuel element to either the element storage magazine(ESM) or a reject bin.

  11. Remote real time x-ray examination of fuel elements in a hot cell environment

    SciTech Connect

    Yapuncich, F.L.

    1993-01-01

    This report discusses the Remote Real Time X-ray System which will allow for detailed examination of fuel elements. This task will be accomplished in a highly radioactive hot cell environment. Two remote handling systems win be utilized at the examination station. One handling system will transfer the fuel element to and from the shielded x-ray system. A second handling system will allow for vertical and rotational inspection of the fuel elements. The process win include removing a single nuclear fuel element from a element fabrication magazine(EFM), positioning the fuel element within the shielding envelope of the x-ray system and transferring the fuel element from the station manipulator to the x-ray system manipulator, performing the x-ray inspection, and then transferring the fuel element to either the element storage magazine(ESM) or a reject bin.

  12. Solar Thermochemical Fuels Production: Solar Fuels via Partial Redox Cycles with Heat Recovery

    SciTech Connect

    2011-12-19

    HEATS Project: The University of Minnesota is developing a solar thermochemical reactor that will efficiently produce fuel from sunlight, using solar energy to produce heat to break chemical bonds. The University of Minnesota is envisioning producing the fuel by using partial redox cycles and ceria-based reactive materials. The team will achieve unprecedented solar-to-fuel conversion efficiencies of more than 10% (where current state-of-the-art efficiency is 1%) by combined efforts and innovations in material development, and reactor design with effective heat recovery mechanisms and demonstration. This new technology will allow for the effective use of vast domestic solar resources to produce precursors to synthetic fuels that could replace gasoline.

  13. On mobile element transport in heated Abee. [chondrite thermal metamorphism

    NASA Technical Reports Server (NTRS)

    Ikramuddin, M.; Lipschutz, M. E.; Gibson, E. K., Jr.

    1979-01-01

    Abee chondrite samples were heated at 700 C for one week at 0.00001 to 0.001 atm Ne or at 0.00001 atm H2. Samples heated in Ne showed greater loss of Bi and Se and greater retention of Zn than those heated in H2. An inverse relationship between Zn retention and ambient Ne pressure was found. Seven trace elements (Ag, Co, Cs, Ga, In, Te, and Tl) were retained or lost to the same extent regardless of the heating conditions. Variations in the apparent activation energy for C above and below 700 C suggest that diffusive loss from different hosts and/or different mobile transport processes over the temperature range may have been in effect.

  14. Heat production in an Archean crustal profile and implications for heat flow and mobilization of heat-producing elements

    NASA Technical Reports Server (NTRS)

    Ashwal, L. D.; Morgan, P.; Kelley, S. A.; Percival, J. A.

    1987-01-01

    Concentrations of heat producing elements (Th, U, and K) in 58 samples representative of the main lithologies in a 100-km transect of the Superior Province of the Canadian Shield have been obtained. The relatively large variation in heat production found among the silicic plutonic rocks is shown to correlate with modal abundances of accessory minerals, and these variations are interpreted as premetamorphic. The present data suggest fundamental differences in crustal radioactivity distributions between granitic and more mafic terrains, and indicate that a previously determined apparently linear heat flow-heat production relationship for the Kapuskasing area does not relate to the distribution of heat production with depth.

  15. Heat recovery and pollutant cleanup from low grade fuels

    SciTech Connect

    Ellison, W.; Butcher, T.A.; Carbonara, J.C.; Heaphy, J.P.

    1994-06-01

    Technical development efforts and field testing have pointed to outstanding economy and environmental benefits contemplated in revamping of fueling for reduced cost of power generation. Flue gas cleaning technologies detailed herein are expected to vitally support this objective and strongly contribute to long-term efforts for regional ozone compliance within the favorable economic framework made possible by avoidance of clean, high-cost, steam boiler fuels otherwise necessary in meeting environmental goals. With adequate control of emissions, abundance and attractive price of high-sulfur residium or coal provides the realistic basis for cost-effective power generation in decades ahead. A key element is the design of by-product yielding, wet flue gas desulfurization processes. The choice is among those using lime, ammonia, or sodium alkali reagents, or limestone in highly oxygen-inhibited process operation, with SO{sub 2} removal efficiency of 98+% as a result of dissolved sulfite alkalinity. Integrated use of condensing heat exchangers provides low-level heat recovery and water-condensing-mode scrubbing. SO{sub 3} gas & PM-10 particulates including trace metals are effectively removed in conjunction with optimal, ultra-efficient, simultaneous multi-pollutant reduction. DeNO{sub x} may be accomplished by combining advantageous recirculation of highly-cooled, low-humidity, clean flue gas to burner windboxes with conventional selective non-catalytic reduction. Stack NO{sub x} at 18 to 30 ppM, (60% O{sub 2} basis), i.e. 0.03 to 0.05 lb NO{sub 2}-equivalent/MM Btu, may be achieved by injection of methanol in dilute solution or highly air-diluted, into the rear boiler cavity upstream of the economizer, converting flue-gas NO to NO{sub 2}, thereafter efficiently absorbed and chemically reduced to N{sub 2} by the dissolved-sulfite scrubbing agent to gain colorless discharge with NO{sub 2} concentration less than 15 ppM, i.e. 0.025 lb/MM Btu.

  16. Finite element analysis of heat transport in a hydrothermal zone

    SciTech Connect

    Bixler, N.E.; Carrigan, C.R.

    1987-01-01

    Two-phase heat transport in the vicinity of a heated, subsurface zone is important for evaluation of nuclear waste repository design and estimation of geothermal energy recovery, as well as prediction of magma solidification rates. Finite element analyses of steady, two-phase, heat and mass transport have been performed to determine the relative importance of conduction and convection in a permeable medium adjacent to a hot, impermeable, vertical surface. The model includes the effects of liquid flow due to capillarity and buoyancy and vapor flow due to pressure gradients. Change of phase, with its associated latent heat effects, is also modeled. The mechanism of capillarity allows for the presence of two-phase zones, where both liquid and vapor can coexist, which has not been considered in previous investigations. The numerical method employs the standard Galerkin/finite element method, using eight-node, subparametric or isoparametric quadrilateral elements. In order to handle the extreme nonlinearities inherent in two-phase, nonisothermal, porous-flow problems, steady-state results are computed by integrating transients out to a long time (a method that is highly robust).

  17. Conjugate Heat Transfer Analyses on the Manifold for Ramjet Fuel Injectors

    NASA Technical Reports Server (NTRS)

    Wang, Xiao-Yen J.

    2006-01-01

    Three-dimensional conjugate heat transfer analyses on the manifold located upstream of the ramjet fuel injector are performed using CFdesign, a finite-element computational fluid dynamics (CFD) software. The flow field of the hot fuel (JP-7) flowing through the manifold is simulated and the wall temperature of the manifold is computed. The three-dimensional numerical results of the fuel temperature are compared with those obtained using a one-dimensional analysis based on empirical equations, and they showed a good agreement. The numerical results revealed that it takes around 30 to 40 sec to reach the equilibrium where the fuel temperature has dropped about 3 F from the inlet to the exit of the manifold.

  18. Benchmark Wall Heat Flux Data for a GO2/GH2 Single Element Combustor

    NASA Technical Reports Server (NTRS)

    Marshall, William M.; Pal, Sibtosh; Woodward, Roger d.; Santoro, Robert J.

    2005-01-01

    Wall heat flux measurements in a 1.5 in. diameter circular cross-section rocket chamber for a uni-element shear coaxial injector element operating on gaseous oxygen (GOz)/gaseous hydrogen (GH,) propellants are presented. The wall heat flux measurements were made using arrays of Gardon type heat flux gauges and coaxial thermocouple instrumentation. Wall heat flux measurements were made for two cases. For the first case, GOZ/GHz oxidizer-rich (O/F=l65) and fuel-rich preburners (O/F=1.09) integrated with the main chamber were utilized to provide vitiated hot fuel and oxidizer to the study shear coaxial injector element. For the second case, the preburners were removed and ambient temperature gaseous oxygen/gaseous hydrogen propellants were supplied to the study injector. Experiments were conducted at four chamber pressures of 750, 600, 450 and 300psia for each case. The overall mixture ratio for the preburner case was 6.6, whereas for the ambient propellant case, the mixture ratio was 6.0. Total propellant flow was nominally 0.27-0.29 Ibm/s for the 750 psia case with flowrates scaled down linearly for lower chamber pressures. The axial heat flux profile results for both the preburner and ambient propellant cases show peak heat flux levels a t axial locations between 2.0 and 3.0 in. from the injector face. The maximum heat flux level was about two times greater for the preburner case. This is attributed to the higher injector fuel-to-oxidizer momentum flux ratio that promotes mixing and higher initial propellant temperature for the preburner case which results in a shorter reaction zone. The axial heat flux profiles were also scaled with respect to the chamber pressure to the power 0.8. The results at the four chamber pressures for both cases collapsed to a single profile indicating that at least to first approximation, the basic fluid dynamic structures in the flow field are pressure independent as long as the chamber/njector/nozzle geometry and injection velocities

  19. Gamma-ray spectroscopy on irradiated MTR fuel elements

    NASA Astrophysics Data System (ADS)

    Terremoto, L. A. A.; Zeituni, C. A.; Perrotta, J. A.; da Silva, J. E. R.

    2000-08-01

    The availability of burnup data is an important requirement in any systematic approach to the enhancement of safety, economics and performance of a nuclear research reactor. This work presents the theory and experimental techniques applied to determine, by means of nondestructive gamma-ray spectroscopy, the burnup of Material Testing Reactor (MTR) fuel elements irradiated in the IEA-R1 research reactor. Burnup measurements, based on analysis of spectra that result from collimation and detection of gamma-rays emitted in the decay of radioactive fission products, were performed at the reactor pool area. The measuring system consists of a high-purity germanium (HPGe) detector together with suitable fast electronics and an on-line microcomputer data acquisition module. In order to achieve absolute burnup values, the detection set (collimator tube+HPGe detector) was previously calibrated in efficiency. The obtained burnup values are compared with ones provided by reactor physics calculations, for three kinds of MTR fuel elements with different cooling times, initial enrichment grades and total number of fuel plates. Both values show good agreement within the experimental error limits.

  20. Potential of vegetable oils as a domestic heating fuel

    SciTech Connect

    Hayden, A.C.S.; Begin, E.; Palmer, C.E.

    1982-06-01

    The dependence on imported oil for domestic heating has led to the examination of other potential fuel substitutes. One potential fuel is some form of vegetable oil, which could be a yearly-renewable fuel. In Western Canada, canola has become a major oilseed crop; in Eastern Canada, sunflowers increasingly are becoming a source for a similar oil; for this reason, the Canadian Combustion Research Laboratory (CCRL) has chosen these oils for experimentation. Trials have been conducted in a conventional warm air oil furnace, fitted with a flame retention head burner. Performance has been measured with pure vegetable oils as well as a series of blends with conventional No. 2 oil. The effects of increased fuel pressure and fuel preheating are established. Emissions of carbon monoxide, nitrogen oxides, unburned hydrocarbons and particulates are given for both steady state and cyclic operation. Canola oil cannot be fired in cyclic operation above 50:50 blends with No. 2 oil. At any level above a 10% blend, canola is difficult to burn, even with significant increased pressure and temperature. Sunflower oil is much easier to burn and can be fired as a pure fuel, but with high emissions of incomplete combustion products. An optimum blend of 50:50 sunflower in No. 2 oil yields emissions and performance similar to No. 2 oil. This blend offers potential as a means of reducing demand of imported crude oil for domestic heating systems.

  1. Benchmark Wall Heat Flux Data for a GO2/GH2 Single Element Injector

    NASA Technical Reports Server (NTRS)

    Pal, Sibtosh; Santoro, Robert

    2004-01-01

    Computational Fluid Dynamics (CFD) is becoming an important component of injector design in the rocket industry. Injector designers who use CFD in the design process need to understand the accuracy level of the particular code being used for certain aspects of the design. This paper presents a recent effort to acquire benchmark quality data to be used for CFD code validation. Detailed chamber wall temperature and heat flux data was acquired for a gaseous oxygen, gaseous hydrogen single element shear coaxial injector in a 1.5 inch diameter copper heat sink chamber at Penn State University. The data was taken using both coaxial and water cooled heat flux gauges. Tests were run using hot gases generated from both fuel and oxidizer preburners. Tests were conducted over a chamber pressure range of 300 to 750 psia. Data analysis and uncertainty information will also be presented.

  2. Iron aluminide useful as electrical resistance heating elements

    DOEpatents

    Sikka, V.K.; Deevi, S.C.; Fleischhauer, G.S.; Hajaligol, M.R.; Lilly, A.C. Jr.

    1997-04-15

    The invention relates generally to aluminum containing iron-base alloys useful as electrical resistance heating elements. The aluminum containing iron-base alloys have improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The alloy has an entirely ferritic microstructure which is free of austenite and includes, in weight %, over 4% Al, {<=}1% Cr and either {>=}0.05% Zr or ZrO{sub 2} stringers extending perpendicular to an exposed surface of the heating element or {>=}0.1% oxide dispersoid particles. The alloy can contain 14-32% Al, {<=}2% Ti, {<=}2% Mo, {<=}1% Zr, {<=}1% C, {<=}0.1% B, {<=}30% oxide dispersoid and/or electrically insulating or electrically conductive covalent ceramic particles, {<=}1% rare earth metal, {<=}1% oxygen, {<=}3% Cu, balance Fe. 64 figs.

  3. Iron aluminide useful as electrical resistance heating elements

    DOEpatents

    Sikka, Vinod K.; Deevi, Seetharama C.; Fleischhauer, Grier S.; Hajaligol, Mohammad R.; Lilly, Jr., A. Clifton

    2001-01-01

    The invention relates generally to aluminum containing iron-base alloys useful as electrical resistance heating elements. The aluminum containing iron-base alloys have improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The alloy has an entirely ferritic microstructure which is free of austenite and includes, in weight %, over 4% Al, .ltoreq.1% Cr and either .gtoreq.0.05% Zr or ZrO.sub.2 stringers extending perpendicular to an exposed surface of the heating element or .gtoreq.0.1% oxide dispersoid particles. The alloy can contain 14-32% Al, .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Zr, .ltoreq.1% C, .ltoreq.0.1% B, .ltoreq.30% oxide dispersoid and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, .ltoreq.1% oxygen, .ltoreq.3% Cu, balance Fe.

  4. Iron aluminide useful as electrical resistance heating elements

    DOEpatents

    Sikka, Vinod K.; Deevi, Seetharama C.; Fleischhauer, Grier S.; Hajaligol, Mohammad R.; Lilly, Jr., A. Clifton

    1997-01-01

    The invention relates generally to aluminum containing iron-base alloys useful as electrical resistance heating elements. The aluminum containing iron-base alloys have improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The alloy has an entirely ferritic microstructure which is free of austenite and includes, in weight %, over 4% Al, .ltoreq.1% Cr and either .gtoreq.0.05% Zr or ZrO.sub.2 stringers extending perpendicular to an exposed surface of the heating element or .gtoreq.0.1% oxide dispersoid particles. The alloy can contain 14-32% Al, .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Zr, .ltoreq.1% C, .ltoreq.0.1% B, .ltoreq.30% oxide dispersoid and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, .ltoreq.1% oxygen, .ltoreq.3% Cu, balance Fe.

  5. Iron aluminide useful as electrical resistance heating elements

    DOEpatents

    Sikka, Vinod K.; Deevi, Seetharama C.; Fleischhauer, Grier S.; Hajaligol, Mohammad R.; Lilly, Jr., A. Clifton

    1999-01-01

    The invention relates generally to aluminum containing iron-base alloys useful as electrical resistance heating elements. The aluminum containing iron-base alloys have improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The alloy has an entirely ferritic microstructure which is free of austenite and includes, in weight %, over 4% Al, .ltoreq.1% Cr and either .gtoreq.0.05% Zr or ZrO.sub.2 stringers extending perpendicular to an exposed surface of the heating element or .gtoreq.0.1% oxide dispersoid particles. The alloy can contain 14-32% Al, .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Zr, .ltoreq.1% C, .ltoreq.0.1% B, .ltoreq.30% oxide dispersoid and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, .ltoreq.1% oxygen, .ltoreq.3% Cu, balance Fe.

  6. General-purpose heat source: Research and development program. Process evaluation, fuel pellet GF-47

    SciTech Connect

    Reimus, M.A.H.; George, T.G.

    1995-12-01

    The general-purpose heat source (GPHS) provides power for space missions by transmitting the heat of {sup 238}Pu decay to an array of thermoelectric elements. Because the potential for a launch abort or return from orbit exists for any space mission, the heat source must be designed and constructed to survive credible accident environments. Previous testing conducted in support of the Galileo and Ulysses missions has documented the response of the GPHS heat source to a variety of fragment-impact, aging, atmospheric reentry, and Earth-impact conditions. Although heat sources for previous missions were fabricated by the Westinghouse Savannah River Company (WSRC), GPHS fueled-clads required for the Cassini mission to Saturn will be fabricated by Los Alamos National Laboratory (LANL). This evaluation is part of an ongoing program to determine the similarity of GPHS fueled clads and fuel pellets fabricated at LANL to those fabricated at WSRC. Pellet GF-47, which was fabricated at LANL in late 1994, was submitted for chemical and ceramographic analysis. The results indicated that the pellet had a chemical makeup and microstructure within the range of material fabricated at WSRC in the early 1980s.

  7. Specific features of external heat and mass transfer in the vibration apparatuses used for regenerating spent fuel from nuclear power plants

    NASA Astrophysics Data System (ADS)

    Sapozhnikov, B. G.; Gorbunova, A. M.; Zelenkova, Yu. O.; Sapozhnikov, G. B.; Shiryaeva, N. P.

    2014-06-01

    We present experimental data on the coefficients of heat and mass transfer for freely floating bodies simulating fragments of cladding and large conglomerates of fuel, as well as on the local coefficients of heat and mass transfer over the bed height, which point to high intensity of heat and mass transfer processes that take place in the elements of vibration apparatuses intended for subjecting spent fuel from nuclear power plants to oxidative recrystallization.

  8. Efficient linear and nonlinear heat conduction with a quadrilateral element

    NASA Technical Reports Server (NTRS)

    Liu, W. K.; Belytschko, T.

    1983-01-01

    A method is presented for performing efficient and stable finite element calculations of heat conduction with quadrilaterals using one-point quadrature. The stability in space is obtained by using a stabilization matrix which is orthogonal to all linear fields and its magnitude is determined by a stabilization parameter. It is shown that the accuracy is almost independent of the value of the stabilization parameter over a wide range of values; in fact, the values 3, 2, and 1 for the normalized stabilization parameter lead to the 5-point, 9-point finite difference, and fully integrated finite element operators, respectively, for rectangular meshes and have identical rates of convergence in the L2 norm. Eigenvalues of the element matrices, which are needed for stability limits, are also given. Numerical applications are used to show that the method yields accurate solutions with large increases in efficiency, particularly in nonlinear problems.

  9. Application of the boundary element method to transient heat conduction

    NASA Technical Reports Server (NTRS)

    Dargush, G. F.; Banerjee, P. K.

    1991-01-01

    An advanced boundary element method (BEM) is presented for the transient heat conduction analysis of engineering components. The numerical implementation necessarily includes higher-order conforming elements, self-adaptive integration and a multiregion capability. Planar, three-dimensional and axisymmetric analyses are all addressed with a consistent time-domain convolution approach, which completely eliminates the need for volume discretization for most practical analyses. The resulting general purpose algorithm establishes BEM as an attractive alternative to the more familiar finite difference and finite element methods for this class of problems. Several detailed numerical examples are included to emphasize the accuracy, stability and generality of the present BEM. Furthermore, a new efficient treatment is introduced for bodies with embedded holes. This development provides a powerful analytical tool for transient solutions of components, such as casting moulds and turbine blades, which are cumbersome to model when employing the conventional domain-based methods.

  10. Efficient linear and nonlinear heat conduction with a quadrilateral element

    NASA Technical Reports Server (NTRS)

    Liu, W. K.; Belytschko, T.

    1984-01-01

    A method is presented for performing efficient and stable finite element calculations of heat conduction with quadrilaterals using one-point quadrature. The stability in space is obtained by using a stabilization matrix which is orthogonal to all linear fields and its magnitude is determined by a stabilization parameter. It is shown that the accuracy is almost independent of the value of the stabilization parameter over a wide range of values; in fact, the values 3, 2 and 1 for the normalized stabilization parameter lead to the 5-point finite difference, 9-point finite difference and fully integrated finite element operators, respectively, for rectangular meshes; numerical experiments reported here show that the three have identical rates of convergence in the L2 norm. Eigenvalues of the element matrices, which are needed for stability limits, are also given. Numerical applications are used to show that the method yields accurate solutions with large increases in efficiency, particularly in nonlinear problems.

  11. On the heat capacity of elements in WMD regime

    NASA Astrophysics Data System (ADS)

    Hamel, Sebatien

    2014-03-01

    Once thought to get simpler with increasing pressure, elemental systems have been discovered to exhibit complex structures and multiple phases at high pressure. For carbon, QMD/PIMC simulations have been performed and the results are guiding alternative modelling methodologies for constructing a carbon equation-of-state covering the warm dense matter regime. One of the main results of our new QMD/PIMC carbon equation of state is that the decay of the ion-thermal specific heat with temperature is much faster than previously expected. An important question is whether this is only found in carbon and not other element. In this presentation, based on QMD calculations for several elements, we explore trends in the transition from condensed matter to warm dense matter regime.

  12. Heat Transfer Enhancement By Three-Dimensional Surface Roughness Technique In Nuclear Fuel Rod Bundles

    NASA Astrophysics Data System (ADS)

    Najeeb, Umair

    This thesis experimentally investigates the enhancement of single-phase heat transfer, frictional loss and pressure drop characteristics in a Single Heater Element Loop Tester (SHELT). The heater element simulates a single fuel rod for Pressurized Nuclear reactor. In this experimental investigation, the effect of the outer surface roughness of a simulated nuclear rod bundle was studied. The outer surface of a simulated fuel rod was created with a three-dimensional (Diamond-shaped blocks) surface roughness. The angle of corrugation for each diamond was 45 degrees. The length of each side of a diamond block is 1 mm. The depth of each diamond block was 0.3 mm. The pitch of the pattern was 1.614 mm. The simulated fuel rod had an outside diameter of 9.5 mm and wall thickness of 1.5 mm and was placed in a test-section made of 38.1 mm inner diameter, wall thickness 6.35 mm aluminum pipe. The Simulated fuel rod was made of Nickel 200 and Inconel 625 materials. The fuel rod was connected to 10 KW DC power supply. The Inconel 625 material of the rod with an electrical resistance of 32.3 kO was used to generate heat inside the test-section. The heat energy dissipated from the Inconel tube due to the flow of electrical current flows into the working fluid across the rod at constant heat flux conditions. The DI water was employed as working fluid for this experimental investigation. The temperature and pressure readings for both smooth and rough regions of the fuel rod were recorded and compared later to find enhancement in heat transfer coefficient and increment in the pressure drops. Tests were conducted for Reynold's Numbers ranging from 10e4 to 10e5. Enhancement in heat transfer coefficient at all Re was recorded. The maximum heat transfer co-efficient enhancement recorded was 86% at Re = 4.18e5. It was also observed that the pressure drop and friction factor increased by 14.7% due to the increased surface roughness.

  13. Finite-element technique applied to heat conduction in solids with temperature dependent thermal conductivity

    NASA Technical Reports Server (NTRS)

    Aguirre-Ramirez, G.; Oden, J. T.

    1969-01-01

    Finite element method applied to heat conduction in solids with temperature dependent thermal conductivity, using nonlinear constitutive equation for heat ABCDEFGHIABCDEFGHIABCDEFGHIABCDEFGHIABCDEFGHIABCDEFGHIABCDEFGHIABCDEFGHIABCDEFGHIABCDEFGHIABCDEFGHIABCDEFGH

  14. Heat transfer in nuclear fuels: Measurements of gap conductance

    NASA Astrophysics Data System (ADS)

    Cho, Chun Hyung

    Heat transfer in the fuel-clad gap in a nuclear reactor impacts the overall temperature distribution, stored energy and the mechanical properties of a nuclear fuel rod. Therefore, an accurate estimation of the gap conductance between the fuel and the clad is critically important for reactor design and operations. To obtain the requisite accuracy in the gap conductance estimation, it is important to understand the effects of the convective heat transfer coefficient, the gas composition, pressure and temperature, and so forth. The objectives of this study are to build a bench-scale experimental apparatus for the measurement of thermal gap conductances and to develop a better understanding of the differences that have been previously observed between such measured values and those predicted theoretically. This is accomplished by employing improved analyses of the experiments and improved theoretical models. Using laser heating of slightly separated stainless-steel plates, the gap conductance was measured using a technique that compares the theoretical and experimental time dependent temperatures at the back surface of the second plate. To consider the effects of surface temperature and gas pressure, the theoretical temperatures were calculated using a convective heat transfer coefficient that was dependent upon both the temperature and the gas pressure.

  15. An analysis of heating fuel market behavior, 1989--1990

    SciTech Connect

    Not Available

    1990-06-01

    The purpose of this report is to fully assess the heating fuel crisis from a broader and longer-term perspective. Using EIA final, monthly data, in conjunction with credible information from non-government sources, the pricing phenomena exhibited by heating fuels in late December 1989 and early January 1990 are described and evaluated in more detail and more accurately than in the interim report. Additionally, data through February 1990 (and, in some cases, preliminary figures for March) make it possible to assess the market impact of movements in prices and supplies over the heating season as a whole. Finally, the longer time frame and the availability of quarterly reports filed with the Securities and Exchange Commission make it possible to weigh the impact of revenue gains in December and January on overall profits over the two winter quarters. Some of the major, related issues raised during the House and Senate hearings in January concerned the structure of heating fuel markets and the degree to which changes in this structure over the last decade may have influenced the behavior and financial performance of market participants. Have these markets become more concentrated Was collusion or market manipulation behind December's rising prices Did these, or other, factors permit suppliers to realize excessive profits What additional costs were incurred by consumers as a result of such forces These questions, and others, are addressed in the course of this report.

  16. Utility reduces fuel cost with heat recovery, industrial byproduct fuel, cogeneration

    SciTech Connect

    Holland, R.J.

    1982-02-01

    A 50-MW North Dakota power plant is refurbished to recover major waste-heat sources. Use of agricultural byproduct fuel and cogeneration also helps to cut future costs. The plant is saving on fuel costs by burning 150-200 tons/day of sunflower seed hulls from a local processing plant. The hulls are pulverized and mixed with the primary fuel, North Dakota lignite. At the same time, the processing plant that supplies the sunflower hulls buys steam from the power plant, thus giving the utility some of the economic benefits of cogeneration.

  17. Triaxial Swirl Injector Element for Liquid-Fueled Engines

    NASA Technical Reports Server (NTRS)

    Muss, Jeff

    2010-01-01

    A triaxial injector is a single bi-propellant injection element located at the center of the injector body. The injector element consists of three nested, hydraulic swirl injectors. A small portion of the total fuel is injected through the central hydraulic injector, all of the oxidizer is injected through the middle concentric hydraulic swirl injector, and the balance of the fuel is injected through an outer concentric injection system. The configuration has been shown to provide good flame stabilization and the desired fuel-rich wall boundary condition. The injector design is well suited for preburner applications. Preburner injectors operate at extreme oxygen-to-fuel mass ratios, either very rich or very lean. The goal of a preburner is to create a uniform drive gas for the turbomachinery, while carefully controlling the temperature so as not to stress or damage turbine blades. The triaxial injector concept permits the lean propellant to be sandwiched between two layers of the rich propellant, while the hydraulic atomization characteristics of the swirl injectors promote interpropellant mixing and, ultimately, good combustion efficiency. This innovation is suited to a wide range of liquid oxidizer and liquid fuels, including hydrogen, methane, and kerosene. Prototype testing with the triaxial swirl injector demonstrated excellent injector and combustion chamber thermal compatibility and good combustion performance, both at levels far superior to a pintle injector. Initial testing with the prototype injector demonstrated over 96-percent combustion efficiency. The design showed excellent high -frequency combustion stability characteristics with oxygen and kerosene propellants. Unlike the more conventional pintle injector, there is not a large bluff body that must be cooled. The absence of a protruding center body enhances the thermal durability of the triaxial swirl injector. The hydraulic atomization characteristics of the innovation allow the design to be

  18. AERIAL MEASUREMENTS OF CONVECTION CELL ELEMENTS IN HEATED LAKES

    SciTech Connect

    Villa-Aleman, E; Saleem Salaymeh, S; Timothy Brown, T; Alfred Garrett, A; Malcolm Pendergast, M; Linda Nichols, L

    2007-12-19

    Power plant-heated lakes are characterized by a temperature gradient in the thermal plume originating at the discharge of the power plant and terminating at the water intake. The maximum water temperature discharged by the power plant into the lake depends on the power generated at the facility and environmental regulations on the temperature of the lake. Besides the observed thermal plume, cloud-like thermal cells (convection cell elements) are also observed on the water surface. The size, shape and temperature of the convection cell elements depends on several parameters such as the lake water temperature, wind speed, surfactants and the depth of the thermocline. The Savannah River National Laboratory (SRNL) and Clemson University are collaborating to determine the applicability of laboratory empirical correlations between surface heat flux and thermal convection intensity. Laboratory experiments at Clemson University have demonstrated a simple relationship between the surface heat flux and the standard deviation of temperature fluctuations. Similar results were observed in the aerial thermal imagery SRNL collected at different locations along the thermal plume and at different elevations. SRNL will present evidence that the results at Clemson University are applicable to cooling lakes.

  19. Mass and heat transport in direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Ismail, A.; Kamarudin, S. K.; Daud, W. R. W.; Masdar, S.; Yosfiah, M. R.

    The direct methanol fuel cell (DMFC) is a better alternative to the conventional battery. The DMFC offers several advantages, namely, faster building of potential and longer-lasting fuel, however, there are still several issues that need to be addressed to design a better DMFC system. This article is a wide-ranging review of the most up-to-date studies on mass and heat transfer in the DMFC. The discussion will be focused on the critical problems limiting the performance of DMFCs. In addition, a technique for upgrading the DMFC with an integrated system will be presented, along with existing numerical models for modeling mass and heat transfer as well as cell performance.

  20. Utilization of waste heat in trucks for increased fuel economy

    NASA Technical Reports Server (NTRS)

    Leising, C. J.; Purohit, G. P.; Degrey, S. P.; Finegold, J. G.

    1978-01-01

    Improvements in fuel economy for a broad spectrum of truck engines and waste heat utilization concepts are evaluated and compared. The engines considered are the diesel, spark ignition, gas turbine, and Stirling. The waste heat utilization concepts include preheating, regeneration, turbocharging, turbocompounding, and Rankine engine compounding. Predictions were based on fuel-air cycle analyses, computer simulation, and engine test data. The results reveal that diesel driving cycle performance can be increased by 20% through increased turbocharging, turbocompounding, and Rankine engine compounding. The Rankine engine compounding provides about three times as much improvement as turbocompounding but also costs about three times as much. Performance for either is approximately doubled if applied to an adiabatic diesel.

  1. Finite Element Modelling of the Apollo Heat Flow Experiments

    NASA Astrophysics Data System (ADS)

    Platt, J.; Siegler, M. A.; Williams, J.

    2013-12-01

    The heat flow experiments sent on Apollo missions 15 and 17 were designed to measure the temperature gradient of the lunar regolith in order to determine the heat flux of the moon. Major problems in these experiments arose from the fact that the astronauts were not able to insert the probes below the thermal skin depth. Compounding the problem, anomalies in the data have prevented scientists from conclusively determining the temperature dependent conductivity of the soil, which enters as a linear function into the heat flow calculation, thus stymieing them in their primary goal of constraining the global heat production of the Moon. Different methods of determining the thermal conductivity have yielded vastly different results resulting in downward corrections of up to 50% in some cases from the original calculations. Along with problems determining the conductivity, the data was inconsistent with theoretical predictions of the temperature variation over time, leading some to suspect that the Apollo experiment itself changed the thermal properties of the localised area surrounding the probe. The average temperature of the regolith, according to the data, increased over time, a phenomenon that makes calculating the thermal conductivity of the soil and heat flux impossible without knowing the source of error and accounting for it. The changes, possibly resulting from as varied sources as the imprint of the Astronauts boots on the lunar surface, compacted soil around the bore stem of the probe or even heat radiating down the inside of the tube, have convinced many people that the recorded data is unusable. In order to shed some light on the possible causes of this temperature rise, we implemented a finite element model of the probe using the program COMSOL Multi-physics as well as Matlab. Once the cause of the temperature rise is known then steps can be taken to account for the failings of the experiment and increase the data's utility.

  2. Heating experiments for flowability improvement of near-freezing aviation fuel

    NASA Technical Reports Server (NTRS)

    Friedman, R.; Stockemer, F. J.

    1984-01-01

    An experimental jet fuel with a -33 C freezing point was chilled in a wing tank simulator with superimposed fuel heating to improve low temperature flowability. Heating consisted of circulating a portion of the fuel to an external heat exchanger and returning the heated fuel to the tank. Flowability was determined by the mass percent of unpumpable fuel (holdup) left in the simulator upon withdrawal of fuel at the conclusion of testing. The study demonstrated that fuel heating is feasible and improves flowability as compared to that of baseline, unheated tests. Delayed heating with initiation when the fuel reaches a prescribed low temperature limit, showed promise of being more efficient than continuous heating. Regardless of the mode or rate of heating, complete flowability (zero holdup) could not be restored by fuel heating. The severe, extreme-day environment imposed by the test caused a very small amount of subfreezing fuel to be retained near the tank surfaces even at high rates of heating. Correlations of flowability established for unheated fuel tests also could be applied to the heated test results if based on boundary-layer temperature or a solid index (subfreezing point) characteristic of the fuel. Previously announced in STAR as N82-26483

  3. HIFU Induced Heating Modelling by Using the Finite Element Method

    NASA Astrophysics Data System (ADS)

    Martínez, R.; Vera, A.; Leija, L.

    High intensity focused ultrasound is a thermal therapy method used to treat malignant tumors and other medical conditions. Focused ultrasound concentrates acoustic energy at a focal zone. There, temperature rises rapidly over 56 °C to provoke tissue necrosis. Device performance depends on its fabrication placing computational modeling as a powerful tool to anticipate experimentation results. Finite element method allows modeling of multiphysics systems. Therefore, induced heating was modeled considering the acoustic field produced by a concave radiator excited with electric potentials from 5 V to 20 V. Nonlinear propagation was neglected and a linear response between the acoustic fields and pressure distribution was obtained. Finally, the results showed that acoustic propagation and heating models should be improved and validated with experimental measurements.

  4. Solution algorithms for nonlinear transient heat conduction analysis employing element-by-element iterative strategies

    NASA Technical Reports Server (NTRS)

    Winget, J. M.; Hughes, T. J. R.

    1985-01-01

    The particular problems investigated in the present study arise from nonlinear transient heat conduction. One of two types of nonlinearities considered is related to a material temperature dependence which is frequently needed to accurately model behavior over the range of temperature of engineering interest. The second nonlinearity is introduced by radiation boundary conditions. The finite element equations arising from the solution of nonlinear transient heat conduction problems are formulated. The finite element matrix equations are temporally discretized, and a nonlinear iterative solution algorithm is proposed. Algorithms for solving the linear problem are discussed, taking into account the form of the matrix equations, Gaussian elimination, cost, and iterative techniques. Attention is also given to approximate factorization, implementational aspects, and numerical results.

  5. Fuel Accident Condition Simulator (FACS) Furnace for Post-Irradiation Heating Tests of VHTR Fuel Compacts

    SciTech Connect

    Paul A Demkowicz; Paul Demkowicz; David V Laug

    2010-10-01

    Abstract –Fuel irradiation testing and post-irradiation examination are currently in progress as part of the Next Generation Nuclear Plant Fuels Development and Qualification Program. The PIE campaign will include extensive accident testing of irradiated very high temperature reactor fuel compacts to verify fission product retention characteristics at high temperatures. This work will be carried out at both the Idaho National Laboratory (INL) and the Oak Ridge National Laboratory, beginning with accident tests on irradiated fuel from the AGR-1 experiment in 2010. A new furnace system has been designed, built, and tested at INL to perform high temperature accident tests. The Fuel Accident Condition Simulator furnace system is designed to heat fuel specimens at temperatures up to 2000°C in helium while monitoring the release of volatile fission metals (e.g. Cs, Ag, Sr, Eu, and I) and fission gases (Kr, Xe). Fission gases released from the fuel to the sweep gas are monitored in real time using dual cryogenic traps fitted with high purity germanium detectors. Condensable fission products are collected on a plate attached to a water-cooled cold finger that can be exchanged periodically without interrupting the test. Analysis of fission products on the condensation plates involves dry gamma counting followed by chemical analysis of selected isotopes. This paper will describe design and operational details of the Fuel Accident Condition Simulator (FACS) furnace system, as well as preliminary system calibration results.

  6. Castor-1C spent fuel storage cask decay heat, heat transfer, and shielding analyses

    SciTech Connect

    Rector, D.R.; McCann, R.A.; Jenquin, U.P.; Heeb, C.M.; Creer, J.M.; Wheeler, C.L.

    1986-12-01

    This report documents the decay heat, heat transfer, and shielding analyses of the Gesellschaft fuer Nuklear Services (GNS) CASTOR-1C cask used in a spent fuel storage demonstration performed at Preussen Elektra's Wurgassen nuclear power plant. The demonstration was performed between March 1982 and January 1984, and resulted in cask and fuel temperature data and cask exterior surface gamma-ray and neutron radiation dose rate measurements. The purpose of the analyses reported here was to evaluate decay heat, heat transfer, and shielding computer codes. The analyses consisted of (1) performing pre-look predictions (predictions performed before the analysts were provided the test data), (2) comparing ORIGEN2 (decay heat), COBRA-SFS and HYDRA (heat transfer), and QAD and DOT (shielding) results to data, and (3) performing post-test analyses if appropriate. Even though two heat transfer codes were used to predict CASTOR-1C cask test data, no attempt was made to compare the two codes. The codes are being evaluated with other test data (single-assembly data and other cask data), and to compare the codes based on one set of data may be premature and lead to erroneous conclusions.

  7. Analysis of Ya-21u thermionic fuel elements

    SciTech Connect

    Paramonov, D.V.; El-Genk, M.S.

    1996-12-01

    The Ya-21u unit of the Soviet-made TOPAZ-II power system has recently been tested at the Thermionic Evaluation Facility in Albuquerque, New Mexico. A change in the unit performance was measured during these tests. In an attempt to identify the causes of this change performance, data were examined and used to estimate surface properties of electrodes of thermionic fuel elements (TFEs) of the power system. The effective emissivity was estimated at {approximately}0.03 to 0.035 higher than for as-fabricated TFE and cesiated work functions of the electrodes, which were higher than for as-fabricated TFEs. These changes in the effective emissivity and cesiated work functions, caused by gaseous impurities and air incursion in the TFEs interelectrode gap, lowered both the emitter temperature and the output load voltage thus contributing to the measured decrease in output power.

  8. Maine State Planning Office, 1990--1991 heating season home heating fuels price survey. Final report

    SciTech Connect

    Not Available

    1991-12-31

    The 1990--1991 heating season was the first time in Maine that the Home Heating Fuels Survey was conducted for the United States Department of Energy by the Maine State Planning Office. This season also marked the first time that dealers were surveyed for a price for propane. Under a late agreement, the State of Maine was picked up by the regional survey of the Energy Information Agency in the beginning of October. This accounted for the weekly survey of the traditional participants in the State`s Home Heating Fuels Price Survey being supplemented by biweekly DOE surveys of separate survey samples of oil and propane dealers. The SPO sample identifies 36 dealers in the State of Maine, while the DOE sample was constructed around 22 oil dealers in Maine and New Hampshire and 29 propane dealers in Maine.

  9. Maine State Planning Office, 1990--1991 heating season home heating fuels price survey

    SciTech Connect

    Not Available

    1991-01-01

    The 1990--1991 heating season was the first time in Maine that the Home Heating Fuels Survey was conducted for the United States Department of Energy by the Maine State Planning Office. This season also marked the first time that dealers were surveyed for a price for propane. Under a late agreement, the State of Maine was picked up by the regional survey of the Energy Information Agency in the beginning of October. This accounted for the weekly survey of the traditional participants in the State's Home Heating Fuels Price Survey being supplemented by biweekly DOE surveys of separate survey samples of oil and propane dealers. The SPO sample identifies 36 dealers in the State of Maine, while the DOE sample was constructed around 22 oil dealers in Maine and New Hampshire and 29 propane dealers in Maine.

  10. Thermionic Fuel Element performance: TFE Verification Program. Final test report

    SciTech Connect

    Not Available

    1994-06-01

    The program objective is to demonstrate the technology readiness of a Thermionic Fuel Element (TFE) suitable for use as the basic element in a thermionic reactor with electric power output in the 0.5 to 5.0 MW(e) range, and a full power life of 7 years. A TFE was designed that met the reliability and lifetime requirements for a 2 MW(e) conceptual reactor design. Analysis showed that this TFE could be used over the range of 0.5 to 5 megawatts. This was used as the basis for designing components for test and evaluation. The demonstration of a 7-year component lifetime capability was through the combined use of analytical models and accelerated, confirmatory tests in a fast test reactor. Iterative testing was performed in which the results of one test series led to evolutionary improvements in the next test specimens. The TFE components underwent screening and initial development testing in ex-reactor tests. Several design and materials options were considered for each component. As screening tests permitted, down selection occurred to very specific designs and materials. In parallel with ex-reactor testing, and fast reactor component testing, components were integrated into a TFE and tested in the TRIGA test reactor at GA. Realtime testing of partial length TFEs was used to test support, alignment and interconnective TFE components, and to verify TFE performance in-reactor with integral cesium reservoirs. Realtime testing was also used to verify the relation between TFE performance and fueled emitter swelling, to test the durability of intercell insulation, to check temperature distributions, and to verify the adequacy over time of the fission gas venting channels. Predictions of TFE lifetime rested primarily on the accelerated component testing results, as correlated and extended to realtime by the use of analytical models.

  11. TACO3D. 3-D Finite Element Heat Transfer Code

    SciTech Connect

    Mason, W.E.

    1992-03-04

    TACO3D is a three-dimensional, finite-element program for heat transfer analysis. An extension of the two-dimensional TACO program, it can perform linear and nonlinear analyses and can be used to solve either transient or steady-state problems. The program accepts time-dependent or temperature-dependent material properties, and materials may be isotropic or orthotropic. A variety of time-dependent and temperature-dependent boundary conditions and loadings are available including temperature, flux, convection, and radiation boundary conditions and internal heat generation. Additional specialized features treat enclosure radiation, bulk nodes, and master/slave internal surface conditions (e.g., contact resistance). Data input via a free-field format is provided. A user subprogram feature allows for any type of functional representation of any independent variable. A profile (bandwidth) minimization option is available. The code is limited to implicit time integration for transient solutions. TACO3D has no general mesh generation capability. Rows of evenly-spaced nodes and rows of sequential elements may be generated, but the program relies on separate mesh generators for complex zoning. TACO3D does not have the ability to calculate view factors internally. Graphical representation of data in the form of time history and spatial plots is provided through links to the POSTACO and GRAPE postprocessor codes.

  12. Program ELM: A tool for rapid thermal-hydraulic analysis of solid-core nuclear rocket fuel elements

    NASA Technical Reports Server (NTRS)

    Walton, James T.

    1992-01-01

    This report reviews the state of the art of thermal-hydraulic analysis codes and presents a new code, Program ELM, for analysis of fuel elements. ELM is a concise computational tool for modeling the steady-state thermal-hydraulics of propellant flow through fuel element coolant channels in a nuclear thermal rocket reactor with axial coolant passages. The program was developed as a tool to swiftly evaluate various heat transfer coefficient and friction factor correlations generated for turbulent pipe flow with heat addition which have been used in previous programs. Thus, a consistent comparison of these correlations was performed, as well as a comparison with data from the NRX reactor experiments from the Nuclear Engine for Rocket Vehicle Applications (NERVA) project. This report describes the ELM Program algorithm, input/output, and validation efforts and provides a listing of the code.

  13. Distribution of heating in an LVRF bundle due to dysprosium in the central element

    SciTech Connect

    Tsang, K.; Buijs, A.

    2006-07-01

    The computer code MCNP was used to establish the effect of adding dysprosium to the central pin of the proposed BRUCE-B CANFLEX{sup R} Low-Void-Reactivity Fuel (LVRF) on the heat load of the central pin and the heat balance inside the fuel bundle. The Dy generates heat through radiative capture of thermal neutrons, as well as through beta decay of {sup 165}Dy to {sup 165}Ho. We conclude that for fresh fuel, the presence of Dy contributes 26% of the overall heat to the central pin, and 0.5% to the whole fuel bundle. These percentages decrease to 11% and 0.5% at the end-of-life burnup condition. A second, operational quantity is the HPFP ratio (heating-power to fission-power ratio). This ratio is 1.63 for fresh fuel and decreases to 1.19 for fuel at the end-of-life burnup condition. (authors)

  14. Performance gains by using heated natural-gas fuel in an annular turbojet combustor

    NASA Technical Reports Server (NTRS)

    Marchionna, N. R.

    1973-01-01

    A full-scale annular turbojet combustor was tested with natural gas fuel heated from ambient temperature to 800 K (980 F). In all tests, heating the fuel improved combustion efficiency. Two sets of gaseous fuel nozzles were tested. Combustion instabilities occurred with one set of nozzles at two conditions: one where the efficiency approached 100 percent with the heated fuel; the other where the efficiency was very poor with the unheated fuel. The second set of nozzles exhibited no combustion instability. Altitude relight tests with the second set showed that relight was improved and was achievable at essentially the same condition as blowout when the fuel temperature was 800 K (980 F).

  15. Subcritical Noise Analysis Measurements with Fresh and Spent Research Reactor Fuels Elements

    SciTech Connect

    Valentine, T.E.; Mihalczo, J.T.; Kryter, R.C.; Miller, V.C.

    1999-02-01

    The verification of the subcriticality is of utmost importance for the safe transportation and storage of nuclear reactor fuels. Transportation containers and storage facilities are designed such that nuclear fuels remain in a subcritical state. Such designs often involve excess conservatism because of the lack of relevant experimental data to verify the accuracy of Monte Carlo codes used in nuclear criticality safety analyses. A joint experimental research program between Oak Ridge National Laboratory, Westinghouse Safety Management Solutions, Inc., and the University of Missouri was initiated to obtain measured quantities that could be directly related to the subcriticality of simple arrays of Missouri University Research Reactor (MURR) fuel elements. A series of measurement were performed to assess the reactivity of materials such as BORAL, stainless steel, aluminum, and lead that are typically used in the construction of shipping casks. These materials were positioned between the fuel elements. In addition, a limited number of measurements were performed with configurations of fresh and spent (irradiated) fuel elements to ascertain the reactivity of the spent fuel elements. In these experiments, fresh fuel elements were replaced by spent fuel elements such that the subcritical reactivity change could be measured. The results of these measurements were used by Westinghouse Safety Management Solutions to determine the subcriticality of MURR fuel elements isolated by absorbing materials. The measurements were interpreted using the MCNP-DSP Monte Carlo code to obtain the subcritical neutron multiplication factor k(sub eff), and the bias in K(sub eff) that are used in criticality safety analyses.

  16. Which Elements Should be Recycled for a Comprehensive Fuel Cycle?

    SciTech Connect

    Steven Piet; Trond Bjornard; Brent Dixon; Dirk Gombert; Robert Hill; Chris Laws; Gretchen Matthern; David Shropshire; Roald Wigeland

    2007-09-01

    Uranium recovery can reduce the mass of waste and possibly the number of waste packages that require geologic disposal. Separated uranium can be managed with the same method (near-surface burial) as used for the larger quantities of depleted uranium or recycled into new fuel. Recycle of all transuranics reduces long-term environmental burden, reduces heat load to repositories, extracts more energy from the original uranium ore, and may have significant proliferation resistance and physical security advantages. Recovery of short-lived fission products cesium and strontium can allow them to decay to low-level waste in facilities tailored to that need, rather than geologic disposal. This could also reduce the number and cost of waste packages requiring geologic disposal. These savings are offset by costs for separation, recycle, and storage systems. Recovery of technetium-99 and iodine-129 can allow them to be sent to geologic disposal in improved waste forms. Such separation avoids contamination of the other products (uranium) and waste (cesium-strontium) streams with long-lived radioisotopes so the material might be disposed as low-level waste. Transmutation of technetium and iodine is a possible future alternative.

  17. Fuel-cladding interaction layers in irradiated U-ZR and U-PU-ZR fuel elements.

    SciTech Connect

    Keiser, D. D.

    2006-01-23

    Argonne National Laboratory is developing an electrometallurgical treatment for spent nuclear fuels. The initial demonstration of this process is being conducted on U-Zr and U-Pu-Zr alloy fuel elements irradiated in the Experimental Breeder Reactor-II (EBR-II). The electrometallurgical treatment process extracts usable uranium from irradiated fuel elements and places residual fission products, actinides, process Zr, and cladding hulls (small segments of tubing) into two waste forms--a ceramic and a metal alloy. The metal waste form will contain the cladding hulls, Zr, and noble metal fission products, and it will be disposed of in a geologic repository. As a result, the expected composition of the waste form will need to be well understood. This report deals with the condition of the cladding, which will make up a large fraction of the metal waste form, after irradiation in EBR-II and before insertion into the electrorefiner. Specifically, it looks at layers that can be found on the inner surface of the cladding due to in-reactor interactions between the alloy fuel and the stainless steel cladding that occurs after the fuel has swelled and contacted the cladding. Many detailed examinations of fuel elements irradiated in EBR-II have been completed and are discussed in the context of interaction layer formation in irradiated cladding. The composition and thickness of the developed interaction layers are identified, along with the irradiation conditions, cladding type, and axial location on fuel elements where the thickest interaction layers can be expected to develop. It has been found that the largest interaction zones are observed at combined high power and high temperature regions of fuel elements and for fuel elements with U-Pu-Zr alloy fuel and D9 stainless steel cladding. The most prevalent, non-cladding constituent observed in the developed interaction layers are the lanthanide fission products.

  18. Advancements in the behavioral modeling of fuel elements and related structures

    SciTech Connect

    Billone, M.C.; Montgomery, R.O.; Rashid, Y.R.; Head, J.L.; ANATECH Research Corp., San Diego, CA; Royal Naval Coll., Greenwich )

    1989-01-01

    An important aspect of the design and analysis of nuclear reactors is the ability to predict the behavior of fuel elements in the adverse environment of a reactor system. By understanding the thermomechanical behavior of the different materials which constitute a nuclear fuel element, analysis and predictions can be made regarding the integrity and reliability of fuel element designs. The SMiRT conference series, through the division on fuel elements and the post-conference seminars on fuel element modeling, provided technical forums for the international participation in the exchange of knowledge concerning the thermomechanical modeling of fuel elements. This paper discusses the technical advances in the behavioral modeling of fuel elements presented at the SMiRT conference series since its inception in 1971. Progress in the areas of material properties and constitutive relationships, modeling methodologies, and integral modeling approaches was reviewed and is summarized in light of their impact on the thermomechanical modeling of nuclear fuel elements. 34 refs., 5 tabs.

  19. Ground test facilities for evaluating nuclear thermal propulsion engines and fuel elements

    SciTech Connect

    Allen, G.C.; Beck, D.F.; Harmon, C.D.; Shipers, L.R.

    1992-08-01

    Interagency panels evaluating nuclear thermal propulsion development options have consistently recognized the need for constructing a major new ground test facility to support fuel element and engine testing. This paper summarizes the requirements, configuration, and design issues of a proposed ground test complex for evaluating nuclear thermal propulsion engines and fuel elements being developed for the Space Nuclear Thermal Propulsion (SNTP) program. 2 refs.

  20. WREM--TOODEE2--MOD3. 2d Time-Dependent Fuel Element Study

    SciTech Connect

    Lauben, G.N.

    1992-03-05

    WREM-TOODEE2 is a two dimensional, time-dependent, fuel-element thermal analysis program. Its primary purpose is to evaluate fuel-element thermal response during post-LOCA refill and reflood in a pressurized water reactor (PWR).

  1. Nuclear breeder reactor fuel element with axial tandem stacking and getter

    DOEpatents

    Gibby, Ronald L.; Lawrence, Leo A.; Woodley, Robert E.; Wilson, Charles N.; Weber, Edward T.; Johnson, Carl E.

    1981-01-01

    A breeder reactor fuel element having a tandem arrangement of fissile and fertile fuel with a getter for fission product cesium disposed between the fissile and fertile sections. The getter is effective at reactor operating temperatures to isolate the cesium generated by the fissile material from reacting with the fertile fuel section.

  2. Elemental characteristics of aerosols emitted from a coal-fired heating plant

    NASA Technical Reports Server (NTRS)

    Singh, J. J.; Khandelwal, G. S.

    1978-01-01

    Size differentiated aerosols were collected downstream from a heating plant fueled with eastern coal and analyzed using particle induced X-ray emission technique. Based on aerosol masses collected in various size ranges, the aerosol size distribution is determined to be trimodal, with the three peaks centered at 0.54 microns, 4.0 microns, and 11.0 microns, respectively. Of the various trace elements present in the aerosols, sulphur is the only element that shows very strong concentration in the smallest size group. Iron is strongly concentrated in the 4.0 micron group. Potassium, calcium, and titanium also exhibit stronger concentration in the 4.0 micron group than any other group. Other trace elements - vanadium, chromium, manganese, nickel, copper, and barium - are equally divided between the 0.54 microns and the 4.0 microns groups. Apparently, all of the trace elements - except S - enter aerosols during the initial formation and subsequent condensation phases in the combustion process. Excess concentration of sulphur in the 0.54 microns group can only be accounted for by recondensation of sulphur vapors on the combustion aerosols and gas-to-particle phase conversion of sulfate vapors at the stack top.

  3. Multidisciplinary Simulation of Graphite-Composite and Cermet Fuel Elements for NTP Point of Departure Designs

    NASA Technical Reports Server (NTRS)

    Stewart, Mark E.; Schnitzler, Bruce G.

    2015-01-01

    This paper compares the expected performance of two Nuclear Thermal Propulsion fuel types. High fidelity, fluid/thermal/structural + neutronic simulations help predict the performance of graphite-composite and cermet fuel types from point of departure engine designs from the Nuclear Thermal Propulsion project. Materials and nuclear reactivity issues are reviewed for each fuel type. Thermal/structural simulations predict thermal stresses in the fuel and thermal expansion mis-match stresses in the coatings. Fluid/thermal/structural/neutronic simulations provide predictions for full fuel elements. Although NTP engines will utilize many existing chemical engine components and technologies, nuclear fuel elements are a less developed engine component and introduce design uncertainty. Consequently, these fuel element simulations provide important insights into NTP engine performance.

  4. Natural convection heat transfer within horizontal spent nuclear fuel assemblies

    SciTech Connect

    Canaan, R.E.

    1995-12-01

    Natural convection heat transfer is experimentally investigated in an enclosed horizontal rod bundle, which characterizes a spent nuclear fuel assembly during dry storage and/or transport conditions. The basic test section consists of a square array of sixty-four stainless steel tubular heaters enclosed within a water-cooled rectangular copper heat exchanger. The heaters are supplied with a uniform power generation per unit length while the surrounding enclosure is maintained at a uniform temperature. The test section resides within a vacuum/pressure chamber in order to subject the assembly to a range of pressure statepoints and various backfill gases. The objective of this experimental study is to obtain convection correlations which can be used in order to easily incorporate convective effects into analytical models of horizontal spent fuel systems, and also to investigate the physical nature of natural convection in enclosed horizontal rod bundles in general. The resulting data consist of: (1) measured temperatures within the assembly as a function of power, pressure, and backfill gas; (2) the relative radiative contribution for the range of observed temperatures; (3) correlations of convective Nusselt number and Rayleigh number for the rod bundle as a whole; and (4) correlations of convective Nusselt number as a function of Rayleigh number for individual rods within the array.

  5. ZPPR FUEL ELEMENT THERMAL STRESS-STRAIN ANALYSIS

    SciTech Connect

    Charles W. Solbrig; Jason Andrus; Chad Pope

    2014-04-01

    The design temperature of high plutonium concentration ZPPR fuel assemblies is 600 degrees C. Cladding integrity of the 304L stainless steel cladding is a significant concern with this fuel since even small holes can lead to substantial fuel degradation. Since the fuel has a higher coefficient of thermal expansion than the cladding, an investigation of the stress induced in the cladding due to the differential thermal expansion of fuel and cladding up to the design temperature was conducted. Small holes in the cladding envelope would be expected to lead to the fuel hydriding and oxidizing into a powder over a long period of time. This is the same type of chemical reaction chain that exists in the degradion of the high uranium concentration ZPPR fuel. Unfortunately, the uranium fuel was designed with vents which allowed this degradation to occur. The Pu cladding is sealed so only fuel with damaged cladding would be subject to this damage. The thermal stresses that can be developed in the fuel cladding have been calculated in in this paper and compared to the ultimate tensile stress of the cladding. The conclusion is drawn that thermal stresses cannot induce holes in the cladding even for the highest storage temperatures predicted in calculations (292°C). In fact, thermal stress can not cause cladding failure as long as the fuel temperatures are below the design limit of 600 degrees C (1,112 degrees F).

  6. A high power, Coated Particle Fuel Compact Radioisotope Heat Unit

    NASA Astrophysics Data System (ADS)

    King, Jeffrey C.; El-Genk, Mohamed S.

    2001-02-01

    A Coated Particle Fuel Compact, Radioisotope Heater Unit (CPFC-RHU) is proposed, which is capable of generating thermal power in excess of 27 W. This power output is more than four times that of a Hexa-RHU, which generates only six watts of thermal power. The design of the CPFC-RHU is identical to that of the Hexa-RHU, except that the six Pt-30Rh clad fuel pellets and the POCO graphite support in the latter are replaced with single-sized, ZrC coated, 238PuO2 fuel particles ~500 μm in diameter. In addition to fully retaining the helium gas generated by the radioactive decay of the fuel, the CPFC offers promise for enhanced safety. Thermal analyses of the CPFC-RHU show that while the Hexa-RHU is suitable for use in a radioisotope power system (RPS) operating at a converter hot-side temperature of 473 K, the CPFC-RHU could also be used at higher temperatures of 773 K and 973 K with a thermal efficiency >60%. Even at a 473 K converter hot-side temperature, the CPFC-RHU offers higher thermal efficiency (>90%) than the Hexa-RHU (~75%). The CPFC-RHU final design provides constant temperature, with almost uniform radial heat flux to the converter, for enhanced performance, better integration, and higher overall efficiency of the RPS. The present CPFC-RHU fills a gap in the power needs for future space missions requiring electric power of 1-15 W, from a single RPS. .

  7. HEAT AND WATER TRANSPORT IN A POLYMER ELECTROLYTE FUEL CELL

    SciTech Connect

    Mukherjee, Partha P

    2010-01-01

    In the present scenario of a global initiative toward a sustainable energy future, the polymer electrolyte fuel cell (PEFC) has emerged as one of the most promising alternative energy conversion devices for various applications. Despite tremendous progress in recent years, a pivotal performance limitation in the PEFC comes from liquid water transport and the resulting flooding phenomena. Liquid water blocks the open pore space in the electrode and the fibrous diffusion layer leading to hindered oxygen transport. The electrode is also the only component in the entire PEFC sandwich which produces waste heat from the electrochemical reaction. The cathode electrode, being the host to several competing transport mechanisms, plays a crucial role in the overall PEFC performance limitation. In this work, an electrode model is presented in order to elucidate the coupled heat and water transport mechanisms. Two scenarios are specifically considered: (1) conventional, Nafion impregnated, three-phase electrode with the hydrated polymeric membrane phase as the conveyer of protons where local electro-neutrality prevails; and (2) ultra-thin, two-phase, nano-structured electrode without the presence of ionomeric phase where charge accumulation due to electro-statics in the vicinity of the membrane-CL interface becomes important. The electrode model includes a physical description of heat and water balance along with electrochemical performance analysis in order to study the influence of electro-statics/electro-migration and phase change on the PEFC electrode performance.

  8. Efficiencies of heat engines and fuel cells - The methanol fuel cell as a competitor to Otto and Diesel engines

    NASA Astrophysics Data System (ADS)

    Glazebrook, R. W.

    1982-03-01

    As the real cost of fuel rises the efficiency of energy conversion devices will become of increasing importance. Efficiency is a variable factor depending inter alia on load factor. Whereas heat engines commonly yield optimum efficiencies at near to maximum power, fuel cells yield optimum efficiencies at zero power. Projections based on realistic developments suggest that fuel cells will operate overall with higher efficiencies than heat engines when load factors are below approximately 45%. Road transportation generally operates at load factors much lower than this and represents a suitable market for fuel cells.

  9. Criticality safety evaluation for pathfinder fuel elements in model No. RA-3 shipping containers

    SciTech Connect

    Jones, R.R.

    1986-11-01

    Pennsylvania State University presently processes approximately 415 Pathfinder fuel elements which will require shipment from their nuclear facility. Criticality safety calculations have been performed with the Monte Carlo code, KENO-IV, and 16-group Hansen-Roach cross sections for shipment of these fuel elements in Model No. RA-3 shipping containers. Except for a slightly higher U-235 enrichment in the UO/sub 2/ rods of the Pathfinder fuel elements, the parameters for the proposed shipment are within those limits currently approved in Certificate of Compliance No. 4986, Revision No. 17, for shipment of UO/sub 2/ fuel rods in the Model RA-3 shipping containers. The analysis in this report verifies an adequate margin of criticality safety for the Pathfinder fuel elements in Model RA-3 containers for a Fissile Class 1 shipment.

  10. Measurement of dynamic interaction between a vibrating fuel element and its support

    SciTech Connect

    Fisher, N.J.; Tromp, J.H.; Smith, B.A.W.

    1996-12-01

    Flow-induced vibration of CANDU{reg_sign} fuel can result in fretting damage of the fuel and its support. A WOrk-Rate Measuring Station (WORMS) was developed to measure the relative motion and contact forces between a vibrating fuel element and its support. The fixture consists of a small piece of support structure mounted on a micrometer stage. This arrangement permits position of the support relative to the fuel element to be controlled to within {+-} {micro}m. A piezoelectric triaxial load washer is positioned between the support and micrometer stage to measure contact forces, and a pair of miniature eddy-current displacement probes are mounted on the stage to measure fuel element-to-support relative motion. WORMS has been utilized to measure dynamic contact forces, relative displacements and work-rates between a vibrating fuel element and its support. For these tests, the fuel element was excited with broadband random force excitation to simulate flow-induced vibration due to axial flow. The relationship between fuel element-to-support gap or preload (i.e., interference or negative gap) and dynamic interaction (i.e., relative motion, contact forces and work-rates) was derived. These measurements confirmed numerical simulations of in-reactor interaction predicted earlier using the VIBIC code.

  11. Finite element analysis of monolithic solid oxide fuel cells

    SciTech Connect

    Saigal, A. . Dept. of Mechanical Engineering); Majumdar, S. )

    1992-01-01

    This paper investigates the stress and fracture behavior of a monolithic solid oxide fuel cell (MSOFC) currently under joint development by Allied Signal Corporation and Argonne National Laboratory. The MSOFC is an all-ceramic fuel cell capable of high power density and tolerant of a variety of hydrocarbon fuels, making it potentially attractive for stationary utility and mobile transportation systems. The monolithic design eliminates inactive structural supports, increases active surface area, and lowers voltage losses caused by internal resistance.

  12. Finite element analysis of monolithic solid oxide fuel cells

    SciTech Connect

    Saigal, A.; Majumdar, S.

    1992-04-01

    This paper investigates the stress and fracture behavior of a monolithic solid oxide fuel cell (MSOFC) currently under joint development by Allied Signal Corporation and Argonne National Laboratory. The MSOFC is an all-ceramic fuel cell capable of high power density and tolerant of a variety of hydrocarbon fuels, making it potentially attractive for stationary utility and mobile transportation systems. The monolithic design eliminates inactive structural supports, increases active surface area, and lowers voltage losses caused by internal resistance.

  13. Support grid for fuel elements in a nuclear reactor

    DOEpatents

    Finch, Lester M.

    1977-01-01

    A support grid is provided for holding nuclear fuel rods in a rectangular array. Intersecting sheet metal strips are interconnected using opposing slots in the strips to form a rectangular cellular grid structure for engaging the sides of a multiplicity of fuel rods. Spring and dimple supports for engaging fuel and guide rods extending through each cell in the support grid are formed in the metal strips with the springs thus formed being characterized by nonlinear spring rates.

  14. Method for disposing of radioactive graphite and silicon carbide in graphite fuel elements

    SciTech Connect

    Gay, R.L.

    1995-09-12

    Method is described for destroying radioactive graphite and silicon carbide in fuel elements containing small spheres of uranium oxide coated with silicon carbide in a graphite matrix, by treating the graphite fuel elements in a molten salt bath in the presence of air, the salt bath comprising molten sodium-based salts such as sodium carbonate and a small amount of sodium sulfate as catalyst, or calcium-based salts such as calcium chloride and a small amount of calcium sulfate as catalyst, while maintaining the salt bath in a temperature range of about 950 to about 1,100 C. As a further feature of the invention, large radioactive graphite fuel elements, e.g. of the above composition, can be processed to oxidize the graphite and silicon carbide, by introducing the fuel element into a reaction vessel having downwardly and inwardly sloping sides, the fuel element being of a size such that it is supported in the vessel at a point above the molten salt bath therein. Air is bubbled through the bath, causing it to expand and wash the bottom of the fuel element to cause reaction and destruction of the fuel element as it gradually disintegrates and falls into the molten bath. 4 figs.

  15. Environmental assessment for radioisotope heat source fuel processing and fabrication

    SciTech Connect

    Not Available

    1991-07-01

    DOE has prepared an Environmental Assessment (EA) for radioisotope heat source fuel processing and fabrication involving existing facilities at the Savannah River Site (SRS) near Aiken, South Carolina and the Los Alamos National Laboratory (LANL) near Los Alamos, New Mexico. The proposed action is needed to provide Radioisotope Thermoelectric Generators (RTG) to support the National Aeronautics and Space Administration's (NASA) CRAF and Cassini Missions. Based on the analysis in the EA, DOE has determined that the proposed action does not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, an Environmental Impact Statement is not required. 30 refs., 5 figs.

  16. Utilization of waste heat in trucks for increased fuel economy

    NASA Technical Reports Server (NTRS)

    Leising, C. J.; Purohit, G. P.; Degrey, S. P.; Finegold, J. G.

    1978-01-01

    The waste heat utilization concepts include preheating, regeneration, turbocharging, turbocompounding, and Rankine engine compounding. Predictions are based on fuel-air cycle analyses, computer simulation, and engine test data. All options are evaluated in terms of maximum theoretical improvements, but the Diesel and adiabatic Diesel are also compared on the basis of maximum expected improvement and expected improvement over a driving cycle. The study indicates that Diesels should be turbocharged and aftercooled to the maximum possible level. The results reveal that Diesel driving cycle performance can be increased by 20% through increased turbocharging, turbocompounding, and Rankine engine compounding. The Rankine engine compounding provides about three times as much improvement as turbocompounding but also costs about three times as much. Performance for either can be approximately doubled if applied to an adiabatic Diesel.

  17. Experimental Investigation of Turbine Vane Heat Transfer for Alternative Fuels

    SciTech Connect

    Nix, Andrew Carl

    2015-03-23

    The focus of this program was to experimentally investigate advanced gas turbine cooling schemes and the effects of and factors that contribute to surface deposition from particulate matter found in coal syngas exhaust flows on turbine airfoil heat transfer and film cooling, as well as to characterize surface roughness and determine the effects of surface deposition on turbine components. The program was a comprehensive, multi-disciplinary collaborative effort between aero-thermal and materials faculty researchers and the Department of Energy, National Energy Technology Laboratory (NETL). The primary technical objectives of the program were to evaluate the effects of combustion of syngas fuels on heat transfer to turbine vanes and blades in land-based power generation gas turbine engines. The primary questions to be answered by this investigation were; What are the factors that contribute to particulate deposition on film cooled gas turbine components? An experimental program was performed in a high-temperature and pressure combustion rig at the DOE NETL; What is the effect of coal syngas combustion and surface deposition on turbine airfoil film cooling? Deposition of particulate matter from the combustion gases can block film cooling holes, decreasing the flow of the film coolant and the film cooling effectiveness; How does surface deposition from coal syngas combustion affect turbine surface roughness? Increased surface roughness can increase aerodynamic losses and result in decreased turbine hot section efficiency, increasing engine fuel consumption to maintain desired power output. Convective heat transfer is also greatly affected by the surface roughness of the airfoil surface; Is there any significant effect of surface deposition or erosion on integrity of turbine airfoil thermal barrier coatings (TBC) and do surface deposits react with the TBC in any way to decrease its thermal insulating capability? Spallation and erosion of TBC is a persistent problem in

  18. Thermal-Hydraulic Bases for the Safety Limits and Limiting Safety System Settings for HFIR Operation at 100 MW and 468 psig Primary Pressure, Using Specially Selected Fuel Elements

    SciTech Connect

    Rothrock, R.B.

    1998-09-01

    This report summarizes thermal hydraulic analyses performed to support HFIR operation at 100 MW and 468 psig pressure using specially selected fuel elements. The analyses were performed with the HFIR steady state heat transfer code, originally developed during HFIR design. This report addresses the increased core heat removal capability which can be achieved in fuel elements having coolant channel thicknesses that exceed the minimum requirements of the HFIR fuel fabrication specifications. Specific requirements for the minimum value of effective uniform as-built coolant channel thickness are established for fuel elements to be used at 100 MW. The burnout correlation currently used in the steady-state heat transfer code was also compared with more recent experimental results for stability of high-velocity flow in narrow heated channels, and the burnout correlation was found to be conservative with respect to flow stability at typical HFIR hot channel exit conditions at full power.

  19. Single-element coaxial injector for rocket fuel

    NASA Technical Reports Server (NTRS)

    Larson, L. L.

    1969-01-01

    Improved injector for oxygen difluoride and diborane has better mixing characteristics and is able to project fuel onto the wall of the combustion chamber for better cooling. It produces an essentially conical, diverging, continuous sheet of propellant mixture formed by similarly shaped and continuously impinging sheets of fuel and oxidant.

  20. Maintenance and storage of fuel oil for residential heating systems: A guide for residential heating system maintenance personnel

    SciTech Connect

    Litzke, Wai-Lin

    1992-12-01

    The quality of No. 2 fuel affects the performance of the heating system and is an important parameter in the proper and efficient operation of an oil-burning system. The physical and chemical characteristics of the fuel can affect the flow, atomization and combustion processes, all of which help to define and limit the overall performance of the heating system. The use of chemical additives by fuel oil marketershas become more common as a method of improving the quality of the fuel, especially for handling and storage. Numerous types of additives are available, but reliable information on their effectiveness and proper use is limited. This makes selecting an additive difficult in many situations. Common types of problems that contribute to poor fuel quality and how they affect residential heating equipment are identified inof this booklet. It covers the key items that are needed in an effective fuel quality monitoring program, such as what to look for when evaluating the quality of fuel as it is received from a supplier, or how to assess fuel problems associated with poor storage conditions. References to standard procedures and brief descriptions of the procedures also are given. Approaches for correcting a fuel-related problem, including the potential uses of chemical additives are discussed. Different types of additives are described to help users understand the functions and limitations of chemical treatment. Tips on how to select andeffectively use additives also are included. Finally, the importance of preventative maintenance in any fuel monitoring program is emphasized.

  1. Experimental study of heat transfer in a 7-element bundle cooled with supercritical Freon-12

    SciTech Connect

    Richards, G.; Shelegov, A. S.; Kirillov, P. L.; Pioro, I. L.; Harvel, G.

    2012-07-01

    Experimental data on Supercritical-Water (SCW) cooled bundles are very limited. Major problems with performing such experiments are technical difficulties in testing and experimental costs at high pressures, temperatures and heat fluxes. Also, there are only a few SCW experimental setups currently in the world capable of providing data. Supercritical Water-cooled nuclear Reactors (SCWRs), as one of the six concepts of Generation IV reactors, cannot be designed without such data. Therefore, a preliminary approach uses modeling fluids such as carbon dioxide and refrigerants instead of water is practical. In particularly, experiments in supercritical refrigerant-cooled bundles can be used. One of the SC modeling fluids typically used is Freon-12 (R-12) with the critical pressure of 4.136 MPa and the critical temperature of 111.97 deg. C. These conditions correspond to the critical pressure of 22.064 MPa and critical temperature of 373.95 deg. C in water. A set of experimental data obtained at the Inst. of Physics and Power Engineering (IPPE, Obninsk, Russia) in a vertically-oriented bundle cooled with supercritical R-12 was analyzed. This dataset consisted of 20 runs. The test section was 7-element bundle installed in a hexagonal flow channel with 3 grid spacers. Data was collected at pressures of approximately 4.65 MPa for several different combinations of wall and bulk-fluid temperatures that were below, at, or above the pseudo-critical temperature. The values of mass flux were ranged from 400 to 1320 kg/m{sup 2}s and inlet temperatures ranged from 72 to 120 deg. C. The test section consisted of fuel-element simulators that were 9.5 mm in OD with the total heated length of about 1 m. Bulk-fluid and wall temperature profiles were recorded using a combination of 8 different thermocouples. Analysis of the data has confirmed that there are three distinct heat-transfer regimes for forced convention in supercritical fluids: 1) Normal heat transfer; 2) Deteriorated heat

  2. Radiation Heat Transfer Between Diffuse-Gray Surfaces Using Higher Order Finite Elements

    NASA Technical Reports Server (NTRS)

    Gould, Dana C.

    2000-01-01

    This paper presents recent work on developing methods for analyzing radiation heat transfer between diffuse-gray surfaces using p-version finite elements. The work was motivated by a thermal analysis of a High Speed Civil Transport (HSCT) wing structure which showed the importance of radiation heat transfer throughout the structure. The analysis also showed that refining the finite element mesh to accurately capture the temperature distribution on the internal structure led to very large meshes with unacceptably long execution times. Traditional methods for calculating surface-to-surface radiation are based on assumptions that are not appropriate for p-version finite elements. Two methods for determining internal radiation heat transfer are developed for one and two-dimensional p-version finite elements. In the first method, higher-order elements are divided into a number of sub-elements. Traditional methods are used to determine radiation heat flux along each sub-element and then mapped back to the parent element. In the second method, the radiation heat transfer equations are numerically integrated over the higher-order element. Comparisons with analytical solutions show that the integration scheme is generally more accurate than the sub-element method. Comparison to results from traditional finite elements shows that significant reduction in the number of elements in the mesh is possible using higher-order (p-version) finite elements.

  3. Electrical heating tests of uranium dioxide external fuel configuration at emitter temperature of 1900 K

    NASA Technical Reports Server (NTRS)

    Diianni, D. C.; Mayer, J. T.

    1974-01-01

    Testing of two fuel clad specimens for thermionic reactor application is described. The annular UO2 fuel was clad on both sides with tungsten; heat rejection was radially inward. The tests were intended to study inner clad stability, fuel redistribution, and fuel melting problems. The specimens were tested in a vacuum chamber using electron bombardment heating. Fuel structural changes were studied using periodic gammagraphs and posttest metallography. The first specimen test was terminated at 50 hours because of a braze failure. The second specimen was tested for 240 hours when an outer clad leak developed due to a tungsten-water reaction. The fuel developed numerous cracks on cooldown but the inner clad remained dimensionally stable. The fuel cover gas did not impede the rate of fuel redistribution. Posttest examination showed the fuel had not melted during operation.

  4. Experimental Study of Fuel Heating at Low Temperatures in a Wing Tank Model, Volume 1

    NASA Technical Reports Server (NTRS)

    Stockemer, F. J.

    1981-01-01

    Scale model fuel heating systems for use with aviation hydrocarbon fuel at low temperatures were investigated. The effectiveness of the heating systems in providing flowability and pumpability at extreme low temperature when some freezing of the fuel would otherwise occur is evaluated. The test tank simulated a section of an outer wing tank, and was chilled on the upper and lower surfaces. Turbine engine lubricating oil was heated, and recirculating fuel transferred the heat. Fuels included: a commercial Jet A; an intermediate freeze point distillate; a higher freeze point distillate blended according to Experimental Referee Broadened Specification guidelines; and a higher freeze point paraffinic distillate used in a preceding investigation. Each fuel was chilled to selected temperature to evaluate unpumpable solid formation (holdup). Tests simulating extreme cold weather flight, without heating, provided baseline fuel holdup data. Heating and recirculating fuel increased bulk temperature significantly; it had a relatively small effect on temperature near the bottom of the tank. Methods which increased penetration of heated fuel into the lower boundary layer improved the capability for reducing holdup.

  5. Heat-Shock Promoters: Targets for Evolution by P Transposable Elements in Drosophila

    PubMed Central

    Walser, Jean-Claude; Chen, Bing; Feder, Martin E

    2006-01-01

    Transposable elements are potent agents of genomic change during evolution, but require access to chromatin for insertion—and not all genes provide equivalent access. To test whether the regulatory features of heat-shock genes render their proximal promoters especially susceptible to the insertion of transposable elements in nature, we conducted an unbiased screen of the proximal promoters of 18 heat-shock genes in 48 natural populations of Drosophila. More than 200 distinctive transposable elements had inserted into these promoters; greater than 96% are P elements. By contrast, few or no P element insertions segregate in natural populations in a “negative control” set of proximal promoters lacking the distinctive regulatory features of heat-shock genes. P element transpositions into these same genes during laboratory mutagenesis recapitulate these findings. The natural P element insertions cluster in specific sites in the promoters, with up to eight populations exhibiting P element insertions at the same position; laboratory insertions are into similar sites. By contrast, a “positive control” set of promoters resembling heat-shock promoters in regulatory features harbors few P element insertions in nature, but many insertions after experimental transposition in the laboratory. We conclude that the distinctive regulatory features that typify heat-shock genes (in Drosophila) are especially prone to mutagenesis via P elements in nature. Thus in nature, P elements create significant and distinctive variation in heat-shock genes, upon which evolutionary processes may act. PMID:17029562

  6. A simple gamma spectrometry method for evaluating the burnup of MTR-type HEU fuel elements

    NASA Astrophysics Data System (ADS)

    Makmal, T.; Aviv, O.; Gilad, E.

    2016-10-01

    A simple method for the evaluation of the burnup of a materials testing reactor (MTR) fuel element by gamma spectrometry is presented. The method was applied to a highly enriched uranium MTR nuclear fuel element that was irradiated in a 5 MW pool-type research reactor for a total period of 34 years. The experimental approach is based on in-situ measurements of the MTR fuel element in the reactor pool by a portable high-purity germanium detector located in a gamma cell. To corroborate the method, analytical calculations (based on the irradiation history of the fuel element) and computer simulations using a dedicated fuel cycle burnup code ORIGEN2 were performed. The burnup of the MTR fuel element was found to be 52.4±8.8%, which is in good agreement with the analytical calculations and the computer simulations. The method presented here is suitable for research reactors with either a regular or an irregular irradiation regime and for reactors with limited infrastructure and/or resources. In addition, its simplicity and the enhanced safety it confers may render this method suitable for IAEA inspectors in fuel element burnup assessments during on-site inspections.

  7. Accelerator-driven transmutation of spent fuel elements

    DOEpatents

    Venneri, Francesco; Williamson, Mark A.; Li, Ning

    2002-01-01

    An apparatus and method is described for transmuting higher actinides, plutonium and selected fission products in a liquid-fuel subcritical assembly. Uranium may also be enriched, thereby providing new fuel for use in conventional nuclear power plants. An accelerator provides the additional neutrons required to perform the processes. The size of the accelerator needed to complete fuel cycle closure depends on the neutron efficiency of the supported reactors and on the neutron spectrum of the actinide transmutation apparatus. Treatment of spent fuel from light water reactors (LWRs) using uranium-based fuel will require the largest accelerator power, whereas neutron-efficient high temperature gas reactors (HTGRs) or CANDU reactors will require the smallest accelerator power, especially if thorium is introduced into the newly generated fuel according to the teachings of the present invention. Fast spectrum actinide transmutation apparatus (based on liquid-metal fuel) will take full advantage of the accelerator-produced source neutrons and provide maximum utilization of the actinide-generated fission neutrons. However, near-thermal transmutation apparatus will require lower standing

  8. Design and evaluation of aircraft heat source systems for use with high-freezing point fuels

    NASA Technical Reports Server (NTRS)

    Pasion, A. J.

    1979-01-01

    The objectives were the design, performance and economic analyses of practical aircraft fuel heating systems that would permit the use of high freezing-point fuels on long-range aircraft. Two hypothetical hydrocarbon fuels with freezing points of -29 C and -18 C were used to represent the variation from current day jet fuels. A Boeing 747-200 with JT9D-7/7A engines was used as the baseline aircraft. A 9300 Km mission was used as the mission length from which the heat requirements to maintain the fuel above its freezing point was based.

  9. Highly efficient heat recovery system for phosphoric acid fuel cells used for cooling telecommunication equipment

    NASA Astrophysics Data System (ADS)

    Ishizawa, Maki; Okada, Shigeru; Yamashita, Takashi

    To protect the global environment by using energy more efficiently, NTT is developing a phosphoric acid fuel cell (PAFC) energy system for telecommunication cogeneration systems. Fuel cells are used to provide electrical power to telecommunication equipment and the heat energy is used by absorption refrigerators to cool the telecommunication rooms throughout the year. We have recently developed a highly efficient system for recovering heat and water from the exhaust gases of a 200-kW (rated power) fuel cell. It is composed of a shell-and-tube type heat exchanger to recover high-temperature heat and a direct-contact cooler to recover the water efficiently and simply. The reformer and cathode exhaust gases from the fuel cell are first supplied to the heat exchanger and then to the cooler. The high-temperature (85-60°C) heat can be recovered, and the total efficiency including the heat recovered from the fuel-cell stack coolant can be improved by supplying the recovered heat to the dual-heat-input absorption refrigerator. The water needed for operating the fuel cell is also recovered from the exhaust gases. We are currently applying this heat and water recovery system to the PC25C-type fuel cell. Maximum total efficiency including electrical power efficiency is estimated to be 78% at the rated power of 200 kW: composed of 17% heat recovery for the fuel-cell stack coolant, 21% from the exhaust gas by improving the heat exchanger, and 40% from electrical conversion. Next, we plan to evaluate the usefulness of this heat recovery system for cooling telecommunication equipment.

  10. Pumped lithium loop test to evaluate advanced refractory metal alloys and simulated nuclear fuel elements

    NASA Technical Reports Server (NTRS)

    Brandenburf, G. P.; Hoffman, E. E.; Smith, J. P.

    1974-01-01

    The performance was determined of refractory metal alloys and uranium nitride fuel element specimens in flowing 1900F (1083C) lithium. The results demonstrate the suitability of the selected materials to perform satisfactorily from a chemical compatibility standpoint.

  11. MECHANICALLY-JOINED PLATE-TYPE ALUMINUM-CLAD FUEL ELEMENT

    DOEpatents

    Erwin, J.H.

    1962-12-11

    A method of fabricating MTR-type fuel elements is described wherein dove- tailed joints are used to fasten fuel plates to supporting side members. The method comprises the steps of dove-tailing the lateral edges of the fuel plates, inserting the dove-tailed edges into corresponding recesses which are provided in a pair of supporting side members, and compressing the supporting side members in a direction so as to close the recesses onto the dove-tailed edges. (AEC)

  12. METHOD OF MAKING A COMPARTMENTED FUEL ELEMENT FOR A NUCLEAR REACTOR

    DOEpatents

    McGeary, R.K.; Frisch, E.

    1963-05-14

    A method of making a compartmented fuel element is presented. Fuel pellets arid spacing disks are inserted into a cladding tube; plugs are inserted at each end and the tube is then stretched lengthwise so that its walls grip the edges of the spacing disks, thereby forming compartments. (AEC)

  13. Evaluation of a Passive Heat Exchanger Based Cooling System for Fuel Cell Applications

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony J.; Burke, Kenneth A.

    2011-01-01

    Fuel cell cooling is conventionally performed with an actively controlled, dedicated coolant loop that exchanges heat with a separate external cooling loop. To simplify this system the concept of directly cooling a fuel cell utilizing a coolant loop with a regenerative heat exchanger to preheat the coolant entering the fuel cell with the coolant exiting the fuel cell was analyzed. The preheating is necessary to minimize the temperature difference across the fuel cell stack. This type of coolant system would minimize the controls needed on the coolant loop and provide a mostly passive means of cooling the fuel cell. The results indicate that an operating temperature of near or greater than 70 C is achievable with a heat exchanger effectiveness of around 90 percent. Of the heat exchanger types evaluated with the same type of fluid on the hot and cold side, a counter flow type heat exchanger would be required which has the possibility of achieving the required effectiveness. The number of heat transfer units required by the heat exchanger would be around 9 or greater. Although the analysis indicates the concept is feasible, the heat exchanger design would need to be developed and optimized for a specific fuel cell operation in order to achieve the high effectiveness value required.

  14. Heat recovery subsystem and overall system integration of fuel cell on-site integrated energy systems

    NASA Technical Reports Server (NTRS)

    Mougin, L. J.

    1983-01-01

    The best HVAC (heating, ventilating and air conditioning) subsystem to interface with the Engelhard fuel cell system for application in commercial buildings was determined. To accomplish this objective, the effects of several system and site specific parameters on the economic feasibility of fuel cell/HVAC systems were investigated. An energy flow diagram of a fuel cell/HVAC system is shown. The fuel cell system provides electricity for an electric water chiller and for domestic electric needs. Supplemental electricity is purchased from the utility if needed. An excess of electricity generated by the fuel cell system can be sold to the utility. The fuel cell system also provides thermal energy which can be used for absorption cooling, space heating and domestic hot water. Thermal storage can be incorporated into the system. Thermal energy is also provided by an auxiliary boiler if needed to supplement the fuel cell system output. Fuel cell/HVAC systems were analyzed with the TRACE computer program.

  15. Micro-tubular flame-assisted fuel cells for micro-combined heat and power systems

    NASA Astrophysics Data System (ADS)

    Milcarek, Ryan J.; Wang, Kang; Falkenstein-Smith, Ryan L.; Ahn, Jeongmin

    2016-02-01

    Currently the role of fuel cells in future power generation is being examined, tested and discussed. However, implementing systems is more difficult because of sealing challenges, slow start-up and complex thermal management and fuel processing. A novel furnace system with a flame-assisted fuel cell is proposed that combines the thermal management and fuel processing systems by utilizing fuel-rich combustion. In addition, the flame-assisted fuel cell furnace is a micro-combined heat and power system, which can produce electricity for homes or businesses, providing resilience during power disruption while still providing heat. A micro-tubular solid oxide fuel cell achieves a significant performance of 430 mW cm-2 operating in a model fuel-rich exhaust stream.

  16. Flow tests of a single fuel element coolant channel for a compact fast reactor for space power

    NASA Technical Reports Server (NTRS)

    Springborn, R. H.

    1971-01-01

    Water flow tests were conducted on a single-fuel-element cooling channel for a nuclear concept to be used for space power. The tests established a method for measuring coolant flow rate which is applicable to water flow testing of a complete mockup of the reference reactor. The inlet plenum-to-outlet plenum pressure drop, which approximates the overall core pressure drop, was measured and correlated with flow rate. This information can be used for reactor coolant flow and heat transfer calculations. An analytical study of the flow characteristics was also conducted.

  17. Effect of fuel density and heating value on ram-jet airplane range

    NASA Technical Reports Server (NTRS)

    Henneberry, Hugh M

    1952-01-01

    An analytical investigation of the effects of fuel density and heating value on the cruising range of a ram-jet airplane was made. Results indicate that with present-day knowledge of chemical fuels, neither very high nor very low fuel densities have any advantages for long-range flight. Of the fuels investigated, the borohydrides and metallic boron have the greatest range potential. Aluminum and aluminum hydrocarbon slurries were inferior to pure hydrocarbon fuel and boron-hydrocarbon slurries were superior on a range basis. It was concluded that the practical difficulties associated with the use of liquid hydrogen fuel cannot be justified on a range basis.

  18. Process for massively hydriding zirconium--uranium fuel elements

    DOEpatents

    Katz, N.H.

    1973-12-01

    A method is described of hydriding uranium-zirconium alloy by heating the alloy in a vacuum, introducing hydrogen and maintaining an elevated temperature until occurrence of the beta--delta phase transformation and isobarically cooling the composition. (Official Gazette)

  19. Problems in developing bimodal space power and propulsion system fuel element

    SciTech Connect

    Nikolaev, Yu. V.; Gontar, A. S.; Zaznoba, V. A.; Parshin, N. Ya.; Ponomarev-Stepnoi, N. N.; Usov, V. A.

    1997-01-10

    The paper discusses design of a space nuclear power and propulsion system fuel element (PPFE) developed on the basis of an enhanced single-cell thermionic fuel element (TFE) of the 'TOPAZ-2' thermionic converter-reactor (TCR), and presents the PPFE performance for propulsion and power modes of operation. The choice of UC-TaC fuel composition is substantiated. Data on hydrogen effect on the PPFE output voltage are presented, design solutions are considered that allow to restrict hydrogen supply to an interelectrode gap (IEG). Long-term geometric stability of an emitter assembly is supported by calculated data.

  20. 46 CFR 147.50 - Fuel for cooking, heating, and lighting.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Fuel for cooking, heating, and lighting. 147.50 Section..., heating, and lighting. (a) Flammable and combustible liquids and gases not listed in this section are prohibited for cooking, heating, or lighting on any vessel, with the exception of combustible liquids...

  1. 46 CFR 147.50 - Fuel for cooking, heating, and lighting.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Fuel for cooking, heating, and lighting. 147.50 Section..., heating, and lighting. (a) Flammable and combustible liquids and gases not listed in this section are prohibited for cooking, heating, or lighting on any vessel, with the exception of combustible liquids...

  2. 46 CFR 147.50 - Fuel for cooking, heating, and lighting.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Fuel for cooking, heating, and lighting. 147.50 Section..., heating, and lighting. (a) Flammable and combustible liquids and gases not listed in this section are prohibited for cooking, heating, or lighting on any vessel, with the exception of combustible liquids...

  3. 46 CFR 147.50 - Fuel for cooking, heating, and lighting.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Fuel for cooking, heating, and lighting. 147.50 Section..., heating, and lighting. (a) Flammable and combustible liquids and gases not listed in this section are prohibited for cooking, heating, or lighting on any vessel, with the exception of combustible liquids...

  4. Reentry thermal testing of a general purpose heat source fueled clad

    SciTech Connect

    Peterson, D.E.; Frantz, C.E.

    1982-03-01

    A General Purpose Heat Source (GPHS) module was exposed to heat treatments simulating an isothermal prelaunch condition, followed by thermal pulses corresponding to atmospheric reentry. Helium release rates were determined during each heating and modeled after simple diffusion theory. Following the tests, the module was examined metallurgically with no evidence of swelling of the cladding nor degradation of the fuel.

  5. Apparatus for and method of monitoring for breached fuel elements

    DOEpatents

    Gross, Kenny C.; Strain, Robert V.

    1983-01-01

    This invention teaches improved apparatus for the method of detecting a breach in cladded fuel used in a nuclear reactor. The detector apparatus uses a separate bypass loop for conveying part of the reactor coolant away from the core, and at least three separate delayed-neutron detectors mounted proximate this detector loop. The detectors are spaced apart so that the coolant flow time from the core to each detector is different, and these differences are known. The delayed-neutron activity at the detectors is a function of the dealy time after the reaction in the fuel until the coolant carrying the delayed-neutron emitter passes the respective detector. This time delay is broken down into separate components including an isotopic holdup time required for the emitter to move through the fuel from the reaction to the coolant at the breach, and two transit times required for the emitter now in the coolant to flow from the breach to the detector loop and then via the loop to the detector. At least two of these time components are determined during calibrated operation of the reactor. Thereafter during normal reactor operation, repeated comparisons are made by the method of regression approximation of the third time component for the best-fit line correlating measured delayed-neutron activity against activity that is approximated according to specific equations. The equations use these time-delay components and known parameter values of the fuel and of the part and emitting daughter isotopes.

  6. Enhanced Low-Enriched Uranium Fuel Element for the Advanced Test Reactor

    SciTech Connect

    Pope, M. A.; DeHart, M. D.; Morrell, S. R.; Jamison, R. K.; Nef, E. C.; Nigg, D. W.

    2015-03-01

    Under the current US Department of Energy (DOE) policy and planning scenario, the Advanced Test Reactor (ATR) and its associated critical facility (ATRC) will be reconfigured to operate on low-enriched uranium (LEU) fuel. This effort has produced a conceptual design for an Enhanced LEU Fuel (ELF) element. This fuel features monolithic U-10Mo fuel foils and aluminum cladding separated by a thin zirconium barrier. As with previous iterations of the ELF design, radial power peaking is managed using different U-10Mo foil thicknesses in different plates of the element. The lead fuel element design, ELF Mk1A, features only three fuel meat thicknesses, a reduction from the previous iterations meant to simplify manufacturing. Evaluation of the ELF Mk1A fuel design against reactor performance requirements is ongoing, as are investigations of the impact of manufacturing uncertainty on safety margins. The element design has been evaluated in what are expected to be the most demanding design basis accident scenarios and has met all initial thermal-hydraulic criteria.

  7. Criticality safety evaluation for pathfinder fuel elements in model No. RA-3 shipping containers

    SciTech Connect

    Jones, R.R.

    1990-02-01

    Pennsylvania State University presently possesses approximately 415 Pathfinder fuel elements which require shipment from their nuclear facility. It is planned to use Model No. RA-3 shipping containers for shipment of these elements. Certificate of Compliance No. 4986, Revision No. 22, Docket No. 71-4986 authorizes the use of these containers for Fissile Class 1 shipments of UO{sub 2} fuel assemblies and UO{sub 2} fuel rods with parameters similar to the Pathfinder fuel elements. Criticality safety calculations have been performed with the Monte Carlo code, KENO-V.a and 16-group Hansen-Roach cross sections for shipment of Pathfinder fuel elements in Model No. RA-3 shipping containers. The analysis is described and the results are given in this report. This analysis demonstrates that the RA-3 container with Pathfinder fuel elements complies with the requirements of 10 CFR 71.59 for Fissile Class 2 shipping containers with six as the allowable number of containers in a single shipment. 5 refs., 5 tabs., 6 figs.

  8. Criticality safety evaluation for Pathfinder fuel elements in Model No. RA-3 shipping containers: Revision 1

    SciTech Connect

    Jones, R.R.

    1989-01-01

    Pennsylvania State University presently possesses approximately 415 Pathfinder fuel elements which require shipment from their nuclear facility. It is planned to use Model No. RA-3 shipping containers for shipment of these elements. Certificate of Compliance No. 4986, Revision No. 18, Docket No. 71-4986 authorizes the use of these containers for Fissile Class I shipments of UO/sub 2/ fuel assemblies and UO/sub 2/ fuel rods with parameters similar to the Pathfinder fuel elements. Criticality safety calculations have been performed with the Monte Carlo code, KENO-V.a and 16-group Hansen-Roach cross sections for shipment of Pathfinder fuel elements in Model No. RA-3 shipping containers. The analysis is described and the results are given in this report. This analysis demonstrates that the RA-3 container with Pathfinder fuel elements complies with the requirements of 10 CFR 71.59 for Fissile Class II shipping containers with six as the allowable number of containers in a single shipment. 5 refs., 6 figs., 4 tabs.

  9. Three isoparametric solid elements for NASTRAN. [for static, dynamic, buckling, and heat transfer analyses

    NASA Technical Reports Server (NTRS)

    Johnson, S. E.; Field, E. I.

    1973-01-01

    Linear, quadratic, and cubic isoparametric hexahedral solid elements have been added to the element library of NASTRAN. These elements are available for static, dynamic, buckling, and heat-transfer analyses. Because the isoparametric element matrices are generated by direct numerical integration over the volume of the element, variations in material properties, temperatures, and stresses within the elements are represented in the computations. In order to compare the accuracy of the new elements, three similar models of a slender cantilever were developed, one for each element. All elements performed well. As expected, however, the linear element model yielded excellent results only when shear behavior predominated. In contrast, the results obtained from the quadratic and cubic element models were excellent in both shear and bending.

  10. Decay Heat Calculations for PWR and BWR Assemblies Fueled with Uranium and Plutonium Mixed Oxide Fuel using SCALE

    SciTech Connect

    Ade, Brian J; Gauld, Ian C

    2011-10-01

    in MOX fuel is generally obtained from reprocessed irradiated nuclear fuel, whereas weapons-grade plutonium is obtained from decommissioned nuclear weapons material and thus has a different plutonium (and other actinides) concentration. Using MOX fuel instead of UOX fuel has potential impacts on the neutronic performance of the nuclear fuel and the design of the nuclear fuel must take these differences into account. Each of the plutonium sources (RG and WG) has different implications on the neutronic behavior of the fuel because each contains a different blend of plutonium nuclides. The amount of heat and the number of neutrons produced from fission of plutonium nuclides is different from fission of {sup 235}U. These differences in UOX and MOX do not end at discharge of the fuel from the reactor core - the short- and long-term storage of MOX fuel may have different requirements than UOX fuel because of the different discharged fuel decay heat characteristics. The research documented in this report compares MOX and UOX fuel during storage and disposal of the fuel by comparing decay heat rates for typical pressurized water reactor (PWR) and boiling water reactor (BWR) fuel assemblies with and without weapons-grade (WG) and reactor-grade (RG) MOX fuel.

  11. Nondestructive inspection of General Purpose Heat Source (GPHS) fueled clad girth welds

    SciTech Connect

    Reimus, M. A. H.; George, T. G.; Lynch, C.; Padilla, M.; Moniz, P.; Guerrero, A.; Moyer, M. W.; Placr, A.

    1998-01-15

    The General-Purpose Heat Source (GPHS) provides power for space missions by transmitting the heat of {sup 238}Pu decay to an array of thermoelectric elements. The GPHS is fabricated using an iridium-alloy to contain the {sup 238}PuO{sub 2} fuel pellet. GPHS capsules will be utilized in the upcoming Cassini mission to explore Saturn and its moons. The physical integrity of the girth weld is important to mission safety and performance. Because past experience had revealed a potential for initiation of small cracks in the girth weld overlap zone, a nondestructive inspection of each capsule weld is required. An ultrasonic method was used to inspect the welds of capsules fabricated for the Galileo mission. The instrument, transducer, and method used were state of the art at the time (early 1980s). The ultrasonic instrumentation and methods used to inspect the Cassini GPHSs was significantly upgraded from those used for the Galileo mission. GPHSs that had ultrasonic reflectors in excess of the reject specification level were subsequently inspected with radiography to provide additional engineering data used to accept/reject the heat source. This paper describes the Galileo-era ultrasonic instrumentation and methods and the subsequent upgrades made to support testing of Cassini GPHSs. Also discussed is the data obtained from radiographic examination and correlation to ultrasonic examination results.

  12. Nondestructive inspection of General Purpose Heat Source (GPHS) fueled clad girth welds

    SciTech Connect

    Reimus, M.A.; George, T.G.; Lynch, C.; Padilla, M.; Moniz, P.; Guerrero, A.; Moyer, M.W.; Placr, A.

    1998-01-01

    The General-Purpose Heat Source (GPHS) provides power for space missions by transmitting the heat of {sup 238}Pu decay to an array of thermoelectric elements. The GPHS is fabricated using an iridium-alloy to contain the {sup 238}PuO{sub 2} fuel pellet. GPHS capsules will be utilized in the upcoming Cassini mission to explore Saturn and its moons. The physical integrity of the girth weld is important to mission safety and performance. Because past experience had revealed a potential for initiation of small cracks in the girth weld overlap zone, a nondestructive inspection of each capsule weld is required. An ultrasonic method was used to inspect the welds of capsules fabricated for the Galileo mission. The instrument, transducer, and method used were state of the art at the time (early 1980s). The ultrasonic instrumentation and methods used to inspect the Cassini GPHSs was significantly upgraded from those used for the Galileo mission. GPHSs that had ultrasonic reflectors in excess of the reject specification level were subsequently inspected with radiography to provide additional engineering data used to accept/reject the heat source. This paper describes the Galileo-era ultrasonic instrumentation and methods and the subsequent upgrades made to support testing of Cassini GPHSs. Also discussed is the data obtained from radiographic examination and correlation to ultrasonic examination results. {copyright} {ital 1998 American Institute of Physics.}

  13. Testing of sludge coating adhesiveness on fuel elements in 105-K west basin

    SciTech Connect

    Maassen, D.P., Fluor Daniel Hanford

    1997-03-11

    This report summarizes the results from the first sludge adherence tests performed in the 105-K West Basin on N Reactor fuel. The outside surface of the outer fuel elements were brushed, using stainless steel wire brushes, to test the adhesiveness of various types of sludge coatings to the cladding`s surface. The majority of the sludge was removed by the wire brushes in this test but different types of sludge were more adhesive than others. Particularly, an orange rust-like sludge coating that was just slightly more adherent to the fuel`s cladding than the majority of the sludge coatings and a thick white vertical strip sludge coating that was much more difficult to remove. The test demonstrated that all of the sludge could be removed from the outer fuel elements` surfaces if the need arises.

  14. TLD measurements of gamma heating in heavy elements.

    NASA Technical Reports Server (NTRS)

    Reilly, H. J.; Robinson, R. A.; Peters, L. E., Jr.

    1971-01-01

    Measurements and calculations of gamma heating in polyethylene and lead containers were done and compared. The objective was to provide a workable method of getting good values for gamma heating in in-pile experiments containing materials of high atomic numbers. It was inferred that a combination of thermoluminescent dosimeter measurements, using Bragg-Gray theory, with photon transport calculations using the ANISN computer program, would meet this objective.

  15. Burn-up and Operation Time of Fuel Elements Produced in IPEN

    NASA Astrophysics Data System (ADS)

    Tondin, Julio Benedito Marin; Filho, Tufic Madi

    2011-08-01

    The aim of this paper is to present the developed work along the operational and reliability tests of fuel elements produced in the Institute of Energetic and Nuclear Research, IPEN-CNEN/SP, from the 1980's. The study analyzed the U-235 burn evolution and the element remain in the research reactor IEA-R1. The fuel elements are of the type MTR (Material Testing Reactor), the standard with 18 plates and a 12-plate control, with a nominal mean enrichment of 20%.

  16. The Northeast heating fuel market: Assessment and options

    SciTech Connect

    2000-07-01

    In response to a Presidential request, this study examines how the distillate fuel oil market (and related energy markets) in the Northeast behaved in the winter of 1999-2000, explains the role played by residential, commercial, industrial, and electricity generation sector consumers in distillate fuel oil markets and describes how that role is influenced by the structure of tie energy markets in the Northeast. In addition, this report explores the potential for nonresidential users to move away from distillate fuel oil and how this might impact future prices, and discusses conversion of distillate fuel oil users to other fuels over the next 5 years. Because the President's and Secretary's request focused on converting factories and other large-volume users of mostly high-sulfur distillate fuel oil to other fuels, transportation sector use of low-sulfur distillate fuel oil is not examined here.

  17. Carbon or graphite foam as a heating element and system thereof

    DOEpatents

    Ott, Ronald D [Knoxville, TN; McMillan, April D [Knoxville, TN; Choudhury, Ashok [Oak Ridge, TN

    2004-05-04

    A temperature regulator includes at least one electrically conductive carbon foam element. The foam element includes at least two locations adapted for receiving electrical connectors thereto for heating a fluid, such as engine oil. A combustion engine includes an engine block and at least one carbon foam element, the foam element extending into the engine block or disposed in thermal contact with at least one engine fluid.

  18. Method for recovering catalytic elements from fuel cell membrane electrode assemblies

    DOEpatents

    Shore, Lawrence; Matlin, Ramail; Heinz, Robert

    2012-06-26

    A method for recovering catalytic elements from a fuel cell membrane electrode assembly is provided. The method includes converting the membrane electrode assembly into a particulate material, wetting the particulate material, forming a slurry comprising the wetted particulate material and an acid leachate adapted to dissolve at least one of the catalytic elements into a soluble catalytic element salt, separating the slurry into a depleted particulate material and a supernatant containing the catalytic element salt, and washing the depleted particulate material to remove any catalytic element salt retained within pores in the depleted particulate material.

  19. Analyzing the possibility of constructing the air heating system for an integrated solid fuel gasification combined-cycle power plant

    NASA Astrophysics Data System (ADS)

    Mikula, V. A.; Ryzhkov, A. F.; Val'tsev, N. V.

    2015-11-01

    Combined-cycle power plants operating on solid fuel have presently been implemented only in demonstration projects. One of possible ways for improving such plants consists in making a shift to hybrid process circuits of integrated gasification combined-cycle plants with external firing of solid fuel. A high-temperature air heater serving to heat compressed air is a key element of the hybrid process circuit. The article describes application of a high-temperature recuperative metal air heater in the process circuit of an integrated gasification combined-cycle power plant (IGCC). The available experience with high-temperature air heating is considered, and possible air heater layout arrangements are analyzed along with domestically produced heat-resistant grades of steel suitable for manufacturing such air heater. An alternative (with respect to the traditional one) design is proposed, according to which solid fuel is fired in a noncooled furnace extension, followed by mixing the combustion products with recirculation gases, after which the mixture is fed to a convective air heater. The use of this design makes it possible to achieve considerably smaller capital outlays and operating costs. The data obtained from thermal and aerodynamic calculations of the high-temperature air heater with a thermal capacity of 258 MW for heating air to a temperature of up to 800°C for being used in the hybrid process circuit of a combined-cycle power plant are presented.

  20. Molten tin reprocessing of spent nuclear fuel elements

    DOEpatents

    Heckman, Richard A.

    1983-01-01

    A method and apparatus for reprocessing spent nuclear fuel is described. Within a containment vessel, a solid plug of tin and nitride precipitates supports a circulating bath of liquid tin therein. Spent nuclear fuel is immersed in the liquid tin under an atmosphere of nitrogen, resulting in the formation of nitride precipitates. The layer of liquid tin and nitride precipitates which interfaces the plug is solidified and integrated with the plug. Part of the plug is melted, removing nitride precipitates from the containment vessel, while a portion of the plug remains solidified to support the liquid tin and nitride precipitates remaining in the containment vessel. The process is practiced numerous times until substantially all of the precipitated nitrides are removed from the containment vessel.

  1. ORGANIC COMBUSTION FINGERPRINTS OF THREE COMMON HOME HEATING FUELS

    EPA Science Inventory

    The paper discusses the chemical structures of three common home eating fuels: wood, coal, and No. 2 fuel oil. GC and GC/MS data are then presented which demonstrate how the thermal destruction of each fuel results in the production of a characteristic group of organic "fingerpri...

  2. Magnesium transport extraction of transuranium elements from LWR fuel

    SciTech Connect

    Ackerman, J.P.; Battles, J.E.; Johnson, T.R.; Miller, W.E.; Pierce, R.D.

    1992-09-15

    This patent describes a process of separating transuranium actinide values from uranium values present in spent nuclear oxide fuel containing rare earth and noble metal fission products as well as fission products of alkali metals, alkaline earth metals and iodine. It comprises reducing the oxide fuel with Ca metal in the presence of Ca halide; separating the Ca halide with the CaO and the fission products contained therein from the U-Fe alloy and the metal values dissolved therein and electrolytically contacting the calcium salts with a carbon electrode; contacting the liquid U-Fe alloy having dissolved therein reduced metals from the spent nuclear fuel with liquid Mg metal, thereafter separating the liquid Mg and the metals dissolved therein from the U-Fe alloy and the metal dissolved therein, distilling the Mg from the transuranium actinide and rare earth metals, recontacting the U-Fe alloy with liquid Mg metal a sufficient number of times until not less than about 99% by weight of the transuranium actinide values have been removed from the U-Fe alloy.

  3. Uranium chloride extraction of transuranium elements from LWR fuel

    SciTech Connect

    Miller, W.E.; Ackerman, J.P.; Battles, J.E.; Johnson, T.R.; Pierce, R.D.

    1991-12-31

    A process of separating transuranium actinide values from uranium values present in spent nuclear oxide fuels containing rare earth and noble metal fission products as well as other fission products is disclosed. The oxide fuel is reduced with Ca metal in the presence of Ca chloride and a U-Fe alloy which is liquid at about 800{degrees}C to dissolve uranium metal and the noble metal fission product metals and transuranium actinide metals and rare earth fission product metals leaving Ca chloride having CaO and fission products of alkali metals and the alkali earth metals and iodine dissolved therein. The Ca chloride and CaO and the fission products contained therein are separated from the U-Fe alloy and the metal values dissolved therein. The U-Fe alloy having dissolved therein reduced metals from the spent nuclear fuel is contacted with a mixture of one or more alkali metal or alkaline earth metal halides selected from the class consisting of alkali metal or alkaline earth metal and Fe or U halide or a combination thereof to transfer transuranium actinide metals and rare earth metals to the halide salt leaving the uranium and some noble metal fission products in the U-Fe alloy and thereafter separating the halide salt and the transuranium metals dissolved therein from the U-Fe alloy and the metals dissolved therein.

  4. Magnesium transport extraction of transuranium elements from LWR fuel

    SciTech Connect

    Ackerman, J.P.; Battles, J.E.; Johnson, T.R.; Miller, W.E.; Pierce, R.D.

    1991-12-31

    This report discusses a process of separating transuranium actinide values from uranium values present in spent nuclear oxide fuels which contain rare earth and noble metal fission products. The oxide fuel is reduced with Ca metal in the presence of CaCl{sub 2} and a U-Fe alloy containing not less than about 84% by weight uranium at a temperature in the range of from about 800{degrees}C to about 850{degrees}C to produce additional uranium metal which dissolves in the U-Fe alloy raising the uranium concentration and having transuranium actinide metals and rare earth fission product metals and the noble metal fission products dissolved therein. The CaCl{sub 2} having CaO and fission products of alkali metals and the alkali earth metals and iodine dissolved therein is separated and electrolytically treated with a carbon electrode to reduce the CaO to Ca metal while converting the carbon electrode to CO and CO{sub 2}. The Ca metal and CaCl{sub 2} is recycled to reduce additional oxide fuel. The U-Fe alloy having transuranium actinide metals and rare earth fission product metals and the noble metal fission products dissolved therein is contacted with Mg metal which takes up the actinide and rare earth fission product metals. The U-Fe alloy retains the noble metal fission products and is stored while the Mg is distilled and recycled leaving the transuranium actinide and rare earth fission products isolated.

  5. Uranium chloride extraction of transuranium elements from LWR fuel

    DOEpatents

    Miller, William E.; Ackerman, John P.; Battles, James E.; Johnson, Terry R.; Pierce, R. Dean

    1992-01-01

    A process of separating transuranium actinide values from uranium values present in spent nuclear oxide fuels containing rare earth and noble metal fission products as well as other fission products is disclosed. The oxide fuel is reduced with Ca metal in the presence of Ca chloride and a U-Fe alloy which is liquid at about 800.degree. C. to dissolve uranium metal and the noble metal fission product metals and transuranium actinide metals and rare earth fission product metals leaving Ca chloride having CaO and fission products of alkali metals and the alkali earth metals and iodine dissolved therein. The Ca chloride and CaO and the fission products contained therein are separated from the U-Fe alloy and the metal values dissolved therein. The U-Fe alloy having dissolved therein reduced metals from the spent nuclear fuel is contacted with a mixture of one or more alkali metal or alkaline earth metal halides selected from the class consisting of alkali metal or alkaline earth metal and Fe or U halide or a combination thereof to transfer transuranium actinide metals and rare earth metals to the halide salt leaving the uranium and some noble metal fission products in the U-Fe alloy and thereafter separating the halide salt and the transuranium metals dissolved therein from the U-Fe alloy and the metals dissolved therein.

  6. Magnesium transport extraction of transuranium elements from LWR fuel

    DOEpatents

    Ackerman, John P.; Battles, James E.; Johnson, Terry R.; Miller, William E.; Pierce, R. Dean

    1992-01-01

    A process of separating transuranium actinide values from uranium values present in spent nuclear oxide fuels which contain rare earth and noble metal fission products. The oxide fuel is reduced with Ca metal in the presence of CaCl.sub.2 and a U-Fe alloy containing not less than about 84% by weight uranium at a temperature in the range of from about 800.degree. C. to about 850.degree. C. to produce additional uranium metal which dissolves in the U-Fe alloy raising the uranium concentration and having transuranium actinide metals and rare earth fission product metals and the noble metal fission products dissolved therein. The CaCl.sub.2 having CaO and fission products of alkali metals and the alkali earth metals and iodine dissolved therein is separated and electrolytically treated with a carbon electrode to reduce the CaO to Ca metal while converting the carbon electrode to CO and CO.sub.2. The Ca metal and CaCl.sub.2 is recycled to reduce additional oxide fuel. The U-Fe alloy having transuranium actinide metals and rare earth fission product metals and the noble metal fission products dissolved therein is contacted with Mg metal which takes up the actinide and rare earth fission product metals. The U-Fe alloy retains the noble metal fission products and is stored while the Mg is distilled and recycled leaving the transuranium actinide and rare earth fission products isolated.

  7. Apparatus for and method of monitoring for breached fuel elements

    DOEpatents

    Gross, K.C.; Strain, R.V.

    1981-04-28

    This invention teaches improved apparatus for the method of detecting a breach in cladded fuel used in a nuclear reactor. The detector apparatus uses a separate bypass loop for conveying part of the reactor coolant away from the core, and at least three separate delayed-neutron detectors mounted proximate this detector loop. The detectors are spaced apart so that the coolant flow time from the core to each detector is different, and these differences are known. The delayed-neutron activity at the detectors is a function of the delay time after the reaction in the fuel until the coolant carrying the delayed-neutron emitter passes the respective detector. This time delay is broken down into separate components including an isotopic holdup time required for the emitter to move through the fuel from the reaction to the coolant at the breach, and two transit times required for the emitter now in the coolant to flow from the breach to the detector loop and then via the loop to the detector.

  8. Uranium chloride extraction of transuranium elements from LWR fuel

    DOEpatents

    Miller, W.E.; Ackerman, J.P.; Battles, J.E.; Johnson, T.R.; Pierce, R.D.

    1992-08-25

    A process of separating transuranium actinide values from uranium values present in spent nuclear oxide fuels containing rare earth and noble metal fission products as well as other fission products is disclosed. The oxide fuel is reduced with Ca metal in the presence of Ca chloride and a U-Fe alloy which is liquid at about 800 C to dissolve uranium metal and the noble metal fission product metals and transuranium actinide metals and rare earth fission product metals leaving Ca chloride having CaO and fission products of alkali metals and the alkali earth metals and iodine dissolved therein. The Ca chloride and CaO and the fission products contained therein are separated from the U-Fe alloy and the metal values dissolved therein. The U-Fe alloy having dissolved therein reduced metals from the spent nuclear fuel is contacted with a mixture of one or more alkali metal or alkaline earth metal halides selected from the class consisting of alkali metal or alkaline earth metal and Fe or U halide or a combination thereof to transfer transuranium actinide metals and rare earth metals to the halide salt leaving the uranium and some noble metal fission products in the U-Fe alloy and thereafter separating the halide salt and the transuranium metals dissolved therein from the U-Fe alloy and the metals dissolved therein. 1 figure.

  9. 77 FR 16868 - Quality Verification for Plate-Type Uranium-Aluminum Fuel Elements for Use in Research and Test...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-22

    ... COMMISSION Quality Verification for Plate-Type Uranium-Aluminum Fuel Elements for Use in Research and Test... draft regulatory guide (DG), DG-2005, ``Quality Verification for Plate-Type Uranium-Aluminum Fuel... quality assurance program for verifying the quality of plate-type uranium-aluminum fuel elements used...

  10. Synergistic Effects of Toxic Elements on Heat Shock Proteins

    PubMed Central

    Mahmood, Khalid; Mahmood, Qaisar; Irshad, Muhammad; Hussain, Jamshaid

    2014-01-01

    Heat shock proteins show remarkable variations in their expression levels under a variety of toxic conditions. A research span expanded over five decades has revealed their molecular characterization, gene regulation, expression patterns, vast similarity in diverse groups, and broad range of functional capabilities. Their functions include protection and tolerance against cytotoxic conditions through their molecular chaperoning activity, maintaining cytoskeleton stability, and assisting in cell signaling. However, their role as biomarkers for monitoring the environmental risk assessment is controversial due to a number of conflicting, validating, and nonvalidating reports. The current knowledge regarding the interpretation of HSPs expression levels has been discussed in the present review. The candidature of heat shock proteins as biomarkers of toxicity is thus far unreliable due to synergistic effects of toxicants and other environmental factors. The adoption of heat shock proteins as “suit of biomarkers in a set of organisms” requires further investigation. PMID:25136596

  11. Install Waste Heat Recovery Systems for Fuel-Fired Furnaces (English/Chinese) (Fact Sheet)

    SciTech Connect

    Not Available

    2011-10-01

    Chinese translation of ITP fact sheet about installing Waste Heat Recovery Systems for Fuel-Fired Furnaces. For most fuel-fired heating equipment, a large amount of the heat supplied is wasted as exhaust or flue gases. In furnaces, air and fuel are mixed and burned to generate heat, some of which is transferred to the heating device and its load. When the heat transfer reaches its practical limit, the spent combustion gases are removed from the furnace via a flue or stack. At this point, these gases still hold considerable thermal energy. In many systems, this is the greatest single heat loss. The energy efficiency can often be increased by using waste heat gas recovery systems to capture and use some of the energy in the flue gas. For natural gas-based systems, the amount of heat contained in the flue gases as a percentage of the heat input in a heating system can be estimated by using Figure 1. Exhaust gas loss or waste heat depends on flue gas temperature and its mass flow, or in practical terms, excess air resulting from combustion air supply and air leakage into the furnace. The excess air can be estimated by measuring oxygen percentage in the flue gases.

  12. Salt transport extraction of transuranium elements from lwr fuel

    DOEpatents

    Pierce, R. Dean; Ackerman, John P.; Battles, James E.; Johnson, Terry R.; Miller, William E.

    1992-01-01

    A process of separating transuranium actinide values from uranium values present in spent nuclear oxide fuels which contain rare earth and noble metal fission products. The oxide fuel is reduced with Ca metal in the presence of CaCl.sub.2 and a Cu--Mg alloy containing not less than about 25% by weight Mg at a temperature in the range of from about 750.degree. C. to about 850.degree. C. to precipitate uranium metal and some of the noble metal fission products leaving the Cu--Mg alloy having transuranium actinide metals and rare earth fission product metals and some of the noble metal fission products dissolved therein. The CaCl.sub.2 having CaO and fission products of alkali metals and the alkali earth metals and iodine dissolved therein is separated and electrolytically treated with a carbon electrode to reduce the CaO to Ca metal while converting the carbon electrode to CO and CO.sub.2. The Ca metal and CaCl.sub.2 is recycled to reduce additional oxide fuel. The Cu--Mg alloy having transuranium metals and rare earth fission product metals and the noble metal fission products dissolved therein is contacted with a transport salt including Mg Cl.sub.2 to transfer Mg values from the transport salt to the Cu--Mg alloy while transuranium actinide and rare earth fission product metals transfer from the Cu--Mg alloy to the transport salt. Then the transport salt is mixed with a Mg--Zn alloy to transfer Mg values from the alloy to the transport salt while the transuranium actinide and rare earth fission product values dissolved in the salt are reduced and transferred to the Mg--Zn alloy.

  13. Salt transport extraction of transuranium elements from LWR fuel

    DOEpatents

    Pierce, R.D.; Ackerman, J.P.; Battles, J.E.; Johnson, T.R.; Miller, W.E.

    1992-11-03

    A process is described for separating transuranium actinide values from uranium values present in spent nuclear oxide fuels which contain rare earth and noble metal fission products. The oxide fuel is reduced with Ca metal in the presence of CaCl[sub 2] and a Cu--Mg alloy containing not less than about 25% by weight Mg at a temperature in the range of from about 750 C to about 850 C to precipitate uranium metal and some of the noble metal fission products leaving the Cu--Mg alloy having transuranium actinide metals and rare earth fission product metals and some of the noble metal fission products dissolved therein. The CaCl[sub 2] having CaO and fission products of alkali metals and the alkali earth metals and iodine dissolved therein is separated and electrolytically treated with a carbon electrode to reduce the CaO to Ca metal while converting the carbon electrode to CO and CO[sub 2]. The Ca metal and CaCl[sub 2] is recycled to reduce additional oxide fuel. The Cu--Mg alloy having transuranium metals and rare earth fission product metals and the noble metal fission products dissolved therein is contacted with a transport salt including MgCl[sub 2] to transfer Mg values from the transport salt to the Cu--Mg alloy while transuranium actinide and rare earth fission product metals transfer from the Cu--Mg alloy to the transport salt. Then the transport salt is mixed with a Mg--Zn alloy to transfer Mg values from the alloy to the transport salt while the transuranium actinide and rare earth fission product values dissolved in the salt are reduced and transferred to the Mg--Zn alloy. 2 figs.

  14. Accuracy of trace element determinations in alternate fuels

    NASA Technical Reports Server (NTRS)

    Greenbauer-Seng, L. A.

    1980-01-01

    A review of the techniques used at Lewis Research Center (LeRC) in trace metals analysis is presented, including the results of Atomic Absorption Spectrometry and DC Arc Emission Spectrometry of blank levels and recovery experiments for several metals. The design of an Interlaboratory Study conducted by LeRC is presented. Several factors were investigated, including: laboratory, analytical technique, fuel type, concentration, and ashing additive. Conclusions drawn from the statistical analysis will help direct research efforts toward those areas most responsible for the poor interlaboratory analytical results.

  15. PROCESS OF MAKING A NEUTRONIC REACTOR FUEL ELEMENT COMPOSITION

    DOEpatents

    Alter, H.W.; Davidson, J.K.; Miller, R.S.; Mewherter, J.L.

    1959-01-13

    A process is presented for making a ceramic-like material suitable for use as a nuclear fuel. The material consists of a solid solution of plutonium dioxide in uranium dioxide and is produced from a uranyl nitrate -plutonium nitrate solution containing uraniunm and plutonium in the desired ratio. The uranium and plutonium are first precipitated from the solution by addition of NH/ sub 4/OH and the dried precipitate is then calcined at 600 C in a hydrogen atmosphere to yield the desired solid solution of PuO/sub 2/ in UO/sub 2/.

  16. 10 CFR Appendix O to Part 110 - Illustrative List of Fuel Element Fabrication Plant Equipment and Components Under NRC's Export...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... NRC's Export Licensing Authority Note: Nuclear fuel elements are manufactured from source or special nuclear material. For oxide fuels, the most common type of fuel equipment for pressing pellets, sintering... the integrity of completed fuel pins (or rods). This item typically includes equipment for: (i)...

  17. Fuel requirements for low-heat rejection military diesel engines. Interim report, October 1991-September 1993

    SciTech Connect

    Westbrook, S.R.; Stavioha, L.L.; McInnis, L.A.; Likos, W.E.; Yost, D.M.

    1996-01-01

    In the development of high-efficiency advanced engine technology such as low-heat rejection engines and injection systems, the thermal stability of fuel is an important concern. The next generation of engines for combat vehicles will be operating at higher fuel temperatures due to lower waste heat rejection and will be accompanied by higher heat transfer to the fuel injection system. Thus, high-temperature fuel deposit formation is more likely. As a result, two possible methods were evaluated for their potential to reduce fuel deposits: (1) prestress the fuel in an apparatus that feeds the fuel to the engine, or (2) pretreat the fuel with an appropriate additive to reduce deposits in the engine. It was shown that removal of dissolved oxygen from the fuel can significantly reduce the formation of deposits on hot metal surfaces. Prestressing the fuel prior to burning it in the engine was also effective in the reduction of deposit formation. The use of additive pretreatment yielded only limited success.

  18. Structural Transformations in heat resistant coatings containing rare earth elements

    NASA Astrophysics Data System (ADS)

    Afanasiev, N. I.; Lepakova, O. K.; Kosova, N. I.

    2016-01-01

    Degradation of two-layered coatings and ZhS6U alloy microstructure were studied during long-term processes of high temperature annealing and creeping. It was shown that yttrium and zirconium oxides are promising as protective coatings for heat resistant nickel based alloy.

  19. Boundary element techniques - Applications in stress analysis and heat transfer

    SciTech Connect

    Brebbia, C.A.; Venturini, W.S.

    1987-01-01

    This volume includes contributions in the field of stress analysis, soil and rock mechanics, non-linear problems, dynamics and vibrations, plate bending and heat transfer. The companion volume includes contributions dealing with viscous and inviscid fluid flow, aerodynamics and hydrodynamics applications, elastostatics and computational and mathematical aspects.

  20. Advanced Ceramics for Use as Fuel Element Materials in Nuclear Thermal Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Valentine, Peter G.; Allen, Lee R.; Shapiro, Alan P.

    2012-01-01

    With the recent start (October 2011) of the joint National Aeronautics and Space Administration (NASA) and Department of Energy (DOE) Advanced Exploration Systems (AES) Nuclear Cryogenic Propulsion Stage (NCPS) Program, there is renewed interest in developing advanced ceramics for use as fuel element materials in nuclear thermal propulsion (NTP) systems. Three classes of fuel element materials are being considered under the NCPS Program: (a) graphite composites - consisting of coated graphite elements containing uranium carbide (or mixed carbide), (b) cermets (ceramic/metallic composites) - consisting of refractory metal elements containing uranium oxide, and (c) advanced carbides consisting of ceramic elements fabricated from uranium carbide and one or more refractory metal carbides [1]. The current development effort aims to advance the technology originally developed and demonstrated under Project Rover (1955-1973) for the NERVA (Nuclear Engine for Rocket Vehicle Application) [2].

  1. On-Line Measurement of Heat of Combustion of Gaseous Hydrocarbon Fuel Mixtures

    NASA Technical Reports Server (NTRS)

    Sprinkle, Danny R.; Chaturvedi, Sushil K.; Kheireddine, Ali

    1996-01-01

    A method for the on-line measurement of the heat of combustion of gaseous hydrocarbon fuel mixtures has been developed and tested. The method involves combustion of a test gas with a measured quantity of air to achieve a preset concentration of oxygen in the combustion products. This method involves using a controller which maintains the fuel (gas) volumetric flow rate at a level consistent with the desired oxygen concentration in the combustion products. The heat of combustion is determined form a known correlation with the fuel flow rate. An on-line computer accesses the fuel flow data and displays the heat of combustion measurement at desired time intervals. This technique appears to be especially applicable for measuring heats of combustion of hydrocarbon mixtures of unknown composition such as natural gas.

  2. Emission FTIR analyses of thin microscopic patches of jet fuel residues deposited on heated metal surfaces

    NASA Technical Reports Server (NTRS)

    Lauer, J. L.; Vogel, P.

    1986-01-01

    The relationship of fuel stability to fuel composition and the development of mechanisms for deposit formation were investigated. Fuel deposits reduce heat transfer efficiency and increase resistance to fuel flow and are highly detrimental to aircraft performance. Infrared emission Fourier transform spectroscopy was chosen as the primary method of analysis because it was sensitive enough to be used in-situ on tiny patches of monolayers or of only a few molecular layers of deposits which generally proved completely insoluble in any nondestructive solvents. Deposits of four base fuels were compared; dodecane, a dodecane/tetralin blend, commercial Jet A fuel, and a broadened-properties jet fuel particularly rich in polynuclear aromatics. Every fuel in turn was provided with and without small additions of such additives as thiophene, furan, pyrrole, and copper and iron naphthenates.

  3. An Investigation of Size-Dependent Concentration of Trace Elements in Aerosols Emitted from the Oil-Fired Heating Plants

    NASA Technical Reports Server (NTRS)

    Singh, J. J.; Sentell, R. J.; Khandelwal, G. S.

    1976-01-01

    Aerosols emitted from two oil-fired heating plants were aerodynamically separated into eight size groups and were analyzed using the photon-induced X-ray emission (PIXE) technique. It was found that Zn, Mo, Ag, and Pb, and (to a lesser extent) Cd, have a tendency to concentrate preferentially on the smaller aerosols. All of these elements, in certain chemical forms, are known to be toxic. Zinc and molybdenum, although present in low concentrations in the parent fuels, show the strongest tendencies to be concentrated in finer aerosols. Selenium, previously reported to show a very strong tendency to concentration in finer fly ash from coal-fired power plants shows little preference for surface residence. Vanadium, which occurs in significant concentration in the oil fuels for both plants, also shows little preference for surface concentration. Even though the absolute concentrations of the toxic elements involved are well below the safety levels established by the National Institute for Occupational Safety and Health (NIOSH), it would be advisable to raise the heights of the heating-plant exhaust chimneys well above the neighborhood buildings to insure more efficient aerosol dispersal.

  4. Description of heat flux measurement methods used in hydrocarbon and propellant fuel fires at Sandia.

    SciTech Connect

    Nakos, James Thomas

    2010-12-01

    The purpose of this report is to describe the methods commonly used to measure heat flux in fire applications at Sandia National Laboratories in both hydrocarbon (JP-8 jet fuel, diesel fuel, etc.) and propellant fires. Because these environments are very severe, many commercially available heat flux gauges do not survive the test, so alternative methods had to be developed. Specially built sensors include 'calorimeters' that use a temperature measurement to infer heat flux by use of a model (heat balance on the sensing surface) or by using an inverse heat conduction method. These specialty-built sensors are made rugged so they will survive the environment, so are not optimally designed for ease of use or accuracy. Other methods include radiometers, co-axial thermocouples, directional flame thermometers (DFTs), Sandia 'heat flux gauges', transpiration radiometers, and transverse Seebeck coefficient heat flux gauges. Typical applications are described and pros and cons of each method are listed.

  5. Study on Fuel Cell Network System Considering Reduction in Fuel Cell Capacity Using Load Leveling and Heat Release Loss

    NASA Astrophysics Data System (ADS)

    Obara, Shin'ya; Kudo, Kazuhiko

    Reduction in fuel cell capacity linked to a fuel cell network system is considered. When the power demand of the whole network is small, some of the electric power generated by the fuel cell is supplied to a water electrolysis device, and hydrogen and oxygen gases are generated. Both gases are compressed with each compressor and they are stored in cylinders. When the electric demand of the whole network is large, both gases are supplied to the network, and fuel cells are operated by these hydrogen and oxygen gases. Furthermore, an optimization plan is made to minimize the quantity of heat release of the hot water piping that connects each building. Such an energy network is analyzed assuming connection of individual houses, a hospital, a hotel, a convenience store, an office building, and a factory. Consequently, compared with the conventional system, a reduction of 46% of fuel cell capacity is expected.

  6. Sweat mineral element responses during 7 h of exercise-heat stress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Uncertainty exists regarding the effect of sustained sweating on sweat mineral element composition. This study determined the effect of multiple hours of exercise-heat stress on sweat mineral concentrations. Seven heat acclimated subjects (6 males, 1 female) completed 5 consecutive 60 min bouts of...

  7. 145. VIEW OF LIQUID NITROGEN/HELIUM HEAT EXCHANGER IN FUEL CONTROL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    145. VIEW OF LIQUID NITROGEN/HELIUM HEAT EXCHANGER IN FUEL CONTROL ROOM (215), LSB (BLDG. 751), FROM FUEL APRON WITH BAY DOOR OPEN - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  8. Fuel-Flexible Microturbine and Gasifier System for Combined Heat and Power

    SciTech Connect

    2009-12-01

    Capstone Turbine Corporation, in collaboration with the University of California – Irvine, Packer Engineering, and Argonne National Laboratory, will develop and demonstrate a prototype microturbine combined heat and power system fueled by synthesis gas and integrated with a biomass gasifier, enabling reduced fossil fuel consumption and carbon dioxide emissions.

  9. On introduction of artificial intelligence elements to heat power engineering

    NASA Astrophysics Data System (ADS)

    Dregalin, A. F.; Nazyrova, R. R.

    1993-10-01

    The basic problems of 'the thermodynamic intelligence' of personal computers have been outlined. The thermodynamic intellect of personal computers as a concept has been introduced to heat processes occurring in engines of flying vehicles. In particular, the thermodynamic intellect of computers is determined by the possibility of deriving formal relationships between thermodynamic functions. In chemical thermodynamics, a concept of a characteristic function has been introduced.

  10. Evaluation of a Schatz heat battery on a flexible-fueled vehicle

    NASA Astrophysics Data System (ADS)

    Piotrowski, Gregory K.; Schaefer, Ronald M.

    1991-09-01

    The evaluation is described of a Schatz Heat Battery as a means of reducing cold start emissions from a motor vehicle fueled with both gasoline and M85 high methanol blend fuel. The evaluation was conducted at both 20 and 75 F ambient temperatures. The test vehicle was a flexible fueled 1990 Audi 80 supplied by Volkswagen of America. A description is included of the test vehicle, the test facilities, the analytical methods and test procedures used.

  11. Evaluation of a Schatz heat battery on a flexible-fueled vehicle

    SciTech Connect

    Piotrowski, G.K.; Schaefer, R.M.

    1991-09-01

    The report describes the evaluation of a Schatz Heat Battery as a means of reducing cold start emissions from a motor vehicle fueled with both gasoline and M85 high methanol blend fuel. The evaluation was conducted at both 20 F and 75 F ambient temperatures. The test vehicle was a flexible-fueled 1990 Audi 80 supplied by Volkswagen of America. The report also includes a description of the test vehicle, the test facilities, the analytical methods and test procedures used.

  12. Metallographic examination of damaged N reactor spent nuclear fuel element SFEC5,4378

    SciTech Connect

    Marschman, S.C.; Pyecha, T.D.; Abrefah, J.

    1997-08-01

    N-Reactor spent nuclear fuel (SNF) is currently residing underwater in the K Basins at the Hanford site, in Richland, Washington. This report presents results of the metallographic examination of specimens cut from an SNF element (Mark IV-E) with breached cladding. The element had resided in the K-West (KW) Storage Basin for at least 10 years after it was discharged from the N-Reactor. The storage containers in the KW Basin were nominally closed, isolating the SNF elements from the open pool environment. Seven specimens from this Mark IV-E outer fuel element were examined using an optical metallograph. Included were two specimens that had been subjected to a conditioning process recommended by the Independent Technical Assessment Team, two specimens that had been subjected to a conditioning process recommended in the Integrated Process Strategy Report, and three that were in the as-received, as-cut condition. One of the as-received specimens had been cut from the damaged (or breached) end of the element. All other specimens were cut from the undamaged mid-region of the fuel element. The specimens were visually examined to (1) identify uranium hydride inclusions present in the uranium metal fuel, (2) measure the thickness of the oxide layer formed on the uranium edges and assess the apparent integrity and adhesion of the oxide layer, and (3) look for features in the microstructure that might provide an insight into the various corrosion processes that occurred during underwater storage in the KW Basin. These features included, but were not limited to, the integrity of the cladding and the fuel-to-cladding bond, obvious anomalies in the microstructure, excessive pitting or friability of the fuel matrix, and obvious anomalies in the distribution of uranium hydride or uranium carbide inclusions. Also, the observed metallographic features of the conditioned specimens were compared with those of the as-received (unconditioned) specimens. 11 refs., 93 figs., 2 tabs.

  13. Irradiation testing of full-sized, reduced-enrichment fuel elements

    SciTech Connect

    Snelgrove, J.L.; Copeland, G.L.

    1983-01-01

    The current status of the irradiation testing of full-sized, reduced-enrichment fuel elements and fuel rods under the US Reduced Enrichment Research and Test Reactor Program is reported. Being tested are UAl/sub x/-Al, U/sub 3/O/sub 8/-Al, U/sub 3/Si/sub 2/-Al, and U/sub 3/Si-Al dispersion fuels and UZrH/sub x/ (TRIGA) fuel at uranium densities in the fuel meat ranging from 1.7 to 6.0 Mg/m/sup 3/. Generally good performance has been experienced to date. Some preliminary results of postirradiation examinations are also included. A whole-core demonstration in the Oak Ridge Research Reactor is planned. Some details of this demonstration are provided.

  14. LMFBR operational and experimental local-fault experience, primarily with oxide fuel elements

    SciTech Connect

    Warinner, D.K.

    1980-01-01

    Case-by-case reviews of selective world experience with severe local faults, particularly fuel failure and fuel degradation, are reviewed for two sodium-cooled thermal reactors, several LMFBRs, and LMFBR-fuels experiments. The review summarizes fuel-failure frequency and illustrates the results of the most damaging LMFBR local-fault experiences of the last 20 years beginning with BR-5 and including DFR, BOR-60, BR2's MFBS- and Mol-loops experiments, Fermi, KNK, Rapsodie, EBR-II, and TREAT-D2. Local-fault accommodation is demonstrated and a need to more thoroughly investigate delayed-neutron and gaseous-fission-product signals is highlighted in view of uranate formation, observed blockages, and slow fuel-element failure-propagation.

  15. Porous nuclear fuel element with internal skeleton for high-temperature gas-cooled nuclear reactors

    DOEpatents

    Youchison, Dennis L.; Williams, Brian E.; Benander, Robert E.

    2013-09-03

    Porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's), and to processes for fabricating them. Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, the nuclear fuel may be deposited inside of a highly porous skeletal structure made of, for example, reticulated vitreous carbon foam.

  16. Porous nuclear fuel element for high-temperature gas-cooled nuclear reactors

    DOEpatents

    Youchison, Dennis L.; Williams, Brian E.; Benander, Robert E.

    2011-03-01

    Porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's), and to processes for fabricating them. Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, the nuclear fuel may be deposited inside of a highly porous skeletal structure made of, for example, reticulated vitreous carbon foam.

  17. Methods for manufacturing porous nuclear fuel elements for high-temperature gas-cooled nuclear reactors

    DOEpatents

    Youchison, Dennis L.; Williams, Brian E.; Benander, Robert E.

    2010-02-23

    Methods for manufacturing porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's). Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, a thin coating of nuclear fuel may be deposited inside of a highly porous skeletal structure made, for example, of reticulated vitreous carbon foam.

  18. Vibration behavior of fuel-element vibration suppressors for the advanced power reactor

    NASA Technical Reports Server (NTRS)

    Adams, D. W.; Fiero, I. B.

    1973-01-01

    Preliminary shock and vibration tests were performed on vibration suppressors for the advanced power reactor for space application. These suppressors position the fuel pellets in a pin type fuel element. The test determined the effect of varying axial clearance on the behavior of the suppressors when subjected to shock and vibratory loading. The full-size suppressor was tested in a mockup model of fuel and clad which required scaling of test conditions. The test data were correlated with theoretical predictions for suppressor failure. Good agreement was obtained. The maximum difference with damping neglected was about 30 percent. Neglecting damping would result in a conservative design.

  19. Theoretical Rationale of Heating Block for Testing Bench of Aerospace Crafts Thermal Protection Elements

    NASA Astrophysics Data System (ADS)

    Petrova, Anna A.; Reznik, Sergey V.

    2016-02-01

    The theoretical rationale for the structural layout of a testing bench with zirconium dioxide heating elements on the basis of modelling radiative-conductive heat transfer are presented. The numerical simulation of radiative-conductive heat transfer for the two-dimensional scaled model of the testing segment with the finite-element analysis software package Ansys 15.0 are performed. The simulation results showed that for the selected layout of the heaters the temperature non-uniformity along the length of the sample over time will not exceed 3 % even at a temperature of 2000 K.

  20. Heat transfer monitoring by means of the hot wire technique and finite element analysis software.

    PubMed

    Hernández Wong, J; Suarez, V; Guarachi, J; Calderón, A; Rojas-Trigos, J B; Juárez, A G; Marín, E

    2014-01-01

    It is reported the study of the radial heat transfer in a homogeneous and isotropic substance with a heat linear source in its axial axis. For this purpose, the hot wire characterization technique has been used, in order to obtain the temperature distribution as a function of radial distance from the axial axis and time exposure. Also, the solution of the transient heat transport equation for this problem was obtained under appropriate boundary conditions, by means of finite element technique. A comparison between experimental, conventional theoretical model and numerical simulated results is done to demonstrate the utility of the finite element analysis simulation methodology in the investigation of the thermal response of substances.

  1. Major and minor element site occupancies in heated natural forsterite

    SciTech Connect

    Smyth, J.R.; Taftoe, J.

    1982-09-01

    Using a new analytical transmission electron microscopic technique known as CHannelling Enhanced X-ray Emission (CHEXE) spectroscopy, the M-site occupancies of Fe, Ni, Mn, and Ca have been determined in a natural forsteritic olivine (Fo/sub 91/) heat treated at different temperatures. The sample was taken as a single olivine grain from a spinel peridotite inclusion in an alkali basalt and contains 0.36 wt% NiO, 0.07 wt% MnO, and 0.09 wt% CaO. In the non-heat-treated sample, 49.6 at % of the Fe, 97 +/- 5 at % of the Mn in the sample occupy the M1 site. In the present study of samples quenched from different temperatures, the fraction of the Ni present at M1 is 87 +/- 5% (6 days at 300/sup 0/C), 83 +/- 5% (48h at 600/sup 0/C), 83 +/- 5% (45h at 900/sup 0/C) and 80 +/- 5% (24h at 1050/sup 0/C). The authors observed a lesser tendency for Ni to order than postulated by previous workers for Ni-rich olivines. For Mn, typically 15% of the atoms occupy M1 in the heat treated samples. No significant deviation from complete ordering into M2 was observed for Ca. The Fe atoms are completely disordered with 50 +/- 1% at each M-site, except for a weak deviation at 300/sup 0/C with 47.1 +/- 1% at M1. The study indicates that exchange of cations between M-sites may begin as low as 300/sup 0/C. This implies that Ni and Mn distribution in natural olivines may be a useful indicator of cooling rate in rapidly cooled rocks.

  2. Application of fuel cells with heat recovery for integrated utility systems

    NASA Technical Reports Server (NTRS)

    Shields, V.; King, J. M., Jr.

    1975-01-01

    This paper presents the results of a study of fuel cell powerplants with heat recovery for use in an integrated utility system. Such a design provides for a low pollution, noise-free, highly efficient integrated utility. Use of the waste heat from the fuel cell powerplant in an integrated utility system for the village center complex of a new community results in a reduction in resource consumption of 42 percent compared to conventional methods. In addition, the system has the potential of operating on fuels produced from waste materials (pyrolysis and digester gases); this would provide further reduction in energy consumption.

  3. Theoretical studies of transient criticality of irradiated fuel elements

    SciTech Connect

    Barbry, F.; Bonhomme, C.; Hague, P.; Mather, D.J.; Shaw, P.M.

    1987-01-01

    The use of transport flasks containing irradiated fuel is a common event, and their movements are strictly regulated by the national competent authority in order that an acceptable level of control of radiation hazards be maintained. Nonetheless it has been considered prudent to quantify the consequences of a particular hypothetical accident involving a transport package. The particular accident examined assumed that recriticality occurs during the refilling of a flask, and for the Commissariat a l'Energie Atomique (CEA) scenario, for which flasks are transported dry, the hypothetical accident occurs as the flask is slowly lowered into a storage pond. An alternative UK scenario assumes that the flask is being refilled, following breach, by a high-pressure hose. Thus, the consequences of such an accident were estimated by developing computer codes, Chateau by the CEA and Sartemp by the UK Atomic Energy Authority (UKAEA). This and other results show that the hypothetical accident in which a transport flask is brought to critical by the reentry of water gives at most a relatively mild event. In view of the considerably unlikely circumstances and conservative aspects introduced, this result shows that such an accident can be safely contained.

  4. Transposable elements and small RNAs: Genomic fuel for species diversity

    PubMed Central

    Hoffmann, Federico G; McGuire, Liam P; Counterman, Brian A; Ray, David A

    2015-01-01

    While transposable elements (TE) have long been suspected of involvement in species diversification, identifying specific roles has been difficult. We recently found evidence of TE-derived regulatory RNAs in a species-rich family of bats. The TE-derived small RNAs are temporally associated with the burst of species diversification, suggesting that they may have been involved in the processes that led to the diversification. In this commentary, we expand on the ideas that were briefly touched upon in that manuscript. Specifically, we suggest avenues of research that may help to identify the roles that TEs may play in perturbing regulatory pathways. Such research endeavors may serve to inform evolutionary biologists of the ways that TEs have influenced the genomic and taxonomic diversity around us. PMID:26904375

  5. CERAMIC FUEL ELEMENT MATERIAL FOR A NEUTRONIC REACTOR AND METHOD OF FABRICATING SAME

    DOEpatents

    Duckworth, W.H.

    1957-12-01

    This patent relates to ceramic composition, and to neutronic reactor fuel elements formed therefrom. These ceramic elements have high density and excellent strength characteristics and are formed by conventional ceramic casting and sintering at a temperature of about 2700 deg F in a nitrogen atmosphere. The composition consists of silicon carbide, silicon, uranium oxide and a very small percentage of molybdenum. Compositions containing molybdenum are markedly stronger than those lacking this ingredient.

  6. Fuel and cladding nano-technologies based solutions for long life heat-pipe based reactors

    SciTech Connect

    Popa-Simil, L.

    2012-07-01

    A novel nuclear reactor concept, unifying the fuel pipe with fuel tube functionality has been developed. The structure is a quasi-spherical modular reactor, designed for a very long life. The reactor module unifies the fuel tube with the heat pipe and a graphite beryllium reflector. It also uses a micro-hetero-structure that allows the fission products to be removed in the heat pipe flow and deposited in a getter area in the cold zone of the heat pipe, but outside the neutron flux. The reactor operates as a breed and burn reactor - it contains the fuel pipe with a variable enrichment, starting from the hot-end of the pipe, meant to assure the initial criticality, and reactor start-up followed by area with depleted uranium or thorium that get enriched during the consumption of the first part of the enriched uranium. (authors)

  7. Performance research on the compact heat exchange reformer used for high temperature fuel cell systems

    NASA Astrophysics Data System (ADS)

    Zhang, Huisheng; Wang, Lijin; Weng, Shilie; Su, Ming

    Heat exchangers and pre-reformers are critical devices for high temperature fuel cell systems. It is recommended to incorporate a compact heat exchange and the pre-reformer when considering the limited space and cost. The volume-resistance characteristic modeling technique is introduced here to meet the requirement for quick dynamic and real time simulations. The distribution characteristics along the heat exchange reformer length direction are presented, and some key effect factors are studied. The transient behaviors are investigated for different step-change conditions, such as mass flow rate and inlet temperature. This can provide some references and tools for the fuel cell system design and optimization.

  8. Is it possible to model the temperature of the fuel elements in fast reactors using water or air?

    SciTech Connect

    Ushakov, P.A.; Sorokin, A.P.

    1995-12-01

    Thermal stresses caused by temperature nonuniformity around the perimeter of fuel elements in sodium-cooled reactors can cause deformation of the fuel rods. This is the case for fuel elements positioned on the periphery of assemblies and nonuniformly edge-cooled by a coolant, for fuel elements in closely packed assemblies, etc. Extensive investigations of the temperature fields in such fuel elements have been carried out at the Physics and Power Institute of the State Scientific Center, particularly in collaboration with Czech specialists from the Institute of Nuclear Research at Rez. The possibility is now considered of investigating the temperature distribution of fuel elements, for the case when they are closely packed, using test with water and modeling temperature fields when the liquid metals are agitated using tests in air.

  9. Acceptance of spent nuclear fuel in multiple element sealed canisters by the Federal Waste Management System

    SciTech Connect

    Not Available

    1990-03-01

    This report is one of a series of eight prepared by E.R. Johnson Associates, Inc. (JAI) under ORNL's contract with DOE's OCRWM Systems Integration Program and in support of the Annual Capacity Report (ACR) Issue Resolution Process. The report topics relate specifically to the list of high priority technical waste acceptance issues developed jointly by DOE and a utility-working group. JAI performed various analyses and studies on each topic to serve as starting points for further discussion and analysis leading eventually to finalizing the process by which DOE will accept spent fuel and waste into its waste management system. The eight reports are concerned with the conditions under which spent fuel and high level waste will be accepted in the following categories: (1) failed fuel; (2) consolidated fuel and associated structural parts; (3) non-fuel-assembly hardware; (4) fuel in metal storage casks; (5) fuel in multi-element sealed canisters; (6) inspection and testing requirements for wastes; (7) canister criteria; (8) spent fuel selection for delivery; and (9) defense and commercial high-level waste packages. 14 refs., 27 figs.

  10. Northeast Heating Fuel Market The, Assessment and Options

    EIA Publications

    2000-01-01

    In response to the President's request, this study examines how the distillate fuel oil market (and related energy markets) in the Northeast behaved in the winter of 1999-2000, explains the role played by residential, commercial, industrial, and electricity generation sector consumers in distillate fuel oil markets and describes how that role is influenced by the structure of the energy markets in the Northeast

  11. Emission FTIR analyses of thin microscopic patches of jet fuel residue deposited on heated metal surface

    NASA Technical Reports Server (NTRS)

    Lauer, J. L.; Vogel, P.

    1984-01-01

    Deposits laid down in patches on metal strips in a high pressure/high temperature fuel system simulator operated with aerated fuel at varying flow rates were analyzed by emission FTIR in terms of functional groups. Significant differences were found in the spectra and amounts of deposits derived from fuels to which small concentrations of oxygen-, nitrogen-, or sulfur-containing heterocyclics or metal naphthenates were added. The spectra of deposits generated on strips by heating fuels and air in a closed container were very different from those of the flowing fluid deposits. One such closed-container dodecane deposit on silver gave a strong surface-enhanced Raman spectrum.

  12. Finite element methods for integrated aerodynamic heating analysis

    NASA Technical Reports Server (NTRS)

    Morgan, K.; Peraire, J.

    1991-01-01

    This report gives a description of the work which has been undertaken during the second year of a three year research program. The objectives of the program are to produce finite element based procedures for the solution of the large scale practical problems which are of interest to the Aerothermal Loads Branch (ALB) at NASA Langley Research Establishment. The problems of interest range from Euler simulations of full three dimensional vehicle configurations to local analyses of three dimensional viscous laminar flow. Adaptive meshes produced for both steady state and transient problems are to be considered. An important feature of the work is the provision of specialized techniques which can be used at ALB for the development of an integrated fluid/thermal/structural modeling capability.

  13. Radiotoxicity and decay heat power of spent nuclear fuel of VVER type reactors at long-term storage.

    PubMed

    Bergelson, B R; Gerasimov, A S; Tikhomirov, G V

    2005-01-01

    Radiotoxicity and decay heat power of the spent nuclear fuel of VVER-1000 type reactors are calculated during storage time up to 300,000 y. Decay heat power of radioactive waste (radwaste) determines parameters of the heat removal system for the safe storage of spent nuclear fuel. Radiotoxicity determines the radiological hazard of radwaste after its leakage and penetration into the environment.

  14. Liquid fueled external heating system for STM4-120 Stirling engine

    NASA Technical Reports Server (NTRS)

    Meijer, R. J.; Ziph, B.; Godett, T. M.

    1985-01-01

    The STM4-120 Stirling engine, currently under development at Stirling Thermal Motors, Inc., is a 40 kW variable stroke engine with indirect heating using a sodium heat pipe. The engine is functionally separated into an application independent Energy Conversion Unit (ECU) consisting of the Stirling cycle and drive heated by condensing sodium and the application dependent External Heating System (EHS), designed to supply the ECU with sodium vapor heated by the particular energy source, connected by tubes with mechanical couplings. This paper describes an External Heating System for the STM4-120 ECU designed for the combustion of liquid fuel, comprised of a recuperative preheater, a combustion chamber, and a heat exchanger/evaporator where heat is transferred from the flue gas to the sodium causing it to evaporate. The design concept and projected performance are described and discussed.

  15. An Expert System to Analyze Homogeneity in Fuel Element Plates for Research Reactors

    SciTech Connect

    Tolosa, S.C.; Marajofsky, A.

    2004-10-06

    In the manufacturing control of Fuel Element Plates for Research Reactors, one of the problems to be addressed is how to determine the U-density homogeneity in a fuel plate and how to obtain qualitative and quantitative information in order to establish acceptance or rejection criteria for such, as well as carrying out the quality follow-up. This paper is aimed at developing computing software which implements an Unsupervised Competitive Learning Neural Network for the acknowledgment of regions belonging to a digitalized gray scale image. This program is applied to x-ray images. These images are generated when the x-ray beams go through a fuel plate of approximately 60 cm x 8 cm x 0.1 cm thick. A Nuclear Fuel Element for Research Reactors usually consists of 18 to 22 of these plates, positioned in parallel, in an arrangement of 8 x 7 cm. Carrying out the inspection of the digitalized x-ray image, the neural network detects regions with different luminous densities corresponding to U-densities in the fuel plate. This is used in quality control to detect failures and verify acceptance criteria depending on the homogeneity of the plate. This modality of inspection is important as it allows the performance of non-destructive measurements and the automatic generation of the map of U-relative densities of the fuel plate.

  16. Role of fuel upgrading for industry and residential heating

    SciTech Connect

    Merriam, N.W.; Gentile, R.H.

    1995-12-01

    The Koppleman Series C Process is presently being used in pilot plant tests with Wyoming coal to upgrade the Powder River Basin coal containing 30 wt% moisture and having a heating value of 8100 Btu/lb to a product containing less than 1 wt% moisture and having a heating value of 12,200 Btu/lb. This process is described.

  17. High temperature fuel/emitter system for advanced thermionic fuel elements

    NASA Astrophysics Data System (ADS)

    Moeller, Helen H.; Bremser, Albert H.; Gontar, Alexander; Fiviesky, Evgeny

    1997-01-01

    Specialists in space applications are currently focusing on bimodal power systems designed to provide both electric power and thermal propulsion (Kennedy, 1994 and Houts, 1995). Our work showed that thermionics is a viable technology for nuclear bimodal power systems. We demonstrated that materials for a thermionic fuel-emitter combination capable of performing at operating temperatures of 2473 K are not only possible but available. The objective of this work, funded by the US Department of Energy, Office of Space and Defense Power Systems, was to evaluate the compatibility of fuel material consisting of an uranium carbide/tantalum carbide solid solution with an emitter material consisting of a monocrystalline tungsten-niobium alloy. The uranium loading of the fuel material was 70 mole% uranium carbide. The program was successfully accomplished by a B&W/SIA LUTCH team. Its workscope was integrated with tasks being performed at both Babcock & Wilcox, Lynchburg Research Center, Lynchburg, Virginia, and SIA LUTCH, Podolsk, Russia. Samples were fabricated by LUTCH and seven thermal tests were performed in a hydrogen atmosphere. The first preliminary test was performed at 2273 K by LUTCH, and the remaining six tests were performed At B&W. Three tests were performed at 2273 K, two at 2373 K, and the final test at 2473 K. The results showed that the fuel and emitter materials were compatible in the presence of hydrogen. No evidence of liquid formation, dissolution of the uranium carbide from the uranium carbide/tantalum carbide solid solution, or diffusion of the uranium into the monocrystalline tungsten alloy was observed. Among the highlights of the program was the successful export of the fuel samples from Russia and their import into the US by commercial transport. This paper will discuss the technical aspects of this work.

  18. Fossil Fuel and Biomass Burning Effect on Climate--Heating or Cooling?.

    NASA Astrophysics Data System (ADS)

    Kaufman, Yoram J.; Fraser, Robert S.; Mahoney, Robert L.

    1991-06-01

    Emission from burning of fossil fuels and biomass (associated with deforestation) generates a radiative forcing on the atmosphere and a possible climate chaw. Emitted trace gases heat the atmosphere through their greenhouse effect, while particulates formed from emitted SO2 cause cooling by increasing cloud albedos through alteration of droplet size distributions. This paper reviews the characteristics of the cooling effect and applies Twomey's theory to cheek whether the radiative balance favors heating or cooling for the cases of fossil fuel and biomass burning. It is also shown that although coal and oil emit 120 times as many CO2 molecules as SO2 molecules, each SO2 molecule is 50-1100 times more effective in cooling the atmosphere (through the effect of aerosol particles on cloud albedo) than a CO2 molecule is in heating it. Note that this ratio accounts for the large difference in the aerosol (3-10 days) and CO2 (7-100 years) lifetimes. It is concluded, that the cooling effect from coal and oil burning may presently range from 0.4 to 8 times the heating effect. Within this large uncertainty, it is presently more likely that fossil fuel burning causes cooling of the atmosphere rather than heating. Biomass burning associated with deforestation, on the other hand, is more likely to cause heating of the atmosphere than cooling since its aerosol cooling effect is only half that from fossil fuel burning and its heating effect is twice as large. Future increases in coal and oil burning, and the resultant increase in concentration of cloud condensation nuclei, may saturate the cooling effect, allowing the heating effect to dominate. For a doubling in the C02 concentration due to fossil fuel burning, the cooling effect is expected to be 0.1 to 0.3 of the heating effect.

  19. Discrete element method study of fuel relocation and dispersal during loss-of-coolant accidents

    NASA Astrophysics Data System (ADS)

    Govers, K.; Verwerft, M.

    2016-09-01

    The fuel fragmentation, relocation and dispersal (FFRD) during LOCA transients today retain the attention of the nuclear safety community. The fine fragmentation observed at high burnup may, indeed, affect the Emergency Core Cooling System performance: accumulation of fuel debris in the cladding ballooned zone leads to a redistribution of the temperature profile, while dispersal of debris might lead to coolant blockage or to debris circulation through the primary circuit. This work presents a contribution, by discrete element method, towards a mechanistic description of the various stages of FFRD. The fuel fragments are described as a set of interacting particles, behaving as a granular medium. The model shows qualitative and quantitative agreement with experimental observations, such as the packing efficiency in the balloon, which is shown to stabilize at about 55%. The model is then applied to study fuel dispersal, for which experimental parametric studies are both difficult and expensive.

  20. Finite element residual stress analysis of induction heating bended ferritic steel piping

    NASA Astrophysics Data System (ADS)

    Kima, Jong Sung; Kim, Kyoung-Soo; Oh, Young-Jin; Chang, Hyung-Young; Park, Heung-Bae

    2014-10-01

    Recently, there is a trend to apply the piping bended by induction heating process to nuclear power plants. Residual stress can be generated due to thermo-mechanical mechanism during the induction heating bending process. It is well-known that the residual stress has important effect on crack initiation and growth. The previous studies have focused on the thickness variation. In part, some studies were performed for residual stress evaluation of the austenitic stainless steel piping bended by induction heating. It is difficult to find the residual stresses of the ferritic steel piping bended by the induction heating. The study assessed the residual stresses of induction heating bended ferriticsteel piping via finite element analysis. As a result, it was identified that high residual stresses are generated on local outersurface region of the induction heating bended ferritic piping.

  1. Finite element residual stress analysis of induction heating bended ferritic steel piping

    SciTech Connect

    Kima, Jong Sung; Kim, Kyoung-Soo; Oh, Young-Jin; Chang, Hyung-Young; Park, Heung-Bae

    2014-10-06

    Recently, there is a trend to apply the piping bended by induction heating process to nuclear power plants. Residual stress can be generated due to thermo-mechanical mechanism during the induction heating bending process. It is well-known that the residual stress has important effect on crack initiation and growth. The previous studies have focused on the thickness variation. In part, some studies were performed for residual stress evaluation of the austenitic stainless steel piping bended by induction heating. It is difficult to find the residual stresses of the ferritic steel piping bended by the induction heating. The study assessed the residual stresses of induction heating bended ferriticsteel piping via finite element analysis. As a result, it was identified that high residual stresses are generated on local outersurface region of the induction heating bended ferritic piping.

  2. TRISO-Fuel Element Performance Modeling for the Hybrid LIFE Engine with Pu Fuel Blanket

    SciTech Connect

    DeMange, P; Marian, J; Caro, M; Caro, A

    2010-02-18

    A TRISO-coated fuel thermo-mechanical performance study is performed for the hybrid LIFE engine to test the viability of TRISO particles to achieve ultra-high burnup of a weapons-grade Pu blanket. Our methodology includes full elastic anisotropy, time and temperature varying material properties for all TRISO layers, and a procedure to remap the elastic solutions in order to achieve fast fluences up to 30 x 10{sup 25} n {center_dot} m{sup -2} (E > 0.18 MeV). In order to model fast fluences in the range of {approx} 7 {approx} 30 x 10{sup 25} n {center_dot} m{sup -2}, for which no data exist, careful scalings and extrapolations of the known TRISO material properties are carried out under a number of potential scenarios. A number of findings can be extracted from our study. First, failure of the internal pyrolytic carbon (PyC) layer occurs within the first two months of operation. Then, the particles behave as BISO-coated particles, with the internal pressure being withstood directly by the SiC layer. Later, after 1.6 years, the remaining PyC crumbles due to void swelling and the fuel particle becomes a single-SiC-layer particle. Unrestrained by the PyC layers, and at the temperatures and fluences in the LIFE engine, the SiC layer maintains reasonably-low tensile stresses until the end-of-life. Second, the PyC creep constant, K, has a striking influence on the fuel performance of TRISO-coated particles, whose stresses scale almost inversely proportional to K. Obtaining more reliable measurements, especially at higher fluences, is an imperative for the fidelity of our models. Finally, varying the geometry of the TRISO-coated fuel particles results in little differences in the scope of fuel performance. The mechanical integrity of 2-cm graphite pebbles that act as fuel matrix has also been studied and it is concluded that they can reliable serve the entire LIFE burnup cycle without failure.

  3. A bipartite operator interacts with a heat shock element to mediate early meiotic induction of Saccharomyces cerevisiae HSP82

    SciTech Connect

    Szent-Gyorgyi, C.

    1995-12-01

    This report seeks to characterize the activation of meiotic gene in terms of cis-acting DNA elements and their associated factors in Saccharomyces cerevisiae. It was found that vegetative repression and meiotic induction depend on interactions of the promoter-proximal heat shock element with a nearby bipartite repression element. The experiments described explore how two different regulatory pathways induce transcription by stimulating a single classical activation element, a nonspecific heat shock element. 81 refs., 10 figs., 1 tab.

  4. Modeling the burnout of solid polydisperse fuel under the conditions of external heat transfer

    NASA Astrophysics Data System (ADS)

    Skorik, I. A.; Goldobin, Yu. M.; Tolmachev, E. M.; Gal'perin, L. G.

    2013-11-01

    A self-similar burnout mode of solid polydisperse fuel is considered taking into consideration heat transfer between fuel particles, gases, and combustion chamber walls. A polydisperse composition of fuel is taken into account by introducing particle distribution functions by radiuses obtained for the kinetic and diffusion combustion modes. Equations for calculating the temperatures of particles and gases are presented, which are written for particles average with respect to their distribution functions by radiuses taking into account the fuel burnout ratio. The proposed equations take into consideration the influence of fuel composition, air excess factor, and gas recirculation ratio. Calculated graphs depicting the variation of particle and gas temperatures, and the fuel burnout ratio are presented for an anthracite-fired boiler.

  5. Three dimensional coupled simulation of thermomechanics, heat, and oxygen diffusion in UO2 nuclear fuel rods

    SciTech Connect

    Chris Newman; Glen Hansen; Derek Gaston

    2009-07-01

    The simulation of nuclear reactor fuel performance involves complex thermomechanical processes between fuel pellets, made of fissile material, and the protective cladding barrier that surrounds the pellets. This paper examines asubset of phenomena that are important in the development of a predictive capability for fuel performance calculations, focusing on thermomechanics and diffusion within UO2 fuel pellets. In this study, correlations from the literature are used for thermal conductivity, specific heat, and oxygen diffusion. This study develops a three dimensional thermomechanical model fully-coupled to an oxygen diffusion model. Both steady state and transient results are examined to compare this three dimensional model with the literature. Further, this equation system is solved in a parallel, fully-coupled, fully-implicit manner using a preconditioned Jacobian-free Newton Krylov method. Numerical results are presented to explore the efficacy of this approach for examining selected fuel performance problems. INL’s BISON fuels performance code is used to perform this analysis.

  6. Impacts of the Weatherization Assistance Program in fuel-oil heated houses

    SciTech Connect

    Levins, W.P.; Ternes, M.P.

    1994-09-01

    The U.S. DOE Weatherization Assistance Program (WAP) Division requested Oak Ridge National Laboratory to help design and conduct an up-to-date assessment of the Program. The evaluation includes five separate studies; the fuel oil study is the subject of this paper. The primary goal of the fuel-oil study was to provide a region-wide estimate of the space-heating fuel oil saved by the Program in the Northeast during the 1991 and 1992 program years. Other goals include assessing the cost effectiveness of the Program within the fuel-oil submarket, and identifying factors which caused fuel-oil savings to vary. This paper reports only the highlights from the fuel-oil study`s final report.

  7. Finite Element A Posteriori Error Estimation for Heat Conduction. Degree awarded by George Washington Univ.

    NASA Technical Reports Server (NTRS)

    Lang, Christapher G.; Bey, Kim S. (Technical Monitor)

    2002-01-01

    This research investigates residual-based a posteriori error estimates for finite element approximations of heat conduction in single-layer and multi-layered materials. The finite element approximation, based upon hierarchical modelling combined with p-version finite elements, is described with specific application to a two-dimensional, steady state, heat-conduction problem. Element error indicators are determined by solving an element equation for the error with the element residual as a source, and a global error estimate in the energy norm is computed by collecting the element contributions. Numerical results of the performance of the error estimate are presented by comparisons to the actual error. Two methods are discussed and compared for approximating the element boundary flux. The equilibrated flux method provides more accurate results for estimating the error than the average flux method. The error estimation is applied to multi-layered materials with a modification to the equilibrated flux method to approximate the discontinuous flux along a boundary at the material interfaces. A directional error indicator is developed which distinguishes between the hierarchical modeling error and the finite element error. Numerical results are presented for single-layered materials which show that the directional indicators accurately determine which contribution to the total error dominates.

  8. 78 FR 33132 - Quality Verification for Plate-Type Uranium-Aluminum Fuel Elements for Use in Research and Test...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-03

    ... Information The NRC published DG-2005 in the Federal Register on March 22, 2012 (77 FR 16868) for a 60-day... COMMISSION Quality Verification for Plate-Type Uranium-Aluminum Fuel Elements for Use in Research and Test... Verification for Plate-Type Uranium-Aluminum Fuel Elements for Use in Research and Test Reactors.'' This...

  9. Comparison of HEU and LEU Fuel Neutron Spectrum for ATR Fuel Element and ATR Flux-Trap Positions

    SciTech Connect

    G. S. Chang

    2008-10-01

    The Advanced Test Reactor (ATR) is a high power and high neutron flux research reactor operating in the United States. Powered with highly enriched uranium (HEU), the ATR has a maximum thermal power rating of 250 MWth. Because of the high total core power and high neutron flux, the ATR is an ideal candidate for assessing the feasibility of converting an HEU driven reactor to a low-enriched core. An optimized low-enriched uranium (LEU) (U-10Mo) core conversion case, which can meet the project requirements, has been selected. However, LEU contains a significant quantity of high density U-238 (80.3 wt.%), which will harden the neutron spectrum in the core region. Based on the reference ATR HEU and the optimized LEU full core plate-by-plate (PBP) models, the present work investigates and compares the neutron spectra differences in the fuel element (FE), Northeast flux trap (NEFT), Southeast flux trap (SEFT), and East flux trap (EFT) positions. A detailed PBP MCNP ATR core model was developed and validated for fuel cycle burnup comparison analysis. The current ATR core with HEU U 235 enrichment of 93.0wt.% was used as the reference model. Each HEU fuel element contains 19 fuel plates with a fuel meat thickness of 0.508 mm (20 mil). In this work, an optimized LEU (U-10Mo) core conversion case with a nominal fuel meat thickness of 0.330 mm (13 mil) and the U-235 enrichment of 19.7 wt.% was used to calculate the impact of the neutron spectrum in FE and FT positions. MCNP-calculated results show that the neutron spectrum in the LEU FE is slightly harder than in the HEU FE, as expected. However, when neutrons transport through water coolant and beryllium (Be), the neutrons are thermalized to an equilibrium neutron spectrum as a function of water volume fraction in the investigated FT positions. As a result, the neutron spectrum differences of the HEU and LEU in the NEFT, SEFT, and EFT are negligible. To demonstrate that the LEU core fuel cycle performance can meet the

  10. Choices of canisters and elements for the first fuel and canister sludge shipment from K East Basin

    SciTech Connect

    Makenas, B.J.

    1996-03-22

    The K East Basin contains open-top canisters with up to fourteen N Reactor fuel assemblies distributed between the two barrels of each canister. Each fuel assembly generally consists of inner and outer concentric elements fabricated from uranium metal with zirconium alloy cladding. The canisters also contain varying amounts of accumulated sludge. Retrieval of sample fuel elements and associated sludge for examination is scheduled to occur in the near future. The purpose of this document is to specify particular canisters and elements of interest as candidate sources of fuel and sludge to be shipped to laboratories.

  11. The Pacific Northwest residential consumer: Perceptions and preferences of home heating fuels, major appliances, and appliance fuels

    SciTech Connect

    Harkreader, S.A.; Hattrup, M.P.

    1988-09-01

    In 1983 the Bonneville Power Administration contracted with the Pacific Northwest Laboratory (PNL) to conduct an analysis of the marketing environment for Bonneville's conservation activities. Since this baseline residential study, PNL has conducted two follow up market research projects: Phase 2 in 1985, and Phase 3, in 1988. In this report the respondents' perceptions, preferences, and fuel switching possibilities of fuels for home heating and major appliances are examined. To aid in effective target marketing, the report identifies market segments according to consumers' demographics, life-cycle, attitudes, and opinions.

  12. High-temperature ceramic heat exchanger element for a solar thermal receiver

    NASA Technical Reports Server (NTRS)

    Strumpf, H. J.; Kotchick, D. M.; Coombs, M. G.

    1982-01-01

    A study has been completed on the development of a high-temperature ceramic heat exchanger element to be integrated into a solar reciver producing heated air. A number of conceptual designs were developed for heat exchanger elements of differing configuration. These were evaluated with respect to thermal performance, pressure drop, structural integrity, and fabricability. The final design selection identified a finned ceramic shell as the most favorable concept. The ceramic shell is surrounded by a larger metallic shell. The flanges of the two shells are sealed to provide a leak-tight pressure vessel. The ceramic shell is fabricated by an innovative combination of slip casting the receiver walls and precision casting the heat transfer finned plates. The fins are bonded to the shell during firing. Fabrication of a one-half scale demonstrator ceramic receiver has been completed.

  13. The effect of a self-regulating trace heating element on Legionella within a shower.

    PubMed

    Makin, T; Hart, C A

    1991-03-01

    A self-regulating trace heating element was assessed for its ability to maintain a temperature of 50 degrees C in the mixer valve and dead-legs of a shower, and for its effect on legionellas colonizing the shower. The trace heating element maintained a temperature of 50 degrees C +/- 1.5 degrees C in dead-legs when the circulating hot water supply remained above 45 degrees C. Legionellas appeared in a trace heated dead-leg when the temperature of the dead-leg reached 45 degrees C and the hot water supply dropped below this temperature. Legionellas were eradicated or significantly reduced in sections of the shower where a temperature of 50 degrees C was consistently achieved. The mixer valve which was trace heated but not insulated remained colonized with Legionellas. Legionellas were found in shower water throughout the study. PMID:2030099

  14. A Review on the Finite Element Methods for Heat Conduction in Functionally Graded Materials

    NASA Astrophysics Data System (ADS)

    Sharma, R.; Jadon, V. K.; Singh, B.

    2015-01-01

    The review presented in this paper focuses mainly on the application of finite element methods for investigating the effect of heat transfer, variation of temperature and other parameters in the functionally graded materials. Different methods have been investigated for thermal conduction in functionally graded materials. The use of FEM for steady state heat transfer has been addressed in this work. The authors have also discussed the utilization of FEM based shear deformation theories and FEM in combination with other methods for the problems involving complexity of the shape and geometry of functionally graded materials. Finite element methods proved to be effective for the solution of heat transfer problem in functionally graded materials. These methods can be used for steady state heat transfer and as well as for transient state.

  15. Performance of AGR-1 high-temperature reactor fuel during post-irradiation heating tests

    DOE PAGES

    Morris, Robert N.; Baldwin, Charles A.; Demkowicz, Paul A.; Hunn, John D.; Reber, Edward L.

    2016-05-18

    The fission product retention of irradiated low-enriched uranium oxide/uranium carbide tri-structural isotropic (TRISO) fuel compacts from the Advanced Gas-Cooled Reactor 1 (AGR-1) experiment has been evaluated at temperatures of 1600–1800 °C during post-irradiation safety tests. Fourteen compacts (a total of ~58,000 particles) with a burnup ranging from 13.4% to 19.1% fissions per initial metal atom (FIMA) have been tested using dedicated furnace systems at Idaho National Laboratory and Oak Ridge National Laboratory. The release of fission products 110mAg, 134Cs, 137Cs, 154Eu, 155Eu, 90Sr, and 85Kr was monitored while heating the fuel specimens in flowing helium. The behavior of silver, europium,more » and strontium appears to be dominated by inventory that was originally released through intact SiC coating layers during irradiation, but was retained in the compact at the end of irradiation and subsequently released during the safety tests. However, at a test temperature of 1800 °C, the data suggest that release of these elements through intact coatings may become significant after ~100 h. Cesium was very well retained by intact SiC layers, with a fractional release <5 × 10–6 after 300 h at 1600 °C or 100 h at 1800 °C. However, it was rapidly released from individual particles if the SiC layer failed, and therefore the overall cesium release fraction was dominated by the SiC defect and failure fractions in the fuel compacts. No complete TRISO coating layer failures were observed after 300 h at 1600 or 1700 °C, and 85Kr release was very low during the tests (particles with failed SiC, but intact outer pyrocarbon, retained most of their krypton). Krypton release from TRISO failures was only observed after ~210 h at 1800 °C in one compact. As a result, post-safety-test examination of fuel compacts and particles has focused on identifying specific particles from each compact with notable fission product release and detailed analysis of the coating layers

  16. Performance of AGR-1 High-Temperature Reactor Fuel During Post-Irradiation Heating Tests

    SciTech Connect

    Morris, Robert Noel; Baldwin, Charles A; Hunn, John D; Demkowicz, Paul; Reber, Edward

    2014-01-01

    The fission product retention of irradiated low-enriched uranium oxide/uranium carbide TRISO fuel compacts from the AGR-1 experiment has been evaluated at temperatures of 1600 1800 C during post-irradiation safety tests. Fourteen compacts (a total of ~58,000 particles) with a burnup ranging from 13.4 to 19.1% FIMA have been tested using dedicated furnace systems at Idaho National Laboratory and Oak Ridge National Laboratory. The release of fission products 110mAg, 134Cs, 137Cs, 154Eu, 155Eu, 90Sr, and 85Kr was monitored while heating the fuel specimens in flowing helium. The behavior of silver, europium, and strontium appears to be dominated by inventory that was originally released through intact SiC coating layers during irradiation, but was retained in the compact at the end of irradiation and subsequently released during the safety tests. However, at a test temperature of 1800 C, the data suggest that release of these elements through intact coatings may become significant after ~100 h. Cesium was very well retained by intact SiC layers, with a fractional release <5 10-6 after 300 h at 1600 C or 100 h at 1800 C. However, it was rapidly released from individual particles if the SiC layer failed, and therefore the overall cesium release fraction was dominated by the SiC defect and failure fractions in the fuel compacts. No complete TRISO coating layer failures were observed after 300 h at 1600 or 1700 C, and 85Kr release was very low during the tests (particles with breached SiC, but intact outer pyrocarbon, retained most of their krypton). Krypton release from TRISO failures was only observed after ~210 h at 1800 C in one compact. Post-safety-test examination of fuel compacts and particles has focused on identifying specific particles from each compact with notable fission product release and detailed analysis of the coating layers to understand particle behavior.

  17. HEAT2

    SciTech Connect

    Charman, C. )

    1993-08-01

    HEAT2 is a finite element program for the transient and steady-state, thermal analysis of two-dimensional solids. Calculates detailed temperature distributions in MHTGR prismatic fuel elements side reflector and core support blocks. Non-linear effects of time and temperature dependent boundary conditions, and heat source generation and material properties are included with user supplied subroutines NPBC, QAREA, SOURCE, and MPROP.

  18. Integration Of Heat Transfer Coefficient In Glass Forming Modeling With Special Interface Element

    NASA Astrophysics Data System (ADS)

    Moreau, P.; César de Sá, J.; Grégoire, S.; Lochegnies, D.

    2007-05-01

    Numerical modeling of the glass forming processes requires the accurate knowledge of the heat exchange between the glass and the forming tools. A laboratory testing is developed to determine the evolution of the heat transfer coefficient in different glass/mould contact conditions (contact pressure, temperature, lubrication…). In this paper, trials are performed to determine heat transfer coefficient evolutions in experimental conditions close to the industrial blow-and-blow process conditions. In parallel of this work, a special interface element is implemented in a commercial Finite Element code in order to deal with heat transfer between glass and mould for non-meshing meshes and evolutive contact. This special interface element, implemented by using user subroutines, permits to introduce the previous heat transfer coefficient evolutions in the numerical modelings at the glass/mould interface in function of the local temperatures, contact pressures, contact time and kind of lubrication. The blow-and-blow forming simulation of a perfume bottle is finally performed to assess the special interface element performance.

  19. Integration Of Heat Transfer Coefficient In Glass Forming Modeling With Special Interface Element

    SciTech Connect

    Moreau, P.; Gregoire, S.; Lochegnies, D.; Cesar de Sa, J.

    2007-05-17

    Numerical modeling of the glass forming processes requires the accurate knowledge of the heat exchange between the glass and the forming tools. A laboratory testing is developed to determine the evolution of the heat transfer coefficient in different glass/mould contact conditions (contact pressure, temperature, lubrication...). In this paper, trials are performed to determine heat transfer coefficient evolutions in experimental conditions close to the industrial blow-and-blow process conditions. In parallel of this work, a special interface element is implemented in a commercial Finite Element code in order to deal with heat transfer between glass and mould for non-meshing meshes and evolutive contact. This special interface element, implemented by using user subroutines, permits to introduce the previous heat transfer coefficient evolutions in the numerical modelings at the glass/mould interface in function of the local temperatures, contact pressures, contact time and kind of lubrication. The blow-and-blow forming simulation of a perfume bottle is finally performed to assess the special interface element performance.

  20. Natural convection in an enclosure with discrete roughness elements on a vertical heated wall

    SciTech Connect

    Shakerin, S; Bohn, M S; Loehrke, R I

    1986-02-01

    Natural convection flow next to a heated wall with single and repeated, two-dimensional, rectangular roughness elements is studied numerically and experimentally. The objective is to determine how these roughness elements influence heat transfer rates from the wall. Each roughness element consists of a thermally conducting, horizontal cylinder of rectangular cross section attached to the heated, isothermal wall of an enclosure. The height of roughness is on the order of the boundary layer thickness. Dye flow visualization in water confirms the numerical prediction that the steady flow over these elements does not separate. Only at high Rayleigh numbers, when the boundary layer below the roughness is unsteady, is local instantaneous flow reversal observed. Although steady flow reversals near the wall are not predicted or observed, nearly stagnant regions are formed, particularly between closely spaced cylinders. The surface heat flux in these stagnant regions is relatively low, so the total heat transfer rate may be nearly the same as for a smooth wall in spite of the increased surface area.

  1. Characterising the sintering behaviour of pulverised fuel ash using heating stage microscopy

    SciTech Connect

    Adell, V.; Cheeseman, C.R.; Ferraris, M.; Salvo, M.; Smeacetto, F.; Boccaccini, A.R.

    2007-10-15

    Heating stage microscopy was used to investigate the sintering behaviour of pulverised fuel ash (PFA). The effect of chemical composition, heating rate, maximum temperature and metal inclusions on densification was studied. It was confirmed that dimensional changes of PFA powder compacts can be controlled by selecting appropriate conditions of sintering temperature and heating rate. It was also found that the sintering behaviour of PFA can be modified with the addition of metal inclusions. The results suggest that development of pores and microstructure of lightweight aggregates (LWA) manufactured from PFA can be controlled by changing the key sintering parameters such as temperature, time and heating rate.

  2. Laminar and turbulent incompressible fluid flow analysis with heat transfer by the finite element method

    SciTech Connect

    Cochran, R.J.

    1992-01-01

    A study of the finite element method applied to two-dimensional incompressible fluid flow analysis with heat transfer is performed using a mixed Galerkin finite element method with the primitive variable form of the model equations. Four biquadratic, quadrilateral elements are compared in this study--the serendipity biquadratic element with bilinear continuous pressure interpolation (Q2(8)-Q1) and the Lagrangian biquadratic element with bilinear continuous pressure interpolation (Q2-Q1) of the Taylor-Hood form. A modified form of the Q2-Q1 element is also studied. The pressure interpolation is augmented by a discontinuous constant shape function for pressure (Q2-Q1+). The discontinuous pressure element formulation makes use of biquadratic shape functions and a discontinuous linear interpolation of the pressure (Q2-P1(3)). Laminar flow solutions, with heat transfer, are compared to analytical and computational benchmarks for flat channel, backward-facing step and buoyancy driven flow in a square cavity. It is shown that the discontinuous pressure elements provide superior solution characteristics over the continuous pressure elements. Highly accurate heat transfer solutions are obtained and the Q2-P1(3) element is chosen for extension to turbulent flow simulations. Turbulent flow solutions are presented for both low turbulence Reynolds number and high Reynolds number formulations of two-equation turbulence models. The following three forms of the length scale transport equation are studied; the turbulence energy dissipation rate ([var epsilon]), the turbulence frequency ([omega]) and the turbulence time scale (tau). It is shown that the low turbulence Reynolds number model consisting of the K - [tau] transport equations, coupled with the damping functions of Shih and Hsu, provides an optimal combination of numerical stability and solution accuracy for the flat channel flow.

  3. Finite Element Stress Analysis of Spent Nuclear Fuel Disposal Canister in a Deep Geological Repository

    NASA Astrophysics Data System (ADS)

    Kwon, Young Joo; Choi, Jong Won

    This paper presents the finite element stress analysis of a spent nuclear fuel disposal canister to provide basic information for dimensioning the canister and configuration of canister components and consequently to suggest the structural analysis methodology for the disposal canister in a deep geological repository which is nowadays very important in the environmental waste treatment technology. Because of big differences in the pressurized water reactor (PWR) and the Canadian deuterium and uranium reactor (CANDU) fuel properties, two types of canisters are conceived. For manufacturing, operational reasons and standardization, however, both canisters have the same outer diameter and length. The construction type of canisters introduced here is a solid structure with a cast insert and a corrosion resistant overpack. The structural stress analysis is carried out using a finite element analysis code, NISA, and focused on the structural strength of the canister against the expected external pressures due to the swelling of the bentonite buffer and the hydrostatic head. The canister must withstand these large pressure loads. Consequently, canisters presented here contain 4 PWR fuel assemblies and 33×9 CANDU fuel bundles. The outside diameter of the canister for both fuels is 122cm and the cast insert diameter is 112cm. The total length of the canister is 483cm with the lid/bottom and the outer shell of 5cm.

  4. Demand for waste as fuel in the swedish district heating sector: a production function approach.

    PubMed

    Furtenback, Orjan

    2009-01-01

    This paper evaluates inter-fuel substitution in the Swedish district heating industry by analyzing almost all the district heating plants in Sweden in the period 1989-2003, specifically those plants incinerating waste. A multi-output plant-specific production function is estimated using panel data methods. A procedure for weighting the elasticities of factor demand to produce a single matrix for the whole industry is introduced. The price of waste is assumed to increase in response to the energy and CO2 tax on waste-to-energy incineration that was introduced in Sweden on 1 July 2006. Analysis of the plants involved in waste incineration indicates that an increase in the net price of waste by 10% is likely to reduce the demand for waste by 4.2%, and increase the demand for bio-fuels, fossil fuels, other fuels and electricity by 5.5%, 6.0%, 6.0% and 6.0%, respectively.

  5. Discrete Element Model for Simulations of Early-Life Thermal Fracturing Behaviors in Ceramic Nuclear Fuel Pellets

    SciTech Connect

    Hai Huang; Ben Spencer; Jason Hales

    2014-10-01

    A discrete element Model (DEM) representation of coupled solid mechanics/fracturing and heat conduction processes has been developed and applied to explicitly simulate the random initiations and subsequent propagations of interacting thermal cracks in a ceramic nuclear fuel pellet during initial rise to power and during power cycles. The DEM model clearly predicts realistic early-life crack patterns including both radial cracks and circumferential cracks. Simulation results clearly demonstrate the formation of radial cracks during the initial power rise, and formation of circumferential cracks as the power is ramped down. In these simulations, additional early-life power cycles do not lead to the formation of new thermal cracks. They do, however clearly indicate changes in the apertures of thermal cracks during later power cycles due to thermal expansion and shrinkage. The number of radial cracks increases with increasing power, which is consistent with the experimental observations.

  6. An in situ approach to study trace element partitioning in the laser heated diamond anvil cell

    SciTech Connect

    Petitgirard, S.; Mezouar, M.; Borchert, M.; Appel, K.; Liermann, H.-P.; Andrault, D.

    2012-01-15

    Data on partitioning behavior of elements between different phases at in situ conditions are crucial for the understanding of element mobility especially for geochemical studies. Here, we present results of in situ partitioning of trace elements (Zr, Pd, and Ru) between silicate and iron melts, up to 50 GPa and 4200 K, using a modified laser heated diamond anvil cell (DAC). This new experimental set up allows simultaneous collection of x-ray fluorescence (XRF) and x-ray diffraction (XRD) data as a function of time using the high pressure beamline ID27 (ESRF, France). The technique enables the simultaneous detection of sample melting based to the appearance of diffuse scattering in the XRD pattern, characteristic of the structure factor of liquids, and measurements of elemental partitioning of the sample using XRF, before, during and after laser heating in the DAC. We were able to detect elements concentrations as low as a few ppm level (2-5 ppm) on standard solutions. In situ measurements are complimented by mapping of the chemical partitions of the trace elements after laser heating on the quenched samples to constrain the partitioning data. Our first results indicate a strong partitioning of Pd and Ru into the metallic phase, while Zr remains clearly incompatible with iron. This novel approach extends the pressure and temperature range of partitioning experiments derived from quenched samples from the large volume presses and could bring new insight to the early history of Earth.

  7. Experimental study of unsteady heat release in an unstable single element Lean Direct Injection (LDI) gas turbine combustor

    NASA Astrophysics Data System (ADS)

    Lakshmanan, Varun S.

    In an effort to curb emissions from gas turbine engines, many low emission engine concepts have been developed. Among the most promising of these is the LDI (Lean Direct Injection). These systems operate at relatively low equivalence ratios close to blowout and are prone to instabilities. Combustion instabilities can reduce the life of the combustor by causing large pressure fluctuations and enhanced heat release to the walls of the combustor and reduce the efficiency of the engines. The understanding of combustion instabilities is vital to the implementation of such systems. Combustion instabilities are studied in an self-excited single element gas turbine combustor that uses an LDI element for fuel injection at elevetaed chamber pressures. The LDI combustor uses a swirler to ensure mixing of the air and the fuel and expansion of the swirl through a pressure swirl venturi to create a swirl stabilized flame. This project aims to study the heat release modes that occur in the combustor through measurement of light emissions from the flame using photodiodes that are sensitive to wavelengths of light produced by the flame. These are used along with high frequency pressure transducers. The focus is on the flame behavior in the diverging section of the venturi where the swirl is expanded and the flame starts since optic access cannot be obtained in this section. The use of photodiodes also facilitates the study of hydrodynamic modes that occur in the combustor alongside the thermoacoustics. A section which could accommodate the photodiodes was designed and installed on the LDI test rig in the Gas Turbine Cell at Maurice J Zucrow Propulsion Labs at Purdue University. The combustor was tested with this section and dynamic data was obtained from the pressure transducers and the photodiodes for a range of inlet air temperatures and range of equivalence ratios for each inlet air temperature. The dominant instability modes in both sets of data were analyzed and are presented

  8. ELM - A SIMPLE TOOL FOR THERMAL-HYDRAULIC ANALYSIS OF SOLID-CORE NUCLEAR ROCKET FUEL ELEMENTS

    NASA Technical Reports Server (NTRS)

    Walton, J. T.

    1994-01-01

    ELM is a simple computational tool for modeling the steady-state thermal-hydraulics of propellant flow through fuel element coolant channels in nuclear thermal rockets. Written for the nuclear propulsion project of the Space Exploration Initiative, ELM evaluates the various heat transfer coefficient and friction factor correlations available for turbulent pipe flow with heat addition. In the past, these correlations were found in different reactor analysis codes, but now comparisons are possible within one program. The logic of ELM is based on the one-dimensional conservation of energy in combination with Newton's Law of Cooling to determine the bulk flow temperature and the wall temperature across a control volume. Since the control volume is an incremental length of tube, the corresponding pressure drop is determined by application of the Law of Conservation of Momentum. The size, speed, and accuracy of ELM make it a simple tool for use in fuel element parametric studies. ELM is a machine independent program written in FORTRAN 77. It has been successfully compiled on an IBM PC compatible running MS-DOS using Lahey FORTRAN 77, a DEC VAX series computer running VMS, and a Sun4 series computer running SunOS UNIX. ELM requires 565K of RAM under SunOS 4.1, 360K of RAM under VMS 5.4, and 406K of RAM under MS-DOS. Because this program is machine independent, no executable is provided on the distribution media. The standard distribution medium for ELM is one 5.25 inch 360K MS-DOS format diskette. ELM was developed in 1991. DEC, VAX, and VMS are trademarks of Digital Equipment Corporation. Sun4 and SunOS are trademarks of Sun Microsystems, Inc. IBM PC is a registered trademark of International Business Machines. MS-DOS is a registered trademark of Microsoft Corporation.

  9. BWR spent fuel storage cask performance test. Volume 1. Cask handling experience and decay heat, heat transfer, and shielding data

    SciTech Connect

    McKinnon, M.A.; Doman, J.W.; Tanner, J.E.; Guenther, R.J.; Creer, J.M.; King, C.E.

    1986-02-01

    This report documents a heat transfer and shielding performance test conducted on a Ridihalgh, Eggers and Associates REA 2023 boiling water reactor (BWR) spent fuel storage cask. The testing effort consisted of three parts: pretest preparations, performance testing, and post-test activities. Pretest preparations included conducting cask handling dry runs and characterizing BWR spent fuel assemblies from Nebraska Public Power District's Cooper Nuclear Station. The performance test matrix included 14 runs consisting of two loadings, two cask orientations, and three backfill environments. Post-test activities included calorimetry and axial radiation scans of selected fuel assemblies, in-basin sipping of each assembly, crud collection, video and photographic scans, and decontamination of the cask interior and exterior.

  10. Binary Effect of Fly Ash and Palm Oil Fuel Ash on Heat of Hydration Aerated Concrete

    PubMed Central

    Mehmannavaz, Taha; Ismail, Mohammad; Radin Sumadi, Salihuddin; Rafique Bhutta, Muhammad Aamer; Samadi, Mostafa

    2014-01-01

    The binary effect of pulverized fuel ash (PFA) and palm oil fuel ash (POFA) on heat of hydration of aerated concrete was studied. Three aerated concrete mixes were prepared, namely, concrete containing 100% ordinary Portland cement (control sample or Type I), binary concrete made from 50% POFA (Type II), and ternary concrete containing 30% POFA and 20% PFA (Type III). It is found that the temperature increases due to heat of hydration through all the concrete specimens especially in the control sample. However, the total temperature rises caused by the heat of hydration through both of the new binary and ternary concrete were significantly lower than the control sample. The obtained results reveal that the replacement of Portland cement with binary and ternary materials is beneficial, particularly for mass concrete where thermal cracking due to extreme heat rise is of great concern. PMID:24696646

  11. Binary effect of fly ash and palm oil fuel ash on heat of hydration aerated concrete.

    PubMed

    Mehmannavaz, Taha; Ismail, Mohammad; Radin Sumadi, Salihuddin; Rafique Bhutta, Muhammad Aamer; Samadi, Mostafa; Sajjadi, Seyed Mahdi

    2014-01-01

    The binary effect of pulverized fuel ash (PFA) and palm oil fuel ash (POFA) on heat of hydration of aerated concrete was studied. Three aerated concrete mixes were prepared, namely, concrete containing 100% ordinary Portland cement (control sample or Type I), binary concrete made from 50% POFA (Type II), and ternary concrete containing 30% POFA and 20% PFA (Type III). It is found that the temperature increases due to heat of hydration through all the concrete specimens especially in the control sample. However, the total temperature rises caused by the heat of hydration through both of the new binary and ternary concrete were significantly lower than the control sample. The obtained results reveal that the replacement of Portland cement with binary and ternary materials is beneficial, particularly for mass concrete where thermal cracking due to extreme heat rise is of great concern.

  12. Binary effect of fly ash and palm oil fuel ash on heat of hydration aerated concrete.

    PubMed

    Mehmannavaz, Taha; Ismail, Mohammad; Radin Sumadi, Salihuddin; Rafique Bhutta, Muhammad Aamer; Samadi, Mostafa; Sajjadi, Seyed Mahdi

    2014-01-01

    The binary effect of pulverized fuel ash (PFA) and palm oil fuel ash (POFA) on heat of hydration of aerated concrete was studied. Three aerated concrete mixes were prepared, namely, concrete containing 100% ordinary Portland cement (control sample or Type I), binary concrete made from 50% POFA (Type II), and ternary concrete containing 30% POFA and 20% PFA (Type III). It is found that the temperature increases due to heat of hydration through all the concrete specimens especially in the control sample. However, the total temperature rises caused by the heat of hydration through both of the new binary and ternary concrete were significantly lower than the control sample. The obtained results reveal that the replacement of Portland cement with binary and ternary materials is beneficial, particularly for mass concrete where thermal cracking due to extreme heat rise is of great concern. PMID:24696646

  13. A novel boundary element method program for heat transfer analysis of composite materials

    NASA Technical Reports Server (NTRS)

    Singh, K. J.

    1982-01-01

    A boundary element method computer program developed for heat transfer analysis of two dimensional composite structures is described. The program runs on a time share mode and interacts with the user for multirun analysis. During a run, the geometry can be modified interactively by the user as many times as desired by using various options available and the new results printed or plotted. A concept of plotting the results for boundary element method is introduced. The advantage of such a program over the finite element method for simple design problems is demonstrated.

  14. Reduced Toxicity Fuel Satellite Propulsion System Including Catalytic Decomposing Element with Hydrogen Peroxide

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J. (Inventor)

    2002-01-01

    A reduced toxicity fuel satellite propulsion system including a reduced toxicity propellant supply for consumption in an axial class thruster and an ACS class thruster. The system includes suitable valves and conduits for supplying the reduced toxicity propellant to the ACS decomposing element of an ACS thruster. The ACS decomposing element is operative to decompose the reduced toxicity propellant into hot propulsive gases. In addition the system includes suitable valves and conduits for supplying the reduced toxicity propellant to an axial decomposing element of the axial thruster. The axial decomposing element is operative to decompose the reduced toxicity propellant into hot gases. The system further includes suitable valves and conduits for supplying a second propellant to a combustion chamber of the axial thruster, whereby the hot gases and the second propellant auto-ignite and begin the combustion process for producing thrust.

  15. Fusion option to dispose of spent nuclear fuel and transuranic elements

    SciTech Connect

    Gohar, Y.

    2000-02-10

    The fusion option is examined to solve the disposition problems of the spent nuclear fuel and the transuranic elements. The analysis of this report shows that the top rated solution, the elimination of the transuranic elements and the long-lived fission products, can be achieved in a fusion reactor. A 167 MW of fusion power from a D-T plasma for sixty years with an availability factor of 0.75 can transmute all the transuranic elements and the long-lived fission products of the 70,000 tons of the US inventory of spent nuclear fuel generated up to the year 2015. The operating time can be reduced to thirty years with use of 334 MW of fusion power, a system study is needed to define the optimum time. In addition, the fusion solution eliminates the need for a geological repository site, which is a major advantage. Meanwhile, such utilization of the fusion power will provide an excellent opportunity to develop fusion energy for the future. Fusion blankets with a liquid carrier for the transuranic elements can achieve a transmutation rate for the transuranic elements up to 80 kg/MW.y of fusion power with k{sub eff} of 0.98. In addition, the liquid blankets have several advantages relative to the other blanket options. The energy from this transmutation is utilized to produce revenue for the system. Molten salt (Flibe) and lithium-lead eutectic are identified as the most promising liquids for this application, both materials are under development for future fusion blanket concepts. The Flibe molten salt with transuranic elements was developed and used successfully as nuclear fuel for the molten salt breeder reactor in the 1960's.

  16. 40 CFR Table 1 to Subpart Ja of... - Molar Exhaust Volumes and Molar Heat Content of Fuel Gas Constituents

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Molar Exhaust Volumes and Molar Heat... Exhaust Volumes and Molar Heat Content of Fuel Gas Constituents Constituent MEVa dscf/mol MHCb Btu/mol... standard conditions of 68 °F and 1 atmosphere. b MHC = molar heat content (higher heating value basis),...

  17. 40 CFR Table 1 to Subpart Ja of... - Molar Exhaust Volumes and Molar Heat Content of Fuel Gas Constituents

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Molar Exhaust Volumes and Molar Heat... Exhaust Volumes and Molar Heat Content of Fuel Gas Constituents Constituent MEVa dscf/mol MHCb Btu/mol... standard conditions of 68 °F and 1 atmosphere. b MHC = molar heat content (higher heating value basis),...

  18. Finite element procedures for coupled linear analysis of heat transfer, fluid and solid mechanics

    NASA Technical Reports Server (NTRS)

    Sutjahjo, Edhi; Chamis, Christos C.

    1993-01-01

    Coupled finite element formulations for fluid mechanics, heat transfer, and solid mechanics are derived from the conservation laws for energy, mass, and momentum. To model the physics of interactions among the participating disciplines, the linearized equations are coupled by combining domain and boundary coupling procedures. Iterative numerical solution strategy is presented to solve the equations, with the partitioning of temporal discretization implemented.

  19. COYOTE: a finite-element computer program for nonlinear heat-conduction problems

    SciTech Connect

    Gartling, D.K.

    1982-10-01

    COYOTE is a finite element computer program designed for the solution of two-dimensional, nonlinear heat conduction problems. The theoretical and mathematical basis used to develop the code is described. Program capabilities and complete user instructions are presented. Several example problems are described in detail to demonstrate the use of the program.

  20. TOPAZ - a finite element heat conduction code for analyzing 2-D solids

    SciTech Connect

    Shapiro, A.B.

    1984-03-01

    TOPAZ is a two-dimensional implicit finite element computer code for heat conduction analysis. This report provides a user's manual for TOPAZ and a description of the numerical algorithms used. Sample problems with analytical solutions are presented. TOPAZ has been implemented on the CRAY and VAX computers.

  1. 3D finite element model of RF heating: novel nonablative cutaneous therapy

    NASA Astrophysics Data System (ADS)

    Pham, Linda; Pope, Karl A.

    2003-06-01

    This study presents a finite element model of a non-ablative RF tissue heating system for dermatological applications. The Thermage ThermaCool TC System consists of a capacitively coupled treatment tip, handpiece, RF generator, and cryogen delivery system. Various electrode geometries were created to generate uniform thermal profiles at specific depths in the tissue. The optimal thermal treatment depth for a clinical indication is influenced by factors such as tissue thickness for a given anatomical location, the desired target for heating in that tissue, and anesthesia factors. Electrodes of ¼, 1, and 1½cm2 area were evaluated for depth of treatment. A 3D multi-physics finite element model was developed to simulate RF heating in tissue. The program coupled electrical and thermal models to predict the electric field produced and the consequent heating. The electrical portion of the model was verified using an electric field mapping system. The thermal section of the model was confirmed via thermocouple measurements for cooling and infrared imaging measurements for RF heating. The FEM model produced electrical and thermal predictions that were verified with experimental measurements. The finite element model shows significant potential as a predictive R&D tool to assist in RF electrode design and reduce product development time.

  2. Computer modeling of single-cell and multicell thermionic fuel elements

    SciTech Connect

    Dickinson, J.W.; Klein, A.C.

    1996-05-01

    Modeling efforts are undertaken to perform coupled thermal-hydraulic and thermionic analysis for both single-cell and multicell thermionic fuel elements (TFE). The analysis--and the resulting MCTFE computer code (multicell thermionic fuel element)--is a steady-state finite volume model specifically designed to analyze cylindrical TFEs. It employs an interactive successive overrelaxation solution technique to solve for the temperatures throughout the TFE and a coupled thermionic routine to determine the total TFE performance. The calculated results include temperature distributions in all regions of the TFE, axial interelectrode voltages and current densities, and total TFE electrical output parameters including power, current, and voltage. MCTFE-generated results compare experimental data from the single-cell Topaz-II-type TFE and multicell data from the General Atomics 3H5 TFE to benchmark the accuracy of the code methods.

  3. Fabrication of simulated plate fuel elements: Defining role of stress relief annealing

    NASA Astrophysics Data System (ADS)

    Kohli, D.; Rakesh, R.; Sinha, V. P.; Prasad, G. J.; Samajdar, I.

    2014-04-01

    This study involved fabrication of simulated plate fuel elements. Uranium silicide of actual fuel elements was replaced with yttria. The fabrication stages were otherwise identical. The final cold rolled and/or straightened plates, without stress relief, showed an inverse relationship between bond strength and out of plane residual shear stress (τ13). Stress relief of τ13 was conducted over a range of temperatures/times (200-500 °C and 15-240 min) and led to corresponding improvements in bond strength. Fastest τ13 relief was obtained through 300 °C annealing. Elimination of microscopic shear bands, through recovery and partial recrystallization, was clearly the most effective mechanism of relieving τ13.

  4. Fabrication of simulated plate fuel elements: Defining role of out-of-plane residual shear stress

    NASA Astrophysics Data System (ADS)

    Rakesh, R.; Kohli, D.; Sinha, V. P.; Prasad, G. J.; Samajdar, I.

    2014-02-01

    Bond strength and microstructural developments were investigated during fabrication of simulated plate fuel elements. The study involved roll bonding of aluminum-aluminum (case A) and aluminum-aluminum + yttria (Y2O3) dispersion (case B). Case B approximated aluminum-uranium silicide (U3Si2) 'fuel-meat' in an actual plate fuel. Samples after different stages of fabrication, hot and cold rolling, were investigated through peel and pull tests, micro-hardness, residual stresses, electron and micro-focus X-ray diffraction. Measurements revealed a clear drop in bond strength during cold rolling: an observation unique to case B. This was related to significant increase in 'out-of-plane' residual shear stresses near the clad/dispersion interface, and not from visible signatures of microstructural heterogeneities.

  5. Application of Flame-Sprayed Coatings as Heating Elements for Polymer-Based Composite Structures

    NASA Astrophysics Data System (ADS)

    Lopera-Valle, Adrián; McDonald, André

    2015-10-01

    Flame-sprayed nickel-chromium-aluminum-yttrium (NiCrAlY) and nickel-chromium (NiCr) coatings were deposited on fiber-reinforced polymer composites for use as heating elements of structures that were exposed to cold environments. Electrical current was applied to the coatings to increase the surface temperature by way of Joule heating. The surface temperature profiles of the coatings were measured under free and forced convection conditions at different ambient temperatures, ranging from -25 to 23 °C. It was found that at ambient air temperatures below 0 °C, the surface temperature of the coating remained above 0 °C for both the forced and free convection conditions, and there was a nearly homogeneous temperature distribution over the coating surface. This suggests that flame-sprayed coatings could be used as heating elements to mitigate ice accretion on structures, without the presence of areas of localized high temperature.

  6. Hybrid transfinite element modeling/analysis of nonlinear heat conduction problems involving phase change

    NASA Technical Reports Server (NTRS)

    Tamma, Kumar K.; Railkar, Sudhir B.

    1988-01-01

    The present paper describes the applicability of hybrid transfinite element modeling/analysis formulations for nonlinear heat conduction problems involving phase change. The methodology is based on application of transform approaches and classical Galerkin schemes with finite element formulations to maintain the modeling versatility and numerical features for computational analysis. In addition, in conjunction with the above, the effects due to latent heat are modeled using enthalpy formulations to enable a physically realistic approximation to be dealt computationally for materials exhibiting phase change within a narrow band of temperatures. Pertinent details of the approach and computational scheme adapted are described in technical detail. Numerical test cases of comparative nature are presented to demonstrate the applicability of the proposed formulations for numerical modeling/analysis of nonlinear heat conduction problems involving phase change.

  7. Gen Purpose 1-D Finite Element Network Fluid Flow Heat Transfer System Simulator

    1993-08-02

    SAFSIM (System Analysis Flow Simulator) is a FORTRAN computer program to simulate the integrated performance of systems involving fluid mechanics, heat transfer, and reactor dynamics. SAFSIM provides sufficient versatility to allow the engineering simulation of almost any system, from a backyard sprinkler system to a clustered nuclear reactor propulsion system. In addition to versatility, speed and robustness are primary SAFSIM development goals. SAFSIM contains three basic physics modules: (1) a one-dimensional finite element fluid mechanicsmore » module with multiple flow network capability; (2) a one-dimensional finite element structure heat transfer module with multiple convection and radiation exchange capability; and (3) a point reactor dynamics module with reactivity feedback and decay heat capability. SAFSIM can be used for compressible and incompressible, single-phase, multicomponent flow systems.« less

  8. Research on the interfacial behaviors of plate-type dispersion nuclear fuel elements

    NASA Astrophysics Data System (ADS)

    Wang, Qiming; Yan, Xiaoqing; Ding, Shurong; Huo, Yongzhong

    2010-04-01

    The three-dimensional constitutive relations are constructed, respectively, for the fuel particles, the metal matrix and the cladding of dispersion nuclear fuel elements, allowing for the effects of large deformation and thermal-elastoplasticity. According to the constitutive relations, the method of modeling their irradiation behaviors in ABAQUS is developed and validated. Numerical simulations of the interfacial performances between the fuel meat and the cladding are implemented with the developed finite element models for different micro-structures of the fuel meat. The research results indicate that: (1) the interfacial tensile stresses and shear stresses for some cases will increase with burnup, but the relative stresses will decrease with burnup for some micro-structures; (2) at the lower burnups, the interfacial stresses increase with the particle sizes and the particle volume fractions; however, it is not the case at the higher burnups; (3) the particle distribution characteristics distinctly affect the interfacial stresses, and the face-centered cubic case has the best interfacial performance of the three considered cases.

  9. Evaluation of alloys for fuel cell heat exchanges

    NASA Astrophysics Data System (ADS)

    Perkins, R. A.; Vonk, S. J.

    1981-04-01

    The results are presented of an investigation to evaluate the behavior of commercial stainless steels, superalloys, and aluminide coatings in both clean (sulfur-free) and raw (1% H2S) gas representative of the Texaco slagging gasifier atmosphere are 1400 to 18000 F (1033 to 12550 K). The goal was to determine which, if any, of these materials is suitable for use in a high temperature heat exchanger operating on intermediate Btu coal gasification atmospheres. It has been found that none of the commercially available alloys or coatings are suitable for use in the raw (1% H2S) gas, even at temperatures as low as 14000 F (10330 K). Materials that are resistant to attack either have a limited life ( 5000 h) or cannot be fabricated as large size heat exchanger components. It is concluded that structural high temperature alloys must be coated for use in the raw gas and that the best coating or cladding materials are Ni-46Cr (IN671 type alloy) and MCrAl with 25 to 40% Cr and 30 to 40% Al (where M is Ni, Co, or Fe or some combination thereof). Heat exchanger components can be clad with Ni-46Cr but the alloy must be modified to improve its reliability and performance in coal conversion atmospheres.

  10. Concrete shielding housing for receiving and storing a nuclear fuel element container

    SciTech Connect

    Dyck, H.-P.

    1985-07-02

    The invention is directed to a concrete shielding housing for receiving and storing a fuel element container filled with spent nuclear reactor fuel elements. The container is suitable for transport and storage. The clear interior dimensions of the concrete shielding housing are somewhat larger than the outer dimensions of the fuel element container. The concrete shielding housing includes a pallet-type base and in the lower region of the housing there is provided at least one air inlet opening and in the upper region of the housing there is provided at least one air outlet opening. To prevent an uncontrolled conduction of moisture away from the interior of the housing to the ground or to the floor of a storage area or building, there is provided a collection pan arranged under the base plate of the pallet-like base. At least one axial bore extends clear through the base plate of the pallet-like base. With the arrangement of the collection pan, contaminated moisture is collected and prevented from seeping into the ground or floor.

  11. Space shuttle orbit maneuvering engine, reusable thrust chamber program. Task 6: Data dump hot fuel element investigation

    NASA Technical Reports Server (NTRS)

    Nurick, W. H.

    1974-01-01

    An evaluation of reusable thrust chambers for the space shuttle orbit maneuvering engine was conducted. Tests were conducted using subscale injector hot-fire procedures for the injector configurations designed for a regenerative cooled engine. The effect of operating conditions and fuel temperature on combustion chamber performance was determined. Specific objectives of the evaluation were to examine the optimum like-doublet element geometry for operation at conditions consistent with a fuel regeneratively cooled engine (hot fuel, 200 to 250 F) and the sensitivity of the triplet injector element to hot fuels.

  12. 147. EAST END OF LIQUID NITROGEN/HELIUM HEAT EXCHANGER IN FUEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    147. EAST END OF LIQUID NITROGEN/HELIUM HEAT EXCHANGER IN FUEL CONTROL ROOM (215), LSB (BLDG. 751), WITH ASSOCIATED PIPING AND VALVES - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  13. A finite element analysis of the freeze/thaw behavior of external artery heat pipes

    NASA Technical Reports Server (NTRS)

    Lu, X. J.; Peterson, G. P.

    1993-01-01

    A two-dimensional finite element model was used to determine the freeze/thaw characteristics of an external artery heat pipe. During startup, the working fluid, which was located in the liquid channel and the circumferential wall grooves, experienced a phase transformation from a solid to a liquid state. The transient heat conduction equations with moving interfacial conditions were solved using the appropriate initial boundary conditions. The modelling results include the cross-sectional temperature distribution and the interfacial or melt front position as a function of time. A fixed grid approach was adopted in the model for the phase-change process during thawing of frozen working fluid. The interfacial position between the liquid and solid regions was found by balancing the latent heat caused by interfacial movement with the heat addition or extraction at the related grid points.

  14. Multiwalled carbon nanotube/polydimethylsiloxane composite films as high performance flexible electric heating elements

    NASA Astrophysics Data System (ADS)

    Yan, Jing; Jeong, Young Gyu

    2014-08-01

    High performance elastomeric electric heating elements were prepared by incorporating various contents of pristine multiwalled carbon nanotube (MWCNT) in polydimethylsiloxane (PDMS) matrix by using an efficient solution-casting and curing technique. The pristine MWCNTs were identified to be uniformly dispersed in the PDMS matrix and the electrical percolation of MWCNTs was evaluated to be at ˜0.27 wt. %, where the electrical resistivity of the MWCNT/PDMS composite films dropped remarkably. Accordingly, the composite films with higher MWCNT contents above 0.3 wt. % exhibit excellent electric heating performance in terms of temperature response rapidity and electric energy efficiency at constant applied voltages. In addition, the composite films, which were thermally stable up to 250 °C, showed excellent heating-cooling cyclic performance, which was associated with operational stability in actual electric heating applications.

  15. Multiwalled carbon nanotube/polydimethylsiloxane composite films as high performance flexible electric heating elements

    SciTech Connect

    Yan, Jing; Jeong, Young Gyu

    2014-08-04

    High performance elastomeric electric heating elements were prepared by incorporating various contents of pristine multiwalled carbon nanotube (MWCNT) in polydimethylsiloxane (PDMS) matrix by using an efficient solution-casting and curing technique. The pristine MWCNTs were identified to be uniformly dispersed in the PDMS matrix and the electrical percolation of MWCNTs was evaluated to be at ∼0.27 wt. %, where the electrical resistivity of the MWCNT/PDMS composite films dropped remarkably. Accordingly, the composite films with higher MWCNT contents above 0.3 wt. % exhibit excellent electric heating performance in terms of temperature response rapidity and electric energy efficiency at constant applied voltages. In addition, the composite films, which were thermally stable up to 250 °C, showed excellent heating-cooling cyclic performance, which was associated with operational stability in actual electric heating applications.

  16. Modelling of automotive fuel droplet heating and evaporation: mathematical tools and approximations

    NASA Astrophysics Data System (ADS)

    Sazhin, Sergei S.; Qubeissi, Mansour Al

    2016-06-01

    New mathematical tools and approximations developed for the analysis of automotive fuel droplet heating and evaporation are summarised. The approach to modelling biodiesel fuel droplets is based on the application of the Discrete Component Model (DCM), while the approach to modelling Diesel fuel droplets is based on the application of the recently developed multi-dimensional quasi-discrete model. In both cases, the models are applied in combination with the Effective Thermal Conductivity/Effective Diffusivity model and the implementation in the numerical code of the analytical solutions to heat transfer and species diffusion equations inside droplets. It is shown that the approximation of biodiesel fuel by a single component leads to under-prediction of droplet evaporation time by up to 13% which can be acceptable as a crude approximation in some applications. The composition of Diesel fuel was simplified and reduced to only 98 components. The approximation of 98 components of Diesel fuel with 15 quasi-components/components leads to under-prediction of droplet evaporation time by about 3% which is acceptable in most engineering applications. At the same time, the approximation of Diesel fuel by a single component and 20 alkane components leads to a decrease in the evaporation time by about 19%, compared with the case of approximation of Diesel fuel with 98 components. The approximation of Diesel fuel with a single alkane quasi-component (C14.763H31.526) leads to under-prediction of the evaporation time by about 35% which is not acceptable even for qualitative analysis of the process. In the case when n-dodecane is chosen as the single alkane component, the above-mentioned under-prediction increases to about 44%.

  17. Low Mode Control of Cryogenic ICF Fuel Layers Using Infrared Heating

    SciTech Connect

    London, R A; Kozioziemski, B J; Marinak, M M; Kerbel, G D; Bittner, D N

    2005-07-06

    Infrared heating has been demonstrated as an effective technique to smooth solid hydrogen layers inside transparent cryogenic inertial confinement fusion capsules. Control of the first two Legendre modes of the fuel thickness perturbations using two infrared beams injected into a hohlraum was predicted by modeling and experimentally demonstrated. In the current work, we use coupled ray tracing and heat transfer simulations to explore a wider range of control of long scale length asymmetries. We demonstrate several scenarios to control the first four Legendre modes in the fuel layer using four beams. With such a system, it appears possible to smooth both short and long scale length fuel thickness variations in transparent indirect drive inertial confinement fusion targets.

  18. Uncertainty Analysis on Heat Transfer Correlations for RP-1 Fuel in Copper Tubing

    NASA Technical Reports Server (NTRS)

    Driscoll, E. A.; Landrum, D. B.

    2004-01-01

    NASA is studying kerosene (RP-1) for application in Next Generation Launch Technology (NGLT). Accurate heat transfer correlations in narrow passages at high temperatures and pressures are needed. Hydrocarbon fuels, such as RP-1, produce carbon deposition (coke) along the inside of tube walls when heated to high temperatures. A series of tests to measure the heat transfer using RP-1 fuel and examine the coking were performed in NASA Glenn Research Center's Heated Tube Facility. The facility models regenerative cooling by flowing room temperature RP-1 through resistively heated copper tubing. A Regression analysis is performed on the data to determine the heat transfer correlation for Nusselt number as a function of Reynolds and Prandtl numbers. Each measurement and calculation is analyzed to identify sources of uncertainty, including RP-1 property variations. Monte Carlo simulation is used to determine how each uncertainty source propagates through the regression and an overall uncertainty in predicted heat transfer coefficient. The implications of these uncertainties on engine design and ways to minimize existing uncertainties are discussed.

  19. Fuel processing in integrated micro-structured heat-exchanger reactors

    NASA Astrophysics Data System (ADS)

    Kolb, G.; Schürer, J.; Tiemann, D.; Wichert, M.; Zapf, R.; Hessel, V.; Löwe, H.

    Micro-structured fuel processors are under development at IMM for different fuels such as methanol, ethanol, propane/butane (LPG), gasoline and diesel. The target application are mobile, portable and small scale stationary auxiliary power units (APU) based upon fuel cell technology. The key feature of the systems is an integrated plate heat-exchanger technology which allows for the thermal integration of several functions in a single device. Steam reforming may be coupled with catalytic combustion in separate flow paths of a heat-exchanger. Reactors and complete fuel processors are tested up to the size range of 5 kW power output of a corresponding fuel cell. On top of reactor and system prototyping and testing, catalyst coatings are under development at IMM for numerous reactions such as steam reforming of LPG, ethanol and methanol, catalytic combustion of LPG and methanol, and for CO clean-up reactions, namely water-gas shift, methanation and the preferential oxidation of carbon monoxide. These catalysts are investigated in specially developed testing reactors. In selected cases 1000 h stability testing is performed on catalyst coatings at weight hourly space velocities, which are sufficiently high to meet the demands of future fuel processing reactors.

  20. Boundary element method applied to a gas-fired pin-fin-enhanced heat pipe

    SciTech Connect

    Andraka, C.E.; Knorovsky, G.A.; Drewien, C.A.

    1998-02-01

    The thermal conduction of a portion of an enhanced surface heat exchanger for a gas fired heat pipe solar receiver was modeled using the boundary element and finite element methods (BEM and FEM) to determine the effect of weld fillet size on performance of a stud welded pin fin. A process that could be utilized by others for designing the surface mesh on an object of interest, performing a conversion from the mesh into the input format utilized by the BEM code, obtaining output on the surface of the object, and displaying visual results was developed. It was determined that the weld fillet on the pin fin significantly enhanced the heat performance, improving the operating margin of the heat exchanger. The performance of the BEM program on the pin fin was measured (as computational time) and used as a performance comparison with the FEM model. Given similar surface element densities, the BEM method took longer to get a solution than the FEM method. The FEM method creates a sparse matrix that scales in storage and computation as the number of nodes (N), whereas the BEM method scales as N{sup 2} in storage and N{sup 3} in computation.

  1. Impacts of the Weatherization Assistance Program in fuel-oil heated houses

    SciTech Connect

    Levins, W.P.; Ternes, M.P.

    1994-10-01

    In 1990, the US Department of Energy (DOE) initiated a national evaluation of its lowincome Weatherization Assistance Program. This report, which is one of five parts of that evaluation, evaluates the energy savings and cost-effectiveness of the Program as it had been applied to single-family houses heated primarily by fuel-oil. The study was based upon a representative sample (41 local weatherization agencies, 222 weatherized and 115 control houses) from the nine northeastern states during 1991 and 1992 program years. Dwelling-specific and agency-level data on measures installed, costs, and service delivery procedures were collected from the sampled agencies. Space-heating fuel-oil consumption, indoor temperature, and outdoor temperature were monitored at each house. Dwelling characteristics, air-leakage measurements, space-heating system steady-state efficiency measurements, safety inspections, and occupant questionnaires were also collected or performed at each monitored house. We estimate that the Program weatherized a total of 23,400 single-family fuel-oil heated houses in the nine northeastern states during program years 1991 and 1992. Annual fuel-oil savings were calculated using regression techniques to normalize the savings to standard weather conditions. For the northeast region, annual net fuel-oil savings averaged 160 gallons per house, or 17.7% of pre-weatherization consumption. Although indoor temperatures changed in individual houses following weatherization, there was no average change and no significant difference as compared to the control houses; thus, there was no overall indoor temperature takeback effect influencing fuel-oil savings. The weatherization work was performed cost effectively in these houses from the Program perspective, which included both installation costs and overhead and management costs but did not include non-energy benefits (such as employment and environmental).

  2. Study of heat transfer in a 7-element bundle cooled with the upward flow of supercritical Freon-12

    NASA Astrophysics Data System (ADS)

    Richards, Graham

    Experimental data on SuperCritical-Water (SCW) cooled bundles are very limited. Major problems with performing such experiments are: 1) small number of operating SCW experimental setups and 2) difficulties in testing and experimental costs at very high pressures, temperatures and heat fluxes. However, SuperCritical Water-cooled nuclear Reactor (SCWRs) designs cannot be finalized without such data. Therefore, as a preliminary approach experiments in SCW-cooled bare tubes and in bundles cooled with SC modeling fluids can be used. One of the SC modeling fluids typically used is Freon- 12 (R-12) where the critical pressure is 4.136 MPa and the critical temperature is 111.97ºC. These conditions correspond to a critical pressure of 22.064 MPa and critical temperature of 373.95ºC in water. A set of experimental data obtained in a Freon-12 cooled vertical bare bundle at the Institute of Physics and Power Engineering (IPPE, Obninsk, Russia) was analyzed. This set consisted of 20 cases of a vertically oriented 7-element bundle installed in a hexagonal flow channel. To secure the bundle in the flow channel 3 thin spacers were used. The dataset was obtained at equivalent parameters of the proposed SCWR concepts. Data was collected at pressures of about 4.65 MPa for several different combinations of wall and bulk-fluid temperatures that were below, at, or above the pseudocritical temperature. Heat fluxes ranged from 9 kW/m2 to 120 kW/m2 and mass fluxes ranged from 440 kg/m2s to 1320 kg/m2s. Also inlet temperatures ranged from 70ºC -- 120ºC. The test section consisted of fuel elements that were 9.5 mm in diameter with the total heated length of 1 m. Bulk-fluid and wall temperature profiles were recorded using a combination of 8 different thermocouples. The data was analyzed with respect to its temperature profile and heat transfer coefficient along the heated length of the test section. In a previous study it was confirmed that there is the existence of three distinct

  3. A new hybrid transfinite element computational methodology for applicability to conduction/convection/radiation heat transfer

    NASA Technical Reports Server (NTRS)

    Tamma, Kumar K.; Railkar, Sudhir B.

    1988-01-01

    This paper describes new and recent advances in the development of a hybrid transfinite element computational methodology for applicability to conduction/convection/radiation heat transfer problems. The transfinite element methodology, while retaining the modeling versatility of contemporary finite element formulations, is based on application of transform techniques in conjunction with classical Galerkin schemes and is a hybrid approach. The purpose of this paper is to provide a viable hybrid computational methodology for applicability to general transient thermal analysis. Highlights and features of the methodology are described and developed via generalized formulations and applications to several test problems. The proposed transfinite element methodology successfully provides a viable computational approach and numerical test problems validate the proposed developments for conduction/convection/radiation thermal analysis.

  4. Heat transfer analysis of fuel assemblies in a heterogeneous gas core nuclear rocket

    NASA Technical Reports Server (NTRS)

    Watanabe, Yoichi; Appelbaum, Jacob; Diaz, Nils; Maya, Isaac

    1991-01-01

    Heat transfer problems of a heterogeneous gaseous core nuclear rocket were studied. The reactor core consists of 1.5-m long hexagonal fuel assemblies filled with pressurized uranium tetrafluoride (UF4) gas. The fuel gas temperature ranges from 3500 to 7000 K at a nominal operating condition of 40 atm. Each fuel assembly has seven coolant tubes, through which hydrogen propellant flows. The propellant temperature is not constrained by the fuel temperature but by the maximum temperature of the graphite coolant tube. For a core achieving a fission power density of 1000 MW/cu m, the propellant core exit temperature can be as high as 3200 K. The physical size of a 1250 MW gaseous core nuclear rocket is comparable with that of a NERVA-type solid core nuclear rocket. The engine can deliver a specific impulse of 1020 seconds and a thrust of 330 kN.

  5. Investigation of Instabilities and Heat Transfer Phenomena in Supercritical Fuels at High Heat Flux and Temperatures

    NASA Technical Reports Server (NTRS)

    Linne, Diane L.; Meyer, Michael L.; Braun, Donald C.; Keller, Dennis J.

    2000-01-01

    A series of heated tube experiments was performed to investigate fluid instabilities that occur during heating of supercritical fluids. In these tests, JP-7 flowed vertically through small diameter tubes at supercritical pressures. Test section heated length, diameter, mass flow rate, inlet temperature, and heat flux were varied in an effort to determine the range of conditions that trigger the instabilities. Heat flux was varied up to 4 BTU/sq in./s, and test section wall temperatures reached as high as 1950 F. A statistical model was generated to explain the trends and effects of the control variables. The model included no direct linear effect of heat flux on the occurrence of the instabilities. All terms involving inlet temperature were negative, and all terms involving mass flow rate were positive. Multiple tests at conditions that produced instabilities provided inconsistent results. These inconsistencies limit the use of the model as a predictive tool. Physical variables that had been previously postulated to control the onset of the instabilities, such as film temperature, velocity, buoyancy, and wall-to-bulk temperature ratio, were evaluated here. Film temperatures at or near critical occurred during both stable and unstable tests. All tests at the highest velocity were stable, but there was no functional relationship found between the instabilities and velocity, or a combination of velocity and temperature ratio. Finally, all of the unstable tests had significant buoyancy at the inlet of the test section, but many stable tests also had significant buoyancy forces.

  6. Radiotoxicity and decay heat power of spent nuclear fuel of VVER type reactors at long-term storage.

    PubMed

    Bergelson, B R; Gerasimov, A S; Tikhomirov, G V

    2005-01-01

    Radiotoxicity and decay heat power of the spent nuclear fuel of VVER-1000 type reactors are calculated during storage time up to 300,000 y. Decay heat power of radioactive waste (radwaste) determines parameters of the heat removal system for the safe storage of spent nuclear fuel. Radiotoxicity determines the radiological hazard of radwaste after its leakage and penetration into the environment. PMID:16381764

  7. Electrolyser and fuel cells, key elements for energy and life support

    NASA Astrophysics Data System (ADS)

    Bockstahler, Klaus; Funke, Helmut; Lucas, Joachim

    Both, Electrolyser and Fuel Cells are key elements for regenerative energy and life support systems. Electrolyser technology is originally intended for oxygen production in manned space habitats and in submarines, through splitting water into hydrogen and oxygen. Fuel cells serve for energy production through the reaction, triggered in the presence of an electrolyte, between a fuel and an oxidant. Now combining both technologies i.e. electrolyser and fuel cell makes it a Regenerative Fuel Cell System (RFCS). In charge mode, i.e. with energy supplied e.g. by solar cells, the electrolyser splits water into hydrogen and oxygen being stored in tanks. In discharge mode, when power is needed but no energy is available, the stored gases are converted in the fuel cell to generate electricity under the formation of water that is stored in tanks. Rerouting the water to the electrolyser makes it a closed-loop i.e. regenerative process. Different electrolyser and fuel cell technologies are being evolved. At Astrium emphasis is put on the development of an RFCS comprised of Fixed Alkaline Electrolyser (FAE) and Fuel Cell (AFC) as such technology offers a high electrical efficiency and thus reduced system weight, which is important in space applications. With increasing power demand and increasing discharge time an RFCS proves to be superior to batteries. Since the early technology development multiple design refinements were done at Astrium, funded by the European Space Agency ESA and the German National Agency DLR as well as based on company internal R and T funding. Today a complete RFCS energy system breadboard is established and the operational behavior of the system is being tested. In parallel the electrolyser itself is subject to design refinement and testing in terms of oxygen production in manned space habitats. In addition essential features and components for process monitoring and control are being developed. The present results and achievements and the dedicated

  8. Modeling Cladding-Coolant Heat Transfer of High-Burnup Fuel During RIA

    SciTech Connect

    Wenfeng Liu; Kazimi, Mujid S.

    2006-07-01

    This paper describes a model for the cladding-coolant heat transfer of high burnup fuel during a Reactivity Initiated Accident (RIA) which is implemented in the fuel performance code FRAPTRAN 1.2. The minimum stable film boiling temperature, affected by the subcooling and the clad oxidation, is modeled by a modified Henry correlation. This accounts for the effects of thermal properties of the cladding surface on the transient temperature drop during liquid-solid contact. The transition boiling regime is described as the interpolation of the heat flux between two anchor points on the boiling curve: the Critical Heat Flux (CHF) and minimum stable film boiling. The CHF correlation is based on the Zuber hydrodynamic model multiplied by a subcooling factor. Frederking correlation is chosen to model the film boiling regime. The heat conduction through the oxide layer of the cladding surface of high burnup fuel is calculated by solving heat conduction equations with thermal properties of zirconia taken from MATPRO. This model is validated in the FRAPTRAN code for test cases of both high burnup and fresh test fuel rods including the burnup level (0--56 MW d/kg), peak fuel enthalpy deposit (70--190 cal/g), degree of subcooling (0--80 deg. C), and extent of oxidation (0--25 micron). The modified code demonstrates the capability of differentiating between the departure from nucleate boiling (DNB) and none-DNB cases. The predicted peak cladding temperature (PCT) and duration of DNB achieves generally good agreement with the experimental data. It is found that the cladding surface oxidation of high burnup fuel causes an early rewetting of cladding or suppresses DNB due to two factors: 1) Thick zirconia layer may delay the heat conducted to the surface while keeping the surface heat transfer in the most effective nucleate boiling regime. 2) The transient liquid-solid contact resulting from vapor breaking down would cause a lower interface temperature for an oxidized surface

  9. COYOTE II - a finite element computer program for nonlinear heat conduction problems. Part I - theoretical background

    SciTech Connect

    Gartling, D.K.; Hogan, R.E.

    1994-10-01

    The theoretical and numerical background for the finite element computer program, COYOTE II, is presented in detail. COYOTE II is designed for the multi-dimensional analysis of nonlinear heat conduction problems and other types of diffusion problems. A general description of the boundary value problems treated by the program is presented. The finite element formulation and the associated numerical methods used in COYOTE II are also outlined. Instructions for use of the code are documented in SAND94-1179; examples of problems analyzed with the code are provided in SAND94-1180.

  10. Emulsions of crude glycerin from biodiesel processing with fuel oil for industrial heating.

    PubMed

    Mize, Hannah E; Lucio, Anthony J; Fhaner, Cassie J; Pratama, Fredy S; Robbins, Lanny A; Karpovich, David S

    2013-02-13

    There is considerable interest in using crude glycerin from biodiesel production as a heating fuel. In this work crude glycerin was emulsified into fuel oil to address difficulties with ignition and sustained combustion. Emulsions were prepared with several grades of glycerin and two grades of fuel oil using direct and phase inversion emulsification. Our findings reveal unique surfactant requirements for emulsifying glycerin into oil; these depend on the levels of several contaminants, including water, ash, and components in MONG (matter organic non-glycerin). A higher hydrophile-lipophile balance was required for a stable emulsion of crude glycerin in fuel oil compared to water in fuel oil. The high concentration of salts from biodiesel catalysts generally hindered emulsion stability. Geometric close-packing of micelles was carefully balanced to mechanically stabilize emulsions while also enabling low viscosity for pumping and fuel injection. Phase inversion emulsification produced more stable emulsions than direct emulsification. Emulsions were tested successfully as fuel for a waste oil burner.

  11. Potential for improvement in high heat flux HyperVapotron element performance using nanofluids

    NASA Astrophysics Data System (ADS)

    Sergis, A.; Hardalupas, Y.; Barrett, T. R.

    2013-11-01

    HyperVapotron (HV) elements have been used extensively as high heat flux beam stopping components in nuclear fusion research facilities. These water-cooled heat exchangers use a boiling heat transfer mechanism and so are inherently limited by their critical heat flux (CHF). The use of a nanofluid as the coolant, instead of water, promises to enhance the heat transfer performance of the HV and increase the CHF by a factor of 2 or 3, which would lead to a step-change improvement in the power handling capability. This paper reports on computational and experimental analyses which have indicated mechanisms for the enhanced thermal performance of nanofluids. A molecular dynamics simulation code has been developed which has identified heat transfer augmentation mechanisms that depart from classical thermodynamics associated with the presence of nanoparticles. In addition, an experiment has been conducted which uses particle image velocimetry to measure the flow field in a full-scale HV. Past studies have yielded qualitative experimental results, but the measurements reported here provide quantitative data to aid the understanding of the initial flow field inside the HV (i.e., before a heat flux is applied). Further, the experiment is conducted using both water and Al2O3-water nanofluid as the flow medium. Thus, these velocity measurements offer a first indication for potentially enhanced heat transfer in HV devices when nanofluids are used as the coolant. The improved understanding of the HV flow regime and the cooling advantage of nanofluids could assist the design of advanced high heat flux components for future fusion machines.

  12. Uncertainty analysis of steady state incident heat flux measurements in hydrocarbon fuel fires.

    SciTech Connect

    Nakos, James Thomas

    2005-12-01

    The objective of this report is to develop uncertainty estimates for three heat flux measurement techniques used for the measurement of incident heat flux in a combined radiative and convective environment. This is related to the measurement of heat flux to objects placed inside hydrocarbon fuel (diesel, JP-8 jet fuel) fires, which is very difficult to make accurately (e.g., less than 10%). Three methods will be discussed: a Schmidt-Boelter heat flux gage; a calorimeter and inverse heat conduction method; and a thin plate and energy balance method. Steady state uncertainties were estimated for two types of fires (i.e., calm wind and high winds) at three times (early in the fire, late in the fire, and at an intermediate time). Results showed a large uncertainty for all three methods. Typical uncertainties for a Schmidt-Boelter gage ranged from {+-}23% for high wind fires to {+-}39% for low wind fires. For the calorimeter/inverse method the uncertainties were {+-}25% to {+-}40%. The thin plate/energy balance method the uncertainties ranged from {+-}21% to {+-}42%. The 23-39% uncertainties for the Schmidt-Boelter gage are much larger than the quoted uncertainty for a radiative only environment (i.e ., {+-}3%). This large difference is due to the convective contribution and because the gage sensitivities to radiative and convective environments are not equal. All these values are larger than desired, which suggests the need for improvements in heat flux measurements in fires.

  13. Fuel Cell Power Model Elucidates Life-Cycle Costs for Fuel Cell-Based Combined Heat, Hydrogen, and Power (CHHP) Production Systems (Fact Sheet)

    SciTech Connect

    Not Available

    2010-11-01

    This fact sheet describes NREL's accomplishments in accurately modeling costs for fuel cell-based combined heat, hydrogen, and power systems. Work was performed by NREL's Hydrogen Technologies and Systems Center.

  14. Experience with failed LMR oxide fuel element performance in European fast reactors

    NASA Astrophysics Data System (ADS)

    Plitz, H.; Crittenden, G. C.; Languille, A.

    1993-09-01

    The performance of failed fuel has great significance for the safe and economic operation of LMR's, and considerable experience has accrued from experimental defect pin irradiations and naturally occurring failures in European test and prototype reactors. To data 60 natural fuel element failures have been recorded in PFR, Phénix and KNK II, 41 with exposed fuel and 19 as gas leakers. The various failures occurred during all stages of pin lifetimes, i.e. at the very beginning (0.3 at% burn-up) as well as at medium and at very high burn-up. The present experience extends up to 190 GWd/t and up to 135 dpaNRT. Based on the experience we can state: (i) Even large defects at end-of-life pins resulted in limited fuel loss (ii) No pin-to-pin failure propagation has been observed (iii) The reaction produces formed by the chemical reaction sodium/mixed oxide and the kinetics act beneficially and may protect open cracks. For the European Fast Reactor (EFR) project additional work is being performed, with regard to the EFR requirements of pin design (covering normal operation and incidental events) and the behaviour of failed pins under storage conditions.

  15. Special considerations on operating a fuel cell power plant using natural gas with marginal heating value

    SciTech Connect

    Moses, L. Ng; Chien-Liang Lin; Ya-Tang Cheng

    1996-12-31

    In realizing new power generation technologies in Taiwan, a phosphoric acid fuel cell power plant (model PC2513, ONSI Corporation) has been installed in the premises of the Power Research Institute of the Taiwan Power Company in Taipei County of Taiwan. The pipeline gas supplying to the site of this power plant has a high percentage of carbon dioxide and thus a slightly lower heating value than that specified by the manufacturer. Because of the lowering of heating value of input gas, the highest Output power from the power plant is understandably less than the rated power of 200 kW designed. Further, the transient response of the power plant as interrupted from the Grid is also affected. Since this gas is also the pipeline gas supplying to the heavily populated Taipei Municipal area, it is conceivable that the success of the operations of fuel cells using this fuel is of vital importance to the promotion of the use of this power generation technology in Taiwan. Hence, experiments were set up to assess the feasibility of this fuel cell power plant using the existing pipeline gas in this part of Taiwan where fuel cells would most likely find useful.

  16. A p-version finite element method for steady incompressible fluid flow and convective heat transfer

    NASA Technical Reports Server (NTRS)

    Winterscheidt, Daniel L.

    1993-01-01

    A new p-version finite element formulation for steady, incompressible fluid flow and convective heat transfer problems is presented. The steady-state residual equations are obtained by considering a limiting case of the least-squares formulation for the transient problem. The method circumvents the Babuska-Brezzi condition, permitting the use of equal-order interpolation for velocity and pressure, without requiring the use of arbitrary parameters. Numerical results are presented to demonstrate the accuracy and generality of the method.

  17. Natural element method for radiative heat transfer in a semitransparent medium with irregular geometries

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Yi, Hong-Liang; Tan, He-Ping

    2013-05-01

    This paper develops a numerical solution to the radiative heat transfer problem coupled with conduction in an absorbing, emitting and isotropically scattering medium with the irregular geometries using the natural element method (NEM). The walls of the enclosures, having temperature and mixed boundary conditions, are considered to be opaque, diffuse as well as gray. The NEM as a meshless method is a new numerical scheme in the field of computational mechanics. Different from most of other meshless methods such as element-free Galerkin method or those based on radial basis functions, the shape functions used in NEM are constructed by the natural neighbor interpolations, which are strictly interpolant and the essential boundary conditions can be imposed directly. The natural element solutions in dealing with the coupled heat transfer problem for the mixed boundary conditions have been validated by comparison with those from Monte Carlo method (MCM) generated by the authors. For the validation of the NEM solution to radiative heat transfer in the semicircular medium with an inner circle, the results by NEM have been compared with those reported in the literatures. For pure radiative transfer, the upwind scheme is employed to overcome the oscillatory behavior of the solutions in some conditions. The steady state and transient heat transfer problem combined with radiation and conduction in the semicircular enclosure with an inner circle are studied. Effects of various parameters such as the extinction coefficient, the scattering albedo, the conduction-radiation parameter and the boundary emissivity are analyzed on the radiative and conductive heat fluxes and transient temperature distributions.

  18. Selective Catalytic Oxidation of Hydrogen Sulfide to Elemental Sulfur from Coal-Derived Fuel Gases

    SciTech Connect

    Gardner, Todd H.; Berry, David A.; Lyons, K. David; Beer, Stephen K.; Monahan, Michael J.

    2001-11-06

    The development of low cost, highly efficient, desulfurization technology with integrated sulfur recovery remains a principle barrier issue for Vision 21 integrated gasification combined cycle (IGCC) power generation plants. In this plan, the U. S. Department of Energy will construct ultra-clean, modular, co-production IGCC power plants each with chemical products tailored to meet the demands of specific regional markets. The catalysts employed in these co-production modules, for example water-gas-shift and Fischer-Tropsch catalysts, are readily poisoned by hydrogen sulfide (H{sub 2}S), a sulfur contaminant, present in the coal-derived fuel gases. To prevent poisoning of these catalysts, the removal of H{sub 2}S down to the parts-per-billion level is necessary. Historically, research into the purification of coal-derived fuel gases has focused on dry technologies that offer the prospect of higher combined cycle efficiencies as well as improved thermal integration with co-production modules. Primarily, these concepts rely on a highly selective process separation step to remove low concentrations of H{sub 2}S present in the fuel gases and produce a concentrated stream of sulfur bearing effluent. This effluent must then undergo further processing to be converted to its final form, usually elemental sulfur. Ultimately, desulfurization of coal-derived fuel gases may cost as much as 15% of the total fixed capital investment (Chen et al., 1992). It is, therefore, desirable to develop new technology that can accomplish H{sub 2}S separation and direct conversion to elemental sulfur more efficiently and with a lower initial fixed capital investment.

  19. Functional conservation of cis-regulatory elements of heat-shock genes over long evolutionary distances.

    PubMed

    He, Zhengying; Eichel, Kelsie; Ruvinsky, Ilya

    2011-01-01

    Transcriptional control of gene regulation is an intricate process that requires precise orchestration of a number of molecular components. Studying its evolution can serve as a useful model for understanding how complex molecular machines evolve. One way to investigate evolution of transcriptional regulation is to test the functions of cis-elements from one species in a distant relative. Previous results suggested that few, if any, tissue-specific promoters from Drosophila are faithfully expressed in C. elegans. Here we show that, in contrast, promoters of fly and human heat-shock genes are upregulated in C. elegans upon exposure to heat. Inducibility under conditions of heat shock may represent a relatively simple "on-off" response, whereas complex expression patterns require integration of multiple signals. Our results suggest that simpler aspects of regulatory logic may be retained over longer periods of evolutionary time, while more complex ones may be diverging more rapidly.

  20. Spectral element-Fourier method for unsteady conjugate heat transfer in complex geometry flows

    NASA Astrophysics Data System (ADS)

    Amon, Cristina H.

    1995-04-01

    A spectral-element Fourier method (SEFM) is presented for the direct numerical simulation of forced convective heat transfer and conjugate conduction/convection in transitional internal flows in complex geometries. The SEFM is employed for the spatial discretization of the unsteady, incompressible, three-dimensional Navier-Stokes and energy equations. The resulting discrete equations are solved by a semi-implicit method in time treating explicitly the convection operator and implicitly the remaining pressure and viscous contributions. This methodology is illustrated by performing direct numerical simulations to investigate forced convective heat transfer in supercritical self-sustained oscillatory flows and conjugate effects in multimaterial domains. Highly unsteady flows in complex geometries are considered, including modified channels with periodic inhomogeneities such as spanwise rectangular and triangular grooves encountered in electronic equipment and compact heat exchangers.

  1. Epigenetic regulation of repetitive elements is attenuated by prolonged heat stress in Arabidopsis.

    PubMed

    Pecinka, Ales; Dinh, Huy Q; Baubec, Tuncay; Rosa, Marisa; Lettner, Nicole; Mittelsten Scheid, Ortrun

    2010-09-01

    Epigenetic factors determine responses to internal and external stimuli in eukaryotic organisms. Whether and how environmental conditions feed back to the epigenetic landscape is more a matter of suggestion than of substantiation. Plants are suitable organisms with which to address this question due to their sessile lifestyle and diversification of epigenetic regulators. We show that several repetitive elements of Arabidopsis thaliana that are under epigenetic regulation by transcriptional gene silencing at ambient temperatures and upon short term heat exposure become activated by prolonged heat stress. Activation can occur without loss of DNA methylation and with only minor changes to histone modifications but is accompanied by loss of nucleosomes and by heterochromatin decondensation. Whereas decondensation persists, nucleosome loading and transcriptional silencing are restored upon recovery from heat stress but are delayed in mutants with impaired chromatin assembly functions. The results provide evidence that environmental conditions can override epigenetic regulation, at least transiently, which might open a window for more permanent epigenetic changes. PMID:20876829

  2. Combustion instability and active control: Alternative fuels, augmentors, and modeling heat release

    NASA Astrophysics Data System (ADS)

    Park, Sammy Ace

    Experimental and analytical studies were conducted to explore thermo-acoustic coupling during the onset of combustion instability in various air-breathing combustor configurations. These include a laboratory-scale 200-kW dump combustor and a 100-kW augmentor featuring a v-gutter flame holder. They were used to simulate main combustion chambers and afterburners in aero engines, respectively. The three primary themes of this work includes: 1) modeling heat release fluctuations for stability analysis, 2) conducting active combustion control with alternative fuels, and 3) demonstrating practical active control for augmentor instability suppression. The phenomenon of combustion instabilities remains an unsolved problem in propulsion engines, mainly because of the difficulty in predicting the fluctuating component of heat release without extensive testing. A hybrid model was developed to describe both the temporal and spatial variations in dynamic heat release, using a separation of variables approach that requires only a limited amount of experimental data. The use of sinusoidal basis functions further reduced the amount of data required. When the mean heat release behavior is known, the only experimental data needed for detailed stability analysis is one instantaneous picture of heat release at the peak pressure phase. This model was successfully tested in the dump combustor experiments, reproducing the correct sign of the overall Rayleigh index as well as the remarkably accurate spatial distribution pattern of fluctuating heat release. Active combustion control was explored for fuel-flexible combustor operation using twelve different jet fuels including bio-synthetic and Fischer-Tropsch types. Analysis done using an actuated spray combustion model revealed that the combustion response times of these fuels were similar. Combined with experimental spray characterizations, this suggested that controller performance should remain effective with various alternative fuels

  3. Convective Heat Transfer with and without Film Cooling in High Temperature, Fuel Rich and Lean Environments

    NASA Astrophysics Data System (ADS)

    Greiner, Nathan J.

    Modern turbine engines require high turbine inlet temperatures and pressures to maximize thermal efficiency. Increasing the turbine inlet temperature drives higher heat loads on the turbine surfaces. In addition, increasing pressure ratio increases the turbine coolant temperature such that the ability to remove heat decreases. As a result, highly effective external film cooling is required to reduce the heat transfer to turbine surfaces. Testing of film cooling on engine hardware at engine temperatures and pressures can be exceedingly difficult and expensive. Thus, modern studies of film cooling are often performed at near ambient conditions. However, these studies are missing an important aspect in their characterization of film cooling effectiveness. Namely, they do not model effect of thermal property variations that occur within the boundary and film cooling layers at engine conditions. Also, turbine surfaces can experience significant radiative heat transfer that is not trivial to estimate analytically. The present research first computationally examines the effect of large temperature variations on a turbulent boundary layer. Subsequently, a method to model the effect of large temperature variations within a turbulent boundary layer in an environment coupled with significant radiative heat transfer is proposed and experimentally validated. Next, a method to scale turbine cooling from ambient to engine conditions via non-dimensional matching is developed computationally and the experimentally validated at combustion temperatures. Increasing engine efficiency and thrust to weight ratio demands have driven increased combustor fuel-air ratios. Increased fuel-air ratios increase the possibility of unburned fuel species entering the turbine. Alternatively, advanced ultra-compact combustor designs have been proposed to decrease combustor length, increase thrust, or generate power for directed energy weapons. However, the ultra-compact combustor design requires a

  4. The study on the heat transfer characteristics of oxygen fuel combustion boiler

    NASA Astrophysics Data System (ADS)

    Wu, Haibo; Liu, Zhaohui; Liao, Haiyan

    2016-10-01

    According to 350MW and 600MW boilers, under oxygen fuel condition, through the reasonable control of the primary and secondary flow and the correct option and revision of mathematical model, the temperature distribution, heat flux distribution and absorption heat distribution, etc. was obtained which compared with those under air condition. Through calculation, it is obtained that the primary and secondary flow mixed well, good tangentially fired combustion in furnace was formed, the temperature under air condition obviously higher than the temperature under O26 condition. The adiabatic flame temperature of wet cycle was slightly higher than that of dry cycle. The maximum heat load appeared on the waterwall around the burner area. The heat load gradually decreased along the furnace height up and down in burner area. The heat absorption capacity of the furnace under O26 was lower than that under the air condition. The heat absorption capacity of the platen heating surface under O26 was equal to that under air condition. And the heat absorbing capacity of waterwall under O26 was about7%~12% less than that under air condition.

  5. A high temperature ceramic heat exchanger element for a solar thermal receiver

    NASA Technical Reports Server (NTRS)

    Strumpf, H. J.; Kotchick, D. M.; Coombs, M. G.

    1982-01-01

    The development of a high-temperature ceramic heat exchanger element to be integrated into a solar receiver producing heated air was studied. A number of conceptual designs were developed for heat exchanger elements of differing configuration. These were evaluated with respect to thermal performance, pressure drop, structural integrity, and fabricability. The final design selection identified a finned ceramic shell as the most favorable concept. The shell is surrounded by a larger metallic shell. The flanges of the two shells are sealed to provide a leak-tight pressure vessel. The ceramic shell is to be fabricated by a innovative combination of slip casting the receiver walls and precision casting the heat transfer finned plates. The fins are bonded to the shell during firing. The unit is sized to produce 2150 F air at 2.7 atm pressure, with a pressure drop of about 2 percent of the inlet pressure. This size is compatible with a solar collector providing a receiver input of 85 kw(th). Fabrication of a one-half scale demonstrator ceramic receiver was completed.

  6. High-temperature ceramic heat exchanger element for a solar thermal receiver

    NASA Technical Reports Server (NTRS)

    Strumpf, H. J.; Kotchick, D. M.; Coombs, M. G.

    1982-01-01

    A study was performed by AiResearch Manufacturing Company, a division of The Garrett Corporation, on the development a high-temperature ceramic heat exchanger element to be integrated into a solar receiver producing heated air. A number of conceptual designs were developed for heat exchanger elements of differing configuration. These were evaluated with respect to thermal performance, pressure drop, structural integrity, and fabricability. The final design selection identified a finned ceramic shell as the most favorable concept. The shell is surrounded by a larger metallic shell. The flanges of the two shells are sealed to provide a leak-tight pressure vessel. The ceramic shell is to be fabricated by an innovative combination of slip casting the receiver walls and precision casting the heat transfer finned plates. The fins are bonded to the shell during firing. The unit is sized to produce 2150 F ar at 2.7 atm pressure, with a pressure drop of about 2 percent of the inlet pressure. This size is compatible with a solar collector providing a receiver input of 85 kw(th). Fabrication of a one-half scale demonstrator ceramic receiver has been completed.

  7. A finite element method based microwave heat transfer modeling of frozen multi-component foods

    NASA Astrophysics Data System (ADS)

    Pitchai, Krishnamoorthy

    Microwave heating is fast and convenient, but is highly non-uniform. Non-uniform heating in microwave cooking affects not only food quality but also food safety. Most food industries develop microwavable food products based on "cook-and-look" approach. This approach is time-consuming, labor intensive and expensive and may not result in optimal food product design that assures food safety and quality. Design of microwavable food can be realized through a simulation model which describes the physical mechanisms of microwave heating in mathematical expressions. The objective of this study was to develop a microwave heat transfer model to predict spatial and temporal profiles of various heterogeneous foods such as multi-component meal (chicken nuggets and mashed potato), multi-component and multi-layered meal (lasagna), and multi-layered food with active packages (pizza) during microwave heating. A microwave heat transfer model was developed by solving electromagnetic and heat transfer equations using finite element method in commercially available COMSOL Multiphysics v4.4 software. The microwave heat transfer model included detailed geometry of the cavity, phase change, and rotation of the food on the turntable. The predicted spatial surface temperature patterns and temporal profiles were validated against the experimental temperature profiles obtained using a thermal imaging camera and fiber-optic sensors. The predicted spatial surface temperature profile of different multi-component foods was in good agreement with the corresponding experimental profiles in terms of hot and cold spot patterns. The root mean square error values of temporal profiles ranged from 5.8 °C to 26.2 °C in chicken nuggets as compared 4.3 °C to 4.7 °C in mashed potatoes. In frozen lasagna, root mean square error values at six locations ranged from 6.6 °C to 20.0 °C for 6 min of heating. A microwave heat transfer model was developed to include susceptor assisted microwave heating of a

  8. Simulation of irradiation hardening of Zircaloy within plate-type dispersion nuclear fuel elements

    NASA Astrophysics Data System (ADS)

    Jiang, Yijie; Wang, Qiming; Cui, Yi; Huo, Yongzhong; Ding, Shurong

    2011-06-01

    Within plate-type dispersion nuclear fuel elements, the metal matrix and cladding attacked continuously by fast neutrons undergo irradiation hardening, which might have remarkable effects upon the mechanical behaviors within fuel elements. In this paper, with the irradiation hardening effect of metal materials mainly considered together with irradiation growth effect of the cladding, the three-dimensional large-deformation constitutive relations for the metal matrix and cladding are developed. The method of virtual temperature increase in the previous studies is further developed to model the irradiation swelling of fuel particles; the method of anisotropic thermal expansion is introduced to model irradiation growth of the cladding; and a method of multi-step-temperature loading is proposed to simulate the coupling features of irradiation-induced swelling of the fuel particles together with irradiation growth of the cladding. Above all, based on the developed relationship between irradiation growth at certain burnup and the loaded virtual temperatures, with considering that certain burnup corresponds to certain fast neutron fluence, the time-dependent constitutive relation due to irradiation hardening effect is replaced by the virtual-temperature-dependent one which is introduced into the commercial software to simulate the irradiation hardening effects of the matrix and cladding. Numerical simulations of the irradiation-induced mechanical behaviors are implemented with the finite element method in consideration of the micro-structure of the fuel meat. The obtained results indicate that when the irradiation hardening effects are introduced into the constitutive relations of the metal matrix and cladding: (1) higher maximum Mises stresses for certain burnup at the matrix exist with the equivalent plastic strains remaining almost the same at lower burnups; (2) the maximum Mises stresses for certain burnup at the cladding are enhanced while the maximum equivalent

  9. SUB-LEU-METAL-THERM-001 SUBCRITICAL MEASUREMENTS OF LOW ENRICHED TUBULAR URANIUM METAL FUEL ELEMENTS BEFORE & AFTER IRRADIATION

    SciTech Connect

    SCHWINKENDORF, K.N.

    2006-05-12

    With the shutdown of the Hanford PUREX (Plutonium-Uranium Extraction Plant) reprocessing plant in the 1970s, adequate storage capacity for spent Hanford N Reactor fuel elements in the K and N Reactor pools became a concern. To maximize space utilization in the pools, accounting for fuel burnup was considered. Calculations indicated that at typical fuel exposures for N Reactor, the spent-fuel critical mass would be twice the critical mass for green fuel. A decision was reached to test the calculational result with a definitive experiment. If the results proved positive, storage capacity could be increased and N Reactor operation could be prolonged. An experiment to be conducted in the N Reactor spent-fuel storage pool was designed and assembled and the services of the Battelle Northwest Laboratories (BNWL) (now Pacific Northwest National Laboratory [PNNL]) critical mass laboratory were procured for the measurements. The experiments were performed in April 1975 in the Hanford N Reactor fuel storage pool. The fuel elements were MKIA fuel assemblies, comprising two concentric tubes of low-enriched metallic uranium. Two separate sets of measurements were performed: one with ''green'' (fresh) fuel and one with spent fuel. Both the green and spent fuel, were measured in the same geometry. The spent-fuel MKIA assemblies had an average burnup of 2865 MWd (megawatt days)/t. A constraint was imposed restricting the measurements to a subcritical limit of k{sub eff} = 0.97. Subcritical count rate data was obtained with pulsed-neutron and approach-to-critical measurements. Ten (10) configurations with green fuel and nine (9) configurations with spent fuel are described and evaluated. Of these, 3 green fuel and 4 spent fuel loading configurations were considered to serve as benchmark models. However, shortcomings in experimental data failed to meet the high standards for a benchmark problem. Nevertheless, the data provided by these subcritical measurements can supply useful

  10. Advanced development of the boundary element method for steady-state heat conduction

    NASA Technical Reports Server (NTRS)

    Dargush, G. F.; Banerjee, Prasanta K.

    1989-01-01

    Considerable progress has been made in recent years toward advancing the state-of-the-art in solid mechanics boundary element technology. In the present work, much of this new technology is applied in the development of a general-purpose boundary element method (BEM) for steady-state heat conduction. In particular, the BEM implementation involves the use of higher-order conforming elements, self-adaptive integration and multi-region capability. Two- and three-dimensional, as well as axisymmetric analysis, are incorporated within a unified framework. In addition, techniques are introduced for the calculation of boundary flux, and for the inclusion of thermal resistance across interfaces. As a final extension, an efficient formulation is developed for the analysis of solid three-dimensional bodies with embedded holes. For this last class of problems, the new BEM formulation is particularly attractive, since use of the alternatives (i.e. finite element or finite difference methods) is not practical. A number of detailed examples illustrate the suitability and robustness of the present approach for steady-state heat conduction.

  11. Method and apparatus for real-time measurement of fuel gas compositions and heating values

    DOEpatents

    Zelepouga, Serguei; Pratapas, John M.; Saveliev, Alexei V.; Jangale, Vilas V.

    2016-03-22

    An exemplary embodiment can be an apparatus for real-time, in situ measurement of gas compositions and heating values. The apparatus includes a near infrared sensor for measuring concentrations of hydrocarbons and carbon dioxide, a mid infrared sensor for measuring concentrations of carbon monoxide and a semiconductor based sensor for measuring concentrations of hydrogen gas. A data processor having a computer program for reducing the effects of cross-sensitivities of the sensors to components other than target components of the sensors is also included. Also provided are corresponding or associated methods for real-time, in situ determination of a composition and heating value of a fuel gas.

  12. An economic comparison of active solar energy and conventional fuels for water and space heating

    NASA Astrophysics Data System (ADS)

    Shingleton, J. G.; King, T. A.

    The economic considerations involved in the decision to buy a solar energy system are discussed. In addition, a realistic evaluation is presented of the current cost effectiveness of solar water and space heating systems in all regions of the country and under various economic conditions based on the best available information. A reference long term economic scenario and several typical systems were used as the basis for the analyses. The sensitivity of the results to differences from the reference case is described. A series of reports produced for the U.S. Department of Energy is summarized. All results are not provided for each application type against each type of conventional fuel. However, sufficient results are presented to obtain an understanding of the extent to which solar water and space heating applications compete with conventional fuels.

  13. Heat Transfer and Thermal Stability Research for Advanced Hydrocarbon Fuel Technologies

    NASA Technical Reports Server (NTRS)

    DeWitt, Kenneth; Stiegemeier, Benjamin

    2005-01-01

    In recent years there has been increased interest in the development of a new generation of high performance boost rocket engines. These efforts, which will represent a substantial advancement in boost engine technology over that developed for the Space Shuttle Main Engines in the early 1970s, are being pursued both at NASA and the United States Air Force. NASA, under its Space Launch Initiative s Next Generation Launch Technology Program, is investigating the feasibility of developing a highly reliable, long-life, liquid oxygen/kerosene (RP-1) rocket engine for launch vehicles. One of the top technical risks to any engine program employing hydrocarbon fuels is the potential for fuel thermal stability and material compatibility problems to occur under the high-pressure, high-temperature conditions required for regenerative fuel cooling of the engine combustion chamber and nozzle. Decreased heat transfer due to carbon deposits forming on wetted fuel components, corrosion of materials common in engine construction (copper based alloys), and corrosion induced pressure drop increases have all been observed in laboratory tests simulating rocket engine cooling channels. To mitigate these risks, the knowledge of how these fuels behave in high temperature environments must be obtained. Currently, due to the complexity of the physical and chemical process occurring, the only way to accomplish this is empirically. Heated tube testing is a well-established method of experimentally determining the thermal stability and heat transfer characteristics of hydrocarbon fuels. The popularity of this method stems from the low cost incurred in testing when compared to hot fire engine tests, the ability to have greater control over experimental conditions, and the accessibility of the test section, facilitating easy instrumentation. These benefits make heated tube testing the best alternative to hot fire engine testing for thermal stability and heat transfer research. This investigation

  14. Evaluation of spent fuel isotopics, radiation spectra and decay heat using the scale computational system

    SciTech Connect

    Parks, C.V.; Hermann, O.W.; Ryman, J.C.

    1986-01-01

    In order to be a self-sufficient system for transport/storage cask shielding and heat transfer analysis, the SCALE system developers included modules to evaluate spent fuel radiation spectra and decay heat. The primary module developed for these analyses is ORIGEN-S which is an updated verision of the original ORIGEN code. The COUPLE module was also developed to enable ORIGEN-S to easily utilize multigroup cross sections and neutron flux data during a depletion analysis. Finally, the SAS2 control module was developed for automating the depletion and decay via ORIGEN-S while using burnup-dependent neutronic data based on a user-specified fuel assembly and reactor history. The ORIGEN-S data libraries available for depletion and decay have also been significantly updated from that developed with the original ORIGEN code.

  15. General-purpose heat source: Research and development program. High-siliocon fuel characterization study: Half module impact tests 1 and 2

    SciTech Connect

    Reimus, M.A.H.; George, T.G.

    1996-03-01

    The General-Purpose Heat Source (GPHS) provides power for space missions by transmitting the heat of {sup 238}Pu decay to an array of thermoelectric elements. Because any space mission could experience a launch abort or return from orbit, the heat source must be designed and constructed to survive credible accident environments. Previous testing conducted in support of the Galileo and Ulysses missions documented the response of GPHSs to a variety of fragment-impact, aging, atmospheric reentry, and earth-impact conditions. The evaluations documented in this report are part of an ongoing program to determine the effect of fuel impurities on the response of the heat source to conditions baselined during the Galileo/Ulysses test program. In the first two tests in this series, encapsulated GPHS fuel pellets containing high levels of silicon were aged, loaded into GPHS module halves, and impacted against steel plates. The results show no significant differences between the response of these capsules and the behavior of relatively low-silicon fuel pellets tested previously.

  16. Phylogeny disambiguates the evolution of heat-shock cis-regulatory elements in Drosophila.

    PubMed

    Tian, Sibo; Haney, Robert A; Feder, Martin E

    2010-01-01

    Heat-shock genes have a well-studied control mechanism for their expression that is mediated through cis-regulatory motifs known as heat-shock elements (HSEs). The evolution of important features of this control mechanism has not been investigated in detail, however. Here we exploit the genome sequencing of multiple Drosophila species, combined with a wealth of available information on the structure and function of HSEs in D. melanogaster, to undertake this investigation. We find that in single-copy heat shock genes, entire HSEs have evolved or disappeared 14 times, and the phylogenetic approach bounds the timing and direction of these evolutionary events in relation to speciation. In contrast, in the multi-copy gene Hsp70, the number of HSEs is nearly constant across species. HSEs evolve in size, position, and sequence within heat-shock promoters. In turn, functional significance of certain features is implicated by preservation despite this evolutionary change; these features include tail-to-tail arrangements of HSEs, gapped HSEs, and the presence or absence of entire HSEs. The variation among Drosophila species indicates that the cis-regulatory encoding of responsiveness to heat and other stresses is diverse. The broad dimensions of variation uncovered are particularly important as they suggest a substantial challenge for functional studies.

  17. Standard test method for heat of combustion of hydrocarbon fuels by bomb calorimeter (high-precision method)

    SciTech Connect

    Not Available

    1980-01-01

    This method covers the determination of the heat of combustion of hydrocarbon fuels. It is designed specifically for use with aviation turbine fuels when the permissible difference between duplicate determinations is of the order of 0.1%. It can be used for a wide range of volatile and nonvolatile materials where slightly greater differences in precision can be tolerated. The heat of combustion is determined by burning a weighed sample in an oxygen-bomb calorimeter under controlled conditions. The temperature is measured by means of a platinum resistance thermometer. The heat of combustion is calculated from temperature observations before, during, and after combustion, with proper allowance for thermochemical and heat-transfer corrections. Either isothermal or adiabatic calorimeters may be used. The heat of combustion is a measure of the energy available from a fuel. A knowledge of this value is essential when considering the thermal efficiency of equipment for producing either power or heat.

  18. Evaluation of Heat Loss and Water Temperature in a Spent Fuel Pit

    NASA Astrophysics Data System (ADS)

    Yanagi, Chihiro; Murase, Michio; Yoshida, Yoshitaka; Iwaki, Takanori; Nagae, Takashi

    Three-dimensional calculations of ventilation air flow and thermal-hydraulic behavior in a spent fuel pit (SFP) were made using the CFD software, FLUENT6.3.26 to evaluate the heat loss and water temperature in the SFP after shutdown of its cooling systems. The air and water velocities near the water surface were evaluated from the calculated results and referred to conditions of evaporation heat transfer tests, which were carried out at Shinshu University. From the test data, a correlation for evaporation heat fluxes was introduced and incorporated into the calculation of thermal-hydraulic behavior in the SFP. Then, a three-dimensional calculation of thermal-hydraulic behavior in the SFP was done. It was confirmed that the higher the water temperature was, the larger the heat loss from water was, and that the major heat loss was the evaporation heat transfer from the water surface to ventilation air, which was about ten times larger than the heat transfer to concrete walls.

  19. Processing of FRG high-temperature gas-cooled reactor fuel elements at General Atomic under the US/FRG cooperative agreement for spent fuel elements

    SciTech Connect

    Holder, N.D.; Strand, J.B.; Schwarz, F.A.; Drake, R.N.

    1981-11-01

    The Federal Republic of Germany (FRG) and the United States (US) are cooperating on certain aspects of gas-cooled reactor technology under an umbrella agreement. Under the spent fuel treatment development section of the agreement, both FRG mixed uranium/ thorium and low-enriched uranium fuel spheres have been processed in the Department of Energy-sponsored cold pilot plant for high-temperature gas-cooled reactor (HTGR) fuel processing at General Atomic Company in San Diego, California. The FRG fuel spheres were crushed and burned to recover coated fuel particles suitable for further treatment for uranium recovery. Successful completion of the tests described in this paper demonstrated certain modifications to the US HTGR fuel burining process necessary for FRG fuel treatment. Results of the tests will be used in the design of a US/FRG joint prototype headend facility for HTGR fuel.

  20. Study of fuel consumption and cooling system in low heat rejection turbocharged diesel engines

    SciTech Connect

    Taymaz, I.; Gur, M.; Cally, I.; Mimaroglu, A.

    1998-07-01

    In a conventional internal combustion engine, approximately one-third of total fuel input energy is converted to useful work. Since the working gas in a practical engine cycle is not exhausted at ambient temperature, a major part of the energy is lost with the exhaust gases. In addition another major part of energy input is rejected in the form of heat via the cooling system. If the energy normally rejected to the coolant could be recovered instead on the crankshaft as useful work, then a substantial improvement in fuel economy would result. At the same time, the cooling water, antifreeze, thermostat, radiator, water pump, cooling fan, and associated hoses and clamps could be eliminated. A new trend in the field of internal combustion engines is to insulate the heat transfer surfaces such as the combustion chamber, cylinder wall, cylinder head, piston and valves by ceramic insulating materials for the improvement of engine performance and elimination of cooling system. In this study, the effect of insulated heat transfer surfaces on direct injected and turbocharged diesel engine fuel consumption and cooling system were investigated. The research engine was a four-stroke, direct injected, six cylinder, turbocharged and intercooled diesel engine. This engine was tested at different speeds and loads conditions without coating. Then, combustion chamber surfaces, cylinder head, valves and piston crown faces was coated with ceramic materials. Ceramic layers were made of CaZrO{sub 3} and MgZrO{sub 3} and plasma coated onto base of the NiCrAl bond coat. The ceramic coated research engine was tested at the same operation conditions as the standard (without coating) engine. The results indicate a reduction in fuel consumption and heat losses to engine cooling system of the ceramic coated engine.

  1. Elemental characterization of particulate matter emitted from biomass burning: Wind tunnel derived source profiles for herbaceous and wood fuels

    NASA Astrophysics Data System (ADS)

    Turn, S. Q.; Jenkins, B. M.; Chow, J. C.; Pritchett, L. C.; Campbell, D.; Cahill, T.; Whalen, S. A.

    1997-02-01

    Particulate matter emitted from wind tunnel simulations of biomass burning for five herbaceous crop residues (rice, wheat and barley straws, corn stover, and sugar cane trash) and four wood fuels (walnut and almond prunings and ponderosa pine and Douglas fir slash) was collected and analyzed for major elements and water soluble species. Primary constituents of the particulate matter were C, K, Cl, and S. Carbon accounted for roughly 50% of the herbaceous fuel PM and about 70% for the wood fuels. For the herbaceous fuels, particulate matter from rice straw in the size range below 10 μm aerodynamic diameter (PM10) had the highest concentrations of both K (24%) and Cl, (17%) and barley straw PM10 contained the highest sulfur content (4%). K, Cl, and S were present in the PM of the wood fuels at reduced levels with maximum concentrations of 6.5% (almond prunings), 3% (walnut prunings), and 2% (almond prunings), respectively. Analysis of water soluble species indicated that ionic forms of K, Cl, and S made up the majority of these elements from all fuels. Element balances showed K, Cl, S, and N to have the highest recovery factors (fraction of fuel element found in the particulate matter) in the PM of the elements analyzed. In general, chlorine was the most efficiently recovered element for the herbaceous fuels (10 to 35%), whereas sulfur recovery was greatest for the wood fuels (25 to 45%). Unique potassium to elemental carbon ratios of 0.20 and 0.95 were computed for particulate matter (PM10 K/C(e)) from herbaceous and wood fuels, respectively. Similarly, in the size class below 2.5 μm, high-temperature elemental carbon to bromine (PM2.5 C(eht)/Br) ratios of ˜7.5, 43, and 150 were found for the herbaceous fuels, orchard prunings, and forest slash, respectively. The molar ratios of particulate phase bromine to gas phase CO2 (PM10 Br/CO2) are of the same order of magnitude as gas phase CH3Br/CO2 reported by others.

  2. Evaluation of Gas, Oil and Wood Pellet Fueled Residential Heating System Emissions Characteristics

    SciTech Connect

    McDonald, R.

    2009-12-01

    This study has measured the emissions from a wide range of heating equipment burning different fuels including several liquid fuel options, utility supplied natural gas and wood pellet resources. The major effort was placed on generating a database for the mass emission rate of fine particulates (PM 2.5) for the various fuel types studied. The fine particulates or PM 2.5 (less than 2.5 microns in size) were measured using a dilution tunnel technique following the method described in US EPA CTM-039. The PM 2.5 emission results are expressed in several units for the benefit of scientists, engineers and administrators. The measurements of gaseous emissions of O{sub 2}, CO{sub 2}, CO, NO{sub x} and SO{sub 2} were made using a combustion analyzer based on electrochemical cells These measurements are presented for each of the residential heating systems tested. This analyzer also provides a steady state efficiency based on stack gas and temperature measurements and these values are included in the report. The gaseous results are within the ranges expected from prior emission studies with the enhancement of expanding these measurements to fuels not available to earlier researchers. Based on measured excess air levels and ultimate analysis of the fuel's chemical composition the gaseous emission results are as expected and fall within the range provided for emission factors contained in the US-EPA AP 42, Emission Factors Volume I, Fifth Edition. Since there were no unexpected findings in these gaseous measurements, the bulk of the report is centered on the emissions of fine particulates, or PM 2.5. The fine particulate (PM 2.5) results for the liquid fuel fired heating systems indicate a very strong linear relationship between the fine particulate emissions and the sulfur content of the liquid fuels being studied. This is illustrated by the plot contained in the first figure on the next page which clearly illustrates the linear relationship between the measured mass of fine

  3. Technological Alternatives or Use of Wood Fuel in Combined Heat and Power Production

    NASA Astrophysics Data System (ADS)

    Rusanova, Jekaterina; Markova, Darja; Bazbauers, Gatis; Valters, Kārlis

    2013-12-01

    Abstract Latvia aims for 40% share of renewable energy in the total final energy use. Latvia has large resources of biomass and developed district heating systems. Therefore, use of biomass for heat and power production is an economically attractive path for increase of the share of renewable energy. The optimum technological solution for use of biomass and required fuel resources have to be identified for energy planning and policy purposes. The aim of this study was to compare several wood fuel based energy conversion technologies from the technical and economical point of view. Three biomass conversion technologies for combined heat and electricity production (CHP) were analyzed: • CHP with steam turbine technology; • gasification CHP using gas engine; • bio-methane combined cycle CHP. Electricity prices for each alternative are presented. The results show the level of support needed for the analyzed renewable energy technologies and time period needed to reach price parity with the natural gas - fired combined cycle gas turbine (CCGT) CHPss. The results also show that bio-methane technology is most competitive when compared with CCGT among the considered technologies regarding fuel consumption and electricity production, but it is necessary to reduce investment costs to reach the electricity price parity with the natural gas CCGT.

  4. Analysis of MERCI decay heat measurement for PWR UO{sub 2} fuel rod

    SciTech Connect

    Jaboulay, J.C.; Bourganel, S.

    2012-01-15

    Decay heat measurements, called the MERCI experiment, were conducted at Commissariat a l'Energie Atomique (CEA)/Saclay to characterize accurately residual power at short cooling time and verify its prediction by decay code and nuclear data. The MOSAIC calorimeter, developed and patented by CEA/Grenoble (DTN/SE2T), enables measurement of the decay heat released by a pressurized water reactor (PWR) fuel rod sample between 200 and 4 W within a precision of 1%. The MERCI experiment included three phases. At first, a UO{sub 2} fuel rod sample was irradiated in the CEA/Saclay experimental reactor OSIRIS. The burnup achieved at the end of irradiation was similar to 3.5 GWd/tonne. The second phase was the transfer of the fuel rod sample from its irradiation location to a hot cell, to be inserted inside the MOSAIC calorimeter. It took 26 min to carry out the transfer. Finally, decay heat released by the PWR sample was measured from 27 min to 42 days after shutdown. Post irradiation examinations were performed to measure concentrations of some heavy nuclei (U, Pu) and fission products (Cs, Nd). The decay heat was predicted using a calculation scheme based on the PEPIN2 depletion code, the TRIPOLI-4 Monte Carlo code, and the JEFF3.1.1 nuclear data file. The MERCI experiment analysis shows that the discrepancy between the calculated and the experimental decay heat values is included between -10% at 27 min and +6% at 12 h, 30 min otter shutdown. From 4 up to 42 days of cooling time, the difference between calculation and measurement is about ± 1%, i.e., experimental uncertainty. The MERCI experiment represents a significant contribution for code validation; the time range above 10{sup 5} s has not been validated previously. (authors)

  5. Impacts of the Weatherization Assistance Program in Fuel-Oil Heated Houses

    SciTech Connect

    Levins, W.P.

    1994-01-01

    In 1990, the U.S. Department of Energy (DOE) initiated a national evaluation of its low-income Weatherization Assistance Program. This report, which is one of five parts of that evaluation, evaluates the energy savings and cost-effectiveness of the Program as it had been applied to single-family houses heated primarily by fuel-oil. The study was based upon a representative sample (41 local weatherization agencies, 222 weatherized and 115 control houses) from the nine northeastern states during 1991 and 1992 program years. Dwelling-specific and agency-level data on measures installed, costs, and service delivery procedures were collected from the sampled agencies. Space-heating fuel-oil consumption, indoor temperature, and outdoor temperature were monitored at each house. Dwelling characteristics, air-leakage measurements, space-heating system steady-state efficiency measurements, safety inspections, and occupant questionnaires were also collected or performed at each monitored house. We estimate that the Program weatherized a total of 23,400 single-family fuel-oil heated houses in the nine northeastern states during program years 1991 and 1992. Annual fuel-oil savings were calculated using regression techniques to normalize the savings to standard weather conditions. For the northeast region, annual net fuel-oil savings averaged 160 gallons per house, or 17.7% of pre-weatherization consumption. Although indoor temperatures changed in individual houses following weatherization, there was no average change and no significant difference as compared to the control houses; thus, there was no overall indoor temperature takeback effect influencing fuel-oil savings. The weatherization work was performed cost effectively in these houses from the Program perspective, which included both installation costs and overhead and management costs but did not include non-energy benefits (such as employment and environmental). Total average costs were $1819 per house ($1192 for

  6. Identification of the Thermal Conductivity and Heat Capacity in Unsteady Nonlinear Heat Conduction Problems Using the Boundary Element Method

    NASA Astrophysics Data System (ADS)

    Lesnic, D.; Elliott, L.; Ingham, D. B.

    1996-07-01

    In this study the inverse problem of the identification of temperature dependent thermal properties of a heat conducting body is investigated. The solution of the corresponding direct problem is obtained using a time marching boundary element method (BEM), which allows, without any need of interpolation and solution domain discretisation, efficient and accurate evaluation of the temperature everywhere inside the space-time dependent domain. Since the inverse problem, which requires the determination of the thermal conductivity and heat capacity from a finite set of temperature measurements taken inside the body, possesses poor uniqueness features, additional information is achieved by assuming that the thermal properties belong to a set of polynomials. Thus the inverse problem reduces to a parameter system estimation problem which is solved using the nonlinear least-squares method. Convergent and stable numerical results are obtained for the finite set of parameters which characterise the thermal properties for various test examples. Once the thermal properties are accurately obtained then the BEM determines automatically the temperature inside the solution domain and the remaining unspecified boundary values and the numerically obtained results show good agreement with the corresponding analytical solutions.

  7. Heat-producing elements and the thermal and baric patterns of metamorphic belts.

    PubMed

    Chamberlain, C P; Sonder, L J

    1990-11-01

    The character of sedimentary basins, before they are deformed and metamorphosed, may strongly influence the thermal and baric patterns of metamorphic belts. Crustal thickening of anoxic sedimentary basins and subsequent thermal reequilibration may produce large areas of high-grade metamorphic rocks and granites because the concentrations of the heat-producing elements are high in such basins. In New England there is a spatial association among granites and high-grade metasedimentary rocks rich in U and Th that now form the Central Maine terrane. The high content of heat-producing elements in these rocks is attributed to fixing of U and Th in highly reduced sediments that were deposited in an anoxic basin that formed in the Silurian. When the basin was thickened during the Devonian Acadian orogeny, the thermal energy generated by the U- and Th-rich sediments produced the observed broad zone of high-grade rocks and anatectic granites. This hypothesis was tested with thermal calculations that reproduce most of the first-order thermal and baric patterns of the Acadian Appalachians, if pretectonic lateral variations in heat production are assumed.

  8. BWR spent fuel storage cask performance test. Volume 2. Pre- and post-test decay heat, heat transfer, and shielding analyses

    SciTech Connect

    Wiles, L.E.; Lombardo, N.J.; Heeb, C.M.; Jenquin, U.P.; Michener, T.E.; Wheeler, C.L.; Creer, J.M.; McCann, R.A.

    1986-06-01

    This report describes the decay heat, heat transfer, and shielding analyses conducted in support of performance testing of a Ridhihalgh, Eggers and Associates REA 2033 boiling water reactor (BWR) spent fuel storage cask. The cask testing program was conducted for the US Department of Energy (DOE) Commercial Spent Fuel Management Program by the Pacific Northwest Laboratory (PNL) and by General Electric at the latters' Morris Operation (GE-MO) as reported in Volume I. The analyses effort consisted of performing pretest calculations to (1) select spent fuel for the test; (2) symmetrically load the spent fuel assemblies in the cask to ensure lateral symmetry of decay heat generation rates; (3) optimally locate temperature and dose rate instrumentation in the cask and spent fuel assemblies; and (4) evaluate the ORIGEN2 (decay heat), HYDRA and COBRA-SFS (heat transfer), and QAD and DOT (shielding) computer codes. The emphasis of this second volume is on the comparison of code predictions to experimental test data in support of the code evaluation process. Code evaluations were accomplished by comparing pretest (actually pre-look, since some predictions were not completed until testing was in progress) predictions with experimental cask testing data reported in Volume I. No attempt was made in this study to compare the two heat transfer codes because results of other evaluations have not been completed, and a comparison based on one data set may lead to erroneous conclusions.

  9. Development of Low-Cost Manufacturing Processes for Planar, Multilayer Solid Oxide Fuel Cell Elements

    SciTech Connect

    Scott Swartz; Matthew Seabaugh; William Dawson; Tim Armstrong; Harlan Anderson; John Lannutti

    2001-09-30

    This report summarizes the results of Phase II of this program, 'Low-Cost Manufacturing Of Multilayer Ceramic Fuel Cells'. The objective of the program is to develop advanced ceramic manufacturing technologies for making planar solid oxide fuel cell (SOFC) components that are more economical and reliable for a variety of applications. Phase II development work focused on three distinct manufacturing approaches (or tracks) for planar solid oxide fuel cell elements. Two development tracks, led by NexTech Materials and Oak Ridge National Laboratory, involved co-sintering of planar SOFC elements of cathode-supported and anode-supported variations. A third development track, led by the University of Missouri-Rolla, focused on a revolutionary approach for reducing operating temperature of SOFCs by using spin-coating to deposit ultra-thin, nano-crystalline YSZ electrolyte films. The work in Phase II was supported by characterization work at Ohio State University. The primary technical accomplishments within each of the three development tracks are summarized. Track 1--NexTech's targeted manufacturing process for planar SOFC elements involves tape casting of porous electrode substrates, colloidal-spray deposition of YSZ electrolyte films, co-sintering of bi-layer elements, and screen printing of opposite electrode coatings. The bulk of NexTech's work focused on making cathode-supported elements, although the processes developed at NexTech also were applied to the fabrication of anode-supported cells. Primary accomplishments within this track are summarized below: (1) Scale up of lanthanum strontium manganite (LSM) cathode powder production process; (2) Development and scale-up of tape casting methods for cathode and anode substrates; (3) Development of automated ultrasonic-spray process for depositing YSZ films; (4) Successful co-sintering of flat bi-layer elements (both cathode and anode supported); (5) Development of anode and cathode screen-printing processes; and (6

  10. DEVELOPMENT OF LOW-COST MANUFACTURING PROCESSES FOR PLANAR, MULTILAYER SOLID OXIDE FUEL CELL ELEMENTS

    SciTech Connect

    Scott Swartz; Matthew Seabaugh; William Dawson; Harlan Anderson; Tim Armstrong; Michael Cobb; Kirby Meacham; James Stephan; Russell Bennett; Bob Remick; Chuck Sishtla; Scott Barnett; John Lannutti

    2004-06-12

    This report summarizes the results of a four-year project, entitled, ''Low-Cost Manufacturing Of Multilayer Ceramic Fuel Cells'', jointly funded by the U.S. Department of Energy, the State of Ohio, and by project participants. The project was led by NexTech Materials, Ltd., with subcontracting support provided by University of Missouri-Rolla, Michael A. Cobb & Co., Advanced Materials Technologies, Inc., Edison Materials Technology Center, Gas Technology Institute, Northwestern University, and The Ohio State University. Oak Ridge National Laboratory, though not formally a subcontractor on the program, supported the effort with separate DOE funding. The objective of the program was to develop advanced manufacturing technologies for making solid oxide fuel cell components that are more economical and reliable for a variety of applications. The program was carried out in three phases. In the Phase I effort, several manufacturing approaches were considered and subjected to detailed assessments of manufacturability and development risk. Estimated manufacturing costs for 5-kW stacks were in the range of $139/kW to $179/kW. The risk assessment identified a number of technical issues that would need to be considered during development. Phase II development work focused on development of planar solid oxide fuel cell elements, using a number of ceramic manufacturing methods, including tape casting, colloidal-spray deposition, screen printing, spin-coating, and sintering. Several processes were successfully established for fabrication of anode-supported, thin-film electrolyte cells, with performance levels at or near the state-of-the-art. The work in Phase III involved scale-up of cell manufacturing methods, development of non-destructive evaluation methods, and comprehensive electrical and electrochemical testing of solid oxide fuel cell materials and components.

  11. Effects of broadened property fuels on radiant heat flux to gas turbine combustor liners

    NASA Technical Reports Server (NTRS)

    Haggard, J. B., Jr.

    1983-01-01

    The effects of fuel type, inlet air pressure, inlet air temperature, and fuel/air ratio on the combustor radiation were investigated. Combustor liner radiant heat flux measurements were made in the spectral region between 0.14 and 6.5 microns at three locations in a modified commercial aviation can combustor. Two fuels, Jet A and a heavier distillate research fuel called ERBS were used. The use of ERBS fuel as opposed to Jet A under similar operating conditions resulted in increased radiation to the combustor liner and hence increased backside liner temperature. This increased radiation resulted in liner temperature increases always less than 73 C. The increased radiation is shown by way of calculations to be the result of increased soot concentrations in the combustor. The increased liner temperatures indicated can substantially affect engine maintenance costs by reducing combustor liner life up to 1/3 because of the rapid decay in liner material properties when operated beyond their design conditions.

  12. Solid fossil-fuel recovery by electrical induction heating in situ - A proposal

    NASA Astrophysics Data System (ADS)

    Fisher, S.

    1980-04-01

    A technique, termed electrical induction heating, is proposed for in situ processes of energy production from solid fossil fuels, such as bitumen production from underground distillation of oil sand; oil by underground distillation of oil shale; petroleum from heavy oil by underground mobilization of heavy oil, from either residues of conventional liquid petroleum deposits or new deposits of viscous oil; methane and coal tar from lignite and coal deposits by underground distillation of coal; and generation of electricity by surface combustion of low calorific-value gas from underground coke gasification by combustion of the organic residue left from the underground distillation of coal by induction heating. A method of surface distillation of mined coking coal by induction heating to produce coke, methane, and coal tar is also proposed.

  13. Simulated Verification of Fuel Element Inventory in a Small Reactor Core Using the Nuclear Materials Identification System (NMIS)

    SciTech Connect

    Grogan, Brandon R; Mihalczo, John T

    2009-01-01

    The International Panel on Climate Change projects that by 2050 the world energy demand may double. Although the primary focus for new nuclear power plants in industrialized nations is on large plants in the 1000-1600 MWe range, there is an increasing demand for small and medium reactors (SMRs). About half of the innovative SMR concepts are for small (<300 MWe) reactors with a 5-30 year life without on-site refueling. This type of reactor is also known as a battery-type reactor. These reactors are particularly attractive to countries with small power grids and for non-electrical purposes such as heating, hydrogen production, and seawater desalination. Traditionally, this type of reactor has been used in a nautical propulsion role. This type of reactor is designed as a permanently sealed unit to prevent the diversion of the uranium in the core by the user. However, after initial fabrication it will be necessary to verify that the newly fabricated reactor core contains the quantity of uranium that initially entered the fuel fabrication plant. In most instances, traditional inspection techniques can be used to perform this verification, but in certain situations the core design will be considered sensitive. Non-intrusive verification techniques must be utilized in these situations. The Nuclear Materials Identification System (NMIS) with imaging uses active interrogation and a fast time correlation processor to characterize fissile material. The MCNP-PoliMi computer code was used to simulate NMIS measurements of a small, sealed reactor core. Because most battery-type reactor designs are still in the early design phase, a more traditional design based on a Russian icebreaker core was used in the simulations. These simulations show how the radiography capabilities of the NMIS could be used to detect the diversion of fissile material by detecting void areas in the assembled core where fuel elements have been removed.

  14. Air-sea heat exchange, an element of the water cycle

    NASA Technical Reports Server (NTRS)

    Chahine, M. T.

    1984-01-01

    The distribution and variation of water vapor, clouds and precipitation are examined. Principal driving forces for these distributions are energy exchange and evaporation at the air-sea interface, which are also important elements of air-sea interaction studies. The overall aim of air-sea interaction studies is to quantitatively determine mass, momentum and energy fluxes, with the goal of understanding the mechanisms controlling them. The results of general circulation simulations indicate that the atmosphere in mid-latitudes responds to changes in the oceanic surface conditions in the tropics. This correlation reflects the strong interaction between tropical and mid-latitude conditions caused by the transport of heat and momentum from the tropics. Studies of air-sea exchanges involve a large number of physica, chemical and dynamical processes including heat flux, radiation, sea-surface temperature, precipitation, winds and ocean currents. The fluxes of latent heat are studied and the potential use of satellite data in determining them evaluated. Alternative ways of inferring heat fluxes will be considered.

  15. Finite element modeling of borehole heat exchanger systems. Part 2. Numerical simulation

    NASA Astrophysics Data System (ADS)

    Diersch, H.-J. G.; Bauer, D.; Heidemann, W.; Rühaak, W.; Schätzl, P.

    2011-08-01

    Single borehole heat exchanger (BHE) and arrays of BHE are modeled by using the finite element method. Applying BHE in regional discretizations optimal conditions of mesh spacing around singular BHE nodes are derived. Optimal meshes have shown superior to such discretizations which are either too fine or too coarse. The numerical methods are benchmarked against analytical and numerical reference solutions. Practical application to a borehole thermal energy store (BTES) consisting of 80 BHE is given for the real-site BTES Crailsheim, Germany. The simulations are controlled by the specifically developed FEFLOW-TRNSYS coupling module. Scenarios indicate the effect of the groundwater flow regime on efficiency and reliability of the subsurface heat storage system.

  16. Review of consequences of uranium hydride formation in N-Reactor fuel elements stored in the K-Basins

    SciTech Connect

    Weber, J.W.

    1994-09-28

    The 105-K Basins on the Hanford site are used to store uranium fuel elements and assemblies irradiated in and discharged from N Reactor. The storage cylinders in KW Basin are known to have some broken N reactor fuel elements in which the exposed uranium is slowly reacting chemically with water in the cylinder. The products of these reactions are uranium oxide, hydrogen, and potentially some uranium hydride. The purpose of this report is to document the results f the latest review of potential, but highly unlikely accidents postulated to occur as closed cylinders containing N reactor fuel assemblies are opened under water in the KW basin and as a fuel assembly is raised from the basin in a shipping cask for transportation to the 327 Building for examination as part of the SNF Characterization Program. The postulated accidents reviews in this report are considered to bound all potential releases of radioactivity and hydrogen. These postulated accidents are: (1) opening and refill of a cylinder containing significant amounts of hydrogen and uranium hydride; and (2) draining of the single element can be used to keep the fuel element submerged in water after the cask containing the can and element is lifted from the KW Basin. Analysis shows the release of radioactivity to the site boundary is significantly less than that allowed by the K Basin Safety Evaluation. Analysis further shows there would be no damage to the K Basin structure nor would there be injury to personnel for credible events.

  17. COXPRO-II: a computer program for calculating radiation and conduction heat transfer in irradiated fuel assemblies

    SciTech Connect

    Rhodes, C.A.

    1984-12-01

    This report describes the computer program COXPRO-II, which was written for performing thermal analyses of irradiated fuel assemblies in a gaseous environment with no forced cooling. The heat transfer modes within the fuel pin bundle are radiation exchange among fuel pin surfaces and conduction by the stagnant gas. The array of parallel cylindrical fuel pins may be enclosed by a metal wrapper or shroud. Heat is dissipated from the outer surface of the fuel pin assembly by radiation and convection. Both equilateral triangle and square fuel pin arrays can be analyzed. Steady-state and unsteady-state conditions are included. Temperatures predicted by the COXPRO-II code have been validated by comparing them with experimental

  18. Elemental balance of SRF production process: solid recovered fuel produced from municipal solid waste.

    PubMed

    Nasrullah, Muhammad; Vainikka, Pasi; Hannula, Janne; Hurme, Markku; Oinas, Pekka

    2016-01-01

    In the production of solid recovered fuel (SRF), certain waste components have excessive influence on the quality of product. The proportion of rubber, plastic (hard) and certain textiles was found to be critical as to the elemental quality of SRF. The mass flow of rubber, plastic (hard) and textiles (to certain extent, especially synthetic textile) components from input waste stream into the output streams of SRF production was found to play the decisive role in defining the elemental quality of SRF. This paper presents the mass flow of polluting and potentially toxic elements (PTEs) in SRF production. The SRF was produced from municipal solid waste (MSW) through mechanical treatment (MT). The results showed that of the total input chlorine content to process, 55% was found in the SRF and 30% in reject material. Of the total input arsenic content, 30% was found in the SRF and 45% in fine fraction. In case of cadmium, lead and mercury, of their total input content to the process, 62%, 38% and 30%, respectively, was found in the SRF. Among the components of MSW, rubber material was identified as potential source of chlorine, containing 8.0 wt.% of chlorine. Plastic (hard) and textile components contained 1.6 and 1.1. wt.% of chlorine, respectively. Plastic (hard) contained higher lead and cadmium content compared with other waste components, i.e. 500 mg kg(-1) and 9.0 mg kg(-1), respectively.

  19. Elemental balance of SRF production process: solid recovered fuel produced from municipal solid waste.

    PubMed

    Nasrullah, Muhammad; Vainikka, Pasi; Hannula, Janne; Hurme, Markku; Oinas, Pekka

    2016-01-01

    In the production of solid recovered fuel (SRF), certain waste components have excessive influence on the quality of product. The proportion of rubber, plastic (hard) and certain textiles was found to be critical as to the elemental quality of SRF. The mass flow of rubber, plastic (hard) and textiles (to certain extent, especially synthetic textile) components from input waste stream into the output streams of SRF production was found to play the decisive role in defining the elemental quality of SRF. This paper presents the mass flow of polluting and potentially toxic elements (PTEs) in SRF production. The SRF was produced from municipal solid waste (MSW) through mechanical treatment (MT). The results showed that of the total input chlorine content to process, 55% was found in the SRF and 30% in reject material. Of the total input arsenic content, 30% was found in the SRF and 45% in fine fraction. In case of cadmium, lead and mercury, of their total input content to the process, 62%, 38% and 30%, respectively, was found in the SRF. Among the components of MSW, rubber material was identified as potential source of chlorine, containing 8.0 wt.% of chlorine. Plastic (hard) and textile components contained 1.6 and 1.1. wt.% of chlorine, respectively. Plastic (hard) contained higher lead and cadmium content compared with other waste components, i.e. 500 mg kg(-1) and 9.0 mg kg(-1), respectively. PMID:26608898

  20. Microstructure of U 3Si 2 fuel plates submitted to a high heat flux

    NASA Astrophysics Data System (ADS)

    Leenaers, A.; Van den Berghe, S.; Koonen, E.; Jacquet, P.; Jarousse, C.; Guigon, B.; Ballagny, A.; Sannen, L.

    2004-05-01

    In order to gain insight on the performance limits of U 3Si 2 fuel with Al cladding, fuel plates with a fissile material density of 5.1 and 6.1 g U/cm 3 were irradiated in the BR2 reactor of SCK • CEN in Mol. The plates were intended to be subjected to severe conditions leading to a cladding surface temperature of 180-200 °C and fuel temperatures of 220-240 °C. The irradiation program was stopped after the second cycle based on the visual inspection and wet sipping tests of the elements, correspondingly showing degradations on the outer Al surfaces of the U 3Si 2 plates and the release of fission products. The maximum fuel burn-up was 29% and 25% 235U, respectively. In a PIE program the microstructural causes for this degradation are analysed. It is found that the failure of the plates is entirely related to the corrosion of the Al cladding, which has caused temperatures to rise well beyond the calculated values. In all stages, the fuel grains have retained their integrity and, apart from the formation of an interaction phase with the Al matrix, they do not demonstrate deleterious changes in their physical properties.

  1. 1985 primary heating fuel use and switching: Assessment of the market for conservation in the Northwest: Phase 2

    SciTech Connect

    Hattrup, M.P.; Nordi, R.T.; Ivey, D.L.

    1987-05-01

    This report presents information on the types of primary heating fuels used in residences in the Pacific Northwest region and how the heating fuels affect the level of investment in energy conservation measures (ECMs) by occupants of the residences. The types of heating fuel switching that occurred during the past two years (1983-1985) is also presented. The information was collected from random telephone surveys of households in Idaho, Oregon, Washington, and western Montana. The Pacific Northwest Laboratory (PNL) conducted analyses of the survey results for the Bonneville Power Administration (BPA) to obtain a better understanding of consumer attitudes and behaviors and to facilitate conservation program planning, design, and marketing. This report covers the following hypotheses: (1) there is no relationship between investing in ECMs and the type of primary heating fuel used in a residence; and (2) there is no relationship between the decision to switch to a new primary heating fuel during 1983-1985 and the original type of primary heating fuel used in the residence.

  2. Finite element method formulation in polar coordinates for transient heat conduction problems

    NASA Astrophysics Data System (ADS)

    Duda, Piotr

    2016-04-01

    The aim of this paper is the formulation of the finite element method in polar coordinates to solve transient heat conduction problems. It is hard to find in the literature a formulation of the finite element method (FEM) in polar or cylindrical coordinates for the solution of heat transfer problems. This document shows how to apply the most often used boundary conditions. The global equation system is solved by the Crank-Nicolson method. The proposed algorithm is verified in three numerical tests. In the first example, the obtained transient temperature distribution is compared with the temperature obtained from the presented analytical solution. In the second numerical example, the variable boundary condition is assumed. In the last numerical example the component with the shape different than cylindrical is used. All examples show that the introduction of the polar coordinate system gives better results than in the Cartesian coordinate system. The finite element method formulation in polar coordinates is valuable since it provides a higher accuracy of the calculations without compacting the mesh in cylindrical or similar to tubular components. The proposed method can be applied for circular elements such as boiler drums, outlet headers, flux tubes. This algorithm can be useful during the solution of inverse problems, which do not allow for high density grid. This method can calculate the temperature distribution in the bodies of different properties in the circumferential and the radial direction. The presented algorithm can be developed for other coordinate systems. The examples demonstrate a good accuracy and stability of the proposed method.

  3. Steady-State and Transient Boundary Element Methods for Coupled Heat Conduction

    NASA Technical Reports Server (NTRS)

    Kontinos, Dean A.

    1997-01-01

    Boundary element algorithms for the solution of steady-state and transient heat conduction are presented. The algorithms are designed for efficient coupling with computational fluid dynamic discretizations and feature piecewise linear elements with offset nodal points. The steady-state algorithm employs the fundamental solution approach; the integration kernels are computed analytically based on linear shape functions, linear elements, and variably offset nodal points. The analytic expressions for both singular and nonsingular integrands are presented. The transient algorithm employs the transient fundamental solution; the temporal integration is performed analytically and the nonsingular spatial integration is performed numerically using Gaussian quadrature. A series solution to the integration is derived for the instance of a singular integrand. The boundary-only character of the algorithm is maintained by integrating the influence coefficients from initial time. Numerical results are compared to analytical solutions to verify the current boundary element algorithms. The steady-state and transient algorithms are numerically shown to be second-order accurate in space and time, respectively.

  4. The influence of thermophysical properties of an anisotropic heat-element substrate on the value of thermal emf in the stationary thermal mode

    NASA Astrophysics Data System (ADS)

    Bobashev, S. V.; Popov, P. A.; Reznikov, B. I.; Sakharov, V. A.

    2016-05-01

    Thermal and thermoelectric processes in anisotropic heat elements located on substrates made of different materials have been numerically simulated. It is shown that, when an invariable heat flux passes through a heat element, the thermophysical properties of the substrate and heat transfer coefficient at its rear surface affect significantly the temperature distribution and the value of generated thermal emf.

  5. Development of a coal-fueled Internal Manifold Heat Exchanger (IMHEX reg sign ) molten carbonate fuel cell

    SciTech Connect

    Not Available

    1991-09-01

    The design of a CGMCFC electric generation plant that will provide a cost of eletricity (COE) which is lower than that of current electric generation technologies and which is competitive with other long-range electric generating systems is presented. This effort is based upon the Internal Manifold Heat Exchanger (IMHEX) technology as developed by the Institute of Gas Technology (IGT). The project was executed by selecting economic and performance objectives for alternative plant arrangements while considering process constraints identified during IMHEX fuel cell development activities at ICT. The four major subsystems of a coal-based MCFC power plant are coal gasification, gas purification, fuel cell power generation and the bottoming cycle. The design and method of operation of each subsystem can be varied, and, depending upon design choices, can have major impact on both the design of other subsystems and the resulting cost of electricity. The challenge of this project was to select, from a range of design parameters, those operating conditions that result in a preferred plant design. Computer modelling was thus used to perform sensitivity analyses of as many system variables as program resources and schedules would permit. In any systems analysis, it is imperative that the evaluation methodology be verifiable and comparable. The TAG Class I develops comparable (if imprecise) data on performance and costs for the alternative cases being studied. It identifies, from a range of options, those which merit more exacting scrutiny to be undertaken at the second level, TAG class II analysis.

  6. SUB-LEU-METAL-THERM-001 SUBCRITICAL MEASUREMENTS OF LOW ENRICHED TUBULAR URANIUM METAL FUEL ELEMENTS BEFORE & AFTER IRRADIATION

    SciTech Connect

    TOFFER, H.

    2006-07-18

    With the shutdown of the Hanford PUREX (Plutonium-Uranium Extraction Plant) reprocessing plant in the 1970s, adequate storage capacity for spent Hanford N Reactor fuel elements in the K and N Reactor pools became a concern. To maximize space utilization in the pools, accounting for fuel burnup was considered. Fuel that had experienced a neutron environment in a reactor is known as spent, exposed, or irradiated fuel. In contrast fuel that has not yet been placed in a reactor is known as green, unexposed, or unirradiated fuel. Calculations indicated that at typical fuel exposures for N Reactor, the spent-fuel critical mass would be twice the critical mass for green fuel. A decision was reached to test the calculational result with a definitive experiment. If the results proved positive, storage capacity could be increased and N Reactor operation could be prolonged. An experiment to be conducted in the N Reactor spent-fuel storage pool was designed and assembled (References 1 and 2) and the services of the Battelle Northwest Laboratories (BNWL) (now Pacific Northwest National Laboratory [PNNL]) critical mass laboratory were procured for the measurements (Reference 3). The experiments were performed in April 1975 in the Hanford N Reactor fuel storage pool. The fuel elements were MKIA fuel assemblies, comprised of two concentric tubes of low-enriched metallic uranium. Two separate sets of measurements were performed: one with unirradiated fuel and one with irradiated fuel. Both the unirradiated and irradiated fuel, were measured in the same geometry. The spent-fuel MKIA assemblies had an average burnup of 2865 MWd (megawatt days)/t. A constraint was imposed restricting the measurements to a subcritical limit of k{sub eff} = 0.97. Subcritical count rate data was obtained with pulsed-neutron and approach-to-critical measurements. Ten (10) configurations with green fuel and nine (9) configurations with spent fuel are described and evaluated. Of these, three (3) green fuel

  7. Effect of element size on the solution accuracies of finite-element heat transfer and thermal stress analyses of space shuttle orbiter

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Olona, Timothy

    1987-01-01

    The effect of element size on the solution accuracies of finite-element heat transfer and thermal stress analyses of space shuttle orbiter was investigated. Several structural performance and resizing (SPAR) thermal models and NASA structural analysis (NASTRAN) structural models were set up for the orbiter wing midspan bay 3. The thermal model was found to be the one that determines the limit of finite-element fineness because of the limitation of computational core space required for the radiation view factor calculations. The thermal stresses were found to be extremely sensitive to a slight variation of structural temperature distributions. The minimum degree of element fineness required for the thermal model to yield reasonably accurate solutions was established. The radiation view factor computation time was found to be insignificant compared with the total computer time required for the SPAR transient heat transfer analysis.

  8. The analysis of chlorine with other elements of interest in waste oil/fuels by ICP-AES

    SciTech Connect

    Tsourides, D.

    1998-12-31

    It has been said that there are more chemical analysis performed on oil/fuels than any other material. The sensitivity, linearity, multi-element capability, and relative freedom from matrix effects of ICP-AES makes it particularly suitable for elemental analysis of these samples. However, until recently the routine analysis of Chlorine had not been possible by ICP-AES. The addition of the Halogen elements, particularly Chlorine, to ICP-AES analysis is of importance to several industries that burn waste oil as fuel. The recycling and disposal of waste oil is closely regulated by metal and halogen content in all developed countries. In some countries, waste oil containing more than 1,000 ppm of Chlorine is considered hazardous waste. However, used oil may be burned as a fuel if it meets certain allowable limits. The paper describes the procedures for chlorine analysis by Inductively Coupled Plasma Atomic Emission Spectroscopy.

  9. Analysis of organic and elemental carbon in heating and non-heating periods in four locations of Beijing.

    PubMed

    Sun, Fengbin; Lun, Xiaoxiu; Liu, Xuhui; Mo, Li; Li, Renna; Zhang, Hongxia; Chen, Jungang; Cao, Yingying; Shi, Fangtian; Yu, Xinxiao

    2016-01-01

    The concentrations of elemental carbon (EC) and organic carbon (OC) in PM2.5 atmospheric aerosol were measured at four different sites in Beijing: Beijing Olympic Forest Park (OF), Jiufeng National Forest Park (JF), Beijing Forestry University campus lawn (G), and roads near the Beijing Forestry University (S). The winter heating period concentrations were 30-45% higher than the spring non-heating period. Possible reasons for this could be the severe convective weather in spring due to the temperate monsoon, deposition of PM2.5 to plants in spring, stable atmospheric conditions in winter, and/or a greater number of sources of carbonaceous aerosols in winter. The proportion of total carbon (i.e. EC + OC) in PM2.5 in Beijing is high. The OC/EC value was 2.45 (OF) and 2.39 (JF) in winter and 1.6 (OF) and 1.43 (JF) in spring. These ratios and the high correlation of OC with EC in the winter samples indicate a strong primary source of OC. Eight carbon fractions from the four different sampling locations were analysed, and the OC1-4 values were found to vary considerably. In winter, the OC1 values from all four sites were higher than the spring values. Although there were differences at each site, the percentages of OC2, OC3, EC1-OP, and EC2 were the largest. Secondary organic carbon (SOC) formed during long-range transport from the emission sources to the monitoring sites, and the increase of OC2 and OC3 concentrations could be associated with SOC.

  10. Analysis of organic and elemental carbon in heating and non-heating periods in four locations of Beijing.

    PubMed

    Sun, Fengbin; Lun, Xiaoxiu; Liu, Xuhui; Mo, Li; Li, Renna; Zhang, Hongxia; Chen, Jungang; Cao, Yingying; Shi, Fangtian; Yu, Xinxiao

    2016-01-01

    The concentrations of elemental carbon (EC) and organic carbon (OC) in PM2.5 atmospheric aerosol were measured at four different sites in Beijing: Beijing Olympic Forest Park (OF), Jiufeng National Forest Park (JF), Beijing Forestry University campus lawn (G), and roads near the Beijing Forestry University (S). The winter heating period concentrations were 30-45% higher than the spring non-heating period. Possible reasons for this could be the severe convective weather in spring due to the temperate monsoon, deposition of PM2.5 to plants in spring, stable atmospheric conditions in winter, and/or a greater number of sources of carbonaceous aerosols in winter. The proportion of total carbon (i.e. EC + OC) in PM2.5 in Beijing is high. The OC/EC value was 2.45 (OF) and 2.39 (JF) in winter and 1.6 (OF) and 1.43 (JF) in spring. These ratios and the high correlation of OC with EC in the winter samples indicate a strong primary source of OC. Eight carbon fractions from the four different sampling locations were analysed, and the OC1-4 values were found to vary considerably. In winter, the OC1 values from all four sites were higher than the spring values. Although there were differences at each site, the percentages of OC2, OC3, EC1-OP, and EC2 were the largest. Secondary organic carbon (SOC) formed during long-range transport from the emission sources to the monitoring sites, and the increase of OC2 and OC3 concentrations could be associated with SOC. PMID:26101900

  11. Output power characteristics and performance of TOPAZ II Thermionic Fuel Element No. 24

    SciTech Connect

    Luchau, D.W.; Bruns, D.R.; Izhvanov, O.; Androsov, V.

    1996-03-01

    A final report on the output power characteristics and capabilities of single cell TOPAZ II Thermionic Fuel Element (TFE) No. 24 is presented. Thermal power tests were conducted for over 3000 hours to investigate converter performance under normal and adverse operating conditions. Experiments conducted include low power testing, high power testing, air introduction to the interelectrode gap, collector temperature optimization, thermal modeling, and output power characteristic measurements. During testing, no unexpected degradation in converter performance was observed. The TFE has been removed from the test stand and returned to Scientific Industrial Association {open_quote}{open_quote}LUCH{close_quote}{close_quote} for materials analysis and report. This research was conducted at the Thermionic System Evaluation Test (TSET) Facility at the New Mexico Engineering Research Institute (NMERI) as a part of the Topaz International Program (TIP) by the Air Force Phillips Laboratory (PL). {copyright} {ital 1996 American Institute of Physics.}

  12. High temperature heat exchange: nuclear process heat applications

    SciTech Connect

    Vrable, D.L.

    1980-09-01

    The unique element of the HTGR system is the high-temperature operation and the need for heat exchanger equipment to transfer nuclear heat from the reactor to the process application. This paper discusses the potential applications of the HTGR in both synthetic fuel production and nuclear steel making and presents the design considerations for the high-temperature heat exchanger equipment.

  13. An h-adaptive finite element method for turbulent heat transfer

    SciTech Connect

    Carriington, David B

    2009-01-01

    A two-equation turbulence closure model (k-{omega}) using an h-adaptive grid technique and finite element method (FEM) has been developed to simulate low Mach flow and heat transfer. These flows are applicable to many flows in engineering and environmental sciences. Of particular interest in the engineering modeling areas are: combustion, solidification, and heat exchanger design. Flows for indoor air quality modeling and atmospheric pollution transport are typical types of environmental flows modeled with this method. The numerical method is based on a hybrid finite element model using an equal-order projection process. The model includes thermal and species transport, localized mesh refinement (h-adaptive) and Petrov-Galerkin weighting for the stabilizing the advection. This work develops the continuum model of a two-equation turbulence closure method. The fractional step solution method is stated along with the h-adaptive grid method (Carrington and Pepper, 2002). Solutions are presented for 2d flow over a backward-facing step.

  14. Coated Particles Fuel Compact-General Purpose Heat Source for Advanced Radioisotope Power Systems

    NASA Astrophysics Data System (ADS)

    El-Genk, Mohamed S.; Tournier, Jean-Michel

    2003-01-01

    Coated Particles Fuel Compacts (CPFC) have recently been shown to offer performance advantage for use in Radioisotope Heater Units (RHUs) and design flexibility for integrating at high thermal efficiency with Stirling Engine converters, currently being considered for 100 We. Advanced Radioisotope Power Systems (ARPS). The particles in the compact consist of 238PuO2 fuel kernels with 5-μm thick PyC inner coating and a strong ZrC outer coating, whose thickness depends on the maximum fuel temperature during reentry, the fuel kernel diameter, and the fraction of helium gas released from the kernels and fully contained by the ZrC coating. In addition to containing the helium generated by radioactive decay of 238Pu for up to 10 years before launch and 10-15 years mission lifetime, the kernels are intentionally sized (>= 300 μm in diameter) to prevent any adverse radiological effects on reentry. This paper investigates the advantage of replacing the four iridium-clad 238PuO2 fuel pellets, the two floating graphite membranes, and the two graphite impact shells in current State-Of-The-Art (SOA) General Purpose Heat Source (GPHS) with CPFC. The total mass, thermal power, and specific power of the CPFC-GPHS are calculated as functions of the helium release fraction from the fuel kernels and maximum fuel temperature during reentry from 1500 K to 2400 K. For the same total mass and volume as SOA GPHS, the generated thermal power by single-size particles CPFC-GPHS is 260 W at Beginning-Of-Mission (BOM), versus 231 W for the GPHS. For an additional 10% increase in total mass, the CPFC-GPHS could generate 340 W BOM; 48% higher than SOA GPHS. The corresponding specific thermal power is 214 W/kg, versus 160 W/kg for SOA GPHS; a 34% increase. Therefore, for the same thermal power, the CPFC-GPHS is lighter than SOA GPHS, while it uses the same amount of 238PuO2 fuel and same aeroshell. For the same helium release fraction and fuel temperature, binary-size particles CPFC-GPHS could

  15. Evaluation of an EMITEC resistively heated metal monolith catalytic converter on two M100 neat methanol-fueled vehicles

    NASA Astrophysics Data System (ADS)

    Piotrowski, Gregory K.; Schaefer, Ronald M.

    1992-12-01

    The report describes the evaluation of a resistively heated catalyst system on two different methanol fueled vehicles. The EMITEC catalyst consisted of a compact resistively heated metal monolith in front of a larger conventional main converter. The EMITEC catalyst was evaluated on two neat methanol-fueled vehicles, a 1981 Volkswagen Rabbit and a 1988 Toyota Corolla. Emission testing was conducted over the Federal Test Procedure (FTP) CVS-75 test cycle. The emissions of primary interest were cold start methanol (unburned fuel), carbon monoxide, and formaldehyde.

  16. Performance simulation of an advanced cylindrical thermionic fuel element with a graphite reservoir

    NASA Astrophysics Data System (ADS)

    Young, Timothy J.; Thayer, Kevin L.; Ramalingam, Mysore L.

    1993-07-01

    This paper describes the analytical work to optimize the steady-state electrical and thermal characteristics of an advanced, power producing, cylindrical thermionic fuel element (TFE) operating in a space nuclear reactor. The thermionic converter was equipped with an integral, lamellar graphite-cesium reservoir attached to the non-nuclear fueled TFE emitter lead as a means for supplying cesium vapor for efficient thermionic emission. Five intercalated cesium-graphite compounds were chosen for this analysis and the optimum position for the placement of each candidate reservoir in the TFE lead region was determined. The Advanced Thermionic Initiative (ATI) thermal spectrum, 'driverless' nuclear reactor configuration, with an output of 36 kWe, was used as a basis for the calculations. A coupled thermionic and thermal-hydraulic computer program was integrated with a lead region thermal model to calculate the thermal and electrical output characteristics of the TFE for different reservoir locations. The results of this analysis indicate that the temperature distribution in the lead region of the TFE at steady-state is such that only four of the candidate reservoirs analyzed could be located on the lead and supply the requisite cesium vapor pressure for optimum TFE operation.

  17. Fabrication of ORNL Fuel Irradiated in the Peach Bottom Reactor and Postirradiation Examination of Recycle Test Elements 7 and 4

    SciTech Connect

    Long, Jr. E.L.

    2001-10-25

    Seven full-sized Peach Bottom Reactor. fuel elements were fabricated in a cooperative effort by Oak Ridge National Laboratory (ORNL) and Gulf General Atomic (GGA) as part of the National HTGR Fuel Recycle Development Program. These elements contain bonded fuel rods and loose beds of particles made from several combinations of fertile and fissile particles of interest for present and future use in the High-Temperature Gas-Cooled Reactor (HTGR). The portion of the fuel prepared for these elements by ORNL is described in detail in this report, and it is in conjunction with the GGA report (GA-10109) a complete fabrication description of the test. In addition, this report describes the results obtained to date from postirradiation examination of the first two elements removed from the Peach Bottom Reactor, RTE-7 and -4. The fuel examined had relatively low exposure, up to about 1.5 x 10{sup 21} neutrons/cm* fast (>0.18 MeV) fluence, compared with the peak anticipated HTGR fluence of 8.0 x 10{sup 21}, but it has performed well at this exposure. Dimensional data indicate greater irradiation shrinkage than expected from accelerated test data to higher exposures. This suggests that either the method of extrapolation of the higher exposure data back to low exposure is faulty, or the behavior of the coated particles in the neutron spectrum characteristic of the accelerated tests does not adequately represent the behavior in an HTGR spectrum.

  18. Clean, Efficient, and Reliable Heat and Power for the 21st Century, Fuel Cell Technologies Program (FCTP) (Fact Sheet)

    SciTech Connect

    Not Available

    2010-05-01

    This overview of the U.S. Department of Energy's Fuel Cell Technologies Program describes the program's focus and goals, along with current fuel cell applications and future potential. The program focuses on research and development of fuel cell systems for diverse applications in the stationary power, portable power, and transportation sectors. It works to reduce costs and improve technologies to advance fuel cell uses in areas such as combined heat and power, auxiliary power units, portable power systems, and stationary and backup power. To help ensure that fuel cell advances are realized, the program rigorously analyzes energy efficiency, economic, and environmental benefits of fuel cells and seeks to optimize synergies among fuel cell applications and other renewable technologies.

  19. Hybrid finite volume/ finite element method for radiative heat transfer in graded index media

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Zhao, J. M.; Liu, L. H.; Wang, S. Y.

    2012-09-01

    The rays propagate along curved path determined by the Fermat principle in the graded index medium. The radiative transfer equation in graded index medium (GRTE) contains two specific redistribution terms (with partial derivatives to the angular coordinates) accounting for the effect of the curved ray path. In this paper, the hybrid finite volume with finite element method (hybrid FVM/FEM) (P.J. Coelho, J. Quant. Spectrosc. Radiat. Transf., vol. 93, pp. 89-101, 2005) is extended to solve the radiative heat transfer in two-dimensional absorbing-emitting-scattering graded index media, in which the spatial discretization is carried out using a FVM, while the angular discretization is by a FEM. The FEM angular discretization is demonstrated to be preferable in dealing with the redistribution terms in the GRTE. Two stiff matrix assembly schemes of the angular FEM discretization, namely, the traditional assembly approach and a new spherical assembly approach (assembly on the unit sphere of the solid angular space), are discussed. The spherical assembly scheme is demonstrated to give better results than the traditional assembly approach. The predicted heat flux distributions and temperature distributions in radiative equilibrium are determined by the proposed method and compared with the results available in other references. The proposed hybrid FVM/FEM method can predict the radiative heat transfer in absorbing-emitting-scattering graded index medium with good accuracy.

  20. Coupled mechanical/heat transfer simulation on MPP platforms using a finite element/linear solver interface

    SciTech Connect

    Aro, C J; Dube, E I; Futral, W S

    1999-02-24

    This report describes the implementation of a coupled mechanical /heat transfer simulation using a Finite Element Interface (FEI). The FE1 is an abstraction layer, which lies between the application code and its linear solver libraries, controlling the set-up and solution of the linear system arising in the finite element simulation. The performance and scalability of the ISIS++ FE1 is examined on the ASCI Red and Blue machines in the context of the ALE3D finite element simulation code.