Multi-Dimensional Simulation of LWR Fuel Behavior in the BISON Fuel Performance Code
NASA Astrophysics Data System (ADS)
Williamson, R. L.; Capps, N. A.; Liu, W.; Rashid, Y. R.; Wirth, B. D.
2016-11-01
Nuclear fuel operates in an extreme environment that induces complex multiphysics phenomena occurring over distances ranging from inter-atomic spacing to meters, and times scales ranging from microseconds to years. To simulate this behavior requires a wide variety of material models that are often complex and nonlinear. The recently developed BISON code represents a powerful fuel performance simulation tool based on its material and physical behavior capabilities, finite-element versatility of spatial representation, and use of parallel computing. The code can operate in full three dimensional (3D) mode, as well as in reduced two dimensional (2D) modes, e.g., axisymmetric radial-axial ( R- Z) or plane radial-circumferential ( R- θ), to suit the application and to allow treatment of global and local effects. A BISON case study was used to illustrate analysis of Pellet Clad Mechanical Interaction failures from manufacturing defects using combined 2D and 3D analyses. The analysis involved commercial fuel rods and demonstrated successful computation of metrics of interest to fuel failures, including cladding peak hoop stress and strain energy density. In comparison with a failure threshold derived from power ramp tests, results corroborate industry analyses of the root cause of the pellet-clad interaction failures and illustrate the importance of modeling 3D local effects around fuel pellet defects, which can produce complex effects including cold spots in the cladding, stress concentrations, and hot spots in the fuel that can lead to enhanced cladding degradation such as hydriding, oxidation, CRUD formation, and stress corrosion cracking.
Multi-Dimensional Simulation of LWR Fuel Behavior in the BISON Fuel Performance Code
Williamson, R. L.; Capps, N. A.; Liu, W.; ...
2016-09-27
Nuclear fuel operates in an extreme environment that induces complex multiphysics phenomena occurring over distances ranging from inter-atomic spacing to meters, and times scales ranging from microseconds to years. To simulate this behavior requires a wide variety of material models that are often complex and nonlinear. The recently developed BISON code represents a powerful fuel performance simulation tool based on its material and physical behavior capabilities, finite-element versatility of spatial representation, and use of parallel computing. The code can operate in full three dimensional (3D) mode, as well as in reduced two dimensional (2D) modes, e.g., axisymmetric radial-axial (R-Z) ormore » plane radial-circumferential (R-θ), to suit the application and to allow treatment of global and local effects. A BISON case study was used in this paper to illustrate analysis of Pellet Clad Mechanical Interaction failures from manufacturing defects using combined 2D and 3D analyses. The analysis involved commercial fuel rods and demonstrated successful computation of metrics of interest to fuel failures, including cladding peak hoop stress and strain energy density. Finally, in comparison with a failure threshold derived from power ramp tests, results corroborate industry analyses of the root cause of the pellet-clad interaction failures and illustrate the importance of modeling 3D local effects around fuel pellet defects, which can produce complex effects including cold spots in the cladding, stress concentrations, and hot spots in the fuel that can lead to enhanced cladding degradation such as hydriding, oxidation, CRUD formation, and stress corrosion cracking.« less
Advanced Pellet-Cladding Interaction Modeling using the US DOE CASL Fuel Performance Code: Peregrine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Montgomery, Robert O.; Capps, Nathan A.; Sunderland, Dion J.
The US DOE’s Consortium for Advanced Simulation of LWRs (CASL) program has undertaken an effort to enhance and develop modeling and simulation tools for a virtual reactor application, including high fidelity neutronics, fluid flow/thermal hydraulics, and fuel and material behavior. The fuel performance analysis efforts aim to provide 3-dimensional capabilities for single and multiple rods to assess safety margins and the impact of plant operation and fuel rod design on the fuel thermo-mechanical-chemical behavior, including Pellet-Cladding Interaction (PCI) failures and CRUD-Induced Localized Corrosion (CILC) failures in PWRs. [1-3] The CASL fuel performance code, Peregrine, is an engineering scale code thatmore » is built upon the MOOSE/ELK/FOX computational FEM framework, which is also common to the fuel modeling framework, BISON [4,5]. Peregrine uses both 2-D and 3-D geometric fuel rod representations and contains a materials properties and fuel behavior model library for the UO2 and Zircaloy system common to PWR fuel derived from both open literature sources and the FALCON code [6]. The primary purpose of Peregrine is to accurately calculate the thermal, mechanical, and chemical processes active throughout a single fuel rod during operation in a reactor, for both steady state and off-normal conditions.« less
Advanced Pellet Cladding Interaction Modeling Using the US DOE CASL Fuel Performance Code: Peregrine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jason Hales; Various
The US DOE’s Consortium for Advanced Simulation of LWRs (CASL) program has undertaken an effort to enhance and develop modeling and simulation tools for a virtual reactor application, including high fidelity neutronics, fluid flow/thermal hydraulics, and fuel and material behavior. The fuel performance analysis efforts aim to provide 3-dimensional capabilities for single and multiple rods to assess safety margins and the impact of plant operation and fuel rod design on the fuel thermomechanical- chemical behavior, including Pellet-Cladding Interaction (PCI) failures and CRUD-Induced Localized Corrosion (CILC) failures in PWRs. [1-3] The CASL fuel performance code, Peregrine, is an engineering scale codemore » that is built upon the MOOSE/ELK/FOX computational FEM framework, which is also common to the fuel modeling framework, BISON [4,5]. Peregrine uses both 2-D and 3-D geometric fuel rod representations and contains a materials properties and fuel behavior model library for the UO2 and Zircaloy system common to PWR fuel derived from both open literature sources and the FALCON code [6]. The primary purpose of Peregrine is to accurately calculate the thermal, mechanical, and chemical processes active throughout a single fuel rod during operation in a reactor, for both steady state and off-normal conditions.« less
NASA Astrophysics Data System (ADS)
Lemoine, F.
1997-09-01
Specific aspects of irradiated fuel result from the increasing retention of gaseous and volatile fission products with burnup, which, under overpower conditions, can lead to solid fuel pressurization and swelling causing severe PCMI (pellet clad mechanical interaction). In order to assess the reliability of high burnup fuel under RIAs, experimental programs have been initiated which have provided important data concerning the transient fission gas behavior and the clad loading mechanisms. The importance of the rim zone is demonstrated based on three experiments resulting in clad failure at low enthalpy, which are explained by energetic considerations. High gas release in non-failure tests with low energy deposition underlines the importance of grain boundary and porosity gas. Measured final releases are strongly correlated to the microstructure evolution, depending on energy deposition, pulse width, initial and refabricated fuel rod design. Observed helium release can also increase internal pressure and gives hints to the gas behavior understanding.
Michael Harrington; Erin Noonan-Wright
2010-01-01
Extensive forested areas have received fuels treatments in recent decades and significant funding is available for additional treatments in an attempt to mitigate undesirable high wildfire intensities and impacts. Fuel treatment successes and failures in moderating fire behavior and effects can be found in quantified and anecdotal reports. Questions remain about the...
The effect of preignition on cylinder temperatures, pressures, power output, and piston failures
NASA Technical Reports Server (NTRS)
Corrington, Lester C; Fisher, William F
1947-01-01
An investigation was conducted using a cylinder of a V-type liquid-cooled engine to observe the behavior of the cylinder when operated under preignition conditions. Data were recorded that showed cylinder-head temperatures, time of ignition, engine speed, power output, and change in maximum cylinder pressure as a function of time as the engine entered preignition and was allowed to operate under preignition conditions for a short time. The effects of the following variables on the engine behavior during preignition were investigated: fuel-air ratio, power level, aromatic content of fuel, engine speed, mixture temperature, and preignition source. The power levels at which preignition would cause complete piston failure for the selected engine operating conditions and the types of failure encountered when using various values of clearance between the piston and cylinder barrel were determined. The fuels used had performance numbers high enough to preclude any possibility of knock throughout the test program.
Fuel Pin Behavior Under the Slow Power Ramp Transients in the CABRI-2 Experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Charpenel, Jean; Lemoine, Francette; Sato, Ikken
Slow ramp-type transient-overpower tests were performed within the framework of the international CABRI-2 experimental program. The implemented power transients of {approx}1% nominal power/s correspond to a control rod withdrawal-type accident in a liquid-metal-cooled fast breeder reactor (FBR). The analysis of the tests includes the information elements derived from the hodoscope signals, which were assessed quantitatively and supported by destructive and nondestructive posttest examinations. These tests, performed with fuels of various geometries, demonstrated the high margin to failure of such FBR fuel pins within the expected power level before the emergency reactor shutdown. At the same time, these tests performed withmore » high- and low-smear-density industrial pins led to clarification of the influence of pellet design on fuel pin behavior under high overpower condition. With the high-smear-density solid fuel pellet pin of high burnup level, the retained gaseous fission products played an important role in the solid fuel swelling, leading to clad deformation and failure at a maximum heating rate of 81 kW.m{sup -1}, which is much greater than the end-of-life (EOL) linear rating of the pin. With the low smear-density annular pellet pin, an important fuel swelling takes place, leading to degradation of the fuel thermal conductivity. This effect was detected at the power level around 73 kW.m{sup -1}, which is also much higher than the EOL value of the pin. Furthermore, the absence of clad deformation, and consequently of failure even at the power level going up to 134.7 kW.m{sup -1}, confirmed the very high margin to failure. In consequence, it was clarified that gaseous fission products have significant effects on failure threshold as well as on thermal performance during overpower condition, and such effects are significantly dependent on fuel design and power operation conditions.« less
Spent fuel behavior under abnormal thermal transients during dry storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stahl, D.; Landow, M.P.; Burian, R.J.
1986-01-01
This study was performed to determine the effects of abnormally high temperatures on spent fuel behavior. Prior to testing, calculations using the CIRFI3 code were used to determine the steady-state fuel and cask component temperatures. The TRUMP code was used to determine transient heating rates under postulated abnormal events during which convection cooling of the cask surfaces was obstructed by a debris bed covering the cask. The peak rate of temperature rise during the first 6 h was calculated to be about 15/sup 0/C/h, followed by a rate of about 1/sup 0/C/h. A Turkey Point spent fuel rod segment wasmore » heated to approx. 800/sup 0/C. The segment deformed uniformly with an average strain of 17% at failure and a local strain of 60%. Pretest characterization of the spent fuel consisted of visual examination, profilometry, eddy-current examination, gamma scanning, fission gas collection, void volume measurement, fission gas analysis, hydrogen analysis of the cladding, burnup analysis, cladding metallography, and fuel ceramography. Post-test characterization showed that the failure was a pinhole cladding breach. The results of the tests showed that spent fuel temperatures in excess of 700/sup 0/C are required to produce a cladding breach in fuel rods pressurized to 500 psing (3.45 MPa) under postulated abnormal thermal transient cask conditions. The pinhole cladding breach that developed would be too small to compromise the confinement of spent fuel particles during an abnormal event or after normal cooling conditions are restored. This behavior is similar to that found in other slow ramp tests with irradiated and nonirradiated rod sections and nonirradiated whole rods under conditions that bracketed postulated abnormal heating rates. This similarity is attributed to annealing of the irradiation-strengthened Zircaloy cladding during heating. In both cases, the failure was a benign, ductile pinhole rupture.« less
Irradiation performance of HTGR recycle fissile fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Homan, F.J.; Long, E.L. Jr.
1976-08-01
The irradiation performance of candidate HTGR recycle fissile fuel under accelerated testing conditions is reviewed. Failure modes for coated-particle fuels are described, and the performance of candidate recycle fissile fuels is discussed in terms of these failure modes. The bases on which UO/sub 2/ and (Th,U)O/sub 2/ were rejected as candidate recycle fissile fuels are outlined, along with the bases on which the weak-acid resin (WAR)-derived fissile fuel was selected as the reference recycle kernel. Comparisons are made relative to the irradiation behavior of WAR-derived fuels of varying stoichiometry and conclusions are drawn about the optimum stoichiometry and the rangemore » of acceptable values. Plans for future testing in support of specification development, confirmation of the results of accelerated testing by real-time experiments, and improvement in fuel performance and reliability are described.« less
An investigation of FeCrAl cladding behavior under normal operating and loss of coolant conditions
Gamble, Kyle A.; Barani, Tommaso; Pizzocri, David; ...
2017-04-30
Iron-chromium-aluminum (FeCrAl) alloys are candidates to be used as nuclear fuel cladding for increased accident tolerance. An analysis of the response of FeCrAl under normal operating and loss of coolant conditions has been performed using fuel performance modeling. In particular, recent information on FeCrAl material properties and phenomena from separate effects tests has been implemented in the BISON fuel performance code and analyses of integral fuel rod behavior with FeCrAl cladding have been performed. BISON simulations included both light water reactor normal operation and loss-of-coolant accidental transients. In order to model fuel rod behavior during accidents, a cladding failure criterionmore » is desirable. For FeCrAl alloys, a failure criterion is developed using recent burst experiments under loss of coolant like conditions. The added material models are utilized to perform comparative studies with Zircaloy-4 under normal operating conditions and oxidizing and non-oxidizing out-of-pile loss of coolant conditions. The results indicate that for all conditions studied, FeCrAl behaves similarly to Zircaloy-4 with the exception of improved oxidation performance. Here, further experiments are required to confirm these observations.« less
An investigation of FeCrAl cladding behavior under normal operating and loss of coolant conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gamble, Kyle A.; Barani, Tommaso; Pizzocri, David
Iron-chromium-aluminum (FeCrAl) alloys are candidates to be used as nuclear fuel cladding for increased accident tolerance. An analysis of the response of FeCrAl under normal operating and loss of coolant conditions has been performed using fuel performance modeling. In particular, recent information on FeCrAl material properties and phenomena from separate effects tests has been implemented in the BISON fuel performance code and analyses of integral fuel rod behavior with FeCrAl cladding have been performed. BISON simulations included both light water reactor normal operation and loss-of-coolant accidental transients. In order to model fuel rod behavior during accidents, a cladding failure criterionmore » is desirable. For FeCrAl alloys, a failure criterion is developed using recent burst experiments under loss of coolant like conditions. The added material models are utilized to perform comparative studies with Zircaloy-4 under normal operating conditions and oxidizing and non-oxidizing out-of-pile loss of coolant conditions. The results indicate that for all conditions studied, FeCrAl behaves similarly to Zircaloy-4 with the exception of improved oxidation performance. Here, further experiments are required to confirm these observations.« less
Irradiation behavior of the interaction product of U-Mo fuel particle dispersion in an Al matrix
NASA Astrophysics Data System (ADS)
Kim, Yeon Soo; Hofman, G. L.
2012-06-01
Irradiation performance of U-Mo fuel particles dispersed in Al matrix is stable in terms of fuel swelling and is suitable for the conversion of research and test reactors from highly enriched uranium (HEU) to low enriched uranium (LEU). However, tests of the fuel at high temperatures and high burnups revealed obstacles caused by the interaction layers forming between the fuel particle and matrix. In some cases, fission gas filled pores grow and interconnect in the interdiffusion layer resulting in fuel plate failure. Postirradiation observations are made to examine the behavior of the interdiffusion layers. The interdiffusion layers show a fluid-like behavior characteristic of amorphous materials. In the amorphous interdiffusion layers, fission gas diffusivity is high and the material viscosity is low so that the fission gas pores readily form and grow. Based on the observations, a pore formation mechanism is proposed and potential remedies to suppress the pore growth are also introduced.
Irradiation behavior of U 6Mn-Al dispersion fuel elements
NASA Astrophysics Data System (ADS)
Meyer, M. K.; Wiencek, T. C.; Hayes, S. L.; Hofman, G. L.
2000-02-01
Irradiation testing of U 6Mn-Al dispersion fuel miniplates was conducted in the Oak Ridge Research Reactor (ORR). Post-irradiation examination showed that U 6Mn in an unrestrained plate configuration performs similarly to U 6Fe under irradiation, forming extensive and interlinked fission gas bubbles at a fission density of approximately 3×10 27 m-3. Fuel plate failure occurs by fission gas pressure driven `pillowing' on continued irradiation.
A pulse-controlled modified-burst test instrument for accident-tolerant fuel cladding
Cinbiz, M. Nedim; Brown, Nicholas R.; Terrani, Kurt A.; ...
2017-06-03
Pellet-cladding mechanical interaction due to thermal expansion of nuclear fuel pellets during a reactivity-initiated accident (RIA) is a potential mechanism for failure of nuclear fuel cladding. To investigate the mechanical behavior of cladding during an RIA, we developed a mechanical pulse-controlled modified burst test instrument that simulates transient events with a pulse width from 10 to 300 ms. This paper includes validation tests of unirradiated and prehydrided ZIRLO cladding tubes. A ZIRLO cladding sample with a hydrogen content of 168 wt. ppm showed ductile behavior and failed at the maximum limits of the test setup with hoop strain to failuremore » greater than 9.2%. ZIRLO samples showed high resistance to failure even at very high hydrogen contents (1,466 wt. ppm). When the hydrogen content was increased to 1,554 wt. ppm, brittle-like behavior was observed at a hoop strain of 2.5%. Preliminary scoping tests at room temperature with FeCrAl tubes were conducted to imitate the pulse behavior of transient test reactors during integral tests. The preliminary FeCrAl tests are informative from the perspective of characterizing the test rig and supporting the design of integral tests for current and potentially accident tolerant cladding materials.« less
A pulse-controlled modified-burst test instrument for accident-tolerant fuel cladding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cinbiz, M. Nedim; Brown, Nicholas R.; Terrani, Kurt A.
Pellet-cladding mechanical interaction due to thermal expansion of nuclear fuel pellets during a reactivity-initiated accident (RIA) is a potential mechanism for failure of nuclear fuel cladding. To investigate the mechanical behavior of cladding during an RIA, we developed a mechanical pulse-controlled modified burst test instrument that simulates transient events with a pulse width from 10 to 300 ms. This paper includes validation tests of unirradiated and prehydrided ZIRLO cladding tubes. A ZIRLO cladding sample with a hydrogen content of 168 wt. ppm showed ductile behavior and failed at the maximum limits of the test setup with hoop strain to failuremore » greater than 9.2%. ZIRLO samples showed high resistance to failure even at very high hydrogen contents (1,466 wt. ppm). When the hydrogen content was increased to 1,554 wt. ppm, brittle-like behavior was observed at a hoop strain of 2.5%. Preliminary scoping tests at room temperature with FeCrAl tubes were conducted to imitate the pulse behavior of transient test reactors during integral tests. The preliminary FeCrAl tests are informative from the perspective of characterizing the test rig and supporting the design of integral tests for current and potentially accident tolerant cladding materials.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dickerman, C. E.; Sowa, E. S.; Okrent, D.
1961-08-01
Meltdown tests on single metallic unirradiated fuel elements in TREAT are described. The fuel elements (EBRII Mark I fuel pins, EBR-II fuel pins with retractory Nb or Ta cladding, and Fermi-I fuel pins) are tested in an inert atmosphere, with no coolant. The fuel elements are exposed to reactor power bursts of 200 msec to 25 sec duration, under conditions simulating fast reactor operations. For these tests, the type of power burst, the integrated power, the fuel enrichment, the maximum cladding temperature, and the effects of the test on the fuel element are recorded. ( T.F.H.)
Very high temperature behavior of HTGR core materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soo, P.; Uneberg, G.; Sabatini, R.
1978-01-01
A description is given of experiments to investigate the behavior of HTGR core materials during hypothetical heatup accidents in which the core temperature is assumed to reach values between 2400/sup 0/C and the graphite sublimation range (>3600/sup 0/C). The work includes BISO coated fuel particle failure, simulated fission product migration in core graphite, and graphite sublimation behavior.
Fluid-structure interaction analysis of the drop impact test for helicopter fuel tank.
Yang, Xianfeng; Zhang, Zhiqiang; Yang, Jialing; Sun, Yuxin
2016-01-01
The crashworthiness of helicopter fuel tank is vital to the survivability of the passengers and structures. In order to understand and improve the crashworthiness of the soft fuel tank of helicopter during the crash, this paper investigated the dynamic behavior of the nylon woven fabric composite fuel tank striking on the ground. A fluid-structure interaction finite element model of the fuel tank based on the arbitrary Lagrangian-Eulerian method was constructed to elucidate the dynamic failure behavior. The drop impact tests were conducted to validate the accuracy of the numerical simulation. Good agreement was achieved between the experimental and numerical results of the impact force with the ground. The influences of the impact velocity, the impact angle, the thickness of the fuel tank wall and the volume fraction of water on the dynamic responses of the dropped fuel tank were studied. The results indicated that the corner of the fuel tank is the most vulnerable location during the impact with ground.
NASA Astrophysics Data System (ADS)
Cui, S. Y.; Miao, Q.; Liang, W. P.; Huang, B. Z.; Ding, Z.; Chen, B. W.
2017-02-01
WC-10Co-4Cr coating was applied to the surface of F6NM stainless steel by high-velocity oxygen-fuel spraying. The slurry erosion behavior of the matrix and coating was examined at different rotational speeds using a self-made machine. This experiment effectively simulates real slurry erosion in an environment with high silt load. At low velocity (<6 m/s), the main failure mechanism was cavitation. Small bubbles acted as an air cushion, obstructing direct contact between sand and the matrix surface. However, at velocity above 9 m/s, abrasive wear was the dominant failure mechanism. The results indicate that WC-10Co-4Cr coating significantly improved the slurry resistance at higher velocity, because it created a thin and dense WC coating on the surface.
Key results from irradiation and post-irradiation examination of AGR-1 UCO TRISO fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Demkowicz, Paul A.; Hunn, John D.; Petti, David A.
The AGR-1 irradiation experiment was performed as the first test of tristructural isotropic (TRISO) fuel in the US Advanced Gas Reactor Fuel Development and Qualification Program. The experiment consisted of 72 right cylinder fuel compacts containing approximately 3 × 105 coated fuel particles with uranium oxide/uranium carbide (UCO) fuel kernels. The fuel was irradiated in the Advanced Test Reactor for a total of 620 effective full power days. Fuel burnup ranged from 11.3 to 19.6% fissions per initial metal atom and time-average, volume-average irradiation temperatures of the individual compacts ranged from 955 to 1136 °C. This paper focuses on keymore » results from the irradiation and post-irradiation examination, which revealed a robust fuel with excellent performance characteristics under the conditions tested and have significantly improved the understanding of UCO coated particle fuel irradiation behavior. The fuel exhibited zero TRISO coating failures (failure of all three dense coating layers) during irradiation and post-irradiation safety testing at temperatures up to 1700 °C. Advanced PIE methods have allowed particles with SiC coating failure that were discovered to be present in a very-low population to be isolated and meticulously examined, which has elucidated the specific causes of SiC failure in these specimens. The level of fission product release from the fuel during irradiation and post-irradiation safety testing has been studied in detail. Results indicated very low release of krypton and cesium through intact SiC and modest release of europium and strontium, while also confirming the potential for significant silver release through the coatings depending on irradiation conditions. Focused study of fission products within the coating layers of irradiated particles down to nanometer length scales has provided new insights into fission product transport through the coating layers and the role various fission products may have on coating integrity. The broader implications of these results and the application of lessons learned from AGR-1 to fuel fabrication and post-irradiation examination for subsequent fuel irradiation experiments as part of the US fuel program are also discussed.« less
Key results from irradiation and post-irradiation examination of AGR-1 UCO TRISO fuel
Demkowicz, Paul A.; Hunn, John D.; Petti, David A.; ...
2017-09-10
The AGR-1 irradiation experiment was performed as the first test of tristructural isotropic (TRISO) fuel in the US Advanced Gas Reactor Fuel Development and Qualification Program. The experiment consisted of 72 right cylinder fuel compacts containing approximately 3 × 105 coated fuel particles with uranium oxide/uranium carbide (UCO) fuel kernels. The fuel was irradiated in the Advanced Test Reactor for a total of 620 effective full power days. Fuel burnup ranged from 11.3 to 19.6% fissions per initial metal atom and time-average, volume-average irradiation temperatures of the individual compacts ranged from 955 to 1136 °C. This paper focuses on keymore » results from the irradiation and post-irradiation examination, which revealed a robust fuel with excellent performance characteristics under the conditions tested and have significantly improved the understanding of UCO coated particle fuel irradiation behavior. The fuel exhibited zero TRISO coating failures (failure of all three dense coating layers) during irradiation and post-irradiation safety testing at temperatures up to 1700 °C. Advanced PIE methods have allowed particles with SiC coating failure that were discovered to be present in a very-low population to be isolated and meticulously examined, which has elucidated the specific causes of SiC failure in these specimens. The level of fission product release from the fuel during irradiation and post-irradiation safety testing has been studied in detail. Results indicated very low release of krypton and cesium through intact SiC and modest release of europium and strontium, while also confirming the potential for significant silver release through the coatings depending on irradiation conditions. Focused study of fission products within the coating layers of irradiated particles down to nanometer length scales has provided new insights into fission product transport through the coating layers and the role various fission products may have on coating integrity. The broader implications of these results and the application of lessons learned from AGR-1 to fuel fabrication and post-irradiation examination for subsequent fuel irradiation experiments as part of the US fuel program are also discussed.« less
Large-eddy simulation, fuel rod vibration and grid-to-rod fretting in pressurized water reactors
Christon, Mark A.; Lu, Roger; Bakosi, Jozsef; ...
2016-10-01
Grid-to-rod fretting (GTRF) in pressurized water reactors is a flow-induced vibration phenomenon that results in wear and fretting of the cladding material on fuel rods. GTRF is responsible for over 70% of the fuel failures in pressurized water reactors in the United States. Predicting the GTRF wear and concomitant interval between failures is important because of the large costs associated with reactor shutdown and replacement of fuel rod assemblies. The GTRF-induced wear process involves turbulent flow, mechanical vibration, tribology, and time-varying irradiated material properties in complex fuel assembly geometries. This paper presents a new approach for predicting GTRF induced fuelmore » rod wear that uses high-resolution implicit large-eddy simulation to drive nonlinear transient dynamics computations. The GTRF fluid–structure problem is separated into the simulation of the turbulent flow field in the complex-geometry fuel-rod bundles using implicit large-eddy simulation, the calculation of statistics of the resulting fluctuating structural forces, and the nonlinear transient dynamics analysis of the fuel rod. Ultimately, the methods developed here, can be used, in conjunction with operational management, to improve reactor core designs in which fuel rod failures are minimized or potentially eliminated. Furthermore, robustness of the behavior of both the structural forces computed from the turbulent flow simulations and the results from the transient dynamics analyses highlight the progress made towards achieving a predictive simulation capability for the GTRF problem.« less
Large-eddy simulation, fuel rod vibration and grid-to-rod fretting in pressurized water reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christon, Mark A.; Lu, Roger; Bakosi, Jozsef
Grid-to-rod fretting (GTRF) in pressurized water reactors is a flow-induced vibration phenomenon that results in wear and fretting of the cladding material on fuel rods. GTRF is responsible for over 70% of the fuel failures in pressurized water reactors in the United States. Predicting the GTRF wear and concomitant interval between failures is important because of the large costs associated with reactor shutdown and replacement of fuel rod assemblies. The GTRF-induced wear process involves turbulent flow, mechanical vibration, tribology, and time-varying irradiated material properties in complex fuel assembly geometries. This paper presents a new approach for predicting GTRF induced fuelmore » rod wear that uses high-resolution implicit large-eddy simulation to drive nonlinear transient dynamics computations. The GTRF fluid–structure problem is separated into the simulation of the turbulent flow field in the complex-geometry fuel-rod bundles using implicit large-eddy simulation, the calculation of statistics of the resulting fluctuating structural forces, and the nonlinear transient dynamics analysis of the fuel rod. Ultimately, the methods developed here, can be used, in conjunction with operational management, to improve reactor core designs in which fuel rod failures are minimized or potentially eliminated. Furthermore, robustness of the behavior of both the structural forces computed from the turbulent flow simulations and the results from the transient dynamics analyses highlight the progress made towards achieving a predictive simulation capability for the GTRF problem.« less
Reactor physics behavior of transuranic-bearing TRISO-particle fuel in a pressurized water reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pope, M. A.; Sen, R. S.; Ougouag, A. M.
2012-07-01
Calculations have been performed to assess the neutronic behavior of pins of Fully-Ceramic Micro-encapsulated (FCM) fuel in otherwise-conventional Pressurized Water Reactor (PWR) fuel pins. The FCM fuel contains transuranic (TRU) - only oxide fuel in tri-isotropic (TRISO) particles with the TRU loading coming from the spent fuel of a conventional LWR after 5 years of cooling. Use of the TRISO particle fuel would provide an additional barrier to fission product release in the event of cladding failure. Depletion calculations were performed to evaluate reactivity-limited burnup of the TRU-only FCM fuel. These calculations showed that due to relatively little space availablemore » for fuel, the achievable burnup with these pins alone is quite small. Various reactivity parameters were also evaluated at each burnup step including moderator temperature coefficient (MTC), Doppler, and soluble boron worth. These were compared to reference UO{sub 2} and MOX unit cells. The TRU-only FCM fuel exhibits degraded MTC and Doppler coefficients relative to UO{sub 2} and MOX. Also, the reactivity effects of coolant voiding suggest that the behavior of this fuel would be similar to a MOX fuel of very high plutonium fraction, which are known to have positive void reactivity. In general, loading of TRU-only FCM fuel into an assembly without significant quantities of uranium presents challenges to the reactor design. However, if such FCM fuel pins are included in a heterogeneous assembly alongside LEU fuel pins, the overall reactivity behavior would be dominated by the uranium pins while attractive TRU destruction performance levels in the TRU-only FCM fuel pins is retained. From this work, it is concluded that use of heterogeneous assemblies such as these appears feasible from a preliminary reactor physics standpoint. (authors)« less
Reactor Physics Behavior of Transuranic-Bearing TRISO-Particle Fuel in a Pressurized Water Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michael A. Pope; R. Sonat Sen; Abderrafi M. Ougouag
2012-04-01
Calculations have been performed to assess the neutronic behavior of pins of Fully-Ceramic Micro-encapsulated (FCM) fuel in otherwise-conventional Pressurized Water Reactor (PWR) fuel pins. The FCM fuel contains transuranic (TRU)-only oxide fuel in tri-isotropic (TRISO) particles with the TRU loading coming from the spent fuel of a conventional LWR after 5 years of cooling. Use of the TRISO particle fuel would provide an additional barrier to fission product release in the event of cladding failure. Depletion calculations were performed to evaluate reactivity-limited burnup of the TRU-only FCM fuel. These calculations showed that due to relatively little space available for fuel,more » the achievable burnup with these pins alone is quite small. Various reactivity parameters were also evaluated at each burnup step including moderator temperature coefficient (MTC), Doppler, and soluble boron worth. These were compared to reference UO{sub 2} and MOX unit cells. The TRU-only FCM fuel exhibits degraded MTC and Doppler coefficients relative to UO{sub 2} and MOX. Also, the reactivity effects of coolant voiding suggest that the behavior of this fuel would be similar to a MOX fuel of very high plutonium fraction, which are known to have positive void reactivity. In general, loading of TRU-only FCM fuel into an assembly without significant quantities of uranium presents challenges to the reactor design. However, if such FCM fuel pins are included in a heterogeneous assembly alongside LEU fuel pins, the overall reactivity behavior would be dominated by the uranium pins while attractive TRU destruction performance levels in the TRU-only FCM fuel pins is. From this work, it is concluded that use of heterogeneous assemblies such as these appears feasible from a preliminary reactor physics standpoint.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spencer, B. W.; Williamson, R. L.; Stafford, D. S.
One of the important roles of cladding in light water reactor fuel rods is to prevent the release of fission products. To that end, it is essential that the cladding maintain its integrity under a variety of thermal and mechanical loading conditions. Local geometric irregularities in fuel pellets caused by manufacturing defects known as missing pellet surfaces (MPS) can in some circumstances lead to elevated cladding stresses that are sufficiently high to cause cladding failure. Accurate modeling of these defects can help prevent these types of failures. The BISON nuclear fuel performance code developed at Idaho National Laboratory can bemore » used to simulate the global thermo-mechanical fuel rod behavior, as well as the local response of regions of interest, in either 2D or 3D. In either case, a full set of models to represent the thermal and mechanical properties of the fuel, cladding and plenum gas is employed. A procedure for coupling 2D full-length fuel rod models to detailed 3D models of the region of the rod containing a MPS defect is detailed in this paper. The global and local model each contain appropriate physics and behavior models for nuclear fuel. This procedure is demonstrated on a simulation of a boiling water reactor (BWR) fuel rod containing a pellet with an MPS defect, subjected to a variety of transient events, including a control blade withdrawal and a ramp to high power. The importance of modeling the local defect using a 3D model is highlighted by comparing 3D and 2D representations of the defective pellet region. Finally, parametric studies demonstrate the effects of the choice of gaseous swelling model and of the depth and geometry of the MPS defect on the response of the cladding adjacent to the defect.« less
3D modeling of missing pellet surface defects in BWR fuel
Spencer, B. W.; Williamson, R. L.; Stafford, D. S.; ...
2016-07-26
One of the important roles of cladding in light water reactor fuel rods is to prevent the release of fission products. To that end, it is essential that the cladding maintain its integrity under a variety of thermal and mechanical loading conditions. Local geometric irregularities in fuel pellets caused by manufacturing defects known as missing pellet surfaces (MPS) can in some circumstances lead to elevated cladding stresses that are sufficiently high to cause cladding failure. Accurate modeling of these defects can help prevent these types of failures. The BISON nuclear fuel performance code developed at Idaho National Laboratory can bemore » used to simulate the global thermo-mechanical fuel rod behavior, as well as the local response of regions of interest, in either 2D or 3D. In either case, a full set of models to represent the thermal and mechanical properties of the fuel, cladding and plenum gas is employed. A procedure for coupling 2D full-length fuel rod models to detailed 3D models of the region of the rod containing a MPS defect is detailed in this paper. The global and local model each contain appropriate physics and behavior models for nuclear fuel. This procedure is demonstrated on a simulation of a boiling water reactor (BWR) fuel rod containing a pellet with an MPS defect, subjected to a variety of transient events, including a control blade withdrawal and a ramp to high power. The importance of modeling the local defect using a 3D model is highlighted by comparing 3D and 2D representations of the defective pellet region. Finally, parametric studies demonstrate the effects of the choice of gaseous swelling model and of the depth and geometry of the MPS defect on the response of the cladding adjacent to the defect.« less
SLSF in-reactor local fault safety experiment P4. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, D. H.; Holland, J. W.; Braid, T. H.
The Sodium Loop Safety Facility (SLSF), a major facility in the US fast-reactor safety program, has been used to simulate a variety of sodium-cooled fast reactor accidents. SLSF experiment P4 was conducted to investigate the behavior of a "worse-than-case" local fault configuration. Objectives of this experiment were to eject molten fuel into a 37-pin bundle of full-length Fast-Test-Reactor-type fuel pins form heat-generating fuel canisters, to characterize the severity of any molten fuel-coolant interaction, and to demonstrate that any resulting blockage could either be tolerated during continued power operation or detected by global monitors to prevent fuel failure propagation. The designmore » goal for molten fuel release was 10 to 30 g. Explusion of molten fuel from fuel canisters caused failure of adjacent pins and a partial flow channel blockage in the fuel bundle during full-power operation. Molten fuel and fuel debris also lodged against the inner surface of the test subassembly hex-can wall. The total fuel disruption of 310 g evaluated from posttest examination data was in excellent agreement with results from the SLSF delayed neutron detection system, but exceeded the target molten fuel release by an order of magnitude. This report contains a summary description of the SLSF in-reactor loop and support systems and the experiment operations. results of the detailed macro- and microexamination of disrupted fuel and metal and results from the analysis of the on-line experimental data are described, as are the interpretations and conclusions drawn from the posttest evaluations. 60 refs., 74 figs.« less
76 FR 8661 - Airworthiness Directives; Lycoming Engines, Fuel Injected Reciprocating Engines
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-15
... engine models requiring inspections. We are proposing this AD to prevent failure of the fuel injector... repetitive inspection compliance time. We issued that AD to prevent failure of the fuel injector fuel lines... engine models requiring inspection. We are issuing this AD to prevent failure of the fuel injector fuel...
KEY RESULTS FROM IRRADIATION AND POST-IRRADIATION EXAMINATION OF AGR-1 UCO TRISO FUEL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Demkowicz, Paul A.; Hunn, John D.; Petti, David A.
The AGR-1 irradiation experiment was performed as the first test of tristructural isotropic (TRISO) fuel in the US Advanced Gas Reactor Fuel Development and Qualification Program. The experiment consisted of 72 right cylinder fuel compacts containing approximately 3×105 coated fuel particles with uranium oxide/uranium carbide (UCO) fuel kernels. The fuel was irradiated in the Advanced Test Reactor for a total of 620 effective full power days. Fuel burnup ranged from 11.3 to 19.6% fissions per initial metal atom and time average, volume average irradiation temperatures of the individual compacts ranged from 955 to 1136°C. This paper focuses on key resultsmore » from the irradiation and post-irradiation examination, which revealed a robust fuel with excellent performance characteristics under the conditions tested and have significantly improved the understanding of UCO coated particle fuel irradiation behavior within the US program. The fuel exhibited a very low incidence of TRISO coating failure during irradiation and post-irradiation safety testing at temperatures up to 1800°C. Advanced PIE methods have allowed particles with SiC coating failure to be isolated and meticulously examined, which has elucidated the specific causes of SiC failure in these specimens. The level of fission product release from the fuel during irradiation and post-irradiation safety testing has been studied in detail. Results indicated very low release of krypton and cesium through intact SiC and modest release of europium and strontium, while also confirming the potential for significant silver release through the coatings depending on irradiation conditions. Focused study of fission products within the coating layers of irradiated particles down to nanometer length scales has provided new insights into fission product transport through the coating layers and the role various fission products may have on coating integrity. The broader implications of these results and the application of lessons learned from AGR-1 to fuel fabrication and post-irradiation examination for subsequent fuel irradiation experiments as part of the US fuel program is also discussed.« less
PARFUME Theory and Model basis Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Darrell L. Knudson; Gregory K Miller; G.K. Miller
2009-09-01
The success of gas reactors depends upon the safety and quality of the coated particle fuel. The fuel performance modeling code PARFUME simulates the mechanical, thermal and physico-chemical behavior of fuel particles during irradiation. This report documents the theory and material properties behind vari¬ous capabilities of the code, which include: 1) various options for calculating CO production and fission product gas release, 2) an analytical solution for stresses in the coating layers that accounts for irradiation-induced creep and swelling of the pyrocarbon layers, 3) a thermal model that calculates a time-dependent temperature profile through a pebble bed sphere or amore » prismatic block core, as well as through the layers of each analyzed particle, 4) simulation of multi-dimensional particle behavior associated with cracking in the IPyC layer, partial debonding of the IPyC from the SiC, particle asphericity, and kernel migration (or amoeba effect), 5) two independent methods for determining particle failure probabilities, 6) a model for calculating release-to-birth (R/B) ratios of gaseous fission products that accounts for particle failures and uranium contamination in the fuel matrix, and 7) the evaluation of an accident condition, where a particle experiences a sudden change in temperature following a period of normal irradiation. The accident condi¬tion entails diffusion of fission products through the particle coating layers and through the fuel matrix to the coolant boundary. This document represents the initial version of the PARFUME Theory and Model Basis Report. More detailed descriptions will be provided in future revisions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blaise Collin
The Idaho National Laboraroty (INL) PARFUME (particle fuel model) code was used to assess the overall fuel performance of uranium nitride (UN) tristructural isotropic (TRISO) ceramic fuel under irradiation conditions typical of a Light Water Reactor (LWR). The dimensional changes of the fuel particle layers and kernel were calculated, including the formation of an internal gap. The survivability of the UN TRISO particle was estimated depending on the strain behavior of the constituent materials at high fast fluence and burn up. For nominal cases, internal gas pressure and representative thermal profiles across the kernel and layers were determined along withmore » stress levels in the inner and outer pyrolytic carbon (IPyC/OPyC) and silicon carbide (SiC) layers. These parameters were then used to evaluate fuel particle failure probabilities. Results of the study show that the survivability of UN TRISO fuel under LWR irradiation conditions might only be guaranteed if the kernel and PyC swelling rates are limited at high fast fluence and burn up. These material properties have large uncertainties at the irradiation levels expected to be reached by UN TRISO fuel in LWRs. Therefore, a large experimental effort would be needed to establish material properties, including kernel and PyC swelling rates, under these conditions before definitive conclusions can be drawn on the behavior of UN TRISO fuel in LWRs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grabaskas, David; Bucknor, Matthew; Jerden, James
2016-02-01
The development of an accurate and defensible mechanistic source term will be vital for the future licensing efforts of metal fuel, pool-type sodium fast reactors. To assist in the creation of a comprehensive mechanistic source term, the current effort sought to estimate the release fraction of radionuclides from metal fuel pins to the primary sodium coolant during fuel pin failures at a variety of temperature conditions. These release estimates were based on the findings of an extensive literature search, which reviewed past experimentation and reactor fuel damage accidents. Data sources for each radionuclide of interest were reviewed to establish releasemore » fractions, along with possible release dependencies, and the corresponding uncertainty levels. Although the current knowledge base is substantial, and radionuclide release fractions were established for the elements deemed important for the determination of offsite consequences following a reactor accident, gaps were found pertaining to several radionuclides. First, there is uncertainty regarding the transport behavior of several radionuclides (iodine, barium, strontium, tellurium, and europium) during metal fuel irradiation to high burnup levels. The migration of these radionuclides within the fuel matrix and bond sodium region can greatly affect their release during pin failure incidents. Post-irradiation examination of existing high burnup metal fuel can likely resolve this knowledge gap. Second, data regarding the radionuclide release from molten high burnup metal fuel in sodium is sparse, which makes the assessment of radionuclide release from fuel melting accidents at high fuel burnup levels difficult. This gap could be addressed through fuel melting experimentation with samples from the existing high burnup metal fuel inventory.« less
Mechanistic Considerations Used in the Development of the PROFIT PCI Failure Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pankaskie, P. J.
A fuel Pellet-Zircaloy Cladding (thermo-mechanical-chemical) Interactions (PC!) failure model for estimating the probability of failure in !ransient increases in power (PROFIT) was developed. PROFIT is based on 1) standard statistical methods applied to available PC! fuel failure data and 2) a mechanistic analysis of the environmental and strain-rate-dependent stress versus strain characteristics of Zircaloy cladding. The statistical analysis of fuel failures attributable to PCI suggested that parameters in addition to power, transient increase in power, and burnup are needed to define PCI fuel failures in terms of probability estimates with known confidence limits. The PROFIT model, therefore, introduces an environmentalmore » and strain-rate dependent strain energy absorption to failure (SEAF) concept to account for the stress versus strain anomalies attributable to interstitial-disloction interaction effects in the Zircaloy cladding. Assuming that the power ramping rate is the operating corollary of strain-rate in the Zircaloy cladding, then the variables of first order importance in the PCI fuel failure phenomenon are postulated to be: 1. pre-transient fuel rod power, P{sub I}, 2. transient increase in fuel rod power, {Delta}P, 3. fuel burnup, Bu, and 4. the constitutive material property of the Zircaloy cladding, SEAF.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bauer, T. H.; Robinson, W. R.; Holland, J. W.
1989-12-01
Results and analyses of margin to cladding failure and pre-failure axial expansion of metallic fuel are reported for TREAT in-pile transient overpower tests M5--M7. These are the first such tests on reference binary and ternary alloy fuel of the Integral Fast Reactor (IFR) concept with burnup ranging from 1 to 10 at. %. In all cases, test fuel was subjected to an exponential power rise on an 8 s period until either incipient or actual cladding failure was achieved. Objectives, designs and methods are described with emphasis on developments unique to metal fuel safety testing. The resulting database for claddingmore » failure threshold and prefailure fuel expansion is presented. The nature of the observed cladding failure and resultant fuel dispersals is described. Simple models of cladding failures and pre-failure axial expansions are described and compared with experimental results. Reported results include: temperature, flow, and pressure data from test instrumentation; fuel motion diagnostic data principally from the fast neutron hodoscope; and test remains described from both destructive and non-destructive post-test examination. 24 refs., 144 figs., 17 tabs.« less
Modeling and analysis of UN TRISO fuel for LWR application using the PARFUME code
NASA Astrophysics Data System (ADS)
Collin, Blaise P.
2014-08-01
The Idaho National Laboratory (INL) PARFUME (PARticle FUel ModEl) code was used to assess the overall fuel performance of uranium nitride (UN) tristructural isotropic (TRISO) ceramic fuel under irradiation conditions typical of a Light Water Reactor (LWR). The dimensional changes of the fuel particle layers and kernel were calculated, including the formation of an internal gap. The survivability of the UN TRISO particle was estimated depending on the strain behavior of the constituent materials at high fast fluence and burn-up. For nominal cases, internal gas pressure and representative thermal profiles across the kernel and layers were determined along with stress levels in the inner and outer pyrolytic carbon (IPyC/OPyC) and silicon carbide (SiC) layers. These parameters were then used to evaluate fuel particle failure probabilities. Results of the study show that the survivability of UN TRISO fuel under LWR irradiation conditions might only be guaranteed if the kernel and PyC swelling rates are limited at high fast fluence and burn-up. These material properties have large uncertainties at the irradiation levels expected to be reached by UN TRISO fuel in LWRs. Therefore, a large experimental effort would be needed to establish material properties, including kernel and PyC swelling rates, under these conditions before definitive conclusions can be drawn on the behavior of UN TRISO fuel in LWRs.
Skerjanc, William F.; Maki, John T.; Collin, Blaise P.; ...
2015-12-02
The success of modular high temperature gas-cooled reactors is highly dependent on the performance of the tristructural-isotopic (TRISO) coated fuel particle and the quality to which it can be manufactured. During irradiation, TRISO-coated fuel particles act as a pressure vessel to contain fission gas and mitigate the diffusion of fission products to the coolant boundary. The fuel specifications place limits on key attributes to minimize fuel particle failure under irradiation and postulated accident conditions. PARFUME (an integrated mechanistic coated particle fuel performance code developed at the Idaho National Laboratory) was used to calculate fuel particle failure probabilities. By systematically varyingmore » key TRISO-coated particle attributes, failure probability functions were developed to understand how each attribute contributes to fuel particle failure. Critical manufacturing limits were calculated for the key attributes of a low enriched TRISO-coated nuclear fuel particle with a kernel diameter of 425 μm. As a result, these critical manufacturing limits identify ranges beyond where an increase in fuel particle failure probability is expected to occur.« less
Performance of AGR-1 high-temperature reactor fuel during post-irradiation heating tests
Morris, Robert N.; Baldwin, Charles A.; Demkowicz, Paul A.; ...
2016-05-18
The fission product retention of irradiated low-enriched uranium oxide/uranium carbide tri-structural isotropic (TRISO) fuel compacts from the Advanced Gas-Cooled Reactor 1 (AGR-1) experiment has been evaluated at temperatures of 1600–1800 °C during post-irradiation safety tests. Fourteen compacts (a total of ~58,000 particles) with a burnup ranging from 13.4% to 19.1% fissions per initial metal atom (FIMA) have been tested using dedicated furnace systems at Idaho National Laboratory and Oak Ridge National Laboratory. The release of fission products 110mAg, 134Cs, 137Cs, 154Eu, 155Eu, 90Sr, and 85Kr was monitored while heating the fuel specimens in flowing helium. The behavior of silver, europium,more » and strontium appears to be dominated by inventory that was originally released through intact SiC coating layers during irradiation, but was retained in the compact at the end of irradiation and subsequently released during the safety tests. However, at a test temperature of 1800 °C, the data suggest that release of these elements through intact coatings may become significant after ~100 h. Cesium was very well retained by intact SiC layers, with a fractional release <5 × 10–6 after 300 h at 1600 °C or 100 h at 1800 °C. However, it was rapidly released from individual particles if the SiC layer failed, and therefore the overall cesium release fraction was dominated by the SiC defect and failure fractions in the fuel compacts. No complete TRISO coating layer failures were observed after 300 h at 1600 or 1700 °C, and 85Kr release was very low during the tests (particles with failed SiC, but intact outer pyrocarbon, retained most of their krypton). Krypton release from TRISO failures was only observed after ~210 h at 1800 °C in one compact. As a result, post-safety-test examination of fuel compacts and particles has focused on identifying specific particles from each compact with notable fission product release and detailed analysis of the coating layers to understand particle behavior.« less
Performance of AGR-1 high-temperature reactor fuel during post-irradiation heating tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morris, Robert N.; Baldwin, Charles A.; Demkowicz, Paul A.
The fission product retention of irradiated low-enriched uranium oxide/uranium carbide tri-structural isotropic (TRISO) fuel compacts from the Advanced Gas-Cooled Reactor 1 (AGR-1) experiment has been evaluated at temperatures of 1600–1800 °C during post-irradiation safety tests. Fourteen compacts (a total of ~58,000 particles) with a burnup ranging from 13.4% to 19.1% fissions per initial metal atom (FIMA) have been tested using dedicated furnace systems at Idaho National Laboratory and Oak Ridge National Laboratory. The release of fission products 110mAg, 134Cs, 137Cs, 154Eu, 155Eu, 90Sr, and 85Kr was monitored while heating the fuel specimens in flowing helium. The behavior of silver, europium,more » and strontium appears to be dominated by inventory that was originally released through intact SiC coating layers during irradiation, but was retained in the compact at the end of irradiation and subsequently released during the safety tests. However, at a test temperature of 1800 °C, the data suggest that release of these elements through intact coatings may become significant after ~100 h. Cesium was very well retained by intact SiC layers, with a fractional release <5 × 10–6 after 300 h at 1600 °C or 100 h at 1800 °C. However, it was rapidly released from individual particles if the SiC layer failed, and therefore the overall cesium release fraction was dominated by the SiC defect and failure fractions in the fuel compacts. No complete TRISO coating layer failures were observed after 300 h at 1600 or 1700 °C, and 85Kr release was very low during the tests (particles with failed SiC, but intact outer pyrocarbon, retained most of their krypton). Krypton release from TRISO failures was only observed after ~210 h at 1800 °C in one compact. As a result, post-safety-test examination of fuel compacts and particles has focused on identifying specific particles from each compact with notable fission product release and detailed analysis of the coating layers to understand particle behavior.« less
76 FR 79051 - Airworthiness Directives; Lycoming Engines, Fuel Injected Reciprocating Engines
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-21
... models requiring inspections. We are issuing this AD to prevent failure of the fuel injector fuel lines... to prevent failure of the fuel injector fuel lines that would allow fuel to spray into the engine... injector nozzles, and replace as necessary any fuel injector fuel line and clamp that does not meet all...
Modeling and Analysis of FCM UN TRISO Fuel Using the PARFUME Code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blaise Collin
2013-09-01
The PARFUME (PARticle Fuel ModEl) modeling code was used to assess the overall fuel performance of uranium nitride (UN) tri-structural isotropic (TRISO) ceramic fuel in the frame of the design and development of Fully Ceramic Matrix (FCM) fuel. A specific modeling of a TRISO particle with UN kernel was developed with PARFUME, and its behavior was assessed in irradiation conditions typical of a Light Water Reactor (LWR). The calculations were used to access the dimensional changes of the fuel particle layers and kernel, including the formation of an internal gap. The survivability of the UN TRISO particle was estimated dependingmore » on the strain behavior of the constituent materials at high fast fluence and burn-up. For nominal cases, internal gas pressure and representative thermal profiles across the kernel and layers were determined along with stress levels in the pyrolytic carbon (PyC) and silicon carbide (SiC) layers. These parameters were then used to evaluate fuel particle failure probabilities. Results of the study show that the survivability of UN TRISO fuel under LWR irradiation conditions might only be guaranteed if the kernel and PyC swelling rates are limited at high fast fluence and burn-up. These material properties are unknown at the irradiation levels expected to be reached by UN TRISO fuel in LWRs. Therefore, more effort is needed to determine them and positively conclude on the applicability of FCM fuel to LWRs.« less
On-line detection of key radionuclides for fuel-rod failure in a pressurized water reactor.
Qin, Guoxiu; Chen, Xilin; Guo, Xiaoqing; Ni, Ning
2016-08-01
For early on-line detection of fuel rod failure, the key radionuclides useful in monitoring must leak easily from failing rods. Yield, half-life, and mass share of fission products that enter the primary coolant also need to be considered in on-line analyses. From all the nuclides that enter the primary coolant during fuel-rod failure, (135)Xe and (88)Kr were ultimately chosen as crucial for on-line monitoring of fuel-rod failure. A monitoring system for fuel-rod failure detection for pressurized water reactor (PWR) based on the LaBr3(Ce) detector was assembled and tested. The samples of coolant from the PWR were measured using the system as well as a HPGe γ-ray spectrometer. A comparison showed the method was feasible. Finally, the γ-ray spectra of primary coolant were measured under normal operations and during fuel-rod failure. The two peaks of (135)Xe (249.8keV) and (88)Kr (2392.1keV) were visible, confirming that the method is capable of monitoring fuel-rod failure on-line. Copyright © 2016 Elsevier Ltd. All rights reserved.
Safety consequences of local initiating events in an LMFBR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crawford, R.M.; Marr, W.W.; Padilla, A. Jr.
1975-12-01
The potential for fuel-failure propagation in an LMFBR at or near normal conditions is examined. Results are presented to support the conclusion that although individual fuel-pin failure may occur, rapid failure-propagation spreading among a large number of fuel pins in a subassembly is unlikely in an operating LMFBR. This conclusion is supported by operating experience, mechanistic analyses of failure-propagation phenomena, and experiments. In addition, some of the consequences of continued operation with defected fuel are considered.
Pellet Cladding Mechanical Interaction Modeling Using the Extended Finite Element Method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spencer, Benjamin W.; Jiang, Wen; Dolbow, John E.
As a brittle material, the ceramic UO2 used as light water reactor fuel experiences significant fracturing throughout its life, beginning with the first rise to power of fresh fuel. This has multiple effects on the thermal and mechanical response of the fuel/cladding system. One such effect that is particularly important is that when there is mechanical contact between the fuel and cladding, cracks that extending from the outer surface of the fuel into the volume of the fuel cause elevated stresses in the adjacent cladding, which can potentially lead to cladding failure. Modeling the thermal and mechanical response of themore » cladding in the vicinity of these surface-breaking cracks in the fuel can provide important insights into this behavior to help avoid operating conditions that could lead to cladding failure. Such modeling has traditionally been done in the context of finite-element-based fuel performance analysis by modifying the fuel mesh to introduce discrete cracks. While this approach is effective in capturing the important behavior at the fuel/cladding interface, there are multiple drawbacks to explicitly incorporating the cracks in the finite element mesh. Because the cracks are incorporated in the original mesh, the mesh must be modified for cracks of specified location and depth, so it is difficult to account for crack propagation and the formation of new cracks at other locations. The extended finite element method (XFEM) has emerged in recent years as a powerful method to represent arbitrary, evolving, discrete discontinuities within the context of the finite element method. Development work is underway by the authors to implement XFEM in the BISON fuel performance code, and this capability has previously been demonstrated in simulations of fracture propagation in ceramic nuclear fuel. These preliminary demonstrations have included only the fuel, and excluded the cladding for simplicity. This paper presents initial results of efforts to apply XFEM to model stress concentrations induced by fuel fractures at the fuel/cladding interface during pellet cladding mechanical interaction (PCMI). This is accomplished by enhancing the thermal and mechanical contact enforcement algorithms employed by BISON to permit their use in conjunction with XFEM. The results from this methodology are demonstrated to be equivalent to those from using meshed discrete cracks. While the results of the two methods are equivalent for the case of a stationary crack, it is demonstrated that XFEM provides the additional flexibility of allowing arbitrary crack initiation and propagation during the analysis, and minimizes model setup effort for cases with stationary cracks.« less
Analyses of transients for an 800 MW-class accelerator driven transmuter with fertile-free fuels
NASA Astrophysics Data System (ADS)
Maschek, Werner; Suzuki, Tohru; Chen, Xue-Nong; Rineiski, Andrei; Matzerath Boccaccini, Claudia; Mori, Magnus; Morita, Koji
2006-06-01
In the FUTURE Program, the development and application of fertile-free fuels for Accelerator Driven Transmuters (ADTs) has been advanced. To assess the reactor performance and safety behavior of an ADT with so-called dedicated fuels, various transient cases for an 800 MW-class Pb/Bi-cooled ADT were investigated using the SIMMER-III code. The FUTURE ADT also served as vehicle to develop and test ideas on a safety concept for such transmuters. After an extensive ranking procedure, a CERCER fuel with an MgO matrix and a CERMET fuel with a Mo-92 matrix were chosen. The transient scenarios shown here are: spurious beam trip (BT), unprotected loss of flow (ULOF) and unprotected blockage accident (UBA). Since the release of fission gas and helium after cladding failure could induce a significant positive reactivity, the gas-blowdown was investigated for the transient scenarios. The present analyses showed that power excursions could be avoided by the fuel sweep-out from the core under severe accident conditions.
Scoping studies of vapor behavior during a severe accident in a metal-fueling reactor
NASA Astrophysics Data System (ADS)
Spencer, B. W.; Marchaterre, J. F.
1985-04-01
The consequences of fuel melting and pin failures for a reactivity-insertion type accident in a sodium-cooled, pool-type reactor fueled with a metal alloy fuel were examined. The principal gas and vapor species released are shown to be Xe, Cs, and bond sodium contained within the fuel porosity. Condensation of sodium vapor as it expands into the upper sodium pool in a jet mixing regime may occur as rapidly as the vapor emerges from the disrupted core. If the predictions of rapid direct-contact condensation can be verified experimentally for the sodium system, the ability of vapor expansion to perform appreciable work on the system and the ability of an expanding vapor bubble to transport fuel and fission produce species to the cover gas region where they may be released to the containment are largely eliminated. The radionuclide species except for fission gas are largely retained within the core and sodium pool.
NASA Astrophysics Data System (ADS)
Karahan, Aydın; Buongiorno, Jacopo
2010-01-01
An engineering code to predict the irradiation behavior of U-Zr and U-Pu-Zr metallic alloy fuel pins and UO2-PuO2 mixed oxide fuel pins in sodium-cooled fast reactors was developed. The code was named Fuel Engineering and Structural analysis Tool (FEAST). FEAST has several modules working in coupled form with an explicit numerical algorithm. These modules describe fission gas release and fuel swelling, fuel chemistry and restructuring, temperature distribution, fuel-clad chemical interaction, and fuel and clad mechanical analysis including transient creep-fracture for the clad. Given the fuel pin geometry, composition and irradiation history, FEAST can analyze fuel and clad thermo-mechanical behavior at both steady-state and design-basis (non-disruptive) transient scenarios. FEAST was written in FORTRAN-90 and has a simple input file similar to that of the LWR fuel code FRAPCON. The metal-fuel version is called FEAST-METAL, and is described in this paper. The oxide-fuel version, FEAST-OXIDE is described in a companion paper. With respect to the old Argonne National Laboratory code LIFE-METAL and other same-generation codes, FEAST-METAL emphasizes more mechanistic, less empirical models, whenever available. Specifically, fission gas release and swelling are modeled with the GRSIS algorithm, which is based on detailed tracking of fission gas bubbles within the metal fuel. Migration of the fuel constituents is modeled by means of thermo-transport theory. Fuel-clad chemical interaction models based on precipitation kinetics were developed for steady-state operation and transients. Finally, a transient intergranular creep-fracture model for the clad, which tracks the nucleation and growth of the cavities at the grain boundaries, was developed for and implemented in the code. Reducing the empiricism in the constitutive models should make it more acceptable to extrapolate FEAST-METAL to new fuel compositions and higher burnup, as envisioned in advanced sodium reactors. FEAST-METAL was benchmarked against the open-literature EBR-II database for steady state and furnace tests (transients). The results show that the code is able to predict important phenomena such as clad strain, fission gas release, clad wastage, clad failure time, axial fuel slug deformation and fuel constituent redistribution, satisfactorily.
Need for higher fuel burnup at the Hatch Plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beckhman, J.T.
1996-03-01
Hatch is a BWR 4 and has been in operation for some time. The first unit became commercial about 1975. Obtaining higher burnups, or higher average discharge exposures, is nothing new at Hatch. Since we have started, the discharge exposure of the plant has increased. Now, of course, we are not approaching the numbers currently being discussed but, the average discharge exposure has increased from around 20,000 MWD/MTU in the early to mid-1980s to 34,000 MWD/MTU in 1994, I am talking about batch average values. There are also peak bundle and peak rod values. You will have to make themore » conversions if you think in one way or the other because I am talking in batch averages. During Hatch`s operating history we have had some problems with fuel failure. Higher burnup fuel raises a concern about how much fuel failure you are going to have. Fuel failure is, of course, an economic issue with us. Back in the early 1980s, we had a problem with crud-induced localized corrosion, known as CILC. We have gotten over that, but we had some times when it was up around 27 fuel failures a year. That is not a pleasant time to live through because it is not what you want from an economic viewpoint or any other. We have gotten that down. We have had some fuel failures recently, but they have not been related to fuel burnup or to corrosion. In fact, the number of failures has decreased from the early 1980s to the 90s even though burnup increased during that time. The fuel failures are more debris-related-type failures. In addition to increasing burnups, utilities are actively evaluating or have already incorporated power uprate and longer fuel cycles (e.g., 2-year cycles). The goal is to balance out the higher power density, longer cycles, higher burnup, and to have no leakers. Why do we as an industry want to have higher burnup fuel? That is what I want to tell you a little bit about.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doerner, R.C.; Bauer, T.H.; Morman, J.A.
Prototypic oxide fuel was subjected to simulated, fast reactor severe accident conditions in a series of in-pile tests in the Transient Reactor Test Facility reactor. Seven experiments were performed on fresh and previously irradiated oxide fuel pins under transient overpower and transient undercooled. overpower accident conditions. For each of the tests, fuel motions were observed by the hodoscope. Hodoscope data are correlated with coolant flow, pressure, and temperature data recorded by the loop instrumentation. Data were analyzed from the onset of initial failure to a final mass distribution at the end of the test. In this paper results of thesemore » analyses are compared to pre- and posttest accident calculations and to posttest metallographic accident calculations and to posttest metallographic examinations and computed tomographic reconstructions from neutron radiographs.« less
Possible consequences of operation with KIVN fuel elements in K Zircaloy process tubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlson, P.A.
1963-08-06
From considerations of the results of experimental simulations of non-axial placement of fuel elements in process tubes and in-reactor experience, it is concluded that the ultimate outcome of a charging error which results in operation with one or more unsupported fuel elements in a K Zircaloy-2 process tube would be multiple fuel failure and failure of the process tube. The outcome of the accident is determined by the speed with which the fuel failure is detected and the reactor is shut down. The release of fission products would be expected to be no greater than that which has occurred followingmore » severe fuel failure incidents. The highest probability for fission product release occurs during the discharge of failed fuel elements, when a small fraction of the exposed uranium of the fuel element may be oxidized when exposed to air before the element falls into the water-filled discharge chute. The confinement and fog spray facilities were installed to reduce the amount of fission products which might escape from the reactor building after such an event.« less
Byun, Thak Sang; Yamamoto, Yukinori; Maloy, Stuart A.; ...
2015-08-25
Here, one of the most essential properties of accident tolerant fuel (ATF) for maintaining structural integrity during a loss-of-coolant accident (LOCA) is high resistance of the cladding to plastic deformation and burst failure, since the deformation and burst behavior governs the cooling efficiency of flow channels and the process of fission product release. To simulate and evaluate the deformation and burst process of thin-walled cladding, an in-situ testing and evaluation method has been developed on the basis of visual imaging and image analysis techniques. The method uses a specialized optics system consisting of a high-resolution video camera, a light filteringmore » unit, and monochromatic light sources. The in-situ testing is performed using a 50 mm long pressurized thin-walled tubular specimen set in a programmable furnace. As the first application, ten (10) candidate cladding materials for ATF, i.e., five FeCrAl alloys and five nanostructured steels, were tested using the newly developed method, and the time-dependent images were analyzed to produce detailed deformation and burst data such as true hoop stress, strain (creep) rate, and failure stress. Relatively soft FeCrAl alloys deformed and burst below 800 °C, while negligible strain rates were measured for higher strength alloys.« less
Apollo CSM Power Generation System Design Considerations, Failure Modes and Lessons Learned
NASA Technical Reports Server (NTRS)
Interbartolo, Michael
2009-01-01
The objectives of this slide presentation are to: review the basic design criteria for fuel cells (FC's), review design considerations during developmental phase that affected Block I and Block II vehicles, summarize the conditions that led to the failure of components in the FC's, and state the solution implemented for each failure. It reviews the location of the fuel cells, the fuel cell theory the design criteria going into development phase and coming from the development phase, failures and solutions of Block I and II, and the lessons learned.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-23
... Boeing Model 787-8 airplane will incorporate a fuel tank nitrogen generation system (NGS) that actively... ignition source in the fuel tank system could not result from any single failure, from any single failure... of fuel systems. We do not intend to apply the alternative standards used under these special...
Fuel inspection and reconstitution experience at Surry Power Station
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brookmire, T.A.
Surry Power Station, located on the James River near Williamsburg, Virginia, has two Westinghouse pressurized water reactors. Unit 2 consistently sets a high standard of fuel performance (no indication of fuel failures in recent cycles), while unit 1, since cycle 6, has been plagued with numerous fuel failures. Both Surry units operate with Westinghouse standard 15 x 15 fuel. Virginia Power management set goals to reduce the coolant activity, thus reducing person-rem exposure and the associated costs of high coolant activity. To achieve this goal, extensive fuel examination campaigns were undertaken that included high-magnification video inspectionsa, debris cleaning, wet andmore » vacuum fuel sipping, fuel rod ultrasonic testing, and eddy current examination. In the summer of 1985, during cycle 8 operation, Kraftwerk Union reconstituted (repaired) the damage, once-burned assemblies from cycles 6 and 7 by replacing failed fuel rods with solid Zircaloy-4 rods. Currently, cycle 9 has operated for 5 months without any indication of fuel failure (the cycle 9 core has two reconstituted assemblies).« less
In-pile tests at Karlsruhe of LWR fuel-rod behavior during the heatup phase of a LOCA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karb, E.H.
1980-01-01
In order to investigate the influence of a nuclar environment on the mechanisms of fuel-rod failure, in-pile tests simulating the heatup phase of a loss-of-coolant accident in a pressurized-water reactor are being conducted with irradiated and unirradiated short-length single rods in the FR2 reactor at Kernforschungszentrum karlsruhe (Karlsruhe Nuclear Reasearch Center), Federal Republic of Germany, within the Project Nuclear Safety. With nearly 70% of the scheduled tests completed, no such influences have been found. The in-pile burst and deformation data are in good agreement with results from nonnuclear tests with electrically heated fuel-rod simulators. The phenomenon of pellet disintegration, whichmore » has been observed in all tests with previously irradiated rods, needs further investigation.« less
AGR-3/4 Irradiation Test Predictions using PARFUME
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skerjanc, William Frances; Collin, Blaise Paul
2016-03-01
PARFUME, a fuel performance modeling code used for high temperature gas reactors, was used to model the AGR-3/4 irradiation test using as-run physics and thermal hydraulics data. The AGR-3/4 test is the combined third and fourth planned irradiations of the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program. The AGR-3/4 test train consists of twelve separate and independently controlled and monitored capsules. Each capsule contains four compacts filled with both uranium oxycarbide (UCO) unaltered “driver” fuel particles and UCO designed-to-fail (DTF) fuel particles. The DTF fraction was specified to be 1×10-2. This report documents the calculations performed to predictmore » failure probability of TRISO-coated fuel particles during the AGR-3/4 experiment. In addition, this report documents the calculated source term from both the driver fuel and DTF particles. The calculations include the modeling of the AGR-3/4 irradiation that occurred from December 2011 to April 2014 in the Advanced Test Reactor (ATR) over a total of ten ATR cycles including seven normal cycles, one low power cycle, one unplanned outage cycle, and one Power Axial Locator Mechanism cycle. Results show that failure probabilities are predicted to be low, resulting in zero fuel particle failures per capsule. The primary fuel particle failure mechanism occurred as a result of localized stresses induced by the calculated IPyC cracking. Assuming 1,872 driver fuel particles per compact, failure probability calculated by PARFUME leads to no predicted particle failure in the AGR-3/4 driver fuel. In addition, the release fraction of fission products Ag, Cs, and Sr were calculated to vary depending on capsule location and irradiation temperature. The maximum release fraction of Ag occurs in Capsule 7 reaching up to 56% for the driver fuel and 100% for the DTF fuel. The release fraction of the other two fission products, Cs and Sr, are much smaller and in most cases less than 1% for the driver fuel. The notable exception occurs in Capsule 7 where the release fraction for Cs and Sr reach up to 0.73% and 2.4%, respectively, for the driver fuel. For the DTF fuel in Capsule 7, the release fraction for Cs and Sr are estimated to be 100% and 5%, respectively.« less
3D visualization of membrane failures in fuel cells
NASA Astrophysics Data System (ADS)
Singh, Yadvinder; Orfino, Francesco P.; Dutta, Monica; Kjeang, Erik
2017-03-01
Durability issues in fuel cells, due to chemical and mechanical degradation, are potential impediments in their commercialization. Hydrogen leak development across degraded fuel cell membranes is deemed a lifetime-limiting failure mode and potential safety issue that requires thorough characterization for devising effective mitigation strategies. The scope and depth of failure analysis has, however, been limited by the 2D nature of conventional imaging. In the present work, X-ray computed tomography is introduced as a novel, non-destructive technique for 3D failure analysis. Its capability to acquire true 3D images of membrane damage is demonstrated for the very first time. This approach has enabled unique and in-depth analysis resulting in novel findings regarding the membrane degradation mechanism; these are: significant, exclusive membrane fracture development independent of catalyst layers, localized thinning at crack sites, and demonstration of the critical impact of cracks on fuel cell durability. Evidence of crack initiation within the membrane is demonstrated, and a possible new failure mode different from typical mechanical crack development is identified. X-ray computed tomography is hereby established as a breakthrough approach for comprehensive 3D characterization and reliable failure analysis of fuel cell membranes, and could readily be extended to electrolyzers and flow batteries having similar structure.
Experimental Study on Surrogate Nuclear Fuel Rods under Reversed Cyclic Bending
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hong; Wang, Jy-An John
The mechanical behavior of spent nuclear fuel (SNF) rods under reversed cyclic bending or bending fatigue must be understood to evaluate their vibration integrity in a transportation environment. This is especially important for high-burnup fuels (>45 GWd/MTU), which have the potential for increased structural damage. It has been demonstrated that the bending fatigue of SNF rods can be effectively studied using surrogate rods. In this investigation, surrogate rods made of stainless steel (SS) 304 cladding and aluminum oxide pellets were tested under load or moment control at a variety of amplitude levels at 5 Hz using the Cyclic Integrated Reversible-Bendingmore » Fatigue Tester developed at Oak Ridge National Laboratory. The behavior of the rods was further characterized using flexural rigidity and hysteresis data, and fractography was performed on the failed rods. The proposed surrogate rods captured many of the characteristics of deformation and failure mode observed in SNF, including the linear-to-nonlinear deformation transition and large residual curvature in static tests, PPI and PCMI failure mechanisms, and large variation in the initial structural condition. Rod degradation was measured and characterized by measuring the flexural rigidity; the degradation of the rigidity depended on both the moment amplitude applied and the initial structural condition of the rods. It was also shown that a cracking initiation site can be located on the internal surface or the external surface of cladding. Finally, fatigue damage to the bending rods can be described in terms of flexural rigidity, and the fatigue life of rods can be predicted once damage model parameters are properly evaluated. The developed experimental approach, test protocol, and analysis method can be used to study the vibration integrity of SNF rods in the future.« less
System Modeling and Diagnostics for Liquefying-Fuel Hybrid Rockets
NASA Technical Reports Server (NTRS)
Poll, Scott; Iverson, David; Ou, Jeremy; Sanderfer, Dwight; Patterson-Hine, Ann
2003-01-01
A Hybrid Combustion Facility (HCF) was recently built at NASA Ames Research Center to study the combustion properties of a new fuel formulation that burns approximately three times faster than conventional hybrid fuels. Researchers at Ames working in the area of Integrated Vehicle Health Management recognized a good opportunity to apply IVHM techniques to a candidate technology for next generation launch systems. Five tools were selected to examine various IVHM techniques for the HCF. Three of the tools, TEAMS (Testability Engineering and Maintenance System), L2 (Livingstone2), and RODON, are model-based reasoning (or diagnostic) systems. Two other tools in this study, ICS (Interval Constraint Simulator) and IMS (Inductive Monitoring System) do not attempt to isolate the cause of the failure but may be used for fault detection. Models of varying scope and completeness were created, both qualitative and quantitative. In each of the models, the structure and behavior of the physical system are captured. In the qualitative models, the temporal aspects of the system behavior and the abstraction of sensor data are handled outside of the model and require the development of additional code. In the quantitative model, less extensive processing code is also necessary. Examples of fault diagnoses are given.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-13
..., preventing gravity feed. In the event of scavenge system failure, the collector tank fuel level can no longer... closed by the valve spring, preventing gravity feed. In the event of scavenge system failure, the... spring, preventing gravity feed. In the event of scavenge system failure, the collector tank fuel level...
Irradiation performance of AGR-1 high temperature reactor fuel
Demkowicz, Paul A.; Hunn, John D.; Ploger, Scott A.; ...
2015-10-23
The AGR-1 experiment contained 72 low-enriched uranium oxide/uranium carbide TRISO coated particle fuel compacts in six capsules irradiated to burnups of 11.2 to 19.6% FIMA, with zero TRISO coating failures detected during the irradiation. The irradiation performance of the fuel including the extent of fission product release and the evolution of kernel and coating microstructures was evaluated based on detailed examination of the irradiation capsules, the fuel compacts, and individual particles. Fractional release of 110mAg from the fuel compacts was often significant, with capsule-average values ranging from 0.01 to 0.38. Analysis of silver release from individual compacts indicated that itmore » was primarily dependent on fuel temperature history. Europium and strontium were released in small amounts through intact coatings, but were found to be significantly retained in the outer pyrocarbon and compact matrix. The capsule-average fractional release from the compacts was 1 × 10 –4 to 5 × 10 –4 for 154Eu and 8 × 10 –7 to 3 × 10 –5 for 90Sr. The average 134Cs fractional release from compacts was <3 × 10 –6 when all particles maintained intact SiC. An estimated four particles out of 2.98 × 10 5 in the experiment experienced partial cesium release due to SiC failure during the irradiation, driving 134Cs fractional release in two capsules to approximately 10 –5. Identification and characterization of these particles has provided unprecedented insight into the nature and causes of SiC coating failure in high-quality TRISO fuel. In general, changes in coating morphology were found to be dominated by the behavior of the buffer and inner pyrolytic carbon (IPyC), and infrequently observed SiC layer damage was usually related to cracks in the IPyC. Palladium attack of the SiC layer was relatively minor, except for the particles that released cesium during irradiation, where SiC corrosion was found adjacent to IPyC cracks. In conclusion, palladium, silver, and uranium were found in the SiC layer of irradiated particles, and characterization of these elements within the SiC microstructure is the subject of ongoing focused study.« less
The Failing Heart Relies on Ketone Bodies as a Fuel.
Aubert, Gregory; Martin, Ola J; Horton, Julie L; Lai, Ling; Vega, Rick B; Leone, Teresa C; Koves, Timothy; Gardell, Stephen J; Krüger, Marcus; Hoppel, Charles L; Lewandowski, E Douglas; Crawford, Peter A; Muoio, Deborah M; Kelly, Daniel P
2016-02-23
Significant evidence indicates that the failing heart is energy starved. During the development of heart failure, the capacity of the heart to utilize fatty acids, the chief fuel, is diminished. Identification of alternate pathways for myocardial fuel oxidation could unveil novel strategies to treat heart failure. Quantitative mitochondrial proteomics was used to identify energy metabolic derangements that occur during the development of cardiac hypertrophy and heart failure in well-defined mouse models. As expected, the amounts of proteins involved in fatty acid utilization were downregulated in myocardial samples from the failing heart. Conversely, expression of β-hydroxybutyrate dehydrogenase 1, a key enzyme in the ketone oxidation pathway, was increased in the heart failure samples. Studies of relative oxidation in an isolated heart preparation using ex vivo nuclear magnetic resonance combined with targeted quantitative myocardial metabolomic profiling using mass spectrometry revealed that the hypertrophied and failing heart shifts to oxidizing ketone bodies as a fuel source in the context of reduced capacity to oxidize fatty acids. Distinct myocardial metabolomic signatures of ketone oxidation were identified. These results indicate that the hypertrophied and failing heart shifts to ketone bodies as a significant fuel source for oxidative ATP production. Specific metabolite biosignatures of in vivo cardiac ketone utilization were identified. Future studies aimed at determining whether this fuel shift is adaptive or maladaptive could unveil new therapeutic strategies for heart failure. © 2016 American Heart Association, Inc.
McCormick, Norman J.
1976-01-01
For use in the identification of failed fuel assemblies in a nuclear reactor, the ratios of the tag gas isotopic concentrations are located on curved surfaces to enable the ratios corresponding to failure of a single fuel assembly to be distinguished from those formed from any combination of two or more failed assemblies.
STS-51 pad abort. OV103-engine 2033 (ME-2) fuel flowmeter sensor open circuit
NASA Technical Reports Server (NTRS)
1993-01-01
The STS-51 initial launch attempt of Discovery (OV-103) was terminated on KSC launch pad 39B on 12 Aug. 1993 at 9:12 AM E.S.T. due to a sensor redundancy failure in the liquid hydrogen system of ME-2 (Engine 2033). The event description and time line are summarized. Propellant loading was initiated on 12 Aug. 1993 at 12:00 AM EST. All space shuttle main engine (SSME) chill parameters and Launch Commit Criteria (LCC) were nominal. At engine start plus 1.34 seconds a Failure Identification (FID) was posted against Engine 2033 for exceeding the 1800 spin intra-channel (A1-A2) Fuel Flowrate sensor channel qualification limit. The engine was shut down at 1.50 seconds followed by Engines 2032 and 2030. All shut down sequences were nominal and the mission was safely aborted. SSME Avionics hardware and software performed nominally during the incident. A review of vehicle data table (VDT) data and controller software logic revealed no failure indications other than the single FID 111-101, Fuel Flowrate Intra-Channel Test Channel A disqualification. Software logic was executed according to requirements and there was no anomalous controller software operation. Immediately following the abort, a Rocketdyne/NASA failure investigation team was assembled. The team successfully isolated the failure cause to an open circuit in a Fuel Flowrate Sensor. This type of failure has occurred eight previous times in ground testing. The sensor had performed acceptably on three previous flights of the engine and SSME flight history shows 684 combined fuel flow rate sensor channel flights without failure. The disqualification of an Engine 2 (SSME No. 2033) Fuel Flowrate sensor channel was a result of an instrumentation failure and not engine performance. All other engine operations were nominal. This disqualification resulted in an engine shutdown and safe sequential shutdown of all three engines prior to ignition of the solid boosters.
FPIN2 posttest analysis of cylindrical canisters in SLSF Experiment P4
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hughes, T H; Kramer, J M
Results demonstrate that the clad deformation is dominated by the expansion of the fuel when it melts. In our analysis we moved the end space volume and some of the fuel-clad radial gap volume to an artificial central hole. This approximation may affect the details in the early parts of the transient, but clearly did not affect the major cladding deformation. It is also clear that the accuracy of the value of the fuel expansion upon melting is significant as is the dimensional accuracy of the fuel and canisters. The major conclusions from the FPIN2 posttest analysis of the cylindricalmore » canisters in SLSF Experiment P4 are: The maximum melt fractions in the two canisters were about 75%. Both canisters experienced about the same diametral strains of 12% prior to failure. These strains were almost entirely due to the additional volume that must be created inside the canisters to accommodate the expansion of fuel on melting. The mode of cladding failure was plastic instability by necking of the canister walls. The failure time of the 20% CW canister and the nonmechanical failure of the 10% CW canister are consistent with the FPIN2 calculations using the plastic instability failure criteria.« less
NASA Astrophysics Data System (ADS)
Kan, Brandon K.
A pulsed detonation rocket engine concept was explored through the use of hypergolic propellants in a fuel-centered pintle injector combustor. The combustor design yielded a simple open ended chamber with a pintle type injection element and pressure instrumentation. High-frequency pressure measurements from the first test series showed the presence of large pressure oscillations in excess of 2000 psia at frequencies between 400-600 hz during operation. High-speed video confirmed the high-frequency pulsed behavior and large amounts of after burning. Damaged hardware and instrumentation failure limited the amount of data gathered in the first test series, but the experiments met original test objectives of producing large over-pressures in an open chamber. A second test series proceeded by replacing hardware and instrumentation, and new data showed that pulsed events produced under expanded exhaust prior to pulsing, peak pressures around 8000 psi, and operating frequencies between 400-800 hz. Later hot-fires produced no pulsed behavior despite undamaged hardware. The research succeeded in producing pulsed combustion behavior using hypergolic fuels in a pintle injector setup and provided insights into design concepts that would assist future injector designs and experimental test setups.
Transient deformational properties of high temperature alloys used in solid oxide fuel cell stacks
NASA Astrophysics Data System (ADS)
Molla, Tesfaye Tadesse; Kwok, Kawai; Frandsen, Henrik Lund
2017-05-01
Stresses and probability of failure during operation of solid oxide fuel cells (SOFCs) is affected by the deformational properties of the different components of the SOFC stack. Though the overall stress relaxes with time during steady state operation, large stresses would normally appear through transients in operation including temporary shut downs. These stresses are highly affected by the transient creep behavior of metallic components in the SOFC stack. This study investigates whether a variation of the so-called Chaboche's unified power law together with isotropic hardening can represent the transient behavior of Crofer 22 APU, a typical iron-chromium alloy used in SOFC stacks. The material parameters for the model are determined by measurements involving relaxation and constant strain rate experiments. The constitutive law is implemented into commercial finite element software using a user-defined material model. This is used to validate the developed constitutive law to experiments with constant strain rate, cyclic and creep experiments. The predictions from the developed model are found to agree well with experimental data. It is therefore concluded that Chaboche's unified power law can be applied to describe the high temperature inelastic deformational behaviors of Crofer 22 APU used for metallic interconnects in SOFC stacks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohr, C.L.; Pankaskie, P.J.; Heasler, P.G.
Reactor fuel failure data sets in the form of initial power (P/sub i/), final power (P/sub f/), transient increase in power (..delta..P), and burnup (Bu) were obtained for pressurized heavy water reactors (PHWRs), boiling water reactors (BWRs), and pressurized water reactors (PWRs). These data sets were evaluated and used as the basis for developing two predictive fuel failure models, a graphical concept called the PCI-OGRAM, and a nonlinear regression based model called PROFIT. The PCI-OGRAM is an extension of the FUELOGRAM developed by AECL. It is based on a critical threshold concept for stress dependent stress corrosion cracking. The PROFITmore » model, developed at Pacific Northwest Laboratory, is the result of applying standard statistical regression methods to the available PCI fuel failure data and an analysis of the environmental and strain rate dependent stress-strain properties of the Zircaloy cladding.« less
Morphological features (defects) in fuel cell membrane electrode assemblies
NASA Astrophysics Data System (ADS)
Kundu, S.; Fowler, M. W.; Simon, L. C.; Grot, S.
Reliability and durability issues in fuel cells are becoming more important as the technology and the industry matures. Although research in this area has increased, systematic failure analysis, such as a failure modes and effects analysis (FMEA), are very limited in the literature. This paper presents a categorization scheme of causes, modes, and effects related to fuel cell degradation and failure, with particular focus on the role of component quality, that can be used in FMEAs for polymer electrolyte membrane (PEM) fuel cells. The work also identifies component defects imparted on catalyst-coated membranes (CCM) by manufacturing and proposes mechanisms by which they can influence overall degradation and reliability. Six major defects have been identified on fresh CCM materials, i.e., cracks, orientation, delamination, electrolyte clusters, platinum clusters, and thickness variations.
Recent GE BWR fuel experience and design evolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wood, J.E.; Potts, G.A.; Proebstle, R.A.
1992-01-01
Reliable fuel operation is essential to the safe, reliable, and economic power production by today's commercial nuclear reactors. GE Nuclear Energy is committed to maximize fuel reliability through the progressive development of improved fuel design features and dedication to provide the maximum quality of the design features and dedication to provide the maximum quality of the design, fabrication, and operation of GE BWR fuel. Over the last 35 years, GE has designed, fabricated, and placed in operation over 82,000 BWR fuel bundles containing over 5 million fuel rods. This experience includes successful commercial reactor operation of fuel assemblies to greatermore » than 45000 MWd/MTU bundle average exposure. This paper reports that this extensive experience base has enabled clear identification and characterization of the active failure mechanisms. With this failure mechanism characterization, mitigating actions have been developed and implemented by GE to provide the highest reliability BWR fuel bundles possible.« less
77 FR 64765 - Airworthiness Directives; Airbus Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-23
... failure of any post- modification operational test of the GFI. You may obtain further information by... GFI or deactivation of the associated fuel pump following failure of any post-modification operational test of the GFI. We are proposing this AD to prevent the potential of ignition sources inside fuel...
NASA Astrophysics Data System (ADS)
Lee, Tae-Hee; Park, Ka-Young; Kim, Ji-Tae; Seo, Yongho; Kim, Ki Buem; Song, Sun-Ju; Park, Byoungnam; Park, Jun-Young
2015-02-01
This study focuses on mechanisms and symptoms of several simulated failure modes, which may have significant influences on the long-term durability and operational stability of intermediate temperature-solid oxide fuel cells (IT-SOFCs), including fuel/oxidation starvation by breakdown of fuel/air supply components and wet and dry cycling atmospheres. Anode-supported IT-SOFCs consisting of a Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF)-Nd0.1Ce0.9O2-δ (NDC) composite cathode with an NDC electrolyte on a Ni-NDC anode substrate are fabricated via dry-pressings followed by the co-firing method. Comprehensive and systematic research based on the failure mode and effect analysis (FMEA) of anode-supported IT-SOFCs is conducted using various electrochemical and physiochemical analysis techniques to extend our understanding of the major mechanisms of performance deterioration under SOFC operating conditions. The fuel-starvation condition in the fuel-pump failure mode causes irreversible mechanical degradation of the electrolyte and cathode interface by the dimensional expansion of the anode support due to the oxidation of Ni metal to NiO. In contrast, the BSCF cathode shows poor stability under wet and dry cycling modes of cathode air due to the strong electroactivity of SrO with H2O. On the other hand, the air-depletion phenomena under air-pump failure mode results in the recovery of cell performance during the long-term operation without the visible microstructural transformation through the reduction of anode overvoltage.
Thermal Stability Results of a Fischer-Tropsch Fuel With Various Blends of Aromatic Solution
NASA Technical Reports Server (NTRS)
Lindsey, Jennifer; Klettlinger, Suder
2013-01-01
Fischer-Tropsch (F-T) jet fuel composition differs from petroleum-based, conventional commercial jet fuel because of differences in feedstock and production methodology. F-T fuel typically has a lower aromatic and sulfur content and consists primarily of iso and normal paraffins. The ASTM D3241 specification for Jet Fuel Thermal Oxidation Test (JFTOT) break point testing method was used to test the breakpoint of a baseline commercial grade F-T jet fuel, and various blends of this F-T fuel with an aromatic solution. The goal of this research is to determine the effect of aromatic content on the thermal stability of F-T fuel. The testing completed in this report was supported by the NASA Fundamental Aeronautics Subsonic Fixed Wing Project. Two different aromatic content fuels from Rentech, as well as these fuels with added aromatic blend were analyzed for thermal stability using the JFTOT method. Preliminary results indicate a reduction in thermal stability occurs upon increasing the aromatic content to 10% by adding an aromatic blend to the neat fuel. These results do not specify a failure based on pressure drop, but only on tube color. It is unclear whether tube color correlates to more deposition on the tube surface or not. Further research is necessary in order to determine if these failures are true failures based on tube color. Research using ellipsometry to determine tube deposit thickness rather than color will be continued in follow-up of this study.
NASA Astrophysics Data System (ADS)
Ahn, Junkeon; Noh, Yeelyong; Park, Sung Ho; Choi, Byung Il; Chang, Daejun
2017-10-01
This study proposes a fuzzy-based FMEA (failure mode and effect analysis) for a hybrid molten carbonate fuel cell and gas turbine system for liquefied hydrogen tankers. An FMEA-based regulatory framework is adopted to analyze the non-conventional propulsion system and to understand the risk picture of the system. Since the participants of the FMEA rely on their subjective and qualitative experiences, the conventional FMEA used for identifying failures that affect system performance inevitably involves inherent uncertainties. A fuzzy-based FMEA is introduced to express such uncertainties appropriately and to provide flexible access to a risk picture for a new system using fuzzy modeling. The hybrid system has 35 components and has 70 potential failure modes, respectively. Significant failure modes occur in the fuel cell stack and rotary machine. The fuzzy risk priority number is used to validate the crisp risk priority number in the FMEA.
Aids to determining fuel models for estimating fire behavior
Hal E. Anderson
1982-01-01
Presents photographs of wildland vegetation appropriate for the 13 fuel models used in mathematical models of fire behavior. Fuel model descriptions include fire behavior associated with each fuel and its physical characteristics. A similarity chart cross-references the 13 fire behavior fuel models to the 20 fuel models used in the National Fire Danger Rating System....
NASA Technical Reports Server (NTRS)
Bergmann, E.
1976-01-01
The current baseline method and software implementation of the space shuttle reaction control subsystem failure detection and identification (RCS FDI) system is presented. This algorithm is recommended for conclusion in the redundancy management (RM) module of the space shuttle guidance, navigation, and control system. Supporting software is presented, and recommended for inclusion in the system management (SM) and display and control (D&C) systems. RCS FDI uses data from sensors in the jets, in the manifold isolation valves, and in the RCS fuel and oxidizer storage tanks. A list of jet failures and fuel imbalance warnings is generated for use by the jet selection algorithm of the on-orbit and entry flight control systems, and to inform the crew and ground controllers of RCS failure status. Manifold isolation valve close commands are generated in the event of failed on or leaking jets to prevent loss of large quantities of RCS fuel.
Gross, Kenny C.
1994-01-01
Failure of a fuel element in a nuclear reactor core is determined by a gas tagging failure detection system and method. Failures are catalogued and characterized after the event so that samples of the reactor's cover gas are taken at regular intervals and analyzed by mass spectroscopy. Employing a first set of systematic heuristic rules which are applied in a transformed node space allows the number of node combinations which must be processed within a barycentric algorithm to be substantially reduced. A second set of heuristic rules treats the tag nodes of the most recent one or two leakers as "background" gases, further reducing the number of trial node combinations. Lastly, a "fuzzy" set theory formalism minimizes experimental uncertainties in the identification of the most likely volumes of tag gases. This approach allows for the identification of virtually any number of sequential leaks and up to five simultaneous gas leaks from fuel elements.
Fuel cladding behavior under rapid loading conditions
NASA Astrophysics Data System (ADS)
Yueh, K.; Karlsson, J.; Stjärnsäter, J.; Schrire, D.; Ledergerber, G.; Munoz-Reja, C.; Hallstadius, L.
2016-02-01
A modified burst test (MBT) was used in an extensive test program to characterize fuel cladding failure behavior under rapid loading conditions. The MBT differs from a normal burst test with the use of a driver tube to simulate the expansion of a fuel pellet, thereby producing a partial strain driven deformation condition similar to that of a fuel pellet expansion in a reactivity insertion accident (RIA). A piston/cylinder assembly was used to pressurize the driver tube. By controlling the speed and distance the piston travels the loading rate and degree of sample deformation could be controlled. The use of a driver tube with a machined gauge section localizes deformation and allows for continuous monitoring of the test sample diameter change at the location of maximum hoop strain, during each test. Cladding samples from five irradiated fuel rods were tested between 296 and 553 K and loading rates from 1.5 to 3.5/s. The test rods included variations of Zircaloy-2 with different liners and ZIRLO, ranging in burn-up from 41 to 74 GWd/MTU. The test results show cladding ductility is strongly temperature and loading rate dependent. Zircaloy-2 cladding ductility degradation due to operational hydrogen pickup started to recover at approximately 358 K for test condition used in the study. This recovery temperature is strongly loading rate dependent. At 373 K, ductility recovery was small for loading rates less than 8 ms equivalent RIA pulse width, but longer than 8 ms the ductility recovery increased exponentially with increasing pulse width, consistent with literature observations of loading rate dependent brittle-to-ductile (BTD) transition temperature. The cladding ductility was also observed to be strongly loading rate/pulse width dependent for BWR cladding below the BTD temperature and Pressurized Water Reactor (PWR) cladding at both 296 and 553 K.
14 CFR 25.981 - Fuel tank ignition prevention.
Code of Federal Regulations, 2010 CFR
2010-01-01
... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.981 Fuel tank... system where catastrophic failure could occur due to ignition of fuel or vapors. This must be shown by... established, as necessary, to prevent development of ignition sources within the fuel tank system pursuant to...
14 CFR 25.981 - Fuel tank ignition prevention.
Code of Federal Regulations, 2011 CFR
2011-01-01
... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.981 Fuel tank... system where catastrophic failure could occur due to ignition of fuel or vapors. This must be shown by... established, as necessary, to prevent development of ignition sources within the fuel tank system pursuant to...
14 CFR 25.981 - Fuel tank ignition prevention.
Code of Federal Regulations, 2012 CFR
2012-01-01
... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.981 Fuel tank... system where catastrophic failure could occur due to ignition of fuel or vapors. This must be shown by... established, as necessary, to prevent development of ignition sources within the fuel tank system pursuant to...
14 CFR 25.981 - Fuel tank ignition prevention.
Code of Federal Regulations, 2014 CFR
2014-01-01
... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.981 Fuel tank... system where catastrophic failure could occur due to ignition of fuel or vapors. This must be shown by... established, as necessary, to prevent development of ignition sources within the fuel tank system pursuant to...
14 CFR 25.981 - Fuel tank ignition prevention.
Code of Federal Regulations, 2013 CFR
2013-01-01
... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.981 Fuel tank... system where catastrophic failure could occur due to ignition of fuel or vapors. This must be shown by... established, as necessary, to prevent development of ignition sources within the fuel tank system pursuant to...
Thermochemical Assessment of Oxygen Gettering by SiC or ZrC in PuO2-x TRISO Fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Besmann, Theodore M
2010-01-01
Particulate nuclear fuel in a modular helium reactor is being considered for the consumption of excess plutonium and related transuranics. In particular, efforts to largely consume transuranics in a single-pass will require the fuel to undergo very high burnup. This deep burn concept will thus make the proposed plutonia TRISO fuel particularly likely to suffer kernel migration where carbon in the buffer layer and inner pyrolytic carbon layer is transported from the high temperature side of the particle to the low temperature side. This phenomenon is oberved to cause particle failure and therefore must be mitigated. The addition of SiCmore » or ZrC in the oxide kernel or in a layer in communication with the kernel will lower the oxygen potential and therefore prevent kernel migration, and this has been demonstrated with SiC. In this work a thermochemical analysis was performed to predict oxygen potential behavior in the plutonia TRISO fuel to burnups of 50% FIMA with and without the presence of oxygen gettering SiC and ZrC. Kernel migration is believed to be controlled by CO gas transporting carbon from the hot side to the cool side, and CO pressure is governed by the oxygen potential in the presence of carbon. The gettering phases significantly reduce the oxygen potential and thus CO pressure in an otherwise PuO2-x kernel, and prevent kernel migration by limiting CO gas diffusion through the buffer layer. The reduction in CO pressure can also reduce the peak pressure within the particles by ~50%, thus reducing the likelihood of pressure-induced particle failure. A model for kernel migration was used to semi-quantitatively assess the effect of controlling oxygen potential with SiC or ZrC and did demonstrated the dramatic effect of the addition of these phases on carbon transport.« less
NASA Astrophysics Data System (ADS)
Zaccaria, V.; Tucker, D.; Traverso, A.
2016-09-01
Solid oxide fuel cells are characterized by very high efficiency, low emissions level, and large fuel flexibility. Unfortunately, their elevated costs and relatively short lifetimes reduce the economic feasibility of these technologies at the present time. Several mechanisms contribute to degrade fuel cell performance during time, and the study of these degradation modes and potential mitigation actions is critical to ensure the durability of the fuel cell and their long-term stability. In this work, localized degradation of a solid oxide fuel cell is modeled in real-time and its effects on various cell parameters are analyzed. Profile distributions of overpotential, temperature, heat generation, and temperature gradients in the stack are investigated during degradation. Several causes of failure could occur in the fuel cell if no proper control actions are applied. A local analysis of critical parameters conducted shows where the issues are and how they could be mitigated in order to extend the life of the cell.
AGR-5/6/7 Irradiation Test Predictions using PARFUME
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skerjanc, William F.
PARFUME, (PARticle FUel ModEl) a fuel performance modeling code used for high temperature gas-cooled reactors (HTGRs), was used to model the Advanced Gas Reactor (AGR)-5/6/7 irradiation test using predicted physics and thermal hydraulics data. The AGR-5/6/7 test consists of the combined fifth, sixth, and seventh planned irradiations of the AGR Fuel Development and Qualification Program. The AGR-5/6/7 test train is a multi-capsule, instrumented experiment that is designed for irradiation in the 133.4-mm diameter north east flux trap (NEFT) position of Advanced Test Reactor (ATR). Each capsule contains compacts filled with uranium oxycarbide (UCO) unaltered fuel particles. This report documents themore » calculations performed to predict the failure probability of tristructural isotropic (TRISO)-coated fuel particles during the AGR-5/6/7 experiment. In addition, this report documents the calculated source term from the driver fuel. The calculations include modeling of the AGR-5/6/7 irradiation that is scheduled to occur from October 2017 to April 2021 over a total of 13 ATR cycles, including nine normal cycles and four Power Axial Locator Mechanism (PALM) cycle for a total between 500 – 550 effective full power days (EFPD). The irradiation conditions and material properties of the AGR-5/6/7 test predicted zero fuel particle failures in Capsules 1, 2, and 4. Fuel particle failures were predicted in Capsule 3 due to internal particle pressure. These failures were predicted in the highest temperature compacts. Capsule 5 fuel particle failures were due to inner pyrolytic carbon (IPyC) cracking causing localized stresses concentrations in the SiC layer. This capsule predicted the highest particle failures due to the lower irradiation temperature. In addition, shrinkage of the buffer and IPyC layer during irradiation resulted in formation of a buffer-IPyC gap. The two capsules at the two ends of the test train, Capsules 1 and 5 experienced the smallest buffer-IPyC gap formation due to the lower irradiation fluences and temperatures. Capsule 3 experienced the largest buffer-IPyC gap formation of just under 24 µm. The release fraction of fission products Ag, Cs, and Sr silver (Ag), cesium (Cs), and strontium (Sr) vary depending on capsule location and irradiation temperature. The maximum release fraction of Ag occurs in Capsule 3, reaching up to 84.8% for the TRISO fuel particles. The release fraction of the other two fission products, Cs and Sr are much smaller and, in most cases, less than 1%. The notable exception is again in Capsule 3, where the release fraction for Cs and Sr reach up to 9.7% and 19.1%, respectively.« less
Erin K. Noonan-Wright; Nicole M. Vaillant; Alicia L. Reiner
2014-01-01
Fuel treatment effectiveness is often evaluated with fire behavior modeling systems that use fuel models to generate fire behavior outputs. How surface fuels are assigned, either using one of the 53 stylized fuel models or developing custom fuel models, can affect predicted fire behavior. We collected surface and canopy fuels data before and 1, 2, 5, and 8 years after...
77 FR 42964 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-23
... the potential for ignition sources inside fuel tanks caused by latent failures, alterations, repairs, or maintenance actions, which, in combination with flammable fuel vapors, could result in a fuel tank... for fuel tank systems to satisfy Special Federal Aviation Regulation No. 88 requirements. That AD also...
14 CFR 121.281 - Fuel system independence.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Fuel system independence. 121.281 Section... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Special Airworthiness Requirements § 121.281 Fuel system independence. (a) Each airplane fuel system must be arranged so that the failure of any one...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, C.E.
1997-05-01
This report reviews the safety characteristics of hydrogen as an energy carrier for a fuel cell vehicle (FCV), with emphasis on high pressure gaseous hydrogen onboard storage. The authors consider normal operation of the vehicle in addition to refueling, collisions, operation in tunnels, and storage in garages. They identify the most likely risks and failure modes leading to hazardous conditions, and provide potential countermeasures in the vehicle design to prevent or substantially reduce the consequences of each plausible failure mode. They then compare the risks of hydrogen with those of more common motor vehicle fuels including gasoline, propane, and naturalmore » gas.« less
29 CFR 500.105 - DOT standards adopted by the Secretary.
Code of Federal Regulations, 2012 CFR
2012-07-01
... flame in the vicinity of a vehicle being fueled; (C) fuel a motor vehicle unless the nozzle of the fuel... to cause failure. No vehicle shall be operated while transporting passengers while using any tire...
29 CFR 500.105 - DOT standards adopted by the Secretary.
Code of Federal Regulations, 2013 CFR
2013-07-01
... flame in the vicinity of a vehicle being fueled; (C) fuel a motor vehicle unless the nozzle of the fuel... to cause failure. No vehicle shall be operated while transporting passengers while using any tire...
29 CFR 500.105 - DOT standards adopted by the Secretary.
Code of Federal Regulations, 2011 CFR
2011-07-01
... flame in the vicinity of a vehicle being fueled; (C) fuel a motor vehicle unless the nozzle of the fuel... to cause failure. No vehicle shall be operated while transporting passengers while using any tire...
Gross, K.C.
1994-07-26
Failure of a fuel element in a nuclear reactor core is determined by a gas tagging failure detection system and method. Failures are catalogued and characterized after the event so that samples of the reactor's cover gas are taken at regular intervals and analyzed by mass spectroscopy. Employing a first set of systematic heuristic rules which are applied in a transformed node space allows the number of node combinations which must be processed within a barycentric algorithm to be substantially reduced. A second set of heuristic rules treats the tag nodes of the most recent one or two leakers as background'' gases, further reducing the number of trial node combinations. Lastly, a fuzzy'' set theory formalism minimizes experimental uncertainties in the identification of the most likely volumes of tag gases. This approach allows for the identification of virtually any number of sequential leaks and up to five simultaneous gas leaks from fuel elements. 14 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cappiello, M.; Hobbins, R.; Penny, K.
As part of the Department of Energy Advanced Fuel Cycle program, a series of fuels development irradiation tests have been performed in the Advanced Test Reactor (ATR) at the Idaho National Laboratory. These tests are providing excellent data for advanced fuels development. The program is focused on the transmutation of higher actinides which best can be accomplished in a sodium-cooled fast reactor. Because a fast test reactor is no longer available in the US, a special test vehicle is used to achieve near-prototypic fast reactor conditions (neutron spectra and temperature) for use in ATR (a water-cooled thermal reactor). As partmore » of the testing program, there were many successful tests of advanced fuels including metals and ceramics. Recently however, there have been three experimental campaigns using metal fuels that experienced failure during irradiation. At the request of the program, an independent review committee was convened to review the post-test analyses performed by the fuels development team, to assess the conclusions of the team for the cause of the failures, to assess the adequacy and completeness of the analyses, to identify issues that were missed, and to make recommendations for improvements in the design and operation of future tests. Although there is some difference of opinion, the review committee largely agreed with the conclusions of the fuel development team regarding the cause of the failures. For the most part, the analyses that support the conclusions are sufficient.« less
Sensitivity of fire behavior simulations to fuel model variations
Lucy A. Salazar
1985-01-01
Stylized fuel models, or numerical descriptions of fuel arrays, are used as inputs to fire behavior simulation models. These fuel models are often chosen on the basis of generalized fuel descriptions, which are related to field observations. Site-specific observations of fuels or fire behavior in the field are not readily available or necessary for most fire management...
NASA Astrophysics Data System (ADS)
Wang, Hong; Wang, Jy-An John
2016-10-01
Behavior of surrogate nuclear fuel rods made of Zircaloy-4 (Zry-4) cladding with alumina pellets under reversed cyclic bending was studied. Tests were performed under load or moment control at 5 Hz. The surrogate rods fractured under moment amplitudes greater than 10.16 Nm with fatigue lives between 2.4 × 103 and 2.2 × 106 cycles. Fatigue response of Zry-4 cladding was characterized by using flexural rigidity. Degradation of flexural rigidity was shown to depend on the moment and the prefatigue condition of specimens. Pellet-to-pellet interface (PPI), pellet-to-cladding interface (PCI), and pellet condition affect surrogate rod failure. Both debonding of PPI/PCI and pellet fracturing contribute to surrogate rod bending fatigue. The effect of sensor spacing on curvature measurement using three-point deflections was studied; the method based on effective gauge length is effective in sensor spacing correction. The database developed and the understanding gained in this study can serve as input to analysis of SNF (spent nuclear fuel) vibration integrity.
Apollo 15 mission main parachute failure
NASA Technical Reports Server (NTRS)
1971-01-01
The failure of one of the three main parachutes of the Apollo 15 spacecraft was investigated by studying malfunctions in the forward heat shield, broken riser, and firing the fuel expelled from the command module reaction control system. It is concluded that the most probable cause was the burning of raw fuel being expelled during the latter portion of depletion firing. Recommended corrective actions are included.
Joe H. Scott; Robert E. Burgan
2005-01-01
This report describes a new set of standard fire behavior fuel models for use with Rothermel's surface fire spread model and the relationship of the new set to the original set of 13 fire behavior fuel models. To assist with transition to using the new fuel models, a fuel model selection guide, fuel model crosswalk, and set of fuel model photos are provided.
Fuel Cell Balance-of-Plant Reliability Testbed Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sproat, Vern; LaHurd, Debbie
Reliability of the fuel cell system balance-of-plant (BoP) components is a critical factor that needs to be addressed prior to fuel cells becoming fully commercialized. Failure or performance degradation of BoP components has been identified as a life-limiting factor in fuel cell systems.1 The goal of this project is to develop a series of test beds that will test system components such as pumps, valves, sensors, fittings, etc., under operating conditions anticipated in real Polymer Electrolyte Membrane (PEM) fuel cell systems. Results will be made generally available to begin removing reliability as a roadblock to the growth of the PEMmore » fuel cell industry. Stark State College students participating in the project, in conjunction with their coursework, have been exposed to technical knowledge and training in the handling and maintenance of hydrogen, fuel cells and system components as well as component failure modes and mechanisms. Three test beds were constructed. Testing was completed on gas flow pumps, tubing, and pressure and temperature sensors and valves.« less
NASA Astrophysics Data System (ADS)
Kim, Kyu-Tae
2013-02-01
In order to investigate whether or not the grid-to-rod fretting wear-induced fuel failure will occur for newly developed spacer grid spring designs for the fuel lifetime, out-of-pile fretting wear tests with one or two fuel assemblies are to be performed. In this study, the out-of-pile fretting wear tests were performed in order to compare the potential for wear-induced fuel failure in two newly-developed, Korean PWR spacer grid designs. Lasting 20 days, the tests simulated maximum grid-to-rod gap conditions and the worst flow induced vibration effects that might take place over the fuel life time. The fuel rod perforation times calculated from the out-of-pile tests are greater than 1933 days for 2 μm oxidized fuel rods with a 100 μm grid-to-rod gap, whereas those estimated from in-reactor fretting wear failure database may be about in the range of between 60 and 100 days. This large discrepancy in fuel rod perforation may occur due to irradiation-induced cladding oxide microstructure changes on the one hand and a temperature gradient-induced hydrogen content profile across the cladding metal region on the other hand, which may accelerate brittleness in the grid-contacting cladding oxide and metal regions during the reactor operation. A three-phase grid-to-rod fretting wear model is proposed to simulate in-reactor fretting wear progress into the cladding, considering the microstructure changes of the cladding oxide and the hydrogen content profile across the cladding metal region combined with the temperature gradient. The out-of-pile tests cannot be directly applicable to the prediction of in-reactor fretting wear-induced cladding perforations but they can be used only for evaluating a relative wear resistance of one grid design against the other grid design.
Modeling and Diagnostic Software for Liquefying-Fuel Rockets
NASA Technical Reports Server (NTRS)
Poll, Scott; Iverson, David; Ou, Jeremy; Sanderfer, Dwight; Patterson-Hine, Ann
2005-01-01
A report presents a study of five modeling and diagnostic computer programs considered for use in an integrated vehicle health management (IVHM) system during testing of liquefying-fuel hybrid rocket engines in the Hybrid Combustion Facility (HCF) at NASA Ames Research Center. Three of the programs -- TEAMS, L2, and RODON -- are model-based reasoning (or diagnostic) programs. The other two programs -- ICS and IMS -- do not attempt to isolate the causes of failures but can be used for detecting faults. In the study, qualitative models (in TEAMS and L2) and quantitative models (in RODON) having varying scope and completeness were created. Each of the models captured the structure and behavior of the HCF as a physical system. It was noted that in the cases of the qualitative models, the temporal aspects of the behavior of the HCF and the abstraction of sensor data are handled outside of the models, and it is necessary to develop additional code for this purpose. A need for additional code was also noted in the case of the quantitative model, though the amount of development effort needed was found to be less than that for the qualitative models.
Fundamental metallurgical aspects of axial splitting in zircaloy cladding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chung, H. M.
Fundamental metallurgical aspects of axial splitting in irradiated Zircaloy cladding have been investigated by microstructural characterization and analytical modeling, with emphasis on application of the results to understand high-burnup fuel failure under RIA situations. Optical microscopy, SEM, and TEM were conducted on BWR and PWR fuel cladding tubes that were irradiated to fluence levels of 3.3 x 10{sup 21} n cm{sup {minus}2} to 5.9 x 10{sup 21} n cm{sup {minus}2} (E > 1 MeV) and tested in hot cell at 292--325 C in Ar. The morphology, distribution, and habit planes of macroscopic and microscopic hydrides in as-irradiated and posttest claddingmore » were determined by stereo-TEM. The type and magnitude of the residual stress produced in association with oxide-layer growth and dense hydride precipitation, and several synergistic factors that strongly influence axial-splitting behavior were analyzed. The results of the microstructural characterization and stress analyses were then correlated with axial-splitting behavior of high-burnup PWR cladding reported for simulated-RIA conditions. The effects of key test procedures and their implications for the interpretation of RIA test results are discussed.« less
Biaxial fatigue crack propagation behavior of perfluorosulfonic-acid membranes
NASA Astrophysics Data System (ADS)
Lin, Qiang; Shi, Shouwen; Wang, Lei; Chen, Xu; Chen, Gang
2018-04-01
Perfluorosulfonic-acid membranes have long been used as the typical electrolyte for polymer-electrolyte fuel cells, which not only transport proton and water but also serve as barriers to prevent reactants mixing. However, too often the structural integrity of perfluorosulfonic-acid membranes is impaired by membrane thinning or cracks/pinholes formation induced by mechanical and chemical degradations. Despite the increasing number of studies that report crack formation, such as crack size and shape, the underlying mechanism and driving forces have not been well explored. In this paper, the fatigue crack propagation behaviors of Nafion membranes subjected to biaxial loading conditions have been investigated. In particular, the fatigue crack growth rates of flat cracks in responses to different loading conditions are compared, and the impact of transverse stress on fatigue crack growth rate is clarified. In addition, the crack paths for slant cracks under both uniaxial and biaxial loading conditions are discussed, which are similar in geometry to those found after accelerated stress testing of fuel cells. The directions of initial crack propagation are calculated theoretically and compared with experimental observations, which are in good agreement. The findings reported here lays the foundation for understanding of mechanical failure of membranes.
Detecting Solenoid Valve Deterioration in In-Use Electronic Diesel Fuel Injection Control Systems
Tsai, Hsun-Heng; Tseng, Chyuan-Yow
2010-01-01
The diesel engine is the main power source for most agricultural vehicles. The control of diesel engine emissions is an important global issue. Fuel injection control systems directly affect fuel efficiency and emissions of diesel engines. Deterioration faults, such as rack deformation, solenoid valve failure, and rack-travel sensor malfunction, are possibly in the fuel injection module of electronic diesel control (EDC) systems. Among these faults, solenoid valve failure is most likely to occur for in-use diesel engines. According to the previous studies, this failure is a result of the wear of the plunger and sleeve, based on a long period of usage, lubricant degradation, or engine overheating. Due to the difficulty in identifying solenoid valve deterioration, this study focuses on developing a sensor identification algorithm that can clearly classify the usability of the solenoid valve, without disassembling the fuel pump of an EDC system for in-use agricultural vehicles. A diagnostic algorithm is proposed, including a feedback controller, a parameter identifier, a linear variable differential transformer (LVDT) sensor, and a neural network classifier. Experimental results show that the proposed algorithm can accurately identify the usability of solenoid valves. PMID:22163597
Detecting solenoid valve deterioration in in-use electronic diesel fuel injection control systems.
Tsai, Hsun-Heng; Tseng, Chyuan-Yow
2010-01-01
The diesel engine is the main power source for most agricultural vehicles. The control of diesel engine emissions is an important global issue. Fuel injection control systems directly affect fuel efficiency and emissions of diesel engines. Deterioration faults, such as rack deformation, solenoid valve failure, and rack-travel sensor malfunction, are possibly in the fuel injection module of electronic diesel control (EDC) systems. Among these faults, solenoid valve failure is most likely to occur for in-use diesel engines. According to the previous studies, this failure is a result of the wear of the plunger and sleeve, based on a long period of usage, lubricant degradation, or engine overheating. Due to the difficulty in identifying solenoid valve deterioration, this study focuses on developing a sensor identification algorithm that can clearly classify the usability of the solenoid valve, without disassembling the fuel pump of an EDC system for in-use agricultural vehicles. A diagnostic algorithm is proposed, including a feedback controller, a parameter identifier, a linear variable differential transformer (LVDT) sensor, and a neural network classifier. Experimental results show that the proposed algorithm can accurately identify the usability of solenoid valves.
Numerical investigation of aggregated fuel spatial pattern impacts on fire behavior
Parsons, Russell A.; Linn, Rodman Ray; Pimont, Francois; ...
2017-06-18
Here, landscape heterogeneity shapes species distributions, interactions, and fluctuations. Historically, in dry forest ecosystems, low canopy cover and heterogeneous fuel patterns often moderated disturbances like fire. Over the last century, however, increases in canopy cover and more homogeneous patterns have contributed to altered fire regimes with higher fire severity. Fire management strategies emphasize increasing within-stand heterogeneity with aggregated fuel patterns to alter potential fire behavior. Yet, little is known about how such patterns may affect fire behavior, or how sensitive fire behavior changes from fuel patterns are to winds and canopy cover. Here, we used a physics-based fire behavior model,more » FIRETEC, to explore the impacts of spatially aggregated fuel patterns on the mean and variability of stand-level fire behavior, and to test sensitivity of these effects to wind and canopy cover. Qualitative and quantitative approaches suggest that spatial fuel patterns can significantly affect fire behavior. Based on our results we propose three hypotheses: (1) aggregated spatial fuel patterns primarily affect fire behavior by increasing variability; (2) this variability should increase with spatial scale of aggregation; and (3) fire behavior sensitivity to spatial pattern effects should be more pronounced under moderate wind and fuel conditions.« less
Numerical investigation of aggregated fuel spatial pattern impacts on fire behavior
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parsons, Russell A.; Linn, Rodman Ray; Pimont, Francois
Here, landscape heterogeneity shapes species distributions, interactions, and fluctuations. Historically, in dry forest ecosystems, low canopy cover and heterogeneous fuel patterns often moderated disturbances like fire. Over the last century, however, increases in canopy cover and more homogeneous patterns have contributed to altered fire regimes with higher fire severity. Fire management strategies emphasize increasing within-stand heterogeneity with aggregated fuel patterns to alter potential fire behavior. Yet, little is known about how such patterns may affect fire behavior, or how sensitive fire behavior changes from fuel patterns are to winds and canopy cover. Here, we used a physics-based fire behavior model,more » FIRETEC, to explore the impacts of spatially aggregated fuel patterns on the mean and variability of stand-level fire behavior, and to test sensitivity of these effects to wind and canopy cover. Qualitative and quantitative approaches suggest that spatial fuel patterns can significantly affect fire behavior. Based on our results we propose three hypotheses: (1) aggregated spatial fuel patterns primarily affect fire behavior by increasing variability; (2) this variability should increase with spatial scale of aggregation; and (3) fire behavior sensitivity to spatial pattern effects should be more pronounced under moderate wind and fuel conditions.« less
RIA simulation tests using driver tube for ATF cladding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cinbiz, Mahmut N.; Brown, N. R.; Lowden, R. R.
Pellet-cladding mechanical interaction (PCMI) is a potential failure mechanism for accident-tolerant fuel (ATF) cladding candidates during a reactivity-initiated accident (RIA). This report summarizes Fiscal Year (FY) 2017 research activities that were undertaken to evaluate the PCMI-like hoop-strain-driven mechanical response of ATF cladding candidates. To achieve various RIA-like conditions, a modified-burst test (MBT) device was developed to produce different mechanical pulses. The calibration of the MBT instrument was accomplished by performing mechanical tests on unirradiated Generation-I iron-chromium-aluminum (FeCrAl) alloy samples. Shakedown tests were also conducted in both FY 2016 and FY 2017 using unirradiated hydrided ZIRLO™ tube samples. This milestone reportmore » focuses on testing of ATF materials, but the benchmark tests with hydrided ZIRLO™ tube samples are documented in a recent journal article.a For the calibration and benchmark tests, the hoop strain was monitored using strain gauges attached to the sample surface in the hoop direction. A novel digital image correlation (DIC) system composed of a single high-speed camera and an array of six mirrors was developed for the MBT instrument to better resolve the failure behavior of samples and to provide useful data for validation of high-fidelity modeling and simulation tools. The DIC system enable a 360° view of a sample’s outer surface. This feature was added to the instrument to determine the precise failure location on a sample’s surface for strain predictions. The DIC system was tested on several silicon carbide fiber/silicon carbide matrix (SiC/SiC) composite tube samples at various pressurization rates of the driver tube (which correspond to the strain rates for the samples). The hoop strains for various loading conditions were determined for the SiC/SiC composite tube samples. Future work is planned to enhance understanding of the failure behavior of the ATF cladding candidates of age-hardened FeCrAl alloys and SiC/SiC composites in detail during RIA conditions informed by the computational studies performed under the US Department of Energy Office of Nuclear Energy Advanced Fuels Campaign. The testing instrument and the new DIC system will be further developed to reach different stress-state conditions and to perform tests at elevated temperatures.« less
Fuel elements of thermionic converters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hunter, R.L.; Gontar, A.S.; Nelidov, M.V.
1997-01-01
Work on thermionic nuclear power systems has been performed in Russia within the framework of the TOPAZ reactor program since the early 1960s. In the TOPAZ in-core thermionic convertor reactor design, the fuel element`s cladding is also the thermionic convertor`s emitter. Deformation of the emitter can lead to short-circuiting and is the primary cause of premature TRC failure. Such deformation can be the result of fuel swelling, thermocycling, or increased unilateral pressure on the emitter due to the release of gaseous fission products. Much of the work on TRCs has concentrated on preventing or mitigating emitter deformation by improving themore » following materials and structures: nuclear fuel; emitter materials; electrical insulators; moderator and reflector materials; and gas-exhaust device. In addition, considerable effort has been directed toward the development of experimental techniques that accurately mimic operational conditions and toward the creation of analytical and numerical models that allow operational conditions and behavior to be predicted without the expense and time demands of in-pile tests. New and modified materials and structures for the cores of thermionic NPSs and new fabrication processes for the materials have ensured the possibility of creating thermionic NPSs for a wide range of powers, from tens to several hundreds of kilowatts, with life spans of 5 to 10 years.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-23
... showed that the Fuel Filter Bypass Valve poppet in the Fuel Oil Heat Exchanger (FOHE) on that engine had... a dormant failure that could result in an unsafe condition. The PW615F-A engine Fuel Filter Bypass... that the Fuel Filter Bypass Valve poppet in the Fuel Oil Heat Exchanger (FOHE) on that engine had worn...
Irradiation of three T-111 clad uranium nitride fuel pins for 8070 hours at 990 C (1815 F)
NASA Technical Reports Server (NTRS)
Slaby, J. G.; Siegel, B. L.; Gedeon, L.; Galbo, R. J.
1973-01-01
The design and successful operation of three tantalum alloy (Ta-8W-2Hf) clad uranium mononitride (UN) fuel pins irradiated for 8070 hr at 990 C (1815 F) is described. Two pin diameters having measured burnups of 0.47 and 0.90 uranium atom percent were tested. No clad failures or swelling was detected; however, postirradiation clad samples tested failed with 1 percent strain. The fuel density decrease was 2 percent, and the fission gas release was less than 0.05 percent. Isotropic fuel swelling, which averaged about 0.5 percent, was less than fuel pin assembly clearances. Thus the clad was not strained. Thermocouples with a modified hot zone operated at average temperatures to 1100 C (2012 F) without failure. Factors that influence the ability to maintain uniform clad temperature as well as the results of the heat transfer calculations are discussed.
Results of Uranium Dioxide-Tungsten Irradiation Test and Post-Test Examination
NASA Technical Reports Server (NTRS)
Collins, J. F.; Debogdan, C. E.; Diianni, D. C.
1973-01-01
A uranium dioxide (UO2) fueled capsule was fabricated and irradiated in the NASA Plum Brook Reactor Facility. The capsule consisted of two bulk UO2 specimens clad with chemically vapor deposited tungsten (CVD W) 0.762 and 0.1016 cm (0.030-and 0.040-in.) thick, respectively. The second specimen with 0.1016-cm (0.040-in.) thick cladding was irradiated at temperature for 2607 hours, corresponding to an average burnup of 1.516 x 10 to the 20th power fissions/cu cm. Postirradiation examination showed distortion in the bottom end cap, failure of the weld joint, and fracture of the central vent tube. Diametral growth was 1.3 percent. No evidence of gross interaction between CVD tungsten or arc-cast tungsten cladding and the UO2 fuel was observed. Some of the fission gases passed from the fuel cavity to the gas surrounding the fuel specimen via the vent tube and possibly the end-cap weld failure. Whether the UO2 loss rates through the vent tube were within acceptable limits could not be determined in view of the end-cap weld failure.
Finite element assisted prediction of ductile fracture in sheet bulging
NASA Astrophysics Data System (ADS)
Donald, Bryan J. Mac; Lorza, Ruben Lostado; Yoshihara, Shoichiro
2017-10-01
With growing demand for energy efficiency, there is much focus on reducing oil consumption rates and utilising alternative fuels. A contributor to the solution in this area is to produce lighter vehicles that are more fuel efficient and/or allow for the use of alternative fuel sources (e.g. electric powered automobiles). Near-net-shape manufacturing processes such as hydroforming have great potential to reduce structural weight while still maintaining structural strength and performance. Finite element analysis techniques have proved invaluable in optimizing such hydroforming processes, however, the majority of such studies have used simple predictors of failure which are usually yield criteria such as von Mises stress. There is clearly potential to obtain more optimal solutions using more advanced predictors of failure. This paper compared the Von Mises stress failure criteria and the Oyane's ductile fracture criteria in the sheet hydroforming of magnesium alloys. It was found that the results obtained from the models which used Oyane's ductile fracture criteria were more realistic than those obtained from those that used Von Mises stress as a failure criteria.
Probability of in-vessel steam explosion-induced containment failure for a KWU PWR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Esmaili, H.; Khatib-Rahbar, M.; Zuchuat, O.
During postulated core meltdown accidents in light water reactors, there is a likelihood for an in-vessel steam explosion when the melt contacts the coolant in the lower plenum. The objective of the work described in this paper is to determine the conditional probability of in-vessel steam explosion-induced containment failure for a Kraftwerk Union (KWU) pressurized water reactor (PWR). The energetics of the explosion depends on the mass of the molten fuel that mixes with the coolant and participates in the explosion and on the conversion of fuel thermal energy into mechanical work. The work can result in the generation ofmore » dynamic pressures that affect the lower head (and possibly lead to its failure), and it can cause acceleration of a slug (fuel and coolant material) upward that can affect the upper internal structures and vessel head and ultimately cause the failure of the upper head. If the upper head missile has sufficient energy, it can reach the containment shell and penetrate it. The analysis, must therefore, take into account all possible dissipation mechanisms.« less
Investigation of the fuel feed line failures on the Space Shuttle main engine
NASA Technical Reports Server (NTRS)
Larson, E. W.
1980-01-01
The Space Shuttle Main Engine (SSME) development program experienced two similar appearing fuel feed line failures during the shutdown portion of two engine tests. Failure investigations into each incident showed that a few cycles of high-amplitude transient strain occurring during the start and cutoff portions of each test could have either accumulated damage and led to a fatigue failure after 46 tests, or caused rupture in a low-strength weld joint. The cause of the high strain was traced to a period of unsteady flow separation during the start and cutoff of each test coincident with the oblique shock approaching the nozzle exit. Since elimination of the flow separation was impractical, the steps taken to allow engine development and flight preparations to continue were: (1) establish the safe operating life of the nozzle, (2) reinforce all low-strength welds, and (3) eliminate the use of thin-wall fuel feed lines. In parallel, the feed line was redesigned and fabrication was initiated on units to be incorporated into the development program.
A Study of the Failure of Joints in Composite Material Fuel Cells Due to Hydraulic Ram Loading
1976-06-01
H co PSw Z QW <H W CO 33 PS4 o CO O CM \\ Q> 00 vO m CO CM N ra Figure VI.B.l THICKNESS MODEL 55 it acts upon on the membrane, gives the force to be...ability of the joint to carry the loads created by hydraulic ram loading. It would also make the manufacturing procedure easier, less time consuming , and...70 less expensive. Cutting holes and channels in a composite plate not only alters the behavior and load carrying capa- bility of the plate, but it is
Code of Federal Regulations, 2010 CFR
2010-07-01
... component failure or condition. Fossil fuel means natural gas, petroleum, coal, or any form of solid, liquid... average quantity of fossil fuel consumed by a unit, measured in millions of British Thermal Units... high relative to the reference value. Boiler means an enclosed fossil or other fuel-fired combustion...
BEHAVE: fire behavior prediction and fuel modeling system--FUEL subsystem
Robert E. Burgan; Richard C. Rothermel
1984-01-01
This manual documents the fuel modeling procedures of BEHAVE--a state-of-the-art wildland fire behavior prediction system. Described are procedures for collecting fuel data, using the data with the program, and testing and adjusting the fuel model.
Nanocrystalline cerium oxide materials for solid fuel cell systems
Brinkman, Kyle S
2015-05-05
Disclosed are solid fuel cells, including solid oxide fuel cells and PEM fuel cells that include nanocrystalline cerium oxide materials as a component of the fuel cells. A solid oxide fuel cell can include nanocrystalline cerium oxide as a cathode component and microcrystalline cerium oxide as an electrolyte component, which can prevent mechanical failure and interdiffusion common in other fuel cells. A solid oxide fuel cell can also include nanocrystalline cerium oxide in the anode. A PEM fuel cell can include cerium oxide as a catalyst support in the cathode and optionally also in the anode.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Demkowicz, Paul A.; Reber, Edward L.; Scates, Dawn M.
2015-09-01
Three TRISO fuel compacts from the AGR-1 irradiation experiment were subjected to safety tests at 1600 and 1800 °C for approximately 300 h to evaluate the fission product retention characteristics. Silver behavior was dominated by rapid release of an appreciable fraction of the compact inventory (3–34%) at the beginning of the tests, believed to be from inventory residing in the compact matrix and outer pyrocarbon (OPyC) prior to the safety test. Measurable release of silver from intact particles appears to become apparent only after ~60 h at 1800 °C. The release rate for europium and strontium was nearly constant formore » 300 h at 1600 °C (reaching maximum values of approximately 2×10⁻³ and 8×10⁻⁴ respectively), and at this temperature the release may be mostly limited to inventory in the compact matrix and OPyC prior to the safety test. The release rate for both elements increased after approximately 120 h at 1800 °C, possibly indicating additional measurable release through the intact particle coatings. Cesium fractional release from particles with intact coatings was <10⁻⁶ after 300 h at 1600 °C or 100 h at 1800 °C, but release from the rare particles that experienced SiC failure during the test could be significant. However, Kr release was still very low for 300 h 1600 °C (<2 × 10⁻⁶). At 1800 °C, krypton release increased noticeably after SiC failure, reflecting transport through the intact outer pyrocarbon layer. Nonetheless, the krypton and cesium release fractions remained less than approximately 10⁻³ after 277 h at 1800 °C.« less
Critical Safe Disposal of Spent Fuel: Behavior of Neutron Poisons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kienzler, Bernhard; Gmal, Bernhard
2007-07-01
In contrast to Yucca Mountain, European repository concepts rely on deep underground conditions which guarantee permanently a reducing geochemical environment. As long as no water comes into contact with the disposed nuclear fuel, criticality is excluded by compliance with the disposal conditions (limitation of U/Pu in the canisters). Penetration of water into the canister may also be considered as a scenario. However, water in a disposal results in geochemical reactions proceeding over very long periods of time: (1) Presence of water allows the corrosion of the steel of the canister material forming hydrogen and iron corrosion products. (2) Hydrogen pressuresmore » affect the zircaloy cladding even at low temperatures. Failure of fuel cladding and spacers leads to changes in the geometrical configuration. (3) UO{sub 2} matrix corrosion results in geochemically controlled reformation of secondary phase. (4) Even if the dissolution rate of UO{sub 2} is low, elements accounting for burnup credit do not behave similar as uranium. Geochemical reactions are analyzed in detail and compositions are presented which have a high probability to be formed in the long-term needing to be analyzed with respect to K{sub eff}. (authors)« less
14 CFR 33.79 - Fuel burning thrust augmentor.
Code of Federal Regulations, 2012 CFR
2012-01-01
... thrust augmentor. Each fuel burning thrust augmentor, including the nozzle, must— (a) Provide cutoff of... range of operation; (d) Upon a failure or malfunction of augmentor combustion, not cause the engine to...
14 CFR 33.79 - Fuel burning thrust augmentor.
Code of Federal Regulations, 2014 CFR
2014-01-01
... thrust augmentor. Each fuel burning thrust augmentor, including the nozzle, must— (a) Provide cutoff of... range of operation; (d) Upon a failure or malfunction of augmentor combustion, not cause the engine to...
14 CFR 33.79 - Fuel burning thrust augmentor.
Code of Federal Regulations, 2010 CFR
2010-01-01
... thrust augmentor. Each fuel burning thrust augmentor, including the nozzle, must— (a) Provide cutoff of... range of operation; (d) Upon a failure or malfunction of augmentor combustion, not cause the engine to...
14 CFR 33.79 - Fuel burning thrust augmentor.
Code of Federal Regulations, 2013 CFR
2013-01-01
... thrust augmentor. Each fuel burning thrust augmentor, including the nozzle, must— (a) Provide cutoff of... range of operation; (d) Upon a failure or malfunction of augmentor combustion, not cause the engine to...
14 CFR 33.79 - Fuel burning thrust augmentor.
Code of Federal Regulations, 2011 CFR
2011-01-01
... thrust augmentor. Each fuel burning thrust augmentor, including the nozzle, must— (a) Provide cutoff of... range of operation; (d) Upon a failure or malfunction of augmentor combustion, not cause the engine to...
Fuel Cell Electric Vehicle Performance Composite Data Products: Spring 2018
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurtz, Jennifer M; Sprik, Samuel; Ainscough, Christopher D
This publication includes 22 composite data products (CDPs) produced in Spring 2018 for fuel cell electric vehicle performance in the categories of deployment, driving behavior, fuel economy, fueling behavior, and hydrogen performance.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-01
... determine if a certain fuel pump housing electrical connector is installed. The existing AD also requires a... procedures for disabling certain fuel pump electrical circuits following failure of a fuel pump housing electrical connector if applicable. The existing AD also requires the deactivation of certain fuel tanks or...
NASA Technical Reports Server (NTRS)
Kelly, Michael J.
2013-01-01
The Alternative Fuel Effects on Contrails & Cruise Emissions (ACCESS) Project Integration Manager requested in July 2012 that the NASA Engineering and Safety Center (NESC) form a team to independently assess aircraft structural failure hazards associated with the ACCESS experiment and to identify potential flight test hazard mitigations to ensure flight safety. The ACCESS Project Integration Manager subsequently requested that the assessment scope be focused predominantly on structural failure risks to the aircraft empennage raft empennage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michael A. Pope
2011-10-01
The Deep Burn (DB) Project is a U.S. Department of Energy sponsored feasibility study of Transuranic Management using high burnup fuel in the high temperature helium cooled reactor (HTR). The DB Project consists of seven tasks: project management, core and fuel analysis, spent fuel management, fuel cycle integration, TRU fuel modeling, TRU fuel qualification, and HTR fuel recycle. In the Phase II of the Project, we conducted nuclear analysis of TRU destruction/utilization in the HTR prismatic block design (Task 2.1), deep burn fuel/TRISO microanalysis (Task 2.3), and synergy with fast reactors (Task 4.2). The Task 2.1 covers the core physicsmore » design, thermo-hydraulic CFD analysis, and the thermofluid and safety analysis (low pressure conduction cooling, LPCC) of the HTR prismatic block design. The Task 2.3 covers the analysis of the structural behavior of TRISO fuel containing TRU at very high burnup level, i.e. exceeding 50% of FIMA. The Task 4.2 includes the self-cleaning HTR based on recycle of HTR-generated TRU in the same HTR. Chapter IV contains the design and analysis results of the 600MWth DB-HTR core physics with the cycle length, the average discharged burnup, heavy metal and plutonium consumptions, radial and axial power distributions, temperature reactivity coefficients. Also, it contains the analysis results of the 450MWth DB-HTR core physics and the analysis of the decay heat of a TRU loaded DB-HTR core. The evaluation of the hot spot fuel temperature of the fuel block in the DB-HTR (Deep-Burn High Temperature Reactor) core under full operating power conditions are described in Chapter V. The investigated designs are the 600MWth and 460MWth DB-HTRs. In Chapter VI, the thermo-fluid and safety of the 600MWth DB-HTRs has been analyzed to investigate a thermal-fluid design performance at the steady state and a passive safety performance during an LPCC event. Chapter VII describes the analysis results of the TRISO fuel microanalysis of the 600MWth and 450MWth DB-HTRs. The TRISO fuel microanalysis covers the gas pressure buildup in a coated fuel particle including helium production, the thermo-mechanical behavior of a CFP, the failure probabilities of CFPs, the temperature distribution in a CPF, and the fission product (FP) transport in a CFP and a graphite. In Chapter VIII, it contains the core design and analysis of sodium cooled fast reactor (SFR) with deep burn HTR reactor. It considers a synergistic combination of the DB-MHR and an SFR burner for a safe and efficient transmutation of the TRUs from LWRs. Chapter IX describes the design and analysis results of the self-cleaning (or self-recycling) HTR core. The analysis is considered zero and 5-year cooling time of the spent LWR fuels.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Francesco Venneri; Chang-Keun Jo; Jae-Man Noh
2010-09-01
The Deep Burn (DB) Project is a U.S. Department of Energy sponsored feasibility study of Transuranic Management using high burnup fuel in the high temperature helium cooled reactor (HTR). The DB Project consists of seven tasks: project management, core and fuel analysis, spent fuel management, fuel cycle integration, TRU fuel modeling, TRU fuel qualification, and HTR fuel recycle. In the Phase II of the Project, we conducted nuclear analysis of TRU destruction/utilization in the HTR prismatic block design (Task 2.1), deep burn fuel/TRISO microanalysis (Task 2.3), and synergy with fast reactors (Task 4.2). The Task 2.1 covers the core physicsmore » design, thermo-hydraulic CFD analysis, and the thermofluid and safety analysis (low pressure conduction cooling, LPCC) of the HTR prismatic block design. The Task 2.3 covers the analysis of the structural behavior of TRISO fuel containing TRU at very high burnup level, i.e. exceeding 50% of FIMA. The Task 4.2 includes the self-cleaning HTR based on recycle of HTR-generated TRU in the same HTR. Chapter IV contains the design and analysis results of the 600MWth DB-HTR core physics with the cycle length, the average discharged burnup, heavy metal and plutonium consumptions, radial and axial power distributions, temperature reactivity coefficients. Also, it contains the analysis results of the 450MWth DB-HTR core physics and the analysis of the decay heat of a TRU loaded DB-HTR core. The evaluation of the hot spot fuel temperature of the fuel block in the DB-HTR (Deep-Burn High Temperature Reactor) core under full operating power conditions are described in Chapter V. The investigated designs are the 600MWth and 460MWth DB-HTRs. In Chapter VI, the thermo-fluid and safety of the 600MWth DB-HTRs has been analyzed to investigate a thermal-fluid design performance at the steady state and a passive safety performance during an LPCC event. Chapter VII describes the analysis results of the TRISO fuel microanalysis of the 600MWth and 450MWth DB-HTRs. The TRISO fuel microanalysis covers the gas pressure buildup in a coated fuel particle including helium production, the thermo-mechanical behavior of a CFP, the failure probabilities of CFPs, the temperature distribution in a CPF, and the fission product (FP) transport in a CFP and a graphite. In Chapter VIII, it contains the core design and analysis of sodium cooled fast reactor (SFR) with deep burn HTR reactor. It considers a synergistic combination of the DB-MHR and an SFR burner for a safe and efficient transmutation of the TRUs from LWRs. Chapter IX describes the design and analysis results of the self-cleaning (or self-recycling) HTR core. The analysis is considered zero and 5-year cooling time of the spent LWR fuels.« less
TRISO-Coated Fuel Durability Under Extreme Conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reimanis, Ivar; Gorman, Brian; Butt, Darryl
2014-03-30
The PIs propose to examine TRISO-coated particles (SiC and ZrC coatings) in an integrated two-part study. In the first part, experiments will be performed to assess the reaction kinetics of the carbides under CO-CO2 environments at temperatures up to 1800 degree C. Kinetic model will be applied to describe the degradation. Scanning and transmission electron microscopy will be employed to establish the chemical and microstructure evolution under the imposed environmental conditions. The second part of the proposed work focuses on establishing the role of the high temperature, environmental exposure described above on the mechanical behavior of TRISO-coated particles. Electron microscopymore » and other advanced techniques will be subsequently performed to evaluate failure mechanisms. The work is expected to reveal relationships between corrosion reactions, starting material characteristics (polytype of SiC, impurity concentration, flaw distribution), flaw healing behavior, and crack growth.« less
Modeling fuels and fire effects in 3D: Model description and applications
Francois Pimont; Russell Parsons; Eric Rigolot; Francois de Coligny; Jean-Luc Dupuy; Philippe Dreyfus; Rodman R. Linn
2016-01-01
Scientists and managers critically need ways to assess how fuel treatments alter fire behavior, yet few tools currently exist for this purpose.We present a spatially-explicit-fuel-modeling system, FuelManager, which models fuels, vegetation growth, fire behavior (using a physics-based model, FIRETEC), and fire effects. FuelManager's flexible approach facilitates...
Fire behavior in masticated fuels: a review
Jesse K. Kreye; Nolan W. Brewer; Penelope Morgan; J. Morgan Varner; Alistair M.S. Smith; Chad M. Hoffman; Roger D. Ottmar
2014-01-01
Mastication is an increasingly common fuels treatment that redistributes ââladderââ fuels to the forest floor to reduce vertical fuel continuity, crown fire potential, and fireline intensity, but fuel models do not exist for predicting fire behavior in these fuel types. Recent fires burning in masticated fuels have behaved in unexpected and contradictory ways, likely...
Performance modeling of Deep Burn TRISO fuel using ZrC as a load-bearing layer and an oxygen getter
NASA Astrophysics Data System (ADS)
Wongsawaeng, Doonyapong
2010-01-01
The effects of design choices for the TRISO particle fuel were explored in order to determine their contribution to attaining high-burnup in Deep Burn modular helium reactor fuels containing transuranics from light water reactor spent fuel. The new design features were: (1) ZrC coating substituted for the SiC, allowing the fuel to survive higher accident temperatures; (2) pyrocarbon/SiC "alloy" substituted for the inner pyrocarbon coating to reduce layer failure and (3) pyrocarbon seal coat and thin ZrC oxygen getter coating on the kernel to eliminate CO. Fuel performance was evaluated using General Atomics Company's PISA code. The only acceptable design has a 200-μm kernel diameter coupled with at least 150-μm thick, 50% porosity buffer, a 15-μm ZrC getter over a 10-μm pyrocarbon seal coat on the kernel, an alloy inner pyrocarbon, and ZrC substituted for SiC. The code predicted that during a 1600 °C postulated accident at 70% FIMA, the ZrC failure probability is <10-4.
NASA Technical Reports Server (NTRS)
Veyo, S.E.
1997-01-01
This report describes the successful testing of a 27 kWe Solid Oxide Fuel Cell (SOFC) generator fueled by natural gas and/or a fuel gas produced by a brassboard logistics fuel preprocessor (LFP). The test period began on May 24, 1995 and ended on February 26, 1996 with the successful completion of all program requirements and objectives. During this time period, this power system produced 118.2 MWh of electric power. No degradation of the generator's performance was measured after 5582 accumulated hours of operation on these fuels: local natural gas - 3261 hours, jet fuel reformate gas - 766 hours, and diesel fuel reformate gas - 1555 hours. This SOFC generator was thermally cycled from full operating temperature to room temperature and back to operating temperature six times, because of failures of support system components and the occasional loss of test site power, without measurable cell degradation. Numerous outages of the LFP did not interrupt the generator's operation because the fuel control system quickly switched to local natural gas when an alarm indicated that the LFP reformate fuel supply had been interrupted. The report presents the measured electrical performance of the generator on all three fuel types and notes the small differences due to fuel type. Operational difficulties due to component failures are well documented even though they did not affect the overall excellent performance of this SOFC power generator. The final two appendices describe in detail the LFP design and the operating history of the tested brassboard LFP.
Mitochondrial protein hyperacetylation in the failing heart
Horton, Julie L.; Martin, Ola J.; Lai, Ling; Richards, Alicia L.; Vega, Rick B.; Leone, Teresa C.; Pagliarini, David J.; Muoio, Deborah M.; Bedi, Kenneth C.; Coon, Joshua J.
2016-01-01
Myocardial fuel and energy metabolic derangements contribute to the pathogenesis of heart failure. Recent evidence implicates posttranslational mechanisms in the energy metabolic disturbances that contribute to the pathogenesis of heart failure. We hypothesized that accumulation of metabolite intermediates of fuel oxidation pathways drives posttranslational modifications of mitochondrial proteins during the development of heart failure. Myocardial acetylproteomics demonstrated extensive mitochondrial protein lysine hyperacetylation in the early stages of heart failure in well-defined mouse models and the in end-stage failing human heart. To determine the functional impact of increased mitochondrial protein acetylation, we focused on succinate dehydrogenase A (SDHA), a critical component of both the tricarboxylic acid (TCA) cycle and respiratory complex II. An acetyl-mimetic mutation targeting an SDHA lysine residue shown to be hyperacetylated in the failing human heart reduced catalytic function and reduced complex II–driven respiration. These results identify alterations in mitochondrial acetyl-CoA homeostasis as a potential driver of the development of energy metabolic derangements that contribute to heart failure. PMID:26998524
Mitochondrial protein hyperacetylation in the failing heart.
Horton, Julie L; Martin, Ola J; Lai, Ling; Riley, Nicholas M; Richards, Alicia L; Vega, Rick B; Leone, Teresa C; Pagliarini, David J; Muoio, Deborah M; Bedi, Kenneth C; Margulies, Kenneth B; Coon, Joshua J; Kelly, Daniel P
2016-02-01
Myocardial fuel and energy metabolic derangements contribute to the pathogenesis of heart failure. Recent evidence implicates posttranslational mechanisms in the energy metabolic disturbances that contribute to the pathogenesis of heart failure. We hypothesized that accumulation of metabolite intermediates of fuel oxidation pathways drives posttranslational modifications of mitochondrial proteins during the development of heart failure. Myocardial acetylproteomics demonstrated extensive mitochondrial protein lysine hyperacetylation in the early stages of heart failure in well-defined mouse models and the in end-stage failing human heart. To determine the functional impact of increased mitochondrial protein acetylation, we focused on succinate dehydrogenase A (SDHA), a critical component of both the tricarboxylic acid (TCA) cycle and respiratory complex II. An acetyl-mimetic mutation targeting an SDHA lysine residue shown to be hyperacetylated in the failing human heart reduced catalytic function and reduced complex II-driven respiration. These results identify alterations in mitochondrial acetyl-CoA homeostasis as a potential driver of the development of energy metabolic derangements that contribute to heart failure.
NASA Technical Reports Server (NTRS)
Durning, Joseph G., III; Westover, Shayne C.; Cone, Darren M.
2011-01-01
In June 2010, an 870 lbf Space Shuttle Orbiter Reaction Control System Primary Thruster experienced an unintended shutdown during a test being performed at the NASA White Sands Test Facility. Subsequent removal and inspection of the thruster revealed permanent deformation and misalignment of the thruster valve mounting plate. Destructive evaluation determined that after three nominal firing sequences, the thruster had experienced an energetic event within the fuel (monomethylhydrazine) manifold at the start of the fourth firing sequence. The current understanding of the phenomenon of intra-manifold explosions in hypergolic bipropellant thrusters is documented in literature where it is colloquially referred to as a ZOT. The typical ZOT scenario involves operation of a thruster in a gravitational field with environmental pressures above the triple point pressure of the propellants. Post-firing, when the thruster valves are commanded closed, there remains a residual quantity of propellant in both the fuel and oxidizer (nitrogen tetroxide) injector manifolds known as the "dribble volume". In an ambient ground test configuration, these propellant volumes will drain from the injector manifolds but are impeded by the local atmospheric pressure. The evacuation of propellants from the thruster injector manifolds relies on the fluids vapor pressure to expel the liquid. The higher vapor pressure oxidizer will evacuate from the manifold before the lower vapor pressure fuel. The localized cooling resulting from the oxidizer boiling during manifold draining can result in fuel vapor migration and condensation in the oxidizer passage. The liquid fuel will then react with the oxidizer that enters the manifold during the next firing and may produce a localized high pressure reaction or explosion within the confines of the oxidizer injector manifold. The typical ZOT scenario was considered during this failure investigation, but was ultimately ruled out as a cause of the explosion. Converse to the typical ZOT failure mechanism, the failure of this particular thruster was determined to be the result of liquid oxidizer being present within the fuel manifold.
Jacobson, Ann F; Sumodi, Veronica; Albert, Nancy M; Butler, Robert S; DeJohn, Lori; Walker, Donna; Dion, Kelly; Tai, Hua-Li Lin; Ross, Donna M
2018-06-14
More evidence is needed about factors that influence self-management behaviors in persons with heart failure. To test a correlational mediation model of the independent variables of health literacy, patient activation, and heart failure knowledge with heart failure self-management behaviors. The study used a prospective, cross-sectional, correlational design. Correlation and multiple regression were used to analyze associations among variables. Of 151 participants, 57% were male, and mean age was 68 years. Heart failure self-management behaviors was positively correlated with patient activation level (p = .0008), but not with health literacy or heart failure knowledge. Persons with heart failure may better manage their condition if sufficiently activated, regardless of their level of health literacy or knowledge of heart failure disease and management processes. Copyright © 2018 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burkes, Douglas E.; Senor, David J.; Casella, Andrew M.
Numerous global programs are focused on the continued development of existing and new research and test reactor fuels to achieve maximum attainable uranium loadings to support the conversion of a number of the world’s remaining high-enriched uranium fueled reactors to low-enriched uranium fuel. Some of these programs are focused on development and qualification of a fuel design that consists of a uranium-molybdenum (U-Mo) alloy dispersed in an aluminum matrix as one option for reactor conversion. The current paper extends a failure model originally developed for UO2-stainless steel dispersion fuels and used currently available thermal-mechanical property information for the materials ofmore » interest in the current proposed design. A number of fabrication and irradiation parameters were investigated to understand the conditions at which failure of the matrix, classified as pore formation in the matrix, might occur. The results compared well with experimental observations published as part of the Reduced Enrichment for Research and Test Reactors (RERTR)-6 and -7 mini-plate experiments. Fission rate, a function of the 235U enrichment, appeared to be the most influential parameter in premature failure, mainly as a result of increased interaction layer formation and operational temperature, which coincidentally decreased the yield strength of the matrix and caused more rapid fission gas production and recoil into the surrounding matrix material. Addition of silicon to the matrix appeared effective at reducing the rate of interaction layer formation and can extend the performance of a fuel plate under a certain set of irradiation conditions, primarily moderate heat flux and burnup. Increasing the dispersed fuel particle diameter may also be effective, but only when combined with other parameters, e.g., lower enrichment and increased Si concentration. The model may serve as a valuable tool in initial experimental design.« less
An instrument for rapid, accurate, determination of fuel moisture content
Stephen S. Sackett
1980-01-01
Moisture contents of dead and living fuels are key variables in fire behavior. Accurate, real-time fuel moisture data are required for prescribed burning and wildfire behavior predictions. The convection oven method has become the standard for direct fuel moisture content determination. Efforts to quantify fuel moisture through indirect methods have not been...
In-situ material-motion diagnostics and fuel radiography in experimental reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeVolpi, A.
1982-01-01
Material-motion monitoring has become a routine part of in-pile transient reactor-safety experiments. Diagnostic systems, such as the fast-neutron hodoscope, were developed for the purpose of providing direct time-resolved data on pre-failure fuel motion, cladding-breach time and location, and post-failure fuel relocation. Hodoscopes for this purpose have been installed at TREAT and CABRI; other types of imaging systems that have been tested are a coded-aperture at ACRR and a pinhole at TREAT. Diagnostic systems that use penetrating radiation emitted from the test section can non-invasively monitor fuel without damage to the measuring instrument during the radiographic images of test sections installedmore » in the reator. Studies have been made of applications of hodoscopes to other experimental reactors, including PBF, FARET, STF, ETR, EBR-II, SAREF-STF, and DMT.« less
Bernard R. Parresol; Joe H. Scott; Anne Andreu; Susan Prichard; Laurie Kurth
2012-01-01
Currently geospatial fire behavior analyses are performed with an array of fire behavior modeling systems such as FARSITE, FlamMap, and the Large Fire Simulation System. These systems currently require standard or customized surface fire behavior fuel models as inputs that are often assigned through remote sensing information. The ability to handle hundreds or...
Corrosion of graphite composites in phosphoric acid fuel cells
NASA Technical Reports Server (NTRS)
Christner, L. G.; Dhar, H. P.; Farooque, M.; Kush, A. K.
1986-01-01
Polymers, polymer-graphite composites and different carbon materials are being considered for many of the fuel cell stack components. Exposure to concentrated phosphoric acid in the fuel cell environment and to high anodic potential results in corrosion. Relative corrosion rates of these materials, failure modes, plausible mechanisms of corrosion and methods for improvement of these materials are investigated.
Performance of fire behavior fuel models developed for the Rothermel Surface Fire Spread Model
Robert Ziel; W. Matt Jolly
2009-01-01
In 2005, 40 new fire behavior fuel models were published for use with the Rothermel Surface Fire Spread Model. These new models are intended to augment the original 13 developed in 1972 and 1976. As a compiled set of quantitative fuel descriptions that serve as input to the Rothermel model, the selected fire behavior fuel model has always been critical to the resulting...
NASA Astrophysics Data System (ADS)
Laurie, M.; Futterer, M. A.; Lapetite, J. M.; Fourrez, S.; Morice, R.
2011-10-01
Within the European High Temperature Reactor Technology Network (HTR-TN) and related projects a number of HTR fuel irradiations are planned in the High Flux Reactor Petten (HFR), The Netherlands, with the objective to explore the potential of recently produced fuel for even higher temperature and burn-up. Irradiating fuel under defined conditions to extremely high burn-ups will provide a better understanding of fission product release and failure mechanisms if particle failure occurs. After an overview of the irradiation rigs used in the HFR, this paper sums up data collected from previous irradiation tests in terms of thermocouple data. Some R&D for further improvement of thermocouples and other on-line instrumentation will be outlined.
Using diagnostic experiences in experience-based innovative design
NASA Astrophysics Data System (ADS)
Prabhakar, Sattiraju; Goel, Ashok K.
1992-03-01
Designing a novel class of devices requires innovation. Often, the design knowledge of these devices does not identify and address the constraints that are required for their performance in the real world operating environment. So any new design adapted from these devices tend to be similarly sketchy. In order to address this problem, we propose a case-based reasoning method called performance driven innovation (PDI). We model the design as a dynamic process, arrive at a design by adaptation from the known designs, generate failures for this design for some new constraints, and then use this failure knowledge to generate the required design knowledge for the new constraints. In this paper, we discuss two aspects of PDI: the representation of PDI cases and the translation of the failure knowledge into design knowledge for a constraint. Each case in PDI has two components: design and failure knowledge. Both of them are represented using a substance-behavior-function model. Failure knowledge has internal device failure behaviors and external environmental behaviors. The environmental behavior, for a constraint, interacting with the design behaviors, results in the failure internal behavior. The failure adaptation strategy generates functions, from the failure knowledge, which can be addressed using the routine design methods. These ideas are illustrated using a coffee-maker example.
Analysis of risk factors for cluster behavior of dental implant failures.
Chrcanovic, Bruno Ramos; Kisch, Jenö; Albrektsson, Tomas; Wennerberg, Ann
2017-08-01
Some studies indicated that implant failures are commonly concentrated in few patients. To identify and analyze cluster behavior of dental implant failures among subjects of a retrospective study. This retrospective study included patients receiving at least three implants only. Patients presenting at least three implant failures were classified as presenting a cluster behavior. Univariate and multivariate logistic regression models and generalized estimating equations analysis evaluated the effect of explanatory variables on the cluster behavior. There were 1406 patients with three or more implants (8337 implants, 592 failures). Sixty-seven (4.77%) patients presented cluster behavior, with 56.8% of all implant failures. The intake of antidepressants and bruxism were identified as potential negative factors exerting a statistically significant influence on a cluster behavior at the patient-level. The negative factors at the implant-level were turned implants, short implants, poor bone quality, age of the patient, the intake of medicaments to reduce the acid gastric production, smoking, and bruxism. A cluster pattern among patients with implant failure is highly probable. Factors of interest as predictors for implant failures could be a number of systemic and local factors, although a direct causal relationship cannot be ascertained. © 2017 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stimpson, Shane G; Powers, Jeffrey J; Clarno, Kevin T
The Consortium for Advanced Simulation of Light Water Reactors (CASL) aims to provide high-fidelity, multiphysics simulations of light water reactors (LWRs) by coupling a variety of codes within the Virtual Environment for Reactor Analysis (VERA). One of the primary goals of CASL is to predict local cladding failure through pellet-clad interaction (PCI). This capability is currently being pursued through several different approaches, such as with Tiamat, which is a simulation tool within VERA that more tightly couples the MPACT neutron transport solver, the CTF thermal hydraulics solver, and the MOOSE-based Bison-CASL fuel performance code. However, the process in this papermore » focuses on running fuel performance calculations with Bison-CASL to predict PCI using the multicycle output data from coupled neutron transport/thermal hydraulics simulations. In recent work within CASL, Watts Bar Unit 1 has been simulated over 12 cycles using the VERA core simulator capability based on MPACT and CTF. Using the output from these simulations, Bison-CASL results can be obtained without rerunning all 12 cycles, while providing some insight into PCI indicators. Multi-cycle Bison-CASL results are presented and compared against results from the FRAPCON fuel performance code. There are several quantities of interest in considering PCI and subsequent fuel rod failures, such as the clad hoop stress and maximum centerline fuel temperature, particularly as a function of time. Bison-CASL performs single-rod simulations using representative power and temperature distributions, providing high-resolution results for these and a number of other quantities. This will assist in identifying fuels rods as potential failure locations for use in further analyses.« less
Keiser, Jr., Dennis D.; Jue, Jan -Fong; Gan, Jian; ...
2017-02-27
The Material Management and Minimization (M3) Reactor Conversion Program, in the past called the Reduced Enrichment for Research and Test Reactor (RERTR) Program, is developing low-enriched uranium (LEU) fuels for application in research reactors. U–Mo alloy dispersion fuel is one type being developed. Blister testing has been performed on different fuel plate samples to determine the margin to failure for fuel plates irradiated to different fission densities. Microstructural characterization was performed using scanning electron microscopy and transmission electron microscopy on a sample taken from a U-7Mo/AA4043 matrix dispersion fuel plate irradiated in the RERTR-6 experiment that was blister-tested up tomore » a final temperature of 500°C. The results indicated that two types of grain/cell boundaries were observed in the U- 7Mo fuel particles, one with a relatively low Mo content and fission gas bubbles and a second type enriched in Si, due to interdiffusion from the Si-containing matrix, with little evidence of fission gas bubbles. With respect to the behavior of the major fission gas Xe, a significant amount of the Xe was still observed within the U-7Mo fuel particle, along with microns into the AA4043 matrix. For the fuel/matrix interaction layers that form during fabrication and then grow during irradiation, they change from the as-irradiated amorphous structure to one that is crystalline after blister testing. In the AA4043 matrix, the original Si-rich precipitates, which are typically observed in as-irradiated U-Mo dispersion fuel, get consumed due to interdiffusion with the U-7Mo fuel particles during the blister test. Lastly, the fission gas bubbles that were originally around 2 nm in diameter and resided on a fission gas superlattice in the intragranular regions of as-irradiated U-7Mo fuel grew in size (up to ~20 nm diameter) during blister testing.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keiser, Jr., Dennis D.; Jue, Jan -Fong; Gan, Jian
The Material Management and Minimization (M3) Reactor Conversion Program, in the past called the Reduced Enrichment for Research and Test Reactor (RERTR) Program, is developing low-enriched uranium (LEU) fuels for application in research reactors. U–Mo alloy dispersion fuel is one type being developed. Blister testing has been performed on different fuel plate samples to determine the margin to failure for fuel plates irradiated to different fission densities. Microstructural characterization was performed using scanning electron microscopy and transmission electron microscopy on a sample taken from a U-7Mo/AA4043 matrix dispersion fuel plate irradiated in the RERTR-6 experiment that was blister-tested up tomore » a final temperature of 500°C. The results indicated that two types of grain/cell boundaries were observed in the U- 7Mo fuel particles, one with a relatively low Mo content and fission gas bubbles and a second type enriched in Si, due to interdiffusion from the Si-containing matrix, with little evidence of fission gas bubbles. With respect to the behavior of the major fission gas Xe, a significant amount of the Xe was still observed within the U-7Mo fuel particle, along with microns into the AA4043 matrix. For the fuel/matrix interaction layers that form during fabrication and then grow during irradiation, they change from the as-irradiated amorphous structure to one that is crystalline after blister testing. In the AA4043 matrix, the original Si-rich precipitates, which are typically observed in as-irradiated U-Mo dispersion fuel, get consumed due to interdiffusion with the U-7Mo fuel particles during the blister test. Lastly, the fission gas bubbles that were originally around 2 nm in diameter and resided on a fission gas superlattice in the intragranular regions of as-irradiated U-7Mo fuel grew in size (up to ~20 nm diameter) during blister testing.« less
NASA Astrophysics Data System (ADS)
Keiser, Dennis D.; Jue, Jan-Fong; Gan, Jian; Miller, Brandon D.; Robinson, Adam B.; Madden, James W.; Ross Finlay, M.; Moore, Glenn; Medvedev, Pavel; Meyer, Mitch
2017-05-01
The Material Management and Minimization (M3) Reactor Conversion Program, in the past called the Reduced Enrichment for Research and Test Reactor (RERTR) Program, is developing low-enriched uranium (LEU) fuels for application in research and test reactors. U-Mo alloy dispersion fuel is one type being developed. Blister testing has been performed on different fuel plate samples to determine the margin to failure for fuel plates irradiated to different fission densities. Microstructural characterization was performed using scanning electron microscopy and transmission electron microscopy on a sample taken from a U-7Mo/AA4043 matrix dispersion fuel plate irradiated in the RERTR-6 experiment that was blister-tested up to a final temperature of 500 °C. The results indicated that two types of grain/cell boundaries were observed in the U-7Mo fuel particles, one with a relatively low Mo content and fission gas bubbles and a second type enriched in Si, due to interdiffusion from the Si-containing matrix, with little evidence of fission gas bubbles. With respect to the behavior of the major fission gas Xe, a significant amount of the Xe was still observed within the U-7Mo fuel particle, along with microns into the AA4043 matrix. For the fuel/matrix interaction layers that form during fabrication and then grow during irradiation, they change from the as-irradiated amorphous structure to one that is crystalline after blister testing. In the AA4043 matrix, the original Si-rich precipitates, which are typically observed in as-irradiated U-Mo dispersion fuel, get consumed due to interdiffusion with the U-7Mo fuel particles during the blister test. Finally, the fission gas bubbles that were originally around 3 nm in diameter and resided on a fission gas superlattice (FGS) in the intragranular regions of as-irradiated U-7Mo fuel grew in size (up to ∼20 nm diameter) during blister testing and, in many areas, are no longer organized as a superlattice.
NASA Astrophysics Data System (ADS)
Porter, Ian Edward
A nuclear reactor systems code has the ability to model the system response in an accident scenario based on known initial conditions at the onset of the transient. However, there has been a tendency for these codes to lack the detailed thermo-mechanical fuel rod response models needed for accurate prediction of fuel rod failure. This proposed work will couple today's most widely used steady-state (FRAPCON) and transient (FRAPTRAN) fuel rod models with a systems code TRACE for best-estimate modeling of system response in accident scenarios such as a loss of coolant accident (LOCA). In doing so, code modifications will be made to model gamma heating in LWRs during steady-state and accident conditions and to improve fuel rod thermal/mechanical analysis by allowing axial nodalization of burnup-dependent phenomena such as swelling, cladding creep and oxidation. With the ability to model both burnup-dependent parameters and transient fuel rod response, a fuel dispersal study will be conducted using a hypothetical accident scenario under both PWR and BWR conditions to determine the amount of fuel dispersed under varying conditions. Due to the fuel fragmentation size and internal rod pressure both being dependent on burnup, this analysis will be conducted at beginning, middle and end of cycle to examine the effects that cycle time can play on fuel rod failure and dispersal. Current fuel rod and system codes used by the Nuclear Regulatory Commission (NRC) are compilations of legacy codes with only commonly used light water reactor materials, Uranium Dioxide (UO2), Mixed Oxide (U/PuO 2) and zirconium alloys. However, the events at Fukushima Daiichi and Three Mile Island accident have shown the need for exploration into advanced materials possessing improved accident tolerance. This work looks to further modify the NRC codes to include silicon carbide (SiC), an advanced cladding material proposed by current DOE funded research on accident tolerant fuels (ATF). Several additional fuels will also be analyzed, including uranium nitride (UN), uranium carbide (UC) and uranium silicide (U3Si2). Focusing on the system response in an accident scenario, an emphasis is placed on the fracture mechanics of the ceramic cladding by design the fuel rods to eliminate pellet cladding mechanical interaction (PCMI). The time to failure and how much of the fuel in the reactor fails with an advanced fuel design will be analyzed and compared to the current UO2/Zircaloy design using a full scale reactor model.
1976-09-01
testing evaluation and production process development . This coated microspherical fuel particle has been successfully developed over a period of...this reliable concept began with attempts to blend ceramic (oxide or carbide) fuel powders into a graphite matrix in the early concepts of ROVER, HTGR ...lubricants. An ongoing program at the Naval Air Development Center is investigating how some parameters affect corro- sion between solid film
Modeling and Analysis of Actinide Diffusion Behavior in Irradiated Metal Fuel
NASA Astrophysics Data System (ADS)
Edelmann, Paul G.
There have been numerous attempts to model fast reactor fuel behavior in the last 40 years. The US currently does not have a fully reliable tool to simulate the behavior of metal fuels in fast reactors. The experimental database necessary to validate the codes is also very limited. The DOE-sponsored Advanced Fuels Campaign (AFC) has performed various experiments that are ready for analysis. Current metal fuel performance codes are either not available to the AFC or have limitations and deficiencies in predicting AFC fuel performance. A modified version of a new fuel performance code, FEAST-Metal , was employed in this investigation with useful results. This work explores the modeling and analysis of AFC metallic fuels using FEAST-Metal, particularly in the area of constituent actinide diffusion behavior. The FEAST-Metal code calculations for this work were conducted at Los Alamos National Laboratory (LANL) in support of on-going activities related to sensitivity analysis of fuel performance codes. A sensitivity analysis of FEAST-Metal was completed to identify important macroscopic parameters of interest to modeling and simulation of metallic fuel performance. A modification was made to the FEAST-Metal constituent redistribution model to enable accommodation of newer AFC metal fuel compositions with verified results. Applicability of this modified model for sodium fast reactor metal fuel design is demonstrated.
1st Fire Behavior and Fuels Conference: Fuels Management-How to Measure Success
Patricia L. Andrews
2006-01-01
The 1st Fire Behavior and Fuels Conference: Fuels Management -- How to Measure Success was held in Portland, Oregon, March 28-30, 2006. The International Association of Wildland Fire (IAWF) initiated a conference on this timely topic primarily in response to the needs of the U.S. National Interagency Fuels Coordinating Group (http://www.nifc.gov/).
Irradiation performance of U-Mo monolithic fuel
Meyer, M. K.; Gan, J.; Jue, J. F.; ...
2014-04-01
High-performance research reactors require fuel that operates at high specific power to high fission density, but at relatively low temperatures. Research reactor fuels are designed for efficient heat rejection, and are composed of assemblies of thin-plates clad in aluminum alloy. The development of low-enriched fuels to replace high-enriched fuels for these reactors requires a substantially increased uranium density in the fuel to offset the decrease in enrichment. Very few fuel phases have been identified that have the required combination of very-high uranium density and stable fuel behavior at high burnup. U-Mo alloys represent the best known tradeoff in these properties.more » Testing of aluminum matrix U-Mo aluminum matrix dispersion fuel revealed a pattern of breakaway swelling behavior at intermediate burnup, related to the formation of a molybdenum stabilized high aluminum intermetallic phase that forms during irradiation. In the case of monolithic fuel, this issue was addressed by eliminating, as much as possible, the interfacial area between U-Mo and aluminum. Based on scoping irradiation test data, a fuel plate system composed of solid U-10Mo fuel meat, a zirconium diffusion barrier, and Al6061 cladding was selected for development. Developmental testing of this fuel system indicates that it meets core criteria for fuel qualification, including stable and predictable swelling behavior, mechanical integrity to high burnup, and geometric stability. In addition, the fuel exhibits robust behavior during power-cooling mismatch events under irradiation at high power.« less
IRRADIATION PERFORMANCE OF U-Mo MONOLITHIC FUEL
DOE Office of Scientific and Technical Information (OSTI.GOV)
M.K. Meyer; J. Gan; J.-F. Jue
2014-04-01
High-performance research reactors require fuel that operates at high specific power to high fission density, but at relatively low temperatures. Research reactor fuels are designed for efficient heat rejection, and are composed of assemblies of thin-plates clad in aluminum alloy. The development of low-enriched fuels to replace high-enriched fuels for these reactors requires a substantially increased uranium density in the fuel to offset the decrease in enrichment. Very few fuel phases have been identified that have the required combination of very-high uranium density and stable fuel behavior at high burnup. UMo alloys represent the best known tradeoff in these properties.more » Testing of aluminum matrix U-Mo aluminum matrix dispersion fuel revealed a pattern of breakaway swelling behavior at intermediate burnup, related to the formation of a molybdenum stabilized high aluminum intermetallic phase that forms during irradiation. In the case of monolithic fuel, this issue was addressed by eliminating, as much as possible, the interfacial area between U-Mo and aluminum. Based on scoping irradiation test data, a fuel plate system composed of solid U-10Mo fuel meat, a zirconium diffusion barrier, and Al6061 cladding was selected for development. Developmental testing of this fuel system indicates that it meets core criteria for fuel qualification, including stable and predictable swelling behavior, mechanical integrity to high burnup, and geometric stability. In addition, the fuel exhibits robust behavior during power-cooling mismatch events under irradiation at high power.« less
Annual progress report on the NSRR experiments, (21)
NASA Astrophysics Data System (ADS)
1992-05-01
Fuel behavior studies under simulated reactivity-initiated accident (RIA) conditions have been performed in the Nuclear Safety Research Reactor (NSRR) since 1975. This report gives the results of experiments performed from April, 1989 through March, 1990 and discussions of them. A total of 41 tests were carried out during this period. The tests are distinguished into pre-irradiated fuel tests and fresh fuel tests; the former includes 2 JMTR pre-irradiated fuel tests, 2 PWR pre-irradiated fuel tests, and 2 BWR pre-irradiated fuel tests, and the latter includes 6 standard fuel tests (6 SP(center dot)CP scoping tests), 7 power and cooling condition parameter tests (4 flow shrouded fuel tests, 1 bundle simulation test, 1 fully water-filled vessel test, 1 high pressure/high temperature loop test), 12 special fuel tests (3 stainless steel clad fuel tests, 3 improved PWR fuel tests, 6 improved BWR fuel tests), 3 severe fuel damage tests (1 high temperature flooding test, 1 flooding behavior observation test, 1 debris coolability test), 3 fast breeder reactor fuel tests (2 moderator material characteristic measurement tests, 1 fuel behavior observation test), and 2 miscellaneous tests (2 preliminary tests for pre-irradiated fuel tests).
Nuclear fuel elements made from nanophase materials
Heubeck, Norman B.
1998-01-01
A nuclear reactor core fuel element is composed of nanophase high temperature materials. An array of the fuel elements in rod form are joined in an open geometry fuel cell that preferably also uses such nanophase materials for the cell structures. The particular high temperature nanophase fuel element material must have the appropriate mechanical characteristics to avoid strain related failure even at high temperatures, in the order of about 3000.degree. F. Preferably, the reactor type is a pressurized or boiling water reactor and the nanophase material is a high temperature ceramic or ceramic composite. Nanophase metals, or nanophase metals with nanophase ceramics in a composite mixture, also have desirable characteristics, although their temperature capability is not as great as with all-ceramic nanophase material. Combinations of conventional or nanophase metals and conventional or nanophase ceramics can be employed as long as there is at least one nanophase material in the composite. The nuclear reactor so constructed has a number of high strength fuel particles, a nanophase structural material for supporting a fuel rod at high temperature, a configuration to allow passive cooling in the event of a primary cooling system failure, an ability to retain a coolable geometry even at high temperatures, an ability to resist generation of hydrogen gas, and a configuration having good nuclear, corrosion, and mechanical characteristics.
Nuclear fuel elements made from nanophase materials
Heubeck, N.B.
1998-09-08
A nuclear reactor core fuel element is composed of nanophase high temperature materials. An array of the fuel elements in rod form are joined in an open geometry fuel cell that preferably also uses such nanophase materials for the cell structures. The particular high temperature nanophase fuel element material must have the appropriate mechanical characteristics to avoid strain related failure even at high temperatures, in the order of about 3000 F. Preferably, the reactor type is a pressurized or boiling water reactor and the nanophase material is a high temperature ceramic or ceramic composite. Nanophase metals, or nanophase metals with nanophase ceramics in a composite mixture, also have desirable characteristics, although their temperature capability is not as great as with all-ceramic nanophase material. Combinations of conventional or nanophase metals and conventional or nanophase ceramics can be employed as long as there is at least one nanophase material in the composite. The nuclear reactor so constructed has a number of high strength fuel particles, a nanophase structural material for supporting a fuel rod at high temperature, a configuration to allow passive cooling in the event of a primary cooling system failure, an ability to retain a coolable geometry even at high temperatures, an ability to resist generation of hydrogen gas, and a configuration having good nuclear, corrosion, and mechanical characteristics. 5 figs.
EXPERIMENTAL STUDIES OF TRANSIENT EFFECTS IN FAST REACTOR FUELS. SERIES I. UO$sub 2$ IRRADIATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Field, J.H.
1962-11-15
An experimental program to evaluate the performance of FCR and EFCR fuel during transient operation is outlined, and the initial series of tests are described in some detail. Test results from five experiments in the TREAT reactor, using 1-in. OD SS-clad UO/sub 2/ fuel specimens, are compared with regard to fuel temperatures, mechanical integrity, and post-irradiation appearance. Incipient fuel pin failure limits for transients are identified with maximum fuel temperatures in the range of 7000 deg F. Multiple transient damage to the cladding is likely for transients above the melting point of the fuel. (auth)
NASA Astrophysics Data System (ADS)
Wang, Yu; Jiang, Wenchun; Luo, Yun; Zhang, Yucai; Tu, Shan-Tung
2017-12-01
The reduction and re-oxidation of anode have significant effects on the integrity of the solid oxide fuel cell (SOFC) sealed by the glass-ceramic (GC). The mechanical failure is mainly controlled by the stress distribution. Therefore, a three dimensional model of SOFC is established to investigate the stress evolution during the reduction and re-oxidation by finite element method (FEM) in this paper, and the failure probability is calculated using the Weibull method. The results demonstrate that the reduction of anode can decrease the thermal stresses and reduce the failure probability due to the volumetric contraction and porosity increasing. The re-oxidation can result in a remarkable increase of the thermal stresses, and the failure probabilities of anode, cathode, electrolyte and GC all increase to 1, which is mainly due to the large linear strain rather than the porosity decreasing. The cathode and electrolyte fail as soon as the linear strains are about 0.03% and 0.07%. Therefore, the re-oxidation should be controlled to ensure the integrity, and a lower re-oxidation temperature can decrease the stress and failure probability.
Low-Temperature Additive Performance in Jet A Fuels
2013-04-01
coking issues for the U-2 aircraft while still retaining the required low temperature flow improvement. For the Global Hawk a lower optimum ...employ the additive at the lower concentration (2,000 mg/L), so the failure at 4,000 mg/L should not be a problem . Fuel POSF-3602 shows a JFTOT...combustor, may experience no problems due to the increased fuel viscosity caused by the additive. However, another fuel system that puts less heat into the
NASA Technical Reports Server (NTRS)
Mccafferty, Richard J; Donlon, Richard H
1955-01-01
Acceleration and steady-state performance of a tubular combustor was evaluated at two simulated altitudes with four different fuel nozzles. Temperature response lag was observed with all the nozzles. Except for rich-limit blowout, the only combustion failures observed during acceleration were with a fuel nozzle that gave an interrupted flow delivery during the acceleration. This same nozzle, because of superior fuel atomization, gave the highest steady-state combustion efficiencies.
The role of fuels for understanding fire behavior and fire effects
E. Louise Loudermilk; J. Kevin Hiers; Joseph J. O' Brien
2018-01-01
Fire ecology, which has emerged as a critical discipline, links the complex interactions that occur between fire regimes and ecosystems. The ecology of fuels, a first principle in fire ecology, identifies feedbacks between vegetation and fire behavior-a cyclic process that starts with fuels influencing fire behavior, which in turn governs patterns of postfire...
The Cassini project: Lessons learned through operations
NASA Astrophysics Data System (ADS)
McCormick, Egan D.
1998-01-01
The Cassini space probe requires 180 238Pu Light-weight Radioisotopic Heater Units (LWRHU) and 216 238Pu General Purpose Heat Source (GPHS) pellets. Additional LWRHU and GPHS pellets required for non-destructive (NDA) and destructive assay purposes were fabricated bringing the original pellet requirement to 224 LWRHU and 252 GPHS. Due to rejection of pellets resulting from chemical impurities in the fuel and/or failure to meet dimensional specifications a total of 320 GPHS pellets were fabricated for the mission. Initial plans called for LANL to process a total of 30 kg of oxide powder for pressing into monolithic ceramic pellets. The original 30 kg commitment was processed within the time frame allotted; an additional 8 kg were required to replace fuel lost due to failure to meet Quality Assurance specifications for impurities and dimensions. During the time frame allotted for pellet production, operations were impacted by equipment failure, unacceptable fuel impurities levels, and periods of extended down time, >30 working days during which little or no processing occurred. Throughout the production process, the reality of operations requirements varied from the theory upon which production schedules were based.
Cheng, Cheng; Li, Xiao; Li, Shouding; Zheng, Bo
2017-07-14
Failure behavior of granite material is paramount for host rock stability of geological repositories for high-level waste (HLW) disposal. Failure behavior also affects the seepage behavior related to transportation of radionuclide. Few of the published studies gave a consistent analysis on how confinement and water pressure affect the failure behavior, which in turn influences the seepage behavior of the rock during the damage process. Based on a series of laboratory experiments on NRG01 granite samples cored from Alxa area, a candidate area for China's HLW disposal, this paper presents some detailed observations and analyses for a better understanding on the failure mechanism and seepage behavior of the samples under different confinements and water pressure. The main findings of this study are as follows: (1) Strength reduction properties were found for the granite under water pressure. Besides, the complete axial stress-strain curves show more obvious yielding process in the pre-peak region and a more gradual stress drop in the post-peak region; (2) Shear fracturing pattern is more likely to form in the granite samples with the effect of water pressure, even under much lower confinements, than the predictions from the conventional triaxial compressive results; (3) Four stages of inflow rate curves are divided and the seepage behaviors are found to depend on the failure behavior affected by the confinement and water pressure.
Factors that Affect Operational Reliability of Turbojet Engines
NASA Technical Reports Server (NTRS)
1956-01-01
The problem of improving operational reliability of turbojet engines is studied in a series of papers. Failure statistics for this engine are presented, the theory and experimental evidence on how engine failures occur are described, and the methods available for avoiding failure in operation are discussed. The individual papers of the series are Objectives, Failure Statistics, Foreign-Object Damage, Compressor Blades, Combustor Assembly, Nozzle Diaphrams, Turbine Buckets, Turbine Disks, Rolling Contact Bearings, Engine Fuel Controls, and Summary Discussion.
A statistical approach to nuclear fuel design and performance
NASA Astrophysics Data System (ADS)
Cunning, Travis Andrew
As CANDU fuel failures can have significant economic and operational consequences on the Canadian nuclear power industry, it is essential that factors impacting fuel performance are adequately understood. Current industrial practice relies on deterministic safety analysis and the highly conservative "limit of operating envelope" approach, where all parameters are assumed to be at their limits simultaneously. This results in a conservative prediction of event consequences with little consideration given to the high quality and precision of current manufacturing processes. This study employs a novel approach to the prediction of CANDU fuel reliability. Probability distributions are fitted to actual fuel manufacturing datasets provided by Cameco Fuel Manufacturing, Inc. They are used to form input for two industry-standard fuel performance codes: ELESTRES for the steady-state case and ELOCA for the transient case---a hypothesized 80% reactor outlet header break loss of coolant accident. Using a Monte Carlo technique for input generation, 105 independent trials are conducted and probability distributions are fitted to key model output quantities. Comparing model output against recognized industrial acceptance criteria, no fuel failures are predicted for either case. Output distributions are well removed from failure limit values, implying that margin exists in current fuel manufacturing and design. To validate the results and attempt to reduce the simulation burden of the methodology, two dimensional reduction methods are assessed. Using just 36 trials, both methods are able to produce output distributions that agree strongly with those obtained via the brute-force Monte Carlo method, often to a relative discrepancy of less than 0.3% when predicting the first statistical moment, and a relative discrepancy of less than 5% when predicting the second statistical moment. In terms of global sensitivity, pellet density proves to have the greatest impact on fuel performance, with an average sensitivity index of 48.93% on key output quantities. Pellet grain size and dish depth are also significant contributors, at 31.53% and 13.46%, respectively. A traditional limit of operating envelope case is also evaluated. This case produces output values that exceed the maximum values observed during the 105 Monte Carlo trials for all output quantities of interest. In many cases the difference between the predictions of the two methods is very prominent, and the highly conservative nature of the deterministic approach is demonstrated. A reliability analysis of CANDU fuel manufacturing parametric data, specifically pertaining to the quantification of fuel performance margins, has not been conducted previously. Key Words: CANDU, nuclear fuel, Cameco, fuel manufacturing, fuel modelling, fuel performance, fuel reliability, ELESTRES, ELOCA, dimensional reduction methods, global sensitivity analysis, deterministic safety analysis, probabilistic safety analysis.
An Empirical Approach to Logical Clustering of Software Failure Regions
1994-03-01
this is a coincidence or normal behavior of failure regions. " Software faults were numbered in order as they were discovered, by the various testing...locations of the associated faults. The goal of this research will be an improved testing technique that incorporates failure region behavior . To do this...clustering behavior . This, however, does not correlate with the structural clustering of failure regions observed by Ginn (1991) on the same set of data
Wayne Cook; Bret W. Butler
2007-01-01
The 2nd Fire Behavior and Fuels Conference: Fire Environment -- Innovations, Management and Policy was held in Destin, FL, March 26-30, 2007. Following on the success of the 1st Fire Behavior and Fuels Conference, this conference was initiated in response to the needs of the National Wildfire Coordinating Group -- Fire Environment Working Team.
Fuel type characterization and potential fire behavior estimation in Sardinia and Corsica islands
NASA Astrophysics Data System (ADS)
Bacciu, V.; Pellizzaro, G.; Santoni, P.; Arca, B.; Ventura, A.; Salis, M.; Barboni, T.; Leroy, V.; Cancellieri, D.; Leoni, E.; Ferrat, L.; Perez, Y.; Duce, P.; Spano, D.
2012-04-01
Wildland fires represent a serious threat to forests and wooded areas of the Mediterranean Basin. As recorded by the European Commission (2009), during the last decade Southern Countries have experienced an annual average of about 50,000 forest fires and about 470,000 burned hectares. The factor that can be directly manipulated in order to minimize fire intensity and reduce other fire impacts, such as three mortality, smoke emission, and soil erosion, is wildland fuel. Fuel characteristics, such as vegetation cover, type, humidity status, and biomass and necromass loading are critical variables in affecting wildland fire occurrence, contributing to the spread, intensity, and severity of fires. Therefore, the availability of accurate fuel data at different spatial and temporal scales is needed for fire management applications, including fire behavior and danger prediction, fire fighting, fire effects simulation, and ecosystem simulation modeling. In this context, the main aims of our work are to describe the vegetation parameters involved in combustion processes and develop fire behavior fuel maps. The overall work plan is based firstly on the identification and description of the different fuel types mainly affected by fire occurrence in Sardinia (Italy) and Corsica (France) Islands, and secondly on the clusterization of the selected fuel types in relation to their potential fire behavior. In the first part of the work, the available time series of fire event perimeters and the land use map data were analyzed with the purpose of identifying the main land use types affected by fires. Thus, field sampling sites were randomly identified on the selected vegetation types and several fuel variables were collected (live and dead fuel load partitioned following Deeming et al., (1977), depth of fuel layer, plant cover, surface area-to-volume ratio, heat content). In the second part of the work, the potential fire behavior for every experimental site was simulated using BEHAVE fire behavior prediction system (Andrews, 1989) and experimental fuel data. Fire behavior was simulated by setting different weather scenarios representing the most frequent summer meteorological conditions. The simulation outputs (fireline intensity, rate of spread, flame length) were then analyzed for clustering the different fuel types in relation to their potential fire behavior. The results of this analysis can be used to produce fire behavior fuel maps that are important tools in evaluating fire hazard and risk for land management planning, locating and rating fuel treatments, and aiding in environmental assessments and fire danger programs modeling. This work is supported by FUME Project FP7-ENV-2009-1, Grant Agreement Number 243888 and Proterina-C Project, EU Italia-Francia Marittimo 2007-2013 Programme.
Potential for Fuel Tank Fire and Hydrodynamic Ram from Uncontained Aircraft Engine Debris
DOT National Transportation Integrated Search
1997-01-01
This report addresses the potential consequences of the impact and penetration of fuel tanks by debris from uncontained engine failures on commercial jet aircraft. The report presents a brief review of accident data and of the pertinent technical lit...
Microscopic analysis of irradiated AGR-1 coated particle fuel compacts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scott A. Ploger; Paul A. Demkowicz; John D. Hunn
The AGR-1 experiment involved irradiation of 72 TRISO-coated particle fuel compacts to a peak compact-average burnup of 19.5% FIMA with no in-pile failures observed out of 3 x 105 total particles. Irradiated AGR-1 fuel compacts have been cross-sectioned and analyzed with optical microscopy to characterize kernel, buffer, and coating behavior. Six compacts have been examined, spanning a range of irradiation conditions (burnup, fast fluence, and irradiation temperature) and including all four TRISO coating variations irradiated in the AGR-1 experiment. The cylindrical specimens were sectioned both transversely and longitudinally, then polished to expose from 36 to 79 individual particles near midplanemore » on each mount. The analysis focused primarily on kernel swelling and porosity, buffer densification and fracturing, buffer–IPyC debonding, and fractures in the IPyC and SiC layers. Characteristic morphologies have been identified, 981 particles have been classified, and spatial distributions of particle types have been mapped. No significant spatial patterns were discovered in these cross sections. However, some trends were found between morphological types and certain behavioral aspects. Buffer fractures were found in 23% of the particles, and these fractures often resulted in unconstrained kernel protrusion into the open cavities. Fractured buffers and buffers that stayed bonded to IPyC layers appear related to larger pore size in kernels. Buffer–IPyC interface integrity evidently factored into initiation of rare IPyC fractures. Fractures through part of the SiC layer were found in only four classified particles, all in conjunction with IPyC–SiC debonding. Compiled results suggest that the deliberate coating fabrication variations influenced the frequencies of IPyC fractures and IPyC–SiC debonds.« less
MODELLING OF FUEL BEHAVIOUR DURING LOSS-OF-COOLANT ACCIDENTS USING THE BISON CODE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pastore, G.; Novascone, S. R.; Williamson, R. L.
2015-09-01
This work presents recent developments to extend the BISON code to enable fuel performance analysis during LOCAs. This newly developed capability accounts for the main physical phenomena involved, as well as the interactions among them and with the global fuel rod thermo-mechanical analysis. Specifically, new multiphysics models are incorporated in the code to describe (1) transient fission gas behaviour, (2) rapid steam-cladding oxidation, (3) Zircaloy solid-solid phase transition, (4) hydrogen generation and transport through the cladding, and (5) Zircaloy high-temperature non-linear mechanical behaviour and failure. Basic model characteristics are described, and a demonstration BISON analysis of a LWR fuel rodmore » undergoing a LOCA accident is presented. Also, as a first step of validation, the code with the new capability is applied to the simulation of experiments investigating cladding behaviour under LOCA conditions. The comparison of the results with the available experimental data of cladding failure due to burst is presented.« less
Constitutive behavior and progressive mechanical failure of electrodes in lithium-ion batteries
NASA Astrophysics Data System (ADS)
Zhang, Chao; Xu, Jun; Cao, Lei; Wu, Zenan; Santhanagopalan, Shriram
2017-07-01
The electrodes of lithium-ion batteries (LIB) are known to be brittle and to fail earlier than the separators during an external crush event. Thus, the understanding of mechanical failure mechanism for LIB electrodes (anode and cathode) is critical for the safety design of LIB cells. In this paper, we present experimental and numerical studies on the constitutive behavior and progression of failure in LIB electrodes. Mechanical tests were designed and conducted to evaluate the constitutive properties of porous electrodes. Constitutive models were developed to describe the stress-strain response of electrodes under uniaxial tensile and compressive loads. The failure criterion and a damage model were introduced to model their unique tensile and compressive failure behavior. The failure mechanism of LIB electrodes was studied using the blunt rod test on dry electrodes, and numerical models were built to simulate progressive failure. The different failure processes were examined and analyzed in detail numerically, and correlated with experimentally observed failure phenomena. The test results and models improve our understanding of failure behavior in LIB electrodes, and provide constructive insights on future development of physics-based safety design tools for battery structures under mechanical abuse.
Constitutive behavior and progressive mechanical failure of electrodes in lithium-ion batteries
Zhang, Chao; Xu, Jun; Cao, Lei; ...
2017-05-05
The electrodes of lithium-ion batteries (LIB) are known to be brittle and to fail earlier than the separators during an external crush event. Thus, the understanding of mechanical failure mechanism for LIB electrodes (anode and cathode) is critical for the safety design of LIB cells. In this paper, we present experimental and numerical studies on the constitutive behavior and progression of failure in LIB electrodes. Mechanical tests were designed and conducted to evaluate the constitutive properties of porous electrodes. Constitutive models were developed to describe the stress-strain response of electrodes under uniaxial tensile and compressive loads. The failure criterion andmore » a damage model were introduced to model their unique tensile and compressive failure behavior. The failure mechanism of LIB electrodes was studied using the blunt rod test on dry electrodes, and numerical models were built to simulate progressive failure. The different failure processes were examined and analyzed in detail numerically, and correlated with experimentally observed failure phenomena. Finally, the test results and models improve our understanding of failure behavior in LIB electrodes, and provide constructive insights on future development of physics-based safety design tools for battery structures under mechanical abuse.« less
NASA Technical Reports Server (NTRS)
Kelly, Michael J.
2013-01-01
The Alternative Fuel Effects on Contrails and Cruise Emissions (ACCESS) Project Integration Manager requested in July 2012 that the NASA Engineering and Safety Center (NESC) form a team to independently assess aircraft structural failure hazards associated with the ACCESS experiment and to identify potential flight test hazard mitigations to ensure flight safety. The ACCESS Project Integration Manager subsequently requested that the assessment scope be focused predominantly on structural failure risks to the aircraft empennage (horizontal and vertical tail). This report contains the Appendices to Volume I.
Benefits of barrier fuel on fuel cycle economics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crowther, R.L.; Kunz, C.L.
1988-01-01
Barrier fuel rod cladding was developed to eliminate fuel rod failures from pellet/cladding stress/corrosion interaction and to eliminate the associated need to restrict the rate at which fuel rod power can be increased. The performance of barrier cladding has been demonstrated through extensive testing and through production application to many boiling water reactors (BWRs). Power reactor data have shown that barrier fuel rod cladding has a significant beneficial effect on plant capacity factor and plant operating costs and significantly increases fuel reliability. Independent of the fuel reliability benefit, it is less obvious that barrier fuel has a beneficial effect ofmore » fuel cycle costs, since barrier cladding is more costly to fabricate. Evaluations, measurements, and development activities, however, have shown that the fuel cycle cost benefits of barrier fuel are large. This paper is a summary of development activities that have shown that application of barrier fuel significantly reduces BWR fuel cycle costs.« less
Micro-mechanical evaluation of SiC-SiC composite interphase properties and debond mechanisms
Kabel, Joey; Yang, Y.; Balooch, Mehdi; ...
2017-07-31
SiC-SiC composites exhibit exceptional high temperature strength and oxidation properties making them an advantageous choice for accident tolerant nuclear fuel cladding. In the present work, small scale mechanical testing along with AFM and TEM analysis were employed to evaluate PyC interphase properties that play a key role in the overall mechanical behavior of the composite. The Mohr-Coulomb formulation allowed for the extraction of the internal friction coefficient and debonding shear strength as a function of the PyC layer thickness, an additional parameter. Here, these results have led to re-evaluation of the Mohr-Coulomb failure criterion and adjustment via a new phenomenologicalmore » equation.« less
Hong, Sheng; Wu, Yuping; Zhang, Jianfeng; Zheng, Yugui; Qin, Yujiao; Lin, Jinran
2015-09-01
The high-velocity oxygen-fuel (HVOF) spraying process was used to prepare near-nanostructured WC-10Co-4Cr coating. The cavitation erosion behavior and mechanism of the coating in 3.5 wt.% NaCl solution were analyzed in detail. The results showed that the amorphous phase and WC grain were present in the coating. The cavitation erosion resistance of the coating was about 1.27 times that of the stainless steel 1Cr18Ni9Ti under the same testing conditions. The effects of erosion time on the microstructural evolution were discussed. It was revealed that cracks initiated at the edge of pre-existing pores and propagated along the carbide-binder interface, leading to the pull-out of carbide particle and the formation of pits and craters on the surface. The main failure mechanism of the coating was erosion of the binder phases, brittle detachment of hard phases and formation of pitting corrosion products. Copyright © 2015 Elsevier B.V. All rights reserved.
Wang, Hong; Wang, Jy-An John
2016-07-20
We studied behavior of surrogate nuclear fuel rods made of Zircaloy-4 (Zry-4) cladding with alumina pellets under reversed cyclic bending. Tests were performed under load or moment control at 5 Hz, and an empirical correlation was established between rod fatigue life and amplitude of the applied moment. Fatigue response of Zry-4 cladding was further characterized by using flexural rigidity. Degradation of flexural rigidity was shown to depend on the moment applied and the prefatigue condition of specimens. Pellet-to-pellet interface (PPI), pellet-to-cladding interface (PCI), and pellet condition all affect surrogate rod failure. Bonding/debonding of PPI/PCI and pellet fracturing contribute to surrogatemore » rod bending fatigue. Also, the effect of sensor spacing on curvature measurement using three-point deflections was studied; the method based on effective specimen gauge length is effective in sensor spacing correction. Finally, we developed the database and gained understanding in this study such that it will serve as input to analysis of SNF vibration integrity.« less
NASA Astrophysics Data System (ADS)
Srivastava, Ratndeep
Renewable hydrogen-fuelled proton exchange membrane (PEMFC) fuel cells have consistently demonstrated great promise as a future source of energy due to their high conversion efficiency, lower temperature of operation and lack of greenhouse emissions. One of the major impediments in the commercialization of polymer electrolyte membrane fuel cells is the insufficient catalytic reactivity and higher cost of Pt electrocatalysts which are utilized for the electroreduction of oxygen from air. This dissertation focuses primarily on a family of Pt alloy fuel cell electrocatalysts referred to as de-alloyed core-shell electrocatalysts. These materials are bimetallic or multimetallic nanoparticles, mostly supported on conductive supports which were first described in a dissertation by Dr. S. Koh earlier in 2009.1 De-alloyed Pt nanoparticle electrocatalysts are formed from base metal rich binary Pt-M and ternary Pt-M1-M 2 (M, M1, M2 = Cu, Co, Ni, Fe and Cr) alloy nanoparticle precursors. The precursors are transformed and activated by electrochemical selective dissolution of the less noble metal component of the precursors (de-alloying). They have shown exceptional activity for oxygen reduction reaction (ORR) in idealized electrochemical half cell measurements, in particular rotating disk electrode experiments. However, these materials were never tested or implemented in realistic Membrane Electrode Assemblies (MEA) and single PEM fuel cells. The objective of this work was to implement de-alloyed Pt particle catalysts in realistic fuel cell electrode layers as well as a detailed characterization of their behavior and stability. The major challenges of MEA implementation consists of the behavior of the new nanostructured electrocatalysts inside the complex three-phase interface of polymer membrane ionomer, liquid water, metal catalyst, support, and reactant gas. Activity measurements were followed by medium and long-term durability analysis by potential cycling of the membrane electrode assemblies to high potentials. These de-alloyed catalysts show improved resistance to electro-chemical surface area degradation as compared to state of the art available commercial Pt/C catalysts. TEM imaging with combination of electrochemical characterization helps in determining the mechanisms for particle growth and failures. Anomalous small angle x-ray scattering (ASAXS) and x-ray diffraction (XRD) techniques were also used in the characterization of these materials.
Energy Efficiency and Renewables: Market and Behavioral Failures
James Sweeney
2017-12-09
Thursday, January 28, 2010: Policies to promote renewable energy and energy efficiency have been gaining momentum throughout the world, often justified by environmental and energy security concerns. This presentation first talks about energy efficiency options, then delves into the economic motivation for energy efficiency and renewable energy policies by articulating the classes of relevant behavioral failures and market failures. Such behavioral and market failures may vary intertemporally or atemporally; the temporal structure and the extent of the failures are the critical considerations in the development of energy policies. The talk discusses key policy instruments and assess the extent to which they are well-suited to correct for failures with different structures. http://eetd.lbl.gov/dls/lecture-01-28...
78 FR 21230 - Airworthiness Directives; Airbus Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-10
... Failed Post-Modification Operational Test After accomplishment of the modification specified in paragraph... of the GFI or deactivation of the associated fuel pump following failure of any post-modification operational test of the GFI. We are issuing this AD to prevent the potential of ignition sources inside fuel...
Cheng, Cheng; Li, Xiao; Li, Shouding; Zheng, Bo
2017-01-01
Failure behavior of granite material is paramount for host rock stability of geological repositories for high-level waste (HLW) disposal. Failure behavior also affects the seepage behavior related to transportation of radionuclide. Few of the published studies gave a consistent analysis on how confinement and water pressure affect the failure behavior, which in turn influences the seepage behavior of the rock during the damage process. Based on a series of laboratory experiments on NRG01 granite samples cored from Alxa area, a candidate area for China’s HLW disposal, this paper presents some detailed observations and analyses for a better understanding on the failure mechanism and seepage behavior of the samples under different confinements and water pressure. The main findings of this study are as follows: (1) Strength reduction properties were found for the granite under water pressure. Besides, the complete axial stress–strain curves show more obvious yielding process in the pre-peak region and a more gradual stress drop in the post-peak region; (2) Shear fracturing pattern is more likely to form in the granite samples with the effect of water pressure, even under much lower confinements, than the predictions from the conventional triaxial compressive results; (3) Four stages of inflow rate curves are divided and the seepage behaviors are found to depend on the failure behavior affected by the confinement and water pressure. PMID:28773157
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hancock, David, W.
2012-02-14
Air-cooled stack technology offers the potential for a simpler system architecture (versus liquid-cooled) for applications below 4 kilowatts. The combined cooling and cathode air allows for a reduction in part count and hence a lower cost solution. However, efficient heat rejection challenges escalate as power and ambient temperature increase. For applications in ambient temperatures below freezing, the air-cooled approach has additional challenges associated with not overcooling the fuel cell stack. The focus of this project was freeze tolerance while maintaining all other stack and system requirements. Through this project, Plug Power advanced the state of the art in technology formore » air-cooled PEM fuel cell stacks and related GenDrive material handling application fuel cell systems. This was accomplished through a collaborative work plan to improve freeze tolerance and mitigate freeze-thaw effect failure modes within innovative material handling equipment fuel cell systems designed for use in freezer forklift applications. Freeze tolerance remains an area where additional research and understanding can help fuel cells to become commercially viable. This project evaluated both stack level and system level solutions to improve fuel cell stack freeze tolerance. At this time, the most cost effective solutions are at the system level. The freeze mitigation strategies developed over the course of this project could be used to drive fuel cell commercialization. The fuel cell system studied in this project was Plug Power's commercially available GenDrive platform providing battery replacement for equipment in the material handling industry. The fuel cell stacks were Ballard's commercially available FCvelocity 9SSL (9SSL) liquid-cooled PEM fuel cell stack and FCvelocity 1020ACS (Mk1020) air-cooled PEM fuel cell stack.« less
E. Matthew Hansen; Morris C. Johnson; Barbara J. Bentz; James C. Vandygriff; A. Steven Munson
2015-01-01
Recent bark beetle outbreaks in western North America have led to concerns regarding changes in fuel profiles and associated changes in fire behavior. Data are lacking for a range of infestation severities and time since outbreak, especially for relatively arid cover types. We surveyed fuel loads and simulated fire behavior for ponderosa pine stands of the...
ERIC Educational Resources Information Center
Johnson, Dona S.
1981-01-01
Personality and behavioral consequences of learned helplessness were monitored in children experiencing failure in school. The predictive quality of learned helplessness theory was compared with that of value expectancy theories. Low self-concept was predicted significantly by school failure, internal attributions for failure, and external…
Kalichman, Seth C
2017-04-01
Indiana, a large rural state in the Midwestern United States, suffered the worst North American HIV outbreak among injection drug users in years. The Indiana state government under former Governor and current US Vice President Mike Pence fueled the HIV outbreak by prohibiting needle/syringe exchange and failed to take substantive action once the outbreak was identified. This failure in public health policy parallels the HIV epidemics driven by oppressive drug laws in current day Russia and is reminiscent of the anti-science AIDS denialism of 1999-2007 South Africa. The argument that Russian President Putin and former South African President Mbeki should be held accountable for their AIDS policies as crimes against humanity can be extended to Vice President Pence. Social and behavioral scientists have a responsibility to inform the public of HIV prevention realities and to advocate for evidence-based public health policies to prevent future outbreaks of HIV infection.
Improvement of fuel injection system of locomotive diesel engine.
Li, Minghai; Cui, Hongjiang; Wang, Juan; Guan, Ying
2009-01-01
The traditional locomotive diesels are usually designed for the performance of rated condition and much fuel will be consumed. A new plunger piston matching parts of fuel injection pump and injector nozzle matching parts were designed. The experimental results of fuel injection pump test and diesel engine show that the fuel consumption rate can be decreased a lot in the most of the working conditions. The forced lubrication is adopted for the new injector nozzle matching parts, which can reduce failure rate and increase service life. The design has been patented by Chinese State Patent Office.
Patrick H. Brose
2009-01-01
A field guide of 45 pairs of photographs depicting ericaceous shrub, leaf litter, and logging slash fuel types of eastern oak forests and observed fire behavior of these fuel types during prescribed burning. The guide contains instructions on how to use the photo guide to choose appropriate fuel models for prescribed fire planning.
Correction of Dynamic Characteristics of SAR Cryogenic GTE on Consumption of Gasified Fuel
NASA Astrophysics Data System (ADS)
Bukin, V. A.; Gimadiev, A. G.; Gangisetty, G.
2018-01-01
When the gas turbine engines (GTE) NK-88 were developed for liquid hydrogen and NK-89 for liquefied natural gas, performance of the systems with a turbo-pump unitary was improved and its proved without direct regulation of the flow of a cryogenic fuel, which was supplied by a centrifugal pump of the turbo-pump unit (TPU) Command from the “kerosene” system. Such type of the automatic control system (SAR) has the property of partial “neutralization” of the delay caused by gasification of the fuel. This does not require any measurements in the cryogenic medium, and the failure of the centrifugal cryogenic pump does not lead to engine failure. On the other hand, the system without direct regulation of the flow of cryogenic fuel has complex internal dynamic connections, their properties are determined by the characteristics of the incoming units and assemblies, and it is difficult to maintain accurate the maximum boundary level and minimum fuel consumption due to the influence of a booster pressure change. Direct regulation of the consumption of cryogenic fuel (prior to its gasification) is the preferred solution, since for using traditional liquid and gaseous fuels this is the main and proven method. The scheme of correction of dynamic characteristics of a single-loop SAR GTE for the consumption of a liquefied cryogenic fuel with a flow rate correction in its gasified state, which ensures the dynamic properties of the system is not worse than for NK-88 and NK-89 engines.
Growth motivation as a moderator of behavioral self-handicapping in women.
Brown, Christina M; Park, Sun W; Folger, Susan F
2012-01-01
Behavioral self-handicapping is a strategy used to protect attributions about ability. People behaviorally self-handicap by creating an obstacle to their success so failure is attributed to the obstacle instead of to their ability. Although past research has observed behavioral self-handicapping exclusively in men, the current research revealed a moderator of behavioral self-handicapping in women: growth motivation, which reflects the desire to develop one's abilities and learn from failure. Participants (N = 100) completed a test purportedly predictive of successful careers and relationships, and some were given failure feedback about their performance. Participants could behaviorally self-handicap by choosing to complete another test in a performance-impairing environment. Although men self-handicapped more overall, women self-handicapped more after failure when they were low in growth motivation. These results highlight a novel moderator of behavioral self-handicapping in women.
An overview of the crash dynamics failure behavior of metal and composite aircraft structures
NASA Technical Reports Server (NTRS)
Carden, Huey D.; Boitnott, Richard L.; Fasanella, Edwin L.; Jones, Lisa E.
1991-01-01
An overview of failure behavior results is presented from some of the crash dynamics research conducted with concepts of aircraft elements and substructure not necessarily designed or optimized for energy absorption or crash loading considerations. Experimental and analytical data are presented that indicate some general trends in the failure behavior of a class of composite structures that includes fuselage panels, individual fuselage sections, fuselage frames, skeleton subfloors with stringers and floor beams without skin covering, and subfloors with skin added to the frame stringer structure. Although the behavior is complex, a strong similarity in the static/dynamic failure behavior among these structures is illustrated through photographs of the experimental results and through analytical data of generic composite structural models.
Fuel model selection for BEHAVE in midwestern oak savannas
Grabner, K.W.; Dwyer, J.P.; Cutter, B.E.
2001-01-01
BEHAVE, a fire behavior prediction system, can be a useful tool for managing areas with prescribed fire. However, the proper choice of fuel models can be critical in developing management scenarios. BEHAVE predictions were evaluated using four standardized fuel models that partially described oak savanna fuel conditions: Fuel Model 1 (Short Grass), 2 (Timber and Grass), 3 (Tall Grass), and 9 (Hardwood Litter). Although all four models yielded regressions with R2 in excess of 0.8, Fuel Model 2 produced the most reliable fire behavior predictions.
Navidian, Ali; Mobaraki, Hajar; Shakiba, Mansour
2017-08-01
To determine the effect of education based on motivational interviewing on self-care behaviors in heart failure patients with depression. In this study, 82 patients suffering from heart failure whose depression had been confirmed were selected and divided into two groups. The Self-Care Heart Failure Index was utilized to evaluate self-care behavior. The intervention group received four sessions of self-care behavior education based on the principles of motivational interviewing, and the control group received four sessions of conventional education on self-care behavior. At 8 weeks after finishing the interventions, the self-care behaviors of both groups were evaluated. Data were analyzed using paired and independent t-tests, Chi-square, and analysis of covariance, as appropriate. The average increase in the overall scores and the scores on the three sub-scales of self-care behavior (maintenance, management, and confidence) of the heart failure patients with depression were significantly higher after education based on motivational interviewing than after conventional self-care education (p<0.05). Motivational interviewing had a significant positive effect on self-care behaviors in patients with heart failure and depression. Due to the effectiveness of the MI, using motivational interviewing for education in depressed HF patients is recommended. Copyright © 2017 Elsevier B.V. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-07
... aircraft for which a manufacturer's maintenance manual or instructions for continued airworthiness has been... maintenance program by incorporating new airworthiness limitations (AWLs) for fuel tank systems to satisfy... latent failures, alterations, repairs, or maintenance actions, which, in combination with flammable fuel...
14 CFR 31.19 - Performance: Uncontrolled descent.
Code of Federal Regulations, 2010 CFR
2010-01-01
... single failure of the heater assembly, fuel cell system, gas value system, or maneuvering vent system, or from any single tear in the balloon envelope between tear stoppers: (1) The maximum vertical velocity attained. (2) The altitude loss from the point of failure to the point at which maximum vertical velocity...
1994-08-01
prevea.ied the destruction of both an ONA DC-10 following an engine explosion and fire during takeoff at JFK Airport , and the EAL DC-9 following failure of...explosion and fire during takeoff at JFK Airport , and the EAL DC-9, following failure of the fuselage at the aft pressure bulkhead on landing at Fort
Human exposure to ambient PM from fossil-fuel emissions is linked to cardiovascular disease and death. This association strengthens in people with preexisting cardiac disease-especially heart failure (HF). The mechanisms explaining PM-induced exacerbation ofHF are unclear. Some o...
Human exposure to ambient PM from fossil-fuel emissions is linked to cardiovascular disease and death. This association strengthens in people with preexisting cardiac disease--especially heart failure (HF). Cardiomyopathy is the most common cause of heart failure. The mechanisms ...
Human exposure to ambient PM from fossil-fuel emissions is linked to cardiovascular disease and death. This association strengthens in people with preexisting cardiopulmonary diseases—especially heart failure (HF). We previously examined the effects of PM on HF by exposing Sponta...
Alan A. Ager; Nicole M. Vaillant; Mark A. Finney
2011-01-01
Wildland fire risk assessment and fuel management planning on federal lands in the US are complex problems that require state-of-the-art fire behavior modeling and intensive geospatial analyses. Fuel management is a particularly complicated process where the benefits and potential impacts of fuel treatments must be demonstrated in the context of land management goals...
Fuel and fire behavior in high-elevation five-needle pines affected by mountain pine beetle
Michael J. Jenkins
2011-01-01
Bark beetle-caused tree mortality in conifer forests affects the quantity and quality of forest fuels and has long been assumed to increase fire hazard and potential fire behavior. In reality, bark beetles and their effects on fuel accumulation and subsequent fire hazard have only recently been described. We have extensively sampled fuels in three conifer forest types...
Low-temperature irradiation behavior of uranium-molybdenum alloy dispersion fuel
NASA Astrophysics Data System (ADS)
Meyer, M. K.; Hofman, G. L.; Hayes, S. L.; Clark, C. R.; Wiencek, T. C.; Snelgrove, J. L.; Strain, R. V.; Kim, K.-H.
2002-08-01
Irradiation tests have been conducted to evaluate the performance of a series of high-density uranium-molybdenum (U-Mo) alloy, aluminum matrix dispersion fuels. Fuel plates incorporating alloys with molybdenum content in the range of 4-10 wt% were tested. Two irradiation test vehicles were used to irradiate low-enrichment fuels to approximately 40 and 70 at.% 235U burnup in the advanced test reactor at fuel temperatures of approximately 65 °C. The fuel particles used to fabricate dispersion specimens for most of the test were produced by generating filings from a cast rod. In general, fuels with molybdenum contents of 6 wt% or more showed stable in-reactor fission gas behavior, exhibiting a distribution of small, stable gas bubbles. Fuel particle swelling was moderate and decreased with increasing alloy content. Fuel particles with a molybdenum content of 4 wt% performed poorly, exhibiting extensive fuel-matrix interaction and the growth of relatively large fission gas bubbles. Fuel particles with 4 or 6 wt% molybdenum reacted more rapidly with the aluminum matrix than those with higher-alloy content. Fuel particles produced by an atomization process were also included in the test to determine the effect of fuel particle morphology and microstructure on fuel performance for the U-10Mo composition. Both of the U-10Mo fuel particle types exhibited good irradiation performance, but showed visible differences in fission gas bubble nucleation and growth behavior.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Terlip, Danny
2016-03-28
Diaphragm compressors have become the primary source of on-site hydrogen compression for hydrogen fueling stations around the world. NREL and PDC have undertaken two studies aimed at improving hydrogen compressor operation and reducing the cost contribution to dispensed fuel. The first study identified the failure mechanisms associated with mechanical compression to reduce the maintenance and down-time. The second study will investigate novel station configurations to maximize hydrogen usage and compressor lifetime. This partnership will allow for the simulation of operations in the field and a thorough analysis of the component failure to improve the reliability of diaphragm compression.
A physical description of fission product behavior fuels for advanced power reactors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaganas, G.; Rest, J.; Nuclear Engineering Division
2007-10-18
The Global Nuclear Energy Partnership (GNEP) is considering a list of reactors and nuclear fuels as part of its chartered initiative. Because many of the candidate materials have not been explored experimentally under the conditions of interest, and in order to economize on program costs, analytical support in the form of combined first principle and mechanistic modeling is highly desirable. The present work is a compilation of mechanistic models developed in order to describe the fission product behavior of irradiated nuclear fuel. The mechanistic nature of the model development allows for the possibility of describing a range of nuclear fuelsmore » under varying operating conditions. Key sources include the FASTGRASS code with an application to UO{sub 2} power reactor fuel and the Dispersion Analysis Research Tool (DART ) with an application to uranium-silicide and uranium-molybdenum research reactor fuel. Described behavior mechanisms are divided into subdivisions treating fundamental materials processes under normal operation as well as the effect of transient heating conditions on these processes. Model topics discussed include intra- and intergranular gas-atom and bubble diffusion, bubble nucleation and growth, gas-atom re-solution, fuel swelling and ?scion gas release. In addition, the effect of an evolving microstructure on these processes (e.g., irradiation-induced recrystallization) is considered. The uranium-alloy fuel, U-xPu-Zr, is investigated and behavior mechanisms are proposed for swelling in the {alpha}-, intermediate- and {gamma}-uranium zones of this fuel. The work reviews the FASTGRASS kinetic/mechanistic description of volatile ?scion products and, separately, the basis for the DART calculation of bubble behavior in amorphous fuels. Development areas and applications for physical nuclear fuel models are identified.« less
Posttest examination results of recent treat tests on metal fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holland, J.W.; Wright, A.E.; Bauer, T.H.
A series of in-reactor transient tests is underway to study the characteristics of metal-alloy fuel during transient-overpower-without-scam conditions. The initial tests focused on determining the margin to cladding breach and the axial fuel motions that would mitigate the power excursion. The tests were conducted in flowing-sodium loops with uranium - 5% fissium EBR-II Mark-II driver fuel elements in the TREAT facility. Posttest examination of the tests evaluated fuel elongation in intact pins and postfailure fuel motion. Microscopic examination of the intact pins studied the nature and extent of fuel/cladding interaction, fuel melt fraction and mass distribution, and distribution of porosity.more » Eutectic penetration and failure of the cladding were also examined in the failed pins.« less
Failure Behavior of Elbows with Local Wall Thinning
NASA Astrophysics Data System (ADS)
Lee, Sung-Ho; Lee, Jeong-Keun; Park, Jai-Hak
Wall thinning defect due to corrosion is one of major aging phenomena in carbon steel pipes in most plant industries, and it results in reducing load carrying capacity of the piping components. A failure test system was set up for real scale elbows containing various simulated wall thinning defects, and monotonic in-plane bending tests were performed under internal pressure to find out the failure behavior of them. The failure behavior of wall-thinned elbows was characterized by the circumferential angle of thinned region and the loading conditions to the piping system.
Wind adjustment factors for predicting fire behavior in three fuel types in Alaska.
Rodney A. Norum
1983-01-01
Factors for adjusting wind velocities from the 20-foot standard anemometer height down to an average wildfire midflame height (3.5 ft for the fuels studied) are given for exposed, partially sheltered, and sheltered fuels in Alaska. The values are suitable for predicting wildfire behavior.
Failure behavior of generic metallic and composite aircraft structural components under crash loads
NASA Technical Reports Server (NTRS)
Carden, Huey D.; Robinson, Martha P.
1990-01-01
Failure behavior results are presented from crash dynamics research using concepts of aircraft elements and substructure not necessarily designed or optimized for energy absorption or crash loading considerations. To achieve desired new designs incorporating improved energy absorption capabilities often requires an understanding of how more conventional designs behave under crash loadings. Experimental and analytical data are presented which indicate some general trends in the failure behavior of a class of composite structures including individual fuselage frames, skeleton subfloors with stringers and floor beams without skin covering, and subfloors with skin added to the frame-stringer arrangement. Although the behavior is complex, a strong similarity in the static/dynamic failure behavior among these structures is illustrated through photographs of the experimental results and through analytical data of generic composite structural models.
PEMFC MEA and System Design Considerations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knights, Shanna; Bashyam, Rajesh; He, Ping
2011-07-01
Proton exchange membrane fuel cells (PEMFCs) are being developed and sold commercially for multiple near term markets. Ballard Power Systems is focused on the near term markets of backup power, distributed generation, materials handling, and buses. Significant advances have been made in cost and durability of fuel cell products. Improved tolerance to a wide range of system operation and environmental noises will enable increased viability across a broad range of applications. In order to apply the most effective membrane electrode assembly (MEA) design for each market, the system requirements and associated MEA failures must be well understood. The failure modesmore » associated with the electrodes and membrane degradation are discussed with respect to associated system operation and mitigating approaches. A few key system considerations that influence MEA design include expected fuel quality, balance-of-plant materials, time under idle or open circuit operation, and start-up and shut-down conditions.« less
NASA Astrophysics Data System (ADS)
Komatsu, Y.; Brus, G.; Kimijima, S.; Szmyd, J. S.
2012-11-01
The present paper reports the experimental study on the dynamic behavior of a solid oxide fuel cell (SOFC). The cell stack consists of planar type cells with standard power output 300W. A Major subject of the present study is characterization of the transient response to the electric current change, assuming load-following operation. The present studies particularly focus on fuel provision control to the load change. Optimized fuel provision improves power generation efficiency. However, the capability of SOFC must be restricted by a few operative parameters. Fuel utilization factor, which is defined as the ratio of the consumed fuel to the supplied fuel is adopted for a reference in the control scheme. The fuel flow rate was regulated to keep the fuel utilization at 50%, 60% and 70% during the current ramping. Lower voltage was observed with the higher fuel utilization, but achieved efficiency was higher. The appropriate mass flow control is required not to violate the voltage transient behavior. Appropriate fuel flow manipulation can contribute to moderate the overshoot on the voltage that may appear to the current change. The overshoot on the voltage response resulted from the gradual temperature behavior in the SOFC stack module.
NASA Astrophysics Data System (ADS)
Elia, Mario; Lafortezza, Raffaele; Lovreglio, Raffaella; Sanesi, Giovanni
2015-09-01
The dramatic increase of fire hazard in wildland-urban interfaces (WUIs) has required more detailed fuel management programs to preserve ecosystem functions and human settlements. Designing effective fuel treatment strategies allows to achieve goals such as resilient landscapes, fire-adapted communities, and ecosystem response. Therefore, obtaining background information on forest fuel parameters and fuel accumulation patterns has become an important first step in planning fuel management interventions. Site-specific fuel inventory data enhance the accuracy of fuel management planning and help forest managers in fuel management decision-making. We have customized four fuel models for WUIs in southern Italy, starting from forest classes of land-cover use and adopting a hierarchical clustering approach. Furthermore, we provide a prediction of the potential fire behavior of our customized fuel models using FlamMap 5 under different weather conditions. The results suggest that fuel model IIIP (Mediterranean maquis) has the most severe fire potential for the 95th percentile weather conditions and the least severe potential fire behavior for the 85th percentile weather conditions. This study shows that it is possible to create customized fuel models directly from fuel inventory data. This achievement has broad implications for land managers, particularly forest managers of the Mediterranean landscape, an ecosystem that is susceptible not only to wildfires but also to the increasing human population and man-made infrastructures.
Elia, Mario; Lafortezza, Raffaele; Lovreglio, Raffaella; Sanesi, Giovanni
2015-09-01
The dramatic increase of fire hazard in wildland-urban interfaces (WUIs) has required more detailed fuel management programs to preserve ecosystem functions and human settlements. Designing effective fuel treatment strategies allows to achieve goals such as resilient landscapes, fire-adapted communities, and ecosystem response. Therefore, obtaining background information on forest fuel parameters and fuel accumulation patterns has become an important first step in planning fuel management interventions. Site-specific fuel inventory data enhance the accuracy of fuel management planning and help forest managers in fuel management decision-making. We have customized four fuel models for WUIs in southern Italy, starting from forest classes of land-cover use and adopting a hierarchical clustering approach. Furthermore, we provide a prediction of the potential fire behavior of our customized fuel models using FlamMap 5 under different weather conditions. The results suggest that fuel model IIIP (Mediterranean maquis) has the most severe fire potential for the 95th percentile weather conditions and the least severe potential fire behavior for the 85th percentile weather conditions. This study shows that it is possible to create customized fuel models directly from fuel inventory data. This achievement has broad implications for land managers, particularly forest managers of the Mediterranean landscape, an ecosystem that is susceptible not only to wildfires but also to the increasing human population and man-made infrastructures.
2008-12-01
Transmission quality measurements start once the call is established which includes low voice volume, level of noise , echo, crosstalk, and garbling...to failure, and finally, there is restorability which is a measure of how easy the system is restored upon failure. To reduce frequency of failure...Silicon and Germanium. These systems are friendly for the environment, have low - noise , have no fuel consumption, are maintenance-free, and have no
Chapter 11. Fuel Economy: The Case for Market Failure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greene, David L; German, John; Delucchi, Mark A
2009-01-01
The efficiency of energy using durable goods, from automobiles to home air conditioners, is not only a key determinant of economy-wide energy use but also of greenhouse gas (GHG) emissions, climate change and energy insecurity. Energy analysts have long noted that consumers appear to have high implicit discount rates for future fuel savings when choosing among energy using durable goods (Howarth and Sanstad, 1995). In modeling consumers choices of appliances, the Energy Information Administration (EIA) has used discount rates of 30 percent for heating systems, 69 percent for choice of refrigerator and up to 111 percent for choice of watermore » heater (U.S. DOE/EIA, 1996). Several explanations have been offered for this widespread phenomenon, including asymmetric information, bounded rationality and transaction costs. This chapter argues that uncertainty combined with loss aversion by consumers is sufficient to explain the failure to adopt cost effective energy efficiency improvements in the market for automotive fuel economy, although other market failures appear to be present as well. Understanding how markets for energy efficiency function is crucial to formulating effective energy policies (see Pizer, 2006). Fischer et al., (2004), for example, demonstrated that if consumers fully value the discounted present value of future fuel savings, fuel economy standards are largely redundant and produce small welfare losses. However, if consumers value only the first three years of fuel savings, then fuel economy standards can significantly increase consumer welfare. The nature of any market failure that might be present in the market for energy efficiency would also affect the relative efficacy of energy taxes versus regulatory standards (CBO, 2003). If markets function efficiently, energy taxes would generally be more efficient than regulatory standards in increasing energy efficiency and reducing energy use. If markets are decidedly inefficient, standards would likely be more effective. The chapter explores the roles of uncertainty and loss-aversion in the market for automotive fuel economy. The focus is on the determination of the technical efficiency of the vehicle rather than consumers choices among vehicles. Over the past three decades, changes in the mix of vehicles sold has played little if any role in raising the average fuel economy of new light-duty vehicles from 13 miles per gallon (mpg) in 1975 to 21 mpg today (Heavenrich, 2006). Over that same time period, average vehicle weight is up 2 percent, horsepower is up 60 percent, passenger car interior volume increased by 2 percent and the market share of light trucks grew by 31 percentage points. Historically, at least, increasing light-duty vehicle fuel economy in the United States has been a matter of manufacturers decisions to apply technology to increase the technical efficiency of cars and light trucks. Understanding how efficiently the market determines the technical fuel economy of new vehicles would seem to be critical to formulating effective policies to encourage future fuel economy improvement. The central issue is whether or not the market for fuel economy is economically efficient. Rubenstein (1998) lists the key assumptions of the rational economic decision model. The decision maker must have a clear picture of the choice problem he or she faces. He should be fully aware of the set of alternatives from which to choose and have the skill necessary to make complicated calculations needed to discover the optimal course of action. Finally, the decision maker should have the unlimited ability to calculate and be indifferent to alternatives and choice sets.« less
EPRI-NASA Cooperative Project on Stress Corrosion Cracking of Zircaloys. [nuclear fuel failures
NASA Technical Reports Server (NTRS)
Cubicciotti, D.; Jones, R. L.
1978-01-01
Examinations of the inside surface of irradiated fuel cladding from two reactors show the Zircaloy cladding is exposed to a number of aggressive substances, among them iodine, cadmium, and iron-contaminated cesium. Iodine-induced stress corrosion cracking (SCC) of well characterized samples of Zircaloy sheet and tubing was studied. Results indicate that a threshold stress must be exceeded for iodine SCC to occur. The existence of a threshold stress indicates that crack formation probably is the key step in iodine SCC. Investigation of the crack formation process showed that the cracks responsible for SCC failure nucleated at locations in the metal surface that contained higher than average concentrations of alloying elements and impurities. A four-stage model of iodine SCC is proposed based on the experimental results and the relevance of the observations to pellet cladding interaction failures is discussed.
Mechanism of Pinhole Formation in Membrane Electrode Assemblies for PEM Fuel Cells
NASA Technical Reports Server (NTRS)
Stanic, Vesna; Hoberecht, Mark
2004-01-01
The pinhole formation mechanism was studied with a variety of MEAs using ex-situ and in-situ methods. The ex-situ tests included the MEA aging in oxygen and MEA heat of ignition. In-situ durability tests were performed in fuel cells at different operating conditions with hydrogen and oxygen. After the in-situ failure, MEAs were analyzed with an Olympus BX 60 optical microscope and Cambridge 120 scanning electron microscope. MEA chemical analysis was performed with an IXRF EDS microanalysis system. The MEA failure analyses showed that pinholes and tears were the MEA failure modes. The pinholes appeared in MEA areas where the membrane thickness was drastically reduced. Their location coincided with the stress concentration points, indicating that membrane creep was responsible for their formation. Some of the pinholes detected had contaminant particles precipitated within the membrane. This mechanism of pinhole formation was correlated to the polymer blistering.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pucher, G.R.; Gardiner, D.P.; Mallory, R.W.
Warm-up fuel consumption behavior as affected by ambient temperature was evaluated for five OEM gasoline fueled automobiles. Multiple EPA FTP 75 tests were performed with each vehicle at ambient test cell soak temperatures of 25 C and {minus}7 C. Fuel consumption measured during the warm-up (Bag 1, Cold Transient) test segments at these two temperature conditions was compared to the fully warmed Hot Transient (Bag 3) fuel consumption from the 25 C ambient temperature tests (the Bag 1 and Bag 3 segments involve identical speed curves). Fuel consumption increases over the 25 C Bag 3 tests for the two warm-upmore » test conditions were differentiated as those caused by increased drivetrain losses and those caused by intake charge enrichment. Results show wide variations in warm-up behavior among the five vehicles with respect to the relative increases in fuel consumption, and the proportion of the fuel consumption increases attributable to drivetrain losses and enrichment. It was discovered that the most sophisticated vehicle systems do not necessarily facilitate the least degradation in fuel consumption with respect to baseline conditions for the group of vehicles tested.« less
Improvement of Progressive Damage Model to Predicting Crashworthy Composite Corrugated Plate
NASA Astrophysics Data System (ADS)
Ren, Yiru; Jiang, Hongyong; Ji, Wenyuan; Zhang, Hanyu; Xiang, Jinwu; Yuan, Fuh-Gwo
2018-02-01
To predict the crashworthy composite corrugated plate, different single and stacked shell models are evaluated and compared, and a stacked shell progressive damage model combined with continuum damage mechanics is proposed and investigated. To simulate and predict the failure behavior, both of the intra- and inter- laminar failure behavior are considered. The tiebreak contact method, 1D spot weld element and cohesive element are adopted in stacked shell model, and a surface-based cohesive behavior is used to capture delamination in the proposed model. The impact load and failure behavior of purposed and conventional progressive damage models are demonstrated. Results show that the single shell could simulate the impact load curve without the delamination simulation ability. The general stacked shell model could simulate the interlaminar failure behavior. The improved stacked shell model with continuum damage mechanics and cohesive element not only agree well with the impact load, but also capture the fiber, matrix debonding, and interlaminar failure of composite structure.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-24
... associated with climate change in addition to securing energy independence through reduction of oil imports... (NHTSA) is denying the petition of Plant Oil Powered Diesel Fuel Systems, Inc. (``POP Diesel'') to amend... petitioner's assertion that a failure to specifically consider pure vegetable oil, and technology to enable...
14 CFR 25.963 - Fuel tanks: general.
Code of Federal Regulations, 2014 CFR
2014-01-01
... tank must be able to withstand, without failure, the vibration, inertia, fluid, and structural loads... criteria in order to avoid loss of hazardous quantities of fuel: (1) All covers located in an area where... difference between the inside and the outside of the tank. [Doc. No. 5066, 29 FR 18291, Dec. 24, 1964, as...
14 CFR 25.963 - Fuel tanks: general.
Code of Federal Regulations, 2010 CFR
2010-01-01
... tank must be able to withstand, without failure, the vibration, inertia, fluid, and structural loads... criteria in order to avoid loss of hazardous quantities of fuel: (1) All covers located in an area where... difference between the inside and the outside of the tank. [Doc. No. 5066, 29 FR 18291, Dec. 24, 1964, as...
14 CFR 25.963 - Fuel tanks: general.
Code of Federal Regulations, 2012 CFR
2012-01-01
... tank must be able to withstand, without failure, the vibration, inertia, fluid, and structural loads... criteria in order to avoid loss of hazardous quantities of fuel: (1) All covers located in an area where... difference between the inside and the outside of the tank. [Doc. No. 5066, 29 FR 18291, Dec. 24, 1964, as...
14 CFR 25.963 - Fuel tanks: general.
Code of Federal Regulations, 2013 CFR
2013-01-01
... tank must be able to withstand, without failure, the vibration, inertia, fluid, and structural loads... criteria in order to avoid loss of hazardous quantities of fuel: (1) All covers located in an area where... difference between the inside and the outside of the tank. [Doc. No. 5066, 29 FR 18291, Dec. 24, 1964, as...
14 CFR 25.963 - Fuel tanks: general.
Code of Federal Regulations, 2011 CFR
2011-01-01
... tank must be able to withstand, without failure, the vibration, inertia, fluid, and structural loads... criteria in order to avoid loss of hazardous quantities of fuel: (1) All covers located in an area where... difference between the inside and the outside of the tank. [Doc. No. 5066, 29 FR 18291, Dec. 24, 1964, as...
NASA Technical Reports Server (NTRS)
Diianni, D. C.; Mayer, J. T.
1974-01-01
Testing of two fuel clad specimens for thermionic reactor application is described. The annular UO2 fuel was clad on both sides with tungsten; heat rejection was radially inward. The tests were intended to study inner clad stability, fuel redistribution, and fuel melting problems. The specimens were tested in a vacuum chamber using electron bombardment heating. Fuel structural changes were studied using periodic gammagraphs and posttest metallography. The first specimen test was terminated at 50 hours because of a braze failure. The second specimen was tested for 240 hours when an outer clad leak developed due to a tungsten-water reaction. The fuel developed numerous cracks on cooldown but the inner clad remained dimensionally stable. The fuel cover gas did not impede the rate of fuel redistribution. Posttest examination showed the fuel had not melted during operation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parresol, Bernard, R.; Scott, Joe, H.; Andreu, Anne
2012-01-01
Currently geospatial fire behavior analyses are performed with an array of fire behavior modeling systems such as FARSITE, FlamMap, and the Large Fire Simulation System. These systems currently require standard or customized surface fire behavior fuel models as inputs that are often assigned through remote sensing information. The ability to handle hundreds or thousands of measured surface fuelbeds representing the fine scale variation in fire behavior on the landscape is constrained in terms of creating compatible custom fire behavior fuel models. In this study, we demonstrate an objective method for taking ecologically complex fuelbeds from inventory observations and converting thosemore » into a set of custom fuel models that can be mapped to the original landscape. We use an original set of 629 fuel inventory plots measured on an 80,000 ha contiguous landscape in the upper Atlantic Coastal Plain of the southeastern United States. From models linking stand conditions to component fuel loads, we impute fuelbeds for over 6000 stands. These imputed fuelbeds were then converted to fire behavior parameters under extreme fuel moisture and wind conditions (97th percentile) using the fuel characteristic classification system (FCCS) to estimate surface fire rate of spread, surface fire flame length, shrub layer reaction intensity (heat load), non-woody layer reaction intensity, woody layer reaction intensity, and litter-lichen-moss layer reaction intensity. We performed hierarchical cluster analysis of the stands based on the values of the fire behavior parameters. The resulting 7 clusters were the basis for the development of 7 custom fire behavior fuel models from the cluster centroids that were calibrated against the FCCS point data for wind and fuel moisture. The latter process resulted in calibration against flame length as it was difficult to obtain a simultaneous calibration against both rate of spread and flame length. The clusters based on FCCS fire behavior parameters represent reasonably identifiable stand conditions, being: (1) pine dominated stands with more litter and down woody debriscomponents than other stands, (2) hardwood and pine stands with no shrubs, (3) hardwood dominated stands with low shrub and high non-woody biomass and high down woody debris, (4) stands with high grass and forb (i.e., non-woody) biomass as well as substantial shrub biomass, (5) stands with both high shrub and litter biomass, (6) pine-mixed hardwood stands with moderate litter biomass and low shrub biomass, and (7) baldcypress-tupelo stands. Models representing these stand clusters generated flame lengths from 0.6 to 2.3 musing a 30 km h{sub 1} wind speed and fireline intensities of 100-1500 kW m{sub 1} that are typical within the range of experience on this landscape. The fuel models ranked 1 < 2 < 7 < 5 < 4 < 3 < 6 in terms of both flame length and fireline intensity. The method allows for ecologically complex data to be utilized in order to create a landscape representative of measured fuel conditions and to create models that interface with geospatial fire models.« less
Heo, Seongkum; Moser, Debra K; Lennie, Terry A; Riegel, Barbara; Chung, Misook L
2008-12-01
Although self-care may reduce exacerbations of heart failure, reported rates of effective self-care in patients with heart failure are low. Modifiable factors, including psychosocial status, knowledge, and physical factors, are thought to influence heart failure self-care, but little is known about their combined impact on self-care. The objective of this study was to identify factors related to self-care behaviors in patients with heart failure. A cross-sectional, correlational study design was used. One hundred twenty-two patients (77 men and 45 women, mean age 60+/-12 years old, 66% New York Heart Association functional class III/IV) were recruited from the outpatient clinics of an academic medical center and two community hospitals. Data on self-care behaviors (Self-Care of Heart Failure Index), depressive symptoms, perceived control, self-care confidence, knowledge, functional status, and social support were collected. Factors related to self-care were examined using hierarchical multiple regression. Mean self-care behavior scores were less than 70 indicating the majority of men and women with HF did not consistently engage in self-care behaviors. Higher self-care confidence and perceived control and better heart failure management knowledge were associated with better self-care (r2=.25, p<.001). Higher perceived control and better knowledge were related to better self-care behaviors in men (r2=.18, p=.001), while higher self-care confidence and poorer functional status were related to better self-care behaviors in women (r2=.35, p<.001). This study demonstrates the substantial impact of modifiable factors such as confidence in one's self-care abilities, perceived control, and knowledge on self-care behaviors. This study demonstrates that there are gender differences in factors affecting self-care, even though at baseline men and women have similar knowledge levels, physical, psychological, and behavioral status. Effective interventions focusing on modifiable factors and the unique characteristics of men and women should be provided to improve self-care behaviors in patients with heart failure.
NASA Astrophysics Data System (ADS)
Mirotta, S.; Guillot, J.; Chevalier, V.; Biard, B.
2018-01-01
The study of Reactivity Initiated Accidents (RIA) is important to determine up to which limits nuclear fuels can withstand such accidents without clad failure. The CABRI International Program (CIP), conducted by IRSN under an OECD/NEA agreement, has been launched to perform representative RIA Integral Effect Tests (IET) on real irradiated fuel rods in prototypical Pressurized Water Reactors (PWR) conditions. For this purpose, the CABRI experimental pulse reactor, operated by CEA in Cadarache, France, has been strongly renovated, and equipped with a pressurized water loop. The behavior of the test rod, located in that loop in the center of the driver core, is followed in real time during the power transients thanks to the hodoscope, a unique online fuel motion monitoring system, and one of the major distinctive features of CABRI. The hodoscope measures the fast neutrons emitted by the tested rod during the power pulse with a complete set of 153 Fission Chambers and 153 Proton Recoil Counters. During the CABRI facility renovation, the electronic chain of these detectors has been upgraded. In this paper, the performance of the new system is presented describing gain calibration methodology in order to get maximal Signal/Noise ratio for amplification modules, threshold tuning methodology for the discrimination modules (old and new ones), and linear detectors response limit versus different reactor powers for the whole electronic chain.
Accident Analysis for the NIST Research Reactor Before and After Fuel Conversion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baek J.; Diamond D.; Cuadra, A.
Postulated accidents have been analyzed for the 20 MW D2O-moderated research reactor (NBSR) at the National Institute of Standards and Technology (NIST). The analysis has been carried out for the present core, which contains high enriched uranium (HEU) fuel and for a proposed equilibrium core with low enriched uranium (LEU) fuel. The analyses employ state-of-the-art calculational methods. Three-dimensional Monte Carlo neutron transport calculations were performed with the MCNPX code to determine homogenized fuel compositions in the lower and upper halves of each fuel element and to determine the resulting neutronic properties of the core. The accident analysis employed a modelmore » of the primary loop with the RELAP5 code. The model includes the primary pumps, shutdown pumps outlet valves, heat exchanger, fuel elements, and flow channels for both the six inner and twenty-four outer fuel elements. Evaluations were performed for the following accidents: (1) control rod withdrawal startup accident, (2) maximum reactivity insertion accident, (3) loss-of-flow accident resulting from loss of electrical power with an assumption of failure of shutdown cooling pumps, (4) loss-of-flow accident resulting from a primary pump seizure, and (5) loss-of-flow accident resulting from inadvertent throttling of a flow control valve. In addition, natural circulation cooling at low power operation was analyzed. The analysis shows that the conversion will not lead to significant changes in the safety analysis and the calculated minimum critical heat flux ratio and maximum clad temperature assure that there is adequate margin to fuel failure.« less
NASA Astrophysics Data System (ADS)
Li, Bo-Shiuan
Ceramic materials such as silicon carbide (SiC) are promising candidate materials for nuclear fuel cladding and are of interest as part of a potential accident tolerant fuel design due to its high temperature strength, dimensional stability under irradiation, corrosion resistance, and lower neutron absorption cross-section. It also offers drastically lower hydrogen generation in loss of coolant accidents such as that experienced at Fukushima. With the implementation of SiC material properties to the fuel performance code, FRAPCON, performances of the SiC-clad fuel are compared with the conventional Zircaloy-clad fuel. Due to negligible creep and high stiffness, SiC-clad fuel allows gap closure at higher burnup and insignificant cladding dimensional change. However, severe degradation of SiC thermal conductivity with neutron irradiation will lead to higher fuel temperature with larger fission gas release. High stiffness of SiC has a drawback of accumulating large interfacial pressure upon pellet-cladding mechanical interactions (PCMI). This large stress will eventually reach the flexural strength of SiC, causing failure of SiC cladding instantly in a brittle manner instead of the graceful failure of ductile metallic cladding. The large interfacial pressure causes phenomena that were previously of only marginal significance and thus ignored (such as creep of the fuel) to now have an important role in PCMI. Consideration of the fuel pellet creep and elastic deformation in PCMI models in FRAPCON provide for an improved understanding of the magnitude of accumulated interfacial pressure. Outward swelling of the pellet is retarded by the inward irradiation-induced creep, which then reduces the rate of interfacial pressure buildup. Effect of PCMI can also be reduced and by increasing gap width and cladding thickness. However, increasing gap width and cladding thickness also increases the overall thermal resistance which leads to higher fuel temperature and larger fission gas release. An optimum design is sought considering both thermal and mechanical models of this ceramic cladding with UO2 and advanced high density fuels.
40 CFR 63.1012 - Compressor standards.
Code of Federal Regulations, 2011 CFR
2011-07-01
... fluid system degassing reservoir that is routed to a process or fuel gas system or connected by a closed... sensor that will detect failure of the seal system, barrier fluid system, or both. Each sensor shall be... the seal system, the barrier fluid system, or both. If the sensor indicates failure of the seal system...
40 CFR 63.1012 - Compressor standards.
Code of Federal Regulations, 2010 CFR
2010-07-01
... fluid system degassing reservoir that is routed to a process or fuel gas system or connected by a closed... sensor that will detect failure of the seal system, barrier fluid system, or both. Each sensor shall be... the seal system, the barrier fluid system, or both. If the sensor indicates failure of the seal system...
Test and analysis of a stitched RFI graphite-epoxy panel with a fuel access door
NASA Technical Reports Server (NTRS)
Jegley, Dawn C.; Waters, W. Allen, Jr.
1994-01-01
A stitched RFI graphite-epoxy panel with a fuel access door was analyzed using a finite element analysis and loaded to failure in compression. The panel was initially 56-inches long and 36.75-inches wide and the oval access door was 18-inches long and 15-inches wide. The panel was impact damaged with impact energy of 100 ft-lb prior to compressive loading; however, no impact damage was detectable visually or by A-scan. The panel carried a failure load of 695,000 Ib and global failure strain of .00494 in/in. Analysis indicated the panel would fail due to collapse at a load of 688,100 Ib. The test data indicate that the maximum strain in a region near the access door was .0096 in/in and analysis indicates a local surface strain of .010 in/in at the panel's failure load. The panel did not fail through the impact damage, but instead failed through bolt holes for attachment of the access door in a region of high strain.
NASA Technical Reports Server (NTRS)
Brown, K. L.; Bertsch, P. J.
1986-01-01
Results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. This report documents the independent analysis results corresponding to the Orbiter Electrical Power Generation (EPG)/Fuel Cell Powerplant (FCP) hardware. The EPG/FCP hardware is required for performing functions of electrical power generation and product water distribution in the Orbiter. Specifically, the EPG/FCP hardware consists of the following divisions: (1) Power Section Assembly (PSA); (2) Reactant Control Subsystem (RCS); (3) Thermal Control Subsystem (TCS); and (4) Water Removal Subsystem (WRS). The IOA analysis process utilized available EPG/FCP hardware drawings and schematics for defining hardware assemblies, components, and hardware items. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode.
Reliability analysis and initial requirements for FC systems and stacks
NASA Astrophysics Data System (ADS)
Åström, K.; Fontell, E.; Virtanen, S.
In the year 2000 Wärtsilä Corporation started an R&D program to develop SOFC systems for CHP applications. The program aims to bring to the market highly efficient, clean and cost competitive fuel cell systems with rated power output in the range of 50-250 kW for distributed generation and marine applications. In the program Wärtsilä focuses on system integration and development. System reliability and availability are key issues determining the competitiveness of the SOFC technology. In Wärtsilä, methods have been implemented for analysing the system in respect to reliability and safety as well as for defining reliability requirements for system components. A fault tree representation is used as the basis for reliability prediction analysis. A dynamic simulation technique has been developed to allow for non-static properties in the fault tree logic modelling. Special emphasis has been placed on reliability analysis of the fuel cell stacks in the system. A method for assessing reliability and critical failure predictability requirements for fuel cell stacks in a system consisting of several stacks has been developed. The method is based on a qualitative model of the stack configuration where each stack can be in a functional, partially failed or critically failed state, each of the states having different failure rates and effects on the system behaviour. The main purpose of the method is to understand the effect of stack reliability, critical failure predictability and operating strategy on the system reliability and availability. An example configuration, consisting of 5 × 5 stacks (series of 5 sets of 5 parallel stacks) is analysed in respect to stack reliability requirements as a function of predictability of critical failures and Weibull shape factor of failure rate distributions.
Demonstration of fuel resistant to pellet-cladding interaction. Phase I. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosenbaum, H.S.
1979-03-01
This program has as its ultimate objective the demonstration of an advanced fuel design that is resistant to the failure mechanism known as fuel pellet-cladding interaction (PCI). Two fuel concepts are being developed for possible demonstration within this program: (a) Cu-barrier fuel, and (b) Zr-liner fuel. These advanced fuels (known collectively as barrier fuels) have special fuel cladding designed to protect the Zircaloy cladding tube from the harmful effects of localized stress, and reactive fission products during reactor service. This is the final report for PHASE 1 of this program. Support tests have shown that the barrier fuel resists PCImore » far better than does the conventional Zircaloy-clad fuel. Power ramp tests thus far have shown good PCI resistance for Cu-barrier fuel at burnup > 12 MWd/kg-U and for Zr-liner fuel > 16 MWd/kg-U. The program calls for continued testing to still higher burnup levels in PHASE 2.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brzoska, B.; Depisch, F.; Fuchs, H.P.
To analyze the influence of prepressurization on fuel rod behavior, a parametric study has been performed that considers the effects of as-fabricated fuel rod internal prepressure on the normal operation and postulated loss-of-coolant accident (LOCA) rod behavior of a 1300-MW(electric) Kraftwerk Union (KWU) standard pressurized water reactor nuclear power plant. A variation of the prepressure in the range from 15 to 35 bars has only a slight influence on normal operation behavior. Considering the LOCA behavior, only a small temperature increase results from prepressure reduction, while the core-wide straining behavior is improved significantly. The KWU prepressurization takes both conditions intomore » account.« less
Modeling of thermo-mechanical and irradiation behavior of mixed oxide fuel for sodium fast reactors
NASA Astrophysics Data System (ADS)
Karahan, Aydın; Buongiorno, Jacopo
2010-01-01
An engineering code to model the irradiation behavior of UO2-PuO2 mixed oxide fuel pins in sodium-cooled fast reactors was developed. The code was named fuel engineering and structural analysis tool (FEAST-OXIDE). FEAST-OXIDE has several modules working in coupled form with an explicit numerical algorithm. These modules describe: (1) fission gas release and swelling, (2) fuel chemistry and restructuring, (3) temperature distribution, (4) fuel-clad chemical interaction and (5) fuel-clad mechanical analysis. Given the fuel pin geometry, composition and irradiation history, FEAST-OXIDE can analyze fuel and cladding thermo-mechanical behavior at both steady-state and design-basis transient scenarios. The code was written in FORTRAN-90 program language. The mechanical analysis module implements the LIFE algorithm. Fission gas release and swelling behavior is described by the OGRES and NEFIG models. However, the original OGRES model has been extended to include the effects of joint oxide gain (JOG) formation on fission gas release and swelling. A detailed fuel chemistry model has been included to describe the cesium radial migration and JOG formation, oxygen and plutonium radial distribution and the axial migration of cesium. The fuel restructuring model includes the effects of as-fabricated porosity migration, irradiation-induced fuel densification, grain growth, hot pressing and fuel cracking and relocation. Finally, a kinetics model is included to predict the clad wastage formation. FEAST-OXIDE predictions have been compared to the available FFTF, EBR-II and JOYO databases, as well as the LIFE-4 code predictions. The agreement was found to be satisfactory for steady-state and slow-ramp over-power accidents.
Factors Contributing to Pilot Valve Fuel Seal Extrusion in Orbiter PRCS Thrusters
NASA Technical Reports Server (NTRS)
Waller, J.M.; Saulsberry, R.L.; Albright, John D.
2000-01-01
Extrusion of the polytetrafluoroethylene (PTFE) pilot seal used in the monomethylhydrazine (fuel) valve of the Orbiter Primary Reaction Control System (PRCS) thrusters has been implicated in numerous on-orbit thruster failures and on-ground valve failures. Two extrusion mechanisms have been proposed, one or both may be occurring. The first mechanism is attributed to thermal expansion mismatch between adjacent PTFE and metal parts used in the fuel valve, and is referred to as thermal extrusion. The second mechanism is attributed to nitrogen tetroxide (oxidizer) leakage from the adjacent oxidizer valve on the same thruster during ground turnaround, and is referred to as oxidizer-induced extrusion. Model calculations of PTFE pilot seal in an exact pilot valve configuration show that extrusion can be caused by differential thermal expansion, without the intervening influence of oxidizer. Experimental data on semitrapped PTFE and TFM (modified PTFE) specimens simulating a fuel pilot valve configuration show that thermal extrusion 1) is incremental and irreversible, 2) increases with the size of the thermal excursion, 3) decreases with successive thermal cycling, and 4) is accompanied by gap formation. Both PTFE and TFM exhibit a higher affinity for oxidizer than fuel. The property changes associated with oxidizer uptake may explain why oxidizer seals do not exhibit extrusion. Impression replicas of fuel pilot seals removed from the Orbiter fleet show two types of extrusion: extrusion of the entire seal (loaded extrusion), or extrusion of non-sealing surface (unloaded extrusion). Both extrusion types may arise from differences in service history, rather than in failure mechanism. The plausibility oxidizer-induced extrusion was evaluated. Preliminary calculations suggest that enough energy, heat, or gas may be liberated under certain operational scenarios to cause catastrophic extrusion. However, given the lack of supporting data, conclusions implicating oxidizer leakage as a factor in extrusion must be made with caution.
The use of fuel breaks in landscape fire management
Agee, James K.; Bahro, Berni; Finney, Mark A.; Omi, Philip N.; Sapsis, David B.; Skinner, Carl N.; Van Wagtendonk, Jan W.; Weatherspoon, C. Phillip
2000-01-01
Shaded fuelbreaks and larger landscape fuel treatments, such as prescribed fire, are receiving renewed interest as forest protection strategies in the western United States. The effectiveness of fuelbreaks remains a subject of debate because of differing fuelbreak objectives, prescriptions for creation and maintenance, and their placement in landscapes with differing fire regimes. A well-designed fuelbreak will alter the behavior of wildland fire entering the fuel-altered zone. Both surface and crown fire behavior may be reduced. Shaded fuelbreaks must be created in the context of the landscape within which they are placed. No absolute standards for fuelbreak width or fuel reduction are possible, although recent proposals for forested fuelbreaks suggest 400 m wide bands where surface fuels are reduced and crown fuels are thinned. Landscape-level treatments such as prescribed fire can use shaded fuelbreaks as anchor points, and extend the zone of altered fire behavior to larger proportions of the landscape. Coupling fuelbreaks with area-wide fuel treatments can reduce the size, intensity, and effects of wildland fires.
Enhancing the ABAQUS Thermomechanics Code to Simulate Steady and Transient Fuel Rod Behavior
DOE Office of Scientific and Technical Information (OSTI.GOV)
R. L. Williamson; D. A. Knoll
2009-09-01
A powerful multidimensional fuels performance capability, applicable to both steady and transient fuel behavior, is developed based on enhancements to the commercially available ABAQUS general-purpose thermomechanics code. Enhanced capabilities are described, including: UO2 temperature and burnup dependent thermal properties, solid and gaseous fission product swelling, fuel densification, fission gas release, cladding thermal and irradiation creep, cladding irradiation growth , gap heat transfer, and gap/plenum gas behavior during irradiation. The various modeling capabilities are demonstrated using a 2D axisymmetric analysis of the upper section of a simplified multi-pellet fuel rod, during both steady and transient operation. Computational results demonstrate the importancemore » of a multidimensional fully-coupled thermomechanics treatment. Interestingly, many of the inherent deficiencies in existing fuel performance codes (e.g., 1D thermomechanics, loose thermo-mechanical coupling, separate steady and transient analysis, cumbersome pre- and post-processing) are, in fact, ABAQUS strengths.« less
NASA Astrophysics Data System (ADS)
Jezequel, T.; Auzoux, Q.; Le Boulch, D.; Bono, M.; Andrieu, E.; Blanc, C.; Chabretou, V.; Mozzani, N.; Rautenberg, M.
2018-02-01
During accidental power transient conditions with Pellet Cladding Interaction (PCI), the synergistic effect of the stress and strain imposed on the cladding by thermal expansion of the fuel, and corrosion by iodine released as a fission product, may lead to cladding failure by Stress Corrosion Cracking (SCC). In this study, internal pressure tests were conducted on unirradiated cold-worked stress-relieved Zircaloy-4 cladding tubes in an iodine vapor environment. The goal was to investigate the influence of loading type (constant pressure tests, constant circumferential strain rate tests, or constant circumferential strain tests) and test temperature (320, 350, or 380 °C) on iodine-induced stress corrosion cracking (I-SCC). The experimental results obtained with different loading types were consistent with each other. The apparent threshold hoop stress for I-SCC was found to be independent of the test temperature. SEM micrographs of the tested samples showed many pits distributed over the inner surface, which tended to coalesce into large pits in which a microcrack could initiate. A model for the time-to-failure of a cladding tube was developed using finite element simulations of the viscoplastic mechanical behavior of the material and a modified Kachanov's damage growth model. The times-to-failure predicted by this model are consistent with the experimental data.
BISON Fuel Performance Analysis of IFA-796 Rod 3 & 4 and Investigation of the Impact of Fuel Creep
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wirth, Brian; Terrani, Kurt A.; Sweet, Ryan T.
In order to improve the accident tolerance of light water reactor (LWR) fuel, alternative cladding materials have been proposed to replace the currently used zirconium (Zr)-based alloys. Of these materials, there is a particular focus on iron-chromiumaluminum (FeCrAl) alloys because they exhibit slower oxidation kinetics in high-temperature steam than Zr-alloys. This should decrease the energy release due to oxidation and slow cladding consumption in the presence of high temperature steam. These alloys should also exhibit increased “coping time” in the event of an accident scenario by improving the mechanical performance at high temperatures, allowing greater flexibility to achieve core cooling.more » As a continuation of the development of these alloys, in-reactor irradiation testing of FeCrAl cladded fuel rods has started. In order to provide insight on the possible behavior of these fuel rods as they undergo irradiation in the Halden Boiling Water Reactor, engineering analysis has been performed using FeCrAl material models implemented into the BISON fuel performance code. This milestone report provides an update on the ongoing development of modeling capability to predict FeCrAl cladding fuel performance and to provide an early look at the possible behavior of planned in-reactor FeCrAl cladding experiments. In particular, this report consists of two separate analyses. The first analysis consists of fuel performance simulations of IFA-796 rod 4 and two segments of rod 3. These simulations utilize previously implemented material models for the C35M FeCrAl alloy and UO2 to provide a bounding behavior analysis corresponding to variation of the initial fuel cladding gap thickness within the fuel rod. The second analysis is an assessment of the fuel and cladding stress states after modification of the fuel creep model that is currently implemented in the BISON fuel performance code. Effects from modifying the fuel creep model were identified for the BISON simulations of the IFA-796 rod 4 experiment, but show that varying the creep model (within the range investigated here) only provide a minimal increase in the fuel radius and maximum cladding hoop stress. Continued investigation of fuel behavioral models will include benchmarking the modified fuel creep model against available experimental data, as well as an investigation of the role that fuel cracking will play in the compliance of the fuel. Correctly calculating stress evolution in the fuel is key to assessing fuel behavior up to gap closure and the subsequent deformation of the cladding due to PCMI. The inclusion of frictional contact should also be investigated to determine the axial elongation of the fuel rods for comparison with data from this experiment.« less
Modeling a failure criterion for U-Mo/Al dispersion fuel
NASA Astrophysics Data System (ADS)
Oh, Jae-Yong; Kim, Yeon Soo; Tahk, Young-Wook; Kim, Hyun-Jung; Kong, Eui-Hyun; Yim, Jeong-Sik
2016-05-01
The breakaway swelling in U-Mo/Al dispersion fuel is known to be caused by large pore formation enhanced by interaction layer (IL) growth between fuel particles and Al matrix. In this study, a critical IL thickness was defined as a criterion for the formation of a large pore in U-Mo/Al dispersion fuel. Specifically, the critical IL thickness is given when two neighboring fuel particles come into contact with each other in the developed IL. The model was verified using the irradiation data from the RERTR tests and KOMO-4 test. The model application to full-sized sample irradiations such as IRISs, FUTURE, E-FUTURE, and AFIP-1 tests resulted in conservative predictions. The parametric study revealed that the fuel particle size and the homogeneity of the fuel particle distribution are influential for fuel performance.
BEHAVE: fire behavior prediction and fuel modeling system-BURN Subsystem, part 1
Patricia L. Andrews
1986-01-01
Describes BURN Subsystem, Part 1, the operational fire behavior prediction subsystem of the BEHAVE fire behavior prediction and fuel modeling system. The manual covers operation of the computer program, assumptions of the mathematical models used in the calculations, and application of the predictions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hollingsworth, LaWen T.; Kurth, Laurie,; Parresol, Bernard, R.
Landscape-scale fire behavior analyses are important to inform decisions on resource management projects that meet land management objectives and protect values from adverse consequences of fire. Deterministic and probabilistic geospatial fire behavior analyses are conducted with various modeling systems including FARSITE, FlamMap, FSPro, and Large Fire Simulation System. The fundamental fire intensity algorithms in these systems require surface fire behavior fuel models and canopy cover to model surface fire behavior. Canopy base height, stand height, and canopy bulk density are required in addition to surface fire behavior fuel models and canopy cover to model crown fire activity. Several surface fuelmore » and canopy classification efforts have used various remote sensing and ecological relationships as core methods to develop the spatial layers. All of these methods depend upon consistent and temporally constant interpretations of crown attributes and their ecological conditions to estimate surface fuel conditions. This study evaluates modeled fire behavior for an 80,000 ha tract of land in the Atlantic Coastal Plain of the southeastern US using three different data sources. The Fuel Characteristic Classification System (FCCS) was used to build fuelbeds from intensive field sampling of 629 plots. Custom fire behavior fuel models were derived from these fuelbeds. LANDFIRE developed surface fire behavior fuel models and canopy attributes for the US using satellite imagery informed by field data. The Southern Wildfire Risk Assessment (SWRA) developed surface fire behavior fuel models and canopy cover for the southeastern US using satellite imagery. Differences in modeled fire behavior, data development, and data utility are summarized to assist in determining which data source may be most applicable for various land management activities and required analyses. Characterizing fire behavior under different fuel relationships provides insights for natural ecological processes, management strategies for fire mitigation, and positive and negative features of different modeling systems. A comparison of flame length, rate of spread, crown fire activity, and burn probabilities modeled with FlamMap shows some similar patterns across the landscape from all three data sources, but there are potentially important differences. All data sources showed an expected range of fire behavior. Average flame lengths ranged between 1 and 1.4 m. Rate of spread varied the greatest with a range of 2.4-5.7 m min{sup -1}. Passive crown fire was predicted for 5% of the study area using FCCS and LANDFIRE while passive crown fire was not predicted using SWRA data. No active crown fire was predicted regardless of the data source. Burn probability patterns across the landscape were similar but probability was highest using SWRA and lowest using FCCS.« less
Unique failure behavior of metal/composite aircraft structural components under crash type loads
NASA Technical Reports Server (NTRS)
Carden, Huey D.
1990-01-01
Failure behavior results are presented on some of the crash dynamics research conducted with concepts of aircraft elements and substructure which have not necessarily been designed or optimized for energy absorption or crash loading considerations. To achieve desired new designs which incorporate improved energy absorption capabilities often requires an understanding of how more conventional designs behave under crash type loadings. Experimental and analytical data are presented which indicate some general trends in the failure behavior of a class of composite structures which include individual fuselage frames, skeleton subfloors with stringers and floor beams but without skin covering, and subfloors with skin added to the frame-stringer arrangement. Although the behavior is complex, a strong similarity in the static/dynamic failure behavior among these structures is illustrated through photographs of the experimental results and through analytical data of generic composite structural models. It is believed that the thread of similarity in behavior is telling the designer and dynamists a great deal about what to expect in the crash behavior of these structures and can guide designs for improving the energy absorption and crash behavior of such structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Chao; Xu, Jun; Cao, Lei
The electrodes of lithium-ion batteries (LIB) are known to be brittle and to fail earlier than the separators during an external crush event. Thus, the understanding of mechanical failure mechanism for LIB electrodes (anode and cathode) is critical for the safety design of LIB cells. In this paper, we present experimental and numerical studies on the constitutive behavior and progression of failure in LIB electrodes. Mechanical tests were designed and conducted to evaluate the constitutive properties of porous electrodes. Constitutive models were developed to describe the stress-strain response of electrodes under uniaxial tensile and compressive loads. The failure criterion andmore » a damage model were introduced to model their unique tensile and compressive failure behavior. The failure mechanism of LIB electrodes was studied using the blunt rod test on dry electrodes, and numerical models were built to simulate progressive failure. The different failure processes were examined and analyzed in detail numerically, and correlated with experimentally observed failure phenomena. Finally, the test results and models improve our understanding of failure behavior in LIB electrodes, and provide constructive insights on future development of physics-based safety design tools for battery structures under mechanical abuse.« less
Probabilistic analysis on the failure of reactivity control for the PWR
NASA Astrophysics Data System (ADS)
Sony Tjahyani, D. T.; Deswandri; Sunaryo, G. R.
2018-02-01
The fundamental safety function of the power reactor is to control reactivity, to remove heat from the reactor, and to confine radioactive material. The safety analysis is used to ensure that each parameter is fulfilled during the design and is done by deterministic and probabilistic method. The analysis of reactivity control is important to be done because it will affect the other of fundamental safety functions. The purpose of this research is to determine the failure probability of the reactivity control and its failure contribution on a PWR design. The analysis is carried out by determining intermediate events, which cause the failure of reactivity control. Furthermore, the basic event is determined by deductive method using the fault tree analysis. The AP1000 is used as the object of research. The probability data of component failure or human error, which is used in the analysis, is collected from IAEA, Westinghouse, NRC and other published documents. The results show that there are six intermediate events, which can cause the failure of the reactivity control. These intermediate events are uncontrolled rod bank withdrawal at low power or full power, malfunction of boron dilution, misalignment of control rod withdrawal, malfunction of improper position of fuel assembly and ejection of control rod. The failure probability of reactivity control is 1.49E-03 per year. The causes of failures which are affected by human factor are boron dilution, misalignment of control rod withdrawal and malfunction of improper position for fuel assembly. Based on the assessment, it is concluded that the failure probability of reactivity control on the PWR is still within the IAEA criteria.
Testing of uranium nitride fuel in T-111 cladding at 1200 K cladding temperature
NASA Technical Reports Server (NTRS)
Rohal, R. G.; Tambling, T. N.; Smith, R. L.
1973-01-01
Two groups of six fuel pins each were assembled, encapsulated, and irradiated in the Plum Brook Reactor. The fuel pins employed uranium mononitride (UN) in a tantalum alloy clad. The first group of fuel pins was irradiated for 1500 hours to a maximum burnup of 0.7-atom-percent uranium. The second group of fuel pins was irradiated for about 3000 hours to a maximum burnup of 1.0-atom-percent uranium. The average clad surface temperature during irradiation of both groups of fuel pins was approximately 1200 K. The postirradiation examination revealed the following: no clad failures or fuel swelling occurred; less than 1 percent of the fission gases escaped from the fuel; and the clad of the first group of fuel pins experienced clad embrittlement whereas the second group, which had modified assembly and fabrication procedures to minimize contamination, had a ductile clad after irradiation.
Policy implications of uncertainty in modeled life-cycle greenhouse gas emissions of biofuels.
Mullins, Kimberley A; Griffin, W Michael; Matthews, H Scott
2011-01-01
Biofuels have received legislative support recently in California's Low-Carbon Fuel Standard and the Federal Energy Independence and Security Act. Both present new fuel types, but neither provides methodological guidelines for dealing with the inherent uncertainty in evaluating their potential life-cycle greenhouse gas emissions. Emissions reductions are based on point estimates only. This work demonstrates the use of Monte Carlo simulation to estimate life-cycle emissions distributions from ethanol and butanol from corn or switchgrass. Life-cycle emissions distributions for each feedstock and fuel pairing modeled span an order of magnitude or more. Using a streamlined life-cycle assessment, corn ethanol emissions range from 50 to 250 g CO(2)e/MJ, for example, and each feedstock-fuel pathway studied shows some probability of greater emissions than a distribution for gasoline. Potential GHG emissions reductions from displacing fossil fuels with biofuels are difficult to forecast given this high degree of uncertainty in life-cycle emissions. This uncertainty is driven by the importance and uncertainty of indirect land use change emissions. Incorporating uncertainty in the decision making process can illuminate the risks of policy failure (e.g., increased emissions), and a calculated risk of failure due to uncertainty can be used to inform more appropriate reduction targets in future biofuel policies.
Nonlinear observer designs for fuel cell power systems
NASA Astrophysics Data System (ADS)
Gorgun, Haluk
A fuel cell is an electrochemical device that combines hydrogen and oxygen, with the aid of electro-catalysts, to produce electricity. A fuel cell consists of a negatively charged anode, a positively charged cathode and an electrolyte, which transports protons or ions. A low temperature fuel cell has an electrical potential of about 0.7 Volt when generating a current density of 300--500 mA/cm2. Practical fuel cell power systems will require a combination of several cells in series (a stack) to satisfy the voltage requirements of specific applications. Fuel cells are suitable for a potentially wide variety of applications, from stationary power generation in the range of hundreds of megawatts to portable electronics in the range of a couple of watts. Efficient operation of a fuel cell system requires advanced feedback control designs. Reliable measurements from the system are necessary to implement such designs. However, most of the commercially available sensors do not operate properly in the reformate and humidified gas streams in fuel cell systems. Sensors working varying degrees of success are too big and costly, and sensors that are potentially low cost are not reliable or do not have the required life time [28]. Observer designs would eliminate sensor needs for measurements, and make feedback control implementable. Since the fuel cell system dynamics are highly nonlinear, observer design is not an easy task. In this study we aim to develop nonlinear observer design methods applicable to fuel cell systems. In part I of the thesis we design an observer to estimate the hydrogen partial pressure in the anode channel. We treat inlet partial pressure as an unknown slowly varying parameter and develop an adaptive observer that employs a nonlinear voltage injection term. However in this design Fuel Processing System (FPS) dynamics are not modelled, and their effect on the anode dynamics are treated as plant uncertainty. In part II of the thesis we study the FPS dynamics, and estimate not only hydrogen but also all other species in its reactors. We design nonlinear observers for the Catalytic Partial Oxidation (CPO), Water Gas Shift (WGS), and Preferential Oxidation (PROX), reactors in the FPS. The observers make use of temperature measurements (and possibly one more variable, such as pressure) to estimate the mole fractions of each species in the reactors. An advantage of these designs is that they are based on reaction invariants and do not rely on knowledge of reaction rate expressions. Finally, in part III, we illustrate how the designs of parts I and II can be incorporated in fault detection and estimation algorithms for common failures encountered in fuel cells, such as the cathode blower failure and the anode valve failure. For this task, we combine geometric tools with our observers.
Chapter 2: Fire and Fuels Extension: Model description
Sarah J. Beukema; Elizabeth D. Reinhardt; Julee A. Greenough; Donald C. E. Robinson; Werner A. Kurz
2003-01-01
The Fire and Fuels Extension to the Forest Vegetation Simulator is a model that simulates fuel dynamics and potential fire behavior over time, in the context of stand development and management. Existing models are used to represent forest stand development (the Forest Vegetation Simulator, Wykoff and others 1982), fire behavior (Rothermel 1972, Van Wagner 1977, and...
Ecological forestry in the Southeast: Understanding the ecology of fuels
R.J. Mitchell; J.K. Hiers; J. O’Brien; G. Starr
2009-01-01
Fire is a dominant disturbance within many forested ecosystems worldwide. Understanding the complex feedbacks among vegetation as a fuel for fire, the effects of fuels on fire behavior, and the impact of fire behavior on future vegetation are critical for sustaining biodiversity in fire-dependent forests. Nonetheless, understanding in fire ecology has been limited in...
Research efforts on fuels, fuel models, and fire behavior in eastern hardwood forests
Thomas A. Waldrop; Lucy Brudnak; Ross J. Phillips; Patrick H. Brose
2006-01-01
Although fire was historically important to most eastern hardwood systems, its reintroduction by prescribed burning programs has been slow. As a result, less information is available on these systems to fire managers. Recent research and nationwide programs are beginning to produce usable products to predict fuel accumulation and fire behavior. We introduce some of...
Appraising fuels and flammability in western aspen: a prescribed fire guide
James K. Brown; Dennis G. Simmerman
1986-01-01
Describes a method for appraising fuels and fire behavior potential in aspen forests to guide the use of prescribed fire and the preparation of fire prescriptions. Includes an illustrated classification of aspen fuels; appraisals of fireline intensity, rate of spread, adjective ratings for fire behavior and probability of burn success; and evaluations of seasonal...
Fuel treatment longevity in a Sierra Nevada mixed conifer forest
Scott. L. Stephens; Brandon M. Collins; Gary. Roller
2012-01-01
Understanding the longevity of fuel treatments in terms of their ability to maintain fire behavior and effects within a desired range is an important question. The objective of this study was to determine how fuels, forest structure, and predicted fire behavior changed 7-years after initial treatments. Three different treatments: mechanical only, mechanical plus fire,...
[Chronic heart failure and depression].
Herrmann-Lingen, C
2018-05-01
Depression is a frequent comorbidity in chronic heart failure. It can be triggered by the experience of suffering from heart disease, but it can also play a causal role in accelerated development and poor prognosis of heart failure. The aim of this study was to investigate the interrelationships between heart failure and depression and the psychophysiological and behavioral mechanisms involved in this association. The effects of comorbid depression on quality of life in patients with heart failure were also examined and therapeutic options reviewed. A narrative review of the literature was undertaken. Several psychophysiological and behavioral mechanisms have been identified as mediators of the association between depression and heart failure and the adverse prognostic effects of this comorbidity. Comorbid depression leads to substantial reductions in health-related quality of life. These effects are only incompletely antagonized by exercise training and cognitive behavioral therapy. No specific effect of antidepressant medication has been demonstrated as yet in patients with heart failure. While current guidelines recommend the identification and treatment of depressive comorbidity in patients with heart failure, the available evidence provides no convincing rationale for specific treatment recommendations beyond the guideline-based treatment of heart failure itself, lifestyle interventions and patient-centered medical care. If available, psychotherapy should be offered, ideally cognitive behavioral therapy. For patients that do not improve sufficiently under outpatient treatment, the German health care system offers dedicated psychocardiological inpatient treatment programs.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-06
... correlation for the General Electric Nuclear Energy advanced fuel designs (i.e., GE14 and GNF2 fuels) used at... Electric Nuclear Energy in its report, ``10 CFR 21 Reportable Condition Notification: Potential to Exceed... failure-maximum demand open (PRFO) transient as reported by General Electric Nuclear Energy in its Part 21...
Alternative Fuels Data Center: Newsletters
Offers information on the development and maintenance of electric motors, drives, and related components Fuels Fuel Prices Conserve Fuel Idle Reduction Parts & Equipment Maintenance Driving Behavior Fleet
Numerical simulation of failure behavior of granular debris flows based on flume model tests.
Zhou, Jian; Li, Ye-xun; Jia, Min-cai; Li, Cui-na
2013-01-01
In this study, the failure behaviors of debris flows were studied by flume model tests with artificial rainfall and numerical simulations (PFC(3D)). Model tests revealed that grain sizes distribution had profound effects on failure mode, and the failure in slope of medium sand started with cracks at crest and took the form of retrogressive toe sliding failure. With the increase of fine particles in soil, the failure mode of the slopes changed to fluidized flow. The discrete element method PFC(3D) can overcome the hypothesis of the traditional continuous medium mechanic and consider the simple characteristics of particle. Thus, a numerical simulations model considering liquid-solid coupled method has been developed to simulate the debris flow. Comparing the experimental results, the numerical simulation result indicated that the failure mode of the failure of medium sand slope was retrogressive toe sliding, and the failure of fine sand slope was fluidized sliding. The simulation result is consistent with the model test and theoretical analysis, and grain sizes distribution caused different failure behavior of granular debris flows. This research should be a guide to explore the theory of debris flow and to improve the prevention and reduction of debris flow.
40 CFR 63.1007 - Pumps in light liquid service standards.
Code of Federal Regulations, 2011 CFR
2011-07-01
... sensor that indicates failure of the seal system, the barrier fluid system, or both. The owner or... reservoir that is routed to a process or fuel gas system or connected by a closed vent system to a control... liquid service. (iv) Each barrier fluid system is equipped with a sensor that will detect failure of the...
40 CFR 65.107 - Standards: Pumps in light liquid service.
Code of Federal Regulations, 2010 CFR
2010-07-01
... frequency of drips and to the sensor that indicates failure of the seal system, the barrier fluid system, or... or fuel gas system or connected by a closed vent system to a control device that complies with the... equipped with a sensor that will detect failure of the seal system, the barrier fluid system, or both. (v...
40 CFR 63.1007 - Pumps in light liquid service standards.
Code of Federal Regulations, 2010 CFR
2010-07-01
... sensor that indicates failure of the seal system, the barrier fluid system, or both. The owner or... reservoir that is routed to a process or fuel gas system or connected by a closed vent system to a control... liquid service. (iv) Each barrier fluid system is equipped with a sensor that will detect failure of the...
40 CFR 63.1026 - Pumps in light liquid service standards.
Code of Federal Regulations, 2010 CFR
2010-07-01
... presence and frequency of drips and to the sensor that indicates failure of the seal system, the barrier... or fuel gas system or connected by a closed-vent system to a control device that complies with the.... (iv) Each barrier fluid system is equipped with a sensor that will detect failure of the seal system...
Unmanned Aerial Vehicle Mishap Taxonomy for Range Safety Reviews
2016-02-01
Wind /Turbulence ................................................................................................. 5-3 5.1.3 Rain...majority of ignition system failures was traced to the magneto and were primarily attributed to exposure to high engine temperature or loose wiring ...intervals were mentioned in reports as corrective actions for these scenarios. One instance of fuel nozzle failure in a turbine -powered UAV resulted in
NASA Astrophysics Data System (ADS)
Carmack, W. J.; Chichester, H. M.; Porter, D. L.; Wootan, D. W.
2016-05-01
The Mechanistic Fuel Failure (MFF) series of metal fuel irradiations conducted in the Fast Flux Test Facility (FFTF) provides an important comparison between data generated in the Experimental Breeder Reactor (EBR-II) and that expected in a larger-scale fast reactor. The MFF fuel operated with a peak cladding temperature at the top of the fuel column, but developed peak burnup at the centerline of the core. This places the peak fuel temperature midway between the core center and the top of fuel, lower in the fuel column than in EBR-II experiments. Data from the MFF-3 and MFF-5 assemblies are most comparable to the data obtained from the EBR-II X447 experiment. The two X447 pin breaches were strongly influenced by fuel/cladding chemical interaction (FCCI) at the top of the fuel column. Post irradiation examination data from MFF-3 and MFF-5 are presented and compared to historical EBR-II data.
Nonlinear deformation and localized failure of bacterial streamers in creeping flows
Biswas, Ishita; Ghosh, Ranajay; Sadrzadeh, Mohtada; Kumar, Aloke
2016-01-01
We investigate the failure of bacterial floc mediated streamers in a microfluidic device in a creeping flow regime using both experimental observations and analytical modeling. The quantification of streamer deformation and failure behavior is possible due to the use of 200 nm fluorescent polystyrene beads which firmly embed in the extracellular polymeric substance (EPS) and act as tracers. The streamers, which form soon after the commencement of flow begin to deviate from an apparently quiescent fully formed state in spite of steady background flow and limited mass accretion indicating significant mechanical nonlinearity. This nonlinear behavior shows distinct phases of deformation with mutually different characteristic times and comes to an end with a distinct localized failure of the streamer far from the walls. We investigate this deformation and failure behavior for two separate bacterial strains and develop a simplified but nonlinear analytical model describing the experimentally observed instability phenomena assuming a necking route to instability. Our model leads to a power law relation between the critical strain at failure and the fluid velocity scale exhibiting excellent qualitative and quantitative agreeing with the experimental rupture behavior. PMID:27558511
NASA Astrophysics Data System (ADS)
Pokhrel, A.; El Hannach, M.; Orfino, F. P.; Dutta, M.; Kjeang, E.
2016-10-01
X-ray computed tomography (XCT), a non-destructive technique, is proposed for three-dimensional, multi-length scale characterization of complex failure modes in fuel cell electrodes. Comparative tomography data sets are acquired for a conditioned beginning of life (BOL) and a degraded end of life (EOL) membrane electrode assembly subjected to cathode degradation by voltage cycling. Micro length scale analysis shows a five-fold increase in crack size and 57% thickness reduction in the EOL cathode catalyst layer, indicating widespread action of carbon corrosion. Complementary nano length scale analysis shows a significant reduction in porosity, increased pore size, and dramatically reduced effective diffusivity within the remaining porous structure of the catalyst layer at EOL. Collapsing of the structure is evident from the combination of thinning and reduced porosity, as uniquely determined by the multi-length scale approach. Additionally, a novel image processing based technique developed for nano scale segregation of pore, ionomer, and Pt/C dominated voxels shows an increase in ionomer volume fraction, Pt/C agglomerates, and severe carbon corrosion at the catalyst layer/membrane interface at EOL. In summary, XCT based multi-length scale analysis enables detailed information needed for comprehensive understanding of the complex failure modes observed in fuel cell electrodes.
FuelCalc: A Method for Estimating Fuel Characteristics
Elizabeth Reinhardt; Duncan Lutes; Joe Scott
2006-01-01
This paper describes the FuelCalc computer program. FuelCalc is a tool to compute surface and canopy fuel loads and characteristics from inventory data, to support fuel treatment decisions by simulating effects of a wide range of silvicultural treatments on surface fuels and canopy fuels, and to provide linkages to stand visualization, fire behavior and fire effects...
Nuclear safety. Technical progress journal, October 1996--December 1996
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
The five papers in this issue address various issues associated with the behavior of high burnup fuels, especially under reactivity initiated accident (RIA) conditions. The mechanisms and parameters that have an effect on the fuel behavior are detailed, based on tests and analyses. The ultimate goal of the research reported is the development of new regulatory criteria for high burnup fuel under design basis accident conditions. Specific topics of the papers, which are abstracted individually in the database, are: (1) regulatory assessment of test data for RIAs, (2) high burnup fuel transient behavior under RIA conditions, (3) NSRR/RIA experiments withmore » high burnup PWR fuels, (4) the Russian RIA research program, and (5) RIA simulation experiments on the intermediate and high burnup test rods. The papers are contributed from the United States, France, Japan, and Russia.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jy-An John; Wang, Hong; Bevard, Bruce Balkcom
Transportation packages for spent nuclear fuel (SNF) must meet safety requirements under normal and accident conditions as specified by federal regulations. During transportation, SNF experiences unique conditions and challenges to cladding integrity due to the vibrational and impact loading during road or rail shipment. Oak Ridge National Laboratory (ORNL) has been developing testing capabilities that can be used to improve the understanding of the impacts on SNF integrity due to vibration loading, especially for high burn-up SNF in normal transportation operation conditions. This information can be used to meet the nuclear industry and U.S. Nuclear Regulatory Commission needs in themore » area of safety and security of spent nuclear fuel storage and transport operations. The ORNL developed test system can perform reversible-bending fatigue testing to evaluate both the static and dynamic mechanical response of SNF rods under simulated loads. The testing apparatus is also designed to meet the challenges of hot-cell operation, including remote installation and detachment of the SNF test specimen, in-situ test specimen deformation measurement, and implementation of a driving system suitable for use in a hot cell. The system contains a U-frame set-up equipped with uniquely designed grip rigs, to protect SNF rod and to ensure valid test results, and use of 3 specially designed LVDTs to obtain the in-situ curvature measurement. A variety of surrogate test rods have been used to develop and calibrate the test system as well as in performing a series of systematic cyclic fatigue tests. The surrogate rods include stainless steel (SS) cladding, SS cladding with cast epoxy, and SS cladding with alumina pellets inserts simulating fuel pellets. Testing to date has shown that the interface bonding between the SS cladding and the alumina pellets has a significant impact on the bending response of the test rods as well as their fatigue strength. The failure behaviors observed from tested surrogate rods provides a fundamental understanding of the underlying failure mechanisms of the SNF surrogate rod under vibration which has not been achieved previously. The newly developed device is scheduled to be installed in the hot-cell in summer 2013 to test high burnup SNF.« less
Creep analysis of solid oxide fuel cell with bonded compliant seal design
NASA Astrophysics Data System (ADS)
Jiang, Wenchun; Zhang, Yucai; Luo, Yun; Gong, J. M.; Tu, S. T.
2013-12-01
Solid oxide fuel cell (SOFC) requires good sealant because it works in harsh conditions (high temperature, thermal cycle, oxidative and reducing gas environments). Bonded compliant seal (BCS) is a new sealing method for planar SOFC. It uses a thin foil metal to bond the window frame and cell, achieving the seal between window frame and cell. At high temperature, a comprehensive evaluation of its creep strength is essential for the adoption of BCS design. In order to characterize the creep behavior, the creep induced by thermal stresses in SOFC with BCS design is simulated by finite element method. The results show that the foil is compressed and large thermal stresses are generated. The initial peak thermal stress is located in the thin foil because the foil acts as a spring stores the thermal stresses by elastic and plastic deformation in itself. Serving at high temperature, initial thermal displacement is partially recovered because of the creep relaxation, which becomes a new discovered advantage for BCS design. It predicts that the failures are likely to happen in the middle of the cell edge and BNi-2 filler metal, because the maximum residual displacement and creep strain are located.
Development of an LS-DYNA Model of an ATR42-300 Aircraft for Crash Simulation
NASA Technical Reports Server (NTRS)
Jackson, Karen E.; Fasanella, Edwin L.
2004-01-01
This paper describes the development of an LS-DYNA simulation of a vertical drop test of an ATR42-300 twin-turboprop high-wing commuter-class airplane. A 30-ft/s drop test of this aircraft was performed onto a concrete impact surface at the FAA Technical Center on July 30, 2003. The purpose of the test was to evaluate the structural response of a commuter-class aircraft when subjected to a severe, but survivable, impact. The aircraft was configured with crew and passenger seats, anthropomorphic test dummies, forward and aft luggage, instrumentation, and onboard data acquisition systems. The wings were filled with approximately 8,700 lb. of water to represent the fuel and the aircraft weighed a total of 33,200 lb. The model, which consisted of 57,643 nodes and 62,979 elements, was developed from direct measurements of the airframe geometry, over a period of approximately 8 months. The seats, dummies, luggage, fuel, and other ballast were represented using concentrated masses. Comparisons were made of the structural deformation and failure behavior of the airframe, as well as selected acceleration time history responses.
Y.S. Valachovic; C.A. Lee; H. Scanlon; J.M. Varner; R. Glebocki; B.D. Graham; D.M. Rizzo
2011-01-01
We compared stand structure and fuel loading in northwestern California forests invaded by Phytophthora ramorum, the cause of sudden oak death, to assess whether the continued presence of this pathogen alters surface fuel loading and potential fire behavior in ways that may encumber future firefighting response. To attempt to account for these...
Chapter 11 - Post-hurricane fuel dynamics and implications for fire behavior (Project SO-EM-F-12-01)
Shanyue Guan; G. Geoff. Wang
2018-01-01
Hurricanes have long been a powerful and recurring disturbance in many coastal forest ecosystems. Intense hurricanes often produce a large amount of dead fuels in their affected forests. How the post-hurricane fuel complex changes with time, due todecomposition and management such as salvage, and its implications for fire behavior remain largely unknown....
Photo Series for Estimating Post-Hurricane Residues and Fire Behavior in Southern Pine
Dale D. Wade; James K. Forbus; James M. Saveland
1993-01-01
Following Hurricane Hugo, fuels were sampled on nine 2-acre blocks which were then burned during the spring wildfire season. The study was superimposed on dormant-season fire-interval research plots established in 1958 on the Francis Marion National Forest near Charleston, SC. Photographs of preburn fuel loads, fire behavior, and postburn fuel loads were taken to...
Modeling a failure criterion for U–Mo/Al dispersion fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oh, Jae-Yong; Kim, Yeon Soo; Tahk, Young-Wook
2016-05-01
The breakaway swelling in U-Mo/Al dispersion fuel is known to be caused by large pore formation enhanced by interaction layer (IL) growth between fuel particles and Al matrix. In this study, a critical IL thickness was defined as a criterion for the formation of a large pore in U-Mo/Al dispersion fuel. Specifically, the critical IL thickness is given when two neighboring fuel particles come into contact with each other in the developed IL. The model was verified using the irradiation data from the RERTR tests and KOMO- 4 test. The model application to full-sized sample irradiations such as IRISs, FUTURE,more » E-FUTURE, and AFIP-1 tests resulted in conservative predictions. The parametric study revealed that the fuel particle size and the homogeneity of the fuel particle distribution are influential for fuel performance.« less
Climatic and weather factors affecting fire occurrence and behavior
Randall P. Benson; John O. Roads; David R. Weise
2009-01-01
Weather and climate have a profound influence on wildland fire ignition potential, fire behavior, and fire severity. Local weather and climate are affected by large-scale patterns of winds over the hemispheres that predispose wildland fuels to fire. The characteristics of wildland fuels, especially the moisture content, ultimately determine fire behavior and the impact...
Fire Behavior System for the Full Range of Fire Management Needs
Richard C. Rothermel; Patricia L. Andrews
1987-01-01
An "integrated fire behavior/fire danger rating system" should be "seamless" to avoid requiring choices among alternate, independent systems. Descriptions of fuel moisture, fuels, and fire behavior should be standardized, permitting information to flow easily through the spectrum of fire management needs. The level of resolution depends on the...
Validation of behave fire behavior predictions in oak savannas
Grabner, Keith W.; Dwyer, John; Cutter, Bruce E.
1997-01-01
Prescribed fire is a valuable tool in the restoration and management of oak savannas. BEHAVE, a fire behavior prediction system developed by the United States Forest Service, can be a useful tool when managing oak savannas with prescribed fire. BEHAVE predictions of fire rate-of-spread and flame length were validated using four standardized fuel models: Fuel Model 1 (short grass), Fuel Model 2 (timber and grass), Fuel Model 3 (tall grass), and Fuel Model 9 (hardwood litter). Also, a customized oak savanna fuel model (COSFM) was created and validated. Results indicate that standardized fuel model 2 and the COSFM reliably estimate mean rate-of-spread (MROS). The COSFM did not appreciably reduce MROS variation when compared to fuel model 2. Fuel models 1, 3, and 9 did not reliably predict MROS. Neither the standardized fuel models nor the COSFM adequately predicted flame lengths. We concluded that standardized fuel model 2 should be used with BEHAVE when predicting fire rates-of-spread in established oak savannas.
Statistical Models of Fracture Relevant to Nuclear-Grade Graphite: Review and Recommendations
NASA Technical Reports Server (NTRS)
Nemeth, Noel N.; Bratton, Robert L.
2011-01-01
The nuclear-grade (low-impurity) graphite needed for the fuel element and moderator material for next-generation (Gen IV) reactors displays large scatter in strength and a nonlinear stress-strain response from damage accumulation. This response can be characterized as quasi-brittle. In this expanded review, relevant statistical failure models for various brittle and quasi-brittle material systems are discussed with regard to strength distribution, size effect, multiaxial strength, and damage accumulation. This includes descriptions of the Weibull, Batdorf, and Burchell models as well as models that describe the strength response of composite materials, which involves distributed damage. Results from lattice simulations are included for a physics-based description of material breakdown. Consideration is given to the predicted transition between brittle and quasi-brittle damage behavior versus the density of damage (level of disorder) within the material system. The literature indicates that weakest-link-based failure modeling approaches appear to be reasonably robust in that they can be applied to materials that display distributed damage, provided that the level of disorder in the material is not too large. The Weibull distribution is argued to be the most appropriate statistical distribution to model the stochastic-strength response of graphite.
Antimisting fuel breakup and flammability
NASA Technical Reports Server (NTRS)
Parikh, P.; Fleeter, R.; Sarohia, V.
1983-01-01
The breakup behavior and flammability of antimisting turbine fuels subjected to aerodynamic shear are investigated. Fuels tested were Jet A containing 0.3% FM-9 polymer at various levels of degradation ranging from virgin AMK to neat Jet A. The misting behavior of the fuels was quantified by droplet size distribution measurements. A technique based on high resolution laser photography and digital image processing of photographic records for rapid determination of droplet size distribution was developed. The flammability of flowing droplet-air mixtures was quantified by direct measurements of temperature rise in a flame established in the wake of a continuous ignition source. The temperature rise measurements were correlated with droplet size measurements. The flame anchoring phenomenon associated with the breakup of a liquid fuel in the wake of bluff body was shown to be important in the context of a survivable crash scenario. A pass/fail criterion for flammability testing of antimisting fuels, based on this flame-anchoring phenomenon, was proposed. The role of various ignition sources and their intensity in ignition and post-ignition behavior of antimisting fuels was also investigated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
R. L. Williamson
A powerful multidimensional fuels performance analysis capability, applicable to both steady and transient fuel behavior, is developed based on enhancements to the commercially available ABAQUS general-purpose thermomechanics code. Enhanced capabilities are described, including: UO2 temperature and burnup dependent thermal properties, solid and gaseous fission product swelling, fuel densification, fission gas release, cladding thermal and irradiation creep, cladding irradiation growth, gap heat transfer, and gap/plenum gas behavior during irradiation. This new capability is demonstrated using a 2D axisymmetric analysis of the upper section of a simplified multipellet fuel rod, during both steady and transient operation. Comparisons are made between discrete andmore » smeared-pellet simulations. Computational results demonstrate the importance of a multidimensional, multipellet, fully-coupled thermomechanical approach. Interestingly, many of the inherent deficiencies in existing fuel performance codes (e.g., 1D thermomechanics, loose thermomechanical coupling, separate steady and transient analysis, cumbersome pre- and post-processing) are, in fact, ABAQUS strengths.« less
Protected Nuclear Fuel Element
Kittel, J. H.; Schumar, J. F.
1962-12-01
A stainless steel-clad actinide metal fuel rod for use in fast reactors is reported. In order to prevert cladding failures due to alloy formation between the actinide metal and the stainless steel, a mesh-like sleeve of expanded metal is interposed between them, the sleeve metal being of niobium, tantalum, molybdenum, tungsten, zirconium, or vanadium. Liquid alkali metal is added as a heat transfer agent. (AEC)
40 CFR Appendix B to Part 75 - Quality Assurance and Quality Control Procedures
Code of Federal Regulations, 2014 CFR
2014-07-01
... transmitters of an orifice-, nozzle-, or venturi-type fuel flowmeter under section 2.1.6 of appendix D to this... nozzle) of an orifice-, venturi-, or nozzle-type fuel flowmeter. Examples of the types of information to..., but ≤200 ppm). The out-of-control period begins upon failure of the calibration error test and ends...
Validating the BISON fuel performance code to integral LWR experiments
Williamson, R. L.; Gamble, K. A.; Perez, D. M.; ...
2016-03-24
BISON is a modern finite element-based nuclear fuel performance code that has been under development at the Idaho National Laboratory (INL) since 2009. The code is applicable to both steady and transient fuel behavior and has been used to analyze a variety of fuel forms in 1D spherical, 2D axisymmetric, or 3D geometries. Code validation is underway and is the subject of this study. A brief overview of BISON’s computational framework, governing equations, and general material and behavioral models is provided. BISON code and solution verification procedures are described, followed by a summary of the experimental data used to datemore » for validation of Light Water Reactor (LWR) fuel. Validation comparisons focus on fuel centerline temperature, fission gas release, and rod diameter both before and following fuel-clad mechanical contact. Comparisons for 35 LWR rods are consolidated to provide an overall view of how the code is predicting physical behavior, with a few select validation cases discussed in greater detail. Our results demonstrate that 1) fuel centerline temperature comparisons through all phases of fuel life are very reasonable with deviations between predictions and experimental data within ±10% for early life through high burnup fuel and only slightly out of these bounds for power ramp experiments, 2) accuracy in predicting fission gas release appears to be consistent with state-of-the-art modeling and with the involved uncertainties and 3) comparison of rod diameter results indicates a tendency to overpredict clad diameter reduction early in life, when clad creepdown dominates, and more significantly overpredict the diameter increase late in life, when fuel expansion controls the mechanical response. In the initial rod diameter comparisons they were unsatisfactory and have lead to consideration of additional separate effects experiments to better understand and predict clad and fuel mechanical behavior. Results from this study are being used to define priorities for ongoing code development and validation activities.« less
Failure analysis of electrolyte-supported solid oxide fuel cells
NASA Astrophysics Data System (ADS)
Fleischhauer, Felix; Tiefenauer, Andreas; Graule, Thomas; Danzer, Robert; Mai, Andreas; Kuebler, Jakob
2014-07-01
For solid oxide fuel cells (SOFCs) one key aspect is the structural integrity of the cell and hence its thermo mechanical long term behaviour. The present study investigates the failure mechanisms and the actual causes for fracture of electrolyte supported SOFCs which were run using the current μ-CHP system of Hexis AG, Winterthur - Switzerland under lab conditions or at customer sites for up to 40,000 h. In a first step several operated stacks were demounted for post-mortem inspection, followed by a fractographic evaluation of the failed cells. The respective findings are then set into a larger picture including an analysis of the present stresses acting on the cell like thermal and residual stresses and the measurements regarding the temperature dependent electrolyte strength. For all investigated stacks, the mechanical failure of individual cells can be attributed to locally acting bending loads, which rise due to an inhomogeneous and uneven contact between the metallic interconnect and the cell.
Validation of BEHAVE fire behavior predictions in oak savannas using five fuel models
Keith Grabner; John Dwyer; Bruce Cutter
1997-01-01
Prescribed fire is a valuable tool in the restoration and management of oak savannas. BEHAVE, a fire behavior prediction system developed by the United States Forest Service, can be a useful tool when managing oak savannas with prescribed fire. BEHAVE predictions of fire rate-of-spread and flame length were validated using four standardized fuel models: Fuel Model 1 (...
The dynamic failure behavior of tungsten heavy alloys subjected to transverse loads
NASA Astrophysics Data System (ADS)
Tarcza, Kenneth Robert
Tungsten heavy alloys (WHA), a category of particulate composites used in defense applications as kinetic energy penetrators, have been studied for many years. Even so, their dynamic failure behavior is not fully understood and cannot be predicted by numerical models presently in use. In this experimental investigation, a comprehensive understanding of the high-rate transverse-loading fracture behavior of WHA has been developed. Dynamic fracture events spanning a range of strain rates and loading conditions were created via mechanical testing and used to determine the influence of surface condition and microstructure on damage initiation, accumulation, and sample failure under different loading conditions. Using standard scanning electron microscopy metallographic and fractographic techniques, sample surface condition is shown to be extremely influential to the manner in which WHA fails, causing a fundamental change from externally to internally nucleated failures as surface condition is improved. Surface condition is characterized using electron microscopy and surface profilometry. Fracture surface analysis is conducted using electron microscopy, and linear elastic fracture mechanics is used to understand the influence of surface condition, specifically initial flaw size, on sample failure behavior. Loading conditions leading to failure are deduced from numerical modeling and experimental observation. The results highlight parameters and considerations critical to the understanding of dynamic WHA fracture and the development of dynamic WHA failure models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katoh, Yutai; Terrani, Kurt A.
2015-08-01
Fuels and core structures in current light water reactors (LWR’s) are vulnerable to catastrophic failure in severe accidents as unfortunately evidenced by the March 2011 Fukushima Dai-ichi Nuclear Power Plant Accident. This vulnerability is attributed primarily to the rapid oxidation kinetics of zirconium alloys in a water vapor environment at very high temperatures. Zr alloys are the primary material in LWR cores except for the fuel itself. Therefore, alternative materials with reduced oxidation kinetics as compared to zirconium alloys are sought to enable enhanced accident-tolerant fuels and cores.
NASA Technical Reports Server (NTRS)
Brown, K. L.; Bertsch, P. J.
1987-01-01
Results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed an analysis of the Electrical Power Generation/Fuel Cell Powerplant (EPG/FCP) hardware, generating draft failure modes and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were then compared to the proposed Post 51-L NASA FMEA/CIL baseline. A resolution of each discrepancy from the comparison was provided through additional analysis as required. This report documents the results of that comparison for the Orbiter EPG/FCP hardware.
Application of the DART Code for the Assessment of Advanced Fuel Behavior
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rest, J.; Totev, T.
2007-07-01
The Dispersion Analysis Research Tool (DART) code is a dispersion fuel analysis code that contains mechanistically-based fuel and reaction-product swelling models, a one dimensional heat transfer analysis, and mechanical deformation models. DART has been used to simulate the irradiation behavior of uranium oxide, uranium silicide, and uranium molybdenum aluminum dispersion fuels, as well as their monolithic counterparts. The thermal-mechanical DART code has been validated against RERTR tests performed in the ATR for irradiation data on interaction thickness, fuel, matrix, and reaction product volume fractions, and plate thickness changes. The DART fission gas behavior model has been validated against UO{sub 2}more » fission gas release data as well as measured fission gas-bubble size distributions. Here DART is utilized to analyze various aspects of the observed bubble growth in U-Mo/Al interaction product. (authors)« less
The Role of Academic Failure in Hyperactive Behavior
ERIC Educational Resources Information Center
Cunningham, Charles E.; Barkley, Russell A.
1978-01-01
A model and supporting research are presented which suggest that academic failure resulting from a variety of etiological factors is sufficient to generate the behavioral patterns observed in many hyperactive children. (CL)
David A. Schmidt; Alan H. Taylor; Carl N. Skinner
2008-01-01
Wildfire behavior can be modified by altering the quantity, structure, and arrangement of fuel (flammable vegetation) by silvicultural treatments such as forest thinning and prescribed burning. The type and arrangement (including landscape location) of treated areas have been demonstrated to influence wildfire behavior. This study analyzes the response of several key...
Final report of fuel dynamics Test E7
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doerner, R.C.; Murphy, W.F.; Stanford, G.S.
1977-04-01
Test data from an in-pile failure experiment of high-power LMFBR-type fuel pins in a simulated $3/s transient-overpower (TOP) accident are reported and analyzed. Major conclusions are that (1) a series of cladding ruptures during the 100-ms period preceding fuel release injected small bursts of fission gas into the flow stream; (2) gas release influenced subsequent cladding melting and fuel release (there were no measurable FCI's (fuel-coolant interactions), and all fuel motion observed by the hodoscope was very slow); (3) the predominant postfailure fuel motion appears to be radial swelling that left a spongy fuel crust on the holder wall; (4)more » less than 4 to 6 percent of the fuel moved axially out of the original fuel zone, and most of this froze within a 10-cm region above the original top of the fuel zone to form the outlet blockage. An inlet blockage approximately 1 cm long was formed and consisted of large interconnected void regions. Both blockages began just beyond the ends of the fuel pellets.« less
Failure of a laminated composite under tension-compression fatigue loading
NASA Technical Reports Server (NTRS)
Rotem, A.; Nelson, H. G.
1989-01-01
The fatigue behavior of composite laminates under tension-compression loading is analyzed and compared with behavior under tension-tension and compression-compression loading. It is shown that for meaningful fatigue conditions, the tension-compression case is the dominant one. Both tension and compression failure modes can occur under the reversed loading, and failure is dependent on the specific lay-up of the laminate and the difference between the tensile static strength and the absolute value of the compressive static strength. The use of a fatigue failure envelope for determining the fatigue life and mode of failure is proposed and demonstrated.
Evaluation of the finite element fuel rod analysis code (FRANCO)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, K.; Feltus, M.A.
1994-12-31
Knowledge of temperature distribution in a nuclear fuel rod is required to predict the behavior of fuel elements during operating conditions. The thermal and mechanical properties and performance characteristics are strongly dependent on the temperature, which can vary greatly inside the fuel rod. A detailed model of fuel rod behavior can be described by various numerical methods, including the finite element approach. The finite element method has been successfully used in many engineering applications, including nuclear piping and reactor component analysis. However, fuel pin analysis has traditionally been carried out with finite difference codes, with the exception of Electric Powermore » Research Institute`s FREY code, which was developed for mainframe execution. This report describes FRANCO, a finite element fuel rod analysis code capable of computing temperature disrtibution and mechanical deformation of a single light water reactor fuel rod.« less
Negative Behavior Factors in the Employment Interview: Interviewer Opinions and Observations.
ERIC Educational Resources Information Center
Vaughn, Jeanette W.; Darsey, Nancy
1987-01-01
Determined types of behavior occurring most often in campus interviews and to which types interviewers react negatively. Lack of confidence, failure to ask key questions, nervous mannerisms, talkativeness, and failure to elaborate on answers were the most common behaviors. Poor attitude and dishonesty were among traits viewed most negatively.(SKC)
Manara, Dario; Soldi, Luca; Mastromarino, Sara; Boboridis, Kostantinos; Robba, Davide; Vlahovic, Luka; Konings, Rudy
2017-12-14
Major and severe accidents have occurred three times in nuclear power plants (NPPs), at Three Mile Island (USA, 1979), Chernobyl (former USSR, 1986) and Fukushima (Japan, 2011). Research on the causes, dynamics, and consequences of these mishaps has been performed in a few laboratories worldwide in the last three decades. Common goals of such research activities are: the prevention of these kinds of accidents, both in existing and potential new nuclear power plants; the minimization of their eventual consequences; and ultimately, a full understanding of the real risks connected with NPPs. At the European Commission Joint Research Centre's Institute for Transuranium Elements, a laser-heating and fast radiance spectro-pyrometry facility is used for the laboratory simulation, on a small scale, of NPP core meltdown, the most common type of severe accident (SA) that can occur in a nuclear reactor as a consequence of a failure of the cooling system. This simulation tool permits fast and effective high-temperature measurements on real nuclear materials, such as plutonium and minor actinide-containing fission fuel samples. In this respect, and in its capability to produce large amount of data concerning materials under extreme conditions, the current experimental approach is certainly unique. For current and future concepts of NPP, example results are presented on the melting behavior of some different types of nuclear fuels: uranium-plutonium oxides, carbides, and nitrides. Results on the high-temperature interaction of oxide fuels with containment materials are also briefly shown.
The relationship between fuel lubricity and diesel injection system wear
NASA Astrophysics Data System (ADS)
Lacy, Paul I.
1992-01-01
Use of low-lubricity fuel may have contributed to increased failure rates associated with critical fuel injection equipment during the 1991 Operation Desert Storm. However, accurate quantitative analysis of failed components from the field is almost impossible due to the unique service history of each pump. This report details the results of pump stand tests with fuels of equal viscosity, but widely different lubricity. Baseline tests were also performed using reference no. 2 diesel fuel. Use of poor lubricity fuel under these controlled conditions was found to greatly reduce both pump durability and engine performance. However, both improved metallurgy and fuel lubricity additives significantly reduced wear. Good correlation was obtained between standard bench tests and lightly loaded pump components. However, high contact loads on isolated components produced a more severe wear mechanism that is not well reflected by the Ball-on-Cylinder Lubricity Evaluator.
Alternative Fuels Data Center: Propane
they work, and find information about vehicle availability, conversions, emissions, maintenance, and Fuel Prices Conserve Fuel Idle Reduction Parts & Equipment Maintenance Driving Behavior Fleet
B. J. Collins; C. C. Rhoades; M. A. Battaglia; R. M. Hubbard
2012-01-01
Recent mountain pine beetle infestations have resulted in widespread tree mortality and the accumulation of dead woody fuels across the Rocky Mountain region, creating concerns over future forest stand conditions and fire behavior. We quantified how salvage logging influenced tree regeneration and fuel loads relative to nearby, uncut stands for 24 lodgepole pine...
Comparision on dynamic behavior of diesel spray and rapeseed oil spray in diesel engine
NASA Astrophysics Data System (ADS)
Sapit, Azwan; Azahari Razali, Mohd; Faisal Hushim, Mohd; Jaat, Norrizam; Nizam Mohammad, Akmal; Khalid, Amir
2017-04-01
Fuel-air mixing is important process in diesel combustion. It significantly affects the combustion and emission of diesel engine. Biomass fuel has high viscosity and high distillation temperature and may negatively affect the fuel-air mixing process. Thus, study on the spray development and atomization of this type of fuel is important. This study investigates the atomization characteristics and droplet dynamic behaviors of diesel engine spray fuelled by rapeseed oil (RO) and comparison to diesel fuel (GO). Optical observation of RO spray was carried out using shadowgraph photography technique. Single nano-spark photography technique was used to study the characteristics of the spray while dual nano-spark shadowgraph technique was used to study the spray droplet behavior. Using in-house image processing algorithm, the images were processed and the boundary condition of each spray was also studied. The results show that RO has very poor atomization due to the high viscosity nature of the fuel when compared to GO. This is in agreement with the results from spray droplet dynamic behavior studies that shows due to the high viscosity, the RO spray droplets are large in size and travel downward, with very little influence of entrainment effect due to its large kinematic energy.
Gaseous swelling of U 3 Si 2 during steady-state LWR operation: A rate theory investigation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miao, Yinbin; Gamble, Kyle A.; Andersson, David
Rate theory simulations of fission gas behavior in U 3Si 2 are reported for light water reactor (LWR) steady-state operation scenarios. We developed a model of U 3Si 2 and implemented into the GRASS-SST code based on available research reactor post-irradiation examination (PIE) data, and density functional theory (DFT) calculations of key material properties. Simplified peripheral models were also introduced to capture the fuel-cladding interaction. The simulations identified three regimes of U 3Si 2 swelling behavior between 390 K and 1190 K. Under typical steady-state LWR operating conditions where U 3Si 2 temperature is expected to be below 1000 K,more » intragranular bubbles are dominant and fission gas is retained in those bubbles. The consequent gaseous swelling is low and associated degradation in the fuel thermal conductivity is also limited. Those predictions of U 3Si 2 performance during steady-state operations in LWRs suggest that this fuel material is an appropriate LWR candidate fuel material. Fission gas behavior models established based on this work are being coupled to the thermo-mechanical simulation of the fuel behavior using the BISON fuel performance multi-dimensional finite element code.« less
Gaseous swelling of U 3 Si 2 during steady-state LWR operation: A rate theory investigation
Miao, Yinbin; Gamble, Kyle A.; Andersson, David; ...
2017-07-25
Rate theory simulations of fission gas behavior in U 3Si 2 are reported for light water reactor (LWR) steady-state operation scenarios. We developed a model of U 3Si 2 and implemented into the GRASS-SST code based on available research reactor post-irradiation examination (PIE) data, and density functional theory (DFT) calculations of key material properties. Simplified peripheral models were also introduced to capture the fuel-cladding interaction. The simulations identified three regimes of U 3Si 2 swelling behavior between 390 K and 1190 K. Under typical steady-state LWR operating conditions where U 3Si 2 temperature is expected to be below 1000 K,more » intragranular bubbles are dominant and fission gas is retained in those bubbles. The consequent gaseous swelling is low and associated degradation in the fuel thermal conductivity is also limited. Those predictions of U 3Si 2 performance during steady-state operations in LWRs suggest that this fuel material is an appropriate LWR candidate fuel material. Fission gas behavior models established based on this work are being coupled to the thermo-mechanical simulation of the fuel behavior using the BISON fuel performance multi-dimensional finite element code.« less
National energy efficient driving system (NEEDS). Volume 1, Survey of requirements
DOT National Transportation Integrated Search
1981-12-15
This report provides a state-of-the-art summary of the means by which individual drivers can achieve more fuel-efficient vehicle operation. It identifies fuel-efficient driving behaviors, the means of influencing behavior, appropriate audiences for a...
Mukundan, Rangachary; Baker, Andrew M.; Kusoglu, Ahmet; ...
2018-03-01
A combined chemical/mechanical accelerated stress test (AST) was developed for proton exchange membrane (PEM) fuel cells based on relative humidity cycling (RHC) between dry and saturated gases at open circuit voltage (OCV). Membrane degradation and failure were investigated using scanning electron microscopy and small- and wide-angle X-ray scattering. Changes to membrane thickness, hydrophilic domain spacing, and crystallinity were observed to be most similar between field-operated cells and OCV RHC ASTs, where local thinning and divot-type defects are the primary failure modes. While RHC in air also reproduces these failure modes, it is not aggressive enough to differentiate between different membranemore » types in >1,333 hours (55 days) of testing. Conversely, steady-state OCV tests result in significant ionomer morphology changes and global thinning, which do not replicate field degradation and failure modes. It is inferred that during the OCV RHC AST, the decay of the membrane's mechanical properties is accelerated such that materials can be evaluated in hundreds, instead of thousands, of hours, while replicating the degradation and failure modes of field operation; associated AST protocols are recommended as OCV RHC at 90°C for 500 hours with wet/dry cycle durations of 30s/45s and 2m/2m for automotive and bus operation, respectively.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukundan, Rangachary; Baker, Andrew M.; Kusoglu, Ahmet
A combined chemical/mechanical accelerated stress test (AST) was developed for proton exchange membrane (PEM) fuel cells based on relative humidity cycling (RHC) between dry and saturated gases at open circuit voltage (OCV). Membrane degradation and failure were investigated using scanning electron microscopy and small- and wide-angle X-ray scattering. Changes to membrane thickness, hydrophilic domain spacing, and crystallinity were observed to be most similar between field-operated cells and OCV RHC ASTs, where local thinning and divot-type defects are the primary failure modes. While RHC in air also reproduces these failure modes, it is not aggressive enough to differentiate between different membranemore » types in >1,333 hours (55 days) of testing. Conversely, steady-state OCV tests result in significant ionomer morphology changes and global thinning, which do not replicate field degradation and failure modes. It is inferred that during the OCV RHC AST, the decay of the membrane's mechanical properties is accelerated such that materials can be evaluated in hundreds, instead of thousands, of hours, while replicating the degradation and failure modes of field operation; associated AST protocols are recommended as OCV RHC at 90°C for 500 hours with wet/dry cycle durations of 30s/45s and 2m/2m for automotive and bus operation, respectively.« less
Uncertainty in Wildfire Behavior
NASA Astrophysics Data System (ADS)
Finney, M.; Cohen, J. D.
2013-12-01
The challenge of predicting or modeling fire behavior is well recognized by scientists and managers who attempt predictions of fire spread rate or growth. At the scale of the spreading fire, the uncertainty in winds, moisture, fuel structure, and fire location make accurate predictions difficult, and the non-linear response of fire spread to these conditions means that average behavior is poorly represented by average environmental parameters. Even more difficult are estimations of threshold behaviors (e.g. spread/no-spread, crown fire initiation, ember generation and spotting) because the fire responds as a step-function to small changes in one or more environmental variables, translating to dynamical feedbacks and unpredictability. Recent research shows that ignition of fuel particles, itself a threshold phenomenon, depends on flame contact which is absolutely not steady or uniform. Recent studies of flame structure in both spreading and stationary fires reveals that much of the non-steadiness of the flames as they contact fuel particles results from buoyant instabilities that produce quasi-periodic flame structures. With fuel particle ignition produced by time-varying heating and short-range flame contact, future improvements in fire behavior modeling will likely require statistical approaches to deal with the uncertainty at all scales, including the level of heat transfer, the fuel arrangement, and weather.
Contact behavior modelling and its size effect on proton exchange membrane fuel cell
NASA Astrophysics Data System (ADS)
Qiu, Diankai; Peng, Linfa; Yi, Peiyun; Lai, Xinmin; Janßen, Holger; Lehnert, Werner
2017-10-01
Contact behavior between the gas diffusion layer (GDL) and bipolar plate (BPP) is of significant importance for proton exchange membrane fuel cells. Most current studies on contact behavior utilize experiments and finite element modelling and focus on fuel cells with graphite BPPs, which lead to high costs and huge computational requirements. The objective of this work is to build a more effective analytical method for contact behavior in fuel cells and investigate the size effect resulting from configuration alteration of channel and rib (channel/rib). Firstly, a mathematical description of channel/rib geometry is outlined in accordance with the fabrication of metallic BPP. Based on the interface deformation characteristic and Winkler surface model, contact pressure between BPP and GDL is then calculated to predict contact resistance and GDL porosity as evaluative parameters of contact behavior. Then, experiments on BPP fabrication and contact resistance measurement are conducted to validate the model. The measured results demonstrate an obvious dependence on channel/rib size. Feasibility of the model used in graphite fuel cells is also discussed. Finally, size factor is proposed for evaluating the rule of size effect. Significant increase occurs in contact resistance and porosity for higher size factor, in which channel/rib width decrease.
A Unified Constitutive Model for Subglacial Till, Part I: The Disturbed State Concept
NASA Astrophysics Data System (ADS)
Jenson, J. W.; Desai, C. S.; Clark, P. U.; Contractor, D. N.; Sane, S. M.; Carlson, A. E.
2006-12-01
Classical plasticity models such as Mohr-Coulomb may not adequately represent the full range of possible motion and failure in tills underlying ice sheets. Such models assume that deformations are initially elastic, and that when a peak or failure stress level is reached the system experiences sudden failure, after which the stress remains constant and the deformations can tend to infinite magnitudes. However, theory suggests that the actual behavior of deforming materials, including granular materials such as glacial till, can involve plastic or irreversible strains almost from the beginning, in which localized zones of microcracking and "failure" can be distributed over the material element. As the loading increases, and with associated plastic and creep deformations, the distributed failure zones coalesce. When the extent of such coalesced zones reaches critical values of stresses and strains, the critical condition (failure) can occur in the till, which would cause associated movements of the ice sheet. Failure or collapse then may occur at much larger strain levels. Classical models (e.g., Mohr-Coulomb) may therefore not be able to fully and realistically characterize deformation behavior and the gradual developments of localized failures tending to the global failure and movements. We present and propose the application of the Disturbed State Concept (DSC), a unified model that incorporates the actual pre- and post-failure behavior, for characterizing the behavior of subglacial tills. In this presentation (Part I), we describe the DSC and propose its application to subglacial till. Part II (Desai et al.) describes our application of the DSC with laboratory testing, model calibration, and validations to evaluate the mechanical properties of two regionally significant Pleistocene tills.
Rocky Mountain Research Station USDA Forest Service
2004-01-01
Fire hazard reflects the potential fire behavior and magnitude of effects as a function of fuel conditions. This fact sheet discusses crown fuels, surface fuels, and ground fuels and their contribution and involvement in wildland fire.Other publications in this series...
OptFuels: Fuel treatment optimization
Greg Jones
2011-01-01
Scientists at the USDA Forest Service, Rocky Mountain Research Station, in Missoula, MT, in collaboration with scientists at the University of Montana, are developing a tool to help forest managers prioritize forest fuel reduction treatments. Although several computer models analyze fuels and fire behavior, stand-level effects of fuel treatments, and priority planning...
Fuel Chemistry Research | Transportation Research | NREL
composition Comparing behavior, performance, and emissions impacts of different alternative fuels and fuel for petroleum displacement have a different chemical composition than traditional petroleum-based
Physical and chemical behavior of flowing endothermic jet fuels
NASA Astrophysics Data System (ADS)
Ward, Thomas Arthur
Hydrocarbon fuels have been used as cooling media for aircraft jet engines for decades. However, modern aircraft engines are reaching a practical heat transfer limit beyond which the convective heat transfer provided by fuels is no longer adequate. One solution is to use an endothermic fuel that absorbs heat through a series of pyrolytic chemical reactions. However, many of the physical and chemical processes involved in endothermic fuel degradation are not well understood. The purpose of this dissertation is to study different characteristics of endothermic fuels using experiments and computational models. In the first section, data from three flow experiments using heated Jet-A fuel and additives were analyzed (with the aid of CFD calculations) to study the effects of treated surfaces on surface deposition. Surface deposition is the primary impediment in creating an operational endothermic fuel heat exchanger system, because deposits can obstruct fuel pathways causing a catastrophic system failure. As heated fuel flows through a fuel system, trace species within the fuel react with dissolved O2 to form surface deposits. At relatively higher fuel temperatures, the dissolved O2 is depleted, and pyrolytic chemistry becomes dominant (at temperatures greater than ˜500 °C). In the first experiment, the dissolved O2 consumption of heated fuel was measured on different surface types over a range of temperatures. It is found that use of treated tubes significantly delays oxidation of the fuel. In the second experiment, the treated length of tubing was progressively increased, which varied the characteristics of the thermal-oxidative deposits formed. In the third experiment, pyrolytic surface deposition in either fully treated or untreated tubes is studied. It is found that the treated surface significantly reduced the formation of surface deposits for both thermal oxidative and pyrolytic degradation mechanisms. Moreover, it is found that the chemical reactions resulting in pyrolytic deposition on the untreated surface are more sensitive to pressure level than those causing pyrolytic deposition on the treated surface. The second section describes the development of a two-dimensional computational model of the heat and mass transport associated with a flowing fuel using a unique global chemical kinetics model. This model calculates the changing flow properties of a supercritical reacting fuel by use of experimentally derived proportional product distributions. The third section studies the effects of pressure on flowing; mildly-cracked, supercritical n-decane. The experimental results are studied with the aid of the computational model described in section 2, expanded to deal with variable pressures. The experiments indicate that increasing pressure enhances the processes in which n-decane converts to (C5--C9) n-alkane products instead of decomposing into lower molecular weight products (C1--C4): Increasing pressure also increases the overall conversion rate of supercritical n-decane flowing through a reactor. Computational modeling of the experiment shows how the flow properties are influenced by pressure. (Abstract shortened by UMI.)
Verification and Validation of the BISON Fuel Performance Code for PCMI Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gamble, Kyle Allan Lawrence; Novascone, Stephen Rhead; Gardner, Russell James
2016-06-01
BISON is a modern finite element-based nuclear fuel performance code that has been under development at Idaho National Laboratory (INL) since 2009. The code is applicable to both steady and transient fuel behavior and has been used to analyze a variety of fuel forms in 1D spherical, 2D axisymmetric, or 3D geometries. A brief overview of BISON’s computational framework, governing equations, and general material and behavioral models is provided. BISON code and solution verification procedures are described. Validation for application to light water reactor (LWR) PCMI problems is assessed by comparing predicted and measured rod diameter following base irradiation andmore » power ramps. Results indicate a tendency to overpredict clad diameter reduction early in life, when clad creepdown dominates, and more significantly overpredict the diameter increase late in life, when fuel expansion controls the mechanical response. Initial rod diameter comparisons have led to consideration of additional separate effects experiments to better understand and predict clad and fuel mechanical behavior. Results from this study are being used to define priorities for ongoing code development and validation activities.« less
How behavioral economics can help to avoid 'The last mile problem' in whole genome sequencing.
Blumenthal-Barby, Jennifer S; McGuire, Amy L; Green, Robert C; Ubel, Peter A
2015-01-01
Failure to consider lessons from behavioral economics in the case of whole genome sequencing may cause us to run into the 'last mile problem' - the failure to integrate newly developed technology, on which billions of dollars have been invested, into society in a way that improves human behavior and decision-making.
Initial results from safety testing of US AGR-2 irradiation test fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morris, Robert Noel; Hunn, John D.; Baldwin, Charles A.
Two cylindrical compacts containing tristructural isotropic (TRISO)-coated particles with kernels that contained a mixture of uranium carbide and uranium oxide (UCO) and two compacts with UO 2-kernel TRISO particles have undergone 1600°C safety testing. These compacts were irradiated in the US Advanced Gas Reactor Fuel Development and Qualification Program's second irradiation test (AGR-2). The time-dependent releases of several radioisotopes ( 110mAg, 134Cs, 137Cs, 154Eu, 155Eu, 90Sr, and 85Kr) were monitored while heating the fuel specimens to 1600°C in flowing helium for 300 h. The UCO compacts behaved similarly to previously reported 1600°C-safety-tested UCO compacts from the AGR-1 irradiation. No failedmore » TRISO or failed SiC were detected (based on krypton and cesium release), and cesium release through intact SiC was very low. Release behavior of silver, europium, and strontium appeared to be dominated by inventory originally released through intact coating layers during irradiation but retained in the compact matrix until it was released during safety testing. Both UO 2 compacts exhibited cesium release from multiple particles whose SiC failed during the safety test. Europium and strontium release from these two UO 2 compacts appeared to be dominated by release from the particles with failed SiC. Silver release was characteristically like the release from the UCO compacts in that an initial release of the majority of silver trapped in the matrix occurred during ramping to 1600°C. However, additional silver release was observed later in the safety testing due to the UO 2 TRISO with failed SiC. Failure of the SiC layer in the UO 2 fuel appears to have been dominated by CO corrosion, as opposed to the palladium degradation observed in AGR-1 UCO fuel.« less
Initial results from safety testing of US AGR-2 irradiation test fuel
Morris, Robert Noel; Hunn, John D.; Baldwin, Charles A.; ...
2017-08-18
Two cylindrical compacts containing tristructural isotropic (TRISO)-coated particles with kernels that contained a mixture of uranium carbide and uranium oxide (UCO) and two compacts with UO 2-kernel TRISO particles have undergone 1600°C safety testing. These compacts were irradiated in the US Advanced Gas Reactor Fuel Development and Qualification Program's second irradiation test (AGR-2). The time-dependent releases of several radioisotopes ( 110mAg, 134Cs, 137Cs, 154Eu, 155Eu, 90Sr, and 85Kr) were monitored while heating the fuel specimens to 1600°C in flowing helium for 300 h. The UCO compacts behaved similarly to previously reported 1600°C-safety-tested UCO compacts from the AGR-1 irradiation. No failedmore » TRISO or failed SiC were detected (based on krypton and cesium release), and cesium release through intact SiC was very low. Release behavior of silver, europium, and strontium appeared to be dominated by inventory originally released through intact coating layers during irradiation but retained in the compact matrix until it was released during safety testing. Both UO 2 compacts exhibited cesium release from multiple particles whose SiC failed during the safety test. Europium and strontium release from these two UO 2 compacts appeared to be dominated by release from the particles with failed SiC. Silver release was characteristically like the release from the UCO compacts in that an initial release of the majority of silver trapped in the matrix occurred during ramping to 1600°C. However, additional silver release was observed later in the safety testing due to the UO 2 TRISO with failed SiC. Failure of the SiC layer in the UO 2 fuel appears to have been dominated by CO corrosion, as opposed to the palladium degradation observed in AGR-1 UCO fuel.« less
NASA Astrophysics Data System (ADS)
Ma, Yong; Qin, Jianfeng; Zhang, Xiangyu; Lin, Naiming; Huang, Xiaobo; Tang, Bin
2015-07-01
Using the impact test and finite element simulation, the failure behavior of the Mo-modified layer on pure Ti was investigated. In the impact test, four loads of 100, 300, 500, and 700 N and 104 impacts were adopted. The three-dimensional residual impact dents were examined using an optical microscope (Olympus-DSX500i), indicating that the impact resistance of the Ti surface was improved. Two failure modes cohesive and wearing were elucidated by electron backscatter diffraction and energy-dispersive spectrometer performed in a field-emission scanning electron microscope. Through finite element forward analysis performed at a typical impact load of 300 N, stress-strain distributions in the Mo-modified Ti were quantitatively determined. In addition, the failure behavior of the Mo-modified layer was determined and an ideal failure model was proposed for high-load impact, based on the experimental and finite element forward analysis results.
Hadlington, Lee; Murphy, Karen
2018-03-01
The current study focused on how engaging in media multitasking (MMT) and the experience of everyday cognitive failures impact on the individual's engagement in risky cybersecurity behaviors (RCsB). In total, 144 participants (32 males, 112 females) completed an online survey. The age range for participants was 18 to 43 years (M = 20.63, SD = 4.04). Participants completed three scales which included an inventory of weekly MMT, a measure of everyday cognitive failures, and RCsB. There was a significant difference between heavy media multitaskers (HMM), average media multitaskers (AMM), and light media multitaskers (LMM) in terms of RCsB, with HMM demonstrating more frequent risky behaviors than LMM or AMM. The HMM group also reported more cognitive failures in everyday life than the LMM group. A regression analysis showed that everyday cognitive failures and MMT acted as significant predictors for RCsB. These results expand our current understanding of the relationship between human factors and cybersecurity behaviors, which are useful to inform the design of training and intervention packages to mitigate RCsB.
Huang, Jing; Fang, Jin-Bo; Zhao, Yi-Heng
2018-06-01
While cardiac resynchronization therapy improves the quality of life of patients with heart failure, some psychological and behavioral factors still affect the quality of life of these patients. However, information on the factors that affect the quality of life of these patients is limited. To describe the quality of life and investigate the relationship between quality of life and behavioral and psychological factors such as depression, smoking, drinking, water and sodium restrictions, exercise, and adherence in patients with chronic heart failure following cardiac resynchronization therapy. This cross-sectional study was conducted using the Morisky Medication Adherence Scale, Minnesota Living With Heart Failure Questionnaire, and Cardiac Depression Scale. A convenience sample of 141 patients with heart failure following cardiac resynchronization therapy were recruited from a tertiary academic hospital in Chengdu. The mean overall score of the Minnesota Living With Heart Failure Questionnaire was 30.89 (out of a total possible score of 105). Water restrictions, sodium restrictions, depression, and exercise were all shown to significantly predict quality of life among the participants. This paper describes the quality of life and defines the behavioral factors that affect the quality of life of patients with heart failure following cardiac resynchronization therapy. The findings suggest that nurses should manage and conduct health education for patients in order to improve their quality of life.
NASA Technical Reports Server (NTRS)
Waller, Jess M.; Roth, Tim E.; Saulsberry, Regor L.; Haney, William A.; Kelly, Terence S; Forsyth, Bradley S.
2004-01-01
Extrusion of a polytetrafluoroethylene (PTFE) pilot seal located in the Space Shuttle Orbiter Primary Reaction Control Subsystem (PRCS) thruster fuel valve has been implicated in 68 ground and on-orbit fuel valve failures. A rash of six extrusion-related in-flight anomalies over a six-mission span from December 2001 to October 2002 led to heightened activity at various NASA centers, and the formation of a multidisciplinary team to solve the problem. Empirical and theoretical approaches were used. For example, thermomechanical analysis (TMA) and exposure tests showed that some extrusion is produced by thermal cycling; however, a review of thruster service histories did not reveal a strong link between thermal cycling and extrusion. Calculations showed that the amount of observed extrusion often exceeded the amount allowed by thermally-induced stress relief. Failure analysis of failed hardware also revealed the presence of fuel-oxidizer reaction product (FORP) inside the fuel valve pilot seal cavity, and differential scanning calorimetry (DSC) showed that the FORP was intimately associated with the pilot seal material. Component-level exposure tests showed that FORP of similar composition could be produced by adjacent oxidizer valve leakage in the absence of thruster firing. Specific gravity data showed that extruded fuel valve pilot seals were less dense than new pilot seals or oxidizer valve pilot seals, indicating permanent modification of the PTFE occurred during service. It is concluded that some thermally-induced extrusion is unavoidable; however, oxidizer leakage-induced extrusion is mostly avoidable and can be mitigated. Several engineering level mitigation strategies are discussed.
Nuclear fuel elements having a composite cladding
Gordon, Gerald M.; Cowan, II, Robert L.; Davies, John H.
1983-09-20
An improved nuclear fuel element is disclosed for use in the core of nuclear reactors. The improved nuclear fuel element has a composite cladding of an outer portion forming a substrate having on the inside surface a metal layer selected from the group consisting of copper, nickel, iron and alloys of the foregoing with a gap between the composite cladding and the core of nuclear fuel. The nuclear fuel element comprises a container of the elongated composite cladding, a central core of a body of nuclear fuel material disposed in and partially filling the container and forming an internal cavity in the container, an enclosure integrally secured and sealed at each end of said container and a nuclear fuel material retaining means positioned in the cavity. The metal layer of the composite cladding prevents perforations or failures in the cladding substrate from stress corrosion cracking or from fuel pellet-cladding interaction or both. The substrate of the composite cladding is selected from conventional cladding materials and preferably is a zirconium alloy.
Fuel injection of coal slurry using vortex nozzles and valves
Holmes, Allen B.
1989-01-01
Injection of atomized coal slurry fuel into an engine combustion chamber is achieved at relatively low pressures by means of a vortex swirl nozzle. The outlet opening of the vortex nozzle is considerably larger than conventional nozzle outlets, thereby eliminating major sources of failure due to clogging by contaminants in the fuel. Control fluid, such as air, may be used to impart vorticity to the slurry and/or purge the nozzle of contaminants during the times between measured slurry charges. The measured slurry charges may be produced by a diaphragm pump or by vortex valves controlled by a separate control fluid. Fluidic circuitry, employing vortex valves to alternatively block and pass cool slurry fuel flow, is disclosed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carruthers, L.M.; Lee, C.E.
1976-10-01
The theoretical and numerical data base development of the LARC-1 code is described. Four analytical models of fission product release from an HTGR core during the loss of forced circulation accident are developed. Effects of diffusion, adsorption and evaporation of the metallics and precursors are neglected in this first LARC model. Comparison of the analytic models indicates that the constant release-renormalized model is adequate to describe the processes involved. The numerical data base for release constants, temperature modeling, fission product release rates, coated fuel particle failure fraction and aged coated fuel particle failure fractions is discussed. Analytic fits and graphicmore » displays for these data are given for the Ft. St. Vrain and GASSAR models.« less
Jennifer G. Klutsch; Mike A. Battaglia; Daniel R. West; Sheryl L. Costello; Jose F. Negron
2011-01-01
A mountain pine beetle outbreak in Colorado lodgepole pine forests has altered stand and fuel characteristics that affect potential fire behavior. Using the Fire and Fuels Extension to the Forest Vegetation Simulator, potential fire behavior was modeled for uninfested and mountain pine beetle-affected plots 7 years after outbreak initiation and 10 and 80% projected...
Alternative Fuels DISI Engine Research ? Autoignition Metrics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sjoberg, Carl Magnus Goran; Vuilleumier, David
Improved engine efficiency is required to comply with future fuel economy standards. Alternative fuels have the potential to enable more efficient engines while addressing concerns about energy security. This project contributes to the science base needed by industry to develop highly efficient direct injection spark igniton (DISI) engines that also beneficially exploit the different properties of alternative fuels. Here, the emphasis is on quantifying autoignition behavior for a range of spark-ignited engine conditions, including directly injected boosted conditions. The efficiency of stoichiometrically operated spark ignition engines is often limited by fuel-oxidizer end-gas autoignition, which can result in engine knock. Amore » fuel’s knock resistance is assessed empirically by the Research Octane Number (RON) and Motor Octane Number (MON) tests. By clarifying how these two tests relate to the autoignition behavior of conventional and alternative fuel formulations, fuel design guidelines for enhanced engine efficiency can be developed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rest, J.
1995-08-01
This report describes the primary physical models that form the basis of the DART mechanistic computer model for calculating fission-product-induced swelling of aluminum dispersion fuels; the calculated results are compared with test data. In addition, DART calculates irradiation-induced changes in the thermal conductivity of the dispersion fuel, as well as fuel restructuring due to aluminum fuel reaction, amorphization, and recrystallization. Input instructions for execution on mainframe, workstation, and personal computers are provided, as is a description of DART output. The theory of fission gas behavior and its effect on fuel swelling is discussed. The behavior of these fission products inmore » both crystalline and amorphous fuel and in the presence of irradiation-induced recrystallization and crystalline-to-amorphous-phase change phenomena is presented, as are models for these irradiation-induced processes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cinbiz, Mahmut N; Brown, Nicholas R; Terrani, Kurt A
2017-01-01
This study investigates the failure mechanisms of advanced nuclear fuel cladding of FeCrAl at high-strain rates, similar to design basis reactivity initiated accidents (RIA). During RIA, the nuclear fuel cladding was subjected to the plane-strain to equibiaxial tension strain states. To achieve those accident conditions, the samples were deformed by the expansion of high strength Inconel alloy tube under pre-specified pressure pulses as occurring RIA. The mechanical response of the advanced claddings was compared to that of hydrided zirconium-based nuclear fuel cladding alloy. The hoop strain evolution during pressure pulses were collected in situ; the permanent diametral strains of bothmore » accident tolerant fuel (ATF) claddings and the current nuclear fuel alloys were determined after rupture.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Yeon Soo; Jeong, G. Y.; Sohn, D. -S.
U-Mo/Al dispersion fuel is currently under development in the DOE’s Material Management and Minimization program to convert HEU-fueled research reactors to LEU-fueled reactors. In some demanding conditions in high-power and high-performance reactors, large pores form in the interaction layers between the U-Mo fuel particles and the Al matrix, which pose a potential to cause fuel failure. In this study, comprehension of the formation and growth of these pores was explored. As a product, a model to predict pore growth and porosity increase was developed. Well-characterized in-pile data from reduced-size plates were used to fit the model parameters. A data setmore » of full-sized plates, independent and distinctively different from those used to fit the model parameters, was used to examine the accuracy of the model.« less
Kim, Taeil; Harbaruk, Dzmitry; Gerardi, Craig; ...
2017-07-10
Experiments dropping molten uranium into test sections of single fuel pin geometry filled with sodium were conducted to investigate relocation behavior of metallic fuel in the core structures of sodium-cooled fast reactors during a hypothetical core disruptive accident. Metallic uranium was used as a fuel material and HT-9M was used as a fuel cladding material in the experiment in order to accurately mock-up the thermo-physical behavior of the relocation. The fuel cladding failed due to eutectic formation between the uranium and HT-9M for all experiments. The extent of the eutectic formation increased with increasing molten uranium temperature. Voids in themore » relocated fuel were observed for all experiments and were likely formed by sodium boiling in contact with the fuel. In one experiment, numerous fragments of the relocated fuel were found. In conclusion, it could be concluded that the injected metallic uranium fuel was fragmented and dispersed in the narrow coolant channel by sodium boiling« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Taeil; Harbaruk, Dzmitry; Gerardi, Craig
Experiments dropping molten uranium into test sections of single fuel pin geometry filled with sodium were conducted to investigate relocation behavior of metallic fuel in the core structures of sodium-cooled fast reactors during a hypothetical core disruptive accident. Metallic uranium was used as a fuel material and HT-9M was used as a fuel cladding material in the experiment in order to accurately mock-up the thermo-physical behavior of the relocation. The fuel cladding failed due to eutectic formation between the uranium and HT-9M for all experiments. The extent of the eutectic formation increased with increasing molten uranium temperature. Voids in themore » relocated fuel were observed for all experiments and were likely formed by sodium boiling in contact with the fuel. In one experiment, numerous fragments of the relocated fuel were found. In conclusion, it could be concluded that the injected metallic uranium fuel was fragmented and dispersed in the narrow coolant channel by sodium boiling« less
The 1984 Goddard Space Flight Center Battery Workshop
NASA Technical Reports Server (NTRS)
Morrow, G. W. (Editor)
1985-01-01
Various topics related to spacecraft power supply systems are discussed. Regenerative fuel cells, lithium molybdenum batteries, nickel hydrogen batteries, nickel cadmium batteries, failure analysis, and performance testing are covered.
14 CFR 135.415 - Service difficulty reports.
Code of Federal Regulations, 2010 CFR
2010-01-01
... shall report the occurrence or detection of each failure, malfunction, or defect in an aircraft... fuel flow or causes hazardous leakage during flight; (12) An unwanted landing gear extension or...
14 CFR 121.703 - Service difficulty reports.
Code of Federal Regulations, 2010 CFR
2010-01-01
... reports. (a) Each certificate holder shall report the occurrence or detection of each failure, malfunction... that affects fuel flow or causes hazardous leakage during flight; (12) An unwanted landing gear...
ERIC Educational Resources Information Center
Escarpio, Raul
2011-01-01
Students with emotional and/or behavioral disorders (EBD) present considerable academic challenges along with emotional and/or behavioral problems. In terms of reading, these students typically perform one-to-two years below grade level (Kauffman, 2001). Given the strong correlation between reading failure and school failure and overall success…
RERTR-8 Irradiation Summary Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
D. M. Perez; M. A. Lillo; G. S. Chang
2011-12-01
The Reduced Enrichment for Research and Test Reactor (RERTR) experiment RERTR-8, was designed to test monolithic mini-fuel plates fabricated via hot isostatic pressing (HIP), the effect of molybdenum (Mo) content on the monolithic fuel behavior, and the efficiency of ternary additions to dispersion fuel particles on the interaction layer behavior at higher burnup. The following report summarizes the life of the RERTR-8 experiment through end of irradiation, including as-run neutronic analysis, thermal analysis and hydraulic testing results.
SSME structural dynamic model development
NASA Technical Reports Server (NTRS)
Foley, Michael J.
1989-01-01
The high pressure fuel turbopump (HPFTP) is a major component of the Space Shuttle Main Engine (SSME) powerhead. The device is a three stage centrifugal pump that is directly driven by a two stage hot gas turbine. The purpose of the pump is to deliver fuel (liquid hydrogen) from the low pressure fuel turbopump (LPFTP) through the main fuel valve (MFV) to the thrust chamber coolant circuits. In doing so, the pump pressurizes the fuel from an inlet pressure of approximately 178 psi to a discharge pressure of over 6000 psi. At full power level (FPL), the pump rotates at a speed of over 37,000 rpm while generating approximately 77,000 horsepower. Obviously, a pump failure at these speeds and power levels could jeopardize the mission. Results are summarized for work in which the solutions obtained from analytical models of the fuel turbopump impellers are compared with the results obtained from dynamic tests.
Automation-induced monitoring inefficiency: role of display location.
Singh, I L; Molloy, R; Parasuraman, R
1997-01-01
Operators can be poor monitors of automation if they are engaged concurrently in other tasks. However, in previous studies of this phenomenon the automated task was always presented in the periphery, away from the primary manual tasks that were centrally displayed. In this study we examined whether centrally locating an automated task would boost monitoring performance during a flight-simulation task consisting of system monitoring, tracking and fuel resource management sub-tasks. Twelve nonpilot subjects were required to perform the tracking and fuel management tasks manually while watching the automated system monitoring task for occasional failures. The automation reliability was constant at 87.5% for six subjects and variable (alternating between 87.5% and 56.25%) for the other six subjects. Each subject completed four 30 min sessions over a period of 2 days. In each automation reliability condition the automation routine was disabled for the last 20 min of the fourth session in order to simulate catastrophic automation failure (0 % reliability). Monitoring for automation failure was inefficient when automation reliability was constant but not when it varied over time, replicating previous results. Furthermore, there was no evidence of resource or speed accuracy trade-off between tasks. Thus, automation-induced failures of monitoring cannot be prevented by centrally locating the automated task.
Automation-induced monitoring inefficiency: role of display location
NASA Technical Reports Server (NTRS)
Singh, I. L.; Molloy, R.; Parasuraman, R.
1997-01-01
Operators can be poor monitors of automation if they are engaged concurrently in other tasks. However, in previous studies of this phenomenon the automated task was always presented in the periphery, away from the primary manual tasks that were centrally displayed. In this study we examined whether centrally locating an automated task would boost monitoring performance during a flight-simulation task consisting of system monitoring, tracking and fuel resource management sub-tasks. Twelve nonpilot subjects were required to perform the tracking and fuel management tasks manually while watching the automated system monitoring task for occasional failures. The automation reliability was constant at 87.5% for six subjects and variable (alternating between 87.5% and 56.25%) for the other six subjects. Each subject completed four 30 min sessions over a period of 2 days. In each automation reliability condition the automation routine was disabled for the last 20 min of the fourth session in order to simulate catastrophic automation failure (0 % reliability). Monitoring for automation failure was inefficient when automation reliability was constant but not when it varied over time, replicating previous results. Furthermore, there was no evidence of resource or speed accuracy trade-off between tasks. Thus, automation-induced failures of monitoring cannot be prevented by centrally locating the automated task.
The spontaneous expression of pride and shame: evidence for biologically innate nonverbal displays.
Tracy, Jessica L; Matsumoto, David
2008-08-19
The present research examined whether the recognizable nonverbal expressions associated with pride and shame may be biologically innate behavioral responses to success and failure. Specifically, we tested whether sighted, blind, and congenitally blind individuals across cultures spontaneously display pride and shame behaviors in response to the same success and failure situations--victory and defeat at the Olympic or Paralympic Games. Results showed that sighted, blind, and congenitally blind individuals from >30 nations displayed the behaviors associated with the prototypical pride expression in response to success. Sighted, blind, and congenitally blind individuals from most cultures also displayed behaviors associated with shame in response to failure. However, culture moderated the shame response among sighted athletes: it was less pronounced among individuals from highly individualistic, self-expression-valuing cultures, primarily in North America and West Eurasia. Given that congenitally blind individuals across cultures showed the shame response to failure, findings overall are consistent with the suggestion that the behavioral expressions associated with both shame and pride are likely to be innate, but the shame display may be intentionally inhibited by some sighted individuals in accordance with cultural norms.
Use of multiscale zirconium alloy deformation models in nuclear fuel behavior analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Montgomery, Robert; Tomé, Carlos; Liu, Wenfeng
Accurate prediction of cladding mechanical behavior is a key aspect of modeling nuclear fuel behavior, especially for conditions of pellet-cladding interaction (PCI), reactivity-initiated accidents (RIA), and loss of coolant accidents (LOCA). Current approaches to fuel performance modeling rely on empirical models for cladding creep, growth and plastic deformation, which are limited to the materials and conditions for which the models were developed. CASL has endeavored to improve upon this approach by incorporating a microstructurally-based, atomistically-informed, zirconium alloy mechanical deformation analysis capability into the BISON-CASL engineering scale fuel performance code. Specifically, the viscoplastic self-consistent (VPSC) polycrystal plasticity modeling approach, developed bymore » Lebensohn and Tome´ [2], has been coupled with BISON-CASL to represent the mechanistic material processes controlling the deformation behavior of the cladding. A critical component of VPSC is the representation of the crystallographic orientation of the grains within the matrix material and the ability to account for the role of texture on deformation. The multiscale modeling of cladding deformation mechanisms allowed by VPSC far exceed the functionality of typical semi-empirical constitutive models employed in nuclear fuel behavior codes to model irradiation growth and creep, thermal creep, or plasticity. This paper describes the implementation of an interface between VPSC and BISON-CASL and provides initial results utilizing the coupled functionality.« less
Unit mechanisms of fission gas release: Current understanding and future needs
Tonks, Michael; Andersson, David; Devanathan, Ram; ...
2018-03-01
Gaseous fission product transport and release has a large impact on fuel performance, degrading fuel and gap properties. While gaseous fission product behavior has been investigated with bulk reactor experiments and simplified analytical models, recent improvements in experimental and modeling approaches at the atomistic and mesoscales are beginning to reveal new understanding of the unit mechanisms that define fission product behavior. Here, existing research on the basic mechanisms of fission gas release during normal reactor operation are summarized and critical areas where work is needed are identified. Here, this basic understanding of the fission gas behavior mechanisms has the potentialmore » to revolutionize our ability to predict fission product behavior and to design fuels with improved performance. In addition, this work can serve as a model on how a coupled experimental and modeling approach can be applied to understand the unit mechanisms behind other critical behaviors in reactor materials.« less
Unit mechanisms of fission gas release: Current understanding and future needs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tonks, Michael; Andersson, David; Devanathan, Ram
Gaseous fission product transport and release has a large impact on fuel performance, degrading fuel and gap properties. While gaseous fission product behavior has been investigated with bulk reactor experiments and simplified analytical models, recent improvements in experimental and modeling approaches at the atomistic and mesoscales are beginning to reveal new understanding of the unit mechanisms that define fission product behavior. Here, existing research on the basic mechanisms of fission gas release during normal reactor operation are summarized and critical areas where work is needed are identified. Here, this basic understanding of the fission gas behavior mechanisms has the potentialmore » to revolutionize our ability to predict fission product behavior and to design fuels with improved performance. In addition, this work can serve as a model on how a coupled experimental and modeling approach can be applied to understand the unit mechanisms behind other critical behaviors in reactor materials.« less
Unit mechanisms of fission gas release: Current understanding and future needs
NASA Astrophysics Data System (ADS)
Tonks, Michael; Andersson, David; Devanathan, Ram; Dubourg, Roland; El-Azab, Anter; Freyss, Michel; Iglesias, Fernando; Kulacsy, Katalin; Pastore, Giovanni; Phillpot, Simon R.; Welland, Michael
2018-06-01
Gaseous fission product transport and release has a large impact on fuel performance, degrading fuel and gap properties. While gaseous fission product behavior has been investigated with bulk reactor experiments and simplified analytical models, recent improvements in experimental and modeling approaches at the atomistic and mesoscales are beginning to reveal new understanding of the unit mechanisms that define fission product behavior. Here, existing research on the basic mechanisms of fission gas release during normal reactor operation are summarized and critical areas where work is needed are identified. This basic understanding of the fission gas behavior mechanisms has the potential to revolutionize our ability to predict fission product behavior and to design fuels with improved performance. In addition, this work can serve as a model on how a coupled experimental and modeling approach can be applied to understand the unit mechanisms behind other critical behaviors in reactor materials.
NASA Astrophysics Data System (ADS)
Ren, Yiru; Zhang, Songjun; Jiang, Hongyong; Xiang, Jinwu
2018-04-01
Based on continuum damage mechanics (CDM), a sophisticated 3D meso-scale finite element (FE) model is proposed to characterize the progressive damage behavior of 2D Triaxial Braided Composites (2DTBC) with 60° braiding angle under quasi-static tensile load. The modified Von Mises strength criterion and 3D Hashin failure criterion are used to predict the damage initiation of the pure matrix and fiber tows. A combining interface damage and friction constitutive model is applied to predict the interface damage behavior. Murakami-Ohno stiffness degradation scheme is employed to predict the damage evolution process of each constituent. Coupling with the ordinary and translational symmetry boundary conditions, the tensile elastic response including tensile strength and failure strain of 2DTBC are in good agreement with the available experiment data. The numerical results show that the main failure modes of the composites under axial tensile load are pure matrix cracking, fiber and matrix tension failure in bias fiber tows, matrix tension failure in axial fiber tows and interface debonding; the main failure modes of the composites subjected to transverse tensile load are free-edge effect, matrix tension failure in bias fiber tows and interface debonding.
Chan, Kwun Chuen Gary; Wang, Mei-Cheng
2017-01-01
Recurrent event processes with marker measurements are mostly and largely studied with forward time models starting from an initial event. Interestingly, the processes could exhibit important terminal behavior during a time period before occurrence of the failure event. A natural and direct way to study recurrent events prior to a failure event is to align the processes using the failure event as the time origin and to examine the terminal behavior by a backward time model. This paper studies regression models for backward recurrent marker processes by counting time backward from the failure event. A three-level semiparametric regression model is proposed for jointly modeling the time to a failure event, the backward recurrent event process, and the marker observed at the time of each backward recurrent event. The first level is a proportional hazards model for the failure time, the second level is a proportional rate model for the recurrent events occurring before the failure event, and the third level is a proportional mean model for the marker given the occurrence of a recurrent event backward in time. By jointly modeling the three components, estimating equations can be constructed for marked counting processes to estimate the target parameters in the three-level regression models. Large sample properties of the proposed estimators are studied and established. The proposed models and methods are illustrated by a community-based AIDS clinical trial to examine the terminal behavior of frequencies and severities of opportunistic infections among HIV infected individuals in the last six months of life.
Effect of fuel stratification on detonation wave propagation
NASA Astrophysics Data System (ADS)
Masselot, Damien; Fievet, Romain; Raman, Venkat
2016-11-01
Rotating detonation engines (RDEs) form a class of pressure-gain combustion systems of higher efficiency compared to conventional gas turbine engines. One of the key features of the design is the injection system, as reactants need to be continuously provided to the detonation wave to sustain its propagation speed. As inhomogeneities in the reactant mixture can perturb the detonation wave front, premixed fuel jet injectors might seem like the most stable solution. However, this introduces the risk of the detonation wave propagating through the injector, causing catastrophic failure. On the other hand, non-premixed fuel injection will tend to quench the detonation wave near the injectors, reducing the likelihood of such failure. Still, the effects of such non-premixing and flow inhomogeneities ahead of a detonation wave have yet to be fully understood and are the object of this study. A 3D channel filled with O2 diluted in an inert gas with circular H2 injectors is simulated as a detonation wave propagates through the system. The impact of key parameters such as injector spacing, injector size, mixture composition and time variations will be discussed. PhD Candidate.
Postirradiation analysis of the latest high uranium density miniplate test: RERTR 8.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hofman, G. L.; Kim, Y. S.; Rest, J.
2008-01-01
Results of destructive examination of fuel miniplates irradiated in the RERTR-8 test are discussed. Metallographic features of dispersion fuel containing fuel particles of U-7wt%Mo with 1wt% Ti or 2wt% Zr are analyzed. It is hypothesized that Zr, either as alloy addition or fission product, may have a destabilizing effect on fission gas behavior. The purpose of miniplate test RERTR-8 was to obtain irradiation performance data on monolithic fuel plates fabricated by friction bonding (FB) and isostatic hot pressing (HIP), as well as dispersion fuel plates that contain U-7Mo fuel particles alloyed with small amounts of Zr or Ti (see Fig.more » 1). The results of the monolithic plates destructively examined to date were presented at the 2007 RERTR meeting in Prague. This paper presents the first results on the dispersion plates with Ti and Zr additions to U-7Mo. The effect of Ti and Zr additions to U-7wt%Mo on the extent of fuel-aluminum interdiffusion, although measureable, is small in absolute terms because of the overwhelming effect of the 5% Si addition to the Al matrix. Ti additions to the U-7wt%Mo have no discernable effect on swelling behavior of the fuel. However, there are indications that the addition of Zr may have a destabilizing effect on fission gas behavior at high burnup.« less
NASA Astrophysics Data System (ADS)
Graziano, Tyler J.
An experimental combustion tube of 20 ft. in length and 10.25 in. in internal diameter was designed and fabricated in order to perform combustion tests to study deflagration rates, flame acceleration, and the possibility of DDT. The experiment was designed to allow gaseous, liquid, or solid fuels, or any combination of the three to produce a homogenous fuel/air mixture within the tube. Combustion tests were initiated with a hydrogen/oxygen torch igniter and the resulting flame behavior was measured with high frequency ion probes and pressure transducers. Tests were performed with a variety of gaseous and liquid fuels in an unobstructed tube with a closed ignition end and open muzzle. The flame performance with the gaseous fuels is loosely correlated with the expansion ratio, while there is a stronger correlation with the laminar flame speed. The strongest correlation to flame performance is the run-up distance scaling factor. This trend was not observed with the liquid fuels. The reason for this is likely due to incomplete evaporation of the liquid fuel droplets resulting in a partially unburned mixture, effectively altering the intended equivalence ratio. Results suggest that the simple theory for run-up distance and flame acceleration must be modified to more accurately predict the behavior of gaseous fuels. Also, it is likely that more complex spray combustion modeling is required to accurately predict the flame behavior for liquid fuels.
Code of Federal Regulations, 2013 CFR
2013-01-01
... prevent local hot spots; (c) Exhaust gases must discharge clear of the engine air intake, fuel system... after the failure of an attempted engine start; (g) Each exhaust heat exchanger must incorporate means...
Code of Federal Regulations, 2012 CFR
2012-01-01
... prevent local hot spots; (c) Exhaust gases must discharge clear of the engine air intake, fuel system... after the failure of an attempted engine start; (g) Each exhaust heat exchanger must incorporate means...
Code of Federal Regulations, 2014 CFR
2014-01-01
... prevent local hot spots; (c) Exhaust gases must discharge clear of the engine air intake, fuel system... after the failure of an attempted engine start; (g) Each exhaust heat exchanger must incorporate means...
Code of Federal Regulations, 2010 CFR
2010-01-01
... prevent local hot spots; (c) Exhaust gases must discharge clear of the engine air intake, fuel system... after the failure of an attempted engine start; (g) Each exhaust heat exchanger must incorporate means...
Code of Federal Regulations, 2011 CFR
2011-01-01
... prevent local hot spots; (c) Exhaust gases must discharge clear of the engine air intake, fuel system... after the failure of an attempted engine start; (g) Each exhaust heat exchanger must incorporate means...
Robert E. Keane; Jason M. Herynk; Chris Toney; Shawn P. Urbanski; Duncan C. Lutes; Roger D. Ottmar
2013-01-01
Fuel Loading Models (FLMs) and Fuel Characteristic Classification System (FCCSs) fuelbeds are used throughout wildland fire science and management to simplify fuel inputs into fire behavior and effects models, but they have yet to be thoroughly evaluated with field data. In this study, we used a large dataset of Forest Inventory and Analysis (FIA) surface fuel...
Leveraging Client-Side DNS Failure Patterns to Identify Malicious Behaviors
2015-09-28
malicious behavior found in our dataset and (ii) to create ground truth to evaluate the system proposed in Section V. We begin by removing those cases that...2011. [10] S. Hao, N. Feamster, and R. Pandrangi, “Monitoring the Initial DNS Behavior of Malicious Domains,” in ACM IMC , 2011. [11] R. Perdisci et...distribution is unlimited. Leveraging Client-Side DNS Failure Patterns to Identify Malicious Behaviors The views, opinions and/or findings contained in
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denman, Matthew R.; Brooks, Dusty Marie
Sandia National Laboratories (SNL) has conducted an uncertainty analysi s (UA) on the Fukushima Daiichi unit (1F1) accident progression wit h the MELCOR code. Volume I of the 1F1 UA discusses the physical modeling details and time history results of the UA. Volume II of the 1F1 UA discusses the statistical viewpoint. The model used was developed for a previous accident reconstruction investigation jointly sponsored by the US Department of Energy (DOE) and Nuclear Regulatory Commission (NRC). The goal of this work was to perform a focused evaluation of uncertainty in core damage progression behavior and its effect on keymore » figures - of - merit (e.g., hydrogen production, fraction of intact fuel, vessel lower head failure) and in doing so assess the applicability of traditional sensitivity analysis techniques .« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagase, F.; Ishikawa, J.; Kurata, M.
2013-07-01
Estimation of the accident progress and status inside the pressure vessels (RPV) and primary containment vessels (PCV) is required for appropriate conductance of decommissioning in the Fukushima-Daiichi NPP. For that, it is necessary to obtain additional experimental data and revised models for the estimation using computer codes with increased accuracies. The Japan Atomic Energy Agency (JAEA) has selected phenomena to be reviewed and developed, considering previously obtained information, conditions specific to the Fukushima-Daiichi NPP accident, and recent progress of experimental and analytical technologies. As a result, research and development items have been picked up in terms of thermal-hydraulic behavior inmore » the RPV and PCV, progression of fuel bundle degradation, failure of the lower head of RPV, and analysis of the accident. This paper introduces the selected phenomena to be reviewed and developed, research plans and recent results from the JAEA's corresponding research programs. (authors)« less
Analytical and experimental studies of flow-induced vibration of SSME components
NASA Technical Reports Server (NTRS)
Chen, S. S.; Jendrzejczyk, J. A.; Wambsganss, M. W.
1987-01-01
Components of the Space Shuttle Main Engines (SSMEs) are subjected to a severe environment that includes high-temperature, high-velocity flows. Such flows represent a source of energy that can induce and sustain large-amplitude vibratory stresses and/or result in fluidelastic instabilities. Three components are already known to have experienced failures in evaluation tests as a result of flow-induced structural motion. These components include the liquid-oxygen (LOX) posts, the fuel turbine bellows shield, and the internal inlet tee splitter vane. Researchers considered the dynamic behavior of each of these components with varying degrees of effort: (1) a theoretical and experimental study of LOX post vibration excited by a fluid flow; (2) an assessment of the internal inlet tee splitter vane vibration (referred to as the 4000-Hz vibration problem); and (3) a preliminary consideration of the bellows shield problem. Efforts to resolve flow-induced vibration problems associated with the SSMEs are summarized.
Conductometric Sensor for Soot Mass Flow Detection in Exhausts of Internal Combustion Engines
Feulner, Markus; Hagen, Gunter; Müller, Andreas; Schott, Andreas; Zöllner, Christian; Brüggemann, Dieter; Moos, Ralf
2015-01-01
Soot sensors are required for on-board diagnostics (OBD) of automotive diesel particulate filters (DPF) to detect filter failures. Widely used for this purpose are conductometric sensors, measuring an electrical current or resistance between two electrodes. Soot particles deposit on the electrodes, which leads to an increase in current or decrease in resistance. If installed upstream of a DPF, the “engine-out” soot emissions can also be determined directly by soot sensors. Sensors were characterized in diesel engine real exhausts under varying operation conditions and with two different kinds of diesel fuel. The sensor signal was correlated to the actual soot mass and particle number, measured with an SMPS. Sensor data and soot analytics (SMPS) agreed very well, an impressing linear correlation in a double logarithmic representation was found. This behavior was even independent of the used engine settings or of the biodiesel content. PMID:26580621
Conductometric Sensor for Soot Mass Flow Detection in Exhausts of Internal Combustion Engines.
Feulner, Markus; Hagen, Gunter; Müller, Andreas; Schott, Andreas; Zöllner, Christian; Brüggemann, Dieter; Moos, Ralf
2015-11-13
Soot sensors are required for on-board diagnostics (OBD) of automotive diesel particulate filters (DPF) to detect filter failures. Widely used for this purpose are conductometric sensors, measuring an electrical current or resistance between two electrodes. Soot particles deposit on the electrodes, which leads to an increase in current or decrease in resistance. If installed upstream of a DPF, the "engine-out" soot emissions can also be determined directly by soot sensors. Sensors were characterized in diesel engine real exhausts under varying operation conditions and with two different kinds of diesel fuel. The sensor signal was correlated to the actual soot mass and particle number, measured with an SMPS. Sensor data and soot analytics (SMPS) agreed very well, an impressing linear correlation in a double logarithmic representation was found. This behavior was even independent of the used engine settings or of the biodiesel content.
Sharon M. Hood; Robert E. Keane; Helen Y. Smith; Joel Egan; Lisa Holsinger
2018-01-01
Understanding the impacts of mountain pine beetle (MPB; Dendroctonus ponderosae Hopkins) on fire behavior is important from both an ecological and land management viewpoint. However, numerous uncertainties exist in the linkages of MPB-caused treemortality to changes in canopy and surface fuels (e.g., fuel loading, arrangement, and availability) and the...
NASA Technical Reports Server (NTRS)
Meeks, Ellen; Naik, Chitral V.; Puduppakkam, Karthik V.; Modak, Abhijit; Egolfopoulos, Fokion N.; Tsotsis, Theo; Westbrook, Charles K.
2011-01-01
The objectives of this project have been to develop a comprehensive set of fundamental data regarding the combustion behavior of jet fuels and appropriately associated model fuels. Based on the fundamental study results, an auxiliary objective was to identify differentiating characteristics of molecular fuel components that can be used to explain different fuel behavior and that may ultimately be used in the planning and design of optimal fuel-production processes. The fuels studied in this project were Fischer-Tropsch (F-T) fuels and biomass-derived jet fuels that meet certain specifications of currently used jet propulsion applications. Prior to this project, there were no systematic experimental flame data available for such fuels. One of the key goals has been to generate such data, and to use this data in developing and verifying effective kinetic models. The models have then been reduced through automated means to enable multidimensional simulation of the combustion characteristics of such fuels in real combustors. Such reliable kinetic models, validated against fundamental data derived from laminar flames using idealized flow models, are key to the development and design of optimal combustors and fuels. The models provide direct information about the relative contribution of different molecular constituents to the fuel performance and can be used to assess both combustion and emissions characteristics.
Khaledi, Gholam Hassan; Mostafavi, Firoozeh; Eslami, Ahmad Ali; Rooh Afza, Hamidreza; Mostafavi, Firoozeh; Akbar, Hassanzadeh
2015-01-01
Background: Self-care is one of the most important aspects of treatment in patients with heart failure and ranks among the most important coping strategies against the events and stresses of life. Perceived social support plays an important role in performing self-care behaviors in these patients. Objectives: This study was conducted to evaluate the effect of perceived social support on promoting self-care behaviors among heart failure patients. Patients and Methods: This educational intervention with a randomized control group was performed on 64 heart failure patients referred to The Cardiovascular Research Center of Isfahan. The study population was divided randomly into two groups of intervention and control. The indicators of self-care behavior and perceived social support (before, immediately after, and 2 months after the intervention) were completed by the two groups. The intervention group received educational interventions in 120-minute sessions once a week for 4 weeks. SPSS software (version 20) was used for data analysis in addition to methods of descriptive and inferential statistics. Results: Based on the obtained results, educational intervention was effective in the improvement of perceived social support among our heart failure patients. The results also showed that an increase in perceived social support significantly promoted self-care behaviors in the case group after the intervention compared with the control group (P < 0.001). Conclusions: Perceived social support played an important role in improving the performance of self-care behaviors in our heart failure patients. Given the strengths of the present study, these findings can be considered in future research in this domain. PMID:26328063
Physical characteristics of chamise as a wildland fuel
Clive M. Countryman; Charles W. Philpot
1970-01-01
Chamise shrubs in southern California were analyzed for the physical characteristics known to affect fire behavior, such as density, fuel loading, and fuel bed porosity. Considerable variation was found, but results are helpful in developing estimates of chamise fuel characteristics for fire control under field conditions.
77 FR 33158 - Plumas National Forest, California, Sugarloaf Hazardous Fuels Reduction Project
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-05
... to the economic stability of rural communities through: fuels treatments; group selections (GS); area... (DFPZs), modify fire behavior, promote forest and watershed health, while contributing to the economic stability of rural communities in Plumas County, CA. Fire behavior needs to be modified in selected forest...
Unit mechanisms of fission gas release: Current understanding and future needs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tonks, Michael; Andersson, David; Devanathan, Ram
Gaseous fission product transport and release has a large impact on fuel performance, degrading fuel properties and, once the gas is released into the gap between the fuel and cladding, lowering gap thermal conductivity and increasing gap pressure. While gaseous fission product behavior has been investigated with bulk reactor experiments and simplified analytical models, recent improvements in experimental and modeling approaches at the atomistic and mesoscales are being applied to provide unprecedented understanding of the unit mechanisms that define the fission product behavior. In this article, existing research on the basic mechanisms behind the various stages of fission gas releasemore » during normal reactor operation are summarized and critical areas where experimental and simulation work is needed are identified. This basic understanding of the fission gas behavior mechanisms has the potential to revolutionize our ability to predict fission product behavior during reactor operation and to design fuels that have improved fission product retention. In addition, this work can serve as a model on how a coupled experimental and modeling approach can be applied to understand the unit mechanisms behind other critical behaviors in reactor materials.« less
Intelligent Design and Intelligent Failure
NASA Technical Reports Server (NTRS)
Jerman, Gregory
2015-01-01
Good Evening, my name is Greg Jerman and for nearly a quarter century I have been performing failure analysis on NASA's aerospace hardware. During that time I had the distinct privilege of keeping the Space Shuttle flying for two thirds of its history. I have analyzed a wide variety of failed hardware from simple electrical cables to cryogenic fuel tanks to high temperature turbine blades. During this time I have found that for all the time we spend intelligently designing things, we need to be equally intelligent about understanding why things fail. The NASA Flight Director for Apollo 13, Gene Kranz, is best known for the expression "Failure is not an option." However, NASA history is filled with failures both large and small, so it might be more accurate to say failure is inevitable. It is how we react and learn from our failures that makes the difference.
Correlation between inner strength and health-promoting behaviors in women with heart failure.
Hosseini, Meimanat; Vasli, Parvaneh; Rashidi, Sakineh; Shahsavari, Soodeh
2016-08-01
Inner strength is a factor for mental health and well-being and, consequently, a dynamic component of holistic healing. Health-promoting behaviors are appropriate activities to improve health status and prevent the progression of the functional defect resulting from heart failure. The present study aimed to determine the correlation between inner strength and health-promoting behaviors in women with heart failure referred to hospitals affiliated with Shahid Beheshti University of Medical Sciences (SBMU) in 2013. In this cross-sectional study, 145 women with hearth failure were selected through convenient sampling from the clients referred to hospitals affiliated with SBMU. The data collection tool included a three-section questionnaire of personal characteristics, inner strength, and health-promoting life profile II (HPLP II). The data analysis used descriptive statistical tests and Pearson correlation coefficient through SPSS version 20. A direct significant correlation was found between inner strength and all dimensions of health-promoting behaviors and overall health-promoting behaviors (p=0.000) as well as between all dimensions of inner strength (except for the dimension of knowing and searching with physical activity and the dimension of connectedness with personal accountability in healthcare as well as connectedness with physical activity) with health-promoting behaviors (p=0.000 to p=0008). To improve the level of health and well-being and reduce the costs of care services in women with health failure, close attention should be paid to developing and empowering their inner strength.
Analysis of pellet cladding interaction and creep of U 3SIi2 fuel for use in light water reactors
NASA Astrophysics Data System (ADS)
Metzger, Kathryn E.
Following the accident at the Fukushima plant, enhancing the accident tolerance of the light water reactor (LWR) fleet became a topic of serious discussion. Under the direction of congress, the DOE office of Nuclear Energy added accident tolerant fuel development as a primary component to the existing Advanced Fuels Program. The DOE defines accident tolerant fuels as fuels that "in comparison with the standard UO2- Zircaloy system currently used by the nuclear industry, can tolerate loss of active cooling in the reactor core for a considerably longer time period (depending on the LWR system and accident scenario) while maintaining or improving the fuel performance during normal operations, operational transients, as well as design-basis and beyond design-basis events." To be economically viable, proposed accident tolerant fuels and claddings should be backward compatible with LWR designs, provide significant operating cost improvements such as power uprates, increased fuel burnup, or increased cycle length. In terms of safety, an alternative fuel pellet must have resistance to water corrosion comparable to UO2, thermal conductivity equal to or larger than that of UO2, and a melting temperature that allows the material to remain solid under power reactor conditions. Among the candidates, U3Si2 has a number of advantageous thermophysical properties, including; high density, high thermal conductivity at room temperature, and a high melting temperature. These properties support its use as an accident tolerant fuel while its high uranium density is capable of supporting uprates to the LWR fleet. This research characterizes U3Si2 pellets and analyzes U3Si2 under light water reactor conditions using the fuel performance code BISON. While some thermophysical properties for U3Si2 have been found in the literature, the irradiation behavior is sparse and limited to experience with dispersion fuels. Accordingly, the creep behavior for U3Si2 has been unknown, making it difficult to predict fuel-cladding mechanical behavior. This information is essential for designing accident tolerant fuel systems where ceramic claddings, like silicon carbide (SiC) are proposed. This research provides a model for both the thermal and irradiation creep behavior for U3Si2. This body of research is comprised of both experimental and modeling components. Characterization of the fuel microstructure includes; optical microscopy with pore and grain size analysis, helium pycnometry for density determination, mercury intrusion porosimetry, compositional analysis in the form of XRD, second phase identification using EDX, electrical resistance measurement via four point probe, determination of hardness and toughness through Vickers indentation testing, and determination of elastic properties using the impulse excitation method. Post-sintering grain size data allowed for the determination of grain boundary activation energy and diffusion coefficients, which were used to develop creep models. This was extended to lattice and irradiation enhanced diffusion in order to develop a U3Si2 creep model over thermal and irradiation creep regimes. In addition to the creep model, thermal and swelling behavior models for U3Si2 were implemented into the BISON fuel performance code. A series of simulations evaluated the performance and behavior of U3Si2 under typical light water reactor conditions with advanced SiC ceramic cladding. Simulation results show that fuel creep relieves stress in the ceramic cladding and postpones the. moment of fuel-clad contact. However, the stress reduction to the cladding is minimal because the fuel creep rate is low while the swelling rate is high. Future work should include the investigation of monolithic U3Si2 irradiation swelling since the current model relies upon the swelling data of U3Si2 particles in a metallic dispersion fuel. Additionally, planned thermal creep testing at the University of South Carolina can provide confirmation of the U3Si2 creep model contained herein.
Progress in fuel systems to meet new fuel economy and emissions standards
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-12-31
This publication includes information describing the latest developments within the automotive industry on fuel system hardware and control strategies. Contents include: Slow heating process of a heated pintle-type gasoline fuel injector; Mixture preparation measurements; Study of fuel flow rate change in injector for methanol fueled S.I. engine; Flow and structural analysis for fuel pressure regulator performance; A new method to analyze fuel behavior in a spark ignition engine; Throttle body at engine idle -- tolerance effect on flow rate; and more.
Accessing and constructing driving data to develop fuel consumption forecast model
NASA Astrophysics Data System (ADS)
Yamashita, Rei-Jo; Yao, Hsiu-Hsen; Hung, Shih-Wei; Hackman, Acquah
2018-02-01
In this study, we develop a forecasting models, to estimate fuel consumption based on the driving behavior, in which vehicles and routes are known. First, the driving data are collected via telematics and OBDII. Then, the driving fuel consumption formula is used to calculate the estimate fuel consumption, and driving behavior indicators are generated for analysis. Based on statistical analysis method, the driving fuel consumption forecasting model is constructed. Some field experiment results were done in this study to generate hundreds of driving behavior indicators. Based on data mining approach, the Pearson coefficient correlation analysis is used to filter highly fuel consumption related DBIs. Only highly correlated DBI will be used in the model. These DBIs are divided into four classes: speed class, acceleration class, Left/Right/U-turn class and the other category. We then use K-means cluster analysis to group to the driver class and the route class. Finally, more than 12 aggregate models are generated by those highly correlated DBIs, using the neural network model and regression analysis. Based on Mean Absolute Percentage Error (MAPE) to evaluate from the developed AMs. The best MAPE values among these AM is below 5%.
Kwekkeboom, Kristine L; Bratzke, Lisa C
2016-01-01
Pain, dyspnea, fatigue, and sleep disturbance are prevalent and distressing symptoms in persons with advanced heart failure. Although many lifestyle and self-care interventions have been developed to control heart failure progression, very few studies have explored treatments exclusively for symptom palliation. Cognitive-behavioral strategies may be effective treatment for these symptoms in advanced heart failure. A systemic review was conducted to describe the effect of cognitive-behavioral strategies on pain, dyspnea, fatigue, and sleep disturbance in patients with heart failure. CINAHL, Medline, and PsychINFO were searched from inception through December 2014. Articles were selected for inclusion if they tested a cognitive-behavioral strategy using a quasi-experimental or experimental design, involved a sample of adults with heart failure, and measured pain, dyspnea, fatigue, sleep disturbance, or symptom-related quality of life. The 2 authors evaluated study quality, abstracted data elements from each study, and synthesized findings. Thirteen articles describing 9 unique studies met criteria and were included in the review. Five studies tested relaxation strategies, 3 tested meditation strategies, and 1 tested a guided imagery strategy. Of the 9 studies, 7 demonstrated some improvement in symptom outcomes. Relaxation, meditation, guided imagery, or combinations of these strategies resulted in less dyspnea and better sleep compared with attention control or usual care conditions and reduced pain, dyspnea, fatigue, and sleep disturbance within treatment groups (pretreatment to posttreatment). Symptom-related quality of life was improved with meditation compared with attention control and usual care conditions and improved pre- to post-guided imagery. Studies exploring cognitive-behavioral symptom management strategies in heart failure vary in quality and report mixed findings but indicate potential beneficial effects of relaxation, meditation, and guided imagery on heart failure-related symptoms. Future research should test cognitive-behavioral strategies in rigorously designed efficacy trials, using samples selected for their symptom experience, and measure pain, dyspnea, fatigue, and sleep disturbance outcomes with targeted symptom measures.
Kwekkeboom, Kristine L.; Bratzke, Lisa C.
2015-01-01
Background Pain, dyspnea, fatigue, and sleep disturbance are prevalent and distressing symptoms in persons with advanced heart failure. Although many lifestyle and self-care interventions have been developed to control heart failure progression, very few studies have explored treatments exclusively for symptom palliation. Cognitive-behavioral strategies may be effective treatment for these symptoms in advanced heart failure. Objective A systemic review was conducted to describe the effect of cognitive-behavioral strategies on pain, dyspnea, fatigue, and sleep disturbance in patients with heart failure. Methods CINAHL, Medline, and PsychINFO were searched from inception through December 2014. Articles were selected for inclusion if they tested a cognitive-behavioral strategy using a quasi-experimental or experimental design, involved a sample of adults with heart failure, and measured pain, dyspnea, fatigue, sleep disturbance, or symptom-related quality of life (QoL). The two authors evaluated study quality, abstracted data elements from each study, and synthesized findings. Results Thirteen articles describing nine unique studies met criteria and were included in the review. Five studies tested relaxation strategies, three tested meditation strategies, and one tested a guided imagery strategy. Seven of the nine studies demonstrated some improvement in symptom outcomes. Relaxation, meditation, guided imagery, or combinations of these strategies resulted in less dyspnea and better sleep compared to attention control or usual care conditions, and reduced pain, dyspnea, fatigue and sleep disturbance within treatment groups (pre- to post-treatment). Symptom-related QoL was improved with meditation compared to attention control and usual care conditions, and improved pre- to post-guided imagery. Conclusions Studies exploring cognitive-behavioral symptom management strategies in heart failure vary in quality and report mixed findings, but indicate potential beneficial effects of relaxation, meditation, and guided imagery on heart failure-related symptoms. Future research should test cognitive-behavioral strategies in rigorously designed efficacy trials, using samples selected for their symptom experience, and measure pain, dyspnea, fatigue, and sleep disturbance outcomes with targeted symptom measures. PMID:26065388
Murphy, Karen
2018-01-01
Abstract The current study focused on how engaging in media multitasking (MMT) and the experience of everyday cognitive failures impact on the individual's engagement in risky cybersecurity behaviors (RCsB). In total, 144 participants (32 males, 112 females) completed an online survey. The age range for participants was 18 to 43 years (M = 20.63, SD = 4.04). Participants completed three scales which included an inventory of weekly MMT, a measure of everyday cognitive failures, and RCsB. There was a significant difference between heavy media multitaskers (HMM), average media multitaskers (AMM), and light media multitaskers (LMM) in terms of RCsB, with HMM demonstrating more frequent risky behaviors than LMM or AMM. The HMM group also reported more cognitive failures in everyday life than the LMM group. A regression analysis showed that everyday cognitive failures and MMT acted as significant predictors for RCsB. These results expand our current understanding of the relationship between human factors and cybersecurity behaviors, which are useful to inform the design of training and intervention packages to mitigate RCsB. PMID:29638157
Nicole M. Vaillant; Alan A. Ager; John Anderson
2013-01-01
Fire behavior modeling and geospatial analyses can provide tremendous insight for land managers as they grapple with the complex problems frequently encountered in wildfire risk assessments and fire and fuels management planning. Fuel management often is a particularly complicated process in which the benefits and potential impacts of fuel treatments need to be...
Use of multiscale zirconium alloy deformation models in nuclear fuel behavior analysis
NASA Astrophysics Data System (ADS)
Montgomery, Robert; Tomé, Carlos; Liu, Wenfeng; Alankar, Alankar; Subramanian, Gopinath; Stanek, Christopher
2017-01-01
Accurate prediction of cladding mechanical behavior is a key aspect of modeling nuclear fuel behavior, especially for conditions of pellet-cladding interaction (PCI), reactivity-initiated accidents (RIA), and loss of coolant accidents (LOCA). Current approaches to fuel performance modeling rely on empirical constitutive models for cladding creep, growth and plastic deformation, which are limited to the materials and conditions for which the models were developed. To improve upon this approach, a microstructurally-based zirconium alloy mechanical deformation analysis capability is being developed within the United States Department of Energy Consortium for Advanced Simulation of Light Water Reactors (CASL). Specifically, the viscoplastic self-consistent (VPSC) polycrystal plasticity modeling approach, developed by Lebensohn and Tomé [1], has been coupled with the BISON engineering scale fuel performance code to represent the mechanistic material processes controlling the deformation behavior of light water reactor (LWR) cladding. A critical component of VPSC is the representation of the crystallographic nature (defect and dislocation movement) and orientation of the grains within the matrix material and the ability to account for the role of texture on deformation. A future goal is for VPSC to obtain information on reaction rate kinetics from atomistic calculations to inform the defect and dislocation behavior models described in VPSC. The multiscale modeling of cladding deformation mechanisms allowed by VPSC far exceed the functionality of typical semi-empirical constitutive models employed in nuclear fuel behavior codes to model irradiation growth and creep, thermal creep, or plasticity. This paper describes the implementation of an interface between VPSC and BISON and provides initial results utilizing the coupled functionality.
NASA Technical Reports Server (NTRS)
Carden, Huey D.; Boitnott, Richard L.; Fasanella, Edwin L.
1990-01-01
Failure behavior results are presented from crash dynamics research using concepts of aircraft elements and substructure not necessarily designed or optimized for energy absorption or crash loading considerations. To achieve desired new designs which incorporate improved energy absorption capabilities often requires an understanding of how more conventional designs behave under crash loadings. Experimental and analytical data are presented which indicate some general trends in the failure behavior of a class of composite structures which include individual fuselage frames, skeleton subfloors with stringers and floor beams but without skin covering, and subfloors with skin added to the frame-stringer arrangement. Although the behavior is complex, a strong similarity in the static and dynamic failure behavior among these structures is illustrated through photographs of the experimental results and through analytical data of generic composite structural models. It is believed that the similarity in behavior is giving the designer and dynamists much information about what to expect in the crash behavior of these structures and can guide designs for improving the energy absorption and crash behavior of such structures.
NASA Technical Reports Server (NTRS)
Carden, Huey D.; Boitnott, Richard L.; Fasanella, Edwin L.
1990-01-01
Failure behavior results are presented from crash dynamics research using concepts of aircraft elements and substructure not necessarily designed or optimized for energy absorption or crash loading considerations. To achieve desired new designs which incorporate improved energy absorption capabilities often requires an understanding of how more conventional designs behave under crash loadings. Experimental and analytical data are presented which indicate some general trends in the failure behavior of a class of composite structures which include individual fuselage frames, skeleton subfloors with stringers and floor beams but without skin covering, and subfloors with skin added to the frame-stringer arrangement. Although the behavior is complex, a strong similarity in the static and dynamic failure behavior among these structures is illustrated through photographs of the experimental results and through analytical data of generic composite structural models. It is believed that the similarity in behavior is giving the designer and dynamists much information about what to expect in the crash behavior of these structures and can guide designs for improving the energy absorption and crash behavior of such structures.
Strata-based forest fuel classification for wild fire hazard assessment using terrestrial LiDAR
NASA Astrophysics Data System (ADS)
Chen, Yang; Zhu, Xuan; Yebra, Marta; Harris, Sarah; Tapper, Nigel
2016-10-01
Fuel structural characteristics affect fire behavior including fire intensity, spread rate, flame structure, and duration, therefore, quantifying forest fuel structure has significance in understanding fire behavior as well as providing information for fire management activities (e.g., planned burns, suppression, fuel hazard assessment, and fuel treatment). This paper presents a method of forest fuel strata classification with an integration between terrestrial light detection and ranging (LiDAR) data and geographic information system for automatically assessing forest fuel structural characteristics (e.g., fuel horizontal continuity and vertical arrangement). The accuracy of fuel description derived from terrestrial LiDAR scanning (TLS) data was assessed by field measured surface fuel depth and fuel percentage covers at distinct vertical layers. The comparison of TLS-derived depth and percentage cover at surface fuel layer with the field measurements produced root mean square error values of 1.1 cm and 5.4%, respectively. TLS-derived percentage cover explained 92% of the variation in percentage cover at all fuel layers of the entire dataset. The outcome indicated TLS-derived fuel characteristics are strongly consistent with field measured values. TLS can be used to efficiently and consistently classify forest vertical layers to provide more precise information for forest fuel hazard assessment and surface fuel load estimation in order to assist forest fuels management and fire-related operational activities. It can also be beneficial for mapping forest habitat, wildlife conservation, and ecosystem management.
Failure Analysis of a Helicopter External Fuel-Tank Pylon
NASA Technical Reports Server (NTRS)
Newman, John A.; Piascik, Robert S.; Lindenberg, Richard A.
2002-01-01
An eight-inch-long (0.2 m) crack was found in an external fuel-tank pylon of a U.S. Coast Guard HH-60 helicopter. The damaged pylon was removed from service and destructively examined at NASA Langley Research Center (LaRC) to determine the cause of the crack. Results of the analysis revealed that crack initiation occurred at corrosion pits in a fastener hole and crack propagation was a result of cyclic loading.
Roger D. Ottmar; John I. Blake; William T. Crolly
2012-01-01
The inherent spatial and temporal heterogeneity of fuel beds in forests of the southeastern United States may require fine scale fuel measurements for providing reliable fire hazard and fuel treatment effectiveness estimates. In a series of five papers, an intensive, fine scale fuel inventory from the Savanna River Site in the southeastern United States is used for...
Jin, Sen; Liu, Bo-Fei; Di, Xue-Ying; Chu, Teng-Fei; Zhang, Ji-Li
2012-01-01
Aimed to understand the fire behavior of Mongolian oak leaves fuel-bed under field condition, the leaves of a secondary Mongolian oak forest in Northeast Forestry University experimental forest farm were collected and brought into laboratory to construct fuel-beds with varied loading, height, and moisture content, and a total of 100 experimental fires were burned under no-wind and zero-slope conditions. It was observed that the fire spread rate of the fuel-beds was less than 0.5 m x min(-1). Fuel-bed loading, height, and moisture contents all had significant effects on the fire spread rate. The effect of fuel-bed moisture content on the fire spread had no significant correlations with fuel-bed loading and height, but the effect of fuel-bed height was related to the fuel-bed loading. The packing ratio of fuel-beds had less effect on the fire spread rate. Taking the fuel-bed loading, height, and moisture content as predictive variables, a prediction model for the fire spread rate of Mongolian oak leaves fuel-bed was established, which could explain 83% of the variance of the fire spread rate, with a mean absolute error 0.04 m x min(-1) and a mean relative error less than 17%.
Biodiesel: Characterization by DSC and P-DSC
NASA Astrophysics Data System (ADS)
Chiriac, Rodica; Toche, François; Brylinski, Christian
Thermal analytical methods such as differential scanning calorimetry (DSC) have been successfully applied to neat petrodiesel and engine oils in the last 25 years. This chapter shows how DSC and P-DSC (pressurized DSC) techniques can be used to compare, characterize, and predict some properties of alternative non-petroleum fuels, such as cold flow behavior and oxidative stability. These two properties are extremely important with respect to the operability, transport, and long-term storage of biodiesel fuel. It is shown that the quantity of unsaturated fatty acids in the fuel composition has an important impact on both properties. In addition, it is shown that the impact of fuel additives on the oxidative stability or the cold flow behavior of biodiesel can be studied by means of DSC and P-DSC techniques. Thermomicroscopy can also be used to study the cold flow behavior of biodiesel, giving information on the size and the morphology of crystals formed at low temperature.
An improved car-following model considering headway changes with memory
NASA Astrophysics Data System (ADS)
Yu, Shaowei; Shi, Zhongke
2015-03-01
To describe car-following behaviors in complex situations better, increase roadway traffic mobility and minimize cars' fuel consumptions, the linkage between headway changes with memory and car-following behaviors was explored with the field car-following data by using the gray correlation analysis method, and then an improved car-following model considering headway changes with memory on a single lane was proposed based on the full velocity difference model. Some numerical simulations were carried out by employing the improved car-following model to explore how headway changes with memory affected each car's velocity, acceleration, headway and fuel consumptions. The research results show that headway changes with memory have significant effects on car-following behaviors and fuel consumptions and that considering headway changes with memory in designing the adaptive cruise control strategy can improve the traffic flow stability and minimize cars' fuel consumptions.
A Study on a Prognosis Algorithm for PEMFC Lifetime Prediction based on Durability Tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xian; Pisu, Pierluigi; Toops, Todd J
2010-01-01
Of the fuel cells being studied, the proton exchange membrane fuel cell (PEMFC) is viewed as the most promising for transportation. Yet until today, the commercialization of the PEMFC has not been widespread in spite of its large expectation. Poor long term performances or durability, and high production and maintenance costs account for the main reasons. For the final commercialization of fuel cell in transportation field, the durability issue must be addressed, while the costs should be further brought down. In the meantime, health-monitoring and prognosis techniques are of great significance in ensuring the normal operation of the fuel cellmore » and preventing or predicting its likely abrupt and catastrophic failure.« less
Thermal Analysis of ZPPR High Pu Content Stored Fuel
Solbrig, Charles W.; Pope, Chad L.; Andrus, Jason P.
2014-09-17
The Zero Power Physics Reactor (ZPPR) operated from April 18, 1969, until 1990. ZPPR operated at low power for testing nuclear reactor designs. This paper examines the temperature of Pu content ZPPR fuel while it is in storage. Heat is generated in the fuel due to Pu and Am decay and is a concern for possible cladding damage. Damage to the cladding could lead to fuel hydriding and oxidizing. A series of computer simulations were made to determine the range of temperatures potentially occuring in the ZPPR fuel. The maximum calculated fuel temperature is 292°C (558°F). Conservative assumptions in themore » model intentionally overestimate temperatures. The stored fuel temperatures are dependent on the distribution of fuel in the surrounding storage compartments, the heat generation rate of the fuel, and the orientation of fuel. Direct fuel temperatures could not be measured but storage bin doors, storage sleeve doors, and storage canister temperatures were measured. Comparison of these three temperatures to the calculations indicates that the temperatures calculated with conservative assumptions are, as expected, higher than the actual temperatures. The maximum calculated fuel temperature with the most conservative assumptions is significantly below the fuel failure criterion of 600°C (1,112°F).« less
Fundamental Studies of the Durability of Materials for Interconnects in Solid Oxide Fuel Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frederick S. Pettit; Gerald H. Meier
2006-06-30
Ferritic stainless steels are a leading candidate material for use as an SOFC interconnect, but have the problem of forming volatile chromia species that lead to cathode poisoning. This project has focused both on optimization of ferritic alloys for SOFC applications and evaluating the possibility of using alternative materials. The initial efforts involved studying the oxidation behavior of a variety of chromia-forming ferritic stainless steels in the temperature range 700-900 C in atmospheres relevant to solid oxide fuel cell operation. The alloys exhibited a wide variety of oxidation behavior based on composition. A method for reducing the vaporization is tomore » add alloying elements that lead to the formation of a thermally grown oxide layer over the protective chromia. Several commercial steels form manganese chromate on the surface. This same approach, combined with observations of TiO{sub 2} overlayer formation on the chromia forming, Ni-based superalloy IN 738, has resulted in the development of a series of Fe-22 Cr-X Ti alloys (X=0-4 wt%). Oxidation testing has indicated that this approach results in significant reduction in chromia evaporation. Unfortunately, the Ti also results in accelerated chromia scale growth. Fundamental thermo-mechanical aspects of the durability of solid oxide fuel cell (SOFC) interconnect alloys have also been investigated. A key failure mechanism for interconnects is the spallation of the chromia scale that forms on the alloy, as it is exposed to fuel cell environments. Indentation testing methods to measure the critical energy release rate (Gc) associated with the spallation of chromia scale/alloy systems have been evaluated. This approach has been used to evaluate the thermomechanical stability of chromia films as a function of oxidation exposure. The oxidation of pure nickel in SOFC environments was evaluated using thermogravimetric analysis (TGA) to determine the NiO scaling kinetics and a four-point probe was used to measure the area-specific resistance (ASR) to estimate the electrical degradation of the interconnect. In addition to the baseline study of pure nickel, steps were taken to decrease the ASR through alloying and surface modifications. Finally, high conductivity composite systems, consisting of nickel and silver, were studied. These systems utilize high conductivity silver pathways through nickel while maintaining the mechanical stability that a nickel matrix provides.« less
NASA Technical Reports Server (NTRS)
Reveley, Mary S.; Briggs, Jeffrey L.; Evans, Joni K.; Jones, Sharon M.; Kurtoglu, Tolga; Leone, Karen M.; Sandifer, Carl E.
2011-01-01
Causal factors in aviation accidents and incidents related to system/component failure/malfunction (SCFM) were examined for Federal Aviation Regulation Parts 121 and 135 operations to establish future requirements for the NASA Aviation Safety Program s Integrated Vehicle Health Management (IVHM) Project. Data analyzed includes National Transportation Safety Board (NSTB) accident data (1988 to 2003), Federal Aviation Administration (FAA) incident data (1988 to 2003), and Aviation Safety Reporting System (ASRS) incident data (1993 to 2008). Failure modes and effects analyses were examined to identify possible modes of SCFM. A table of potential adverse conditions was developed to help evaluate IVHM research technologies. Tables present details of specific SCFM for the incidents and accidents. Of the 370 NTSB accidents affected by SCFM, 48 percent involved the engine or fuel system, and 31 percent involved landing gear or hydraulic failure and malfunctions. A total of 35 percent of all SCFM accidents were caused by improper maintenance. Of the 7732 FAA database incidents affected by SCFM, 33 percent involved landing gear or hydraulics, and 33 percent involved the engine and fuel system. The most frequent SCFM found in ASRS were turbine engine, pressurization system, hydraulic main system, flight management system/flight management computer, and engine. Because the IVHM Project does not address maintenance issues, and landing gear and hydraulic systems accidents are usually not fatal, the focus of research should be those SCFMs that occur in the engine/fuel and flight control/structures systems as well as power systems.
Preliminary Study Using Forward Reaction Control System Jets During Space Shuttle Entry
NASA Technical Reports Server (NTRS)
Restrepo, Carolina; Valasek, John
2006-01-01
Failure or degradation of the flight control system, or hull damage, can lead to loss of vehicle control during entry. Possible failure scenarios are debris impact and wing damage that could result in a large aerodynamic asymmetry which cannot be trimmed out without additional yaw control. Currently the space shuttle uses aerodynamic control surfaces and Reaction Control System jets to control attitude. The forward jets are used for orbital maneuvering only, while the aft jets are used for yaw control during entry. This paper develops a controller for using the forward reaction control system jets as an additional control during entry, and assesses its value and feasibility during failure situations. Forward-aft jet blending logic is created, and implemented on a simplified model of the space shuttle entry flight control system. The model is validated and verified on the nonlinear, six degree-of-freedom Shuttle Engineering Simulator. A rudimentary human factors study was undertaken using the forward cockpit simulator at Johnson Space Center, to assess flying qualities of the new system and pilot workload. Results presented in the paper show that the combination of forward and aft jets provides useful additional yaw control, in addition to potential fuel savings and the ability to balance the use of the fuel in the forward and aft tanks to meet availability constraints of both forward and aft fuel tanks. Piloted simulation studies indicated that using both sets of jets while flying a damaged space shuttle reduces pilot workload, and makes the vehicle more responsive.
Using airborne laser altimetry to determine fuel models for estimating fire behavior
Carl A. Seielstad; Lloyd P. Queen
2003-01-01
Airborne laser altimetry provides an unprecedented view of the forest floor in timber fuel types and is a promising new tool for fuels assessments. It can be used to resolve two fuel models under closed canopies and may be effective for estimating coarse woody debris loads. A simple metric - obstacle density - provides the necessary quantification of fuel bed roughness...
Rocky Mountain Research Station USDA Forest Service
2004-01-01
Fuels management responsibilities may include providing local property owners with the information for taking responsibility for reducing fuels on their land. This fact sheet discusses three different types of information that may be useful in programs to engage property owners in fuel reduction activities.
Simulation of Long-Term Landscape-Level Fuel Treatment Effects on Large Wildfires
Mark A. Finney; Rob C. Seli; Charles W. McHugh; Alan A. Ager; Berni Bahro; James K. Agee
2006-01-01
A simulation system was developed to explore how fuel treatments placed in random and optimal spatial patterns affect the growth and behavior of large fires when implemented at different rates over the course of five decades. The system consists of a forest/fuel dynamics simulation module (FVS), logic for deriving fuel model dynamics from FVS output, a spatial fuel...
Robert E. Keane; Jason M. Herynk; Chris Toney; Shawn P. Urbanski; Duncan C. Lutes; Roger D. Ottmar
2015-01-01
Fuel classifications are integral tools in fire management and planning because they are used as inputs to fire behavior and effects simulation models. Fuel Loading Models (FLMs) and Fuel Characteristic Classification System (FCCSs) fuelbeds are the most popular classifications used throughout wildland fire science and management, but they have yet to be thoroughly...
Robert E. Keane; Laura J. Dickinson
2007-01-01
Fire managers need better estimates of fuel loading so they can more accurately predict the potential fire behavior and effects of alternative fuel and ecosystem restoration treatments. This report presents a new fuel sampling method, called the photoload sampling technique, to quickly and accurately estimate loadings for six common surface fuel components (1 hr, 10 hr...
ArcFuels: an ArcMap toolbar for fuel treatment planning and wildfire risk assessment
Nicole M. Vaillant; Alan A. Ager
2014-01-01
Fire behavior modeling and geospatial analysis can provide tremendous insight to land managers in defining both the benefits and potential impacts of fuel treatments in the context of land management goals and public expectations. ArcFuels is a streamlined fuel management planning and wildfire risk assessment system that creates a trans-scale (stand to large landscape...
Parrondo, Javier; Han, Taehee; Niangar, Ellazar; Wang, Chunmei; Dale, Nilesh; Adjemian, Kev; Ramani, Vijay
2014-01-01
We report a unique and highly stable electrocatalyst—platinum (Pt) supported on titanium–ruthenium oxide (TRO)—for hydrogen fuel cell vehicles. The Pt/TRO electrocatalyst was exposed to stringent accelerated test protocols designed to induce degradation and failure mechanisms identical to those seen during extended normal operation of a fuel cell automobile—namely, support corrosion during vehicle startup and shutdown, and platinum dissolution during vehicle acceleration and deceleration. These experiments were performed both ex situ (on supports and catalysts deposited onto a glassy carbon rotating disk electrode) and in situ (in a membrane electrode assembly). The Pt/TRO was compared against a state-of-the-art benchmark catalyst—Pt supported on high surface-area carbon (Pt/HSAC). In ex situ tests, Pt/TRO lost only 18% of its initial oxygen reduction reaction mass activity and 3% of its oxygen reduction reaction-specific activity, whereas the corresponding losses for Pt/HSAC were 52% and 22%. In in situ-accelerated degradation tests performed on membrane electrode assemblies, the loss in cell voltage at 1 A · cm−2 at 100% RH was a negligible 15 mV for Pt/TRO, whereas the loss was too high to permit operation at 1 A · cm−2 for Pt/HSAC. We clearly show that electrocatalyst support corrosion induced during fuel cell startup and shutdown is a far more potent failure mode than platinum dissolution during fuel cell operation. Hence, we posit that the need for a highly stable support (such as TRO) is paramount. Finally, we demonstrate that the corrosion of carbon present in the gas diffusion layer of the fuel cell is only of minor concern. PMID:24367118
Parrondo, Javier; Han, Taehee; Niangar, Ellazar; Wang, Chunmei; Dale, Nilesh; Adjemian, Kev; Ramani, Vijay
2014-01-07
We report a unique and highly stable electrocatalyst-platinum (Pt) supported on titanium-ruthenium oxide (TRO)-for hydrogen fuel cell vehicles. The Pt/TRO electrocatalyst was exposed to stringent accelerated test protocols designed to induce degradation and failure mechanisms identical to those seen during extended normal operation of a fuel cell automobile-namely, support corrosion during vehicle startup and shutdown, and platinum dissolution during vehicle acceleration and deceleration. These experiments were performed both ex situ (on supports and catalysts deposited onto a glassy carbon rotating disk electrode) and in situ (in a membrane electrode assembly). The Pt/TRO was compared against a state-of-the-art benchmark catalyst-Pt supported on high surface-area carbon (Pt/HSAC). In ex situ tests, Pt/TRO lost only 18% of its initial oxygen reduction reaction mass activity and 3% of its oxygen reduction reaction-specific activity, whereas the corresponding losses for Pt/HSAC were 52% and 22%. In in situ-accelerated degradation tests performed on membrane electrode assemblies, the loss in cell voltage at 1 A · cm(-2) at 100% RH was a negligible 15 mV for Pt/TRO, whereas the loss was too high to permit operation at 1 A · cm(-2) for Pt/HSAC. We clearly show that electrocatalyst support corrosion induced during fuel cell startup and shutdown is a far more potent failure mode than platinum dissolution during fuel cell operation. Hence, we posit that the need for a highly stable support (such as TRO) is paramount. Finally, we demonstrate that the corrosion of carbon present in the gas diffusion layer of the fuel cell is only of minor concern.
The SAS4A/SASSYS-1 Safety Analysis Code System, Version 5
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fanning, T. H.; Brunett, A. J.; Sumner, T.
The SAS4A/SASSYS-1 computer code is developed by Argonne National Laboratory for thermal, hydraulic, and neutronic analysis of power and flow transients in liquidmetal- cooled nuclear reactors (LMRs). SAS4A was developed to analyze severe core disruption accidents with coolant boiling and fuel melting and relocation, initiated by a very low probability coincidence of an accident precursor and failure of one or more safety systems. SASSYS-1, originally developed to address loss-of-decay-heat-removal accidents, has evolved into a tool for margin assessment in design basis accident (DBA) analysis and for consequence assessment in beyond-design-basis accident (BDBA) analysis. SAS4A contains detailed, mechanistic models of transientmore » thermal, hydraulic, neutronic, and mechanical phenomena to describe the response of the reactor core, its coolant, fuel elements, and structural members to accident conditions. The core channel models in SAS4A provide the capability to analyze the initial phase of core disruptive accidents, through coolant heat-up and boiling, fuel element failure, and fuel melting and relocation. Originally developed to analyze oxide fuel clad with stainless steel, the models in SAS4A have been extended and specialized to metallic fuel with advanced alloy cladding. SASSYS-1 provides the capability to perform a detailed thermal/hydraulic simulation of the primary and secondary sodium coolant circuits and the balance-ofplant steam/water circuit. These sodium and steam circuit models include component models for heat exchangers, pumps, valves, turbines, and condensers, and thermal/hydraulic models of pipes and plena. SASSYS-1 also contains a plant protection and control system modeling capability, which provides digital representations of reactor, pump, and valve controllers and their response to input signal changes.« less
Space Vehicle Reliability Modeling in DIORAMA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tornga, Shawn Robert
When modeling system performance of space based detection systems it is important to consider spacecraft reliability. As space vehicles age the components become prone to failure for a variety of reasons such as radiation damage. Additionally, some vehicles may lose the ability to maneuver once they exhaust fuel supplies. Typically failure is divided into two categories: engineering mistakes and technology surprise. This document will report on a method of simulating space vehicle reliability in the DIORAMA framework.
Lunar Module ECS (Environmental Control System) - Design Considerations and Failure Modes. Part 1
NASA Technical Reports Server (NTRS)
Interbartolo, Michael
2009-01-01
Design considerations and failure modes for the Lunar Module (LM) Environmental Control System (ECS) are described. An overview of the the oxygen supply and cabin pressurization, atmosphere revitalization, water management and heat transport systems are provided. Design considerations including reliability, flight instrumentation, modularization and the change to the use of batteries instead of fuel cells are discussed. A summary is provided for the LM ECS general testing regime.
Combustion Dynamics and Control for Ultra Low Emissions in Aircraft Gas-Turbine Engines
NASA Technical Reports Server (NTRS)
DeLaat, John C.
2011-01-01
Future aircraft engines must provide ultra-low emissions and high efficiency at low cost while maintaining the reliability and operability of present day engines. The demands for increased performance and decreased emissions have resulted in advanced combustor designs that are critically dependent on efficient fuel/air mixing and lean operation. However, all combustors, but most notably lean-burning low-emissions combustors, are susceptible to combustion instabilities. These instabilities are typically caused by the interaction of the fluctuating heat release of the combustion process with naturally occurring acoustic resonances. These interactions can produce large pressure oscillations within the combustor and can reduce component life and potentially lead to premature mechanical failures. Active Combustion Control which consists of feedback-based control of the fuel-air mixing process can provide an approach to achieving acceptable combustor dynamic behavior while minimizing emissions, and thus can provide flexibility during the combustor design process. The NASA Glenn Active Combustion Control Technology activity aims to demonstrate active control in a realistic environment relevant to aircraft engines by providing experiments tied to aircraft gas turbine combustors. The intent is to allow the technology maturity of active combustion control to advance to eventual demonstration in an engine environment. Work at NASA Glenn has shown that active combustion control, utilizing advanced algorithms working through high frequency fuel actuation, can effectively suppress instabilities in a combustor which emulates the instabilities found in an aircraft gas turbine engine. Current efforts are aimed at extending these active control technologies to advanced ultra-low-emissions combustors such as those employing multi-point lean direct injection.
Complete modeling for systems of a marine diesel engine
NASA Astrophysics Data System (ADS)
Nahim, Hassan Moussa; Younes, Rafic; Nohra, Chadi; Ouladsine, Mustapha
2015-03-01
This paper presents a simulator model of a marine diesel engine based on physical, semi-physical, mathematical and thermodynamic equations, which allows fast predictive simulations. The whole engine system is divided into several functional blocks: cooling, lubrication, air, injection, combustion and emissions. The sub-models and dynamic characteristics of individual blocks are established according to engine working principles equations and experimental data collected from a marine diesel engine test bench for SIMB Company under the reference 6M26SRP1. The overall engine system dynamics is expressed as a set of simultaneous algebraic and differential equations using sub-blocks and S-Functions of Matlab/Simulink. The simulation of this model, implemented on Matlab/Simulink has been validated and can be used to obtain engine performance, pressure, temperature, efficiency, heat release, crank angle, fuel rate, emissions at different sub-blocks. The simulator will be used, in future work, to study the engine performance in faulty conditions, and can be used to assist marine engineers in fault diagnosis and estimation (FDI) as well as designers to predict the behavior of the cooling system, lubrication system, injection system, combustion, emissions, in order to optimize the dimensions of different components. This program is a platform for fault simulator, to investigate the impact on sub-blocks engine's output of changing values for faults parameters such as: faulty fuel injector, leaky cylinder, worn fuel pump, broken piston rings, a dirty turbocharger, dirty air filter, dirty air cooler, air leakage, water leakage, oil leakage and contamination, fouling of heat exchanger, pumps wear, failure of injectors (and many others).
Manara, Dario; Soldi, Luca; Mastromarino, Sara; Boboridis, Kostantinos; Robba, Davide; Vlahovic, Luka; Konings, Rudy
2017-01-01
Major and severe accidents have occurred three times in nuclear power plants (NPPs), at Three Mile Island (USA, 1979), Chernobyl (former USSR, 1986) and Fukushima (Japan, 2011). Research on the causes, dynamics, and consequences of these mishaps has been performed in a few laboratories worldwide in the last three decades. Common goals of such research activities are: the prevention of these kinds of accidents, both in existing and potential new nuclear power plants; the minimization of their eventual consequences; and ultimately, a full understanding of the real risks connected with NPPs. At the European Commission Joint Research Centre's Institute for Transuranium Elements, a laser-heating and fast radiance spectro-pyrometry facility is used for the laboratory simulation, on a small scale, of NPP core meltdown, the most common type of severe accident (SA) that can occur in a nuclear reactor as a consequence of a failure of the cooling system. This simulation tool permits fast and effective high-temperature measurements on real nuclear materials, such as plutonium and minor actinide-containing fission fuel samples. In this respect, and in its capability to produce large amount of data concerning materials under extreme conditions, the current experimental approach is certainly unique. For current and future concepts of NPP, example results are presented on the melting behavior of some different types of nuclear fuels: uranium-plutonium oxides, carbides, and nitrides. Results on the high-temperature interaction of oxide fuels with containment materials are also briefly shown. PMID:29286382
Moisture dynamics in masticated fuelbeds: A preliminary analysis
Jesse Kreye; J. Morgan Varner
2007-01-01
Mastication has become a popular fuels treatment in the Western United States, but predicting subsequent fire behavior and effects has proven difficult. Fire behavior and effects in masticated fuelbeds have been more intense and erratic in comparison with model predictions. While various particle or fuelbed characteristics in these fuels may contribute to the...
Liu, Min-Hui; Wang, Chao-Hung; Huang, Yu-Yen; Cherng, Wen-Jin; Wang, Kai-Wei Katherine
2014-06-01
Patients with heart failure experience adverse physical symptoms that affect quality of life. The number of patients with heart failure in Taiwan has been growing in recent years. This article examines correlations among illness knowledge, self-care behaviors, and quality of life in elderly patients with heart failure. A cross-sectional research design using three questionnaires was adopted. The study was undertaken in an outpatient department of a teaching hospital in Taiwan from January to June 2008. Potential participants aged 65 years or older were selected by a physician based on several diagnostic findings of heart failure that included an International Classification of Diseases' code 4280 or 4289. Patients who were bedridden or had a prognosis of less than 6 months were excluded from consideration. One hundred forty-one patients with heart failure were recruited. Most participants were men (51.8%), older adults (49.6% older than 71 years old), and either educated to an elementary school level or illiterate (69.5%) and have New York Heart Association class II (61.0%). Participants had an average left ventricular ejection fraction of 41.1%. The illness knowledge of participants was poor (accuracy rate: 29.3%), and most were unaware of the significance of self-care. Illness knowledge correlated with both self-care behaviors (r = -.42, p < .01) and quality of life (r = -.22, p < .01). Illness knowledge and age were identified as significant correlated factors of self-care behaviors (R = .22); and functional class, living independently, and age were identified as significant correlated factors of quality of life (R = .41). Participants in this study with higher self-reported self-care behaviors and quality of life were younger in age and had better illness knowledge. Furthermore, physical function and independence in daily living significantly affected quality of life. Care for patients with heart failure, particularly older adults, should focus on teaching these patients about heart failure illness and symptom management. Assisting elderly patients with heart failure to promote and maintain physical functions to handle activities of daily living independently is critical to improving patient quality of life.
NASA Astrophysics Data System (ADS)
Stockton, Keith M.
This dissertation examines six distinct government energy programs implemented in the United States during the last three decades. A common element within these programs is an attempt by government to drive commercialization of energy technologies leading to changes in energy production or consumptive behavior. We seek to understand the factors that lead to success or failure of these programs with two goals in mind. The first is theoretical in that we test a hypothesis that market-based energy programs have substantially higher success rates than command-and-control programs. The second goal is operational in nature, in which we desire to identify common factors within energy programs that lead either to program success or to failure. We investigate and evaluate three market-based and three command-and-control energy programs. The market-based programs include the federal Corporate Average Fuel Economy and Sulfur Dioxide Emissions Control programs as well as Colorado's Amendment 37. The command-and-control programs include the federal Synthetic Fuels Corporation and Corn Based Ethanol programs as well as Colorado's Solar Electric Power program. We conduct the analysis of each program based on composite methodology derived from leading academics within the Policy Sciences. From our research findings, we conclude that both market-based and command-and-control programs can achieve their legislative goals and objectives, resulting in permanent changes in energy production or consumptive behavior. However, we also find that the economic efficiency is the differentiator between market-based and command-and-control programs. Market-based programs, because of the inherent flexibility, allow participants to react to changing economic and/or technical conditions. In contrast, command-and-control programs lack such flexibility and often result in economic inefficiency when economic conditions change. The financial incentives incorporated in the three command-and-control programs we examined also create market distortions that both limit the flexibility of private markets to adjust to changing economic conditions and discourage the adoption of competing technologies. We conclude our research by recommending that future policy makers maximize the range of methods availability to the private sector to meet legislative goals and limit the use of financial incentives. With these measures, energy programs may achieve higher levels of success by reaching their goals with maximum economic efficiency and minimal negative unanticipated consequences.
Buckling and Failure of Compression-Loaded Composite Laminated Shells With Cutouts
NASA Technical Reports Server (NTRS)
Hilburger, Mark W.
2007-01-01
Results from a numerical and experimental study that illustrate the effects of laminate orthotropy on the buckling and failure response of compression-loaded composite cylindrical shells with a cutout are presented. The effects of orthotropy on the overall response of compression-loaded shells is described. In general, preliminary numerical results appear to accurately predict the buckling and failure characteristics of the shell considered herein. In particular, some of the shells exhibit stable post-local-buckling behavior accompanied by interlaminar material failures near the free edges of the cutout. In contrast another shell with a different laminate stacking sequence appears to exhibit catastrophic interlaminar material failure at the onset of local buckling near the cutout and this behavior correlates well with corresponding experimental results.
Andrew D. Pierce; Sierra McDaniel; Mark Wasser; Alison Ainsworth; Creighton M. Litton; Christian P. Giardina; Susan Cordell; Ralf Ohlemuller
2014-01-01
Questions: Do fuel models developed for North American fuel types accurately represent fuel beds found in grass-invaded tropical shrublands? Do standard or custom fuel models for firebehavior models with in situ or RAWS measured fuel moistures affect the accuracy of predicted fire behavior in grass-invaded tropical shrublands? Location: Hawaiâi Volcanoes National...
Fuel Characteristic Classification System version 3.0: technical documentation
Susan J. Prichard; David V. Sandberg; Roger D. Ottmar; Ellen Eberhardt; Anne Andreu; Paige Eagle; Kjell Swedin
2013-01-01
The Fuel Characteristic Classification System (FCCS) is a software module that records wildland fuel characteristics and calculates potential fire behavior and hazard potentials based on input environmental variables. The FCCS 3.0 is housed within the Integrated Fuels Treatment Decision Support System (Joint Fire Science Program 2012). It can also be run from command...
Characterizing crown fuel distribution for conifers in the interior western United States
Seth Ex; Frederick W. Smith; Tara Keyser
2015-01-01
Canopy fire hazard evaluation is essential for prioritizing fuel treatments and for assessing potential risk to firefighters during suppression activities. Fire hazard is usually expressed as predicted potential fire behavior, which is sensitive to the methodology used to quantitatively describe fuel profiles: methodologies that assume that fuel is distributed...
Responses of dead forest fuel moisture to climate change
Yongqiang Liu
2016-01-01
Forest fuel moisture is an important factor for wildland fire behavior. Predicting future wildfire trends and controlled burned conditions is essential to effective natural resource management, but the associated effects of forest fuel moisture remain uncertain. This study investigates the responses of dead forest fuel moisture to climate change in the...
Spatial fuel data products of the LANDFIRE Project
Reeves, M.C.; Ryan, K.C.; Rollins, M.G.; Thompson, T.G.
2009-01-01
The Landscape Fire and Resource Management Planning Tools (LANDFIRE) Project is mapping wildland fuels, vegetation, and fire regime characteristics across the United States. The LANDFIRE project is unique because of its national scope, creating an integrated product suite at 30-m spatial resolution and complete spatial coverage of all lands within the 50 states. Here we describe development of the LANDFIRE wildland fuels data layers for the conterminous 48 states: surface fire behavior fuel models, canopy bulk density, canopy base height, canopy cover, and canopy height. Surface fire behavior fuel models are mapped by developing crosswalks to vegetation structure and composition created by LANDFIRE. Canopy fuels are mapped using regression trees relating field-referenced estimates of canopy base height and canopy bulk density to satellite imagery, biophysical gradients and vegetation structure and composition data. Here we focus on the methods and data used to create the fuel data products, discuss problems encountered with the data, provide an accuracy assessment, demonstrate recent use of the data during the 2007 fire season, and discuss ideas for updating, maintaining and improving LANDFIRE fuel data products.
NASA Astrophysics Data System (ADS)
Jia, Yulong; Wan, Hongqi; Chen, Lei; Zhou, Huidi; Chen, Jianmin
2016-09-01
Influence of nanometer lanthanum fluoride (nano-LaF3) on the tribological behaviors of polytetrafluoroethylene (PTFE) bonded solid lubricating coatings were investigated using a ring-on-block friction-wear tester under dry friction and RP-3 jet fuel lubrication conditions. The worn surfaces and transfer films formed on the counterpart steel rings were observed by scanning electron microscope (SEM) and optical microscope (OM), respectively. The microstructures of the nano-LaF3 modified coatings and the distribution states of nano-LaF3 were studied by field-emission scanning electron microscope (FESEM) and transmission electron microscopy (TEM), respectively. The results show that incorporation of nano-LaF3 improves the microhardness and the friction-reduced and anti-wear abilities of PTFE bonded solid lubricating coatings. The wear life of the modified coating is about 6 times longer than that of the coating without nano-LaF3 filler at a relatively low applied load (200 N) and rotary speed (1000 rev/min) under dry friction condition. The friction coefficient and wear life of the modified coating decrease with increase of applied load under dry friction, but the friction coefficient has hardly any variation and wear life decreases under RP-3 jet fuel lubrication condition. In addition, the friction coefficient of the modified coating reduces with the rotary speed increasing under dry sliding but has little change under RP-3 lubrication, the wear life increases firstly and then decreases. The results indicated that the wear failure mechanism is dominated by applied load, which plays an important role in guidance of application of nano-LaF3 modified PTFE bonded coating under different working environment.
The spontaneous expression of pride and shame: Evidence for biologically innate nonverbal displays
Tracy, Jessica L.; Matsumoto, David
2008-01-01
The present research examined whether the recognizable nonverbal expressions associated with pride and shame may be biologically innate behavioral responses to success and failure. Specifically, we tested whether sighted, blind, and congenitally blind individuals across cultures spontaneously display pride and shame behaviors in response to the same success and failure situations—victory and defeat at the Olympic or Paralympic Games. Results showed that sighted, blind, and congenitally blind individuals from >30 nations displayed the behaviors associated with the prototypical pride expression in response to success. Sighted, blind, and congenitally blind individuals from most cultures also displayed behaviors associated with shame in response to failure. However, culture moderated the shame response among sighted athletes: it was less pronounced among individuals from highly individualistic, self-expression-valuing cultures, primarily in North America and West Eurasia. Given that congenitally blind individuals across cultures showed the shame response to failure, findings overall are consistent with the suggestion that the behavioral expressions associated with both shame and pride are likely to be innate, but the shame display may be intentionally inhibited by some sighted individuals in accordance with cultural norms. PMID:18695237
Zhang, Ji-Li; Liu, Bo-Fei; Chu, Teng-Fei; Di, Xue-Ying; Jin, Sen
2012-06-01
A laboratory burning experiment was conducted to measure the fire spread speed, residual time, reaction intensity, fireline intensity, and flame length of the ground surface fuels collected from a Korean pine (Pinus koraiensis) and Mongolian oak (Quercus mongolica) mixed stand in Maoer Mountains of Northeast China under the conditions of no wind, zero slope, and different moisture content, load, and mixture ratio of the fuels. The results measured were compared with those predicted by the extended Rothermel model to test the performance of the model, especially for the effects of two different weighting methods on the fire behavior modeling of the mixed fuels. With the prediction of the model, the mean absolute errors of the fire spread speed and reaction intensity of the fuels were 0.04 m X min(-1) and 77 kW X m(-2), their mean relative errors were 16% and 22%, while the mean absolute errors of residual time, fireline intensity and flame length were 15.5 s, 17.3 kW X m(-1), and 9.7 cm, and their mean relative errors were 55.5%, 48.7%, and 24%, respectively, indicating that the predicted values of residual time, fireline intensity, and flame length were lower than the observed ones. These errors could be regarded as the lower limits for the application of the extended Rothermel model in predicting the fire behavior of similar fuel types, and provide valuable information for using the model to predict the fire behavior under the similar field conditions. As a whole, the two different weighting methods did not show significant difference in predicting the fire behavior of the mixed fuels by extended Rothermel model. When the proportion of Korean pine fuels was lower, the predicted values of spread speed and reaction intensity obtained by surface area weighting method and those of fireline intensity and flame length obtained by load weighting method were higher; when the proportion of Korean pine needles was higher, the contrary results were obtained.
Racial and demographic differences in household travel and fuel purchase behavior
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gur, Y.; Millar, M.
1987-01-01
Monthly fuel purchase logs from the Residential Energy Consumption Survey's Household Transportation Panel (TP) were analyzed to determine the relationship between various household characteristics and purchase frequency, tank inventories, vehicle-miles traveled, and fuel expenditures. Multiple classification analysis (MCA) was used to relate observed differences in dependent variables to such index-type household characteristics as income and residence location, and sex, race and age of household head. Because it isolates the net effect of each parameter, after accounting for the effects of all other parameters, MCA is particularly appropriate for this type of analysis. Results reveal clear differences in travel and fuelmore » purchase behavior for four distinct groups of vehicle-owning households. Black households tend to own far fewer vehicles with lower fuel economy, to use them more intensively, to purchase fuel more frequently, and to maintain lower fuel inventories than white households. Similarly, poor households own fewer vehicles with lower fuel economy, but they drive them less intensively, purchase fuel more frequently, and maintain lower fuel inventories than nonpoor households. Elderly households also own fewer vehicles with lower fuel economy. But since they drive them much less intensively, their fuel purchases are much less frequent and their fuel inventories are higher than nonelderly households. Female-headed households also own fewer vehicles but with somewhat higher fuel economy. They drive them less intensively, maintain higher fuel inventories, and purchase fuel less frequently than male-headed households. 13 refs., 8 tabs.« less
Helen H. Mohr; Thomas A. Waldrop; Dean M. Simon
2010-01-01
There is a crucial need for fuel reduction in United States forests due to decades of fuel accumulation resulting from fire exclusion. The National Fire and Fire Surrogate Study (FFS) addresses this issue by examining the effects of three fuel reduction treatments on numerous response variables. At an FFS site in the southern Appalachian Mountains, fuels were altered...
Post-fire logging reduces surface woody fuels up to four decades following wildfire
David W. Peterson; Erich Kyle Dodson; Richy J. Harrod
2015-01-01
Severe wildfires create pulses of dead trees that influence future fuel loads, fire behavior, and fire effects as they decay and deposit surface woody fuels. Harvesting fire-killed trees may reduce future surface woody fuels and related fire hazards, but the magnitude and timing of post-fire logging effects on woody fuels have not been fully assessed. To address this...
Refueling Behavior of Flexible Fuel Vehicle Drivers in the Federal Fleet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daley, R.; Nangle, J.; Boeckman, G.
2014-05-01
Federal fleets are a frequent subject of legislative and executive efforts to lead a national transition to alternative fuels and advanced vehicle technologies. Section 701 of the Energy Policy Act of 2005 requires that all dual-fueled alternative fuel vehicles in the federal fleet be operated on alternative fuel 100% of the time when they have access to it. However, in Fiscal Year (FY) 2012, drivers of federal flex fuel vehicles (FFV) leased through the General Services Administration refueled with E85 24% of the time when it was available--falling well short of the mandate. The U.S. Department of Energy's National Renewablemore » Energy Laboratory completed a 2-year Laboratory Directed Research and Development project to identify the factors that influence the refueling behavior of federal FFV drivers. The project began with two primary hypotheses. First, information scarcity increases the tendency to miss opportunities to purchase E85. Second, even with perfect information, there are limits to how far drivers will go out of their way to purchase E85. This paper discusses the results of the project, which included a June 2012 survey of federal fleet drivers and an empirical analysis of actual refueling behavior from FY 2009 to 2012. This research will aid in the design and implementation of intervention programs aimed at increasing alternative fuel use and reducing petroleum consumption.« less
NASA Astrophysics Data System (ADS)
Koji, Yusuke; Kitamura, Yoshinobu; Kato, Yoshikiyo; Tsutsui, Yoshio; Mizoguchi, Riichiro
In conceptual design, it is important to develop functional structures which reflect the rich experience in the knowledge from previous design failures. Especially, if a designer learns possible abnormal behaviors from a previous design failure, he or she can add an additional function which prevents such abnormal behaviors and faults. To do this, it is a crucial issue to share such knowledge about possible faulty phenomena and how to cope with them. In fact, a part of such knowledge is described in FMEA (Failure Mode and Effect Analysis) sheets, function structure models for systematic design and fault trees for FTA (Fault Tree Analysis).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phillips, Adam; Ulsh, Michael; Neyerlin, K. C.
In-line quality control diagnostics for roll-to-roll (R2R) manufacturing techniques will play a key role in the future commercialization of the polymer electrolyte membrane fuel cell (PEMFC) used in automotive applications. These diagnostics monitor the fabrication of the membrane electrode assembly (MEA), which detect and flag any non-uniformity that may potentially harm PEMFC performance and/or lifetime. This will require quantitative thresholds and a clear distinction between harmful defects and harmless coating irregularities. Thus, novel fuel cell hardware with quasi in-situ infrared (IR) thermography capabilities is utilized to understand how bare spots in the cathode electrode impact MEA lifetime. An accelerated stressmore » test (AST) simulates chemical and mechanical degradation modes seen in vehicular operation. The actual open circuit voltage and rate of change of this voltage are used as in-situ indicators for MEA failure, enabling capture of the progression of failure point development. Bare spot coating irregularities located at the center of the electrode were found to have no impact on MEA lifetime when compared to a pristine MEA. However, MEA lifetime was found to be considerably shortened when these same irregularities are located at the cathode inlet and, especially, the anode inlet regions of the fuel cell.« less
Phillips, Adam; Ulsh, Michael; Neyerlin, K. C.; ...
2018-03-02
In-line quality control diagnostics for roll-to-roll (R2R) manufacturing techniques will play a key role in the future commercialization of the polymer electrolyte membrane fuel cell (PEMFC) used in automotive applications. These diagnostics monitor the fabrication of the membrane electrode assembly (MEA), which detect and flag any non-uniformity that may potentially harm PEMFC performance and/or lifetime. This will require quantitative thresholds and a clear distinction between harmful defects and harmless coating irregularities. Thus, novel fuel cell hardware with quasi in-situ infrared (IR) thermography capabilities is utilized to understand how bare spots in the cathode electrode impact MEA lifetime. An accelerated stressmore » test (AST) simulates chemical and mechanical degradation modes seen in vehicular operation. The actual open circuit voltage and rate of change of this voltage are used as in-situ indicators for MEA failure, enabling capture of the progression of failure point development. Bare spot coating irregularities located at the center of the electrode were found to have no impact on MEA lifetime when compared to a pristine MEA. However, MEA lifetime was found to be considerably shortened when these same irregularities are located at the cathode inlet and, especially, the anode inlet regions of the fuel cell.« less
Cai, Longyan; He, Hong S.; Wu, Zhiwei; Lewis, Benard L.; Liang, Yu
2014-01-01
Understanding the fire prediction capabilities of fuel models is vital to forest fire management. Various fuel models have been developed in the Great Xing'an Mountains in Northeast China. However, the performances of these fuel models have not been tested for historical occurrences of wildfires. Consequently, the applicability of these models requires further investigation. Thus, this paper aims to develop standard fuel models. Seven vegetation types were combined into three fuel models according to potential fire behaviors which were clustered using Euclidean distance algorithms. Fuel model parameter sensitivity was analyzed by the Morris screening method. Results showed that the fuel model parameters 1-hour time-lag loading, dead heat content, live heat content, 1-hour time-lag SAV(Surface Area-to-Volume), live shrub SAV, and fuel bed depth have high sensitivity. Two main sensitive fuel parameters: 1-hour time-lag loading and fuel bed depth, were determined as adjustment parameters because of their high spatio-temporal variability. The FARSITE model was then used to test the fire prediction capabilities of the combined fuel models (uncalibrated fuel models). FARSITE was shown to yield an unrealistic prediction of the historical fire. However, the calibrated fuel models significantly improved the capabilities of the fuel models to predict the actual fire with an accuracy of 89%. Validation results also showed that the model can estimate the actual fires with an accuracy exceeding 56% by using the calibrated fuel models. Therefore, these fuel models can be efficiently used to calculate fire behaviors, which can be helpful in forest fire management. PMID:24714164
[Vertical distribution of fuels in Pinus yunnanensis forest and related affecting factors].
Wang, San; Niu, Shu-Kui; Li, De; Wang, Jing-Hua; Chen, Feng; Sun, Wu
2013-02-01
In order to understand the effects of fuel loadings spatial distribution on forest fire kinds and behaviors, the canopy fuels and floor fuels of Pinus yunnanensis forests with different canopy density, diameter at breast height (DBH), tree height, and stand age and at different altitude, slope grade, position, and aspect in Southwest China were taken as test objects, with the fuel loadings and their spatial distribution characteristics at different vertical layers compared and the fire behaviors in different stands analyzed. The relationships between the fuel loadings and the environmental factors were also analyzed by canonical correspondence analysis (CCA). In different stands, there existed significant differences in the vertical distribution of fuels. Pinus yunnanensis-Qak-Syzygium aromaticum, Pinus yunnanensis-oak, and Pinus yunnanensis forests were likely to occur floor fire but not crown fire, while Pinus yunnanensis-Platycladus orientalis, Pinus yunnanensis-Keteleeria fortune, and Keteleeria fortune-Pinus yunnanensis were not only inclined to occur floor fire, but also, the floor fire could be easily transformed into crown fire. The crown fuels were mainly affected by the stand age, altitude, DBH, and tree height, while the floor fuels were mainly by the canopy density, slope grade, altitude, and stand age.
Ablation study of tungsten-based nuclear thermal rocket fuel
NASA Astrophysics Data System (ADS)
Smith, Tabitha Elizabeth Rose
The research described in this thesis has been performed in order to support the materials research and development efforts of NASA Marshall Space Flight Center (MSFC), of Tungsten-based Nuclear Thermal Rocket (NTR) fuel. The NTR was developed to a point of flight readiness nearly six decades ago and has been undergoing gradual modification and upgrading since then. Due to the simplicity in design of the NTR, and also in the modernization of the materials fabrication processes of nuclear fuel since the 1960's, the fuel of the NTR has been upgraded continuously. Tungsten-based fuel is of great interest to the NTR community, seeking to determine its advantages over the Carbide-based fuel of the previous NTR programs. The materials development and fabrication process contains failure testing, which is currently being conducted at MSFC in the form of heating the material externally and internally to replicate operation within the nuclear reactor of the NTR, such as with hot gas and RF coils. In order to expand on these efforts, experiments and computational studies of Tungsten and a Tungsten Zirconium Oxide sample provided by NASA have been conducted for this dissertation within a plasma arc-jet, meant to induce ablation on the material. Mathematical analysis was also conducted, for purposes of verifying experiments and making predictions. The computational method utilizes Anisimov's kinetic method of plasma ablation, including a thermal conduction parameter from the Chapman Enskog expansion of the Maxwell Boltzmann equations, and has been modified to include a tangential velocity component. Experimental data matches that of the computational data, in which plasma ablation at an angle shows nearly half the ablation of plasma ablation at no angle. Fuel failure analysis of two NASA samples post-testing was conducted, and suggestions have been made for future materials fabrication processes. These studies, including the computational kinetic model at an angle and the ablation of the NASA sample, could be applied to an atmospheric reentry body, reentering at a ballistic trajectory at hypersonic velocities.
Use of multiscale zirconium alloy deformation models in nuclear fuel behavior analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Montgomery, Robert, E-mail: robert.montgomery@pnnl.gov; Tomé, Carlos, E-mail: tome@lanl.gov; Liu, Wenfeng, E-mail: wenfeng.liu@anatech.com
Accurate prediction of cladding mechanical behavior is a key aspect of modeling nuclear fuel behavior, especially for conditions of pellet-cladding interaction (PCI), reactivity-initiated accidents (RIA), and loss of coolant accidents (LOCA). Current approaches to fuel performance modeling rely on empirical constitutive models for cladding creep, growth and plastic deformation, which are limited to the materials and conditions for which the models were developed. To improve upon this approach, a microstructurally-based zirconium alloy mechanical deformation analysis capability is being developed within the United States Department of Energy Consortium for Advanced Simulation of Light Water Reactors (CASL). Specifically, the viscoplastic self-consistent (VPSC)more » polycrystal plasticity modeling approach, developed by Lebensohn and Tomé [1], has been coupled with the BISON engineering scale fuel performance code to represent the mechanistic material processes controlling the deformation behavior of light water reactor (LWR) cladding. A critical component of VPSC is the representation of the crystallographic nature (defect and dislocation movement) and orientation of the grains within the matrix material and the ability to account for the role of texture on deformation. A future goal is for VPSC to obtain information on reaction rate kinetics from atomistic calculations to inform the defect and dislocation behavior models described in VPSC. The multiscale modeling of cladding deformation mechanisms allowed by VPSC far exceed the functionality of typical semi-empirical constitutive models employed in nuclear fuel behavior codes to model irradiation growth and creep, thermal creep, or plasticity. This paper describes the implementation of an interface between VPSC and BISON and provides initial results utilizing the coupled functionality.« less
Hot-air forming of Al-Mg-Cr alloy and prediction of failure based on Zener-Holloman parameter
NASA Astrophysics Data System (ADS)
Kim, W. J.; Kim, W. Y.; Kim, H. K.
2010-12-01
The microstructure of an Al-Mg-Cr alloy tube fabricated through indirect extrusion at 673 K showed elongated grains with a mean size of ˜26 μm. The strain rate-stress relationship at high temperatures (753 K to 793 K) revealed that dislocation climb creep was the rate-controlling deformation mechanism. The hot-air forming process was successful at a pressure of 70 bar. The Zener-Hollomon parameter based failure criterion was 3602+, and was used to explain the failure behavior of a deforming body. The forming and fracture behavior of the Al-Mg-Cr alloy tube was analyzed with the aid of finite element (FE) simulation, into which the failure criterion was incorporated. Comparison of the simulation and the experimental results indicated that the proposed fracture criterion was useful in predicting the fracture behavior of aluminum tube deforming by means of gas pressure.
Putting out fire with gasoline: pitfalls in the silvicultural treatment of canopy fuels
Christopher R. Keyes; J. Morgan Varner
2007-01-01
There is little question that forest stand structure is directly related to fire behavior, and that canopy fuel structure may be altered using silvicultural methods to successfully modify forest fire behavior and reduce susceptibility to crown fire initiation and spread. Silvicultural treatments can remediate hazardous stand structures that have developed as a result...
Potential fire behavior in pine flatwood forests following three different fuel reduction techniques
Patrick Brose; Dale Wade
2002-01-01
A computer modeling study to determine the potential fire behavior in pine flatwood forests following three fuel hazard reduction treatments: herbicide, prescribed fire and thinning was conducted in Florida following the 1998 wildfire season. Prescribed fire provided immediate protection but this protection quickly disappeared as the rough recovered. Thinning had a...
Practical tools for assessing potential crown fire behavior and canopy fuel characteristics
Martin E. Alexander; Miguel G. Cruz
2015-01-01
This presentation recapitulates the main points made at a technology and information transfer workshop held in advance of the conference that provided overviews of two software applications, developed by the authors, for use in assessing crown fire behavior and canopy fuel characteristics. These are the Crown Fire Initiation and Spread (CFIS) software system and the...
Ignition behavior of live California chaparral leaves
J.D. Engstrom; J.K Butler; S.G. Smith; L.L. Baxter; T.H. Fletcher; D.R. Weise
2004-01-01
Current forest fire models are largely empirical correlations based on data from beds of dead vegetation Improvement in model capabilities is sought by developing models of the combustion of live fuels. A facility was developed to determine the combustion behavior of small samples of live fuels, consisting of a flat-flame burner on a moveable platform Qualitative and...
NASA Technical Reports Server (NTRS)
Waller, Jess; Saulsberry, Regor L.
2003-01-01
Pilot operated valves (POVs) are used to control the flow of hypergolic propellants monomethylhydrazine (fuel) and nitrogen tetroxide (oxidizer) to the Shuttle orbiter Primary Reaction Control Subsystem (PRCS) thrusters. The POV incorporates a two-stage design: a solenoid-actuated pilot stage, which in turn controls a pressure-actuated main stage. Isolation of propellant supply from the thruster chamber is accomplished in part by a captive polytetrafluoroethylene (PTFE) pilot seal retained inside a Custom 455.1 stainless steel cavity. Extrusion of the pilot seal restricts the flow of fuel around the pilot poppet, thus impeding or preventing the main valve stage from opening. It can also prevent the main stage from staying open with adequate force margin, particularly if there is gas in the main stage actuation cavity. During thruster operation on-orbit, fuel valve pilot seal extrusion is commonly indicated by low or erratic chamber pressure or failure of the thruster to fire upon command (Fail-Off). During ground turnaround, pilot seal extrusion is commonly indicated by slow gaseous nitrogen (GN2) main valve opening times (greater than 38 ms) or slow water main valve opening response times (greater than 33 ms). Poppet lift tests and visual inspection can also detect pilot seal extrusion during ground servicing; however, direct metrology on the pilot seat assembly provides the most quantitative and accurate means of identifying extrusion. Minimizing PRCS fuel valve pilot seal extrusion has become an important issue in the effort to improve PRCS reliability and reduce associated life cycle costs.
NASA Astrophysics Data System (ADS)
Minard, Kevin R.; Viswanathan, Vilayanur V.; Majors, Paul D.; Wang, Li-Qiong; Rieke, Peter C.
Magnetic resonance imaging (MRI) was employed for visualizing water inside a proton exchange membrane (PEM) fuel cell during 11.4 h of continuous operation with a constant load. Two-dimensional images acquired every 128 s revealed the formation of a dehydration front that propagated slowly over the surface of the fuel cell membrane-starting from gas inlets and progressing toward gas outlets. After traversing the entire PEM surface, channels in the gas manifold began to flood on the cathode side. To establish a qualitative understanding of these observations, acquired images were correlated to the current output and the operating characteristics of the fuel cell. Results demonstrate the power of MRI for visualizing changing water distributions during PEM fuel cell operation, and highlight its potential utility for studying the causes of cell failure and/or strategies of water management.
Gas-Generator Augmented Expander Cycle Rocket Engine
NASA Technical Reports Server (NTRS)
Greene, William D. (Inventor)
2011-01-01
An augmented expander cycle rocket engine includes first and second turbopumps for respectively pumping fuel and oxidizer. A gas-generator receives a first portion of fuel output from the first turbopump and a first portion of oxidizer output from the second turbopump to ignite and discharge heated gas. A heat exchanger close-coupled to the gas-generator receives in a first conduit the discharged heated gas, and transfers heat to an adjacent second conduit carrying fuel exiting the cooling passages of a primary combustion chamber. Heat is transferred to the fuel passing through the cooling passages. The heated fuel enters the second conduit of the heat exchanger to absorb more heat from the first conduit, and then flows to drive a turbine of one or both of the turbopumps. The arrangement prevents the turbopumps exposure to combusted gas that could freeze in the turbomachinery and cause catastrophic failure upon attempted engine restart.
Advances in the Development of a WCl6 CVD System for Coating UO2 Powders with Tungsten
NASA Technical Reports Server (NTRS)
Mireles, Omar R.; Tieman, Alyssa; Broadway, Jeramie; Hickman, Robert
2013-01-01
W-UO2 CERMET fuels are under development to enable Nuclear Thermal Propulsion (NTP) for deep space exploration. Research efforts with an emphasis on fuel fabrication, testing, and identification of potential risks is underway. One primary risk is fuel loss due to CTE mismatch between W and UO2 and the grain boundary structure of W particles resulting in higher thermal stresses. Mechanical failure can result in significant reduction of the UO2 by hot hydrogen. Fuel loss can be mitigated if the UO2 particles are coated with a layer of high density tungsten before the consolidation process. This paper discusses the work to date, results, and advances of a fluidized bed chemical vapor deposition (CVD) system that utilizes the H2-WCl6 reduction process. Keywords: Space, Nuclear, Thermal, Propulsion, Fuel, CERMET, CVD, Tungsten, Uranium
Rational Emotive Behavior Therapy Successes and Failures: Eight Personal Perspectives.
ERIC Educational Resources Information Center
Weinrach, Stephen G.; Ellis, Albert; MacLaren, Catharine; DiGiuseppe, Raymond; Vernon, Ann; Wolfe, Janet; Malkinson, Ruth; Backx, Wouter
2001-01-01
Eight experts in Rational Emotive Behavior Therapy (REBT) provide personal examples of their own successes and failures in applying REBT to themselves. The experts actively talked to themselves both rationally and irrationally. Rational self-talk was more prevalent in the examples of how REBT was successfully used by the experts. (GCP)
ArcFuels User Guide and Tutorial: for use with ArcGIS 9
Nicole M. Vaillant; Alan A. Ager; John Anderson; Lauren. Miller
2013-01-01
Fuel management planning can be a complex problem that is assisted by fire behavior modeling and geospatial analyses. Fuel management often is a particularly complicated process in which the benefits and potential impacts of fuel treatments need to be demonstrated in the context of land management goals and public expectations. Fire intensity, likelihood, and effects...
Experimental measurements and numerical modeling of marginal burning in live chaparral fuel beds
X. Zhou; D.R. Weise; S Mahalingam
2005-01-01
An extensive experimental and numerical study was completed to analyze the marginal burning behavior of live chaparral shrub fuels that grow in the mountains of southern California. Laboratory fire spread experiments were carried out to determine the effects of wind, slope, moisture content, and fuel characteristics on marginal burning in fuel beds of common...
NASA Astrophysics Data System (ADS)
Huang, Yan-Hua; Yang, Sheng-Qi; Zhao, Jian
2016-12-01
A three-dimensional particle flow code (PFC3D) was used for a systematic numerical simulation of the strength failure and cracking behavior of rock-like material specimens containing two unparallel fissures under conventional triaxial compression. The micro-parameters of the parallel bond model were first calibrated using the laboratory results of intact specimens and then validated from the experimental results of pre-fissured specimens under triaxial compression. Numerically simulated stress-strain curves, strength and deformation parameters and macro-failure modes of pre-fissured specimens were all in good agreement with the experimental results. The relationship between stress and the micro-crack numbers was summarized. Crack initiation, propagation and coalescence process of pre-fissured specimens were analyzed in detail. Finally, horizontal and vertical cross sections of numerical specimens were derived from PFC3D. A detailed analysis to reveal the internal damage behavior of rock under triaxial compression was carried out. The experimental and simulated results are expected to improve the understanding of the strength failure and cracking behavior of fractured rock under triaxial compression.
Mikulincer, M
1986-12-01
Following the learned helplessness paradigm, I assessed in this study the effects of global and specific attributions for failure on the generalization of performance deficits in a dissimilar situation. Helplessness training consisted of experience with noncontingent failures on four cognitive discrimination problems attributed to either global or specific causes. Experiment 1 found that performance in a dissimilar situation was impaired following exposure to globally attributed failure. Experiment 2 examined the behavioral effects of the interaction between stable and global attributions of failure. Exposure to unsolvable problems resulted in reduced performance in a dissimilar situation only when failure was attributed to global and stable causes. Finally, Experiment 3 found that learned helplessness deficits were a product of the interaction of global and internal attribution. Performance deficits following unsolvable problems were recorded when failure was attributed to global and internal causes. Results were discussed in terms of the reformulated learned helplessness model.
CY2013 Annual Report for DOE-ITU INERI 2010-006-E
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kennedy, J. Rory; Rondinella, Vincenzo V.
2014-12-01
New concepts for nuclear energy development are considered in both the USA and Europe within the framework of the Generation-IV International Forum (GIF) as well as in various US-DOE programs (e.g. the Fuel Cycle Research and Development - FCRD) and as part of the European Sustainable Nuclear Energy Technology Platform (SNE-TP). Since most new fuel cycle concepts envisage the adoption of a closed nuclear fuel cycle employing fast reactors, the fuel behavior characteristics of the various proposed advanced fuel forms must be effectively investigated using state of the art experimental techniques before implementation. More rapid progress can be achieved ifmore » effective synergy with advanced (multi-scale) modeling efforts can be achieved. The fuel systems to be considered include minor actinide (MA) transmutation fuel types such as advanced MOX, advanced metal alloy, inert matrix fuel (IMF), and other ceramic fuels like nitrides, carbides, etc., for fast neutronic spectrum conditions. Most of the advanced fuel compounds have already been the object of past examination programs, which included irradiations in research reactors. The knowledge derived from previous experience constitutes a significant, albeit incomplete body of data. New or upgraded experimental tools are available today that can extend the scientific and technological knowledge towards achieving the objectives associated with the new generation of nuclear reactors and fuels. The objectives of this project will be three-fold: (1) to extend the available knowledge on properties and irradiation behavior of high burnup and minor actinide bearing advanced fuel systems; (2) to establish a synergy with multi-scale and code development efforts in which experimental data and expertise on the irradiation behavior of nuclear fuels is properly conveyed for the upgrade/development of advanced modeling tools; (3) to promote the effective use of international resources to the characterization of irradiated fuel through exchange of expertise and information among leading experimental facilities. The priorities in this project will be set according to the down selection procedure of U.S. and European development programs.« less
The fractalline properties of experimentally simulated PWR fuel crud
NASA Astrophysics Data System (ADS)
Dumnernchanvanit, I.; Mishra, V. K.; Zhang, N. Q.; Robertson, S.; Delmore, A.; Mota, G.; Hussey, D.; Wang, G.; Byers, W. A.; Short, M. P.
2018-02-01
The buildup of fouling deposits on nuclear fuel rods, known as crud, continues to challenge the worldwide fleet of light water reactors (LWRs). Crud may cause serious operational problems for LWRs, including axial power shifts, accelerated fuel clad corrosion, increased primary circuit radiation dose rates, and in some instances has led directly to fuel failure. Numerous studies continue to attempt to model and predict the effects of crud, but each makes critical assumptions regarding how to treat the complex, porous microstructure of crud and its resultant effects on temperature, pressure, and crud chemistry. In this study, we demonstrate that crud is indeed a fractalline porous medium using flowing loop experiments, validating the most recent models of its effects on LWR fuel cladding. This crud is shown to match that in other LWR-prototypical facilities through a porosity-fractal dimension scaling law. Implications of this result range from post-mortem analysis of the effects of crud on reactor fuel performance, to utilizing crud's fractalline dimensions to quantify the effectiveness of anti-fouling measures.
Heckman, T.P.
1961-05-01
A nuclear power reactor of the type in which a liquid moderator-coolant is transformed by nuclear heating into a vapor that may be used to drive a turbo- generator is described. The core of this reactor comprises a plurality of freely suspended tubular fuel elements, called fuel element trains, within which nonboiling pressurized liquid moderator-coolant is preheated and sprayed through orifices in the walls of the trains against the outer walls thereof to be converted into vapor. Passage of the vapor ovcr other unwetted portions of the outside of the fuel elements causes the steam to be superheated. The moderatorcoolant within the fuel elements remains in the liqUid state, and that between the fuel elements remains substantiaily in the vapor state. A unique liquid neutron-absorber control system is used. Advantages expected from the reactor design include reduced fuel element failure, increased stability of operation, direct response to power demand, and circulation of a minimum amount of liquid moderatorcoolant. (A.G.W.)
Mechanical mastication as a fuels treatment in southeastern forests
Jesse K. Kreye; J. Morgan Varner; Leda N. Kobziar
2016-01-01
Mastication is an increasingly common fuels treatment that redistributes ââladderââ fuels to the forest floor to reduce vertical fuel continuity, crown fire potential, and fireline intensity. Despite its widespread adoption, it remains unclear how mastication impacts fuels, fire behavior, or plant communities  across Southeastern forest ecosystems. We evaluated these...
Sustainable Forest Management Support Based on the Spatial Distribution of Fuels for Fire Management
José Germán Flores Garnica; Juan de Dios Benavides Solorio; David Arturo Moreno Gonzalez
2006-01-01
Fire behavior simulation is based mainly on the fuel model-concept. However, there are great difficulties to develop the corresponding maps, therefore it is suggested the generation of four fuel maps (1-hour, 10-hours, 100-hours and alive). These maps will allow a better definition of the spatial variation of forest fuels, even within a zone classified as a given fuel...
Fuel Surrogate Physical Property Effects on Direct Injection Spray and Ignition Behavior
2015-09-01
of fuel density and the energy required to vaporize the liquid fuel. Genzale et al. [11] compared diesel and biodiesel sprays under conditions...relevant to late-cycle post-injection conditions and showed ~15 % longer liquid penetration length for biodiesel . Kook and Pickett [12] tested various...emissions, and spray characteristics to the properties of alternative diesel fuels, such as dimethyl ether (DME), biodiesel , and jet fuel, which are
Modeling moisture content of fine dead wildland fuels: Input to the BEHAVE fire prediction system
Richard C. Rothermel; Ralph A. Wilson; Glen A. Morris; Stephen S. Sackett
1986-01-01
Describes a model for predicting moisture content of fine fuels for use with the BEHAVE fire behavior and fuel modeling system. The model is intended to meet the need for more accurate predictions of fine fuel moisture, particularly in northern conifer stands and on days following rain. The model is based on the Canadian Fine Fuel Moisture Code (FFMC), modified to...
Benjamin C. Bright; Andrew T. Hudak; Arjan J. H. Meddens; Todd J. Hawbaker; Jennifer S. Briggs; Robert E. Kennedy
2017-01-01
Wildfire behavior depends on the type, quantity, and condition of fuels, and the effect that bark beetle outbreaks have on fuels is a topic of current research and debate. Remote sensing can provide estimates of fuels across landscapes, although few studies have estimated surface fuels from remote sensing data. Here we predicted and mapped field-measured canopy and...
Fuel loads, fire regimes, and post-fire fuel dynamics in Florida Keys pine forests
Sah, J.P.; Ross, M.S.; Snyder, J.R.; Koptur, S.; Cooley, H.C.
2006-01-01
In forests, the effects of different life forms on fire behavior may vary depending on their contributions to total fuel loads. We examined the distribution of fuel components before fire, their effects on fire behavior, and the effects of fire on subsequent fuel recovery in pine forests within the National Key Deer Refuge in the Florida Keys. We conducted a burning experiment in six blocks, within each of which we assigned 1-ha plots to three treatments: control, summer, and winter burn. Owing to logistical constraints, we burned only 11 plots, three in winter and eight in summer, over a 4-year period from 1998 to 2001. We used path analysis to model the effects of fuel type and char height, an indicator of fire intensity, on fuel consumption. Fire intensity increased with surface fuel loads, but was negatively related to the quantity of hardwood shrub fuels, probably because these fuels are associated with a moist microenvironment within hardwood patches, and therefore tend to resist fire. Winter fires were milder than summer fires, and were less effective at inhibiting shrub encroachment. A mixed seasonal approach is suggested for fire management, with burns applied opportunistically under a range of winter and summer conditions, but more frequently than that prevalent in the recent past. ?? IAWF 2006.
NASA Technical Reports Server (NTRS)
Peng, S. T. J.; Landel, R. F.
1983-01-01
The rheological behavior of progressively shear thickening FM-9 solutions, a time-dependent shear thickening material with characteristics of threshold behavior, is investigated as part of a study of the rheological properties of antimisting jet fuel. Flammability test results and test configurations from various sources are evaluated. A correlation is obtained between the rheological behavior and the flammability tests such that, for a given system, such as a fixed solvent system and the FM-9 polymer system, the flammability criterion can be applied to a wide range of concentrations and temperatures.
Detonation failure characterization of non-ideal explosives
NASA Astrophysics Data System (ADS)
Janesheski, Robert S.; Groven, Lori J.; Son, Steven
2012-03-01
Non-ideal explosives are currently poorly characterized, hence limiting the modeling of them. Current characterization requires large-scale testing to obtain steady detonation wave characterization for analysis due to the relatively thick reaction zones. Use of a microwave interferometer applied to small-scale confined transient experiments is being implemented to allow for time resolved characterization of a failing detonation. The microwave interferometer measures the position of a failing detonation wave in a tube that is initiated with a booster charge. Experiments have been performed with ammonium nitrate and various fuel compositions (diesel fuel and mineral oil). It was observed that the failure dynamics are influenced by factors such as chemical composition and confiner thickness. Future work is planned to calibrate models to these small-scale experiments and eventually validate the models with available large scale experiments. This experiment is shown to be repeatable, shows dependence on reactive properties, and can be performed with little required material.
Low temperature fuel behavior studies
NASA Technical Reports Server (NTRS)
Stockemer, F. J.
1980-01-01
Aircraft fuels at low temperatures near the freezing point. The principal objective was an improved understanding of the flowability and pumpability of the fuels in a facility that simulated the heat transfer and temperature profiles encountered during flight in the long range commercial wing tanks.
Real-time thermal imaging of solid oxide fuel cell cathode activity in working condition.
Montanini, Roberto; Quattrocchi, Antonino; Piccolo, Sebastiano A; Amato, Alessandra; Trocino, Stefano; Zignani, Sabrina C; Faro, Massimiliano Lo; Squadrito, Gaetano
2016-09-01
Electrochemical methods such as voltammetry and electrochemical impedance spectroscopy are effective for quantifying solid oxide fuel cell (SOFC) operational performance, but not for identifying and monitoring the chemical processes that occur on the electrodes' surface, which are thought to be strictly related to the SOFCs' efficiency. Because of their high operating temperature, mechanical failure or cathode delamination is a common shortcoming of SOFCs that severely affects their reliability. Infrared thermography may provide a powerful tool for probing in situ SOFC electrode processes and the materials' structural integrity, but, due to the typical design of pellet-type cells, a complete optical access to the electrode surface is usually prevented. In this paper, a specially designed SOFC is introduced, which allows temperature distribution to be measured over all the cathode area while still preserving the electrochemical performance of the device. Infrared images recorded under different working conditions are then processed by means of a dedicated image processing algorithm for quantitative data analysis. Results reported in the paper highlight the effectiveness of infrared thermal imaging in detecting the onset of cell failure during normal operation and in monitoring cathode activity when the cell is fed with different types of fuels.
Rate Theory Modeling and Simulation of Silicide Fuel at LWR Conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miao, Yinbin; Ye, Bei; Hofman, Gerard
As a promising candidate for the accident tolerant fuel (ATF) used in light water reactors (LWRs), the fuel performance of uranium silicide (U 3Si 2) at LWR conditions needs to be well understood. In this report, rate theory model was developed based on existing experimental data and density functional theory (DFT) calculations so as to predict the fission gas behavior in U 3Si 2 at LWR conditions. The fission gas behavior of U 3Si 2 can be divided into three temperature regimes. During steady-state operation, the majority of the fission gas stays in intragranular bubbles, whereas the dominance of intergranularmore » bubbles and fission gas release only occurs beyond 1000 K. The steady-state rate theory model was also used as reference to establish a gaseous swelling correlation of U 3Si 2 for the BISON code. Meanwhile, the overpressurized bubble model was also developed so that the fission gas behavior at LOCA can be simulated. LOCA simulation showed that intragranular bubbles are still dominant after a 70 second LOCA, resulting in a controllable gaseous swelling. The fission gas behavior of U 3Si 2 at LWR conditions is benign according to the rate theory prediction at both steady-state and LOCA conditions, which provides important references to the qualification of U 3Si 2 as a LWR fuel material with excellent fuel performance and enhanced accident tolerance.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zevenhoven-Onderwater, M.; Blomquist, J.P.; Skrifvars, B.J.
1999-07-01
The behavior of different ashes is predicted by means of a combination of an advanced fuel analysis and global equilibrium calculations. In order to cover a broad spectrum of fuels a coal, a peat, a forest residue and Salix (i.e. willow) are studied. The latter was taken with and without soil contamination, i.e. with a high and low content of silica , respectively. It is shown that mineral matter in fossil and biomass fuels can be present in the matrix of the fuel itself or as included minerals. Using an advanced fuel analysis, i.e. a fractionation method, this mineral contentmore » can be divided into four fractions. The first fraction mainly contains those metal ions, that can be leached out of the fuel by water and mainly contains alkali sulfates, carbonates and chlorides. The second fraction mainly consists of those ions leached out by ammonium acetate and covers those ions, that are connected to the organic matrix. The third fraction contains the metals leached out by hydrochloric acid and contains earth alkali carbonates and sulfates as well as pyrites. The rest fraction contains those minerals, that are not leached out by any of the above mentioned solvents, such as silicates. A global equilibrium analysis is used to predict the thermal and chemical behavior of the combined first and second fractions and of the combined third and rest fractions under pressurized and/or atmospheric combustion conditions. Results of both the fuel analysis and the global equilibrium analysis are discussed and practical implications for combustion processes are pointed out.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Repetto, G.; Dominguez, C.; Durville, B.
The safety principle in case of a LOCA is to preserve the short and long term coolability of the core. The associated safety requirements are to ensure the resistance of the fuel rods upon quench and post-quench loads and to maintain a coolable geometry in the core. An R&D program has been launched by IRSN with the support of EDF, to perform both experimental and modeling activities in the frame of the LOCA transient, on technical issues such as: - flow blockage within a fuel rods bundle and its potential impact on coolability, - fuel fragment relocation in the balloonedmore » areas: its potential impact on cladding PCT (Peak Cladding Temperature) and on the maximum oxidation rate, - potential loss of cladding integrity upon quench and post-quench loads. The PERFROI project (2014-2019) focusing on the first above issue, is structured in two axes: 1. axis 1: thermal mechanical behavior of deformation and rupture of cladding taking into account the contact between fuel rods; specific research at LaMCoS laboratory focus on the hydrogen behavior in cladding alloys and its impact on the mechanical behavior of the rod; and, 2. axis 2: thermal hydraulics study of a partially blocked region of the core (ballooned area taking into account the fuel relocation with local over power), during cooling phase by water injection; More detailed activities foreseen in collaboration with LEMTA laboratory will focus on the characterization of two phase flows with heat transfer in deformed structures.« less
A model for recovery of scrap monolithic uranium molybdenum fuel by electrorefining
NASA Astrophysics Data System (ADS)
Van Kleeck, Melissa A.
The goal of the Reduced Enrichment for Research and Test Reactors program (RERTR) is toreduce enrichment at research and test reactors, thereby decreasing proliferation risk at these facilities. A new fuel to accomplish this goal is being manufactured experimentally at the Y12 National Security Complex. This new fuel will require its own waste management procedure,namely for the recovery of scrap from its manufacture. The new fuel is a monolithic uraniummolybdenum alloy clad in zirconium. Feasibility tests were conducted in the Planar Electrode Electrorefiner using scrap U-8Mo fuel alloy. These tests proved that a uranium product could be recovered free of molybdenum from this scrap fuel by electrorefining. Tests were also conducted using U-10Mo Zr clad fuel, which confirmed that product could be recovered from a clad version of this scrap fuel at an engineering scale, though analytical results are pending for the behavior of Zr in the electrorefiner. A model was constructed for the simulation of electrorefining the scrap material produced in the manufacture of this fuel. The model was implemented on two platforms, Microsoft Excel and MatLab. Correlations, used in the model, were developed experimentally, describing area specific resistance behavior at each electrode. Experiments validating the model were conducted using scrap of U-10Mo Zr clad fuel in the Planar Electrode Electrorefiner. The results of model simulations on both platforms were compared to experimental results for the same fuel, salt and electrorefiner compositions and dimensions for two trials. In general, the model demonstrated behavior similar to experimental data but additional refinements are needed to improve its accuracy. These refinements consist of a function for surface area at anode and cathode based on charge passed. Several approximations were made in the model concerning areas of electrodes which should be replaced by a more accurate function describing these areas.
Rate Theory Modeling and Simulations of Silicide Fuel at LWR Conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miao, Yinbin; Ye, Bei; Mei, Zhigang
Uranium silicide (U 3Si 2) fuel has higher thermal conductivity and higher uranium density, making it a promising candidate for the accident-tolerant fuel (ATF) used in light water reactors (LWRs). However, previous studies on the fuel performance of U 3Si 2, including both experimental and computational approaches, have been focusing on the irradiation conditions in research reactors, which usually involve low operation temperatures and high fuel burnups. Thus, it is important to examine the fuel performance of U 3Si 2 at typical LWR conditions so as to evaluate the feasibility of replacing conventional uranium dioxide fuel with this silicide fuelmore » material. As in-reactor irradiation experiments involve significant time and financial cost, it is appropriate to utilize modeling tools to estimate the behavior of U 3Si 2 in LWRs based on all those available research reactor experimental references and state-of-the-art density functional theory (DFT) calculation capabilities at the early development stage. Hence, in this report, a comprehensive investigation of the fission gas swelling behavior of U 3Si 2 at LWR conditions is introduced. The modeling efforts mentioned in this report was based on the rate theory (RT) model of fission gas bubble evolution that has been successfully applied for a variety of fuel materials at devious reactor conditions. Both existing experimental data and DFT-calculated results were used for the optimization of the parameters adopted by the RT model. Meanwhile, the fuel-cladding interaction was captured by the coupling of the RT model with simplified mechanical correlations. Therefore, the swelling behavior of U 3Si 2 fuel and its consequent interaction with cladding in LWRs was predicted by the rate theory modeling, providing valuable information for the development of U 3Si 2 fuel as an accident-tolerant alternative for uranium dioxide.« less
AGR-1 Post Irradiation Examination Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Demkowicz, Paul Andrew
The post-irradiation examination (PIE) of the Advanced Gas Reactor (AGR)-1 experiment was a multi-year, collaborative effort between Idaho National Laboratory (INL) and Oak Ridge National Laboratory (ORNL) to study the performance of UCO (uranium carbide, uranium oxide) tristructural isotropic (TRISO) coated particle fuel fabricated in the U.S. and irradiated at the Advanced Test Reactor at INL to a peak burnup of 19.6% fissions per initial metal atom. This work involved a broad array of experiments and analyses to evaluate the level of fission product retention by the fuel particles and compacts (both during irradiation and during post-irradiation heating tests tomore » simulate reactor accident conditions), investigate the kernel and coating layer morphology evolution and the causes of coating failure, and explore the migration of fission products through the coating layers. The results have generally confirmed the excellent performance of the AGR-1 fuel, first indicated during the irradiation by the observation of zero TRISO coated particle failures out of 298,000 particles in the experiment. Overall release of fission products was determined by PIE to have been relatively low during the irradiation. A significant finding was the extremely low levels of cesium released through intact coatings. This was true both during the irradiation and during post-irradiation heating tests to temperatures as high as 1800°C. Post-irradiation safety test fuel performance was generally excellent. Silver release from the particles and compacts during irradiation was often very high. Extensive microanalysis of fuel particles was performed after irradiation and after high-temperature safety testing. The results of particle microanalysis indicate that the UCO fuel is effective at controlling the oxygen partial pressure within the particle and limiting kernel migration. Post-irradiation examination has provided the final body of data that speaks to the quality of the AGR-1 fuel, building on the as-fabricated fuel characterization and irradiation data. In addition to the extensive volume of results generated, the work also resulted in a number of novel analysis techniques and lessons learned that are being applied to the examination of fuel from subsequent TRISO fuel irradiations. This report provides a summary of the results obtained as part of the AGR-1 PIE campaign over its approximately 5-year duration.« less
Radiolytic and Thermal Process Relevant to Dry Storage of Spent Nuclear Fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marschman, Steven C.; Haustein, Peter E.; Madey, Theodore E.
1999-06-01
This project involves basic research in chemistry and physics aimed at providing information pertinent to the safe long-term dry storage of spent nuclear fuel (SNF), thousands of tons of which remain in water storage across the DOE complex. The Hanford Site K-Basins alone hold 2300 tons of spent fuel, much of it severely corroded, and similar situations exist at Savannah River and Idaho National Engineering and Environmental Laboratory. DOE plans to remove this fuel and seal it in overpack canisters for ''dry'' interim storage for up to 75 years while awaiting permanent disposition. Chemically bound water will remain in thismore » fuel even after the proposed drying steps, leading to possible long-term corrosion of the containers and/or fuel rods themselves, generation of H2 and O2 gas via radiolysis (which could lead to deflagration or detonation), and reactions of pyrophoric uranium hydrides. No thoroughly tested model is now available to predict fuel behavior during preprocessing, processing, or storage. In a collaborative effort among Rutgers University, Pacific Northwest National Laboratory, and Brookhaven National Laboratory, we are studying the radiolytic reaction, drying processes, and corrosion behavior of actual SNF materials and of pure and mixed-phase samples. We propose to determine what is omitted from current models: radiolysis of water adsorbed on or in hydrates or hydroxides, thermodynamics of interfacial phases, and kinetics of drying. A model will be developed and tested against actual fuel rod behavior to ensure validity and applicability to the problems associated with developing dry storage strategies for DOE-owned SNF.« less
The dynamic and steady state behavior of a PEM fuel cell as an electric energy source
NASA Astrophysics Data System (ADS)
Costa, R. A.; Camacho, J. R.
The main objective of this work is to extract information on the internal behavior of three small polymer electrolyte membrane fuel cells under static and dynamic load conditions. A computational model was developed using Scilab [SCILAB 4, Scilab-a free scientific software package, http://www.scilab.org/, INRIA, France, December, 2005] to simulate the static and dynamic performance [J.M. Correa, A.F. Farret, L.N. Canha, An analysis of the dynamic performance of proton exchange membrane fuel cells using an electrochemical model, in: 27th Annual Conference of IEEE Industrial Electronics Society, 2001, pp. 141-146] of this particular type of fuel cell. This dynamic model is based on electrochemical equations and takes into consideration most of the chemical and physical characteristics of the device in order to generate electric power. The model takes into consideration the operating, design parameters and physical material properties. The results show the internal losses and concentration effects behavior, which are of interest for power engineers and researchers.
NASA Astrophysics Data System (ADS)
Wongsawaeng, Doonyapong; Jumpee, Chayanit; Jitpukdee, Manit
2014-08-01
In conventional nuclear fuel rods for light-water reactors, a helium-filled as-fabricated gap between the fuel and the cladding inner surface accommodates fuel swelling and cladding creep down. Because helium exhibits a very low thermal conductivity, it results in a large temperature rise in the gap. Liquid metal (LM; 1/3 weight portion each of lead, tin, and bismuth) has been proposed to be a gap filler because of its high thermal conductivity (∼100 times that of He), low melting point (∼100 °C), and lack of chemical reactivity with UO2 and water. With the presence of LM, the temperature drop across the gap is virtually eliminated and the fuel is operated at a lower temperature at the same power output, resulting in safer fuel, delayed fission gas release and prevention of massive secondary hydriding. During normal reactor operation, should an LM-bonded fuel rod failure occurs resulting in a discharge of liquid metal into the bottom of the reactor pressure vessel, it should not corrode stainless steel. An experiment was conducted to confirm that at 315 °C, LM in contact with 304 stainless steel in the PWR water chemistry environment for up to 30 days resulted in no observable corrosion. Moreover, during a hypothetical core-melt accident assuming that the liquid metal with elevated temperature between 1000 and 1600 °C is spread on a high-density concrete basement of the power plant, a small-scale experiment was performed to demonstrate that the LM-concrete interaction at 1000 °C for as long as 12 h resulted in no penetration. At 1200 °C for 5 h, the LM penetrated a distance of ∼1.3 cm, but the penetration appeared to stop. At 1400 °C the penetration rate was ∼0.7 cm/h. At 1600 °C, the penetration rate was ∼17 cm/h. No corrosion based on chemical reactions with high-density concrete occurred, and, hence, the only physical interaction between high-temperature LM and high-density concrete was from tiny cracks generated from thermal stress. Moreover, for as high as 1600 °C, the non-reactive LM was experimentally confirmed not to show any chemical reaction with air or moisture in the air. This experimental work confirmed the excellent compatibility behaviors between the LM as a PWR fuel gap filler and stainless steel and high-density concrete in the high-temperature regime.
A Methodology for the Estimation of the Wind Generator Economic Efficiency
NASA Astrophysics Data System (ADS)
Zaleskis, G.
2017-12-01
Integration of renewable energy sources and the improvement of the technological base may not only reduce the consumption of fossil fuel and environmental load, but also ensure the power supply in regions with difficult fuel delivery or power failures. The main goal of the research is to develop the methodology of evaluation of the wind turbine economic efficiency. The research has demonstrated that the electricity produced from renewable sources may be much more expensive than the electricity purchased from the conventional grid.
Availability analysis of an HTGR fuel recycle facility. Summary report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharmahd, J.N.
1979-11-01
An availability analysis of reprocessing systems in a high-temperature gas-cooled reactor (HTGR) fuel recycle facility was completed. This report summarizes work done to date to define and determine reprocessing system availability for a previously planned HTGR recycle reference facility (HRRF). Schedules and procedures for further work during reprocessing development and for HRRF design and construction are proposed in this report. Probable failure rates, transfer times, and repair times are estimated for major system components. Unscheduled down times are summarized.
Auxiliary engine digital interface unit (DIU)
NASA Technical Reports Server (NTRS)
1972-01-01
This auxiliary propulsion engine digital unit controls both the valving of the fuel and oxidizer to the engine combustion chamber and the ignition spark required for timely and efficient engine burns. In addition to this basic function, the unit is designed to manage it's own redundancy such that it is still operational after two hard circuit failures. It communicates to the data bus system several selected information points relating to the operational status of the electronics as well as the engine fuel and burning processes.
Alicia L. Reiner; Nicole M. Vaillant; Scott N. Dailey
2012-01-01
The purpose of this study was to provide land managers with information on potential wildfire behavior and tree mortality associated with mastication and masticated/fire treatments in a plantation. Additionally, the effect of pulling fuels away from tree boles before applying fire treatment was studied in relation to tree mortality. Fuel characteristics and tree...
Relative impact of weather vs. fuels on fire regimes in coastal California
Jon E. Keeley
2008-01-01
Extreme fire weather is of over riding importance in determining fire behavior in coastal chaparral and on these landscapes fire suppression policy has not resulted in fire exclusion. There is regional variation in foehn winds, which are most important in southern California. Under these severe fire weather conditions fuel age does not constrain fire behavior. As a...
Linking 3D spatial models of fuels and fire: Effects of spatial heterogeneity on fire behavior
Russell A. Parsons; William E. Mell; Peter McCauley
2011-01-01
Crownfire endangers fire fighters and can have severe ecological consequences. Prediction of fire behavior in tree crowns is essential to informed decisions in fire management. Current methods used in fire management do not address variability in crown fuels. New mechanistic physics-based fire models address convective heat transfer with computational fluid dynamics (...
The irradiation behavior of atomized U-Mo alloy fuels at high temperature
NASA Astrophysics Data System (ADS)
Park, Jong-Man; Kim, Ki-Hwan; Kim, Chang-Kyu; Meyer, M. K.; Hofman, G. L.; Strain, R. V.
2001-04-01
Post-irradiation examinations of atomized U-10Mo, U-6Mo, and U-6Mo-1.7Os dispersion fuels from the RERTR-3 experiment irradiated in the Advanced Test Reactor (ATR) were carried out in order to investigate the fuel behavior of high uranium loading (8 gU/cc) at a high temperature (higher than 200°C). It was observed after about 40 at% BU that the U-Mo alloy fuels at a high temperature showed similar irradiation bubble morphologies compared to those at a lower temperature found in the RERTR-1 irradiation result, but there was a thick reaction layer with the aluminum matrix which was found to be greatly affected by the irradiation temperature and to a lesser degree by the fuel composition. In addition, the chemical analysis for the irradiated U-Mo fuels using the Electron Probe Micro Analysis (EPMA) method were conducted to investigate the compositional changes during the formation of the reaction product.
Progress In Developing Laser Based Post Irradiation Examination Infrastructure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, James A.; Scott, Clark L.; Benefiel, Brad C.
To be able to understand the performance of reactor fuels and materials, irradiated materials must be characterized effectively and efficiently in a high rad environment. The characterization work must be performed remotely and in an environment hostile to instrumentation. Laser based characterization techniques provide the ability to be remote and robust in a hot-cell environment. Laser based instrumentation also can provide high spatial resolution suitable for scanning and imaging large areas. The INL is currently developing three laser based Post Irradiation Examination (PIE) stations for the Hot Fuel Examination Facility at the INL. These laser based systems will characterize irradiatedmore » materials and fuels. The characterization systems are the following: Laser Shock Laser based ultrasonic C-scan system Gas Assay, Sample, and Recharge system (GASR, up-grade to an existing system). The laser shock technique will characterize material properties and failure loads/mechanisms in various materials such as LWR fuel, plate fuel, and next generation fuel forms, for PIE in high radiation areas. The laser shock-technique induces large amplitude shock waves to mechanically characterize interfaces such as the fuel-clad bond. The shock wave travels as a compression wave through the material to the free (unconfined) back surface and reflects back through the material under test as a rarefaction (tensile) wave. This rarefaction wave is the physical mechanism that produces internal de-lamination failure. As part of the laser shock system, a laser-based ultrasonic C-scan system will be used to detect and characterize debonding caused by the laser shock technique. The laser ultrasonic system will be fully capable of performing classical non-destructive evaluation testing and imaging functions such as microstructure characterization, flaw detection and dimensional metrology in complex components. The purpose of the GASR is to measure the pressure/volume of the plenum of an irradiated fuel element and obtain fission gas samples for analysis. The study of pressure and volume in the plenum of an irradiated fuel element and the analysis of fission gases released from the fuel is important to understanding the performance of reactor fuels and materials. This system may also be used to measure the pressure/volume of other components (such as control blades) and obtain gas samples from these components for analysis. The main function of the laser in this application is to puncture the fuel element to allow the fission gas to escape and if necessary to weld the spot close. The GASR station will have the inherent capability to perform cutting welding and joining functions within a hot-cell.« less
A new method to estimate location and slip of simulated rock failure events
NASA Astrophysics Data System (ADS)
Heinze, Thomas; Galvan, Boris; Miller, Stephen Andrew
2015-05-01
At the laboratory scale, identifying and locating acoustic emissions (AEs) is a common method for short term prediction of failure in geomaterials. Above average AE typically precedes the failure process and is easily measured. At larger scales, increase in micro-seismic activity sometimes precedes large earthquakes (e.g. Tohoku, L'Aquilla, oceanic transforms), and can be used to assess seismic risk. The goal of this work is to develop a methodology and numerical algorithms for extracting a measurable quantity analogous to AE arising from the solution of equations governing rock deformation. Since there is no physical property to quantify AE derivable from the governing equations, an appropriate rock-mechanical analog needs to be found. In this work, we identify a general behavior of the AE generation process preceding rock failure. This behavior includes arbitrary localization of low magnitude events during pre-failure stage, followed by increase in number and amplitude, and finally localization around the incipient failure plane during macroscopic failure. We propose deviatoric strain rate as the numerical analog that mimics this behavior, and develop two different algorithms designed to detect rapid increases in deviatoric strain using moving averages. The numerical model solves a fully poro-elasto-plastic continuum model and is coupled to a two-phase flow model. We test our model by comparing simulation results with experimental data of drained compression and of fluid injection experiments. We find for both cases that occurrence and amplitude of our AE analog mimic the observed general behavior of the AE generation process. Our technique can be extended to modeling at the field scale, possibly providing a mechanistic basis for seismic hazard assessment from seismicity that occasionally precedes large earthquakes.
Experiments and simulation for 6061-T6 aluminum alloy resistance spot welded lap joints
NASA Astrophysics Data System (ADS)
Florea, Radu Stefanel
This comprehensive study is the first to quantify the fatigue performance, failure loads, and microstructure of resistance spot welding (RSW) in 6061-T6 aluminum (Al) alloy according to welding parameters and process sensitivity. The extensive experimental, theoretical and simulated analyses will provide a framework to optimize the welding of lightweight structures for more fuel-efficient automotive and military applications. The research was executed in four primary components. The first section involved using electron back scatter diffraction (EBSD) scanning, tensile testing, laser beam profilometry (LBP) measurements, and optical microscopy(OM) images to experimentally investigate failure loads and deformation of the Al-alloy resistance spot welded joints. Three welding conditions, as well as nugget and microstructure characteristics, were quantified according to predefined process parameters. Quasi-static tensile tests were used to characterize the failure loads in specimens based upon these same process parameters. Profilometer results showed that increasing the applied welding current deepened the weld imprints. The EBSD scans revealed the strong dependency between the grain sizes and orientation function on the process parameters. For the second section, the fatigue behavior of the RSW'ed joints was experimentally investigated. The process optimization included consideration of the forces, currents, and times for both the main weld and post-heating. Load control cyclic tests were conducted on single weld lap-shear joint coupons to characterize the fatigue behavior in spot welded specimens. Results demonstrate that welding parameters do indeed significantly affect the microstructure and fatigue performance for these welds. The third section comprised residual strains of resistance spot welded joints measured in three different directions, denoted as in-plane longitudinal, in-plane transversal, and normal, and captured on the fusion zone, heat affected zone and base metal of the joints. Neutron diffraction results showed residual stresses in the weld are approximately 40% lower than the yield strength of the parent material, with maximum variation occurring in the vertical position of the specimen because of the orientation of electrode clamping forces that produce a non-uniform solidification pattern. In the final section a theoretical continuum modeling framework for 6061-T6 aluminum resistance spot welded joints is presented.
NASA Astrophysics Data System (ADS)
Musulin, Mike, II
The continued failure of synthetic fuels development in the United States to achieve commercialization has been documented through the sporadic periods of mounting corporate and government enthusiasm and high levels of research and development efforts. Four periods of enthusiasm at the national level were followed by waning intervals of shrinking financial support and sagging R&D work. The continuing cycle of mobilization and stagnation has had a corresponding history in Kentucky. To better understand the potential and the pitfalls of this type of technological development the history of synthetic fuels development in the United States is presented as background, with a more detailed analysis of synfuels development in Kentucky. The first two periods of interest in synthetic fuels immediately after the Second World War and in the 1950s did not result in any proposed plants for Kentucky, but the third and fourth periods of interest created a great deal of activity. A theoretically grounded case study is utilized in this research project to create four different scenarios for the future of synthetic fuels development. The Kentucky experience is utilized in this case study because a fifth incarnation of synthetic fuels development has been proposed for the state in the form of an integrated gasification combined cycle power plant (IGCC) to utilize coal and refuse derived fuel (RDF). The project has been awarded a grant from the U.S. Department of Energy Clean Coal Technology program. From an examination and analysis of these periods of interest and the subsequent dwindling of interest and participation, four alternative scenarios are constructed. A synfuels breakthrough scenario is described whereby IGCC becomes a viable part of the country's energy future. A multiplex scenario describes how IGCC becomes a particular niche in energy production. The status quo scenario describes how the old patterns of project failure repeat themselves. The fourth scenario describes how synfuels and other conventional energy sources are rejected in favor of conservation, use of nuclear facilities, and use of alternative fuels.
US RERTR FUEL DEVELOPMENT POST IRRADIATION EXAMINATION RESULTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
A. B. Robinson; D. M. Wachs; D. E. Burkes
2008-10-01
Post irradiation examinations of irradiated RERTR plate type fuel at the Idaho National Laboratory have led to in depth characterization of fuel behavior and performance. Both destructive and non-destructive examination capabilities at the Hot Fuels Examination Facility (HFEF) as well as recent results obtained are discussed herein. New equipment as well as more advanced techniques are also being developed to further advance the investigation into the performance of the high density U-Mo fuel.
Analyzing Vehicle Fuel Saving Opportunities through Intelligent Driver Feedback
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonder, J.; Earleywine, M.; Sparks, W.
2012-06-01
Driving style changes, e.g., improving driver efficiency and motivating driver behavior changes, could deliver significant petroleum savings. This project examines eliminating stop-and-go driving and unnecessary idling, and also adjusting acceleration rates and cruising speeds to ideal levels to quantify fuel savings. Such extreme adjustments can result in dramatic fuel savings of over 30%, but would in reality only be achievable through automated control of vehicles and traffic flow. In real-world driving, efficient driving behaviors could reduce fuel use by 20% on aggressively driven cycles and by 5-10% on more moderately driven trips. A literature survey was conducted of driver behaviormore » influences, and pertinent factors from on-road experiments with different driving styles were observed. This effort highlighted important driver influences such as surrounding vehicle behavior, anxiety over trying to get somewhere quickly, and the power/torque available from the vehicle. Existing feedback approaches often deliver efficiency information and instruction. Three recommendations for maximizing fuel savings from potential drive cycle improvement are: (1) leveraging applications with enhanced incentives, (2) using an approach that is easy and widely deployable to motivate drivers, and (3) utilizing connected vehicle and automation technologies to achieve large and widespread efficiency improvements.« less
Nuclear fuel performance: Trends, remedies and challenges
NASA Astrophysics Data System (ADS)
Rusch, C. A.
2008-12-01
It is unacceptable to have nuclear power plants unavailable or power restricted due to fuel reliability issues. 'Fuel reliability' has a much broader definition than just maintaining mechanical integrity and being leaker free - fuel must fully meet the specifications, impose no adverse impacts on plant operation and safety, and maintain quantifiable margins within design and operational envelopes. The fuel performance trends over the last decade are discussed and the significant contributors to reduced reliability experienced with commercial PWR and BWR designs are identified and discussed including grid-to-rod fretting and debris fretting in PWR designs and accelerated corrosion, debris fretting and pellet-cladding interaction in BWR designs. In many of these cases, the impacts have included not only fuel failures but also plant operating restrictions, forced shutdowns, and/or enhanced licensing authority oversight. Design and operational remedies are noted. The more demanding operating regimes and the constant quest to improve fuel performance require enhancements to current designs and/or new design features. Fuel users must continue to and enhance interaction with fuel suppliers in such areas as oversight of supplier design functions, lead test assembly irradiation programs and quality assurance oversight and surveillance. With the implementation of new designs and/or features, such fuel user initiatives can help to minimize the potential for performance problems.
The Fire and Fuels Extension to the Forest Vegetation Simulator
Elizabeth Reinhardt; Nicholas L. Crookston
2003-01-01
The Fire and Fuels Extension (FFE) to the Forest Vegetation Simulator (FVS) simulates fuel dynamics and potential fire behaviour over time, in the context of stand development and management. Existing models of fire behavior and fire effects were added to FVS to form this extension. New submodels representing snag and fuel dynamics were created to complete the linkages...
Effectiveness of Prescribed Fire as a Fuel Treatment in Californian Coniferous Forests
Nicole M. Vaillant; JoAnn Fites-Kaufman; Scott L. Stephens
2006-01-01
Effective fire suppression for the past century has altered forest structure and increased fuel loads. Prescribed fire as a fuels treatment can reduce wildfire size and severity. This study investigates how prescribed fire affects fuel loads, forest structure, potential fire behavior, and modeled tree mortality at 80th, 90th, and 97.5th percentile fire weather...
Fuel loadings in southwestern ecosystems of the United States
Stephen S. Sackett; Sally M Haase
1996-01-01
Natural forest fuel loadings cause extreme fire behavior during dry, windy weather experienced during most fire seasons in the Southwest. Fire severity is also exacerbated from burning heavy fuels, including heavy humus layers on the forest floor. Ponderosa pine and mixed conifer stands possess more than 21.7 and 44.1 tons per acre of total forest floor fuel,...
Sanyal, Arnav; Keaveny, Tony M.
2013-01-01
The biaxial failure behavior of the human trabecular bone, which has potential relevance both for fall and gait loading conditions, is not well understood, particularly for low-density bone, which can display considerable mechanical anisotropy. Addressing this issue, we investigated the biaxial normal strength behavior and the underlying failure mechanisms for human trabecular bone displaying a wide range of bone volume fraction (0.06–0.34) and elastic anisotropy. Micro-computer tomography (CT)-based nonlinear finite element analysis was used to simulate biaxial failure in 15 specimens (5 mm cubes), spanning the complete biaxial normal stress failure space in the axial-transverse plane. The specimens, treated as approximately transversely isotropic, were loaded in the principal material orientation. We found that the biaxial stress yield surface was well characterized by the superposition of two ellipses—one each for yield failure in the longitudinal and transverse loading directions—and the size, shape, and orientation of which depended on bone volume fraction and elastic anisotropy. However, when normalized by the uniaxial tensile and compressive strengths in the longitudinal and transverse directions, all of which depended on bone volume fraction, microarchitecture, and mechanical anisotropy, the resulting normalized biaxial strength behavior was well described by a single pair of (longitudinal and transverse) ellipses, with little interspecimen variation. Taken together, these results indicate that the role of bone volume fraction, microarchitecture, and mechanical anisotropy is mostly accounted for in determining the uniaxial strength behavior and the effect of these parameters on the axial-transverse biaxial normal strength behavior per se is minor. PMID:24121715
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tome, Carlos N; Caro, J A; Lebensohn, R A
2010-01-01
Advancing the performance of Light Water Reactors, Advanced Nuclear Fuel Cycles, and Advanced Reactors, such as the Next Generation Nuclear Power Plants, requires enhancing our fundamental understanding of fuel and materials behavior under irradiation. The capability to accurately model the nuclear fuel systems to develop predictive tools is critical. Not only are fabrication and performance models needed to understand specific aspects of the nuclear fuel, fully coupled fuel simulation codes are required to achieve licensing of specific nuclear fuel designs for operation. The backbone of these codes, models, and simulations is a fundamental understanding and predictive capability for simulating themore » phase and microstructural behavior of the nuclear fuel system materials and matrices. In this paper we review the current status of the advanced modeling and simulation of nuclear reactor cladding, with emphasis on what is available and what is to be developed in each scale of the project, how we propose to pass information from one scale to the next, and what experimental information is required for benchmarking and advancing the modeling at each scale level.« less
Apollo Lunar Module Electrical Power System Overview
NASA Technical Reports Server (NTRS)
Interbartolo, Michael
2009-01-01
Objectives include: a) Describe LM Electrical System original specifications; b) Describe the decision to change from fuel cells to batteries and other changes; c) Describe the Electrical system; and d) Describe the Apollo 13 failure from the LM perspective.
Wilson, Beverly J
2003-01-01
This study evaluated the role of attentional shifting in children's prosocial behavior with peers. Participants were 27 aggressive/rejected and 27 nonaggressive/popular kindergarten and first grade boys and girls. Children's ability to shift attention from one affective state to another was assessed during: (a) a computerized task that required shifting attention between different affective events (i.e., the Children's Attentional Shifting Task, CAST) and (b) an analogue entry task with unacquainted peers. Children's latency for sharing with peers was assessed after they experienced failure during the entry task. Aggressive/rejected children had significant difficulty shifting attention from negative to positive affect during the CAST and were slower to share after experiencing entry failure. In general, aggressive/rejected children were less able to regulate their behavior effectively after experiencing social failure. Girls, regardless of status, had less difficulty than boys shifting attention from one affective state to another during the CAST. In addition, children's social status/aggressiveness, their ability to regulate emotional behavior after social failure and to shift attention effectively on the CAST predicted approximately 31% of the variance in their latency to share. These findings suggest that the ability to shift attention between different affective states plays a significant role in children's prosocial behavior with peers.
Behavioral Economics of Self-Control Failure
Heshmat, Shahram
2015-01-01
The main idea in this article is that addiction is a consequence of falling victim to decision failures that lead to preference for the addictive behaviors. Addiction is viewed as valuation disease, where the nervous system overvalues cues associated with drugs or drug-taking. Thus, addiction can be viewed as a diminished capacity to choose. Addicted individuals assign lower values to delayed rewards than to immediate ones. The preference for immediate gratification leads to self-control problems. This article highlights a number of motivational forces that can generate self-control failure. PMID:26339218
NASA Astrophysics Data System (ADS)
Telesman, J.; Smith, T. M.; Gabb, T. P.; Ring, A. J.
2018-06-01
Cyclic near-threshold fatigue crack growth (FCG) behavior of two disk superalloys was evaluated and was shown to exhibit an unexpected sudden failure mode transition from a mostly transgranular failure mode at higher stress intensity factor ranges to an almost completely intergranular failure mode in the threshold regime. The change in failure modes was associated with a crossover of FCG resistance curves in which the conditions that produced higher FCG rates in the Paris regime resulted in lower FCG rates and increased ΔK th values in the threshold region. High-resolution scanning and transmission electron microscopy were used to carefully characterize the crack tips at these near-threshold conditions. Formation of stable Al-oxide followed by Cr-oxide and Ti-oxides was found to occur at the crack tip prior to formation of unstable oxides. To contrast with the threshold failure mode regime, a quantitative assessment of the role that the intergranular failure mode has on cyclic FCG behavior in the Paris regime was also performed. It was demonstrated that even a very limited intergranular failure content dominates the FCG response under mixed mode failure conditions.
Yield and Failure Behavior Investigated for Cross-Linked Phenolic Resins Using Molecular Dynamics
NASA Technical Reports Server (NTRS)
Monk, Joshua D.; Lawson, John W.
2016-01-01
Molecular dynamics simulations were conducted to fundamentally evaluate the yield and failure behavior of cross-linked phenolic resins at temperatures below the glass transition. Yield stress was investigated at various temperatures, strain rates, and degrees of cross-linking. The onset of non-linear behavior in the cross-linked phenolic structures was caused by localized irreversible molecular rearrangements through the rotation of methylene linkers followed by the formation or annihilation of neighboring hydrogen bonds. The yield stress results, with respect to temperature and strain rate, could be fit by existing models used to describe yield behavior of amorphous glasses. The degree of cross-linking only indirectly influences the maximum yield stress through its influence on glass transition temperature (Tg), however there is a strong relationship between the degree of cross-linking and the failure mechanism. Low cross-linked samples were able to separate through void formation, whereas the highly cross-linked structures exhibited bond scission.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grant, S.A.
This study was carried out to investigate the elevated temperature behavior of the SiC-MAS5 cross- ply (O/9O)4S ceramic matrix composite manufactured by Corning Inc. to fatigue with loading waveforms that combine the characteristics of stress rupture and high cycle fatigue. The test results were compiled in the form of S-N (cycles to failure), S-T (exposure time versus cycles to failure), S-S (energy exposure versus cycles to failure), normalized modulus degradation, strain progression, and hysteresis loop progression. From the mechanical behavior demonstrated by these curves, relationships between the effect of the environment and loading waveform were developed. In addition, a post-mortemmore » SEM analysis of the fracture surface was conducted and the results compared to the mechanical behavior.« less
THE INFLUENCE OF CARBON BURNOUT ON SUBMICRON PARTICLE FORMATION FROM EMULSIFIED FUEL OIL COMBUSTION
The paper gives results of an examination of particle behavior and particle size distributions from the combustion of different fuel oils and emulsified fuels in three experimental combusators. Results indicate that improved carbon (C) burnout from fule oil combustion, either by...