Science.gov

Sample records for fuel emulsions

  1. Maximizing the stability of pyrolysis oil/diesel fuel emulsions

    USDA-ARS?s Scientific Manuscript database

    Several emulsions consisting of biomass pyrolysis oil (bio-oil) in diesel fuel were produced and analyzed for stability over time. An ultrasonic probe was used to generate microscopic droplets of bio-oil suspended in diesel fuel, and this emulsion was stabilized using surfactant chemicals. The most...

  2. Physics of puffing and microexplosion of emulsion fuel droplets

    NASA Astrophysics Data System (ADS)

    Shinjo, J.; Xia, J.; Ganippa, L. C.; Megaritis, A.

    2014-10-01

    The physics of water-in-oil emulsion droplet microexplosion/puffing has been investigated using high-fidelity interface-capturing simulation. Varying the dispersed-phase (water) sub-droplet size/location and the initiation location of explosive boiling (bubble formation), the droplet breakup processes have been well revealed. The bubble growth leads to local and partial breakup of the parent oil droplet, i.e., puffing. The water sub-droplet size and location determine the after-puffing dynamics. The boiling surface of the water sub-droplet is unstable and evolves further. Finally, the sub-droplet is wrapped by boiled water vapor and detaches itself from the parent oil droplet. When the water sub-droplet is small, the detachment is quick, and the oil droplet breakup is limited. When it is large and initially located toward the parent droplet center, the droplet breakup is more extensive. For microexplosion triggered by the simultaneous growth of multiple separate bubbles, each explosion is local and independent initially, but their mutual interactions occur at a later stage. The degree of breakup can be larger due to interactions among multiple explosions. These findings suggest that controlling microexplosion/puffing is possible in a fuel spray, if the emulsion-fuel blend and the ambient flow conditions such as heating are properly designed. The current study also gives us an insight into modeling the puffing and microexplosion of emulsion droplets and sprays.

  3. Emulsions of crude glycerin from biodiesel processing with fuel oil for industrial heating.

    PubMed

    Mize, Hannah E; Lucio, Anthony J; Fhaner, Cassie J; Pratama, Fredy S; Robbins, Lanny A; Karpovich, David S

    2013-02-13

    There is considerable interest in using crude glycerin from biodiesel production as a heating fuel. In this work crude glycerin was emulsified into fuel oil to address difficulties with ignition and sustained combustion. Emulsions were prepared with several grades of glycerin and two grades of fuel oil using direct and phase inversion emulsification. Our findings reveal unique surfactant requirements for emulsifying glycerin into oil; these depend on the levels of several contaminants, including water, ash, and components in MONG (matter organic non-glycerin). A higher hydrophile-lipophile balance was required for a stable emulsion of crude glycerin in fuel oil compared to water in fuel oil. The high concentration of salts from biodiesel catalysts generally hindered emulsion stability. Geometric close-packing of micelles was carefully balanced to mechanically stabilize emulsions while also enabling low viscosity for pumping and fuel injection. Phase inversion emulsification produced more stable emulsions than direct emulsification. Emulsions were tested successfully as fuel for a waste oil burner.

  4. Adelphi-Goddard emulsified fuel project. [using water/oil emulsions

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Thermal efficiency and particle emissions were studied using water/oil emulsions. These studies were done using number 2 and number 6 fuel oil. The number 6 oil had a sulfur content greater than one percent and experiments were conducted to remove the sulfur dioxide from the stack gases. Test findings include: (1) emulsion effected a reduction in soot at a low excess air levels; (2) a steam atomizing system will produce a water/oil emulsion. The fuel in the study was emulsified in the steam atomization process, hence, pre-emulsification did not yield a dramatic reduction in soot or an increase in thermal efficiency.

  5. Current trends in water-in-diesel emulsion as a fuel.

    PubMed

    Yahaya Khan, Mohammed; Abdul Karim, Z A; Hagos, Ftwi Yohaness; Aziz, A Rashid A; Tan, Isa M

    2014-01-01

    Water-in-diesel emulsion (WiDE) is an alternative fuel for CI engines that can be employed with the existing engine setup with no additional engine retrofitting. It has benefits of simultaneous reduction of both NO x and particulate matters in addition to its impact in the combustion efficiency improvement, although this needs further investigation. This review paper addresses the type of emulsion, the microexplosion phenomenon, emulsion stability and physiochemical improvement, and effect of water content on the combustion and emissions of WiDE fuel. The review also covers the recent experimental methodologies used in the investigation of WiDE for both transport and stationary engine applications. In this review, the fuel injection pump and spray nozzle arrangement has been found to be the most critical components as far as the secondary atomization is concerned and further investigation of the effect of these components in the microexplosion of the emulsion is suggested to be center of focus.

  6. Current Trends in Water-in-Diesel Emulsion as a Fuel

    PubMed Central

    Yahaya Khan, Mohammed; Abdul Karim, Z. A.; Aziz, A. Rashid A.; Tan, Isa M.

    2014-01-01

    Water-in-diesel emulsion (WiDE) is an alternative fuel for CI engines that can be employed with the existing engine setup with no additional engine retrofitting. It has benefits of simultaneous reduction of both NOx and particulate matters in addition to its impact in the combustion efficiency improvement, although this needs further investigation. This review paper addresses the type of emulsion, the microexplosion phenomenon, emulsion stability and physiochemical improvement, and effect of water content on the combustion and emissions of WiDE fuel. The review also covers the recent experimental methodologies used in the investigation of WiDE for both transport and stationary engine applications. In this review, the fuel injection pump and spray nozzle arrangement has been found to be the most critical components as far as the secondary atomization is concerned and further investigation of the effect of these components in the microexplosion of the emulsion is suggested to be center of focus. PMID:24563631

  7. Calculation of the Thermal Parameters and Change in The Share of Emissions of Harmful Substances During Combustion of Water-Fuel Emulsion

    NASA Astrophysics Data System (ADS)

    Toropov, S. Y.; Berg, V. I.; Petryakov, V. A.; Mostovaya, N. A.

    2016-10-01

    The article investigates the possibility to improve efficiency and ecological compatibility of fuel oil with use water-fuel emulsion. The calculation of the thermal parameters and change in the share of emissions of harmful substances during combustion of water-fuel emulsion and optimal water content in water-fuel emulsion.

  8. Influence of Steam Injection and Water-in-Oil Emulsions on Diesel Fuel Combustion Performance

    NASA Astrophysics Data System (ADS)

    Sung, Meagan

    Water injection can be an effective strategy for reducing NOx because water's high specific heat allows it to absorb heat and lower system temperatures. Introducing water as an emulsion can potentially be more effective at reducing emissions than steam injection due to physical properties (such as microexplosions) that can improve atomization and increase mixing. Unfortunately, the immiscibility of emulsions makes them difficult to work with so they must be mixed properly. In this effort, a method for adequately mixing surfactant-free emulsions was established and verified using high speed cinematography. As the water to fuel mass ratio (W/F) increased, emulsion atomization tests showed little change in droplet size and spray angle, but a shorter overall breakup point. Dual-wavelength planar laser induced fluorescence (D-PLIF) patternation showed an increase in water near the center of the spray. Steam injection flames saw little change in reaction stability, but emulsion flames experienced significant losses in stability that limited reaction operability at higher W/F. Emulsions were more effective at reducing NOx than steam injection, likely because of liquid water's latent heat of vaporization and the strategic injection of water into the flame core. OH* chemiluminescence showed a decrease in heat release for both methods, though the decrease was greater for emulsions. Both methods saw decreases in flame length for W/F 0.15. Lastly, flame imaging showed a shift towards a redder appearance with the addition or more water, as well as a reduction in flame flares.

  9. Reduction of Exhaust Smoke from Gas-Turbine Engines by Using Fuel Emulsions.

    DTIC Science & Technology

    1980-10-21

    9.9.... 60 3A. __ .i ___ NAEC-92-114 LIST OF ILLUSTRATIONS (CONTINUED) Figure Title Page 66 Smoke Number Evaluacions for Experiments 11, 13, 14, and...pressure drop; examples of the resulting emulsions are il- lustrated in Figure 2. b. The homogenizer unit was integrated into the fuel system as an in

  10. Research on the influence of ozone dissolved in the fuel-water emulsion on the parameters of the CI engine

    NASA Astrophysics Data System (ADS)

    Wojs, M. K.; Orliński, P.; Kamela, W.; Kruczyński, P.

    2016-09-01

    The article presents the results of empirical research on the impact of ozone dissolved in fuel-water emulsion on combustion process and concentration of toxic substances in CI engine. The effect of ozone presence in the emulsion and its influence on main engine characteristics (power, torque, fuel consumption) and selected parameters that characterize combustion process (levels of pressures and temperatures in combustion chamber, period of combustion delay, heat release rate, fuel burnt rate) is shown. The change in concentration of toxic components in exhausts gases when engine is fueled with ozonized emulsion was also identified. The empirical research and their analysis showed significant differences in the combustion process when fuel-water emulsion containing ozone was used. These differences include: increased power and efficiency of the engine that are accompanied by reduction in time of combustion delay and beneficial effects of ozone on HC, PM, CO and NOX emissions.

  11. Liquid Fuel Emulsion Jet-in-Crossflow Penetration and Dispersion Under High Pressure Conditions

    NASA Astrophysics Data System (ADS)

    Gomez, Guillermo Andres

    The current work focuses on the jet-in-crossflow penetration and dispersion behavior of water-in-oil emulsions in a high pressure environment. Both fuel injection strategies of using a water-in-oil emulsion and a jet-in-crossflow have demonstrated unique benefits in improving gas turbine performance from an emissions and efficiency standpoint. A jet-in-crossflow is very practical for use in gas turbine engines, rocket propulsion, and aircraft engines since it utilizes already available crossflow air to atomize fuel. Injecting water into a combustion chamber in the form of a water-in-oil emulsion allows for pollutant emissions reduction while reducing efficiency loses that may result from using a separate water or steam injection circuit. Dispersion effects on oil droplets are expected, therefore investigating the distribution of both oil and water droplets in the crossflow is an objective in this work. Understanding the synchronization and injection behavior of the two strategies is of key interest due to their combined benefits. A water-to-oil ratio and an ambient pressure parameter are developed for emulsion jet-in-crossflow trajectories. To this end, a total of 24 emulsion jet-in-crossflow tests were performed with varying ambient pressures of 2-8 atm and momentum flux ratios of 50, 85, and 120. Sobel edge filtering was applied to each averaged image obtained from a high speed video of each test case. Averaged and filtered images were used to resolve top and bottom edges of the trajectory in addition to the overall peak intensity up to 40 mm downstream of the injection point. An optimized correlation was established and found to differ from literature based correlations obtained under atmospheric pressure conditions. Overall it was found that additional parameters were not necessary for the top edge and peak intensity correlations, but a need for a unique emulsion bottom edge and width trajectory correlation was recognized. In addition to investigating emulsion

  12. Level Recession Of Emissions Release By Motor-And-Tractor Diesel Engines Through The Application Of Water-Fuel Emulsions

    NASA Astrophysics Data System (ADS)

    Ivanov, A.; Chikishev, E.

    2017-01-01

    The paper is dedicated to a problem of environmental pollution by emissions of hazardous substances with the exhaust gases of internal combustion engines. It is found that application of water-fuel emulsions yields the best results in diesels where production of a qualitative carburetion is the main problem for the organization of working process. During pilot studies the composition of a water-fuel emulsion with the patent held is developed. The developed composition of a water-fuel emulsion provides its stability within 14-18 months depending on mass content of components in it while stability of emulsions’ analogues makes 8-12 months. The mode of operation of pilot unit is described. Methodology and results of pilot study of operation of diesel engine on a water-fuel emulsion are presented. Cutting time of droplet combustion of a water-fuel emulsion improves combustion efficiency and reduces carbon deposition (varnish) on working surfaces. Partial dismantling of the engine after its operating time during 60 engine hours has shown that there is a removal of a carbon deposition in cylinder-piston group which can be observed visually. It is found that for steady operation of the diesel and ensuring decrease in level of emission of hazardous substances the water-fuel emulsion with water concentration of 18-20% is optimal.

  13. Holographic studies of the vapor explosion of vaporizing water-in-fuel emulsion droplets

    NASA Technical Reports Server (NTRS)

    Sheffield, S. A.; Hess, C. F.; Trolinger, J. D.

    1982-01-01

    Holographic studies were performed which examined the fragmentation process during vapor explosion of a water-in-fuel (hexadecane/water) emulsion droplet. Holograms were taken at 700 to 1000 microseconds after the vapor explosion. Photographs of the reconstructed holograms reveal a wide range of fragment droplet sizes created during the explosion process. Fragment droplet diameters range from below 10 microns to over 100 microns. It is estimated that between ten thousand and a million fragment droplets can result from this extremely violent vapor explosion process. This enhanced atomization is thus expected to have a pronounced effect on vaporization processes which are present during combustion of emulsified fuels.

  14. Multi-cylinder diesel engine tests with unstabilized water-in-fuel emulsions. Final report, September 1978-July 1980

    SciTech Connect

    Coon, C.W. Jr

    1981-03-01

    Two diesel engines representative of the four-stroke cycle and two-stroke cycle main propulsion units installed in U.S. Coast Guard WPB class cutters were operated in a test environment in an attempt to demonstrate significant fuel savings associated with water-in-fuel emulsions. The engine were connected to a dynamometer in a laboratory test cell. A prototype fuel system was assembled that would supply unstabilized emulsions for which the water concentration could range from zero to 25 percent of the total volume of liquid supplied to the engine as fuel. An analysis of boat operation was performed in order to identify the most frequently used engine settings, and both engines were operated at test points representative of boat prop load performance. The test results for the four-stroke cycle engine indicated that an average diesel fuel saving of about 2.5 percent could be obtained at the most frequently encountered operating using water cocentrations of 15-25 percent. Statistical analysis procedures suggest a 90 percent confidence in the measured results. Significant reductions in exhaust smoke were also observed, although the exhaust stream opacity was low throughout the tests. For the two-stroke cycle engine, no statistically significant reduction in fuel consumption could be identified. Measurements of gaseous exhaust emissions were obtained for both engines; in general, the emissions increased with the presence of water in the fuel.

  15. Multicylinder diesel engine tests with unstabilized water-in-fuel emulsions. Final report Sep 78-July 80

    SciTech Connect

    Coon, C.W. Jr

    1981-06-01

    Two diesel engines representative of the four-stroke cycle and two-stroke cycle main propulsion units installed in U.S. Coast Guard WPB class cutters were operated in a test environment in an attempt to demonstrate significant fuel savings associated with water-in-fuel emulsions. The engines were connected to a dynamometer in a laboratory test cell. A prototype fuel system was assembled that would supply unstabilized emulsions for which the water concentration could range form zero to 25 percent of the total volume of liquid supplied to the engine as fuel. An analysis of boat operation was performed in order to identify the most frequently used engine settings, and both engines were operated at test points representative of boat prop load performance. The test results for the four-stroke cycle engine indicated that an average diesel fuel saving of about 2.5 percent could be obtained at the most frequently encountered operating conditions using water concentrations of 15-25 percent. Statistical analysis procedures suggest a 90 percent confidence in the measured results. Significant reductions in exhaust smoke were also observed, although the exhaust stream opacity was low throughout the tests. For the two-stroke cycle engine, no statistically significant reduction in fuel consumption could be identified.

  16. Experimental Studies of Diestrol-Micro Emulsion Fuel in a Direct Injection Compression Ignition Engine under Varying Injection Pressures and Timings

    NASA Astrophysics Data System (ADS)

    Kannan, Gopal Radhakrishnan

    2017-03-01

    The research work on biodiesel becomes more attractive in the context of limited availability of petroleum fuels and rapid increase of harmful emissions from diesel engine using conventional fossil fuels. The present investigation has dealt with the influence of biodiesel-diesel-ethanol (diestrol) water micro emulsion fuel (B60D20E20M) on the performance, emission and combustion characteristics of a diesel engine under different injection pressure and timing. The results revealed that the maximum brake thermal efficiency of 32.4% was observed at an injection pressure of 260 bar and injection timing of 25.5°bTDC. In comparison with diesel, micro emulsion fuel showed reduction in carbon monoxide (CO) and total hydrocarbon (THC) by 40 and 24%, respectively. Further, micro emulsion fuel decreased nitric oxide (NO) emission and smoke emission by 7 and 20.7%, while the carbon dioxide (CO2) emission is similar to that of diesel.

  17. Coal desulfurization during the combustion of coal/oil/water emulsions: an economic alternative clean liquid fuel. Final report

    SciTech Connect

    Not Available

    1983-04-01

    This report presents the Phase II results of a combustion program designed to assess the feasibility of utilizing coal/oil/water (COW) emulsions as a fuel for fire tube package boilers. Also examined was the effect of the addition of alkaline absorbents to the fuel for sulfur dioxide capture. Presented are the findings of testing involving optimizing sulfur dioxide removal while still maintaining a rheologically favorable fuel. Overall performance of COW as a boiler fuel was evaluated over long term operation. Emphasis was placed on burner design as well as coal characteristics. Three different bituminous coals were used during this program. Results indicate that COW emulsions may be a feasible alternative for oil in industrial fire tube boilers if the major problem, deposition buildup, can be resolved. This appears possible with a proper soot blower design. Soda ash is a viable means for obtaining at least 80% removal, using a 1:1 molar ratio. However, the deposition problem with soda ash indicated that stack injection may be a more feasible approach.

  18. Coal desulfurization during the combustion of coal/oil/water emulsions: an economic alternative liquid fuel. Final quarterly report, September 26-December 31, 1980

    SciTech Connect

    Dooher, J.P.

    1981-01-01

    Combustion tests were performed using a Cleaver-Brooks 350 hp fire-tube boiler-furnace to determine the efficiency of sulfur dioxide removal using soda ash and micronized additives. A high sulfur, 4% western Kentucky coal, pulverized to 78% through 200 mesh was mixed with medium weight No. 4 oil and water to form the emulsions. Soda ash and micronized limestone and hydrated lime were added to the emulsion for SO/sub 2/ removal. Baseline combustion tests were first conducted on emulsions without additives. Thermal efficiencies of over 88% were obtained. The best SO/sub 2/ removal was with soda ash, with 80% and 78% removal. There were problems with ash deposition in pass 2 during these tests. Fuel preparation problems were encountered with high particle content micronized limestone and hydrated lime emulsions. The successful fuels had poor SO/sub 2/ removal results.

  19. The vaporizing behavior of the fuel droplet of water-in-oil emulsions on the hot surface

    NASA Astrophysics Data System (ADS)

    Kimoto, Kyoji; Owashi, Yukio; Omae, Yoshihiro

    1986-12-01

    Experiments were carried out to investigate qualitatively the effects of the emulsion internal phase structure, such as the size distribution of water droplets, on the microexplosion phenomena of water-in-'A'-heavy-oil emulsified droplets vaporizing on a hot surface. The results confirm that the size distribution of water droplets in the emulsified fuels plays a very important role in the boilng phenomena, in spite of the same water content included in the fuels. That is, emulsified fuel 1 with fine- and uniform-size distribution of the internal water droplets has a longer life time than the neat fuel ('A' heavy oil) due to a distinctive feature such as 'two stage vaporization'. In contrast, emulsified fuel 2 with coarse droplets has a life time less than a half of the neat fuel in the film boiling region. High-speed motion analyses revealed that such a remarkable promotion effect of vaporization was caused by the destruction of the vapor film due to the 'violent microexplosion' of coarse-coalescent water droplets.

  20. Coal desulfurization during the combustion of coal/oil/water emulsions: an economic alternative liquid fuel. Final quarterly report, January 1, 1981-March 31, 1981

    SciTech Connect

    Dooher, J.P.

    1981-05-01

    Combustion tests were performed using a Cleaver-Brooks 350 hp fire-tube boiler-furnace to determine the efficiency of sulfur dioxide removal using soda ash and micronized additives. A high sulfur, 4.7% Ohio bituminous coal, ground to 92% through 200 mesh, was mixed with medium weight No. 4 oil and water to form the emulsions. Soda ash and micronized dolomite were added to the emulsion for SO/sub 2/ removal. An emulsion, without additives, was first tested and a thermal efficiency of 88% was obtained. The best SO/sub 2/ removal was with soda ash with from 82% to 96% removal. There were problems with ash deposition and slagging in the second pass. Fuel preparation problems were encountered with high particle content micronized dolomite emulsions. The successful dolomite fuels had poor SO/sub 2/ removal results. The long term testing on a coal/oil/water emulsion without any additives has begun and no major problems have been encountered.

  1. Development and application of a low NO{sub x} high efficiency atomiser for oil and emulsion fuels

    SciTech Connect

    Baimbridge, P.; Garwood, M.; Jones, A.R.

    1996-01-01

    During the 1970`s and 1980`s the Central Electricity Generating Board (CEGB) undertook an extensive development programme aimed at improving the combustion performance of its oil fired utility plant. This work culminated in the development of the Optimised Pressure Jet Atomiser and the Steam Atomised F-Jet. Subsequently a license was granted to BP (UK) Limited to develop further the F-jet atomiser for firing difficult refinery fuels. On the privatisation of the UK electricity supply industry the patent rights of the F-jet atomiser were assigned to PowerGen plc. The introduction of NO{sub x} emission legislation for both industrial and utility scale liquid fuel fired plant has prompted PowerGen plc to develop further the F-jet atomiser to provide a low NO{sub x} capability to reduce NO{sub x} abatement costs. The paper presents an overview of spray rig tests and pilot scale combustion trials undertaken to develop the F-jet into a high efficiency, low NO{sub x} atomiser designated the Advance F-jet (AFJ). Test results from the application of AFJ atomisers to industrial and utility plant, firing oil and emulsion fuels, are included.

  2. Multicylinder Diesel Engine Tests with Unstabilized Water-in-Fuel Emulsions.

    DTIC Science & Technology

    1981-06-01

    diesel engines representative of the four -stroke cycle and two-stroke cycle main propulsion units installed in U.S. Coast Guard WPB class cutters were...performance. The test results for the four -stroke cycle engine indicated that an average diesel fuel saving of about 2.5 percent could be obtained at the...CONSUMPTION, DETROIT DIESEL ENGINE, 1000 RPM ................. 39 3-5 FUEL CONSUMPTION, DETROIT DIESEL ENGINE, FOUR SPEEDS .............. 40 3-6 FUEL INJECTION

  3. Combustion of Drops and Sprays of Heavy Fuel Oils and Their Emulsions.

    DTIC Science & Technology

    1980-12-01

    of isolated drops can be generated by supplying the fuel from a pressurized fuel tank through a fine needle shaped hypodermic tube. For spray...Another severe problem that arose during these tests was clogging of the hypodermic needle through which single drops were injected. This was thought to be...caused essentially by the liquid phase cracking of the fuel inside the hypodermic needle . Therefore, we decided to use a slightly larger inside

  4. Effect of water/fuel emulsions and a cerium-based combustion improver additive on HD and LD diesel exhaust emissions.

    PubMed

    Farfaletti, Arianna; Astorga, Covadonga; Martini, Giorgio; Manfredi, Urbano; Mueller, Anne; Rey, Maria; De Santi, Giovanni; Krasenbrink, Alois; Larsen, Bo R

    2005-09-01

    One of the major technological challenges for the transport sector is to cut emissions of particulate matter (PM) and nitrogen oxides (NOx) simultaneously from diesel vehicles to meet future emission standards and to reduce their contribution to the pollution of ambient air. Installation of particle filters in all existing diesel vehicles (for new vehicles, the feasibility is proven) is an efficient but expensive and complicated solution; thus other short-term alternatives have been proposed. It is well known that water/diesel (W/ D) emulsions with up to 20% water can reduce PM and NOx emissions in heavy-duty (HD) engines. The amount of water that can be used in emulsions for the technically more susceptible light-duty (LD) vehicles is much lower, due to risks of impairing engine performance and durability. The present study investigates the potential emission reductions of an experimental 6% W/D emulsion with EURO-3 LD diesel vehicles in comparison to a commercial 12% W/D emulsion with a EURO-3 HD engine and to a Cerium-based combustion improver additive. For PM, the emulsions reduced the emissions with -32% for LD vehicles (mass/km) and -59% for the HD engine (mass/ kWh). However, NOx emissions remained unchanged, and emissions of other pollutants were actually increased forthe LD vehicles with +26% for hydrocarbons (HC), +18% for CO, and +25% for PM-associated benzo[a]pyrene toxicity equivalents (TEQ). In contrast, CO (-32%), TEQ (-14%), and NOx (-6%) were reduced by the emulsion for the HD engine, and only hydrocarbons were slightly increased (+16%). Whereas the Cerium-based additive was inefficient in the HD engine for all emissions except for TEQ (-39%), it markedly reduced all emissions for the LD vehicles (PM -13%, CO -18%, HC -26%, TEQ -25%) except for NOx, which remained unchanged. The presented data indicate a strong potential for reductions in PM emissions from current diesel engines by optimizing the fuel composition.

  5. Chemistry of natural fuel: Use of wastes of synthetic fatty acid production for obtaining water-bitumen emulsions

    SciTech Connect

    Syroezhko, A.M.; Antipova, E.I.; Paukku, A.N.

    1995-12-10

    The possibility of producing water-emulsion waterproofing mastic and waterproofing coating based on bitumen, rubber crumb, and bottoms from production of synthetic fatty acids was studied. The physicochemical properties (softening point, ductility, sorptive properties, and friability) of the waterproofing coating based on a water-emulsion mastic were measured.

  6. Total sulfur determination in gasoline, kerosene and diesel fuel using inductively coupled plasma optical emission spectrometry after direct sample introduction as detergent emulsions

    NASA Astrophysics Data System (ADS)

    Santelli, Ricardo Erthal; Oliveira, Eliane Padua; de Carvalho, Maria de Fátima Batista; Bezerra, Marcos Almeida; Freire, Aline Soares

    2008-07-01

    Herein, we present the development of a procedure for the determination of total sulfur in petroleum-derived products (gasoline, kerosene and diesel fuel) employing inductively coupled plasma optical emission spectrometry (ICP OES). For this procedure, samples were prepared as emulsions that were made using concentrated nitric acid, Triton X-100, sample, and ultra pure water in proportions of 5/10/7/78% (v/v), respectively. Sample volumes were weighed because of the density differences, and oxygen was added to the sheat gas entrance of the ICP OES in order to decrease carbon deposition in the torch and to minimize background effects. A Doehlert design was applied as an experimental matrix to investigate the flow ratios of argon (sheat and plasma gas) and oxygen in relation to the signal-to-background ratio. A comparative study among the slopes of the analytical curves built in aqueous media, surfactant/HNO 3, and by spike addition for several sample emulsions indicates that a unique solution of surfactant in acidic media can be employed to perform the external calibration for analysis of the emulsions. The developed procedure allows for the determination of the total sulfur content in petroleum derivatives with a limit of detection (LOD) and limit of quantification (LOQ) of 0.72 and 2.4 μg g - 1 , respectively. Precision values, expressed as the relative standard deviations (% RSD, n = 10) for 12 and 400 μg g - 1 , were 2.2% and 1.3%, respectively. The proposed procedure was applied toward the determination of total sulfur in samples of gasoline, kerosene, and diesel fuel commercialized in the city of Niterói/RJ, Brazil. The accuracy of the proposed method was evaluated by the determination of the total sulfur in three different standard reference materials (SRM): NIST 2723a (sulfur in diesel fuel oil), NIST 1616b (sulfur in kerosene), and NIST 2298 (sulfur in gasoline). The data indicate that the methodology can be successfully applied to these types of samples

  7. Multiple emulsions.

    PubMed

    Yazan, Y; Seiller, M; Puisieux, F

    1993-06-01

    The purpose of this review is to update the information on multiple emulsions known to be promising delivery systems for both pharmaceuticals and cosmetic materials. The possibility of encapsulating active substances within liquid membranes may lead to interesting opportunities in both fields. Thus the formulation, manufacturing, stabilization, analysis and potential application of multiple emulsions seems to be worth surveying, putting a special emphasis on cosmetic applications.

  8. Performance Combustion Characteristics and Exhaust Emission of a Direct Injection Diesel Engine Using Water/Oil Emulsions as Fuel.

    DTIC Science & Technology

    1985-09-30

    PD pressure dorp across the meriam laminar flow element PSI pounds per square inch RAIR ideal gas constant for air RFG rotational function generator...with a 1/2 inch layer of Smooth Kote insulation. Intake Air Flow Meter The intake air flow is measured using a Meriam Laminar Flow Element. The air...Precision Instrumentation (+ or -) Fuel Flow i-i000 gr 0.01 gr Fisher/Ainswarth ’. LC-IO000 Air Flow 0-200 CFm 0.5 CFM Meriam LFE Speed 0-7000 RPM 2.0

  9. Altering Emulsion Stability with Heterogeneous Surface Wettability

    NASA Astrophysics Data System (ADS)

    Meng, Qiang; Zhang, Yali; Li, Jiang; Lammertink, Rob G. H.; Chen, Haosheng; Tsai, Peichun Amy

    2016-06-01

    Emulsions-liquid droplets dispersed in another immiscible liquid-are widely used in a broad spectrum of applications, including food, personal care, agrochemical, and pharmaceutical products. Emulsions are also commonly present in natural crude oil, hampering the production and quality of petroleum fuels. The stability of emulsions plays a crucial role in their applications, but controlling the stability without external driving forces has been proven to be difficult. Here we show how heterogeneous surface wettability can alter the stability and dynamics of oil-in-water emulsions, generated by a co-flow microfluidic device. We designed a useful methodology that can modify a micro-capillary of desired heterogeneous wettability (e.g., alternating hydrophilic and hydrophobic regions) without changing the hydraulic diameter. We subsequently investigated the effects of flow rates and heterogeneous wettability on the emulsion morphology and motion. The experimental data revealed a universal critical timescale of advective emulsions, above which the microfluidic emulsions remain stable and intact, whereas below they become adhesive or inverse. A simple theoretical model based on a force balance can be used to explain this critical transition of emulsion dynamics, depending on the droplet size and the Capillary number-the ratio of viscous to surface effects. These results give insight into how to control the stability and dynamics of emulsions in microfluidics with flow velocity and different wettability.

  10. Emulsion Droplet Combustion in Microgravity: Water/Heptane Emulsions

    NASA Technical Reports Server (NTRS)

    Avedisian, C. Thomas

    1997-01-01

    This presentation reviews a series of experiments to further examine parametric effects on sooting processes of droplet flames in microgravity. The particular focus is on a fuel droplet emulsified with water, specifically emulsions of n-heptane as the fuel-phase and water as the dispersed phase. Water was selected as the additive because of its anticipated effect on soot formation, and the heptane fuel phase was chosen to theoretically reduce the likelihood of microexplosions because its boiling point is nearly the same as that of water: 100 C for water and 98 C for heptane. The water content was varied while the initial droplet diameter was kept within a small range. The experiments were carried out in microgravity to reduce the effects of buoyancy and to promote spherical symmetry in the burning process. Spherically symmetric droplet burning is a convenient starting point for analysis, but experimental data are difficult to obtain for this situation as evidenced by the fact that no quantitative data have been reported on unsupported emulsion droplet combustion in a convection-free environment. The present study improves upon past work carried out on emulsion droplet combustion in microgravity which employed emulsion droplets suspended from a fiber. The fiber can be instrusive to the emulsion droplet burning process as it can promote coalescence of the dispersed water phase and heterogeneous nucleation on the fiber. Prior work has shown that the presence of water in liquid hydrocarbons can have both beneficial and detrimental effects on the combustion process. Water is known to reduce soot formation and radiation heat transfer to combustor walls Gollahalli (1979) reduce flame temperatures and thereby NOx emissions, and encourage secondary droplet atomization or microexplosion. Water also tends to retard ignition and and promote early extinction. The former effect restricted the range of water volume fractions as discussed below.

  11. Emulsion Droplet Combustion in Microgravity: Water/Heptane Emulsions

    NASA Technical Reports Server (NTRS)

    Avedisian, C. Thomas

    1997-01-01

    This presentation reviews a series of experiments to further examine parametric effects on sooting processes of droplet flames in microgravity. The particular focus is on a fuel droplet emulsified with water, specifically emulsions of n-heptane as the fuel-phase and water as the dispersed phase. Water was selected as the additive because of its anticipated effect on soot formation, and the heptane fuel phase was chosen to theoretically reduce the likelihood of microexplosions because its boiling point is nearly the same as that of water: 100 C for water and 98 C for heptane. The water content was varied while the initial droplet diameter was kept within a small range. The experiments were carried out in microgravity to reduce the effects of buoyancy and to promote spherical symmetry in the burning process. Spherically symmetric droplet burning is a convenient starting point for analysis, but experimental data are difficult to obtain for this situation as evidenced by the fact that no quantitative data have been reported on unsupported emulsion droplet combustion in a convection-free environment. The present study improves upon past work carried out on emulsion droplet combustion in microgravity which employed emulsion droplets suspended from a fiber. The fiber can be instrusive to the emulsion droplet burning process as it can promote coalescence of the dispersed water phase and heterogeneous nucleation on the fiber. Prior work has shown that the presence of water in liquid hydrocarbons can have both beneficial and detrimental effects on the combustion process. Water is known to reduce soot formation and radiation heat transfer to combustor walls Gollahalli (1979) reduce flame temperatures and thereby NOx emissions, and encourage secondary droplet atomization or microexplosion. Water also tends to retard ignition and and promote early extinction. The former effect restricted the range of water volume fractions as discussed below.

  12. Altering Emulsion Stability with Heterogeneous Surface Wettability

    PubMed Central

    Meng, Qiang; Zhang, Yali; Li, Jiang; Lammertink, Rob G. H.; Chen, Haosheng; Tsai, Peichun Amy

    2016-01-01

    Emulsions–liquid droplets dispersed in another immiscible liquid–are widely used in a broad spectrum of applications, including food, personal care, agrochemical, and pharmaceutical products. Emulsions are also commonly present in natural crude oil, hampering the production and quality of petroleum fuels. The stability of emulsions plays a crucial role in their applications, but controlling the stability without external driving forces has been proven to be difficult. Here we show how heterogeneous surface wettability can alter the stability and dynamics of oil-in-water emulsions, generated by a co-flow microfluidic device. We designed a useful methodology that can modify a micro-capillary of desired heterogeneous wettability (e.g., alternating hydrophilic and hydrophobic regions) without changing the hydraulic diameter. We subsequently investigated the effects of flow rates and heterogeneous wettability on the emulsion morphology and motion. The experimental data revealed a universal critical timescale of advective emulsions, above which the microfluidic emulsions remain stable and intact, whereas below they become adhesive or inverse. A simple theoretical model based on a force balance can be used to explain this critical transition of emulsion dynamics, depending on the droplet size and the Capillary number–the ratio of viscous to surface effects. These results give insight into how to control the stability and dynamics of emulsions in microfluidics with flow velocity and different wettability. PMID:27256703

  13. GENERIC VERIFICATION PROTOCOL FOR DETERMINATION OF EMISSIONS REDUCTIONS OBTAINED BY USE OF ALTERNATIVE OR REFORMULATED LIQUID FUELS, FUEL ADDITIVES, FUEL EMULSIONS AND LUBRICANTS FOR HIGHWAY AND NONROAD USE DISEL ENGINES AND LIGHT DUTY GASOLINE ENGINES AND VEHICLES

    EPA Science Inventory

    This report sets standards by which the emissions reduction provided by fuel and lubricant technologies can be tested and be tested in a comparable way. It is a generic protocol under the Environmental Technology Verification program.

  14. GENERIC VERIFICATION PROTOCOL FOR DETERMINATION OF EMISSIONS REDUCTIONS OBTAINED BY USE OF ALTERNATIVE OR REFORMULATED LIQUID FUELS, FUEL ADDITIVES, FUEL EMULSIONS AND LUBRICANTS FOR HIGHWAY AND NONROAD USE DISEL ENGINES AND LIGHT DUTY GASOLINE ENGINES AND VEHICLES

    EPA Science Inventory

    This report sets standards by which the emissions reduction provided by fuel and lubricant technologies can be tested and be tested in a comparable way. It is a generic protocol under the Environmental Technology Verification program.

  15. Electrodynamic treatment of reversed-type emulsions

    SciTech Connect

    Skachkov, A.E.; Lavrov, I.S.; Timonov, S.M.

    1985-11-01

    The authors have produced an inhomogeneous electric field in processing reversed emulsions by using the oscillations of conducting spheres in an electric field; this is known as the electrical pendulum effect. The apparatus for the electrodynamic treatment of reversed-type emulsion is shown and the physical characteristics (density, kinematic viscosity, dielectric constant) are shown for the hydrocarbons used: hexane, octane, hexadecane and diesel fuel. It is shown that there is a minimum in the dependence of the residual water content after electrodynamic treatment on the external field strength; the minimum shifts to larger external field strength as the viscosity increases.

  16. Latest nuclear emulsion technology

    NASA Astrophysics Data System (ADS)

    Rokujo, Hiroki; Kawahara, Hiroaki; Komatani, Ryosuke; Morishita, Misaki; Nakano, Toshiyuki; Otsuka, Naoto; Yoshimoto, Masahiro

    2017-06-01

    Nuclear emulsion is a extremely high-resolution 3D tracking detector. Since the discovery of the pion by C.F. Powell et al. in 1946, experiments with nuclear emulsions have contributed to the development of particle physics. (e.g. the OPERA collaboration reported the discovery of νμ * ντ oscillations in appearance mode in 2015) The technology of nuclear emulsion still keeps making progress. Since 2010, we have introduced a system of nuclear emulsion gel production to our laboratory in Nagoya University, and have started self-development of the new gel, instead of from the photographic film companies. Moreover, a faster automated emulsion scanning system is developed. Its scanning speed reaches 4000 cm2/h, and the load for analyzing becomes more and more lighter. In this presentation, we report the status of nuclear emulsion technologies for cosmic ray experiments.

  17. Oil emulsions of fluorosilicone fluids

    SciTech Connect

    Keil, J. W.

    1985-08-27

    Emulsions of fluorosilicone fluids in mineral oil are disclosed. These emulsions are stabilized by a polydimethylsiloxane-polybutadiene copolymer or a polydimethylsiloxane-hydrogenated polybutadiene copplymer. The emulsions are an effective foam suppressant for organic liquids, especially crude petroleum.

  18. Powdery Emulsion Explosive: A New Excellent Industrial Explosive

    NASA Astrophysics Data System (ADS)

    Ni, Ouqi; Zhang, Kaiming; Yu, Zhengquan; Tang, Shujuan

    2012-07-01

    Powdery emulsion explosive (PEE), a new powdery industrial explosive with perfect properties, has been made using an emulsification-spray drying technique. PEE is composed of 91-92.5 wt% ammonium nitrate (AN), 4.5-6 wt% organic fuels, and 1.5-1.8 wt% water. Due to its microstructure as a water-in-oil (W/O) emulsion and low water content, it has excellent detonation performance, outstanding water resistance, reliable safety, and good application compared with other industrial explosives, such as ammonite, emulsion explosives, and ANFO.

  19. Fire Resistant Fuel for Military Compression Ignition Engines

    DTIC Science & Technology

    2013-12-04

    to statistically optimize and quantify FRF emulsion stability. Variables include: temperature (hot or cold ), base fuel, amount and type of emulsifier...developing a fire resistant fuel water emulsion and how the use of JP-8, as intended by the single fuel forward concept, affects this development. 15...This paper will discuss some of the aspects and limitations of developing a fire resistant fuel water emulsion and how the use of JP-8, as intended

  20. Comparative study of the flame structure of the burning sprays of the emulsions of jet a fuel water water and methanol

    SciTech Connect

    Gollahalli, S.R.; Javadi, S.H.

    1981-01-01

    Data are presented on the relative effects of emulsifying Jet A fuel with water and methanol on the flame properties of its sprays. Flame length, composition profiles, temperature profiles, flame radiation, emission of nitrogen oxides, and particulate concentration are studied. Results indicate that reductions of flame radiation, particulate concentration and nitrogen oxide emission can be achieved in both cases and water is more effective than methanol for causing those changes. 38 refs.

  1. Magnetoresistive Emulsion Analyzer

    PubMed Central

    Lin, Gungun; Baraban, Larysa; Han, Luyang; Karnaushenko, Daniil; Makarov, Denys; Cuniberti, Gianaurelio; Schmidt, Oliver G.

    2013-01-01

    We realize a magnetoresistive emulsion analyzer capable of detection, multiparametric analysis and sorting of ferrofluid-containing nanoliter-droplets. The operation of the device in a cytometric mode provides high throughput and quantitative information about the dimensions and magnetic content of the emulsion. Our method offers important complementarity to conventional optical approaches involving ferrofluids, and paves the way to the development of novel compact tools for diagnostics and nanomedicine including drug design and screening. PMID:23989504

  2. Polymerization in emulsion microdroplet reactors

    NASA Astrophysics Data System (ADS)

    Carroll, Nick J.

    concentration and micellization of the surfactant. At the same time, the silica solidifies around the surfactant structures, forming equally sized mesoporous particles. The procedure can be tuned to produce well-separated particles or alternatively particles that are linked together. The latter allows us to create 2D or 3D structures with hierarchical porosity. Oil, water, and surfactant liquid mixtures exhibit very complex phase behavior. Depending on the conditions, such mixtures give rise to highly organized structures. A proper selection of the type and concentration of surfactants determines the structuring at the nanoscale level. In this work, we show that hierarchically bimodal nanoporous structures can be obtained by templating silica microparticles with a specially designed surfactant micelle/microemulsion mixture. Tuning the phase state by adjusting the surfactant composition and concentration allows for the controlled design of a system where microemulsion droplets coexist with smaller surfactant micellar structures. The microemulsion droplet and micellar dimensions determine the two types of pore sizes (single nanometers and tens of nanometers). We also demonstrate the fabrication of carbon and carbon/platinum replicas of the silica microspheres using a "lost-wax" approach. Such particles have great potential for the design of electrocatalysts for fuel cells, chromatography separations, and other applications. It was determined that slight variations in microemulsion mixture components (electrolyte concentration, wt% of surfactants, oil to sol ratio, etc.) produces strikingly different pore morphologies and particle surface areas. Control over the size and structure of the smaller micelle-templated pores was made possible by varying the length of the hydrocarbon block within the trimethyl ammonium bromide surfactant and characterized using X-ray diffraction. The effect of emulsion aging was studied by synthesizing particles at progressive time levels from a sample

  3. Emulsions for interfacial filtration.

    SciTech Connect

    Grillet, Anne Mary; Bourdon, Christopher Jay; Souza, Caroline Ann; Welk, Margaret Ellen; Hartenberger, Joel David; Brooks, Carlton, F.

    2006-11-01

    We have investigated a novel emulsion interfacial filter that is applicable for a wide range of materials, from nano-particles to cells and bacteria. This technology uses the interface between the two immiscible phases as the active surface area for adsorption of targeted materials. We showed that emulsion interfaces can effectively collect and trap materials from aqueous solution. We tested two aqueous systems, a bovine serum albumin (BSA) solution and coal bed methane produced water (CBMPW). Using a pendant drop technique to monitor the interfacial tension, we demonstrated that materials in both samples were adsorbed to the liquid-liquid interface, and did not readily desorb. A prototype system was built to test the emulsion interfacial filter concept. For the BSA system, a protein assay showed a progressive decrease in the residual BSA concentration as the sample was processed. Based on the initial prototype operation, we propose an improved system design.

  4. The droplet group microexplosions in water-in-oil emulsion sprays and their effects on diesel engine combustion

    SciTech Connect

    Sheng, H.Z.; Chen, L.; Zhang, Z.P.; Wu, C.K.; An, C.; Cheng, C.Q.

    1994-12-31

    To clarify the combustion mechanism of water-in-diesel fuel emulsion sprays and to evaluate the possible benefit of emulsions in practical usage, combustion bomb experiments, dynamic engine tests, and computer simulation were carried out, and some useful conclusions have been reached. The droplet group (lump-fashioned) microexplosions in water-in-diesel fuel emulsion sprays on an eddy-size scale during the atomization, evaporation, and combustion processes in a high-pressure, high-temperature bomb were observed with a multipulsed, off-axis, image-plane, ruby laser holocamera and a high-speed camera. The explosions eject droplet fragments from the spray region to several millimeters away, improving the fuel-air mixing process and speeding up the flame propagation. A no-water layer formed by a Hill vortex was also observed in emulsion droplets. The ambient temperature has the most important influence on the occurrence and violence of the microexplosion. Road-load-simulation engine tests were carried out on a dynamic engine test bed. The experimental results show that emulsion fuels have no significant influence on fuel consumption and reduce engine torque if no adjustment is made for the injection system, but that smoke emission is much improved when emulsion fuel is used. The combustion characteristics and the rate of heat release are also analyzed to reveal the difference between emulsion and diesel fuel. The relationships between the optimum water percentages and fuel consumption under various operating conditions were analyzed by numerical combustion modeling.

  5. Immune modulation by parenteral lipid emulsions.

    PubMed

    Wanten, Geert J A; Calder, Philip C

    2007-05-01

    Total parenteral nutrition is the final option for nutritional support of patients with severe intestinal failure. Lipid emulsions constitute the main source of fuel calories and fatty acids (FAs) in parenteral nutrition formulations. However, adverse effects on patient outcomes have been attributed to the use of lipids, mostly in relation to impaired immune defenses and altered inflammatory responses. Over the years, this issue has remained in the limelight, also because technical advances have provided no safeguard against the most daunting problems, ie, infectious complications. Nevertheless, numerous investigations have failed to produce a clear picture of the immunologic characteristics of the most commonly used soybean oil-derived lipid emulsions, although their high content of n-6 polyunsaturated FAs (PUFAs) has been considered a drawback because of their proinflammatory potential. This concern initiated the development of emulsions in which part of the n-6 FA component is replaced by less bioactive FAs, such as coconut oil (rich in medium-chain saturated FAs) or olive oil (rich in the n-9 monounsaturated FA oleic acid). Another approach has been to use fish oil (rich in n-3 PUFA), the FAs of which have biological activities different from those of n-6 PUFAs. Recent studies on the modulation of host defenses and inflammation by fish-oil emulsions have yielded consistent data, which indicate that these emulsions may provide a tool to beneficially alter the course of immune-mediated conditions. Although most of these lipids have not yet become available on the US market, this review synthesizes available information on immunologic characteristics of the different lipids that currently can be applied via parenteral nutrition support.

  6. Effects of diesel engine speed and water content on emission characteristics of three-phase emulsions.

    PubMed

    Lin, Cherng-Yuan; Wang, Kuo-Hua

    2004-01-01

    The effects of water content of three-phase emulsions and engine speed on the combustion and emission characteristics of diesel engines were investigated in this study. The results show that a larger water content of water-in oil (W/O) and oil-in-water-in-oil (O/W/O) emulsion caused a higher brake specific fuel consumption (bsfc) value and a lower O2, as well as a lower NOx emission, but a larger CO emission. The increase in engine speed resulted in an increase of bsfc, exhaust gas temperature, fuel-to-air ratio, CO2 emission and a decrease of NOx, CO emission, and smoke opacity. Because of the physical structural differences, the three-phase O/W/O emulsions were observed to produce a higher exhaust gas temperature, a higher emulsion viscosity and a lower CO emission, in comparison with that of the two-phase W/O emulsion. In addition, the use of W/O emulsions with water content larger than 20% may cause diesel engines to shut down earlier than those running on O/W/O emulsions with the same water content. Hence, it is suggested that the emulsions with water content larger than 20% are not suitable for use as alternative fuel for diesel engines.

  7. FINE GRAIN NUCLEAR EMULSION

    DOEpatents

    Oliver, A.J.

    1962-04-24

    A method of preparing nuclear track emulsions having mean grain sizes less than 0.1 microns is described. The method comprises adding silver nitrate to potassium bromide at a rate at which there is always a constant, critical excess of silver ions. For minimum size grains, the silver ion concentration is maintained at the critical level of about pAg 2.0 to 5.0 during prectpitation, pAg being defined as the negative logarithm of the silver ion concentration. It is preferred to eliminate the excess silver at the conclusion of the precipitation steps. The emulsion is processed by methods in all other respects generally similar to the methods of the prior art. (AEC)

  8. Holographic DESA emulsions

    NASA Astrophysics Data System (ADS)

    Duenkel, Lothar; Eichler, Juergen; Schneeweiss, Claudia; Ackermann, Gerhard

    2005-04-01

    The DESA material is an ultra-fine grained silver bromide emulsion referring to the name of its four inventors (D)uenkel, (E)ichler, (S)chneeweiss, (A)ckermann of the University of Applied Sciences in Berlin, Germany. The thickness of the dried layer is between 5 and 7.5 μm, and the mean grain size is by about 15 nm, as determined by TEM. During manufacturing, emulsion precipitation and coating are separated strictly from spectral and chemical sensitization. Thus, a high performance could be obtained. Resolution is estimated higher than 8000 lp/mm. Sensitivity amounts to 80 up to 120 μJoules/cm2 for maximum diffraction efficiency by recording Denisyuk white-light reflection holograms at 632,8 nm (HeNe laser). The paper provides an insight into fundamentals of the ultra-fine grained silver halide technology together with new challenges for further developments under theoretical and practical aspects.

  9. Research on Fire-Resistant Diesel Fuel.

    DTIC Science & Technology

    1981-12-01

    dielectric loss measurement to monitor the water content of these emulsions . Microwave dielectric loss at a fre- quency of about 23 to 24 GHz is specific...diesel fuel micro- emulsions could be prepared and that they exhibit reduced mist flammability and self-extinguishing pool fires at temperatures...68 21 Transient NMR Data for an FRF and Its Components. . . . 76 22 Typical Effects of Aging on Dielectric Constant of W/O Emulsions

  10. Cyclodextrin stabilised emulsions and cyclodextrinosomes.

    PubMed

    Mathapa, Baghali G; Paunov, Vesselin N

    2013-11-07

    We report the preparation of o/w emulsions stabilised by microcrystals of cyclodextrin-oil inclusion complexes. The inclusion complexes are formed by threading cyclodextrins from the aqueous phase on n-tetradecane or silicone oil molecules from the emulsion drop surface which grow further into microrods and microplatelets depending on the type of cyclodextrin (CD) used. These microcrystals remain attached on the surface of the emulsion drops and form densely packed layers which resemble Pickering emulsions. The novelty of this emulsion stabilisation mechanism is that molecularly dissolved cyclodextrin from the continuous aqueous phase is assembled into colloid particles directly onto the emulsion drop surface, i.e. molecular adsorption leads to effective Pickering stabilisation. The β-CD stabilised tetradecane-in-water emulsions were so stable that we used this system as a template for preparation of cyclodextrinosomes. These structures were produced solely through formation of cyclodextrin-oil inclusion complexes and their assembly into a crystalline phase on the drop surface retained its stability after the removal of the core oil. The structures of CD-stabilised tetradecane-in-water emulsions were characterised using optical microscopy, fluorescence microscopy, cross-polarised light microscopy and WETSEM while the cyclodextrinosomes were characterised by SEM. We also report the preparation of CD-stabilised emulsions with a range of other oils, including tricaprylin, silicone oil, isopropyl myristate and sunflower oil. We studied the effect of the salt concentration in the aqueous phase, the type of CD and the oil volume fraction on the type of emulsion formed. The CD-stabilised emulsions can be applied in a range of surfactant-free formulations with possible applications in cosmetics, home and personal care. Cyclodextrinosomes could find applications in pharmaceutical formulations as microencapsulation and drug delivery vehicles.

  11. Rubberized asphalt emulsion

    SciTech Connect

    Wilkes, E.

    1986-09-02

    A method is described of making a rubberized asphalt composition which comprises the steps of: (a) combining asphalt with a hydrocarbon oil having a flash point of 300/sup 0/F. or more to provide a homogenous asphalt-oil mixture or solution, (b) then combining the asphalt-oil mixture with a particulate rubber at a temperature sufficient to provide a homogenous asphalt-rubber-oil gel, and (c) emulsifying the asphalt-rubber-oil gel by passing the gel, water, and an emulsifying agent through a colloid mill to provide an emulsion.

  12. Programmed emulsions for sodium reduction in emulsion based foods.

    PubMed

    Chiu, Natalie; Hewson, Louise; Fisk, Ian; Wolf, Bettina

    2015-05-01

    In this research a microstructure approach to reduce sodium levels in emulsion based foods is presented. If successful, this strategy will enable reduction of sodium without affecting consumer satisfaction with regard to salty taste. The microstructure approach comprised of entrapment of sodium in the internal aqueous phase of water-in-oil-in-water emulsions. These were designed to destabilise during oral processing when in contact with the salivary enzyme amylase in combination with the mechanical manipulation of the emulsion between the tongue and palate. Oral destabilisation was achieved through breakdown of the emulsion that was stabilised with a commercially modified octenyl succinic anhydride (OSA)-starch. Microstructure breakdown and salt release was evaluated utilising in vitro, in vivo and sensory methods. For control emulsions, stabilised with orally inert proteins, no loss of structure and no release of sodium from the internal aqueous phase was found. The OSA-starch microstructure breakdown took the initial form of oil droplet coalescence. It is hypothesised that during this coalescence process sodium from the internalised aqueous phase is partially released and is therefore available for perception. Indeed, programmed emulsions showed an enhancement in saltiness perception; a 23.7% reduction in sodium could be achieved without compromise in salty taste (p < 0.05; 120 consumers). This study shows a promising new approach for sodium reduction in liquid and semi-liquid emulsion based foods.

  13. Development of neutron measurement in high gamma field using new nuclear emulsion

    SciTech Connect

    Kawarabayashi, J.; Ishihara, K.; Takagi, K.; Tomita, H.; Iguchi, T.; Naka, T.; Morishima, K.; Maeda, S.

    2011-07-01

    To precisely measure the neutron emissions from a spent fuel assembly of a fast breeder reactor, we formed nuclear emulsions based on a non-sensitized Oscillation Project with Emulsion tracking Apparatus (OPERA) film with AgBr grain sizes of 60, 90, and 160 nm. The efficiency for {sup 252}Cf neutron detection of the new emulsion was calculated to be 0.7 x 10{sup -4}, which corresponded to an energy range from 0.3 to 2 MeV and was consistent with a preliminary estimate based on experimental results. The sensitivity of the new emulsion was also experimentally estimated by irradiating with 565 keV and 14 MeV neutrons. The emulsion with an AgBr grain size of 60 nm had the lowest sensitivity among the above three emulsions but was still sensitive enough to detect protons. Furthermore, the experimental data suggested that there was a threshold linear energy transfer of 15 keV/{mu}m for the new emulsion, below which no silver clusters developed. Further development of nuclear emulsion with an AgBr grain size of a few tens of nanometers will be the next stage of the present study. (authors)

  14. Oil-in-Water Emulsions Stabilized by Carboxymethylated Lignins: Properties and Energy Prospects.

    PubMed

    Li, Shuai; Willoughby, Julie A; Rojas, Orlando J

    2016-09-08

    We take advantage of the amphiphilic properties of technical lignin macromolecules and their inherent high calorific values to formulate oil-in-water (O/W) fuel emulsions with high internal-phase ratios. For the oil phase, we used a combustible hydrocarbon (kerosene) with a measured equivalent alkane carbon number of 12. To adjust the balance of affinity with the oil and water phases and their surface activity, pine kraft lignins were carboxymethylated to different degrees, as quantified by (13) C NMR spectroscopy, potentiometric titrations, and zeta potential measurements. Carboxymethylated lignins (CMLs) with a degree of substitution of 30 % displayed a critical aggregation concentration of 3 %. The salinity and pH of the aqueous phase were chosen as formulation variables and adjusted within the Winsor framework. The O/W emulsions were produced by following standard protocols. The drop-size distributions of emulsions with varying pH, degree of substitution, and composition (water-to-oil ratio, WOR) were determined, and the long-term stabilities and rheological behavior of these emulsions were analyzed. Most of the obtained O/W fuel emulsions showed shear-thinning behavior with a drop size of approximately 2.5 μm and were stable for over 30 days. The combustion of the lignins and their respective emulsions was performed, and their higher heating values (HHVs) were quantified. The HHVs of CML and a high-internal-phase (WOR=30:70) O/W emulsion were 20 and 30 MJ kg(-1) , respectively. Overall, we propose the stabilization of O/W fuel emulsions by lignin as an important avenue in the utilization of this abundant biomacromolecule. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Electromagnetic Scale Models Using Emulsions

    DTIC Science & Technology

    1989-04-01

    microwave range; the solutions have a nearly constant permittivity and a conductivity that is adjustable by varying the salt concentration. Mixtures of...emulsion. At this point, complete demulsification has occurred. The emulsion can then be reformed only by subjecting it to the process (homogenization...130-137, June 1986. [17] A. Stogryn, "Equations for calculating the dielectric constant of saline water," IEEE Trans. Microwave Theory and Tech

  16. Thermocapillary Motion in an Emulsion

    NASA Technical Reports Server (NTRS)

    Pukhnachov, Vladislav V.; Voinov, Oleg V.

    1996-01-01

    The phenomenological model for the motion of an emulsion or a gas-liquid mixture exposed to thermocapillary forces and micro-acceleration is formulated. The analytical and numerical investigation of one-dimensional flows for these media is fulfilled, the structure of discontinuous motion is studied. The stability conditions of a space-uniform state and of the interface between an emulsion and a pure liquid are obtained.

  17. Innovative Applications Of Food Related Emulsions.

    PubMed

    S, Kiokias; T, Varzakas

    2016-02-06

    Research on oxidative stability of multiple emulsions is very scarce. Given that this is a relevant topic that must be ascertained before the successful application of multiple emulsions in foods (especially when a combination of highly unsaturated oils is used as a lipid phase), this review mainly focus on various aspects of the multiple emulsions. Fat replacement in meat products using emulsions is critically discussed along with innovative applications of natural antioxidants in food based emulsions and multiple emulsions based on bioactive compounds/encapsulation as well as confectionery products.

  18. Carboxymethylated lignins with low surface tension toward low viscosity and highly stable emulsions of crude bitumen and refined oils.

    PubMed

    Li, Shuai; Ogunkoya, Dolanimi; Fang, Tiegang; Willoughby, Julie; Rojas, Orlando J

    2016-11-15

    Kraft and organosolv lignins were subjected to carboxymethylation to produce fractions that were soluble in water, displayed a minimum surface tension as low as 34mN/m (25°C) and a critical aggregation concentration of ∼1.5wt%. The carboxymethylated lignins (CML), which were characterized in terms of their degree of substitution ((31)P NMR), elemental composition, and molecular weight (GPC), were found suitable in the formulation of emulsions with bitumens of ultra-high viscosity, such as those from the Canadian oil sands. Remarkably, the interfacial features of the CML enabled fuel emulsions that were synthesized in a very broad range of internal phase content (30-70%). Cryo-replica transmission electron microscopy, which was used here the first time to assess the morphology of the lignin-based emulsions, revealed the droplets of the emulsion stabilized with the modified lignin. The observed drop size (diameters<2μm) was confirmed by light scattering, which revealed a normal size distribution. Such characteristics led to stable emulsified systems that are amenable for a wide range of applications. Emulsification with CML afforded bitumen emulsions with very high colloidal stability (no change was noted for over one month) and with a strong shear thinning behavior. Both features indicate excellent prospects for storage, transport and spraying, which are relevant in operations for power generation, which also take advantage of the high heating value of the emulsion components. The ability of CML to stabilize emulsions and to contribute in their combustion was tested with light fuels (kerosene, diesel, and jet fuel) after formulation of high internal phase systems (70% oil) that enabled operation of a fuel engine. A significant finding is that under certain conditions and compared to the respective pure fuel, combustion of the O/W emulsions stabilized by CML presented lower NOx and CO emissions and maintained a relatively high combustion efficiency. The results

  19. Optimizing organoclay stabilized Pickering emulsions.

    PubMed

    Cui, Yannan; Threlfall, Mhairi; van Duijneveldt, Jeroen S

    2011-04-15

    Oil-in-water emulsions were prepared using montmorillonite clay platelets, pre-treated with quaternary amine surfactants. In previous work, cetyl trimethylammonium bromide (CTAB) has been used. In this study, two more hydrophilic quaternary amine surfactants, Berol R648 and Ethoquad C/12, were used and formed Pickering emulsions, which were more stable than the emulsions prepared using CTAB coated clay. The droplets were also more mono-disperse. The most hydrophilic surfactant Berol R648 stabilizes the emulsions best. Salt also plays an important role in forming a stable emulsion. The droplet size decreases with surfactant concentration and relatively mono-disperse droplets can be obtained at moderate surfactant concentrations. The time evolution of the droplet size indicates a good stability to coalescence in the presence of Berol R648. Using polarizing microscopy, the clay platelets were found to be lying flat at the water oil interface. However, a significant fraction (about 90%) of clay stayed in the water phase and the clay particles at the water-oil interface formed stacks, each consisting of four clay platelets on average.

  20. Do petroleum-based protective coatings add fuel value to slash

    Treesearch

    James L. Murphy; Charles W. Philpot

    1965-01-01

    Asphalts and wax emulsions have been recommended as protective coatings to help obtain clean, safe burns in slash disposal work. Fuel value determinations in the laboratory indicate that such coatings add little to the fuel value of slash.

  1. Dynamics of Polydisperse Coarsening Emulsion

    NASA Astrophysics Data System (ADS)

    Mirenda, Nic; Hicock, Harry; Feitosa, Klebert; Crocker, John

    2014-03-01

    Soft glassy materials display complex fluid behavior characterized by a yield stress and distinctive elastic and viscous moduli. The complexity emerges from the disordered structure and interactions between the athermal particles. Here we study the dynamics of an optically clear and neutrally buoyantly emulsion whose droplets coarsen driven by Laplace pressure induced diffusion. The emulsion displays an anomalous loss modulus typical of coarsening foam systems. We use confocal microscopy to image the droplets, measure their size and centroid location, and track their evolution in time. The relaxation process of the coarsening emulsion is found to be marked by a continuous, slow structural evolution interspersed by sudden droplet swaps. We characterize the time scales of each process and the statistics of droplet rearrangements. We acknowledge support from Research Corporation and NSF-DMR-1229383.

  2. Emulsion Chamber Technology Experiment (ECT)

    NASA Technical Reports Server (NTRS)

    Gregory, John C.; Takahashi, Yoshiyuki

    1996-01-01

    The experimental objective of Emulsion Chamber Technology (ECT) was to develop space-borne emulsion chamber technology so that cosmic rays and nuclear interactions may subsequently be studied at extremely high energies with long exposures in space. A small emulsion chamber was built and flown on flight STS-62 of the Columbia in March 1994. Analysis of the several hundred layers of radiation-sensitive material has shown excellent post-flight condition and suitability for cosmic ray physics analysis at much longer exposures. Temperature control of the stack was 20 +/-1 C throughout the active control period and no significant deviations of temperature or pressure in the chamber were observed over the entire mission operations period. The unfortunate flight attitude of the orbiter (almost 90% Earth viewing) prevented any significant number of heavy particles (Z greater than or equal to 10) reaching the stack and the inverted flow of shower particles in the calorimeter has not allowed evaluation of absolute primary cosmic ray-detection efficiency nor of the practical time limits of useful exposure of these calorimeters in space to the level of detail originally planned. Nevertheless, analysis of the observed backgrounds and quality of the processed photographic and plastic materials after the flight show that productive exposures of emulsion chambers are feasible in low orbit for periods of up to one year or longer. The engineering approaches taken in the ECT program were proven effective and no major environmental obstacles to prolonged flight are evident.

  3. Controlling molecular transport in minimal emulsions

    PubMed Central

    Gruner, Philipp; Riechers, Birte; Semin, Benoît; Lim, Jiseok; Johnston, Abigail; Short, Kathleen; Baret, Jean-Christophe

    2016-01-01

    Emulsions are metastable dispersions in which molecular transport is a major mechanism driving the system towards its state of minimal energy. Determining the underlying mechanisms of molecular transport between droplets is challenging due to the complexity of a typical emulsion system. Here we introduce the concept of ‘minimal emulsions', which are controlled emulsions produced using microfluidic tools, simplifying an emulsion down to its minimal set of relevant parameters. We use these minimal emulsions to unravel the fundamentals of transport of small organic molecules in water-in-fluorinated-oil emulsions, a system of great interest for biotechnological applications. Our results are of practical relevance to guarantee a sustainable compartmentalization of compounds in droplet microreactors and to design new strategies for the dynamic control of droplet compositions. PMID:26797564

  4. Controlling molecular transport in minimal emulsions

    NASA Astrophysics Data System (ADS)

    Gruner, Philipp; Riechers, Birte; Semin, Benoît; Lim, Jiseok; Johnston, Abigail; Short, Kathleen; Baret, Jean-Christophe

    2016-01-01

    Emulsions are metastable dispersions in which molecular transport is a major mechanism driving the system towards its state of minimal energy. Determining the underlying mechanisms of molecular transport between droplets is challenging due to the complexity of a typical emulsion system. Here we introduce the concept of `minimal emulsions', which are controlled emulsions produced using microfluidic tools, simplifying an emulsion down to its minimal set of relevant parameters. We use these minimal emulsions to unravel the fundamentals of transport of small organic molecules in water-in-fluorinated-oil emulsions, a system of great interest for biotechnological applications. Our results are of practical relevance to guarantee a sustainable compartmentalization of compounds in droplet microreactors and to design new strategies for the dynamic control of droplet compositions.

  5. The emulsion chamber technology experiment

    NASA Technical Reports Server (NTRS)

    Gregory, John C.

    1992-01-01

    Photographic emulsion has the unique property of recording tracks of ionizing particles with a spatial precision of 1 micron, while also being capable of deployment over detector areas of square meters or 10's of square meters. Detectors are passive, their cost to fly in Space is a fraction of that of instruments of similar collecting. A major problem in their continued use has been the labor intensiveness of data retrieval by traditional microscope methods. Two factors changing the acceptability of emulsion technology in space are the astronomical costs of flying large electronic instruments such as ionization calorimeters in Space, and the power and low cost of computers, a small revolution in the laboratory microscope data-taking. Our group at UAH made measurements of the high energy composition and spectra of cosmic rays. The Marshall group has also specialized in space radiation dosimetry. Ionization calorimeters, using alternating layers of lead and photographic emulsion, to measure particle energies up to 10(exp 15) eV were developed. Ten balloon flights were performed with them. No such calorimeters have ever flown in orbit. In the ECT program, a small emulsion chamber was developed and will be flown on the Shuttle mission OAST-2 to resolve the principal technological questions concerning space exposures. These include assessments of: (1) pre-flight and orbital exposure to background radiation, including both self-shielding and secondary particle generation; the practical limit to exposure time in space can then be determined; (2) dynamics of stack to optimize design for launch and weightlessness; and (3) thermal and vacuum constraints on emulsion performance. All these effects are cumulative and affect our ability to perform scientific measurements but cannot be adequately predicted by available methods.

  6. Analysis of emulsion stability in acrylic dispersions

    NASA Astrophysics Data System (ADS)

    Ahuja, Suresh

    2012-02-01

    Emulsions either micro or nano permit transport or solubilization of hydrophobic substances within a water-based phase. Different methods have been introduced at laboratory and industrial scales: mechanical stirring, high-pressure homogenization, or ultrasonics. In digital imaging, toners may be formed by aggregating a colorant with a latex polymer formed by batch or semi-continuous emulsion polymerization. Latex emulsions are prepared by making a monomer emulsion with monomer like Beta-carboxy ethyl acrylate (β-CEA) and stirring at high speed with an anionic surfactant like branched sodium dodecyl benzene sulfonates , aqueous solution until an emulsion is formed. Initiator for emulsion polymerization is 2-2'- azobis isobutyramide dehydrate with chain transfer agent are used to make the latex. If the latex emulsion is unstable, the resulting latexes produce a toner with larger particle size, broader particle size distribution with relatively higher latex sedimentation, and broader molecular weight distribution. Oswald ripening and coalescence cause droplet size to increase and can result in destabilization of emulsions. Shear thinning and elasticity of emulsions are applied to determine emulsion stability.

  7. Steroidal Compounds in Commercial Parenteral Lipid Emulsions

    PubMed Central

    Xu, Zhidong; Harvey, Kevin A.; Pavlina, Thomas; Dutot, Guy; Hise, Mary; Zaloga, Gary P.; Siddiqui, Rafat A.

    2012-01-01

    Parenteral nutrition lipid emulsions made from various plant oils contain steroidal compounds, called phytosterols. During parenteral administration of lipid emulsions, phytosterols can reach levels in the blood that are many fold higher than during enteral administration. The elevated phytosterol levels have been associated with the development of liver dysfunction and the rare development of liver failure. There is limited information available in the literature related to phytosterol concentrations in lipid emulsions. The objective of the current study was to validate an assay for steroidal compounds found in lipid emulsions and to compare their concentrations in the most commonly used parenteral nutrition lipid emulsions: Liposyn® II, Liposyn® III, Lipofundin® MCT, Lipofundin® N, Structolipid®, Intralipid®, Ivelip® and ClinOleic®. Our data demonstrates that concentrations of the various steroidal compounds varied greatly between the eight lipid emulsions, with the olive oil-based lipid emulsion containing the lowest levels of phytosterols and cholesterol, and the highest concentration of squalene. The clinical impression of greater incidences of liver dysfunction with soybean versus MCT/LCT and olive/soy lipid emulsions may be reflective of the levels of phytosterols in these emulsions. This information may help guide future studies and clinical care of patients with lipid emulsion-associated liver dysfunction. PMID:23016123

  8. Intravenous Lipid Emulsions in Parenteral Nutrition123

    PubMed Central

    Fell, Gillian L; Nandivada, Prathima; Gura, Kathleen M; Puder, Mark

    2015-01-01

    Fat is an important macronutrient in the human diet. For patients with intestinal failure who are unable to absorb nutrients via the enteral route, intravenous lipid emulsions play a critical role in providing an energy-dense source of calories and supplying the essential fatty acids that cannot be endogenously synthesized. Over the last 50 y, lipid emulsions have been an important component of parenteral nutrition (PN), and over the last 10–15 y many new lipid emulsions have been manufactured with the goal of improving safety and efficacy profiles and achieving physiologically optimal formulations. The purpose of this review is to provide a background on the components of lipid emulsions, their role in PN, and to discuss the lipid emulsions available for intravenous use. Finally, the role of parenteral fat emulsions in the pathogenesis and management of PN-associated liver disease in PN-dependent pediatric patients is reviewed. PMID:26374182

  9. Pickering emulsions for skin decontamination.

    PubMed

    Salerno, Alicia; Bolzinger, Marie-Alexandrine; Rolland, Pauline; Chevalier, Yves; Josse, Denis; Briançon, Stéphanie

    2016-08-01

    This study aimed at developing innovative systems for skin decontamination. Pickering emulsions, i.e. solid-stabilized emulsions, containing silica (S-PE) or Fuller's earth (FE-PE) were formulated. Their efficiency for skin decontamination was evaluated, in vitro, 45min after an exposure to VX, one of the most highly toxic chemical warfare agents. Pickering emulsions were compared to FE (FE-W) and silica (S-W) aqueous suspensions. PE containing an oil with a similar hydrophobicity to VX should promote its extraction. All the formulations reduced significantly the amount of VX quantified on and into the skin compared to the control. Wiping the skin surface with a pad already allowed removing more than half of VX. FE-W was the less efficient (85% of VX removed). The other formulations (FE-PE, S-PE and S-W) resulted in more than 90% of the quantity of VX removed. The charge of particles was the most influential factor. The low pH of formulations containing silica favored electrostatic interactions of VX with particles explaining the better elimination from the skin surface. Formulations containing FE had basic pH, and weak interactions with VX did not improve the skin decontamination. However, these low interactions between VX and FE promote the transfer of VX into the oil droplets in the FE-PE.

  10. Impact of acoustic cavitation on food emulsions.

    PubMed

    Krasulya, Olga; Bogush, Vladimir; Trishina, Victoria; Potoroko, Irina; Khmelev, Sergey; Sivashanmugam, Palani; Anandan, Sambandam

    2016-05-01

    The work explores the experimental and theoretical aspects of emulsification capability of ultrasound to deliver stable emulsions of sunflower oil in water and meat sausages. In order to determine optimal parameters for direct ultrasonic emulsification of food emulsions, a model was developed based on the stability of emulsion droplets in acoustic cavitation field. The study is further extended to investigate the ultrasound induced changes to the inherent properties of raw materials under the experimental conditions of sono-emulsification.

  11. Recent Studies of Pickering Emulsions: Particles Make the Difference.

    PubMed

    Wu, Jie; Ma, Guang-Hui

    2016-09-01

    In recent years, emulsions stabilized by micro- or nanoparticles (known as Pickering emulsions) have attracted much attention. Micro- or nanoparticles, as the main components of the emulsion, play a key role in the preparation and application of Pickering emulsions. The existence of particles at the interface between the oil and aqueous phases affects not only the preparation, but also the properties of Pickering emulsions, affording superior stability, low toxicity, and stimuli-responsiveness compared to classical emulsions stabilized by surfactants. These advantages of Pickering emulsions make them attractive, especially in biomedicine. In this review, the effects of the characteristics of micro- and nanoparticles on the preparation and properties of Pickering emulsions are introduced. In particular, the preparation methods of Pickering emulsions, especially uniform-sized emulsions, are listed. Uniform Pickering emulsions are convenient for both mechanistic research and applications. Furthermore, some biomedical applications of Pickering emulsions are discussed and the problems hindering their clinical application are identified.

  12. Spreading of Emulsions on Glass Substrates

    NASA Astrophysics Data System (ADS)

    Mohammad Karim, Alireza; Kavehpour, Pirouz

    2012-11-01

    The wettability of emulsions is an important factor with explicit influence in an extensive variety of industrial applications ranging from the petroleum to food industries. Surprisingly, there is no comprehensive study of emulsion spreading to date; this is due to the complexity of the structure of the emulsions and non-homogeneity of the dispersed phase bubbles in size as well as distribution through the emulsion. The spreading of water/silicone oil emulsions on glass substrates was investigated. The emulsions were prepared with varying volume fractions of water dispersed in silicone oil, with addition of small amounts of surfactant to stabilize the emulsion structure. The time dependent variation of dynamic contact angle, base diameter, and the spreading rate of the droplets of an emulsion are different from a pure substance. The effect of water/silicone oil weight percentage as well as the droplet size and dispersed phase bubble size were also investigated. The weight percentage of water/silicone oil emulsion and droplet size did not have significant influence on the spreading dynamics; however the dispersed phase drop size affected the spreading dynamics substantially.

  13. Rheological Properties of Nanoparticle Silica-Surfactant Stabilized Crude Oil Emulsions: Influence of Temperature, Nanoparticle Concentration and Water Volume Fraction"

    NASA Astrophysics Data System (ADS)

    Kinsey, Erin; Pales, Ashley; Li, Chunyan; Mu, Linlin; Bai, Lingyun; Clifford, Heather; Darnault, Christophe

    2016-04-01

    Oil in water emulsions occur during oil extraction due to the presence of water, naturally-occurring surface-active agents and mechanical mixing in pipelines or from oil spillage. Emulsions present difficulties for use of oil in fuel and their rheological properties are important to treat environmental impacts of spills. The objective of this study is to assess the rheological characteristics of oil in water emulsions stabilized by 5% NaCl brine, Tween 20 surfactant and silica nanoparticles to gain knowledge about the behavior of oil flow in pipelines and characterize them for environmental applications. Rheological behaviors such as shear rate, shear stress, and viscosity of Prudhoe Bay crude oil emulsions were analyzed with varying percent of water volume fractions (12.5, 25 and 50%), varying weight percent of silica nanoparticles (0.001, 0.01 and 0.1 weight %), with and without 2 CMC Tween 20 nonionic surfactant. Emulsions with varying water volume fractions were analyzed at 20, 40 and 60 degrees Celsius. Flow curve analysis of the emulsions was performed using an Anton-Paar rheometer. Preliminary findings indicate that increased temperature and increasing the concentration of nanoparticles both produced lower shear stress and that the addition of surfactant decreased the viscosity and shear stress of the emulsions.

  14. The effects of oil, dispersant, and emulsions on the survival and behavior of an estuarine teleost and an intertidal amphipod

    SciTech Connect

    Butler, R.G.; Trivelpiece, W.; Miller, D.S.

    1982-04-01

    Killfish (Fundulus heteroclitus) and amphipods (Gammarus oceanicus) were exposed seperately to either a No. 2 fuel oil, AP dispersant, or emulsions of the two in a static system. Both species exhibited a concentration-dependent response to all three treatments. However, emulsification of oil with dispersant clearly increased its lethal effect on killfish survival, but did not cause a differential change in behavioral parameters such as schooling, chafing, substrate nipping, activity, or depth preference. Killfish exposed to conditions of thermal or osmotic stress were more sensitive to the lethal effects of emulsions. In contrast, emulsions caused quantitative changes in amphipod activity and precopulatory behavior, but did not increase mortality beyond that caused by exposure to oil alone. Changes in salinity had little effect on amphipod sensitivity to emulsions, but decreasing temperature did result in increased survival.

  15. Metallic nanoshells on porphyrin-stabilized emulsions

    DOEpatents

    Wang, Haorong; Song, Yujiang; Shelnutt, John A; Medforth, Craig J

    2013-10-29

    Metal nanostructures formed by photocatalytic interfacial synthesis using a porphyrin-stabilized emulsion template and the method for making the nanostructures. Catalyst-seeded emulsion droplets are employed as templates for hollow-nanoshell growth. The hollow metal nanospheres may be formed with or without inclusions of other materials.

  16. Flows of Wet Foamsand Concentrated Emulsions

    NASA Technical Reports Server (NTRS)

    Nemer, Martin B.

    2005-01-01

    The aim of this project was is to advance a microstructural understanding of foam and emulsion flows. The dynamics of individual surfactant-covered drops and well as the collective behavior of dilute and concentrated was explored using numerical simulations. The long-range goal of this work is the formulation of reliable microphysically-based statistical models of emulsion flows.

  17. Kinetics of crosslinking in emulsion polymerization

    SciTech Connect

    Ghielmi, A.; Fiorentino, S.; Morbidelli, M.

    1996-12-31

    A mathematical model for evaluating the chain length distribution of nonlinear polymers produced in emulsions is presented. The heterogeneous emulsion polymerization process is described. The aim of the analysis is the distribution of active polymer chains and pairs of chains with a given growth time in latex particles in state.

  18. Suppression of Ostwald ripening in active emulsions.

    PubMed

    Zwicker, David; Hyman, Anthony A; Jülicher, Frank

    2015-07-01

    Emulsions consisting of droplets immersed in a fluid are typically unstable since they coarsen over time. One important coarsening process is Ostwald ripening, which is driven by the surface tension of the droplets. Stability of emulsions is relevant not only in complex fluids but also in biological cells, which contain liquidlike compartments, e.g., germ granules, Cajal bodies, and centrosomes. Such cellular systems are driven away from equilibrium, e.g., by chemical reactions, and thus can be called active emulsions. In this paper, we study such active emulsions by developing a coarse-grained description of the droplet dynamics, which we analyze for two different chemical reaction schemes. We first consider the simple case of first-order reactions, which leads to stable, monodisperse emulsions in which Ostwald ripening is suppressed within a range of chemical reaction rates. We then consider autocatalytic droplets, which catalyze the production of their own droplet material. Spontaneous nucleation of autocatalytic droplets is strongly suppressed and their emulsions are typically unstable. We show that autocatalytic droplets can be nucleated reliably and their emulsions stabilized by the help of chemically active cores, which catalyze the production of droplet material. In summary, different reaction schemes and catalytic cores can be used to stabilize emulsions and to control their properties.

  19. Suppression of Ostwald ripening in active emulsions

    NASA Astrophysics Data System (ADS)

    Zwicker, David; Hyman, Anthony A.; Jülicher, Frank

    2015-07-01

    Emulsions consisting of droplets immersed in a fluid are typically unstable since they coarsen over time. One important coarsening process is Ostwald ripening, which is driven by the surface tension of the droplets. Stability of emulsions is relevant not only in complex fluids but also in biological cells, which contain liquidlike compartments, e.g., germ granules, Cajal bodies, and centrosomes. Such cellular systems are driven away from equilibrium, e.g., by chemical reactions, and thus can be called active emulsions. In this paper, we study such active emulsions by developing a coarse-grained description of the droplet dynamics, which we analyze for two different chemical reaction schemes. We first consider the simple case of first-order reactions, which leads to stable, monodisperse emulsions in which Ostwald ripening is suppressed within a range of chemical reaction rates. We then consider autocatalytic droplets, which catalyze the production of their own droplet material. Spontaneous nucleation of autocatalytic droplets is strongly suppressed and their emulsions are typically unstable. We show that autocatalytic droplets can be nucleated reliably and their emulsions stabilized by the help of chemically active cores, which catalyze the production of droplet material. In summary, different reaction schemes and catalytic cores can be used to stabilize emulsions and to control their properties.

  20. Fischer-Tropsch diesel emulsions stabilised by microfibrillated cellulose and nonionic surfactants.

    PubMed

    Lif, Anna; Stenstad, Per; Syverud, Kristin; Nydén, Magnus; Holmberg, Krister

    2010-12-15

    Water-in-diesel emulsion fuels have been prepared with a combination of sorbitan monolaurate and glycerol monooleate as emulsifier and with microfibrillated cellulose (MFC) of different hydrophilic/hydrophobic character as stabilizer. The MFC was treated with either octadecylamine or poly(styrene-co-maleic anhydride), resulting in very hydrophobic fibrils. The most stable emulsion was achieved with a combination of hydrophilic (untreated) and hydrophobic MFC and only minute amounts of the stabilizer gave a pronounced effect. Even with the optimized formulation the lifetime of the emulsion was shorter than previously reported when a conventional polymeric stabilizer was used, however. The water drop sizes in the emulsions were determined by three methods: optical images, light scattering, and NMR diffusometry. All three methods gave water drops sizes of ca 2 μm. The NMR diffusometry indicated that besides the micrometer-sized emulsion drops a significant fraction of the water is present in small droplets of micelle size. The chemical exchange of water between these two populations of pools is believed to be the reason for the relatively low stability of the system.

  1. Fuel flexible fuel injector

    DOEpatents

    Tuthill, Richard S; Davis, Dustin W; Dai, Zhongtao

    2015-02-03

    A disclosed fuel injector provides mixing of fuel with airflow by surrounding a swirled fuel flow with first and second swirled airflows that ensures mixing prior to or upon entering the combustion chamber. Fuel tubes produce a central fuel flow along with a central airflow through a plurality of openings to generate the high velocity fuel/air mixture along the axis of the fuel injector in addition to the swirled fuel/air mixture.

  2. Non-aqueous Isorefractive Pickering Emulsions

    PubMed Central

    2015-01-01

    Non-aqueous Pickering emulsions of 16–240 μm diameter have been prepared using diblock copolymer worms with ethylene glycol as the droplet phase and an n-alkane as the continuous phase. Initial studies using n-dodecane resulted in stable emulsions that were significantly less turbid than conventional water-in-oil emulsions. This is attributed to the rather similar refractive indices of the latter two phases. By utilizing n-tetradecane as an alternative oil that almost precisely matches the refractive index of ethylene glycol, almost isorefractive ethylene glycol-in-n-tetradecane Pickering emulsions can be prepared. The droplet diameter and transparency of such emulsions can be systematically varied by adjusting the worm copolymer concentration. PMID:25844544

  3. Destabilization of emulsions by natural minerals.

    PubMed

    Yuan, Songhu; Tong, Man; Wu, Gaoming

    2011-09-15

    This study developed a novel method to destabilize emulsions and recycle oils, particularly for emulsified wastewater treatment. Natural minerals were used as demulsifying agents, two kinds of emulsions collected from medical and steel industry were treated. The addition of natural minerals, including artificial zeolite, natural zeolite, diatomite, bentonite and natural soil, could effectively destabilize both emulsions at pH 1 and 60 °C. Over 90% of chemical oxygen demand (COD) can be removed after treatment. Medical emulsion can be even destabilized by artificial zeolite at ambient temperature. The mechanism for emulsion destabilization by minerals was suggested as the decreased electrostatic repulsion at low pH, the enhanced gathering of oil microdroplets at elevated temperature, and the further decreased surface potential by the addition of minerals. Both flocculation and coalescence were enhanced by the addition of minerals at low pH and elevated temperature.

  4. Aging mechanism in model Pickering emulsion

    NASA Astrophysics Data System (ADS)

    Fouilloux, Sarah; Malloggi, Florent; Daillant, Jean; Thill, Antoine

    We study the stability of a model Pickering emulsion system. A special counter-flow microfluidics set-up was used to prepare monodisperse Pickering emulsions, with oil droplets in water. The wettability of the monodisperse silica nanoparticles (NPs) could be tuned by surface grafting and the surface coverage of the droplets was controlled using the microfluidics setup. A surface coverage as low as 23$\\%$ is enough to stabilize the emulsions and we evidence a new regime of Pickering emulsion stability where the surface coverage of emulsion droplets of constant size increases in time, in coexistence with a large amount of dispersed phase. Our results demonstrate that the previously observed limited coalescence regime where surface coverage tends to control the average size of the final droplets must be put in a broader perspective.

  5. Emulsion based cast booster - a priming system

    SciTech Connect

    Gupta, R.N.; Mishra, A.K.

    2005-07-01

    This paper explores the potential of emulsion based cast booster to be used as primer to initiate bulk delivered emulsion explosives used in mines. An attempt has been made for comparative study between conventional cast booster and emulsion based cast booster in terms of the initiation process developed and their capability to develop and maintain the stable detonation process in the column explosives. The study has been conducted using a continuous velocity of detonation (VOD) measuring instrument. During this study three blasts have been monitored. In each blast two holes have been selected for study, the first hole being initiated with conventional cast booster while the other one with emulsion based cast booster. The findings of the study advocates that emulsion based cast booster is capable of efficient priming of bulk delivered column explosive with stable detonation process in the column. Further, the booster had advantages over the conventional PETN/TNT based cast booster. 5 refs., 2 figs., 1 tab., 1 photo.

  6. The Rheology of a Three Component System: COAL/WATER/#4 Oil Emulsions.

    NASA Astrophysics Data System (ADS)

    Gilmartin, Barbara Jean

    The purpose of this investigation was to study the rheology of a three component system, coal/water/#4 oil emulsions (COW), in which the third component, water, was present in a significant concentration, and to determine the applicability of existing theories from suspension rheology to the three component system studied. In a coal/water/oil emulsion, free coal particles adhere to the surface of the water droplets, preventing their coagulation, while the larger coal particles reside in the matrix of stabilized water droplets. The use of liquid fuels containing coal is a means of utilizing our nation's coal reserves while conserving oil. These fuels can be burned in conventional oil-fired furnaces. In this investigation, a high sulfur, high ash, bituminous coal was used, along with a heavy #4 oil to prepare the emulsions. The coal was ground to a log-normal distribution with an average particle size of 62 microns. A Haake RV3 concentric cylinder viscometer, with a ribbed measuring system, was used to determine the viscosity of the emulsions. A physical pendulum settling device measured the shift in center of mass of the COW as a function of time. The flow behavior of the fuel in pipes was also tested. In interpreting the data from the viscometer and the pipe flow experiments, a power law analysis was used in the region from 30 s('-1) to 200 s('-1). Extrapolation methods were used to obtain the low and high shear behavior of the emulsions. In the shear rate region found in boiler feed systems, COW are shear thinning with a flow behavior index of 0.7. The temperature dependent characteristic of the emulsions studied were similar and followed an Arrhenius type relationship. The viscosity of the COW decreases with increasing coal average particle size and is also a function of the width of the size distribution used. The type of coal used strongly influences the rheology of the fuel. The volatile content and the atomic oxygen to nitrogen ratio of the coal are the most

  7. Arresting relaxation in Pickering Emulsions

    NASA Astrophysics Data System (ADS)

    Atherton, Tim; Burke, Chris

    2015-03-01

    Pickering emulsions consist of droplets of one fluid dispersed in a host fluid and stabilized by colloidal particles absorbed at the fluid-fluid interface. Everyday materials such as crude oil and food products like salad dressing are examples of these materials. Particles can stabilize non spherical droplet shapes in these emulsions through the following sequence: first, an isolated droplet is deformed, e.g. by an electric field, increasing the surface area above the equilibrium value; additional particles are then adsorbed to the interface reducing the surface tension. The droplet is then allowed to relax toward a sphere. If more particles were adsorbed than can be accommodated by the surface area of the spherical ground state, relaxation of the droplet is arrested at some non-spherical shape. Because the energetic cost of removing adsorbed colloids exceeds the interfacial driving force, these configurations can remain stable over long timescales. In this presentation, we present a computational study of the ordering present in anisotropic droplets produced through the mechanism of arrested relaxation and discuss the interplay between the geometry of the droplet, the dynamical process that produced it, and the structure of the defects observed.

  8. [On bitumen emulsions in water].

    PubMed

    Rivas, Hercilio; Gutierrez, Xiomara; Silva, Felix; Chirinos, Manuel

    2003-01-01

    The most important factors, controlling the process of emulsification of highly viscous hydrocarbons in water, which are responsible for keeping the stability and other properties of these systems, are discused in this article. The effect of non-ionic surfactants, such as nonil phenol ethoxilated compounds on the interfacial behavior of bitumen/water systems is analyzed. The effect of the natural surfactants in presence or in absence of electrolytes is also analyzed. The procedures followed in order to obtain the optimal conditions of formulation and formation of bitumen in water emulsions, are discussed and the effect of some parameters on the mean droplet diameter and distribution are also considered. It was found that keeping constant mixing speed and time of mixing, the mean droplet diameter decreases as the bitumen concentration increases. Emulsion stability, which can be monitored by following the changes in mean droplet diameters and viscosity as a function of the storage time, is deeply affected by the type and concentration of surfactant.

  9. Recovery of bitumen from bituminous oil-in-water emulsions

    SciTech Connect

    Seitzer, W.H.

    1984-06-26

    Bitumen recovery from a tar sands emulsion or other bituminous oil-in-water emulsion is increased by milling the emulsion for a time sufficient to cause a bitumen-rich liquid fraction to rise to the surface, and separating such fraction. Addition of water to the starting emulsion or during milling further enhances the recovery of bitumen.

  10. The research about microscopic structure of emulsion membrane in O/W emulsion by NMR and its influence to emulsion stability.

    PubMed

    Xie, Yiqiao; Chen, Jisheng; Zhang, Shu; Fan, Kaiyan; Chen, Gang; Zhuang, Zerong; Zeng, Mingying; Chen, De; Lu, Longgui; Yang, Linlin; Yang, Fan

    2016-03-16

    This paper discussed the influence of microstructure of emulsion membrane on O/W emulsion stability. O/W emulsions were emulsified with equal dosage of egg yolk lecithin and increasing dosage of co-emulsifier (oleic acid or HS15). The average particle size and centrifugal stability constant of emulsion, as well as interfacial tension between oil and water phase were determined. The microstructure of emulsion membrane had been studied by (1)H/(13)C NMR, meanwhile the emulsion droplets were visually presented with TEM and IFM. With increasing dosage of co-emulsifier, emulsions showed two stable states, under which the signal intensity of characteristic group (orient to lipophilic core) of egg yolk lecithin disappeared in NMR of emulsions, but that (orient to aqueous phase) of co-emulsifiers only had some reduction at the second stable state. At the two stable states, the emulsion membranes were neater in TEM and emulsion droplets were rounder in IFM. Furthermore, the average particle size of emulsions at the second stable state was bigger than that at the first stable state. Egg yolk lecithin and co-emulsifier respectively arranged into monolayer and bilayer emulsion membrane at the two stable states. The microstructure of emulsion membrane was related to the stability of emulsion. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Emulsion package and method of mixing the emulsion

    SciTech Connect

    Snyder, R.G.; Brenneman, S.; Clancy, J.J.

    1984-08-28

    A coal tar emulsion driveway sealer is packaged in a sealed bag. The volume of sealer is less than half the capacity of the bag and the bag is substantially completely evacuated but for the sealer. The separated sealer is mixed by compressing the sides of the bag to induce turbulent flow of the paste and liquid for hydraulic mixing thereof. The sealer may be dispensed at a controlled rate without spattering by cutting a corner from the bag to provide a pour spout. The bag with the sealer may be contained in a carton. The bag membrane comprises an aluminum layer vapor deposited on polyester. Those two layers are sandwiched between layers of EVA copolymer.

  12. Using emulsion inversion in industrial processes.

    PubMed

    Salager, Jean-Louis; Forgiarini, Ana; Márquez, Laura; Peña, Alejandro; Pizzino, Aldo; Rodriguez, María P; Rondón-González, Marianna

    2004-05-20

    Emulsion inversion is a complex phenomenon, often perceived as an instability that is essentially uncontrollable, although many industrial processes make use of it. A research effort that started 2 decades ago has provided the two-dimensional and three-dimensional description, the categorization and the theoretical interpretation of the different kinds of emulsion inversion. A clear-cut phenomenological approach is currently available for understanding its characteristics, the factors that influence it and control it, the importance of fine-tuning the emulsification protocol, and the crucial occurrence of organized structures such as liquid crystals or multiple emulsions. The current know-how is used to analyze some industrial processes involving emulsion inversion, e.g. the attainment of a fine nutrient or cosmetic emulsion by temperature or formulation-induced transitional inversion, the preparation of a silicone oil emulsion by catastrophic phase inversion, the manufacture of a viscous polymer latex by combined inversion and the spontaneous but enigmatic inversion of emulsions used in metal working operations such as lathing or lamination.

  13. High acyl gellan as an emulsion stabilizer.

    PubMed

    Vilela, Joice Aline Pires; da Cunha, Rosiane Lopes

    2016-03-30

    High acyl gellan (0.01-0.2% w/w) was used as stabilizer in oil in water emulsions containing 30% (w/w) of sunflower oil and prepared under different process conditions. Stable emulsions to phase separation could be obtained using high acyl gellan (HA) content above 0.05% (w/w), while low acyl gellan (LA) prepared at the same conditions could not stabilize emulsions. Emulsions properties depended on the process used to mix the oil and gellan dispersion since high pressure homogenization favored stabilization while very high energy density applied by ultrasound led to systems destabilization. Emulsions prepared using high pressure homogenization showed zeta potential values ranging from -50 up to -59 mV, suggesting that electrostatic repulsion could be contributing to the systems stability. Rheological properties of continuous phase were also responsible for emulsions stabilization, since HA gellan dispersions showed high viscosity and gel-like behavior. The high viscosity of the continuous phase could be associated to the presence of high acyl gellan microgels/aggregates. Disentanglement of these aggregates performed by ultrasound strongly decreased the viscosity and consequently affected the emulsions behavior, reducing the stability to phase separation.

  14. Ethylcellulose: a new type of emulsion stabilizer.

    PubMed

    Melzer, Eva; Kreuter, Jörg; Daniels, Rolf

    2003-07-01

    Cellulose ethers, in particular hypromellose, represent an interesting alternative when emulsions have to be stabilized avoiding conventional low molecular weight surfactants. So far this option has been only described for the formulation of oil-in-water (o/w) emulsions. Since surfactant-free water-in-oil (w/o) emulsions seem to be also attractive as drug carriers, ethyl cellulose, an oil-soluble cellulose derivative, was studied for its ability to stabilize w/o emulsions. Measurements of the interfacial tension confirmed that ethylcellulose was positively adsorbed at the water/oil interface with diverse lipids. Appearance of model emulsions was dependent on the processing temperature. At low temperatures (15 degrees C) cream-like o/w emulsions were obtained. Processing at 30 degrees C yielded fluid w/o-lotions. Investigation of the microstructure showed that the surface of the emulsion droplets was covered with particles which formed a mechanical barrier. These colloidal particles were shown to be a precipitate of ethylcellulose which forms when the polymer which was dissolved in the lipid phase comes into contact with water. Thus, ethylcellulose was demonstrated to represent a new type of particulate polymeric emulsifier.

  15. Latest Developments in Nuclear Emulsion Technology

    NASA Astrophysics Data System (ADS)

    Morishima, Kunihiro

    Nuclear emulsion is high sensitive photographic film used for detection of three-dimensional trajectory of charged particles. These trajectories are recorded as tracks consist of a lot of silver grains. The size of silver grain is about 1 μm, so that nuclear emulsion has submicron three-dimensional spatial resolution, which gives us a few mrad three-dimensional angular resolution. The important technical progress was speed-up of the read-out technique of nuclear emulsions built with optical microscope system. We succeeded in developing a high-speed three-dimensional read-out system named Super Ultra Track Selector (S-UTS) with the operating read-out speed of approximately 50 cm2/h. Nowadays we are developing the nuclear emulsion gel independently in Nagoya University by introducing emulsion gel production machine. Moreover, we are developing nuclear emulsion production technologies (gel production, poring and mass production). In this paper, development of nuclear emulsion technologies for the OPERA experiment, applications by the technologies and current development are described.

  16. Method for demulsification of bitumen emulsions

    SciTech Connect

    McCoy, D.R.; Entire, E.E.; Gipson, R.M.

    1984-07-03

    A process for recovering bitumen from oil-in-water (O/W) emulsions is disclosed wherein water soluble demulsifiers are used. These demulsifiers are polymers of specific quaternary ammonium monomers or co-polymers of these quaternary ammonium monomers wth other types of monomers wherein the greater portion of the co-polymer is comprised of the quaternary ammonium monomers. To resolve the bitumonous petroleum emulsions, the process is carried out between 25/sup 0/ and 160/sup 0/ C. wherein the demulsifier of the invention is contacted with the bituminous emulsion.

  17. Pump safety tests regarding emulsion explosives

    SciTech Connect

    Perlid, H.

    1996-12-31

    In the handling of emulsion explosives pumping is a key operation. A number of serious accidents has shown that pumping can be a risky operation and should be carefully considered and investigated. This is the background behind a series of pump tests carried out by Nitro Nobel. This paper refers to pump safety tests with an eccentric screw pump (progressive cavity) and emulsion explosives. A selection of emulsions unsensitized as well as sensitized were tested. The tests were performed in a circulation system against dead head and as dry pumping.

  18. Decompressing Emulsion Droplets Favors Coalescence

    NASA Astrophysics Data System (ADS)

    Bremond, Nicolas; Thiam, Abdou R.; Bibette, Jérôme

    2008-01-01

    The destabilization process of an emulsion under flow is investigated in a microfluidic device. The experimental approach enables us to generate a periodic train of droplet pairs, and thus to isolate and analyze the basic step of the destabilization, namely, the coalescence of two droplets which collide. We demonstrate a counterintuitive phenomenon: coalescence occurs during the separation phase and not during the impact. Separation induces the formation of two facing nipples in the contact area that hastens the connection of the interfaces prior to fusion. Moreover, droplet pairs initially stabilized by surfactants can be destabilized by forcing the separation. Finally, we note that the fusion mechanism is responsible for a cascade of coalescence events in a compact system of droplets where the separation is driven by surface tension.

  19. Dielectrophoresis of reverse phase emulsions.

    PubMed

    Flores-Rodriguez, N; Bryning, Z; Markx, G H

    2005-08-01

    Reverse miniemulsions, emulsions of droplets of size 200 nm-1 microm of a polar liquid dispersed in an apolar continuous liquid phase, exhibit strong electrokinetic responses in low-frequency electric fields. The electrokinetic behaviour of a reverse miniemulsion, previously developed for use as electronic paper, has been investigated under static and flow conditions, in uniform and non-uniform electric fields. Results reveal that when using frequencies lower than 10 Hz strong aggregation of the droplets occurs. In uniform electric fields, under static conditions, droplets reversibly aggregate into honeycomb-like or irregular aggregates. Under flow conditions, droplets aggregate into approximately equidistant streams. In non-uniform electric fields the droplets reversibly aggregate in high-field regions, and can be guided along regions of high field strength in a flow. The potential of the technique for the formation of structured materials is discussed.

  20. Use of olive oil-in-water gelled emulsions in model turkey breast emulsions

    NASA Astrophysics Data System (ADS)

    Serdaroğlu, M.; Öztürk, B.

    2017-09-01

    Today, gelled emulsion systems offer a novel possibility in lipid modification of meat products. In this study, we aimed to investigate the quality characteristics of model turkey emulsions that were prepared with olive oil-in-water gelled emulsion (GE) as partial or total beef fat replacer. The results indicated that while most of the GE treatments showed equivalent emulsion characteristics in terms of emulsion stability, water-holding capacity and cook yield, utilization of 100% GE as the lipid source could increase total expressible fluid of the model turkey emulsion and thus negatively affect the quality. Utilization of GE was effective in total fat reduction, as the model turkey emulsions formulated with more than 50% GE had significantly lower fat content compared to full-beef fat control model emulsion. However, beef fat replacement with GE produced considerable changes in colour parameters. Finally, it was concluded that utilization of GE as a partial beef fat replacer has good potential to enhance stability and reduce total fat in turkey meat emulsion products.

  1. Multi-body coalescence in Pickering emulsions.

    PubMed

    Wu, Tong; Wang, Haitao; Jing, Benxin; Liu, Fang; Burns, Peter C; Na, Chongzheng

    2015-01-12

    Particle-stabilized Pickering emulsions have shown unusual behaviours such as the formation of non-spherical droplets and the sudden halt of coalescence between individual droplets. Here we report another unusual behaviour of Pickering emulsions-the simultaneous coalescence of multiple droplets in a single event. Using latex particles, silica particles and carbon nanotubes as model stabilizers, we show that multi-body coalescence can occur in both water-in-oil and oil-in-water emulsions. The number of droplets involved in the nth coalscence event equals four times the corresponding number of the tetrahedral sequence in close packing. Furthermore, coalescence is promoted by repulsive latex and silica particles but inhibited by attractive carbon nanotubes. The revelation of multi-body coalescence is expected to help better understand Pickering emulsions in natural systems and improve their designs in engineering applications.

  2. Aging properties of Kodak type 101 emulsions

    NASA Technical Reports Server (NTRS)

    Dohne, B.; Feldman, U.; Neupert, W.

    1984-01-01

    Aging tests for several batches of Kodak type 101 emulsion show that storage conditions significantly influence how well the film will maintain its sensitometric properties, with sensitivity and density increasing to a maximum during this period. Any further aging may result in higher fog levels and sensitivity loss. It is noted that storage in an environment free of photographically active compounds allows film property optimization, and that film batches with different sensitivities age differently. Emulsions with maximum 1700-A sensitivity are 2.5 times faster than those at the low end of the sensitivity scale. These sensitive emulsions exhibit significantly accelerated changes in aging properties. Their use in space applications requires careful consideration of time and temperature profiles, encouraging the use of less sensitive emulsions when the controllability of these factors is limited.

  3. Autoxidation of unsaturated lipids in food emulsion.

    PubMed

    Sun, Yue-E; Wang, Wei-Dong; Chen, Hong-Wei; Li, Chao

    2011-05-01

    Unsaturated lipids having various physiological roles are of significance in biochemistry, nutrition, medicine, and food. However, the susceptibility of lipids to oxidation is a major cause of quality deterioration in food emulsions. The reaction mechanism and factors that influence oxidation are appreciably different for emulsified lipids and bulk lipids. This article gives a brief overview of the current knowledge on autoxidation of oil-in-water food emulsions, especially those that contain unsaturated lipids, which are important in the food industry. Autoxidation of unsaturated lipids in oil-in-water emulsion is discussed, and so also their oxidation mechanism, the major factors influencing oxidation, determination measures, research status, and the problems encountered in recent years. Some effective strategies for controlling lipid oxidation in food emulsion have been presented in this review.

  4. Aging properties of Kodak type 101 emulsions

    NASA Technical Reports Server (NTRS)

    Dohne, B.; Feldman, U.; Neupert, W.

    1984-01-01

    Aging tests for several batches of Kodak type 101 emulsion show that storage conditions significantly influence how well the film will maintain its sensitometric properties, with sensitivity and density increasing to a maximum during this period. Any further aging may result in higher fog levels and sensitivity loss. It is noted that storage in an environment free of photographically active compounds allows film property optimization, and that film batches with different sensitivities age differently. Emulsions with maximum 1700-A sensitivity are 2.5 times faster than those at the low end of the sensitivity scale. These sensitive emulsions exhibit significantly accelerated changes in aging properties. Their use in space applications requires careful consideration of time and temperature profiles, encouraging the use of less sensitive emulsions when the controllability of these factors is limited.

  5. Fuel alcohol extraction technology commercialization conference

    SciTech Connect

    Compere, A. L.; Griffith, W. L.; Googin, J. M.

    1980-12-01

    The fualex, or fuel alcohol extraction process, uses a combination of hydrocarbon and surfactant to remove neutral solvents, such as butanol, ethanol, isopropanol, and acetone, from aqueous solution. The hydrocarbon extractants use may be fuels, such as gasoline, furnace oil, and diesel fuel. Surfactant concentrations ranging from 1 to 10 g/liter and hydrocarbon raning from 0.01 to 1 liter per liter aqueous alcohols solution have been investigated. The fualex process was tested on solutions which contain 5% w/v total neutral solvents, since this is near maximum for the fermentation product stream. The neutral solvents are removed in the form of an emulsion which is white to light bluish in the visible range. The emulsion has potential for direct use in fuels or as an intermediate for obtaining purified solvents.

  6. Surfactant-enhanced cellulose nanocrystal Pickering emulsions.

    PubMed

    Hu, Zhen; Ballinger, Sarah; Pelton, Robert; Cranston, Emily D

    2015-02-01

    The effect of surfactants on the properties of Pickering emulsions stabilized by cellulose nanocrystals (CNCs) was investigated. Electrophoretic mobility, interfacial tension, confocal microscopy and three-phase contact angle measurements were used to elucidate the interactions between anionic CNCs and cationic alkyl ammonium surfactants didecyldimethylammonium bromide (DMAB) and cetyltrimethylammonium bromide (CTAB). Both surfactants were found to adsorb onto CNCs with concentration-dependent morphology. At low concentrations, individual surfactant molecules adsorbed with alkyl tails pointing outward leading to hydrophobic CNCs. At higher concentrations, above the surfactant's apparent critical micelle concentration, surfactant aggregate morphologies on CNCs were inferred and the hydrophobicity of CNCs decreased. DMAB, which has two alkyl tails, rendered the CNCs more hydrophobic than CTAB which has only a single alkyl tail, at all surfactant concentrations. The change in CNC wettability from surfactant adsorption was directly linked to emulsion properties; adding surfactant increased the emulsion stability, decreased the droplet size, and controlled the internal phase of CNC Pickering emulsions. More specifically, a double transitional phase inversion, from oil-in-water to water-in-oil and back to oil-in-water, was observed for emulsions with CNCs and increasing amounts of DMAB (the more hydrophobic surfactant). With CNCs and CTAB, no phase inversion was induced. This work represents the first report of CNC Pickering emulsions with surfactants as well as the first CNC Pickering emulsions that can be phase inverted. The ability to surface modify CNCs in situ and tailor emulsions by adding surfactants may extend the potential of CNCs to new liquid formulations and extruded/spray-dried materials.

  7. Shear-stabilized emulsion flooding process

    SciTech Connect

    Carpenter, C.W.; Reed, R.L.

    1982-06-29

    Additional amounts of crude oil are recovered from a subterranean formation by flooding with a translucent emulsion comprising an upper- or middle-phase microemulsion as an external phase and a polymer-containing brine solution as an internal phase. The translucent emulsion tends to coalesce into its component phases under conditions of no shear, but is stabilized by low shears such as those imposed on fluids flowing through a subterranean formation.

  8. Hexagonal phase based gel-emulsion (O/H1 gel-emulsion): formation and rheology.

    PubMed

    Alam, Mohammad Mydul; Aramaki, Kenji

    2008-11-04

    The formation, stability, and rheological behavior of a hexagonal phase based gel-emulsion (O/H1 gel-emulsion) have been studied in water/C12EO8/hydrocarbon oil systems. A partial phase behavior study indicates that the oil nature has no effect on the phase sequences in the ternary phase diagram of water/C12EO8/oil systems but the domain size of the phases or the oil solubilization capacity considerably changes with oil nature. Excess oil is in equilibrium with the hexagonal phase (H1) in the ternary phase diagram in the H1+O region. The O/H1 gel-emulsion was prepared (formation) and kept at 25 degrees C to check stability. It has been found that the formation and stability of the O/H1 gel-emulsion depends on the oil nature. After 2 min observation (formation), the results show that short chain linear hydrocarbon oils (heptane, octane) are more apt to form a O/H1 gel-emulsion compared to long chain linear hydrocarbon oils (tetradecane, hexadecane), though the stability is not good enough in either system, that is, oil separates within 24 h. Nevertheless, the formation and stability of the O/H1 gel-emulsion is appreciably increased in squalane and liquid paraffin. It is surmised that the high transition temperature of the H1+O phase and the presence of a bicontinuous cubic phase (V1) might hamper the formation of a gel-emulsion. It has been pointed out that the solubilization of oil in the H1 phase could be related to emulsion stability. On the other hand, the oil nature has little or no effect on the formation and stability of a cubic phase based gel-emulsion (O/I1 gel-emulsion). From rheological measurements, it has found that the rheogram of the O/H1 gel-emulsion indicates gel-type structure and shows shear thinning behavior similar to the case of the O/I1 gel-emulsion. Rheological data infer that the O/I1 gel-emulsion is more viscous than the O/H1 gel-emulsion at room temperature but the O/H1 gel-emulsion shows consistency at elevated temperature.

  9. Pickering emulsions stabilized by charged nanoparticles.

    PubMed

    Ridel, Laure; Bolzinger, Marie-Alexandrine; Gilon-Delepine, Nicole; Dugas, Pierre-Yves; Chevalier, Yves

    2016-09-28

    The stabilization of o/w Pickering emulsions in cases of weak adsorption of solid particles at the surface of oil droplets is addressed. Though the adsorption is usually very strong and irreversible when partial wetting conditions are fulfilled, electrostatic repulsions between charged solid particles act against the adsorption. The regime of weak adsorption was reached using charged silica nanoparticles at high pH and low ionic strength. O/w Pickering emulsions of the diisopropyl adipate oil were stabilized by colloidal nanoparticles of Ludox® AS40 consisting of non-aggregated particles of bare silica (hydrophilic). The combination of stability assessment, droplet size and electrokinetic potential measurements at various pH values, adsorption isotherms and cryo-SEM observations of the adsorbed layers disclosed the specificities of the stabilization of Pickering emulsions by adsorption of solid nanoparticles against strong electrostatic repulsions. Not only the long-term stability of emulsions was poor under strong electrostatic repulsions at high pH, but emulsification failed since full dispersion of oil could not be achieved. Emulsion stability was ensured by decreasing electrostatic repulsions by lowering the pH from 9 to 3. Stable emulsions were stabilized by a monolayer of silica particles at 54% coverage of the oil droplet surface at low silica content and an adsorption regime as multilayers was reached at higher concentrations of silica although there was no aggregation of silica in the bulk aqueous phase.

  10. Conditions for equilibrium solid-stabilized emulsions.

    PubMed

    Kraft, Daniela J; de Folter, Julius W J; Luigjes, Bob; Castillo, Sonja I R; Sacanna, Stefano; Philipse, Albert P; Kegel, Willem K

    2010-08-19

    Particular types of solid-stabilized emulsions can be thermodynamically stable as evidenced by their spontaneous formation and monodisperse droplet size, which only depends on system parameters. Here, we investigate the generality of these equilibrium solid-stabilized emulsions with respect to the basic constituents: aqueous phase with ions, oil, and stabilizing particles. From systematic variations of these constituents, we identify general conditions for the spontaneous formation of monodisperse solid-stabilized emulsions droplets. We conclude that emulsion stability is achieved by a combination of solid particles as well as amphiphilic ions adsorbed at the droplet surface, and low interfacial tensions of the bare oil-water interface of order 10 mN/m or below. Furthermore, preferential wetting of the colloidal particles by the oil phase is necessary for thermodynamic stability. We demonstrate the sufficiency of these basic requirements by extending the observed thermodynamic stability to emulsions of different compositions. Our findings point to a new class of colloid-stabilized meso-emulsions with a potentially high impact on industrial emulsification processes due to the associated large energy savings.

  11. Method for treating tar sands emulsion and apparatus therefor

    SciTech Connect

    Bialek, R.F.

    1986-04-15

    A method is described for resolving a hot bitumen emulsion comprised primarily of bitumen, water and chemical diluents. The method consists of: providing separate but communicated emulsion mixing, and emulsion settling chamber, passing the hot bitumen emulsion through a first elongated mixing passage in the mixing chamber wherein a rapidly flowing stream of recycled emulsion is combined with a minor portion of unrecycled bitumen emulsion, to form a combined bitumen emulsion stream, thereafter passing the combined bitumen emulsion stream into an elongated discontinuous mixing passage comprised of vertically arranged and interconnected mixing passages within the emulsion mixer, where in the combined bitumen emulsion stream passes at a slower rate than in the first elongated mixing passage, passing the combined bitumen emulsion stream into an overflow passage communicated with the second elongated mixing passage, introducing a part of the combined emulsion stream from the overflow passage into the emulsion settling chamber, recycling the remainder of the combined emulsion stream from the overflow passage into the first elongated mixing passage, and removing separated flows of bitumen and water from the settling chamber.

  12. Stripping ethanol from ethanol-blended fuels for use in NO.sub.x SCR

    SciTech Connect

    Kass, Michael Delos; Graves, Ronald Lee; Storey, John Morse Elliot; Lewis, Sr., Samuel Arthur; Sluder, Charles Scott; Thomas, John Foster

    2007-08-21

    A method to use diesel fuel alchohol micro emulsions (E-diesel) to provide a source of reductant to lower NO.sub.x emissions using selective catalytic reduction. Ethanol is stripped from the micro emulsion and entered into the exhaust gasses upstream of the reducing catalyst. The method allows diesel (and other lean-burn) engines to meet new, lower emission standards without having to carry separate fuel and reductant tanks.

  13. 40 CFR 467.20 - Applicability; description of the rolling with emulsions subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... rolling with emulsions subcategory. 467.20 Section 467.20 Protection of Environment ENVIRONMENTAL... Rolling With Emulsions Subcategory § 467.20 Applicability; description of the rolling with emulsions... the rolling with emulsions subcategory. ...

  14. 40 CFR 467.20 - Applicability; description of the rolling with emulsions subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... rolling with emulsions subcategory. 467.20 Section 467.20 Protection of Environment ENVIRONMENTAL... Rolling With Emulsions Subcategory § 467.20 Applicability; description of the rolling with emulsions... the rolling with emulsions subcategory. ...

  15. Potential for energy cost reductions in 'Hamilton Class' cutters through fuel modification. Final report

    SciTech Connect

    Plank, G.; Weidner, F.

    1981-09-01

    A review of all pertinent and available literature on the use of blended fuel and water-in-fuel emulsions in marine power plants was accomplished with special attention paid to the use of this technique with gas turbines. Telephone contact was made with the engineering officers on all of the available (in-port) 'Hamilton Class' cutters and 'Polar Class' icebreakers to determine the operating schedules of the gas turbines on these vessels as well as fuel consumption and maintenance history. The opinions of the engineering officers were solicited with respect to any special problems which may exist, either with the hardware or operations of the vessels that would act to prevent or impede the use of a water-in-fuel emulsion. A cost/benefit analysis was performed for the case of a blended fuel for the diesels and a water-in-blended fuel emulsion for the gas turbines.

  16. Palm oil anionic surfactants based emulsion breaker (Case study of emulsions breaker at Semanggi Field production wells)

    NASA Astrophysics Data System (ADS)

    Muhpidah; Hambali, E.; Suryani, A.; Kartika, I. A.

    2017-05-01

    The presence of emulsion in oil production process is undesirable. The emulsion will increase the production costs, transportation and costs related to emulsion separation process between water and oil. The development of palm oil-based surfactant as an emulsion breaker needs to be conducted given the availability of abundant raw materials in Indonesia and as an alternative to petroleum-based surfactant. The purpose of this study is to produce palm oil-based emulsion breaker, assessing the effect of additive application to the emulsion breaker and analyze the performance of the emulsion breaker. This research was conducted by formulating palm oil anionic surfactant in water formation with the addition of co-surfactant additive and co-solvent. Palm oil anionic surfactant-based emulsion breaker with 0.5% concentration in water can reduce 50% of emulsions with the interfacial tension (IFT) of 2.33x10-2 dyne/cm. The addition of co-solvent (toluene: xylene) is able to remove the emulsion formed with a lower IFT namely 10-3 dyne / cm. The resulting emulsion breaker is capable to remove the emulsion between water and oil. The performance test of emulsion breaker show that the emulsion is able to maintain its performance at reservoir temperature with no indicate of plugging and the value generated incremental oil recovery values is 13%.

  17. Water-in-Oil Emulsion as a Boiler Fuel.

    DTIC Science & Technology

    1983-01-01

    NAVAVIONICFAC PW Div Indianapolis. IN PWD Deputy Dir. D 701. Indianapolis. IN NAVCHAPGRU Engineering Officer. Code Nt Williamsburg , VA NAVCOASTSYSCEN CO...Bruno. CA: RDT&ELO Code 2(111 San Bruno, CA NAVFACENGCOM CONTRACTS AROICC. NAVSTA Brooklyn . NY: AROICC. Quantico. VA: Colts Neck, NJ: Contracts, AROICC...CO, Brooklyn NY: Code 4. 12 Marine Corps Dist. Treasure Is.. San Francisco CA: Dir Engr Div. PWD. Mavport FL: Dir Mech Engr 37WC93 Norfolk. VA: Engr

  18. Shoreside Boiler Demonstration of Fuel-Water Emulsions.

    DTIC Science & Technology

    1982-08-01

    increasing tube deposits and decreasing heat transfer efficiency with time, and require periodic downtime for manual cleaning. There are new concepts being...To assure a high level of confidence in data collection, an automatic data logging system was installed with back-up provided by manual logging of the...representative of commercially available state-of-the- art low energy units. The following sections describe the selection process and the evaluation criteria

  19. Emulsion Mapping in Pork Meat Emulsion Systems with Various Lipid Types and Brown Rice Fiber

    PubMed Central

    Choi, Yun-Sang; Kim, Young-Boong; Park, Jinhee

    2015-01-01

    This study was conducted to evaluate emulsion mapping between emulsion stability and cooking yields, apparent viscosity, and hardness of reduced-fat pork emulsion systems. The reduced-fat emulsion systems were supplemented with different lipid types and brown rice bran fiber (BRF) concentrations. Compared to the control with 30% back fat, lower emulsion stability and higher cooking yield of meat emulsion systems were observed in T1 (30% back fat+1% BRF), T2 (30% back fat+2% BRF), T3 (30% back fat+3% BRF), T4 (30% back fat+6% BRF), and T15 (10% back fat+10% canola oil+2% BRF). Lower emulsion stability and higher apparent viscosity were observed in T1, T2, T3, T4, and T8 (20% back fat+3% BRF) compared to the control. Lower emulsion stability and higher hardness was detected in all treatments compared with the control, except T5 (20% back fat), T10 (10% back fat+10% canola oil+2% BRF), T11 (10% back fat+10% olive oil+2% BRF), T12 (10% back fat+10% grape seed oil+2% BRF), and T13 (10% back fat+10% soybean oil+2% BRF). This approach has been found particularly useful for highlighting differences among the emulsified properties in emulsion meat products. Thus, the results obtained with emulsion mapping are useful in making emulsified meat products of desired quality characteristics, partially replacing pork back fat with a mix of 10% back fat, 10% canola oil and 2% BRF was most similar to the control with 30% pork back fat. PMID:26761836

  20. Emulsion Mapping in Pork Meat Emulsion Systems with Various Lipid Types and Brown Rice Fiber.

    PubMed

    Choi, Yun-Sang; Kim, Young-Boong; Kim, Hyun-Wook; Hwang, Ko-Eun; Song, Dong-Heon; Jeong, Tae-Jun; Park, Jinhee; Kim, Cheon-Jei

    2015-01-01

    This study was conducted to evaluate emulsion mapping between emulsion stability and cooking yields, apparent viscosity, and hardness of reduced-fat pork emulsion systems. The reduced-fat emulsion systems were supplemented with different lipid types and brown rice bran fiber (BRF) concentrations. Compared to the control with 30% back fat, lower emulsion stability and higher cooking yield of meat emulsion systems were observed in T1 (30% back fat+1% BRF), T2 (30% back fat+2% BRF), T3 (30% back fat+3% BRF), T4 (30% back fat+6% BRF), and T15 (10% back fat+10% canola oil+2% BRF). Lower emulsion stability and higher apparent viscosity were observed in T1, T2, T3, T4, and T8 (20% back fat+3% BRF) compared to the control. Lower emulsion stability and higher hardness was detected in all treatments compared with the control, except T5 (20% back fat), T10 (10% back fat+10% canola oil+2% BRF), T11 (10% back fat+10% olive oil+2% BRF), T12 (10% back fat+10% grape seed oil+2% BRF), and T13 (10% back fat+10% soybean oil+2% BRF). This approach has been found particularly useful for highlighting differences among the emulsified properties in emulsion meat products. Thus, the results obtained with emulsion mapping are useful in making emulsified meat products of desired quality characteristics, partially replacing pork back fat with a mix of 10% back fat, 10% canola oil and 2% BRF was most similar to the control with 30% pork back fat.

  1. The atomization of water-oil emulsions

    SciTech Connect

    Broniarz-Press, L.; Ochowiak, M.; Rozanski, J.; Woziwodzki, S.

    2009-09-15

    The paper presents the results of experimental studies on atomization of the emulsions flowing through twin-fluid atomizers obtained by the use of the digital microphotography method. The main elements of the test installation were: nozzle, reservoir, pump and measurement units of liquid flow. The photographs were taken by a digital camera with automatic flash at exposure time of 1/8000 s and subsequently analyzed using Image Pro-Plus. The oils used were mineral oils 20-90, 20-70, 20-50 and 20-30. The studies were performed at flow rates of liquid phase changed from 0.0014 to 0.011 (dm{sup 3}/s) and gas phase changed from 0.28 to 1.4 (dm{sup 3}/s), respectively. The analysis of photos shows that the droplets being formed during the liquid atomization have very different sizes. The smallest droplets have diameters of the order of 10 {mu}m. The experimental results showed that the changes in physical properties of a liquid phase lead to the significant changes in the spray characteristics. The analysis of the photos of water and emulsions atomization process showed that the droplet sizes are dependent on gas and liquid flow rates, construction of nozzle and properties of liquid. The differences between characteristics of atomization for water and emulsions have been observed. Analysis of photos on forming the droplets in air-water and air-emulsions systems showed that droplets are bigger in air-emulsion system (at the same value of gas to liquid mass ratio). The values of Sauter mean diameter (SMD) increased with increase of volume fraction of oil in emulsion. The droplet size increased with emulsion viscosity. (author)

  2. WIMP tracking with cryogenic nuclear emulsion

    NASA Astrophysics Data System (ADS)

    Kimura, M.; Naka, T.; Furuya, S.; Asada, T.; Katsuragawa, T.; Yoshimoto, M.; Umemoto, A.; Machii, S.; Ichiki, H.; Sato, O.; Hoshino, Y.

    2017-02-01

    Directional dark matter search experiments enable us to reveal the presence of Weakly Interacting Massive Particles. A promising detector for a directional measurement is a fine-grained nuclear emulsion consisting of fine crystals of silver bromide with 20 nm or 40 nm size. A critical task for the success of the experiment is to remove background tracks of electrons coming from stopping beta rays of 14C decays in the nuclear emulsion. An electron rejection power of at least 10-10 is needed in order to start a 10 kg experiment. We present a novel cryogenic approach to reject the electron background that makes use of the phonon effect in nuclear emulsion. For the proof of principle, we have been investigating the sensitivity of fine-grained nuclear emulsions as a function of temperature by exposing to gamma rays and ion beams with an ion implant system in the range of 77-300 K. Results of gamma ray exposure indicate that the electron rejection power is estimated to be better than 3 ×10-9 at 77 K. Results of ion exposure imply that fine-grained nuclear emulsion is sensitive to ions which are light and heavy and ion tracks' angle can be measured.

  3. High pressure-resistant nonincendive emulsion explosive

    DOEpatents

    Ruhe, Thomas C.; Rao, Pilaka P.

    1994-01-01

    An improved emulsion explosive composition including hollow microspheres/bulking agents having high density and high strength. The hollow microspheres/bulking agents have true particle densities of about 0.2 grams per cubic centimeter or greater and include glass, siliceous, ceramic and synthetic resin microspheres, expanded minerals, and mixtures thereof. The preferred weight percentage of hollow microspheres/bulking agents in the composition ranges from 3.0 to 10.0 A chlorinated paraffin oil, also present in the improved emulsion explosive composition, imparts a higher film strength to the oil phase in the emulsion. The emulsion is rendered nonincendive by the production of sodium chloride in situ via the decomposition of sodium nitrate, a chlorinated paraffin oil, and sodium perchlorate. The air-gap sensitivity is improved by the in situ formation of monomethylamine perchlorate from dissolved monomethylamine nitrate and sodium perchlorate. The emulsion explosive composition can withstand static pressures to 139 bars and dynamic pressure loads on the order of 567 bars.

  4. Tuneable Rheological Properties of Fluorinated Pickering Emulsions

    NASA Astrophysics Data System (ADS)

    Chacon Orellana, Laura Andreina; Riechers, Birte; Caen, Ouriel; Baret, Jean-Christophe

    Pickering emulsions are an appealing approach to stabilize liquid-liquid dispersions without surfactants. Recently, amphiphilic silica nanoparticles have been proposed as an alternative to surfactants for droplet microfluidics applications, where aqueous drops are stabilized in fluorinated oils. This system, proved to be effective in preventing the leakage of resorufin, a model dye that was known to leak in surfactant-stabilized drops. The overall capabilities of droplet-based microfluidics technology is highly dependent on the dynamic properties of droplets, interfaces and emulsions. Therefore, fluorinated pickering emulsions dynamic properties need to be characterized, understood and controlled to be used as a substitute of already broadly studied emulsions for droplet microfluidics applications. In this study, fluorinated pickering emulsions have been found to behave as a Herschel Bulkley fluid, representing a challenge for common microfluidic operations as re-injection and sorting of droplets. We found that this behavior is controlled by the interaction between the interfacial properties of the particle-laden interface and the bulk properties of the two phases

  5. Stimuli-responsive Pickering emulsions: recent advances and potential applications.

    PubMed

    Tang, Juntao; Quinlan, Patrick James; Tam, Kam Chiu

    2015-05-14

    Pickering emulsions possess many advantages over traditional surfactant stabilized emulsions. For example, Pickering emulsions impart better stability against coalescence and, in many cases, are biologically compatible and environmentally friendly. These characteristics open the door for their use in a variety of industries spanning petroleum, food, biomedicine, pharmaceuticals, and cosmetics. Depending on the application, rapid, but controlled stabilization and destabilization of an emulsion may be necessary. As a result, Pickering emulsions with stimuli-responsive properties have, in recent years, received a considerable amounts of attention. This paper provides a concise and comprehensive review of Pickering emulsion systems that possess the ability to respond to an array of external triggers, including pH, temperature, CO2 concentration, light intensity, ionic strength, and magnetic field. Potential applications for which stimuli-responsive Pickering emulsion systems would be of particular value, such as emulsion polymerization, enhanced oil recovery, catalyst recovery, and cosmetics, are discussed.

  6. Health effects of subchronic exposure to diesel-water emulsion emission.

    PubMed

    Reed, M D; Blair, L F; Burling, K; Daly, I; Gigliotti, A P; Gudi, R; Mercieca, M D; McDonald, J D; Naas, D J; O'callaghan, J P; Seilkop, S K; Ronsko, N L; Wagner, V O; Kraska, R C

    2005-12-15

    The U.S. Environmental Protection Agency (EPA) National Ambient Air Quality Standards for ozone and particulate matter are requiring urban nonattainment areas to implement pollution-reduction strategies for anthropogenic source emissions. A type of fuel shown to decrease combustion emissions components versus traditional diesel fuels is the diesel-water emulsion. The Lubrizol Corporation in conjunction with Lovelace Respiratory Research Institute and several subcontracting laboratories recently conducted a rodent health assessment of inhaled combustion emissions of PuriNO(x) diesel fuel emulsion. Combustion emissions from either of two 2001 model Cummins 5.9-L ISB engines were diluted with charcoal-filtered air to exposure concentrations of 100, 200, and 400 microg total particulate matter/m(3). The engines were operated on a continuously repeating, heavy-duty certification cycle (U.S. Code of Federal Regulations, Title 40, Chapter I) using Rotella-T 15W-40 engine oil. Nitrogen oxide and particulate matter were reduced when engines were operated on PuriNO(x) versus California Air Resources Board diesel fuel under these conditions. Male and female F344 rats were housed in Hazleton H2000 exposure chambers and exposed to exhaust atmospheres 6 h/day, 5 days/wk for the first 11 wk and 7 days/wk threafter. Exposures ranged from 58 to 70 days, depending on the treatment group. Indicators of general toxicity (body weight, organ weight, clinical pathology, and histopathology), neurotoxicity (glial fibrillary acidic protein assay), genotoxicity (Ames assay, micronucleus, sister chromatid exchange), and reproduction and development were measured. Overall, effects observed were mild. Emulsion combustion emissions were not associated with neurotoxicity, reproductive/developmental toxicity, or in vivo genotoxicity. Small decreases in serum cholesterol and small increases in platelet values in some groups of exposed animals were observed. Particulate matter accumulation within

  7. Relating emulsion stability to interfacial properties for pharmaceutical emulsions stabilized by Pluronic F68 surfactant.

    PubMed

    Powell, Kristin Conrad; Damitz, Robert; Chauhan, Anuj

    2017-04-15

    We explore mechanisms of emulsion stability for several systems using Pluronic F68 and a range of oils commonly used in pharmaceutics and cosmetics. We report measurements of dynamic emulsion drop size, zeta potential, and creaming time, as well as dynamic interfacial tension and interfacial viscoelasticity. Experiments show that with 1wt% Pluronic F68, soybean oil emulsions were the most stable with no creaming over six months, followed by isopropyl myristate, octanoic acid, and then ethyl butyrate. The eventual destabilization occurred due to the rising of large drops which formed through Ostwald ripening and coalescence. While Ostwald ripening is important, it is not the dominant destabilization mechanism for the time scale of interest in pharmaceutical emulsions. The more significant destabilization mechanism, coalescence, is reduced through surfactant adsorption, which decreases surface tension, increases surface elasticity, and adds a stearic hindrance to collisions. Though the measured values of elasticity obtained using a standard oscillatory pendant drop method did not correlate to emulsion stability, this is because the frequencies for the measurements were orders of magnitude below those relevant to coalescence in emulsions. However, we show that the high frequency elasticity obtained by fitting the surface tension data to a Langmuir isotherm has very good correlation with the emulsion stability, indicating that the elasticity of the interface plays a key role in stabilizing these pharmaceutical formulations. Further, this study highlights how these important high frequency elasticity values can be easily estimated from surface isotherms. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Mathematical modeling of ultrafiltration of emulsions

    SciTech Connect

    Epshtein, S.I.

    1992-07-10

    The goal of this work is development of a mathematical model of the microfiltration process for oil emulsions. First of all to proceed to development of the basic equations describing the process of microfiltration, the authors study several rules obtained as a result of studies carried out in a cold rolling mill on an experimental setup of known construction, which included four F-1 BTU-0.5/2 ultrafilters connected in series, a pump, a 3 m{sup 3} settling tank, and a 1 m{sup 3} tank for the washing solution. An emulsion based on self-emulsifying oil T, which is used for preparing working emulsions for a four-stand cold rolling sheet mill, was purified. 9 refs., 4 figs.

  9. Clinical applications of intravenous lipid emulsion therapy.

    PubMed

    Muller, Sam H; Diaz, James H; Kaye, Alan David

    2015-12-01

    Intravenous lipid emulsion (ILE; Intralipid) therapy, a standard treatment in local anesthetic toxicity, has demonstrated therapeutic efficacies for a number of different drug class-mediated toxicities. Some of these varied drug groups include antipsychotics, antidepressants, antiarrhythmics, and calcium channel blockers. To meet the objective of describing the growing number of indications for Intralipid therapy and any diverse effects and/or failures of Intralipid therapy in reversing multiple drug toxicities, we queried several Internet search engines with the key words "intravenous lipid emulsion therapy," "Intralipid," "lipid emulsion," and "local anesthetic systemic toxicity," resulting in the identification of 31 case reports for descriptive analysis. These case reports included 49 separate drug overdose cases involving ten separate drug classes which were successfully reversed with Intralipid. The education of clinicians regarding the beneficial and varied roles of Intralipid therapy in different clinical settings is warranted, particularly in terms of the potential for Intralipid therapy to reverse the toxicities of non-local anesthetic drugs.

  10. Multi-body coalescence in Pickering emulsions

    NASA Astrophysics Data System (ADS)

    Wu, Tong; Wang, Haitao; Jing, Benxin; Liu, Fang; Burns, Peter C.; Na, Chongzheng

    2015-01-01

    Particle-stabilized Pickering emulsions have shown unusual behaviours such as the formation of non-spherical droplets and the sudden halt of coalescence between individual droplets. Here we report another unusual behaviour of Pickering emulsions—the simultaneous coalescence of multiple droplets in a single event. Using latex particles, silica particles and carbon nanotubes as model stabilizers, we show that multi-body coalescence can occur in both water-in-oil and oil-in-water emulsions. The number of droplets involved in the nth coalscence event equals four times the corresponding number of the tetrahedral sequence in close packing. Furthermore, coalescence is promoted by repulsive latex and silica particles but inhibited by attractive carbon nanotubes. The revelation of multi-body coalescence is expected to help better understand Pickering emulsions in natural systems and improve their designs in engineering applications.

  11. Forces acting in quasi 2d emulsions

    NASA Astrophysics Data System (ADS)

    Orellana, Carlos; Lowensohn, Janna; Weeks, Eric

    We study the forces in a quasi two dimensional emulsion system. Our samples are oil-in-water emulsions confined between two close-spaced parallel plates, so that the oil droplets are deformed into pancake shapes. By means of microscopy, we measure the droplet positions and their deformation, which we can relate to the contact forces due to surface tension. We improve over prior work in our lab, achieving a better force resolution. We use this result to measure and calibrate the viscous forces acting in our system, which fully determine all the forces on the droplets. Our results can be applied to study static configurations of emulsion, as well as faster flows.

  12. Fueling systems

    SciTech Connect

    Gorker, G.E.

    1987-01-01

    This report deals with concepts of the Tiber II tokamak reactor fueling systems. Contained in this report are the fuel injection requirement data, startup fueling requirements, intermediate range fueling requirements, power range fueling requirements and research and development considerations. (LSR)

  13. Stabilization of Oil-Water Emulsions by Hydrophobic Bacteria

    PubMed Central

    Dorobantu, Loredana S.; Yeung, Anthony K. C.; Foght, Julia M.; Gray, Murray R.

    2004-01-01

    Formation of oil-water emulsions during bacterial growth on hydrocarbons is often attributed to biosurfactants. Here we report the ability of certain intact bacterial cells to stabilize oil-in-water and water-in-oil emulsions without changing the interfacial tension, by inhibition of droplet coalescence as observed in emulsion stabilization by solid particles like silica. PMID:15466587

  14. NARCOSIS AND EMULSION REVERSAL BY INERT GASES

    PubMed Central

    Sears, Dewey F.; Fenn, Wallace O.

    1957-01-01

    Investigations of the effect of high pressures of Na (100 to 130 atmospheres) and of Ar (60 to 80 atmospheres) showed that these gases are effective in reversing the phases of an oil in water emulsion. Nitrous oxide did not cause reversal at pressures as high as 53 atmospheres nor did helium as high as 107 atmospheres. We found CO2 most effective in reversing the emulsions and attributed this to its chemical properties. It is suggested that these observations may help to explain the narcotic effects of inert gases. PMID:13416527

  15. Treatment of cocaine overdose with lipid emulsion.

    PubMed

    Jakkala-Saibaba, R; Morgan, P G; Morton, G L

    2011-12-01

    We describe the management and recovery of a 28-year-old man following a history of overdose by nasal inhalation of cocaine. The patient was presented in a comatose state suffering from seizures and marked cardiovascularly instability. Intravenous lipid emulsion was administered following initial resuscitation and tracheal intubation, as a means of treating persistent cardiac arrhythmias and profound hypotension. Following lipid emulsion therapy, the patient's life-threatening cardiovascular parameters rapidly improved and he recovered well without any side effects, thus being discharged within 2 days. © 2011 The Authors. Anaesthesia © 2011 The Association of Anaesthetists of Great Britain and Ireland.

  16. Performance of automatic scanning microscope for nuclear emulsion experiments

    SciTech Connect

    Güler, A. Murat; Altınok, Özgür

    2015-12-31

    The impressive improvements in scanning technology and methods let nuclear emulsion to be used as a target in recent large experiments. We report the performance of an automatic scanning microscope for nuclear emulsion experiments. After successful calibration and alignment of the system, we have reached 99% tracking efficiency for the minimum ionizing tracks that penetrating through the emulsions films. The automatic scanning system is successfully used for the scanning of emulsion films in the OPERA experiment and plan to use for the next generation of nuclear emulsion experiments.

  17. Performance of automatic scanning microscope for nuclear emulsion experiments

    NASA Astrophysics Data System (ADS)

    Güler, A. Murat; Altınok, Özgür

    2015-12-01

    The impressive improvements in scanning technology and methods let nuclear emulsion to be used as a target in recent large experiments. We report the performance of an automatic scanning microscope for nuclear emulsion experiments. After successful calibration and alignment of the system, we have reached 99% tracking efficiency for the minimum ionizing tracks that penetrating through the emulsions films. The automatic scanning system is successfully used for the scanning of emulsion films in the OPERA experiment and plan to use for the next generation of nuclear emulsion experiments.

  18. Emulsions stabilised by whey protein microgel particles: towards food-grade Pickering emulsions.

    PubMed

    Destribats, Mathieu; Rouvet, Martine; Gehin-Delval, Cécile; Schmitt, Christophe; Binks, Bernard P

    2014-09-28

    We have investigated a new class of food-grade particles, whey protein microgels, as stabilisers of triglyceride-water emulsions. The sub-micron particles stabilized oil-in-water emulsions at all pH with and without salt. All emulsions creamed but exhibited exceptional resistance to coalescence. Clear correlations exist between the properties of the microgels in aqueous dispersion and the resulting emulsion characteristics. For conditions in which the particles were uncharged, fluid emulsions with relatively large drops were stabilised, whereas emulsions stabilized by charged particles contained smaller flocculated drops. A combination of optical microscopy of the drops and spectrophotometry of the resolved aqueous phase allowed us to estimate the interfacial adsorption densities of the particles using the phenomenon of limited coalescence. We deduce two classes of particle arrangement. Complete adsorption of the particles was obtained when they were neutral or when their charges were screened by salt resulting in at least one particle monolayer at the interface. By contrast, only around 50% of the particles adsorbed when they were charged with emulsion drops being covered by less than half a monolayer. These findings were supported by direct visualization of drop interfaces using cryo-scanning electron microscopy. Uncharged particles were highly aggregated and formed a continuous 2-D network at the interface. Otherwise particles organized as individual aggregates separated by particle-free regions. In this case, we suggest that some particles spread at the interface leading to the formation of a continuous protein membrane. Charged particles displayed the ability to bridge opposing interfaces of neighbouring drops to form dense particle disks protecting drops against coalescence; this is the main reason for the flocculation and stability of emulsions containing sparsely covered drops.

  19. Phase inversion of ionomer-stabilized emulsions to form high internal phase emulsions (HIPEs).

    PubMed

    Zhang, Tao; Xu, Zhiguang; Cai, Zengxiao; Guo, Qipeng

    2015-06-28

    Herein, we report the phase inversion of ionomer-stabilized emulsions to form high internal phase emulsions (HIPEs) induced by salt concentration and pH changes. The ionomers are sulfonated polystyrenes (SPSs) with different sulfonation degrees. The emulsion types were determined by conductivity measurements, confocal microscopy and optical microscopy, and the formation of HIPE organogels was verified by the tube-inversion method and rheological measurements. SPSs with high sulfonation degrees (water-soluble) and low sulfonation degrees (water-insoluble) can stabilize oil-in-water emulsions; these emulsions were transformed into water-in-oil HIPEs by varying salt concentrations and/or changing the pH. SPS, with a sulfonation degree of 11.6%, is the most efficient, and as low as 0.2 (w/v)% of the organic phase is enough to stabilize the HIPEs. Phase inversion of the oil-in-water emulsions occurred to form water-in-oil HIPEs by increasing the salt concentration in the aqueous phase. Two phase inversion points from oil-in-water emulsions to water-in-oil HIPEs were observed at pH 1 and 13. Moreover, synergetic effects between the salt concentration and pH changes occurred upon the inversion of the emulsion type. The organic phase can be a variety of organic solvents, including toluene, xylene, chloroform, dichloroethane, dichloromethane and anisole, as well as monomers such as styrene, butyl acrylate, methyl methacrylate and ethylene glycol dimethacrylate. Poly(HIPEs) were successfully prepared by the polymerization of monomers as the continuous phase in the ionomer-stabilized HIPEs.

  20. Particle-Stabilized Powdered Water-in-Oil Emulsions.

    PubMed

    Binks, Bernard P; Tyowua, Andrew T

    2016-04-05

    The preparation of powdered water-in-oil (w/o) emulsions by gentle aeration of w/o emulsions stabilized by hydrophobic fumed silica particles in the presence of oleophobic fluorinated clay particles is reported for an alkane and a triglyceride oil. The resultant powders consist of water drops dispersed in oil globules themselves dispersed in air (w/o/a). They contain ∼80 wt % of the precursor w/o emulsion and were stable to phase separation for over 1 year but release oil and water when sheared on a substrate. Above a certain ratio of w/o emulsion:fluorinated clay particles, the powdered emulsions partially invert to an emulsion paste, composed of air bubbles and water droplets dispersed in oil. The tap density and angle of repose of the powdered emulsions were measured and compared with those of the corresponding powdered oils making up the continuous phase of the precursor emulsions. The contact angles of water droplets under oil on glass slides spin coated with silica particles and oil drops and w/o emulsion droplets in air on compressed disks of fluorinated clay particles are consistent with the stabilization of w/o emulsions and powdered emulsions, respectively.

  1. Pickering w/o emulsions: drug release and topical delivery.

    PubMed

    Frelichowska, Justyna; Bolzinger, Marie-Alexandrine; Valour, Jean-Pierre; Mouaziz, Hanna; Pelletier, Jocelyne; Chevalier, Yves

    2009-02-23

    The skin absorption from Pickering emulsions as a new dosage form was investigated for the first time. Pickering emulsions are stabilized by adsorbed solid particles instead of emulsifier molecules. They are promising dosage forms that significantly differ from classical emulsions within several features. The skin permeation of a hydrophilic model penetrant (caffeine) was investigated from a w/o Pickering emulsion and compared to a w/o classical emulsion stabilized with an emulsifier. Both emulsions had the same composition and physicochemical properties in order to focus on the effect of the interfacial layer on the drug release and skin absorption processes. The highest permeation rates were obtained from the Pickering emulsion with a pseudo-steady state flux of 25 microg cm(-2)h(-1), threefold higher than from a classical emulsion (9.7 microg cm(-2)h(-1)). After 24h exposure, caffeine was mostly in the receptor fluid and in the dermis; cumulated amounts of caffeine were higher for the Pickering emulsion. Several physicochemical phenomena were investigated for clearing up the mechanisms of enhanced permeation from the Pickering emulsion. Among them, higher adhesion of Pickering emulsion droplets to skin surface was disclosed. The transport of caffeine adsorbed on silica particles was also considered relevant since skin stripping showed that aggregates of silica particles entered deeply the stratum corneum.

  2. How does oil type determine emulsion characteristics in concentrated Na-caseinate emulsions?

    PubMed

    Tan, Hui Lin; McGrath, Kathryn M

    2013-08-01

    Macroscopic properties and ensemble average diffusion of concentrated (dispersed phase 50-60 wt%) Na-caseinate-stabilised emulsions for three different oils (soybean oil, palm olein and tetradecane) were explored. On a volume fraction basis, pulsed gradient stimulated echo (PGSTE)-NMR data show that droplet dynamics for all three systems are similar within a region of the emulsion morphology diagram. The exact limits of the emulsion space depend however on which oil is considered. The reduced solubility of tetradecane in water, and Na-caseinate in tetradecane, result in the stabilisation of flocs during formulation. Floc formation is not observed when soybean oil or palm olein is used under identical emulsion formulation conditions. Linear rheology experiments provide indirect evidence that the local structure and the properties of the thin film interfacial domain of tetradecane emulsions vary from those of soybean oil and palm olein emulsions. Collectively these data indicate that protein/oil interactions within a system dominate over specific oil droplet structure and size distribution, which are similar in the three systems.

  3. Topical delivery of acetyl hexapeptide-8 from different emulsions: influence of emulsion composition and internal structure.

    PubMed

    Hoppel, Magdalena; Reznicek, Gottfried; Kählig, Hanspeter; Kotisch, Harald; Resch, Günter P; Valenta, Claudia

    2015-02-20

    Acetyl hexapeptide-8 (AH-8) is a well-known component of anti-aging products and was recently explored as a promising topical treatment of blepharospasm. Although AH-8 appears in a variety of cosmetic products, its skin penetration is sparsely studied and controversially discussed. Therefore, the aim of the present study was to investigate the influence of the vehicle type on the AH-8 delivery to the skin. Besides skin permeation experiments with Franz type diffusion cells, the spatial distribution of AH-8 in the stratum corneum after a real in-use application was investigated by in vitro tape stripping on porcine ear skin. By applying LC-MS/MS for quantification of AH-8, we demonstrated that a multiple water-in-oil-in-water (W/O/W) emulsion can significantly increase penetration of AH-8 into porcine skin compared to simple O/W and W/O emulsions. The internal structure of the developed multiple emulsion was confirmed by electron microscopic investigations and NMR self diffusion studies. In general, a clear superiority of water-rich W/O/W and O/W emulsions over an oil-rich W/O emulsion in terms of dermal delivery of AH-8 was found. This enhanced delivery of AH-8 could be explained by an increased absorption of the water-rich emulsions into the skin, confirmed by combined ATR-FTIR and tape stripping experiments. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Crystals and crystallization in oil-in-water emulsions: implications for emulsion-based delivery systems.

    PubMed

    McClements, David Julian

    2012-06-15

    Many bioactive components intended for oral ingestion (pharmaceuticals and nutraceuticals) are hydrophobic molecules with low water-solubilities and high melting points, which poses considerable challenges to the formulation of oral delivery systems. Oil-in-water emulsions are often suitable vehicles for the encapsulation and delivery of this type of bioactive component. The bioactive component is usually dissolved in a carrier lipid phase by either dilution and/or heating prior to homogenization, and then the carrier lipid and water phases are homogenized to form an emulsion consisting of small oil droplets dispersed in water. The successful development of this kind of emulsion-based delivery system depends on a good understanding of the influence of crystals on the formation, stability, and properties of emulsions. This review article addresses the physicochemical phenomena associated with the encapsulation, retention, crystallization, release, and absorption of hydrophobic bioactive components within emulsions. This knowledge will be useful for the rational formulation of effective emulsion-based delivery systems for oral delivery of crystalline hydrophobic bioactive components in the food, health care, and pharmaceutical industries. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Probing Interfacial Emulsion Stability Controls using Electrorheology

    NASA Astrophysics Data System (ADS)

    Wang, Xiuyu; Brandvik, Amy; Alvarado, Vladimir

    2010-11-01

    The stability of water-in-oil emulsions is controlled by interfacial mechanisms that include oil film rheology of approaching drops and the strength of drop interfaces. Film drainage is mainly a function of the continuous phase rheology. Temperature is used to regulate the viscosity of the continuous phase and hence determine its effect on emulsion stability through film drainage, in contrast with interfacial strength. In this study, one crude oil is used to formulate water-in-oil emulsions. Oil-water interfacial tension is measured to gauge other interfacial changes with temperature. The critical field value, used as proxy of emulsion stability, approaches a plateau value for each crude oil- aqueous solution pair, at sufficiently high temperature (50 ^oC), which is interpreted to reflect the intrinsic drop-coating film resistance to coalescence. Interfacial tension does vary significantly with either aqueous phase composition or temperature. From comparison with previous results, we speculate that drop coating film is composed of a fraction of asphaltic compunds.

  6. Ordered macroporous materials by emulsion templating

    NASA Astrophysics Data System (ADS)

    Imhof, A.; Pine, D. J.

    1997-10-01

    Ordered macroporous materials with pore diameters comparable to optical wavelengths are predicted to have unique and highly useful optical properties such as photonic bandgaps and optical stop-bands. Tight control over the pore size distribution might also lead to improved macroporous materials (those with pores greater than approximately 50nm) for application as catalytic surfaces and supports, adsorbents, chromatographic materials, filters, light-weight structural materials, and thermal, acoustic and electrical insulators. Although methods exist for producing ordered porous materials with pore diameters less than 10nm (refs 10, 11), there is no general method for producing such materials with uniform pore sizes at larger length scales. Here we report a new method for producing highly monodisperse macroporous materials with pore sizes ranging from 50nm to several micrometres. Starting with an emulsion of equally sized droplets (produced through a repeated fractionation procedure), we form macroporous materials of titania, silica and zirconia by using the emulsion droplets as templates around which material is deposited through a sol-gel process. Subsequent drying and heat treatment yields solid materials with spherical pores left behind by the emulsion droplets. These pores are highly ordered, reflecting the self-assembly of the original monodisperse emulsion droplets into a nearly crystalline array. We show that the pore size can be accurately controlled, and that the technique should be applicable to a wide variety of metal oxides and even organic polymer gels.

  7. Showing Emulsion Properties with Common Dairy Foods

    NASA Astrophysics Data System (ADS)

    Bravo-Diaz, Carlos; Gonzalez-Romero, Elisa

    1996-09-01

    Foods are mixtures of different chemical compounds, and the quality we sense (taste, texture, color, etc.) are all manifestations of its chemical properties. Some of them can be visualized with the aid of simple, safe and inexpensive experiments using dairy products that can be found in any kitchen and using almost exclusively kitchen utensils. In this paper we propose some of them related with food emulsions. Food emulsions cover an extremely wide area of daily-life applications such as milk, sauces, dressings and beverages. Experimentation with some culinary recipes to prepare them and the analyisis of the observed results is close to ideal subject for the introduction of chemical principles, allowing to discuss about the nature and composition of foods, the effects of additives, etc. At the same time it allows to get insights into the scientific reasons that underlie on the recipes (something that it is not usually found in most cookbooks). For example, when making an emulsion like mayonnaise, why the egg yolks and water are the first materials in the bowl , and the oil is added to them rather than in the other way around? How you can "rescue" separate emulsions (mayonnaise)? Which parameters affect emulsion stability? Since safety, in its broad sense, is the first requisite for any food, concerns about food exist throughout the world and the more we are aware of our everyday life, the more likely we will be to deal productively with the consequences. On the other hand, understanding what foods are and how cooking works destroys no delightful mystery of the art of cuisine, instead the mystery expands.

  8. Synthetic Polymers at Interfaces: Monodisperse Emulsions Multiple Emulsions and Liquid Marbles

    NASA Astrophysics Data System (ADS)

    Sun, Guanqing

    The adsorption of polymeric materials at interfaces is an energetically favorable process which is investigated in much diversified fields, such as emulsions, bubbles, foams, liquid marbles. Pickering emulsion, which is emulsion stabilized by solid particles has been investigated for over one century and preparation of Pickering emulsion with narrow size distribution is crucial for both the theoretical study of the stabilization mechanism and practical application, such as templated fabrication of colloidosomes. The precise control over the size and functionality of polymer latices allows the preparation of monodisperse Pickering emulsions with desired sizes through SPG membrane emulsification at rather rapid rate compared to microfludic production. Double or multiple emulsions have long been investigated but its rapid destabilization has always been a major obstacle in applying them into practical applications. The modern living polymerization techniques allow us to prepare polymers with designed structure of block copolymers which makes it possible to prepare ultra-stable multiple emulsions. The precise tuning of the ratio of hydrophobic part over the hydrophilic can unveil the stabilization mechanism. Liquid marble is a new type of materials of which liquid droplets are coated by dry particles. The coating of an outer layer of dry particles renders the liquid droplets non-sticky at solid surface which is useful in transportation of small amount of liquid without leakage at extreme low friction force. The property of liquid marbles relies largely on the stabilizers and the drying condition of polymeric latices is shown to have great influence on the property of liquid marbles. Firstly, an introduction to the interfacial and colloidal science with special attention to topics on emulsions, multiple emulsion and liquid marbles is given in Chapter 1. The unique features of an interface and a discussion on the definition of colloids are introduced prior to the

  9. One-step process for transforming a water-in-oil emulsion into an oil-in-water emulsion

    SciTech Connect

    Prasad, R.R.S.

    1986-12-09

    A process is described for the production of an oil-in-water emulsion for pipeline transmission which comprises: (a) producing a hydrocarbon crude including a water-in-oil emulsion; (b) adding to the hydrocarbon crude when the crude is at a temperature of from about 100/sup 0/ to about 200/sup 0/F, an emulsifier system capable of forming and sustaining an oil-in-water emulsion at the temperature and at ambient pipeline transmission temperatures. The amount of emulsifier system added is sufficient to form and sustain an oil-in-water emulsion having a selected water content of from about 15 percent to about 35 percent by weight water and a viscosity sufficiently low for pipeline transmission; (c) agitating the hydrocarbon crude including a water-in-oil emulsion and the added emulsifier system, to form an oil-in-water emulsion; and (d) separating any excess water from the formed oil-in-water emulsion.

  10. Fossil fuels -- future fuels

    SciTech Connect

    1998-03-01

    Fossil fuels -- coal, oil, and natural gas -- built America`s historic economic strength. Today, coal supplies more than 55% of the electricity, oil more than 97% of the transportation needs, and natural gas 24% of the primary energy used in the US. Even taking into account increased use of renewable fuels and vastly improved powerplant efficiencies, 90% of national energy needs will still be met by fossil fuels in 2020. If advanced technologies that boost efficiency and environmental performance can be successfully developed and deployed, the US can continue to depend upon its rich resources of fossil fuels.

  11. Double emulsion solvent evaporation techniques used for drug encapsulation.

    PubMed

    Iqbal, Muhammad; Zafar, Nadiah; Fessi, Hatem; Elaissari, Abdelhamid

    2015-12-30

    Double emulsions are complex systems, also called "emulsions of emulsions", in which the droplets of the dispersed phase contain one or more types of smaller dispersed droplets themselves. Double emulsions have the potential for encapsulation of both hydrophobic as well as hydrophilic drugs, cosmetics, foods and other high value products. Techniques based on double emulsions are commonly used for the encapsulation of hydrophilic molecules, which suffer from low encapsulation efficiency because of rapid drug partitioning into the external aqueous phase when using single emulsions. The main issue when using double emulsions is their production in a well-controlled manner, with homogeneous droplet size by optimizing different process variables. In this review special attention has been paid to the application of double emulsion techniques for the encapsulation of various hydrophilic and hydrophobic anticancer drugs, anti-inflammatory drugs, antibiotic drugs, proteins and amino acids and their applications in theranostics. Moreover, the optimized ratio of the different phases and other process parameters of double emulsions are discussed. Finally, the results published regarding various types of solvents, stabilizers and polymers used for the encapsulation of several active substances via double emulsion processes are reported. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Rapid dissolution of propofol emulsions under sink conditions.

    PubMed

    Damitz, Robert; Chauhan, Anuj

    2015-03-15

    Pain accompanying intravenous injections of propofol is a major problem in anesthesia. Pain is ascribed to the interaction of propofol with the local vasculature and could be impacted by rapid dissolution of the emulsion formulation to release the drug. In this paper, we measure the dissolution of propofol emulsions including the commercial formulation Diprivan(®). We image the turbidity of blood protein sink solutions after emulsions are injected. The images are digitized, and the drug release times are estimated from the pixel intensity data for a range of starting emulsion droplet size. Drug release times are compared to a mechanistic model. After injection, pixel intensity or turbidity decreases due to reductions in emulsion droplet size. Drug release times can still be measured even if the emulsion does not completely dissolve such as with Diprivan(®). Both pure propofol emulsions and Diprivan(®) release drug very rapidly (under five seconds). Reducing emulsion droplet size significantly increases the drug release rate. Drug release times observed are slightly longer than the model prediction likely due to imperfect mixing. Drug release from emulsions occurs very rapidly after injection. This could be a contributing factor to pain on injection of propofol emulsions. Copyright © 2015. Published by Elsevier B.V.

  13. Characterization of fluorocarbon-in-water emulsions with added triglyceride.

    PubMed

    Weers, Jeffry G; Arlauskas, Rebecca A; Tarara, Thomas E; Pelura, Timothy J

    2004-08-31

    Fluorocarbon-in-water emulsions are being explored clinically as synthetic oxygen carriers in general surgery. Stabilizing fluorocarbon emulsions against coarsening is critical in maintaining the biocompatibility of the formulation following intravenous administration. It has been purported that the addition of a small percentage of long-chain triglyceride results in stabilization of fluorocarbon emulsions via formation of a three-phase emulsion. In a three-phase emulsion, the triglyceride forms a layer around the dispersed fluorocarbon, thereby improving the adhesion of the phospholipid surfactant to the dispersed phase. In the present study, we examined the effect of triglyceride addition on the physicochemical characteristics of the resulting complex dispersion. In particular, we examined the particle composition and stability of the dispersed particles using a method which first fractionates (classifies) the different particles prior to sizing (i.e., sedimentation field-flow fractionation). It was determined that the addition of a long-chain triglyceride (soybean oil) results in oil demixing and two distinct populations of emulsion droplets. The presence of the two types of emulsion droplets is not observed via light scattering techniques, since the triglyceride droplets dominate the scattering due to a large difference in the refractive index between the particles and the medium as compared to fluorocarbon droplets. The growth of the fractionated fluorocarbon emulsion droplets was followed over time, and it was found that there was no difference in growth rates with and without added triglyceride. In contrast, addition of medium-chain-triglyceride (MCT) oils results in a single population of emulsion droplets (i.e., a three-phase emulsion). These emulsions are not stable to droplet coalescence, however, as significant penetration of MCT into the phospholipid lipid interfacial layer results in a negative increment in the monolayer spontaneous curvature, thereby

  14. Advances in the generation of a new emulsified fuel

    NASA Astrophysics Data System (ADS)

    Chávez, A.; Ramírez, M.; Medina, E.; Bolado, R.; Mora, J.

    2011-08-01

    The development of a new emulsified fuel is described, from the conceptual idea to the semi-industrial tests of the final product. The starting point was the necessity to lower the particulate matter (PM) emissions produced by the combustion of more than 200 MBD of heavy fuel oil (HFO) used for electric power conversion. The major component of HFO is a vacuum residue of the oil refining process mixed with light cycle oils to make it pumpable. An alternative to handle and burn the high viscosity residue (solid at room temperature) is by converting it in an oil-in-water emulsion. The best emulsions resulted of 70% residue in 30% water, Sauter Mean Diameter of 10-20 μm and a stability of more than 90 days. Spray burning tests of the emulsion against HFO in a semi-industrial 500 kW furnace showed a reduction in PM emissions of 24-36%.

  15. Health effects of subchronic exposure to diesel-water-methanol emulsion emission.

    PubMed

    Reed, M D; Blair, L F; Burling, K; Daly, I; Gigliotti, A P; Gudi, R; Mercieca, M D; McDonald, J D; O'Callaghan, J P; Seilkop, S K; Ronskoh, N L; Wagner, V O; Kraska, R C

    2006-03-01

    The U.S. Environmental Protection Agency's National Ambient Air Quality Standards for ozone and particulate matter (PM) require urban non-attainment areas to implement pollution-reduction strategies for anthropogenic source emissions. The type of fuel shown to decrease combustion emissions components versus traditional diesel fuel, is the diesel emulsion. The Lubrizol Corporation, in conjunction with Lovelace Respiratory Research Institute and several subcontracting laboratories, recently conducted a health assessment of the combustion emissions of PuriNOx diesel fuel emulsion (diesel-water-methanol) in rodents. Combustion emissions from either of two, 2002 model Cummins 5.9L ISB engines, were diluted with charcoal-filtered air to exposure concentrations of 125, 250 and 500 microg total PM/m3. The engines were operated on a continuous, repeating, heavy-duty certification cycle (U.S. Code of Federal Regulations, Title 40, Chapter I) using Rotella-T 15W-40 engine oil. Nitrogen oxide (NO) and PM were reduced when engines were operated on PuriNOx versus California Air Resources Board diesel fuel under these conditions. Male and female F344 rats were housed in Hazleton H2000 exposure chambers and exposed to exhaust atmospheres 6 h/day, five days/week for the first 11 weeks and seven days/week thereafter. Exposures ranged from 61 to 73 days depending on the treatment group. Indicators of general toxicity (body weight, organ weight, clinical pathology and histopathology), neurotoxicity (glial fibrillary acidic protein assay), genotoxicity (Ames assay, micronucleus, sister chromatid exchange), and reproduction and development were measured. Overall, effects observed were mild. Emulsion combustion emissions were not associated with neurotoxicity, reproductive/developmental toxicity, or in vivo genotoxicity. Small decreases in serum cholesterol in the 500-microg/m3 exposure group were observed. PM accumulation within alveolar macrophages was evident in all exposure groups

  16. A comparative study of the physicochemical properties of a virgin coconut oil emulsion and commercial food supplement emulsions.

    PubMed

    Khor, Yih Phing; Koh, Soo Peng; Long, Kamariah; Long, Shariah; Ahmad, Sharifah Zarah Syed; Tan, Chin Ping

    2014-07-01

    Food manufacturers are interested in developing emulsion-based products into nutritional foods by using beneficial oils, such as fish oil and virgin coconut oil (VCO). In this study, the physicochemical properties of a VCO oil-in-water emulsion was investigated and compared to other commercial oil-in-water emulsion products (C1, C2, C3, and C4). C3 exhibited the smallest droplet size of 3.25 µm. The pH for the emulsion samples ranged from 2.52 to 4.38 and thus were categorised as acidic. In a texture analysis, C2 was described as the most firm, very adhesive and cohesive, as well as having high compressibility properties. From a rheological viewpoint, all the emulsion samples exhibited non-Newtonian behaviour, which manifested as a shear-thinning property. The G'G'' crossover illustrated by the VCO emulsion in the amplitude sweep graph but not the other commercial samples illustrated that the VCO emulsion had a better mouthfeel. In this context, the VCO emulsion yielded the highest zeta potential (64.86 mV), which was attributed to its strong repulsive forces, leading to a good dispersion system. C2 comprised the highest percentage of fat among all emulsion samples, followed by the VCO emulsion, with 18.44% and 6.59%, respectively.

  17. Emulsion characteristics, chemical and textural properties of meat systems produced with double emulsions as beef fat replacers.

    PubMed

    Serdaroğlu, Meltem; Öztürk, Burcu; Urgu, Müge

    2016-07-01

    In recent years, double emulsions are stated to have a promising potential in low-fat food production, however, there are very few studies on their possible applications in meat matrices. We aimed to investigate the quality of beef emulsion systems in which beef fat was totally replaced by double emulsions (W1/O/W2) prepared with olive oil and sodium caseinate (SC) by two-step emulsification procedure. Incorporation of W1/O/W2 emulsion resulted in reduced lipid, increased protein content, and modified fatty acid composition. W1/O/W2 emulsion treatments had lower jelly and fat separation, higher water-holding capacity and higher emulsion stability than control samples with beef fat. Increased concentrations of W1/O/W2 emulsions resulted in significant changes in texture parameters. TBA values were lower in W1/O/W2 emulsion treatments than control treatment after 60days of storage. In conclusion, our study confirms that double emulsions had promising impacts on modifying fatty acid composition and developing both technologically and oxidatively stable beef emulsion systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. DEP actuation of emulsion jets and dispensing of sub-nanoliter emulsion droplets.

    PubMed

    Prakash, Ravi; Kaler, Karan V I S

    2009-10-07

    Liquid Dielectrophoresis (L-DEP) has been successfully leveraged at microscopic scales and shown to provide a controllable means of on-chip precision dispensing and manipulation of sub-nanoliter single emulsion droplets. In this paper, we report on the dynamics of a DEP actuated emulsion jet prior to break-up and compare its characteristic behavior based on the lumped parameter model of Jones et al. (R. Ahmed and T. B. Jones, J. Micromech. Microeng., 2007, 17, 1052). Furthermore, features and aspects of these emulsion jets, their break-up and formation of sub-nanoliter emulsion droplets is studied in further detail. Applications of the proposed scheme in dispensing encapsulated sub-nanoliter droplets is envisioned in various fields including microTAS, on-chip handling and storage of cells and other biological samples for longer duration in controlled environments as well as solving the more general encapsulation issues in surface microfluidic devices. Scalability of the proposed scheme is shown by producing controlled sample-oil single emulsion droplets (aqueous samples in oil) in the range of 50-400 picoliters.

  19. Crocin loaded nano-emulsions: Factors affecting emulsion properties in spontaneous emulsification.

    PubMed

    Mehrnia, Mohammad-Amin; Jafari, Seid-Mahdi; Makhmal-Zadeh, Behzad S; Maghsoudlou, Yahya

    2016-03-01

    Spontaneous emulsification may be used for encapsulating bioactive compounds in food and pharmaceutical industry. It has several advantages over high energy and other low energy methods including, protecting sensitive compounds against severe conditions of high energy method and its ability to minimize surfactant, removal of cosurfactant and thermal stability compared with other low energy methods. In this study, we examined possibility of encapsulating highly soluble crocin in W/O micro-emulsions using spontaneous method which further could be used for making double emulsions. Nonionic surfactants of Span 80 and polyglycerol polyricinoleate (PGPR) were used for making micro-emulsions that showed the high potential of PGPR for spontaneous method. Surfactant to water ratio (SWR%) was evaluated to find the highest amount of aqueous phase which can be dispersed in organic phase. Droplet size decreased by increasing SWR toward the SWR=100% which had the smallest droplet size and then increased at higher levels of surfactant. By increasing SWR, shear viscosity increased which showed the high effect of PGPR on rheological properties. This study shows in addition to W/O micro-emulsions, spontaneous method could be used for preparing stable O/W micro-emulsions. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Ultrasonication-assisted preparation and characterization of emulsions and emulsion gels for topical drug delivery.

    PubMed

    Singh, Vinay K; Behera, Baikuntha; Pramanik, Krishna; Pal, Kunal

    2015-03-01

    The current study describes the use of ultrasonication for the preparation of biphasic emulsions and emulsion gels for topical drug delivery. Sorbitan monostearate (SMS) was used as the surfactant for stabilizing the interface of sesame oil (apolar phase) and water (polar phase). Emulsions were formed at lower concentrations of SMS, whereas emulsion gels were formed at higher concentrations of SMS. The formulations were characterized by fluorescent microscopy, X-ray diffraction, viscosity, stress relaxation, spreadability, and differential scanning calorimetry studies. Fluorescence microscopy suggested formation of oil-in-water type of formulations. There was an increase in the viscosity, bulk resistance, and firmness of the formulations as the proportions of SMS was increased. The emulsion gels were viscoelastic in nature. Thermal studies suggested higher thermodynamic stability at higher proportions of either SMS or water. Metronidazole, a model antimicrobial drug, was incorporated within the formulations. The release of the drug from the formulations was found to be diffusion mediated. The drug-loaded formulations showed sufficient antimicrobial efficiency to be used as carriers for topical antimicrobial drug delivery. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  1. Entropically Driven Colloidal Assembly in Emulsions

    NASA Astrophysics Data System (ADS)

    Lin, Keng-Hui; Lai, Liang-Jie; Chen, Hui

    2007-03-01

    Using the techniques developed by Manoharan [1], we encapsulate small numbers of colloidal microspheres and polymers in oil-in-water emulsion droplets, remove the oil and generate colloidal clusters covered with polymers. We observe two types of arrangement in the clusters. The first kind is the same as the type reported in [1] of which the clusters are formed without polymer. The second kind is the same as the structure reported in [2] of which the clusters are formed by binary colloidal microspheres. The polymers we put in the emulsions induce depletion interactions between colloidal particles. We will show that two types of structures are from the interplay between the depletion interactions and surface tension. [1] Manoharan, Elsesser, Pine, Science 301, 483(2003). [2] Cho et al. JACS 127, 15968 (2005).

  2. Acrylic emulsion binder for tape casting

    SciTech Connect

    Tang, X.; Ibbitson, S.A.; Donato, A.T.

    1996-06-01

    A crosslinkable acrylic emulsion binder has been demonstrated to significantly increase tensile strength of green tapes. A low Tg acrylic emulsion binder is blended with the crosslinkable binder to retain flexibility and elasticity of green tapes. The tensile strength of green tapes can be increased from 1.19 MPa to 2.34 MPa by incorporating a crosslinkable binder into the formulation while the tapes remain flexible and elastic with {approximately}15% strain at break. Upon stretching, the green tapes do not yield before breaking. Increasing the drying temperature appears to slightly increase the tensile strength of the green tapes, and has a marginal effect on the strain at break of the tapes. This binder system does not liberate formaldehyde as a result of crosslinking.

  3. Rational use of intravenous fat emulsions.

    PubMed

    Pelham, L D

    1981-02-01

    The composition, effect on blood components, relative value compared with intravenous dextrose, clinical applications as a caloric and fatty acid source, adverse reactions, limitations, and administration of intravenous fat emulsions are reviewed. Fat emulsions provide essential fatty acids and calories and are primarily used to supplement of parenteral nutrition regimens. Their use as a major source of calories remains limited because of cost. However, the trend toward aligning intravenous nutrition to that of the normal diet and the increased demand for peripherally administered parenteral nutrition have increased demand for use. The advantages and disadvantages presented may be used by clinicians to assist in establishing the role of intravenous fat therapy in nutritional support services.

  4. Evaluation on oxidative stability of walnut beverage emulsions.

    PubMed

    Liu, Shuang; Liu, Fuguo; Xue, Yanhui; Gao, Yanxiang

    2016-07-15

    Walnut beverage emulsions were prepared with walnut kernels, mixed nonionic emulsifiers and xanthan gum. The effects of food antioxidants on the physical stability and lipid oxidation of walnut beverage emulsions were investigated. The results showed that tea polyphenols could not only increase the droplet size of the emulsions, but also enhance physical stability during the thermal storage at 62 ± 1 °C. However, water-dispersed oil-soluble vitamin E and enzymatically modified isoquercitrin obviously decreased the physical stability of the emulsion system during the thermal storage. BHT and natural antioxidant extract had scarcely influenced on the physical stability of walnut beverage emulsions. Tea polyphenols and BHT could significantly retard lipid oxidation in walnut beverage emulsions against thermal and UV light exposure during the storage. Vitamin E exhibited the prooxidant effect during the thermal storage and the antioxidant attribute during UV light exposure. Other food antioxidants had no significant effect on retarding lipid oxidation during thermal or light storage.

  5. Imaging techniques applied to characterize bitumen and bituminous emulsions.

    PubMed

    Rodríguez-Valverde, M A; Ramón-Torregrosa, P; Páez-Dueñas, A; Cabrerizo-Vílchez, M A; Hidalgo-Alvarez, R

    2008-01-15

    The purpose of this article is to present some important advances in the imaging techniques currently used in the characterization of bitumen and bituminous emulsions. Bitumen exhibits some properties, such as a black colour and a reflecting surface at rest, which permit the use of optical techniques to study the macroscopic behaviour of asphalt mixes in the cold mix technology based on emulsion use. Imaging techniques allow monitoring in situ the bitumen thermal sensitivity as well as the complex phenomenon of emulsion breaking. Evaporation-driven breaking was evaluated from the shape of evaporating emulsion drops deposited onto non-porous and hydrophobic substrates. To describe the breaking kinetics, top-view images of a drying emulsion drop placed on an aggregate sheet were acquired and processed properly. We can conclude that computer-aided image analysis in road pavement engineering can elucidate the mechanism of breaking and curing of bituminous emulsion.

  6. Large area emulsion chamber experiments for the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Parnell, T. A.

    1985-01-01

    Emulsion-chamber experiments employing nuclear-track emulsions, etchable plastic detectors, metal plates, and X-ray films continue to demonstrate high productivity and potential in the study of cosmic-ray primaries and their interactions. Emulsions, with unsurpassed track-recording capability, provide an appropriate medium for the study of nucleus-nucleus interactions at high energy, which will likely produce observations of a phase change in nuclear matter. The many advantages of emulsion chambers (excellent multitrack recording capability, large geometry factor, low apparatus cost, simplicity of design and construction) are complemented by the major advantages of the Space Shuttle as an experiment carrier. A Shuttle experiment which could make a significant advance in both cosmic-ray primary and nucleus-nucleus interaction studies is described. Such an experiment would serve as a guide for use of emulsions during the Space Station era. Some practical factors that must be considered in planning a Shuttle exposure of emulsion chambers are discussed.

  7. Refractive index matching and clear emulsions.

    PubMed

    Sun, James Ziming; Erickson, Michael C E; Parr, James W

    2005-01-01

    Refractive index (RI) matching is a unique way of making clear emulsions to meet market trends. However, RI matching has not been sufficiently investigated in terms of physical principles and methodologies. Snell's law (n2 sin r2= n1 sin r1) is applicable to cosmetic emulsions. When oil phase and water phase have equal RI (n2 = n1) values, light will not bend as it strikes obliquely at the emulsion interface. Instead, light is transmitted through the emulsion without refraction, which produces clarity. Theoretical RI values in solution can be calculated with summation of the product of the weight percentage and refractive index of each ingredient (RI(mix) = [W1 x n1 + W2 x n2 + W3 x n3 + + Wn x nn]Wtau). Oil-phase RI values are normally at 1.4 or higher. Glycols are used to adjust the water phase RI, since they typically have larger RI values than water. Noticeable deviations from calculated RI values are seen in experimentally prepared solutions. Three basic deviation types are observed: negative, positive, and slightly negative or positive, which can occur in glycol aqueous solutions at different concentrations. The deviations are attributed to changes in molecular interaction between molecules in solution, which can lead to changes in specific gravity. Negative RI deviation corresponds to a decrease in specific gravity, and positive RI deviation corresponds to an increase in specific gravity. RI values will deviate from calculated values since an increase or decrease in specific gravity leads to a change in optical density.

  8. Emulsions Containing Perfluorocarbon Support Cell Cultures

    NASA Technical Reports Server (NTRS)

    Ju, Lu-Kwang; Lee, Jaw Fang; Armiger, William B.

    1990-01-01

    Addition of emulsion containing perfluorocarbon liquid to aqueous cell-culture medium increases capacity of medium to support mammalian cells. FC-40 Fluorinert (or equivalent) - increases average density of medium so approximately equal to that of cells. Cells stay suspended in medium without mechanical stirring, which damages them. Increases density enough to prevent cells from setting, and increases viscosity of medium so oxygen bubbled through it and nutrients stirred in with less damage to delicate cells.

  9. Emulsions Containing Perfluorocarbon Support Cell Cultures

    NASA Technical Reports Server (NTRS)

    Ju, Lu-Kwang; Lee, Jaw Fang; Armiger, William B.

    1990-01-01

    Addition of emulsion containing perfluorocarbon liquid to aqueous cell-culture medium increases capacity of medium to support mammalian cells. FC-40 Fluorinert (or equivalent) - increases average density of medium so approximately equal to that of cells. Cells stay suspended in medium without mechanical stirring, which damages them. Increases density enough to prevent cells from setting, and increases viscosity of medium so oxygen bubbled through it and nutrients stirred in with less damage to delicate cells.

  10. Pickering emulsions in foods - opportunities and limitations.

    PubMed

    Linke, Christina; Drusch, Stephan

    2017-04-17

    In order to critically discuss the potential of Pickering-type emulsions in food applications this review provides the theoretical background of the stabilizing mechanisms, the resulting requirements for particles to stabilize these systems and the limitations resulting from these fundamental considerations. Food grade particle systems investigated in the past are presented. It becomes obvious that with a proper choice of a particle, oil-in-water as well as water-in-oil emulsions can be achieved. For highly viscous products, products with a high internal phase volume and foams Pickering particles offer alternatives to commonly used surfactants. Pickering emulsions might be able to offer new approaches for fat reduction as well as encapsulation and sustained release of active ingredients. Nevertheless, a major part of successful systems have been achieved with silica or modified particles, which is not in line with the consumer demand for clean label, natural systems or not even food grade. However, the intriguing possibilities motivate and justify future research on the identification of new suitable ingredients, improvement of existing formulations and identification of new fields of application.

  11. [Multiple emulsions; bioactive compounds and functional foods].

    PubMed

    Jiménez-Colmenero, Francisco

    2013-01-01

    The continued appearance of scientific evidence about the role of diet and/or its components in health and wellness, has favored the emergence of functional foods which currently constitute one of the chief factors driving the development of new products. The application of multiple emulsions opens new possibilities in the design and development of functional foods. Multiple emulsions can be used as an intermediate product (food ingredient) into technological strategies normally used in the optimization of the presence of bioactive compounds in healthy and functional foods. This paper presents a summary of the types, characteristics and formation of multiple emulsions, possible location of bioactive compounds and their potential application in the design and preparation of healthy and functional foods. Such applications are manifested particularly relevant in relation to quantitative and qualitative aspects of lipid material (reduced fat/calories and optimization of fatty acid profile), encapsulation of bioactive compounds mainly hydrophilic and sodium reduction. This strategy offers interesting possibilities regarding masking flavours and improving sensory characteristics of foods. Copyright © AULA MEDICA EDICIONES 2013. Published by AULA MEDICA. All rights reserved.

  12. Lipid Emulsion for Local Anesthetic Systemic Toxicity

    PubMed Central

    Ciechanowicz, Sarah; Patil, Vinod

    2012-01-01

    The accidental overdose of local anesthetics may prove fatal. The commonly used amide local anesthetics have varying adverse effects on the myocardium, and beyond a certain dose all are capable of causing death. Local anesthetics are the most frequently used drugs amongst anesthetists and although uncommon, local anaesthetic systemic toxicity accounts for a high proportion of mortality, with local anaesthetic-induced cardiac arrest particularly resistant to standard resuscitation methods. Over the last decade, there has been convincing evidence of intravenous lipid emulsions as a rescue in local anesthetic-cardiotoxicity, and anesthetic organisations, over the globe have developed guidelines on the use of this drug. Despite this, awareness amongst practitioners appears to be lacking. All who use local anesthetics in their practice should have an appreciation of patients at high risk of toxicity, early symptoms and signs of toxicity, preventative measures when using local anesthetics, and the initial management of systemic toxicity with intravenous lipid emulsion. In this paper we intend to discuss the pharmacology and pathophysiology of local anesthetics and toxicity, and the rationale for lipid emulsion therapy. PMID:21969824

  13. Lentil and chickpea protein-stabilized emulsions: optimization of emulsion formulation.

    PubMed

    Can Karaca, Asli; Nickerson, Michael T; Low, Nicholas H

    2011-12-28

    Chickpea and lentil protein-stabilized emulsions were optimized with regard to pH (3.0-8.0), protein concentration (1.1-4.1% w/w), and oil content (20-40%) for their ability to form and stabilize oil-in-water emulsions using response surface methodology. Specifically, creaming stability, droplet size, and droplet charge were assessed. Optimum conditions for minimal creaming (no serum separation after 24 h), small droplet size (<2 μm), and high net droplet charge (absolute value of ZP > 40 mV) were identified as 4.1% protein, 40% oil, and pH 3.0 or 8.0, regardless of the plant protein used for emulsion preparation.

  14. Interaction between a perfluorocarbon emulsion and radiographic contrast media.

    PubMed

    Franke, Ralf-Peter; Reuter, Peter; Röhlke, Wolfgang; Matschke, Klaus; Keller, Steffi; Klosterhalfen, Bernd; Mittermayer, Christian; Mrowietz, Christoph; Jung, Friedrich

    2004-03-01

    This study evaluated specially designed perfluorocarbon (PFC) emulsions as blood substitutes in case of induced ischemia of the left heart ventricle in healthy farm pigs. Two hundred ml of perfluorocarbon emulsion were infused while 200 ml of blood were simultaneously drawn. Radiographic contrast media were given to aid placement of balloon catheters in the left coronary artery. Histopathological analysis showed that right heart failure caused the deaths of both pigs. Particles (up to>3 micro) of foreign body materials obstructed capillaries of all organs analyzed (heart, lung, liver, kidneys and spleen). Laboratory investigation showed severe interference between the PFC emulsion and radiographic contrast media, resulting in the deterioration of the PFC emulsion. The strongest interference occurred when PFC emulsion and Accupaque interacted; particle size started at an initial 311 nm and went up to >3 micro within seconds. Great care must be taken when PFC emulsions are used in combination with x-ray contrast media. None of the described radiographic contrast media should be used within 48 hours prior to the use of this PFC emulsion. Also, the use of these contrast media should be avoided for a certain period of time after using PFC emulsion. The mechanisms of elimination of PFC emulsions from the circulation are not completely understood and has yet to be evaluated.

  15. Studies with a safflower oil emulsion in total parenteral nutrition.

    PubMed Central

    Wong, K. H.; Deitel, M.

    1981-01-01

    The prevention of essential fatty acid deficiency and the provision of adequate amounts of energy are two major concerns in total parenteral nutrition. Since earlier preparations of fat emulsion used to supplement the usual regimen of hypertonic glucose and amino acids have widely varying clinical acceptability, a new product, a safflower oil emulsion available in two concentrations (Liposyn), was evaluated. In four clinical trials the emulsion was used as a supplement to total parenteral nutrition. In five surgical patients 500 ml of the 10% emulsion infused every third day prevented or corrected essential fatty acid deficiency; however, in some cases in infusion every other day may be necessary. In 40 patients in severe catabolic states the emulsion provided 30% to 50% of the energy required daily: 10 patients received the 10% emulsion for 14 to 42 days, 9 patients received each emulsion in turn for 7 days, and 21 patient received the 20% emulsion for 14 to 28 days. All the patients survived and tolerated the lipid well; no adverse clinical effects were attributable to the lipid infusions. Transient mild, apparently clinically insignificant abnormalities in the results of one or more liver function tests and eosinophilia were observed in some patients. Thus, the safflower oil emulsion, at both concentrations, was safe and effective as a source of 30% to 50% of the energy required daily by seriously ill patients. PMID:6799182

  16. Development of Nuclear Emulsion for Fast Neutron Measurement

    NASA Astrophysics Data System (ADS)

    Machii, Shogo; Kuwabara, Kenichi; Morishima, Kunihiro

    Nuclear emulsion is high sensitive photographic film used for detection of three-dimensional trajectory of charged particles. Energy resolution of nuclear emulsion is 21% (12%) FWHM against neutron energy of 2.8 MeV (4.9 MeV). Nuclear emulsion has high gamma ray rejection power. For now, at least 2×104 gamma rays/cm2, no increase of as a background for neutron measurement when scan using automatic nuclear emulsion read out system HTS. This value suggests that it is applicable even under high gamma ray environment, such as nuclear fusion reactor.

  17. Fat emulsion composition alters intake and the effects of baclofen.

    PubMed

    Wang, Y; Wilt, D C; Wojnicki, F H E; Babbs, R K; Coupland, J N; Corwin, R L C

    2011-12-01

    Thickened oil-in-water emulsions are useful model foods in rat studies due to their high acceptance and similarity to foods consumed by humans. Previous work from this laboratory used oil-in-water emulsions thickened with a biopolymer blend containing starch. Intake and effects of baclofen, a GABA-B agonist that decreases fat intake and drug self-administration, were reported, but the contribution of starch was not assessed. In the present study, intake and effects of baclofen were assessed in rats using emulsions prepared with two fat types (32% vegetable shortening, 32% corn oil) and thickened with three biopolymer blends. One biopolymer blend contained starch and the other two did not. Daily 1-h intake of the vegetable shortening emulsion containing starch was significantly greater than the other emulsions. When starch was added to the emulsions originally containing no starch, intake significantly increased. Baclofen generally reduced intake of all emulsions regardless of starch content and stimulated intake of chow. However, effects were more often significant for vegetable shortening emulsions. This report: (1) demonstrates that products used to prepare thickened oil-in-water emulsions have significant effects on rat ingestive behavior, and (2) confirms the ability of baclofen to reduce consumption of fatty foods, while simultaneously stimulating intake of chow. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. FAT EMULSION COMPOSITION ALTERS INTAKE AND THE EFFECTS OF BACLOFEN

    PubMed Central

    Wang, Y; Wilt, DC; Wojnicki, FHE; Babbs, RK; Coupland, JN; Corwin, RLC

    2011-01-01

    Thickened oil-in-water emulsions are useful model foods in rat studies due to their high acceptance and similarity to foods consumed by humans. Previous work from this laboratory used oil-in-water emulsions thickened with a biopolymer blend containing starch. Intake and effects of baclofen, a GABA-B agonist that decreases fat intake and drug self-administration, were reported, but the contribution of starch was not assessed. In the present study, intake and effects of baclofen were assessed in rats using emulsions prepared with two fat types (32% vegetable shortening, 32% corn oil) and thickened with three biopolymer blends. One biopolymer blend contained starch and the other two did not. Daily 1-h intake of the vegetable shortening emulsion containing starch was significantly greater than the other emulsions. When starch was added to the emulsions originally containing no starch, intake significantly increased. Baclofen generally reduced intake of all emulsions regardless of starch content and stimulated intake of chow. However, effects were more often significant for vegetable shortening emulsions. This report: 1) demonstrates that products used to prepare thickened oil-in-water emulsions have significant effects on rat ingestive behavior, and 2) confirms the ability of baclofen to reduce consumption of fatty foods, while simultaneously stimulating intake of chow. PMID:21855586

  19. Field testing of asphalt-emulsion radon-barrier system

    SciTech Connect

    Hartley, J.N.; Freeman, H.D.; Baker, E.G.; Elmore, M.R.; Nelson, D.A.; Voss, C.F.; Koehmstedt, P.L.

    1981-09-01

    Three years of laboratory and field testing have demonstrated that asphalt emulsion seals are effective radon diffusion barriers. Both laboratory and field tests in 1979, 1980 and 1981 have shown that an asphalt emulsion seal can reduce radon fluxes by greater than 99.9%. The effective diffusion coefficient for the various asphalt emulsion admix seals averages about 10/sup -6/ cm/sup 2//s. The 1981 joint field test is a culmination of all the technology developed to date for asphalt emulsion radon barrier systems. Preliminary results of this field test and the results of the 1980 field test are presented. 18 figures, 6 tables.

  20. Interaction between erythrocytes and free phospholipids as an emulsifying agent in fat emulsions or drug carrier emulsions for intravenous injections.

    PubMed

    Ishii, Fumiyoshi; Nagasaka, Yoshihide

    2004-08-15

    Hemolysis caused by the interaction between rabbit erythrocytes and oil-in-water emulsions (e.g., fat emulsions or drug carrier emulsions for intravenous injections) prepared with various oil concentrations was investigated. In emulsions prepared with oil concentrations in the range of 2.5-12.5%, the percentage of both hemolysis and free purified egg yolk lecithins (PEL) in the water phase of the emulsions decreased with the increased oil concentration and became constant above 12.5% oil concentration. The change in free PEL percentage in the water phase of the emulsions prepared with various oil concentrations showed the same relationship as that of the percentage hemolysis caused by the interaction between rabbit erythrocytes and emulsions prepared with various oil concentrations. No hemolysis caused by an interaction between rabbit erythrocytes and vesicles prepared with PEL at a concentration of 0.012% was observed. However, hemolysis levels of 64.2% and 91.1% were observed at PEL concentrations of 0.12% and 1.2%, respectively. These results led to the conclusion that hemolysis caused by the interaction between erythrocytes and emulsions was due to PEL vesicles in the water phase of the emulsions.

  1. Crude oil emulsions containing a compatible fluorochemical surfactant

    SciTech Connect

    Karydas, A.; Rodgers, J.

    1991-02-19

    This patent describes a crude oil in water emulsion, which is stable to both breakdown and phase inversion up to at least about 50{degrees} C., the emulsion containing an effective, compatible, emulsion stabilizing amount of a fluorochemical surfactant of the formula (R{sub {ital f}}){sub {ital n}}A{sub {ital m}}Q wherein R{sub {ital f}} is an inert, stable, oleophobic and hydrophobic fluoroaliphatic group having up to about 20 carbon atoms; n is an integer from 1 to 3; A is a direct bond or an organic linking group and is covalently bonded to both R{sub {ital f}} and Q; Q is an anionic, nonionic or amphoteric group; and m is an integer from 1 to 3; wherein the amount of weight of the fluorochemical surfactant present in the emulsion being between about 0.001 and 1% by weight of the emulsion, in the presence of absence of up to about 2% by weight of a crude oil emulsion promoting hydrocarbon surfactant, with the proviso that at least about 0.005% by weight total fluorochemical and hydrocarbon surfactant is present, based upon the weight of emulsion, and wherein the emulsion contains bout 15 to about 90 percent by weight water, based upon the weight of emulsion, such that the viscosity of the emulsion is less than about 50% of the viscosity of the crude oil, and wherein the emulsion spontaneously breaks down into an aqueous and crude oil phase at a temperature between about 55{degrees} and 75{degrees} C.

  2. Na-caseinate/oil/water systems: emulsion morphology diagrams.

    PubMed

    Tan, Hui Lin; McGrath, Kathryn M

    2012-09-01

    The concentrated (dispersed phase 50-70 wt%) composition space of Na-caseinate, a family of milk proteins, stabilised emulsions was investigated for three different oils: soybean oil, palm olein and tetradecane with pH 6.8 phosphate buffer continuous phase. The variation of emulsion stability and microstructure were explored using static light scattering, diffusion nuclear magnetic resonance, cryo-scanning electron microscopy, rheology and the time varying macroscopic phase separation of the emulsions. For soybean oil and palm olein a rich diversity of emulsion microstructures and stabilities are realised. Five emulsion domains, each having a different microstructure and macroscopic stability have been identified within the composition space probed. For the lowest concentrations of emulsifier bridging flocculation is evident and emulsions are of low stability. Increasing Na-caseinate concentration leads to an increased stability and the existence of distinct individual oil droplets, visualised using cryo-scanning electron microscopy. Further increases in Na-caseinate concentration reduce emulsion stability due to depletion flocculation. Na-caseinate self-assembly is then initiated. At sufficiently high Na-caseinate and/or oil concentrations the continuous phase of the emulsion is a three-dimensional protein network and emulsion stability is again enhanced. At the limits of the emulsion composition space a gel-like paste is formed. The diversity of emulsion microstructure is reduced when tetradecane is the discrete phase. Na-caseinate self-assembly is limited and there is no evidence for formation of a protein network. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Alternative Fuels

    EPA Pesticide Factsheets

    Alternative fuels include gaseous fuels such as hydrogen, natural gas, and propane; alcohols such as ethanol, methanol, and butanol; vegetable and waste-derived oils; and electricity. Overview of alternative fuels is here.

  4. Fuel pin

    DOEpatents

    Christiansen, David W.; Karnesky, Richard A.; Leggett, Robert D.; Baker, Ronald B.

    1989-10-03

    A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

  5. Fuel pin

    DOEpatents

    Christiansen, David W.; Karnesky, Richard A.; Leggett, Robert D.; Baker, Ronald B.

    1989-01-01

    A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

  6. Fuel pin

    DOEpatents

    Christiansen, D.W.; Karnesky, R.A.; Leggett, R.D.; Baker, R.B.

    1987-11-24

    A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

  7. Fuel pin

    SciTech Connect

    Christiansen, D.W.; Karnesky, R.A.; Leggett, R.D.; Baker, R.B.

    1987-11-24

    A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

  8. Zero-Valent Metal Emulsion for Reductive Dehalogenation of DNAPLS

    NASA Technical Reports Server (NTRS)

    Reinhart, Debra R. (Inventor); Clausen, Christian (Inventor); Geiger, Cherie L. (Inventor); Quinn, Jacqueline (Inventor); Brooks, Kathleen (Inventor)

    2003-01-01

    A zero-valent metal emulsion is used to dehalogenate solvents, such as pooled dense non-aqueous phase liquids (DNAPLs), including trichloroethylene (TCE). The zero-valent metal emulsion contains zero-valent metal particles, a surfactant, oil and water. The preferred zero-valent metal particles are nanoscale and microscale zero-valent iron particles

  9. Tuning Amphiphilicity of Particles for Controllable Pickering Emulsion

    PubMed Central

    Wang, Zhen; Wang, Yapei

    2016-01-01

    Pickering emulsions with the use of particles as emulsifiers have been extensively used in scientific research and industrial production due to their edge in biocompatibility and stability compared with traditional emulsions. The control over Pickering emulsion stability and type plays a significant role in these applications. Among the present methods to build controllable Pickering emulsions, tuning the amphiphilicity of particles is comparatively effective and has attracted enormous attention. In this review, we highlight some recent advances in tuning the amphiphilicity of particles for controlling the stability and type of Pickering emulsions. The amphiphilicity of three types of particles including rigid particles, soft particles, and Janus particles are tailored by means of different mechanisms and discussed here in detail. The stabilization-destabilization interconversion and phase inversion of Pickering emulsions have been successfully achieved by changing the surface properties of these particles. This article provides a comprehensive review of controllable Pickering emulsions, which is expected to stimulate inspiration for designing and preparing novel Pickering emulsions, and ultimately directing the preparation of functional materials. PMID:28774029

  10. Linear oil displacement by the emulsion entrapment process. [Dissertation

    SciTech Connect

    Schmidt, D.P.

    1982-01-01

    Lack of mobility control is one of the major impediments to successful enhanced oil recovery, especially for high viscosity oils. This work presents experimental and theoretical results for linear secondary oil displacements using dilute, stable suspensions of oil drops. The major hypothesis is that emulsions provide mobility control through entrapment or local permeability reduction, not through viscosity ratio improvement. In order to describe the displacement process, previous emulsion filtration theory is extended to longer cores and to two-phase flow. Quantitative agreement between theory and experiment is satisfactory for continuous secondary oil displacement with various drop-size emulsions in unconsolidated sand packs of permeabilities ranging from 0.7 ..mu..m/sup 2/ to 3.3 ..mu..m/sup 2/. Linear emulsion floods are shown to be most effective when the mean drop-size to pore-size ratio is in the region between straining and interception at the emulsion shock. Floods are more effective when the emulsion concentration is high which minimizes retention lag. Additionally, a parallel flooding apparatus is utilized to determine qualitatively the macroscopic benefits of emulsion mobility control. Direct analogies are established between augmented oil recovery with dilute emulsions and with entrapping polymers.

  11. Nanoscale and Microscale Iron Emulsions for Treating DNAPL

    NASA Technical Reports Server (NTRS)

    Geiger, Cherie L.

    2002-01-01

    This study demonstrated the feasibility of using emulsified nanoscale and microscale iron particles to enhance dehalogenation of (Dense Non-Aqueous Phase Liquid) DNAPL free-phase. The emulsified system consisted of a surfactant-stabilized, biodegradable oil-in-water emulsion with nanoscale or microscale iron particles contained within the emulsion droplets. It was demonstrated that DNAPLs, such as trichloroethene (TCE), diffuse through the oil membrane of the emulsion particle whereupon they reach an aqueous interior and the surface of an iron particle where dehalogenation takes place. The hydrocarbon reaction by-products of the dehalogenation reaction, primarily ethene (no chlorinated products detected), diffuse out of the emulsion droplet. This study also demonstrated that an iron-emulsion system could be delivered in-situ to the DNAPL pool in a soil matrix by using a simulated push well technique. Iron emulsions degraded pure TCE at a rate comparable to the degradation of dissolved phase TCE by iron particles, while pure iron had a very low degradation rate for free-phase TCE. The iron-emulsion systems can be injected into a sand matrix where they become immobilized and are not moved by flowing water. It has been documented that surfactant micelles possess the ability to pull pooled TCE into emulsion droplets where degradation of TCE takes place.

  12. Zero-Valent Metal Emulsion for Reductive Dehalogenation of DNAPLs

    NASA Technical Reports Server (NTRS)

    Reinhart, Debra R. (Inventor); Clausen, Christian (Inventor); Gelger, Cherie L. (Inventor); Quinn, Jacqueline (Inventor); Brooks, Kathleen (Inventor)

    2006-01-01

    A zero-valent metal emulsion is used to dehalogenate solvents, such as pooled dense non-aqueous phase liquids (DNAPLs), including trichloroethylene (TCE). The zero-valent metal emulsion contains zero-valent metal particles, a surfactant, oil and water, The preferred zero-valent metal particles are nanoscale and microscale zero-valent iron particles.

  13. Mannans as stabilizers of oil-in-water beverage emulsions

    USDA-ARS?s Scientific Manuscript database

    Plant polysaccharides and gums such as gum arabic (GA) are commonly used as stabilizers of oil-in-water emulsions. O-acetyl-galactoglucomannan (GGM), a by-product from mechanical pulping of spruce wood, is able to stabilize colloidal wood resin emulsions (Hannuksela and Holmbom, 2004), but its use a...

  14. Synthesis of metallic nanoshells on porphyrin-stabilized emulsions

    DOEpatents

    Wang, Haorong; Song, Yujiang; Shelnutt, John A.; Medforth, Craig J.

    2011-12-13

    Metal nanostructures formed by photocatalytic interfacial synthesis using a porphyrin-stabilized emulsion template and the method for making the nanostructures. Catalyst-seeded emulsion droplets are employed as templates for hollow-nanoshell growth. The hollow metal nanospheres may be formed with or without inclusions of other materials.

  15. Stability of cosmetic emulsion containing different amount of hemp oil.

    PubMed

    Kowalska, M; Ziomek, M; Żbikowska, A

    2015-08-01

    The aim of the study was to determine the optimal conditions, that is the content of hemp oil and time of homogenization to obtain stable dispersion systems. For this purpose, six emulsions were prepared, their stability was examined empirically and the most correctly formulated emulsion composition was determined using a computer simulation. Variable parameters (oil content and homogenization time) were indicated by the optimization software based on Kleeman's method. Physical properties of the synthesized emulsions were studied by numerous techniques involving particle size analysis, optical microscopy, Turbiscan test and viscosity of emulsions. The emulsion containing 50 g of oil and being homogenized for 6 min had the highest stability. Empirically determined parameters proved to be consistent with the results obtained using the computer software. The computer simulation showed that the most stable emulsion should contain from 30 to 50 g of oil and should be homogenized for 2.5-6 min. The computer software based on Kleeman's method proved to be useful for quick optimization of the composition and production parameters of stable emulsion systems. Moreover, obtaining an emulsion system with proper stability justifies further research extended with sensory analysis, which will allow the application of such systems (containing hemp oil, beneficial for skin) in the cosmetic industry. © 2015 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  16. Rheological properties of heavy oils and heavy oil emulsions

    SciTech Connect

    Khan, M.R.

    1996-06-01

    In this study, the author investigated the effects of a number of process variables such as shear rate, measurement temperature, pressure, the influence of pretreatment, and the role of various amounts of added water on the rheology of the resulting heavy oil or the emulsion. Rheological properties of heavy oils and the corresponding emulsions are important from transportation and processing standpoints.

  17. Emulsion design to improve the delivery of functional lipophilic components.

    PubMed

    McClements, David Julian

    2010-01-01

    The food industry has used emulsion science and technology for many years to create a diverse range of food products, such as milk, cream, soft drinks, nutritional beverages, dressings, mayonnaise, sauces, dips, deserts, ice cream, margarine, and butter. The majority of these food products are conventional oil-in-water (O/W) or water-in-oil (W/O) type emulsions. Recently, there has been increasing interest within the food industry in either improving or extending the functional performance of foods using novel structured emulsions. This article reviews recent developments in the creation of structured emulsions that could be used by the food and other industries, including nanoemulsions, multiple emulsions, multilayer emulsions, solid lipid particles, and filled hydrogel particles. These structured emulsions can be produced from food-grade [generally recognized as safe (GRAS)] ingredients (e.g., lipids, proteins, polysaccharides, surfactants, and minerals), using simple processing operations (e.g., mixing, homogenizing, and thermal processing). The structure, production, performance, and potential applications of each type of structured emulsion system are discussed.

  18. Zero-Valent Metal Emulsion for Reductive Dehalogenation of DNAPLS

    NASA Technical Reports Server (NTRS)

    Reinhart, Debra R. (Inventor); Clausen, Christian (Inventor); Geiger, Cherie L. (Inventor); Quinn, Jacqueline (Inventor); Brooks, Kathleen (Inventor)

    2003-01-01

    A zero-valent metal emulsion is used to dehalogenate solvents, such as pooled dense non-aqueous phase liquids (DNAPLs), including trichloroethylene (TCE). The zero-valent metal emulsion contains zero-valent metal particles, a surfactant, oil and water. The preferred zero-valent metal particles are nanoscale and microscale zero-valent iron particles

  19. Formulation of indomethacin emulsion using biopolymer of Prunus avium.

    PubMed

    Verma, Shivangi; Dabral, Prashant; Rana, Vinod; Upadhaya, Kumud; Bhardwaj

    2012-03-01

    The aim of the investigation was to formulate Indomethacin Emulsion using Bio-polymer as Emulsifier. Different batches of emulsions were prepared by varying concentration of biopolymer prunus avium. Based evaluation of the prepared polymers, a conclusion can be drawn that in the Prunus avium bio-material can serve as a promising film forming agent for formulating various drug.

  20. Glycosylated polyacrylate nanoparticles by emulsion polymerization

    PubMed Central

    Abeylath, Sampath C.; Turos, Edward

    2007-01-01

    A selection of glycosylated polyacrylate nanoparticles has been prepared by radical-initiated emulsion polymerization in aqueous media. Using ethyl acrylate as a co-monomer, carbohydrate acrylates were incorporated into the poly(ethyl acrylate) framework to give stable emulsions of glyconanoparticles with an average particle size of around 40 nm. Using this technique a variety of glyconanoparticles were prepared from 3-O-acryloyl-1,2:5,6-di-O-isopropylidene-α-D-glucofuranose, 1-O-acryloyl-2,3:5,6-di-O-isopropylidene-α-D-mannofuranose, 6-O-acryloyl-1,2:3,4-di-O-isopropylidene-α-D-galactopyranose, 2-N-acryloyl-1,3,4,6-tetra-O-acetyl-β-D-glucosamine, 5-O-acryloyl-2,3-isopropylidene-1-methoxy-β-D-ribofuranose and 4-N-acetyl-5’-O-acryloyl-2’,3’-O-isopropylidene cytidine. Scanning electron microscopy, dynamic light scattering and proton NMR analysis of the emulsions indicated essentially 100% incorporation of the carbohydrate acrylate monomer into the polymer with the exception of O-benzyl- and O-benzoyl-protected carbohydrate acrylates, which gave incomplete incorporation. Formation of larger glyconanoparticles of ~80nm with (unprotected) 3-O-acryloyl-D-glucose and 5-O-acryloyl-1-methoxy-β-D-ribofuranose revealed the influence of free hydroxyl groups in the monomer on the particle size during polymerization, a feature which is also apparently dependent on the amount of carbohydrate in the matrix. This methodology allows for a new, simple route to the synthesis of polymeric glyconanoparticles with potential applications in targeted drug delivery and materials development. PMID:18677404

  1. Perfluorochemical emulsions decrease Kupffer cell phagocytosis

    SciTech Connect

    Bottalico, L.A.; Betensky, H.T.; Min, Y.B.; Weinstock, S.B. )

    1991-07-01

    One drawback to using perfluorochemical emulsions as blood substitutes is that perfluorochemical particles are cleared from the blood by the reticuloendothelial system, primarily liver and spleen. The authors measured the impact of two perfluorochemical emulsions on clearance of colloidal carbon (less than 1 microns) and 51Cr-sheep red blood cells (about 8 microns) by the reticuloendothelial system in vivo and in the isolated perfused liver. Male rats were injected with 2 ml/100 gm body wt of Fluosol-DA or Oxypherol-ET for 4 consecutive days. Carbon (1 ml/100 gm body wt) or sheep red blood cells (0.05 ml of 5% vol/vol/100 gm body wt) were then injected intravenously (in vivo) or added to perfusate. Samples were taken at several time points for 1 hr. In the isolated perfused liver, carbon clearance was depressed by 25% 1 day after treatment. Rates returned to control levels by 12 days in Fluosol-DA-treated rats but remained depressed by 67% in Oxypherol-ET-treated rats. Sheep red blood cell (8 microns) clearance was two to five times slower than carbon clearance and depressed by 40% in livers from Fluosol-DA rats 1 day and 12 days after treatment. Added serum did not improve phagocytosis. In vivo carbon clearance remained normal in Fluosol-DA-treated rats but decreased by 74% in Oxypherol-ET-treated rats 1 day after treatment, returning to normal by 12 days. Clearance rates were similar in control rats in vivo and in the perfused liver. They conclude that the isolated perfused liver is a good model to measure liver clearance function. Although low doses of perfluorochemical emulsions may depress Kupffer cell phagocytosis, general reticuloendothelial system function is not significantly compromised.

  2. Detoxifying emulsion for overdosed aspirin intoxication.

    PubMed

    Zhang, Wenjun; Stambouli, Moncef; Pareau, Dominique

    2013-01-30

    Aspirin overdose could lead to intoxication, with the clinical manifestations of vomit, pulmonary edema and severe dyspnea. Stomach washing, emetics and activated charcoal are the common treatments with a limited efficiency for the intoxication. In this study, an active emulsion for aspirin intoxication was prepared with the detoxifying efficiency of 100% in less than 15 min, with the conditions of dodecane used as the oil phase, 8% Abil EM90 as the surfactant and 0.1 mol/L sodium hydroxide as the inner aqueous phase in a volume ratio of 2 between internal aqueous phase and the oil phase.

  3. Review of Intravenous Lipid Emulsion Therapy

    PubMed Central

    2016-01-01

    Intravenous fat emulsion (IVFE) is an important source of calories and essential fatty acids for patients receiving parenteral nutrition (PN). Administered as an individual infusion or combined with PN, the fats provided by IVFE are vital for cellular structural function and metabolism. The affinity of some medications to lipids has led to the use of IVFE as a treatment for any lipophilic drug overdose. This article will explain the available formulations of IVFE, administration, and maintenance issues, as well as the risks and benefits for various applications. PMID:27828934

  4. Factors influencing meat emulsion properties and product texture: A review.

    PubMed

    Santhi, D; Kalaikannan, A; Sureshkumar, S

    2017-07-03

    Emulsion-based meat products play an important role in modern meat industry. Though meat batters have been prepared traditionally since long back in the history, the scientific principles and the knowhow are significantly important in the case of commercial products. In India, the market for emulsion meat products is gaining importance in the recent years and the native producers are in critical need for the scientific basis of production of emulsion meat products with better yield, good sensory qualities and nutrition. Hence, this review will throw light on some of the important factors which influence the properties of meat emulsion such as stability, structure, etc. and the product texture and yield as the revealed by past researches which will be useful to the meat processors in their practical application in preparing meat emulsion products.

  5. Structure- and oil type-based efficacy of emulsion adjuvants.

    PubMed

    Jansen, Theo; Hofmans, Marij P M; Theelen, Marc J G; Manders, Frans; Schijns, Virgil E J C

    2006-06-29

    Oil-based emulsions are well-known immunopotentiators for inactivated, "killed" vaccines. We addressed the relationship between emulsion structure and levels of in vivo antibody formation to inactivated New Castle Disease virus (NDV) and Infectious Bronchitis virus (IBV) as antigens in 3-week-old chickens. The use of a polymeric emulsifier allowed for direct comparison of three types of emulsions, water-in-oil (W/O), oil-in-water (O/W) and W/O-in-water (W/O/W), while maintaining an identical content of components for each vehicle. They were prepared with either non-metabolizable, mineral oil or metabolizable, Miglyol 840. In addition, we assessed the inherent release capacity of each emulsion variant in vitro. Remarkably, we noted that W/O-type emulsions induced the best immune responses, while they released no antigen during 3 weeks. In general, mineral oil vaccines showed superior efficacy compared to Miglyol 840-based vaccines.

  6. Pickering emulsions for food applications: background, trends, and challenges.

    PubMed

    Berton-Carabin, Claire C; Schroën, Karin

    2015-01-01

    Particle-stabilized emulsions, also referred to as Pickering emulsions, have garnered exponentially increasing interest in recent years. This has also led to the first food applications, although the number of related publications is still rather low. The involved stabilization mechanisms are fundamentally different as compared to conventional emulsifiers, which can be an asset in terms of emulsion stability. Even though most of the research on Pickering emulsions has been conducted on model systems, with inorganic solid particles, recent progress has been made on the utilization of food-grade or food-compatible organic particles for this purpose. This review reports the latest advances in that respect, including technical challenges, and discusses the potential benefits and drawbacks of using Pickering emulsions for food applications, as an alternative to conventional emulsifier-based systems.

  7. Rejuvenation of Spent Media via Supported Emulsion Liquid Membranes

    NASA Technical Reports Server (NTRS)

    Wiencek, John M.

    2002-01-01

    The overall goal of this project was to maximize the reuseability of spent fermentation media. Supported emulsion liquid membrane separation, a highly efficient extraction technique, was used to remove inhibitory byproducts during fermentation; thus, improve the yield while reducing the need for fresh water. The key objectives of this study were: (1) Develop an emulsion liquid membrane system targeting low molecular weight organic acids which has minimal toxicity on a variety of microbial systems. (2) Conduct mass transfer studies to allow proper modeling and design of a supported emulsion liquid membrane system. (3) Investigate the effect of gravity on emulsion coalescence within the membrane unit. (4) Access the effect of water re-use on fermentation yields in a model microbial system. and (5) Develop a perfusion-type fermentor utilizing a supported emulsion liquid membrane system to control inhibitory fermentation byproducts (not completed due to lack of funds)

  8. Development of an Acoustic Droplet Vaporization, Ultrasound Drug Delivery Emulsion

    NASA Astrophysics Data System (ADS)

    Fabiilli, Mario L.; Sebastian, Ian E.; Fowlkes, J. Brian

    2010-03-01

    Many therapeutic applications of ultrasound (US) include the use of pefluorocarbon (PFC) microbubbles or emulsions. These colloidal systems can be activated in the presence of US, which in the case of emulsions, results in the production of bubbles—a process known as acoustic droplet vaporization (ADV). ADV can be used as a drug delivery mechanism, thereby yielding the localized release of toxic agents such a chemotherapeutics. In this work, emulsions that contain PFC and chlorambucil, a chemotherapy drug, are formulated using albumin or lipid shells. For albumin droplets, the oil phase—which contained CHL—clearly enveloped the PFC phase. The albumin emulsion also displayed better retention of CHL in the absence of US, which was evaluated by incubating Chinese hamster ovary cells with the various formulations. Thus, the developed emulsions are suitable for further testing in ADV-induced release of CHL.

  9. Domain and droplet sizes in emulsions stabilized by colloidal particles

    NASA Astrophysics Data System (ADS)

    Frijters, Stefan; Günther, Florian; Harting, Jens

    2014-10-01

    Particle-stabilized emulsions are commonly used in various industrial applications. These emulsions can present in different forms, such as Pickering emulsions or bijels, which can be distinguished by their different topologies and rheology. We numerically investigate the effect of the volume fraction and the uniform wettability of the stabilizing spherical particles in mixtures of two fluids. For this, we use the well-established three-dimensional lattice Boltzmann method, extended to allow for the added colloidal particles with non-neutral wetting properties. We obtain data on the domain sizes in the emulsions by using both structure functions and the Hoshen-Kopelman (HK) algorithm, and we demonstrate that both methods have their own (dis)advantages. We confirm an inverse dependence between the concentration of particles and the average radius of the stabilized droplets. Furthermore, we demonstrate the effect of particles detaching from interfaces on the emulsion properties and domain-size measurements.

  10. Enzymatically Crosslinked Emulsion Gels Using Star-Polymer Stabilizers.

    PubMed

    Ma, Kai; An, Zesheng

    2016-10-01

    A novel type of emulsion gel based on star-polymer-stabilized emulsions is highlighted, which contains discrete hydrophobic oil and hydrophilic aqueous solution domains. Well-defined phenol-functionalized core-crosslinked star polymers are synthesized via reversible addition-fragmentation chain transfer (RAFT)-mediated dispersion polymerization and are used as stabilizers for oil-in-water emulsions. Horseradish-peroxidase-catalyzed polymerization of the phenol moieties in the presence of H2 O2 enables rapid formation of crosslinked emulsion gels under mild conditions. The crosslinked emulsion gels exhibit enhanced mechanical strength, as well as widely tunable composition. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. An exclusively based parenteral fish-oil emulsion reverses cholestasis.

    PubMed

    Triana Junco, Miryam; García Vázquez, Natalia; Zozaya, Carlos; Ybarra Zabala, Marta; Abrams, Steven; García de Lorenzo, Abelardo; Sáenz de Pipaón Marcos, Miguel

    2014-10-25

    Prolonged parenteral nutrition (PN) leads to liver damage. Recent interest has focused on the lipid component of PN. A lipid emulsion based on w-3 fatty acids decrease conjugated bilirubin. A mixed lipid emulsion derived from soybean, coconut, olive, and fish oils reverses jaundice. Here we report the reversal of cholestasis and the improvement of enteral feeding tolerance in 1 infant with intestinal failure-associated liver disease. Treatment involved the substitution of a mixed lipid emulsion with one containing primarily omega-3 fatty acids during 37 days. Growth and biochemical tests of liver function improved significantly. This suggests that fat emulsions made from fish oils may be more effective means of treating this condition compared with an intravenous lipid emulsion containing soybean oil, medium -chain triglycerides, olive oil, and fish oil.

  12. Development of new-type nuclear emulsion for a balloon-borne emulsion gamma-ray telescope experiment

    NASA Astrophysics Data System (ADS)

    Ozaki, K.; Aoki, S.; Kamada, K.; Kosaka, T.; Mizutani, F.; Shibayama, E.; Takahashi, S.; Tateishi, Y.; Tawa, S.; Yamada, K.; Kawahara, H.; Otsuka, N.; Rokujo, H.

    2015-12-01

    This study reports a new-type of nuclear emulsion that improves the track-finding efficiency of charged particle detection. The emulsion is applied to the GRAINE project, a balloon-borne experiment that observes cosmic γ-rays through an emulsion γ-ray telescope. The new emulsion film dramatically improves the detection efficiency for γ-rays. The nuclear emulsion gel and films for the second GRAINE balloon-borne experiment (GRAINE-2015) were fully self-produced by ourselves. New handling methods for the novel emulsion film have also been developed. Over time, the stored films gradually become desensitized to minimum ionizing particles, but the original sensitivity can be restored by a resetting process. Moreover, the fading of latent images can be arrested by a drying process. To sensitize the new-type films and avoid their fading, emulsion preprocessing was applied immediately prior to GRAINE-2015. A balloon flight with the emulsion γ-ray telescope was successfully completed in Australia on 12th May 2015. By scanning with automated optical microscopes and analyzing the penetrated tracks, we confirmed the high track-finding efficiency (97%) of the mounted films. The analysis of γ-ray event detection, aims at detecting Vela pulsar, is in progress.

  13. Development of multiple W/O/W emulsions as dermal carrier system for oligonucleotides: effect of additives on emulsion stability.

    PubMed

    Schmidts, T; Dobler, D; Schlupp, P; Nissing, C; Garn, H; Runkel, F

    2010-10-15

    Multiple water-in-oil-in-water (W/O/W) emulsions are of major interest as potential skin delivery systems for water-soluble drugs like oligonucleotides due to their distinct encapsulation properties. However, multiple emulsions are highly sensitive in terms of variations of the individual components. The presence of osmotic active ingredients in the inner water phase is crucial for the generation of stable multiple emulsions. In order to stabilize the emulsions the influence of NaCl, MgSO(4), glucose and glycine and two cellulose derivatives was investigated. Briefly, multiple W/O/W emulsions using Span 80 as a lipophilic emulsifier and different hydrophilic emulsifiers (PEG-40/50 stearate, steareth-20 and polysorbate 80) were prepared. Stability of the emulsions was analyzed over a period of time using rheological measurements, droplet size observations and conductivity analysis. In this study we show that additives strongly influence the properties stability of multiple emulsions. By increasing the concentration of the osmotic active ingredients, smaller multiple droplets are formed and the viscosity is significantly increased. The thickening agents resulted in a slightly improved stability. The most promising emulsions were chosen and further evaluated for their suitability and compatibility to incorporate a DNAzyme oligonucleotide as active pharmaceutical ingredient. Copyright 2010 Elsevier B.V. All rights reserved.

  14. Fuel pump

    SciTech Connect

    Bellis, P.D.; Nesselrode, F.

    1991-04-16

    This patent describes a fuel pump. It includes: a fuel reservoir member, the fuel reservoir member being formed with fuel chambers, the chambers comprising an inlet chamber and an outlet chamber, means to supply fuel to the inlet chamber, means to deliver fuel from the outlet chamber to a point of use, the fuel reservoir member chambers also including a bypass chamber, means interconnecting the bypass chamber with the outlet chamber; the fuel pump also comprising pump means interconnecting the inlet chamber and the outlet chamber and adapted to suck fuel from the fuel supply means into the inlet chamber, through the pump means, out the outlet chamber, and to the fuel delivery means; the bypass chamber and the pump means providing two substantially separate paths of fuel flow in the fuel reservoir member, bypass plunger means normally closing off the flow of fuel through the bypass chamber one of the substantially separate paths including the fuel supply means and the fuel delivery means when the bypass plunger means is closed, the second of the substantially separate paths including the bypass chamber when the bypass plunger means is open, and all of the chambers and the interconnecting means therebetween being configured so as to create turbulence in the flow of any fuel supplied to the outlet chamber by the pump means and bypassed through the bypass chamber and the interconnecting means.

  15. [Dietary fat emulsions of lowered caloric content].

    PubMed

    Brents, M Ia; Fursova, S A; Vorob'eva, V M; Baeva, V S

    1983-01-01

    The products such as mayonnaise for infant's and dietetic nutrition were supplemented with the most full-value and readily assimilable proteins of milk and plant origin, whereas inhibitors and components (yolk-yellow, soybean oil, etc) not very suitable for dietetic nutrition were excluded. The know how and composition of dietetic pastes with a fatness of 10-50% were those of sauces for cold dishes and desserts with a fatness of 1-10%. These products represent a stable, readily assimilable vegetative oil emulsion. They are manufactured according to a simplified (comparatively to the conventional) flow-sheet that involves two parallel processes: preparation of a vegetative oil emulsion by means of homogenization at a high pressure and preparation of a concentration aqueous suspension of excipients. Apart from the increased biological value and high quality of fatty products, the know how under consideration enables the butter and fatty industry to produce mayonnaises with a fat content under 35% and to make the best use of reiterative raw material of the milk industry.

  16. Random close packing of polydisperse jammed emulsions

    NASA Astrophysics Data System (ADS)

    Brujic, Jasna

    2010-03-01

    Packing problems are everywhere, ranging from oil extraction through porous rocks to grain storage in silos and the compaction of pharmaceutical powders into tablets. At a given density, particulate systems pack into a mechanically stable and amorphous jammed state. Theoretical frameworks have proposed a connection between this jammed state and the glass transition, a thermodynamics of jamming, as well as geometric modeling of random packings. Nevertheless, a simple underlying mechanism for the random assembly of athermal particles, analogous to crystalline ordering, remains unknown. Here we use 3D measurements of polydisperse packings of emulsion droplets to build a simple statistical model in which the complexity of the global packing is distilled into a local stochastic process. From the perspective of a single particle the packing problem is reduced to the random formation of nearest neighbors, followed by a choice of contacts among them. The two key parameters in the model, the available space around a particle and the ratio of contacts to neighbors, are directly obtained from experiments. Remarkably, we demonstrate that this ``granocentric'' view captures the properties of the polydisperse emulsion packing, ranging from the microscopic distributions of nearest neighbors and contacts to local density fluctuations and all the way to the global packing density. Further applications to monodisperse and bidisperse systems quantitatively agree with previously measured trends in global density. This model therefore reveals a general principle of organization for random packing and lays the foundations for a theory of jammed matter.

  17. ESR studies of semicontinuous emulsion polymerization

    SciTech Connect

    Lau, W.; Westmoreland, D.G.

    1993-12-31

    Electron spin resonance (ESR) is used in the detection and quantification of propagating radicals during a semicontinuous emulsion polymerization. The propagating radical concentration is crucial for the determination of kinetic parameters of the emulsion polymerization process. A flow reactor was built which involves a closed-loop flow system that circulates latex from the polymerization reactor through the ESR cavity for free-radical measurements and back to the reactor. With the continuous measurement of the radical concentrations during a polymerization of methyl methacrylate (MMA), {bar n} (average number of radicals per particle) and k{sub p} (propagating rate constant), are measured throughout the entire polymerization. For the polymerization of the MMA system studied, the authors observed a gradual increased in n and decrease in k{sub p} during the run, suggesting a diffusionally controlled process and that the polymerization is not occurring homogeneously throughout the polymer particles. In the glassy pMMA matrix, radicals can be {open_quotes}trapped{close_quotes} within a minimum volume and remain unterminated.

  18. Evidence for Marginal Stability in Emulsions

    NASA Astrophysics Data System (ADS)

    Lin, Jie; Jorjadze, Ivane; Pontani, Lea-Laetitia; Wyart, Matthieu; Brujic, Jasna

    2016-11-01

    We report the first measurements of the effect of pressure on vibrational modes in emulsions, which serve as a model for soft frictionless spheres at zero temperature. As a function of the applied pressure, we find that the density of states D (ω ) exhibits a low-frequency cutoff ω*, which scales linearly with the number of extra contacts per particle δ z . Moreover, for ω <ω*, our results are consistent with D (ω )˜ω2/ω*2, a quadratic behavior whose prefactor is larger than what is expected from Debye theory. This surprising result agrees with recent theoretical findings [E. DeGiuli, A. Laversanne-Finot, G. A. Düring, E. Lerner, and M. Wyart, Soft Matter 10, 5628 (2014); S. Franz, G. Parisi, P. Urbani, and F. Zamponi, Proc. Natl. Acad. Sci. U.S.A. 112, 14539 (2015)]. Finally, the degree of localization of the softest low frequency modes increases with compression, as shown by the participation ratio as well as their spatial configurations. Overall, our observations show that emulsions are marginally stable and display non-plane-wave modes up to vanishing frequencies.

  19. Detecting plastic events in emulsions simulations

    NASA Astrophysics Data System (ADS)

    Lulli, Matteo; Matteo Lulli, Massimo Bernaschi, Mauro Sbragaglia Team

    2016-11-01

    Emulsions are complex systems which are formed by a number of non-coalescing droplets dispersed in a solvent leading to non-trivial effects in the overall flowing dynamics. Such systems possess a yield stress below which an elastic response to an external forcing occurs, while above the yield stress the system flows as a non-Newtonian fluid, i.e. the stress is not proportional to the shear. In the solid-like regime the network of the droplets interfaces stores the energy coming from the work exerted by an external forcing, which can be used to move the droplets in a non-reversible way, i.e. causing plastic events. The Kinetic-Elasto-Plastic (KEP) theory is an effective theory describing some features of the flowing regime relating the rate of plastic events to a scalar field called fluidity f =γ˙/σ , i.e. the inverse of an effective viscosity. Boundary conditions have a non-trivial role not captured by the KEP description. In this contribution we will compare numerical results against experiments concerning the Poiseuille flow of emulsions in microchannels with complex boundary geometries. Using an efficient computational tool we can show non-trivial results on plastic events for different realizations of the rough boundaries. The research leading to these results has received funding from the European Research Council under the European Community's Seventh Framework Programme (FP7/2007- 2013)/ERC Grant Agreement no. [279004].

  20. Research of inverted emulsions properties on the base of new emulsifiers

    NASA Astrophysics Data System (ADS)

    Minaev, K.; Epikhin, A.; Novoseltsev, D.; Andropov, M.; Yanovsky, V.; Ulyanova, O.

    2014-08-01

    Emulsifiers on the base of tallol and ethanolamines derived acids have been researched in the paper. Electrical stability of emulsions drilling muds has been investigated. It is proved that synthesized emulsifiers according to emulsion stability can be divided into two groups. The first group is emulsifiers with high initial electrical stability but low emulsion stability under long-term storing, and the second group is emulsifiers with low electrical stability but with high emulsion stability. Emulsions flow characteristics have been researched. It is established that emulsifier on the base of ethanolamine provides better emulsion characteristics for drilling muds emulsions.

  1. Investigation on environmental factors of waste plastics into oil and its emulsion to control the emission in DI diesel engine.

    PubMed

    Kumar, P Senthil; Sankaranarayanan, G

    2016-12-01

    Rapid depletion of conventional fossil fuel resources, their rising prices and environmental issues are the major concern of alternative fuels. On the other hand waste plastics cause a very serious environmental dispute because of their disposal problems. Waste plastics are one of the promising factors for fuel production because of their high heat of combustion and their increasing availability in local communities. In this study, waste plastic oil (WPO) is tested in DI diesel engine to evaluate its performance and emission characteristics. Results showed that oxides of nitrogen (NOx) emission get increased with WPO when compared to diesel oil. Further, the three phase (O/W/O) plastic oil emulsion is prepared with an aid of ultrasonicater according to the %v (10, 20 & 30). Results expose that brake thermal efficiency (BTE) is found to be increased. NOx and smoke emissions were reduced up to 247ppm and 41% respectively, when compared to diesel at full load condition with use of 30% emulsified WPO.

  2. Integrated microfluidic system with simultaneous emulsion generation and concentration.

    PubMed

    Koppula, Karuna S; Fan, Rong; Veerapalli, Kartik R; Wan, Jiandi

    2016-03-15

    Because the size, size distribution, and concentration of emulsions play an important role in most of the applications, controlled emulsion generation and effective concentration are of great interest in fundamental and applied studies. While microfluidics has been demonstrated to be able to produce emulsion drops with controlled size, size distribution, and hierarchical structures, progress of controlled generation of concentrated emulsions is limited. Here, we present an effective microfluidic emulsion generation system integrated with an orifice structure to separate aqueous droplets from the continuous oil phase, resulting in concentrated emulsion drops in situ. Both experimental and simulation results show that the efficiency of separation is determined by a balance between pressure drop and droplet accumulation near the orifice. By manipulating this balance via changing flow rates and microfluidic geometry, we can achieve monodisperse droplets on chip that have a concentration as high as 80,000 drops per microliter (volume fraction of 66%). The present approach thus provides insights to the design of microfluidic device that can be used to concentrate emulsions (drops and bubbles), colloidal particles (drug delivery polymer particles), and biological particles (cells and bacteria) when volume fractions as high as 66% are necessary. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Stability of drug-carrier emulsions containing phosphatidylcholine mixtures.

    PubMed

    Trotta, Michele; Pattarino, Franco; Ignoni, Terenzio

    2002-03-01

    Lipid emulsion particles containing 10% of medium chain triglycerides were prepared using 2% w/w of a mixture 1:1 w/w of purified soya phosphatidylcholine and 2-hexanoyl phosphatidylcholine as emulsifier mixture, for use as drug carriers. The mean droplet sizes of emulsions, prepared using an Ultra Turrax or a high-pressure homogenizer, were about 288 and 158 nm, respectively, compared with 380 and 268 nm for emulsions containing lecithin, or 325 and 240 nm for those containing 6-phosphatidylcholine. The stability of the emulsions, determined by monitoring the decrease of a lipophilic marker at a specified level within the emulsion, and observing coalescence over time, was also greatly increased using the emulsifier mixture. The emulsion stability did not notably change in the presence of a model destabilizing drug, indomethacin. The use of a second hydrophilic surfactant to adjust the packing properties of the lecithin at the oil-water interface provided an increase in the stability of lipid emulsions, and this may be of importance in the formulation of drug delivery systems.

  4. Physical properties and stability of two emulsion formulations of propofol.

    PubMed

    Han, J; Davis, S S; Washington, C

    2001-03-14

    We have compared the physical properties of two commercial emulsion formulations of the intravenous anaesthetic propofol, (Diprivan, AstraZeneca, and Propofol Intravenous Emulsion, Gensia Sicor Pharmaceuticals) which appear to differ primarily in the additive content and formulation pH. Diprivan contains disodium edetate and has a pH of 7-8.5, while the Gensia product contains sodium metabisulphite and is formulated to a pH of 4.5-6.4. The average zeta potential of Diprivan at pH 8 was -50 mV while that of the Gensia product at pH 4-5 was -40 mV. This information suggests that the physical stability of Propofol Intravenous Emulsion should be lower than that of Diprivan. Three random batches of both products were subjected to a range of stability tests, including shaking, thermal cycling, and freeze-thaw cycling, and the emulsion droplet size distribution was then assessed by dynamic light scattering, light diffraction, and electrical and optical zone sensing. Both emulsions initially showed narrow submicrometre particle size distributions. An increased level of droplets larger than 5 microm could be detected in Propofol Intravenous Emulsion after as little as 4 h shaking (300 strokes/min at room temperature) and visible free oil could be detected after 8-12 h shaking. In contrast, Diprivan showed no increase in the large droplet count after shaking for times up to 16 h. A similar difference in the emulsions was found after one freeze-thaw cycle, with Propofol Intravenous Emulsion exhibiting extensive coalescence, while that of Diprivan was at the limits of detection. We conclude that these two products have different physical stability characteristics, and that this may in part be due to the reduced zeta potential in Propofol Intravenous Emulsion compared to that of Diprivan.

  5. Transport and Retention of Emulsion Droplets in Sandy Porous Media

    NASA Astrophysics Data System (ADS)

    Esahani, S. G.; Muller, K.; Chapra, S. C.; Ramsburg, A.

    2014-12-01

    Emulsions are commonly used as amendments during remediation; yet, the processes controlling the distribution of droplets within the subsurface are not well understood. Given that inadequate spatial and/or temporal delivery of amendments often leads to ineffective treatment, there is a need to better understand emulsion transport. Experiments were conducted to evaluate the transport and retention of emulsion droplets in columns containing Ottawa sands. Breakthrough curves and deposition profiles from these experiments were interrogated using a mathematical model capable of describing attachment, detachment, and straining to begin to elucidate the physical processes controlling delivery. Emulsions were constructed by stabilizing soybean oil droplets within a continuous aqueous phase. Physical properties of the resulting oil-in-water emulsions were favorable for subsurface delivery (nominal properties: 1 g/mL density; 10 cP viscosity; and 1.5 μm droplet d50). Emulsions were introduced to the columns for approximately two pore volumes and followed by an extended flush of background solution. Effluent droplet size distributions did not vary significantly over the course of the experiment and remained similar to those measured for the influent emulsion. Emulsion breakthrough curves exhibited tailing, and deposition profiles were found to be hyper-exponential and unaffected by extended periods of background flow. Depending on emulsion composition and flow characteristics, 10-30% of the injected emulsion was retained on the sand suggesting a non-negligible influence on accessible porosity over the course of the experiment. Experimental results were further interpreted using a droplet transport model that accounts for temporal and spatial variation in porosity due to the retention of the emulsion droplets. At present the model assumes a uniform size distribution of inelastic emulsion droplets which are transported by advection and dispersion, and exchanged with the solid

  6. The development of a super-fine-grained nuclear emulsion

    NASA Astrophysics Data System (ADS)

    Asada, Takashi; Naka, Tatsuhiro; Kuwabara, Ken-ichi; Yoshimoto, Masahiro

    2017-06-01

    A nuclear emulsion with micronized crystals is required for the tracking detection of submicron ionizing particles, which are one of the targets of dark-matter detection and other techniques. We found that a new production method, called the PVA—gelatin mixing method (PGMM), could effectively control crystal size from 20 nm to 50 nm. We called the two types of emulsion produced with the new method the nano imaging tracker and the ultra-nano imaging tracker. Their composition and spatial resolution were measured, and the results indicate that these emulsions detect extremely short tracks.

  7. Rheology and microstructure of magmatic emulsions - Theory and experiments

    NASA Technical Reports Server (NTRS)

    Stein, Daniel J.; Spera, Frank J.

    1992-01-01

    The rheological properties of a dilute mixture of melt plus vapor bubbles, referred to as emulsion, are investigated theoretically and in rheometric experiments on dilute viscous germanium dioxide emulsions at temperatures between 1100 and 1175 C and at 100 kPa pressure in a rotating rod rheometer at shear rates between 0.05/s and 7/s. The results indicate that the emulsions may be described by a power-law constitutive relation when observations cover a sufficient range of shear rates to resolve nonlinear flow.

  8. Rheology and microstructure of magmatic emulsions - Theory and experiments

    NASA Technical Reports Server (NTRS)

    Stein, Daniel J.; Spera, Frank J.

    1992-01-01

    The rheological properties of a dilute mixture of melt plus vapor bubbles, referred to as emulsion, are investigated theoretically and in rheometric experiments on dilute viscous germanium dioxide emulsions at temperatures between 1100 and 1175 C and at 100 kPa pressure in a rotating rod rheometer at shear rates between 0.05/s and 7/s. The results indicate that the emulsions may be described by a power-law constitutive relation when observations cover a sufficient range of shear rates to resolve nonlinear flow.

  9. Superhydrophobic cellulose-based bionanocomposite films from Pickering emulsions

    NASA Astrophysics Data System (ADS)

    Bayer, Ilker S.; Steele, Adam; Martorana, Philip J.; Loth, Eric; Miller, Lance

    2009-04-01

    Inherently superhydrophobic and flexible cellulose-based bionanocomposites were fabricated from solid stabilized (Pickering) emulsions. Emulsions were formed by dispersing cyclosiloxanes in water stabilized by layered silicate particles and were subsequently modified by blending into a zinc oxide nanofluid. The polymer matrix was a blend of cellulose nitrate and fluoroacrylic polymer (Zonyl 8740) precompatibilized in solution. Coatings were spray cast onto aluminum substrates from polymer blends dispersed in modified Pickering emulsions. No postsurface treatment was required to induce superhydrophobicity. Effect of antiseptic additives on bionanocomposite superhydrophobicity is also discussed. Replacing cellulose nitrate with commercial liquid bandage solutions produced identical superhydrophobic coatings.

  10. Data on the physical characterization of oil in water emulsions.

    PubMed

    Zalazar, Aldana L; Gliemmo, María F; Campos, Carmen A

    2016-12-01

    This article contains experimental data and images for the physical characterization of oil in water emulsions. Mentioned data are related to the research article "Effect of stabilizers, oil level and structure on the growth of Zygosaccharomyces bailii and on physical stability of model systems simulating acid sauces" (A.L. Zalazar, M.F. Gliemmo, C.A. Campos, 2016) [1]. Physical characterization of emulsions was performed through the evaluation of Span and Specific Surface Area (SSA) determined by light scattering using a Mastersizer. Furthermore, microscopy images were recorded by confocal scanning laser microscopy (CSLM). The latter are presented to collaborate in the analysis of emulsion microstructure.

  11. Combustion of emulsified fuel droplets under microgravity

    NASA Astrophysics Data System (ADS)

    Okajima, S.; Kanno, H.; Kumagai, S.

    Single-droplet experiments have been conducted under a zero-gravity condition in a freely falling chamber as a fundamental step of study on the spray combustion of hydrocarbon-water emulsified fuels. Such a behavior as the secondary micro-atomization was observed by taking schlieren photographs with a 35-mm movie camera installed on the falling assembly. Under zero gravity the emulsion droplet initiates steam discharge and puffing—that is, a mild atomization—at a time from ignition, but it does not lead to such a micro-explosion or disruption as is experienced under normal gravity. The apparent burning rate constant under zero gravity is about 30% smaller than that under normal gravity. These facts suggest that the internal convection in emulsion droplets plays an important role in causing the micro-explosion.

  12. Biofilm Formation in Microscopic Double Emulsion Droplets

    NASA Astrophysics Data System (ADS)

    Chang, Connie; Weitz, David

    2012-02-01

    In natural, medical, and industrial settings, there exist surface-associated communities of bacteria known as biofilms. These highly structured films are composed of bacterial cells embedded within self-produced extracellular matrix, usually composed of exopolysaccharides, proteins, and nucleic acids; this matrix serves to protect the bacterial community from antibiotics and environmental stressors. Here, we form biofilms encapsulated within monodisperse, microscopically-sized double emulsion droplets using microfluidics. The bacteria self-organize at the inner liquid-liquid droplet interfaces, multiply, and differentiate into extracellular matrix-producing cells, forming manifold three-dimensional shell-within-a-shell structures of biofilms, templated upon the inner core of spherical liquid droplets. By using microfluidics to encapsulate bacterial cells, we have the ability to view individual cells multiplying in microscopically-sized droplets, which allows for high-throughput analysis in studying the genetic program leading to biofilm development, or cell signaling that induces differentiation.

  13. NEWS: Nuclear Emulsions for WIMP Search

    NASA Astrophysics Data System (ADS)

    Di Marco, Natalia; NEWS Collaboration

    2016-05-01

    In the field of direct Dark Matter search a different and promising approach is the directionality: the observation of the incoming apparent direction of WIMPs would in fact provide a new and unambiguous signature. The NEWS project is a very innovative approach for a high sensitivity experiment aiming at the directional detection of WIMPs: the detector is based on a novel emulsion technology called NIT (Nano Imaging Trackers) acting both as target and tracking device. In this paper we illustrate the features of a NIT-based detector and the newly developed read-out systems allowing to reach a spatial resolution of the order of 10 nm. We present the background studies and the experimental design. Finally we report about the time schedule of the experiment and the expected sensitivity for DM searches.

  14. Electromagnetic Shower Reconstruction in Emulsion Cloud Chamber

    NASA Astrophysics Data System (ADS)

    Esposito, L. S.

    2006-04-01

    Atmospheric neutrino data from the MACRO, Soudan II and Super-Kamiokande experiments are consistent with the hypothesis of νμ → ντ oscillations. The OPERA experiment aims to prove definitively this hypothesis with the direct observation of ντ neutrinos in the νμ beam produced at CERN (CNGS). The apparatus, in construction at the Gran Sasso Underground Laboratory, is equipped with electronic detectors and a sensitive target. The target is highly segmented in units, bricks, composed of alternate nuclear emulsion plates and lead sheets. An algorithm to reconstruct electromagnetic showers in a brick was developed. The algorithm was optimized using experimental data from 1, 3 and 6 GeV electron exposures and cross-checked with detailed Monte Carlo simulations. Finally, a neural network was used as electron/pion separator.

  15. Cationic acrylamide emulsion polymer brine thickeners

    SciTech Connect

    Gleason, P.A.; Piccoline, M.A.

    1986-12-02

    This patent describes a thickened, solids free, aqueous drilling and servicing brine having a density of at least 14.4 ppg. comprising (a) an aqueous solution of at least one water-soluble salt of a multivalent metal, and (b) a cationic water-in-oil emulsion polymer of acrylamide or methacrylamide and a cationic monomer selected from the group consisting of a dialkylaminoalkyl acrylamide or methacrylamide, a trialkylaminoalkyl acrylamide or methacrylamide, a trialkylaminoalkyl acrylate or methacrylate, and a dialkyldialkyl ammonium halide. The acrylamide or methacrylamide to cationic monomer molar ratio of the polymer is about 70:30 to 95:5, the polymer having an I.V. in 1.0N KCl of about 1.0 to 7.0 dl/g and being present in a compatible and viscosifying amount; the thickened brine characterized by being substantially non-dilatent.

  16. Emulsion chamber observations and interpretation (HE 3)

    NASA Technical Reports Server (NTRS)

    Shibata, M.

    1986-01-01

    Experimental results from Emulsion Chamber (EC) experiments at mountain altitudes or at higher levels using flying carriers are examined. The physical interest in this field is concentrated on the strong interaction at the very high energy region exceeding the accelerator energy, also on the primary cosmic ray intensity and its chemical composition. Those experiments which observed cosmic ray secondaries gave information on high energy interaction characteristics through the analyses of secondary spectra, gamma-hadron families and C-jets (direct observation of the particle production occuring at the carbon target). Problems of scaling violation in fragmentation region, interaction cross section, transverse momentum of produced secondaries, and some peculiar features of exotic events are discussed.

  17. Phytonadione Content in Branded Intravenous Fat Emulsions.

    PubMed

    Forchielli, Maria Luisa; Conti, Matteo; Motta, Roberto; Puggioli, Cristina; Bersani, Germana

    2017-03-01

    Intravenous fat emulsions (IVFE) with different fatty acid compositions contain vitamin E as a by-product of vegetable and animal oil during the refining processes. Likewise, other lipid-soluble vitamins may be present in IVFE. No data, however, exist about phytonadione (vitamin K1) concentration in IVFE information leaflets. Therefore, our aim was to evaluate the phytonadione content in different IVFE. Analyses were carried out in triplicate on 6 branded IVFE as follows: 30% soybean oil (100%), 20% olive-soybean oil (80%-20%), 20% soybean-medium-chain triglycerides (MCT) coconut oil (50%-50%), 20% soybean-olive-MCT-fish oil (30%-25%-30%-15%), 20% soybean-MCT-fish oil (40%-50%-10%), and 10% pure fish oil (100%). Phytonadione was analyzed and quantified by a quali-quantitative liquid chromatography-mass spectrometry (LC-MS) method after its extraction from the IVFE by an isopropyl alcohol-hexane mixture, reverse phase-liquid chromatography, and specific multiple-reaction monitoring for phytonadione and vitamin d3 (as internal standard). This method was validated through specificity, linearity, and accuracy. Average vitamin K1 content was 500, 100, 90, 100, 95, and 70 µg/L in soybean oil, olive-soybean oil, soybean-MCT coconut oil, soybean-olive-MCT-fish oil, soybean-MCT-fish oil, and pure fish oil intravenous lipid emulsions (ILEs), respectively. The analytical LC-MS method was extremely effective in terms of specificity, linearity ( r = 0.99), and accuracy (coefficient of variation <5%). Phytonadione is present in IVFE, and its intake varies according to IVFE type and the volume administered. It can contribute to daily requirements and become clinically relevant when simultaneously infused with multivitamins during long-term parenteral nutrition. LC-MS seems adequate in assessing vitamin K1 intake in IVFE.

  18. Physical chemistry of highly concentrated emulsions.

    PubMed

    Foudazi, Reza; Qavi, Sahar; Masalova, Irina; Malkin, Alexander Ya

    2015-06-01

    This review explores the physics underlying the rheology of highly concentrated emulsions (HCEs) to determine the relationship between elasticity and HCE stability, and to consider whether it is possible to describe all physicochemical properties of HCEs on the basis of a unique physical approach. We define HCEs as emulsions with a volume fraction above the maximum closest packing fraction of monodisperse spheres, φm=0.74, even if droplets are not of polyhedron shape. The solid-like rheological behavior of HCEs is characterized by yield stress and elasticity, properties which depend on droplet polydispersity and which are affected by caging at volume fractions about the jamming concentration, φj. A bimodal size distribution in HCEs diminishes caging and facilitates droplet movement, resulting in HCEs with negligible yield stress and no plateau in storage modulus. Thermodynamic forces automatically move HCEs toward the lowest free energy state, but since interdroplet forces create local minimums - points beyond which free energy temporarily increases before it reaches the global minimum of the system - the free energy of HCEs will settle at a local minimum unless additional energy is added. Several attempts have been undertaken to predict the elasticity of HCEs. In many cases, the elastic modulus of HCEs is higher than the one predicted from classical models, which only take into account spatial repulsion (or simply interfacial energy). Improved models based on free energy calculation should be developed to consider the disjoining pressure and interfacial rheology in addition to spatial repulsion. The disjoining pressure and interfacial viscoelasticity, which result in the deviation of elasticity from the classical model, can be regarded as parameters for quantifying the stability of HCEs. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. The effects of emulsifying agents on disposition of lipid-soluble drugs included in fat emulsion.

    PubMed

    Suzuki, Yasuyuki; Masumitsu, Yasushi; Okudaira, Kazuho; Hayashi, Masahiro

    2004-02-01

    The uses for drug delivery systems of two soybean oil fat emulsions prepared with an emulsifying agent, phosphatidyl choline (PC) or Pluronic F-127 (PLU), were examined comparatively in vivo and in vitro. In the presence of lipoprotein lipase (LPL) in vitro, the mean particle size of the PLU emulsion changed less than that of the PC emulsion. The production of non-esterified fatty acid (NEFA) from the PLU emulsion in the presence of LPL was smaller than that from the PC emulsion. These in vitro results indicate that the PLU emulsion is more stable than the PC emulsion. Plasma NEFA concentration following intravenous administration of the emulsions decreased with time for the PC emulsion, but was kept lower and constant for the PLU emulsion, supporting the in vitro stability data. The order of plasma cyclosporine A (CsA) concentration following intravenous administration in the above two emulsions and the mixed solution of polyethylene glycol 400 (PEG) and dimethylamide (DMA) in rats was PLU emulsion>PC emulsion>PEG/DMA solution. The plasma concentration was maintained higher and tissue distribution lower for the PLU emulsion than for other formulations. The uptake of oil violet (OV) into the rat parenchymal cells from the PLU emulsion was approximately half that from the PC emulsion, but the uptake into the Kupffer cells was almost equal in both emulsions. In conclusion, these emulsifying agents can control plasma elimination and tissue distribution of lipophilic drugs included in the emulsion. The use of the emulsion formulation makes it possible to avoid side effects through the reduction of drug uptake into non-targeted tissues.

  20. Electrical surface characteristics of a technical T emulsion

    SciTech Connect

    Baran, A.A.; Tarovskii, A.A.; Men, S.K.

    1988-07-01

    Technical emulsions are removed from the waste water of industrial plants by flocculation and coagulation methods. These processes can be regulated by information on the structure of the electric double layers of the emulsions and the changes which occur when reagents are added. In this paper the structure of the electric double layer of a technical T emulsion was studied by the methods of potentiometric titration, conductometry, and microelectrophoresis. A considerably higher value of the surface charge in comparison to the electrokinetic value has been established over a broad range of concentrations of 1-1, 2-1/sub 2/, and 3-1/sub 3/ electrolytes. Reversal of the charge of the droplets of the emulsion in the presence of AlCl/sub 3/ has been discovered.

  1. Physicochemical analysis in the evaluation of reconstituted dry emulsion tablets.

    PubMed

    Niczinger, Noémi Anna; Kállai-Szabó, Barnabás; Lengyel, Miléna; Gordon, Péter; Klebovich, Imre; Antal, István

    2017-02-05

    The aim of this study was to characterize the formation of emulsions by droplet size analysis and turbidimetry during reconstitution from a solid dosage form, namely from dry emulsion systems, which carry an oil phase for poorly soluble active ingredients. For the dry emulsion systems tablets were prepared either from oil-in-water systems using a freeze-drying process or through direct compression containing the same oil and excipients. The ratios of oil to emulgents and oil to xanthan gum were equal in both methods. In the preparation methods applied, mannitol, erythritol and lactose were used as excipients and mannitol was found to be the most effective excipient based on droplet size reconstitution, turbidimetry and physical properties. Quality control involved testing the physical properties of tablets and characterizing the reconstituted emulsions. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Fluorescent-magnetic Janus particles prepared via seed emulsion polymerization.

    PubMed

    Kaewsaneha, Chariya; Bitar, Ahmad; Tangboriboonrat, Pramuan; Polpanich, Duangporn; Elaissari, Abdelhamid

    2014-06-15

    Anisotropic polymeric colloidal or Janus particles possessing simultaneous magnetic and fluorescent properties were successfully prepared via the swelling-diffusion or the in situ emulsion polymerization method. In the swelling-diffusion process, magnetic emulsions (an organic ferrofluid dispersed in aqueous medium) were synthesized and used for seeds of submicron magnetic Janus particles. After swelling the anisotropic particles obtained by 1-pyrene-carboxaldehyde fluorescent dye dissolved in tetrahydrofuran, well-defined fluorescent-magnetic Janus particles were produced. In the in situ emulsion polymerization, styrene monomer mixed with fluorescent dye monomers, i.e., 1-pyrenylmethyl methacrylate (PyMMA) or fluorescein dimethacrylate (FDMA), and an oil-soluble initiator (2,2'-azobis(2-isobutyronitrile)) were emulsified in the presence of magnetic seed emulsions. The confocal microscopic images showed the fluorescent-magnetic Janus particles with high fluorescent intensity when a fluorescent crosslinker monomer FDMA was employed.

  3. Image Charge Effects on the Formation of Pickering Emulsions.

    PubMed

    Wang, Hongzhi; Singh, Virendra; Behrens, Sven Holger

    2012-10-18

    Vigorous mixing of an aqueous particle dispersion with oil usually produces a particle-stabilized emulsion (a "Pickering emulsion"), the longevity of which depends on the particles' wetting properties. A known exception occurs when particles fail to adsorb to the oil-water interface created during mixing because of a strong repulsion between charges on the particle surface and similar charges on the oil-water interface; in this case, no Pickering emulsion is formed. Here, we present experimental evidence that the rarely considered electrostatic image force can cause a much bigger hindrance to particle adsorption and prevent the formation of Pickering emulsions even when the particle interaction with the interface charge is attractive. A simple theoretical estimate confirms the observed magnitude of this effect and points at an important limitation of Pickering emulsification, a technology with widespread industrial applications and increasing popularity in materials research and development.

  4. Aging mechanisms of perfluorocarbon emulsions using image analysis.

    PubMed

    Freire, Mara G; Dias, Ana M A; Coelho, Maria A Z; Coutinho, João A P; Marrucho, Isabel M

    2005-06-01

    The aging mechanisms of perfluorocarbon emulsions were investigated using image analysis. Oil-in-water emulsions of two perfluorocarbons, n-perfluorohexane and perfluorodecalin, were prepared with three emulsifiers, Lecithin, Span 20, and Pluronic F-68. The effect of the temperature and the replacement of water by an aqueous phase consisting of a microbial culture medium were also studied. The emulsions were prepared by sonication and their stability was followed through analysis of the evolution of mean droplet size. The results indicate that the stability of perfluorocarbon in water emulsions depends on all the parameters investigated and that two aging mechanisms, coalescence and molecular diffusion, may take place. Analysis of the evolution of the mean droplet size during long time periods indicate that coalescence is more common than previously reported for these systems and seems to be favored by a temperature increase.

  5. Stability and demulsification of emulsions stabilized by asphaltenes or resins.

    PubMed

    Xia, Lixin; Lu, Shiwei; Cao, Guoying

    2004-03-15

    Experimental data are presented to show the influence of asphaltenes and resins on the stability and demulsification of emulsions. It was found that emulsion stability was related to the concentrations of the asphaltene and resin in the crude oil, and the state of dispersion of the asphaltenes and resins (molecular vs colloidal) was critical to the strength or rigidity of interfacial films and hence to the stability of the emulsions. Based on this research, a possible emulsion minimization approach in refineries, which can be implemented utilizing microwave radiation, is also suggested. Comparing with conventional heating, microwave radiation can enhance the demulsification rate by an order of magnitude. The demulsification efficiency reaches 100% in a very short time under microwave radiation.

  6. Dehydration of oil waste emulsions by means of flocculants

    SciTech Connect

    Gandurina, L.V.; Butseva, L.N.; Shtondina, V.S.

    1995-05-01

    Oil waste emulsions are formed in the course of pumping petroleum crudes and products and are collected from the surfaces of equipment in recirculating water systems and wastewater disposal facilities (oil separators, sand traps, oil traps, holding pits for accidental spills, settlers, ponds, sludge accumulators, and so on). Emulsions are also obtained in the course of cleaning equipment in crude oil desalting and dehydration units. Such emulsions are stable, structurized systems that are very resistant to dewatering by heating and settling in separator tanks. In order to break stabilized emulsions, i.e., in order to ensure complete coalescence of drops when they collide, it is not sufficient to increase the forces of mutual attraction of drops at the moment of collision; in addition, the protective shell must be either destroyed or weakened. Demulsifying agents, or surfactants, will displace the stabilizers. This report is concerned with demulsifier efficiency.

  7. Pickering emulsions stabilized by paraffin wax and Laponite clay particles.

    PubMed

    Li, Caifu; Liu, Qian; Mei, Zhen; Wang, Jun; Xu, Jian; Sun, Dejun

    2009-08-01

    Emulsions containing wax in dispersed droplets stabilized by disc-like Laponite clay particles are prepared. Properties of the emulsions prepared at different temperatures are examined using stability, microscopy and droplet-size analysis. At low temperature, the wax crystals in the oil droplets can protrude through the interface, leading to droplet coalescence. But at higher temperatures, the droplet size decreases with wax concentration. Considering the viscosity of the oil phase and the interfacial tension, we conclude that the wax is liquid-like during the high temperature emulsification process, but during cooling wax crystals appear around the oil/water interface and stabilize the droplets. The oil/water ratio has minimal effect on the emulsions between ratios of 3:7 and 7:3. The Laponite is believed to stabilize the emulsions by increasing the viscosity of the continuous phase and also by adsorbing at the oil/water interface, thus providing a physical barrier to coalescence.

  8. Improving the detection efficiency in nuclear emulsion trackers

    NASA Astrophysics Data System (ADS)

    Alexandrov, A.; Bozza, C.; Buonaura, A.; Consiglio, L.; D`Ambrosio, N.; Lellis, G. De; De Serio, M.; Di Capua, F.; Di Crescenzo, A.; Di Ferdinando, D.; Di Marco, N.; Fini, R. A.; Galati, G.; Giacomelli, G.; Grella, G.; Hosseini, B.; Kose, U.; Lauria, A.; Longhin, A.; Mandrioli, G.; Mauri, N.; Medinaceli, E.; Montesi, M. C.; Paoloni, A.; Pastore, A.; Patrizii, L.; Pozzato, M.; Pupilli, F.; Rescigno, R.; Roda, M.; Rosa, G.; Schembri, A.; Shchedrina, T.; Simone, S.; Sioli, M.; Sirignano, C.; Sirri, G.; Spinetti, M.; Stellacci, S. M.; Tenti, M.; Tioukov, V.

    2015-03-01

    Nuclear emulsion films are a tracking device with unique space resolution. Their use in nowadays large-scale experiments relies on the availability of automated microscope operating at very high speed. In this paper we describe the features and the latest improvements of the European Scanning System, a last-generation automated microscope for emulsion scanning. In particular, we present a new method for the recovery of tracking inefficiencies. Stacks of double coated emulsion films have been exposed to a 10 GeV/c pion beam. Efficiencies as high as 98% have been achieved for minimum ionising particle tracks perpendicular to the emulsion films and of 93% for tracks with tan(θ) ≃ 0.8.

  9. Emulsion Polymerization of Butyl Acrylate: Spin Trapping and EPR Study

    NASA Technical Reports Server (NTRS)

    Kim, S.; Westmoreland, D.

    1994-01-01

    The propagating radical in the emulsion polymerization reaction of butyl acrylate was detected by Electron Paramagnetic Resonance spectroscopy using two spin trapping agents, 2-methyl-2nitrosopropane and alpha -N-tert-butylnitrone.

  10. Biocompatible surfactants for water-in-fluorocarbon emulsions.

    PubMed

    Holtze, C; Rowat, A C; Agresti, J J; Hutchison, J B; Angilè, F E; Schmitz, C H J; Köster, S; Duan, H; Humphry, K J; Scanga, R A; Johnson, J S; Pisignano, D; Weitz, D A

    2008-10-01

    Drops of water-in-fluorocarbon emulsions have great potential for compartmentalizing both in vitro and in vivo biological systems; however, surfactants to stabilize such emulsions are scarce. Here we present a novel class of fluorosurfactants that we synthesize by coupling oligomeric perfluorinated polyethers (PFPE) with polyethyleneglycol (PEG). We demonstrate that these block copolymer surfactants stabilize water-in-fluorocarbon oil emulsions during all necessary steps of a drop-based experiment including drop formation, incubation, and reinjection into a second microfluidic device. Furthermore, we show that aqueous drops stabilized with these surfactants can be used for in vitro translation (IVT), as well as encapsulation and incubation of single cells. The compatability of this emulsion system with both biological systems and polydimethylsiloxane (PDMS) microfluidic devices makes these surfactants ideal for a broad range of high-throughput, drop-based applications.

  11. Reduced Fat Food Emulsions: Physicochemical, Sensory, and Biological Aspects.

    PubMed

    Chung, Cheryl; Smith, Gordon; Degner, Brian; McClements, David Julian

    2016-01-01

    Fat plays multiple important roles in imparting desirable sensory attributes to emulsion-based food products, such as sauces, dressings, soups, beverages, and desserts. However, there is concern that over consumption of fats leads to increased incidences of chronic diseases, such as obesity, coronary heart disease, and diabetes. Consequently, there is a need to develop reduced fat products with desirable sensory profiles that match those of their full-fat counterparts. The successful design of high quality reduced-fat products requires an understanding of the many roles that fat plays in determining the sensory attributes of food emulsions, and of appropriate strategies to replace some or all of these attributes. This paper reviews our current understanding of the influence of fat on the physicochemical and physiological attributes of food emulsions, and highlights some of the main approaches that can be used to create high quality emulsion-based food products with reduced fat contents.

  12. Emulsion Polymerization of Butyl Acrylate: Spin Trapping and EPR Study

    NASA Technical Reports Server (NTRS)

    Kim, S.; Westmoreland, D.

    1994-01-01

    The propagating radical in the emulsion polymerization reaction of butyl acrylate was detected by Electron Paramagnetic Resonance spectroscopy using two spin trapping agents, 2-methyl-2nitrosopropane and alpha -N-tert-butylnitrone.

  13. Tocopherol and tocotrienol homologs in parenteral lipid emulsions

    PubMed Central

    Xu, Zhidong; Harvey, Kevin A; Pavlina, Thomas M; Zaloga, Gary P; Siddiqui, Rafat A

    2015-01-01

    Parenteral lipid emulsions, which are made of oils from plant and fish sources, contain different types of tocopherols and tocotrienols (vitamin E homologs). The amount and types of vitamin E homologs in various lipid emulsions vary considerably and are not completely known. The objective of this analysis was to develop a quantitative method to determine levels of all vitamin E homologs in various lipid emulsions. An HPLC system was used to measure vitamin E homologs using a Pinnacle DB Silica normal phase column and an isocratic, n-hexane:1,4 dioxane (98:2) mobile phase. An optimized protocol was used to report vitamin E homolog concentrations in soybean oil-based (Intralipid®, Ivelip®, Lipofundin® N, Liposyn® III, and Liposyn® II), medium- and long-chain fatty acid-based (Lipofundin®, MCT and Structolipid®), olive oil-based (ClinOleic®), and fish oil-based (Omegaven®) and mixture of these oils-based (SMOFlipid®, Lipidem®) commercial parenteral lipid emulsions. Total content of all vitamin E homologs varied greatly between different emulsions, ranging from 57.9 to 383.9 µg/mL. Tocopherols (α, β, γ, δ) were the predominant vitamin E homologs for all emulsions, with tocotrienol content < 0.3%. In all of the soybean emulsions, except for Lipofundin® N, the predominant vitamin E homolog was γ-tocopherol, which ranged from 57–156 µg/mL. ClinOleic® predominantly contained α-tocopherol (32 µg/mL), whereas α-tocopherol content in Omegaven® was higher than most of the other lipid emulsions (230 µg/mL). Practical applications The information on the types and quantity of vitamin E homologs in various lipid emulsions will be extremely useful to physicians and healthcare personnel in selecting appropriate lipid emulsions that are exclusively used in patients with inadequate gastrointestinal function, including hospitalized and critically ill patients. Some emulsions may require vitamin E supplementation in order to meet minimal human requirements

  14. Tunable Pickering emulsions with polymer-grafted lignin nanoparticles (PGLNs).

    PubMed

    Silmore, Kevin S; Gupta, Chetali; Washburn, Newell R

    2016-03-15

    Lignin is an abundant biopolymer that has native interfacial functions but aggregates strongly in aqueous media. Polyacrylamide was grafted onto kraft lignin nanoparticles using reversible addition-fragmentation chain transfer (RAFT) chemistry to form polymer-grafted lignin nanoparticles (PGLNs) that tune aggregation strength while retaining interfacial activities in forming Pickering emulsions. Polymer graft density on the particle surface, ionic strength, and initial water and cyclohexane volume fractions were varied and found to have profound effects on emulsion characteristics, including emulsion volume fraction, droplet size, and particle interfacial concentration that were attributed to changes in lignin aggregation and hydrophobic interactions. In particular, salt concentration was found to have a significant effect on aggregation, zeta potential, and interfacial tension, which was attributed to changes in solubility of both the kraft lignin and the polyacrylamide grafts. Dynamic light scattering, UV-vis spectroscopy, optical microscopy, and tensiometry were used to quantify emulsion properties and nanoparticle behavior. Under all conditions, the emulsions exhibited relatively fast creaming but were stable against coalescence and Ostwald ripening for a period of months. All emulsions were also oil-in-water (o/w) emulsions, as predicted by the Bancroft rule, and no catastrophic phase inversions were observed for any nanoparticle compositions. We conclude that lower grafting density of polyacrylamide on a lignin core resulted in high levels of interfacial activity, as characterized by higher concentration at the water-cyclohexane interface with a corresponding decrease in interfacial tension. These results indicate that the interfacial properties of polymer-grafted lignin nanoparticles are primarily due to the native hydrophobic interactions of the lignin core. These results suggest that the forces that drive aggregation are also correlated with interfacial

  15. BslA-stabilized emulsion droplets with designed microstructure

    PubMed Central

    2017-01-01

    Emulsions are a central component of many modern formulations in food, pharmaceuticals, agrichemicals and personal care products. The droplets in these formulations are limited to being spherical as a consequence of the interfacial tension between the dispersed phase and continuous phase. The ability to control emulsion droplet morphology and stabilize non-spherical droplets would enable the modification of emulsion properties such as stability, substrate binding, delivery rate and rheology. One way of controlling droplet microstructure is to apply an elastic film around the droplet to prevent it from relaxing into a sphere. We have previously shown that BslA, an interfacial protein produced by the bacterial genus Bacillus, forms an elastic film when exposed to an oil- or air–water interface. Here, we highlight BslA's ability to stabilize anisotropic emulsion droplets. First, we show that BslA is capable of arresting dynamic emulsification processes leading to emulsions with variable morphologies depending on the conditions and emulsification technique applied. We then show that frozen emulsion droplets can be manipulated to induce partial coalescence. The structure of the partially coalesced droplets is retained after melting, but only when there is sufficient free BslA in the continuous phase. That the fidelity of replication can be tuned by adjusting the amount of free BslA in solution suggests that freezing BslA-stabilized droplets disrupts the BslA film. Finally, we use BslA's ability to preserve emulsion droplet structural integrity throughout the melting process to design emulsion droplets with a chosen shape and size. PMID:28630671

  16. Formation and stability of polychlorinated biphenyl Pickering emulsions.

    PubMed

    Roy-Perreault, Andréanne; Kueper, Bernard H; Rawson, Jim

    2005-03-01

    An emulsion stabilized by colloidal suspensions of finely divided solids is known as a Pickering emulsion. The potential for polychlorinated biphenyls (PCBs) to form Pickering emulsions ex situ when in contact with powdered solids, such as clays and metal oxides, is investigated here. Bentonite, iron oxide and magnesium oxide dispersions proved to be robust Pickering emulsion stabilizers, whereas manganese oxide dispersions were not. Batch experiments revealed that emulsions can be formed using a moderately low energy input and can be stabilized with solid concentrations as low as 0.5 wt.%. For the base conditions (volumetric oil fraction (phi(oil))=30 vol.%; solid concentration (chi)=2 wt.%), the formed emulsions were indefinitely stable and the initial average droplet diameters varied from 80 to 258 mum, depending on the solid used in the colloidal dispersion. The average droplet size varied at early time, but for most conditions stabilized to a steady-state value 1 week after preparation. The effect of Ostwald ripening was limited. At greater than 0.5 wt.% concentration, the efficiency of the solid dispersion as a stabilizer was dependant on the volumetric oil fraction but not on the solid concentration. Generally, systems with volumetric oil fractions outside of the 20-70 vol.% range were unstable. The emulsions' droplet stability, average droplet size and size distribution were observed to vary as a function of the amount of energy provided to the system, the volumetric oil fraction, and the concentration of the solid in the aqueous dispersion. It is hypothesized that drilling through fractured rock in the immediate vicinity of dense, non-aqueous phase liquid (DNAPL) PCBs may provide both the energy and solid material necessary to form Pickering emulsions.

  17. Rheological properties of highly concentrated protein-stabilized emulsions.

    PubMed

    Dimitrova, Tatiana D; Leal-Calderon, Fernando

    2004-05-20

    We prepared concentrated quasi monodisperse hexadecane-in-water emulsions stabilized by various proteins and investigated their rheological properties. Some protein-stabilized emulsions possess remarkably high elasticity and at the same time they are considerably fragile--they exhibit coalescence at yield strain and practically do not flow. The elastic storage modulus G' and the loss modulus G" of the emulsions were determined for different oil volume fractions above the random close packing. Surprisingly, the dimensionless elastic moduli G'/(sigma/a), sigma being the interfacial tension, and a being the mean drop radius, obtained for emulsions stabilized by different proteins do not collapse on a single master curve. They are almost always substantially higher than the corresponding values obtained for equivalent Sodium Dodecyl Sulfate (SDS)-stabilized emulsions. The unusually high elasticity cannot be attributed to a specificity of the continuous phase, because the osmotic equation of state of our emulsions is found identical to the one obtained for samples stabilized by classical surfactants. In parallel, we mimicked the thin films that separate the droplets in the concentrated emulsion and found that the protein adsorption layers contain a substantial number of sticky surface aggregates. These severely obstruct local rearrangements of individual drops in respect to their neighbors which leads to coalescence at yield strain. Furthermore, we found that G'/(sigma/a) is correlated (for a given oil volume fraction) to the dilatational elastic modulus, of the protein layer adsorbed on the droplets. The intrinsic elasticity of the protein layers, together with the blocked local rearrangements are considered as the main factors determining the unusual bulk elasticity of the studied emulsions.

  18. Instant polysaccharide-based emulsions: impact of microstructure on lipolysis.

    PubMed

    Torcello-Gómez, Amelia; Foster, Timothy J

    2017-06-21

    The development of emulsion-based products through optimisation of ingredients, reduction in energy-input during manufacture, while fulfilling healthy attributes, are major objectives within the food industry. Instant emulsions can meet these features, but comprehensive studies are necessary to investigate the effect of the initial formulation on the final microstructure and, in turn, on the in vitro lipolysis, comprising the double aim of this work. The instant emulsion is formed within 1.5-3 min after pouring the aqueous phase into the oil phase which contains a mixture of emulsifier (Tween 20), swelling particles (Sephadex) and thickeners (hydroxypropylmethylcellulose, HPMC, and guar gum, GG) under mild shearing (180 rpm). The creation of oil-in-water emulsions is monitored in situ by viscosity analysis, the final microstructure visualised by microscopy and the release of free fatty acids under simulated intestinal conditions quantified by titration. Increasing the concentration and molecular weight (Mw) of GG leads to smaller emulsion droplets due to increased bulk viscosity upon shearing. This droplet size reduction is magnified when increasing the Mw of HPMC or swelling capacity of viscosifying particles. In addition, in the absence of the emulsifier Tween 20, the sole use of high-Mw HPMC is effective in emulsification due to combined increased bulk viscosity and interfacial activity. Hence, optimisation of the ingredient choice and usage level is possible when designing microstructures. Finally, emulsions with larger droplet size (>20 μm) display a slower rate and lower extent of lipolysis, while finer emulsions (droplet size ≤20 μm) exhibit maximum rate and extent profiles. This correlates with the extent of emulsion destabilisation observed under intestinal conditions.

  19. Generation of colloidal granules and capsules from double emulsion drops

    NASA Astrophysics Data System (ADS)

    Hess, Kathryn S.

    Assemblies of colloidal particles are extensively used in ceramic processing, pharmaceuticals, inks and coatings. In this project, the aim was to develop a new technique to fabricate monodispersed colloidal assemblies. The use of microfluidic devices and emulsion processing allows for the fabrication of complex materials that can be used in a variety of applications. A microfluidic device is used to create monodispersed water/oil/water (w/o/w) double emulsions with interior droplets of colloidal silica suspension ranging in size from tens to hundreds of microns. By tailoring the osmotic pressure using glycerol as a solute in the continuous and inner phases of the emulsion, we can control the final volume size of the monodispersed silica colloidal crystals that form in the inner droplets of the double emulsion. Modifying the ionic strength in the colloidal dispersion can be used to affect the particle-particle interactions and crystal formation of the final colloidal particle. This w/o/w technique has been used with other systems of metal oxide colloids and cellulose nanocrystals. Encapsulation of the colloidal suspension in a polymer shell for the generation of ceramic-polymer core-shell particles has also been developed. These core-shell particles have spawned new research in the field of locally resonant acoustic metamaterials. Systems and chemistries for creating cellulose hydrogels within the double emulsions have also been researched. Water in oil single emulsions and double emulsions have been used to create cellulose hydrogel spheres in the sub-100 micron diameter range. Oil/water/oil double emulsions allow us to create stable cellulose capsules. The addition of a second hydrogel polymer, such as acrylate or alginate, further strengthens the cellulose gel network and can also be processed into capsules and particles using the microfluidic device. This work could have promising applications in acoustic metamaterials, personal care products, pharmaceuticals

  20. Enhanced reductive dechlorination in columns treated with edible oil emulsion

    NASA Astrophysics Data System (ADS)

    Long, Cameron M.; Borden, Robert C.

    2006-09-01

    The effect of edible oil emulsion treatment on enhanced reductive dechlorination was evaluated in a 14 month laboratory column study. Experimental treatments included: (1) emulsified soybean oil and dilute HCl to inhibit biological activity; (2) emulsified oil only; (3) emulsified oil and anaerobic digester sludge; and (4) continuously feeding soluble substrate. A single application of emulsified oil was effective in generating strongly reducing, anaerobic conditions for over 14 months. PCE was rapidly reduced to cis-DCE in all three live columns. Bioaugmentation with a halorespiring enrichment culture resulted in complete dechlorination of PCE to ethene in the soluble substrate column (yeast extract and lactate). However, an additional treatment with a pulse of yeast extract and bioaugmentation culture was required to stimulate complete dechlorination in the emulsion treated columns. Once the dechlorinating population was established, the emulsion only column degraded PCE from 90-120 μM to below detection with concurrent ethene production in a 33 day contact time. The lower biodegradation rates in the emulsion treated columns compared to the soluble substrate column suggest that emulsified oil barriers may require a somewhat longer contact time for effective treatment. In the HCl inhibited column, partitioning of PCE to the retained oil substantially delayed PCE breakthrough. However, reduction of PCE to more soluble degradation products ( cis-DCE, VC and ethene) greatly reduced the impact of oil-water partitioning in live columns. There was only a small decline in the hydraulic conductivity ( K) of column #1 (low pH + emulsion, Kfinal/ Kinitial = 0.57) and column #2 (live + emulsion, Kfinal/ Kinitial = 0.73) indicating emulsion injection did not result in appreciable clogging of the clayey sand. However, K loss was greater in column #3 (sludge +emulsion, Kfinal/ Kinitial = 0.12) and column #4 (soluble substrate, Kfinal/ Kinitial = 0.03) indicating clogging due

  1. Preparation of Pickering Double Emulsions Using Block Copolymer Worms

    PubMed Central

    2015-01-01

    The rational formulation of Pickering double emulsions is described using a judicious combination of hydrophilic and hydrophobic block copolymer worms as highly anisotropic emulsifiers. More specifically, RAFT dispersion polymerization was utilized to prepare poly(lauryl methacrylate)–poly(benzyl methacrylate) worms at 20% w/w solids in n-dodecane and poly(glycerol monomethacrylate)–poly(2-hydroxypropyl methacrylate)–poly(benzyl methacrylate) worms at 13% w/w solids in water by polymerization-induced self-assembly (PISA). Water-in-oil-in-water (w/o/w) double emulsions can be readily prepared with mean droplet diameters ranging from 30 to 80 μm using a two-stage approach. First, a w/o precursor emulsion comprising 25 μm aqueous droplets is prepared using the hydrophobic worms, followed by encapsulation within oil droplets stabilized by the hydrophilic worms. The double emulsion droplet diameter and number of encapsulated water droplets can be readily varied by adjusting the stirring rate employed during the second stage. For each stage, the droplet volume fraction is relatively high at 0.50. The double emulsion nature of the final formulation was confirmed by optical and fluorescence microscopy studies. Such double emulsions are highly stable to coalescence, with little or no change in droplet diameter being detected over storage at 20 °C for 10 weeks as judged by laser diffraction. Preliminary experiments indicate that the complementary o/w/o emulsions can also be prepared using the same pair of worms by changing the order of homogenization, although somewhat lower droplet volume fractions were required in this case. Finally, we demonstrate that triple and even quadruple emulsions can be formulated using these new highly anisotropic Pickering emulsifiers. PMID:25834923

  2. Computed tomography-guided screening of surfactant effect on blood circulation time of emulsions: application to the design of an emulsion formulation for paclitaxel.

    PubMed

    Lee, Eun-Hye; Hong, Soon-Seok; Kim, So Hee; Lee, Mi-Kyung; Lim, Joon Seok; Lim, Soo-Jeong

    2014-08-01

    In an effort to apply the imaging techniques currently used in disease diagnosis for monitoring the pharmacokinetics and biodisposition of particulate drug carriers, we sought to use computed tomography (CT) scanning methodology to investigate the impact of surfactant on the blood residence time of emulsions. We prepared the iodinated oil Lipiodol emulsions with different compositions of surfactants and investigated the impact of surfactant on the blood residence time of emulsions by CT scanning. The blood circulation time of emulsions was prolonged by including Tween 80 or DSPE-PEG (polyethylene glycol 2000) in emulsions. Tween 80 was less effective than DSPE-PEG in terms of prolongation effect, but the blood circulating time of emulsions was prolonged in a Tween 80 content-dependent manner. As a proof-of-concept demonstration of the usefulness of CT-guided screening in the process of formulating drugs that need to be loaded in emulsions, paclitaxel was loaded in emulsions prepared with 87 or 65% Tween 80-containing surfactant mixtures. A pharmacokinetics study showed that paclitaxel loaded in 87% Tween 80 emulsions circulated longer in the bloodstream compared to those in 65% Tween 80 emulsions, as predicted by CT imaging. CT-visible, Lipiodol emulsions enabled the simple evaluation of surfactant composition effects on the biodisposition of emulsions.

  3. Synthetic Fuel

    SciTech Connect

    Idaho National Laboratory - Steve Herring, Jim O'Brien, Carl Stoots

    2008-03-26

    Two global energy priorities today are finding environmentally friendly alternatives to fossil fuels, and reducing greenhouse gass Two global energy priorities today are finding environmentally friendly alternatives to fossil fuels, and reducing greenhous

  4. Synthetic Fuel

    ScienceCinema

    Idaho National Laboratory - Steve Herring, Jim O'Brien, Carl Stoots

    2016-07-12

    Two global energy priorities today are finding environmentally friendly alternatives to fossil fuels, and reducing greenhouse gass Two global energy priorities today are finding environmentally friendly alternatives to fossil fuels, and reducing greenhous

  5. Fuel cells

    NASA Astrophysics Data System (ADS)

    1984-12-01

    The US Department of Energy (DOE), Office of Fossil Energy, has supported and managed a fuel cell research and development (R and D) program since 1976. Responsibility for implementing DOE's fuel cell program, which includes activities related to both fuel cells and fuel cell systems, has been assigned to the Morgantown Energy Technology Center (METC) in Morgantown, West Virginia. The total United States effort of the private and public sectors in developing fuel cell technology is referred to as the National Fuel Cell Program (NFCP). The goal of the NFCP is to develop fuel cell power plants for base-load and dispersed electric utility systems, industrial cogeneration, and on-site applications. To achieve this goal, the fuel cell developers, electric and gas utilities, research institutes, and Government agencies are working together. Four organized groups are coordinating the diversified activities of the NFCP. The status of the overall program is reviewed in detail.

  6. EVALUATION OF BIOMSS AND COAL SLURRIES AS FUEL-LEAN REBURN FUELS

    SciTech Connect

    Vijay K. Sethi

    2006-11-06

    Breen Energy Solutions (BES) and Western Research Institute (WRI) tested biomass and coal slurries and other carbonaceous substances such as fuel oil/water emulsions as NO{sub x} reburn fuel in the combustion test facility (CTF). The overall goal of the project was to determine the NO{sub x} reduction potential of various biomass and coal reburn fuels, and to identify the optimum conditions for NO{sub x} control. Specific objectives were to inject biomass, biosolids, coal, biomass/coal, and biosolids/coal slurries into the upper furnace of CTF and determine the resulting NO{sub x} reductions and CO emissions, to identify optimum injection rates and injection locations for these reburn fuels, and to install a reaction zone stabilizer device in CTF and determine its effectiveness in reducing CO and further reducing NO{sub x}. Combustion tests achieved 40% to 60% NO{sub x} reductions with 10% to 20% reburn fuel heat input. The project has demonstrated the technical feasibility of in-situ gasification of slurries including pulverized coal and 75% pulverized coal/25% biosolids by weight, and the ability to utilize the gasification products as NO{sub x} reburn fuel. This work also demonstrated that pulverized coal/water slurries can be successfully gasified and used as reburn fuels, and there is no need for use of micronized coal. Very good burnout of the pulverized coal slurry was demonstrated in this work. Similarly, the project has demonstrated the technical feasibility of in-situ gasification of oil/water emulsion and the ability to utilize the associated gasification products as NO{sub x} reburn fuel.

  7. Future Fuels

    DTIC Science & Technology

    2005-10-04

    tactical ground mobility and increasing operational reach • Identify, review, and assess – Technologies for reducing fuel consumption, including...T I O N S A C T I O N S TOR Focus - Tactical ground mobility - Operational reach - Not A/C, Ships, or troops Hybrid Electric Vehicle Fuel Management...Fuel Management During Combat Operations Energy Fundamentals • Energy Density • Tactical Mobility • Petroleum Use • Fuel Usage (TWV) • TWV OP TEMPO TOR

  8. Alternative Fuels

    DTIC Science & Technology

    2009-06-11

    JP-8 BACK-UP SLIDES Unclassified 19 What Are Biofuels ? Cellulose “first generation”“second generation” C18:0 C16:1 Triglycerides (fats, oils ...equipment when supplying jet fuel not practicable or cost effective Unclassified 5 erna ve ue s ocus Petroleum Crude Oil (declining discovery / production...on Jet A/A-1 Approved fuels, DXXXX Unclassified 6 JP-8/5 (Commercial Jet Fuel, ASTM Spec) DARPA Alternative Jet Fuels • Agricultural crop oils

  9. Formulation, stability and degradation kinetics of intravenous cinnarizine lipid emulsion.

    PubMed

    Shi, Shuai; Chen, Hao; Cui, Yue; Tang, Xing

    2009-05-21

    Cinnarizine was loaded in the lipid emulsion to develop an intravenous formulation with good physical and chemical stability. High-pressure homogenization was used to prepare the lipid emulsion. The factors influencing the stability of cinnarizine lipid emulsion, such as different drug loading methods, pH, temperature, sterilization methods and sterilization time were monitored by high-performance liquid chromatograph. The degradation of cinnarizine in aqueous solution and lipid emulsion both followed apparent first-order kinetics. A possible degradation mechanism was postulated by the bell-shaped pH-rate profile of cinnarizine. Localization of the drug in the interfacial lecithin layer significantly improved the chemical stability of cinnarizine and its stabilizing mechanism was thoroughly discussed and proved. The activation energy of cinnarizine in lipid emulsion was calculated to be 51.27 kJ/mol which was similar to that in aqueous solution. This indicates that the stabilizing effect of the drug carrier on cinnarizine was not an alteration of the degradation reaction. In addition, shelf-life of cinnarizine in lipid emulsion was estimated to be 1471.6 days at 4 degrees C, which is much longer compared with 19.8 days in aqueous solution. The final products were stable enough to resist a 121 degrees C rotating steam sterilization for 15 min.

  10. Stability of Emulsions Containing Both Sodium Caseinate and Tween 20.

    PubMed

    Dickinson; Ritzoulis; Povey

    1999-04-15

    The creaming and rheology of oil-in-water emulsions (30 vol% n-tetradecane, pH 6.8) stabilized by a mixture of commercial sodium caseinate and the non-ionic emulsifier polyoxyethylene sorbitan monolaurate (Tween 20) has been investigated at 21 degrees C. The presence of sufficient Tween 20 to displace most of the protein from the emulsion droplet surface leads to greatly enhanced emulsion creaming (and strongly non-Newtonian rheology) which is indicative of depletion flocculation by nonadsorbed surface-active material (protein and emulsifier). In emulsions containing a constant amount of surface-active material, the replacement of a very small fraction of Tween 20 by caseinate in a stable pure Tween 20 emulsion leads to enhanced creaming for a small fraction of the droplets, and this fraction increases with increasing replacement of emulsifier by protein. This behavior is probably due to depletion flocculation, although an alternative bridging mechanism is also a possibility. The overall stability of these sets of emulsions can be represented in terms of a global stability diagram containing regions of bridging flocculation and coalescence (low content of surface-active material), stability (intermediate content), and depletion flocculation (high content). Copyright 1999 Academic Press.

  11. Stabilization/solidification of munition destruction waste by asphalt emulsion.

    PubMed

    Cervinkova, Marketa; Vondruska, Milan; Bednarik, Vratislav; Pazdera, Antonin

    2007-04-02

    Destruction of discarded military munitions in an explosion chamber produces two fractions of hazardous solid waste. The first one is scrap waste that remains in the chamber after explosion; the second one is fine dust waste, which is trapped on filters of gas products that are exhausted from the chamber after explosion. The technique of stabilization/solidification of the scrap waste by asphalt emulsion is described in this paper. The technique consists of simple mixing of the waste with anionic asphalt emulsion, or two-step mixing of the waste with cationic asphalt emulsion. These techniques are easy to use and the stabilized scrap waste proves low leachability of contained heavy metals assessed by TCLP test. Hence, it is possible to landfill the scrap waste stabilized by asphalt emulsion. If the dust waste, which has large specific surface, is stabilized by asphalt emulsion, it is not fully encapsulated; the results of the leaching tests do not meet the regulatory levels. However, the dust waste solidified by asphalt emulsion can be deposited into an asphalted disposal site of the landfill. The asphalt walls of the disposal site represent an efficient secondary barrier against pollutant release.

  12. Pickering emulsions: challenges and opportunities in topical delivery.

    PubMed

    Marto, Joana; Ascenso, Andreia; Simoes, Sandra; Almeida, António J; Ribeiro, Helena M

    2016-08-01

    Topical drug delivery is a challenging area with many advantages such as avoidance of first passage effect, stabilization of blood concentrations and attainment of local therapeutic effect with fewer side effects. Despite all these advantages, topical drug delivery remains limited to few molecules, since skin acts as a barrier to the delivery of many therapeutic molecules. To overcome this obstacle, a favored strategy relies on selecting suitable vehicles for dermatologic therapy, such as emulsions, gels and, more recently, nanoparticulate systems. Particle-stabilized emulsions, also known as Pickering emulsions, have garnered interest in recent years. Although most of the investigation on Pickering emulsions has been based on model systems with inorganic or organic solid particles, recent advances have been made regarding the application of nanocarriers, protein-based particles or cyclodextrins for this purpose. This review reports the latest advances in Pickering emulsions technical challenges, and discusses the potential benefits and drawbacks of using these formulations for topical pharmaceutical and cosmetic applications as an alternative to conventional surfactant-based systems. Pickering emulsions appear as a multifunctional dosage form with endless advantages. A great deal of progress is expected in this area, which might represent a renewed vision for the pharmaceutical and cosmetic industry.

  13. Evaluation of emulsion stability by diffuse reflectance spectroscopy.

    PubMed

    Akers, M J; Lach, J L

    1976-02-01

    A new method is described for evaluating the stability of emulsion bases and active components contained within such emulsions. Diffuse reflectance spectroscopy (DRS) is a technique that has the capability of detecting changes in particle size, surface properties, or drug quality of emulsions as a function of time without disturbance of the system. Such physical or chemical changes are monitored by changes in the visible and UV wavelength spectral characteristics of the emulsified systems. Four basic emulsion systems were prepared and analyzed for physical stability for 6 months by three techniques: visible coalescence, particle counting measurement, and DRS. Two drugs, aspirin and ascorbic acid, were then incorporated within stable emulsion bases, and the chemical stability of these drugs was monitored by DRS for 6 months. Results were compared with concomitant quantitative drug assay procedures. Good agreement was observed when data from DRS and analytical measurements were compared. The DRS technique may be used as a supportive method, offering simplicity and expedience, with other methods of evaluating emulsion stability and drug stability within emulsified systems.

  14. Chemical stability of teniposide in aqueous and parenteral lipid emulsions.

    PubMed

    Wang, Jing; Cui, Yue; Tang, Xing

    2009-04-01

    The purpose of this study was to investigate the degradation kinetics of teniposide in lipid emulsion and aqueous solution. The chemical stability of teniposide in lipid emulsion and aqueous solution at various pH values and temperatures was monitored by high-performance liquid chromatography. In addition, the viscosities of emulsion at different temperatures were investigated. The degradation of teniposide both in emulsion and in aqueous solution was shown to follow pseudo-first-order degradation kinetics. The t (1/2) values of teniposide lipid emulsion (TLE) and the aqueous solution were 80 and 2.6 days at 10 degrees C, respectively. Under the most stable pH range of 6.0-6.5, stability of teniposide in the emulsion increased more than 30-fold compared with that in aqueous solution. Furthermore, there was a difference between the shelf life of TLE actually measured (29 days) at 10 degrees C and the one deduced (15 days) from the degradation data of high temperatures by Arrhenius equation. It could be hypothesized that the difference was due to a slower diffusion of teniposide from oil phase to aqueous phase at the lower temperatures, which would be a speed-limited process in the degradation of TLE. The results of viscosity test confirmed the presumption.

  15. Fat overload syndrome after the rapid infusion of SMOFlipid emulsion.

    PubMed

    Hojsak, Iva; Kolaček, Sanja

    2014-01-01

    Fat overload syndrome is a well-known complication of intravenous lipid emulsion therapy. It is characterized by headaches, fever, jaundice, hepatosplenomegaly, respiratory distress, and spontaneous hemorrhage. Other symptoms include anemia, leukopenia, thrombocytopenia, low fibrinogen levels, and coagulopathy. Several reports in the literature describe fat overload syndrome caused by rapid infusion of lipid emulsions, all with soybean-based lipid emulsions. We report fat overload syndrome in a 2-year-old girl with short bowel syndrome on home parenteral nutrition. Fat overload syndrome occurred as a result of accidental, very rapid infusion of a 20% soy oil, medium-chain triglyceride, olive and fish oil-based lipid emulsion (SMOFlipid) that showed the same complications seen with an earlier lipid emulsion (Intralipid). The patient was successfully treated with supportive care combining fluid infusion, transfusion of platelets, and substitution of serum albumin (0.5 g/kg/d) and fresh-frozen plasma (10 mL/kg). In the next couple of days, she received extra platelets, erythrocyte transfusion, and filgrastim (Neupogen; 5 µg/kg/d) due to a very low leukocyte count. To the best of our knowledge, this is the first case of fat overload syndrome caused by SMOFlipid emulsion described in the literature.

  16. Analyzing Benzene and Cyclohexane Emulsion Droplet Collisions on Ultramicroelectrodes.

    PubMed

    Li, Yan; Deng, Haiqiang; Dick, Jeffrey E; Bard, Allen J

    2015-11-03

    We report the collisions of single emulsion oil droplets with extremely low dielectric constants (e.g., benzene, ε of 2.27, or cyclohexane, ε of 2.02) as studied via emulsion droplet reactor (EDR) on an ultramicroelectrode (UME). By applying appropriate potentials to the UME, we observed the electrochemical effects of single-collision signals from the bulk electrolysis of single emulsion droplets. Different hydrophobic redox species (ferrocene, decamethyl-ferrocene, or metalloporphyrin) were trapped in a mixed benzene (or cyclohexane) oil-in-water emulsion using an ionic liquid as the supporting electrolyte and emulsifier. The emulsions were prepared using ultrasonic processing. Spike-like responses were observed in each i-t response due to the complete electrolysis of all of the above-mentioned redox species within the droplet. On the basis of these single-particle collision results, the collision frequency, size distribution, i-t decay behavior of the emulsion droplets, and possible mechanisms are analyzed and discussed. This work demonstrated that bulk electrolysis can be achieved in a few seconds in these attoliter reactors, suggesting many applications, such as analysis and electrosynthesis in low dielectric constant solvents, which have a much broader potential window.

  17. Droplet-based microfluidics and the dynamics of emulsions

    NASA Astrophysics Data System (ADS)

    Baret, Jean-Christophe; Brosseau, Quentin; Semin, Benoit; Qu, Xiaopeng

    2012-02-01

    Emulsions are complex fluids already involved for a long time in a wide-range of industrial processes, such as, for example, food, cosmetics or materials synthesis [1]. More recently, applications of emulsions have been extended to new fields like biotechnology or biochemistry where the compartmentalization of compounds in emulsion droplets is used to parallelise (bio-) chemical reactions [2]. Interestingly, these applications pinpoint to fundamental questions dealing with surfactant dynamics, dynamic surface tension, hydrodynamic interactions and electrohydrodynamics. Droplet-based microfluidics is a very powerful tool to quantitatively study the dynamics of emulsions at the single droplet level or even at the single interface level: well-controlled emulsions are produced and manipulated using hydrodynamics, electrical forces, optical actuation and combination of these effects. We will describe here how droplet-based microfluidics is used to extract quantitative informations on the physical-chemistry of emulsions for a better understanding and control of the dynamics of these systems [3].[4pt] [1] J. Bibette et al. Rep. Prog. Phys., 62, 969-1033 (1999)[0pt] [2] A. Theberge et al., Angewandte Chemie Int. Ed. 49, 5846 (2010)[0pt] [3] J.-C. Baret et al., Langmuir, 25, 6088 (2009)

  18. Physical and antimicrobial properties of thyme oil emulsions stabilized by ovalbumin and gum arabic.

    PubMed

    Niu, Fuge; Pan, Weichun; Su, Yujie; Yang, Yanjun

    2016-12-01

    Natural biopolymer stabilized oil-in-water emulsions were formulated using ovalbumin (OVA), gum arabic (GA) solutions and their complexes. The influence of interfacial structure of emulsion (OVA-GA bilayer and OVA/GA complexes emulsions) on the physical properties and antimicrobial activity of thyme oil (TO) emulsion against Escherichia coli (E. coli) was evaluated. The results revealed that the two types of emulsions with different oil phase compositions remained stable during a long storage period. The oil phase composition had an appreciable influence on the mean particle diameter and retention of the TO emulsions. The stable emulsion showed a higher minimum inhibitory concentration (MIC), and the TO emulsions showed an improved long-term antimicrobial activity compared to the pure thyme oil, especially complexes emulsion at pH 4.0. These results provided useful information for developing protection and delivery systems for essential oil using biopolymer. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Fossil Fuels.

    ERIC Educational Resources Information Center

    Crank, Ron

    This instructional unit is one of 10 developed by students on various energy-related areas that deals specifically with fossil fuels. Some topics covered are historic facts, development of fuels, history of oil production, current and future trends of the oil industry, refining fossil fuels, and environmental problems. Material in each unit may…

  20. Fossil Fuels.

    ERIC Educational Resources Information Center

    Crank, Ron

    This instructional unit is one of 10 developed by students on various energy-related areas that deals specifically with fossil fuels. Some topics covered are historic facts, development of fuels, history of oil production, current and future trends of the oil industry, refining fossil fuels, and environmental problems. Material in each unit may…

  1. Agglutination of intravenously administered phosphatidylcholine-containing lipid emulsions with serum C-reactive protein.

    PubMed

    Tugirimana, Pierrot; Speeckaert, Marijn M; Fiers, Tom; De Buyzere, Marc L; Kint, Jos; Benoit, Dominique; Delanghe, Joris R

    2013-04-01

    C-reactive protein (CRP) is able to bind phospholipids in the presence of calcium. We wanted to investigate the reaction of CRP with various commercial fat emulsions and to explore the impact of CRP agglutination on serum CRP levels. Serum specimens were mixed with Intralipid 20% (soybean oil-based fat emulsion), Structolipid (structured oil-based fat emulsion), Omegaven (fish oil-based fat emulsion), or SMOFlipid (mixed soybean oil-, olive oil-, and fish oil-based emulsion) in Tris-calcium buffer (pH 7.5). After 30 minutes of incubation at 37°C, CRP-phospholipid complexes were turbidimetrically quantified and flow cytometric analysis was performed. Similarly, CRP complexes were monitored in vivo, following administration of fat emulsion. CRP was able to agglutinate phospholipid-containing lipid droplets present in the soybean oil-based fat emulsion and the structured oil-based fat emulsion. To a lesser extent, agglutination was observed for fish oil-containing fat emulsions, whereas no agglutination was noticed for the mixed soybean oil-, olive oil-, and fish oil-based emulsion. Results for propofol-containing emulsions were comparable. Agglutination correlated with phospholipid content of the emulsions. When in vivo agglutination occurred, plasma CRP values dropped due to consumption of CRP by phospholipid-induced agglutination. In this in vitro experiment, we demonstrated agglutination of CRP with phospholipids in various fat emulsions. Research studies are required in patients to determine which effects occur with various intravenous fat emulsions.

  2. Comment to "The pharmacopeial evolution of Intralipid injectable emulsion in plastic containers: from a coarse to a fine emulsion".

    PubMed

    Ellborg, Anders; Ferreira, Denise; Mohammadnejad, Javad; Wärnheim, Torbjörn

    2010-06-15

    The droplet size distribution of 50 batches of multi-chamber bags containing the parenteral nutrition emulsions Intralipid (Kabiven and Kabiven Peripheral) or Structolipid (StructoKabiven and StructoKabiven Peripheral), respectively, has been investigated. The results show that the non-compounded lipid emulsions analysed are in compliance with the United States Pharmacopeia (USP) chapter 729, Method II limit for the droplet size distribution, PFAT(5)<0.05%.

  3. Superparamagnetic polymer emulsion particles from a soap-free seeded emulsion polymerization and their application for lipase immobilization.

    PubMed

    Cui, Yanjun; Chen, Xia; Li, Yanfeng; Liu, Xiao; Lei, Lin; Zhang, Yakui; Qian, Jiayu

    2014-01-01

    Using emulsion copolymer of styrene (St), glycidyl methacrylate (GMA) and 2-hydroxyethyl methacrylate (HEMA) as seed latexes, the superparamagnetic polymer emulsion particles were prepared by seeded emulsion copolymerization of butyl methacrylate (BMA), vinyl acetate (VAc) and ethylene glycol dimethacrylate in the presence of the seed latexes and superparamagnetic Fe3O4/SiOx nanoparticles (or Fe3O4-APTS nanoparticles) through a two-step process, without addition of any emulsifier. The magnetic emulsion particles named P(St-GMA-HEMA)/P(BMA-VAc) were characterized by transmission electron microscope and vibrating sample magnetometry. The results showed that the magnetic emulsion particles held a structure with a thinner shell (around 100 nm) and a bigger cavity (around 200 nm), and possessed a certain level of magnetic response. The resulting magnetic emulsion particles were employed in the immobilization of lipase by two strategies to immobilized lipase onto the resulting magnetic composites directly (S-1) or using glutaraldehyde as a coupling agent (S-2), thus, experimental data showed that the thermal stability and reusability of immobilized lipase based on S-2 were higher than that of S-1.

  4. Alternative fuels

    NASA Technical Reports Server (NTRS)

    Grobman, J. S.; Butze, H. F.; Friedman, R.; Antoine, A. C.; Reynolds, T. W.

    1977-01-01

    Potential problems related to the use of alternative aviation turbine fuels are discussed and both ongoing and required research into these fuels is described. This discussion is limited to aviation turbine fuels composed of liquid hydrocarbons. The advantages and disadvantages of the various solutions to the problems are summarized. The first solution is to continue to develop the necessary technology at the refinery to produce specification jet fuels regardless of the crude source. The second solution is to minimize energy consumption at the refinery and keep fuel costs down by relaxing specifications.

  5. Fuel compositions

    SciTech Connect

    Mekonen, K.

    1989-10-31

    This patent describes a hydrosol fuel. It comprises: from about 67% to 94% by weight of a hydrocarbon combustible fuel selected from the group consisting of the gasolines, diesel fuels and heavy fuel oils, from 5 to 25% by weight of water, at least one surfactant operable to create a hydrosol with the fuel and water present in the range of 0.1 up to about 3.4% by weight of an additive selected from the group consisting of alpha (mono) olefins and alkyl benzenes, each of the former having 7 to 15 recurring C{sub 2} monomers therein.

  6. Use of microwave radiation in separating emulsions and dispersions of hydrocarbons and water

    SciTech Connect

    Wolf, N.O.

    1986-04-15

    A method is described for enhancing the separation of hydrocarbon and water from an emulsion or dispersion thereof comprising the steps of subjecting the emulsion or dispersion to microwave radiation in the range of one millimeter to 30 centimeters and heating the microwave irradiated emulsion or dispersion to a separating temperature using conventional heating means. A method is also described for enhancing the separation of hydrocarbon and water from from dispersion or emulsion thereof in the presence of chemical deemulsifiers comprising the steps of contacting the dispersion or emulsion and chemical deemulsifiers with microwave energy before heating the emulsion or dispersion to a separating temperature using conventional heating means.

  7. Development of novel zein-sodium caseinate nanoparticle (ZP)-stabilized emulsion films for improved water barrier properties via emulsion/solvent evaporation.

    PubMed

    Wang, Li-Juan; Yin, Ye-Chong; Yin, Shou-Wei; Yang, Xiao-Quan; Shi, Wei-Jian; Tang, Chuan-He; Wang, Jin-Mei

    2013-11-20

    This work attempted to develop novel high barrier zein/SC nanoparticle (ZP)-stabilized emulsion films through microfluidic emulsification (ZPE films) or in combination with solvent (ethyl acetate) evaporation techniques (ZPE-EA films). Some physical properties, including tensile and optical properties, water vapor permeability (WVP), and surface hydrophobicity, as well as the microstructure of ZP-stabilized emulsion films were evaluated and compared with SC emulsion (SCE) films. The emulsion/solvent evaporation approach reduced lipid droplets of ZP-stabilized emulsions, and lipid droplets of ZP-stabilized emulsions were similar to or slightly lower than that of SC emulsions. However, ZP- and SC-stabilized emulsion films exhibited a completely different microstructure, nanoscalar lipid droplets were homogeneously distributed in the ZPE film matrix and interpenetrating protein-oil complex networks occurred within ZPE-EA films, whereas SCE films presented a heterogeneous microstructure. The different stabilization mechanisms against creaming or coalescence during film formation accounted for the preceding discrepancy of the microstructures between ZP-and SC-stabilized emulsion films. Interestingly, ZP-stabilized emulsion films exhibited a better water barrier efficiency, and the WVP values were only 40-50% of SCE films. A schematic representation for the formation of ZP-stabilized emulsion films was proposed to relate the physical performance of the films with their microstructure and to elucidate the possible forming mechanism of the films.

  8. Entry and retention of methanol fuel in engine oil

    SciTech Connect

    Schwartz, S.E.; Smolenski, D.J.; Clark, S.L.

    1988-01-01

    To ensure that vehicles do not suffer adverse consequences when high-methanol-content fuel (M100 or M85) is used, it is important to understand the ways that the use of this fuel affects various vehicle systems. For that reason, some of the changes which occur in the engine oil when using methanol fuel were investigated. During a single cold start with an extended cranking time, as much as six percent fuel entered the engine oil. Over a 15-minute period, the lubricating medium changed from engine oil to an oil-methanol-water emulsion. With multiple cold starts followed by a five-minute trip and ambient temperatures near freezing, the oil contained 19 percent volatile contamination. In addition, the oil contained elevated levels of water, lead, iron, chromium, and aluminum. Efforts need to be directed toward reducing the adverse consequences of methanol fuel.

  9. COMPARISON OF AIR POLLUTANT EMISSIONS FROM THE COMBUSTION OF ORIMULSION AND OTHER FUELS

    EPA Science Inventory

    The paper gives results of inhouse emissions testing and a literature review relating to Orimulsion, an emulsion of Venezuelan bitumen, water, and a proprietary surfactant, being used as a fuel for utilities in Canada, China, Denmark, Italy, Japan, and Lithuania, primarily as a r...

  10. COMPARISON OF AIR POLLUTANT EMISSIONS FROM THE COMBUSTION OF ORIMULSION AND OTHER FUELS

    EPA Science Inventory

    The paper gives results of inhouse emissions testing and a literature review relating to Orimulsion, an emulsion of Venezuelan bitumen, water, and a proprietary surfactant, being used as a fuel for utilities in Canada, China, Denmark, Italy, Japan, and Lithuania, primarily as a r...

  11. Design and development of oral nanoparticulated insulin in multiple emulsion.

    PubMed

    Siddhartha, T Venkata; Senthil, V; Kishan, Ilindra Sai; Khatwal, Rizwan Basha; Madhunapantula, SubbaRao V

    2014-01-01

    The present research aimed at developing an injection-free nanoparticulated formulation in multiple emulsion form, for oral delivery of insulin, which otherwise undergoes degradation in the gastric environment if administered orally. Insulin-polymeric nanoparticles were prepared using layer by layer (LbL) adsorption method and incorporated into an emulsion to form a nanoparticulated multiple emulsion. Using 0.6 M sodium chloride, the insulin nanoaggregates of 300-400 nm size were obtained about a yield of 94%. The characteristics of a representative nanoparticle were as follows: particle size - 391.9±0.41 nm, polydispersity index -0.425, zeta potential- +20.6 mv, encapsulation efficiency- 86.7±1.42% and percentage entrapment efficiency of the insulin-polymeric nanoparticles in the inner aqueous phase of emulsion was 84.6%. The FT-IR analysis confirms that there were no drug interactions with the polymers. Stability analysis carried out for 3 months at 8-40 °C, showed only minor changes at the end period. The release kinetics of the nanoparticulated multiple emulsion at pH 7.4 followed first order kinetics and obeyed the Fickian law. However, at pH 2.0 the release kinetics from nanoparticulated multiple emulsion followed zero order kinetics without obeying to the Fickian law. In conclusion, our data demonstrate that the nanoparticulated multiple emulsion formulation has good release characteristics and imparted a tolerable protection for insulin at different pH conditions, which may be exploited for oral administration.

  12. Dynamically reconfigurable complex emulsions via tunable interfacial tensions

    NASA Astrophysics Data System (ADS)

    Zarzar, Lauren D.; Sresht, Vishnu; Sletten, Ellen M.; Kalow, Julia A.; Blankschtein, Daniel; Swager, Timothy M.

    2015-02-01

    Emulsification is a powerful, well-known technique for mixing and dispersing immiscible components within a continuous liquid phase. Consequently, emulsions are central components of medicine, food and performance materials. Complex emulsions, including Janus droplets (that is, droplets with faces of differing chemistries) and multiple emulsions, are of increasing importance in pharmaceuticals and medical diagnostics, in the fabrication of microparticles and capsules for food, in chemical separations, in cosmetics, and in dynamic optics. Because complex emulsion properties and functions are related to the droplet geometry and composition, the development of rapid, simple fabrication approaches allowing precise control over the droplets' physical and chemical characteristics is critical. Significant advances in the fabrication of complex emulsions have been made using a number of procedures, ranging from large-scale, less precise techniques that give compositional heterogeneity using high-shear mixers and membranes, to small-volume but more precise microfluidic methods. However, such approaches have yet to create droplet morphologies that can be controllably altered after emulsification. Reconfigurable complex liquids potentially have great utility as dynamically tunable materials. Here we describe an approach to the one-step fabrication of three- and four-phase complex emulsions with highly controllable and reconfigurable morphologies. The fabrication makes use of the temperature-sensitive miscibility of hydrocarbon, silicone and fluorocarbon liquids, and is applied to both the microfluidic and the scalable batch production of complex droplets. We demonstrate that droplet geometries can be alternated between encapsulated and Janus configurations by varying the interfacial tensions using hydrocarbon and fluorinated surfactants including stimuli-responsive and cleavable surfactants. This yields a generalizable strategy for the fabrication of multiphase emulsions with

  13. To Model Chemical Reactivity in Heterogeneous Emulsions, Think Homogeneous Microemulsions.

    PubMed

    Bravo-Díaz, Carlos; Romsted, Laurence Stuart; Liu, Changyao; Losada-Barreiro, Sonia; Pastoriza-Gallego, Maria José; Gao, Xiang; Gu, Qing; Krishnan, Gunaseelan; Sánchez-Paz, Verónica; Zhang, Yongliang; Dar, Aijaz Ahmad

    2015-08-25

    Two important and unsolved problems in the food industry and also fundamental questions in colloid chemistry are how to measure molecular distributions, especially antioxidants (AOs), and how to model chemical reactivity, including AO efficiency in opaque emulsions. The key to understanding reactivity in organized surfactant media is that reaction mechanisms are consistent with a discrete structures-separate continuous regions duality. Aggregate structures in emulsions are determined by highly cooperative but weak organizing forces that allow reactants to diffuse at rates approaching their diffusion-controlled limit. Reactant distributions for slow thermal bimolecular reactions are in dynamic equilibrium, and their distributions are proportional to their relative solubilities in the oil, interfacial, and aqueous regions. Our chemical kinetic method is grounded in thermodynamics and combines a pseudophase model with methods for monitoring the reactions of AOs with a hydrophobic arenediazonium ion probe in opaque emulsions. We introduce (a) the logic and basic assumptions of the pseudophase model used to define the distributions of AOs among the oil, interfacial, and aqueous regions in microemulsions and emulsions and (b) the dye derivatization and linear sweep voltammetry methods for monitoring the rates of reaction in opaque emulsions. Our results show that this approach provides a unique, versatile, and robust method for obtaining quantitative estimates of AO partition coefficients or partition constants and distributions and interfacial rate constants in emulsions. The examples provided illustrate the effects of various emulsion properties on AO distributions such as oil hydrophobicity, emulsifier structure and HLB, temperature, droplet size, surfactant charge, and acidity on reactant distributions. Finally, we show that the chemical kinetic method provides a natural explanation for the cut-off effect, a maximum followed by a sharp reduction in AO efficiency with

  14. Ostwald ripening of water-in-hydrocarbon emulsions.

    PubMed

    Jiao, Jim; Burgess, Diane J

    2003-08-15

    The purposes of this study are to determine Ostwald ripening rates in water-in-oil (W/O) emulsions and evaluate the potential application of the LSW theory to W/O emulsions. Water-in-oil emulsions were prepared by mixing water and hydrocarbon phases containing Span 83 and homogenizing. n-Heptane, n-decane, n-dodecane, and n-tetradecane were used to obtain a range of solubilities. A linear increase in the cube of the droplet size with time was observed (within the initial period of 1-2 h after emulsion preparation), supporting the LSW theory. Based on this linear relationship, Ostwald ripening rates were determined to be 3.0 x 10(-24), 2.3 x 10(-24), 1.8 x 10(-24), and 5.8 x 10(-25) m3 s(-1) for water-in-heptane, water-in-decane, water-in-dodecane, and water-in-tetradecane emulsions, respectively. These values are in agreement with theoretical predictions calculated using the LSW equation. It was observed that the ripening process gradually slowed, resulting in deviations from the LSW theory. This was attributed to the effect of the interfacial surfactant film through which the dispersed material has to diffuse during Ostwald ripening. This effect is not taken into consideration by the LSW theory. The results showed that Ostwald ripening of W/O emulsions was less sensitive to the nature of oil used and slower compared to O/W emulsions consisting of the same hydrocarbons.

  15. Food-grade Pickering emulsions stabilised with solid lipid particles.

    PubMed

    Pawlik, Aleksandra; Kurukji, Daniel; Norton, Ian; Spyropoulos, Fotis

    2016-06-15

    Aqueous dispersions of tripalmitin particles (with a minimum size of 130 nm) were produced, via a hot sonication method, with and without the addition of food-grade emulsifiers. Depending on their relative size and chemistry, the emulsifiers altered the properties of the fat particles (e.g. crystal form, dispersion state and surface properties) by two proposed mechanisms. Firstly, emulsifiers modify the rate and/or extent of polymorphic transitions, resulting in the formation of fat crystals with a range of polarities. Secondly, the adsorption of emulsifiers at the particle interface modifies crystal surface properties. Such emulsifier-modified fat particles were then used to stabilise emulsions. As the behaviour of these particles was predisposed by the kind of emulsifier employed for their manufacture, the resulting particles showed different preferences to which of the emulsion phases (oil or water) became the continuous one. The polarity of the fat particles decreased as follows: Whey Protein Isolate > Soy Lecithin > Soy Lecithin + Tween 20 > Tween 20 > Polyglycerol Polyricinoleate > no emulsifier. Consequently, particles stabilised with WPI formed oil-in-water emulsions (O/W); particles stabilised solely with lecithin produced a highly unstable W/O emulsion; and particles stabilised with a mixture of lecithin and Tween 20 gave a stable W/O emulsion with drop size up to 30 μm. Coalescence stable, oil-continuous emulsions (W/O) with drop sizes between 5 and 15 μm were produced when the tripalmitin particles were stabilised with solely with Tween 20, solely with polyglycerol polyricinoleate, or with no emulsifier at all. It is proposed that the stability of the latter three emulsions was additionally enhanced by sintering of fat particles at the oil-water interface, providing a mechanical barrier against coalescence.

  16. Breaking oil-in-water emulsions stabilized by yeast.

    PubMed

    Furtado, Guilherme F; Picone, Carolina S F; Cuellar, Maria C; Cunha, Rosiane L

    2015-04-01

    Several biotechnological processes can show an undesirable formation of emulsions making difficult phase separation and product recovery. The breakup of oil-in-water emulsions stabilized by yeast was studied using different physical and chemical methods. These emulsions were composed by deionized water, hexadecane and commercial yeast (Saccharomyces cerevisiae). The stability of the emulsions was evaluated varying the yeast concentration from 7.47 to 22.11% (w/w) and the phases obtained after gravity separation were evaluated on chemical composition, droplet size distribution, rheological behavior and optical microscopy. The cream phase showed kinetic stability attributed to mechanisms as electrostatic repulsion between the droplets, a possible Pickering-type stabilization and the viscoelastic properties of the concentrated emulsion. Oil recovery from cream phase was performed using gravity separation, centrifugation, heating and addition of demulsifier agents (alcohols and magnetic nanoparticles). Long centrifugation time and high centrifugal forces (2 h/150,000×g) were necessary to obtain a complete oil recovery. The heat treatment (60°C) was not enough to promote a satisfactory oil separation. Addition of alcohols followed by centrifugation enhanced oil recovery: butanol addition allowed almost complete phase separation of the emulsion while ethanol addition resulted in 84% of oil recovery. Implementation of this method, however, would require additional steps for solvent separation. Addition of charged magnetic nanoparticles was effective by interacting electrostatically with the interface, resulting in emulsion destabilization under a magnetic field. This method reached almost 96% of oil recovery and it was potentially advantageous since no additional steps might be necessary for further purifying the recovered oil. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Dynamically reconfigurable complex emulsions via tunable interfacial tensions

    PubMed Central

    Zarzar, Lauren D.; Sresht, Vishnu; Sletten, Ellen M.; Kalow, Julia A.; Blankschtein, Daniel; Swager, Timothy M.

    2015-01-01

    Emulsification is a powerful, well-known technique for mixing and dispersing immiscible components within a continuous liquid phase. Consequently, emulsions are central components of medicine, food and performance materials. Complex emulsions, including multiple emulsions and Janus droplets which contain hemispheres of differing material, are of increasing importance1 in pharmaceuticals and medical diagnostics2, in the fabrication of microparticles and capsules3–5 for food6, in chemical separations7, in cosmetics8, and in dynamic optics9. Because complex emulsion properties and functions are related to the droplet geometry and composition, the development of rapid, simple fabrication approaches allowing precise control over the droplets’ physical and chemical characteristics is critical. Significant advances in the fabrication of complex emulsions have been made using a number of procedures, ranging from large-scale, less precise techniques that give compositional heterogeneity using high-shear mixers and membranes10, to small-volume but more precise microfluidic methods11,12. However, such approaches have yet to create droplet morphologies that can be controllably altered after emulsification. Reconfigurable complex liquids potentially have greatly increased utility as dynamically tunable materials. Here we describe an approach to the one-step fabrication of three- and four-phase complex emulsions with highly controllable and reconfigurable morphologies. The fabrication makes use of the temperature-sensitive miscibility of hydrocarbon, silicone and fluorocarbon liquids, and is applied to both the microfluidic and the scalable batch production of complex droplets. We demonstrate that droplet geometries can be alternated between encapsulated and Janus configurations by varying the interfacial tensions using hydrocarbon and fluorinated surfactants including stimuli-responsive and cleavable surfactants. This yields a generalizable strategy for the fabrication of

  18. The Morphology of Emulsion Polymerized Latex Particles

    DOE R&D Accomplishments Database

    Wignall, G. D.; Ramakrishnan, V. R.; Linne, M. A.; Klein, A.; Sperling, L. H.; Wai, M. P.; Gelman, R. A.; Fatica, M. G.; Hoerl, R. H.; Fisher, L. W.

    1987-11-01

    Under monomer starved feed conditions, emulsion polymerization of perdeuterated methyl methacrylate and styrene in the presence of preformed polymethylmethacrylate latexes resulted in particles with a core-shell morphology, as determined by small-angle neutron scattering (SANS) analysis for a hollow sphere. The locus of polymerization of the added deuterated monomer is therefore at the particle surface. In similar measurements a statistical copolymer of styrene and methyl methacrylate was used as seed particles for further polymerization of trideuteromethyl methacrylate. The resulting polymer latex was again shown to have a core-shell morphological structure as determined by SANS. SANS experiments were also undertaken on polystyrene latexes polymerized by equilibrium swelling methods, with deuterated polymer forming the first or second step. The experiments covered a molecular weight range of 6 x 10{sup 4} 10{sup 6} the molecular weights are consistent with the experimental errors, indicating that the deuterium labeled molecules are randomly distributed in the latex. These results led to the finding that the polymer chains were constrained in the latex particles by factors of 2 to 4 from the relaxed coil dimensions. For M < 10{sup 6} g/mol SANS gave zero angle scattering intensities much higher than expected on the basis of a random distribution of labeled molecules. Several models were examined, including the possible development of core-shell structures at lower molecular weights.

  19. Switching dynamics in cholesteric liquid crystal emulsions

    NASA Astrophysics Data System (ADS)

    Fadda, F.; Gonnella, G.; Marenduzzo, D.; Orlandini, E.; Tiribocchi, A.

    2017-08-01

    In this work we numerically study the switching dynamics of a 2D cholesteric emulsion droplet immersed in an isotropic fluid under an electric field, which is either uniform or rotating with constant speed. The overall dynamics depend strongly on the magnitude and on the direction (with respect to the cholesteric axis) of the applied field, on the anchoring of the director at the droplet surface and on the elasticity. If the surface anchoring is homeotropic and a uniform field is parallel to the cholesteric axis, the director undergoes deep elastic deformations and the droplet typically gets stuck into metastable states which are rich in topological defects. When the surface anchoring is tangential, the effects due to the electric field are overall less dramatic, as a small number of topological defects form at equilibrium. The application of the field perpendicular to the cholesteric axis usually has negligible effects on the defect dynamics. The presence of a rotating electric field of varying frequency fosters the rotation of the defects and of the droplet as well, typically at a lower speed than that of the field, due to the inertia of the liquid crystal. If the surface anchoring is homeotropic, a periodic motion is found. Our results represent a first step to understand the dynamical response of a cholesteric droplet under an electric field and its possible application in designing novel liquid crystal-based devices.

  20. The morphology of emulsion polymerized latex particles

    SciTech Connect

    Wignall, G.D.; Ramakrishnan, V.R.; Linne, M.A.; Klein, A.; Sperling, L.H.; Wai, M.P.; Gelman, R.A.; Fatica, M.G.; Hoerl, R.H.; Fisher, L.W.

    1987-11-01

    Under monomer starved feed conditions, emulsion polymerization of perdeuterated methyl methacrylate and styrene in the presence of preformed polymethylmethacrylate latexes resulted in particles with a core-shell morphology, as determined by small-angle neutron scattering (SANS) analysis for a hollow sphere. The locus of polymerization of the added deuterated monomer is therefore at the particle surface. In similar measurements a statistical copolymer of styrene and methyl methacrylate was used as seed particles for further polymerization of trideuteromethyl methacrylate. The resulting polymer latex was again shown to have a core-shell morphological structre as determined by SANS. SANS experiments were also undertaken on polystyrene latexes polymerized by equilibrium swelling methods, with deuterated polymer forming the first or second step. The experiments covered a molecular weight range of 6 x 10/sup 4/ < M < 6 x 10/sup 6/ g/mol. For M > 10/sup 6/ the molecular weights are consistent with the experimental errors, indicating that the deuterium labeled molecules are randomly distributed in the latex. These results led to the finding that the polymer chains were constrained in the latex particles by factors of 2 to 4 from the relaxed coil dimensions. For M < 10/sup 6/ g/mol SANS gave zero angle scattering intensities much higher than expected on the basis of a random distribution of labeled molecules. Several models were examined, including the possible development of core-shell structures at lower molecular weights. 25 refs., 6 figs., 3 tabs.

  1. Recent applications of nuclear track emulsion technique

    SciTech Connect

    Zarubin, P. I.

    2016-12-15

    A survey of recent results obtained using the nuclear track emulsion (NTE) technique in low energy applications is given. NTE irradiation with 60 MeV {sup 8}He nuclei provides identification of their decays at stopping, evaluation of the possibility of α range spectrometry, and observation of drift of thermalized {sup 8}He atoms. Correlations of α particles studied in {sup 12}C → 3α splitting induced by 14.1 MeV neutrons indicate the presence of a superposition of 0{sup +} and 2{sup +} states of the {sup 8}Be nucleus in the ground state of {sup 12}C. Angular correlations of fragments are studied in boron-enriched NTE, and the prospects of NTE application in radioactivity and nuclear fission research are discussed. It is proposed to use an automated microscope to search for collinear tripartition of heavy nuclei implanted in NTE. Surface irradiation of NTE by a {sup 252}Cf source is started. Planar events containing fragment pairs and long range α particles, as well as fragment triples, are studied. NTE samples are calibrated using Kr and Xe ions with an energy of 1.2 and 3 A MeV.

  2. In Situ Characterization of Oil-in-Water Emulsions Stabilized by Surfactant and Salt Using Microsensors.

    PubMed

    Church, Jared; Paynter, Danielle M; Lee, Woo Hyoung

    2017-09-26

    Chemically stabilized emulsions are difficult to break because of micelle stability. Many physical and chemical processes have been used for emulsion breaking/separation; however, most operational parameters are based on empirical data and bulk analysis. A multiscale understanding of emulsions is required before these processes can advance further. This study utilized needle-type microsensors and confocal laser scanning microscopy (CLSM) for characterizing simulated bilge water emulsions with different types of surfactants (Triton X-100 and sodium dodecyl sulfate [SDS]) under various NaCl concentrations at microscale. Using microsensors, a diffusion process was clearly visualized across the oil/water interface which appears to be related to emulsion formation kinetics and mass transfer. While emulsion stability decreased with NaCl concentrations, SDS (anionic surfactant) is more likely to form emulsion as salinity increases, requiring more salinity to coalesce SDS emulsions than Triton X-100 (nonionic surfactant) emulsions. Triton X-100 emulsions showed the potential to exhibit particle stabilized emulsions with NaCl concentration below 10(-2.5) M. The research demonstrated that the use of nonionic surfactant allows better oil-in-water separation than anionic surfactant. Significant pH changes of emulsions from unknown additives have implications when operating pH-sensitive emulsion breaking/separation processes (e.g., electrocoagulation).

  3. Principles of emulsion stabilization with special reference to polymeric surfactants.

    PubMed

    Tadros, Tharwat

    2006-01-01

    This overview summarizes the basic principles of emulsion stabilization with particular reference to polymeric surfactants. The main breakdown processes in emulsions are briefly described. A section is devoted to the structure of polymeric surfactants and their conformation at the interface. Particular attention is given to two polymeric surfactants that are suitable for oil-in-water (O/W) and water-in-oil (W/O) emulsions. For O/W emulsions, a hydrophobically modified inulin (HMI), obtained by grafting several alkyl groups on the backbone of the inulin (polyfructose) chain, is the most suitable. For W/O emulsions, an A-B-A block copolymer of polydroxystearic acid (PHS), the A chains, and polyethylene oxide (PEO), the B chain, is the most suitable. The conformation of both polymeric surfactants at the O/W and W/O interfaces is described. A section is devoted to the interaction between emulsion droplets containing adsorbed polymer surfactant molecules. This interaction is referred to as steric stabilization, and it is a combination of two main effects, namely, unfavorable mixing of the A chains, referred to as the mixing interaction, Gmix, and loss of configurational entropy on significant overlap of the stabilizing chains, referred to as elastic interaction, Gel. The criteria for effective steric stabilization are summarized. O/W emulsions based on HMI are described, and their stability in water and in aqueous electrolyte solutions is investigated using optical microscopy. Very stable emulsions can be produced both at room temperature and at 50 degrees C. The reason for this high stability is described in terms of the multipoint anchoring of the polymeric surfactant (by several alkyl groups), the strong hydration of the inulin (polyfructose) chains, and the high concentration of inulin in the adsorbed layer. W/O emulsions using PHS-PEO-PHS block copolymer can be prepared at a high volume fraction of water, varphi, and these emulsions remain fluid up to high varphi

  4. Olive oil-based fat emulsion versus soy oil-based fat emulsion in abdominal oncologic surgery.

    PubMed

    Onar, Pelin; Yildiz, Baris Dogu; Yildiz, Emine Akal; Besler, Tanju; Abbasoglu, Osman

    2011-02-01

    In parenteral nutrition (PN), essential fatty acids are provided by soy oil-based fat emulsions, which may exert adverse effects on the immune system and lipid peroxidation. Olive oil -based fat emulsions have been said to prevent these undesired effects. This study compares effects of olive oil - and soy oil -based fat emulsions in 22 patients who underwent abdominal surgery for cancer. The first group (n = 10) received soy oil -based fat emulsion; the second group (n = 10) received olive oil -based fat emulsion. Body temperature, body mass index, (BMI) and biochemical variables were measured on days 0 and 7. There were no differences between the groups with regard to BMI or temperature. On day 7, the first group (compared with day 0) had significant increases in plasma alkaline phosphatase (81.70 ± 16.03 vs 117.60 ± 11.1), γ-glutamyl transferase (39.90 ± 15.40 vs 137.70 ± 24.09), and mean body temperature (36.72°C ± 0.14°C vs 37.20°C ± 0.17°C) (P < .01). Second group had increases in alkaline phosphatase (85.80 ± 13.46 vs 147.20 ± 34.17), γ-glutamyl transferase (48.40 ± 12.86 vs 129.40 ± 42.03), total protein (5.14 ± 0.19 vs 6.06 ± 0.49), and albumin (2.62 ± 0.14 vs 3.00 ± 0.18) (P < .05). Changes in thiobutyric acid levels were not statistically significant in either group. In postoperative cancer patients, olive oil-based fat emulsion had similar effects on BMI, body temperature, biochemical values, and thiobutyric acid levels as soy oil-based fat emulsions.

  5. Investigation of different emulsion systems for dermal delivery of nicotinamide.

    PubMed

    Tuncay, Sakine; Özer, Özgen

    2013-01-01

    Nicotinamide (NA) has been shown to have beneficial effects on several skin diseases such as tumor, acne vulgaris, photodamage, cellulite and atopic dermatitis. The purpose of this study was to develop a multiple emulsion and a microemulsion formulation as delivery systems for NA. A two-step process was used to prepare the W/O/W multiple emulsion. Optimum microemulsion formulation was selected by using construction of pseudo-ternary phase diagram. The physicochemical properties such as droplet size and viscosity measurements, stability studies were also evaluated. Ex-vivo permeation studies were performed with Franz-type diffusion cells and the samples were analysed by high performance liquid chromatography (HPLC). The permeation data showed that there was no significant difference between multiple emulsion and microemulsion (p > 0.05). Transepidermal water loss (TEWL) was also measured. As a result of TEWL studies, a slight increase of TEWL values was observed for microemulsion formulation on rat skin when compared with multiple emulsion and commercial formulation. The results suggested that microemulsion and multiple emulsion formulations could be new and alternative dosage forms for topical application of NA.

  6. Rejuvenation of Spent Media via Supported Emulsion Liquid Membranes

    NASA Technical Reports Server (NTRS)

    Wiencek, John M.

    2002-01-01

    The overall goal of this project is to maximize the reuseability of spent fermentation media. Supported emulsion liquid membrane separation, a highly efficient extraction technique, is used to remove inhibitory byproducts during fermentation; thus, improving the yield while reducing the need for fresh water. The key objectives of this study are: Develop an emulsion liquid membrane system targeting low molecular weight organic acids which has minimal toxicity on a variety of microbial systems; Conduct mass transfer studies to allow proper modeling and design of a supported emulsion liquid membrane system; Investigate the effect of gravity on emulsion coalescence within the membrane unit; Access the effect of water re-use on fermentation yields in a model microbial system; Develop a perfusion-type fermentor utilizing a supported emulsion liquid membrane system to control inhibitory fermentation byproducts; Work for the coming year will focus on the determination of toxicity of various solvents, selection of the emulsifying agents, as well as characterizing the mass transfer of hollow-fiber contactors.

  7. Emulsion Inks for 3D Printing of High Porosity Materials.

    PubMed

    Sears, Nicholas A; Dhavalikar, Prachi S; Cosgriff-Hernandez, Elizabeth M

    2016-08-01

    Photocurable emulsion inks for use with solid freeform fabrication (SFF) to generate constructs with hierarchical porosity are presented. A high internal phase emulsion (HIPE) templating technique was utilized to prepare water-in-oil emulsions from a hydrophobic photopolymer, surfactant, and water. These HIPEs displayed strong shear thinning behavior that permitted layer-by-layer deposition into complex shapes and adequately high viscosity at low shear for shape retention after extrusion. Each layer was actively polymerized with an ultraviolet cure-on-dispense (CoD) technique and compositions with sufficient viscosity were able to produce tall, complex scaffolds with an internal lattice structure and microscale porosity. Evaluation of the rheological and cure properties indicated that the viscosity and cure rate both played an important role in print fidelity. These 3D printed polyHIPE constructs benefit from the tunable pore structure of emulsion templated material and the designed architecture of 3D printing. As such, these emulsion inks can be used to create ultra high porosity constructs with complex geometries and internal lattice structures not possible with traditional manufacturing techniques.

  8. Thermodynamically Stable Pickering Emulsions Stabilized by Janus Dumbbells

    NASA Astrophysics Data System (ADS)

    Tu, Fuquan; Park, Bum Jun; Lee, Daeyeon

    2013-03-01

    Janus particles have two sides with different, often opposite, surface properties. Janus dumbbell is one type of Janus particles that consists of two partially fused spherical lobes. It is possible to independently control the geometry and surface wettability of Janus dumbbells. Janus dumbbells can also be produced in a large quantity, making them useful for practical applications such as emulsion stabilization. In this work, we calculate the free energy of emulsion formation using amphiphilic Janus dumbbells as solid surfactants. In contrast to kinetically stable emulsions stabilized by homogeneous particles, emulsion stabilized by Janus dumbbells can be thermodynamically stable. There also exists an optimal radius of droplets that can be stabilized by infinite or limited number of amphiphilic dumbbells in the continuous phase. We demonstrate that the optimal radius of dumbbell-stabilized droplets can be predicted based on the volume of the dispersed phase and the volume fraction of dumbbells in the continuous phase. We believe our calculation will provide guidelines for using Janus dumbbells as colloid surfactants to generate stable emulsions.

  9. Induced phase transitions of nanoparticle-stabilized emulsions

    NASA Astrophysics Data System (ADS)

    Frijters, Stefan; Günther, Florian; Harting, Jens

    2013-11-01

    Nanoparticles can stabilize fluid-fluid interfaces over long timescales and are nowadays commonly used, e.g. in emulsions. However, their fundamental properties are as of yet poorly understood. Nanoparticle-stabilized emulsions can exhibit different phases, such as Pickering emulsions or bijels, which can be characterized by their different topologies and rheology. We investigate the effect of various initial conditions on random mixtures of two fluids and nanoparticles - in particular, the final state these systems will reach. For this, we use the well-established 3D lattice Boltzmann method, extended to allow for the added nanoparticles. After the evolution of the emulsions has stopped, we induce transitions from one state to another by gradually changing the wettability of the nanoparticles over time. This changes the preferential local curvature of the interfaces, which strongly affects the global state. We observe strong hysteresis effects because of the energy barrier presented by the necessary massive reordering of the particles. Being able to change emulsion states in situ has potential application possibilities in filtering technology, or creating particle scaffolds.

  10. Structure and rheology of highly concentrated emulsions: a modern look

    NASA Astrophysics Data System (ADS)

    Malkin, A. Ya; Kulichikhin, V. G.

    2015-08-01

    The review concerns modern physicochemical, chemical and physical approaches to research into structural features that determine the rheological properties of highly concentrated emulsions. The structures and properties of various systems (suspensions, emulsions as well as transient forms including micellar colloidal solutions) are considered. The formation of highly concentrated emulsions is treated as the concentration glass transition leading to suppression of the molecular and supermolecular mobility and, subsequently, to the existence of a solid-like state of the systems in question. The emphasis is placed on analysis of visco-plasticity which manifests itself in the possibility for emulsions (unlike suspensions) to undergo irreversible deformation (to flow) at stresses exceeding some threshold (critical value) called the yield stress. The thixotropic nature of the transition through the yield stress, governed by the kinetics of the breakup/recovery of the inherent structure is considered in detail. It has been shown that structure formation in highly concentrated emulsions can extend to a macroscopic level and result in the onset of heterogeneity of a flow in the form of shear bands. The bibliography includes 202 references.

  11. Cellulose Nanocrystals as Water in Water Emulsion Stabilizers

    NASA Astrophysics Data System (ADS)

    Peddireddy, Karthik Reddy; Capron, Isabelle; Nicolai, Taco; Benyahia, Lazhar

    Cellulose is the most abundant polymer on the earth. Thus, it is very much desirable to find as many practical applications as possible for it. Cellulose, in its original form, contains both amorphous and crystalline parts. It is possible to separate both parts by dissolving the amorphous part in concentrated sulfuric acid. The remaining crystalline cellulose part exist in the form of rod-like particles. The dimensions of the particles depend on the source. We produce the particles from the acid hydrolysis of cotton cellulose fibers. It results in cellulose nanocrystals (CNCs) with dimensions of ~150 nm x 6 nm x 6 nm. It is well known that CNCs could very efficiently stabilize oil in water (O/W) emulsions by forming very dense monolayers of CNCs at O-W interfaces. However, it is not yet known whether they could also stabilize water in water (W/W) emulsions. The W/W emulsions can be produced by any two incompatible polymers. It is challenging to find effective stabilizers for W/W emulsions due to ultralow interfacial tension and large interfacial thickness. In this talk, I will show the efficiency and effectiveness of these one-dimensional rods as W/W emulsion stabilizers.

  12. Oil-in-water emulsions stabilized by sodium phosphorylated chitosan.

    PubMed

    Chongprakobkit, Suchada; Maniratanachote, Rawiwan; Tachaboonyakiat, Wanpen

    2013-07-01

    Oil-in-water (O/W) emulsions with sodium phosphorylated chitosan (PCTS) were obtained via simple emulsification. PCTS in aqueous solution was amphiphilic with a hydrophilic-lipophilic balance (HLB) of 19 and a critical aggregation concentration (CAC) of 0.13% w/v. The emulsifying efficiency and emulsion stability of PCTS over oil droplets were evaluated in terms of the droplet size, droplet size distribution and microscopic observation using confocal laser scanning microscopy. PCTS preferred to cover oil droplets to produce an O/W emulsion and formed long term stable particles (90 days storage at room temperature) when using PCTS concentrations from above the CAC to 3% w/v. However, emulsions formed from PCTS concentrations below the CAC or over 3% w/v were unstable with particle agglomeration by flocculation after only 7 days storage, although they reverted to individual droplets that retained their integrity in acidic conditions. Overall, PCTS forms effective stable O/W encapsulated particles with potential applications in lipophilic drug encapsulation via a simple emulsion system. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Structural studies of commercial fat emulsions used in parenteral nutrition.

    PubMed

    Li, J; Caldwell, K D

    1994-11-01

    In this paper, we demonstrate that by employing a combination of sedimentation field-flow fractionation (sedFFF) and other characterization techniques, such as photon correlation spectroscopy (PCS) and freeze-fracture electron microscopy (EM), it is possible to show that commercial fat emulsions of similar overall chemical compositions not only may exhibit different size distributions but may have different densities as well. A closer look at the density difference between droplet and suspension medium, on the one hand, and the droplet size, on the other, demonstrates that fat emulsions may have structures other than the traditional oil droplet surrounded by a monolayer of surfactant. From our determined and simulated density differences, we propose that these emulsion droplets may have a multilayered surfactant arrangement as well as an inclusion of water vesicles in the oil phase of the emulsion. Freeze-fracture EM observations provide evidence to confirm the existence of such complex structures. These findings are supported by recent EM work from other laboratories, as well as through chemical verification of elevated water contents in the oil droplets of these emulsions.

  14. Delivery of Chlorambucil Using an Acoustically-Triggered, Perfluoropentane Emulsion

    PubMed Central

    Fabiilli, Mario L.; Haworth, Kevin J.; Sebastian, Ian E.; Kripfgans, Oliver D.; Carson, Paul L.; Fowlkes, J. Brian

    2010-01-01

    Ultrasound-mediated delivery systems have mainly focused on microbubble contrast agents as carriers of drugs or genetic material. This study utilizes micron-sized, perfluoropentane (PFP) emulsions as carriers for chlorambucil (CHL), a lipophilic chemotherapeutic. The release of CHL is achieved via acoustic droplet vaporization (ADV), whereby the superheated emulsion is converted into gas bubbles using ultrasound. Emulsions were made using an albumin shell and soybean oil as the CHL carrier. The ratio of the PFP to soybean oil phases in the droplets, as well as the fraction of droplets that vaporize per ultrasound exposure were shown to correlate with droplet diameter. A 60-minute incubation with the CHL-loaded emulsion caused a 46.7% cellular growth inhibition, whereas incubation with the CHL-loaded emulsion that was exposed to ultrasound at 6.3 MHz caused an 84.3% growth inhibition. This difference was statistically significant (p < 0.01), signifying that ADV can be used as a method to substantially enhance drug delivery. PMID:20691925

  15. Influence of processing parameters on morphology of polymethoxyflavone in emulsions.

    PubMed

    Ting, Yuwen; Li, Colin C; Wang, Yin; Ho, Chi-Tang; Huang, Qingrong

    2015-01-21

    Polymethoxyflavones (PMFs) are groups of compounds isolated from citrus peels that have been documented with wide arrays of health-promoting bioactivities. Because of their hydrophobic structure and high melting point, crystallized PMFs usually have poor systemic bioavailability when consumed orally. To improve the oral efficiency of PMFs, a viscoelastic emulsion system was formulated. Because of the crystalline nature, the inclusion of PMFs into the emulsion system faces great challenges in having sufficient loading capacity and stabilities. In this study, the process of optimizing the quality of emulsion-based formulation intended for PMF oral delivery was systematically studied. With alteration of the PMF loading concentration, processing temperature, and pressure, the emulsion with the desired droplet and crystal size can be effectively fabricated. Moreover, storage temperatures significantly influenced the stability of the crystal-containing emulsion system. The results from this study are a good illustration of system optimization and serve as a great reference for future formulation design of other hydrophobic crystalline compounds.

  16. Multiwalled Carbon Nanotubes at the Interface of Pickering Emulsions.

    PubMed

    Briggs, Nicholas M; Weston, Javen S; Li, Brian; Venkataramani, Deepika; Aichele, Clint P; Harwell, Jeffrey H; Crossley, Steven P

    2015-12-08

    Carbon nanotubes exhibit very unique properties in biphasic systems. Their interparticle attraction leads to reduced droplet coalescence rates and corresponding improvements in emulsion stability. Here we use covalent and noncovalent techniques to modify the hydrophilicity of multiwalled carbon nanotubes (MWCNTs) and study their resulting behavior at an oil-water interface. By using both paraffin wax/water and dodecane/water systems, the thickness of the layer of MWNTs at the interface and resulting emulsion stability are shown to vary significantly with the approach used to modify the MWNTs. Increased hydrophilicity of the MWNTs shifts the emulsions from water-in-oil to oil-in-water. The stability of the emulsion is found to correlate with the thickness of nanotubes populating the oil-water interface and relative strength of the carbon nanotube network. The addition of a surfactant decreases the thickness of nanotubes at the interface and enhances the overall interfacial area stabilized at the expense of increased droplet coalescence rates. To the best of our knowledge, this is the first time the interfacial thickness of modified carbon nanotubes has been quantified and correlated to emulsion stability.

  17. Engineering of acidic O/W emulsions with pectin.

    PubMed

    Alba, K; Sagis, L M C; Kontogiorgos, V

    2016-09-01

    Pectins with distinct molecular design were isolated by aqueous extraction at pH 2.0 or 6.0 and were examined in terms of their formation and stabilisation capacity of model n-alkane-in-water emulsions at acidic pH (pH 2.0). The properties and stability of the resulting emulsions were examined by means of droplet size distribution analysis, Lifshitz-Slyozov-Wagner modelling, bulk rheology, interfacial composition analysis, large-amplitude oscillatory surface dilatational rheology, electrokinetic analysis and fluorescence microscopy. Both pectin preparations were able to emulsify alkanes in water but exhibited distinct ageing characteristics. Emulsions prepared using pectin isolated at pH 6.0 were remarkably stable with respect to droplet growth after thirty days of ageing, while those prepared with pectin isolated at pH 2.0 destabilised rapidly. Examination of chemical composition of interfacial layers indicated multi-layered adsorption of pectins at the oil-water interface. The higher long-term stability of emulsions prepared with pectin isolated at high pH is attributed to mechanically stronger interfaces, the highly branched nature and the low hydrodynamic volume of the chains that result in effective steric stabilisation whereas acetyl and methyl contents do not contribute to the long-term stability. The present work shows that it is possible by tailoring the fine structure of pectin to engineer emulsions that operate in acidic environments.

  18. Microfluidic angle of repose test for Pickering emulsions

    NASA Astrophysics Data System (ADS)

    Chacon, L. A.; Baret, J. C.

    2017-10-01

    Pickering emulsions are appealing systems for droplet-based microfluidic technology. However, to date, their implementation in experiments is limited by their intrinsic characteristics: they present a strong gel-like behaviour and their flowability is lower than their surfactant-stabilized counterpart. Measuring the rheological properties of Pickering emulsions is therefore of interest but very few methods provide measurements using low volumes (< 1 ml). Here, we propose a microfluidic version of the angle of repose method to study the flow behaviour of fluorinated Pickering emulsions adapted to small volumes of the sample. We observed a strong link between the nanoparticle level of fluorination and the flow behaviour of the water-in-oil (w/o) emulsions, obtaining a dramatic change from an empirically very poor flow behaviour to a good one by increasing the particles wettability by the fluorinated phase. Our method combines the advantages of microfluidic rheometers, such as low sample consumption and visual monitoring of the complex fluid elements, and allows the study of emulsions with a strong level of aggregation between the droplets.

  19. Application of pork fat diacylglycerols in meat emulsions.

    PubMed

    Miklos, Rikke; Xu, Xuebing; Lametsch, René

    2011-03-01

    The properties of fat are of major importance when meat products are produced. By enzymatic modification triacylglycerols (TAGs) can be converted to diacylglycerols (DAGs) resulting in changes of the physical and chemical properties of the fat. In this study the texture as well as the hydration and binding properties were investigated in meat emulsions prepared with lard substituted with different amounts of DAGs derived from the lard. In emulsions prepared with DAGs the percentage of total expressible fluid decreased from 28.2% in products prepared with lard to 11.8% in emulsions prepared with 100% DAGs. The fat separation decreased from 10.9% to 7.8% when 10% of DAGs were applied and no fat separation was observed for emulsions prepared with 50% and 100% DAGs. Emulsions containing DAGs were more elastic and solid reflected in a significant increase in Young's modulus and the maximum hardness. The results suggest future opportunities for the application of DAGs to improve the quality of meat products. Copyright © 2010 The American Meat Science Association. Published by Elsevier Ltd. All rights reserved.

  20. Density and microviscosity studies of palm oil/water emulsions.

    PubMed

    Arboleya, Juan Carlos; Sutcliffe, Leslie H; Wilde, Peter J; Fairhurst, Shirley A

    2005-06-01

    Electron paramagnetic resonance (EPR) and densitometry were used to measure the temperature- and rate-dependent formation of fat crystals in emulsion droplets in hardened palm kernel oil in water emulsions. The solid fat content in emulsions can be critical for the functionality of the emulsions in a wide variety of applications. Therefore, new and accessible methods are needed to monitor solid fat content in order to control the functional properties of these emulsions. EPR measurements showed that the microviscosity within the oil droplets could be measured as a function of temperature and that the storage temperature below the main fat melting point is crucial for an increase in the microviscosity, due to fat solidification. The microviscosity of the oil droplets could be an important parameter for defining functional performance (e.g., rheology and partial coalescence). Density measurements provided a simple and accurate method for monitoring changes in phase state of the oil. The phase behavior agreed well with the EPR results, demonstrating that accurate density measurements could prove to be a valuable tool for monitoring fat crystallization processes.

  1. Treatment methods for breaking certain oil and water emulsions

    DOEpatents

    Sealock, Jr., L. John; Baker, Eddie G.; Elliott, Douglas C.

    1992-01-01

    Disclosed are treatment methods for breaking emulsions of petroleum oil and salt water, fatty oil and water, and those resulting from liquefication of organic material. The emulsions are broken by heating to a predetermined temperature at or above about 200.degree. C. and pressurizing to a predetermined pressure above the vapor pressure of water at the predetermined temperature to produce a heated and pressurized fluid. The heated and pressurized fluid is contained in a single vessel at the predetermined temperature and pressure for a predetermined period of time to effectively separate the emulsion into substantially distinct first and second phases, the first phase comprising primarily the petroleum oil, the second phase comprising primarily the water. The first and second phases are separately withdrawn from the vessel at a withdraw temperature between about 200.degree. C. and 374.degree. C. and a withdraw pressure above the vapor pressure of water at the withdraw temperature. Where solids are present in the certain emulsions, the above described treatment may also effectively separate the certain emulsion into a substantially distinct third phase comprising primarily the solids.

  2. Double emulsion formation through hierarchical flow-focusing microchannel

    NASA Astrophysics Data System (ADS)

    Azarmanesh, Milad; Farhadi, Mousa; Azizian, Pooya

    2016-03-01

    A microfluidic device is presented for creating double emulsions, controlling their sizes and also manipulating encapsulation processes. As a result of three immiscible liquids' interaction using dripping instability, double emulsions can be produced elegantly. Effects of dimensionless numbers are investigated which are Weber number of the inner phase (Wein), Capillary number of the inner droplet (Cain), and Capillary number of the outer droplet (Caout). They affect the formation process, inner and outer droplet size, and separation frequency. Direct numerical simulation of governing equations was done using volume of fluid method and adaptive mesh refinement technique. Two kinds of double emulsion formation, the two-step and the one-step, were simulated in which the thickness of the sheath of double emulsions can be adjusted. Altering each dimensionless number will change detachment location, outer droplet size and droplet formation period. Moreover, the decussate regime of the double-emulsion/empty-droplet is observed in low Wein. This phenomenon can be obtained by adjusting the Wein in which the maximum size of the sheath is discovered. Also, the results show that Cain has significant influence on the outer droplet size in the two-step process, while Caout affects the sheath in the one-step formation considerably.

  3. Microgravity as a tool for studies on emulsion stability

    NASA Astrophysics Data System (ADS)

    Liggieri, Libero; Ferrari, Michele; Passerone, Alberto; Ravera, Francesca; Loglio, Giuseppe; Pandolfini, Piero; Steinchen, Annie; Antoni, Michael; Sanfeld, Albert; Miller, Reinhard; Fainerman, Valentin B.; Grigoriev, Dmitri O.; Kovalchuk, Vladimir I.; Krägel, Jürgen; Makievski, Alexander V.; Clausse, Danièle; Komunjer, Ljepsa; Gomez, F.; Noik, Christine; Dalmazzone, Christine; di Lullo, Alberto; del Gaudio, Lucilla; Leser, Martin E.; Michel, Martin

    2005-10-01

    The definition of methodologies for the stabilisation or destabilisation of liquid disperse systems, such as foams and emulsions, is an important scientific and technological goal, with spin-offs for a vast number of technologies, processes and products. Progresses in this area require intensive investigation and modelling of the processes occurring on different timescales and dimensions: the physical chemistry of liquid interfaces and films, droplet interaction and internal dynamics of the emulsion. Through the damping of convection and the suppression of buoyancy, microgravity conditions provide unique opportunities for studies: a purely diffusive environment for the investigation of transport and adsorption of surface active molecules and the possibility of studying droplet coalescence and aggregation processes decoupled from sedimentation or creaming. The fundamental and Applied Studies in Emulsion Stability (FASES) MAP project was set up to study the links between the properties of droplet interfaces and films, and the basic mechanisms (aggregation and coalescence) involved in the destabilisation of emulsions. Key microgravity experiments will provide data and/or tests of the developed models, in conjunction with extensive ground investigations. To this end, two International Space Station facilities are under development: Facility for Adsorption and Surface Tension study (FASTER) to investigate the physical chemistry of the single interfaces and liquid-liquid films, and the FASES Experiment Container for the Fluid Science Laboratory to investigate emulsion dynamics and the drops interaction.

  4. Study on Formation of High Performance Ice Slurry by Emulsion in Ice Storage

    NASA Astrophysics Data System (ADS)

    Matsumoto, Koji; Oikawa, Ken; Okada, Masashi; Teraoka, Yoshikazu; Kawagoe, Tetsuo

    This study is focused on an emulsion as a new thermal storage material for ice storage. Two types of emulsions are made of oil-water mixture with a little additive. Oils used are silicone, light and lump oils. Water contents of emulsions are 70,80 and 90 %. The additive is amino group modified silicone oil, and there is no depression of freezing point for the emulsions because of its hydrophobic property. In order to know structures of emulsions, those electric resistances were measured. And components of liquids separating from emulsions were investigated. From above results, it was found that one was W/O type and the other was O/W type. And then, adaptability of two emulsions to the ice storage was discussed, and then, it was found that a high performance ice slurry could be formed by the W/O type emulsion.

  5. An update on safety and immunogenicity of vaccines containing emulsion-based adjuvants.

    PubMed

    Fox, Christopher B; Haensler, Jean

    2013-07-01

    With the exception of alum, emulsion-based vaccine adjuvants have been administered to far more people than any other adjuvant, especially since the 2009 H1N1 influenza pandemic. The number of clinical safety and immunogenicity evaluations of vaccines containing emulsion adjuvants has correspondingly mushroomed. In this review, the authors introduce emulsion adjuvant composition and history before detailing the most recent findings from clinical and postmarketing data regarding the effects of emulsion adjuvants on vaccine immunogenicity and safety, with emphasis on the most widely distributed emulsion adjuvants, MF59® and AS03. The authors also present a summary of other emulsion adjuvants in clinical development and indicate promising avenues for future emulsion-based adjuvant development. Overall, emulsion adjuvants have demonstrated potent adjuvant activity across a number of disease indications along with acceptable safety profiles.

  6. Fuel compositions

    SciTech Connect

    Zaweski, E.F.; Niebylski, L.M.

    1986-08-05

    This patent describes distillate fuel for indirect injection compression ignition engines containing, in an amount sufficient to minimize coking, especially throttling nozzle coking in the prechambers or swirl chambers of indirect injection compression ignition engines operated on such fuel, at least the combination of (i) organic nitrate ignition accelerator and (ii) an esterified cycle dehydration product of sorbitol which, when added to the fuel in combination with the organic nitrate ignition accelerator minimizes the coking.

  7. Fuel cells 101

    SciTech Connect

    Hirschenhofer, J.H.

    1999-07-01

    This paper discusses the various types of fuel cells, the importance of cell voltage, fuel processing for natural gas, cell stacking, fuel cell plant description, advantages and disadvantages of the types of fuel cells, and applications. The types covered include: polymer electrolyte fuel cell, alkaline fuel cell, phosphoric acid fuel cell; molten carbonate fuel cell, and solid oxide fuel cell.

  8. Motor fuel

    SciTech Connect

    Burns, L.D.

    1982-07-13

    Liquid hydrocarbon fuel compositions are provided containing antiknock quantities of ashless antiknock agents comprising selected furyl compounds including furfuryl alcohol, furfuryl amine, furfuryl esters, and alkyl furoates.

  9. Fuel dehazers

    SciTech Connect

    Lyons, W.R.

    1986-03-01

    Hazy fuels can be caused by the emulsification of water into the fuel during refining, blending, or transportation operations. Detergent additive packages used in gasoline tend to emulsify water into the fuel. Fuels containing water haze can cause corrosion and contamination, and support microbiological growth. This results in problems. As the result of these problems, refiners, marketers, and product pipeline companies customarily have haze specifications. The haze specification may be a specific maximum water content or simply ''bright and clear'' at a specified temperature.

  10. Alternative fuels

    SciTech Connect

    Not Available

    1991-07-01

    This paper presents the preliminary results of a review, of the experiences of Brazil, Canada, and New Zealand, which have implemented programs to encourage the use of alternative motor fuels. It will also discuss the results of a separate completed review of the Department of Energy's (DOE) progress in implementing the Alternative Motor Fuels Act of 1988. The act calls for, among other things, the federal government to use alternative-fueled vehicles in its fleet. The Persian Gulf War, environmental concerns, and the administration's National Energy Strategy have greatly heightened interest in the use of alternative fuels in this country.

  11. Glycerol: major contributor to the short term protein sparing effect of fat emulsions in normal man.

    PubMed

    Brennan, M F; Fitzpatrick, G F; Cohen, K H; Moore, F D

    1975-10-01

    Intravenous fat emulsions have been advocated as acceptable alternatives to hyperosmolar glucose solutions in parenteral nutrition. The ability of a fat emulsion (soy bean oil suspended in glycerol) to produce nitrogen sparing in the absence of nitrogen intake was examined in normal man. The protein conservation obtained by the fat emulsion can be duplicated by the infusion of glycerol alone in the same amount as that available from the fat emulsion.

  12. Rapid enumeration of phage in monodisperse emulsions.

    PubMed

    Tjhung, Katrina F; Burnham, Sean; Anany, Hany; Griffiths, Mansel W; Derda, Ratmir

    2014-06-17

    Phage-based detection assays have been developed for the detection of viable bacteria for applications in clinical diagnosis, monitoring of water quality, and food safety. The majority of these assays deliver a positive readout in the form of newly generated progeny phages by the bacterial host of interest. Progeny phages are often visualized as plaques, or holes, in a lawn of bacteria on an agar-filled Petri dish; however, this rate-limiting step requires up to 12 h of incubation time. We have previously described an amplification of bacteriophages M13 inside droplets of media suspended in perfluorinated oil; a single phage M13 in a droplet yields 10(7) copies in 3-4 h. Here, we describe that encapsulation of reporter phages, both lytic T4-LacZ and nonlytic M13, in monodisperse droplets can also be used for rapid enumeration of phage. Compartmentalization in droplets accelerated the development of the signal from the reporter enzyme; counting of "positive" droplets yields accurate enumeration of phage particles ranging from 10(2) to 10(6) pfu/mL. For enumeration of T4-LacZ phage, the fluorescent signal appeared in as little as 90 min. Unlike bulk assays, quantification in emulsion is robust and insensitive to fluctuations in environmental conditions (e.g., temperature). Power-free emulsification using gravity-driven flow in the absence of syringe pumps and portable fluorescence imaging solutions makes this technology promising for use at the point of care in low-resource environments. This droplet-based phage enumeration method could accelerate and simplify point-of-care detection of the pathogens for which reporter bacteriophages have been developed.

  13. The complexity of prescribing intravenous lipid emulsions.

    PubMed

    Waitzberg, Dan Linetzky; Torrinhas, Raquel Susana

    2015-01-01

    Intravenous lipid emulsions (LEs) are relevant for patients receiving parenteral nutrition because they prevent the depletion of essential fatty acids (FAs) and, as a highly dense energy source, enable the reduction of glucose provision, thereby decreasing the risks of hyperglycemia and hepatic impairment. The prescription of LEs is complex, due mainly to their distinct FA components, which may alter the immune response in different ways and distinctly influence inflammation, oxidative stress and blood coagulation according to their biochemical properties. In addition, an excess of other LE components, such as phospholipids and phytosterols, may be associated with hepatic steatosis and dysfunction. These associations do not represent direct risks or obstacles to LE use in metabolically stable patients but can render the choice of the best LE for hypermetabolic patients difficult. The infusion of LEs according to the available guidelines provides more benefit than harm and should be part of exclusive parenteral nutrition regimens or complement enteral nutrition when appropriate. The patient's metabolic profile should guide the type of FA and amount of lipids that are provided. For critically ill hypermetabolic patients, growing evidence indicates that standard LEs based solely on soybean oil should be avoided in favor of new LEs containing medium-chain triglycerides, olive oil, or fish oil to decrease the provision of potentially oxidative, inflammatory/immunosuppressive, and prothrombotic n-6 FAs. In addition, as sources of eicosapentaenoic and docosahexaenoic acids, LEs containing fish oil may be important for critically ill patients because they allow better modulation of the immune response and likely reduce the length of intensive care unity stay. However, current evidence precludes the recommendation of a specific LE for clinical use in this patient population.

  14. Shear dynamics of an inverted nematic emulsion.

    PubMed

    Tiribocchi, A; Da Re, M; Marenduzzo, D; Orlandini, E

    2016-10-04

    Here we study theoretically the dynamics of a 2D and a 3D isotropic droplet in a nematic liquid crystal under a shear flow. We find a large repertoire of possible nonequilibrium steady states as a function of the shear rate and of the anchoring of the nematic director field at the droplet surface. We first discuss homeotropic anchoring. For weak anchoring, we recover the typical behaviour of a sheared isotropic droplet in a binary fluid, which rotates, stretches and can be broken by the applied flow. For intermediate anchoring, new possibilities arise due to elastic effects in the nematic fluid. We find that in this regime the 2D droplet can tilt and move in the flow, or tumble incessantly at the centre of the channel. For sufficiently strong anchoring, finally, one or both of the topological defects which form close to the surface of the isotropic droplet in equilibrium detach from it and get dragged deep into the nematic state by the flow. In 3D, instead, the Saturn ring associated with the normal anchoring disclination line can be deformed and shifted downstream by the flow, but remains always localized in the proximity of the droplet, at least for the parameter range we explored. Tangential anchoring in 2D leads to a different dynamic response, as the boojum defects characteristic of this situation can unbind from the droplet under a weaker shear with respect to the normal anchoring case. Our results should stimulate further experiments with inverted liquid crystal emulsions under shear, as most of the predictions can be testable in principle by monitoring the evolution of liquid crystalline orientation patterns or by tracking the position and shape of the droplet over time.

  15. Automated Track Recognition and Event Reconstruction in Nuclear Emulsion

    NASA Technical Reports Server (NTRS)

    Deines-Jones, P.; Cherry, M. L.; Dabrowska, A.; Holynski, R.; Jones, W. V.; Kolganova, E. D.; Kudzia, D.; Nilsen, B. S.; Olszewski, A.; Pozharova, E. A.; Sengupta, K.; Szarska, M.; Trzupek, A.; Waddington, C, J.; Wefel, J. P.; Wilczynska, B.; Wilczynski, H.; Wolter, W.; Wosiek, B.; Wozniak, K.

    1998-01-01

    The major advantages of nuclear emulsion for detecting charged particles are its submicron position resolution and sensitivity to minimum ionizing particles. These must be balanced, however, against the difficult manual microscope measurement by skilled observers required for the analysis. We have developed an automated system to acquire and analyze the microscope images from emulsion chambers. Each emulsion plate is analyzed independently, allowing coincidence techniques to be used in order to reject back- ground and estimate error rates. The system has been used to analyze a sample of high-multiplicity Pb-Pb interactions (charged particle multiplicities approx. 1100) produced by the 158 GeV/c per nucleon Pb-208 beam at CERN. Automatically reconstructed track lists agree with our best manual measurements to 3%. We describe the image analysis and track reconstruction techniques, and discuss the measurement and reconstruction uncertainties.

  16. High speed automated microtomography of nuclear emulsions and recent application

    SciTech Connect

    Tioukov, V.; Aleksandrov, A.; Consiglio, L.; De Lellis, G.; Vladymyrov, M.

    2015-12-31

    The development of high-speed automatic scanning systems was the key-factor for massive and successful emulsions application for big neutrino experiments like OPERA. The emulsion detector simplicity, the unprecedented sub-micron spatial resolution and the unique ability to provide intrinsically 3-dimensional spatial information make it a perfect device for short-living particles study, where the event topology should be precisely reconstructed in a 10-100 um scale vertex region. Recently the exceptional technological progress in image processing and automation together with intensive R&D done by Italian and Japanese microscopy groups permit to increase the scanning speed to unbelievable few years ago m{sup 2}/day scale and so greatly extend the range of the possible applications for emulsion-based detectors to other fields like: medical imaging, directional dark matter search, nuclear physics, geological and industrial applications.

  17. Processable high internal phase Pickering emulsions using depletion attraction.

    PubMed

    Kim, KyuHan; Kim, Subeen; Ryu, Jiheun; Jeon, Jiyoon; Jang, Se Gyu; Kim, Hyunjun; Gweon, Dae-Gab; Im, Won Bin; Han, Yosep; Kim, Hyunjung; Choi, Siyoung Q

    2017-02-01

    High internal phase emulsions have been widely used as templates for various porous materials, but special strategies are required to form, in particular, particle-covered ones that have been more difficult to obtain. Here, we report a versatile strategy to produce a stable high internal phase Pickering emulsion by exploiting a depletion interaction between an emulsion droplet and a particle using water-soluble polymers as a depletant. This attractive interaction facilitating the adsorption of particles onto the droplet interface and simultaneously suppressing desorption once adsorbed. This technique can be universally applied to nearly any kind of particle to stabilize an interface with the help of various non- or weakly adsorbing polymers as a depletant, which can be solidified to provide porous materials for many applications.

  18. Emulsion liquid membrane for textile dye removal: Stability study

    NASA Astrophysics Data System (ADS)

    Kusumastuti, Adhi; Syamwil, Rodia; Anis, Samsudin

    2017-03-01

    Although textile dyes is basically available in very low concentration; it should be removed due to the toxicity to human body and environment. Among the existing methods, emulsion liquid membrane (ELM) is a promising method by providing high interfacial area and the ability to remove a very low concentration of the solute. The optimal emulsions were produced using commercially supplied homogeniser. The drop size was measured by the aid of microscope and image J software. Initially, methylene blue in simulated wastewater was extracted using a stirrer. Methylene blue concentration was determined using spectrophotometer. The research obtained optimal emulsion at surfactant concentration of 4 wt. %, kerosene as diluent, emulsification time of 30 min, emulsification speed of 2000 rpm. The lowest membrane breakage and the longest stability time were about 0.11% and 150 min, respectively.

  19. Sensitivities of droplet size and stability in monomeric emulsions

    SciTech Connect

    Fontenot, K.; Schork, F.J. )

    1993-02-01

    The stability of a monomeric emulsion is directly dependent on the size of the monomer droplets. The droplet diameter is in turn significantly influenced by a variety of parameters. Both size and stability are important when emulsions consisting of small droplets are polymerized. These parameters were studied for the monomer methyl methacrylate, although the monomers styrene and vinyl acetate were also considered. Conductance was developed as a predictive tool for providing a measurement of emulsion stability. These indications were verified by shelf life stabilities and droplet size measurements. The key parameters which affect size and stability were found to be cosurfactant concentration and monomer water solubility. Coalescence was found to play an important role in stability as well.

  20. Synthesis of Fluorosurfactants for Emulsion-Based Biological Applications

    PubMed Central

    2015-01-01

    Microemulsion represents an attractive platform for fundamental and applied biomedical research because the emulsified droplets can serve as millions of compartmentalized micrometer-sized reactors amenable to high-throughput screening or online monitoring. However, establishing stable emulsions with surfactants that are compatible with biological applications remains a significant challenge. Motivated by the lack of commercially available surfactants suitable for microemulsion-based biological assays, this study describes the facile synthesis of a biocompatible fluorosurfactant with nonionic tris(hydroxymethyl)methyl (Tris) polar head groups. We have further demonstrated compatibility of the developed surfactant with diverse emulsion-based applications, including DNA polymeric nanoparticle synthesis, enzymatic activity assay, and bacterial or mammalian cell culture, in the setup of both double- and multiphases of emulsions. PMID:24646088

  1. Processable high internal phase Pickering emulsions using depletion attraction

    NASA Astrophysics Data System (ADS)

    Kim, Kyuhan; Kim, Subeen; Ryu, Jiheun; Jeon, Jiyoon; Jang, Se Gyu; Kim, Hyunjun; Gweon, Dae-Gab; Im, Won Bin; Han, Yosep; Kim, Hyunjung; Choi, Siyoung Q.

    2017-02-01

    High internal phase emulsions have been widely used as templates for various porous materials, but special strategies are required to form, in particular, particle-covered ones that have been more difficult to obtain. Here, we report a versatile strategy to produce a stable high internal phase Pickering emulsion by exploiting a depletion interaction between an emulsion droplet and a particle using water-soluble polymers as a depletant. This attractive interaction facilitating the adsorption of particles onto the droplet interface and simultaneously suppressing desorption once adsorbed. This technique can be universally applied to nearly any kind of particle to stabilize an interface with the help of various non- or weakly adsorbing polymers as a depletant, which can be solidified to provide porous materials for many applications.

  2. Anionic Emulsion-Mediated Synthesis of Zeolite Beta

    NASA Astrophysics Data System (ADS)

    Jin, Chao; Zhang, Ying; Gao, Wei; Cui, Lishan

    Well-crystallized zeolite beta is first synthesized in the anionic emulsion systems of cyclohexane/sodium dodecylbenzenesulfonate(SDBS)/pentanol/zeolite synthesis mixture. Beta materials are then characterized by XRD, SEM, and N2-adsorption techniques. Compared to beta samples grown using the same synthesis mixture in the absence of the anionic emulsion, the as-synthesized beta presents uniform and well-defined larger crystals. Interestingly, N2-adsorption results show that such beta sample possesses both ordered mesopores at 3.9 nm and macropores centered at 60.5 nm. These pores combined with the intricate micropores of the Beta crystal comprise the hierarchical porosity. The hierarchical pore-structured zeolite beta may have potential catalysis application in reactions involving large molecules. Additionally, control experiments are also performed to ascertain the effects of the individual emulsion components. Further synthesis study finds the transformation of zeolite beta to ZSM-5 through increasing oil contents, crystallization temperature and time.

  3. Fat emulsion for intravenous administration: clinical experience with intralipid 10%.

    PubMed Central

    Hansen, L M; Hardie, B S; Hidalgo, J

    1976-01-01

    A 10% soybean oil emulsion (Intralipid 10%), used extensively in Europe for intravenous alimentation, has now been clinically evaluated in the United States. Controlled studies have shown that the soybean oil emulsion can be substituted for glucose to supply one-third to two-thirds of the total calories, and can be administered peripherally without significant vein irritation. Essential fatty acid deficiencies, frequently encountered in patients dependent on parenteral alimentation with fat-free solutions, are prevented and corrected by use of this preparation. Data on long-term tolerance to Intralipid 10% infusions are presented for 292 patients treated for more than 6,000 patient days. The soybean oil emulsion was usually well tolerated. Side effects were reported in two of 133 adults and 12 of 159 pediatric patients. PMID:820291

  4. Real time study of development process in holographic emulsions

    NASA Astrophysics Data System (ADS)

    Fimia, A.; Blaya, S.; Carretero, L.; Madrigal, R. F.; Mallavia, R.

    2000-01-01

    In this paper we present the theoretical and experimental study using a real time technique for the measurement of the optical density when the emulsion is developing. Good agreement was observed between theory and experiment. We exposed an Agfa Gevaert 8E56HD emulsion with an Argon laser tuned at 514 nm and we measured the variation in optical density when the emulsion was put into the developer bath at 20°C. This method allows us to study the dynamics of different developers at different energy of storage. It also provides a way to optimize the composition of developers as a function of the chemical composition, temperature and other secondary factors as superadditivity and non-linear processes.

  5. Parenteral nutrition-associated liver disease and lipid emulsions.

    PubMed

    Zugasti Murillo, Ana; Petrina Jáuregui, Estrella; Elizondo Armendáriz, Javier

    2015-01-01

    Parenteral nutrition-associated liver disease (PNALD) is a particularly important problem in patients who need this type of nutritional support for a long time. Prevalence of the condition is highly variable depending on the series, and its clinical presentation is different in adults and children. The etiology of PNALD is not well defined, and participation of several factors at the same time has been suggested. When a bilirubin level >2 mg/dl is detected for a long time, other causes of liver disease should be ruled out and risk factors should be minimized. The composition of lipid emulsions used in parenteral nutrition is one of the factors related to PNALD. This article reviews the different types of lipid emulsions and the potential benefits of emulsions enriched with omega-3 fatty acids. Copyright © 2014 SEEN. Published by Elsevier España, S.L.U. All rights reserved.

  6. Janus emulsion mediated porous scaffold bio-fabrication.

    PubMed

    Kovach, Ildiko; Rumschöttel, Jens; Friberg, Stig E; Koetz, Joachim

    2016-09-01

    A three dimensional biopolymer network structure with incorporated nano-porous calcium phosphate (CaP) balls was fabricated by using gelatin-chitosan (GC) polymer blend and GC stabilized olive/silicone oil Janus emulsions, respectively. The emulsions were freeze-dried, and the oil droplets were washed out in order to prepare porous scaffolds with larger surface area. The morphology, pore size, chemical composition, thermal and swelling behavior was studied by Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR) and micro-Differential Scanning Calorimetry (micro-DSC). Microscopic analysis confirmed that the pore size of the GC based sponges after freeze-drying may be drastically reduced by using Janus emulsions. Besides, the incorporation of nanoporous calcium phosphate balls is also lowering the pore size and enhancing thermal stability. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Processable high internal phase Pickering emulsions using depletion attraction

    PubMed Central

    Kim, KyuHan; Kim, Subeen; Ryu, Jiheun; Jeon, Jiyoon; Jang, Se Gyu; Kim, Hyunjun; Gweon, Dae-Gab; Im, Won Bin; Han, Yosep; Kim, Hyunjung; Choi, Siyoung Q.

    2017-01-01

    High internal phase emulsions have been widely used as templates for various porous materials, but special strategies are required to form, in particular, particle-covered ones that have been more difficult to obtain. Here, we report a versatile strategy to produce a stable high internal phase Pickering emulsion by exploiting a depletion interaction between an emulsion droplet and a particle using water-soluble polymers as a depletant. This attractive interaction facilitating the adsorption of particles onto the droplet interface and simultaneously suppressing desorption once adsorbed. This technique can be universally applied to nearly any kind of particle to stabilize an interface with the help of various non- or weakly adsorbing polymers as a depletant, which can be solidified to provide porous materials for many applications. PMID:28145435

  8. [Gel-emulsion systems. I. Physical-chemical characterisation].

    PubMed

    Szucs, Mária; Budai, Szabolcs; Eros, István

    2008-01-01

    Emulsion gels prepared with polyacrylic acid-alkyl acrylate diblock copolymer surfactants were studied. It was supposed that the polymer surfactants surrounding the oil droplets formed a microgel structure and this structure stabilized the emulsions sterically. This assumption was verified by thermoanalytic investigation. The effect of polymer concentration and the amount of oil on the rheological characteristics, the rate of water evaporation and droplet size distribution was analysed. It was established that gel emulsions had viscoelastic the properties, the viscosity increased exponentially with increasing emulsifier concentration and amount of oil. Water was present in two forms: i) in microgel surrounding oil droplets and ii) in dispersion medium. The distribution of droplet size was generally a monodisperse one, the average droplet size decreased with polymer concentration.

  9. High speed automated microtomography of nuclear emulsions and recent application

    NASA Astrophysics Data System (ADS)

    Tioukov, V.; Aleksandrov, A.; Consiglio, L.; De Lellis, G.; Vladymyrov, M.

    2015-12-01

    The development of high-speed automatic scanning systems was the key-factor for massive and successful emulsions application for big neutrino experiments like OPERA. The emulsion detector simplicity, the unprecedented sub-micron spatial resolution and the unique ability to provide intrinsically 3-dimensional spatial information make it a perfect device for short-living particles study, where the event topology should be precisely reconstructed in a 10-100 um scale vertex region. Recently the exceptional technological progress in image processing and automation together with intensive R&D done by Italian and Japanese microscopy groups permit to increase the scanning speed to unbelievable few years ago m2/day scale and so greatly extend the range of the possible applications for emulsion-based detectors to other fields like: medical imaging, directional dark matter search, nuclear physics, geological and industrial applications.

  10. Flocculation of protein-stabilized oil-in-water emulsions.

    PubMed

    Dickinson, Eric

    2010-11-01

    The flocculation properties of oil-in-water emulsions stabilized by proteins are reviewed from the colloid science perspective. Emphasis is placed on insight from systematic studies of the stability of emulsions prepared with a milk protein ingredient as the sole emulsifying agent. The main factors considered are pH, ionic strength, calcium ion concentration, thermal processing, and the presence of cosolutes (alcohol, sugars). Contrasting dependences of the flocculation behaviour on these factors are observed for the pH-sensitive disordered caseins (alpha(s1)-casein or beta-casein) and the heat-sensitive globular proteins (especially beta-lactoglobulin). In comparing characteristic emulsion properties obtained with different proteins, we consider the relative importance of the different kinds of molecular and colloidal interactions-electrostatic, steric, hydrophobic and covalent.

  11. Arrested of coalescence of emulsion droplets of arbitrary size

    NASA Astrophysics Data System (ADS)

    Mbanga, Badel L.; Burke, Christopher; Blair, Donald W.; Atherton, Timothy J.

    2013-03-01

    With applications ranging from food products to cosmetics via targeted drug delivery systems, structured anisotropic colloids provide an efficient way to control the structure, properties and functions of emulsions. When two fluid emulsion droplets are brought in contact, a reduction of the interfacial tension drives their coalescence into a larger droplet of the same total volume and reduced exposed area. This coalescence can be partially or totally hindered by the presence of nano or micron-size particles that coat the interface as in Pickering emulsions. We investigate numerically the dependance of the mechanical stability of these arrested shapes on the particles size, their shape anisotropy, their polydispersity, their interaction with the solvent, and the particle-particle interactions. We discuss structural shape changes that can be induced by tuning the particles interactions after arrest occurs, and provide design parameters for the relevant experiments.

  12. Destabilising Pickering emulsions by drop flocculation and adhesion.

    PubMed

    Whitby, Catherine P; Khairul Anwar, Hunainah; Hughes, James

    2016-03-01

    We have investigated how emulsions of water drops coated by organoclay particles destabilise in organic solvents. The drops destabilise and the emulsions undergo a fluid-solid transition if the particles are poorly wetted by the solvent. We show that the drops adhere together and form three-dimensional networks as the fraction of the poor-quality solvent in the mixture increases. Microscopic observations revealed that the drops coalesce into buckled, non-spherical shapes in mixtures rich in poor-quality solvent. A key finding is that destabilisation is favoured under conditions where the energy of adhesion between the particle layers coating drops is comparable to the energy required to detach the particles from the drops. Rupture of the interfacial layer produces particle flocs and uncoated, unstable water drops that settle out of the emulsion.

  13. Nonlinear Dynamic Characteristics of Oil-in-Water Emulsions

    NASA Astrophysics Data System (ADS)

    Yin, Zhaoqi; Han, Yunfeng; Ren, Yingyu; Yang, Qiuyi; Jin, Ningde

    2016-08-01

    In this article, the nonlinear dynamic characteristics of oil-in-water emulsions under the addition of surfactant were experimentally investigated. Firstly, based on the vertical upward oil-water two-phase flow experiment in 20 mm inner diameter (ID) testing pipe, dynamic response signals of oil-in-water emulsions were recorded using vertical multiple electrode array (VMEA) sensor. Afterwards, the recurrence plot (RP) algorithm and multi-scale weighted complexity entropy causality plane (MS-WCECP) were employed to analyse the nonlinear characteristics of the signals. The results show that the certainty is decreasing and the randomness is increasing with the increment of surfactant concentration. This article provides a novel method for revealing the nonlinear dynamic characteristics, complexity, and randomness of oil-in-water emulsions with experimental measurement signals.

  14. Behavior of Malondialdehyde in Oil-in-Water Emulsions.

    PubMed

    Vandemoortele, Angelique; De Meulenaer, Bruno

    2015-06-17

    The impact of temperature, emulsifier, and protein type on the reactivity of malondialdehyde in oil-in-water emulsions was elucidated. Malondialdehyde recoveries in aqueous buffer, protein solutions, saturated oil, and fully hydrogenated coconut oil-in-water emulsions stabilized by whey proteins or Tween 20 at 4 or 40 °C were compared. At both temperatures, the reactivity of malondialdehyde in aqueous buffer was the same. In protein solutions, malondialdehyde concentrations were reduced further and its decrease was protein-dependent. Similar trends were found for emulsions. Surprisingly, malondialdehyde was very reactive in saturated oil because only 15% was recovered at 40 °C. However, the degradation in oil proved to be strongly temperature-dependent; at 4 °C, losses amounted to only 8%. This study revealed that malondialdehyde is a very reactive molecule, both in the presence and absence of proteins. Its use as a general oxidation marker should therefore be considered with care.

  15. Electrochemical Stimulated Pickering Emulsion for Recycling of Enzyme in Biocatalysis.

    PubMed

    Peng, Liao; Feng, Anchao; Liu, Senyang; Huo, Meng; Fang, Tommy; Wang, Ke; Wei, Yen; Wang, Xiaosong; Yuan, Jinying

    2016-11-02

    Potential-stimulated Pickering emulsions, using electrochemical responsive microgels as particle stabilizers, are prepared and used for biocatalysis. The microgels are constructed from cyclodextrin functionalized 8-arm poly(ethylene glycol) (8A PEG-CD) and ferrocene modified counterparts (8A PEG-Fc) via CD/Fc host-guest chemistry. Taking advantage of the redox reaction of Fc, the formation and deformation of the microgels and corresponding Pickering emulsions can be reversibly stimulated by external potential, and have been used for the hydrolysis of triacetin and kinetic resolution reaction of (R,S)-1-phenylethanol catalyzed by lipases. Potential stimulated destabilization of the emulsion realizes an effective separation of the products and enzyme recycling.

  16. Influence of thickness in the holographic emulsion composed by rosin and BPB dye

    NASA Astrophysics Data System (ADS)

    Ibarra, Juan C.; Ortiz-Gutierrez, Mauricio; Olivares-Perez, Arturo; Perez-Cortes, Mario

    2004-10-01

    We analyze diffraction gratings behavior recorded on a phase holographic emulsion. This emulsion is composed with resin and bromophenol blue dye (BPB) they have a diffraction efficiency (η) from 0.22 to 0.615% order, and their thickness are different in the holographic emulsion.

  17. 40 CFR 443.10 - Applicability; description of the asphalt emulsion subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... asphalt emulsion subcategory. 443.10 Section 443.10 Protection of Environment ENVIRONMENTAL PROTECTION... ROOFING MATERIALS (TARS AND ASPHALT) POINT SOURCE CATEGORY Asphalt Emulsion Subcategory § 443.10 Applicability; description of the asphalt emulsion subcategory. The provisions of this subpart are applicable to...

  18. 40 CFR 443.10 - Applicability; description of the asphalt emulsion subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... asphalt emulsion subcategory. 443.10 Section 443.10 Protection of Environment ENVIRONMENTAL PROTECTION... ROOFING MATERIALS (TARS AND ASPHALT) POINT SOURCE CATEGORY Asphalt Emulsion Subcategory § 443.10 Applicability; description of the asphalt emulsion subcategory. The provisions of this subpart are applicable to...

  19. 40 CFR 443.10 - Applicability; description of the asphalt emulsion subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... asphalt emulsion subcategory. 443.10 Section 443.10 Protection of Environment ENVIRONMENTAL PROTECTION... ROOFING MATERIALS (TARS AND ASPHALT) POINT SOURCE CATEGORY Asphalt Emulsion Subcategory § 443.10 Applicability; description of the asphalt emulsion subcategory. The provisions of this subpart are applicable to...

  20. 40 CFR 428.20 - Applicability; description of the emulsion crumb rubber subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... emulsion crumb rubber subcategory. 428.20 Section 428.20 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS RUBBER MANUFACTURING POINT SOURCE CATEGORY Emulsion Crumb Rubber Subcategory § 428.20 Applicability; description of the emulsion crumb rubber...

  1. 40 CFR 428.20 - Applicability; description of the emulsion crumb rubber subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... emulsion crumb rubber subcategory. 428.20 Section 428.20 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) RUBBER MANUFACTURING POINT SOURCE CATEGORY Emulsion Crumb Rubber Subcategory § 428.20 Applicability; description of the emulsion crumb...

  2. 40 CFR 428.20 - Applicability; description of the emulsion crumb rubber subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... emulsion crumb rubber subcategory. 428.20 Section 428.20 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) RUBBER MANUFACTURING POINT SOURCE CATEGORY Emulsion Crumb Rubber Subcategory § 428.20 Applicability; description of the emulsion crumb...

  3. 40 CFR 428.20 - Applicability; description of the emulsion crumb rubber subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... emulsion crumb rubber subcategory. 428.20 Section 428.20 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) RUBBER MANUFACTURING POINT SOURCE CATEGORY Emulsion Crumb Rubber Subcategory § 428.20 Applicability; description of the emulsion crumb...

  4. 40 CFR 428.20 - Applicability; description of the emulsion crumb rubber subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... emulsion crumb rubber subcategory. 428.20 Section 428.20 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS RUBBER MANUFACTURING POINT SOURCE CATEGORY Emulsion Crumb Rubber Subcategory § 428.20 Applicability; description of the emulsion crumb rubber...

  5. 40 CFR 443.10 - Applicability; description of the asphalt emulsion subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... asphalt emulsion subcategory. 443.10 Section 443.10 Protection of Environment ENVIRONMENTAL PROTECTION... MATERIALS (TARS AND ASPHALT) POINT SOURCE CATEGORY Asphalt Emulsion Subcategory § 443.10 Applicability; description of the asphalt emulsion subcategory. The provisions of this subpart are applicable to...

  6. 40 CFR 443.10 - Applicability; description of the asphalt emulsion subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... asphalt emulsion subcategory. 443.10 Section 443.10 Protection of Environment ENVIRONMENTAL PROTECTION... MATERIALS (TARS AND ASPHALT) POINT SOURCE CATEGORY Asphalt Emulsion Subcategory § 443.10 Applicability; description of the asphalt emulsion subcategory. The provisions of this subpart are applicable to...

  7. SAFETY AND UTILITY OF I.V. FAT EMULSION FOR HUMAN INTRAVENOUS ADMINISTRATION.

    DTIC Science & Technology

    The initial clinical experiences of our group with a European fat emulsion called Intralipid is reported. This emulsion is composed of soy bean oil...failed to show correlation between febrile response and rapidity with which clearing of the emulsion occurred. It is concluded that Intralipid is not a safe or suitable product for routine clinical use. (Author)

  8. Properties and oxidative stability of emulsions prepared with myofibrillar protein and lard diacylglycerols.

    PubMed

    Diao, Xiaoqin; Guan, Haining; Zhao, Xinxin; Chen, Qian; Kong, Baohua

    2016-05-01

    The objective of this study was to investigate the emulsifying properties and oxidative stability of emulsions prepared with porcine myofibrillar proteins (MPs) and different lipids, including lard, glycerolized lard (GL) and purified glycerolized lard (PGL). The GL and PGL emulsions had significantly higher emulsifying activity indices and emulsion stability indices than the lard emulsion (P<0.05). The PGL emulsion presented smaller droplet sizes, thus decreasing particle aggregation and improving emulsion stability. The static and dynamic rheological observations of the emulsions showed that the emulsions had pseudo-plastic behavior, and the PGL emulsion presented a larger viscosity and a higher storage modulus (G') and loss modulus (G'') compared with the other two emulsions (P<0.05). The formation of thiobarbituric acid-reactive substances, carbonyl contents and total sulfhydryl contents was not significantly different between the emulsions with PGL, GL and lard (P<0.05). In general, lard diacylglycerols enhanced emulsifying abilities and had no adverse effects on the oxidation stability of the emulsions prepared with MPs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. 40 CFR 467.60 - Applicability; description of the drawing with emulsions or soaps subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... drawing with emulsions or soaps subcategory. 467.60 Section 467.60 Protection of Environment ENVIRONMENTAL... Drawing With Emulsions or Soaps Subcategory § 467.60 Applicability; description of the drawing with emulsions or soaps subcategory. This subpart applies to discharges of pollutants to waters of the United...

  10. 40 CFR 467.60 - Applicability; description of the drawing with emulsions or soaps subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... drawing with emulsions or soaps subcategory. 467.60 Section 467.60 Protection of Environment ENVIRONMENTAL... CATEGORY Drawing With Emulsions or Soaps Subcategory § 467.60 Applicability; description of the drawing with emulsions or soaps subcategory. This subpart applies to discharges of pollutants to waters of the...

  11. 40 CFR 467.60 - Applicability; description of the drawing with emulsions or soaps subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... drawing with emulsions or soaps subcategory. 467.60 Section 467.60 Protection of Environment ENVIRONMENTAL... CATEGORY Drawing With Emulsions or Soaps Subcategory § 467.60 Applicability; description of the drawing with emulsions or soaps subcategory. This subpart applies to discharges of pollutants to waters of the...

  12. 40 CFR 467.60 - Applicability; description of the drawing with emulsions or soaps subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... drawing with emulsions or soaps subcategory. 467.60 Section 467.60 Protection of Environment ENVIRONMENTAL... Drawing With Emulsions or Soaps Subcategory § 467.60 Applicability; description of the drawing with emulsions or soaps subcategory. This subpart applies to discharges of pollutants to waters of the United...

  13. 40 CFR 467.60 - Applicability; description of the drawing with emulsions or soaps subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... drawing with emulsions or soaps subcategory. 467.60 Section 467.60 Protection of Environment ENVIRONMENTAL... CATEGORY Drawing With Emulsions or Soaps Subcategory § 467.60 Applicability; description of the drawing with emulsions or soaps subcategory. This subpart applies to discharges of pollutants to waters of the...

  14. Increased bioavailability of a transdermal application of a nano-sized emulsion preparation.

    PubMed

    Kotyla, T; Kuo, F; Moolchandani, V; Wilson, T; Nicolosi, R

    2008-01-22

    The aim of this study was to compare the transdermal application of a nano-sized emulsion versus a micron-sized emulsion preparation of delta tocopherol as it relates to particle size and bioavailability. Two separate experiments were performed using seven F1B Syrian Golden hamsters, 1 week apart. Each emulsion preparation consisted of canola oil, polysorbate 80, deionized water and delta tocopherol; the only difference between the two preparations was processing the nano-sized emulsion with the Microfluidizer Processor. Both were formulated into a cream and applied to the shaven dorsal area. The particle size of the micron-sized emulsion preparation was 2788 nm compared to 65 nm for the nano-sized emulsion formulation. Two hours post-application, hamsters that were applied the nano-sized emulsion had a 36-fold significant increase of plasma delta tocopherol, where as hamsters that were applied the micron-sized emulsion only had a 9-fold significant increase, compared to baseline, respectively. At 3h post-application, plasma delta tocopherol had significantly increased 68-fold for hamsters applied the nano-sized emulsion, whereas only an 11-fold significant increase was observed in hamsters applied the micron-sized emulsion, compared to baseline, respectively. Significant differences were also observed between the nano-sized and micron-sized emulsion at 2 and 3h post-application. This study suggests that nano-sized emulsions significantly increase the bioavailability of transdermally applied delta tocopherol.

  15. Adsorption of the Three-phase Emulsion on Various Solid Surfaces.

    PubMed

    Enomoto, Yasutaka; Imai, Yoko; Tajima, Kazuo

    2017-07-01

    The present study investigates the adsorption of the three-phase emulsion on various solid/water interfaces. Vesicles can be used as emulsifiers in the three-phase emulsions and act as an independent phase unlike the surfactant used in conventional emulsions; therefore, it is expected that the three-phase emulsion formed by the adhesion of vesicles to the oil/water interface will adsorb on various solid/water interfaces. The cationic three-phase emulsion was prepared to encourage emulsion adsorption on negatively charged solid substrates in water. The emulsifier polyoxyethylene-(10) hydrogenated castor oil was rendered cationic by mixing with the surfactant cetyltrimethylammonium bromide and then used to prepare the cationic three-phase emulsion of hexadecane-in-water. Three solid substrates (silicon, glass, and copper) were dipped in the cationic emulsion and the emulsion was found to adsorb on the solid substrates while maintaining its structure. The amount of hexadecane adsorbed on the various surfaces was investigated by gas chromatography and found to increase with increasing hexadecane concentration in the emulsion and eventually plateaued just like molecular adsorption. The maximum surface coverage of the emulsion on the substrates was approximately 80%. However, even the equivalent nonionic three-phase emulsion was found to adsorb on the three solid surfaces. This was attributed to a novel mechanism of irreversible adhesion via the van der Waals attractive force.

  16. Dynamics of water separation in destruction of water-in-oil emulsions

    NASA Astrophysics Data System (ADS)

    Kuzmenko, E. A.; Usheva, N. V.; Moyzes, O. E.; Polyakova, K. A.

    2016-09-01

    The dynamics of drop formation and settling processes in breaking water-in-oil emulsions of the West Siberian oil fields was experimentally studied. The investigation results of drop formation in the water-in-oil emulsions were presented. The residual water content in oil was determined after the settling process at the varied initial water content, temperature, and hydrodynamic conditions of emulsion formation.

  17. Evaporation of Particle-Stabilized Emulsion Sunscreen Films.

    PubMed

    Binks, Bernard P; Fletcher, Paul D I; Johnson, Andrew J; Marinopoulos, Ioannis; Crowther, Jonathan M; Thompson, Michael A

    2016-08-24

    We recently showed (Binks et al., ACS Appl. Mater. Interfaces, 2016, DOI: 10.1021/acsami.6b02696) how evaporation of sunscreen films consisting of solutions of molecular UV filters leads to loss of UV light absorption and derived sun protection factor (SPF). In the present work, we investigate evaporation-induced effects for sunscreen films consisting of particle-stabilized emulsions containing a dissolved UV filter. The emulsions contained either droplets of propylene glycol (PG) in squalane (SQ), droplets of SQ in PG or droplets of decane in PG. In these different emulsion types, the SQ is involatile and shows no evaporation, the PG is volatile and evaporates relatively slowly, whereas the decane is relatively very volatile and evaporates quickly. We have measured the film mass and area, optical micrographs of the film structure, and the UV absorbance spectra during evaporation. For emulsion films containing the involatile SQ, evaporation of the PG causes collapse of the emulsion structure with some loss of specular UV absorbance due to light scattering. However, for these emulsions with droplets much larger than the wavelength of light, the light is scattered only at small forward angles so does not contribute to the diffuse absorbance and the film SPF. The UV filter remains soluble throughout the evaporation and thus the UV absorption by the filter and the SPF remain approximately constant. Both PG-in-SQ and SQ-in-PG films behave similarly and do not show area shrinkage by dewetting. In contrast, the decane-in-PG film shows rapid evaporative loss of the decane, followed by slower loss of the PG resulting in precipitation of the UV filter and film area shrinkage by dewetting which cause the UV absorbance and derived SPF to decrease. Measured UV spectra during evaporation are in reasonable agreement with spectra calculated using models discussed here.

  18. Lipid composition and structure of commercial parenteral emulsions.

    PubMed

    Férézou, J; Nguyen, T L; Leray, C; Hajri, T; Frey, A; Cabaret, Y; Courtieu, J; Lutton, C; Bach, A C

    1994-07-14

    In order to study the influence of the phospholipid/triacylglycerol (PL/TG) ratio of parenteral emulsions on the distribution and the physico-chemical properties of their fat particles, commercial 10, 20 or 30% fat formulas were fractionated by centrifugation into an upper lipid cake (resuspended in aqueous glycerol) and a subnatant or mesophase, from which a PL-rich subfraction (d = 1.010-1.030 g/l) was purified by density gradient ultracentrifugation. Chemical and 31P-NMR analyses of these fractions indicated that at least two types of fat particles coexist in parenteral emulsions: (i) TG-rich particles (mean diameter: 330, 400, 470 nm in the 10, 20, 30% emulsion) which contain practically all the TG and esterified phytosterols of native emulsions, but only a fraction of their PL, unesterified cholesterol and phytosterols, and other minor lipids; (ii) PL-bilayer particles or liposomes (mean diameter: 80-100 nm) which are constituted with the remaining PL and relatively very small amounts of TG and other lipids. The higher the oil content of the emulsion, the lower the amount of these PL-rich particles, which represent the major particle population of the mesophase. Indeed, minute amounts of TG-rich particles (probably the smallest ones) are also present in the mesophase, even in the PL-rich subfraction which contains the bulk of liposomal PL. Since the PL-rich particles of the infused emulsion generate lipoprotein X-like particles, only the large TG-rich particles can be considered as true chylomicron counterparts.

  19. Emulsion of Chloramphenicol: an Overwhelming Approach for Ocular Delivery.

    PubMed

    Ashara, Kalpesh C; Shah, Ketan V

    2017-03-01

    Ophthalmic formulations of chloramphenicol have poor bioavailability of chloramphenicol in the ocular cavity. The present study aimed at exploring the impact of different oil mixtures in the form of emulsion on the permeability of chloramphenicol after ocular application. Selection of oil mixture and ratio of the components was made by an equilibrium solubility method. An emulsifier was chosen according to its emulsification properties. A constrained simplex centroid design was used for the assessment of the emulsion development. Emulsions were evaluated for physicochemical properties; zone of inhibition, in-vitro diffusion and ex-vivo local accumulation of chloramphenicol. Validation of the design using check-point batch and reduced polynomial equations were also developed. Optimization of the emulsion was developed by software Design® expert 6.0.8. Assessment of the osmolarity, ocular irritation, sterility testing and isotonicity of optimized batch were also made. Parker Neem®, olive and peppermint oils were selected as an oil phase in the ratio 63.64:20.2:16.16. PEG-400 was selected as an emulsifier according to a pseudo-ternary phase diagram. Constrained simplex-centroid design was applied in the range of 25-39% water, 55-69% PEG-400, 5-19% optimized oil mixture, and 1% chloramphenicol. Unpaired Student's t-test showed for in-vitro and ex-vivo studies that there was a significant difference between the optimized batch of emulsion and Chloramphenicol eye caps (a commercial product) according to both were equally safe. The optimized batch of an emulsion of chloramphenicol was found to be as safe as and more effective than Chloramphenicol eye caps.

  20. Fuel injector

    DOEpatents

    Lambeth, Malcolm David Dick

    2001-02-27

    A fuel injector comprises first and second housing parts, the first housing part being located within a bore or recess formed in the second housing part, the housing parts defining therebetween an inlet chamber, a delivery chamber axially spaced from the inlet chamber, and a filtration flow path interconnecting the inlet and delivery chambers to remove particulate contaminants from the flow of fuel therebetween.

  1. Future Fuels

    DTIC Science & Technology

    2006-04-01

    financing, push technology and help motivate the building of the necessary manufacturing and distribution infrastructure. Hybrid Electric Vehicles , Tether...conclusions in three major areas: Hybrid Electric Vehicles (HEVs), fuel management during combat operations and manufactured fuels to address the...payoffs in the relatively near term, are: • Hybrid Electric Vehicles : The development of and commitment to hybrid electric architecture for TWVs

  2. Surface electric properties of emulsions of apolar reagents

    SciTech Connect

    Baichenko, A.A.; Baran, A.A.

    1986-09-01

    This article presents the results of studies of surface electric properties of kerosene and AAR-2 (apolar aromatized reagent) emulsons in water, which can be used in coal slime flotation, in presence of various salts and high-molecular flocculants. The data obtained were compared with the effect of electrolytes on the surface electric properties of a model emulsion of heptane in water stabilized by sodium hapthenate. The studies indicate that similarity of changes in the electrokinetic properties of various emulsions in presence of electrolytes and flocculants.

  3. Rapid and medium setting high float bituminous emulsions

    SciTech Connect

    Schilling, P.; Schreuders, H.G.

    1987-06-30

    This patent describes a rapid set high float aqueous bituminous emulsion-comprising bitumen, water, and from about 0.4% to about 0.6%, based on the weight of the emulsion, of an anionic emulsifier comprised of an alkaline solution of a combination of (1) 20% to 80% fatty acids selected from the group consisting of tall oil fatty acids, tallow fatty acids, and mixtures. (2) 20% to 80% of a product of the reaction of the fatty acids with a member of the group consists of acrylic acid, methacrylic acid, fumaric acid, and maleic anhydride.

  4. Viscoelastic properties of sterically stabilised emulsions and their stability.

    PubMed

    Tadros, Tharwat

    2015-08-01

    The interaction forces between emulsion droplets containing adsorbed polymeric surfactants and the theory of steric stabilisation are briefly described. The results for the viscoelastic properties of O/W emulsions that are stabilised with partially hydrolysed poly(vinyl acetate) that is commonly referred to as poly(vinyl alcohol) (PVA) with 4% vinyl acetate are given. The effect of the oil volume fraction, addition of electrolytes and increasing temperature is described. This allows one to obtain various parameters such as the adsorbed layer thickness, the critical flocculation concentration of electrolyte (CFC) and critical flocculation temperature (CFT) at constant electrolyte concentration. The viscoelastic properties of O/W emulsions stabilised with an A-B-A block copolymer of polyethylene oxide (A) and polypropylene oxide (B) are described. These emulsions behave as viscoelastic liquids showing a cross-over-point between G' (the elastic component of the complex modulus) and G″ (the viscous component of the complex modulus) at a characteristic frequency. Plots of G' and G″ versus oil volume fraction ϕ show the transition from predominantly viscous to predominantly elastic response at a critical volume fraction ϕ(c). The latter can be used to estimate the adsorbed layer thickness of the polymeric surfactants. Results are also shown for W/O emulsions stabilised with an A-B-A block copolymer of polyhydroxystearic acid (PHS, A) and polyethylene oxide (PEO, B). The viscosity volume fraction curves could be fitted to the Dougherty-Krieger equation for hard-spheres. The results could be applied to give an estimate of the adsorbed layer thickness Δ which shows a decrease with increase of the water volume fraction. This is due to the interpenetration and/or compression of the PHS layers on close approach of the water droplets on increasing the water volume fraction. The last section of the review gives an example of O/W emulsion stability using an AB(n) graft

  5. Numerical analysis of electromagnetic cascades in emulsion chambers

    NASA Technical Reports Server (NTRS)

    Plyasheshnikov, A. V.; Vorobyev, K. V.

    1985-01-01

    A new calculational scheme of the Monte Carlo method assigned for the investigation of the development of high and extremely high energy electromagnetic cascades (EMC) in the matter was elaborated. The scheme was applied to the analysis of angular and radial distributions of EMC electrons in the atmosphere. By means of this scheme the EMC development in dense medium is investigated and some preliminary data are presented on the behavior of EMC in emulsion chambers. The results of more detailed theoretical analysis of the EMC development in emulsion chambers are discussed.

  6. Conditioning in laser skin resurfacing - betulin emulsion and skin recovery.

    PubMed

    Metelmann, Hans-Robert; Podmelle, Fred; Waite, Peter D; Müller-Debus, Charlotte Friederieke; Hammes, Stefan; Funk, Wolfgang

    2013-04-01

    Laser skin resurfacing of the face by CO₂-laser ablation is causing superficial wounds that need rapid recovery to reduce the risk of infection, the risk of chronification and as a result the risk of unaesthetic scars. The question being addressed by this study is to demonstrate benefit of betulin emulsion skin care after CO₂-laser wounds. The outcome of this aesthetic comparison between betulin emulsion, moist wound dressing and gauze covering in promoting the recovery process in laser skin ablation is to demonstrate improved aesthetic benefit for the patient.

  7. Preparation of Fine Oxide Powders by Emulsion Precipitation.

    DTIC Science & Technology

    1987-05-31

    anionic and non-ionic commercial emulsifying agents were tried, including Aerosol-OT, Arlacel 83, Span 60, Span 80, Tween 80 , Tween 85, Pluronic L62 and...w/o type emulsion with all three organic liquids, while other o/w or w/o type emulsions are produced by Tween 80 and Tween 85, depending upon the...of 72 v/o toluene; aqueous 25 v/o 0.4M Y(N03 )3 and 3 v/o * emulsifier (1.6 Span 60 + 1.4 Tween 80 ), which was stirred for 15 minutes with a magnetic

  8. Detonation Characteristics of Mixtures of HMX and Emulsion Explosives

    DTIC Science & Technology

    1989-04-01

    mechanical properties appear to be potentially available. Of particular interest to the NWE technical community is the use of emulsions that can be... community . These advantages are a result of the physical and chemical nature of the emulsion structure. The salt solution (oxidizer) is discontinous and is...8217to MO CI Nio I0 Nc I 0 uI 0 -I I ’ I I I 0 0 N 0 -# I 0 I 0 I 0 26 SECTION 4 RESULTS AND DISCUSSION SUNKARY OF EXPERIENTAL RESULTS The experimental

  9. Emulsions stability, from dilute to dense emulsions -- role of drops deformation.

    PubMed

    Sanfeld, Albert; Steinchen, Annie

    2008-07-01

    The present paper starts with a review of fundamental descriptions based on physico-chemical laws derived for emulsions with a special interest for eventual evidences of drops deformation. A critical analysis of theories and experiments is given that leads the authors to propose new static and dynamic models for the approach to flocculation and coalescence of two deformable drops in dense and dilute environments of other neighboring drops. The model developed is based on an old paper by Albers and Overbeek for W/O dense emulsions with non-deformable particles, that has been improved recently first by Sengupta and Papadopoulos and then by Mishchuk et al. to account for all the interaction forces (electrostatic, van der Waals and steric). The basic idea here rests in the assumption that the flat surface area of the two coalescing drops, interacting in the field of other particles, increases when the distance between the particles decreases according to an exponential law with a characteristic length related to the disjoining force in the inter-particle film and to the capillary pressure that opposes flattening. The difficulty lies, indeed, in manifold interpretations on experimental observations so that no clear conclusion can be derived on mechanisms responsible for the deformation of droplets. This is why, from a pure theoretical and physical point of view, according to rather complicated models, we propose a much more simple approach that permits to define a capillary length as part of virtual operations. In a static approach, this length is based on analogy with electricity, namely repulsion leads to flatness while attraction to hump. Therefore this brings us to a definition of a length depending on the maximum value of the disjoining pressure in competition with the capillary pressure. Gravity also promotes flocculation, therefore we compare the maximum values of the surface forces acting between the surfaces of two floculating particles to gravity. Finally

  10. Preparation of hybrid thiol-acrylate emulsion-templated porous polymers by interfacial copolymerization of high internal phase emulsions.

    PubMed

    Langford, Caitlin R; Johnson, David W; Cameron, Neil R

    2015-05-01

    Emulsion-templated highly porous polymers (polyHIPEs), containing distinct regions differing in composition, morphology, and/or properties, are prepared by the simultaneous polymerization of two high internal phase emulsions (HIPEs) contained within the same mould. The HIPEs are placed together in the mould and subjected to thiol-acrylate photopolymerization. The resulting polyHIPE material is found to contain two distinct semicircular regions, reflecting the composition of each HIPE. The original interface between the two emulsions becomes a copolymerized band between 100 and 300 μm wide, which is found to be mechanically robust. The separate polyHIPE layers are distinguished from one another by their differing average void diameter, chemical composition, and extent of contraction upon drying. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Effects of silicone emulsifiers on in vitro skin permeation of sunscreens from cosmetic emulsions.

    PubMed

    Montenegro, Lucia; Paolino, Donatella; Puglisi, Giovanni

    2004-01-01

    The effects of different silicone emulsifiers on the in vitro permeation through human skin of two sunscreens (octylmethoxycinnamate, OMC, and butylmethoxydibenzoylmethane, BMBM) were investigated from cosmetic emulsions. The formulations being tested were prepared using the same oil and aqueous phase ingredients and the following silicone emulsifiers: dimethicone copolyol and cyclomethicone (emulsion 1), cetyldimethicone copolyol (emulsion 2), polyglyceryl-4-isostearate and cetyldimethicone copolyol and hexyllaurate (emulsion 3), lauryldimethicone copolyol (emulsion 4), and cyclomethicone and dimethicone copolyol (emulsion 5). The cumulative amount of OMC that permeated in vitro through human skin after 22 h from emulsions 1-5 decreased in the order 2 approximate, equals 1 > 5 > 4 approximate, equals 3 and was about twofold higher from emulsion 2 compared to emulsion 4. As for BMBM, no significant difference was observed in regard to its skin permeation from the emulsions being tested. In vitro release experiments of OMC and BMBM from emulsions 1-5 were performed through cellulose acetate membranes using Franz diffusion cells. Emulsions 1-3 showed an initial slow release of BMBM followed by a fast release phase, while the release of OMC showed a different pattern since the sunscreen was released very rapidly at the beginning of the experiment and then a plateau was observed followed by a second step of fast release. A pseudo-first-order release rate was observed only for BMBM from emulsion 4, while emulsion 5 released very small amounts of both sunscreens during 22 h. These findings could be attributed both to changes in sunscreen thermodynamic activity in the vehicle and to modified interactions between the active ingredient and the formulation components. The results of this study suggest that the type of silicone emulsifier used to prepare sunscreen emulsions should be carefully chosen in order to prevent the percutaneous absorption of sunscreens from these

  12. Fuel cell-fuel cell hybrid system

    DOEpatents

    Geisbrecht, Rodney A.; Williams, Mark C.

    2003-09-23

    A device for converting chemical energy to electricity is provided, the device comprising a high temperature fuel cell with the ability for partially oxidizing and completely reforming fuel, and a low temperature fuel cell juxtaposed to said high temperature fuel cell so as to utilize remaining reformed fuel from the high temperature fuel cell. Also provided is a method for producing electricity comprising directing fuel to a first fuel cell, completely oxidizing a first portion of the fuel and partially oxidizing a second portion of the fuel, directing the second fuel portion to a second fuel cell, allowing the first fuel cell to utilize the first portion of the fuel to produce electricity; and allowing the second fuel cell to utilize the second portion of the fuel to produce electricity.

  13. DIMENSION STABILIZED FIXED PHOTOGRAPHIC TYPE EMULSION AND A METHOD FOR PRODUCING SAME

    DOEpatents

    Gilbert, F.C.

    1962-03-13

    A process is given for stabilizing the dimensions of fixed gelatin-base photographic type emulsions containing silver halide, and particularly to such emulsions containing large amounts of silver chloride for use as nuclear track emulsions, so that the dimensions of the final product are the same as or in a predetermined fixed ratio to the dimensions of the emulsions prior to exposure. The process comprises contacting an exposed, fixed emulsion with a solution of wood rosin dissolved in ethyl alcohol for times corresponding to the dimensions desired, and thereafter permitting the alcohol to evaporate. (AEC)

  14. Impact of Providing a Combination Lipid Emulsion Compared With a Standard Soybean Oil Lipid Emulsion in Children Receiving Parenteral Nutrition: A Systematic Review and Meta-Analysis.

    PubMed

    Finn, Kristen Lawler; Chung, Mei; Rothpletz-Puglia, Pamela; Byham-Gray, Laura

    2015-08-01

    Soybean oil lipid emulsion may compromise immune function and promote hepatic damage due to its composition of long-chain fatty acids, phytosterols, high proportion of ω-6 fatty acids, and low α-tocopherol levels. Combination lipid emulsions have been developed using medium-chain triglyceride oil, fish oil, and/or olive oil, which provide adequate essential fatty acids, a smaller concentration of ω-6 fatty acids, and lower levels of phytosterols. The purpose of this systematic review is to determine if combination lipid emulsions have a more favorable impact on bilirubin levels, triglyceride levels, and incidence of infection compared with soybean oil lipid emulsions in children receiving parenteral nutrition. This study comprises a systematic review of published studies. Data were sufficient and homogeneous to conduct a meta-analysis for total bilirubin and infection. Nine studies met the inclusion criteria. Meta-analysis showed that combination lipid emulsion decreased total bilirubin by a mean difference of 2.09 mg/dL (95% confidence interval, -4.42 to 0.24) compared with soybean oil lipid emulsion, although the result was not statistically significant (P = .08). Meta-analysis revealed no statistically significant difference in incidence of infection between the combination lipid emulsion and the soybean oil lipid emulsion groups (P = .846). None of the 4 studies that included triglyceride as an outcome detected a significant difference in triglyceride levels between the combination lipid emulsion and soybean oil lipid emulsion groups. There is inadequate evidence that combination lipid emulsions offer any benefit regarding bilirubin levels, triglyceride levels, or incidence of infection compared with soybean oil lipid emulsions. © 2014 American Society for Parenteral and Enteral Nutrition.

  15. Fuels research: Fuel thermal stability overview

    NASA Technical Reports Server (NTRS)

    Cohen, S. M.

    1980-01-01

    Alternative fuels or crude supplies are examined with respect to satisfying aviation fuel needs for the next 50 years. The thermal stability of potential future fuels is discussed and the effects of these characteristics on aircraft fuel systems are examined. Advanced fuel system technology and design guidelines for future fuels with lower thermal stability are reported.

  16. FUEL ELEMENT

    DOEpatents

    Bean, R.W.

    1963-11-19

    A ceramic fuel element for a nuclear reactor that has improved structural stability as well as improved cooling and fission product retention characteristics is presented. The fuel element includes a plurality of stacked hollow ceramic moderator blocks arranged along a tubular raetallic shroud that encloses a series of axially apertured moderator cylinders spaced inwardly of the shroud. A plurality of ceramic nuclear fuel rods are arranged in the annular space between the shroud and cylinders of moderator and appropriate support means and means for directing gas coolant through the annular space are also provided. (AEC)

  17. Fuel ethanol

    SciTech Connect

    Not Available

    1989-02-01

    This report discusses the Omnibus Trade and Competitiveness Act of 1988 which requires GAO to examine fuel ethanol imports from Central America and the Caribbean and their impact on the U.S. fuel ethanol industry. Ethanol is the alcohol in beverages, such as beer, wine, and whiskey. It can also be used as a fuel by blending with gasoline. It can be made from renewable resources, such as corn, wheat, grapes, and sugarcane, through a process of fermentation. This report finds that, given current sugar and gasoline prices, it is not economically feasible for Caribbean ethanol producers to meet the current local feedstock requirement.

  18. Drug delivery to the ocular posterior segment using lipid emulsion via eye drop administration: effect of emulsion formulations and surface modification.

    PubMed

    Ying, Lin; Tahara, Kohei; Takeuchi, Hirofumi

    2013-09-10

    This work explored submicron-sized lipid emulsion as potential carriers for intraocular drug delivery to the posterior segment via eye drops. The effects of physicochemical properties of lipid emulsion on drug delivery were evaluated in vivo using mice. Different formulations of submicron-sized lipid emulsions were prepared using a high pressure homogenization system. Using coumairn-6 as a model drug and fluorescent marker, fluorescence could be observed in the retina after administration of the lipid emulsion. The fluorescence intensity observed after administration of medium chain triglycerides containing the same amount of coumarin-6 was much lower than that observed after administration of lipid emulsions. The inner oil property and phospholipid emulsifier did not affect the drug delivery efficiency to the retina. However, compared with unmodified emulsions, the fluorescence intensity in the retina increased by surface modification using a positive charge inducer and the functional polymers chitosan (CS) and poloxamer 407 (P407). CS-modified lipid emulsions could be electrostatically interacted with the eye surface. By its adhesive property, poloxamer 407, a surface modifier, possibly increased the lipid emulsion retention time on the eye surface. In conclusion, we suggested that surface-modified lipid emulsions could be promising vehicles of hydrophobic drug delivery to the ocular posterior segment. Copyright © 2013. Published by Elsevier B.V.

  19. Physicochemical properties of structured phosphatidylcholine in drug carrier lipid emulsions for drug delivery systems.

    PubMed

    Kawaguchi, Emi; Shimokawa, Ken-ichi; Ishii, Fumiyoshi

    2008-03-15

    Drug carrier emulsions were prepared with structured phosphatidylcholine (PC-LM) which has both a long hydrocarbon chain and a medium hydrocarbon chain, and the characteristics of PC-LM as an emulsifier were investigated by measuring the creaming ratio, the surface tension of the emulsion system, and the mean particle size and zeta potential of the oil droplets in emulsions. The emulsion prepared with PC-LM as an emulsifier kept the condition and the ratio of separation was lower than those with purified egg yolk lecithin (PEL). The mean particle size of the emulsion prepared with PC-LM was smaller than that with PEL when using only sonication, approximately 250 nm. When using a high-pressure homogenizer after sonication, the mean emulsion size with PC-LM was also smaller than with PEL, approximately 150 nm. The surface tension of the various emulsions and the zeta potential of the emulsion droplets were measured to investigate the stability of the systems. In emulsions with PC-LM or PEL, the surface tension as an index of stability increased as the pressure of the homogenizer increased. Moreover, the zeta potential of the emulsion droplets prepared with PC-LM also increased with an increase in pressure of the homogenizer. As a result, it was found that the drug carrier emulsion prepared with PC-LM had significant advantages in terms of stability and mean diameter. We considered it could be used for the preparations of nanoparticle dispersion systems in drug delivery systems.

  20. Submicron lipid emulsion as a drug delivery system for nalbuphine and its prodrugs.

    PubMed

    Wang, Jhi-Joung; Sung, K C; Hu, Oliver Yoa-Pu; Yeh, Chih-Hui; Fang, Jia-You

    2006-10-10

    This study investigates the submicron lipid emulsion as a potential parenteral drug delivery system for nalbuphine and its ester prodrugs. Submicron emulsions were prepared using egg phospholipid as the main emulsifier, various co-emulsifiers were also incorporated, including Brij 30, Brij 98, and stearylamine. Squalene as the oil phase formed stable emulsions with small particles. Drug release was affected by incorporating various co-emulsifiers and drugs with various lipophilicity. The loading of nalbuphine into lipid emulsions resulted in the slower and sustained release of nalbuphine. Lipid emulsions containing Brij 98 could further enhance the release of prodrugs as compared to the aqueous solution (control) especially for nalbuphine enanthate (NAE). Hemolysis caused by the interaction between erythrocytes and lipid emulsions was investigated. Brij 30 and Brij 98 could shield the hemolytic activity of phospholipids in the oil/water interface, decreasing the acute toxicological potential of the emulsions. The in vivo analgesic activity of various emulsions was examined by a cold ethanol tail-flick test. The analgesic duration and potency were significantly increased by incorporating nalbuphine and NAE into Brij 98-containing emulsions. There was no need for nalbuphine benzoate (NAB) to show a controlled delivery manner by encapsulating into emulsions, since NAB itself could prolong the analgesic duration of nalbuphine due to the slow enzyme degradation. The in vivo analgesic activity correlated well to the profiles of in vivo pharmacokinetic profiles. The study demonstrates the feasibility of using submicron lipid emulsion as the parenteral drug delivery system for nalbuphine and its prodrugs.

  1. Enhanced stabilization of cloudy emulsions with gum Arabic and whey protein isolate.

    PubMed

    Klein, Miri; Aserin, Abraham; Svitov, Inna; Garti, Nissim

    2010-05-01

    Cloudy emulsions are oil-in-water (O/W) emulsions normally prepared as concentrates, further diluted, per request, into the final beverage. The cloudy emulsion provides flavor, color, and cloud (turbidity) to the soft drink. These systems are stabilized by emulsifiers and/or amphiphilic polysaccharides. Cloudy emulsions based on naturally occurring food grade emulsifiers were studied in the present work. Two charged natural biopolymers, whey protein isolate (WPI) and gum Arabic (GA), are interacted in aqueous solution to form charge-charge interactions improving the emulsion stability. The emulsions were high sheared (Microfluidizer) and characterized by particle size distribution analysis (DLS), optical centrifugation (LUMiFuge), optical microscopy observations, and turbidity measurements. Emulsions obtained from 10wt% of 3:1wt. ratio WPI:GA, at pH 7 (10wt% canola oil) show better stability than emulsions stabilized by GA or WPI alone. The droplet sizes were smaller than 1microm and did not grow significantly during 1 month of incubation at 25 degrees C. The D-limonene-based emulsion droplets were larger (> 2microm) than those made with vegetable oils immediately after preparation and underwent significant droplet size increase (coalescence) within 1 month (>8 microm). The emulsion with turbidity suitable as a cloudy emulsion was composed of 3wt% WPI:GA (3:1) and 20wt% canola oil.

  2. Influence of droplet charge on the chemical stability of citral in oil-in-water emulsions.

    PubMed

    Choi, Seung Jun; Decker, Eric Andrew; Henson, Lulu; Popplewell, L Michael; McClements, David Julian

    2010-08-01

    The chemical stability of citral, a flavor component widely used in beverage, food, and fragrance products, in oil-in-water emulsions stabilized by surfactants with different charge characteristics was investigated. Emulsions were prepared using cationic (lauryl alginate, LAE), non-ionic (polyoxyethylene (23) lauryl ether, Brij 35), and anionic (sodium dodecyl sulfate, SDS) surfactants at pH 3.5. The citral concentration decreased over time in all the emulsions, but the rate of decrease depended on surfactant type. After 7 d storage, the citral concentrations remaining in the emulsions were around 60% for LAE- or Brij 35-stabilized emulsions and 10% for SDS-stabilized emulsions. An increase in the local proton (H(+)) concentration around negatively charged droplet surfaces may account for the more rapid citral degradation observed in SDS-stabilized emulsions. A strong metal ion chelator (EDTA), which has previously been shown to be effective at increasing the oxidative stability of labile components, had no effect on citral stability in LAE- or Brij 35-stabilized emulsions, but it slightly decreased the initial rate of citral degradation in SDS-stabilized emulsions. These results suggest the surfactant type used to prepare emulsions should be controlled to improve the chemical stability of citral in emulsion systems.

  3. Immunomodulatory and Physical Effects of Oil Composition in Vaccine Adjuvant Emulsions

    PubMed Central

    Fox, Christopher B.; Baldwin, Susan L.; Duthie, Malcolm S.; Reed, Steven G.; Vedvick, Thomas S.

    2011-01-01

    Squalene-based oil-in-water emulsions have been used for years in some seasonal and pandemic influenza vaccines. However, concerns have been expressed regarding squalene source and potential biological activities. Little information is available regarding the immunomodulatory activity of squalene in comparison with other metabolizable oils in the context of oil-in-water emulsions formulated with vaccines. The present work describes the manufacture and physical characterization of emulsions composed of different classes of oils, including squalene, long chain triglycerides, a medium chain triglyceride, and a perfluorocarbon, all emulsified with egg phosphatidylcholine. Some differences were apparent among the non-squalene oils in terms of emulsion stability, including higher size polydispersity in the perfluorocarbon emulsion, more rapid visual instability at 60 °C for the long-chain triglyceride and perfluorocarbon emulsions, and an increased creaming rate in the medium-chain triglyceride emulsion at 60 °C as detected by laser scattering optical profiling. The biological activity of each of these emulsions was compared when formulated with either a recombinant malaria antigen or a split-virus inactivated influenza vaccine. Overall, vaccines containing the squalene emulsion elicited higher antibody titers and more abundant long-lived plasma cells than vaccines containing emulsions based on other oils. Since squalene-based emulsions show higher adjuvant potency compared to the other oils tested, non-squalene oils may be more suitable as carriers of amphiphilic or hydrophobic immunostimulatory molecules (such as TLR agonists) rather than as stand-alone adjuvants. PMID:21906648

  4. Characteristics of meat emulsion systems as influenced by different levels of lemon albedo.

    PubMed

    Sarıçoban, C; Ozalp, B; Yılmaz, M T; Ozen, G; Karakaya, M; Akbulut, M

    2008-11-01

    The effect of the addition of lemon albedo on the functional properties of emulsions was studied by using a model system. Oil/water (O/W) model emulsion systems were prepared by the addition of two types of lemon albedo (raw and dehydrated) at five concentrations (0.0%, 2.5%, 5.0%, 7.5% and 10%) to mechanically deboned chicken meat. The emulsion capacity, stability, viscosity and flow properties of the prepared model emulsions were analyzed. In addition, the colour parameters of cooked emulsion gel were determined. The addition of lemon albedo increased the emulsion capacity (EC) and the highest EC value was reached with 5% of albedo added. However, further increase in the albedo concentration caused an inverse trend in the EC values. A similar trend was observed in the emulsion stability (ES) values. Dehydrated albedo (DA) addition caused higher EC and ES values than did raw albedo (RA). DA increased the L(∗), a(∗) and b(∗) values of the cooked emulsion gels. Emulsion viscosity (EV) values were positively correlated with an increase in albedo concentration and the highest EV value was obtained from the emulsions with 10% albedo. Albedo addition did not change the flow properties of the emulsions and, in addition, increased the pseudoplasticity. As a consequence, the use of lemon albedo might be a potential dietary fiber source to enhance the functional and technological properties for frankfurter-type meat products.

  5. Mannan-stabilized oil-in-water beverage emulsions

    USDA-ARS?s Scientific Manuscript database

    The stabilizing effect of spruce galactoglucomannan (GGM) on a model beverage emulsion system was studied and compared to that of guar gum and locust bean gum galactomannans, konjac glucomannan, and corn arabinoxylan. In addition, enzymatic modification was applied on guar gum to examine the effect ...

  6. Emulsion forming drug delivery system for lipophilic drugs.

    PubMed

    Wadhwa, Jyoti; Nair, Anroop; Kumria, Rachna

    2012-01-01

    In the recent years, there is a growing interest in the lipid-based formulations for delivery of lipophilic drugs. Due to their potential as therapeutic agents, preferably these lipid soluble drugs are incorporated into inert lipid carriers such as oils, surfactant dispersions, emulsions, liposomes etc. Among them, emulsion forming drug delivery systems appear to be a unique and industrially feasible approach to overcome the problem of low oral bioavailability associated with the BCS class II drugs. Self-emulsifying formulations are ideally isotropic mixtures of oils, surfactants and co-solvents that emulsify to form fine oil in water emulsions when introduced in aqueous media. Fine oil droplets would pass rapidly from stomach and promote wide distribution of drug throughout the GI tract, thereby overcome the slow dissolution step typically observed with solid dosage forms. Recent advances in drug carrier technologies have promulgated the development of novel drug carriers such as control release self-emulsifying pellets, microspheres, tablets, capsules etc. that have boosted the use of "self-emulsification" in drug delivery. This article reviews the different types of formulations and excipients used in emulsion forming drug delivery system to enhance the bioavailability of lipophilic drugs.

  7. Isorefractive high internal phase emulsion organogels for light induced reactions.

    PubMed

    Zhang, Tao; Guo, Qipeng

    2016-03-25

    Isorefractive high internal phase emulsion (HIPE) organogels have been fabricated and investigated for light induced reactions. High transparency facilitates both the UV and visible light induced reactions within HIPE organogels. Transparent HIPE organogels are advantageous for light induced polymerizations, accelerating such polymerizations and enabling the preparation of large polyHIPE monoliths.

  8. [Amitriptyline-induced cardiac arrest : treatment with fat emulsion].

    PubMed

    Huge, V; Baschnegger, H; Moehnle, P; Peraud, A; Briegel, J

    2011-06-01

    A case of successful resuscitation of a patient with severe amitriptyline intoxication is reported. The measured amitriptyline serum levels far exceeded those assumed to be lethal according to the literature. Resuscitation was successful with the administration of intravenous fat emulsion and the patient recovered without any neurological sequelae.

  9. Wettability of Freon hydrates in crude oil/brine emulsions.

    PubMed

    Høiland, S; Askvik, K M; Fotland, P; Alagic, E; Barth, T; Fadnes, F

    2005-07-01

    The surface energy of petroleum hydrates is believed to be a key parameter with regard to hydrate morphology and plugging tendency in petroleum production. As of today, the surface energy of natural gas hydrates is unknown, but will depend on the fluids in which they grow. In this work, the wettability of Freon hydrates is evaluated from their behavior in crude oil emulsions. For emulsions stabilized by colloidal particles, the particle wettability is a governing parameter for the emulsion behavior. The transition between continuous and dispersed phases as a function of brine volume in crude oil-brine emulsions containing Freon hydrates has been determined for 12 crude oils. Silica particles are used for comparison. The results show that phase inversion is highly dependent on crude oil properties. Based on the measured points of phase inversion, the wettability of the Freon hydrates generated in each system is evaluated as being oil-wet, intermediate-wet, or water-wet. Generation of oil-wet hydrates correlates with low hydrate plugging tendency. The formation of oil-wet hydrates will prevent agglomeration into large hydrate aggregates and plugs. Hence, it is believed that the method is applicable for differentiating oils with regard to hydrate morphology.

  10. Electron-beam cured emulsion pressure-sensitive adhesives

    SciTech Connect

    Mallya, P.; Plamthottam, S.S.; Ozari, Y.

    1993-08-03

    A cured pressure-sensitive adhesive is described which comprises a branched chain emulsion polymer having a glass transition temperature of at least 20 C below the use temperature, and formed by emulsion polymerization of at least one first monomer which, when homo polymerized, has a glass transition temperature less than [minus]25 C and at least one second monomer which, when homo polymerized, has a glass transition temperature greater than [minus]25 C., and said emulsion polymer being cured in the presence of from about 0.2 to about 10% by weight based on the weight of the emulsion-polymer of a multifunctional additive and exposure to electron beam radiation at a dosage of up to 100 kGy and sufficient to provide a 70 C shear of at least 10 kiloseconds and a 180 C peel of at least about 250 N/m, and a loop tack of at least about 200 N/m at a coat weight of from about 40 to 60 g/m[sup 2].

  11. Interactions of flavoured oil in-water emulsions with polylactide.

    PubMed

    Salazar, Rómulo; Domenek, Sandra; Ducruet, Violette

    2014-04-01

    Polylactide (PLA), a biobased polymer, might prove suitable as eco-friendly packaging, if it proves efficient at maintaining food quality. To assess interactions between PLA and food, an oïl in-water model emulsion was formulated containing aroma compounds representing different chemical structure classes (ethyl esters, 2-nonanone, benzaldehyde) at a concentration typically found in foodstuff (100 ppm). To study non-equilibrium effects during food shelf life, the emulsions were stored in a PLA pack (tray and lid). To assess equilibrium effects, PLA was conditioned in vapour contact with the aroma compounds at concentrations comparable to headspace conditions of real foods. PLA/emulsion interactions showed minor oil and aroma compound sorption in the packaging. Among tested aroma compounds, benzaldehyde and ethyl acetate were most sorbed and preferentially into the lid through the emulsion headspace. Equilibrium effects showed synergy of ethyl acetate and benzaldehyde, favouring sorption of additional aroma compounds in PLA. This should be anticipated during the formulation of food products. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Assessing The Durability of Polymer Modified Asphalt Emulsions Slurry Seal

    NASA Astrophysics Data System (ADS)

    Singgih, C.; Handayani, D.; Setyawan, A.

    2017-02-01

    Slurry Seal is an application of road preservation in the form of impermeable nonstructural thin layer with maximum thickness of 10 mm, which consisting of a cold laid mixture of asphalt emulsion with continuous graded fine aggregate, mineral filler, water and other added ingredients. Road preservation use slurry seal only functioning as a surface layer on the existing pavement structure. This preliminary research was conducted to determine the value of consistency, setting time, and indirect tensile strength of polymer modified slurry seal. The laboratory tests were conducted to determine the optimum residual asphalt content. The results show that the value of the optimum water content by pre-wetting 5% is getting smaller with increasing levels of residual asphalt emulsion. The addition of water 0 - 2.5% with 5% water for pre-wetting, the mixture provides a sufficient consistency in accordance with the specifications. The increasing levels of residual asphalt emulsion obtained the longer setting time at all slurry seal mixtures, but all of the mixtures still meet the specifications. The use of polymer modified asphalt emulsion on slurry seal was improved durability significantly, based on the value of indirect tensile strength.

  13. Hadrons registration in emulsion chamber with carbon block

    NASA Technical Reports Server (NTRS)

    Tomaszewski, A.; Wlodarczyk, Z.

    1985-01-01

    Nuclear-electro-magnetic cascade (NEC) in X-ray emulsion chambers with carbon block, which are usually used in the Pamir experiment, was Monte-Carlo simulated. Going over from optical density to Summary E sub gamma is discussed. The hole of NEC in the interpretation of energy spectra is analyzed.

  14. Removal of pesticides from aqueous solutions using liquid membrane emulsions

    SciTech Connect

    Norwood, V.M. III

    1991-12-31

    Extractive liquid membrane technology is based on a water-in-oil emulsion as the vehicle to effect separation. An aqueous internal reagent phase is emulsified into an organic phase containing a surfactant and optional complexing agents. The emulsion, presenting a large membrane surface area, is then dispersed in an aqueous continuous phase containing the species to be removed. The desired species is transferred from the continuous, phase through the organic liquid membrane and concentrated in the internal reagent phase. Extraction and stripping occur simultaneously rather than sequentially as in conventional solvent extraction. Experiments were conducted to assess the feasibility of using liquid membranes to extract pesticides from rinsewaters typical of those generated by fertilizer/agrichemical dealers. A liquid membrane emulsion containing 10% NaOH as the internal reagent phase was used to extract herbicides from aqueous solution at a continuous phase:emulsion ratio of 5:1. Removals of 2,4-D, MCPA, Carbaryl, Diazinon, and Atrazine were investigated.

  15. Removal of pesticides from aqueous solutions using liquid membrane emulsions

    SciTech Connect

    Norwood, V.M. III.

    1991-01-01

    Extractive liquid membrane technology is based on a water-in-oil emulsion as the vehicle to effect separation. An aqueous internal reagent phase is emulsified into an organic phase containing a surfactant and optional complexing agents. The emulsion, presenting a large membrane surface area, is then dispersed in an aqueous continuous phase containing the species to be removed. The desired species is transferred from the continuous, phase through the organic liquid membrane and concentrated in the internal reagent phase. Extraction and stripping occur simultaneously rather than sequentially as in conventional solvent extraction. Experiments were conducted to assess the feasibility of using liquid membranes to extract pesticides from rinsewaters typical of those generated by fertilizer/agrichemical dealers. A liquid membrane emulsion containing 10% NaOH as the internal reagent phase was used to extract herbicides from aqueous solution at a continuous phase:emulsion ratio of 5:1. Removals of 2,4-D, MCPA, Carbaryl, Diazinon, and Atrazine were investigated.

  16. Encapsulation of orange oil in a spray dried double emulsion.

    PubMed

    Edris, A; Bergnståhl, B

    2001-04-01

    Encapsulation is an important technique being used to protect sensitive food materials like flavours from deterioration. The capsule wall isolates them from the atmospheric oxygen, moisture, temperature and light. Encapsulation also masks some objectionable flavours, e.g. fish oil and some bitter antibiotics. In this study orange oil was encapsulated in the inner compartment of a double emulsion belonging to the type O1-W-O2 where O1 is orange oil, W is water and O2 is vegetable oil. In order to make orange oil double emulsion suitable for use in dry mixes, it was secondarily coated with wall materials of lactose and caseinate using spray drying technique. Entrapment of orange oil in such structure is also expected to slow down the release of volatiles and guarantee more protection for orange oil against atmospheric conditions. This method may have a potential application in different types of food or pharmaceutical products where maximum protection for flavours or slow release are required. This study includes detailed preparation of the spray dried double emulsion, evaluation of the encapsulation efficiency using light and scanning electron microscope and calculation of the yield percent of the encapsulated oil. In a separate paper we will examine the efficiency of spray dried double emulsion to control the release of orange oil by GC.

  17. Proton Linear Energy Transfer measurement using Emulsion Cloud Chamber

    NASA Astrophysics Data System (ADS)

    Shin, Jae-ik; Park, Seyjoon; Kim, Haksoo; Kim, Meyoung; Jeong, Chiyoung; Cho, Sungkoo; Lim, Young Kyung; Shin, Dongho; Lee, Se Byeong; Morishima, Kunihiro; Naganawa, Naotaka; Sato, Osamu; Kwak, Jungwon; Kim, Sung Hyun; Cho, Jung Sook; Ahn, Jung Keun; Kim, Ji Hyun; Yoon, Chun Sil; Incerti, Sebastien

    2015-04-01

    This study proposes to determine the correlation between the Volume Pulse Height (VPH) measured by nuclear emulsion and Linear Energy Transfer (LET) calculated by Monte Carlo simulation based on Geant4. The nuclear emulsion was irradiated at the National Cancer Center (NCC) with a therapeutic proton beam and was installed at 5.2 m distance from the beam nozzle structure with various thicknesses of water-equivalent material (PMMA) blocks to position with specific positions along the Bragg curve. After the beam exposure and development of the emulsion films, the films were scanned by S-UTS developed in Nagoya University. The proton tracks in the scanned films were reconstructed using the 'NETSCAN' method. Through this procedure, the VPH can be derived from each reconstructed proton track at each position along the Bragg curve. The VPH value indicates the magnitude of energy loss in proton track. By comparison with the simulation results obtained using Geant4, we found the correlation between the LET calculated by Monte Carlo simulation and the VPH measured by the nuclear emulsion.

  18. Emulsion sheet doublets as interface trackers for the OPERA experiment

    NASA Astrophysics Data System (ADS)

    Anokhina, A.; Aoki, S.; Ariga, A.; Arrabito, L.; Autiero, D.; Badertscher, A.; Bay, F.; Bersani Greggio, F.; Bertolin, A.; Besnier, M.; Bick, D.; Bozza, C.; Brugiere, T.; Brugnera, R.; Brunetti, G.; Buontempo, S.; Carrara, E.; Cazes, A.; Chaussard, L.; Chernyavsky, M.; Chiarella, V.; Chon-Sen, N.; Chukanov, A.; Consiglio, L.; Cozzi, M.; Cuha, V.; Dal Corso, F.; D'Amato, G.; D'Ambrosio, N.; DeLellis, G.; Déclais, Y.; DeSerio, M.; Di Capua, F.; Di Ferdinando, D.; Di Giovanni, A.; Di Marco, N.; Di Troia, C.; Dmitrievski, S.; Dominjon, A.; Dracos, M.; Duchesneau, D.; Dusini, S.; Ebert, J.; Egorov, O.; Enikeev, R.; Ereditato, A.; Esposito, L. S.; Favier, J.; Felici, G.; Ferber, T.; Fini, R.; Frekers, D.; Fukuda, T.; Galkin, V. I.; Galkin, V. A.; Garfagnini, A.; Giacomelli, G.; Giorgini, M.; Goellnitz, C.; Goldberg, J.; Golubkov, D.; Gornushkin, Y.; Grella, G.; Grianti, F.; Guler, M.; Gusev, G.; Gustavino, C.; Hagner, C.; Hara, T.; Hierholzer, M.; Hiramatsu, S.; Hoshino, K.; Ieva, M.; Jakovcic, K.; Janicsko Csathy, J.; Janutta, B.; Jollet, C.; Juget, F.; Kawai, T.; Kazuyama, M.; Kim, S. H.; Knuesel, J.; Kodama, K.; Komatsu, M.; Kose, U.; Kreslo, I.; Laktineh, I.; Lazzaro, C.; Lenkeit, J.; Ljubicic, A.; Longhin, A.; Lutter, G.; Manai, K.; Mandrioli, G.; Marotta, A.; Marteau, J.; Matsuo, T.; Matsuoka, H.; Mauri, N.; Meisel, F.; Meregaglia, A.; Messina, M.; Migliozzi, P.; Mikado, S.; Miyamoto, S.; Monacelli, P.; Morishima, K.; Moser, U.; Muciaccia, M. T.; Naganawa, N.; Naka, T.; Nakamura, M.; Nakamura, T.; Nakano, T.; Nikitina, V.; Niwa, K.; Nonoyama, Y.; Ogawa, S.; Osedlo, V.; Ossetski, D.; Paoloni, A.; Park, B. D.; Park, I. G.; Pastore, A.; Patrizii, L.; Pennacchio, E.; Pessard, H.; Pilipenko, V.; Pistillo, C.; Polukhina, N.; Pozzato, M.; Pretzl, K.; Publichenko, P.; Pupilli, F.; Roganova, T.; Rosa, G.; Rostovtseva, I.; Rubbia, A.; Russo, A.; Ryazhskaya, O.; Ryzhikov, D.; Sato, O.; Sato, Y.; Saveliev, V.; Sazhina, G.; Schembri, A.; Scotto Lavina, L.; Shibuya, H.; Simone, S.; Sioli, M.; Sirignano, C.; Sirri, G.; Song, J. S.; Spinetti, M.; Stanco, L.; Starkov, N.; Stipcevic, M.; Strauss, T.; Strolin, P.; Sugonyaev, V.; Taira, Y.; Takahashi, S.; Tenti, M.; Terranova, F.; Tezuka, I.; Tioukov, V.; Tolun, P.; Tsarev, V.; Tufanli, S.; Ushida, N.; Vilain, P.; Vladimirov, M.; Votano, L.; Vuilleumier, J. L.; Wilquet, G.; Wonsak, B.; Yoon, C. S.; Yoshida, J.; Zaitsev, Y.; Zemskova, S.; Zghiche, A.; Zimmermann, R.

    2008-07-01

    New methods for efficient and unambiguous interconnection between electronic position sensitive detectors and target units based on nuclear photographic emulsion films have been developed. The application to the OPERA experiment, that aims at detecting νμrightleftharpoonsντ oscillations in the CNGS neutrino beam, is reported in this paper. In order to reduce background due to latent tracks collected before installation in the detector, on-site large-scale treatments of the emulsions (''refreshing'') have been applied. Changeable Sheet (CSd) packages, each made of a doublet of emulsion films, have been designed, assembled and coupled to the OPERA target units (''ECC bricks''). A device has been built to print X-ray spots for accurate interconnection both within the CSd and between the CSd and the related ECC brick. Sample emulsion films have been extensively scanned with state-of-the-art automated optical microscopes. Efficient track-matching and powerful background rejection have been achieved in tests with electronically tagged penetrating muons. Further improvement of in-doublet film alignment was obtained by matching the pattern of low-energy electron tracks. The commissioning of the overall OPERA alignment procedure is in progress.

  19. Formation of curcumin nanoparticles by flash nanoprecipitation from emulsions.

    PubMed

    Margulis, Katherine; Magdassi, Shlomo; Lee, Han Seung; Macosko, Christopher W

    2014-11-15

    Nanometric particles of a model hydrophobic substance curcumin were prepared by a novel method, namely, flash nanoprecipitation from a coarse oil-in-water emulsion. The method employs turbulent co-mixing of water with curcumin-loaded emulsion using manually-operated confined impingement jets mixer. A clear and stable dispersion of nanoparticles was formed in this process, and could be converted to dry, easily water-dispersible powder by spray drying. The mean size of the particles was about 40 nm by DLS, confirmed by Cryo-TEM. The obtained particles contained 20.4 wt% curcumin, X-ray analysis showed it was amorphous. The significant advantages of the studied process are its feasibility, speed and low cost. It does not require any special high-energy input equipment to reduce the droplet size of the initial emulsion as required by the vast majority of other methods, and relies on rapid turbulent mixing and on flow-induced shear stress formed in the simple, manually-operated mixer. Control experiments clearly indicate that employing emulsion, instead of a plain solution and flash nanoprecipitation instead of a simple antisolvent precipitation are advantageous in terms of particle size and stability.

  20. Control of the white-pine weevil with insecticidal emulsions

    Treesearch

    David Crosby

    1958-01-01

    Excellent control of the white-pine weevil in young white pine plantations, by applying concentrated lead arsenate spray with knapsack sprayers, was demonstrated and reported several years ago. Since then, research has shown that a number of newer insecticides, used as emulsions, are also very effective.

  1. pH Switchable Emulsions Based on Dynamic Covalent Surfactants.

    PubMed

    Ren, Gaihuan; Wang, Lei; Chen, Qianqian; Xu, Zhenghe; Xu, Jian; Sun, Dejun

    2017-03-28

    Dynamic covalent surfactants were designed to prepare pH switchable emulsions. A dynamic covalent bond between nonamphiphilic building blocks (polyethylenimine (PEI) and benzaldehyde (B)) was introduced to form the dynamic covalent surfactant PEI-B. The dynamic nature of covalent bond in PEI-B was confirmed by (1)H NMR and fluorescence probe analysis. Stable emulsions were successfully prepared with interfacial active PEI-B at pH 7.8 with various water/paraffin oil ratios under sonication. When lowering the pH to 3.5, a complete phase separation was observed as a result of breaking dynamic covalent bond in the interfacial active PEI-B. After tuning the pH back to 7.8, stable emulsion was obtained again due to the reformation of the dynamic covalent bond and hence interfacial active PEI-B. The emulsification and demulsification were dependent on the formation and breaking of dynamic covalent bond in PEI-B. Such pH-triggered emulsification and demulsification can be switched at least three times. Application of dynamic covalent surfactants will open up a novel route for preparing responsive emulsions.

  2. Intravenous lipid emulsion prolongs survival in rats intoxicated with digoxin.

    PubMed

    Yurtlu, Bülent Serhan; Özbilgin, Şule; Yurtlu, Derya Arslan; Boztaş, Nilay; Kamacı, Gonca; Akaltun, Mahmut; Hancı, Volkan; Yılmaz, Osman

    2016-06-01

    Intravenous lipid emulsion eliminates the toxicity-related symptoms of several drugs. We hypothesized that intravenous lipid emulsion prolongs the survival time in digoxin-intoxicated rats. Electrocardiograms of 14 anesthesized Wistar rats were monitored. All of the rats received digoxin infusion at a rate of 12 mL/h (0.25 mg/mL). Five minutes after the start of digoxin infusion, animals were treated either with 12.4 mL/kg intravenous lipid emulsion (group L) or saline (group C). The primary outcome variable was time elapsed until asystole development. Cumulative dose of digoxin required to induce asystole was also recorded. Mean time until asystole development in groups C and L were 21.28 ± 8.61 and 32.00 ± 5.41 minutes, respectively (P< .05). The mean lethal doses of digoxin in the groups C and L were 3.97 ± 1.54 and 6.09 ± 0.96 mg/kg, respectively (P< .05). Intravenous lipid emulsion prolonged the time until asystole development and increased cumulative lethal dose in rats intoxicated with digoxin. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Transdermal delivery of forskolin from emulsions differing in droplet size.

    PubMed

    Sikora, Elżbieta; Llinas, Meritxell; Garcia-Celma, Maria Jose; Escribano, Elvira; Solans, Conxita

    2015-02-01

    The skin permeation of forskolin, a diterpene isolated from Coleus forsholii, was studied using oil in water (O/W) emulsions as delivery formulations and also an oil solution for comparative purposes. Two forskolin-loaded emulsions of water/Brij 72:Symperonic A7/Miglyol 812:Isohexadecane, at 0.075 wt% forskolin concentration were prepared with the same composition and only differing in droplet size (0.38 μm and 10 μm). The emulsions showed high kinetic stability at 25 °C. In vitro study of forskolin penetration through human skin was carried out using the MicroettePlus(®) system. The concentration of the active in the receptor solution (i.e. ethanol/phosphate buffer 40/60, v/v) was analyzed by high performance liquid chromatography with UV detection. The obtained results showed that forskolin permeation from the emulsions and the oil solution, through human skin, was very high (up to 72.10%), and no effect of droplet size was observed.

  4. Intravenous lipid emulsion for treating permethrin toxicosis in a cat.

    PubMed

    DeGroot, Whitney D

    2014-01-01

    A 2-year-old cat was presented with acute onset seizures, tremors, and hypersalivation. Permethrin toxicity was diagnosed based on a history of recent flea treatment. Measures were taken to minimize further absorption of permethrin, and methocarbamol and intravenous lipid emulsion were used to control tremors. The cat recovered and was discharged within 42 h.

  5. Fluoropolymer-Based Emulsions for the Intravenous Delivery of Sevoflurane

    PubMed Central

    Fast, Jonathan P.; Perkins, Mark G.; Pearce, Robert A.; Waters, Ralph M.; Mecozzi, Sandro

    2009-01-01

    Background The intravenous delivery of halogenated volatile anesthetics has been previously achieved using phospholipid-stabilized emulsions, e.g. Intralipid. However, fluorinated volatile anesthetics, such as sevoflurane, are partially fluorophilic and do not mix well with classic non-fluorinated lipids. This effect limits the maximum amount of sevoflurane that can be stably emulsified in Intralipid to 3.5% v/v. This is a significant limitation to the potential clinical use of Intralipid-based emulsions. Methods The authors prepared a 20% v/v sevoflurane emulsion using a novel fluorinated surfactant and tested its effectiveness and therapeutic index by administering it to male Sprague-Dawley rats via intravenous injection into the jugular vein. The median effective dose to induce anesthesia (ED50), median lethal dose (LD50), and therapeutic index (LD50 / ED50) were determined. Anesthesia was measured by loss of the forepaw righting reflex. Results The ED50 and LD50 values were found to be 0.41 and 1.05 mL emulsion / kg body weight, respectively. These lead to a therapeutic index of 2.6, which compares favorably to previously determined values of emulsified isoflurane, as well as values for propofol and thiopental. Conclusions A novel semi-fluorinated surfactant was able to considerably increase the maximum amount of stably emulsified sevoflurane compared to Intralipid. These formulations can be used to rapidly induce anesthesia with bolus dosing from which recovery is smooth and rapid. PMID:18813044

  6. Influence of olive oil emulsions on dentin demineralization in vitro.

    PubMed

    Buchalla, W; Attin, T; Roth, P; Hellwig, E

    2003-01-01

    The effect of two different concentrations of olive oil emulsions on development of artificial caries-like dentin lesions under severe demineralizing conditions was investigated. Bovine dentin samples (n = 180) were ground flat, polished, divided into four groups, and subjected to three demineralization cycles per day. Samples were stored in one of the following solutions for 5 min prior to demineralization in a buffer solution (pH 5): Group 1: 50% oil emulsion (olive oil and distilled water); group 2: 5% oil emulsion; group 3: distilled water; and group 4: 1,500 ppm sodium fluoride. Daily up to 9 days, lesion depth (ld) and mineral loss (deltaZ) were determined by means of microradiography and analyzed by ANOVA and Tukey's studentized range test (p < or = 0.05). Lesion depth increased with time for all groups. Mineral loss increased in groups 1-3. A small but significant decrease in mineral loss was observed following treatment with lipid emulsions as compared to treatment with distilled water, but fluoride treatment was considerably more effective. Mean mineral loss (means +/- SD in vol% x microm) averaged over the study period was 4,368 +/- 1,599, 4,536 +/- 1,823, 4,849 +/- 1,798, and 789 +/- 177 for group 1, 2, 3, and 4, respectively. Ratio (deltaZ/ld) remained constant around 30 vol% for groups 1-3, but decreased for group 4. In conclusion, externally provided lipids have the potential to reduce dentin demineralization in vitro.

  7. Stabilizing oil-in-water emulsions with regenerated chitin nanofibers.

    PubMed

    Zhang, Ying; Chen, Zhigang; Bian, Wenyang; Feng, Li; Wu, Zongwei; Wang, Peng; Zeng, Xiaoxiong; Wu, Tao

    2015-09-15

    Natural chitin is a highly crystalline biopolymer with poor aqueous solubility. Thus direct application of chitin is rather limited unless chemical modifications are made to improve its solubility in aqueous media. Through a simple dissolution and regeneration process, we have successfully prepared chitin nanofibers with diameters around 50nm, which form a stable suspension at concentrations higher than 0.50% and a self-supporting gel at concentrations higher than 1.00%. Additionally, these nanofibers can stabilize oil-in-water emulsions with oil fraction more than 0.50 at chitin usage level of 0.01g/g oil. The droplet sizes of the resulting emulsions decrease with increasing chitin concentrations and decreasing oil fraction. Confocal laser scanning micrographs demonstrate the adsorption of chitin nanofibers on the emulsion droplet surface, which indicates the emulsion stabilization is through a Pickering mechanism. Our findings allow the direct application of chitin in the food industry without chemical modifications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. [Making of compound Rhizoma Acori Tatarinowii naphtha emulsion].

    PubMed

    Zheng, Guo-shen; Li, Jun-zhi

    2006-05-01

    To determine an ideal recipe and technique for making of compound Rhizoma Acori Tatarinowii naphtha emulsion (CRATNE) , diameter for the granule in 10 to approximately 20 microm. CRATNE was made by two-step emulsification and the recipe was evaluated to investigate the effect of diameter for the granule on stir time and stir speed and oxygen ventilated. The percentages of diameter for the granule in 10 to approximately 20 microm was 72%. Emulsion was made on recipe No. 4 [ Rhizoma Acori Tatarimowii naphtha (ml): liquid paraffin (ml): Sorbian monooleate (g): 0.5% gelatin solution (ml): distilled water (ml) is 1.05: 16: 7: 1: 16] and compound emulsion is made on recipe No. 4 [fore emulsion (g): Tween-80 (g): distilled water (ml) is 10: 1: 9]. Recipe No. 4 was the best one if stiring at low speed through magnetic force mixer was used. Stir time was 1 min. The oxygen was ventilated with a flow rate of 2 L/min for CRATNE. Ventilation time was 1 h. The percentages of diameter for the granule in 10 to approximately 12 microm increased from 72% to 79%. was type W/O/W. The diameter of CRATNE for the granule is in 10 to approximately 20 microm, can be made following above-mentioned methods.

  9. Morphological transformations of native petroleum emulsions. I. Viscosity studies.

    PubMed

    Evdokimov, Igor N; Efimov, Yaroslav O; Losev, Aleksandr P; Novikov, Mikhail A

    2008-07-15

    Emulsions of water in as-recovered native crude oils of diverse geographical origin evidently possess some common morphological features. At low volume fractions varphi of water, the viscosity behavior of emulsions is governed by the presence of flocculated clusters of water droplets, whereas characteristic tight gels, composed of visually monodisperse small droplets, are responsible for the viscosity anomaly at varphi approximately 0.4-0.5. Once formed, small-droplet gel domains apparently retain their structural integrity at higher varphi, incorporating/stabilizing new portions of water as larger-sized droplets. The maximum hold-up of disperse water evidently is the close-packing limit of varphi approximately 0.74. At higher water contents (up to varphi approximately 0.83), no inversion to O/W morphology takes place, but additional water emerges as a separate phase. The onset of stratified flow (W/O emulsion gel + free water) is the cause of the observed viscosity decrease, contrary to the conventional interpretation of the viscosity maximum as a reliable indicator of the emulsion inversion point.

  10. Preparation and stabilization of D-limonene Pickering emulsions by cellulose nanocrystals.

    PubMed

    Wen, Chunxia; Yuan, Qipeng; Liang, Hao; Vriesekoop, Frank

    2014-11-04

    The aim of this study was to investigate D-limonene Pickering emulsion stabilized by cellulose nanocrystals (CNCs) and factors that may affect its properties. CNCs were prepared by ammonium persulfate hydrolysis of corncob cellulose, and D-limonene Pickering emulsions were generated by ultrasonic homogenizing method. The morphology and size of the prepared emulsions with different CNCs concentrations were studied by optical microscopy and laser light diffraction. In addition, factors that may affect the stability of emulsions such as ionic concentration, pH and temperature were also studied. As indicated by the experiment data, when temperature rose, the stability to of emulsions would be increased, and the stability of emulsions was reduced with low pH or high salt concentration due to electrostatic screening of the negatively charged CNC particles. In conclusion, high stability of D-limonene Pickering emulsions could be obtained by CNCs.

  11. Stabilizing alkenyl succinic anhydride (ASA) emulsions with starch nanocrystals and fluorescent carbon dots.

    PubMed

    Gong, Bei; Liu, Wenxia; Chen, Xueshuai; Tan, Hua; Zhang, Xiuli; Wang, Huili; Yu, Dehai; Li, Guodong; Song, Zhaoping

    2017-06-01

    Stabilizing alkenyl succinic anhydride (ASA) emulsions using fine particles instead of cationic starch have attracted much attention in recent years. Herein, starch nanocrystals (SNCs) made from maize starch by H2SO4 hydrolysis were used to co-stabilize ASA emulsions with fluorescent carbon dots (CDs) made hydrothermally from gelatin. The introduction of CDs can significantly enhance the stability and reduce the droplet size of SNC-stabilized ASA-in-water emulsions. Consequently, the sizing performance of the SNC-stabilized ASA emulsion is significantly improved by increasing the CD-to-SNC mass ratio. SNC and CD co-stabilized ASA emulsions show much better sizing performance than starch and CD co-stabilized ASA emulsions, achieving their best sizing performance at a CD-to-SNC mass ratio of 80%. Meanwhile, the morphology of SNC/starch and CD co-stabilized ASA emulsions can be traced under UV excitation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. The influence of emulsion structure on the Maillard reaction of ghee.

    PubMed

    Newton, Angela E; Fairbanks, Antony J; Golding, Matt; Andrewes, Paul; Gerrard, Juliet A

    2015-04-15

    Food systems, such as cream and butter, have an emulsion or emulsion-like structure. When these food emulsions are heated to high temperatures to make products such as ghee, the Maillard reaction forms a range of volatile flavour compounds. The objective of this paper was to unravel the specific influence of emulsion structure on the Maillard reaction pathways that occur during the cooking of ghee using model systems. Switching the dispersed phase from oil to water provided a means of altering the ratios of volatile compounds produced in the cooked samples. The oil-in-water emulsion generated a volatile compound profile similar to that of the fat containing two phase model matrix, whereas the water-in-oil emulsion produced a different ratio of these compounds. The ability to generate different volatile compound profiles through the use of inverted emulsion structures could point to a new avenue for control of the Maillard reaction in high temperature food systems.

  13. Preparation of uniform particle-stabilized emulsions using SPG membrane emulsification.

    PubMed

    Sun, Guanqing; Qi, Feng; Wu, Jie; Ma, Guanghui; Ngai, To

    2014-06-24

    Various aspects of particle-stabilized emulsions (or so-called Pickering emulsions) have been extensively investigated during the last two decades, but the preparation of uniform Pickering emulsion droplets via a simple and scalable method has been sparingly realized. We report the preparation of uniform Pickering emulsions by Shirasu porous glass (SPG) membrane emulsification. The size of the emulsion droplets ranging from 10-50 μm can be precisely controlled by the size of the membrane pore. The emulsion droplets have a high monodispersity with coefficients of variation (CV) lower than 15% in all of the investigated systems. We further demonstrate the feasibility of locking the assembled particles at the interface, and emulsion droplets have been shown to be excellent templates for the preparation of monodisperse colloidosomes that are necessary in drug-delivery systems.

  14. Oil-in-water emulsions stabilised by cellulose ethers: stability, structure and in vitro digestion.

    PubMed

    Borreani, Jennifer; Espert, María; Salvador, Ana; Sanz, Teresa; Quiles, Amparo; Hernando, Isabel

    2017-04-19

    The effect of cellulose ethers in oil-in-water emulsions on stability during storage and on texture, microstructure and lipid digestibility during in vitro gastrointestinal digestion was investigated. All the cellulose ether emulsions showed good physical and oxidative stability during storage. In particular, the methylcellulose with high methoxyl substituents (HMC) made it possible to obtain emulsions with high consistency which remained almost unchanged during gastric digestion, and thus could enhance fullness and satiety perceptions at gastric level. Moreover, the HMC emulsion slowed down lipid digestion to a greater extent than a conventional protein emulsion or the emulsions stabilised by the other cellulose ethers. Therefore, HMC emulsions could be used in weight management to increase satiation capacity and decrease lipid digestion.

  15. Non-coalescence of oppositely charged droplets in pH-sensitive emulsions

    PubMed Central

    Liu, Tingting; Seiffert, Sebastian; Thiele, Julian; Abate, Adam R.; Weitz, David A.; Richtering, Walter

    2012-01-01

    Like charges stabilize emulsions, whereas opposite charges break emulsions. This is the fundamental principle for many industrial and practical processes. Using micrometer-sized pH-sensitive polymeric hydrogel particles as emulsion stabilizers, we prepare emulsions that consist of oppositely charged droplets, which do not coalesce. We observe noncoalescence of oppositely charged droplets in bulk emulsification as well as in microfluidic devices, where oppositely charged droplets are forced to collide within channel junctions. The results demonstrate that electrostatic interactions between droplets do not determine their stability and reveal the unique pH-dependent properties of emulsions stabilized by soft microgel particles. The noncoalescence can be switched to coalescence by neutralizing the microgels, and the emulsion can be broken on demand. This unusual feature of the microgel-stabilized emulsions offers fascinating opportunities for future applications of these systems. PMID:22203968

  16. Small particle size lipid emulsions, satiety and energy intake in lean men.

    PubMed

    Chan, Y K; Budgett, S C; MacGibbon, A K; Quek, S Y; Kindleysides, S; Poppitt, S D

    2017-02-01

    Lipid emulsions have been proposed to suppress hunger and food intake. Whilst there is no consensus on optimal structural properties or mechanism of action, small particle size (small-PS) stable emulsions may have greatest efficacy. Fabuless®, a commercial lipid emulsion reported in some studies to decrease energy intake (EI), is a small-PS, 'hard' fat emulsion comprising highly saturated palm oil base (PS, 82nm). To determine whether small-PS dairy lipid emulsions can enhance satiety, firstly, we investigated 2 'soft' fat dairy emulsions generated using dairy and soy emulsifying agents (PS, 114nm and 121nm) and a non-emulsified dairy control. Secondly, we investigated a small-PS palmolein based 'hard' fat emulsion (fractionated palm oil, PS, 104nm) and non-emulsified control. This was a 6 arm, randomized, cross-over study in 18 lean men, with test lipids delivered in a breakfast meal: (i) Fabuless® emulsion (FEM); (ii) dairy emulsion with dairy emulsifier (DEDE); (iii) dairy emulsion with soy lecithin emulsifier (DESE); (iv) dairy control (DCON); (v) palmolein emulsion with dairy emulsifier (PEDE); (vi) palmolein control (PCON). Participants rated postprandial appetite sensations using visual analogue scales (VAS), and ad libitum energy intake (EI) was measured at a lunch meal 3.5h later. Dairy lipid emulsions did not significantly alter satiety ratings or change EI relative to dairy control (DEDE, 4035kJ; DESE, 3904kJ; DCON, 3985kJ; P>0.05) nor did palm oil based emulsion relative to non-emulsified control (PEDE, 3902 kJ; PCON, 3973kJ; P>0.05). There was no evidence that small-PS dairy lipid emulsions or commercial Fabuless altered short-term appetite or food intake in lean adults. Copyright © 2016. Published by Elsevier Inc.

  17. Sensory and instrumental characterization of fast inverting oil-in-water emulsions for cosmetic application.

    PubMed

    Korać, R; Krajišnik, D; Milić, J

    2016-06-01

    The aim of this study was to perform short-term sensory testing and instrumental (conductivity and rheological) characterization of a fast inverted oil-in-water (o/w) emulsion base, also known as a SWOP (Switch-Oil-Phase) emulsion, and reference o/w and water-in-oil (w/o) emulsion bases under various testing conditions: in the presence of ions and at different temperatures. SWOP emulsions are known as metastable o/w emulsions, which invert into w/o emulsions on application of mechanical energy, while rubbing it onto the skin and due to their properties SWOP emulsion are especially suitable as a cosmetic vehicle in, for example, sun-protection products. Sensory testing, which included the evaluation of twenty attributes of the investigated emulsion bases, was performed by a panel of 20 healthy assessors experienced in the evaluation of cosmetic products. Rheological characterization of the investigated emulsion bases included continuous flow testing and oscillatory measurements under various testing conditions. Additionally, conductivity measurements were combined with rheological characterization to monitor stability changes of investigated emulsions. The instrumental and sensory results were analysed statistically and compared. The obtained results indicated that the investigated emulsions behaved differently in the presence of ions (originating from artificial sweat solution) and at different temperatures (under storage and application conditions). Namely, the SWOP emulsion showed similar behaviour to the reference o/w emulsion under storage conditions, but in the presence of ions and at skin temperature, the SWOP emulsion was followed by re-establishment of a stable w/o system, whereas reference o/w emulsion was irreversibly destroyed. The statistical analysis of chosen sensorial attributes indicated that the reference w/o emulsion was significantly different in comparison with the reference o/w and SWOP emulsions, mainly, standing in good agreement with the

  18. Gamma irradiation of fine-emulsion sausage containing sodium diacetate.

    PubMed

    Sommers, Christopher; Fan, Xuetong

    2003-05-01

    Listeria monocytogenes, a psychrotrophic foodborne pathogen, is a frequent postprocess contaminant of ready-to-eat (RTE) meat products, including frankfurters and bologna. Ionizing radiation can eliminate L. monocytogenes from RTE meats. Sodium diacetate (SDA) incorporated into fine-emulsion sausages inhibits the growth of L. monocytogenes. Irradiation of L. monocytogenes suspended in SDA solutions resulted in synergistic reductions of the microorganism. L. monocytogenes populations were reduced by > 9 log10 units at a radiation dose of 1.5 kGy when suspended in 0.125% SDA solution. In contrast, the D10-values (the ionizing radiation doses required to reduce the population by 90%) were 0.58, 0.59, 0.57, and 0.53 kGy for L. monocytogenes populations suspended in emulsions containing 0, 0.125, 0.25, and 0.5% SDA, respectively. The D10-values for L. monocytogenes surface inoculated onto frankfurters dipped in 0, 0.125, 0.25, and 0.5% SDA solutions were 0.58, 0.53, 0.54, and 0.52 kGy, respectively. Postirradiation growth of L. monocytogenes suspended in beef bologna emulsion at 9 degrees C was dependent on SDA concentration and ionizing radiation dose. Very small, but statistically significant, changes in bologna redness, lipid oxidation, and shear force were observed for the beef bologna emulsion with the highest SDA concentration (0.5%) and irradiation dose (3.0 kGy). SDA can inhibit the proliferation of L. monocytogenes surviving the irradiation process with minimal impact on fine-emulsion sausage color, lipid oxidation, and firmness when used within regulatory limits.

  19. Lipid emulsions – Guidelines on Parenteral Nutrition, Chapter 6

    PubMed Central

    Adolph, M.; Heller, A. R.; Koch, T.; Koletzko, B.; Kreymann, K. G.; Krohn, K.; Pscheidl, E.; Senkal, M.

    2009-01-01

    The infusion of lipid emulsions allows a high energy supply, facilitates the prevention of high glucose infusion rates and is indispensable for the supply with essential fatty acids. The administration of lipid emulsions is recommended within ≤7 days after starting PN (parenteral nutrition) to avoid deficiency of essential fatty acids. Low-fat PN with a high glucose intake increases the risk of hyperglycaemia. In parenterally fed patients with a tendency to hyperglycaemia, an increase in the lipid-glucose ratio should be considered. In critically ill patients the glucose infusion should not exceed 50% of energy intake. The use of lipid emulsions with a low phospholipid/triglyceride ratio is recommended and should be provided with the usual PN to prevent depletion of essential fatty acids, lower the risk of hyperglycaemia, and prevent hepatic steatosis. Biologically active vitamin E (α-tocopherol) should continuously be administered along with lipid emulsions to reduce lipid peroxidation. Parenteral lipids should provide about 25–40% of the parenteral non-protein energy supply. In certain situations (i.e. critically ill, respiratory insufficiency) a lipid intake of up to 50 or 60% of non-protein energy may be reasonable. The recommended daily dose for parenteral lipids in adults is 0.7–1.3 g triglycerides/kg body weight. Serum triglyceride concentrations should be monitored regularly with dosage reduction at levels >400 mg/dl (>4.6 mmol/l) and interruption of lipid infusion at levels >1000 mg/dl (>11.4 mmol/l). There is little evidence at this time that the choice of different available lipid emulsions affects clinical endpoints. PMID:20049078

  20. Lipid emulsions - Guidelines on Parenteral Nutrition, Chapter 6.

    PubMed

    Adolph, M; Heller, A R; Koch, T; Koletzko, B; Kreymann, K G; Krohn, K; Pscheidl, E; Senkal, M

    2009-11-18

    The infusion of lipid emulsions allows a high energy supply, facilitates the prevention of high glucose infusion rates and is indispensable for the supply with essential fatty acids. The administration of lipid emulsions is recommended within < or =7 days after starting PN (parenteral nutrition) to avoid deficiency of essential fatty acids. Low-fat PN with a high glucose intake increases the risk of hyperglycaemia. In parenterally fed patients with a tendency to hyperglycaemia, an increase in the lipid-glucose ratio should be considered. In critically ill patients the glucose infusion should not exceed 50% of energy intake. The use of lipid emulsions with a low phospholipid/triglyceride ratio is recommended and should be provided with the usual PN to prevent depletion of essential fatty acids, lower the risk of hyperglycaemia, and prevent hepatic steatosis. Biologically active vitamin E (alpha-tocopherol) should continuously be administered along with lipid emulsions to reduce lipid peroxidation. Parenteral lipids should provide about 25-40% of the parenteral non-protein energy supply. In certain situations (i.e. critically ill, respiratory insufficiency) a lipid intake of up to 50 or 60% of non-protein energy may be reasonable. The recommended daily dose for parenteral lipids in adults is 0.7-1.3 g triglycerides/kg body weight. Serum triglyceride concentrations should be monitored regularly with dosage reduction at levels >400 mg/dl (>4.6 mmol/l) and interruption of lipid infusion at levels >1000 mg/dl (>11.4 mmol/l). There is little evidence at this time that the choice of different available lipid emulsions affects clinical endpoints.

  1. Fuel composition

    SciTech Connect

    Badger, S.L.

    1983-09-20

    A composition useful, inter alia, as a fuel, is based on ethyl alcohol denatured with methylisobutyl alcohol and kerosene, which is mixed with xylenes and isopropyl alcohol. The xylenes and isopropyl alcohol act with the denaturizing agents to raise the flash point above that of ethyl alcohol alone and also to mask the odor and color the flame, thus making the composition safer for use as a charcoal lighter or as a fuel for e.g. patio lamps.

  2. Effects of Partial Beef Fat Replacement with Gelled Emulsion on Functional and Quality Properties of Model System Meat Emulsions.

    PubMed

    Serdaroğlu, Meltem; Nacak, Berker; Karabıyıkoğlu, Merve; Keser, Gökçen

    2016-01-01

    The objective of this study was to investigate the effects of partial beef fat replacement (0, 30, 50, 100%) with gelled emulsion (GE) prepared with olive oil on functional and quality properties of model system meat emulsion (MSME). GE consisted of inulin and gelatin as gelling agent and characteristics of gelled and model system meat emulsions were investigated. GE showed good initial stability against centrifugation forces and thermal stability at different temperatures. GE addition decreased the pH with respect to increase in GE concentration. Addition of GE increased lightness and yellowness but reduced redness compared to control samples. The results of the study showed that partial replacement of beef fat with GE could be used for improving cooking yield without negative effects on water holding capacity and emulsion stability compared to C samples when replacement level is up to 50%. The presence of GE significantly affected textural behaviors of samples (p<0.05). In conclusion, our study showed that GE have promising impacts on developing healthier meat product formulations besides improving technological characteristics.

  3. Effects of Partial Beef Fat Replacement with Gelled Emulsion on Functional and Quality Properties of Model System Meat Emulsions

    PubMed Central

    2016-01-01

    The objective of this study was to investigate the effects of partial beef fat replacement (0, 30, 50, 100%) with gelled emulsion (GE) prepared with olive oil on functional and quality properties of model system meat emulsion (MSME). GE consisted of inulin and gelatin as gelling agent and characteristics of gelled and model system meat emulsions were investigated. GE showed good initial stability against centrifugation forces and thermal stability at different temperatures. GE addition decreased the pH with respect to increase in GE concentration. Addition of GE increased lightness and yellowness but reduced redness compared to control samples. The results of the study showed that partial replacement of beef fat with GE could be used for improving cooking yield without negative effects on water holding capacity and emulsion stability compared to C samples when replacement level is up to 50%. The presence of GE significantly affected textural behaviors of samples (p<0.05). In conclusion, our study showed that GE have promising impacts on developing healthier meat product formulations besides improving technological characteristics. PMID:28115885

  4. Dispersion and combustion of a bitumen-based emulsion in bubbling fluidized bed

    SciTech Connect

    Miccio, F.; Miccio, M.; Repetto, L.; Gradassi, A.T.

    1999-07-01

    An experimental program was carried out with ORIMULSION{reg{underscore}sign} as a part of an R and D project aimed at demonstrating the feasibility of contemporary combustion and desulfurization in atmospheric bubbling fluidized bed. ORIMULSION is a bitumen-based emulsion that is produced in Venezuela's Orinoco region with 30% w/w water and about 3% w/w sulfur content (on a dry basis). Two atmospheric, pre-pilot, bubbling bed units were used: a 140 mm ID reactor and a 370 mm ID combustor. The first one provides qualitative and quantitative information on dispersion and in-bed retention of ORIMULSION: to this end the bed is operated batchwise in hot tests without combustion and the fuel can be injected into the bed with or without a gaseous atomization stream. With the second one, steady-state combustion tests are carried out under typical conditions of bubbling FBC. The outcome of the experiments and significance of the results are fully discussed in the paper with reference to the ORIMULSION combustion mechanism. Among the other findings, the following ones appear particularly relevant. (1) A carbon condensed phase is actually formed with the structure of tiny carbon deposits on bed particles, but at a very low rate, as a consequence, combustion (and pollutant formation) is dominated by homogeneous mechanisms. (2) Combustion efficiency is always very high, with values approaching 100% in those tests with higher excess air. (3) The in-bed combustion efficiency is enhanced by those fuel injection conditions that lead to dispersion into fine droplets and to effective mixing within the bed; therefore, contrarily to the case of water suspensions of solid fuels, intense atomization of ORIMULSION is recommended.

  5. Hierarchical polymerized high internal phase emulsions synthesized from surfactant-stabilized emulsion templates.

    PubMed

    Wong, Ling L C; Villafranca, Pedro M Baiz; Menner, Angelika; Bismarck, Alexander

    2013-05-21

    In building construction, structural elements, such as lattice girders, are positioned specifically to support the mainframe of a building. This arrangement provides additional structural hierarchy, facilitating the transfer of load to its foundation while keeping the building weight down. We applied the same concept when synthesizing hierarchical open-celled macroporous polymers from high internal phase emulsion (HIPE) templates stabilized by varying concentrations of a polymeric non-ionic surfactant from 0.75 to 20 w/vol %. These hierarchical poly(merized)HIPEs have multimodally distributed pores, which are efficiently arranged to enhance the load transfer mechanism in the polymer foam. As a result, hierarchical polyHIPEs produced from HIPEs stabilized by 5 vol % surfactant showed a 93% improvement in Young's moduli compared to conventional polyHIPEs produced from HIPEs stabilized by 20 vol % of surfactant with the same porosity of 84%. The finite element method (FEM) was used to determine the effect of pore hierarchy on the mechanical performance of porous polymers under small periodic compressions. Results from the FEM showed a clear improvement in Young's moduli for simulated hierarchical porous geometries. This methodology could be further adapted as a predictive tool to determine the influence of hierarchy on the mechanical properties of a range of porous materials.

  6. Alternative lipid emulsions versus pure soy oil based lipid emulsions for parenterally fed preterm infants.

    PubMed

    Kapoor, Vishal; Glover, Rebecca; Malviya, Manoj N

    2015-12-02

    The pure soybean oil based lipid emulsions (S-LE) conventionally used for parenteral nutrition (PN) in preterm infants have high polyunsaturated fatty acid (PUFA) content. The newer lipid emulsions (LE) from alternative lipid sources with reduced PUFA content may improve clinical outcomes in preterm infants. To determine the safety and efficacy of the newer alternative LE compared with the conventional S-LE for PN in preterm infants. We used the standard search strategy of the Cochrane Neonatal Review Group (CNRG) to search the Cochrane Central Register of Controlled Trials (CENTRAL; Issue 7), MEDLINE (1946 to 31 July 2015), EMBASE (1947 to 31 July 2015), CINAHL (1982 to 31 July 2015), Web of Science (31 July 2015), conference proceedings, trial registries (clinicaltrials.gov, controlled-trials.com, WHO's ICTRP), and the reference lists of retrieved articles for randomised controlled trials and quasi-randomised trials. Randomised or quasi-randomised controlled trials in preterm infants (< 37 weeks), comparing newer alternative LE with S-LE. Data collection and analysis conformed to the methods of the CNRG. We assessed the quality of evidence for important outcomes using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach, in addition to reporting the conventional statistical significance of results. Fifteen studies (N = 979 infants) are included in this review. Alternative LE including medium chain triglycerides/long chain triglycerides (MCT/LCT) LE (3 studies; n = 108), MCT-olive-fish-soy oil-LE (MOFS-LE; 7 studies; n = 469), MCT-fish-soy oil-LE (MFS-LE; 1 study; n = 60), olive-soy oil-LE (OS-LE; 7 studies; n = 406), and borage-soy oil-LE (BS-LE; 1 study; n = 34) were compared with S-LE. The different LE were also considered together to compare 'all fish oil containing-LE' versus S-LE (7 studies; n = 499) and 'all alternative LE' versus S-LE (15 studies; n = 979). Some studies had multiple intervention arms and were included in

  7. Hybrid fuels for highway transportation. Second annual technical progress report for the period 1 June 1979-1 June 1980

    SciTech Connect

    Ryan, T.W.; Likos, W.; Moses, C.A.

    1980-06-01

    A program has been developed to investigate the potential of hybrid fuels for use in highway transportation. Hybrids are fuels derived from combinations of readily available energetic non-conventional materials with petroleum. They are generally formulated as solutions, emulsions, or slurries. The underlying objective of the program is to reduce the use of petroleum-derived fuels and/or to minimize the processing requirements of the finished hybrid fuels. During the first year of the program, extensive work was done on the development and testing of water and alcohol emulsions and alcohol solutions. In the second year, the emphasis was placed on the development and testing of hybrid fuel slurries. Components evaluated included carbohydrates and various forms of carbon. It was concluded that, of the slurries tested, the carbon (coke, carbon black, etc.) slurries have the most potential for development into finished fuels. The efforts during the third year will concentrate on advancing the development of the slurries (especially the carbon slurries) to the same point as the solutions and emulsions. This work will include examination of the mechanical difficulties, the stability problems, and the combustion phenomena observed when using slurries in heat engines.

  8. Influence of hazelnut oil phospholipids on the skin moisturizing effect of a cosmetic emulsion.

    PubMed

    Masson, P; Merot, F; Bardot, J

    1990-12-01

    Synopsis Previous studies have shown significant differences between the moisturizing effects and skin tolerances of virgin and refined vegetable oils when incorporated in cosmetic emulsions. They have also shown significantly greater and longer lasting moisturizing potential for a cosmetic emulsion containing virgin vegetable oils when compared with refined oils in the same emulsion. Results were obtained with sweet almond and hazelnut oils. Hazelnut oil has now been analysed to show the effect of refining. The phospholipid content of the oil decreased from 286 ppm in virgin oil to traces in refined oil. These oils were added at 10% to a cosmetic emulsion applied twice a day for 28 days to the skin of 56 volunteers and the changes in moisturizing effect measured by means of the capacitance method (corneometer CM 240 Khazaka). Measurements were made under conditions of controlled temperature and humidity on the first day of application and repeated after 21 and 28 days of treatment. A significant increase in the moisturizing effect of the emulsion containing virgin hazelnut oil was found and this was itself significantly greater than the emulsion containing refined oil. Both emulsions had a greater moisturizing effect when compared with the control emulsion and the untreated skin. Phospholipids were isolated by dialysis from virgin oil and added to the refined oil (234 ppm). The moisturizing effect obtained with the emulsion containing the enriched refined oil was shown to be the same as that obtained with the virgin oil emulsion.

  9. Effect of the degree of substitution of octenyl succinic anhydride-banana starch on emulsion stability.

    PubMed

    Bello-Pérez, Luis A; Bello-Flores, Christopher A; Nuñez-Santiago, María del Carmen; Coronel-Aguilera, Claudia P; Alvarez-Ramirez, J

    2015-11-05

    Banana starch was esterified with octenylsuccinic anhydride (OSA) at different degree substitution (DS) and used to stabilize emulsions. Morphology, emulsion stability, emulsification index, rheological properties and particle size distribution of the emulsions were tested. Emulsions dyed with Solvent Red 26 showed affinity for the oil phase. Backscattering light showed three regions in the emulsion where the emulsified region was present. Starch concentration had higher effect in the emulsification index (EI) than the DS used in the study because similar values were found with OSA-banana and native starches. However, OSA-banana presented greater stability of the emulsified region. Rheological tests in emulsions with OSA-banana showed G'>G" values and low dependence of G' with the frequency, indicating a dominant elastic response to shear. When emulsions were prepared under high-pressure conditions, the emulsions with OSA-banana starch with different DS showed a bimodal distribution of particle size. The emulsion with OSA-banana starch and the low DS showed similar mean droplet diameter than its native counterpart. In contrast, the highest DS led to the highest mean droplet diameter. It is concluded that OSA-banana starch with DS can be used to stabilize specific emulsion types.

  10. Preparation, characterization, and in vitro gastrointestinal digestibility of oil-in-water emulsion-agar gels.

    PubMed

    Wang, Zheng; Neves, Marcos A; Kobayashi, Isao; Uemura, Kunihiko; Nakajima, Mitsutoshi

    2013-01-01

    Soybean oil-in-water (O/W) emulsion-agar gel samples were prepared and their digestibility evaluated by using an in vitro gastrointestinal digestion model. Emulsion-agar sols were obtained by mixing the prepared O/W emulsions with a 1.5 wt % agar solution at 60 °C, and their subsequent cooling at 5 °C for 1 h formed emulsion-agar gels. Their gel strength values increased with increasing degree of polymerization of the emulsifiers, and the relative gel strength increased in the case of droplets with an average diameter smaller than 700 nm. Flocculation and coalescence of the released emulsion droplets depended strongly on the emulsifier type; however, the emulsifier type hardly affected the ζ-potential of emulsion droplets released from the emulsion-agar gels during in vitro digestion. The total FFA content released from each emulsion towards the end of the digestion period was nearly twice that released from the emulsion-agar gel, indicating that gelation of the O/W emulsion may have delayed lipid hydrolysis.

  11. Alternative jet aircraft fuels

    NASA Technical Reports Server (NTRS)

    Grobman, J.

    1979-01-01

    Potential changes in jet aircraft fuel specifications due to shifts in supply and quality of refinery feedstocks are discussed with emphasis on the effects these changes would have on the performance and durability of aircraft engines and fuel systems. Combustion characteristics, fuel thermal stability, and fuel pumpability at low temperature are among the factors considered. Combustor and fuel system technology needs for broad specification fuels are reviewed including prevention of fuel system fouling and fuel system technology for fuels with higher freezing points.

  12. Alternative jet aircraft fuels

    NASA Technical Reports Server (NTRS)

    Grobman, J.

    1979-01-01

    Potential changes in jet aircraft fuel specifications due to shifts in supply and quality of refinery feedstocks are discussed with emphasis on the effects these changes would have on the performance and durability of aircraft engines and fuel systems. Combustion characteristics, fuel thermal stability, and fuel pumpability at low temperature are among the factors considered. Combustor and fuel system technology needs for broad specification fuels are reviewed including prevention of fuel system fouling and fuel system technology for fuels with higher freezing points.

  13. Effect of the interfacial layer composition on the properties of emulsion creams.

    PubMed

    Mackie, Alan R; Ridout, Michael J; Moates, Graham; Husband, Fiona A; Wilde, Peter J

    2007-07-11

    We have quantified observed differences in the microstructure and rheology of creaming emulsions stabilized by protein and low molecular weight surfactants. In this study, we made two sets of emulsions from a single parent emulsion, which differed only in their interfacial composition (i.e., either protein or surfactant). The protein studied was whey protein isolate. The zeta potential of the surfactant-stabilized emulsion was controlled by mixing anionic (SDS) and nonionic (Brij 35) surfactants to match the zeta potential of the protein-stabilized emulsion. Despite this, ultrasonic creaming measurements and confocal microscopy showed that the structures within the cream layers were different between the two sets of emulsions. The protein-stabilized emulsions appeared to slow or arrest the packing within the cream, leading to a lower density network of emulsion droplets, whereas the surfactant emulsion droplets rearranged more quickly into a well-packed, concentrated cream layer. Rheological analysis of the creams showed that despite the protein-stabilized emulsions having a lower dispersed phase volume fraction, their elastic modulus was approximately 30 times greater than that of a comparable surfactant-stabilized emulsion. These differences were caused by the ability of the protein to form a highly viscoelastic interfacial network around the droplets which may include intermolecular covalent cross-links. At close range the adhesive nature of the interaction between the layers contributes to the microstructure and rheology of concentrated emulsions. This is the first time that such well-defined emulsion systems have been studied in detail both noninvasively to look at the impact on creaming and also invasively to look at the impact on bulk rheological properties.

  14. The emulsion flocculation stability of protein-carbohydrate diblock copolymers.

    PubMed

    Wooster, Tim J; Augustin, Mary Ann

    2007-09-15

    The effect of the steric layer thickness on the flocculation stability of beta-lactoglobulin-carbohydrate diblock copolymers was assessed. The diblock copolymers were created by conjugating beta-lactoglobulin to maltose or a series of different M(n) maltodextrins using the Maillard reaction. The thickness and spatial arrangement of the interfacial layers were assessed via latex adsorption and selective enzymatic digestion studies. An increase in the molecular weight of the maltodextrin (900, 1900 and 3800 Da) increased the interfacial thickness (1.1, 2.5 and 7.3 nm, respectively). No detectable change to interfacial thickness was observed upon the attachment of maltose. The increase in the interfacial layer thickness scaled with the hydrodynamic size of the carbohydrate. The beta-lactoglobulin-maltodextrin conjugates were found to have a diblock architecture, with the protein anchored at the surface and the carbohydrate protruding into the aqueous continuous phase. The stability of oil-in-water emulsions formed using the conjugates was assessed by exposing them to salt (150 mM NaCl or 0-20 mM CaCl(2)), heat alone or heat in the presence of 150 mM NaCl. Conjugation of a 900 Da maltodextrin provided sufficient steric stabilization to prevent flocculation in high salt environments. The effect of the (number) density of the steric layer was also assessed by controlling the average number of maltodextrins attached per beta-lactoglobulin molecule. The steric layer density at which emulsions became unstable was a function of carbohydrate M(n). Emulsions made from the 900 Da maltodextrin conjugate became unstable below a steric layer density of one tail per 7.5 nm(2), whilst emulsions made from the 1900 Da maltodextrin were unstable below a steric layer density of one tail per 9.5 nm(2). This trend was expected and can be explained by the stronger van der Waals attraction that arises from the closer interdroplet separations that are permissible with the shorter

  15. Heat Transfer in Boiling Dilute Emulsion with Strong Buoyancy

    NASA Astrophysics Data System (ADS)

    Freeburg, Eric Thomas

    Little attention has been given to the boiling of emulsions compared to that of boiling in pure liquids. The advantages of using emulsions as a heat transfer agent were first discovered in the 1970s and several interesting features have since been studied by few researchers. Early research focuses primarily on pool and flow boiling and looks to determine a mechanism by which the boiling process occurs. This thesis looks at the boiling of dilute emulsions in fluids with strong buoyant forces. The boiling of dilute emulsions presents many favorable characteristics that make it an ideal agent for heat transfer. High heat flux electronics, such as those seen in avionics equipment, produce high heat fluxes of 100 W/cm2 or more, but must be maintained at low temperatures. So far, research on single phase convection and flow boiling in small diameter channels have yet to provide an adequate solution. Emulsions allow the engineer to tailor the solution to the specific problem. The fluid can be customized to retain the high thermal conductivity and specific heat capacity of the continuous phase while enhancing the heat transfer coefficient through boiling of the dispersed phase component. Heat transfer experiments were carried out with FC-72 in water emulsions. FC-72 has a saturation temperature of 56 °C, far below that of water. The parameters were varied as follows: 0% ≤ epsilon ≤ 1% and 1.82 x 1012 ≤ RaH ≤ 4.42 x 1012. Surface temperatures along the heated surface reached temperature that were 20 °C in excess of the dispersed phase saturation temperature. An increase of ˜20% was seen in the average Nusselt numbers at the highest Rayleigh numbers. Holography was used to obtain images of individual and multiple FC-72 droplets in the boundary layer next to the heated surface. The droplet diameters ranged from 0.5 mm to 1.3 mm. The Magnus effect was observed when larger individual droplets were injected into the boundary layer, causing the droplets to be pushed

  16. Fabrication, characterisation and stability of oil-in-water emulsions stabilised by solid lipid particles: the role of particle characteristics and emulsion microstructure upon Pickering functionality.

    PubMed

    Zafeiri, I; Smith, P; Norton, I T; Spyropoulos, F

    2017-07-19

    The quest to identify and use bio-based particles with a Pickering stabilisation potential for food applications has lately been particularly substantial and includes, among other candidates, lipid-based particles. The present study investigates the ability of solid lipid particles to stabilise oil-in-water (o/w) emulsions against coalescence. Results obtained showed that emulsion stability could be achieved when low amounts (0.8 wt/wt%) of a surface active species (e.g. Tween 80 or NaCas) were used in particles' fabrication. Triple staining of the o/w emulsions enabled the visualisation of emulsion droplets' surface via confocal microscopy. This revealed an interfacial location of the lipid particles, hence confirming stabilisation via a Pickering mechanism. Emulsion droplet size was controlled by varying several formulation parameters, such as the type of the lipid and surface active component, the processing route and the polarity of the dispersed phase. Differential scanning calorimetry (DSC) was employed as the analytical tool to quantify the amount of crystalline material available to stabilise the emulsion droplets at different intervals during the experimental timeframe. Dissolution of lipid particles in the oil phase was observed and evolved distinctly between a wax and a triglyceride, and in the presence of a non-ionic surfactant and a protein. Yet, this behaviour did not result in emulsion destabilisation. Moreover, emulsion's thermal stability was found to be determined by the behaviour of lipid particles under temperature effects.

  17. Physical and chemical characteristics of ultrasonically-prepared water-in-diesel fuel: effects of ultrasonic horn position and water content.

    PubMed

    Kojima, Yoshihiro; Imazu, Hiroki; Nishida, Keiichi

    2014-03-01

    An ultrasonic technique was applied to preparation of two-phase water-in-oil (W/O) emulsified fuel of water/diesel oil/surfactant. In this study, an ultrasonic apparatus with a 28 kHz rod horn was used. The influence of the horn tip position during ultrasonic treatment, sonication time and water content (5 or 10 vol%) on the emulsion stability, viscosity, water droplet size and water surface area of emulsion fuels prepared by ultrasonication was investigated. The emulsion stability of ultrasonically-prepared fuel significantly depended on the horn tip position during ultrasonic irradiation. It was found that the change in the stability with the horn tip position was partly related to that in the ultrasonic power estimated by calorimetry. Emulsion stability, viscosity and sum of water droplets surface area increased and water droplet size decreased with an increase in sonication time, and they approached each limiting value in the longer time. The maximum values of the viscosity and water surface area increased with water content, while the limiting values of the emulsion stability and water droplet size were almost independent of water content. During ultrasonication of water/diesel oil mixture, the hydrogen and methane were identified and the cracking of hydrocarbon components in the diesel oil occurred. The combustion characteristics of ultrasonically-prepared emulsion fuel were studied and compared with those of diesel oil. The soot and NOx emissions during combustion of the emulsified fuel with higher water contents were significantly reduced compared with those during combustion of diesel oil.

  18. Reforming of fuel inside fuel cell generator

    DOEpatents

    Grimble, Ralph E.

    1988-01-01

    Disclosed is an improved method of reforming a gaseous reformable fuel within a solid oxide fuel cell generator, wherein the solid oxide fuel cell generator has a plurality of individual fuel cells in a refractory container, the fuel cells generating a partially spent fuel stream and a partially spent oxidant stream. The partially spent fuel stream is divided into two streams, spent fuel stream I and spent fuel stream II. Spent fuel stream I is burned with the partially spent oxidant stream inside the refractory container to produce an exhaust stream. The exhaust stream is divided into two streams, exhaust stream I and exhaust stream II, and exhaust stream I is vented. Exhaust stream II is mixed with spent fuel stream II to form a recycle stream. The recycle stream is mixed with the gaseous reformable fuel within the refractory container to form a fuel stream which is supplied to the fuel cells. Also disclosed is an improved apparatus which permits the reforming of a reformable gaseous fuel within such a solid oxide fuel cell generator. The apparatus comprises a mixing chamber within the refractory container, means for diverting a portion of the partially spent fuel stream to the mixing chamber, means for diverting a portion of exhaust gas to the mixing chamber where it is mixed with the portion of the partially spent fuel stream to form a recycle stream, means for injecting the reformable gaseous fuel into the recycle stream, and means for circulating the recycle stream back to the fuel cells.

  19. Reforming of fuel inside fuel cell generator

    DOEpatents

    Grimble, R.E.

    1988-03-08

    Disclosed is an improved method of reforming a gaseous reformable fuel within a solid oxide fuel cell generator, wherein the solid oxide fuel cell generator has a plurality of individual fuel cells in a refractory container, the fuel cells generating a partially spent fuel stream and a partially spent oxidant stream. The partially spent fuel stream is divided into two streams, spent fuel stream 1 and spent fuel stream 2. Spent fuel stream 1 is burned with the partially spent oxidant stream inside the refractory container to produce an exhaust stream. The exhaust stream is divided into two streams, exhaust stream 1 and exhaust stream 2, and exhaust stream 1 is vented. Exhaust stream 2 is mixed with spent fuel stream 2 to form a recycle stream. The recycle stream is mixed with the gaseous reformable fuel within the refractory container to form a fuel stream which is supplied to the fuel cells. Also disclosed is an improved apparatus which permits the reforming of a reformable gaseous fuel within such a solid oxide fuel cell generator. The apparatus comprises a mixing chamber within the refractory container, means for diverting a portion of the partially spent fuel stream to the mixing chamber, means for diverting a portion of exhaust gas to the mixing chamber where it is mixed with the portion of the partially spent fuel stream to form a recycle stream, means for injecting the reformable gaseous fuel into the recycle stream, and means for circulating the recycle stream back to the fuel cells. 1 fig.

  20. FUEL ELEMENT

    DOEpatents

    Fortescue, P.; Zumwalt, L.R.

    1961-11-28

    A fuel element was developed for a gas cooled nuclear reactor. The element is constructed in the form of a compacted fuel slug including carbides of fissionable material in some cases with a breeder material carbide and a moderator which slug is disposed in a canning jacket of relatively impermeable moderator material. Such canned fuel slugs are disposed in an elongated shell of moderator having greater gas permeability than the canning material wherefore application of reduced pressure to the space therebetween causes gas diffusing through the exterior shell to sweep fission products from the system. Integral fission product traps and/or exterior traps as well as a fission product monitoring system may be employed therewith. (AEC)

  1. Fuel bundle

    SciTech Connect

    Lui, C.K.

    1989-04-04

    This patent describes a method of forming a fuel bundle of a nuclear reactor. The method consists of positioning the fuel rods in the bottom plate, positioning the tie rod in the bottom plate with the key passed through the receptacle to the underside of the bottom plate and, after the tie rod is so positioned, turning the tie rod so that the key is in engagement with the underside of the bottom plate. Thereafter mounting the top plate is mounted in engagement with the fuel rods with the upper end of the tie rod extending through the opening in the top plate and extending above the top plate, and the tie rod is secured to the upper side of sid top plate thus simultaneously securing the key to the underside of the bottom plate.

  2. A Novel Submicron Emulsion System Loaded with Doxorubicin Overcome Multi-Drug Resistance in MCF-7/ADR Cells

    PubMed Central

    Zhou, W. P.; Hua, H. Y.; Sun, P. C.; Zhao, Y. X.

    2015-01-01

    The purpose of the present study was to develop the Solutol HS15-based doxorubicin submicron emulsion with good stability and overcoming multi-drug resistance. In this study, we prepared doxorubicin submicron emulsion, and examined the stability after autoclaving, the in vitro cytotoxic activity, the intracellular accumulation and apoptpsis of doxorubicin submicron emulsion in MCF-7/ADR cells. The physicochemical properties of doxorubicin submicron emulsion were not significantly affected after autoclaving. The doxorubicin submicron emulsion significantly increased the intracellular accumulation of doxorubicin submicron emulsion and enhanced cytotoxic activity and apoptotic effects of doxorubicin. These results may be correlated to doxorubicin submicron emulsion inhibitory effects on efflux pumps through the progressive release of intracellular free Solutol HS15 from doxorubicin submicron emulsion. Furthermore, these in vitro results suggest that the Solutol HS15-based submicron emulsion may be a potentially useful drug delivery system to circumvent multi-drug resistance of tumor cells. PMID:26664069

  3. FUEL ELEMENT

    DOEpatents

    Howard, R.C.; Bokros, J.C.

    1962-03-01

    A fueled matrlx eontnwinlng uncomblned carbon is deslgned for use in graphlte-moderated gas-cooled reactors designed for operatlon at temperatures (about 1500 deg F) at which conventional metallic cladding would ordlnarily undergo undesired carburization or physical degeneratlon. - The invention comprlses, broadly a fuel body containlng uncombined earbon, clad with a nickel alloy contalning over about 28 percent by' weight copper in the preferred embodlment. Thls element ls supporirted in the passageways in close tolerance with the walls of unclad graphite moderator materlal. (AEC)

  4. Antioxidant activity and emulsion-stabilizing effect of pectic enzyme treated pectin in soy protein isolate-stabilized oil/water emulsion.

    PubMed

    Huang, Ping-Hsiu; Lu, Hao-Te; Wang, Yuh-Tai; Wu, Ming-Chang

    2011-09-14

    The antioxidant activity of pectic enzyme treated pectin (PET-pectin) prepared from citrus pectin by enzymatic hydrolysis and its potential use as a stabilizer and an antioxidant for soy protein isolate (SPI)-stabilized oil in water (O/W) emulsion were investigated. Trolox equivalent antioxidant capacity (TEAC) was found to be positively associated with molecular weight (M(w)) of PET-pectin and negatively associated with degree of esterification (DE) of PET-pectin. PET-pectin (1 kDa and 11.6% DE) prepared from citrus pectin after 24 h of hydrolysis by commercial pectic enzyme produced by Aspergillus niger expressed higher α,α-diphenyl-β-picrylhydrazyl (DPPH) radical scavenging activity, TEAC, and reducing power than untreated citrus pectin (353 kDa and 60% DE). The addition of PET-pectin could increase both emulsifying activity (EA) and emulsion stability (ES) of SPI-stabilized O/W emulsion. When the SPI-stabilized lipid droplet was coated with the mixture of PET-pectin and pectin, the EA and ES of the emulsion were improved more than they were when the lipid droplet was coated with either pectin or PET-pectin alone. The amount of secondary oxidation products (thiobarbituric acid reactive substances) produced in the emulsion prepared with the mixture of SPI and PET-pectin was less than the amount produced in the emulsion prepared with either SPI or SPI/pectin. These results suggest that PET-pectin has an emulsion-stabilizing effect and lipid oxidation inhibition ability on SPI-stabilized emulsion. Therefore, PET-pectin can be used as a stabilizer as well as an antioxidant in plant origin in SPI-stabilized O/W emulsion and thus prolong the shelf life of food emulsion.

  5. Egg white powder-stabilised multiple (water-in-olive oil-in-water) emulsions as beef fat replacers in model system meat emulsions.

    PubMed

    Öztürk, Burcu; Urgu, Müge; Serdaroğlu, Meltem

    2017-05-01

    Today, multiple emulsions are believed to have a considerable application potential in food industry. We aimed to investigate physical, chemical and textural quality characteristics of model system meat emulsions (MSME) in which beef fat (C) was totally replaced by 10% (E-10), 20% (E-20) or 30% (E-30) multiple emulsions (W1 /O/W2 ) prepared with olive oil and egg white powder (EWP). Incorporation of W1 /O/W2 emulsion resulted in reduced fat (from 11.54% to 4.01%), increased protein content (from 13.66% to 14.74%), and modified fatty acid composition, significantly increasing mono- and polyunsaturated fatty acid content and decreasing saturated fatty acid content. E-20 and E-30 samples had lower jelly and fat separation (5.77% and 5.25%) compared to C and E-10 (9.67% and 8.55%). W1 /O/W2 emulsion treatments had higher water-holding capacity (93.96-94.35%) than C samples (91.84%), and also showed the desired storage stability over time. Emulsion stability results showed that E-20 and E-30 samples had lower total expressible fluid (14.05% and 14.53%) and lower total expressible fat (5.06% and 5.33%) compared to C samples (19.13% and 6.09%). Increased concentrations of W1 /O/W2 emulsions led to alterations in colour and texture parameters. TBA values of samples were lower in W1 /O/W2 emulsion treatments than control treatment during 60 days of storage. Our results indicated that multiple emulsions prepared with olive oil and EWP had promising impacts on reducing fat, modifying the lipid composition and developing both technologically and oxidatively stable meat systems. These are the first findings concerning beef matrix fat replacement with multiple emulsions stabilised by EWP. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  6. That's a Phat Antidote: Intravenous Fat Emulsions and Toxicological Emergencies.

    PubMed

    Schultz, Amy E; Lewis, Temeka; Reed, Brittany S; Weant, Kyle A; Justice, Stephanie Baker

    2015-01-01

    Health care providers in the emergency department (ED) frequently find themselves caring for patients who may have overdosed on a medication(s) or other toxic substance. These patients can prove to be a challenge, as providers must try to determine the substance(s) involved so that the appropriate treatment can be initiated. For those patients who are hemodynamically unstable upon presentation, it is important to note that supportive care is of the utmost importance, as there are few substances that have antidotes available. In these situations, lipid emulsion can be considered. This is especially true in the setting of the following toxicities: local anesthetics, β-blockers, calcium channel blockers, and the tricyclic antidepressants. Even though lipid emulsion may not be used that frequently in the ED, it is important to be aware of its role in the setting of toxicological emergencies, how it should be dosed and administered, and the necessary safety precautions.

  7. Octenylsuccinate starch spherulites as a stabilizer for Pickering emulsions.

    PubMed

    Wang, Chan; Fu, Xiong; Tang, Chuan-He; Huang, Qiang; Zhang, Bin

    2017-07-15

    This study investigated structure and morphology of starch spherulites prepared from debranched waxy maize and waxy potato starches. Debranched waxy potato starch favored the formation of B-type crystals with longer branch chains (average chain length, 26.14), whereas A-type polymorphic aggregates were generated from debranched waxy maize under same recrystallization condition. Spherulites had smaller particle size distribution (D[3,2], ∼3.7μm), higher dissociation temperature (80-120°C) and crystallinity (80∼90%), compared to native waxy starches. Intact spherulites could be used as an edible particle emulsifier after modifying by octenylsuccinic anhydride (OSA). The emulsion produced using 2wt.% of octenylsuccinate (OS) starch spherulites as emulsifier was quite stable over 2months, and its Pickering emulsions displayed protective effect on stability of oil droplets. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Effect of irradiated pork on physicochemical properties of meat emulsions

    NASA Astrophysics Data System (ADS)

    Choi, Yun-Sang; Sung, Jung-Min; Jeong, Tae-Jun; Hwang, Ko-Eun; Song, Dong-Heon; Ham, Youn-Kyung; Kim, Hyun-Wook; Kim, Young-Boong; Kim, Cheon-Jei

    2016-02-01

    The effect of pork irradiated with doses up to 10 kGy on meat emulsions formulated with carboxy methyl cellulose (CMC) was investigated. Raw pork was vacuums packaged at a thickness of 2.0 cm and irradiated by X-ray linear accelerator (15 kW, 5 MeV). The emulsion had higher lightness, myofibrillar protein solubility, total protein solubility, and apparent viscosity with increasing doses, whereas cooking loss, total expressible fluid separation, and hardness decreased. There were no significant differences in fat separation, sarcoplasmic protein solubility, springiness, and cohesiveness. Our results indicated that it is treatment by ionizing radiation which causes the effects the physicochemical properties of the final raw meat product.

  9. On the transport of emulsions in porous media

    SciTech Connect

    Cortis, Andrea; Ghezzehei, Teamrat A.

    2007-06-27

    Emulsions appear in many subsurface applications includingbioremediation, surfactant-enhanced remediation, and enhancedoil-recovery. Modeling emulsion transport in porous media is particularlychallenging because the rheological and physical properties of emulsionsare different from averages of the components. Current modelingapproaches are based on filtration theories, which are not suited toadequately address the pore-scale permeability fluctuations and reductionof absolute permeability that are often encountered during emulsiontransport. In this communication, we introduce a continuous time randomwalk based alternative approach that captures these unique features ofemulsion transport. Calculations based on the proposed approach resultedin excellent match with experimental observations of emulsionbreakthrough from the literature. Specifically, the new approach explainsthe slow late-time tailing behavior that could not be fitted using thestandard approach. The theory presented in this paper also provides animportant stepping stone toward a generalizedself-consistent modeling ofmultiphase flow.

  10. Fabrication of Rod-Coil Nanocomposites via Emulsion Technique

    NASA Astrophysics Data System (ADS)

    Rossi, Gregory; Beaucage, Gregory; Vaia, Richard; Dang, Thuy

    2001-03-01

    There is increasing technological interest in polymers reinforced by nanoparticles because of their potential to provide enhanced mechanical properties, decreased permeability and flammability, as well as increased conductivity. Emulsion polymerization offers a viable, flexible route for nanocomposite fabrication from nanoscale spheres, rods, and plates. Combining emulsion generated poly(methyl methacrylate) (PMMA) particles that are ionically stabilized in aqueous solution with a dispersion of nanoparticles of opposite sense results in an interfacial exchange reaction and co-precipitation. The rod-coil nanocomposites are composed of fully conjugated sulfonated phenylene benzobisimidazole polymer (sPBI) with pendant PMMA chains. Synthesis and characterization of sPBI-PMMA nanocomposites with increasing nanoparticle content using reactive and non-reactive emulsifiers are discussed, and related according to their inherent physical properties.

  11. Asphalt emulsion sealing of uranium mill tailings. 1979 annual report

    SciTech Connect

    Hartley, J.N.; Koehmstedt, P.L.; Esterl, D.J.; Freeman, H.D.

    1980-06-01

    Uranium mill tailings are a source of low-level radiation and radioactive materials that may be released into the environment. Stabilization or disposal of these tailings in a safe and environmentally sound way is necessary to minimize radon exhalation and other radioactive releases. One of the most promising concepts for stabilizing uranium tailings is being investigated at the Pacific Northwest Laboratory: the use of asphalt emulsion to contain radon and other potentially hazardous materials in uranium tailings. Results of these studies indicate that radon flux from uranium tailings can be reduced by greater than 99% by covering the tailings with an asphalt emulsion that is poured on or sprayed on (3.0 to 7.0 mm thick), or mixed with some of the tailings and compacted to form an admixture seal (2.5 to 15.2 cm) containing 18 wt % residual asphalt.

  12. From bijels to Pickering emulsions: A lattice Boltzmann study

    NASA Astrophysics Data System (ADS)

    Jansen, Fabian; Harting, Jens

    2011-04-01

    Particle stabilized emulsions are ubiquitous in the food and cosmetics industry, but our understanding of the influence of microscopic fluid-particle and particle-particle interactions on the macroscopic rheology is still limited. In this paper we present a simulation algorithm based on a multicomponent lattice Boltzmann model to describe the solvents combined with a molecular dynamics solver for the description of the solved particles. It is shown that the model allows a wide variation of fluid properties and arbitrary contact angles on the particle surfaces. We demonstrate its applicability by studying the transition from a “bicontinuous interfacially jammed emulsion gel” (bijel) to a “Pickering emulsion” in dependence on the contact angle, the particle concentration, and the ratio of the solvents.

  13. Intralipid emulsion treatment as an antidote in lipophilic drug intoxications.

    PubMed

    Eren Cevik, Sebnem; Tasyurek, Tanju; Guneysel, Ozlem

    2014-09-01

    Intravenous lipid emulsion (ILE) is a lifesaving treatment of lipophilic drug intoxications. Not only does ILE have demonstrable efficacy as an antidote to local anesthetic toxicity, it is also effective in lipophilic drug intoxications. Our case series involved 10 patients with ingestion of different types of lipophilic drugs. Intravenous lipid emulsion treatment improved Glasgow Coma Scale or blood pressure and pulse rate or both according to the drug type. Complications were observed in 2 patients (minimal change pancreatitis and probable ILE treatment-related fat infiltration in lungs). In our case series, ILE was used for different lipophilic drug intoxications to improve cardiovascular and neurologic symptoms. According to the results, it was found that ILE treatment is a lifesaving agent in lipophilic drug intoxications and it can be used in unconscious patients who have cardiac and/or neurologic symptoms but no history of a specific drug ingestion.

  14. Analysis of relativistic nucleus-nucleus interactions in emulsion chambers

    NASA Technical Reports Server (NTRS)

    Mcguire, Stephen C.

    1987-01-01

    The development of a computer-assisted method is reported for the determination of the angular distribution data for secondary particles produced in relativistic nucleus-nucleus collisions in emulsions. The method is applied to emulsion detectors that were placed in a constant, uniform magnetic field and exposed to beams of 60 and 200 GeV/nucleon O-16 ions at the Super Proton Synchrotron (SPS) of the European Center for Nuclear Research (CERN). Linear regression analysis is used to determine the azimuthal and polar emission angles from measured track coordinate data. The software, written in BASIC, is designed to be machine independent, and adaptable to an automated system for acquiring the track coordinates. The fitting algorithm is deterministic, and takes into account the experimental uncertainty in the measured points. Further, a procedure for using the track data to estimate the linear momenta of the charged particles observed in the detectors is included.

  15. Poly(isobutylene) nanoparticles via cationic polymerization in nonaqueous emulsions.

    PubMed

    Schuster, Thomas; Golling, Florian E; Krumpfer, Joseph W; Wagner, Manfred; Graf, Robert; Alsaygh, Abdulhamid A; Klapper, Markus; Müllen, Klaus

    2015-01-01

    The preparation of poly(isobutylene) (PIB) nanoparticles via cationic emulsion polymerization is presented. As a requirement, an oil-in-perfluoroalkane nonaqueous emulsion is developed, which is inert under the carbocationic polymerization conditions. To stabilize the dichloromethane/hexane droplets in the fluorinated, continuous phase, an amphiphilic block copolymer emulsifier is prepared containing PIB and 1H,1H-perfluoroalkylated poly(pentafluorostyrene) blocks. This system allows for the polymerization of isobutylene with number-average molecular weights (Mn) up to 27,000 g mol(-1). The particle morphologies are characterized via dynamic light scattering and electron microscopy. For Mn > 20,000 g mol(-1), the particles exhibit shape-persistence at room temperature and are ≈100 nm in diameter.

  16. Field-induced structure of confined ferrofluid emulsion

    SciTech Connect

    Lawrence, E.M.; Ivey, M.L.; Flores, G.A.; Liu, J. . Dept. of Physics and Astronomy); Bibette, J. ); Richard, J. )

    1994-09-01

    Field-induced phase behavior of a confined monodisperse ferrofluid emulsion was studied using optical microscopy, light transmission, and static light scattering techniques. Upon application of magnetic field, randomly-dispersed magnetic emulsion droplets form solid structures at [lambda] = 1.5, where [lambda] is defines as the ratio of the dipole-dipole interaction energy to the thermal energy at room temperature. The new solid phase consists of either single droplet chains, columns, or worm-like clusters, depending on the volume fraction, cell thickness and rate of field application. For the column phase, an equilibrium structure of equally-sized and spaced columns was observed. The measurements taken for cell thickness 5[mu]m [<=] L [<=] 500 [mu]m and volume fraction 0.04 show the column spacing to be reasonably described by d = 1.49 L[sup 0.34].

  17. Bioreactor droplets from liposome-stabilized all-aqueous emulsions

    NASA Astrophysics Data System (ADS)

    Dewey, Daniel C.; Strulson, Christopher A.; Cacace, David N.; Bevilacqua, Philip C.; Keating, Christine D.

    2014-08-01

    Artificial bioreactors are desirable for in vitro biochemical studies and as protocells. A key challenge is maintaining a favourable internal environment while allowing substrate entry and product departure. We show that semipermeable, size-controlled bioreactors with aqueous, macromolecularly crowded interiors can be assembled by liposome stabilization of an all-aqueous emulsion. Dextran-rich aqueous droplets are dispersed in a continuous polyethylene glycol (PEG)-rich aqueous phase, with coalescence inhibited by adsorbed ~130-nm diameter liposomes. Fluorescence recovery after photobleaching and dynamic light scattering data indicate that the liposomes, which are PEGylated and negatively charged, remain intact at the interface for extended time. Inter-droplet repulsion provides electrostatic stabilization of the emulsion, with droplet coalescence prevented even for submonolayer interfacial coatings. RNA and DNA can enter and exit aqueous droplets by diffusion, with final concentrations dictated by partitioning. The capacity to serve as microscale bioreactors is established by demonstrating a ribozyme cleavage reaction within the liposome-coated droplets.

  18. High energy primary electron spectrum observed by the emulsion chamber

    NASA Technical Reports Server (NTRS)

    Nishimura, J.; Fujii, M.; Aizu, H.; Hiraiwa, N.; Taira, T.; Kobayashi, T.; Niu, K.; Koss, T. A.; Lord, J. J.; Golden, R. L.

    1978-01-01

    A detector of the emulsion chamber type is used to measure the energy spectrum of cosmic-ray electrons. Two large emulsion chambers, each having an area of 40 by 50 sq cm, are exposed for about 25.5 hr at an average pressure altitude of 3.9 mbar. About 500 high-energy cascades (no less than about 600 GeV) are detected by searching for dark spots on the X-ray films. A power-law energy dependence formula is derived for the spectrum of primary cosmic-ray electrons in the energy region over 100 GeV. The results are in good agreement with the transition curves obtained previously by theoretical and Monte Carlo calculations.

  19. From a bouncing compound drop to a double emulsion.

    PubMed

    Terwagne, D; Gilet, T; Vandewalle, N; Dorbolo, S

    2010-07-20

    We show that a double emulsion (oil in water in oil) can be created starting from a compound droplet (surfactant solution in oil). The compound drop bounces on a vertically vibrated liquid surface. When the amplitude of the vibration exceeds a threshold value, the oil layer penetrates the water content and leaves a tiny oil droplet within. As this phenomenon occurs at each vigorous impact, the compound drop progressively transforms into a double emulsion. The emulsification threshold, which is observed to depend on the forcing frequency but not on the drop size, is rationalized by investigating the impact of compound drops onto a static liquid surface. The droplet creation occurs when the kinetic energy released at impact is larger than the energy required to deform the compound drop, namely when the Weber number is higher than a given threshold value.

  20. Breakup of double emulsion droplets in a tapered nozzle.

    PubMed

    Li, Jiang; Chen, Haosheng; Stone, Howard A

    2011-04-19

    When double emulsion droplets flow through a tapered nozzle, the droplets may break up and cause the core to be released. We model the system on the basis of the capillary instability and show that a droplet will not break up when the tilt angle of the nozzle is larger than 9°. For smaller tilt angles, whether the droplet breaks up also depends on the diameter ratio of the core of the droplet to the orifice of the nozzle. We verified this mechanism by experiments. The ideas are useful for the design of nozzles not only to break droplets for controlled release but also to prevent the droplet from rupturing in applications requiring the reinjection of an emulsion. © 2011 American Chemical Society

  1. Pharmaceutical emulsions: a new approach for gene therapy.

    PubMed

    Verissimo, Lourena Mafra; Lima, Lucymara Fassarela Agnez; Egito, Lucila Carmem Monte; de Oliveira, Anselmo Gomes; do Egito, E Sócrates Tabosa

    2010-06-01

    The concept of gene therapy involves the experimental transfer of a therapeutic gene into an individual's cells and tissues to replace an abnormal gene aiming to treat a disease, or to use the gene to treat a disease just like a medicine, improving the clinical status of a patient. The achievement of a foreigner nucleic acid into a population of cells requires its transfer to the target. Therefore, it is essential to create carriers (vectors) that transfer and protect the nucleic acid until it reaches the target. The obvious disadvantages of the use of viral vectors have directed the research for the development of a nonviral organized system such as emulsions. In fact, recently, there has been an increase of interest in its use in biotechnology as a nonviral vector for gene therapy. This review focuses on the progress of cationic emulsions and the improvement of the formulations, as a potential delivery system for gene therapy.

  2. Effect of emulsifier on oxidation properties of fish oil-based structured lipid emulsions.

    PubMed

    Fomuso, Lydia B; Corredig, Milena; Akoh, Casimir C

    2002-05-08

    The effects of the emulsifiers lecithin, Tween 20, whey protein isolate, mono-/diacylglycerols, and sucrose fatty acid ester on oxidation stability of a model oil-in-water emulsion prepared with enzymatically synthesized menhaden oil-caprylic acid structured lipid were evaluated. Oxidation was monitored by measuring lipid hydroperoxides, thiobarbituric acid reactive substances, and the ratio of combined docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) contents to palmitic acid in the emulsion. After high-pressure homogenization, all emulsions, except those prepared with lecithin, had similar droplet size distributions. All structured lipid emulsions, except for the lecithin-stabilized emulsions, were stable to creaming over the 48-day period studied. Emulsifier type and concentration affected oxidation rate, with 0.25% emulsifier concentration generally having a higher oxidation rate than 1% emulsifier concentration. Overall, oxidation did not progress significantly enough in 48 days of storage to affect DHA and EPA levels in the emulsion.

  3. Enhancement of lycopene bioaccessibility from tomato juice using excipient emulsions: Influence of lipid droplet size.

    PubMed

    Salvia-Trujillo, L; McClements, D J

    2016-11-01

    The use of excipient emulsions to increase the bioaccessibility of lycopene in tomato juice was studied by simulating gastrointestinal conditions. The influence of droplet diameter (d=0.17 or 19μm) and thermal treatment (90°C, 10min) on lycopene bioaccessibility was evaluated. Lycopene bioaccessibility was relatively low (<8%) in the absence of excipient emulsions due to the crystalline nature of the carotenoids and their entrapment within chromoplasts. Emulsions containing small droplets were fully digested within the small intestine phase, and led to a higher bioaccessibility (12.5%) than emulsions containing large droplets (10.0%) or emulsion-free samples (7.5%). The relatively modest increase in bioaccessibility was attributed to the high level of entrapment in crystalline form. Thermal processing did not appreciably disrupt tomato cells, and therefore only led to a slight increase in lycopene bioaccessibility. Overall, this study shows that excipient emulsions may increase the bioaccessibility of carotenoids in tomato juices.

  4. Effect of microdrops deformation on electrical and rheological properties of magnetic fluid emulsion

    NASA Astrophysics Data System (ADS)

    Zakinyan, Arthur R.; Dikansky, Yuri I.

    2017-06-01

    The magnetic fluid emulsions with low interfacial tension have been studied experimentally. The shape deformation of the dispersed phase microdrops under the action of comparatively weak magnetic field has been observed. The effect of microdrops deformation on the macroscopic properties of the emulsion has been investigated. The anisotropic character of emulsion properties in the presence of external magnetic field has been demonstrated. The emulsion dielectric permeability has been measured as a function of the magnetic field strength, the emulsion concentration, and the angle between electrical and magnetic fields. The influence of the droplets deformation under the magnetic field on the rheological behavior of the emulsion has been observed. The obtained results have been analyzed and discussed.

  5. A simple and low-cost 3d-printed emulsion generator

    NASA Astrophysics Data System (ADS)

    Zhang, J. M.; Aguirre-Pablo, A. A.; Li, E. Q.; Thoroddsen, S. T.

    2015-11-01

    The technique traditionally utilized to fabricate microfluidic emulsion generators, i.e. soft-lithography, is complex and expensive for producing three-dimensional (3D) structures. Here we apply 3D printing technology to fabricate a simple and low-cost 3D printed microfluidic device for emulsion generation without the need for surface treatment on the channel walls. This 3D-printed emulsion generator has been successfully tested over a range of conditions. We also formulate and demonstrate uniform scaling laws for emulsion droplets generated in different regimes for the first time, by incorporating the dynamic contact angle effects during the drop formation. Magnetically responsive microspheres are also produced with our emulsion templates, demonstrating the potential applications of this 3D emulsion generator in material and chemical engineering.

  6. Pickering emulsions based on cyclodextrins: A smart solution for antifungal azole derivatives topical delivery.

    PubMed

    Leclercq, Loïc; Nardello-Rataj, Véronique

    2016-01-20

    Surfactants are usually used for the preparation of emulsions. Potential drawbacks on the human body or on the environment can be observed for some of them(e.g. skin irritation, hemolysis, protein denaturation, etc.). However, it is possible to use biocompatible emulsifiers such as native cyclodextrins (CDs). The mixture of oil (paraffin oil or isopropyl myristate), water and native CDs results in the formation of Pickering emulsions. The emulsion properties were investigated by ternary phase diagrams elaboration, multiple light scattering, optical and transmission microscopies. The results prove that these Pickering emulsions were very stable against coalescence due to the dense film format the oil/water interface. The rheological behavior has shown that these emulsions remain compatible for topical applications. This kind of emulsions (biocompatibility, stability and surfactant free) has been used to obtain sustainable formulations for antifungal econazole derivatives delivery. Our results prove that these new formulations are at least as active as commercially available formulations.

  7. Direct Current Electrorheological Stability Determination of Water-in-Crude Oil Emulsions

    NASA Astrophysics Data System (ADS)

    Alvarado, Vladimir; Wang, Xiuyu

    2009-11-01

    Emulsion stability is a fundamental determination for separation technologies. We use the critical electric field (CEF) and viscosity changes in DC eletrorheological (ER) experiments in dynamic mode to determine the stability of water-in-crude oil emulsions, previously studied through bottle tests. The CEF value corresponds to the value of electric field at which the current reaches 95% or larger of the plateau value. The results show that CEF can be consistently obtained through current measurements, resulting from emulsion structure breakdown. Viscosity changes are not good proxies of stability unless a robust emulsion structure is found. Emulsion structure breakdown is explored through rheological characterization before and after voltage sweeps have been performed. When the electric field applied is below the CEF value, the storage and loss moduli responses as well as viscosity as functions of frequency are recovered. However, when the electric field is greater than the CEF value, the emulsion structure breaks down irreversibly.

  8. An Overview of Pickering Emulsions: Solid-Particle Materials, Classification, Morphology, and Applications

    PubMed Central

    Yang, Yunqi; Fang, Zhiwei; Chen, Xuan; Zhang, Weiwang; Xie, Yangmei; Chen, Yinghui; Liu, Zhenguo; Yuan, Weien

    2017-01-01

    Pickering emulsion, a kind of emulsion stabilized only by solid particles locating at oil–water interface, has been discovered a century ago, while being extensively studied in recent decades. Substituting solid particles for traditional surfactants, Pickering emulsions are more stable against coalescence and can obtain many useful properties. Besides, they are more biocompatible when solid particles employed are relatively safe in vivo. Pickering emulsions can be applied in a wide range of fields, such as biomedicine, food, fine chemical synthesis, cosmetics, and so on, by properly tuning types and properties of solid emulsifiers. In this article, we give an overview of Pickering emulsions, focusing on some kinds of solid particles commonly serving as emulsifiers, three main types of products from Pickering emulsions, morphology of solid particles and as-prepared materials, as well as applications in different fields. PMID:28588490

  9. Gellified Emulsion of Ofloxacin for Transdermal Drug Delivery System

    PubMed Central

    Jagdale, Swati; Pawar, Saylee

    2017-01-01

    Purpose: Ofloxacin is a fluoroquinolone with broad-spectrum antibacterial action, used in treatment of systemic and local infections. Ofloxacin is BCS class II drug having low solubility, high permeability with short half-life. The present work was aimed to design, develop and optimize gellified emulsion of Ofloxacin to provide site targeted drug delivery. Transdermal drug delivery will enhance the bioavailability of the drug giving controlled drug release. Methods: Transdermal drug delivery system was designed with gelling agent (Carbopol 940 and HPMC K100M), oil phase (oleic acid) and emulsifying agent (Tween 80: Span 80). Effect of concentration of gelling agent on release of drug from transdermal delivery was studied by 32 factorial design. Emulgel was evaluated for physical appearance, pH, drug content, viscosity, spreadability, antimicrobial activity, in- vitro diffusion study and ex-vivo diffusion study. Results: FE-SEM study of the emulsion batch B5 has revealed formation of emulsion globules of approximately size 6-8 µm with -11.2 mV zeta potential showing good stability for the emulsion. Carbopol 940 had shown greater linear effect on drug release and viscosity of the formulations due to its high degree of gelling. In-vitro diffusion study through egg membrane had shown 88.58±1.82 % drug release for optimized batch F4. Ex-vivo diffusion study through goat skin indicated 76.68 ± 2.52% drug release. Conclusion: Controlled release Ofloxacin emulgel exhibiting good in-vitro and ex-vivo drug release proving good antimicrobial property was formulated. PMID:28761825

  10. Gellified Emulsion of Ofloxacin for Transdermal Drug Delivery System.

    PubMed

    Jagdale, Swati; Pawar, Saylee

    2017-06-01

    Purpose: Ofloxacin is a fluoroquinolone with broad-spectrum antibacterial action, used in treatment of systemic and local infections. Ofloxacin is BCS class II drug having low solubility, high permeability with short half-life. The present work was aimed to design, develop and optimize gellified emulsion of Ofloxacin to provide site targeted drug delivery. Transdermal drug delivery will enhance the bioavailability of the drug giving controlled drug release. Methods: Transdermal drug delivery system was designed with gelling agent (Carbopol 940 and HPMC K100M), oil phase (oleic acid) and emulsifying agent (Tween 80: Span 80). Effect of concentration of gelling agent on release of drug from transdermal delivery was studied by 3(2) factorial design. Emulgel was evaluated for physical appearance, pH, drug content, viscosity, spreadability, antimicrobial activity, in- vitro diffusion study and ex-vivo diffusion study. Results: FE-SEM study of the emulsion batch B5 has revealed formation of emulsion globules of approximately size 6-8 µm with -11.2 mV zeta potential showing good stability for the emulsion. Carbopol 940 had shown greater linear effect on drug release and viscosity of the formulations due to its high degree of gelling. In-vitro diffusion study through egg membrane had shown 88.58±1.82 % drug release for optimized batch F4. Ex-vivo diffusion study through goat skin indicated 76.68 ± 2.52% drug release. Conclusion: Controlled release Ofloxacin emulgel exhibiting good in-vitro and ex-vivo drug release proving good antimicrobial property was formulated.

  11. Waste of cleaning emulsion sewage as inhibitors of steel corrosion

    NASA Astrophysics Data System (ADS)

    Fazullin, D. D.; Mavrin, G. V.; Shaikhiev, I. G.

    2016-06-01

    The article describes the corrosion test of steel of the brand 20 in the stratal water. To increase corrosion resistance as a corrosion inhibitor the concentrate waste emulsion of the mark "Incam- 1" was provided. The article presents studies of the corrosion rate with different dosages of corrosion inhibitor in the stratal water. Based on these research results are revealed that the degree of protection of steel is 27% at a dosage of 3.8 g / dm3.

  12. Incorporation of iodine in polymeric microparticles and emulsions

    NASA Astrophysics Data System (ADS)

    Kolontaeva, Olga A.; Khokhlova, Anastasia R.; Markina, Natalia E.; Markin, Alexey V.; Burmistrova, Natalia A.

    2016-04-01

    Application of different methods for formation of microcontainers containing iodine is proposed in this paper. Two types of microcontainers: microemulsions and microparticles have been investigated, conditions and methods for obtaining microcontainers were optimized. Microparticles were formed by layer-by-layer method with cores of calcium carbonate (CaCO3) as templates. Incorporation of complexes of iodine with polymers (chitosan, starch, polyvinyl alcohol) into core, shell and hollow capsules was investigated and loadings of microparticles with iodine were estimated. It was found that the complex of iodine with chitosan adsorbed at CaCO3 core is the most stable under physiological conditions and its value of loading can be 450 μg of I2 per 1 g of CaCO3. Moreover, chitosan was chosen as a ligand because of its biocompatibility and biodegradability as well as very low toxicity while its complex with iodine is very stable. A small amount of microparticles containing a iodine-chitosan complex can be used for prolonged release of iodine in the human body since iodine daily intake for adults is around 100 μg. "Oil-in-water" emulsions were prepared by ultrasonication of iodinated oils (sunflower and linseed) with sodium laurilsulfate (SLS) as surfactant solution. At optimal conditions, the homogenous emulsions remained stable for weeks, with total content of iodine in such emulsion being up to 1% (w/w). The oil:SLS ratio was equal to 1:10 (w/w), optimal duration and power of ultrasound exposure were 1.5 min and 7 W, correspondingly. Favorable application of iodized linseed oil for emulsion preparation with suitable oil microdroplets size was proved.

  13. Freezing and thawing of aqueous solutions in emulsions

    NASA Astrophysics Data System (ADS)

    Hauptmann, Astrid; Handle, Karl; Hölzl, Georg; Loerting, Thomas

    2016-04-01

    The freezing behaviour of aqueous solutions in different emulsions is investigated by analytical methods such as differential scanning calorimetry and optical cryomicroscopy. We show that freezing temperature, freeze concentration and correspondingly cold-crystallization and melting change depending on the properties of the surrounding oil and emulsifier, size distribution of emulsified droplets and the parameters of emulsification. Relevance to freezing of cloud droplets is discussed.

  14. Neutron - Alpha irradiation response of superheated emulsion detectors

    NASA Astrophysics Data System (ADS)

    Felizardo, M.; Morlat, T.; Girard, T. A.; Kling, A.; Fernandes, A. C.; Marques, J. G.; Carvalho, F.; Ramos, A. R.

    2017-08-01

    We report new experimental investigations of the response of single superheated emulsion detectors with small droplet (<30 μm radii) size distributions to both α- and neutron irradiations. Analysis of the results in terms of the underlying detector physics yields a toy model which reasonably reproduces the observations, and identifies the initial energy of the α in the liquid and distribution of droplet sizes as primarily responsible for the detector capacity to distinguish between nuclear recoil and α events.

  15. Modular 'click-in-emulsion' bone-targeted nanogels.

    PubMed

    Heller, Daniel A; Levi, Yair; Pelet, Jeisa M; Doloff, Joshua C; Wallas, Jasmine; Pratt, George W; Jiang, Shan; Sahay, Gaurav; Schroeder, Avi; Schroeder, Josh E; Chyan, Yieu; Zurenko, Christopher; Querbes, William; Manzano, Miguel; Kohane, Daniel S; Langer, Robert; Anderson, Daniel G

    2013-03-13

    A new class of nanogel demonstrates modular biodistribution and affinity for bone. Nanogels, ∼70 nm in diameter and synthesized via an astoichiometric click-chemistry in-emulsion method, controllably display residual, free clickable functional groups. Functionalization with a bisphosphonate ligand results in significant binding to bone on the inner walls of marrow cavities, liver avoidance, and anti-osteoporotic effects. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Enhanced fluorescence emitted by microdroplets containing organic dye emulsions

    PubMed Central

    Nastasa, V.; Andrei, I. R.; Staicu, Angela; Pascu, M. L.

    2015-01-01

    In this paper, laser beam resonant interaction with pendant microdroplets that are seeded with a laser dye (Rhodamine 6G (Rh6G)) water solution or oily Vitamin A emulsion with Rhodamine 6G solution in water is investigated through fluorescence spectra analysis. The excitation is made with the second harmonic generated beam emitted by a pulsed Nd:YAG laser system at 532 nm. The pendant microdroplets containing emulsion exhibit an enhanced fluorescence signal. This effect can be explained as being due to the scattering of light by the sub-micrometric drops of oily Vitamin A in emulsion and by the spherical geometry of the pendant droplet. The droplet acts as an optical resonator amplifying the fluorescence signal with the possibility of producing lasing effect. Here, we also investigate how Rhodamine 6G concentration, pumping laser beam energies and number of pumping laser pulses influence the fluorescence behavior. The results can be useful in optical imaging, since they can lead to the use of smaller quantities of fluorescent dyes to obtain results with the same quality. PMID:25784965

  17. Coagulation and electrocoagulation of oil-in-water emulsions.

    PubMed

    Cañizares, Pablo; Martínez, Fabiola; Jiménez, Carlos; Sáez, Cristina; Rodrigo, Manuel A

    2008-02-28

    In this work the efficiencies of the chemical and the electrochemical break-up of oil-in-water (O/W) emulsions with hydrolyzing aluminium salts are compared. It has been obtained that the efficiency of the processes does not depend directly on the dosing technology, but on the total concentration of aluminium and pH. This latter parameter changes in a different way in the chemical and the electrochemical processes: the pH increases during the electrochemical experiments since the electrochemical system leads to the formation of aluminum hydroxide as a net final product, but it decreases in the conventional ones due to the acid properties of the aluminum salts added (AlCl3 or Al2(SO4)3). The break-up of the emulsions only takes place in the range of pHs between 5 and 9, and the amount of aluminium necessary to produce the destabilization of the emulsion is proportional to the oil concentration. Electrolytes containing chlorides improve COD removal as compared with those containing sulphate ions. Aluminium hydroxide precipitates were found to be the primary species present in solution in the conditions in which the breaking process is favoured. Consequently, the attachment of more than one droplet of oil at a time to a charged precipitate-particle (bridging flocculation) was proposed as the primary destabilization mechanism.

  18. Surface tension and quasi-emulsion of cavitation bubble cloud.

    PubMed

    Bai, Lixin; Chen, Xiaoguang; Zhu, Gang; Xu, Weilin; Lin, Weijun; Wu, Pengfei; Li, Chao; Xu, Delong; Yan, Jiuchun

    2017-03-01

    A quasi-emulsion phenomenon of cavitation structure in a thin liquid layer (the thin liquid layer is trapped between a radiating surface and a hard reflector) is investigated experimentally with high-speed photography. The transformation from cloud-in-water (c/w) emulsion to water-in-cloud (w/c) emulsion is related to the increase of cavitation bubble cloud. The acoustic field in the thin liquid layer is analyzed. It is found that the liquid region has higher acoustic pressure than the cloud region. The bubbles are pushed from liquid region to cloud region by the primary Bjerknes forces. The rate of change of CSF increased with the increase of CSF. The cavitation bubbles on the surface of cavitation cloud are attracted by the cavitation bubbles inside the cloud due to secondary Bjerknes forces. The existence of surface tension on the interface of liquid region and cloud region is proved. The formation mechanism of disc-shaped liquid region and cloud region are analysed by surface tension and incompressibility of cavitation bubble cloud.

  19. Plasma lipid levels in preterm neonates receiving parenteral fat emulsions.

    PubMed Central

    Hilliard, J L; Shannon, D L; Hunter, M A; Brans, Y W

    1983-01-01

    Concentrations of various plasma lipid fractions were determined during 96 hours of continuous parenteral infusions of lipid emulsions in 10 normally-grown neonates whose birth-weights ranged from 960 to 1760 g and whose gestational ages ranged from 26 to 32 weeks. Total lipid, triglyceride, free glycerol, and free fatty acid concentrations were measured. During lipid infusions, mean plasma concentrations of all lipid fractions increased above the mean preinfusion values if 2 g/kg a day or more of lipid emulsion was used. There were no further significant increases in mean plasma lipid levels if the infused dosage was increased to 3 or 4 g/kg a day. At these higher infusion rates however, there were considerable individual variations. The only neonate less than 27 weeks of gestation had plasma lipid levels severalfold higher than any of his peers, his plasma was frankly creamy on visual inspection, and the study had to be stopped. Further investigations are needed to determine the optimal modalities of parenteral nutrition with fat emulsions. PMID:6402989

  20. Stabilising emulsion-based colloidal structures with mixed food ingredients.

    PubMed

    Dickinson, Eric

    2013-03-15

    The physical scientist views food as a complex form of soft matter. The complexity has its origin in the numerous ingredients that are typically mixed together and the subtle variations in microstructure and texture induced by thermal and mechanical processing. The colloid science approach to food product formulation is based on the assumption that the major product attributes such as appearance, rheology and physical stability are determined by the spatial distribution and interactions of a small number of generic structural entities (biopolymers, particles, droplets, bubbles, crystals) organised in various kinds of structural arrangements (layers, complexes, aggregates, networks). This review describes some recent advances in this field with reference to three discrete classes of dispersed systems: particle-stabilised emulsions, emulsion gels and aerated emulsions. Particular attention is directed towards explaining the crucial role of the macromolecular ingredients (proteins and polysaccharides) in controlling the formation and stabilisation of the colloidal structures. The ultimate objective of this research is to provide the basic physicochemical insight required for the reliable manufacture of novel structured foods with an appealing taste and texture, whilst incorporating a more healthy set of ingredients than those found in many existing traditional products.