Science.gov

Sample records for fuel flexible gas

  1. Flexible fuel cell gas manifold system

    DOEpatents

    Cramer, Michael; Shah, Jagdish; Hayes, Richard P.; Kelley, Dana A.

    2005-05-03

    A fuel cell stack manifold system in which a flexible manifold body includes a pan having a central area, sidewall extending outward from the periphery of the central area, and at least one compound fold comprising a central area fold connecting adjacent portions of the central area and extending between opposite sides of the central area, and a sidewall fold connecting adjacent portions of the sidewall. The manifold system further includes a rail assembly for attachment to the manifold body and adapted to receive pins by which dielectric insulators are joined to the manifold assembly.

  2. Fuel Flexible Combustion Systems for High-Efficiency Utilization of Opportunity Fuels in Gas Turbines

    SciTech Connect

    Venkatesan, Krishna

    2011-11-30

    The purpose of this program was to develop low-emissions, efficient fuel-flexible combustion technology which enables operation of a given gas turbine on a wider range of opportunity fuels that lie outside of current natural gas-centered fuel specifications. The program encompasses a selection of important, representative fuels of opportunity for gas turbines with widely varying fundamental properties of combustion. The research program covers conceptual and detailed combustor design, fabrication, and testing of retrofitable and/or novel fuel-flexible gas turbine combustor hardware, specifically advanced fuel nozzle technology, at full-scale gas turbine combustor conditions. This project was performed over the period of October 2008 through September 2011 under Cooperative Agreement DE-FC26-08NT05868 for the U.S. Department of Energy/National Energy Technology Laboratory (USDOE/NETL) entitled "Fuel Flexible Combustion Systems for High-Efficiency Utilization of Opportunity Fuels in Gas Turbines". The overall objective of this program was met with great success. GE was able to successfully demonstrate the operability of two fuel-flexible combustion nozzles over a wide range of opportunity fuels at heavy-duty gas turbine conditions while meeting emissions goals. The GE MS6000B ("6B") gas turbine engine was chosen as the target platform for new fuel-flexible premixer development. Comprehensive conceptual design and analysis of new fuel-flexible premixing nozzles were undertaken. Gas turbine cycle models and detailed flow network models of the combustor provide the premixer conditions (temperature, pressure, pressure drops, velocities, and air flow splits) and illustrate the impact of widely varying fuel flow rates on the combustor. Detailed chemical kinetic mechanisms were employed to compare some fundamental combustion characteristics of the target fuels, including flame speeds and lean blow-out behavior. Perfectly premixed combustion experiments were conducted to

  3. Fuel Flexible Gas Turbine Combustor Flametube Facility Upgraded

    NASA Technical Reports Server (NTRS)

    Little, James E.; Nemets, Steve A.; Tornabene, Robert T.; Smith, Timothy D.; Frankenfeld, Bruce J.

    2004-01-01

    In fiscal year 2003, test cell 23 of the Research Combustion Laboratory (RCL 23) at the NASA Glenn Research Center was upgraded with the addition of gaseous hydrogen as a working propellant and the addition of a 450-psig air-supply system. Test flexibility was further enhanced by upgrades to the facility control systems. RCL 23 can now test with gaseous hydrogen flow rates up to 0.05 lbm/sec and jet fuel flow rates up to 0.62 lbm/sec. Research airflow rates up to 3 lbm/sec are possible with the 450-psig supply system over a range of inlet temperatures. Nonvitiated, heated air is supplied from a shell and tube heat exchanger. The maximum nonvitiated facility air temperature is 1100 F at 1.5 lbm/sec. Research-section exhaust temperatures are limited to 3200 F because of material and cooling capacity limits. A variety of support systems are available depending on the research hardware configuration. Test section ignition can be provided via either a hydrogen air torch system or an electronic spark system. Emissions measurements are obtained with either pneumatically or electromechanically actuated gas sample probes, and the electromechanical system allows for radial measurements at a user-specified axial location for measurement of emissions profiles. Gas analysis data can be obtained for a variety of species, including carbon monoxide (CO), carbon dioxide (CO2), nitrogen oxides (NO and NOx), oxygen (O2), unburnt hydrocarbons, and unburnt hydrogen. Facility control is accomplished with a programmable logic control system. Facility operations have been upgraded to a system based on graphical user interface control screens. A data system is available for real-time acquisition and monitoring of both measurements in engineering units and performance calculations. The upgrades have made RCL 23 a highly flexible facility for research into low emissions gas turbine combustor concepts, and the flame tube configuration inherently allows for a variety of fuel nozzle

  4. LOW NOx EMISSIONS IN A FUEL FLEXIBLE GAS TURBINE

    SciTech Connect

    Raymond Drnevich; James Meagher; Vasilis Papavassiliou; Troy Raybold; Peter Stuttaford; Leonard Switzer; Lee Rosen

    2004-08-01

    In alignment with Vision 21 goals, a study is presented here on the technical and economic potential for developing a gas turbine combustor that is capable of generating less that 2 ppm NOx emissions, firing on either coal synthesis gas or natural gas, and being implemented on new and existing systems. The proposed solution involves controlling the quantity of H2 contained in the fuel. The presence of H2 leads to increased flame stability such that the combustor can be operated at lower temperatures and produce less thermal NOx. Coal gas composition would be modified using a water gas shift converter, and natural gas units would implement a catalytic partial oxidation (CPOX) reactor to convert part of the natural gas feed to a syngas before fed back into the combustor. While both systems demonstrated technical merit, the economics involved in implementing such a system are marginal at best. Therefore, Praxair has decided not to pursue the technology any further at this time.

  5. Low NO/x/ and fuel flexible gas turbine combustors

    NASA Technical Reports Server (NTRS)

    Lew, H. G.; Decorso, S. M.; Vermes, G.; Carl, D.; Havener, W. J.; Schwab, J.; Notardonato, J.

    1981-01-01

    The feasibility of various low NO(x) emission gas turbine combustor configurations was evaluated. The configurations selected for fabrication and testing at full pressure and temperature involved rich-lean staged combustion utilizing diffusion flames, rich-lean prevaporized/premix flames, and staged catalytic combustion. The test rig consisted of a rich burner module, a quench module, and a lean combustion module. Test results are obtained for the combustor while burning petroleum distillate fuel, a coal derived liquid, and a petroleum residual fuel. The results indicate that rich-lean diffusion flames with low fuel-bound nitrogen conversion are achievable with very high combustion efficiencies.

  6. Fuel-Flexible Gas Turbine Combustor Flametube Facility

    NASA Technical Reports Server (NTRS)

    Little, James E.; Nemets, Stephen A.; Tornabene, Robert T.; Smith, Timothy D.; Frankenfield, Bruce J.; Manning, Stephen D.; Thompson, William K.

    2004-01-01

    Facility modifications have been completed to an existing combustor flametube facility to enable testing with gaseous hydrogen propellants at the NASA Glenn Research Center. The purpose of the facility is to test a variety of fuel nozzle and flameholder hardware configurations for use in aircraft combustors. Facility capabilities have been expanded to include testing with gaseous hydrogen, along with the existing hydrocarbon-based jet fuel. Modifications have also been made to the facility air supply to provide heated air up to 350 psig, 1100 F, and 3.0 lbm/s. The facility can accommodate a wide variety of flametube and fuel nozzle configurations. Emissions and performance data are obtained via a variety of gas sample probe configurations and emissions measurement equipment.

  7. Development of Fuel-Flexible Combustion Systems Utilizing Opportunity Fuels in Gas Turbines

    SciTech Connect

    2008-12-01

    General Electric Global Research will define, develop, and test new fuel nozzle technology concepts for gas turbine operation on a wide spectrum of opportunity fuels and/or fuel blends. This will enable gas turbine operation on ultra-low Btu fuel streams such as very weak natural gas, highly-diluted industrial process gases, or gasified waste streams that are out of the capability range of current turbine systems.

  8. Fuel Flexibility: Landfill Gas Contaminant Mitigation for Power Generation

    SciTech Connect

    Storey, John Morse; Theiss, Timothy J; Kass, Michael D; FINNEY, Charles E A; Lewis, Samuel; Kaul, Brian C; Besmann, Theodore M; Thomas, John F; Rogers, Hiram; Sepaniak, Michael

    2014-04-01

    This research project focused on the mitigation of silica damage to engine-based renewable landfill gas energy systems. Characterization of the landfill gas siloxane contamination, combined with characterization of the silica deposits in engines, led to development of two new mitigation strategies. The first involved a novel method for removing the siloxanes and other heavy contaminants from the landfill gas prior to use by the engines. The second strategy sought to interrupt the formation of hard silica deposits in the engine itself, based on inspection of failed landfill gas engine parts. In addition to mitigation, the project had a third task to develop a robust sensor for siloxanes that could be used to control existing and/or future removal processes.

  9. Fuel flexibility via real-time Raman fuel-gas analysis for turbine system control

    NASA Astrophysics Data System (ADS)

    Buric, M.; Woodruff, S.; Chorpening, B.; Tucker, D.

    2015-06-01

    The modern energy production base in the U.S. is increasingly incorporating opportunity fuels such as biogas, coalbed methane, coal syngas, solar-derived hydrogen, and others. In many cases, suppliers operate turbine-based generation systems to efficiently utilize these diverse fuels. Unfortunately, turbine engines are difficult to control given the varying energy content of these fuels, combined with the need for a backup natural gas supply to provide continuous operation. Here, we study the use of a specially designed Raman Gas Analyzer based on capillary waveguide technology with sub-second response time for turbine control applications. The NETL Raman Gas Analyzer utilizes a low-power visible pump laser, and a capillary waveguide gas-cell to integrate large spontaneous Raman signals, and fast gas-transfer piping to facilitate quick measurements of fuel-gas components. A U.S. Department of Energy turbine facility known as HYPER (hybrid performance system) serves as a platform for apriori fuel composition measurements for turbine speed or power control. A fuel-dilution system is used to simulate a compositional upset while simultaneously measuring the resultant fuel composition and turbine response functions in real-time. The feasibility and efficacy of system control using the spontaneous Raman-based measurement system is then explored with the goal of illustrating the ability to control a turbine system using available fuel composition as an input process variable.

  10. Fuel flexible fuel injector

    DOEpatents

    Tuthill, Richard S; Davis, Dustin W; Dai, Zhongtao

    2015-02-03

    A disclosed fuel injector provides mixing of fuel with airflow by surrounding a swirled fuel flow with first and second swirled airflows that ensures mixing prior to or upon entering the combustion chamber. Fuel tubes produce a central fuel flow along with a central airflow through a plurality of openings to generate the high velocity fuel/air mixture along the axis of the fuel injector in addition to the swirled fuel/air mixture.

  11. Development of the Low Swirl Injector for Fuel-Flexible GasTurbines

    SciTech Connect

    Littlejohn, D.; Cheng, R.K.; Nazeer,W.A.; Smith, K.O

    2007-02-14

    Industrial gas turbines are primarily fueled with natural gas. However, changes in fuel cost and availability, and a desire to control carbon dioxide emissions, are creating pressure to utilize other fuels. There is an increased interest in the use of fuels from coal gasification, such as syngas and hydrogen, and renewable fuels, such as biogas and biodiesel. Current turbine fuel injectors have had years of development to optimize their performance with natural gas. The new fuels appearing on the horizon can have combustion properties that differ substantially from natural gas. Factors such as turbulent flame speed, heat content, autoignition characteristics, and range of flammability must be considered when evaluating injector performance. The low swirl injector utilizes a unique flame stabilization mechanism and is under development for gas turbine applications. Its design and mode of operation allow it to operate effectively over a wide range of conditions. Studies conducted at LBNL indicate that the LSI can operate on fuels with a wide range of flame speeds, including hydrogen. It can also utilize low heat content fuels, such as biogas and syngas. We will discuss the low swirl injector operating parameters, and how the LSC performs with various alternative fuels.

  12. Industrial Fuel Flexibility Workshop

    SciTech Connect

    none,

    2006-09-01

    On September 28, 2006, in Washington, DC, ITP and Booz Allen Hamilton conducted a fuel flexibility workshop with attendance from various stakeholder groups. Workshop participants included representatives from the petrochemical, refining, food and beverage, steel and metals, pulp and paper, cement and glass manufacturing industries; as well as representatives from industrial boiler manufacturers, technology providers, energy and waste service providers, the federal government and national laboratories, and developers and financiers.

  13. Environmental degradation of oxidation resistant and thermal barrier coatings for fuel-flexible gas turbine applications

    NASA Astrophysics Data System (ADS)

    Mohan, Prabhakar

    The development of thermal barrier coatings (TBCs) has been undoubtedly the most critical advancement in materials technology for modern gas turbine engines. TBCs are widely used in gas turbine engines for both power-generation and propulsion applications. Metallic oxidation-resistant coatings (ORCs) are also widely employed as a stand-alone protective coating or bond coat for TBCs in many high-temperature applications. Among the widely studied durability issues in these high-temperature protective coatings, one critical challenge that received greater attention in recent years is their resistance to high-temperature degradation due to corrosive deposits arising from fuel impurities and CMAS (calcium-magnesium-alumino-silicate) sand deposits from air ingestion. The presence of vanadium, sulfur, phosphorus, sodium and calcium impurities in alternative fuels warrants a clear understanding of high-temperature materials degradation for the development of fuel-flexible gas turbine engines. Degradation due to CMAS is a critical problem for gas turbine components operating in a dust-laden environment. In this study, high-temperature degradation due to aggressive deposits such as V2O5, P2O 5, Na2SO4, NaVO3, CaSO4 and a laboratory-synthesized CMAS sand for free-standing air plasma sprayed (APS) yttria stabilized zirconia (YSZ), the topcoat of the TBC system, and APS CoNiCrAlY, the bond coat of the TBC system or a stand-alone ORC, is examined. Phase transformations and microstructural development were examined by using x-ray diffraction, scanning electron microscopy, and transmission electron microscopy. This study demonstrated that the V2O5 melt degrades the APS YSZ through the formation of ZrV2O7 and YVO 4 at temperatures below 747°C and above 747°C, respectively. Formation of YVO4 leads to the depletion of the Y2O 3 stabilizer and the deleterious transformation of the YSZ to the monoclinic ZrO2 phase. The investigation on the YSZ degradation by Na 2SO4 and a Na2SO4 + V2

  14. CONCEPTUAL STUDIES OF A FUEL-FLEXIBLE LOW-SWIRL COMBUSTION SYSTEM FOR THE GAS TURBINE IN CLEAN COAL POWER PLANTS

    SciTech Connect

    Smith, K.O.; Littlejohn, David; Therkelsen, Peter; Cheng, Robert K.; Ali, S.

    2009-11-30

    This paper reports the results of preliminary analyses that show the feasibility of developing a fuel flexible (natural gas, syngas and high-hydrogen fuel) combustion system for IGCC gas turbines. Of particular interest is the use of Lawrence Berkeley National Laboratory's DLN low swirl combustion technology as the basis for the IGCC turbine combustor. Conceptual designs of the combustion system and the requirements for the fuel handling and delivery circuits are discussed. The analyses show the feasibility of a multi-fuel, utility-sized, LSI-based, gas turbine engine. A conceptual design of the fuel injection system shows that dual parallel fuel circuits can provide range of gas turbine operation in a configuration consistent with low pollutant emissions. Additionally, several issues and challenges associated with the development of such a system, such as flashback and auto-ignition of the high-hydrogen fuels, are outlined.

  15. Design and preliminary results of a fuel flexible industrial gas turbine combustor

    NASA Technical Reports Server (NTRS)

    Novick, A. S.; Troth, D. L.; Yacobucci, H. G.

    1981-01-01

    The design characteristics are presented of a fuel tolerant variable geometry staged air combustor using regenerative/convective cooling. The rich/quench/lean variable geometry combustor is designed to achieve low NO(x) emission from fuels containing fuel bound nitrogen. The physical size of the combustor was calculated for a can-annular combustion system with associated operating conditions for the Allison 570-K engine. Preliminary test results indicate that the concept has the potential to meet emission requirements at maximum continuous power operation. However, airflow sealing and improved fuel/air mixing are necessary to meet Department of Energy program goals.

  16. Fuel Flexibility in Gasification

    SciTech Connect

    McLendon, T. Robert; Pineault, Richard L.; Richardson, Steven W.; Rockey, John M.; Beer, Stephen K.; Lui, Alain P.; Batton, William A.

    2001-11-06

    In order to increase efficiencies of carbonizers, operation at high pressures is needed. In addition, waste biomass fuels of opportunity can be used to offset fossil fuel use. The National Energy Technology Laboratory (NETL) Fluidized Bed Gasifier/Combustor (FBG/C) was used to gasify coal and mixtures of coal and biomass (sawdust) at 425 psig. The purpose of the testing program was to generate steady state operating data for modeling efforts of carbonizers. A test program was completed with a matrix of parameters varied one at a time in order to avoid second order interactions. Variables were: coal feed rate, pressure, and varying mixtures of sawdust and coal types. Coal types were Montana Rosebud subbituminous and Pittsburgh No. 8 bituminous. The sawdust was sanding waste from a furniture manufacturer in upstate New York. Coal was sieved from -14 to +60 mesh and sawdust was sieved to -14 mesh. The FBG/C operates at a nominal 425 psig, but pressures can be lowered. For the tests reported it was operated as a jetting, fluidized bed, ash-agglomerating gasifier. Preheated air and steam are injected into the center of the bottom along with the solid feed that is conveyed with cool air. Fairly stable reactor internal flow patterns develop and temperatures stabilize (with some fluctuations) when steady state is reached. At nominal conditions the solids residence time in the reactor is on the order of 1.5 to 2 hours, so changes in feed types can require on the order of hours to equilibrate. Changes in operating conditions (e.g. feed rate) usually require much less time. The operating periods of interest for these tests were only the steady state periods, so transient conditions were not monitored as closely. The test matrix first established a base case of operations to which single parameter changes in conditions could be compared. The base case used Montana Rosebud at a coal feed rate of 70 lbm/hr at 425 psig. The coal sawdust mixtures are reported as percent by weight

  17. Fuel cells: Operating flexibly

    NASA Astrophysics Data System (ADS)

    Lee, Young Moo

    2016-09-01

    Fuel cells typically function well only in rather limited temperature and humidity ranges. Now, a proton exchange membrane consisting of ion pair complexes is shown to enable improved fuel cell performance under a wide range of conditions that are unattainable with conventional approaches.

  18. Cost-Benefit Analysis of Flexibility Retrofits for Coal and Gas-Fueled Power Plants: August 2012 - December 2013

    SciTech Connect

    Venkataraman, S.; Jordan, G.; O'Connor, M.; Kumar, N.; Lefton, S.; Lew, D.; Brinkman, G.; Palchak, D.; Cochran, J.

    2013-12-01

    High penetrations of wind and solar power plants can induce on/off cycling and ramping of fossil-fueled generators. This can lead to wear-and-tear costs and changes in emissions for fossil-fueled generators. Phase 2 of the Western Wind and Solar Integration Study (WWSIS-2) determined these costs and emissions and simulated grid operations to investigate the full impact of wind and solar on the fossil-fueled fleet. This report studies the costs and benefits of retrofitting existing units for improved operational flexibility (i.e., capability to turndown lower, start and stop faster, and ramp faster between load set-points).

  19. Fuel Flexibility in Combustion

    SciTech Connect

    Freeman, M.C.; O'Dowd, W.J.; Mathur, M.P.; Walbert, G.F.

    2001-11-06

    , the coproduction/cogeneration concepts embodied in Vision 21 may also lend itself well to the type of utility/industry partnering involved in cofiring approaches. In light of the cost limitations in shipping distance (e.g., 50-100 miles or less) from collection to end-use based on the low energy density of biomass, resource availability is a site-specific consideration. Biomass fuels also exhibit significant differences in fuel characteristics, including volatility and ash chemistry that can also influence cofiring performance. Pilot-scale biomass cofiring tests have been conducted in the 150 kWt Combustion and Environmental Research Facility (CERF). A key aspect of the present work is to examine biomass char conversion for a range of initial particle sizes at various residence times for combustion relative to fuel processing/handling issues. In addition, a number of biomass cofiring R&D as well as full-scale utility demonstrations are providing technical insights to assist in cofiring technology commercialization. The paper will also discuss research plans, including lignin cofiring for ethanol/power co-production, novel concepts involving animal waste utilization, advanced combustion studies, and tri-firing concepts with other fuels.

  20. Catalytic Combustor for Fuel-Flexible Turbine

    SciTech Connect

    W. R. Laster; E. Anoshkina

    2008-01-31

    Under the sponsorship of the U. S. Department of Energy's National Energy Technology Laboratory, Siemens Westinghouse has conducted a three-year program to develop an ultra low NOx, fuel flexible catalytic combustor for gas turbine application in IGCC. The program is defined in three phases: Phase 1 - Implementation Plan, Phase 2 - Validation Testing and Phase 3 - Field Testing. Both Phase 1 and Phase 2 of the program have been completed. In IGCC power plants, the gas turbine must be capable of operating on syngas as a primary fuel and an available back-up fuel such as natural gas. In this program the Rich Catalytic Lean (RCLTM) technology is being developed as an ultra low NOx combustor. In this concept, ultra low NOx is achieved by stabilizing a lean premix combustion process by using a catalytic reactor to oxidize a portion of the fuel, increasing the temperature of fuel/air mixture prior to the main combustion zone. In Phase 1, the feasibility of the catalytic concept for syngas application has been evaluated and the key technology issues identified. In Phase II the technology necessary for the application of the catalytic concept to IGCC fuels was developed through detailed design and subscale testing. Phase III (currently not funded) will consist of full-scale combustor basket testing on natural gas and syngas.

  1. Catalytic Combustor for Fuel-Flexible Turbine

    SciTech Connect

    Laster, W. R.; Anoshkina, E.

    2008-01-31

    Under the sponsorship of the U. S. Department of Energy’s National Energy Technology Laboratory, Siemens Westinghouse has conducted a three-year program to develop an ultra low NOx, fuel flexible catalytic combustor for gas turbine application in IGCC. The program is defined in three phases: Phase 1- Implementation Plan, Phase 2- Validation Testing and Phase 3 – Field Testing. Both Phase 1 and Phase 2 of the program have been completed. In IGCC power plants, the gas turbine must be capable of operating on syngas as a primary fuel and an available back-up fuel such as natural gas. In this program the Rich Catalytic Lean (RCLTM) technology is being developed as an ultra low NOx combustor. In this concept, ultra low NOx is achieved by stabilizing a lean premix combustion process by using a catalytic reactor to oxidize a portion of the fuel, increasing the temperature of fuel/air mixture prior to the main combustion zone. In Phase 1, the feasibility of the catalytic concept for syngas application has been evaluated and the key technology issues identified. In Phase II the technology necessary for the application of the catalytic concept to IGCC fuels was developed through detailed design and subscale testing. Phase III (currently not funded) will consist of full-scale combustor basket testing on natural gas and syngas.

  2. Catalytic Combustor for Fuel-Flexible Turbine

    SciTech Connect

    W. R. Laster; E. Anoshkina; P. Szedlacsek

    2006-03-31

    Under the sponsorship of the U.S. Department of Energy's National Energy Technology Laboratory, Siemens Westinghouse is conducting a three-year program to develop an ultra low NOx, fuel flexible catalytic combustor for gas turbine application in IGCC. The program is defined in three phases: Phase 1-Implementation Plan, Phase 2-Validation Testing and Phase 3-Field Testing. The Phase 1 program has been completed. Phase II was initiated in October 2004. In IGCC power plants, the gas turbine must be capable of operating on syngas as a primary fuel and an available back-up fuel such as natural gas. In this program the Rich Catalytic Lean (RCL{trademark}) technology is being developed as an ultra low NOx combustor. In this concept, ultra low NOx is achieved by stabilizing a lean premix combustion process by using a catalytic reactor to react part of the fuel, increasing the fuel/air mixture temperature. In Phase 1, the feasibility of the catalytic concept for syngas application has been evaluated and the key technology issues identified. In Phase II the catalytic concept will be demonstrated through subscale testing. Phase III will consist of full-scale combustor basket testing on natural gas and syngas.

  3. Flexible Transparent Electronic Gas Sensors.

    PubMed

    Wang, Ting; Guo, Yunlong; Wan, Pengbo; Zhang, Han; Chen, Xiaodong; Sun, Xiaoming

    2016-07-01

    Flexible and transparent electronic gas sensors capable of real-time, sensitive, and selective analysis at room-temperature, have gained immense popularity in recent years for their potential to be integrated into various smart wearable electronics and display devices. Here, recent advances in flexible transparent sensors constructed from semiconducting oxides, carbon materials, conducting polymers, and their nanocomposites are presented. The sensing material selection, sensor device construction, and sensing mechanism of flexible transparent sensors are discussed in detail. The critical challenges and future development associated with flexible and transparent electronic gas sensors are presented. Smart wearable gas sensors are believed to have great potential in environmental monitoring and noninvasive health monitoring based on disease biomarkers in exhaled gas.

  4. Flexible Transparent Electronic Gas Sensors.

    PubMed

    Wang, Ting; Guo, Yunlong; Wan, Pengbo; Zhang, Han; Chen, Xiaodong; Sun, Xiaoming

    2016-07-01

    Flexible and transparent electronic gas sensors capable of real-time, sensitive, and selective analysis at room-temperature, have gained immense popularity in recent years for their potential to be integrated into various smart wearable electronics and display devices. Here, recent advances in flexible transparent sensors constructed from semiconducting oxides, carbon materials, conducting polymers, and their nanocomposites are presented. The sensing material selection, sensor device construction, and sensing mechanism of flexible transparent sensors are discussed in detail. The critical challenges and future development associated with flexible and transparent electronic gas sensors are presented. Smart wearable gas sensors are believed to have great potential in environmental monitoring and noninvasive health monitoring based on disease biomarkers in exhaled gas. PMID:27276698

  5. Flexible interconnects for fuel cell stacks

    DOEpatents

    Lenz, David J.; Chung, Brandon W.; Pham, Ai Quoc

    2004-11-09

    An interconnect that facilitates electrical connection and mechanical support with minimal mechanical stress for fuel cell stacks. The interconnects are flexible and provide mechanically robust fuel cell stacks with higher stack performance at lower cost. The flexible interconnects replace the prior rigid rib interconnects with flexible "fingers" or contact pads which will accommodate the imperfect flatness of the ceramic fuel cells. Also, the mechanical stress of stacked fuel cells will be smaller due to the flexibility of the fingers. The interconnects can be one-sided or double-sided.

  6. Fuel gas conditioning process

    DOEpatents

    Lokhandwala, Kaaeid A.

    2000-01-01

    A process for conditioning natural gas containing C.sub.3+ hydrocarbons and/or acid gas, so that it can be used as combustion fuel to run gas-powered equipment, including compressors, in the gas field or the gas processing plant. Compared with prior art processes, the invention creates lesser quantities of low-pressure gas per unit volume of fuel gas produced. Optionally, the process can also produce an NGL product.

  7. Flexible Fuel Vehicles: Providing a Renewable Fuel Choice

    SciTech Connect

    Not Available

    2007-05-01

    This Clean Cities Program fact sheet describes aspects of flexible fuel vehicles such as use of E85, special features, benefits of use, costs, and fueling locations. It discusses performance and lists additional resources.

  8. Flexible Fuel Vehicles: Providing a Renewable Fuel Choice (Fact Sheet)

    SciTech Connect

    Not Available

    2010-03-01

    Flexible Fuel vehicles are able to operate using more than one type of fuel. FFVs can be fueled with unleaded gasoline, E85, or any combination of the two. Today more than 7 million vehicles on U.S. highways are flexible fuel vehicles. The fact sheet discusses how E85 affects vehicle performance, the costs and benefits of using E85, and how to find E85 station locations.

  9. Fuel Flexible Turbine System (FFTS) Program

    SciTech Connect

    None, None

    2012-12-31

    In this fuel flexible turbine system (FFTS) program, the Parker gasification system was further optimized, fuel composition of biomass gasification process was characterized and the feasibility of running Capstone MicroTurbine(TM) systems with gasification syngas fuels was evaluated. With high hydrogen content, the gaseous fuel from a gasification process of various feed stocks such as switchgrass and corn stover has high reactivity and high flashback propensity when running in the current lean premixed injectors. The research concluded that the existing C65 microturbine combustion system, which is designed for natural gas, is not able to burn the high hydrogen content syngas due to insufficient resistance to flashback (undesired flame propagation to upstream within the fuel injector). A comprehensive literature review was conducted on high-hydrogen fuel combustion and its main issues. For Capstone's lean premixed injector, the main mechanisms of flashback were identified to be boundary layer flashback and bulk flow flashback. Since the existing microturbine combustion system is not able to operate on high-hydrogen syngas fuels, new hardware needed to be developed. The new hardware developed and tested included (1) a series of injectors with a reduced propensity for boundary layer flashback and (2) two new combustion liner designs (Combustion Liner Design A and B) that lead to desired primary zone air flow split to meet the overall bulk velocity requirement to mitigate the risk of core flashback inside the injectors. The new injector designs were evaluated in both test apparatus and C65/C200 engines. While some of the new injector designs did not provide satisfactory performance in burning target syngas fuels, particularly in improving resistance to flashback. The combustion system configuration of FFTS-4 injector and Combustion Liner Design A was found promising to enable the C65 microturbine system to run on high hydrogen biomass syngas. The FFTS-4 injector was

  10. Fuel gas from biodigestion

    NASA Technical Reports Server (NTRS)

    Mcdonald, R. C.; Wolverton, B. C.

    1979-01-01

    Biodigestion apparatus produces fuel gas (primarily methane) for domestic consumption, by anaerobic bacterial digestion of organic matter such as aquatic vegetation. System includes 3,786-1 cylindrical container, mechanical agitator, and simple safe gas collector for short term storage.

  11. Fuel-Flexible Microturbine and Gasifier System

    SciTech Connect

    2009-12-01

    This factsheet describes a project that will develop and demonstrate a prototype microturbine combined heat and power system fueled by synthesis gas and integrated with a biomass gasifier, enabling reduced fossil fuel consumption and carbon dioxide emissions.

  12. Flexible Fuel Vehicles: Providing a Renewable Fuel Choice (Revised)

    SciTech Connect

    Not Available

    2008-06-01

    Clean Cities fact sheet describing aspects of flexible fuel vehicles such as use of E85, special features, benefits of use, costs, and fueling locations. It includes discussion on performance and how to identify these vehicles as well as listing additional resources.

  13. Fuel Flexible, Low Emission Catalytic Combustor for Opportunity Fuel Applications

    SciTech Connect

    Eteman, Shahrokh

    2013-06-30

    Limited fuel resources, increasing energy demand and stringent emission regulations are drivers to evaluate process off-gases or process waste streams as fuels for power generation. Often these process waste streams have low energy content and/or highly reactive components. Operability of low energy content fuels in gas turbines leads to issues such as unstable and incomplete combustion. On the other hand, fuels containing higher-order hydrocarbons lead to flashback and auto-ignition issues. Due to above reasons, these fuels cannot be used directly without modifications or efficiency penalties in gas turbine engines. To enable the use of these wide variety of fuels in gas turbine engines a rich catalytic lean burn (RCL®) combustion system was developed and tested in a subscale high pressure (10 atm.) rig. The RCL® injector provided stability and extended turndown to low Btu fuels due to catalytic pre-reaction. Previous work has shown promise with fuels such as blast furnace gas (BFG) with LHV of 85 Btu/ft3 successfully combusted. This program extends on this work by further modifying the combustor to achieve greater catalytic stability enhancement. Fuels containing low energy content such as weak natural gas with a Lower Heating Value (LHV) of 6.5 MJ/m3 (180 Btu/ft3 to natural gas fuels containing higher hydrocarbon (e.g ethane) with LHV of 37.6 MJ/m3 (1010 Btu/ft3) were demonstrated with improved combustion stability; an extended turndown (defined as the difference between catalytic and non-catalytic lean blow out) of greater than 250oF was achieved with CO and NOx emissions lower than 5 ppm corrected to 15% O2. In addition, for highly reactive fuels the catalytic region preferentially pre-reacted the higher order hydrocarbons with no events of flashback or auto-ignition allowing a stable and safe operation with low NOx and CO emissions.

  14. Gas Fermentation—A Flexible Platform for Commercial Scale Production of Low-Carbon-Fuels and Chemicals from Waste and Renewable Feedstocks

    PubMed Central

    Liew, FungMin; Martin, Michael E.; Tappel, Ryan C.; Heijstra, Björn D.; Mihalcea, Christophe; Köpke, Michael

    2016-01-01

    There is an immediate need to drastically reduce the emissions associated with global fossil fuel consumption in order to limit climate change. However, carbon-based materials, chemicals, and transportation fuels are predominantly made from fossil sources and currently there is no alternative source available to adequately displace them. Gas-fermenting microorganisms that fix carbon dioxide (CO2) and carbon monoxide (CO) can break this dependence as they are capable of converting gaseous carbon to fuels and chemicals. As such, the technology can utilize a wide range of feedstocks including gasified organic matter of any sort (e.g., municipal solid waste, industrial waste, biomass, and agricultural waste residues) or industrial off-gases (e.g., from steel mills or processing plants). Gas fermentation has matured to the point that large-scale production of ethanol from gas has been demonstrated by two companies. This review gives an overview of the gas fermentation process, focusing specifically on anaerobic acetogens. Applications of synthetic biology and coupling gas fermentation to additional processes are discussed in detail. Both of these strategies, demonstrated at bench-scale, have abundant potential to rapidly expand the commercial product spectrum of gas fermentation and further improve efficiencies and yields. PMID:27242719

  15. Gas Fermentation-A Flexible Platform for Commercial Scale Production of Low-Carbon-Fuels and Chemicals from Waste and Renewable Feedstocks.

    PubMed

    Liew, FungMin; Martin, Michael E; Tappel, Ryan C; Heijstra, Björn D; Mihalcea, Christophe; Köpke, Michael

    2016-01-01

    There is an immediate need to drastically reduce the emissions associated with global fossil fuel consumption in order to limit climate change. However, carbon-based materials, chemicals, and transportation fuels are predominantly made from fossil sources and currently there is no alternative source available to adequately displace them. Gas-fermenting microorganisms that fix carbon dioxide (CO2) and carbon monoxide (CO) can break this dependence as they are capable of converting gaseous carbon to fuels and chemicals. As such, the technology can utilize a wide range of feedstocks including gasified organic matter of any sort (e.g., municipal solid waste, industrial waste, biomass, and agricultural waste residues) or industrial off-gases (e.g., from steel mills or processing plants). Gas fermentation has matured to the point that large-scale production of ethanol from gas has been demonstrated by two companies. This review gives an overview of the gas fermentation process, focusing specifically on anaerobic acetogens. Applications of synthetic biology and coupling gas fermentation to additional processes are discussed in detail. Both of these strategies, demonstrated at bench-scale, have abundant potential to rapidly expand the commercial product spectrum of gas fermentation and further improve efficiencies and yields. PMID:27242719

  16. Gas Fermentation-A Flexible Platform for Commercial Scale Production of Low-Carbon-Fuels and Chemicals from Waste and Renewable Feedstocks.

    PubMed

    Liew, FungMin; Martin, Michael E; Tappel, Ryan C; Heijstra, Björn D; Mihalcea, Christophe; Köpke, Michael

    2016-01-01

    There is an immediate need to drastically reduce the emissions associated with global fossil fuel consumption in order to limit climate change. However, carbon-based materials, chemicals, and transportation fuels are predominantly made from fossil sources and currently there is no alternative source available to adequately displace them. Gas-fermenting microorganisms that fix carbon dioxide (CO2) and carbon monoxide (CO) can break this dependence as they are capable of converting gaseous carbon to fuels and chemicals. As such, the technology can utilize a wide range of feedstocks including gasified organic matter of any sort (e.g., municipal solid waste, industrial waste, biomass, and agricultural waste residues) or industrial off-gases (e.g., from steel mills or processing plants). Gas fermentation has matured to the point that large-scale production of ethanol from gas has been demonstrated by two companies. This review gives an overview of the gas fermentation process, focusing specifically on anaerobic acetogens. Applications of synthetic biology and coupling gas fermentation to additional processes are discussed in detail. Both of these strategies, demonstrated at bench-scale, have abundant potential to rapidly expand the commercial product spectrum of gas fermentation and further improve efficiencies and yields.

  17. Fuel gas desulfurization

    DOEpatents

    Yang, Ralph T.; Shen, Ming-Shing

    1981-01-01

    A method for removing sulfurous gases such as H.sub.2 S and COS from a fuel gas is disclosed wherein limestone particulates containing iron sulfide provide catalytic absorption of the H.sub.2 S and COS by the limestone. The method is effective at temperatures of 400.degree. C. to 700.degree. C. in particular.

  18. Analysis of Fuel Flexibility Opportunities and Constraints in the U.S. Industrial Sector

    SciTech Connect

    none,

    2007-03-07

    The purpose of this assessment was to determine if flexible, alternative fuel use in industry, beyond switching from natural gas to petroleum derivatives, presents a sizeable opportunity for the reduction in use of natural gas. Furthermore, the assessment was to determine what programmatic activities the DOE could undertake to accelerate a fuel flexibility program for industry. To this end, a six-part framework (see Figure ES-1) was used to identify the most promising fuel flexibility options, and what level of accomplishment could be achieved, based on DOE leadership.

  19. A Compact Flexible Pellet Injection System for Fueling Studies

    NASA Astrophysics Data System (ADS)

    Baylor, L. R.; Combs, S. K.; Fehling, D. T.; Fisher, P. W.; Foust, C. R.; Gouge, M. J.; Rasmussen, D. A.

    2000-10-01

    A compact pellet injection system is being designed and built at ORNL to provide a flexible pellet fueling system for studies in magnetic confinement fusion devices. The system known as a ``pellet injector in a suitcase (PIS)'' is a pipe gun device with four barrels that uses a cryocooler for in-situ hydrogenic pellet formation. The system is being built to provide a flexible, low-cost fueling system that can be used on a number of plasma confinement experiments with minimal installation and operation costs. components in the system. It will use both propellant gas and a mechanical punch to accelerate the 1 - 4 mm size pellets to 100-1500 m/s. With the mechanical punch alone a low speed pellet, useful for curved guide tube applications, can be produced with minimal gas load eliminating the need for a large ballast volume. can be independently fired. diagnose the injector. The PIS is a flexible tool for fueling alternative concept devices such as MST and NSTX and for specialized studies in mainline tokamak experiments such as DIII-D and JET. The small size makes installation on such devices more feasible. of the system design and the expected performance will be presented.

  20. Fuel gas developments

    SciTech Connect

    Wise, D.L.

    1984-01-01

    This volume is devoted to current research and specific developmental programs in the area of fuel gas production from biomass. Anaerobic biological conversion of lignocellulosic residuals to increase methane production by using pretreatment methods such as thermochemical, autohydrolysis, and staged or continuous flow processes are described. Essential considerations for establishing digestion process design criterias are covered. Included in this discussion are the sources and characteristics of municipal solid waste (MSW), MSW preprocessing and pretreatment, and digester control parameters such as nutrient requirements, organic loading rate, retention time, feed slurry concentration, temperature, mixing, and gas quality and quantity. Highlighted are the practical aspects of reactors to promote biomass retention, improving treatment efficiency, product rate, and process stability. Brief summaries are presented on process configuration. Detailed coverage is given to the development and commercialization of anaerobic systems that are now used, such as the Celrobic system and the Biothane process. Problems associated with using biomass digester effluents as soil conditioners and feeds are discussed. The use of commercial manure-to-fuel gas systems at large environmental beef cattle feedlots is also discussed. The volume concludes with a comparative study on the conversion of agricultural crop residues to either gaseous or liquid fuels.

  1. Graphene Based Flexible Gas Sensors

    NASA Astrophysics Data System (ADS)

    Yi, Congwen

    Graphene is a novel carbon material with great promise for a range of applications due to its electronic and mechanical properties. Its two-dimensional nature translates to a high sensitivity to surface chemical interactions thereby making it an ideal platform for sensors. Graphene's electronic properties are not degraded due to mechanical flexing or strain (Kim, K. S., et al. nature 07719, 2009) offering another advantage for flexible sensors integrated into numerous systems including fabrics, etc. We have demonstrated a graphene NO2 sensor on a solid substrate (100nm SiO2/heavily doped silicon). Three different methods were used to synthesize graphene and the sensor fabrication process was optimized accordingly. Water is used as a controllable p-type dopant in graphene to study the relationship between doping and graphene's response to NO2 . Experimental results show that interface water between graphene and the supporting SiO2 substrate induces higher p-doping in graphene, leading to a higher sensitivity to NO2, consistent with theoretical predications (Zhang, Y. et al., Nanotechnology 20(2009) 185504). We have also demonstrated a flexible and stretchable graphene-based sensor. Few layer graphene, grown on a Ni substrate, is etched and transferred to a highly stretchable polymer substrate (VHB from 3M) with preloaded stress, followed by metal contact formation to construct a flexible, stretchable sensor. With up to 500% deformation caused by compressive stress, graphene still shows stable electrical response to NO2. Our results suggest that higher compressive stress results in smaller sheet resistance and higher sensitivity to NO2. A possible molecular detection sensor utilizing Surface Enhanced Raman Spectrum (SERS) based on a graphene/gallium nanoparticles platform is also studied. By correlating the enhancement of the graphene Raman modes with metal coverage, we propose that the Ga transfers electrons to the graphene creating local regions of enhanced

  2. Automotive gas turbine fuel control

    NASA Technical Reports Server (NTRS)

    Gold, H. (Inventor)

    1978-01-01

    A fuel control system is reported for automotive-type gas turbines and particulary advanced gas turbines utilizing variable geometry components to improve mileage and reduce pollution emission. The fuel control system compensates for fuel density variations, inlet temperature variations, turbine vane actuation, acceleration, and turbine braking. These parameters are utilized to control various orifices, spool valves and pistons.

  3. Fuel Economy and Emissions of a Vehicle Equipped with an Aftermarket Flexible-Fuel Conversion Kit

    SciTech Connect

    Thomas, John F; Huff, Shean P; West, Brian H

    2012-04-01

    The U.S. Environmental Protection Agency (EPA) grants Certificates of Conformity for alternative fuel conversion systems and also offers other forms of premarket registration of conversion kits for use in vehicles more than two model years old. Use of alternative fuels such as ethanol, natural gas, and propane are encouraged by the Energy Policy Act of 1992. Several original equipment manufacturers (OEMs) produce emissions-certified vehicles capable of using alternative fuels, and several alternative fuel conversion system manufacturers produce EPA-approved conversion systems for a variety of alternative fuels and vehicle types. To date, only one manufacturer (Flex Fuel U.S.) has received EPA certifications for ethanol fuel (E85) conversion kits. This report details an independent evaluation of a vehicle with a legal installation of a Flex Fuel U.S. conversion kit. A 2006 Dodge Charger was baseline tested with ethanol-free certification gasoline (E0) and E20 (gasoline with 20 vol % ethanol), converted to flex-fuel operation via installation of a Flex Box Smart Kit from Flex Fuel U.S., and retested with E0, E20, E50, and E81. Test cycles included the Federal Test Procedure (FTP or city cycle), the highway fuel economy test (HFET), and the US06 test (aggressive driving test). Averaged test results show that the vehicle was emissions compliant on E0 in the OEM condition (before conversion) and compliant on all test fuels after conversion. Average nitrogen oxide (NOx) emissions exceeded the Tier 2/Bin 5 intermediate life NO{sub X} standard with E20 fuel in the OEM condition due to two of three test results exceeding this standard [note that E20 is not a legal fuel for non-flexible-fuel vehicles (non-FFVs)]. In addition, one E0 test result before conversion and one E20 test result after conversion exceeded the NOX standard, although the average result in these two cases was below the standard. Emissions of ethanol and acetaldehyde increased with increasing ethanol

  4. Fuel cell gas management system

    DOEpatents

    DuBose, Ronald Arthur

    2000-01-11

    A fuel cell gas management system including a cathode humidification system for transferring latent and sensible heat from an exhaust stream to the cathode inlet stream of the fuel cell; an anode humidity retention system for maintaining the total enthalpy of the anode stream exiting the fuel cell equal to the total enthalpy of the anode inlet stream; and a cooling water management system having segregated deionized water and cooling water loops interconnected by means of a brazed plate heat exchanger.

  5. Enabling Advanced Modeling and Simulations for Fuel-Flexible Combustors

    SciTech Connect

    Pitsch, Heinz

    2010-05-31

    The overall goal of the present project is to enable advanced modeling and simulations for the design and optimization of fuel-flexible turbine combustors. For this purpose we use a high fidelity, extensively-tested large-eddy simulation (LES) code and state-of-the-art models for premixed/partially-premixed turbulent combustion developed in the PI's group. In the frame of the present project, these techniques are applied, assessed, and improved for hydrogen enriched premixed and partially premixed gas-turbine combustion. Our innovative approaches include a completely consistent description of flame propagation; a coupled progress variable/level set method to resolve the detailed flame structure, and incorporation of thermal-diffusion (non-unity Lewis number) effects. In addition, we have developed a general flamelet-type transformation holding in the limits of both non-premixed and premixed burning. As a result, a model for partially premixed combustion has been derived. The coupled progress variable/level method and the general flamelet transformation were validated by LES of a lean-premixed low-swirl burner that has been studied experimentally at Lawrence Berkeley National Laboratory. The model is extended to include the non-unity Lewis number effects, which play a critical role in fuel-flexible combustor with high hydrogen content fuel. More specifically, a two-scalar model for lean hydrogen and hydrogen-enriched combustion is developed and validated against experimental and direct numerical simulation (DNS) data. Results are presented to emphasize the importance of non-unity Lewis number effects in the lean-premixed low-swirl burner of interest in this project. The proposed model gives improved results, which shows that the inclusion of the non-unity Lewis number effects is essential for accurate prediction of the lean-premixed low-swirl flame.

  6. Enabling Advanced Modeling and Simulations for Fuel-Flexible Combustors

    SciTech Connect

    Heinz Pitsch

    2010-05-31

    The overall goal of the present project is to enable advanced modeling and simulations for the design and optimization of fuel-flexible turbine combustors. For this purpose we use a high-fidelity, extensively-tested large-eddy simulation (LES) code and state-of-the-art models for premixed/partially-premixed turbulent combustion developed in the PI's group. In the frame of the present project, these techniques are applied, assessed, and improved for hydrogen enriched premixed and partially premixed gas-turbine combustion. Our innovative approaches include a completely consistent description of flame propagation, a coupled progress variable/level set method to resolve the detailed flame structure, and incorporation of thermal-diffusion (non-unity Lewis number) effects. In addition, we have developed a general flamelet-type transformation holding in the limits of both non-premixed and premixed burning. As a result, a model for partially premixed combustion has been derived. The coupled progress variable/level method and the general flamelet tranformation were validated by LES of a lean-premixed low-swirl burner that has been studied experimentally at Lawrence Berkeley National Laboratory. The model is extended to include the non-unity Lewis number effects, which play a critical role in fuel-flexible combustor with high hydrogen content fuel. More specifically, a two-scalar model for lean hydrogen and hydrogen-enriched combustion is developed and validated against experimental and direct numerical simulation (DNS) data. Results are presented to emphasize the importance of non-unity Lewis number effects in the lean-premixed low-swirl burner of interest in this project. The proposed model gives improved results, which shows that the inclusion of the non-unity Lewis number effects is essential for accurate prediction of the lean-premixed low-swirl flame.

  7. Low NOx Fuel Flexible Combustor Integration Project Overview

    NASA Technical Reports Server (NTRS)

    Walton, Joanne C.; Chang, Clarence T.; Lee, Chi-Ming; Kramer, Stephen

    2015-01-01

    The Integrated Technology Demonstration (ITD) 40A Low NOx Fuel Flexible Combustor Integration development is being conducted as part of the NASA Environmentally Responsible Aviation (ERA) Project. Phase 2 of this effort began in 2012 and will end in 2015. This document describes the ERA goals, how the fuel flexible combustor integration development fulfills the ERA combustor goals, and outlines the work to be conducted during project execution.

  8. Assessment of costs and benefits of flexible and alternative fuel use in the US transportation sector

    SciTech Connect

    Not Available

    1992-05-01

    The Alternative Motor Fuels Act of 1988 (AMFA, Public Law 100--494) offers incentives in the form of fuel economy credits to manufacturers who produce vehicles capable of using natural gas or alcohol fuels. Specifically, Section 6 of AMFA allows manufacturers to count 1 gallon of alcohol fuel or 1 gallon equivalent of natural gas as only 0.15 gallon of fuel'' when calculating the manufacturer's corporate average fuel economy (CAFE) number. Substitution of natural gas or alcohol fuels for gasoline in the transportation sector is likely to affect the prices of natural gas and distillate oil, which are important sources of energy for home heating. Therefore, Section 9 of AMFA calls for a study of the impact of the manufacturing incentives provision on the cost of home heating. This report provides that analysis. It evaluates and quantifies the possible effects of the CAFE provisions in terms of the following: (1) numbers of alternative- and dual-fuel vehicles that might be built as a result of this provision; (2) consumption of alcohol and natural gas by these vehicles; (3) whether the alcohol or compressed natural gas (CNG) is likely to be derived from domestic resources; (4) the effects on domestic natural gas and home heating oil prices; and, (5) the resulting impact on home heating costs. Only the impacts of manufacturing incentives for dedicated and dual-fuel alcohol-powered automobiles and dedicated and dual-fuel natural-gas-powered automobiles, as described in Section 6 of AMFA, are considered in this study. This report also contributes to the Department of Energy's comprehensive technical analysis of a flexible-fuel transportation system in the United States. The DOE Altemative Fuels Assessment is aimed directly at questions of energy security and fuel availability, but covers a wide range of issues.

  9. Fuel burner and combustor assembly for a gas turbine engine

    DOEpatents

    Leto, Anthony

    1983-01-01

    A fuel burner and combustor assembly for a gas turbine engine has a housing within the casing of the gas turbine engine which housing defines a combustion chamber and at least one fuel burner secured to one end of the housing and extending into the combustion chamber. The other end of the fuel burner is arranged to slidably engage a fuel inlet connector extending radially inwardly from the engine casing so that fuel is supplied, from a source thereof, to the fuel burner. The fuel inlet connector and fuel burner coact to anchor the housing against axial movement relative to the engine casing while allowing relative radial movement between the engine casing and the fuel burner and, at the same time, providing fuel flow to the fuel burner. For dual fuel capability, a fuel injector is provided in said fuel burner with a flexible fuel supply pipe so that the fuel injector and fuel burner form a unitary structure which moves with the fuel burner.

  10. Optimally Controlled Flexible Fuel Powertrain System

    SciTech Connect

    Duncan Sheppard; Bruce Woodrow; Paul Kilmurray; Simon Thwaite

    2011-06-30

    A multi phase program was undertaken with the stated goal of using advanced design and development tools to create a unique combination of existing technologies to create a powertrain system specification that allowed minimal increase of volumetric fuel consumption when operating on E85 relative to gasoline. Although on an energy basis gasoline / ethanol blends typically return similar fuel economy to straight gasoline, because of its lower energy density (gasoline ~ 31.8MJ/l and ethanol ~ 21.1MJ/l) the volume based fuel economy of gasoline / ethanol blends are typically considerably worse. This project was able to define an initial engine specification envelope, develop specific hardware for the application, and test that hardware in both single and multi-cylinder test engines to verify the ability of the specified powertrain to deliver reduced E85 fuel consumption. Finally, the results from the engine testing were used in a vehicle drive cycle analysis tool to define a final vehicle level fuel economy result. During the course of the project, it was identified that the technologies utilized to improve fuel economy on E85 also enabled improved fuel economy when operating on gasoline. However, the E85 fueled powertrain provided improved vehicle performance when compared to the gasoline fueled powertrain due to the improved high load performance of the E85 fuel. Relative to the baseline comparator engine and considering current market fuels, the volumetric fuel consumption penalty when running on E85 with the fully optimized project powertrain specification was reduced significantly. This result shows that alternative fuels can be utilized in high percentages while maintaining or improving vehicle performance and with minimal or positive impact on total cost of ownership to the end consumer. The justification for this project was two-fold. In order to reduce the US dependence on crude oil, much of which is imported, the US Environmental Protection Agency (EPA

  11. Compressed gas fuel storage system

    DOEpatents

    Wozniak, John J.; Tiller, Dale B.; Wienhold, Paul D.; Hildebrand, Richard J.

    2001-01-01

    A compressed gas vehicle fuel storage system comprised of a plurality of compressed gas pressure cells supported by shock-absorbing foam positioned within a shape-conforming container. The container is dimensioned relative to the compressed gas pressure cells whereby a radial air gap surrounds each compressed gas pressure cell. The radial air gap allows pressure-induced expansion of the pressure cells without resulting in the application of pressure to adjacent pressure cells or physical pressure to the container. The pressure cells are interconnected by a gas control assembly including a thermally activated pressure relief device, a manual safety shut-off valve, and means for connecting the fuel storage system to a vehicle power source and a refueling adapter. The gas control assembly is enclosed by a protective cover attached to the container. The system is attached to the vehicle with straps to enable the chassis to deform as intended in a high-speed collision.

  12. Gas only nozzle fuel tip

    DOEpatents

    Bechtel, William Theodore; Fitts, David Orus; DeLeonardo, Guy Wayne

    2002-01-01

    A diffusion flame nozzle gas tip is provided to convert a dual fuel nozzle to a gas only nozzle. The nozzle tip diverts compressor discharge air from the passage feeding the diffusion nozzle air swirl vanes to a region vacated by removal of the dual fuel components, so that the diverted compressor discharge air can flow to and through effusion holes in the end cap plate of the nozzle tip. In a preferred embodiment, the nozzle gas tip defines a cavity for receiving the compressor discharge air from a peripheral passage of the nozzle for flow through the effusion openings defined in the end cap plate.

  13. Metal-gas fuel cell

    SciTech Connect

    Struthers, R.C.

    1984-10-16

    A metal-gas fuel cell comprising an anode chamber filled with a base anolyte solution, a metallic anode plate immersed in the anolyte; an ion exchange chamber filled with a base ionolyte solution adjacent the anode chamber; a cationic membrane between the anode and ion exchange chambers separating the anolyte and ionolyte; a cathode plate adjacent the ion exchange chamber remote from the cationic membrane with one surface in contact with the ionolyte and another surface in contact with a cathode fuel gas. The cathode plate is a laminated structure including a layer of hydrophyllic material in contact with the ionolyte, a layer of gas permeable hydrophobic material in contact with the gas and a gas and liquid permeable current collector of inert material with catalytic surfaces within the layer of hydrophyllic material. The anode and cathode plates are connected with an external electric circuit which effects the flow of electrons from the anode plate to the cathode plate.

  14. Modular Coating for Flexible Gas Turbine Operation

    NASA Astrophysics Data System (ADS)

    Zimmermann, J. R. A.; Schab, J. C.; Stankowski, A.; Grasso, P. D.; Olliges, S.; Leyens, C.

    2016-01-01

    In heavy duty gas turbines, the loading boundary conditions of MCrAlY systems are differently weighted for different operation regimes as well as for each turbine component or even in individual part locations. For an overall optimized component protection it is therefore of interest to produce coatings with flexible and individually tailored properties. In this context, ALSTOM developed an Advanced Modular Coating Technology (AMCOTEC™), which is based on several powder constituents, each providing specific properties to the final coating, in combination with a new application method, allowing in-situ compositional changes. With this approach, coating properties, such as oxidation, corrosion, and cyclic lifetime, etc., can be modularly adjusted for individual component types and areas. For demonstration purpose, a MCrAlY coating with modular ductility increase was produced using the AMCOTEC™ methodology. The method was proven to be cost effective and a highly flexible solution, enabling fast compositional screening. A calculation method for final coating composition was defined and validated. The modular addition of ductility agent enabled increasing the coating ductility with up to factor 3 with only slight decrease of oxidation resistance. An optimum composition with respect to ductility is reached with addition of 20 wt.% of ductility agent.

  15. DIGESTER GAS - FUEL CELL - PROJECT

    SciTech Connect

    Dr.-Eng. Dirk Adolph; Dipl.-Eng. Thomas Saure

    2002-03-01

    GEW has been operating the first fuel cell in Europe producing heat and electricity from digester gas in an environmentally friendly way. The first 9,000 hours in operation were successfully concluded in August 2001. The fuel cell powered by digester gas was one of the 25 registered ''Worldwide projects'' which NRW presented at the EXPO 2000. In addition to this, it is a key project of the NRW State Initiative on Future Energies. All of the activities planned for the first year of operation were successfully completed: installing and putting the plant into operation, the transition to permanent operation as well as extended monitoring till May 2001.

  16. Optimally Controlled Flexible Fuel Powertrain System

    SciTech Connect

    Hakan Yilmaz; Mark Christie; Anna Stefanopoulou

    2010-12-31

    The primary objective of this project was to develop a true Flex Fuel Vehicle capable of running on any blend of ethanol from 0 to 85% with reduced penalty in usable vehicle range. A research and development program, targeting 10% improvement in fuel economy using a direct injection (DI) turbocharged spark ignition engine was conducted. In this project a gasoline-optimized high-technology engine was considered and the hardware and configuration modifications were defined for the engine, fueling system, and air path. Combined with a novel engine control strategy, control software, and calibration this resulted in a highly efficient and clean FFV concept. It was also intended to develop robust detection schemes of the ethanol content in the fuel integrated with adaptive control algorithms for optimized turbocharged direct injection engine combustion. The approach relies heavily on software-based adaptation and optimization striving for minimal modifications to the gasoline-optimized engine hardware system. Our ultimate objective was to develop a compact control methodology that takes advantage of any ethanol-based fuel mixture and not compromise the engine performance under gasoline operation.

  17. Catalytic autothermal reforming increases fuel cell flexibility

    SciTech Connect

    Flytzani-Stephanopoulos, M.; Voecks, G.E.

    1981-12-01

    To give a better understanding of autothermal reforming (ATR), a process which offers an advantageous alternative to steam reforming for H/sub 2/ production for fuel cells because of the wider range of fuels which can be converted, the conversion of individual fuel components was studied. Attempts have been made to characterize the chemical reactions of light and heavy paraffins and aromatics in ATR. Results of studies to determine the effects of operating parameters on the carbon-forming tendency of each hydrocarbon type are reported. The catalyst used for the ATR process was three-layers of supported nickel catalysts, Norton NC-100 spheres in the top zone, cylindrical G-56B tablets in the bottom one, and either ICI 46-I or ICI 46-4 Raschig rings in the middle zone. A summary of the experimental studies of the ATR of n-hexane, n-tetradecane, benzene, and benzene solutions of naphthalene is presented. (BLM)

  18. Assessment of costs and benefits of flexible and alternative fuel use in the US transportation sector

    SciTech Connect

    Not Available

    1991-10-01

    The DOE is conducting a comprehensive technical analysis of a flexible-fuel transportation system in the United States -- that is, a system that could easily switch between petroleum and another fuel, depending on price and availability. The DOE Alternative Fuels Assessment is aimed directly at questions of energy security and fuel availability, but covers a wide range of issues. This report examines environmental, health, and safety concerns associated with a switch to alternative- and flexible-fuel vehicles. Three potential alternatives to oil-based fuels in the transportation sector are considered: methanol, compressed natural gas (CNG), and electricity. The objective is to describe and discuss qualitatively potential environmental, health, and safety issues that would accompany widespread use of these three fuels. This report presents the results of exhaustive literature reviews; discussions with specialists in the vehicular and fuel-production industries and with Federal, State, and local officials; and recent information from in-use fleet tests. Each chapter deals with the end-use and process emissions of air pollutants, presenting an overview of the potential air pollution contribution of the fuel --relative to that of gasoline and diesel fuel -- in various applications. Carbon monoxide, particulate matter, ozone precursors, and carbon dioxide are emphasized. 67 refs., 6 figs. , 8 tabs.

  19. Flexible method for monitoring fuel cell voltage

    DOEpatents

    Mowery, Kenneth D.; Ripley, Eugene V.

    2002-01-01

    A method for equalizing the measured voltage of each cluster in a fuel cell stack wherein at least one of the clusters has a different number of cells than the identical number of cells in the remaining clusters by creating a pseudo voltage for the different cell numbered cluster. The average cell voltage of the all of the cells in the fuel cell stack is calculated and multiplied by a constant equal to the difference in the number of cells in the identical cell clusters and the number of cells in the different numbered cell cluster. The resultant product is added to the actual voltage measured across the different numbered cell cluster to create a pseudo voltage which is equivalent in cell number to the number of cells in the other identical numbered cell clusters.

  20. Catalytic autothermal reforming increases fuel cell flexibility

    NASA Technical Reports Server (NTRS)

    Flytzani-Stephanopoulos, M.; Voecks, G. E.

    1981-01-01

    Experimental results are presented for the autothermal reforming (ATR) of n-hexane, n-tetradecane, benzene and benzene solutions of naphthalene. The tests were run at atmospheric pressure and at moderately high reactant preheat temperatures in the 800-900 K range. Carbon formation lines were determined for paraffinic and aromatic liquids. Profiles were determined for axial bed temperature and composition. Space velocity efforts were assessed, and the locations and types of carbon were recorded. Significant reactive differences between hydrocarbons were identified. Carbon formation characteristics were hydrocarbon specific. The differing behavior of paraffinic and aromatic fuels with respect to their carbon formation may be important in explaining the narrow range of carbon-free operating conditions found in the ATR of number two fuel oil.

  1. Catalytic autothermal reforming increases fuel cell flexibility

    SciTech Connect

    Flytzani-Stephanopoulos, M.; Voecks, G.E.

    1981-12-01

    Experimental results are presented for the autothermal reforming (ATR) of n-hexane, n-tetradecane, benzene and benzene solutions of naphthalene. The tests were run at atmospheric pressure and at moderately high reactant preheat temperatures in the 800-900 K range. Carbon formation lines were determined for paraffinic and aromatic liquids. Profiles were determined for axial bed temperature and composition. Space velocity efforts were assessed, and the locations and types of carbon were recorded. Significant reactive differences between hydrocarbons were identified. Carbon formation characteristics were hydrocarbon specific. The differing behavior of paraffinic and aromatic fuels with respect to their carbon formation may be important in explaining the narrow range of carbon-free operating conditions found in the ATR of number two fuel oil.

  2. Assessment of costs and benefits of flexible and alternative fuel use in the US transportation sector. Technical report twelve: Economic analysis of alternative uses for Alaskan North Slope natural gas

    SciTech Connect

    Not Available

    1993-12-01

    As part of the Altemative Fuels Assessment, the Department of Energy (DOE) is studying the use of derivatives of natural gas, including compressed natural gas and methanol, as altemative transportation fuels. A critical part of this effort is determining potential sources of natural gas and the economics of those sources. Previous studies in this series characterized the economics of unutilized gas within the lower 48 United States, comparing its value for methanol production against its value as a pipelined fuel (US Department of Energy 1991), and analyzed the costs of developing undeveloped nonassociated gas reserves in several countries (US Department of Energy 1992c). This report extends those analyses to include Alaskan North Slope natural gas that either is not being produced or is being reinjected. The report includes the following: A description of discovered and potential (undiscovered) quantities of natural gas on the Alaskan North Slope. A discussion of proposed altemative uses for Alaskan North Slope natural gas. A comparison of the economics of the proposed alternative uses for Alaskan North Slope natural gas. The purpose of this report is to illustrate the costs of transporting Alaskan North Slope gas to markets in the lower 48 States as pipeline gas, liquefied natural gas (LNG), or methanol. It is not intended to recommend one alternative over another or to evaluate the relative economics or timing of using North Slope gas in new tertiary oil recovery projects. The information is supplied in sufficient detail to allow incorporation of relevant economic relationships (for example, wellhead gas prices and transportation costs) into the Altemative Fuels Trade Model, the analytical framework DOE is using to evaluate various policy options.

  3. Fuel-Flexible, Low-Emissions Catalytic Combustor for Opportunity Fuels

    SciTech Connect

    2009-11-01

    Precision Combustion, Inc. will develop a unique, fuel-flexible Rich Catalytic Lean-Burn (RCL®) injector with catalytic combustor capable of enabling ultralow-emission, lean premixed combustion of a wide range of gaseous opportunity fuels. This will broaden the range of opportunity fuels that can be utilized to include low- and ultralow-Btu gases, such as digester and blast furnace gases, and fuels containing reactive species, such as refinery, wellhead, and industrial byproduct gases.

  4. Landfill gas cleanup for fuel cells

    SciTech Connect

    1995-08-01

    EPRI is to test the feasibility of using a carbonate fuel cell to generate electricity from landfill gas. Landfills produce a substantial quantity of methane gas, a natural by-product of decaying organic wastes. Landfill gas, however, contains sulfur and halogen compounds, which are known contaminants to fuel cells and their fuel processing equipment. The objective of this project is to clean the landfill gas well enough to be used by the fuel cell without making the process prohibitively expensive. The cleanup system tested in this effort could also be adapted for use with other fuel cells (e.g., solid oxide, phosphoric acid) running on landfill gas.

  5. Fuel-flexible combined cycles for utility power and cogeneration

    NASA Astrophysics Data System (ADS)

    Roberts, P. B.; Duffy, T. E.; Schreiber, H.

    1980-03-01

    Two combustion turbine combined cycle power plants have been studied for performance and operating economics. Both power plants are in the sizing range that will be suitable for small utility application and use less than 106 GJ/hr (100 million Btu/hr). The first power plant is based on the Solar Turbines International (STI) Mars industrial gas turbine. The combined gas turbine/steam cycle is direct fired with No. 2 diesel fuel. A total installed cost for the system is estimated to be within the band 545 to 660 $/kW. The second power plant is based on STI's Centaur industrial gas turbine. The combined gas turbine/steam cycle is indirectly fired with solid fuel although it is intended that the installation can be initially fired with a liquid fuel.

  6. Flexible Fuel Vehicles: Powered by a Renewable U.S. Fuel

    SciTech Connect

    Not Available

    2007-03-01

    Clean Cities fact sheet describing aspects of flexible fuel vehicles such as use of E85, special features, benefits of use, costs, and fueling locations. It includes discussion on performance and how to identify these vehicles as well as listing additional resources.

  7. Fuel-Flexible Combustion System for Refinery and Chemical Plant Process Heaters

    SciTech Connect

    Benson, Charles; Wilson, Robert

    2014-04-30

    This project culminated in the demonstration of a full-scale industrial burner which allows a broad range of “opportunity” gaseous fuels to be cost-effectively and efficiently utilized while generating minimal emissions of criteria air pollutants. The burner is capable of maintaining a stable flame when the fuel composition changes rapidly. This enhanced stability will contribute significantly to improving the safety and reliability of burner operation in manufacturing sites. Process heating in the refining and chemicals sectors is the primary application for this burner. The refining and chemical sectors account for more than 40% of total industrial natural gas use. Prior to the completion of this project, an enabling technology did not exist that would allow these energy-intensive industries to take full advantage of opportunity fuels and thereby reduce their natural gas consumption. Opportunity gaseous fuels include biogas (from animal and agricultural wastes, wastewater plants, and landfills) as well as syngas (from the gasification of biomass, municipal solid wastes, construction wastes, and refinery residuals). The primary challenge to using gaseous opportunity fuels is that their composition and combustion performance differ significantly from those of conventional fuels such as natural gas and refinery fuel gas. An effective fuel-flexible burner must accept fuels that range widely in quality and change in composition over time, often rapidly. In Phase 1 of this project, the team applied computational fluid dynamics analysis to optimize the prototype burner’s aerodynamic, combustion, heat transfer, and emissions performance. In Phase 2, full-scale testing and refinement of two prototype burners were conducted in test furnaces at Zeeco’s offices in Broken Arrow, OK. These tests demonstrated that the full range of conventional and opportunity fuels could be utilized by the project’s burner while achieving robust flame stability and very low levels of

  8. Fuel-Flexible Combustion System for Co-production Plant Applications

    SciTech Connect

    Joel Haynes; Justin Brumberg; Venkatraman Iyer; Jonathan Janssen; Ben Lacy; Matt Mosbacher; Craig Russell; Ertan Yilmaz; Williams York; Willy Ziminsky; Tim Lieuwen; Suresh Menon; Jerry Seitzman; Ashok Anand; Patrick May

    2008-12-31

    Future high-efficiency, low-emission generation plants that produce electric power, transportation fuels, and/or chemicals from fossil fuel feed stocks require a new class of fuel-flexible combustors. In this program, a validated combustor approach was developed which enables single-digit NO{sub x} operation for a future generation plants with low-Btu off gas and allows the flexibility of process-independent backup with natural gas. This combustion technology overcomes the limitations of current syngas gas turbine combustion systems, which are designed on a site-by-site basis, and enable improved future co-generation plant designs. In this capacity, the fuel-flexible combustor enhances the efficiency and productivity of future co-production plants. In task 2, a summary of market requested fuel gas compositions was created and the syngas fuel space was characterized. Additionally, a technology matrix and chemical kinetic models were used to evaluate various combustion technologies and to select two combustor concepts. In task 4 systems analysis of a co-production plant in conjunction with chemical kinetic analysis was performed to determine the desired combustor operating conditions for the burner concepts. Task 5 discusses the experimental evaluation of three syngas capable combustor designs. The hybrid combustor, Prototype-1 utilized a diffusion flame approach for syngas fuels with a lean premixed swirl concept for natural gas fuels for both syngas and natural gas fuels at FA+e gas turbine conditions. The hybrid nozzle was sized to accommodate syngas fuels ranging from {approx}100 to 280 btu/scf and with a diffusion tip geometry optimized for Early Entry Co-generation Plant (EECP) fuel compositions. The swozzle concept utilized existing GE DLN design methodologies to eliminate flow separation and enhance fuel-air mixing. With changing business priorities, a fully premixed natural gas & syngas nozzle, Protoytpe-1N, was also developed later in the program. It did

  9. Final Technical Report, Oct 2004 - Nov. 2006, High Performance Flexible Reversible Solid Oxide Fuel Cell

    SciTech Connect

    Guan, Jie; Minh, Nguyen

    2007-02-21

    This report summarizes the work performed for the program entitled “High Performance Flexible Reversible Solid Oxide Fuel Cell” under Cooperative Agreement DE-FC36-04GO14351 for the U. S. Department of Energy. The overall objective of this project is to demonstrate a single modular stack that generates electricity from a variety of fuels (hydrogen and other fuels such as biomass, distributed natural gas, etc.) and when operated in the reverse mode, produces hydrogen from steam. This project has evaluated and selected baseline cell materials, developed a set of materials for oxygen and hydrogen electrodes, and optimized electrode microstructures for reversible solid oxide fuel cells (RSOFCs); and demonstrated the feasibility and operation of a RSOFC multi-cell stack. A 10-cell reversible SOFC stack was operated over 1000 hours alternating between fuel cell (with hydrogen and methane as fuel) and steam electrolysis modes. The stack ran very successfully with high power density of 480 mW/cm2 at 0.7V and 80% fuel utilization in fuel cell mode and >6 SLPM hydrogen production in steam electrolysis mode using about 1.1 kW electrical power. The hydrogen generation is equivalent to a specific capability of 2.59 Nm3/m2 with electrical energy demand of 3 kWh/Nm3. The performance stability in electrolysis mode was improved vastly during the program with a degradation rate reduction from 8000 to 200 mohm-cm2/1000 hrs. This was accomplished by increasing the activity and improving microstructure of the oxygen electrode. Both cost estimate and technology assessment were conducted. Besides the flexibility running under both fuel cell mode and electrolysis mode, the reversible SOFC system has the potentials for low cost and high efficient hydrogen production through steam electrolysis. The cost for hydrogen production at large scale was estimated at ~$2.7/kg H2, comparing favorably with other electrolysis techology.

  10. 78 FR 17660 - Draft Guidance for E85 Flexible Fuel Vehicle Weighting Factor for Model Years 2016-2019 Vehicles...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-22

    ...EPA is requesting comment on draft EPA guidance to auto manufacturers for weighting the greenhouse gas (GHG) emissions of a flexible fuel vehicle operating on E85 with the GHG emissions of the vehicle operating on conventional gasoline, when calculating the compliance value to use for EPA's GHG emissions standards. EPA also invites comment on the analysis used by EPA to determine the weighting......

  11. FUEL CELL ENERGY RECOVERY FROM LANDFILL GAS

    EPA Science Inventory

    International Fuel Cells Corporation is conducting a US Environmental Protection Agency (EPA) sponsored program to demonstrate energy recovery from landfill gas using a commercial phosphoric acid fuel cell power plant. The US EPA is interested in fuel cells for this application b...

  12. Fuel Interchangeability Considerations for Gas Turbine Combustion

    SciTech Connect

    Ferguson, D.H.

    2007-10-01

    In recent years domestic natural gas has experienced a considerable growth in demand particularly in the power generation industry. However, the desire for energy security, lower fuel costs and a reduction in carbon emissions has produced an increase in demand for alternative fuel sources. Current strategies for reducing the environmental impact of natural gas combustion in gas turbine engines used for power generation experience such hurdles as flashback, lean blow-off and combustion dynamics. These issues will continue as turbines are presented with coal syngas, gasified coal, biomass, LNG and high hydrogen content fuels. As it may be impractical to physically test a given turbine on all of the possible fuel blends it may experience over its life cycle, the need to predict fuel interchangeability becomes imperative. This study considers a number of historical parameters typically used to determine fuel interchangeability. Also addressed is the need for improved reaction mechanisms capable of accurately modeling the combustion of natural gas alternatives.

  13. Integration of Metal Oxide Nanowires in Flexible Gas Sensing Devices

    PubMed Central

    Comini, Elisabetta

    2013-01-01

    Metal oxide nanowires are very promising active materials for different applications, especially in the field of gas sensors. Advances in fabrication technologies now allow the preparation of nanowires on flexible substrates, expanding the potential market of the resulting sensors. The critical steps for the large-scale preparation of reliable sensing devices are the elimination of high temperatures processes and the stretchability of the entire final device, including the active material. Direct growth on flexible substrates and post-growth procedures have been successfully used for the preparation of gas sensors. The paper will summarize the procedures used for the preparation of flexible and wearable gas sensors prototypes with an overlook of the challenges and the future perspectives concerning this field. PMID:23955436

  14. Alternative fuels and chemicals from synthesis gas

    SciTech Connect

    Unknown

    1998-08-01

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  15. ALTERNATIVE FUELS AND CHEMICALS FROM SYNTHESIS GAS

    SciTech Connect

    Unknown

    1999-01-01

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  16. Alternative Fuels and Chemicals From Synthesis Gas

    SciTech Connect

    1998-07-01

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  17. ALTERNATIVE FUELS AND CHEMICALS FROM SYNTHESIS GAS

    SciTech Connect

    Unknown

    1999-07-01

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  18. ALTERNATIVE FUELS AND CHEMICALS FROM SYNTHESIS GAS

    SciTech Connect

    Unknown

    2000-10-01

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  19. ALTERNATIVE FUELS AND CHEMICALS FROM SYNTHESIS GAS

    SciTech Connect

    1999-10-01

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  20. Pollutant Emissions and Lean Blowoff Limits of Fuel Flexible Burners Operating on Gaseous Renewable and Fossil Fuels

    NASA Astrophysics Data System (ADS)

    Colorado, Andres

    This study provides an experimental and numerical examination of pollutant emissions and stability of gaseous fueled reactions stabilized with two premixed-fuel-flexible and ultra-low NOx burner technologies. Both burners feature lean combustion technology to control the formation of nitrogen oxides (NOx). The first fuel--flexible burner is the low-swirl burner (LSB), which features aerodynamic stabilization of the reactions with a divergent flow-field; the second burner is the surface stabilized combustion burner (SSCB), which features the stabilization of the reactions on surface patterns. For combustion applications the most commonly studied species are: NOx, carbon monoxide (CO), and unburned hydrocarbons (UHC). However these are not the only pollutants emitted when burning fossil fuels; other species such as nitrous oxide (N2O), ammonia (NH3) and formaldehyde (CH2O) can be directly emitted from the oxidation reactions. Yet the conditions that favor the emission of these pollutants are not completely understood and require further insight. The results of this dissertation close the gap existing regarding the relations between emission of pollutants species and stability when burning variable gaseous fuels. The results of this study are applicable to current issues such as: 1. Current combustion systems operating at low temperatures to control formation of NOx. 2. Increased use of alternative fuels such as hydrogen, synthetic gas and biogas. 3. Increasing recognition of the need/desire to operate combustion systems in a transient manner to follow load and to offset the intermittency of renewable power. 4. The recent advances in measurement methods allow us to quantify other pollutants, such as N 2O, NH3 and CH2O. Hence in this study, these pollutant species are assessed when burning natural gas (NG) and its binary mixtures with other gaseous fuels such as hydrogen (H2), carbon dioxide (CO2), ethane (C 2H6) and propane (C3H8) at variable operation modes including

  1. Fuel-cycle greenhouse gas emissions impacts of alternative transportation fuels and advanced vehicle technologies.

    SciTech Connect

    Wang, M. Q.

    1998-12-16

    At an international conference on global warming, held in Kyoto, Japan, in December 1997, the United States committed to reduce its greenhouse gas (GHG) emissions by 7% over its 1990 level by the year 2012. To help achieve that goal, transportation GHG emissions need to be reduced. Using Argonne's fuel-cycle model, I estimated GHG emissions reduction potentials of various near- and long-term transportation technologies. The estimated per-mile GHG emissions results show that alternative transportation fuels and advanced vehicle technologies can help significantly reduce transportation GHG emissions. Of the near-term technologies evaluated in this study, electric vehicles; hybrid electric vehicles; compression-ignition, direct-injection vehicles; and E85 flexible fuel vehicles can reduce fuel-cycle GHG emissions by more than 25%, on the fuel-cycle basis. Electric vehicles powered by electricity generated primarily from nuclear and renewable sources can reduce GHG emissions by 80%. Other alternative fuels, such as compressed natural gas and liquefied petroleum gas, offer limited, but positive, GHG emission reduction benefits. Among the long-term technologies evaluated in this study, conventional spark ignition and compression ignition engines powered by alternative fuels and gasoline- and diesel-powered advanced vehicles can reduce GHG emissions by 10% to 30%. Ethanol dedicated vehicles, electric vehicles, hybrid electric vehicles, and fuel-cell vehicles can reduce GHG emissions by over 40%. Spark ignition engines and fuel-cell vehicles powered by cellulosic ethanol and solar hydrogen (for fuel-cell vehicles only) can reduce GHG emissions by over 80%. In conclusion, both near- and long-term alternative fuels and advanced transportation technologies can play a role in reducing the United States GHG emissions.

  2. Fueling efficiency of gas puffing in ASDEX

    NASA Astrophysics Data System (ADS)

    Mayer, H.-M.; Wagner, F.; Becker, G.; Behringer, K.; Campbell, D.; Eberhagen, A.; Engelhardt, W.; Fussman, G.; Gehre, O.; Gierke, G. v.; Glock, E.; Haas, G.; Huang, M.; Karger, F.; Keilhacker, M.; Klüber, O.; Niedermeyer, H.; Poschenrieder, W.; Rapp, H.; Schneider, F.; Siller, G.; Steuer, K.-H.; Venus, G.

    1982-12-01

    The fueling efficiency for gas puffing, i.e. the fraction of the external gas flux that is ionized inside the separatrix, is reduced in divertor discharges since part of it is ionized in the scrape-off layer and pumped off by the divertor. The fueling efficiency is determined by switching-off the gas feed during the stationary phase of a discharge and dividing the time derivative of the total number of particles inside the separatrix by the external gas flux. The determination of this time derivative must take into account profile changes. In ASDEX the fueling efficiency ranges from close to 1.0 for discharges with a stainless steel poloidal limiter and decreases to about 0.2 at high densities ( 6 × 10 13 cm -3 line average) for diverted discharges. These results are compared with estimates of the fueling efficiency which include molecular disintegration, plasma albedo for neutral atoms and imperfect wall reflection.

  3. LANDFILL GAS PRETREATMENT FOR FUEL CELL APPLICATIONS

    EPA Science Inventory

    The paper discusses the U.S. EPA's program, underway at International Fuel Cells Corporation, to demonstrate landfill methane control and the fuel cell energy recovery concept. In this program, two critical issues are being addressed: (1) a landfill gas cleanup method that would ...

  4. SMALL SCALE BIOMASS FUELED GAS TURBINE ENGINE

    EPA Science Inventory

    A new generation of small scale (less than 20 MWe) biomass fueled, power plants are being developed based on a gas turbine (Brayton cycle) prime mover. These power plants are expected to increase the efficiency and lower the cost of generating power from fuels such as wood. The n...

  5. Fuel Cells on Bio-Gas (Presentation)

    SciTech Connect

    Remick, R. J.

    2009-03-04

    The conclusions of this presentation are: (1) Fuel cells operating on bio-gas offer a pathway to renewable electricity generation; (2) With federal incentives of $3,500/kW or 30% of the project costs, reasonable payback periods of less than five years can be achieved; (3) Tri-generation of electricity, heat, and hydrogen offers an alternative route to solving the H{sub 2} infrastructure problem facing fuel cell vehicle deployment; and (4) DOE will be promoting bio-gas fuel cells in the future under its Market Transformation Programs.

  6. Convert natural gas into clean transportation fuels

    SciTech Connect

    Agee, M.A.

    1997-03-01

    A new process economically converts natural gas into synthetic transportation fuels that are free of sulfur, metals, aromatics and are clear in appearance. The process, developed by Syntroleum Corp., is energy self-sufficient and can be implemented in sizes small enough to fit a large number of the world`s gas fields. The process is described.

  7. Operating a fuel cell using landfill gas

    SciTech Connect

    Trippel, C.E.; Preston, J.L. Jr.; Trocciola, J.; Spiegel, R.

    1996-12-31

    An ONSI PC25{trademark}, 200 kW (nominal capacity) phosphoric acid fuel cell operating on landfill gas is installed at the Town of Groton Flanders Road landfill in Groton, Connecticut. This joint project by the Connecticut Light & Power Company (CL&P) which is an operating company of Northeast Utilities, the Town of Groton, International Fuel Cells (IFC), and the US EPA is intended to demonstrate the viability of installing, operating and maintaining a fuel cell operating on landfill gas at a landfill site. The goals of the project are to evaluate the fuel cell and gas pretreatment unit operation, test modifications to simplify the GPU design and demonstrate reliability of the entire system.

  8. SOLID GAS SUSPENSION NUCLEAR FUEL ASSEMBLY

    DOEpatents

    Schluderberg, D.C.; Ryon, J.W.

    1962-05-01

    A fuel assembly is designed for use in a gas-suspension cooled nuclear fuel reactor. The coolant fluid is an inert gas such as nitrogen or helium with particles such as carbon suspended therein. The fuel assembly is contained within an elongated pressure vessel extending down into the reactor. The fuel portion is at the lower end of the vessel and is constructed of cylindrical segments through which the coolant passes. Turbulence promotors within the passageways maintain the particles in agitation to increase its ability to transfer heat away from the outer walls. Shielding sections and alternating passageways above the fueled portion limit the escape of radiation out of the top of the vessel. (AEC)

  9. Electrochemical study of natural gas fueled electrodes for low temperature solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Hussain, M. Jafar; Raza, Rizwan; Ahmad, Mukhtar; Ali, Akbar; Ahmad, Imran; Syed, Waqar A. A.; Janjua, Naveed Kausar; Anis-Ur-Rehman, M.; Khan, M. Ajmal; Shahid, Shaukat A.; Abbas, Ghazanfar

    2016-07-01

    Fuel cell is undoubtedly widespread energy conversion technology, which can convert fuel (biogas) energy into electricity. Solid oxide fuel cell (SOFC) is one of the best choices among the fuel cell’s family due to high efficiency and fuel flexibility. In this study, zinc-based nanostructured Mn0.20FexZn0.80-xOδ electrode materials were successfully developed by solid state reaction. The proposed materials have been characterized by XRD and SEM. The electrical conductivities have been examined by four-probe DC method in the temperature range of 300-600∘C, the maximum values were recorded and found to be 12.019 and 5.106 S/cm at natural gas and air atmosphere, respectively. The electrochemical performance has been measured employing NK-SDC electrolyte material and their current density versus voltage and current density versus power density (I-V and I-P characteristics) have been drawn. The maximum power density was found to be 170 mW/cm2 using natural gas as a bio-fuel over a temperature of 600∘C.

  10. Combustion gas properties. 2: Natural gas fuel and dry air

    NASA Technical Reports Server (NTRS)

    Wear, J. D.; Jones, R. E.; Trout, A. M.; Mcbride, B. J.

    1985-01-01

    A series of computations has been made to produce the equilibrium temperature and gas composition for natural gas fuel and dry air. The computed tables and figures provide combustion gas property data for pressures from 0.5 to 50 atmospheres and equivalence ratios from 0 to 2.0. Only samples tables and figures are provided in this report. The complete set of tables and figures is provided on four microfiche films supplied with this report.

  11. Advanced coal-fueled gas turbine systems

    SciTech Connect

    Wenglarz, R.A.

    1994-08-01

    Several technology advances since the early coal-fueled turbine programs that address technical issues of coal as a turbine fuel have been developed in the early 1980s: Coal-water suspensions as fuel form, improved methods for removing ash and contaminants from coal, staged combustion for reducing NO{sub x} emissions from fuel-bound nitrogen, and greater understanding of deposition/erosion/corrosion and their control. Several Advanced Coal-Fueled Gas Turbine Systems programs were awarded to gas turbine manufacturers for for components development and proof of concept tests; one of these was Allison. Tests were conducted in a subscale coal combustion facility and a full-scale facility operating a coal combustor sized to the Allison Model 501-K industrial turbine. A rich-quench-lean (RQL), low nitrogen oxide combustor design incorporating hot gas cleanup was developed for coal fuels; this should also be applicable to biomass, etc. The combustor tests showed NO{sub x} and CO emissions {le} levels for turbines operating with natural gas. Water washing of vanes from the turbine removed the deposits. Systems and economic evaluations identified two possible applications for RQL turbines: Cogeneration plants based on Allison 501-K turbine (output 3.7 MW(e), 23,000 lbs/hr steam) and combined cycle power plants based on 50 MW or larger gas turbines. Coal-fueled cogeneration plant configurations were defined and evaluated for site specific factors. A coal-fueled turbine combined cycle plant design was identified which is simple, compact, and results in lower capital cost, with comparable efficiency and low emissions relative to other coal technologies (gasification, advanced PFBC).

  12. On the flexibility of high temperature reactor cores for high-and low-enriched fuel

    SciTech Connect

    Bzandes, S.; Lonhert, G.

    1982-07-01

    The operational flexibility of a high temperature reactor (HTR) is not restricted to either a low- or a high-enriched fuel cycle. Both fuel cycles are possible for the same core design. The fuel cycle cost is, however, penalized for low-enriched fuel; in addition, higher uranium consumption is required. Hence, an HTR is most economical to operate in the high-enriched thorium-uranium fuel cycle.

  13. Combustion characteristics of gas turbine alternative fuels

    NASA Technical Reports Server (NTRS)

    Rollbuhler, R. James

    1987-01-01

    An experimental investigation was conducted to obtain combustion performance values for specific heavyend, synthetic hydrocarbon fuels. A flame tube combustor modified to duplicate an advanced gas turbine engine combustor was used for the tests. Each fuel was tested at steady-state operating conditions over a range of mass flow rates, fuel-to-air mass ratio, and inlet air temperatures. The combustion pressure, as well as the hardware, were kept nearly constant over the program test phase. Test results were obtained in regards to geometric temperature pattern factors as a function of combustor wall temperatures, the combustion gas temperature, and the combustion emissions, both as affected by the mass flow rate and fuel-to-air ratio. The synthetic fuels were reacted in the combustor such that for most tests their performance was as good, if not better, than the baseline gasoline or diesel fuel tests. The only detrimental effects were that at high inlet air temperature conditions, fuel decomposition occurred in the fuel atomizing nozzle passages resulting in blockage. And the nitrogen oxide emissions were above EPA limits at low flow rate and high operating temperature conditions.

  14. Gas Exchange Models for a Flexible Insect Tracheal System.

    PubMed

    Simelane, S M; Abelman, S; Duncan, F D

    2016-06-01

    In this paper two models for movement of respiratory gases in the insect trachea are presented. One model considers the tracheal system as a single flexible compartment while the other model considers the trachea as a single flexible compartment with gas exchange. This work represents an extension of Ben-Tal's work on compartmental gas exchange in human lungs and is applied to the insect tracheal system. The purpose of the work is to study nonlinear phenomena seen in the insect respiratory system. It is assumed that the flow inside the trachea is laminar, and that the air inside the chamber behaves as an ideal gas. Further, with the isothermal assumption, the expressions for the tracheal partial pressures of oxygen and carbon dioxide, rate of volume change, and the rates of change of oxygen concentration and carbon dioxide concentration are derived. The effects of some flow parameters such as diffusion capacities, reaction rates and air concentrations on net flow are studied. Numerical simulations of the tracheal flow characteristics are performed. The models developed provide a mathematical framework to further investigate gas exchange in insects. PMID:27209375

  15. Proceedings of the flexible, midsize gas turbine program planning workshop

    SciTech Connect

    1997-03-01

    The US Department of Energy (DOE) and the California Energy Commission (CEC) held a program planning workshop on March 4--5, 1997 in Sacramento, California on the subject of a flexible, midsize gas turbine (FMGT). The workshop was also co-sponsored by the Electric Power Research Institute (EPRI), the Gas Research Institute (GRI), the Gas Turbine Association (GTA), and the Collaborative Advanced Gas Turbine Program (CAGT). The purpose of the workshop was to bring together a broad cross section of knowledgeable people to discuss the potential benefits, markets, technical attributes, development costs, and development funding approaches associated with making this new technology available in the commercial marketplace. The participants in the workshop included representatives from the sponsoring organizations, electric utilities, gas utilities, independent power producers, gas turbine manufacturers, gas turbine packagers, and consultants knowledgeable in the power generation field. Thirteen presentations were given on the technical and commercial aspects of the subject, followed by informal breakout sessions that dealt with sets of questions on markets, technology requirements, funding sources and cost sharing, and links to other programs.

  16. Combustor nozzle for a fuel-flexible combustion system

    DOEpatents

    Haynes, Joel Meier; Mosbacher, David Matthew; Janssen, Jonathan Sebastian; Iyer, Venkatraman Ananthakrishnan

    2011-03-22

    A combustor nozzle is provided. The combustor nozzle includes a first fuel system configured to introduce a syngas fuel into a combustion chamber to enable lean premixed combustion within the combustion chamber and a second fuel system configured to introduce the syngas fuel, or a hydrocarbon fuel, or diluents, or combinations thereof into the combustion chamber to enable diffusion combustion within the combustion chamber.

  17. LIQUID NATURAL GAS (LNG): AN ALTERNATIVE FUEL FROM LANDFILL GAS (LFG) AND WASTEWATER DIGESTER GAS

    SciTech Connect

    VANDOR,D.

    1999-03-01

    This Research and Development Subcontract sought to find economic, technical and policy links between methane recovery at landfill and wastewater treatment sites in New York and Maryland, and ways to use that methane as an alternative fuel--compressed natural gas (CNG) or liquid natural gas (LNG) -- in centrally fueled Alternative Fueled Vehicles (AFVs).

  18. Solid fuel volatilization to produce synthesis gas

    DOEpatents

    Schmidt, Lanny D.; Dauenhauer, Paul J.; Degenstein, Nick J.; Dreyer, Brandon J.; Colby, Joshua L.

    2014-07-29

    A method comprising contacting a carbon and hydrogen-containing solid fuel and a metal-based catalyst in the presence of oxygen to produce hydrogen gas and carbon monoxide gas, wherein the contacting occurs at a temperature sufficiently high to prevent char formation in an amount capable of stopping production of the hydrogen gas and the carbon monoxide gas is provided. In one embodiment, the metal-based catalyst comprises a rhodium-cerium catalyst. Embodiments further include a system for producing syngas. The systems and methods described herein provide shorter residence time and high selectivity for hydrogen and carbon monoxide.

  19. 40 CFR 600.303-12 - Fuel economy label-special requirements for flexible-fuel vehicles.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 31 2012-07-01 2012-07-01 false Fuel economy label-special... PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy Labeling § 600.303-12 Fuel economy label—special requirements for...

  20. 40 CFR 600.303-12 - Fuel economy label-special requirements for flexible-fuel vehicles.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 31 2013-07-01 2013-07-01 false Fuel economy label-special... PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy Labeling § 600.303-12 Fuel economy label—special requirements for...

  1. Gas Test Loop Booster Fuel Hydraulic Testing

    SciTech Connect

    Gas Test Loop Hydraulic Testing Staff

    2006-09-01

    The Gas Test Loop (GTL) project is for the design of an adaptation to the Advanced Test Reactor (ATR) to create a fast-flux test space where fuels and materials for advanced reactor concepts can undergo irradiation testing. Incident to that design, it was found necessary to make use of special booster fuel to enhance the neutron flux in the reactor lobe in which the Gas Test Loop will be installed. Because the booster fuel is of a different composition and configuration from standard ATR fuel, it is necessary to qualify the booster fuel for use in the ATR. Part of that qualification is the determination that required thermal hydraulic criteria will be met under routine operation and under selected accident scenarios. The Hydraulic Testing task in the GTL project facilitates that determination by measuring flow coefficients (pressure drops) over various regions of the booster fuel over a range of primary coolant flow rates. A high-fidelity model of the NW lobe of the ATR with associated flow baffle, in-pile-tube, and below-core flow channels was designed, constructed and located in the Idaho State University Thermal Fluids Laboratory. A circulation loop was designed and constructed by the university to provide reactor-relevant water flow rates to the test system. Models of the four booster fuel elements required for GTL operation were fabricated from aluminum (no uranium or means of heating) and placed in the flow channel. One of these was instrumented with Pitot tubes to measure flow velocities in the channels between the three booster fuel plates and between the innermost and outermost plates and the side walls of the flow annulus. Flow coefficients in the range of 4 to 6.5 were determined from the measurements made for the upper and middle parts of the booster fuel elements. The flow coefficient for the lower end of the booster fuel and the sub-core flow channel was lower at 2.3.

  2. Advanced Coal-Fueled Gas Turbine Program

    SciTech Connect

    Horner, M.W.; Ekstedt, E.E.; Gal, E.; Jackson, M.R.; Kimura, S.G.; Lavigne, R.G.; Lucas, C.; Rairden, J.R.; Sabla, P.E.; Savelli, J.F.; Slaughter, D.M.; Spiro, C.L.; Staub, F.W.

    1989-02-01

    The objective of the original Request for Proposal was to establish the technological bases necessary for the subsequent commercial development and deployment of advanced coal-fueled gas turbine power systems by the private sector. The offeror was to identify the specific application or applications, toward which his development efforts would be directed; define and substantiate the technical, economic, and environmental criteria for the selected application; and conduct such component design, development, integration, and tests as deemed necessary to fulfill this objective. Specifically, the offeror was to choose a system through which ingenious methods of grouping subcomponents into integrated systems accomplishes the following: (1) Preserve the inherent power density and performance advantages of gas turbine systems. (2) System must be capable of meeting or exceeding existing and expected environmental regulations for the proposed application. (3) System must offer a considerable improvement over coal-fueled systems which are commercial, have been demonstrated, or are being demonstrated. (4) System proposed must be an integrated gas turbine concept, i.e., all fuel conditioning, all expansion gas conditioning, or post-expansion gas cleaning, must be integrated into the gas turbine system.

  3. Solid oxide fuel cell electrode characterization and improvement for fuel flexibility and supplemental power production

    NASA Astrophysics Data System (ADS)

    Kellogg, Isaiah Daniel

    2010-03-01

    Solid oxide fuel cells (SOFC) were fabricated and the electrodes tested for their individual catalytic effectiveness in various fuels by exposing each electrode to mixed gas while the opposite electrode was exposed to its respective pure gas. Mixed hydrogen and oxygen gas was successfully utilized as fuel in a single chamber SOFC (SC-SOFC). The conditions at which the porous nickel-yttria-stabilized zirconia (Ni-YSZ) cermet anode performed well did not significantly overlap the conditions at which the La0.8Sr 0.2Fe0.8Co0.2 oxide (LSCF) cathode performed well, but there was significant catalytic activity at both electrodes which increased the open circuit voltage (OCV) beyond that predicted by the Nernst equation. The results of these tests, and future tests of similar format, could be useful in the development of SC-SOFC electrode catalysts. Pyrolytic carbon was used as fuel in a SOFC with a YSZ electrolyte and a bi-layer anode composed of nickel gadolinia-doped ceria (Ni-GDC) and Ni-YSZ. The common problems of bulk shrinkage and emergent porosity in the YSZ layer adjacent to the GDC/YSZ interface were avoided by using an interlayer of porous Ni-YSZ as a buffer anode layer between the electrolyte and the Ni-GDC primary anode. Cells were fabricated from commercially available component powders so that unconventional production methods suggested in the literature were avoided. A cell of similar construction was used with externally applied acetylene flame soot as fuel so that soot captured at the exhaust of a diesel engine could be utilized for secondary power generation in a SOFC while decreasing particulate pollution without the need for filter regeneration.

  4. NSTX High Field Side Gas Fueling System

    SciTech Connect

    H.W. Kugel; M. Anderson; G. Barnes; M. Bell; W. Blanchard; L. Dudek; D. Gates; R. Gernhardt; R. Maingi; D. Mueller; T. Provost; R. Raman; V. Soukhanovskii; J. Winston

    2003-10-09

    Fueling National Spherical Torus Experiment (NSTX) plasmas with gas injected from the high field side (HFS) has produced earlier, more reliable transitions to the H-mode, longer H-mode durations, higher toroidal rotation, and higher edge electron temperature compared with similar discharges using the low field side (LFS) gas fueling injectors. The HFS gas fueling system consists of a Center Stack midplane injector, and an injector at the inner, upper corner of the Center Stack. The challenging design and installation constraints for the HFS gas system involved placing the control components as close as possible to the machine-vacuum interface, devising a special feed-through flange, traversing through vessel regions whose temperatures during bake-out range from 150 to 350 degrees Centigrade, adapting the gas transport tubing size and route to the small instrumentation wire channels behind the existing graphite plasma facing component tiles on the Center Stack, and providing output orifices shielded from excessive plasma power depositions while concentrating the output flow to facilitate fast camera viewing and analysis. Design, recent performance, and future upgrades will be presented.

  5. 76 FR 18749 - National Fuel Gas Supply Corporation; Notice Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-05

    ... Energy Regulatory Commission National Fuel Gas Supply Corporation; Notice Application Take notice that on March 7, 2011, National Fuel Gas Supply Corporation (National Fuel), filed an application in Docket No... Access Project. National Fuel requests authorization to: (1) Construct a new compressor station in...

  6. 49 CFR 393.68 - Compressed natural gas fuel containers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 5 2011-10-01 2011-10-01 false Compressed natural gas fuel containers. 393.68... AND ACCESSORIES NECESSARY FOR SAFE OPERATION Fuel Systems § 393.68 Compressed natural gas fuel containers. (a) Applicability. The rules in this section apply to compressed natural gas (CNG)...

  7. 49 CFR 393.68 - Compressed natural gas fuel containers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 5 2010-10-01 2010-10-01 false Compressed natural gas fuel containers. 393.68... AND ACCESSORIES NECESSARY FOR SAFE OPERATION Fuel Systems § 393.68 Compressed natural gas fuel containers. (a) Applicability. The rules in this section apply to compressed natural gas (CNG)...

  8. 49 CFR 393.68 - Compressed natural gas fuel containers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 5 2012-10-01 2012-10-01 false Compressed natural gas fuel containers. 393.68... AND ACCESSORIES NECESSARY FOR SAFE OPERATION Fuel Systems § 393.68 Compressed natural gas fuel containers. (a) Applicability. The rules in this section apply to compressed natural gas (CNG)...

  9. 49 CFR 393.68 - Compressed natural gas fuel containers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 5 2014-10-01 2014-10-01 false Compressed natural gas fuel containers. 393.68... AND ACCESSORIES NECESSARY FOR SAFE OPERATION Fuel Systems § 393.68 Compressed natural gas fuel containers. (a) Applicability. The rules in this section apply to compressed natural gas (CNG)...

  10. 49 CFR 393.68 - Compressed natural gas fuel containers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 5 2013-10-01 2013-10-01 false Compressed natural gas fuel containers. 393.68... AND ACCESSORIES NECESSARY FOR SAFE OPERATION Fuel Systems § 393.68 Compressed natural gas fuel containers. (a) Applicability. The rules in this section apply to compressed natural gas (CNG)...

  11. Flexibility.

    ERIC Educational Resources Information Center

    Humphrey, L. Dennis

    1981-01-01

    Flexibility is an important aspect of all sports and recreational activities. Flexibility can be developed and maintained by stretching exercises. Exercises designed to develop flexibility in ankle joints, knees, hips, and the lower back are presented. (JN)

  12. Ethanol and air quality: influence of fuel ethanol content on emissions and fuel economy of flexible fuel vehicles.

    PubMed

    Hubbard, Carolyn P; Anderson, James E; Wallington, Timothy J

    2014-01-01

    Engine-out and tailpipe emissions of NOx, CO, nonmethane hydrocarbons (NMHC), nonmethane organic gases (NMOG), total hydrocarbons (THC), methane, ethene, acetaldehyde, formaldehyde, ethanol, N2O, and NH3 from a 2006 model year Mercury Grand Marquis flexible fuel vehicle (FFV) operating on E0, E10, E20, E30, E40, E55, and E80 on a chassis dynamometer are reported. With increasing ethanol content in the fuel, the tailpipe emissions of ethanol, acetaldehyde, formaldehyde, methane, and ammonia increased; NOx and NMHC decreased; while CO, ethene, and N2O emissions were not discernibly affected. NMOG and THC emissions displayed a pronounced minimum with midlevel (E20-E40) ethanol blends; 25-35% lower than for E0 or E80. Emissions of NOx decreased by approximately 50% as the ethanol content increased from E0 to E30-E40, with no further decrease seen with E55 or E80. We demonstrate that emission trends from FFVs are explained by fuel chemistry and engine calibration effects. Fuel chemistry effects are fundamental in nature; the same trend of increased ethanol, acetaldehyde, formaldehyde, and CH4 emissions and decreased NMHC and benzene emissions are expected for all FFVs. Engine calibration effects are manufacturer and model specific; emission trends for NOx, THC, and NMOG will not be the same for all FFVs. Implications for air quality are discussed.

  13. Vegetable oil or diesel fuel-a flexible option

    SciTech Connect

    Suda, K.J.

    1984-01-01

    Vegetable oils provide diesel engine performance similar to that obtained with diesel fuel, and this has been documented in many prior publications. Because they are potentially interchangeable with diesel fuel, interest has focused on vegetable oils as short-range alternate fuels. However, engine durability when burning vegetable oils may be adversely affected depending on the type of combustion system employed. Laboratory and field experimental tests have identified the prechamber engine as having the greatest short-range potential for using vegetable oil fuels.

  14. Gas Conversion Systems Reclaim Fuel for Industry

    NASA Technical Reports Server (NTRS)

    2015-01-01

    A human trip to Mars will require astronauts to utilize resources on the Red Planet to generate oxygen and fuel for the ride home, among other things. Lakewood, Colorado-based Pioneer Energy has worked under SBIR agreements with Johnson Space Center to develop technology for those purposes, and now uses a commercialized version of the technology to recover oil and gas that would otherwise be wasted at drilling sites.

  15. Evaluation of a Schatz heat battery on a flexible-fueled vehicle

    NASA Astrophysics Data System (ADS)

    Piotrowski, Gregory K.; Schaefer, Ronald M.

    1991-09-01

    The evaluation is described of a Schatz Heat Battery as a means of reducing cold start emissions from a motor vehicle fueled with both gasoline and M85 high methanol blend fuel. The evaluation was conducted at both 20 and 75 F ambient temperatures. The test vehicle was a flexible fueled 1990 Audi 80 supplied by Volkswagen of America. A description is included of the test vehicle, the test facilities, the analytical methods and test procedures used.

  16. Evaluation of a Schatz heat battery on a flexible-fueled vehicle

    SciTech Connect

    Piotrowski, G.K.; Schaefer, R.M.

    1991-09-01

    The report describes the evaluation of a Schatz Heat Battery as a means of reducing cold start emissions from a motor vehicle fueled with both gasoline and M85 high methanol blend fuel. The evaluation was conducted at both 20 F and 75 F ambient temperatures. The test vehicle was a flexible-fueled 1990 Audi 80 supplied by Volkswagen of America. The report also includes a description of the test vehicle, the test facilities, the analytical methods and test procedures used.

  17. Vegetable oil or diesel fuel-a flexible option

    SciTech Connect

    Suda, K.J.

    1984-02-01

    Vegetable oils provide diesel engine performance similar to that obtained with diesel fuel, and this has been documented in many prior publications. Because they are potentially interchangeable with diesel fuel, interest has focused on vegetable oils as short-range alternate fuels. However, engine durability when burning vegetable oils may be adversely affected depending on the type of combustion system employed. Laboratory and field experimental tests have identified the prechamber engine as having the greatest short-range potential for using vegetable oil fuels. Performance and durability at low engine ratings are essentially the same as expected for operation on diesel fuel. However, at high engine ratings piston ring and cylinder linear wear are greater than expected for operation on diesel fuel. A laboratory program was successfully completed which resulted in a combustion system that would allow the higher rated prechamber engines to achieve normal life when burning 100% soybean oil. Fluid model tests utilizing high speed photography, single-cylinder engine tests utilizing fuel tracers, and a 200-hour multicylinder durability test were included. Extended endurance tests and experience with other vegetable oils are still required.

  18. Fuel gas combustion research at METC

    SciTech Connect

    Norton, T.S.

    1995-06-01

    The in-house combustion research program at METC is an integral part of many METC activities, providing support to METC product teams, project managers, and external industrial and university partners. While the majority of in-house combustion research in recent years has been focussed on the lean premixed combustion of natural gas fuel for Advanced Turbine Systems (ATS) applications, increasing emphasis is being placed on issues of syngas combustion, as the time approaches when the ATS and coal-fired power systems programs will reach convergence. When the METC syngas generator is built in 1996, METC will have the unique combination of mid-scale pressurized experimental facilities, a continuous syngas supply with variable ammonia loading, and a team of people with expertise in low-emissions combustion, chemical kinetics, combustion modeling, combustion diagnostics, and the control of combustion instabilities. These will enable us to investigate such issues as the effects of pressure, temperature, and fuel gas composition on the rate of conversion of fuel nitrogen to NOx, and on combustion instabilities in a variety of combustor designs.

  19. Commercial ballard PEM fuel cell natural gas power plant development

    SciTech Connect

    Watkins, D.S.; Dunnison, D.; Cohen, R.

    1996-12-31

    The electric utility industry is in a period of rapid change. Deregulation, wholesale and retail wheeling, and corporate restructuring are forcing utilities to adopt new techniques for conducting their business. The advent of a more customer oriented service business with tailored solutions addressing such needs as power quality is a certain product of the deregulation of the electric utility industry. Distributed and dispersed power are fundamental requirements for such tailored solutions. Because of their modularity, efficiency and environmental benefits, fuel cells are a favored solution to implement distributed and dispersed power concepts. Ballard Power Systems has been working to develop and commercialize Proton Exchange Membrane (PEM) fuel cell power plants for stationary power markets. PEM`s capabilities of flexible operation and multiple market platforms bodes well for success in the stationary power market. Ballard`s stationary commercialization program is now in its second phase. The construction and successful operation of a 10 kW natural gas fueled, proof-of-concept power plant marked the completion of phase one. In the second phase, we are developing a 250 kW market entry power plant. This paper discusses Ballard`s power plant development plan philosophy, the benefits from this approach, and our current status.

  20. 77 FR 60972 - National Fuel Gas Supply Corporation; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-05

    ... Energy Regulatory Commission National Fuel Gas Supply Corporation; Notice of Application Take notice that on September 18, 2012, National Fuel Gas Supply Corporation (National Fuel), 6363 Main Street.... Reitz, Deputy General Counsel, National Fuel Gas Supply Corporation, 6363 Main Street,...

  1. Coaxial fuel and air premixer for a gas turbine combustor

    DOEpatents

    York, William D; Ziminsky, Willy S; Lacy, Benjamin P

    2013-05-21

    An air/fuel premixer comprising a peripheral wall defining a mixing chamber, a nozzle disposed at least partially within the peripheral wall comprising an outer annular wall spaced from the peripheral wall so as to define an outer air passage between the peripheral wall and the outer annular wall, an inner annular wall disposed at least partially within and spaced from the outer annular wall, so as to define an inner air passage, and at least one fuel gas annulus between the outer annular wall and the inner annular wall, the at least one fuel gas annulus defining at least one fuel gas passage, at least one air inlet for introducing air through the inner air passage and the outer air passage to the mixing chamber, and at least one fuel inlet for injecting fuel through the fuel gas passage to the mixing chamber to form an air/fuel mixture.

  2. Fuel penalties and time flexibility of 4D flight profiles under mismodeled wind conditions

    NASA Technical Reports Server (NTRS)

    Williams, David H.

    1987-01-01

    A parametric sensitivity study was conducted to evaluate time flexibility and fuel penalties associated with 4D operations in the presence of mismodeled wind. The final cruise and descent segments of a flight in an advanced time-metered air traffic control environment were considered. Optimal performance of a B-737-100 airplane in known, constant winds was determined. Performance in mismodeled wind was obtained by tracking no-wind reference profiles in the presence of actual winds. The results of the analysis are presented in terms of loss of time flexibility and fuel penalties compared to the optimum performance in modeled winds.

  3. Fuel-Flexible Combustion System for Refinery and Chemical Plant Process Heaters

    SciTech Connect

    2010-06-01

    Funded by the American Recovery and Reinvestment Act of 2009 ENVIRON International Corporation, in collaboration with Callidus Technologies by Honeywell and Shell Global Solutions, Inc., will develop and demonstrate a full-scale fuel blending and combustion system. This system will allow a broad range of opportunity fuel compositions, including syngas, biogas, natural gas, and refinery fuel gas, to be safely, cost-effectively, and efficiently utilized while generating minimal emissions of criteria pollutants. The project will develop a commercial technology for application in refinery and chemical plant process heaters where opportunity fuels are used.

  4. A fission gas release correlation for uranium nitride fuel pins

    NASA Technical Reports Server (NTRS)

    Weinstein, M. B.; Davison, H. W.

    1973-01-01

    A model was developed to predict fission gas releases from UN fuel pins clad with various materials. The model was correlated with total release data obtained by different experimentors, over a range of fuel temperatures primarily between 1250 and 1660 K, and fuel burnups up to 4.6 percent. In the model, fission gas is transported by diffusion mechanisms to the grain boundaries where the volume grows and eventually interconnects with the outside surface of the fuel. The within grain diffusion coefficients are found from fission gas release rate data obtained using a sweep gas facility.

  5. Studies of Flexible MOX/LEU Fuel Cycles

    SciTech Connect

    Adams, M.L.; Alonso-Vargas, G.

    1999-03-01

    This project was a collaborative effort involving researchers from Oak Ridge National Laboratory and North Carolina State University as well as Texas A and M University. The background, briefly, is that the US is planning to use some of its excess weapons Plutonium (Pu) to make mixed-oxide (MOX) fuel for existing light-water reactors (LWRs). Considerable effort has already gone into designing fuel assemblies and core loading patterns for the transition from full-uranium cores to partial-MOX and full-MOX cores. However, these designs have assumed that any time a reactor needs MOX assemblies, these assemblies will be supplied. In reality there are many possible scenarios under which this supply could be disrupted. It therefore seems prudent to verify that a reactor-based Pu-disposition program could tolerate such interruptions in an acceptable manner. Such verification was the overall aim of this project. The task assigned to the Texas A and M team was to use the HELIOS code to develop libraries of two-group homogenized cross sections for the various assembly designs that might be used in a Westinghouse Pressurized Water Reactor (PWR) that is burning weapons-grade MOX fuel. The NCSU team used these cross sections to develop optimized loading patterns under several assumed scenarios. Their results are documented in a companion report.

  6. Performance assessment of natural gas and biogas fueled molten carbonate fuel cells in carbon capture configuration

    NASA Astrophysics Data System (ADS)

    Barelli, Linda; Bidini, Gianni; Campanari, Stefano; Discepoli, Gabriele; Spinelli, Maurizio

    2016-07-01

    The ability of MCFCs as carbon dioxide concentrator is an alternative solution among the carbon capture and storage (CCS) technologies to reduce the CO2 emission of an existing plant, providing energy instead of implying penalties. Moreover, the fuel flexibility exhibited by MCFCs increases the interest on such a solution. This paper provides the performance characterization of MCFCs operated in CCS configuration and fed with either natural gas or biogas. Experimental results are referred to a base CCS unit constituted by a MCFC stack fed from a reformer and integrated with an oxycombustor. A comparative analysis is carried out to evaluate the effect of fuel composition on energy efficiency and CO2 capture performance. A higher CO2 removal ability is revealed for the natural feeding case, bringing to a significant reduction in MCFC total area (-11.5%) and to an increase in produced net power (+13%). Moreover, the separated CO2 results in 89% (natural gas) and 86.5% (biogas) of the CO2 globally delivered by the CCS base unit. Further investigation will be carried out to provide a comprehensive assessment of the different solutions eco-efficiency considering also the biogas source and availability.

  7. Fuel injection assembly for gas turbine engine combustor

    NASA Technical Reports Server (NTRS)

    Candy, Anthony J. (Inventor); Glynn, Christopher C. (Inventor); Barrett, John E. (Inventor)

    2002-01-01

    A fuel injection assembly for a gas turbine engine combustor, including at least one fuel stem, a plurality of concentrically disposed tubes positioned within each fuel stem, wherein a cooling supply flow passage, a cooling return flow passage, and a tip fuel flow passage are defined thereby, and at least one fuel tip assembly connected to each fuel stem so as to be in flow communication with the flow passages, wherein an active cooling circuit for each fuel stem and fuel tip assembly is maintained by providing all active fuel through the cooling supply flow passage and the cooling return flow passage during each stage of combustor operation. The fuel flowing through the active cooling circuit is then collected so that a predetermined portion thereof is provided to the tip fuel flow passage for injection by the fuel tip assembly.

  8. Studies of gas adsorption in flexible Metal-Organic frameworks

    NASA Astrophysics Data System (ADS)

    Sircar, Sarmishtha

    Flexible Metal-Organic frameworks that exhibit a gate-opening (GO) adsorption mechanism have potential for gas separations and gas storage. The GO phenomenon occurs when molecular gates in the structure expand/contract in response to the activation/de-activation of a system variable e.g. temperature, pressure or gas. Sharp discontinuities in the isotherm leading to S-shapes and large adsorption-desorption hysteresis are typical of this phenomenon. This study investigates the kinetics and thermodynamics of the GO behavior by combining adsorption measurements and analytical modeling of adsorption kinetics and capacity as a function of adsorbate, GO pressure, and temperature. Basic understanding of GO mechanism will help harness GO-MOF's as adsorbents for gas separations and storage. Experiments were performed on two precharacterized MOFs with verified GO behavior. These are (1) Zn2(bpdc)2(bpee), which expands from a relative amorphous to crystalline structure and (2) Cu[(dhbc) 2(4,4f-bpy)]H2O, a mutually interdigitated 2-D structure (bpdc = biphenyldicarboxylate, bpee = 1,2]bipyridylethene; DMF = N,N-dimethyl formamide, dhbc= 2,5-dihydroxybenzoic acid, bpy=bipyridine). Both sub- and super-critical adsorption data were collected using three adsorption units: a standard low-pressure volumetric adsorption unit, a commercial high-pressure gravimetric analyzer and a custom-built high-pressure differential volumetric unit. Collected laboratory data were combined with published adsorption rate and isotherm data for analysis to broaden the range of data collection. The accuracy of the high-pressure differential unit was improved by over 300-fold by changing analytical methods of processing data to establish a reliable null correction. A pronounced effect of the allowed experimental time was found at cryogenic temperatures on (1). Tightening the stability criteria used by the adsorption equipment to determine equilibration increased the experimental time from the order of

  9. Fuel nozzle for a combustor of a gas turbine engine

    DOEpatents

    Belsom, Keith Cletus; McMahan, Kevin Weston; Thomas, Larry Lou

    2016-03-22

    A fuel nozzle for a gas turbine generally includes a main body having an upstream end axially separated from a downstream end. The main body at least partially defines a fuel supply passage that extends through the upstream end and at least partially through the main body. A fuel distribution manifold is disposed at the downstream end of the main body. The fuel distribution manifold includes a plurality of axially extending passages that extend through the fuel distribution manifold. A plurality of fuel injection ports defines a flow path between the fuel supply passage and each of the plurality of axially extending passages.

  10. Fuel-Flexible Microturbine and Gasifier System for Combined Heat and Power

    SciTech Connect

    2009-12-01

    Capstone Turbine Corporation, in collaboration with the University of California – Irvine, Packer Engineering, and Argonne National Laboratory, will develop and demonstrate a prototype microturbine combined heat and power system fueled by synthesis gas and integrated with a biomass gasifier, enabling reduced fossil fuel consumption and carbon dioxide emissions.

  11. Converting a fuel to combustible gas

    SciTech Connect

    Moss, G.

    1985-04-02

    A sulfur-containing fuel is passed into a first fluidized bed containing CaSO/sub 4/ and CaO and an oxygen-transfer mediator (e.g. H/sub 2/) whereby the fuel is converted to combustible gas, some CaSO/sub 4/ being reduced to CaS and sulfur being fixed as CaS by reaction with CaO. Bed particles pass from the bottom layer of the first bed into the bottom layer of the second bed which is fluidized by air at conditions such that some, but not all of the CaS is selectively oxidized to CaSO/sub 4/ with no liberation of sulfur moieties. Bed particles pass from the bottom layer of second bed to the bottom layer of a third bed optionally after passage via a fourth bed between the second and third beds. In the third bed particles are fluidized with air to convert CaS selectively to CaSO/sub 4/ with no liberation of sulfur moiety whereby to raise the particles' temperature sufficiently above that of the first bed that particles passing from the bottom layer of the third bed into the bottom layer of the first bed provide sufficient sensible heat to maintain the fuel conversion temperature of the first bed. In the fourth bed particles are fluidized with air under such conditions that sulfur moiety is liberated, preferably at a rate which approximately equals the rate of sulfur-capture in the first bed whereby to maintain approximately a constant amount of reactive CaO in the beds for sulfur-capture in the first bed.

  12. Preparation of high temperature gas-cooled reactor fuel element

    DOEpatents

    Bradley, Ronnie A.; Sease, John D.

    1976-01-01

    This invention relates to a method for the preparation of high temperature gas-cooled reactor (HTGR) fuel elements wherein uncarbonized fuel rods are inserted in appropriate channels of an HTGR fuel element block and the entire block is inserted in an autoclave for in situ carbonization under high pressure. The method is particularly applicable to remote handling techniques.

  13. Gas Research Institute experience in solar fuel research

    NASA Astrophysics Data System (ADS)

    Krist, Kevin

    Between 1981-1989, the Gas Research Institute (GRI) conducted a fundamental research program aimed at low-cost conversion of inorganic materials to gaseous fuels, using solar energy. Although the program focussed on photochemical approaches, thermochemical pathways were also evaluated. General conclusions are presented in the following areas: photochemical fuel synthesis, thermochemical fuel synthesis, photochemical processes, thermal processes, and collector systems.

  14. Indirect-fired gas turbine dual fuel cell power cycle

    DOEpatents

    Micheli, Paul L.; Williams, Mark C.; Sudhoff, Frederick A.

    1996-01-01

    A fuel cell and gas turbine combined cycle system which includes dual fuel cell cycles combined with a gas turbine cycle wherein a solid oxide fuel cell cycle operated at a pressure of between 6 to 15 atms tops the turbine cycle and is used to produce CO.sub.2 for a molten carbonate fuel cell cycle which bottoms the turbine and is operated at essentially atmospheric pressure. A high pressure combustor is used to combust the excess fuel from the topping fuel cell cycle to further heat the pressurized gas driving the turbine. A low pressure combustor is used to combust the excess fuel from the bottoming fuel cell to reheat the gas stream passing out of the turbine which is used to preheat the pressurized air stream entering the topping fuel cell before passing into the bottoming fuel cell cathode. The CO.sub.2 generated in the solid oxide fuel cell cycle cascades through the system to the molten carbonate fuel cell cycle cathode.

  15. Method and apparatus for fuel gas moisturization and heating

    DOEpatents

    Ranasinghe, Jatila; Smith, Raub Warfield

    2002-01-01

    Fuel gas is saturated with water heated with a heat recovery steam generator heat source. The heat source is preferably a water heating section downstream of the lower pressure evaporator to provide better temperature matching between the hot and cold heat exchange streams in that portion of the heat recovery steam generator. The increased gas mass flow due to the addition of moisture results in increased power output from the gas and steam turbines. Fuel gas saturation is followed by superheating the fuel, preferably with bottom cycle heat sources, resulting in a larger thermal efficiency gain compared to current fuel heating methods. There is a gain in power output compared to no fuel heating, even when heating the fuel to above the LP steam temperature.

  16. An operationally flexible fuel cell based on quaternary ammonium-biphosphate ion pairs

    NASA Astrophysics Data System (ADS)

    Lee, Kwan-Soo; Spendelow, Jacob S.; Choe, Yoong-Kee; Fujimoto, Cy; Kim, Yu Seung

    2016-09-01

    Fuel cells are promising devices for clean power generation in a variety of economically and environmentally significant applications. Low-temperature proton exchange membrane (PEM) fuel cells utilizing Nafion require a high level of hydration, which limits the operating temperature to less than 100 ∘C. In contrast, high-temperature PEM fuel cells utilizing phosphoric acid-doped polybenzimidazole can operate effectively up to 180 ∘C however, these devices degrade when exposed to water below 140 ∘C. Here we present a different class of PEM fuel cells based on quaternary ammonium-biphosphate ion pairs that can operate under conditions unattainable with existing fuel cell technologies. These fuel cells exhibit stable performance at 80–160 ∘C with a conductivity decay rate more than three orders of magnitude lower than that of a commercial high-temperature PEM fuel cell. By increasing the operational flexibility, this class of fuel cell can simplify the requirements for heat and water management, and potentially reduce the costs associated with the existing fully functional fuel cell systems.

  17. An operationally flexible fuel cell based on quaternary ammonium-biphosphate ion pairs

    DOE PAGESBeta

    Lee, Kwan -Soo; Spendelow, Jacob Schatz; Choe, Yoong -Kee; Fujimoto, Cy; Kim, Yu Seung

    2016-08-22

    Here, fuel cells are promising devices for clean power generation in a variety of economically and environmentally significant applications. Low-temperature proton exchange membrane (PEM) fuel cells utilizing Nafion require a high level of hydration, which limits the operating temperature to less than 100°C. In contrast, high-temperature PEM fuel cells utilizing phosphoric acid-doped polybenzimidazole can operate effectively up to 180°C; however, these devices degrade when exposed to water below 140°C. Here we present a different class of PEM fuel cells based on quaternary ammonium-biphosphate ion pairs that can operate under conditions unattainable with existing fuel cell technologies. These fuel cells exhibitmore » stable performance at 80–160°C with a conductivity decay rate more than three orders of magnitude lower than that of a commercial high-temperature PEM fuel cell. By increasing the operational flexibility, this class of fuel cell can simplify the requirements for heat and water management, and potentially reduce the costs associated with the existing fully functional fuel cell systems.« less

  18. An operationally flexible fuel cell based on quaternary ammonium-biphosphate ion pairs

    NASA Astrophysics Data System (ADS)

    Lee, Kwan-Soo; Spendelow, Jacob S.; Choe, Yoong-Kee; Fujimoto, Cy; Kim, Yu Seung

    2016-09-01

    Fuel cells are promising devices for clean power generation in a variety of economically and environmentally significant applications. Low-temperature proton exchange membrane (PEM) fuel cells utilizing Nafion require a high level of hydration, which limits the operating temperature to less than 100 ∘C. In contrast, high-temperature PEM fuel cells utilizing phosphoric acid-doped polybenzimidazole can operate effectively up to 180 ∘C however, these devices degrade when exposed to water below 140 ∘C. Here we present a different class of PEM fuel cells based on quaternary ammonium-biphosphate ion pairs that can operate under conditions unattainable with existing fuel cell technologies. These fuel cells exhibit stable performance at 80-160 ∘C with a conductivity decay rate more than three orders of magnitude lower than that of a commercial high-temperature PEM fuel cell. By increasing the operational flexibility, this class of fuel cell can simplify the requirements for heat and water management, and potentially reduce the costs associated with the existing fully functional fuel cell systems.

  19. Transparent and flexible, nanostructured and mediatorless glucose/oxygen enzymatic fuel cells

    NASA Astrophysics Data System (ADS)

    Pankratov, Dmitry; Sundberg, Richard; Sotres, Javier; Maximov, Ivan; Graczyk, Mariusz; Suyatin, Dmitry B.; González-Arribas, Elena; Lipkin, Aleksey; Montelius, Lars; Shleev, Sergey

    2015-10-01

    Here we detail transparent, flexible, nanostructured, membrane-less and mediator-free glucose/oxygen enzymatic fuel cells, which can be reproducibly fabricated with industrial scale throughput. The electrodes were built on a biocompatible flexible polymer, while nanoimprint lithography was used for their nanostructuring. The electrodes were covered with gold, their surfaces were visualised using scanning electron and atomic force microscopies, and they were also studied spectrophotometrically and electrochemically. The enzymatic fuel cells were fabricated following our previous reports on membrane-less and mediator-free biodevices in which cellobiose dehydrogenase and bilirubin oxidase were used as anodic and cathodic biocatalysts, respectively. The following average characteristics of transparent and flexible biodevices operating in glucose and chloride containing neutral buffers were registered: 0.63 V open-circuit voltage, and 0.6 μW cm-2 maximal power density at a cell voltage of 0.35 V. A transparent and flexible enzymatic fuel cell could still deliver at least 0.5 μW cm-2 after 12 h of continuous operation. Thus, such biodevices can potentially be used as self-powered biosensors or electric power sources for smart electronic contact lenses.

  20. Studies of gas adsorption in flexible Metal-Organic frameworks

    NASA Astrophysics Data System (ADS)

    Sircar, Sarmishtha

    Flexible Metal-Organic frameworks that exhibit a gate-opening (GO) adsorption mechanism have potential for gas separations and gas storage. The GO phenomenon occurs when molecular gates in the structure expand/contract in response to the activation/de-activation of a system variable e.g. temperature, pressure or gas. Sharp discontinuities in the isotherm leading to S-shapes and large adsorption-desorption hysteresis are typical of this phenomenon. This study investigates the kinetics and thermodynamics of the GO behavior by combining adsorption measurements and analytical modeling of adsorption kinetics and capacity as a function of adsorbate, GO pressure, and temperature. Basic understanding of GO mechanism will help harness GO-MOF's as adsorbents for gas separations and storage. Experiments were performed on two precharacterized MOFs with verified GO behavior. These are (1) Zn2(bpdc)2(bpee), which expands from a relative amorphous to crystalline structure and (2) Cu[(dhbc) 2(4,4f-bpy)]H2O, a mutually interdigitated 2-D structure (bpdc = biphenyldicarboxylate, bpee = 1,2]bipyridylethene; DMF = N,N-dimethyl formamide, dhbc= 2,5-dihydroxybenzoic acid, bpy=bipyridine). Both sub- and super-critical adsorption data were collected using three adsorption units: a standard low-pressure volumetric adsorption unit, a commercial high-pressure gravimetric analyzer and a custom-built high-pressure differential volumetric unit. Collected laboratory data were combined with published adsorption rate and isotherm data for analysis to broaden the range of data collection. The accuracy of the high-pressure differential unit was improved by over 300-fold by changing analytical methods of processing data to establish a reliable null correction. A pronounced effect of the allowed experimental time was found at cryogenic temperatures on (1). Tightening the stability criteria used by the adsorption equipment to determine equilibration increased the experimental time from the order of

  1. Flexible LNG supply, storage and price formation in a global natural gas market

    NASA Astrophysics Data System (ADS)

    Hayes, Mark Hanley

    The body of work included in this dissertation explores the interaction of the growing, flexible liquefied natural gas (LNG) trade with the fundamentals of pipeline gas supply, gas storage, and gas consumption. By nature of its uses---largely for residential heating and electric power generation---the consumption of natural gas is highly variable both seasonally and on less predictable daily and weekly timescales. Flexible LNG trade will interconnect previously isolated regional gas markets, each with non-correlated variability in gas demand, differing gas storage costs, and heterogeneous institutional structures. The dissertation employs a series of analytical models to address key issues that will affect the expansion of the LNG trade and the implications for gas prices, investment and energy policy. First, I employ an optimization model to evaluate the fundamentals of seasonal LNG swing between markets with non-correlated gas demand (the U.S. and Europe). The model provides insights about the interaction of LNG trade with gas storage and price formation in interconnected regional markets. I then explore how random (stochastic) variability in gas demand will drive spot cargo movements and covariation in regional gas prices. Finally, I analyze the different institutional structures of the gas markets in the U.S. and Europe and consider how managed gas markets in Europe---without a competitive wholesale gas market---may effectively "export" supply and price volatility to countries with more competitive gas markets, such as the U.S.

  2. Fuel economy screening study of advanced automotive gas turbine engines

    NASA Technical Reports Server (NTRS)

    Klann, J. L.

    1980-01-01

    Fuel economy potentials were calculated and compared among ten turbomachinery configurations. All gas turbine engines were evaluated with a continuously variable transmission in a 1978 compact car. A reference fuel economy was calculated for the car with its conventional spark ignition piston engine and three speed automatic transmission. Two promising engine/transmission combinations, using gasoline, had 55 to 60 percent gains over the reference fuel economy. Fuel economy sensitivities to engine design parameter changes were also calculated for these two combinations.

  3. Dynamic modelling and stability parametric analysis of a flexible spacecraft with fuel slosh

    NASA Astrophysics Data System (ADS)

    Gasbarri, Paolo; Sabatini, Marco; Pisculli, Andrea

    2016-10-01

    Modern spacecraft often contain large quantities of liquid fuel to execute station keeping and attitude manoeuvres for space missions. In general the combined liquid-structure system is very difficult to model, and the analyses are based on some assumed simplifications. A realistic representation of the liquid dynamics inside closed containers can be approximated by an equivalent mechanical system. This technique can be considered a very useful mathematical tool for solving the complete dynamics problem of a space-system containing liquid. Thus they are particularly useful when designing a control system or to study the stability margins of the coupled dynamics. The commonly used equivalent mechanical models are the mass-spring models and the pendulum models. As far as the spacecraft modelling is concerned they are usually considered rigid; i.e. no flexible appendages such as solar arrays or antennas are considered when dealing with the interaction of the attitude dynamics with the fuel slosh. In the present work the interactions among the fuel slosh, the attitude dynamics and the flexible appendages of a spacecraft are first studied via a classical multi-body approach. In particular the equations of attitude and orbit motion are first derived for the partially liquid-filled flexible spacecraft undergoing fuel slosh; then several parametric analyses will be performed to study the stability conditions of the system during some assigned manoeuvers. The present study is propaedeutic for the synthesis of advanced attitude and/or station keeping control techniques able to minimize and/or reduce an undesired excitation of the satellite flexible appendages and of the fuel sloshing mass.

  4. Fuels Containing Methane of Natural Gas in Solution

    NASA Technical Reports Server (NTRS)

    Sullivan, Thomas A.

    2004-01-01

    While exploring ways of producing better fuels for propulsion of a spacecraft on the Mars sample return mission, a researcher at Johnson Space Center (JSC) devised a way of blending fuel by combining methane or natural gas with a second fuel to produce a fuel that can be maintained in liquid form at ambient temperature and under moderate pressure. The use of such a blended fuel would be a departure for both spacecraft engines and terrestrial internal combustion engines. For spacecraft, it would enable reduction of weights on long flights. For the automotive industry on Earth, such a fuel could be easily distributed and could be a less expensive, more efficient, and cleaner-burning alternative to conventional fossil fuels. The concept of blending fuels is not new: for example, the production of gasoline includes the addition of liquid octane enhancers. For the future, it has been commonly suggested to substitute methane or compressed natural gas for octane-enhanced gasoline as a fuel for internal-combustion engines. Unfortunately, methane or natural gas must be stored either as a compressed gas (if kept at ambient temperature) or as a cryogenic liquid. The ranges of automobiles would be reduced from their present values because of limitations on the capacities for storage of these fuels. Moreover, technical challenges are posed by the need to develop equipment to handle these fuels and, especially, to fill tanks acceptably rapidly. The JSC alternative to provide a blended fuel that can be maintained in liquid form at moderate pressure at ambient temperature has not been previously tried. A blended automotive fuel according to this approach would be made by dissolving natural gas in gasoline. The autogenous pressure of this fuel would eliminate the need for a vehicle fuel pump, but a pressure and/or flow regulator would be needed to moderate the effects of temperature and to respond to changing engine power demands. Because the fuel would flash as it entered engine

  5. Solid fuel combustion system for gas turbine engine

    DOEpatents

    Wilkes, Colin; Mongia, Hukam C.

    1993-01-01

    A solid fuel, pressurized fluidized bed combustion system for a gas turbine engine includes a carbonizer outside of the engine for gasifying coal to a low Btu fuel gas in a first fraction of compressor discharge, a pressurized fluidized bed outside of the engine for combusting the char residue from the carbonizer in a second fraction of compressor discharge to produce low temperature vitiated air, and a fuel-rich, fuel-lean staged topping combustor inside the engine in a compressed air plenum thereof. Diversion of less than 100% of compressor discharge outside the engine minimizes the expense of fabricating and maintaining conduits for transferring high pressure and high temperature gas and incorporation of the topping combustor in the compressed air plenum of the engine minimizes the expense of modifying otherwise conventional gas turbine engines for solid fuel, pressurized fluidized bed combustion.

  6. The DOE Advanced Gas Reactor Fuel Development and Qualification Program

    SciTech Connect

    David Petti

    2010-09-01

    The high outlet temperatures and high thermal-energy conversion efficiency of modular High Temperature Gas-cooled Reactors (HTGRs) enable an efficient and cost effective integration of the reactor system with non-electricity generation applications, such as process heat and/or hydrogen production, for the many petrochemical and other industrial processes that require temperatures between 300°C and 900°C. The Department of Energy (DOE) has selected the HTGR concept for the Next Generation Nuclear Plant (NGNP) Project as a transformative application of nuclear energy that will demonstrate emissions-free nuclear-assisted electricity, process heat, and hydrogen production, thereby reducing greenhouse-gas emissions and enhancing energy security. The objective of the DOE Advanced Gas Reactor (AGR) Fuel Development and Qualification program is to qualify tristructural isotropic (TRISO)-coated particle fuel for use in HTGRs. The Advanced Gas Reactor Fuel Development and Qualification Program consists of five elements: fuel manufacture, fuel and materials irradiations, post-irradiation examination (PIE) and safety testing, fuel performance modeling, and fission-product transport and source term evaluation. An underlying theme for the fuel development work is the need to develop a more complete, fundamental understanding of the relationship between the fuel fabrication process and key fuel properties, the irradiation and accident safety performance of the fuel, and the release and transport of fission products in the NGNP primary coolant system. An overview of the program and recent progress is presented.

  7. Flexible Fuel Cycle Initiative for the Harmonized Deployment of Gen-IV Reactors

    NASA Astrophysics Data System (ADS)

    Fukasawa, Tetsuo; Yamashita, Junichi; Hoshino, Kuniyoshi; Fujimura, Koji; Sasahira, Akira

    Generation IV type fast reactors (FR) are expected to be commercially deployed instead of light water reactors (LWR) from around 2050. Replacement of LWR to FR needs flexibility due to uncertain factors such as FR deployment rate which affects the FR fuel (Pu) supply amount from LWR spent fuel reprocessing and the capacity of related facilities. If the FR deployment rate is as currently planned, more Pu must be prepared by expanding LWR reprocessing. If the FR deployment rate decreases, LWR reprocessing must be reduced to avoid excess Pu. To cope with this issue we proposed the innovative system called Flexible Fuel Cycle Initiative (FFCI) that has integral reprocessing for LWR and FR spent fuels. LWR reprocessing in FFCI only carries out about 90% U recovery and residual material with Pu, U (˜5%), minor actinides (MA) and fission products (FP) goes to FR reprocessing for the planned FR deployment rate. For any decrease in the FR deployment rate temporary storage will be used. Coexistence of Pu/U with MA and FP until just before Pu/U usage in the FR provides high proliferation resistance. Preliminary evaluation revealed that FFCI can reduce the LWR reprocessing capacity and LWR spent fuel storage amount compared with current plan (reference system) if the FR deployment rate decreases. Several FR deployment scenarios and countermeasures such as FFCI were investigated.

  8. Evaluation of a 2-MW carbonate fuel cell power plant fueled by landfill gas. Final report

    SciTech Connect

    Meade, D.B.; Selander, S.; Rastler, D.M.

    1991-11-01

    This project assessed the technical and economic feasibility of operating an atmospheric pressure 2 MW carbonate fuel cell power plant on landfill gas. A commercially available low pressure gas pre-treatment system was identified for this application. System simulation studies were performed to identify component bottle-necks which would limit power production, or preclude system operation. An economic assessment was conducted to assess the competitiveness of the fuel cell system. The analysis confirmed the technical feasibility of operating Energy Research Corporation`s 2MW fuel cell system on landfill gas. Resulting net electrical efficiency was 50% based on the fuel`s lower heating value. Plant capital cost increased by {approximately}$180/kw; this was primarily for gas cleanup. Bus bar power costs for market entry and commercial fuel cell plants were found to be competitive with power produced from baseload coal plants in Minnesota.

  9. Gas-fueling studies in the PDX tokamak

    SciTech Connect

    Dylla, H.F.; Blanchard, W.R.; Budny, R.; Fonck, R.J.; Owens, D.K.; Schmidt, G.L.

    1982-08-01

    The characteristics of gas-fueling of high power discharges in the PDX tokamak have been investigated using gas-flow, neutral pressure, plasma density, and H..cap alpha.. emission measurements. The efficiency of gas-fueling was measured for various plasma configurations by comparison of the measured gas-influx rates to the particle exhaust rates inferred from particle decay time measurements. We observe that the fueling efficiency decreases significantly with increasing plasma density as the ionization length for thermal neutrals becomes shorter than the width of the boundary plasma. Gas fueling rates required to maintain a given plasma density are considerably higher (by factors of 5 to 10) for diverted discharges compared to limiter discharges. This result is attributed to a lower effective recycling coefficient for diverted plasmas. We discuss the dependence of the particle balance on the following experimentally measured parameters: the particle containment time, system-pumping speed, and neutral pressure in the vicinity of the active pumps.

  10. Gas-fueling studies in the PDX Tokamak

    NASA Astrophysics Data System (ADS)

    Dylla, H. F.; Blanchard, W. R.; Budny, R.; Fonck, R. J.; Owens, D. K.; Schmidt, G. L.

    1982-12-01

    The characteristics of gas-fueling of high power discharges in the PDX tokamak have been investigated using gas-flow, neutral pressure, plasma density, and H α emission measurements. The efficiency of gas-fueling was measured for various plasma configurations by comparison of the measured gas-influx rates to the particle exhaust rates inferred from particle decay time measurements. We observe that the fueling efficiency decreases significantly with increasing plasma density as the ionization lenght for thermal neutrals becomes shorter than the width of the boundary plasma. Gas fueling rates required to maintain a given plasma density are considerably higher (by factors of 5-10) for diverted discharges compared to limiter discharges. This result is attributed to a lower effective recycling coefficient for diverted plasmas. We discuss the dependence of the particle balance on the following experimentally measured parameters: the particle containment time, system pumping speed, and neutral pressure in the vicinity of the active pumps.

  11. High quality fuel gas from biomass pyrolysis with calcium oxide.

    PubMed

    Zhao, Baofeng; Zhang, Xiaodong; Chen, Lei; Sun, Laizhi; Si, Hongyu; Chen, Guanyi

    2014-03-01

    The removal of CO2 and tar in fuel gas produced by biomass thermal conversion has aroused more attention due to their adverse effects on the subsequent fuel gas application. High quality fuel gas production from sawdust pyrolysis with CaO was studied in this paper. The results of pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) experiments indicate that the mass ratio of CaO to sawdust (Ca/S) remarkably affects the behavior of sawdust pyrolysis. On the basis of Py-GC/MS results, one system of a moving bed pyrolyzer coupled with a fluid bed combustor has been developed to produce high quality fuel gas. The lower heating value (LHV) of the fuel gas was above 16MJ/Nm(3) and the content of tar was under 50mg/Nm(3), which is suitable for gas turbine application to generate electricity and heat. Therefore, this technology may be a promising route to achieve high quality fuel gas for biomass utilization.

  12. High quality fuel gas from biomass pyrolysis with calcium oxide.

    PubMed

    Zhao, Baofeng; Zhang, Xiaodong; Chen, Lei; Sun, Laizhi; Si, Hongyu; Chen, Guanyi

    2014-03-01

    The removal of CO2 and tar in fuel gas produced by biomass thermal conversion has aroused more attention due to their adverse effects on the subsequent fuel gas application. High quality fuel gas production from sawdust pyrolysis with CaO was studied in this paper. The results of pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) experiments indicate that the mass ratio of CaO to sawdust (Ca/S) remarkably affects the behavior of sawdust pyrolysis. On the basis of Py-GC/MS results, one system of a moving bed pyrolyzer coupled with a fluid bed combustor has been developed to produce high quality fuel gas. The lower heating value (LHV) of the fuel gas was above 16MJ/Nm(3) and the content of tar was under 50mg/Nm(3), which is suitable for gas turbine application to generate electricity and heat. Therefore, this technology may be a promising route to achieve high quality fuel gas for biomass utilization. PMID:24486940

  13. Fuel cell/gas turbine integration

    SciTech Connect

    Knickerbocker, T.

    1995-10-19

    The Allison Engine Company`s very high efficiency fuel cell/advanced turbine power cycle program is discussed. The power cycle has the following advantages: high system efficiency potential, reduced emissions inherent to fuel cells, unmanned operation(no boiler) particularly suited for distributed power, and existing product line matches fuel cell operating environment. Cost effectiveness, estimates, and projections are given.

  14. Fuel cell power supply with oxidant and fuel gas switching

    DOEpatents

    McElroy, James F.; Chludzinski, Paul J.; Dantowitz, Philip

    1987-01-01

    This invention relates to a fuel cell vehicular power plant. Fuel for the fuel stack is supplied by a hydrocarbon (methanol) catalytic cracking reactor and CO shift reactor. A water electrolysis subsystem is associated with the stack. During low power operation part of the fuel cell power is used to electrolyze water with hydrogen and oxygen electrolysis products being stored in pressure vessels. During peak power intervals, viz, during acceleration or start-up, pure oxygen and pure hydrogen from the pressure vessel are supplied as the reaction gases to the cathodes and anodes in place of air and methanol reformate. This allows the fuel cell stack to be sized for normal low power/air operation but with a peak power capacity several times greater than that for normal operation.

  15. Fuel cell power supply with oxidant and fuel gas switching

    DOEpatents

    McElroy, J.F.; Chludzinski, P.J.; Dantowitz, P.

    1987-04-14

    This invention relates to a fuel cell vehicular power plant. Fuel for the fuel stack is supplied by a hydrocarbon (methanol) catalytic cracking reactor and CO shift reactor. A water electrolysis subsystem is associated with the stack. During low power operation part of the fuel cell power is used to electrolyze water with hydrogen and oxygen electrolysis products being stored in pressure vessels. During peak power intervals, viz, during acceleration or start-up, pure oxygen and pure hydrogen from the pressure vessel are supplied as the reaction gases to the cathodes and anodes in place of air and methanol reformate. This allows the fuel cell stack to be sized for normal low power/air operation but with a peak power capacity several times greater than that for normal operation. 2 figs.

  16. Hierarchical graphene-polyaniline nanocomposite films for high-performance flexible electronic gas sensors.

    PubMed

    Guo, Yunlong; Wang, Ting; Chen, Fanhong; Sun, Xiaoming; Li, Xiaofeng; Yu, Zhongzhen; Wan, Pengbo; Chen, Xiaodong

    2016-06-01

    A hierarchically nanostructured graphene-polyaniline composite film is developed and assembled for a flexible, transparent electronic gas sensor to be integrated into wearable and foldable electronic devices. The hierarchical nanocomposite film is obtained via aniline polymerization in reduced graphene oxide (rGO) solution and simultaneous deposition on flexible PET substrate. The PANI nanoparticles (PPANI) anchored onto rGO surfaces (PPANI/rGO) and the PANI nanofiber (FPANI) are successfully interconnected and deposited onto flexible PET substrates to form hierarchical nanocomposite (PPANI/rGO-FPANI) network films. The assembled flexible, transparent electronic gas sensor exhibits high sensing performance towards NH3 gas concentrations ranging from 100 ppb to 100 ppm, reliable transparency (90.3% at 550 nm) for the PPANI/rGO-FPANI film (6 h sample), fast response/recovery time (36 s/18 s), and robust flexibility without an obvious performance decrease after 1000 bending/extending cycles. The excellent sensing performance could probably be ascribed to the synergetic effects and the relatively high surface area (47.896 m(2) g(-1)) of the PPANI/rGO-FPANI network films, the efficient artificial neural network sensing channels, and the effectively exposed active surfaces. It is expected to hold great promise for developing flexible, cost-effective, and highly sensitive electronic sensors with real-time analysis to be potentially integrated into wearable flexible electronics. PMID:27249547

  17. FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2

    SciTech Connect

    George Rizeq; Janice West; Arnaldo Frydman; Raul Subia; Vladimir Zamansky; Hana Loreth; Lubor Stonawski; Tomasz Wiltowski; Edwin Hippo; Shashi Lalvani

    2003-07-01

    It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Global Research (GEGR) has developed an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GEGR (prime contractor) was awarded a Vision 21 program from U.S. DOE NETL to develop the UFP technology. Work on this Phase I program started on October 1, 2000. The project team includes GEGR, Southern Illinois University at Carbondale (SIU-C), California Energy Commission (CEC), and T. R. Miles, Technical Consultants, Inc. In the UFP technology, coal/opportunity fuels and air are simultaneously converted into separate streams of (1) pure hydrogen that can be utilized in fuel cells, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure oxygen-depleted air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on process modeling with best-case scenario assumptions, has an estimated process efficiency of 68%, based on electrical and H{sub 2} energy outputs relative to the higher heating value of coal, and an estimated equivalent electrical efficiency of 60%. The Phase I R&D program will determine the operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates lab-, bench- and pilot-scale studies to demonstrate the UFP technology. This is the eleventh quarterly technical progress report for the Vision 21 UFP program

  18. Development of Nuclear Renewable Oil Shale Systems for Flexible Electricity and Reduced Fossil Fuel Emissions

    SciTech Connect

    Daniel Curtis; Charles Forsberg; Humberto Garcia

    2015-05-01

    We propose the development of Nuclear Renewable Oil Shale Systems (NROSS) in northern Europe, China, and the western United States to provide large supplies of flexible, dispatchable, very-low-carbon electricity and fossil fuel production with reduced CO2 emissions. NROSS are a class of large hybrid energy systems in which base-load nuclear reactors provide the primary energy used to produce shale oil from kerogen deposits and simultaneously provide flexible, dispatchable, very-low-carbon electricity to the grid. Kerogen is solid organic matter trapped in sedimentary shale, and large reserves of this resource, called oil shale, are found in northern Europe, China, and the western United States. NROSS couples electricity generation and transportation fuel production in a single operation, reduces lifecycle carbon emissions from the fuel produced, improves revenue for the nuclear plant, and enables a major shift toward a very-low-carbon electricity grid. NROSS will require a significant development effort in the United States, where kerogen resources have never been developed on a large scale. In Europe, however, nuclear plants have been used for process heat delivery (district heating), and kerogen use is familiar in certain countries. Europe, China, and the United States all have the opportunity to use large scale NROSS development to enable major growth in renewable generation and either substantially reduce or eliminate their dependence on foreign fossil fuel supplies, accelerating their transitions to cleaner, more efficient, and more reliable energy systems.

  19. Combustion of coal gas fuels in a staged combustor

    NASA Technical Reports Server (NTRS)

    Rosfjord, T. J.; Mcvey, J. B.; Sederquist, R. A.; Schultz, D. F.

    1982-01-01

    Gaseous fuels produced from coal resources generally have heating values much lower than natural gas; the low heating value could result in unstable or inefficient combustion. Coal gas fuels may contain ammonia which if oxidized in an uncontrolled manner could result in unacceptable nitrogen oxide exhaust emission levels. Previous investigations indicate that staged, rich-lean combustion represents a desirable approach to achieve stable, efficient, low nitrogen oxide emission operation for coal-derived liquid fuels contaning up to 0.8-wt pct nitrogen. An experimental program was conducted to determine whether this fuel tolerance can be extended to include coal-derived gaseous fuels. The results of tests with three nitrogen-free fuels having heating values of 100, 250, and 350 Btu/scf and a 250 Btu/scf heating value doped to contain 0.7 pct ammonia are presented.

  20. Combustion of coal gas fuels in a staged combustor

    NASA Astrophysics Data System (ADS)

    Rosfjord, T. J.; McVey, J. B.; Sederquist, R. A.; Schultz, D. F.

    Gaseous fuels produced from coal resources generally have heating values much lower than natural gas; the low heating value could result in unstable or inefficient combustion. Coal gas fuels may contain ammonia which if oxidized in an uncontrolled manner could result in unacceptable nitrogen oxide exhaust emission levels. Previous investigations indicate that staged, rich-lean combustion represents a desirable approach to achieve stable, efficient, low nitrogen oxide emission operation for coal-derived liquid fuels contaning up to 0.8-wt pct nitrogen. An experimental program was conducted to determine whether this fuel tolerance can be extended to include coal-derived gaseous fuels. The results of tests with three nitrogen-free fuels having heating values of 100, 250, and 350 Btu/scf and a 250 Btu/scf heating value doped to contain 0.7 pct ammonia are presented.

  1. Evaluation of a 2-MW carbonate fuel cell power plant fueled by landfill gas

    SciTech Connect

    Meade, D.B. ); Selander, S. ); Rastler, D.M. )

    1991-11-01

    This project assessed the technical and economic feasibility of operating an atmospheric pressure 2 MW carbonate fuel cell power plant on landfill gas. A commercially available low pressure gas pre-treatment system was identified for this application. System simulation studies were performed to identify component bottle-necks which would limit power production, or preclude system operation. An economic assessment was conducted to assess the competitiveness of the fuel cell system. The analysis confirmed the technical feasibility of operating Energy Research Corporation's 2MW fuel cell system on landfill gas. Resulting net electrical efficiency was 50% based on the fuel's lower heating value. Plant capital cost increased by {approximately}$180/kw; this was primarily for gas cleanup. Bus bar power costs for market entry and commercial fuel cell plants were found to be competitive with power produced from baseload coal plants in Minnesota.

  2. Assessing the impacts of ethanol and isobutanol on gaseous and particulate emissions from flexible fuel vehicles.

    PubMed

    Karavalakis, Georgios; Short, Daniel; Russell, Robert L; Jung, Heejung; Johnson, Kent C; Asa-Awuku, Akua; Durbin, Thomas D

    2014-12-01

    This study investigated the effects of higher ethanol blends and an isobutanol blend on the criteria emissions, fuel economy, gaseous toxic pollutants, and particulate emissions from two flexible-fuel vehicles equipped with spark ignition engines, with one wall-guided direct injection and one port fuel injection configuration. Both vehicles were tested over triplicate Federal Test Procedure (FTP) and Unified Cycles (UC) using a chassis dynamometer. Emissions of nonmethane hydrocarbons (NMHC) and carbon monoxide (CO) showed some statistically significant reductions with higher alcohol fuels, while total hydrocarbons (THC) and nitrogen oxides (NOx) did not show strong fuel effects. Acetaldehyde emissions exhibited sharp increases with higher ethanol blends for both vehicles, whereas butyraldehyde emissions showed higher emissions for the butanol blend relative to the ethanol blends at a statistically significant level. Particulate matter (PM) mass, number, and soot mass emissions showed strong reductions with increasing alcohol content in gasoline. Particulate emissions were found to be clearly influenced by certain fuel parameters including oxygen content, hydrogen content, and aromatics content.

  3. Costs Associated With Compressed Natural Gas Vehicle Fueling Infrastructure

    SciTech Connect

    Smith, M.; Gonzales, J.

    2014-09-01

    This document is designed to help fleets understand the cost factors associated with fueling infrastructure for compressed natural gas (CNG) vehicles. It provides estimated cost ranges for various sizes and types of CNG fueling stations and an overview of factors that contribute to the total cost of an installed station. The information presented is based on input from professionals in the natural gas industry who design, sell equipment for, and/or own and operate CNG stations.

  4. Alternative fuel and chemicals from synthesis gas

    SciTech Connect

    1996-05-01

    Development of a reliable and cost-effective method of wax/catalyst separation is a key step toward a commercially viable slurry reactor process with iron oxide-based catalyst for Fischer-Tropsch (F-T) synthesis of hydrocarbon transportation fuels. Although a variety of suitable catalysts (including, for example, cobalt-based catalysts) are available, iron oxide-based catalysts are preferred for coal-derived, CO-rich syngas because, in addition to catalyzing the F-T reaction, they simultaneously catalyze the reaction stifling CO to H{sub 2}, obviating a separate shift process block and associated costs. Because of the importance of development of this wax/catalyst separation, a study was initiated in February 1991. P. Z. Zhou of Burns and Roe reviewed the status of F-T wax/catalyst separation techniques. This led to the selection of a filtration system for the separation. Pilot tests were conducted by Mott Porous Metal Products in 1992 to develop this system. Initial results were good, but problems were encountered in follow-up testing. As a result of the testing, a filter was selected for use on the pilot plant. In LaPorte, Texas, APCI has been operating a pilot plant for the development of various synthesis gas technologies with DOE and industry support. The APCI F-T program builds on the DOE-sponsored laboratory-scale work by Mobil, reported in the mid-1980s, which used an iron oxide catalyst to produce high-quality F-T liquids in relatively compact reactors. Separation of the catalyst solids from the wax still represents a challenge. In the summer of 1992, testing of the selected filter was begun as part of the pilot plant testing. The filter performed poorly. Separation of the catalyst was primarily by sedimentation. It was recommended that the wax/catalyst separation be developed further.

  5. Miniature fuel cells relieve gas pressure in sealed batteries

    NASA Technical Reports Server (NTRS)

    Frank, H. A.

    1971-01-01

    Miniature fuel cells within sealed silver zinc batteries consume evolved hydrogen and oxygen rapidly, preventing pressure rupturing. They do not significantly increase battery weight and they operate in all battery life phases. Complete gas pressure control requires two fuel cells during all phases of operation of silver zinc batteries.

  6. Liquid Fuels and Natural Gas in the Americas

    EIA Publications

    2014-01-01

    The Energy Information Administration's (EIA) Liquid Fuels and Natural Gas in the Americas report, published today, is a Congressionally-requested study examining the energy trends and developments in the Americas over the past decade. The report focuses on liquid fuels and natural gas—particularly reserves and resources, production, consumption, trade, and investment—given their scale and significance to the region.

  7. Mathematical modeling of synthesis gas fueled electrochemistry and transport including H2/CO co-oxidation and surface diffusion in solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Bao, Cheng; Jiang, Zeyi; Zhang, Xinxin

    2015-10-01

    Fuel flexibility is a significant advantage of solid oxide fuel cell (SOFC). A comprehensive macroscopic framework is proposed for synthesis gas (syngas) fueled electrochemistry and transport in SOFC anode with two main novelties, i.e. analytical H2/CO electrochemical co-oxidation, and correction of gas species concentration at triple phase boundary considering competitive absorption and surface diffusion. Staring from analytical approximation of the decoupled charge and mass transfer, we present analytical solutions of two defined variables, i.e. hydrogen current fraction and enhancement factor. Giving explicit answer (rather than case-by-case numerical calculation) on how many percent of the current output contributed by H2 or CO and on how great the water gas shift reaction plays role on, this approach establishes at the first time an adaptive superposition mechanism of H2-fuel and CO-fuel electrochemistry for syngas fuel. Based on the diffusion equivalent circuit model, assuming series-connected resistances of surface diffusion and bulk diffusion, the model predicts well at high fuel utilization by keeping fixed porosity/tortuosity ratio. The model has been validated by experimental polarization behaviors in a wide range of operation on a button cell for H2-H2O-CO-CO2-N2 fuel systems. The framework could be helpful to narrow the gap between macro-scale and meso-scale SOFC modeling.

  8. Fuel flexibility study of an integrated 25 kW SOFC reformer system

    NASA Astrophysics Data System (ADS)

    Yi, Yaofan; Rao, Ashok D.; Brouwer, Jacob; Samuelsen, G. Scott

    The operation of solid oxide fuel cells on various fuels, such as natural gas, biogas and gases derived from biomass or coal gasification and distillate fuel reforming has been an active area of SOFC research in recent years. In this study, we develop a theoretical understanding and thermodynamic simulation capability for investigation of an integrated SOFC reformer system operating on various fuels. The theoretical understanding and simulation results suggest that significant thermal management challenges may result from the use of different types of fuels in the same integrated fuel cell reformer system. Syngas derived from coal is simulated according to specifications from high-temperature entrained bed coal gasifiers. Diesel syngas is approximated from data obtained in a previous NFCRC study of JP-8 and diesel operation of the integrated 25 kW SOFC reformer system. The syngas streams consist of mixtures of hydrogen, carbon monoxide, carbon dioxide, methane and nitrogen. Although the SOFC can tolerate a wide variety in fuel composition, the current analyses suggest that performance of integrated SOFC reformer systems may require significant operating condition changes and/or system design changes in order to operate well on this variety of fuels.

  9. Flexible gas insulated transmission line having regions of reduced electric field

    DOEpatents

    Cookson, Alan H.; Fischer, William H.; Yoon, Kue H.; Meyer, Jeffry R.

    1983-01-01

    A gas insulated transmission line having radially flexible field control means for reducing the electric field along the periphery of the inner conductor at predetermined locations wherein the support insulators are located. The radially flexible field control means of the invention includes several structural variations of the inner conductor, wherein careful controlling of the length to depth of surface depressions produces regions of reduced electric field. Several embodiments of the invention dispose a flexible connector at the predetermined location along the inner conductor where the surface depressions that control the reduced electric field are located.

  10. Combustion of coal-gas fuels in a staged combustor

    SciTech Connect

    Rosfjord, T J; McVey, J B; Sederquist, R A; Schultz, D F

    1982-01-01

    Gaseous fuels produced from coal resources have been considered for use in industrial gas turbines. Such fuels generally have heating values much lower than the typical gaseous fuel, natural gas; the low heating value could result in unstable or inefficient combustion. Additionally, coal gas fuels may contain ammonia which if oxidized in an uncontrolled manner could result in unacceptable NO/sub x/ exhaust emission levels. Previous investigations have indicated that staged, rich-lean combustion represents a desirable approach to achieve stable, efficient, low NO/sub x/ emission operation for coal-derived liquid fuels containing up to 0.8-wt % nitrogen. An experimental program has been conducted to determine whether this fuel tolerance can be extended to include coal-derived gaseous fuels. The results of tests with three nitrogen-free fuels having heating values of 100, 250, and 350 Btu/scf and a 250 Btu/scf heating value doped to contain 0.7% ammonia are presented. The test results permit the following conclusions to be drawn: (1) Staged, rich-lean combustion represents the desirable approach to achieve ultra-low NO/sub x/ and CO emissions for coal gas fuels with heating values of 210 kJ/mol (238 Btu/scf) or higher. (2) Lean combustion represents the desirable approach to achieve ultra-low NO/sub x/ and CO emissions for coal gas fuels with low heating values (84 kJ/mol (95 Btu/scf)). (3) Staged combustion has the ability to limit NH/sub 3/ to NO/sub x/ conversion rates to less than 5%. NO/sub x/ emissions below the EPA limit can readily be achieved.

  11. FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2

    SciTech Connect

    George Rizeq; Ravi Kumar; Janice West; Vitali Lissianski; Neil Widmer; Vladimir Zamansky

    2001-01-01

    It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the thermodynamic efficiency and environmental impact performance of fossil fuel utilization. General Electric Energy and Environmental Research Corporation (GE-EER) has developed an innovative fuel-flexible Advanced Gasification-Combustion (AGC) concept to produce H{sub 2} and sequestration-ready CO{sub 2} from solid fuels. The AGC module offers potential for reduced cost and increased energy efficiency relative to conventional gasification and combustion systems. GE-EER was awarded a Vision-21 program from U.S. DOE NETL to develop the AGC technology. Work on this three-year program started on October 1, 2000. The project team includes GE-EER, California Energy Commission, Southern Illinois University at Carbondale, and T. R. Miles, Technical Consultants, Inc. In the AGC technology, coal/opportunity fuels and air are simultaneously converted into separate streams of (1) pure hydrogen that can be utilized in fuel cells, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure oxygen depleted air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on preliminary modeling work in the first quarter of this program, has an estimated process efficiency of approximately 67% based on electrical and H{sub 2} energy outputs relative to the higher heating value of coal. The three-year R and D program will determine the operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates lab-, bench- and pilot-scale studies to demonstrate the AGC concept. This is the 1st quarterly progress report for the Vision-21 AGC program supported by U.S. DOE NETL (Contract: DE-FC26-00FT40974). This report summarizes program

  12. FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2

    SciTech Connect

    George Rizeq; Janice West; Arnaldo Frydman; Vladimir Zamansky; Linda Denton; Hana Loreth; Tomasz Wiltowski

    2001-07-01

    It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the thermodynamic efficiency and environmental impact performance of fossil fuel utilization. General Electric Energy and Environmental Research Corporation (GE EER) has developed an innovative fuel-flexible Advanced Gasification-Combustion (AGC) concept to produce H{sub 2} and sequestration-ready CO{sub 2} from solid fuels. The AGC module offers potential for reduced cost and increased energy efficiency relative to conventional gasification and combustion systems. GE EER was awarded a Vision-21 program from U.S. DOE NETL to develop the AGC technology. Work on this three-year program started on October 1, 2000. The project team includes GE EER, California Energy Commission, Southern Illinois University at Carbondale, and T. R. Miles, Technical Consultants, Inc. In the AGC technology, coal/opportunity fuels and air are simultaneously converted into separate streams of (1) pure hydrogen that can be utilized in fuel cells, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure oxygen-depleted air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on preliminary modeling work in the first quarter of this program, has an estimated process efficiency of approximately 67% based on electrical and H{sub 2} energy outputs relative to the higher heating value of coal. The three-year R&D program will determine the operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates lab-, bench- and pilot-scale studies to demonstrate the AGC concept. This is the third quarterly technical progress report for the Vision-21 AGC program supported by U.S. DOE NETL (Contract: DE-FC26-00FT40974). This report summarizes program

  13. A small scale biomass fueled gas turbine engine

    SciTech Connect

    Craig, J.D.; Purvis, C.R.

    1999-01-01

    A new generation of small scale (less than 20 MWd) biomass fueled, power plants are being developed based on a gas turbine (Brayton cycle) prime mover. These power plants are expected to increase the efficiency and lower the cost of generating power from fuels such as wood. The new power plants are also expected to economically utilize annual plant growth materials (such as rice hulls, cotton gin trash, nut shells, and various straws, grasses, and animal manures) that are not normally considered as fuel for power plants. This paper summarizes the new power generation concept with emphasis on the engineering challenges presented by the gas turbine component.

  14. Combination gas lift/ESP system increases flexibility

    SciTech Connect

    Divine, D.L.; Eads, P.T.; Lea, J.F.; Winkler, H.W.

    1990-10-01

    Most ESP systems are installed in high-rate wells, and failure can result in significant downtime and revenue loss. This paper reports that by combining ESP with continuous-flow gas lift in certain wells, a smaller ESP can be used, and the wells can stay on production even with downhole equipment failure.

  15. TEST RESULTS FOR FUEL-CELL OPERATION ON LANDFILL GAS

    EPA Science Inventory

    Test results from a demonstration of fuel-cell (FC) energy recovery and control of landfill gas emissions are presented. The project addressed two major issues: (i) the design, construction, and testing of a landfill-gas cleanup system; and (ii) a field test of a commercial phos...

  16. Power Gas and Combined Cycles: Clean Power From Fossil Fuels

    ERIC Educational Resources Information Center

    Metz, William D.

    1973-01-01

    The combined-cycle system is currently regarded as a useful procedure for producing electricity. This system can burn natural gas and oil distillates in addition to coal. In the future when natural gas stocks will be low, coal may become an important fuel for such systems. Considerable effort must be made for research on coal gasification and…

  17. Fuel cell generator containing a gas sealing means

    DOEpatents

    Makiel, Joseph M.

    1987-01-01

    A high temperature solid electrolyte electrochemical generator is made, operating with flowing fuel gas and oxidant gas, the generator having a thermal insulation layer, and a sealing means contacting or contained within the insulation, where the sealing means is effective to control the contact of the various gases utilized in the generator.

  18. Fuel cell generator containing a gas sealing means

    DOEpatents

    Makiel, J.M.

    1987-02-03

    A high temperature solid electrolyte electrochemical generator is made, operating with flowing fuel gas and oxidant gas, the generator having a thermal insulation layer, and a sealing means contacting or contained within the insulation, where the sealing means is effective to control the contact of the various gases utilized in the generator. 5 figs.

  19. Effects of fuel nozzle design on performance of an experimental annular combustor using natural gas fuel

    NASA Technical Reports Server (NTRS)

    Wear, J. D.; Schultz, D. F.

    1972-01-01

    Tests of various fuel nozzles were conducted with natural gas fuel in a full-annulus combustor. The nozzles were designed to provide either axial, angled, or radial fuel injection. Each fuel nozzle was evaluated by measuring combustion efficiency at relatively severe combustor operating conditions. Combustor blowout and altitude ignition tests were also used to evaluate nozzle designs. Results indicate that angled injection gave higher combustion efficiency, less tendency toward combustion instability, and altitude relight characteristics equal to or superior to those of the other fuel nozzles that were tested.

  20. FUEL INTERCHANGEABILITY FOR LEAN PREMIXED COMBUSTION IN GAS TURBINE ENGINES

    SciTech Connect

    Don Ferguson; Geo. A. Richard; Doug Straub

    2008-06-13

    In response to environmental concerns of NOx emissions, gas turbine manufacturers have developed engines that operate under lean, pre-mixed fuel and air conditions. While this has proven to reduce NOx emissions by lowering peak flame temperatures, it is not without its limitations as engines utilizing this technology are more susceptible to combustion dynamics. Although dependent on a number of mechanisms, changes in fuel composition can alter the dynamic response of a given combustion system. This is of particular interest as increases in demand of domestic natural gas have fueled efforts to utilize alternatives such as coal derived syngas, imported liquefied natural gas and hydrogen or hydrogen augmented fuels. However, prior to changing the fuel supply end-users need to understand how their system will respond. A variety of historical parameters have been utilized to determine fuel interchangeability such as Wobbe and Weaver Indices, however these parameters were never optimized for today’s engines operating under lean pre-mixed combustion. This paper provides a discussion of currently available parameters to describe fuel interchangeability. Through the analysis of the dynamic response of a lab-scale Rijke tube combustor operating on various fuel blends, it is shown that commonly used indices are inadequate for describing combustion specific phenomena.

  1. Producer gas from citrus wood fuels irrigation power unit

    SciTech Connect

    Churchill, D.B.; Hedden, S.L.; Whitney, J.D.; Shaw, L.N.

    1985-01-01

    A 90-hp diesel engine operating a citrus irrigation system was converted to run on a dual-fuel mixture utilizing producer gas from citrus wood chips as the main fuel source. A chip feeder mechanism, gasifier, filter system and control unit were designed to meet typical irrigation power requirements. Blighted, unproductive and dead trees removed near the irrigation site were used for chipping. Data on chip moisture content, fuel analysis, drying rate and fuel/tree weight are presented but labour and equipment costs were not determined. 14 references.

  2. Method for making hydrogen rich gas from hydrocarbon fuel

    DOEpatents

    Krumpelt, M.; Ahmed, S.; Kumar, R.; Doshi, R.

    1999-07-27

    A method of forming a hydrogen rich gas from a source of hydrocarbon fuel in which the hydrocarbon fuel contacts a two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion at a temperature not less than about 400 C for a time sufficient to generate the hydrogen rich gas while maintaining CO content less than about 5 volume percent. There is also disclosed a method of forming partially oxidized hydrocarbons from ethanes in which ethane gas contacts a two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion for a time and at a temperature sufficient to form an oxide. 4 figs.

  3. Method for making hydrogen rich gas from hydrocarbon fuel

    DOEpatents

    Krumpelt, Michael; Ahmed, Shabbir; Kumar, Romesh; Doshi, Rajiv

    1999-01-01

    A method of forming a hydrogen rich gas from a source of hydrocarbon fuel in which the hydrocarbon fuel contacts a two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion at a temperature not less than about 400.degree. C. for a time sufficient to generate the hydrogen rich gas while maintaining CO content less than about 5 volume percent. There is also disclosed a method of forming partially oxidized hydrocarbons from ethanes in which ethane gas contacts a two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion for a time and at a temperature sufficient to form an oxide.

  4. Method of cooling gas only nozzle fuel tip

    DOEpatents

    Bechtel, William Theodore; Fitts, David Orus; DeLeonardo, Guy Wayne

    2002-01-01

    A diffusion flame nozzle gas tip is provided to convert a dual fuel nozzle to a gas only nozzle. The nozle tip diverts compressor discharge air from the passage feeding the diffusion nozzle air swirl vanes to a region vacated by removal of the dual fuel components, so that the diverted compressor discharge air can flow to and through effusion holes in the end cap plate of the nozzle tip. In a preferred embodiment, the nozzle gas tip defines a cavity for receiving the compressor discharge air from a peripheral passage of the nozzle for flow through the effusion openings defined in the end cap plate.

  5. Fuel Development For Gas-Cooled Fast Reactors

    SciTech Connect

    M. K. Meyer

    2006-06-01

    The Generation IV Gas-cooled Fast Reactor (GFR) concept is proposed to combine the advantages of high-temperature gas-cooled reactors (such as efficient direct conversion with a gas turbine and the potential for application of high-temperature process heat), with the sustainability advantages that are possible with a fast-spectrum reactor. The latter include the ability to fission all transuranics and the potential for breeding. The GFR is part of a consistent set of gas-cooled reactors that includes a medium-term Pebble Bed Modular Reactor (PBMR)-like concept, or concepts based on the Gas Turbine Modular Helium Reactor (GT-MHR), and specialized concepts such as the Very High Temperature Reactor (VHTR), as well as actinide burning concepts [ ]. To achieve the necessary high power density and the ability to retain fission gas at high temperature, the primary fuel concept proposed for testing in the United States is a dispersion coated fuel particles in a ceramic matrix. Alternative fuel concepts considered in the U.S. and internationally include coated particle beds, ceramic clad fuel pins, and novel ceramic ‘honeycomb’ structures. Both mixed carbide and mixed nitride-based solid solutions are considered as fuel phases.

  6. Fuel development for gas-cooled fast reactors

    NASA Astrophysics Data System (ADS)

    Meyer, M. K.; Fielding, R.; Gan, J.

    2007-09-01

    The Generation IV Gas-cooled Fast Reactor (GFR) concept is proposed to combine the advantages of high-temperature gas-cooled reactors (such as efficient direct conversion with a gas turbine and the potential for application of high-temperature process heat), with the sustainability advantages that are possible with a fast-spectrum reactor. The latter include the ability to fission all transuranics and the potential for breeding. The GFR is part of a consistent set of gas-cooled reactors that includes a medium-term Pebble Bed Modular Reactor (PBMR)-like concept, or concepts based on the Gas Turbine Modular Helium Reactor (GT-MHR), and specialized concepts such as the Very High-Temperature Reactor (VHTR), as well as actinide burning concepts [A Technology Roadmap for Generation IV Nuclear Energy Systems, US DOE Nuclear Energy Research Advisory Committee and the Generation IV International Forum, December 2002]. To achieve the necessary high power density and the ability to retain fission gas at high temperature, the primary fuel concept proposed for testing in the United States is dispersion coated fuel particles in a ceramic matrix. Alternative fuel concepts considered in the US and internationally include coated particle beds, ceramic clad fuel pins, and novel ceramic 'honeycomb' structures. Both mixed carbide and mixed nitride-based solid solutions are considered as fuel phases.

  7. Garbage and coal combination for clean burning fuel gas

    SciTech Connect

    Not Available

    1980-03-27

    Columbia University professor Dr. Helmut Schulz gasification process to produce an inexpensive, clean-burning, high-energy fuel gas while helping to solve the problem of municipal waste disposal. Dr. Schulz contends that the process could produce the equivalent of 200 million barrels a year if it were used by the 50 largest US cities. The Simplex process combines coal with garbage in specially formulated briquettes which can be efficiently pyrolyzed to at a high temperatures. The patented briquetting procedure allows the use of eastern coals and permits efficient gas distribution. Simplex gas (a mixture of carbon monoxide and hydrogen) burns at the same flame temperature as natural gas, simplifying fuel substitution. The ratio can be modified to synthesize methanol fuel. (DCK)

  8. Evaluation of Ultra Clean Fuels from Natural Gas

    SciTech Connect

    Robert Abbott; Edward Casey; Etop Esen; Douglas Smith; Bruce Burke; Binh Nguyen; Samuel Tam; Paul Worhach; Mahabubul Alam; Juhun Song; James Szybist; Ragini Acharya; Vince Zello; David Morris; Patrick Flynn; Stephen Kirby; Krishan Bhatia; Jeff Gonder; Yun Wang; Wenpeng Liu; Hua Meng; Subramani Velu; Jian-Ping Shen, Weidong Gu; Elise Bickford; Chunshan Song; Chao-Yang Wang; Andre' Boehman

    2006-02-28

    ConocoPhillips, in conjunction with Nexant Inc., Penn State University, and Cummins Engine Co., joined with the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) in a cooperative agreement to perform a comprehensive study of new ultra clean fuels (UCFs) produced from remote sources of natural gas. The project study consists of three primary tasks: an environmental Life Cycle Assessment (LCA), a Market Study, and a series of Engine Tests to evaluate the potential markets for Ultra Clean Fuels. The overall objective of DOE's Ultra Clean Transportation Fuels Initiative is to develop and deploy technologies that will produce ultra-clean burning transportation fuels for the 21st century from both petroleum and non-petroleum resources. These fuels will: (1) Enable vehicles to comply with future emission requirements; (2) Be compatible with the existing liquid fuels infrastructure; (3) Enable vehicle efficiencies to be significantly increased, with concomitantly reduced CO{sub 2} emissions; (4) Be obtainable from a fossil resource, alone or in combination with other hydrocarbon materials such as refinery wastes, municipal wastes, biomass, and coal; and (5) Be competitive with current petroleum fuels. The objectives of the ConocoPhillips Ultra Clean Fuels Project are to perform a comprehensive life cycle analysis and to conduct a market study on ultra clean fuels of commercial interest produced from natural gas, and, in addition, perform engine tests for Fisher-Tropsch diesel and methanol in neat, blended or special formulations to obtain data on emissions. This resulting data will be used to optimize fuel compositions and engine operation in order to minimize the release of atmospheric pollutants resulting from the fuel combustion. Development and testing of both direct and indirect methanol fuel cells was to be conducted and the optimum properties of a suitable fuel-grade methanol was to be defined. The results of the study are also applicable

  9. Combustion gas properties. Part 3: Hydrogen gas fuel and dry air

    NASA Technical Reports Server (NTRS)

    Wear, J. D.; Jones, R. E.; Mcbride, B. J.; Beyerle, R. A.

    1985-01-01

    A series of computations has been made to produce the equilibrium temperature and gas composition for hydrogen gas fuel and dry air. The computed tables and figures provide combustion gas property data for pressures from 0.5 to 50 atmospheres and equivalence ratios from 0 to 2.0. Only sample tables and figures are provided in this report.

  10. 76 FR 52652 - National Fuel Gas Supply Corporation; Tennessee Gas Pipeline Company; Notice of Availability of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-23

    ... Energy Regulatory Commission National Fuel Gas Supply Corporation; Tennessee Gas Pipeline Company; Notice... Access Project and Tennessee Gas Pipeline Company's (TGP) proposed Station 230C Project in the above... County, to permit bi-directional flow; Modifications to underground piping and valves at the...

  11. Fuel composition and secondary organic aerosol formation: gas-turbine exhaust and alternative aviation fuels.

    PubMed

    Miracolo, Marissa A; Drozd, Greg T; Jathar, Shantanu H; Presto, Albert A; Lipsky, Eric M; Corporan, Edwin; Robinson, Allen L

    2012-08-01

    A series of smog chamber experiments were performed to investigate the effects of fuel composition on secondary particulate matter (PM) formation from dilute exhaust from a T63 gas-turbine engine. Tests were performed at idle and cruise loads with the engine fueled on conventional military jet fuel (JP-8), Fischer-Tropsch synthetic jet fuel (FT), and a 50/50 blend of the two fuels. Emissions were sampled into a portable smog chamber and exposed to sunlight or artificial UV light to initiate photo-oxidation. Similar to previous studies, neat FT fuel and a 50/50 FT/JP-8 blend reduced the primary particulate matter emissions compared to neat JP-8. After only one hour of photo-oxidation at typical atmospheric OH levels, the secondary PM production in dilute exhaust exceeded primary PM emissions, except when operating the engine at high load on FT fuel. Therefore, accounting for secondary PM production should be considered when assessing the contribution of gas-turbine engine emissions to ambient PM levels. FT fuel substantially reduced secondary PM formation in dilute exhaust compared to neat JP-8 at both idle and cruise loads. At idle load, the secondary PM formation was reduced by a factor of 20 with the use of neat FT fuel, and a factor of 2 with the use of the blend fuel. At cruise load, the use of FT fuel resulted in no measured formation of secondary PM. In every experiment, the secondary PM was dominated by organics with minor contributions from sulfate when the engine was operated on JP-8 fuel. At both loads, FT fuel produces less secondary organic aerosol than JP-8 because of differences in the composition of the fuels and the resultant emissions. This work indicates that fuel reformulation may be a viable strategy to reduce the contribution of emissions from combustion systems to secondary organic aerosol production and ultimately ambient PM levels. PMID:22732009

  12. Fuel composition and secondary organic aerosol formation: gas-turbine exhaust and alternative aviation fuels.

    PubMed

    Miracolo, Marissa A; Drozd, Greg T; Jathar, Shantanu H; Presto, Albert A; Lipsky, Eric M; Corporan, Edwin; Robinson, Allen L

    2012-08-01

    A series of smog chamber experiments were performed to investigate the effects of fuel composition on secondary particulate matter (PM) formation from dilute exhaust from a T63 gas-turbine engine. Tests were performed at idle and cruise loads with the engine fueled on conventional military jet fuel (JP-8), Fischer-Tropsch synthetic jet fuel (FT), and a 50/50 blend of the two fuels. Emissions were sampled into a portable smog chamber and exposed to sunlight or artificial UV light to initiate photo-oxidation. Similar to previous studies, neat FT fuel and a 50/50 FT/JP-8 blend reduced the primary particulate matter emissions compared to neat JP-8. After only one hour of photo-oxidation at typical atmospheric OH levels, the secondary PM production in dilute exhaust exceeded primary PM emissions, except when operating the engine at high load on FT fuel. Therefore, accounting for secondary PM production should be considered when assessing the contribution of gas-turbine engine emissions to ambient PM levels. FT fuel substantially reduced secondary PM formation in dilute exhaust compared to neat JP-8 at both idle and cruise loads. At idle load, the secondary PM formation was reduced by a factor of 20 with the use of neat FT fuel, and a factor of 2 with the use of the blend fuel. At cruise load, the use of FT fuel resulted in no measured formation of secondary PM. In every experiment, the secondary PM was dominated by organics with minor contributions from sulfate when the engine was operated on JP-8 fuel. At both loads, FT fuel produces less secondary organic aerosol than JP-8 because of differences in the composition of the fuels and the resultant emissions. This work indicates that fuel reformulation may be a viable strategy to reduce the contribution of emissions from combustion systems to secondary organic aerosol production and ultimately ambient PM levels.

  13. Hierarchical graphene-polyaniline nanocomposite films for high-performance flexible electronic gas sensors

    NASA Astrophysics Data System (ADS)

    Guo, Yunlong; Wang, Ting; Chen, Fanhong; Sun, Xiaoming; Li, Xiaofeng; Yu, Zhongzhen; Wan, Pengbo; Chen, Xiaodong

    2016-06-01

    A hierarchically nanostructured graphene-polyaniline composite film is developed and assembled for a flexible, transparent electronic gas sensor to be integrated into wearable and foldable electronic devices. The hierarchical nanocomposite film is obtained via aniline polymerization in reduced graphene oxide (rGO) solution and simultaneous deposition on flexible PET substrate. The PANI nanoparticles (PPANI) anchored onto rGO surfaces (PPANI/rGO) and the PANI nanofiber (FPANI) are successfully interconnected and deposited onto flexible PET substrates to form hierarchical nanocomposite (PPANI/rGO-FPANI) network films. The assembled flexible, transparent electronic gas sensor exhibits high sensing performance towards NH3 gas concentrations ranging from 100 ppb to 100 ppm, reliable transparency (90.3% at 550 nm) for the PPANI/rGO-FPANI film (6 h sample), fast response/recovery time (36 s/18 s), and robust flexibility without an obvious performance decrease after 1000 bending/extending cycles. The excellent sensing performance could probably be ascribed to the synergetic effects and the relatively high surface area (47.896 m2 g-1) of the PPANI/rGO-FPANI network films, the efficient artificial neural network sensing channels, and the effectively exposed active surfaces. It is expected to hold great promise for developing flexible, cost-effective, and highly sensitive electronic sensors with real-time analysis to be potentially integrated into wearable flexible electronics.A hierarchically nanostructured graphene-polyaniline composite film is developed and assembled for a flexible, transparent electronic gas sensor to be integrated into wearable and foldable electronic devices. The hierarchical nanocomposite film is obtained via aniline polymerization in reduced graphene oxide (rGO) solution and simultaneous deposition on flexible PET substrate. The PANI nanoparticles (PPANI) anchored onto rGO surfaces (PPANI/rGO) and the PANI nanofiber (FPANI) are successfully

  14. Turbine governor change allows wide fuel gas choice

    SciTech Connect

    1995-10-01

    The Rolls-Royce Olympus SK30 turbine gen-sets providing power for Marathon Oil`s Brae A platform in the North Sea have recently been refitted with TC95-03 microprocessor governor control systems supplied by Turbine Controls Ltd., of, Leicester, England. The new control systems have been fitted to avoid the poor transient performance and damage that could occur under such conditions. The new fuel control system is designed to detect Wobbe Index variations while maintaining necessary protection and safety requirements of the gas turbine. In addition to being able to cope with varying gas composition, the governor has been programmed to permit variable fuel gas pressure. This has allowed the fuel gas pressure regulator to be removed, thereby eliminating many of the problems associated with the regulator. A fuel gas pressure transmitter has been added. In addition, replacing the governor has allowed some fairly minor modifications to start-up, loading and fuel changeover logic. These have resulted in significant improvements in the start-up and operational reliability.

  15. Highly Responsive Ultrathin GaS Nanosheet Photodetectors on Rigid and Flexible Substrates

    SciTech Connect

    Hu, Prof Pingan; Wang, Lifeng; Yoon, Mina; Zhang, Jia; Feng, Wei; Wang, Xiaona; Wen, Zhenzhong; Idrobo Tapia, Juan C; Miyamoto, Yoshiyuki; Geohegan, David B; Xiao, Kai

    2013-01-01

    The first GaS nanosheet-based photodetectors are demonstrated on both mechanically rigid and flexible substrates. Highly-crystalline, exfoliated GaS nanosheets are promising for optoelectronics due to strong absorption in the UV-visible wavelength region. Photocurrent measurements of GaS nanosheet photodetectors made on SiO2/Si substrates and flexible polyethylene terephthalate (PET) substrates exhibit a photo-responsivity at 254nm up to 4.2 AW-1 and 19.2 AW-1, respectively, which exceeds that of graphene, MoS2, or other 2D materials-based devices. Additionally, the linear dynamic range of the devices on SiO2/Si and PET substrates are 97.7dB and 78.73 dB, respectively. Both surpass that of currently-exploited InGaAs photodetectors (66 dB). Theoretical modeling of the electronic structures indicates that the reduction of the effective mass at the valence band maximum (VBM) with decreasing sheet thickness enhances the carrier mobility of the GaS nanosheets, contributing to the high photocurrents. Double-peak VBMs are theoretically predicted for ultrathin GaS nanosheets (thickness less than 5 monolayers), which is found to promote photon absorption. These theoretical and experimental results show that GaS nanosheets are promising materials for high performance photodetectors on both conventional silicon and flexible substrates.

  16. Fuel-Flexible Gasification-Combustion Technology for Production of H2 and Sequestration-Ready CO2

    SciTech Connect

    George Rizeq; Parag Kulkarni; Wei Wei; Arnaldo Frydman; Thomas McNulty; Roger Shisler

    2005-11-01

    It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Global Research is developing an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GE was awarded a contract from U.S. DOE NETL to develop the UFP technology. Work on the Phase I program started in October 2000, and work on the Phase II effort started in April 2005. In the UFP technology, coal and air are simultaneously converted into separate streams of (1) high-purity hydrogen that can be utilized in fuel cells or turbines, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure vitiated air to produce electricity in a gas turbine. The process produces near-zero emissions with an estimated efficiency higher than IGCC with conventional CO2 separation. The Phase I R&D program established the feasibility of the integrated UFP technology through lab-, bench- and pilot-scale testing and investigated operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The Phase I effort integrated experimental testing, modeling and preliminary economic studies to demonstrate the UFP technology. The Phase II effort will focus on three high-risk areas: economics, sorbent attrition and lifetime, and product gas quality for turbines. The economic analysis will include estimating the capital cost as well as the costs of hydrogen and electricity for a full-scale UFP plant. These costs will be

  17. Optical Fuel Injector Patternation Measurements in Advanced Liquid-Fueled, High Pressure, Gas Turbine Combustors

    NASA Technical Reports Server (NTRS)

    Locke, R. J.; Hicks, Y. R.; Anderson, R. C.; Zaller, M. M.

    1998-01-01

    Planar laser-induced fluorescence (PLIF) imaging and planar Mie scattering are used to examine the fuel distribution pattern (patternation) for advanced fuel injector concepts in kerosene burning, high pressure gas turbine combustors. Three fuel injector concepts for aerospace applications were investigated under a broad range of operating conditions. Fuel PLIF patternation results are contrasted with those obtained by planar Mie scattering. For one injector, further comparison is also made with data obtained through phase Doppler measurements. Differences in spray patterns for diverse conditions and fuel injector configurations are readily discernible. An examination of the data has shown that a direct determination of the fuel spray angle at realistic conditions is also possible. The results obtained in this study demonstrate the applicability and usefulness of these nonintrusive optical techniques for investigating fuel spray patternation under actual combustor conditions.

  18. Cover and startup gas supply system for solid oxide fuel cell generator

    DOEpatents

    Singh, P.; George, R.A.

    1999-07-27

    A cover and startup gas supply system for a solid oxide fuel cell power generator is disclosed. Hydrocarbon fuel, such as natural gas or diesel fuel, and oxygen-containing gas are supplied to a burner. Combustion gas exiting the burner is cooled prior to delivery to the solid oxide fuel cell. The system mixes the combusted hydrocarbon fuel constituents with hydrogen which is preferably stored in solid form to obtain a non-explosive gas mixture. The system may be used to provide both non-explosive cover gas and hydrogen-rich startup gas to the fuel cell. 4 figs.

  19. Cover and startup gas supply system for solid oxide fuel cell generator

    DOEpatents

    Singh, Prabhakar; George, Raymond A.

    1999-01-01

    A cover and startup gas supply system for a solid oxide fuel cell power generator is disclosed. Hydrocarbon fuel, such as natural gas or diesel fuel, and oxygen-containing gas are supplied to a burner. Combustion gas exiting the burner is cooled prior to delivery to the solid oxide fuel cell. The system mixes the combusted hydrocarbon fuel constituents with hydrogen which is preferably stored in solid form to obtain a non-explosive gas mixture. The system may be used to provide both non-explosive cover gas and hydrogen-rich startup gas to the fuel cell.

  20. Spray Characterization of Gas-to-Liquid Synthetic Jet Fuels

    NASA Astrophysics Data System (ADS)

    Kannaiyan, Kumaran; Sadr, Reza; GTL jet fuel Consortium Team

    2012-11-01

    Gas-to-Liquid (GTL) Synthetic Paraffinic Kerosene (SPK) fuel obtained from Fischer-Tropsch synthesis has grabbed the global attention due to its cleaner combustion characteristics. GTL fuels are expected to meet the vital qualities such as atomization, combustion and emission characteristics of conventional jet fuels. It is imperative to understand fuel atomization in order to gain insights on the combustion and emission aspects of an alternative fuel. In this work spray characteristics of GTL-SPK, which could be used as a drop-in fuel in aircraft gas turbine engines, is studied. This work outlines the spray experimental facility, the methodology used and the results obtained using two SPK's with different chemical compositions. The spray characteristics, such as droplet size and distribution, are presented at three differential pressures across a simplex nozzle and compared with that of the conventional Jet A-1 fuel. Experimental results clearly show that although the chemical composition is significantly different between SPK's, the spray characteristics are not very different. This could be attributed to the minimal difference in fluid properties between the SPK's. Also, the spray characteristics of SPK's show close resemblance to the spray characteristics of Jet A-1 fuel.

  1. First European fuel cell installation with anaerobic digester gas in a molten carbonate fuel cell

    NASA Astrophysics Data System (ADS)

    Krumbeck, M.; Klinge, T.; Döding, B.

    The City of Ahlen in North Rhine Westphalia, Germany and RWE Fuel Cells GmbH, Essen, cooperate in order to install a molten carbonate fuel cell in the municipal sewage works of Ahlen in May/June 2005. The MCFC unit, a so-called HotModule made by MTU CFC Solutions, Ottobrunn operates on anaerobic digester gas and provides power and heat for the sewage works. This is the first project of its kind in Europe. This article outlines the experiences of RWE Fuel Cells with planning, installation and operation of MCFC systems and is focussing on the use of digester gas. The engineering and installation phase is described regarding to the special features of digester gas, for example variation in gas composition and impurities as well as different flow rates. The results of the first months of operation are interpreted and influences to the performance of the fuel cell on digester gas composition are compared. One focus of the recent RWE Fuel Cells projects is the use of MCFC systems using different biofuels. With the results from planning, installation and operation of the MCFC in Ahlen a system design for the application of different fuels can be validated and tested.

  2. Coal/biomass fuels and the gas turbine: Utilization of solid fuels and their derivatives

    SciTech Connect

    DeCorso, M.; Newby, R.; Anson, D.; Wenglarz, R.; Wright, I.

    1996-06-01

    This paper discusses key design and development issues in utilizing coal and other solid fuels in gas turbines. These fuels may be burned in raw form or processed to produce liquids or gases in more or less refined forms. The use of such fuels in gas turbines requires resolution of technology issues which are of little or no consequence for conventional natural gas and refined oil fuels. For coal, these issues are primarily related to the solid form in which coal is naturally found and its high ash and contaminant levels. Biomass presents another set of issues similar to those of coal. Among the key areas discussed are effects of ash and contaminant level on deposition, corrosion, and erosion of turbine hot parts, with particular emphasis on deposition effects.

  3. 78 FR 9679 - National Fuel Gas Supply Corporation; Prior Notice of Activity Under Blanket Certificate

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-11

    ... Energy Regulatory Commission National Fuel Gas Supply Corporation; Prior Notice of Activity Under Blanket Certificate On January 24, 2013, National Fuel Gas Supply Corporation (National Fuel) filed with the Federal..., National Fuel Gas Supply Corporation, 6363 Main Street, Williamsville, New York 14221, or by calling...

  4. Advanced coal-fueled industrial cogeneration gas turbine system

    SciTech Connect

    LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; Wen, C.S.

    1991-07-01

    Advances in coal-fueled gas turbine technology over the past few years, together with recent DOE-METC sponsored studies, have served to provide new optimism that the problems demonstrated in the past can be economically resolved and that the coal-fueled gas turbine can ultimately be the preferred system in appropriate market application sectors. The objective of the Solar/METC program is to prove the technical, economic, and environmental feasibility of a coal-fired gas turbine for cogeneration applications through tests of a Centaur Type H engine system operated on coal fuel throughout the engine design operating range. The five-year program consists of three phases, namely: (1) system description; (2) component development; (3) prototype system verification. A successful conclusion to the program will initiate a continuation of the commercialization plan through extended field demonstration runs.

  5. The use of fixed bed absorbents for flexible operation on the SAGE gas processing plant

    SciTech Connect

    Carnell, P.J.H.; Joslin, K.W.; Woodham, P.R.

    1995-11-01

    Mobil North Sea Ltd. operates the SAGE Gas Terminal at St. Fergus, Scotland on behalf of the SAGE partners. This terminal is capable of processing 1,150 MMscfd of sour gas with the sales gas being delivered into the British Gas distribution network and NGL`s exported by pipelines to Shell`s NGL fractionation plant at Mossmorran and BP`s fractionation plant at Kinneil. In order to meet the specifications for the sales gas and NGL produced while processing different mixtures of three separate feed gases produced by three independently operated production platforms the SAGE Gas Terminal has utilized ICI Katalco`s PURASPEC{trademark} processes to provide flexibility and reduce cost. This paper discusses how and where these fixed bed processes are utilized.

  6. Power and temperature control of fluctuating biomass gas fueled solid oxide fuel cell and micro gas turbine hybrid system

    NASA Astrophysics Data System (ADS)

    Kaneko, T.; Brouwer, J.; Samuelsen, G. S.

    This paper addresses how the power and temperature are controlled in a biomass gas fueled solid oxide fuel cell (SOFC) and micro gas turbine (MGT) hybrid system. A SOFC and MGT dynamic model are developed and used to simulate the hybrid system performance operating on biomass gas. The transient behavior of both the SOFC and MGT are discussed in detail. An unstable power output is observed when the system is fed biomass gas. This instability is due to the fluctuation of gas composition in the fuel. A specially designed fuel controller succeeded not only in allowing the hybrid system to follow a step change of power demand from 32 to 35 kW, but also stably maintained the system power output at 35 kW. In addition to power control, fuel cell temperature is controlled by introduction and use of a bypass valve around the recuperator. By releasing excess heat to the exhaust, the bypass valve provided the control means to avoid the self-exciting behavior of system temperature and stabilized the temperature of SOFC at 850 °C.

  7. Advanced coal-fueled industrial cogeneration gas turbine system

    SciTech Connect

    LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; Wen, C.S.

    1990-07-01

    The objective of the Solar/METC program is to prove the technical, economic, and environmental feasibility of coal-fired gas turbine for cogeneration applications through tests of a Centaur Type H engine system operated on coal fuel throughout the engine design operating range. This quarter, work was centered on design, fabrication, and testing of the combustor, cleanup, fuel specifications, and hot end simulation rig. 2 refs., 59 figs., 29 tabs.

  8. Gas fueling studies in the PDX tokamak: II

    SciTech Connect

    Dylla, H.F.; Bell, M.G.; Fonck, R.J.; Jaehnig, K.; Kaye, S.M.; Owens, D.K.; Heifetz, D.B.; Schmidt, G.L.

    1984-01-01

    Measurements of the gas fueling characteristics of the PDX tokamak have been extended in parameter range. An earlier study presented the gas fueling efficiency for H/sub 2/ and D/sub 2/ for the standard PDX divertor configurations with a large conductance between the divertor and main plasma chambers. This study presents the observed variations in H/sub 2/, D/sub 2/, and He neutral pressure and ionization light emission for divertor configurations with a restricted conductance between the divertor and main plasma chambers. The restricted conductance improved the divertor/main-chamber compression ratio by more than an order of magnitude. For the same plasma density, gas fueling from the divertor chamber was twice as efficient as fueling from the main chamber. At the highest plasma densities that were investigated, anti n/sub e/ approx. = 4 x 10/sup 13/ cm/sup -3/, a decrease in the plasma temperature in the divertor was indicated by a decrease in the ionization light at the divertor throat for D/sub 2/ and He fueled discharges. These observations are consistent with a Monte-Carlo model of neutral gas transport in the divertor.

  9. Indirect-fired gas turbine bottomed with fuel cell

    DOEpatents

    Micheli, P.L.; Williams, M.C.; Parsons, E.L.

    1995-09-12

    An indirect-heated gas turbine cycle is bottomed with a fuel cell cycle with the heated air discharged from the gas turbine being directly utilized at the cathode of the fuel cell for the electricity-producing electrochemical reaction occurring within the fuel cell. The hot cathode recycle gases provide a substantial portion of the heat required for the indirect heating of the compressed air used in the gas turbine cycle. A separate combustor provides the balance of the heat needed for the indirect heating of the compressed air used in the gas turbine cycle. Hot gases from the fuel cell are used in the combustor to reduce both the fuel requirements of the combustor and the NOx emissions therefrom. Residual heat remaining in the air-heating gases after completing the heating thereof is used in a steam turbine cycle or in an absorption refrigeration cycle. Some of the hot gases from the cathode can be diverted from the air-heating function and used in the absorption refrigeration cycle or in the steam cycle for steam generating purposes. 1 fig.

  10. Gaseous fueled vehicles: A role for natural gas and hydrogen

    SciTech Connect

    Blazek, C.F.; Jasionowski, W.J.

    1991-01-01

    The commercialization of gaseous hydrogen fueled vehicles requires both the development of hydrogen fueled vehicles and the establishment of a hydrogen fueling infrastructure. These requirements create a classic chicken and egg scenario in that manufacturers will not build and consumers will not buy vehicles without an adequate refueling infrastructure and potential refueling station operators will not invest the needed capital without an adequate market to serve. One solution to this dilemma is to create a bridging strategy whereby hydrogen is introduced gradually via another carrier. The only contending alternative fuel that can act as a bridge to hydrogen fueled vehicles is natural gas. To explore this possibility, IGT is conducting emission tests on its dedicated natural gas vehicle (NGV) test platform to determine what, if any, effects small quantities of hydrogen have on emissions and performance. Furthermore, IGT is actively developing an adsorbent based low-pressure natural gas storage system for NGV applications. This system has also shown promise as a storage media for hydrogen. A discussion of our research results in this area will be presented. Finally, a review of IGT's testing facility will be presented to indicate our capabilities in conducted natural gas/hydrogen vehicle (NGHV) research. 3 refs., 10 figs.

  11. Gas fueling studies in the PDX tokamak: II

    NASA Astrophysics Data System (ADS)

    Dylla, H. F.; Bell, M. G.; Fonck, R. J.; Jaehnig, K.; Kaye, S. M.; Owens, D. K.; Heifetz, D. B.; Schmidt, G. L.

    1984-05-01

    Measurements of the gas fueling characteristics of the PDX tokamak have been extended in parameter range. An earlier study presented the gas fueling efficiency for H 2 and D 2 for the standard PDX divertor configurations with a large conductance between the divertor and main plasma chambers. This study presents the observed variations in H 2, D 2 and He neutral pressure and ionization light emission for divertor configurations with a restricted conductance between the divertor and main plasma chambers. The restricted conductance improved the divertor/main-chamber compression ratio by more than an order of magnitude. For the same plasma density, gas fueling from the divertor chamber was twice as efficient as fueling from the main chamber. At the highest plasma densities that were investigated, overlinene ≃ 4 × 10 13cm-3, a decrease in the plasma temperature in the divertor was indicated by a decrease in the ionization light at the divertor throat for D 2 and He fueled discharges. These observations are consistent with a Monte-Carlo model of neutral gas transport in the divertor.

  12. Indirect-fired gas turbine bottomed with fuel cell

    DOEpatents

    Micheli, Paul L.; Williams, Mark C.; Parsons, Edward L.

    1995-01-01

    An indirect-heated gas turbine cycle is bottomed with a fuel cell cycle with the heated air discharged from the gas turbine being directly utilized at the cathode of the fuel cell for the electricity-producing electrochemical reaction occurring within the fuel cell. The hot cathode recycle gases provide a substantial portion of the heat required for the indirect heating of the compressed air used in the gas turbine cycle. A separate combustor provides the balance of the heat needed for the indirect heating of the compressed air used in the gas turbine cycle. Hot gases from the fuel cell are used in the combustor to reduce both the fuel requirements of the combustor and the NOx emissions therefrom. Residual heat remaining in the air-heating gases after completing the heating thereof is used in a steam turbine cycle or in an absorption refrigeration cycle. Some of the hot gases from the cathode can be diverted from the air-heating function and used in the absorption refrigeration cycle or in the steam cycle for steam generating purposes.

  13. Spray Characterization of Gas-to-Liquid Synthetic Jet Fuels

    NASA Astrophysics Data System (ADS)

    Kannaiyan, Kumaran; Sadr, Reza

    2011-11-01

    In the recent years, development of alternative jet fuels is gaining importance owing to the demand for cleaner combustion. In addition to having energy density that matches those of conventional fuels, alternate jet fuels need to possess vital qualities such as rapid atomization and vaporization, quick re-ignition at high altitude, less emission, and poses ease of handling. The fuel preparatory steps (atomization and vaporization) and mixing in a combustion chamber play a crucial role on the subsequent combustion and emission characteristics. Gas-to-Liquid (GTL) synthetic jet fuel obtained from Fischer-Tropsch synthesis has grabbed the global attention due to its cleaner combustion characteristics as a result of the absence of aromatics and sulphur. As a part of an on-going joint effort between Texas A&M at Qatar (TAMUQ), Rolls-Royce (UK), and German Aerospace Laboratory (DLR), a spray characterization experimental facility is set up at TAMUQ to study the spray characteristics of GTL fuel and highlights the influence of change in fuel composition on the spray characteristics. In this work, spray characteristics such as droplet size, velocity, and distribution of different GTL fuel blends is investigated and compared with the spray characteristics of conventional JetA1 fuel. Supported by Qatar Science and Technology Park, QSTP.

  14. Interface ring for gas turbine fuel nozzle assemblies

    DOEpatents

    Fox, Timothy A.; Schilp, Reinhard

    2016-03-22

    A gas turbine combustor assembly including a combustor liner and a plurality of fuel nozzle assemblies arranged in an annular array extending within the combustor liner. The fuel nozzle assemblies each include fuel nozzle body integral with a swirler assembly, and the swirler assemblies each include a bellmouth structure to turn air radially inwardly for passage into the swirler assemblies. A radially outer removed portion of each of the bellmouth structures defines a periphery diameter spaced from an inner surface of the combustor liner, and an interface ring is provided extending between the combustor liner and the removed portions of the bellmouth structures at the periphery diameter.

  15. Fuel premixing module for gas turbine engine combustor

    NASA Technical Reports Server (NTRS)

    Chin, Jushan (Inventor); Rizk, Nader K. (Inventor); Razdan, Mohan K. (Inventor); Marshall, Andre W. (Inventor)

    2005-01-01

    A fuel-air premixing module is designed to reduce emissions from a gas turbine engine. In one form, the premixing module includes a central pilot premixer module with a main premixer module positioned thereround. Each of the portions of the fuel-air premixing module include an axial inflow swirler with a plurality of fixed swirler vanes. Fuel is injected into the main premixer module between the swirler vanes of the axial inflow swirler and at an acute angle relative to the centerline of the premixing module.

  16. Axisymmetric whole pin life modelling of advanced gas-cooled reactor nuclear fuel

    NASA Astrophysics Data System (ADS)

    Mella, R.; Wenman, M. R.

    2013-06-01

    different FE and finite difference models. Non-linear mechanical behaviour of the fuel and cladding including, fuel creep and swelling and cladding creep and plasticity each with dependencies on a variety of different properties. A fission gas release model which takes inputs from first principles calculations. Explicitly integrated inventory calculations performed in a coupled manner. Freedom to model steady state and transient behaviour using implicit time integration. The whole pin geometry is considered over an entire typical fuel life. The model showed by examination of normal operation and a subsequent transient chosen for software demonstration purposes: ABAQUS may be a sufficiently flexible platform to develop a complete and verified fuel performance code. The importance and effectiveness of the geometry of the fuel spacer pellets was characterised. The fuels performance under normal conditions (high friction no power spikes) would not suggest serious degradation of the cladding in fuel life. Large plastic strains were found when pellet bonding was strong, these would appear at all pellets cladding triple points and all pellet radial crack and cladding interfaces thus showing a possible axial direction to cracks forming from ductility exhaustion.

  17. Fuel injection staged sectoral combustor for burning low-BTU fuel gas

    DOEpatents

    Vogt, Robert L.

    1985-02-12

    A high-temperature combustor for burning low-BTU coal gas in a gas turbine is described. The combustor comprises a plurality of individual combustor chambers. Each combustor chamber has a main burning zone and a pilot burning zone. A pipe for the low-BTU coal gas is connected to the upstream end of the pilot burning zone: this pipe surrounds a liquid fuel source and is in turn surrounded by an air supply pipe: swirling means are provided between the liquid fuel source and the coal gas pipe and between the gas pipe and the air pipe. Additional preheated air is provided by counter-current coolant air in passages formed by a double wall arrangement of the walls of the main burning zone communicating with passages of a double wall arrangement of the pilot burning zone: this preheated air is turned at the upstream end of the pilot burning zone through swirlers to mix with the original gas and air input (and the liquid fuel input when used) to provide more efficient combustion. One or more fuel injection stages (second stages) are provided for direct input of coal gas into the main burning zone. The countercurrent air coolant passages are connected to swirlers surrounding the input from each second stage to provide additional oxidant.

  18. Fuel injection staged sectoral combustor for burning low-BTU fuel gas

    DOEpatents

    Vogt, Robert L.

    1981-01-01

    A high-temperature combustor for burning low-BTU coal gas in a gas turbine is described. The combustor comprises a plurality of individual combustor chambers. Each combustor chamber has a main burning zone and a pilot burning zone. A pipe for the low-BTU coal gas is connected to the upstream end of the pilot burning zone; this pipe surrounds a liquid fuel source and is in turn surrounded by an air supply pipe; swirling means are provided between the liquid fuel source and the coal gas pipe and between the gas pipe and the air pipe. Additional preheated air is provided by counter-current coolant air in passages formed by a double wall arrangement of the walls of the main burning zone communicating with passages of a double wall arrangement of the pilot burning zone; this preheated air is turned at the upstream end of the pilot burning zone through swirlers to mix with the original gas and air input (and the liquid fuel input when used) to provide more efficient combustion. One or more fuel injection stages (second stages) are provided for direct input of coal gas into the main burning zone. The countercurrent air coolant passages are connected to swirlers surrounding the input from each second stage to provide additional oxidant.

  19. Gas block mechanism for water removal in fuel cells

    DOEpatents

    Issacci, Farrokh; Rehg, Timothy J.

    2004-02-03

    The present invention is directed to apparatus and method for cathode-side disposal of water in an electrochemical fuel cell. There is a cathode plate. Within a surface of the plate is a flow field comprised of interdigitated channels. During operation of the fuel cell, cathode gas flows by convection through a gas diffusion layer above the flow field. Positioned at points adjacent to the flow field are one or more porous gas block mediums that have pores sized such that water is sipped off to the outside of the flow field by capillary flow and cathode gas is blocked from flowing through the medium. On the other surface of the plate is a channel in fluid communication with each porous gas block mediums. The method for water disposal in a fuel cell comprises installing the cathode plate assemblies at the cathode sides of the stack of fuel cells and manifolding the single water channel of each of the cathode plate assemblies to the coolant flow that feeds coolant plates in the stack.

  20. A flexible metal–organic framework: Guest molecules controlled dynamic gas adsorption

    DOE PAGESBeta

    Mahurin, Shannon Mark; Li, Man -Rong; Wang, Hailong; Lu, Zhengliang; Chen, Banglin; Dai, Sheng; Yue, Yanfeng; Rabone, Jeremy A.; Liu, Hongjun; Wang, Jihang; et al

    2015-04-13

    A flexible metal–organic framework (MOF) of [Zn3(btca)2(OH)2]·(guest)n (H2btca = 1,2,3-benzotriazole-5-carboxylic acid) that exhibits guest molecule-controlled dynamic gas adsorption is reported in which carbon dioxide molecules rather than N2, He, and Ar induce a structural transition with a corresponding appearance of additional steps in the isotherms. Physical insights into the dynamic adsorption behaviors of flexible compound 1 were detected by gas adsorption at different temperatures and different pressures and confirmed by Fourier transform infrared spectroscopy and molecular simulations. Interestingly, by taking advantage of the flexible nature inherent to the framework, this MOF material enables highly selective adsorption of CO2/N2, CO2/Ar, andmore » CO2/He of 36.3, 32.6, and 35.9, respectively, at 298 K. Furthermore, this class of flexible MOFs has potential applications for controlled release, molecular sensing, noble gas separation, smart membranes, and nanotechnological devices.« less

  1. A flexible metal–organic framework: Guest molecules controlled dynamic gas adsorption

    SciTech Connect

    Mahurin, Shannon Mark; Li, Man -Rong; Wang, Hailong; Lu, Zhengliang; Chen, Banglin; Dai, Sheng; Yue, Yanfeng; Rabone, Jeremy A.; Liu, Hongjun; Wang, Jihang; Fang, Youxing

    2015-04-13

    A flexible metal–organic framework (MOF) of [Zn3(btca)2(OH)2]·(guest)n (H2btca = 1,2,3-benzotriazole-5-carboxylic acid) that exhibits guest molecule-controlled dynamic gas adsorption is reported in which carbon dioxide molecules rather than N2, He, and Ar induce a structural transition with a corresponding appearance of additional steps in the isotherms. Physical insights into the dynamic adsorption behaviors of flexible compound 1 were detected by gas adsorption at different temperatures and different pressures and confirmed by Fourier transform infrared spectroscopy and molecular simulations. Interestingly, by taking advantage of the flexible nature inherent to the framework, this MOF material enables highly selective adsorption of CO2/N2, CO2/Ar, and CO2/He of 36.3, 32.6, and 35.9, respectively, at 298 K. Furthermore, this class of flexible MOFs has potential applications for controlled release, molecular sensing, noble gas separation, smart membranes, and nanotechnological devices.

  2. Gas cooled fuel cell systems technology development

    NASA Technical Reports Server (NTRS)

    Feret, J. M.

    1986-01-01

    The work performed during the Second Logical Unit of Work of a multi-year program designed to develop a phosphoric acid fuel cell (PAFC) for electric utility power plant application is discussed. The Second Logical Unit of Work, which covers the period May 14, 1983 through May 13, 1984, was funded by the U.S. Department of Energy, Office of Fossil Energy, Morgantown Energy Technology Center, and managed by the NASA Lewis Research Center.

  3. Greenhouse Gas and Noxious Emissions from Dual Fuel Diesel and Natural Gas Heavy Goods Vehicles.

    PubMed

    Stettler, Marc E J; Midgley, William J B; Swanson, Jacob J; Cebon, David; Boies, Adam M

    2016-02-16

    Dual fuel diesel and natural gas heavy goods vehicles (HGVs) operate on a combination of the two fuels simultaneously. By substituting diesel for natural gas, vehicle operators can benefit from reduced fuel costs and as natural gas has a lower CO2 intensity compared to diesel, dual fuel HGVs have the potential to reduce greenhouse gas (GHG) emissions from the freight sector. In this study, energy consumption, greenhouse gas and noxious emissions for five after-market dual fuel configurations of two vehicle platforms are compared relative to their diesel-only baseline values over transient and steady state testing. Over a transient cycle, CO2 emissions are reduced by up to 9%; however, methane (CH4) emissions due to incomplete combustion lead to CO2e emissions that are 50-127% higher than the equivalent diesel vehicle. Oxidation catalysts evaluated on the vehicles at steady state reduced CH4 emissions by at most 15% at exhaust gas temperatures representative of transient conditions. This study highlights that control of CH4 emissions and improved control of in-cylinder CH4 combustion are required to reduce total GHG emissions of dual fuel HGVs relative to diesel vehicles.

  4. Development of a Dual-Fuel Gas Turbine Engine of Liquid and Low-Calorific Gas

    NASA Astrophysics Data System (ADS)

    Koyama, Masamichi; Fujiwara, Hiroshi

    We developed a dual-fuel single can combustor for the Niigata Gas Turbine (NGT2BC), which was developed as a continuous-duty gas turbine capable of burning both kerosene and digester gas. The output of the NGT2BC is 920kW for continuous use with digester gas and 1375kW for emergency use with liquid fuel. Digester gas, obtained from sludge processing at sewage treatment plants, is a biomass energy resource whose use reduces CO2 emissions and take advantage of an otherwise wasted energy source. Design features for good combustion with digester gas include optimized the good matching of gas injection and swirl air and reduced reference velocity. The optimal combination of these parameters was determined through CFD analysis and atmospheric rig testing.

  5. Fuel cell-gas turbine hybrid system design part I: Steady state performance

    NASA Astrophysics Data System (ADS)

    McLarty, Dustin; Brouwer, Jack; Samuelsen, Scott

    2014-07-01

    The hybridization of gas turbine technology with high temperature fuel cells represents an ultra-high efficiency, ultra-low emission, fuel flexible power generation platform. The performance of past prototypes has been limited by marginal compatibility of the two primary sub-systems. This paper addresses the challenge of selecting compatible hardware by presenting a simple and robust method for bespoke hybrid system design and off-the-shelf component integration. This is the first application of detailed, spatially resolved, physical models capable of resolving off-design performance to the integration analysis of FC-GT hybrids. Static maps are produced for both turbine and fuel cell sub-systems that readily evaluate the compatibility and hybrid performance. Molten carbonate and solid oxide fuel cells are considered for hybridization with recuperated micro-turbines and larger axial flow gas turbine systems. Current state-of-the-art molten carbonate technology is shown to pair well with present micro-turbine technology in an FC bottoming cycle design achieving 74.4% LHV efficiency. Solid oxide technology demonstrates remarkable potential for integration with larger scale axial turbo-machinery to achieve greater than 75% LHV efficiency. This performance map technique closely matches results from detailed integrated hybrid system analyses, and enables quick determination of performance requirements for balance of plant design and optimization.

  6. Advanced Coal-Fueled Gas Turbine Program. Final report

    SciTech Connect

    Horner, M.W.; Ekstedt, E.E.; Gal, E.; Jackson, M.R.; Kimura, S.G.; Lavigne, R.G.; Lucas, C.; Rairden, J.R.; Sabla, P.E.; Savelli, J.F.; Slaughter, D.M.; Spiro, C.L.; Staub, F.W.

    1989-02-01

    The objective of the original Request for Proposal was to establish the technological bases necessary for the subsequent commercial development and deployment of advanced coal-fueled gas turbine power systems by the private sector. The offeror was to identify the specific application or applications, toward which his development efforts would be directed; define and substantiate the technical, economic, and environmental criteria for the selected application; and conduct such component design, development, integration, and tests as deemed necessary to fulfill this objective. Specifically, the offeror was to choose a system through which ingenious methods of grouping subcomponents into integrated systems accomplishes the following: (1) Preserve the inherent power density and performance advantages of gas turbine systems. (2) System must be capable of meeting or exceeding existing and expected environmental regulations for the proposed application. (3) System must offer a considerable improvement over coal-fueled systems which are commercial, have been demonstrated, or are being demonstrated. (4) System proposed must be an integrated gas turbine concept, i.e., all fuel conditioning, all expansion gas conditioning, or post-expansion gas cleaning, must be integrated into the gas turbine system.

  7. Gas density effect on dropsize of simulated fuel sprays

    NASA Technical Reports Server (NTRS)

    Ingebo, Robert D.

    1989-01-01

    Two-phase flow in pneumatic two-fluid fuel nozzles was investigated experimentally to determine the effect of atomizing-gas density and gas mass-flux on liquid-jet breakup in sonic-velocity gas-flow. Dropsize data were obtained for the following atomizing-gases: nitrogen; argon; carbon dioxide; and helium. They were selected to cover a gas molecular-weight range of 4 to 44. Atomizing-gas mass-flux ranged from 6 to 50 g/sq cm-sec and four differently sized two-fluid fuel nozzles were used having orifice diameters that varied from 0.32 to 0.56 cm. The ratio of liquid-jet diameter to SMD, D sub o/D sub 32, was correlated with aerodynamic and liquid-surface forces based on the product of the Weber and Reynolds number, We*Re, and gas-to-liquid density ratio, rho sub g/rho sub l. To correlate spray dropsize with breakup forces produced by using different atomizing-gases, a new molecular-scale dimensionless group was derived. The derived dimensionless group was used to obtain an expression for the ratio of liquid-jet diameter to SMD, D sub o/D sub 32. The mathematical expression of this phenomenon incorporates the product of the Weber and Reynolds number, liquid viscosity, surface tension, acoustic gas velocity, the RMS velocity of gas molecules, the acceleration of gas molecules due to gravity, and gas viscosity. The mathematical expression encompassing these parameters agrees well with the atomization theory for liquid-jet breakup in high velocity gas flow. Also, it was found that at the same gas mass-flux, helium was considerably more effective than nitrogen in producing small droplet sprays with SMD's in the order of 5 micrometers.

  8. Gas density effect on dropsize of simulated fuel sprays

    NASA Technical Reports Server (NTRS)

    Ingebo, Robert D.

    1989-01-01

    Two-phase flow in pneumatic two-fluid fuel nozzles was investigated experimentally to determine the effect of atomizing-gas density and gas mass-flux on liquid-jet breakup in sonic-velocity gas-flow. Dropsize data were obtained for the following atomizing-gases: nitrogen; argon; carbon dioxide; and helium. They were selected to cover a gas molecular-weight range of 4 to 44. Atomizing-gas mass-flux ranged from 6 to 50 g/sq cm-sec and four differently sized two-fluid fuel nozzles were used having orifice diameters that varied from 0.32 to 0.56 cm. The ratio of liquid-jet diameter to SMD, D sub o/D sub 32, was correlated with aerodynamic and liquid-surface forces based on the product of the Weber and Reynolds number, and gas-to-liquid density ratio, rho sub g/rho sub 1. To correlate spray dropsize with breakup forces produced by using different atomizing-gases, a new molecular-scale dimensionless group was derived. The derived dimensionless group was used to obtain an expression for the ratio of liquid-jet diameter to SMD, D sub o/D sub 32. The mathematical expression of this phenomenon incorporates the product of the Weber and Reynolds number, liquid viscosity, surface tension, acoustic gas velocity, the RMS velocity of gas molecules, the acceleration of gas molecules due to gravity, and gas viscosity. The mathematical expression encompassing these parameters agrees well with the atomization theory for liquid-jet breakup in high velocity gas flow. Also, it was found that at the same gas mass-flux, helium was considerably more effective than nitrogen in producing small droplet sprays with SMD's in the order of 5 micrometers.

  9. Gas turbine fuel from low-rank coal

    SciTech Connect

    Maas, D.J.; Smith, F.J.

    1986-06-01

    Five low-rank coals from the western United States were cleaned in a bench-scale heavy media separation procedures followed by acid leaching and hydrothermal processing. The objective of these cleaning steps was to determine the amenability of preparing gas turbine quality fuel from low-rank coal. The best candidate for scale-up was determined to be a Wyoming subbituminous coal from the eagle Butte mine. Two hundred thirty kilograms of cleaned and micronized coal/water fuel were prepared in pilot-scale equipment to determine process parameters and fuel characteristics. After establishing operating conditions, two thousand kilograms of cleaned and micronized coal/water and powdered coal fuel were produced for testing in a pilot-scale gas turbine combustor. An economic analysis was completed for a commercial-scale plant designed to produce clean gas turbine fuel from low-rank coal using the most promising process steps identified form the bench- and pilot-scale studies. 21 refs., 12 figs., 20 tabs.

  10. Gas turbine fuel from low-rank coal

    SciTech Connect

    Maas, D.J.; Smit, F.J.

    1986-01-01

    Five low-rank coals from the western United States were cleaned in a bench-scale heavy media separation procedure followed by acid leaching and hydrothermal processing. The objective of these cleaning steps was to determine the amenability of preparing gas turbine quality fuel from low-rank coal. The best candidate for scale-up was determined to be a Wyoming subbituminous coal from the Eagle Butte mine. Two hundred thirty kilograms of cleaned and micronized coal/water fuel were prepared in pilot-scale equipment to determine process parameters and fuel characteristics. After establishing operating conditions, two thousand kilograms of cleaned and micronized coal/water and powdered coal fuel were produced for testing in a pilot-scale gas turbine combustor. An economic analysis was completed for a commercial-scale plant designed to produce clean gas turbine fuel from low-rank coal using the most promising process steps identified from the bench-and pilot-scale studies.

  11. TEST RESULTS FOR FUEL CELL OPERATION ON ANAEROBIC DIGESTER GAS

    EPA Science Inventory

    EPA, in conjunction with ONSI Corp., embarked on a project to define, design, test, and assess a fuel cell energy recovery system for application at anaerobic digester waste water (sewage) treatment plants. Anaerobic digester gas (ADG) is produced at these plants during the proce...

  12. FUEL CELL OPERATION ON LANDFILL GAS AT PENROSE POWER STATION

    EPA Science Inventory

    This demonstration test successfully demonstrated operation of a commercial phosphoric acid fuel cell (FC) on landfill gas (LG) at the Penrose Power Station in Sun Valley, CA. Demonstration output included operation up to 137 kW; 37.1% efficiency at 120 kW; exceptionally low sec...

  13. Biomass & Natural Gas Based Hydrogen Fuel For Gas Turbine (Power Generation)

    EPA Science Inventory

    Significant progress has been made by major power generation equipment manufacturers in the development of market applications for hydrogen fuel use in gas turbines in recent years. Development of a new application using gas turbines for significant reduction of power plant CO2 e...

  14. Plasma reforming and partial oxidation of hydrocarbon fuel vapor to produce synthesis gas and/or hydrogen gas

    DOEpatents

    Kong, Peter C.; Detering, Brent A.

    2003-08-19

    Methods and systems for treating vapors from fuels such as gasoline or diesel fuel in an internal combustion engine, to form hydrogen gas or synthesis gas, which can then be burned in the engine to produce more power. Fuel vapor, or a mixture of fuel vapor and exhaust gas and/or air, is contacted with a plasma, to promote reforming reactions between the fuel vapor and exhaust gas to produce carbon monoxide and hydrogen gas, partial oxidation reactions between the fuel vapor and air to produce carbon monoxide and hydrogen gas, or direct hydrogen and carbon particle production from the fuel vapor. The plasma can be a thermal plasma or a non-thermal plasma. The plasma can be produced in a plasma generating device which can be preheated by contact with at least a portion of the hot exhaust gas stream, thereby decreasing the power requirements of the plasma generating device.

  15. Plasma Reforming And Partial Oxidation Of Hydrocarbon Fuel Vapor To Produce Synthesis Gas And/Or Hydrogen Gas

    DOEpatents

    Kong, Peter C.; Detering, Brent A.

    2004-10-19

    Methods and systems are disclosed for treating vapors from fuels such as gasoline or diesel fuel in an internal combustion engine, to form hydrogen gas or synthesis gas, which can then be burned in the engine to produce more power. Fuel vapor, or a mixture of fuel vapor and exhaust gas and/or air, is contacted with a plasma, to promote reforming reactions between the fuel vapor and exhaust gas to produce carbon monoxide and hydrogen gas, partial oxidation reactions between the fuel vapor and air to produce carbon monoxide and hydrogen gas, or direct hydrogen and carbon particle production from the fuel vapor. The plasma can be a thermal plasma or a non-thermal plasma. The plasma can be produced in a plasma generating device which can be preheated by contact with at least a portion of the hot exhaust gas stream, thereby decreasing the power requirements of the plasma generating device.

  16. Miniaturized ascorbic acid fuel cells with flexible electrodes made of graphene-coated carbon fiber cloth

    NASA Astrophysics Data System (ADS)

    Hoshi, Kazuki; Muramatsu, Kazuo; Sumi, Hisato; Nishioka, Yasushiro

    2016-04-01

    Ascorbic acid (AA) is a biologically friendly compound and exists in many products such as sports drinks, fruit, and even in human blood. Thus, a miniaturized and flexible ascorbic acid fuel cell (AAFC) is expected be a power source for portable or implantable electric devices. In this study, we fabricated an AAFC with anode and cathode dimensions of 3 × 10 mm2 made of a graphene-coated carbon fiber cloth (GCFC) and found that GCFC electrodes significantly improve the power generated by the AAFC. This is because the GCFC has more than two times the effective surface area of a conventional carbon fiber cloth and it can contain more enzymes. The power density of the AAFC in a phosphate buffer solution containing 100 mM AA at room temperature was 34.1 µW/cm2 at 0.46 V. Technical issues in applying the AAFC to portable devices are also discussed.

  17. Integrated production of fuel gas and oxygenated organic compounds from synthesis gas

    DOEpatents

    Moore, Robert B.; Hegarty, William P.; Studer, David W.; Tirados, Edward J.

    1995-01-01

    An oxygenated organic liquid product and a fuel gas are produced from a portion of synthesis gas comprising hydrogen, carbon monoxide, carbon dioxide, and sulfur-containing compounds in a integrated feed treatment and catalytic reaction system. To prevent catalyst poisoning, the sulfur-containing compounds in the reactor feed are absorbed in a liquid comprising the reactor product, and the resulting sulfur-containing liquid is regenerated by stripping with untreated synthesis gas from the reactor. Stripping offgas is combined with the remaining synthesis gas to provide a fuel gas product. A portion of the regenerated liquid is used as makeup to the absorber and the remainder is withdrawn as a liquid product. The method is particularly useful for integration with a combined cycle coal gasification system utilizing a gas turbine for electric power generation.

  18. Effects of substituting fuel spray for fuel gas on flame stability in lean premixtures

    SciTech Connect

    Nicoli, C.; Haldenwang, P.; Suard, S.

    2007-05-15

    We analyze flame propagation through a homogeneous three-component premixture composed of fuel gas, small fuel droplets, and air. This analytical study is carried out within the framework of a diffusional-thermal model with the simplifying assumption that both fuels - the fuel in the gaseous phase and the gaseous fuel evaporating from the droplets - have the same Lewis number. The parameter that expresses the degree of substitution of spray for gas is {delta}, the liquid loading, i.e., the ratio of liquid fuel mass fraction to overall fuel mass fraction in the fresh premixture. In this substitution of liquid fuel for gaseous fuel, the overall equivalence ratio is lean and is kept identical. We hence obtain a partially prevaporized spray, for which we analytically study the dynamics of the plane spray-flame front. The investigated model assumes the averaged distance between droplets to be small compared with the premixed flame thickness (i.e., small droplets and moderate pressure). Le, the Lewis number, Ze, the Zeldovich number, and {delta} are the main parameters of the study. Our stability analysis supplies the stability diagram in the plane {l_brace}Le,{delta}{r_brace} for various Ze values and shows that, for all Le, the plane front becomes unstable for high liquid loading. At large or moderate Lewis number, we show that the presence of droplets substantially diminishes the onset threshold of the oscillatory instability, making the appearance of oscillatory propagation easier. Oscillations can even occur for Le<1 when sufficient spray substitution is operated. The pulsation frequency occurring in this regime is a tunable function of {delta}. At low Lewis number, substitution of spray for gas leads to a more complex situation for which two branches can coexist: the first one still corresponding to the pulsating regime, the other one being related to the diffusive-thermal cellular instability. (author)

  19. Semi-flexible gas-insulated transmission line using sandwiched discs for intermittent flexing joints

    DOEpatents

    Kommineni, Prasad R.

    1983-02-15

    A gas-insulated transmission line includes an outer sheath, an inner conductor, an insulating gas electrically insulating the inner conductor from the outer sheath, and insulating supports insulatably supporting the inner conductor within the outer sheath. The inner conductor is provided with flexibility by the use of main conductor sections which are joined together through a conductor hub section and flexible flexing elements. Stress shields are provided to control the electric field at the locations of the conductor hub sections where the insulating supports are contacting the inner conductor. The flexing elements are formed by sandwiching together, by fusing, a pair of thin hollow discs which are fixedly secured to both the main conductor sections and the conductor hub section.

  20. Semi-flexible gas-insulated transmission line using sandwiched discs for intermittent flexing joints

    DOEpatents

    Kommineni, P.R.

    1983-02-15

    A gas-insulated transmission line includes an outer sheath, an inner conductor, an insulating gas electrically insulating the inner conductor from the outer sheath, and insulating supports insulatably supporting the inner conductor within the outer sheath. The inner conductor is provided with flexibility by the use of main conductor sections which are joined together through a conductor hub section and flexible flexing elements. Stress shields are provided to control the electric field at the locations of the conductor hub sections where the insulating supports are contacting the inner conductor. The flexing elements are formed by sandwiching together, by fusing, a pair of thin hollow discs which are fixedly secured to both the main conductor sections and the conductor hub section. 4 figs.

  1. Semi-flexible gas-insulated transmission line using electric field stress shields

    DOEpatents

    Cookson, Alan H.; Dale, Steinar J.; Bolin, Philip C.

    1982-12-28

    A gas-insulated transmission line includes an outer sheath, an inner conductor, an insulating gas electrically insulating the inner conductor from the outer sheath, and insulating supports insulatably supporting the inner conductor within the outer sheath. The inner conductor is provided with flexibility by use of main conductor sections which are joined together through a conductor hub section and flexible flexing elements. Stress shields are provided to control the electric field at the locations of the conductor hub sections where the insulating supports are contacting the inner conductor. The flexing elements and the stress shields may also be utilized in connection with a plug and socket arrangement for providing electrical connection between main conductor sections.

  2. Semi-flexible gas-insulated transmission line using electric field stress shields

    DOEpatents

    Cookson, A.H.; Dale, S.J.; Bolin, P.C.

    1982-12-28

    A gas-insulated transmission line includes an outer sheath, an inner conductor, an insulating gas electrically insulating the inner conductor from the outer sheath, and insulating supports insulatably supporting the inner conductor within the outer sheath. The inner conductor is provided with flexibility by use of main conductor sections which are joined together through a conductor hub section and flexible flexing elements. Stress shields are provided to control the electric field at the locations of the conductor hub sections where the insulating supports are contacting the inner conductor. The flexing elements and the stress shields may also be utilized in connection with a plug and socket arrangement for providing electrical connection between main conductor sections. 10 figs.

  3. Bioconversion of Natural Gas to Liquid Fuel. Opportunities and Challenges

    SciTech Connect

    Fei, Qiang; Guarnieri, Michael T.; Tao, Ling; Laurens, Lieve M. L.; Dowe, Nancy; Pienkos, Philip T.

    2014-05-01

    Natural gas is a mixture of low molecular weight hydrocarbon gases that can be generated from either fossil or anthropogenic resources. Although natural gas is used as a transportation fuel, constraints in storage, relatively low energy content (MJ/L), and delivery have limited widespread adoption. Advanced utilization of natural gas has been explored for biofuel production by microorganisms. In recent years, the aerobic bioconversion of natural gas (or primarily the methane content of natural gas) into liquid fuels (Bio-GTL) by biocatalysts (methanotrophs) has gained increasing attention as a promising alternative for drop-in biofuel production. Moreover, methanotrophic bacteria are capable of converting methane into microbial lipids, which can in turn be converted into renewable diesel via a hydrotreating process. In this paper, biodiversity, catalytic properties and key enzymes and pathways of these microbes are summarized. Bioprocess technologies are discussed based upon existing literature, including cultivation conditions, fermentation modes, bioreactor design, and lipid extraction and upgrading. Our review also outlines the potential of Bio-GTL using methane as an alternative carbon source as well as the major challenges and future research needs of microbial lipid accumulation derived from methane, key performance index, and techno-economic analysis. An analysis of raw material costs suggests that methane-derived diesel fuel has the potential to be competitive with petroleum-derived diesel.

  4. Bioconversion of natural gas to liquid fuel: Opportunities and challenges

    SciTech Connect

    Fei, Q; Guarnieri, MT; Tao, L; Laurens, LML; Dowe, N; Pienkos, PT

    2014-05-01

    Natural gas is a mixture of low molecular weight hydrocarbon gases that can be generated from either fossil or anthropogenic resources. Although natural gas is used as a transportation fuel, constraints in storage, relatively low energy content (MJ/L), and delivery have limited widespread adoption. Advanced utilization of natural gas has been explored for biofuel production by microorganisms. In recent years, the aerobic bioconversion of natural gas (or primarily the methane content of natural gas) into liquid fuels (Bio-GTL) by biocatalysts (methanotrophs) has gained increasing attention as a promising alternative for drop-in biofuel production. Methanotrophic bacteria are capable of converting methane into microbial lipids, which can in turn be converted into renewable diesel via a hydrotreating process. In this paper, biodiversity, catalytic properties and key enzymes and pathways of these microbes are summarized. Bioprocess technologies are discussed based upon existing literature, including cultivation conditions, fermentation modes, bioreactor design, and lipid extraction and upgrading. This review also outlines the potential of Bio-GTL using methane as an alternative carbon source as well as the major challenges and future research needs of microbial lipid accumulation derived from methane, key performance index, and techno-economic analysis. An analysis of raw material costs suggests that methane-derived diesel fuel has the potential to be competitive with petroleum-derived diesel. (C) 2014 The Authors. Published by Elsevier Inc.

  5. Bioconversion of natural gas to liquid fuel: opportunities and challenges.

    PubMed

    Fei, Qiang; Guarnieri, Michael T; Tao, Ling; Laurens, Lieve M L; Dowe, Nancy; Pienkos, Philip T

    2014-01-01

    Natural gas is a mixture of low molecular weight hydrocarbon gases that can be generated from either fossil or anthropogenic resources. Although natural gas is used as a transportation fuel, constraints in storage, relatively low energy content (MJ/L), and delivery have limited widespread adoption. Advanced utilization of natural gas has been explored for biofuel production by microorganisms. In recent years, the aerobic bioconversion of natural gas (or primarily the methane content of natural gas) into liquid fuels (Bio-GTL) by biocatalysts (methanotrophs) has gained increasing attention as a promising alternative for drop-in biofuel production. Methanotrophic bacteria are capable of converting methane into microbial lipids, which can in turn be converted into renewable diesel via a hydrotreating process. In this paper, biodiversity, catalytic properties and key enzymes and pathways of these microbes are summarized. Bioprocess technologies are discussed based upon existing literature, including cultivation conditions, fermentation modes, bioreactor design, and lipid extraction and upgrading. This review also outlines the potential of Bio-GTL using methane as an alternative carbon source as well as the major challenges and future research needs of microbial lipid accumulation derived from methane, key performance index, and techno-economic analysis. An analysis of raw material costs suggests that methane-derived diesel fuel has the potential to be competitive with petroleum-derived diesel.

  6. Fuel-Flexible Gasification-Combustion Technology for Production of H2 and Sequestration-Ready CO2

    SciTech Connect

    Parag Kulkarni; Jie Guan; Raul Subia; Zhe Cui; Jeff Manke; Arnaldo Frydman; Wei Wei; Roger Shisler; Raul Ayala; om McNulty; George Rizeq; Vladimir Zamansky; Kelly Fletcher

    2008-03-31

    In the near future, the nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It is necessary to improve both the process efficiency and environmental impact of fossil fuel utilization including greenhouse gas management. GE Global Research (GEGR) investigated an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology with potential to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP technology offers the long-term potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions. GE was awarded a contract from U.S. DOE NETL to investigate and develop the UFP technology. Work started on the Phase I program in October 2000 and on the Phase II effort in April 2005. In the UFP technology, coal, water and air are simultaneously converted into (1) hydrogen rich stream that can be utilized in fuel cells or turbines, (2) CO{sub 2} rich stream for sequestration, and (3) high temperature/pressure vitiated air stream to produce electricity in a gas turbine expander. The process produces near-zero emissions with an estimated efficiency higher than Integrated Gasification Combined Cycle (IGCC) process with conventional CO{sub 2} separation. The Phase I R&D program established the chemical feasibility of the major reactions of the integrated UFP technology through lab-, bench- and pilot-scale testing. A risk analysis session was carried out at the end of Phase I effort to identify the major risks in the UFP technology and a plan was developed to mitigate these risks in the Phase II of the program. The Phase II effort focused on three high-risk areas: economics, lifetime of solids used in the UFP process, and product gas quality for turbines (or the impact of impurities in the coal on the overall system). The economic analysis included estimating the capital cost as well as the costs of hydrogen

  7. Laboratory assessment of flexible thin-film membranes as a passive barrier to radon gas diffusion.

    PubMed

    Daoud, W Z; Renken, K J

    2001-05-14

    This paper presents the experimental results of utilizing a flexible thin-film membrane as a passive barrier to radon gas diffusion. Nine commercially available membranes of various compositions and thicknesses were evaluated as retardant to radon gas diffusion. The radon gas concentration ratios across the thin-film membranes alone and in combination with an adjacent concrete sample (effective diffusion coefficient) were measured in a laboratory system with state-of-the-art instrumentation. An 8.89-cm diameter, 10.2-cm thick concrete sample of standard composition (w/c = 0.5 and cement:sand:gravel = 1:2:4) was used to simulate a basement and slab-on-grade foundation typical of Wisconsin. The radon gas transport characteristics of this concrete sample (porosity, permeability and diffusion) are documented. The experimentation has identified two superior flexible thin-film membranes that may be employed as effective barriers to radon gas diffusion. These include: Polyethylene Naphthalate (7.62 x 10(-5) m) and Polyethylene Terephthalate Glycol, PETG (7.62 x 10(-5) and 1.27 x 10(-4) m) which had average diffusion coefficients, D, of 4.10 x 10(-14) and 1.66 x 10(-14) m2 s(-1), respectively. Measurements of the effective membrane/concrete diffusion coefficient yielded a further average reduction in D of 98% for the Polyethylene Naphthalate and 96% for the PETG. Details of the experimental set-ups and procedures are described. The results of this investigation have shown that the application of an effective thin-film membrane adjacent to an intact concrete slab can significantly reduce the diffusion of radon gas entry. Therefore, the employment of a flexible thin-film membrane should be considered as a viable radon reduction technology method for residential new construction.

  8. Gas may be answer to world`s fuel needs

    SciTech Connect

    Nakicenovic, N.; Nolan, L.

    1995-08-01

    Natural gas could become the major energy source of the 21st century, serving as a {open_quotes}bridge{close_quotes} fuel from the use of fossil fuels today to renewable energy sources tomorrow, say Nebojsa Nakicenovic and Lucy Nolan. Nakicenovic is a project leader and Nolan is a former research assistant for the Environmentally Compatible Energy Strategies Project at an Austrian research institute. The use of nuclear energy will by stymied by public opposition, costs, and waste-storage problems; renewable energy technology, on the other hand, must still overcome many technological barriers. Natural gas, then, is likely to become our next dominant energy source. {open_quotes}The development of a methane economy, led by increased use of natural gas, could provide another important step in the world`s century-old stride toward a carbon-free economy,{close_quotes} the authors conclude.

  9. The DOE advanced gas reactor fuel development and qualification program

    NASA Astrophysics Data System (ADS)

    Petti, David; Maki, John; Hunn, John; Pappano, Pete; Barnes, Charles; Saurwein, John; Nagley, Scott; Kendall, Jim; Hobbins, Richard

    2010-09-01

    The high outlet temperatures and high thermal-energy conversion efficiency of modular high-temperature gas-cooled reactors (HTGRs) enable an efficient and cost-effective integration of the reactor system with non-electricity-generation applications, such as process heat and/or hydrogen production, for the many petrochemical and other industrial processes that require temperatures between 300°C and 900°C. The U.S. Department of Energy (DOE) has selected the HTGR concept for the Next Generation Nuclear Plant (NGNP) Project as a transformative application of nuclear energy that will demonstrate emissions-free nuclear-assisted electricity, process heat, and hydrogen production, thereby reducing greenhouse-gas emissions and enhancing energy security. The objective of the DOE Advanced Gas Reactor (AGR) Fuel Development and Qualification program is to qualify tristructural isotropic (TRISO)-coated particle fuel for use in HTGRs. An overview of the program and recent progress is presented.

  10. Committing to coal and gas: Long-term contracts, regulation, and fuel switching in power generation

    NASA Astrophysics Data System (ADS)

    Rice, Michael

    Fuel switching in the electricity sector has important economic and environmental consequences. In the United States, the increased supply of gas during the last decade has led to substantial switching in the short term. Fuel switching is constrained, however, by the existing infrastructure. The power generation infrastructure, in turn, represents commitments to specific sources of energy over the long term. This dissertation explores fuel contracts as the link between short-term price response and long-term plant investments. Contracting choices enable power plant investments that are relationship-specific, often regulated, and face uncertainty. Many power plants are subject to both hold-up in investment and cost-of-service regulation. I find that capital bias is robust when considering either irreversibility or hold-up due to the uncertain arrival of an outside option. For sunk capital, the rental rate is inappropriate for determining capital bias. Instead, capital bias depends on the regulated rate of return, discount rate, and depreciation schedule. If policies such as emissions regulations increase fuel-switching flexibility, this can lead to capital bias. Cost-of-service regulation can shorten the duration of a long-term contract. From the firm's perspective, the existing literature provides limited guidance when bargaining and writing contracts for fuel procurement. I develop a stochastic programming framework to optimize long-term contracting decisions under both endogenous and exogenous sources of hold-up risk. These typically include policy changes, price shocks, availability of fuel, and volatility in derived demand. For price risks, the optimal contract duration is the moment when the expected benefits of the contract are just outweighed by the expected opportunity costs of remaining in the contract. I prove that imposing early renegotiation costs decreases contract duration. Finally, I provide an empirical approach to show how coal contracts can limit

  11. Pyrolysis process for producing fuel gas

    NASA Technical Reports Server (NTRS)

    Serio, Michael A. (Inventor); Kroo, Erik (Inventor); Wojtowicz, Marek A. (Inventor); Suuberg, Eric M. (Inventor)

    2007-01-01

    Solid waste resource recovery in space is effected by pyrolysis processing, to produce light gases as the main products (CH.sub.4, H.sub.2, CO.sub.2, CO, H.sub.2O, NH.sub.3) and a reactive carbon-rich char as the main byproduct. Significant amounts of liquid products are formed under less severe pyrolysis conditions, and are cracked almost completely to gases as the temperature is raised. A primary pyrolysis model for the composite mixture is based on an existing model for whole biomass materials, and an artificial neural network models the changes in gas composition with the severity of pyrolysis conditions.

  12. Fuel tank for liquefied natural gas

    NASA Technical Reports Server (NTRS)

    DeLay, Thomas K. (Inventor)

    2012-01-01

    A storage tank is provided for storing liquefied natural gas on, for example, a motor vehicle such as a bus or truck. The storage tank includes a metal liner vessel encapsulated by a resin-fiber composite layer. A foam insulating layer, including an outer protective layer of epoxy or of a truck liner material, covers the composite layer. A non-conducting protective coating may be painted on the vessel between the composite layer and the vessel so as to inhibit galvanic corrosion.

  13. Natural Gas for Advanced Dual-Fuel Combustion Strategies

    NASA Astrophysics Data System (ADS)

    Walker, Nicholas Ryan

    Natural gas fuels represent the next evolution of low-carbon energy feedstocks powering human activity worldwide. The internal combustion engine, the energy conversion device widely used by society for more than one century, is capable of utilizing advanced combustion strategies in pursuit of ultra-high efficiency and ultra-low emissions. Yet many emerging advanced combustion strategies depend upon traditional petroleum-based fuels for their operation. In this research the use of natural gas, namely methane, is applied to both conventional and advanced dual-fuel combustion strategies. In the first part of this work both computational and experimental studies are undertaken to examine the viability of utilizing methane as the premixed low reactivity fuel in reactivity controlled compression ignition, a leading advanced dual-fuel combustion strategy. As a result, methane is shown to be capable of significantly extending the load limits for dual-fuel reactivity controlled compression ignition in both light- and heavy-duty engines. In the second part of this work heavy-duty single-cylinder engine experiments are performed to research the performance of both conventional dual-fuel (diesel pilot ignition) and advanced dual-fuel (reactivity controlled compression ignition) combustion strategies using methane as the premixed low reactivity fuel. Both strategies are strongly influenced by equivalence ratio; diesel pilot ignition offers best performance at higher equivalence ratios and higher premixed methane ratios, whereas reactivity controlled compression ignition offers superior performance at lower equivalence ratios and lower premixed methane ratios. In the third part of this work experiments are performed in order to determine the dominant mode of heat release for both dual-fuel combustion strategies. By studying the dual-fuel homogeneous charge compression ignition and single-fuel spark ignition, strategies representative of autoignition and flame propagation

  14. Purge gas protected transportable pressurized fuel cell modules and their operation in a power plant

    DOEpatents

    Zafred, Paolo R.; Dederer, Jeffrey T.; Gillett, James E.; Basel, Richard A.; Antenucci, Annette B.

    1996-01-01

    A fuel cell generator apparatus and method of its operation involves: passing pressurized oxidant gas, (O) and pressurized fuel gas, (F), into fuel cell modules, (10 and 12), containing fuel cells, where the modules are each enclosed by a module housing (18), surrounded by an axially elongated pressure vessel (64), where there is a purge gas volume, (62), between the module housing and pressure vessel; passing pressurized purge gas, (P), through the purge gas volume, (62), to dilute any unreacted fuel gas from the modules; and passing exhaust gas, (82), and circulated purge gas and any unreacted fuel gas out of the pressure vessel; where the fuel cell generator apparatus is transpatable when the pressure vessel (64) is horizontally disposed, providing a low center of gravity.

  15. Performance study of a solid oxide fuel cell and gas turbine hybrid system designed for methane operating with non-designed fuels

    NASA Astrophysics Data System (ADS)

    Li, Yang; Weng, Yiwu

    This paper presents an analysis of the fuel flexibility of a methane-based solid oxide fuel cell-gas turbine (SOFC-GT) hybrid system. The simulation models of the system are mathematically defined. Special attention is paid to the development of an SOFC thermodynamic model that allows for the calculation of radial temperature gradients. Based on the simulation model, the new design point of system for new fuels is defined first; the steady-state performance of the system fed by different fuels is then discussed. When the hybrid system operates with hydrogen, the net power output at the new design point will decrease to 70% of the methane, while the design net efficiency will decrease to 55%. Similar to hydrogen, the net output power of the ethanol-fueled system will decrease to 88% of the methane value due to the lower cooling effect of steam reforming. However, the net efficiency can remain at 61% at high level due to increased heat recuperation from exhaust gas. To increase the power output of the hybrid system operating with non-design fuels without changing the system configuration, three different measures are introduced and investigated in this paper. The introduced measures can increase the system net power output operating with hydrogen to 94% of the original value at the cost of a lower efficiency of 45%.

  16. Feasibility Study on Thermal-Hydraulic Performance of Innovative Water Reactor for Flexible Fuel Cycle (FLWR)

    SciTech Connect

    Akira, Ohnuki; Kazuyuki, Takase; Masatoshi, Kureta; Hiroyuki, Yoshida; Hidesada, Tamai; Wei, Liu; Toru, Nakatsuka; Takeharu, Misawa; Hajime, Akimoto

    2006-07-01

    R and D project to investigate thermal-hydraulic performance in tight-lattice rod bundles of Innovative Water Reactor for Flexible Fuel Cycle (FLWR) is started at Japan Atomic Energy Agency (JAEA) in collaboration with power company, reactor vendors, universities since 2002. The FLWR can attain the favorable characteristics such as effective utilization of uranium resources, multiple recycling of plutonium, high burn-up and long operation cycle, based on matured LWR technologies. MOX fuel assemblies with tight lattice arrangement are used to increase the conversion ratio by reducing the moderation of neutron. Increasing the in-core void fraction also contributes to the reduction of neutron moderation. The confirmation of thermal-hydraulic feasibility is one of the most important R and D items for the FLWR because of the tight lattice configuration. In this paper, we will show the R and D plan and summarize experimental studies. The experimental study is performed mainly using large-scale (37-rod bundle) test facility. Most important objective of the large-scale test is to resolve a fundamental subject whether the core cooling under a tight-lattice configuration is feasible. The characteristics of critical power and flow behavior are investigated under different geometrical configuration and boundary conditions. The configuration parameter is the gap between rods (FY2004) and the rod bowing (FY2005). We have confirmed the thermal-hydraulic feasibility from the experimental results. (authors)

  17. 76 FR 52650 - National Fuel Gas Supply Corporation; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-23

    ... Energy Regulatory Commission National Fuel Gas Supply Corporation; Notice of Application Take notice that on August 15, 2011, National Fuel Gas Supply Corporation (National Fuel), 6363 Main Street...) 502-8659. National Fuel proposes to reclassify Compressor Unit 3 at its Beech Hill compressor...

  18. 75 FR 39010 - National Fuel Gas Supply Corporation; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-07

    ... Energy Regulatory Commission National Fuel Gas Supply Corporation; Notice of Application June 29, 2010. Take notice that on June 11, 2010, National Fuel Gas Supply Corporation (National Fuel), 363 Main... Buffalo Compressor Station in Washington County, Pennsylvania. National Fuel states that the project...

  19. 40 CFR 86.157-98 - Refueling test procedures for liquefied petroleum gas-fueled vehicles.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... liquefied petroleum gas-fueled vehicles. 86.157-98 Section 86.157-98 Protection of Environment ENVIRONMENTAL... test procedures for liquefied petroleum gas-fueled vehicles. (a) Equipment. (1) The sampling and... refueling test procedure for light-duty liquefied petroleum gas-fueled vehicles and trucks starts with...

  20. 40 CFR 86.157-98 - Refueling test procedures for liquefied petroleum gas-fueled vehicles.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... liquefied petroleum gas-fueled vehicles. 86.157-98 Section 86.157-98 Protection of Environment ENVIRONMENTAL... test procedures for liquefied petroleum gas-fueled vehicles. (a) Equipment. (1) The sampling and... refueling test procedure for light-duty liquefied petroleum gas-fueled vehicles and trucks starts with...

  1. 40 CFR 86.157-98 - Refueling test procedures for liquefied petroleum gas-fueled vehicles.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... liquefied petroleum gas-fueled vehicles. 86.157-98 Section 86.157-98 Protection of Environment ENVIRONMENTAL... test procedures for liquefied petroleum gas-fueled vehicles. (a) Equipment. (1) The sampling and... refueling test procedure for light-duty liquefied petroleum gas-fueled vehicles and trucks starts with...

  2. 40 CFR 86.157-98 - Refueling test procedures for liquefied petroleum gas-fueled vehicles.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... liquefied petroleum gas-fueled vehicles. 86.157-98 Section 86.157-98 Protection of Environment ENVIRONMENTAL... test procedures for liquefied petroleum gas-fueled vehicles. (a) Equipment. (1) The sampling and... refueling test procedure for light-duty liquefied petroleum gas-fueled vehicles and trucks starts with...

  3. 40 CFR 86.157-98 - Refueling test procedures for liquefied petroleum gas-fueled vehicles.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... liquefied petroleum gas-fueled vehicles. 86.157-98 Section 86.157-98 Protection of Environment ENVIRONMENTAL... test procedures for liquefied petroleum gas-fueled vehicles. (a) Equipment. (1) The sampling and... refueling test procedure for light-duty liquefied petroleum gas-fueled vehicles and trucks starts with...

  4. 49 CFR 571.304 - Standard No. 304; Compressed natural gas fuel container integrity.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 6 2012-10-01 2012-10-01 false Standard No. 304; Compressed natural gas fuel... natural gas fuel container integrity. S1. Scope. This standard specifies requirements for the integrity of compressed natural gas (CNG), motor vehicle fuel containers. S2. Purpose. The purpose of this standard is...

  5. 49 CFR 571.304 - Standard No. 304; Compressed natural gas fuel container integrity.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 6 2013-10-01 2013-10-01 false Standard No. 304; Compressed natural gas fuel... natural gas fuel container integrity. S1. Scope. This standard specifies requirements for the integrity of compressed natural gas (CNG), motor vehicle fuel containers. S2. Purpose. The purpose of this standard is...

  6. Compressed natural gas fueled vehicles: The Houston experience

    SciTech Connect

    Not Available

    1993-12-31

    The report describes the experience of the City of Houston in defining the compressed natural gas fueled vehicle research scope and issues. It details the ways in which the project met initial expectations, and how the project scope, focus, and duration were adjusted in response to unanticipated results. It provides examples of real world successes and failures in efforts to commercialize basic research in adapting a proven technology (natural gas) to a noncommercially proven application (vehicles). Phase one of the demonstration study investigates, develops, documents, and disseminates information regarding the economic, operational, and environmental implications of utilizing compressed natural gas (CNG) in various truck fueling applications. The four (4) truck classes investigated are light duty gasoline trucks, medium duty gasoline trucks, medium duty diesel trucks and heavy duty diesel trucks. The project researches aftermarket CNG conversions for the first three vehicle classes and original equipment manufactured (OEM) CNG vehicles for light duty gasoline and heavy duty diesel classes. In phase two of the demonstration project, critical issues are identified and assessed with respect to implementing use of CNG fueled vehicles in a large vehicle fleet. These issues include defining changes in local, state, and industry CNG fueled vehicle related codes and standards; addressing vehicle fuel storage limitations; using standardized vehicle emission testing procedures and results; and resolving CNG refueling infrastructure implementation issues and related cost factors. The report identifies which CNG vehicle fueling options were tried and failed and which were tried and succeeded, with and without modifications. The conclusions include a caution regarding overly optimistic assessments of CNG vehicle technology at the initiation of the project.

  7. Effect of gas composition on octane number of natural gas fuels. Topical report, December 1991-March 1992

    SciTech Connect

    Kubesh, J.T.

    1992-05-01

    Variations in the composition of natural gas fuels are recognized to have a significant impact on the performance of internal combustion engines. In particular, the knock resistance of the fuel is governed by its gas composition. The octane number is a standard measure of the knock resistance of a fuel, and several gas blends were tested to determine their octane numbers. Octane number of natural gas fuels was found to be dependent on gas composition. Several correlations were found between gas composition and the octane number of a fuel, which allow prediction of the motor octane number if gas composition is known. In particular, a good correlation was found between the hydrogen-carbon ratio of the fuel and the octane number. Correlations were also found between measured motor octane numbers and measured methane numbers, as well as between motor octane numbers and predicted methane numbers.

  8. Homogeneously catalyzed synthesis gas transformations to oxygenate fuels

    SciTech Connect

    Mahajan, D.; Mattas, L.; Sanchez, J.

    1992-04-01

    At Brookhaven National Laboratory (BNL), the ongoing oxygenates synthesis program is addressing the catalytic synthesis gas conversion to liquid fuels and fuel additives. The major thrust of this effort is to enhance carbon conversion, reaction rates, product selectivity and overall process efficiency. To this effect, a series of liquid phase homogeneous catalysts have been developed and successfully utilized in the synthesis of methanol and other oxygenates. This paper identifies advantages and uncertainties associated with these newly developed catalysts. The effect of system parameters on the overall process scheme is discussed.

  9. Gas-to-liquids synthetic fuels for use in fuel cells : reformability, energy density, and infrastructure compatibility.

    SciTech Connect

    Ahmed, S.; Kopasz, J. P.; Russell, B. J.; Tomlinson, H. L.

    1999-09-08

    The fuel cell has many potential applications, from power sources for electric hybrid vehicles to small power plants for commercial buildings. The choice of fuel will be critical to the pace of its commercialization. This paper reviews the various liquid fuels being considered as an alternative to direct hydrogen gas for the fuel cell application, presents calculations of the hydrogen and carbon dioxide yields from autothermal reforming of candidate liquid fuels, and reports the product gas composition measured from the autothermal reforming of a synthetic fuel in a micro-reactor. The hydrogen yield for a synthetic paraffin fuel produced by a cobalt-based Fischer-Tropsch process was found to be similar to that of retail gasoline. The advantages of the synthetic fuel are that it contains no contaminants that would poison the fuel cell catalyst, is relatively benign to the environment, and could be transported in the existing fuel distribution system.

  10. Reactant gas composition for fuel cell potential control

    DOEpatents

    Bushnell, Calvin L.; Davis, Christopher L.

    1991-01-01

    A fuel cell (10) system in which a nitrogen (N.sub.2) gas is used on the anode section (11) and a nitrogen/oxygen (N.sub.2 /O.sub.2) gaseous mix is used on the cathode section (12) to maintain the cathode at an acceptable voltage potential during adverse conditions occurring particularly during off-power conditions, for example, during power plant shutdown, start-up and hot holds. During power plant shutdown, the cathode section is purged with a gaseous mixture of, for example, one-half percent (0.5%) oxygen (O.sub.2) and ninety-nine and a half percent (99.5%) nitrogen (N.sub.2) supplied from an ejector (21) bleeding in air (24/28) into a high pressure stream (27) of nitrogen (N.sub.2) as the primary or majority gas. Thereafter the fuel gas in the fuel processor (31) and the anode section (11) is purged with nitrogen gas to prevent nickel (Ni) carbonyl from forming from the shift catalyst. A switched dummy electrical load (30) is used to bring the cathode potential down rapidly during the start of the purges. The 0.5%/99.5% O.sub.2 /N.sub.2 mixture maintains the cathode potential between 0.3 and 0.7 volts, and this is sufficient to maintain the cathode potential at 0.3 volts for the case of H.sub.2 diffusing to the cathode through a 2 mil thick electrolyte filled matrix and below 0.8 volts for no diffusion at open circuit conditions. The same high pressure gas source (20) is used via a "T" juncture ("T") to purge the anode section and its associated fuel processor (31).

  11. Investigation on new low cost electronically controlled fuel metering systems for small gas turbine engines

    NASA Astrophysics Data System (ADS)

    Mohtasebi, Seyer Saeid

    This work introduces two new lost cost, electronically controlled fuel metering systems for small gas turbine engines, particularly applicable in remotely piloted vehicles. The first one incorporates a diaphragm operated flat-seat bypass valve to maintain a constant differential pressure across the metering valve, which is actuated by a digital linear actuator. In the second one, both the metering and the bypass valves are controlled by two independently operated digital linear actuators. The mathematical models for the first fuel metering system, were created and used for computer simulation. Next, after preparing the experimental test set-up, the manufactured prototype was tested and the models for both the steady state and the dynamic response were validated. Three design optimization criteria, fuel flow linearity, low sensitivity to the design parameters changes and fast dynamic response were examined to improve the performance of the proposed fuel metering system. Finally, a multi-objective optimization technique was developed and implemented to obtain the best design parameters of the system. For the second fuel metering system, first the mathematical models for both the steady state and dynamic response were developed. Next, due to the flexibility offered by this system, different control strategies for controlling the digital linear actuators during the normal operation mode of the actuators and also during the back-up operation modes were introduced and investigated. Finally, to investigate the impact of different control strategies on the dynamic response of the engine, a dynamic model for the engine was also developed and used. At the end, four available fuel metering systems, including the two new ones, were compared regarding their deviation from the fuel flow linearity, dynamic response and the cost.

  12. Gas Turbine Engine Staged Fuel Injection Using Adjacent Bluff Body and Swirler Fuel Injectors

    NASA Technical Reports Server (NTRS)

    Snyder, Timothy S. (Inventor)

    2015-01-01

    A fuel injection array for a gas turbine engine includes a plurality of bluff body injectors and a plurality of swirler injectors. A control operates the plurality of bluff body injectors and swirler injectors such that bluff body injectors are utilized without all of the swirler injectors at least at low power operation. The swirler injectors are utilized at higher power operation.

  13. Fuel control for gas turbine with continuous pilot flame

    DOEpatents

    Swick, Robert M.

    1983-01-01

    An improved fuel control for a gas turbine engine having a continuous pilot flame and a fuel distribution system including a pump drawing fuel from a source and supplying a line to the main fuel nozzle of the engine, the improvement being a control loop between the pump outlet and the pump inlet to bypass fuel, an electronically controlled throttle valve to restrict flow in the control loop when main nozzle demand exists and to permit substantially unrestricted flow without main nozzle demand, a minimum flow valve in the control loop downstream of the throttle valve to maintain a minimum pressure in the loop ahead of the flow valve, a branch tube from the pilot flame nozzle to the control loop between the throttle valve and the minimum flow valve, an orifice in the branch tube, and a feedback tube from the branch tube downstream of the orifice to the minimum flow valve, the minimum flow valve being operative to maintain a substantially constant pressure differential across the orifice to maintain constant fuel flow to the pilot flame nozzle.

  14. Ambient Laboratory Coater for Advanced Gas Reactor Fuel Development

    SciTech Connect

    Duane D. Bruns; Robert M. Counce; Irma D. Lima Rojas

    2010-06-09

    this research is targeted at developing improved experimentally-based scaling relationships for the hydrodynamics of shallow, gas-spouted beds of dense particles. The work is motivated by the need to more effctively scale up shallow spouted beds used in processes such as in the coating of nuclear fuel particles where precise control of solids and gas circulation is critically important. Experimental results reported here are for a 50 mm diameter spouted bed containing two different types of bed solids (alumina and zirconia) at different static bed depths and fluidized by air and helium. Measurements of multiple local average pressures, inlet gas pressure fluctuations, and spout height were used to characterize the bed hydrodynamics for each operating condition. Follow-on studies are planned that include additional variations in bed size, particle properties, and fluidizing gas. The ultimate objective is to identify the most important non-dimensional hydrodynamic scaling groups and possible spouted-bed design correlations based on these groups.

  15. Purge gas protected transportable pressurized fuel cell modules and their operation in a power plant

    DOEpatents

    Zafred, P.R.; Dederer, J.T.; Gillett, J.E.; Basel, R.A.; Antenucci, A.B.

    1996-11-12

    A fuel cell generator apparatus and method of its operation involves: passing pressurized oxidant gas and pressurized fuel gas into modules containing fuel cells, where the modules are each enclosed by a module housing surrounded by an axially elongated pressure vessel, and where there is a purge gas volume between the module housing and pressure vessel; passing pressurized purge gas through the purge gas volume to dilute any unreacted fuel gas from the modules; and passing exhaust gas and circulated purge gas and any unreacted fuel gas out of the pressure vessel; where the fuel cell generator apparatus is transportable when the pressure vessel is horizontally disposed, providing a low center of gravity. 11 figs.

  16. Tailored CVD graphene coating as a transparent and flexible gas barrier

    PubMed Central

    Seo, Tae Hoon; Lee, Seula; Cho, Hyunjin; Chandramohan, S.; Suh, Eun-Kyung; Lee, Heon Sang; Bae, Su Kang; Kim, Soo Min; Park, Min; Lee, Jae Kwan; Kim, Myung Jong

    2016-01-01

    The chemical vapor deposition (CVD) method to obtain tailored graphene as a transparent and flexible gas barrier has been developed. By separating nucleation step from growth, we could reduce early graphene nucleation density and thus induce better stitching between domain boundaries in the second growth step. Furthermore, two step growth in conjunction with electrochemical polishing of Cu foils achieved large graphene domains and improved graphene quality with minimized defects. The performance of resulting graphene as a gas barrier was superior to the graphene obtained by one-step growth on polished or unpolished Cu foils. The CVD graphene reported here could open up the possibility for exploring graphene-based gas barrier due to the minimized density of defect area. PMID:27063180

  17. Tailored CVD graphene coating as a transparent and flexible gas barrier

    NASA Astrophysics Data System (ADS)

    Seo, Tae Hoon; Lee, Seula; Cho, Hyunjin; Chandramohan, S.; Suh, Eun-Kyung; Lee, Heon Sang; Bae, Su Kang; Kim, Soo Min; Park, Min; Lee, Jae Kwan; Kim, Myung Jong

    2016-04-01

    The chemical vapor deposition (CVD) method to obtain tailored graphene as a transparent and flexible gas barrier has been developed. By separating nucleation step from growth, we could reduce early graphene nucleation density and thus induce better stitching between domain boundaries in the second growth step. Furthermore, two step growth in conjunction with electrochemical polishing of Cu foils achieved large graphene domains and improved graphene quality with minimized defects. The performance of resulting graphene as a gas barrier was superior to the graphene obtained by one-step growth on polished or unpolished Cu foils. The CVD graphene reported here could open up the possibility for exploring graphene-based gas barrier due to the minimized density of defect area.

  18. Estimating Externalities of Natural Gas Fuel Cycles, Report 4

    SciTech Connect

    Barnthouse, L.W.; Cada, G.F.; Cheng, M.-D.; Easterly, C.E.; Kroodsma, R.L.; Lee, R.; Shriner, D.S.; Tolbert, V.R.; Turner, R.S.

    1998-01-01

    This report describes methods for estimating the external costs (and possibly benefits) to human health and the environment that result from natural gas fuel cycles. Although the concept of externalities is far from simple or precise, it generally refers to effects on individuals' well being, that result from a production or market activity in which the individuals do not participate, or are not fully compensated. In the past two years, the methodological approach that this report describes has quickly become a worldwide standard for estimating externalities of fuel cycles. The approach is generally applicable to any fuel cycle in which a resource, such as coal, hydro, or biomass, is used to generate electric power. This particular report focuses on the production activities, pollution, and impacts when natural gas is used to generate electric power. In the 1990s, natural gas technologies have become, in many countries, the least expensive to build and operate. The scope of this report is on how to estimate the value of externalities--where value is defined as individuals' willingness to pay for beneficial effects, or to avoid undesirable ones. This report is about the methodologies to estimate these externalities, not about how to internalize them through regulations or other public policies. Notwithstanding this limit in scope, consideration of externalities can not be done without considering regulatory, insurance, and other considerations because these institutional factors affect whether costs (and benefits) are in fact external, or whether they are already somehow internalized within the electric power market. Although this report considers such factors to some extent, much analysis yet remains to assess the extent to which estimated costs are indeed external. This report is one of a series of reports on estimating the externalities of fuel cycles. The other reports are on the coal, oil, biomass, hydro, and nuclear fuel cycles, and on general methodology.

  19. Hydrogen Gas as a Fuel in Direct Injection Diesel Engine

    NASA Astrophysics Data System (ADS)

    Dhanasekaran, Chinnathambi; Mohankumar, Gabriael

    2016-04-01

    Hydrogen is expected to be one of the most important fuels in the near future for solving the problem caused by the greenhouse gases, for protecting environment and saving conventional fuels. In this study, a dual fuel engine of hydrogen and diesel was investigated. Hydrogen was conceded through the intake port, and simultaneously air and diesel was pervaded into the cylinder. Using electronic gas injector and electronic control unit, the injection timing and duration varied. In this investigation, a single cylinder, KIRLOSKAR AV1, DI Diesel engine was used. Hydrogen injection timing was fixed at TDC and injection duration was timed for 30°, 60°, and 90° crank angles. The injection timing of diesel was fixed at 23° BTDC. When hydrogen is mixed with inlet air, emanation of HC, CO and CO2 decreased without any emission (exhaustion) of smoke while increasing the brake thermal efficiency.

  20. Fuel gas production by microwave plasma in liquid

    SciTech Connect

    Nomura, Shinfuku; Toyota, Hiromichi; Tawara, Michinaga; Yamashita, Hiroshi; Matsumoto, Kenya

    2006-06-05

    We propose to apply plasma in liquid to replace gas-phase plasma because we expect much higher reaction rates for the chemical deposition of plasma in liquid than for chemical vapor deposition. A reactor for producing microwave plasma in a liquid could produce plasma in hydrocarbon liquids and waste oils. Generated gases consist of up to 81% hydrogen by volume. We confirmed that fuel gases such as methane and ethylene can be produced by microwave plasma in liquid.

  1. Catalyst for converting synthesis gas to liquid motor fuels

    DOEpatents

    Coughlin, Peter K.

    1986-01-01

    The addition of an inert metal component, such as gold, silver or copper, to a Fischer-Tropsch catalyst comprising cobalt enables said catalyst to convert synthesis gas to liquid motor fuels at about 240.degree.-370.degree. C. with advantageously reduced selectivity of said cobalt for methane in said conversion. The catalyst composition can advantageously include a support component, such as a molecular sieve, co-catalyst/support component or a combination of such support components.

  2. Enhanced catalyst for converting synthesis gas to liquid motor fuels

    DOEpatents

    Coughlin, Peter K.

    1986-01-01

    The conversion of synthesis gas to liquid molar fuels by means of a cobalt Fischer-Tropsch catalyst composition is enhanced by the addition of molybdenum, tungsten or a combination thereof as an additional component of said composition. The presence of the additive component increases the olefinic content of the hydrocarbon products produced. The catalyst composition can advantageously include a support component, such as a molecular sieve, co-catalyst/support component or a combination of such support components.

  3. Effects of Propane/Natural Gas Blended Fuels on Gas Turbine Pollutant Emissions

    SciTech Connect

    D. Straub; D. Ferguson; K. Casleton; G. Richards

    2006-03-01

    U.S. natural gas composition is expected to be more variable in the future. Liquefied natural gas (LNG) imports to the U.S. are expected to grow significantly over the next 10-15 years. Unconventional gas supplies, like coal-bed methane, are also expected to grow. As a result of these anticipated changes, the composition of fuel sources may vary significantly from existing domestic natural gas supplies. To allow the greatest use of gas supplies, end-use equipment should be able to accommodate the widest possible gas composition. For this reason, the effect of gas composition on combustion behavior is of interest. This paper will examine the effects of fuel variability on pollutant emissions for premixed gas turbine conditions. The experimental data presented in this paper have been collected from a pressurized single injector combustion test rig at the National Energy Technology Laboratory (NETL). The tests are conducted at 7.5 atm with a 589K air preheat. A propane blending facility is used to vary the Wobbe Index of the site natural gas. The results indicate that propane addition of about five (vol.) percent does not lead to a significant change in the observed NOx emissions. These results vary from data reported in the literature for some engine applications and potential reasons for these differences are discussed.

  4. Universal natural gas fuel skids for turbine control

    SciTech Connect

    Sohne, E.R.

    1997-01-01

    Whittaker Industrial Product`s universal natural gas test cell fuel skid is designed to provide maximum capability in one package. This product incorporates an all-electric fuel metering valve, which utilizes a linear motion to provide accuracy and repeatability. The skid was specifically designed for test cell applications and is capable of testing all LM-Series GE aeroderivative gas turbine engines. Included are base applications with SAC (single annular combustor) or DLE (dry low emissions) within the same fuel skid. The DLE system incorporates a 76 mm (3 inch) diameter valve system design, to give the best dynamic response characteristics. Variations of this design have been developed to fit a number of other turbine manufacturers` applications that are currently in service. Commonality and multiple capabilities are designed to reduce the customer cost, while providing required performance. All designs are NACE compliant. In addition, the valving assemblies have been approved for CENELEC, Zone 1, Group 11B, CSA-Class 1, Div. 1, Groups C&D and CE approved. Production versions or variations of the fuel skid are being used in both power generation and pipeline compression applications. The markets served are both national and international in nature. Specific applications include liquid condensate pipeline processing stations in Norway, to pipeline compression in Spain and Italy, as well as power generation in Mexico. 4 figs.

  5. Development of biomass as an alternative fuel for gas turbines

    SciTech Connect

    Hamrick, J T

    1991-04-01

    A program to develop biomass as an alternative fuel for gas turbines was started at Aerospace Research Corporation in 1980. The research culminated in construction and installation of a power generation system using an Allison T-56 gas turbine at Red Boiling Springs, Tennessee. The system has been successfully operated with delivery of power to the Tennessee Valley Authority (TVA). Emissions from the system meet or exceed EPA requirements. No erosion of the turbine has been detected in over 760 hours of operation, 106 of which were on line generating power for the TVA. It was necessary to limit the turbine inlet temperature to 1450{degrees}F to control the rate of ash deposition on the turbine blades and stators and facilitate periodic cleaning of these components. Results of tests by researchers at Battelle Memorial Institute -- Columbus Division, give promise that deposits on the turbine blades, which must be periodically removed with milled walnut hulls, can be eliminated with addition of lime to the fuel. Operational problems, which are centered primarily around the feed system and engine configuration, have been adequately identified and can be corrected in an upgraded design. The system is now ready for development of a commercial version. The US Department of Energy (DOE) provided support only for the evaluation of wood as an alternative fuel for gas turbines. However, the system appears to have high potential for integration into a hybrid system for the production of ethanol from sorghum or sugar cane. 7 refs., 23 figs., 18 tabs.

  6. Radial flow fuel nozzle for a combustor of a gas turbine

    DOEpatents

    Means, Gregory Scott; Boardman, Gregory Allen; Berry, Jonathan Dwight

    2016-07-05

    A combustor for a gas turbine generally includes a radial flow fuel nozzle having a fuel distribution manifold, and a fuel injection manifold axially separated from the fuel distribution manifold. The fuel injection manifold generally includes an inner side portion, an outer side portion, and a plurality of circumferentially spaced fuel ports that extend through the outer side portion. A plurality of tubes provides axial separation between the fuel distribution manifold and the fuel injection manifold. Each tube defines a fluid communication path between the fuel distribution manifold and the fuel injection manifold.

  7. Safety considerations in testing a fuel-rich aeropropulsion gas generator

    NASA Technical Reports Server (NTRS)

    Rollbuhler, R. James; Hulligan, David D.

    1991-01-01

    A catalyst containing reactor is being tested using a fuel-rich mixture of Jet A fuel and hot input air. The reactor product is a gaseous fuel that can be utilized in aeropropulsion gas turbine engines. Because the catalyst material is susceptible to damage from high temperature conditions, fuel-rich operating conditions are attained by introducing the fuel first into an inert gas stream in the reactor and then displacing the inert gas with reaction air. Once a desired fuel-to-air ratio is attained, only limited time is allowed for a catalyst induced reaction to occur; otherwise the inert gas is substituted for the air and the fuel flow is terminated. Because there presently is not a gas turbine combustor in which to burn the reactor product gas, the gas is combusted at the outlet of the test facility flare stack. This technique in operations has worked successfully in over 200 tests.

  8. A Review of Materials for Gas Turbines Firing Syngas Fuels

    SciTech Connect

    Gibbons, Thomas; Wright, Ian G

    2009-05-01

    Following the extensive development work carried out in the 1990's, gas turbine combined-cycle (GTCC) systems burning natural gas represent a reliable and efficient power generation technology widely used in many parts of the world. A critical factor was that, in order to operate at the high turbine entry temperatures required for high efficiency operation, aero-engine technology, i.e., single-crystal blades, thermal barrier coatings, and sophisticated cooling techniques had to be rapidly scaled up and introduced into these large gas turbines. The problems with reliability that resulted have been largely overcome, so that the high-efficiency GTCC power generation system is now a mature technology, capable of achieving high levels of availability. The high price of natural gas and concern about emission of greenhouse gases has focused attention on the desirability of replacing natural gas with gas derived from coal (syngas) in these gas turbine systems, since typical systems analyses indicate that IGCC plants have some potential to fulfil the requirement for a zero-emissions power generation system. In this review, the current status of materials for the critical hot gas path parts in large gas turbines is briefly considered in the context of the need to burn syngas. A critical factor is that the syngas is a low-Btu fuel, and the higher mass flow compared to natural gas will tend to increase the power output of the engine. However, modifications to the turbine and to the combustion system also will be necessary. It will be shown that many of the materials used in current engines will also be applicable to units burning syngas but, since the combustion environment will contain a greater level of impurities (especially sulfur, water vapor, and particulates), the durability of some components may be prejudiced. Consequently, some effort will be needed to develop improved coatings to resist attack by sulfur-containing compounds, and also erosion.

  9. Comparison of flexible fuel vehicle and life-cycle fuel consumption and emissions of selected pollutants and greenhouse gases for ethanol 85 versus gasoline.

    PubMed

    Zhai, Haibo; Frey, H Christopher; Rouphail, Nagui M; Gonçalves, Gonçalo A; Farias, Tiago L

    2009-08-01

    The objective of this research is to evaluate differences in fuel consumption and tailpipe emissions of flexible fuel vehicles (FFVs) operated on ethanol 85 (E85) versus gasoline. Theoretical ratios of fuel consumption and carbon dioxide (CO2) emissions for both fuels are estimated based on the same amount of energy released. Second-by-second fuel consumption and emissions from one FFV Ford Focus fueled with E85 and gasoline were measured under real-world traffic conditions in Lisbon, Portugal, using a portable emissions measurement system (PEMS). Cycle average dynamometer fuel consumption and emission test results for FFVs are available from the U.S. Department of Energy, and emissions certification test results for ethanol-fueled vehicles are available from the U.S. Environmental Protection Agency. On the basis of the PEMS data, vehicle-specific power (VSP)-based modal average fuel and emission rates for both fuels are estimated. For E85 versus gasoline, empirical ratios of fuel consumption and CO2 emissions agree within a margin of error to the theoretical expectations. Carbon monoxide (CO) emissions were found to be typically lower. From the PEMS data, nitric oxide (NO) emissions associated with some higher VSP modes are higher for E85. From the dynamometer and certification data, average hydrocarbon (HC) and nitrogen oxides (NOx) emission differences vary depending on the vehicle. The differences of average E85 versus gasoline emission rates for all vehicle models are -22% for CO, 12% for HC, and -8% for NOx emissions, which imply that replacing gasoline with E85 reduces CO emissions, may moderately decrease NOx tailpipe emissions, and may increase HC tailpipe emissions. On a fuel life cycle basis for corn-based ethanol versus gasoline, CO emissions are estimated to decrease by 18%. Life-cycle total and fossil CO2 emissions are estimated to decrease by 25 and 50%, respectively; however, life-cycle HC and NOx emissions are estimated to increase by 18 and 82

  10. PRESSURIZED SOLID OXIDE FUEL CELL/GAS TURBINE POWER SYSTEM

    SciTech Connect

    W.L. Lundberg; G.A. Israelson; R.R. Moritz; S.E. Veyo; R.A. Holmes; P.R. Zafred; J.E. King; R.E. Kothmann

    2000-02-01

    Power systems based on the simplest direct integration of a pressurized solid oxide fuel cell (SOFC) generator and a gas turbine (GT) are capable of converting natural gas fuel energy to electric power with efficiencies of approximately 60% (net AC/LHV), and more complex SOFC and gas turbine arrangements can be devised for achieving even higher efficiencies. The results of a project are discussed that focused on the development of a conceptual design for a pressurized SOFC/GT power system that was intended to generate 20 MWe with at least 70% efficiency. The power system operates baseloaded in a distributed-generation application. To achieve high efficiency, the system integrates an intercooled, recuperated, reheated gas turbine with two SOFC generator stages--one operating at high pressure, and generating power, as well as providing all heat needed by the high-pressure turbine, while the second SOFC generator operates at a lower pressure, generates power, and provides all heat for the low-pressure reheat turbine. The system cycle is described, major system components are sized, the system installed-cost is estimated, and the physical arrangement of system components is discussed. Estimates of system power output, efficiency, and emissions at the design point are also presented, and the system cost of electricity estimate is developed.

  11. Anode materials for sour natural gas solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Danilovic, Nemanja

    Novel anode catalysts have been developed for sour natural gas solid oxide fuel cell (SOFC) applications. Sour natural gas comprises light hydrocarbons, and typically also contains H2S. An alternative fuel SOFC that operates directly on sour natural gas would reduce the overall cost of plant construction and operation for fuel cell power generation. The anode for such a fuel cell must have good catalytic and electrocatalytic activity for hydrocarbon conversion, sulfur-tolerance, resistance to coking, and good electronic and ionic conductivity. The catalytic activity and stability of ABO3 (A= La, Ce and/or Sr, B=Cr and one or more of Ti, V, Cr, Fe, Mn, or Co) perovskites as SOFC anode materials depends on both A and B, and are modified by substituents. The materials have been prepared by both solid state and wet-chemical methods. The physical and chemical characteristics of the materials have been fully characterized using electron microscopy, XRD, calorimetry, dilatometry, particle size and area, using XPS and TGA-DSC-MS. Electrochemical performance was determined using potentiodynamic and potentiostatic cell testing, electrochemical impedance analysis, and conductivity measurements. Neither Ce0.9Sr0.1VO3 nor Ce0.9 Sr0.1Cr0.5V0.5O3 was an active anode for oxidation of H2 and CH4 fuels. However, active catalysts comprising Ce0:9Sr0:1V(O,S)3 and Ce0.9Sr 0.1Cr0.5V0.5(O,S)3 were formed when small concentrations of H2S were present in the fuels. The oxysulfides formed in-situ were very active for conversion of H2S. The maximum performance improved from 50 mW cm-2 to 85 mW cm -2 in 0.5% H2S/CH4 at 850°C with partial substitution of V by Cr in Ce0.9Sr0.1V(O,S)3. Selective conversion of H2S offers potential for sweetening of sour gas without affecting the hydrocarbons. Perovskites La0.75Sr0.25Cr0.5X 0.5O3--delta, (henceforth referred to as LSCX, X=Ti, Mn, Fe, Co) are active for conversion of H2, CH4 and 0.5% H2S/CH4. The order of activity in the different fuels depends on

  12. Natural gas vehicle fueling station dispenser meter evaluations

    SciTech Connect

    Rowley, P.F.; Kriha, K.; Blazek, C.F.

    1995-12-31

    The Institute of Gas Technology (IGT) has constructed a multi-purpose meter evaluation facility capable of testing metering technologies for high flow rate and high pressure NGV dispenser applications. The objective of IGT`s meter evaluation program, sponsored by IGT`s Sustaining Membership Program and the Gas Research Institute, is to assist the industry in evaluating the performance and accuracy of currently available flowmeters that are being used or could be applied to CNG gas dispensing. These meters are tested at various flow rates and pressures to determine their performance under NGV fueling station operating conditions and to identify the performance characteristics and limitations for each meter. The metering technologies which are being evaluated under this program include Coriolis meter, sonic nozzle meter, and turbine meter designs.

  13. Apparatus for hot-gas desulfurization of fuel gases

    DOEpatents

    Bissett, Larry A.

    1992-01-01

    An apparatus for removing sulfur values from a hot fuel gas stream in a fdized bed contactor containing particulate sorbent material by employing a riser tube regeneration arrangement. Sulfur-laden sorbent is continuously removed from the fluidized bed through a stand pipe to the riser tube and is rapidly regenerated in the riser tube during transport of the sorbent therethrough by employing an oxygen-containing sorbent regenerating gas stream. The riser tube extends from a location below the fluidized bed to an elevation above the fluidized bed where a gas-solid separating mechanism is utilized to separate the regenerated particulate sorbent from the regeneration gases and reaction gases so that the regenerated sorbent can be returned to the fluidized bed for reuse.

  14. Fuel leak detection apparatus for gas cooled nuclear reactors

    DOEpatents

    Burnette, Richard D.

    1977-01-01

    Apparatus is disclosed for detecting nuclear fuel leaks within nuclear power system reactors, such as high temperature gas cooled reactors. The apparatus includes a probe assembly that is inserted into the high temperature reactor coolant gaseous stream. The probe has an aperture adapted to communicate gaseous fluid between its inside and outside surfaces and also contains an inner tube for sampling gaseous fluid present near the aperture. A high pressure supply of noncontaminated gas is provided to selectively balance the pressure of the stream being sampled to prevent gas from entering the probe through the aperture. The apparatus includes valves that are operable to cause various directional flows and pressures, which valves are located outside of the reactor walls to permit maintenance work and the like to be performed without shutting down the reactor.

  15. Investigation of Fuel Nozzle Technologies to Reduce Gas Turbine Emissions

    NASA Astrophysics Data System (ADS)

    Antony Francis, Roger Neil

    With increasing requirements for reduced emissions from future gas turbines, a multitude of research is being conducted into fuel nozzles by gas turbine manufacturers. This thesis focuses on the development of a novel spill return nozzle, to improve combustion efficiency at starting and low power conditions -where combustion efficiency is often the poorest. The spill return nozzle has the advantage of being able to improve atomization performance and reduce internal coking potential, all while being a simple and durable design. The spill return nozzle tech- nology was subsequently applied to a design for an existing small gas turbine combustor, and its improvements over the existing nozzle were demonstrated. The proposed design was also extended to experimental testing in a simplified form. CAD drawings of the components for testing were made, and prototypes were built in plastic using a high accuracy 3D printer. Future work involves conducting experimental tests to validate results.

  16. Gas fueling to the central 10pc in merging galaxies.

    NASA Astrophysics Data System (ADS)

    Bekki, K.; Noguchi, M.

    1994-10-01

    Merging galaxies sometimes show quasar-like activity, which suggests that the interstellar gas is efficiently transferred to the vicinity of their nucleus (where a massive black hole is considered to exist.). In order to elucidate gas fueling mechanism in galaxy mergers, we have numerically investigated the dynamical evolution of gas in the late phase of mergers. It is found that in some cases (e.g., a retrograde merger involving two compact galaxy cores), the dynamical heating by two sinking cores and subsequent dissipative cloud-cloud collisions drive a large fraction of disk gas (~10^8^Msun_) into the central 10pc. It is also found that most of models have shown a qualitatively similar behavior that gas infall to the central 10pc becomes prominent only after the coalescence of two cores. This tendency of nuclear activity remains unchanged even if we include gas consumption by star formation in our models. Our numerical study predicts that the radiation emitted from the nuclear region of completed mergers showing a single nucleus originates from accretion power induced activity around a massive black hole whereas star formation is prime energy source of the radiation from less advanced mergers showing two distinct nuclei.

  17. 40 CFR 86.1309-90 - Exhaust gas sampling system; Otto-cycle and non-petroleum-fueled engines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... gasoline-fueled, natural gas-fueled, liquefied petroleum gas-fueled or methanol-fueled engines. In the CVS... uncharacterized CVS, addition of an unknown inlet restriction on the dilution air, etc.). (2) The gas mixture... allowed. Heating is also allowed, provided: (i) The air (or air plus exhaust gas) temperature does...

  18. The Effects of Fuel and Cylinder Gas Densities on the Characteristics of Fuel Sprays for Oil Engines

    NASA Technical Reports Server (NTRS)

    Joachim, W F; Beardsley, Edward G

    1928-01-01

    This investigation was conducted as a part of a general research on fuel-injection engines for aircraft. The purpose of the investigation was to determine the effects of fuel and cylinder gas densities with several characteristics of fuel sprays for oil engines. The start, growth, and cut-off of single fuel sprays produced by automatic injection valves were recorded on photographic film by means of special high-speed motion-picture apparatus. This equipment, which has been described in previous reports, is capable of taking twenty-five consecutive pictures of the moving spray at the rate of 4,000 per second. The penetrations of the fuel sprays increased and the cone angles and relative distributions decreased with increase in the specific gravity of the fuel. The density of the gas into which the fuel sprays were injected controlled their penetration. This was the only characteristic of the chamber gas that had a measurable effect upon the fuel sprays. Application of fuel-spray penetration data to the case of an engine, in which the pressure is rising during injection, indicated that fuel sprays may penetrate considerably farther than when injected into a gas at a density equal to that of the gas in an engine cylinder at top center.

  19. Nanocomposite based flexible ultrasensitive resistive gas sensor for chemical reactions studies

    PubMed Central

    Pandey, Sadanand; Goswami, Gopal K.; Nanda, Karuna K.

    2013-01-01

    Room temperature operation, low detection limit and fast response time are highly desirable for a wide range of gas sensing applications. However, the available gas sensors suffer mainly from high temperature operation or external stimulation for response/recovery. Here, we report an ultrasensitive-flexible-silver-nanoparticle based nanocomposite resistive sensor for ammonia detection and established the sensing mechanism. We show that the nanocomposite can detect ammonia as low as 500 parts-per-trillion at room temperature in a minute time. Furthermore, the evolution of ammonia from different chemical reactions has been demonstrated using the nanocomposite sensor as an example. Our results demonstrate the proof-of-concept for the new detector to be used in several applications including homeland security, environmental pollution and leak detection in research laboratories and many others. PMID:23803772

  20. Nonlinear dynamics of flexible rotor supported on the gas foil journal bearings

    NASA Astrophysics Data System (ADS)

    Bhore, Skylab P.; Darpe, Ashish K.

    2013-09-01

    Investigation on nonlinear dynamics of a flexible rotor supported on the gas foil journal bearings is attempted. A time domain orbit simulation is carried out that couples the equations of rotor motion, unsteady Reynolds equation and foil deformation. The unsteady Reynolds equation is solved using control volume formulation with power law hybrid scheme and Gauss-Seidel method. The nonlinear dynamic response is analyzed using disc center and journal center trajectories, Poincaré maps, Fast Fourier transforms and bifurcation plots. The analysis is carried out for different system parameters, namely, rotating speed, unbalance eccentricity, compliance and loss factor of gas foil bearing. The analysis reveals highly nonlinear behavior with periodic, multi-periodic and quasiperiodic motion of the disc and the journal center. The present analysis can be useful in designing and selection of suitable operating parameters of rotor bearing system.

  1. 76 FR 45240 - National Fuel Gas Supply Corporation; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-28

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission National Fuel Gas Supply Corporation; Notice of Application Take notice that on July 8, 2011, National Fuel Gas Supply Corporation (National Fuel), 6363 Main...

  2. 78 FR 53745 - National Fuel Gas Supply Corporation; Notice of Request Under Blanket Authorization

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-30

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission National Fuel Gas Supply Corporation; Notice of Request Under Blanket Authorization Take notice that on August 12, 2013, National Fuel Gas Supply Corporation (National Fuel),...

  3. Solid oxide fuel cell/gas turbine power plant cycles and performance estimates

    SciTech Connect

    Lundberg, W.L.

    1996-12-31

    SOFC pressurization enhances SOFC efficiency and power performance. It enables the direct integration of the SOFC and gas turbine technologies which can form the basis for very efficient combined- cycle power plants. PSOFC/GT cogeneration systems, producing steam and/or hot water in addition to electric power, can be designed to achieve high fuel effectiveness values. A wide range of steam pressures and temperatures are possible owing to system component arrangement flexibility. It is anticipated that Westinghouse will offer small PSOFC/GT power plants for sale early in the next decade. These plants will have capacities less than 10 MW net ac, and they will operate with efficiencies in the 60-65% (net ac/LHV) range.

  4. Utilization of alternative marine fuels for gas turbine power plant onboard ships

    NASA Astrophysics Data System (ADS)

    El Gohary, M. Morsy; Seddiek, Ibrahim Sadek

    2013-03-01

    Marine transportation industry is undergoing a number of problems. Some of these problems are associated with conventional marine fuel-oils. Many researchers have showed that fuel-oil is considered as the main component that causes both environmental and economic problems, especially with the continuous rising of fuel cost. This paper investigates the capability of using natural gas and hydrogen as alternative fuel instead of diesel oil for marine gas turbine, the effect of the alternative fuel on gas turbine thermodynamic performance and the employed mathematical model. The results showed that since the natural gas is categorized as hydrocarbon fuel, the thermodynamic performance of the gas turbine cycle using the natural gas was found to be close to the diesel case performance. The gas turbine thermal efficiency was found to be 1% less in the case of hydrogen compared to the original case of diesel.

  5. Compounded turbocharged rotary internal combustion engine fueled with natural gas

    SciTech Connect

    Jenkins, P.E.

    1992-10-15

    This patent describes a compounded engine. It comprises: a first Wankel engine having a housing with a trochoidal inner surface containing a generally triangular shaped rotor, the engine containing a fuel supply system suitable for operating the engine with natural gas as a fuel; a turbocharge compressing air for combustion by the engine, the turbocharger being driven by the exhaust gases which exit from the engine; a combustion chamber in fluid communication with the exhaust from the engine after that exhaust has passed through the turbocharger, the chamber having an ignition device suitable for igniting hydrocarbons in the engine exhaust, whereby the engine timing, and the air and fuel mixture of the engine are controlled so that when the engine exhaust reaches the combustion chamber the exhaust contains a sufficient amount of oxygen and hydrocarbons to enable ignition and combustion of the engine exhaust in the combustion chamber without the addition of fuel or air, and whereby the engine operating conditions are controlled to vary the performance of the secondary combustor; and a controllable ignition device to ignite the exhaust gases in the combustion chamber at predetermined times.

  6. Total fuel-cycle analysis of heavy-duty vehicles using biofuels and natural gas-based alternative fuels.

    PubMed

    Meyer, Patrick E; Green, Erin H; Corbett, James J; Mas, Carl; Winebrake, James J

    2011-03-01

    Heavy-duty vehicles (HDVs) present a growing energy and environmental concern worldwide. These vehicles rely almost entirely on diesel fuel for propulsion and create problems associated with local pollution, climate change, and energy security. Given these problems and the expected global expansion of HDVs in transportation sectors, industry and governments are pursuing biofuels and natural gas as potential alternative fuels for HDVs. Using recent lifecycle datasets, this paper evaluates the energy and emissions impacts of these fuels in the HDV sector by conducting a total fuel-cycle (TFC) analysis for Class 8 HDVs for six fuel pathways: (1) petroleum to ultra low sulfur diesel; (2) petroleum and soyoil to biodiesel (methyl soy ester); (3) petroleum, ethanol, and oxygenate to e-diesel; (4) petroleum and natural gas to Fischer-Tropsch diesel; (5) natural gas to compressed natural gas; and (6) natural gas to liquefied natural gas. TFC emissions are evaluated for three greenhouse gases (GHGs) (carbon dioxide, nitrous oxide, and methane) and five other pollutants (volatile organic compounds, carbon monoxide, nitrogen oxides, particulate matter, and sulfur oxides), along with estimates of total energy and petroleum consumption associated with each of the six fuel pathways. Results show definite advantages with biodiesel and compressed natural gas for most pollutants, negligible benefits for e-diesel, and increased GHG emissions for liquefied natural gas and Fischer-Tropsch diesel (from natural gas). PMID:21416755

  7. Total fuel-cycle analysis of heavy-duty vehicles using biofuels and natural gas-based alternative fuels.

    PubMed

    Meyer, Patrick E; Green, Erin H; Corbett, James J; Mas, Carl; Winebrake, James J

    2011-03-01

    Heavy-duty vehicles (HDVs) present a growing energy and environmental concern worldwide. These vehicles rely almost entirely on diesel fuel for propulsion and create problems associated with local pollution, climate change, and energy security. Given these problems and the expected global expansion of HDVs in transportation sectors, industry and governments are pursuing biofuels and natural gas as potential alternative fuels for HDVs. Using recent lifecycle datasets, this paper evaluates the energy and emissions impacts of these fuels in the HDV sector by conducting a total fuel-cycle (TFC) analysis for Class 8 HDVs for six fuel pathways: (1) petroleum to ultra low sulfur diesel; (2) petroleum and soyoil to biodiesel (methyl soy ester); (3) petroleum, ethanol, and oxygenate to e-diesel; (4) petroleum and natural gas to Fischer-Tropsch diesel; (5) natural gas to compressed natural gas; and (6) natural gas to liquefied natural gas. TFC emissions are evaluated for three greenhouse gases (GHGs) (carbon dioxide, nitrous oxide, and methane) and five other pollutants (volatile organic compounds, carbon monoxide, nitrogen oxides, particulate matter, and sulfur oxides), along with estimates of total energy and petroleum consumption associated with each of the six fuel pathways. Results show definite advantages with biodiesel and compressed natural gas for most pollutants, negligible benefits for e-diesel, and increased GHG emissions for liquefied natural gas and Fischer-Tropsch diesel (from natural gas).

  8. Fuel injector for use in a gas turbine engine

    SciTech Connect

    Wiebe, David J.

    2012-10-09

    A fuel injector in a combustor apparatus of a gas turbine engine. An outer wall of the injector defines an interior volume in which an intermediate wall is disposed. A first gap is formed between the outer wall and the intermediate wall. The intermediate wall defines an internal volume in which an inner wall is disposed. A second gap is formed between the intermediate wall and the inner wall. The second gap receives cooling fluid that cools the injector. The cooling fluid provides convective cooling to the intermediate wall as it flows within the second gap. The cooling fluid also flows through apertures in the intermediate wall into the first gap where it provides impingement cooling to the outer wall and provides convective cooling to the outer wall. The inner wall defines a passageway that delivers fuel into a liner downstream from a main combustion zone.

  9. Smart Onboard Inspection of High Pressure Gas Fuel Cylinders

    SciTech Connect

    Beshears, D.L.; Starbuck, J.M.

    1999-09-27

    The use of natural gas as an alternative fuel in automotive applications is not widespread primarily because of the high cost and durability of the composite storage tanks. Tanks manufactured using carbon fiber are desirable in weight critical passenger vehicles because of the low density of carbon fiber. The high strength of carbon fiber also translates to a weight reduction because thinner wall designs are possible to withstand the internal pressure loads. However, carbon fiber composites are prone to impact damage that over the life of the storage tank may lead to an unsafe condition for the vehicle operator. A technique that potentially may be a reliable indication of developing hazardous conditions in composite fuel tanks is imbedded fiber optics. The applicability of this technique to onboard inspection is discussed and results from preliminary lab testing indicate that fiber optic sensors can reliably detect impact damage.

  10. Gas and liquid fuel injection into an enclosed swirling flow

    NASA Astrophysics Data System (ADS)

    Ahmad, N. T.; Andrews, G. E.

    1984-06-01

    The use of swirler air for atomization has been tested with direct central propane injection and with direct central kerosene and gas oil injection, and its results have been compared with those for nonswirling flow systems under the same conditions. Direct propane injection results in a major extension of stability limits, by comparison to results for premixing, while with liquid fuel injection the stability limits are generally worse than for premixed fuel and air. This may be due to the action of the centrifugal forces on the liquid droplets in the swirl flow, which results in outer swirl flow vaporization and weaker mixtures in the core recirculation region than would be the case for propane injection. A comparison with nonswirling system performance indicated that all emission levels were higher with swirl for propane.

  11. The impact of air-fuel mixture composition on SI engine performance during natural gas and producer gas combustion

    NASA Astrophysics Data System (ADS)

    Przybyła, G.; Postrzednik, S.; Żmudka, Z.

    2016-09-01

    The paper summarizers results of experimental tests of SI engine fuelled with gaseous fuels such as, natural gas and three mixtures of producer gas substitute that simulated real producer gas composition. The engine was operated under full open throttle and charged with different air-fuel mixture composition (changed value of air excess ratio). The spark timing was adjusted to obtain maximum brake torque (MBT) for each fuel and air-fuel mixture. This paper reports engine indicated performance based on in-cylinder, cycle resolved pressure measurements. The engine performance utilizing producer gas in terms of indicated efficiency is increased by about 2 percentage points when compared to fuelling with natural gas. The engine power de-rating when producer gas is utilized instead the natural gas, varies from 24% to 28,6% under stoichiometric combustion conditions. For lean burn (λ=1.5) the difference are lower and varies from 22% to 24.5%.

  12. Thermodynamic analysis of alternative marine fuels for marine gas turbine power plants

    NASA Astrophysics Data System (ADS)

    El Gohary, Mohamed M.; Ammar, Nader R.

    2016-03-01

    The marine shipping industry faces challenges to reduce engine exhaust emissions and greenhouse gases (GHGs) from ships, and in particular, carbon dioxide. International regulatory bodies such as the International Maritime Organization and National Environmental Agencies of many countries have issued rules and regulations to drastically reduce GHG and emissions emanating from marine sources. This study investigates the possibility of using natural gas and hydrogen as alternative fuels to diesel oil for marine gas turbines and uses a mathematical model to assess the effect of these alternative fuels on gas turbine thermodynamic performance. Results show that since natural gas is categorized as a hydrocarbon fuel, the thermodynamic performance of the gas turbine cycle using natural gas was close to that of the diesel case. However, the gas turbine thermal efficiency was found to be slightly lower for natural gas and hydrogen fuels compared to diesel fuel.

  13. Impact study on the use of biomass-derived fuels in gas turbines for power generation

    SciTech Connect

    Moses, C A; Bernstein, H

    1994-01-01

    This report evaluates the properties of fuels derived from biomass, both gaseous and liquid, against the fuel requirements of gas turbine systems for gernating electrical power. The report attempts to be quantitative rather than merely qualitative to establish the significant variations in the properties of biomass fuels from those of conventional fuels. Three general categories are covered: performance, durability, and storage and handling.

  14. High power density microbial fuel cell with flexible 3D graphene-nickel foam as anode

    NASA Astrophysics Data System (ADS)

    Wang, Hanyu; Wang, Gongming; Ling, Yichuan; Qian, Fang; Song, Yang; Lu, Xihong; Chen, Shaowei; Tong, Yexiang; Li, Yat

    2013-10-01

    The structure and electrical conductivity of anode play a significant role in the power generation of microbial fuel cells (MFCs). In this study, we developed a three-dimensional (3D) reduced graphene oxide-nickel (denoted as rGO-Ni) foam as an anode for MFC through controlled deposition of rGO sheets onto the nickel foam substrate. The loading amount of rGO sheets and electrode surface area can be controlled by the number of rGO loading cycles. 3D rGO-Ni foam anode provides not only a large accessible surface area for microbial colonization and electron mediators, but also a uniform macro-porous scaffold for effective mass diffusion of the culture medium. Significantly, at a steady state of the power generation, the MFC device with flexible rGO-Ni electrodes produced an optimal volumetric power density of 661 W m-3 calculated based on the volume of anode material, or 27 W m-3 based on the volume of the anode chamber. These values are substantially higher than that of plain nickel foam, and other conventional carbon based electrodes (e.g., carbon cloth, carbon felt, and carbon paper) measured in the same conditions. To our knowledge, this is the highest volumetric power density reported for mL-scale MFC device with a pure strain of Shewanella oneidensis MR-1. We also demonstrated that the MFC device can be operated effectively in a batch-mode at least for a week. These new 3D rGO-Ni electrodes show great promise for improving the power generation of MFC devices.The structure and electrical conductivity of anode play a significant role in the power generation of microbial fuel cells (MFCs). In this study, we developed a three-dimensional (3D) reduced graphene oxide-nickel (denoted as rGO-Ni) foam as an anode for MFC through controlled deposition of rGO sheets onto the nickel foam substrate. The loading amount of rGO sheets and electrode surface area can be controlled by the number of rGO loading cycles. 3D rGO-Ni foam anode provides not only a large accessible

  15. High power density microbial fuel cell with flexible 3D graphene-nickel foam as anode.

    PubMed

    Wang, Hanyu; Wang, Gongming; Ling, Yichuan; Qian, Fang; Song, Yang; Lu, Xihong; Chen, Shaowei; Tong, Yexiang; Li, Yat

    2013-11-01

    The structure and electrical conductivity of anode play a significant role in the power generation of microbial fuel cells (MFCs). In this study, we developed a three-dimensional (3D) reduced graphene oxide-nickel (denoted as rGO-Ni) foam as an anode for MFC through controlled deposition of rGO sheets onto the nickel foam substrate. The loading amount of rGO sheets and electrode surface area can be controlled by the number of rGO loading cycles. 3D rGO-Ni foam anode provides not only a large accessible surface area for microbial colonization and electron mediators, but also a uniform macro-porous scaffold for effective mass diffusion of the culture medium. Significantly, at a steady state of the power generation, the MFC device with flexible rGO-Ni electrodes produced an optimal volumetric power density of 661 W m(-3) calculated based on the volume of anode material, or 27 W m(-3) based on the volume of the anode chamber. These values are substantially higher than that of plain nickel foam, and other conventional carbon based electrodes (e.g., carbon cloth, carbon felt, and carbon paper) measured in the same conditions. To our knowledge, this is the highest volumetric power density reported for mL-scale MFC device with a pure strain of Shewanella oneidensis MR-1. We also demonstrated that the MFC device can be operated effectively in a batch-mode at least for a week. These new 3D rGO-Ni electrodes show great promise for improving the power generation of MFC devices.

  16. Effects of Propane/Natural Gas Blended Fuels on Gas Turbine Pollutant Emissions

    SciTech Connect

    Straub, D.L.; Ferguson, D.H.; Casleton, K.H.; Richards, G.A.

    2007-03-01

    Liquefied natural gas (LNG) imports to the U.S. are expected to grow significantly over the next 10-15 years. Likewise, it is expected that changes to the domestic gas supply may also introduce changes in natural gas composition. As a result of these anticipated changes, the composition of fuel sources may vary significantly from conventional domestic natural gas supplies. This paper will examine the effects of fuel variability on pollutant emissions for premixed gas turbine conditions. The experimental data presented in this paper have been collected from a pressurized single injector combustion test rig at the National Energy Technology Laboratory (NETL). The tests are conducted at 7.5 atm with a 588 K air preheat. A propane blending facility is used to vary the Wobbe Index of the site natural gas. The results indicate that propane addition of about five (vol.) percent does not lead to a significant change in the observed NOx or CO emissions. These results are different from data collected on some engine applications and potential reasons for these differences will be described.

  17. Combined catalysts for the combustion of fuel in gas turbines

    DOEpatents

    Anoshkina, Elvira V.; Laster, Walter R.

    2012-11-13

    A catalytic oxidation module for a catalytic combustor of a gas turbine engine is provided. The catalytic oxidation module comprises a plurality of spaced apart catalytic elements for receiving a fuel-air mixture over a surface of the catalytic elements. The plurality of catalytic elements includes at least one primary catalytic element comprising a monometallic catalyst and secondary catalytic elements adjacent the primary catalytic element comprising a multi-component catalyst. Ignition of the monometallic catalyst of the primary catalytic element is effective to rapidly increase a temperature within the catalytic oxidation module to a degree sufficient to ignite the multi-component catalyst.

  18. Statistical Methods Handbook for Advanced Gas Reactor Fuel Materials

    SciTech Connect

    J. J. Einerson

    2005-05-01

    Fuel materials such as kernels, coated particles, and compacts are being manufactured for experiments simulating service in the next generation of high temperature gas reactors. These must meet predefined acceptance specifications. Many tests are performed for quality assurance, and many of these correspond to criteria that must be met with specified confidence, based on random samples. This report describes the statistical methods to be used. The properties of the tests are discussed, including the risk of false acceptance, the risk of false rejection, and the assumption of normality. Methods for calculating sample sizes are also described.

  19. An americium-fueled gas core nuclear rocket

    NASA Astrophysics Data System (ADS)

    Kammash, Terry; Galbraith, David L.; Jan, Ta-Rong

    1993-01-01

    A gas core fission reactor that utilizes americium in place of uranium is examined for potential utilization as a nuclear rocket for space propulsion. The isomer 242mAm with a half life of 141 years is obtained from an (n, γ) capture reaction with 241Am, and has the highest known thermal fission cross section. We consider a 7500 MW reactor, whose propulsion characteristics with 235U have already been established, and re-examine it using americium. We find that the same performance can be achieved at a comparable fuel density, and a radial size reduction (of both core and moderator/reflector) of about 70%.

  20. Feasibility of landfill gas as a liquefied natural gas fuel source for refuse trucks.

    PubMed

    Zietsman, Josias; Bari, Muhammad Ehsanul; Rand, Aaron J; Gokhale, Bhushan; Lord, Dominique; Kumar, Sunil

    2008-05-01

    The purpose of this paper is to develop a methodology to evaluate the feasibility of using landfill gas (LFG) as a liquefied natural gas (LNG) fuel source for heavy-duty refuse trucks operating on landfills. Using LFG as a vehicle fuel can make the landfills more self-sustaining, reduce their dependence on fossil fuels, and reduce emissions and greenhouse gases. Acrion Technologies Inc. in association with Mack Trucks Inc. developed a technology to generate LNG from LFG using the CO2 WASH process. A successful application of this process was performed at the Eco Complex in Burlington County, PA. During this application two LNG refuse trucks were operated for 600 hr each using LNG produced from gases from the landfill. The methodology developed in this paper can evaluate the feasibility of three LFG options: doing nothing, electricity generation, and producing LNG to fuel refuse trucks. The methodology involved the modeling of several components: LFG generation, energy recovery processes, fleet operations, economic feasibility, and decision-making. The economic feasibility considers factors such as capital, maintenance, operational, and fuel costs, emissions and tax benefits, and the sale of products such as surplus LNG and food-grade carbon dioxide (CO2). Texas was used as a case study. The 96 landfills in Texas were prioritized and 17 landfills were identified that showed potential for converting LFG to LNG for use as a refuse truck fuel. The methodology was applied to a pilot landfill in El Paso, TX. The analysis showed that converting LFG to LNG to fuel refuse trucks proved to be the most feasible option and that the methodology can be applied for any landfill that considers this option.

  1. Feasibility of landfill gas as a liquefied natural gas fuel source for refuse trucks.

    PubMed

    Zietsman, Josias; Bari, Muhammad Ehsanul; Rand, Aaron J; Gokhale, Bhushan; Lord, Dominique; Kumar, Sunil

    2008-05-01

    The purpose of this paper is to develop a methodology to evaluate the feasibility of using landfill gas (LFG) as a liquefied natural gas (LNG) fuel source for heavy-duty refuse trucks operating on landfills. Using LFG as a vehicle fuel can make the landfills more self-sustaining, reduce their dependence on fossil fuels, and reduce emissions and greenhouse gases. Acrion Technologies Inc. in association with Mack Trucks Inc. developed a technology to generate LNG from LFG using the CO2 WASH process. A successful application of this process was performed at the Eco Complex in Burlington County, PA. During this application two LNG refuse trucks were operated for 600 hr each using LNG produced from gases from the landfill. The methodology developed in this paper can evaluate the feasibility of three LFG options: doing nothing, electricity generation, and producing LNG to fuel refuse trucks. The methodology involved the modeling of several components: LFG generation, energy recovery processes, fleet operations, economic feasibility, and decision-making. The economic feasibility considers factors such as capital, maintenance, operational, and fuel costs, emissions and tax benefits, and the sale of products such as surplus LNG and food-grade carbon dioxide (CO2). Texas was used as a case study. The 96 landfills in Texas were prioritized and 17 landfills were identified that showed potential for converting LFG to LNG for use as a refuse truck fuel. The methodology was applied to a pilot landfill in El Paso, TX. The analysis showed that converting LFG to LNG to fuel refuse trucks proved to be the most feasible option and that the methodology can be applied for any landfill that considers this option. PMID:18512437

  2. Composite nuclear fuel fabrication methodology for gas fast reactors

    NASA Astrophysics Data System (ADS)

    Vasudevamurthy, Gokul

    An advanced fuel form for use in Gas Fast Reactors (GFR) was investigated. Criteria for the fuel includes operation at high temperature (˜1400°C) and high burnup (˜150 MWD/MTHM) with effective retention of fission products even during transient temperatures exceeding 1600°C. The GFR fuel is expected to contain up to 20% transuranics for a closed fuel cycle. Earlier evaluations of reference fuels for the GFR have included ceramic-ceramic (cercer) dispersion type composite fuels of mixed carbide or nitride microspheres coated with SiC in a SiC matrix. Studies have indicated that ZrC is a potential replacement for SiC on account of its higher melting point, increased fission product corrosion resistance and better chemical stability. The present work investigated natural uranium carbide microspheres in a ZrC matrix instead of SiC. Known issues of minor actinide volatility during traditional fabrication procedures necessitated the investigation of still high temperature but more rapid fabrication techniques to minimize these anticipated losses. In this regard, fabrication of ZrC matrix by combustion synthesis from zirconium and graphite powders was studied. Criteria were established to obtain sufficient matrix density with UC microsphere volume fractions up to 30%. Tests involving production of microspheres by spark erosion method (similar to electrodischarge machining) showed the inability of the method to produce UC microspheres in the desired range of 300 to 1200 mum. A rotating electrode device was developed using a minimum current of 80A and rotating at speeds up to 1500 rpm to fabricate microspheres between 355 and 1200 mum. Using the ZrC process knowledge, UC electrodes were fabricated and studied for use in the rotating electrode device to produce UC microspheres. Fabrication of the cercer composite form was studied using microsphere volume fractions of 10%, 20%, and 30%. The macrostructure of the composite and individual components at various stages were

  3. The conformational flexibility of nucleic acid bases paired in gas phase: A Car-Parrinello molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Xiao, Shiyan; Liang, Haojun

    2012-05-01

    The flexibilities of pyrimidine and imidazole rings in the paired nucleobases are investigated using Car-Parrinello molecular dynamics simulation in gas phase. The pairing influence on the stiffness of rings is analyzed based on the molecular structure of the nucleobases and constraints caused by pairing. We prove that the flexibilities of pyrimidine rings in isolated state have subtle correlation with the degree of aromaticity of the rings. The pairings in nucleic base pairs cause the rings to be more rigid for G, T, and U but more flexible for A and the same for C.

  4. Intermediate-sized natural gas fueled carbonate fuel cell power plants

    NASA Astrophysics Data System (ADS)

    Sudhoff, Frederick A.; Fleming, Donald K.

    1994-04-01

    This executive summary of the report describes the accomplishments of the joint US Department of Energy's (DOE) Morgantown Energy Technology Center (METC) and M-C POWER Corporation's Cooperative Research and Development Agreement (CRADA) No. 93-013. This study addresses the intermediate power plant size between 2 megawatt (MW) and 200 MW. A 25 MW natural-gas, fueled-carbonate fuel cell power plant was chosen for this purpose. In keeping with recent designs, the fuel cell will operate under approximately three atmospheres of pressure. An expander/alternator is utilized to expand exhaust gas to atmospheric conditions and generate additional power. A steam-bottoming cycle is not included in this study because it is not believed to be cost effective for this system size. This study also addresses the simplicity and accuracy of a spreadsheet-based simulation with that of a full Advanced System for Process Engineering (ASPEN) simulation. The personal computer can fully utilize the simple spreadsheet model simulation. This model can be made available to all users and is particularly advantageous to the small business user.

  5. Highly oriented gold/nanoclay-polymer nanocomposites for flexible gas barrier films.

    PubMed

    Song, Eun-Ho; Kang, Byung-Hyun; Kim, Tan-Young; Lee, Hyun-Jun; Park, Young-Wook; Kim, Young-Cho; Ju, Byeong-Kwon

    2015-03-01

    Layer-by-layer (LBL) assembly, which uses electronic and ionic intermolecular bonding under nonvacuum conditions, is a promising technology for fabricating gas barrier films owing to its simple processing and easy formation of a multilayer structure. In this research, nanoclay-polymer multilayers of Na(+)-montmorillonite (Na-MMT) were fabricated. Particularly, the addition of AuCl3 on fabricated MMT layers caused a reaction with the surface silanol functional groups (Si-O-H) of the MMT platelets, resulting in the formation of Au2O3 on the MMT-polymer multilayers. The Au2O3 filled the vacancies between the MMT platelets and linked the MMT platelets together, thus forming a gas barrier film that reduced the water vapor transmission rate (WVTR) to 3.2 × 10(-3) g m(-2) day(-1). AuCl3-treated MMT-polymer multilayers thus have the potential to be utilized for manufacturing gas barrier films for flexible electronics on a large scale. PMID:25668131

  6. Compatibility of alternative fuels with advanced automotive gas turbine and stirling engines. A literature survey

    NASA Technical Reports Server (NTRS)

    Cairelli, J.; Horvath, D.

    1981-01-01

    The application of alternative fuels in advanced automotive gas turbine and Stirling engines is discussed on the basis of a literature survey. These alternative engines are briefly described, and the aspects that will influence fuel selection are identified. Fuel properties and combustion properties are discussed, with consideration given to advanced materials and components. Alternative fuels from petroleum, coal, oil shale, alcohol, and hydrogen are discussed, and some background is given about the origin and production of these fuels. Fuel requirements for automotive gas turbine and Stirling engines are developed, and the need for certain reseach efforts is discussed. Future research efforts planned at Lewis are described.

  7. Study on the ignition of a fuel droplet in high temperature stagnant gas

    SciTech Connect

    Yoshizawa, Y.; Tomita, M.; Kawada, H.

    1981-07-01

    This study aimed to clarify the effects of the fuel vapor, which had evaporated in advance and formed combustible mixture around the condensed phase, on the ignition of a fuel droplet under the gas dynamic compression. A soap bubble was utilized to make a heterogeneously distributed fuel vapor pocket in oxidizer gas which offered a model of the vapor cloud around the fuel droplet. Induction periods for the onset of strong emission were measured for fuel droplets, and the models and their ignition processes were examined precisely by means of the interferometric measurement of the fuel concentration field.

  8. 40 CFR 600.303-12 - Fuel economy label-special requirements for flexible-fuel vehicles.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... upper portion of the designated space. (ii) Include the city fuel economy value determined in § 600.311 in the lower left portion of the designated space. Include the expression “city” below this number... designated space. Include the expression “highway” below this number. (5) The fuel consumption...

  9. Air/fuel supply system for use in a gas turbine engine

    DOEpatents

    Fox, Timothy A; Schilp, Reinhard; Gambacorta, Domenico

    2014-06-17

    A fuel injector for use in a gas turbine engine combustor assembly. The fuel injector includes a main body and a fuel supply structure. The main body has an inlet end and an outlet end and defines a longitudinal axis extending between the outlet and inlet ends. The main body comprises a plurality of air/fuel passages extending therethrough, each air/fuel passage including an inlet that receives air from a source of air and an outlet. The fuel supply structure communicates with and supplies fuel to the air/fuel passages for providing an air/fuel mixture within each air/fuel passage. The air/fuel mixtures exit the main body through respective air/fuel passage outlets.

  10. The spectroscopy and dynamics of flexible biomolecules in the gas phase

    NASA Astrophysics Data System (ADS)

    Dian, Brian C.

    The work presented in the volume focuses on understanding the complex potential energy landscapes of flexible biomolecules in the gas phase. Through a variety of double and triple resonance spectroscopic techniques, the structure and dynamics of flexible biomolecules can be elucidated and information about the connectivity and barriers to isomerization can be revealed. This work is presented in three main sections. The first focuses on the conformational preferences of two dipeptide mimetics: n-acetyltryptophan amide and n-acetyltryptophan methyl amide. It is found that two main conformational structures exist: an extended backbone C5 structure and a contracted backbone that has an intramolecular hydrogen bond between the amide groups. The effects of the conformation on the electronic spectroscopy of the molecules is also studied. It is found that the conformation of the backbone in both molecules has a dramatic effect on the ordering of the excited electronic states: 1Lb, 1La and 1pisigma*. The second section focuses on the isomerization efficiency of melatonin in addition to the aforementioned species. Through the novel techniques of hole-filling spectroscopy and infrared induced population transfer spectroscopy isomerization quantum yields are determined. In the final section, hole-filling spectroscopy is used to study the vibrational cooling dynamics in a super-sonic expansion, and is coupled to stimulated-emission pumping as a means to probe the barriers to isomerization in the molecule tryptamine.

  11. Flower-like Palladium Nanoclusters Decorated Graphene Electrodes for Ultrasensitive and Flexible Hydrogen Gas Sensing

    PubMed Central

    Shin, Dong Hoon; Lee, Jun Seop; Jun, Jaemoon; An, Ji Hyun; Kim, Sung Gun; Cho, Kyung Hee; Jang, Jyongsik

    2015-01-01

    Flower-like palladium nanoclusters (FPNCs) are electrodeposited onto graphene electrode that are prepared by chemical vapor deposition (CVD). The CVD graphene layer is transferred onto a poly(ethylene naphthalate) (PEN) film to provide a mechanical stability and flexibility. The surface of the CVD graphene is functionalized with diaminonaphthalene (DAN) to form flower shapes. Palladium nanoparticles act as templates to mediate the formation of FPNCs, which increase in size with reaction time. The population of FPNCs can be controlled by adjusting the DAN concentration as functionalization solution. These FPNCs_CG electrodes are sensitive to hydrogen gas at room temperature. The sensitivity and response time as a function of the FPNCs population are investigated, resulted in improved performance with increasing population. Furthermore, the minimum detectable level (MDL) of hydrogen is 0.1 ppm, which is at least 2 orders of magnitude lower than that of chemical sensors based on other Pd-based hybrid materials. PMID:26198416

  12. Hydrophobic nanopatterning on a flexible gas barrier film by using a poly(dimethylsiloxane) elastomer

    NASA Astrophysics Data System (ADS)

    Choi, Jin-Hwan; Kim, Young-Min; Park, Young-Wook; Park, Tae-Hyun; Dong, Ki-Young; Ju, Byeong-Kwon

    2009-04-01

    In this work, we fabricated a hydrophobic and transparent gas barrier film via a nanopatterned poly(dimethylsiloxane) elastomer imprinting on an ultraviolet-curable polymer resin. A Ca degradation method (water permeation rate) and surface energy measurements were used to determine the level of modification of the surface characteristics. As a result, the decreased surface energy from 25.8 to 7.29 mN m-1 led to a lower water vapor transmission rate from 3.06 × 10-1 to 6.24 × 10-2 g m-2 day-1 according to the degree of decreased Ca height from 100 nm. A tunable wettability is beneficial for application where controlling the direction of moisture flow is important, such as in flexible organic electronics.

  13. Fuel Performance Experiments and Modeling: Fission Gas Bubble Nucleation and Growth in Alloy Nuclear Fuels

    SciTech Connect

    McDeavitt, Sean; Shao, Lin; Tsvetkov, Pavel; Wirth, Brian; Kennedy, Rory

    2014-04-07

    Advanced fast reactor systems being developed under the DOE's Advanced Fuel Cycle Initiative are designed to destroy TRU isotopes generated in existing and future nuclear energy systems. Over the past 40 years, multiple experiments and demonstrations have been completed using U-Zr, U-Pu-Zr, U-Mo and other metal alloys. As a result, multiple empirical and semi-empirical relationships have been established to develop empirical performance modeling codes. Many mechanistic questions about fission as mobility, bubble coalescience, and gas release have been answered through industrial experience, research, and empirical understanding. The advent of modern computational materials science, however, opens new doors of development such that physics-based multi-scale models may be developed to enable a new generation of predictive fuel performance codes that are not limited by empiricism.

  14. 49 CFR 575.401 - Vehicle labeling of fuel economy, greenhouse gas, and other pollutant emissions information.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... of the fuel pump. (3) For natural gas, include the established CNG logo. (4) For hydrogen fuel cells... requirements for hydrogen fuel cell vehicles. (1) Fuel economy and environment labels for hydrogen fuel cell... vehicle with the words “Gasoline Vehicle,” “Diesel Vehicle,” “Compressed Natural Gas Vehicle,”......

  15. 49 CFR 575.401 - Vehicle labeling of fuel economy, greenhouse gas, and other pollutant emissions information.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... of the fuel pump. (3) For natural gas, include the established CNG logo. (4) For hydrogen fuel cells... requirements for hydrogen fuel cell vehicles. (1) Fuel economy and environment labels for hydrogen fuel cell... vehicle with the words “Gasoline Vehicle,” “Diesel Vehicle,” “Compressed Natural Gas Vehicle,”......

  16. 49 CFR 575.401 - Vehicle labeling of fuel economy, greenhouse gas, and other pollutant emissions information.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... of the fuel pump. (3) For natural gas, include the established CNG logo. (4) For hydrogen fuel cells... requirements for hydrogen fuel cell vehicles. (1) Fuel economy and environment labels for hydrogen fuel cell... vehicle with the words “Gasoline Vehicle,” “Diesel Vehicle,” “Compressed Natural Gas Vehicle,”......

  17. Real-time remote monitoring of temperature and humidity within a proton exchange membrane fuel cell using flexible sensors.

    PubMed

    Kuo, Long-Sheng; Huang, Hao-Hsiu; Yang, Cheng-Hao; Chen, Ping-Hei

    2011-01-01

    This study developed portable, non-invasive flexible humidity and temperature microsensors and an in situ wireless sensing system for a proton exchange membrane fuel cell (PEMFC). The system integrated three parts: a flexible capacitive humidity microsensor, a flexible resistive temperature microsensor, and a radio frequency (RF) module for signal transmission. The results show that the capacitive humidity microsensor has a high sensitivity of 0.83 pF%RH(-1) and the resistive temperature microsensor also exhibits a high sensitivity of 2.94 × 10(-3) °C(-1). The established RF module transmits the signals from the two microsensors. The transmission distance can reach 4 m and the response time is less than 0.25 s. The performance measurements demonstrate that the maximum power density of the fuel cell with and without these microsensors are 14.76 mW·cm(-2) and 15.90 mW·cm(-2), with only 7.17% power loss. PMID:22164099

  18. A combined gas cooled nuclear reactor and fuel cell cycle

    NASA Astrophysics Data System (ADS)

    Palmer, David J.

    Rising oil costs, global warming, national security concerns, economic concerns and escalating energy demands are forcing the engineering communities to explore methods to address these concerns. It is the intention of this thesis to offer a proposal for a novel design of a combined cycle, an advanced nuclear helium reactor/solid oxide fuel cell (SOFC) plant that will help to mitigate some of the above concerns. Moreover, the adoption of this proposal may help to reinvigorate the Nuclear Power industry while providing a practical method to foster the development of a hydrogen economy. Specifically, this thesis concentrates on the importance of the U.S. Nuclear Navy adopting this novel design for its nuclear electric vessels of the future with discussion on efficiency and thermodynamic performance characteristics related to the combined cycle. Thus, the goals and objectives are to develop an innovative combined cycle that provides a solution to the stated concerns and show that it provides superior performance. In order to show performance, it is necessary to develop a rigorous thermodynamic model and computer program to analyze the SOFC in relation with the overall cycle. A large increase in efficiency over the conventional pressurized water reactor cycle is realized. Both sides of the cycle achieve higher efficiencies at partial loads which is extremely important as most naval vessels operate at partial loads as well as the fact that traditional gas turbines operating alone have poor performance at reduced speeds. Furthermore, each side of the cycle provides important benefits to the other side. The high temperature exhaust from the overall exothermic reaction of the fuel cell provides heat for the reheater allowing for an overall increase in power on the nuclear side of the cycle. Likewise, the high temperature helium exiting the nuclear reactor provides a controllable method to stabilize the fuel cell at an optimal temperature band even during transients helping

  19. Effects of Combustion-Induced Vortex Breakdown on Flashback Limits of Syngas-Fueled Gas Turbine Combustors

    SciTech Connect

    Ahsan Choudhuri

    2011-03-31

    Turbine combustors of advanced power systems have goals to achieve very low pollutants emissions, fuel variability, and fuel flexibility. Future generation gas turbine combustors should tolerate fuel compositions ranging from natural gas to a broad range of syngas without sacrificing operational advantages and low emission characteristics. Additionally, current designs of advanced turbine combustors use various degrees of swirl and lean premixing for stabilizing flames and controlling high temperature NOx formation zones. However, issues of fuel variability and NOx control through premixing also bring a number of concerns, especially combustor flashback and flame blowout. Flashback is a combustion condition at which the flame propagates upstream against the gas stream into the burner tube. Flashback is a critical issue for premixed combustor designs, because it not only causes serious hardware damages but also increases pollutant emissions. In swirl stabilized lean premixed turbine combustors onset of flashback may occur due to (i) boundary layer flame propagation (critical velocity gradient), (ii) turbulent flame propagation in core flow, (iii) combustion instabilities, and (iv) upstream flame propagation induced by combustion induced vortex breakdown (CIVB). Flashback due to first two foregoing mechanisms is a topic of classical interest and has been studied extensively. Generally, analytical theories and experimental determinations of laminar and turbulent burning velocities model these mechanisms with sufficient precision for design usages. However, the swirling flow complicates the flashback processes in premixed combustions and the first two mechanisms inadequately describe the flashback propensity of most practical combustor designs. The presence of hydrogen in syngas significantly increases the potential for flashback. Due to high laminar burning velocity and low lean flammability limit, hydrogen tends to shift the combustor operating conditions towards

  20. Development of an Integrated Performance Model for TRISO-Coated Gas Reactor Particle Fuel

    SciTech Connect

    Petti, David Andrew; Miller, Gregory Kent; Martin, David George; Maki, John Thomas

    2005-05-01

    The success of gas reactors depends upon the safety and quality of the coated particle fuel. The understanding and evaluation of this fuel requires development of an integrated mechanistic fuel performance model that fully describes the mechanical and physico-chemical behavior of the fuel particle under irradiation. Such a model, called PARFUME (PARticle Fuel ModEl), is being developed at the Idaho National Engineering and Environmental Laboratory. PARFUME is based on multi-dimensional finite element modeling of TRISO-coated gas reactor fuel. The goal is to represent all potential failure mechanisms and to incorporate the statistical nature of the fuel. The model is currently focused on carbide, oxide nd oxycarbide uranium fuel kernels, while the coating layers are the classical IPyC/SiC/OPyC. This paper reviews the current status of the mechanical aspects of the model and presents results of calculations for irradiations from the New Production Modular High Temperature Gas Reactor program.

  1. Gas phase carbonyl compounds in ship emissions: Differences between diesel fuel and heavy fuel oil operation

    NASA Astrophysics Data System (ADS)

    Reda, Ahmed A.; Schnelle-Kreis, J.; Orasche, J.; Abbaszade, G.; Lintelmann, J.; Arteaga-Salas, J. M.; Stengel, B.; Rabe, R.; Harndorf, H.; Sippula, O.; Streibel, T.; Zimmermann, R.

    2014-09-01

    Gas phase emission samples of carbonyl compounds (CCs) were collected from a research ship diesel engine at Rostock University, Germany. The ship engine was operated using two different types of fuels, heavy fuel oil (HFO) and diesel fuel (DF). Sampling of CCs was performed from diluted exhaust using cartridges and impingers. Both sampling methods involved the derivatization of CCs with 2,4-Dinitrophenylhydrazine (DNPH). The CCs-hydrazone derivatives were analyzed by two analytical techniques: High Performance Liquid Chromatography-Diode Array Detector (HPLC-DAD) and Gas Chromatography-Selective Ion Monitoring-Mass Spectrometry (GC-SIM-MS). Analysis of DNPH cartridges by GC-SIM-MS method has resulted in the identification of 19 CCs in both fuel operations. These CCs include ten aliphatic aldehydes (formaldehyde, acetaldehyde, propanal, isobutanal, butanal, isopentanal, pentanal, hexanal, octanal, nonanal), three unsaturated aldehydes (acrolein, methacrolein, crotonaldehyde), three aromatic aldehyde (benzaldehyde, p-tolualdehyde, m,o-molualdehyde), two ketones (acetone, butanone) and one heterocyclic aldehyde (furfural). In general, all CCs under investigation were detected with higher emission factors in HFO than DF. The total carbonyl emission factor was determined and found to be 6050 and 2300 μg MJ-1 for the operation with HFO and DF respectively. Formaldehyde and acetaldehyde were found to be the dominant carbonyls in the gas phase of ship engine emission. Formaldehyde emissions factor varied from 3500 μg MJ-1 in HFO operation to 1540 μg MJ-1 in DF operation, which is 4-30 times higher than those of other carbonyls. Emission profile contribution of CCs showed also a different pattern between HFO and DF operation. The contribution of formaldehyde was found to be 58% of the emission profile of HFO and about 67% of the emission profile of DF. Acetaldehyde showed opposite behavior with higher contribution of 16% in HFO compared to 11% for DF. Heavier carbonyls

  2. BIOMASS AND NATURAL GAS AS CO-FEEDSTOCKS FOR PRODUCTION OF FUEL FOR FUEL-CELL VEHICLES

    EPA Science Inventory

    The article gives results of an examination of prospects for utilizing renewable energy crops as a source of liquid fuel to mitigate greenhouse gas emissions from mobile sources and reduce dependence on imported petroleum. Fuel cells would provide an optimum vehicle technology fo...

  3. Effect of increased fuel temperature on emissions of oxides of nitrogen from a gas turbine combustor burning natural gas

    NASA Technical Reports Server (NTRS)

    Marchionna, N. R.

    1973-01-01

    An annular gas turbine combustor was tested with heated natural gas fuel to determine the effect of increasing fuel temperature on the formation of oxides of nitrogen. Fuel temperatures ranged from ambient to 800 K (980 F). Combustor pressure was 6 atmospheres and the inlet air temperature ranged from 589 to 894 K (600 to 1150 F). The NOx emission index increased with fuel temperature at a rate of 4 to 9 percent per 100 K (180 F), depending on the inlet air temperature. The rate of increase in NOx was lowest at the highest inlet air temperature tested.

  4. Fuel-air mixing apparatus for reducing gas turbine combustor exhaust emissions

    NASA Technical Reports Server (NTRS)

    Zupanc, Frank J. (Inventor); Yankowich, Paul R. (Inventor)

    2006-01-01

    A fuel-air mixer for use in a combustion chamber of a gas turbine engine is provided. The fuel air mixing apparatus comprises an annular fuel injector having a plurality of discrete plain jet orifices, a first swirler wherein the first swirler is located upstream from the fuel injector and a second swirler wherein the second swirler is located downstream from the fuel injector. The plurality of discrete plain jet orifices are situated between the highly swirling airstreams generated by the two radial swirlers. The distributed injection of the fuel between two highly swirling airstreams results in rapid and effective mixing to the desired fuel-air ratio and prevents the formation of local hot spots in the combustor primary zone. A combustor and a gas turbine engine comprising the fuel-air mixer of the present invention are also provided as well as a method using the fuel-air mixer of the present invention.

  5. Combustion gas properties of various fuels of interest to gas turbine engineers

    NASA Technical Reports Server (NTRS)

    Jones, R. E.; Trout, A. M.; Wear, J. D.

    1984-01-01

    A series of computations were made using the gas property computational schemes of Gordon and McBride to compute the gas properties and species concentration of ASTM-Jet A and dry air. The computed gas thermodynamic properties in a revised graphical format which gives information which is useful to combustion engineers is presented. A series of reports covering the properties of many fuel and air combinations will be published. The graphical presentation displays on one chart of the output of hundreds of computer sheets. The reports will contain microfiche cards, from which complete tables and graphs can be obtained. The extent of the planned effort and is documented samples of the many tables and charts that will be available on the microfiche cards are presented.

  6. Fuel flow regulator control for a diesel engine with exhaust gas driven turbocharger

    SciTech Connect

    Ludwig, G.C.

    1984-03-06

    A fuel flow regulator for an internal combustion engine having an exhaust gas turbocharger is disclosed. The fuel flow regulator responds to intake manifold pressure. Thus the fuel flow regulator increases the maximum fuel flow to the internal combustion engine from a first maximum predetermined fuel flow rate when the intake manifold pressure is at a first predetermined intake air pressure level to a second predetermined maximum fuel flow rate when the intake air manifold pressure is at a second predetermined intake air pressure level. Additionally, the fuel flow regulator decreases fuel flow to a third maximum fuel flow rate which is less than the first predetermined maximum fuel flow rate when the intake manifold pressure is greater than the second predetermined intake air pressure level. Therefore, the fuel flow regulator protects the internal combustion engine from overboost of the engine by the turbocharger and for overfueling the engine.

  7. Combustion Characteristics and Performance of Low-Swirl Injectors with Natural Gas and Alternative Fuels At Elevated Pressures and Temperatures

    NASA Astrophysics Data System (ADS)

    Beerer, David Joseph

    results from this study demonstrate the feasibility of using low-swirl combustors as a means to achieve robust, fuel flexible, and low emissions gas turbines in the future. The correlations and design guides developed with the data from this work will aid engineers by providing insight into the performance and optimization of low-swirl stabilized combustors.

  8. Natural Gas and Cellulosic Biomass: A Clean Fuel Combination? Determining the Natural Gas Blending Wall in Biofuel Production.

    PubMed

    M Wright, Mark; Seifkar, Navid; Green, William H; Román-Leshkov, Yuriy

    2015-07-01

    Natural gas has the potential to increase the biofuel production output by combining gas- and biomass-to-liquids (GBTL) processes followed by naphtha and diesel fuel synthesis via Fischer-Tropsch (FT). This study reflects on the use of commercial-ready configurations of GBTL technologies and the environmental impact of enhancing biofuels with natural gas. The autothermal and steam-methane reforming processes for natural gas conversion and the gasification of biomass for FT fuel synthesis are modeled to estimate system well-to-wheel emissions and compare them to limits established by U.S. renewable fuel mandates. We show that natural gas can enhance FT biofuel production by reducing the need for water-gas shift (WGS) of biomass-derived syngas to achieve appropriate H2/CO ratios. Specifically, fuel yields are increased from less than 60 gallons per ton to over 100 gallons per ton with increasing natural gas input. However, GBTL facilities would need to limit natural gas use to less than 19.1% on a LHV energy basis (7.83 wt %) to avoid exceeding the emissions limits established by the Renewable Fuels Standard (RFS2) for clean, advanced biofuels. This effectively constitutes a blending limit that constrains the use of natural gas for enhancing the biomass-to-liquids (BTL) process.

  9. Natural Gas and Cellulosic Biomass: A Clean Fuel Combination? Determining the Natural Gas Blending Wall in Biofuel Production.

    PubMed

    M Wright, Mark; Seifkar, Navid; Green, William H; Román-Leshkov, Yuriy

    2015-07-01

    Natural gas has the potential to increase the biofuel production output by combining gas- and biomass-to-liquids (GBTL) processes followed by naphtha and diesel fuel synthesis via Fischer-Tropsch (FT). This study reflects on the use of commercial-ready configurations of GBTL technologies and the environmental impact of enhancing biofuels with natural gas. The autothermal and steam-methane reforming processes for natural gas conversion and the gasification of biomass for FT fuel synthesis are modeled to estimate system well-to-wheel emissions and compare them to limits established by U.S. renewable fuel mandates. We show that natural gas can enhance FT biofuel production by reducing the need for water-gas shift (WGS) of biomass-derived syngas to achieve appropriate H2/CO ratios. Specifically, fuel yields are increased from less than 60 gallons per ton to over 100 gallons per ton with increasing natural gas input. However, GBTL facilities would need to limit natural gas use to less than 19.1% on a LHV energy basis (7.83 wt %) to avoid exceeding the emissions limits established by the Renewable Fuels Standard (RFS2) for clean, advanced biofuels. This effectively constitutes a blending limit that constrains the use of natural gas for enhancing the biomass-to-liquids (BTL) process. PMID:26010031

  10. Fuel Injector Patternation Evaluation in Advanced Liquid-Fueled, High Pressure, Gas Turbine Combustors, Using Nonintrusive Optical Diagnostic Techniques

    NASA Technical Reports Server (NTRS)

    Locke, R. J.; Hicks, Y. R.; Anderson, R. C.; Zaller, M. M.

    1998-01-01

    Planar laser-induced fluorescence (PLIF) imaging and planar Mie scattering are used to examine the fuel distribution pattern (patternation) for advanced fuel injector concepts in kerosene burning, high pressure gas turbine combustors. Three diverse fuel injector concepts for aerospace applications were investigated under a broad range of operating conditions. Fuel PLIF patternation results are contrasted with those obtained by planar Mie scattering. Further comparison is also made for one injector with data obtained through phase Doppler measurements. Differences in spray patterns for diverse conditions and fuel injector configurations are readily discernible. An examination of the data has shown that a direct determination of the fuel spray angle at realistic conditions is also possible. The results obtained in this study demonstrate the applicability and usefulness of these nonintrusive optical techniques for investigating fuel spray patternation under actual combustor conditions.

  11. Metal sorbents for high temperature mercury capture from fuel gas

    SciTech Connect

    Poulston, S.; Granite, E.J.; Pennline, H.W.; Myers, C.R.; Stanko, D.P.; Hamilton, H.; Rowsell, L.; Smith, A.W.J.; Ilkenhans, T.; Chu, W.

    2007-09-01

    We have determined the Hg removal capacities of Pt and Pd supported on alumina at a range of different metal loadings from 2 to 9 wt% using Hg vapour in a simulated fuel gas feed. In the temperature range studied (204–388 °C) Pd proved far superior to Pt for Hg removal. The Hg removal capacity for both Pt and Pd increased with metal loading, though decreased with sorbent temperature. A shift in the 2{theta} position of the Pd XRD diffraction peak from 82.1 to 79.5 after Hg adsorption at 204 °C was consistent with the formation of a solid solution of Hg in Pd.

  12. Exhaust gas measurements in a propane fueled swirl stabilized combustor

    NASA Technical Reports Server (NTRS)

    Aanad, M. S.

    1982-01-01

    Exhaust gas temperature, velocity, and composition are measured and combustor efficiencies are calculated in a lean premixed swirl stabilized laboratory combustor. The radial profiles of the data between the co- and the counter swirl cases show significant differences. Co-swirl cases show evidence of poor turbulent mixing across the combustor in comparison to the counter-swirl cases. NO sub x levels are low in the combustor but substantial amounts of CO are present. Combustion efficiencies are low and surprisingly constant with varying outer swirl in contradiction to previous results under a slightly different inner swirl condition. This difference in the efficiency trends is expected to be a result of the high sensitivity of the combustor to changes in the inner swirl. Combustor operation is found to be the same for propane and methane fuels. A mechanism is proposed to explain the combustor operation and a few important characteristics determining combustor efficiency are identified.

  13. Low-Emissions Burner Technology using Biomass-Derived Liquid Fuels

    SciTech Connect

    2010-07-01

    The University of Alabama will develop fuel-flexible, low-emissions burner technology for the metal processing industry that is capable of using biomass-derived liquid fuels, such as glycerin or fatty acids, as a substitute for natural gas. By replacing a fossil fuel with biomass fuels, this new burner will enable a reduction in energy consumption and greenhouse gas emissions and an increase in fuel flexibility.

  14. DEVELOPMENT OF ALTERNATIVE FUELS AND CHEMICALS FROM SYNTHESIS GAS

    SciTech Connect

    Peter J. Tijrn

    2003-05-31

    This Final Report for Cooperative Agreement No. DE-FC22-95PC93052, the ''Development of Alternative Fuels and Chemicals from Synthesis Gas,'' was prepared by Air Products and Chemicals, Inc. (Air Products), and covers activities from 29 December 1994 through 31 July 2002. The overall objectives of this program were to investigate potential technologies for the conversion of synthesis gas (syngas), a mixture primarily of hydrogen (H{sub 2}) and carbon monoxide (CO), to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at the LaPorte, Texas Alternative Fuels Development Unit (AFDU). Laboratory work was performed by Air Products and a variety of subcontractors, and focused on the study of the kinetics of production of methanol and dimethyl ether (DME) from syngas, the production of DME using the Liquid Phase Dimethyl Ether (LPDME{trademark}) Process, the conversion of DME to fuels and chemicals, and the production of other higher value products from syngas. Four operating campaigns were performed at the AFDU during the performance period. Tests of the Liquid Phase Methanol (LPMEOH{trademark}) Process and the LPDME{trademark} Process were made to confirm results from the laboratory program and to allow for the study of the hydrodynamics of the slurry bubble column reactor (SBCR) at a significant engineering scale. Two campaigns demonstrated the conversion of syngas to hydrocarbon products via the slurry-phase Fischer-Tropsch (F-T) process. Other topics that were studied within this program include the economics of production of methyl tert-butyl ether (MTBE), the identification of trace components in coal-derived syngas and the means to economically remove these species, and the study of systems for separation of wax from catalyst in the F-T process. The work performed under this Cooperative Agreement has continued to promote the development of technologies that use clean syngas produced from any one of a

  15. 75 FR 67059 - Public Hearings for Greenhouse Gas Emissions Standards and Fuel Efficiency Standards for Medium...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-01

    ... Hearings for Greenhouse Gas Emissions Standards and Fuel Efficiency Standards for Medium- and Heavy-Duty Engines and Vehicles AGENCIES: Environmental Protection Agency (EPA) and National Highway Traffic Safety... to be held for the joint proposed rules ``Greenhouse Gas Emissions Standards and Fuel...

  16. 46 CFR 154.709 - Cargo boil-off as fuel: Gas detection equipment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Cargo boil-off as fuel: Gas detection equipment. 154.709... CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Pressure and Temperature Control § 154.709 Cargo boil-off as fuel: Gas detection...

  17. 46 CFR 154.709 - Cargo boil-off as fuel: Gas detection equipment.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Cargo boil-off as fuel: Gas detection equipment. 154.709... CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Pressure and Temperature Control § 154.709 Cargo boil-off as fuel: Gas detection...

  18. 46 CFR 154.709 - Cargo boil-off as fuel: Gas detection equipment.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Cargo boil-off as fuel: Gas detection equipment. 154.709... CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Pressure and Temperature Control § 154.709 Cargo boil-off as fuel: Gas detection...

  19. 46 CFR 154.709 - Cargo boil-off as fuel: Gas detection equipment.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Equipment Cargo Pressure and Temperature Control § 154.709 Cargo boil-off as fuel: Gas detection equipment... 46 Shipping 5 2014-10-01 2014-10-01 false Cargo boil-off as fuel: Gas detection equipment. 154.709 Section 154.709 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK...

  20. [Fuel substitution of vehicles by natural gas: Summaries of four final technical reports

    SciTech Connect

    1996-05-01

    This report contains summary information on three meetings and highlights of a fourth meeting held by the Society of Automotive Engineers on natural gas fueled vehicles. The meetings covered the following: Natural gas engine and vehicle technology; Safety aspects of alternately fueled vehicles; Catalysts and emission control--Meeting the legislative standards; and LNG--Strengthening the links.

  1. 78 FR 59073 - Pacific Gas and Electric Company; Humboldt Bay Independent Spent Fuel Storage Installation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-25

    ... COMMISSION Pacific Gas and Electric Company; Humboldt Bay Independent Spent Fuel Storage Installation... Pacific Gas and Electric (PG&E) Company for amendment of Materials License No. SNM-2514 which authorizes PG&E to receive, possess, store, and transfer spent nuclear fuel and associated radioactive...

  2. 75 FR 51032 - National Fuel Gas Distribution Corporation; Notice of Baseline Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-18

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission National Fuel Gas Distribution Corporation; Notice of Baseline Filing August 12, 2010. Take notice that on August 10, 2010, National fuel Gas Distribution Corporation submitted...

  3. The Case for Natural Gas Fueled Solid Oxide Fuel Cell Power Systems for Distributed Generation

    SciTech Connect

    Chick, Lawrence A.; Weimar, Mark R.; Whyatt, Greg A.; Powell, Michael R.

    2015-02-01

    Natural-gas-fueled solid oxide fuel cell (NGSOFC) power systems yield electrical conversion efficiencies exceeding 60% and may become a viable alternative for distributed generation (DG) if stack life and manufacturing economies of scale can be realized. Currently, stacks last approximately 2 years and few systems are produced each year because of the relatively high cost of electricity from the systems. If mass manufacturing (10,000 units per year) and a stack life of 15 years can be reached, the cost of electricity from an NGSOFC system is estimated to be about 7.7 ¢/kWh, well within the price of commercial and residential retail prices at the national level (9.9-10¢/kWh and 11-12 ¢/kWh, respectively). With an additional 5 ¢/kWh in estimated additional benefits from DG, NGSOFC could be well positioned to replace the forecasted 59-77 gigawatts of capacity loss resulting from coal plant closures due to stricter emissions regulations and low natural gas prices.

  4. Effects of Fuel Ethanol Use on Fuel-Cycle Energy and Greenhouse Gas Emissions

    SciTech Connect

    C. Saricks; D. Santini; M. Wang

    1999-02-08

    We estimated the effects on per-vehicle-mile fuel-cycle petroleum use, greenhouse gas (GHG) emissions, and energy use of using ethanol blended with gasoline in a mid-size passenger car, compared with the effects of using gasoline in the same car. Our analysis includes petroleum use, energy use, and emissions associated with chemicals manufacturing, farming of corn and biomass, ethanol production, and ethanol combustion for ethanol; and petroleum use, energy use, and emissions associated with petroleum recovery, petroleum refining, and gasoline combustion for gasoline. For corn-based ethanol, the key factors in determining energy and emissions impacts include energy and chemical usage intensity of corn farming, energy intensity of the ethanol plant, and the method used to estimate energy and emissions credits for co-products of corn ethanol. The key factors in determining the impacts of cellulosic ethanol are energy and chemical usage intensity of biomass farming, ethanol yield per dry ton of biomass, and electricity credits in cellulosic ethanol plants. The results of our fuel-cycle analysis for fuel ethanol are listed below. Note that, in the first half of this summary, the reductions cited are per-vehicle-mile traveled using the specified ethanol/gasoline blend instead of conventional (not reformulated) gasoline. The second half of the summary presents estimated changes per gallon of ethanol used in ethanol blends. GHG emissions are global warming potential (GWP)-weighted, carbon dioxide (CO2)-equivalent emissions of CO2, methane (CH4), and nitrous oxide (N2O).

  5. Nonlinear longitudinal oscillations of fuel in rockets feed lines with gas-liquid damper

    NASA Astrophysics Data System (ADS)

    Avramov, K. V.; Filipkovsky, S.; Tonkonogenko, A. M.; Klimenko, D. V.

    2016-03-01

    The mathematical model of the fuel oscillations in the rockets feed lines with gas-liquid dampers is derived. The nonlinear model of the gas-liquid damper is suggested. The vibrations of fuel in the feed lines with the gas-liquid dampers are considered nonlinear. The weighted residual method is applied to obtain the finite degrees of freedom nonlinear model of the fuel oscillations. Shaw-Pierre nonlinear normal modes are applied to analyze free vibrations. The forced oscillations of the fuel at the principle resonances are analyzed. The stability of the forced oscillations is investigated. The results of the forced vibrations analysis are shown on the frequency responses.

  6. Method for converting hydrocarbon fuel into hydrogen gas and carbon dioxide

    DOEpatents

    Clawson, Lawrence G.; Mitchell, William L.; Bentley, Jeffrey M.; Thijssen, Johannes H. J.

    2000-01-01

    A method for converting hydrocarbon fuel into hydrogen gas and carbon dioxide within a reformer 10 is disclosed. According to the method, a stream including an oxygen-containing gas is directed adjacent to a first vessel 18 and the oxygen-containing gas is heated. A stream including unburned fuel is introduced into the oxygen-containing gas stream to form a mixture including oxygen-containing gas and fuel. The mixture of oxygen-containing gas and unburned fuel is directed tangentially into a partial oxidation reaction zone 24 within the first vessel 18. The mixture of oxygen-containing gas and fuel is further directed through the partial oxidation reaction zone 24 to produce a heated reformate stream including hydrogen gas and carbon monoxide. Steam may also be mixed with the oxygen-containing gas and fuel, and the reformate stream from the partial oxidation reaction zone 24 directed into a steam reforming zone 26. High- and low-temperature shift reaction zones 64,76 may be employed for further fuel processing.

  7. ALTERNATIVE FUELS AND CHEMICALS FROM SYNTHESIS GAS. FINAL QUARTERLY STATUS REPORT

    SciTech Connect

    1999-04-01

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  8. ALTERNATIVE FUELS AND CHEMICALS FROM SYNTHESIS GAS. FINAL QUARTERLY STATUS REPORT NO. 10

    SciTech Connect

    1998-11-01

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  9. Comparison of combustion characteristics of ASTM A-1, propane, and natural-gas fuels in an annular turbojet combustor

    NASA Technical Reports Server (NTRS)

    Wear, J. D.; Jones, R. E.

    1973-01-01

    The performance of an annular turbojet combustor using natural-gas fuel is compared with that obtained using ASTM A-1 and propane fuels. Propane gas was used to simulate operation with vaporized kerosene fuels. The results obtained at severe operating conditions and altitude relight conditions show that natural gas is inferior to both ASTM A-1 and propane fuels. Combustion efficiencies were significantly lower and combustor pressures for relight were higher with natural-gas fuel than with the other fuels. The inferior performance of natural gas is shown to be caused by the chemical stability of the methane molecule.

  10. Performance gains by using heated natural-gas fuel in an annular turbojet combustor

    NASA Technical Reports Server (NTRS)

    Marchionna, N. R.

    1973-01-01

    A full-scale annular turbojet combustor was tested with natural gas fuel heated from ambient temperature to 800 K (980 F). In all tests, heating the fuel improved combustion efficiency. Two sets of gaseous fuel nozzles were tested. Combustion instabilities occurred with one set of nozzles at two conditions: one where the efficiency approached 100 percent with the heated fuel; the other where the efficiency was very poor with the unheated fuel. The second set of nozzles exhibited no combustion instability. Altitude relight tests with the second set showed that relight was improved and was achievable at essentially the same condition as blowout when the fuel temperature was 800 K (980 F).

  11. Alternative systems for fuel gas boosters for small gas turbine engines

    NASA Astrophysics Data System (ADS)

    Faulkner, Henry B.

    1992-04-01

    The study was done to investigate alternative technologies for fuel gas boosters for gas turbine engines under 5 MW output. The goal was to identify concepts which would significantly reduce the overall life cycle cost of these boosters. In a broad review of alternative systems, centrifugal compressors were found to be most promising. Electrically driven centrifugals, either direct drive or gear driven, were found to be quite limited in speed. Therefore they require many stages for these applications, and no cost advantage was indicated. Considerable promise was indicated for centrifugals driven by bleed air from the engine compressor, using turbocompressor units which are conversions of existing turbochargers for internal combustion engines. A first cost advantage of 30 to 80 percent was indicated for applications with an annual market size of at least ten units. Considerable savings in installation and maintenance costs are expected in addition.

  12. Method of fabricating an integral gas seal for fuel cell gas distribution assemblies

    DOEpatents

    Dettling, Charles J.; Terry, Peter L.

    1988-03-22

    A porous gas distribution plate assembly for a fuel cell, such as a bipolar assembly, includes an inner impervious region wherein the bipolar assembly has good surface porosity but no through-plane porosity and wherein electrical conductivity through the impervious region is maintained. A hot-pressing process for forming the bipolar assembly includes placing a layer of thermoplastic sealant material between a pair of porous, electrically conductive plates, applying pressure to the assembly at elevated temperature, and allowing the assembly to cool before removing the pressure whereby the layer of sealant material is melted and diffused into the porous plates to form an impervious bond along a common interface between the plates holding the porous plates together. The distribution of sealant within the pores along the surface of the plates provides an effective barrier at their common interface against through-plane transmission of gas.

  13. Integral gas seal for fuel cell gas distribution assemblies and method of fabrication

    DOEpatents

    Dettling, Charles J.; Terry, Peter L.

    1985-03-19

    A porous gas distribution plate assembly for a fuel cell, such as a bipolar assembly, includes an inner impervious region wherein the bipolar assembly has good surface porosity but no through-plane porosity and wherein electrical conductivity through the impervious region is maintained. A hot-pressing process for forming the bipolar assembly includes placing a layer of thermoplastic sealant material between a pair of porous, electrically conductive plates, applying pressure to the assembly at elevated temperature, and allowing the assembly to cool before removing the pressure whereby the layer of sealant material is melted and diffused into the porous plates to form an impervious bond along a common interface between the plates holding the porous plates together. The distribution of sealant within the pores along the surface of the plates provides an effective barrier at their common interface against through-plane transmission of gas.

  14. INCREASED FLEXIBILITY OF TURBO-COMPRESSORS IN NATURAL GAS TRANSMISSION THROUGH DIRECT SURGE CONTROL

    SciTech Connect

    Robert J. McKee; Danny M. Deffenbaugh

    2004-12-01

    This annual progress report describes the third year's technical progress in a three-year program. This report introduces the benefits of improved surge detection and summarizes what is known about internal flows as surge precursors in centrifugal compressors. Early research results and findings concerning surge in centrifugal compressors and possible precursors to surge are presented. Laboratory test results in modern compressors with 3D impellers are described in detail and used to show the changes in internal flow patterns that occur as a compressor approaches surge. It was found that older compressors with recessed impeller blading (2D geometry) do not have the same accessible flow patterns. The laboratory test results indicate a large increase in potential operating range for modern compressors. This annual report also presents results from the field testing conducted during the course of this third year. The field test results showed similar changes in the surge probe strain signals and the same type, although of less magnitude, of indication that the compressor is approaching surge. An algorithm for identifying the nearness of surge has been proposed and evaluated with the available data. This project is co-funded by the Gas Machinery Research Council (GMRC) and by Siemens Energy and Automation (Siemens). The results of the project include a step-by-step process for design, sizing, and installation of surge detection probes and for implementation of the direct surge control in centrifugal compressor controllers. This work is considered a step towards the successful implementation of direct surge control for improved flexibility and efficiency in natural gas transmission compressors.

  15. Refueling Behavior of Flexible Fuel Vehicle Drivers in the Federal Fleet

    SciTech Connect

    Daley, R.; Nangle, J.; Boeckman, G.; Miller, M.

    2014-05-01

    Federal fleets are a frequent subject of legislative and executive efforts to lead a national transition to alternative fuels and advanced vehicle technologies. Section 701 of the Energy Policy Act of 2005 requires that all dual-fueled alternative fuel vehicles in the federal fleet be operated on alternative fuel 100% of the time when they have access to it. However, in Fiscal Year (FY) 2012, drivers of federal flex fuel vehicles (FFV) leased through the General Services Administration refueled with E85 24% of the time when it was available--falling well short of the mandate. The U.S. Department of Energy's National Renewable Energy Laboratory completed a 2-year Laboratory Directed Research and Development project to identify the factors that influence the refueling behavior of federal FFV drivers. The project began with two primary hypotheses. First, information scarcity increases the tendency to miss opportunities to purchase E85. Second, even with perfect information, there are limits to how far drivers will go out of their way to purchase E85. This paper discusses the results of the project, which included a June 2012 survey of federal fleet drivers and an empirical analysis of actual refueling behavior from FY 2009 to 2012. This research will aid in the design and implementation of intervention programs aimed at increasing alternative fuel use and reducing petroleum consumption.

  16. 46 CFR 35.30-40 - Flammable liquid and gas fuels as ship's stores-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Flammable liquid and gas fuels as ship's stores-TB/ALL... OPERATIONS General Safety Rules § 35.30-40 Flammable liquid and gas fuels as ship's stores—TB/ALL. Flammable liquids and gases other than diesel fuel, to be used as fuel for approved equipment must satisfy...

  17. Development of Improved Models and Designs for Coated-Particle Gas Reactor Fuels (I-NERI Annual Report)

    SciTech Connect

    Petti, David Andrew; Maki, John Thomas; Languille, Alain; Martin, Philippe; Ballinger, Ronald

    2002-11-01

    The objective of this INERI project is to develop improved fuel behavior models for gas reactor coated particle fuels and to develop improved coated-particle fuel designs that can be used reliably at very high burnups and potentially in fast gas-cooled reactors. Thermomechanical, thermophysical, and physiochemical material properties data were compiled by both the US and the French and preliminary assessments conducted. Comparison between U.S. and European data revealed many similarities and a few important differences. In all cases, the data needed for accurate fuel performance modeling of coated particle fuel at high burnup were lacking. The development of the INEEL fuel performance model, PARFUME, continued from earlier efforts. The statistical model being used to simulate the detailed finite element calculations is being upgraded and improved to allow for changes in fuel design attributes (e.g. thickness of layers, dimensions of kernel) as well as changes in important material properties to increase the flexibility of the code. In addition, modeling of other potentially important failure modes such as debonding and asphericity was started. A paper on the status of the model was presented at the HTR-2002 meeting in Petten, Netherlands in April 2002, and a paper on the statistical method was submitted to the Journal of Nuclear Material in September 2002. Benchmarking of the model against Japanese and an older DRAGON irradiation are planned. Preliminary calculations of the stresses in a coated particle have been calculated by the CEA using the ATLAS finite element model. This model and the material properties and constitutive relationships will be incorporated into a more general software platform termed Pleiades. Pleiades will be able to analyze different fuel forms at different scales (from particle to fuel body) and also handle the statistical variability in coated particle fuel. Diffusion couple experiments to study Ag and Pd transport through SiC were

  18. 40 CFR 65.144 - Fuel gas systems and processes to which storage vessel, transfer rack, or equipment leak...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... System or a Process § 65.144 Fuel gas systems and processes to which storage vessel, transfer rack, or... evaluation as specified in § 65.165(a)(1). (c) Statement of connection to fuel gas system. For storage... 40 Protection of Environment 16 2014-07-01 2014-07-01 false Fuel gas systems and processes...

  19. 40 CFR 63.984 - Fuel gas systems and processes to which storage vessel, transfer rack, or equipment leak...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Fuel Gas System or a Process § 63.984 Fuel gas systems and processes to which storage vessel, transfer... 40 Protection of Environment 11 2012-07-01 2012-07-01 false Fuel gas systems and processes to which storage vessel, transfer rack, or equipment leak regulated material emissions are routed....

  20. 40 CFR 63.984 - Fuel gas systems and processes to which storage vessel, transfer rack, or equipment leak...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Fuel Gas System or a Process § 63.984 Fuel gas systems and processes to which storage vessel, transfer... 40 Protection of Environment 11 2014-07-01 2014-07-01 false Fuel gas systems and processes to which storage vessel, transfer rack, or equipment leak regulated material emissions are routed....

  1. 40 CFR 65.144 - Fuel gas systems and processes to which storage vessel, transfer rack, or equipment leak...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... System or a Process § 65.144 Fuel gas systems and processes to which storage vessel, transfer rack, or... evaluation as specified in § 65.165(a)(1). (c) Statement of connection to fuel gas system. For storage... 40 Protection of Environment 16 2012-07-01 2012-07-01 false Fuel gas systems and processes...

  2. 40 CFR 65.144 - Fuel gas systems and processes to which storage vessel, transfer rack, or equipment leak...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... System or a Process § 65.144 Fuel gas systems and processes to which storage vessel, transfer rack, or... evaluation as specified in § 65.165(a)(1). (c) Statement of connection to fuel gas system. For storage... 40 Protection of Environment 16 2013-07-01 2013-07-01 false Fuel gas systems and processes...

  3. 40 CFR 65.144 - Fuel gas systems and processes to which storage vessel, transfer rack, or equipment leak...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... System or a Process § 65.144 Fuel gas systems and processes to which storage vessel, transfer rack, or... evaluation as specified in § 65.165(a)(1). (c) Statement of connection to fuel gas system. For storage... 40 Protection of Environment 15 2011-07-01 2011-07-01 false Fuel gas systems and processes...

  4. 40 CFR 65.144 - Fuel gas systems and processes to which storage vessel, transfer rack, or equipment leak...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... System or a Process § 65.144 Fuel gas systems and processes to which storage vessel, transfer rack, or... evaluation as specified in § 65.165(a)(1). (c) Statement of connection to fuel gas system. For storage... 40 Protection of Environment 15 2010-07-01 2010-07-01 false Fuel gas systems and processes...

  5. C1-carbon sources for chemical and fuel production by microbial gas fermentation.

    PubMed

    Dürre, Peter; Eikmanns, Bernhard J

    2015-12-01

    Fossil resources for production of fuels and chemicals are finite and fuel use contributes to greenhouse gas emissions and global warming. Thus, sustainable fuel supply, security, and prices necessitate the implementation of alternative routes to the production of chemicals and fuels. Much attention has been focussed on use of cellulosic material, particularly through microbial-based processes. However, this is still costly and proving challenging, as are catalytic routes to biofuels from whole biomass. An alternative strategy is to directly capture carbon before incorporation into lignocellulosic biomass. Autotrophic acetogenic, carboxidotrophic, and methanotrophic bacteria are able to capture carbon as CO, CO2, or CH4, respectively, and reuse that carbon in products that displace their fossil-derived counterparts. Thus, gas fermentation represents a versatile industrial platform for the sustainable production of commodity chemicals and fuels from diverse gas resources derived from industrial processes, coal, biomass, municipal solid waste (MSW), and extracted natural gas.

  6. Grain Boundary Percolation Modeling of Fission Gas Release in Oxide Fuels

    SciTech Connect

    Paul C. Millett; Michael R. Tonks; S. B. Biner

    2012-05-01

    We present a new approach to fission gas release modeling in oxide fuels based on grain boundary network percolation. The method accounts for variability in the bubble growth and coalescence rates on individual grain boundaries, and the resulting effect on macroscopic fission gas release. Two-dimensional representa- tions of fuel pellet microstructures are considered, and the resulting gas release rates are compared with traditional two-stage Booth models, which do not account for long-range percolation on grain boundary net- works. The results show that the requirement of percolation of saturated grain boundaries can considerably reduce the total gas release rates, particularly when gas resolution is considered.

  7. Estimating household fuel oil/kerosine, natural gas, and LPG prices by census region

    SciTech Connect

    Poyer, D.A.; Teotia, A.P.S.

    1994-08-01

    The purpose of this research is to estimate individual fuel prices within the residential sector. The data from four US Department of Energy, Energy Information Administration, residential energy consumption surveys were used to estimate the models. For a number of important fuel types - fuel oil, natural gas, and liquefied petroleum gas - the estimation presents a problem because these fuels are not used by all households. Estimates obtained by using only data in which observed fuel prices are present would be biased. A correction for this self-selection bias is needed for estimating prices of these fuels. A literature search identified no past studies on application of the selectivity model for estimating prices of residential fuel oil/kerosine, natural gas, and liquefied petroleum gas. This report describes selectivity models that utilize the Dubin/McFadden correction method for estimating prices of residential fuel oil/kerosine, natural gas, and liquefied petroleum gas in the Northeast, Midwest, South, and West census regions. Statistically significant explanatory variables are identified and discussed in each of the models. This new application of the selectivity model should be of interest to energy policy makers, researchers, and academicians.

  8. 40 CFR 600.314-08 - Updating label values, annual fuel cost, Gas Guzzler Tax, and range of fuel economy for...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... cost, Gas Guzzler Tax, and range of fuel economy for comparable automobiles. 600.314-08 Section 600.314-08 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy Labeling § 600.314-08...

  9. 40 CFR 600.314-08 - Updating label values, annual fuel cost, Gas Guzzler Tax, and range of fuel economy for...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... cost, Gas Guzzler Tax, and range of fuel economy for comparable automobiles. 600.314-08 Section 600.314-08 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy Labeling § 600.314-08...

  10. 40 CFR 600.314-08 - Updating label values, annual fuel cost, Gas Guzzler Tax, and range of fuel economy for...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... cost, Gas Guzzler Tax, and range of fuel economy for comparable automobiles. 600.314-08 Section 600.314-08 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy Labeling § 600.314-08...

  11. Liquid water transport in fuel cell gas diffusion layers

    NASA Astrophysics Data System (ADS)

    Bazylak, Aimy Ming Jii

    Liquid water management has a major impact on the performance and durability of the polymer electrolyte membrane fuel cell (PEMFC). The gas diffusion layer (GDL) of a PEMFC provides pathways for mass, heat, and electronic transport to and from the catalyst layers and bipolar plates. When the GDL becomes flooded with liquid water, the PEMFC undergoes mass transport losses that can lead to decreased performance and durability. The work presented in this thesis includes contributions that provide insight into liquid water transport behaviour in and on the surface of the GDL, as well as insight into how future GDLs could be designed to enhance water management. The effects of compression on liquid water transport in the GDL and on the microstructure of the GDL are presented. It was found that compressed regions of the GDL provided preferential locations for water breakthrough, while scanning electron microscopy (SEM) imaging revealed irreversible damage to the GDL due to compression at typical fuel cell assembly pressures. The dynamic behaviour of droplet emergence and detachment in a simulated gas flow channel are also presented. It was found that on an initially dry and hydrophobic GDL, small droplets emerged and detached quickly from the GDL surface. However, over time, this water transport regime transitioned into that of slug formation and channel flooding. It was observed that after being exposed to a saturated environment, the GDL surface became increasingly prone to droplet pinning, which ultimately hindered droplet detachment and encouraged slug formation. A pore network model featuring invasion percolation with trapping was employed to evaluate the breakthrough pattern predictions of designed porous media. These designed pore networks consisted of randomized porous media with applied diagonal and radial gradients. Experimental microfluidic pore networks provided validation for the designed networks. Diagonal biasing provided a means of directing water

  12. Power plant including an exhaust gas recirculation system for injecting recirculated exhaust gases in the fuel and compressed air of a gas turbine engine

    DOEpatents

    Anand, Ashok Kumar; Nagarjuna Reddy, Thirumala Reddy; Shaffer, Jason Brian; York, William David

    2014-05-13

    A power plant is provided and includes a gas turbine engine having a combustor in which compressed gas and fuel are mixed and combusted, first and second supply lines respectively coupled to the combustor and respectively configured to supply the compressed gas and the fuel to the combustor and an exhaust gas recirculation (EGR) system to re-circulate exhaust gas produced by the gas turbine engine toward the combustor. The EGR system is coupled to the first and second supply lines and configured to combine first and second portions of the re-circulated exhaust gas with the compressed gas and the fuel at the first and second supply lines, respectively.

  13. Simulated Coal-Gas-Fueled Molten Carbonate Fuel Cell Development Program. Final report

    SciTech Connect

    Not Available

    1992-08-01

    This final report summarizes the technical work performed under Department of Energy Contract DE-AC21-91MC27393, ``Simulated Coal- Gas-Fueled Molten Carbonate Fuel Cell Development Program.`` This work consists of five major tasks and their respective subtasks as listed below. A brief description of each task is also provided. The Stack Design Requirements task focused on requirements and specification for designing, constructing, and testing a nominal 100-kilowatt integrated stack and on requirements for the balance-of-plant equipment to support a 1000-kilowatt integrated stack demonstrator. The Stack Design Preparation task focused on the mechanical design of a 100-kilowatt stack comprised of 8-ft{sup 2} cells incorporating the new cell configuration and component technology improvements developed in the previous DOE MCFC contract. Electrode Casting focused on developing a faster drying solvent for use in the electrode tape casting process. Electrode Heat Treatment was directed at scaling up the laboratory continuous debinding process to a new full-size IFC debinding oven coupled to a continuous belt furnace that will both debind and sinter the electrodes in one continuous process train. Repeat Part Quality Assurance and Testing provided the appropriate effort to ensure consistent, high-quality, reproducible and comparable repeat parts.

  14. Simulated Coal-Gas-Fueled Molten Carbonate Fuel Cell Development Program

    SciTech Connect

    Not Available

    1992-08-01

    This final report summarizes the technical work performed under Department of Energy Contract DE-AC21-91MC27393, Simulated Coal- Gas-Fueled Molten Carbonate Fuel Cell Development Program.'' This work consists of five major tasks and their respective subtasks as listed below. A brief description of each task is also provided. The Stack Design Requirements task focused on requirements and specification for designing, constructing, and testing a nominal 100-kilowatt integrated stack and on requirements for the balance-of-plant equipment to support a 1000-kilowatt integrated stack demonstrator. The Stack Design Preparation task focused on the mechanical design of a 100-kilowatt stack comprised of 8-ft[sup 2] cells incorporating the new cell configuration and component technology improvements developed in the previous DOE MCFC contract. Electrode Casting focused on developing a faster drying solvent for use in the electrode tape casting process. Electrode Heat Treatment was directed at scaling up the laboratory continuous debinding process to a new full-size IFC debinding oven coupled to a continuous belt furnace that will both debind and sinter the electrodes in one continuous process train. Repeat Part Quality Assurance and Testing provided the appropriate effort to ensure consistent, high-quality, reproducible and comparable repeat parts.

  15. 49 CFR 571.303 - Standard No. 303; Fuel system integrity of compressed natural gas vehicles.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... compressed natural gas vehicles. 571.303 Section 571.303 Transportation Other Regulations Relating to... system integrity of compressed natural gas vehicles. S1. Scope. This standard specifies requirements for the integrity of motor vehicle fuel systems using compressed natural gas (CNG), including the CNG...

  16. Fabrication and characterization of a fuel flexible micro-reformer fully integrated in silicon for micro-solid oxide fuel cell applications

    NASA Astrophysics Data System (ADS)

    Pla, D.; Salleras, M.; Garbayo, I.; Morata, A.; Sabaté, N.; Divins, N. J.; Llorca, J.; Tarancón, A.

    2015-05-01

    A novel design of a fuel-flexible micro-reactor for hydrogen generation from ethanol and methane is proposed in this work. The micro-reactor is fully fabricated with mainstream MEMS technology and consists of an array of more than 20000 through-silicon vertically aligned micro-channels per cm2 of 50 μm in diameter. Due to this unique configuration, the micro-reformer presents a total surface per projected area of 16 cm2/cm2 and per volume of 320 cm2/cm3. The active surface of the micro-reformer, i.e. the walls of the micro-channels, is homogenously coated with a thin film of Rh- Pd/CeO2 catalyst. Excellent steam reforming of ethanol and dry reforming of methane are presented with hydrogen production rates above 3 mL/min·cm2 and hydrogen selectivity of ca. 50% on a dry basis at operations conditions suitable for application in micro-solid oxide fuel cells (micro-SOFCs), i.e. 700-800ºC and fuel flows of 0.02 mLL/min for ethanol and 36 mLG/min for methane (corresponding to a system able to produce one electrical watt).

  17. The DOE Advanced Gas Reactor (AGR) Fuel Development and Qualification Program

    SciTech Connect

    David Petti; Hans Gougar; Gary Bell

    2005-05-01

    The Department of Energy has established the Advanced Gas Reactor Fuel Development and Qualification Program to address the following overall goals: Provide a baseline fuel qualification data set in support of the licensing and operation of the Next Generation Nuclear Plant (NGNP). Gas-reactor fuel performance demonstration and qualification comprise the longest duration research and development (R&D) task for the NGNP feasibility. The baseline fuel form is to be demonstrated and qualified for a peak fuel centerline temperature of 1250°C. Support near-term deployment of an NGNP by reducing market entry risks posed by technical uncertainties associated with fuel production and qualification. Utilize international collaboration mechanisms to extend the value of DOE resources. The Advanced Gas Reactor Fuel Development and Qualification Program consists of five elements: fuel manufacture, fuel and materials irradiations, postirradiation examination (PIE) and safety testing, fuel performance modeling, and fission product transport and source term evaluation. An underlying theme for the fuel development work is the need to develop a more complete fundamental understanding of the relationship between the fuel fabrication process, key fuel properties, the irradiation performance of the fuel, and the release and transport of fission products in the NGNP primary coolant system. Fuel performance modeling and analysis of the fission product behavior in the primary circuit are important aspects of this work. The performance models are considered essential for several reasons, including guidance for the plant designer in establishing the core design and operating limits, and demonstration to the licensing authority that the applicant has a thorough understanding of the in-service behavior of the fuel system. The fission product behavior task will also provide primary source term data needed for licensing. An overview of the program and recent progress will be presented.

  18. Metal Decoration Effects on the Gas-Sensing Properties of 2D Hybrid-Structures on Flexible Substrates

    PubMed Central

    Cho, Byungjin; Yoon, Jongwon; Lim, Sung Kwan; Kim, Ah Ra; Choi, Sun-Young; Kim, Dong-Ho; Lee, Kyu Hwan; Lee, Byoung Hun; Ko, Heung Cho; Hahm, Myung Gwan

    2015-01-01

    We have investigated the effects of metal decoration on the gas-sensing properties of a device with two-dimensional (2D) molybdenum disulfide (MoS2) flake channels and graphene electrodes. The 2D hybrid-structure device sensitively detected NO2 gas molecules (>1.2 ppm) as well as NH3 (>10 ppm). Metal nanoparticles (NPs) could tune the electronic properties of the 2D graphene/MoS2 device, increasing sensitivity to a specific gas molecule. For instance, palladium NPs accumulate hole carriers of graphene/MoS2, electronically sensitizing NH3 gas molecules. Contrarily, aluminum NPs deplete hole carriers, enhancing NO2 sensitivity. The synergistic combination of metal NPs and 2D hybrid layers could be also applied to a flexible gas sensor. There was no serious degradation in the sensing performance of metal-decorated MoS2 flexible devices before/after 5000 bending cycles. Thus, highly sensitive and endurable gas sensor could be achieved through the metal-decorated 2D hybrid-structure, offering a useful route to wearable electronic sensing platforms. PMID:26404279

  19. Off-design analysis of a gas turbine powerplant augmented by steam injection using various fuels

    NASA Technical Reports Server (NTRS)

    Stochl, R. J.

    1980-01-01

    Results are compared using coal derived low and intermediate heating valve fuel gases and a conventional distillate. The results indicate that steam injection provides substantial increases in both power and efficiency within the available compressor surge margin. The results also indicate that these performance gains are relatively insensitive as to the type of fuel. Also, in a cogeneration application, steam injection could provide some degree of flexibility by varying the split between power and process steam.

  20. Alternative-fueled truck demonstration natural gas program: Caterpillar G3406LE development and demonstration

    SciTech Connect

    1995-06-01

    In 1990, the California Energy Commission, the South Coast Air Quality Management District, and the Southern California Gas Company joined together to sponsor the development and demonstration of compressed natural gas engines for Class 8 heavy-duty line-haul trucking applications. This program became part of an overall Alternative-Fueled Truck Demonstration Program, with the goal of advancing the technological development of alternative-fueled engines. The demonstration showed natural gas to be a technically viable fuel for Class 8 truck engines.

  1. Simulated coal-gas fueled carbonate fuel cell power plant system verification. Final report, September 1990--June 1995

    SciTech Connect

    1995-03-01

    This report summarizes work performed under U.S. Department of Energy, Morgantown Energy Technology Center (DOE/METC) Contract DE-AC-90MC27168 for September 1990 through March 1995. Energy Research Corporation (ERC), with support from DOE, EPRI, and utilities, has been developing a carbonate fuel cell technology. ERC`s design is a unique direct fuel cell (DFC) which does not need an external fuel reformer. An alliance was formed with a representative group of utilities and, with their input, a commercial entry product was chosen. The first 2 MW demonstration unit was planned and construction begun at Santa Clara, CA. A conceptual design of a 10OMW-Class dual fuel power plant was developed; economics of natural gas versus coal gas use were analyzed. A facility was set up to manufacture 2 MW/yr of carbonate fuel cell stacks. A 100kW-Class subscale power plant was built and several stacks were tested. This power plant has achieved an efficiency of {approximately}50% (LHV) from pipeline natural gas to direct current electricity conversion. Over 6,000 hours of operation including 5,000 cumulative hours of stack operation were demonstrated. One stack was operated on natural gas at 130 kW, which is the highest carbonate fuel cell power produced to date, at 74% fuel utilization, with excellent performance distribution across the stack. In parallel, carbonate fuel cell performance has been improved, component materials have been proven stable with lifetimes projected to 40,000 hours. Matrix strength, electrolyte distribution, and cell decay rate have been improved. Major progress has been achieved in lowering stack cost.

  2. Effect of increased fuel temperature on emissions of oxides of nitrogen from a gas turbine combustor burning ASTM jet-A fuel

    NASA Technical Reports Server (NTRS)

    Marchionna, N. R.

    1974-01-01

    An annular gas turbine combustor was tested with heated ASTM Jet-A fuel to determine the effect of increased fuel temperature on the formation of oxides of nitrogen. Fuel temperature ranged from ambient to 700 K. The NOx emission index increased at a rate of 6 percent per 100 K increase in fuel temperature.

  3. In-ground operation of Geothermic Fuel Cells for unconventional oil and gas recovery

    NASA Astrophysics Data System (ADS)

    Sullivan, Neal; Anyenya, Gladys; Haun, Buddy; Daubenspeck, Mark; Bonadies, Joseph; Kerr, Rick; Fischer, Bernhard; Wright, Adam; Jones, Gerald; Li, Robert; Wall, Mark; Forbes, Alan; Savage, Marshall

    2016-01-01

    This paper presents operating and performance characteristics of a nine-stack solid-oxide fuel cell combined-heat-and-power system. Integrated with a natural-gas fuel processor, air compressor, reactant-gas preheater, and diagnostics and control equipment, the system is designed for use in unconventional oil-and-gas processing. Termed a "Geothermic Fuel Cell" (GFC), the heat liberated by the fuel cell during electricity generation is harnessed to process oil shale into high-quality crude oil and natural gas. The 1.5-kWe SOFC stacks are packaged within three-stack GFC modules. Three GFC modules are mechanically and electrically coupled to a reactant-gas preheater and installed within the earth. During operation, significant heat is conducted from the Geothermic Fuel Cell to the surrounding geology. The complete system was continuously operated on hydrogen and natural-gas fuels for ∼600 h. A quasi-steady operating point was established to favor heat generation (29.1 kWth) over electricity production (4.4 kWe). Thermodynamic analysis reveals a combined-heat-and-power efficiency of 55% at this condition. Heat flux to the geology averaged 3.2 kW m-1 across the 9-m length of the Geothermic Fuel Cell-preheater assembly. System performance is reviewed; some suggestions for improvement are proposed.

  4. Economic and environmental assessment of liquefied natural gas as a supplemental aircraft fuel

    NASA Astrophysics Data System (ADS)

    Withers, Mitch R.; Malina, Robert; Gilmore, Christopher K.; Gibbs, Jonathan M.; Trigg, Chris; Wolfe, Philip J.; Trivedi, Parthsarathi; Barrett, Steven R. H.

    2014-04-01

    In 2013, natural gas is 70-80% cheaper than jet fuel on an energy basis. As an alternative aviation fuel, natural gas may reduce operating costs. In this paper, we assess the use of liquefied natural gas (LNG) as a supplemental aircraft fuel in a military context, with detailed assessments of the Lockheed Martin C-130H and C-130J transport aircraft. We estimate the cost of retrofitting these aircraft to use LNG and the savings from reduced fuel expenses. We evaluate the societal impacts of LNG within a cost-benefit framework, taking into account resource consumption, human health impacts related to air quality, and climate damage. In order to compare alternative uses of natural gas in aviation, we include in our analysis Fischer-Tropsch (FT) jet fuel from natural gas as a drop-in alternative. Uncertainty analysis is performed with Monte Carlo simulations. We find that aircraft operators can save up to 14% on fuel expenses (retrofit costs included) by employing LNG retrofits, with a 95% confidence interval of 2-23%. Society can also benefit by 12% (3-20%) from LNG use as a result of improved surface air quality, lower resource consumption, and net climate neutrality. These results are highly dependent on fuel prices, the quantity and cost of the LNG retrofits, and the frequency and length of missions. FT jet fuel is not cost-competitive with conventional fuel and results in increased fuel expenses by 17%. FT fuel provides marginal societal benefits relative to jet fuel.

  5. Semi-flexible gas-insulated transmission line using protection tube in conductor plug-in joint

    DOEpatents

    Kommineni, Prasad R.

    1983-01-25

    A gas-insulated transmission line includes an outer sheath, an inner conductor, an insulating gas electrically insulating the inner conductor from the outer sheath, and insulating supports insulatably supporting the inner conductor within the outer sheath. The inner conductor is provided with flexibility by main conductor sections which are joined together through a conductor hub section and flexible flexing elements. Stress shields are provided to control the electric field at the locations of the conductor hub sections where the insulating supports are contacting the inner conductor. A plug and socket arrangement is utilized for joining adjacent sections of the inner conductor, and a protection tube is utilized inside the hollow plug to maintain proper alignment of the joint when the transmission line is bent.

  6. Semi-flexible gas-insulated transmission line using protection tube in conductor plug-in joint

    DOEpatents

    Kommineni, P.R.

    1983-01-25

    A gas-insulated transmission line includes an outer sheath, an inner conductor, an insulating gas electrically insulating the inner conductor from the outer sheath, and insulating supports insulatably supporting the inner conductor within the outer sheath. The inner conductor is provided with flexibility by main conductor sections which are joined together through a conductor hub section and flexible flexing elements. Stress shields are provided to control the electric field at the locations of the conductor hub sections where the insulating supports are contacting the inner conductor. A plug and socket arrangement is utilized for joining adjacent sections of the inner conductor, and a protection tube is utilized inside the hollow plug to maintain proper alignment of the joint when the transmission line is bent. 3 figs.

  7. Fabrication of flexible MoS2 thin-film transistor arrays for practical gas-sensing applications.

    PubMed

    He, Qiyuan; Zeng, Zhiyuan; Yin, Zongyou; Li, Hai; Wu, Shixin; Huang, Xiao; Zhang, Hua

    2012-10-01

    By combining two kinds of solution-processable two-dimensional materials, a flexible transistor array is fabricated in which MoS(2) thin film is used as the active channel and reduced graphene oxide (rGO) film is used as the drain and source electrodes. The simple device configuration and the 1.5 mm-long MoS(2) channel ensure highly reproducible device fabrication and operation. This flexible transistor array can be used as a highly sensitive gas sensor with excellent reproducibility. Compared to using rGO thin film as the active channel, this new gas sensor exhibits much higher sensitivity. Moreover, functionalization of the MoS(2) thin film with Pt nanoparticles further increases the sensitivity by up to ∼3 times. The successful incorporation of a MoS(2) thin-film into the electronic sensor promises its potential application in various electronic devices. PMID:22778003

  8. Efficiency analysis of a hydrogen-fueled solid oxide fuel cell system with anode off-gas recirculation

    NASA Astrophysics Data System (ADS)

    Peters, Roland; Deja, Robert; Engelbracht, Maximilian; Frank, Matthias; Nguyen, Van Nhu; Blum, Ludger; Stolten, Detlef

    2016-10-01

    This study analyzes different hydrogen-fueled solid oxide fuel cell (SOFC) system layouts. It begins with a simple system layout without any anode off-gas recirculation, continues with a configuration equipped with off-gas recirculation, including steam condensation and then considers a layout with a dead-end anode off-gas loop. Operational parameters such as stack fuel utilization, as well as the recirculation rate, are modified, with the aim of achieving the highest efficiency values. Drawing on experiments and the accumulated experience of the SOFC group at the Forschungszentrum Jülich, a set of operational parameters were defined and applied to the simulations. It was found that anode off-gas recirculation, including steam condensation, improves electrical efficiency by up to 11.9 percentage-points compared to a layout without recirculation of the same stack fuel utilization. A system layout with a dead-end anode off-gas loop was also found to be capable of reaching electrical efficiencies of more than 61%.

  9. A compact and highly efficient natural gas fuel processor for 1-kW residential polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Lee, Doohwan; Lee, Hyun Chul; Lee, Kang Hee; Kim, Soonho

    A compact and highly efficient natural gas fuel processor for 1-kW residential polymer electrolyte membrane fuel cells (PEMFCs) has been developed at the Samsung Advanced Institute of Technology (SAIT). The fuel processor, referred to as SFP-2, consists of a natural gas reformer, a water-gas shift reactor, a heat-exchanger and a burner, in which the overall integrated volume including insulation is exceptionally small, namely, about 14 l. The SFP-2 produces hydrogen at 1000 l h -1 (STP) at full load with the carbon monoxide concentration in the process gas below 7000 ppmv (dry gas base). The maximum thermal efficiency is ∼78% (lower heating value) at full load and even ∼72% at 25% partial load. This fuel processor of small size with high thermal efficiency is one of the best such technologies for the above given H 2 throughputs. The time required for starting up the SFP-2 is within 20 min with the addition of external heating for the shift reactor. No additional medium, such as nitrogen, is required either for start-up or for shut down of the SFP-2, which is an advantage for application in residential PEMFC co-generations systems.

  10. Assessment of costs and benefits of flexible and alternative fuel use in the US transportation sector

    SciTech Connect

    1993-01-01

    The primary objective of this report is to provide estimates of volumes and development costs of known nonassociated gas reserves in selected, potentially important supplier nations, using a standard set of costing algorithms and conventions. Estimates of undeveloped nonassociated gas reserves and the cost of drilling development wells, production equipment, gas processing facilities, and pipeline construction are made at the individual field level. A discounted cash-flow model of production, investment, and expenses is used to estimate the present value cost of developing each field on a per-thousand-cubic-foot (Mcf) basis. These gas resource cost estimates for individual accumulations (that is, fields or groups of fields) then were aggregated into country-specific price-quantity curves. These curves represent the cost of developing and transporting natural gas to an export point suitable for tanker shipments or to a junction with a transmission line. The additional costs of LNG or methanol conversion are not included. A brief summary of the cost of conversion to methanol and transportation to the United States is contained in Appendix D: Implications of Gas Development Costs for Methanol Conversion.

  11. Magnesium carbide synthesis from methane and magnesium oxide - a potential methodology for natural gas conversion to premium fuels and chemicals

    SciTech Connect

    Diaz, A.F.; Modestino, A.J.; Howard, J.B.

    1995-12-31

    Diversification of the raw materials base for manufacturing premium fuels and chemicals offers U.S. and international consumers economic and strategic benefits. Extensive reserves of natural gas in the world provide a valuable source of clean gaseous fuel and chemical feedstock. Assuming the availability of suitable conversion processes, natural gas offers the prospect of improving flexibility in liquid fuels and chemicals manufacture, and thus, the opportunity to complement, supplement, or displace petroleum-based production as economic and strategic considerations require. The composition of natural gas varies from reservoir to reservoir but the principal hydrocarbon constituent is always methane (CH{sub 4}). With its high hydrogen-to-carbon ratio, methane has the potential to produce hydrogen or hydrogen-rich products. However, methane is a very chemically stable molecule and, thus, is not readily transformed to other molecules or easily reformed to its elements (H{sub 2} and carbon). In many cases, further research is needed to augment selectivity to desired product(s), increase single-pass conversions, or improve economics (e.g. there have been estimates of $50/bbl or more for liquid products) before the full potential of these methodologies can be realized on a commercial scale. With the trade-off between gas conversion and product selectivity, a major challenge common to many of these technologies is to simultaneously achieve high methane single-pass conversions and high selectivity to desired products. Based on the results of the scoping runs, there appears to be strong indications that a breakthrough has finally been achieved in that synthesis of magnesium carbides from MgO and methane in the arc discharge reactor has been demonstrated.

  12. Flame holding tolerant fuel and air premixer for a gas turbine combustor

    DOEpatents

    York, William David; Johnson, Thomas Edward; Ziminsky, Willy Steve

    2012-11-20

    A fuel nozzle with active cooling is provided. It includes an outer peripheral wall, a nozzle center body concentrically disposed within the outer wall in a fuel and air pre-mixture. The fuel and air pre-mixture includes an air inlet, a fuel inlet and a premixing passage defined between the outer wall in the center body. A gas fuel flow passage is provided. A first cooling passage is included within the center body in a second cooling passage is defined between the center body and the outer wall.

  13. Lateral vibration control of a flexible overcritical rotor via an active gas bearing - Theoretical and experimental comparisons

    NASA Astrophysics Data System (ADS)

    Pierart, Fabian G.; Santos, Ilmar F.

    2016-11-01

    The lack of damping of radial gas bearings leads to high vibration levels of a rotor supported by this type of bearing when crossing resonant areas. This is even more relevant for flexible rotors, as studied in this work. In order to reduce these high vibration levels, an active gas bearing is proposed. The control action of this active bearing is selected based on two different strategies: a simple proportional integral derivative controller and an optimal controller. Both controllers are designed based on a theoretical model previously presented. The dynamics of the flexible rotor are modelled aided by the finite element method and the rotor-fluid interaction in the gas bearing is included using the solution of a modified version of the Reynolds equation for compressible fluids, taking into account the piezoelectrically controlled jet action. Performance and accuracy of both model-based controllers are compared against experimental results, showing good agreement. Theoretical and experimental results show a significant increase in the damping ratio of the system, enabling the flexible rotor to run safely across the critical speeds and up to 12,000 rev/min, i.e. 50 percent over the second critical speed without any instability problems.

  14. Hazard categorization of 100 K West fuel canister gas and liquid sampling

    SciTech Connect

    Alwardt, L.D.

    1994-12-13

    This report documents the determination that the activities associated with the 100 K West fuel canister gas and liquid sampling are classified as Hazard Category Other (consequences are below criteria for Category 3).

  15. Low NO sub x heavy fuel combustor concept program phase 1A gas tests

    NASA Technical Reports Server (NTRS)

    Cutrone, M. B.; Beebe, K. W.; Cutrone, M. B.

    1982-01-01

    The emissions performance of a rich lean combustor (developed for liquid fuels) for combustion of simulated coal gases ranging in heating value from 167 to 244 Btu/scf were assessed. The 244 Btu/scf gas is typical of the product gas from an oxygen blown gasifier, while the 167 Btu/scf gas is similar to that from an air blown gasifier. Although meeting NOx goals for the 167 Btu/scf gas, NOx performance of the rich lean combustor did not meet program goals with the 244 Btu/scf gas because of high thermal NOx, similar to levels expected from conventional lean burning combustors. The NOx emissions are attributed to inadequate fuel air mixing in the rich stage resulting from the design of the large central fuel nozzle delivering 71% of the total gas flow. NOx generation from NH3 was significant at ammonia concentrations significantly less tha 0.5%. These levels occur depending on fuel gas cleanup system design, However, NOx yield from ammonia injected into the fuel gas decreased rapidly with increasing ammonia level, and is projected to be less than 10% at NH3 levels of 0.5% or higher.

  16. Graphene-coated carbon fiber cloth for flexible electrodes of glucose fuel cells

    NASA Astrophysics Data System (ADS)

    Hoshi, Kazuki; Muramatsu, Kazuo; Sumi, Hisato; Nishioka, Yasushiro

    2016-02-01

    In this work, we fabricated flexible electrodes for a miniaturized, simple structured, and flexible glucose biofuel cell (BFC) using a graphene-coated carbon fiber cloth (GCFC). The areas of the anode and cathode electrodes were 3 × 10 mm2. The anode area was coated with the enzyme glucose oxidase, and the cathode area was coated with the enzyme bilirubin oxidase. No ion-exchange film was needed because glucose oxidase selectively oxidizes glucose and bilirubin oxidase selectively reduces oxygen. The power density of the BFC with GCFC electrodes in a phosphate buffer solution of 200 mM glucose solution at room temperature was 34.3 µW/cm2 at 0.43 V. The power density of a BFC using carbon fiber cloth (CFC) without graphene modification was 18.5 µW/cm2 at 0.13 V. The BFC with the GCFC electrode continued to function longer than 24 h with a power density higher than 5 µW/cm2. These effects were attributed to the much larger effective surface areas of the GCFC electrodes that maintain more enzymes than those of the CFC electrodes.

  17. Method of Generating Hydrocarbon Reagents from Diesel, Natural Gas and Other Logistical Fuels

    DOEpatents

    Herling, Darrell R [Richland, WA; Aardahl, Chris L [Richland, WA; Rozmiarek, Robert T [Middleton, WI; Rappe, Kenneth G [Richland, WA; Wang, Yong [Richland, WA; Holladay, Jamelyn D [Kennewick, WA

    2008-10-14

    The present invention provides a process for producing reagents for a chemical reaction by introducing a fuel containing hydrocarbons into a flash distillation process wherein the fuel is separated into a first component having a lower average molecular weight and a second component having a higher average molecular weight. The first component is then reformed to produce synthesis gas wherein the synthesis gas is reacted catalytically to produce the desire reagent.

  18. Method of generating hydrocarbon reagents from diesel, natural gas and other logistical fuels

    DOEpatents

    Herling, Darrell R.; Aardahl, Chris L.; Rozmiarek, Robert T.; Rappe, Kenneth G.; Wang, Yong; Holladay, Jamelyn D.

    2010-06-29

    The present invention provides a process for producing reagents for a chemical reaction by introducing a fuel containing hydrocarbons into a flash distillation process wherein the fuel is separated into a first component having a lower average molecular weight and a second component having a higher average molecular weight. The first component is then reformed to produce synthesis gas wherein the synthesis gas is reacted catalytically to produce the desire reagent.

  19. Control rod system useable for fuel handling in a gas-cooled nuclear reactor

    DOEpatents

    Spurrier, Francis R.

    1976-11-30

    A control rod and its associated drive are used to elevate a complete stack of fuel blocks to a position above the core of a gas-cooled nuclear reactor. A fuel-handling machine grasps the control rod and the drive is unlatched from the rod. The stack and rod are transferred out of the reactor, or to a new location in the reactor, by the fuel-handling machine.

  20. Alternative fuel trucks case studies: Running refuse haulers on compressed natural gas

    SciTech Connect

    Norton, P.; Kelly, K.

    1996-07-01

    This document details the experience of New York City`s compressed natural gas refuse haulers. These 35 ton vehicles have engines that displace 10 liters and provide 240 horsepower. Fuel economy, range, cost, maintenance, repair issues, and emissions are discussed. Photographs and figures illustrate the attributes of these alternative fuel vehicles.

  1. 40 CFR 86.209-94 - Exhaust gas sampling system; gasoline-fueled vehicles.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Exhaust gas sampling system; gasoline... Emission Regulations for 1994 and Later Model Year Gasoline-Fueled New Light-Duty Vehicles, New Light-Duty... sampling system; gasoline-fueled vehicles. The provisions of § 86.109-90 apply to this subpart....

  2. 40 CFR 86.209-94 - Exhaust gas sampling system; gasoline-fueled vehicles.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 19 2012-07-01 2012-07-01 false Exhaust gas sampling system; gasoline... Emission Regulations for 1994 and Later Model Year Gasoline-Fueled New Light-Duty Vehicles, New Light-Duty... sampling system; gasoline-fueled vehicles. The provisions of § 86.109-90 apply to this subpart....

  3. 40 CFR 86.209-94 - Exhaust gas sampling system; gasoline-fueled vehicles.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 19 2013-07-01 2013-07-01 false Exhaust gas sampling system; gasoline... Emission Regulations for 1994 and Later Model Year Gasoline-Fueled New Light-Duty Vehicles, New Light-Duty... sampling system; gasoline-fueled vehicles. The provisions of § 86.109-90 apply to this subpart....

  4. DEMONSTRATION OF FUEL CELLS TO RECOVER ENERGY FROM LANDFILL GAS - PHASE I FINAL REPORT: CONCEPTUAL STUDY

    EPA Science Inventory

    The report discusses results of a conceptual design, cost, and evaluation study of energy recovery from landfill gas using a commercial phosphoric acid fuel cell power plant. The conceptual design of the fuel cell energy recovery system is described, and its economic and environm...

  5. Impact of Fuel Interchangeability on dynamic Instabilities in Gas Turbine Engines

    SciTech Connect

    Ferguson, D.H.; Straub, D.L.; Richards, G.A.; Robey, E.H.

    2007-03-01

    Modern, low NOx emitting gas turbines typically utilize lean pre-mixed (LPM) combustion as a means of achieving target emissions goals. As stable combustion in LPM systems is somewhat intolerant to changes in operating conditions, precise engine tuning on a prescribed range of fuel properties is commonly performed to avoid dynamic instabilities. This has raised concerns regarding the use of imported liquefied natural gas (LNG) and natural gas liquids (NGL’s) to offset a reduction in the domestic natural gas supply, which when introduced into the pipeline could alter the fuel BTU content and subsequently exacerbate problems such as combustion instabilities. The intent of this study is to investigate the sensitivity of dynamically unstable test rigs to changes in fuel composition and heat content. Fuel Wobbe number was controlled by blending methane and natural gas with various amounts of ethane, propane and nitrogen. Changes in combustion instabilities were observed, in both atmospheric and pressurized test rigs, for fuels containing high concentrations of propane (> 62% by vol). However, pressure oscillations measured while operating on typical “LNG like” fuels did not appear to deviate significantly from natural gas and methane flame responses. Mechanisms thought to produce changes in the dynamic response are discussed.

  6. A flexible all-inorganic fuel cell membrane with conductivity above Nafion, and durable operation at 150 °C

    NASA Astrophysics Data System (ADS)

    Ansari, Y.; Tucker, T. G.; Huang, W.; Klein, I. S.; Lee, S.-Y.; Yarger, J. L.; Angell, C. A.

    2016-01-01

    The search for fuel cell membranes has focused on carbon backbone polymers, among which Nafion seems to best survive the most severe of the degradation mechanisms - attack by peroxide radicals. Less attention has been given to inorganic membranes because of their generally inflexible nature and lower conductivity, though some SiO2-Nafion composites have shown improved properties. Nafion dominates, despite needing hydration, which then restricts operation to below 100 °C (so CO poisoning problems persist). Described herein is a low cost, flexible, and all-inorganic fiberglass reinforced gel membrane with conductivity exceeding that of Nafion at any temperature above 60 °C. Using Teflon fuel cells, maximum currents > 1 Acm-2 and OCV of 1.03 V at 150 °C are demonstrated. No detectable loss of cell potential was observed over 24 h during 50 mAcm-2 constant current operation at 120 °C while, at 150 °C and maximum power, the degradation rate is intermediate among other high conductivity H3PO4-PBI type membranes. The structure of the membrane is deduced, mainly from 29Si solid state-NMR. The -115 ppm resonance, which is extreme for Q4 Si(O) structures, identifies a zeolite-like SiO2 network, which is "floppy". 31P and 1H NMR establish nano-permeating H3PO4 as the source of the exceptional conductivity.

  7. Low NO sub x heavy fuel combustor concept program. Phase 1A: Combustion technology generation coal gas fuels

    NASA Technical Reports Server (NTRS)

    Sherlock, T. P.

    1982-01-01

    Combustion tests of two scaled burners using actual coal gas from a 25 ton/day fluidized bed coal gasifier are described. The two combustor configurations studied were a ceramic lined, staged rich/lean burner and an integral, all metal multiannual swirl burner (MASB). The tests were conducted over a range of temperature and pressures representative of current industrial combustion turbine inlet conditions. Tests on the rich lean burner were conducted at three levels of product gas heating values: 104, 197 and 254 btu/scf. Corresponding levels of NOx emissions were 5, 20 and 70 ppmv. Nitrogen was added to the fuel in the form of ammonia, and conversion efficiencies of fuel nitrogen to NOx were on the order of 4 percent to 12 percent, which is somewhat lower than the 14 percent to 18 percent conversion efficiency when src-2 liquid fuel was used. The MASB was tested only on medium btu gas (220 to 270 btu/scf), and produced approximately 80 ppmv NOx at rated engine conditions. Both burners operated similarly on actual coal gas and erbs fuel, and all heating values tested can be successfully burned in current machines.

  8. Durability Prediction of Solid Oxide Fuel Cell Anode Material under Thermo-Mechanical and Fuel Gas Contaminants Effects

    SciTech Connect

    Iqbal, Gulfam; Guo, Hua; Kang , Bruce S.; Marina, Olga A.

    2011-01-10

    Solid Oxide Fuel Cells (SOFCs) operate under harsh environments, which cause deterioration of anode material properties and service life. In addition to electrochemical performance, structural integrity of the SOFC anode is essential for successful long-term operation. The SOFC anode is subjected to stresses at high temperature, thermal/redox cycles, and fuel gas contaminants effects during long-term operation. These mechanisms can alter the anode microstructure and affect its electrochemical and structural properties. In this research, anode material degradation mechanisms are briefly reviewed and an anode material durability model is developed and implemented in finite element analysis. The model takes into account thermo-mechanical and fuel gas contaminants degradation mechanisms for prediction of long-term structural integrity of the SOFC anode. The proposed model is validated experimentally using a NexTech ProbostatTM SOFC button cell test apparatus integrated with a Sagnac optical setup for simultaneously measuring electrochemical performance and in-situ anode surface deformation.

  9. Fuel Property, Emission Test, and Operability Results from a Fleet of Class 6 Vehicles Operating on Gas-to-Liquid Fuel and Catalyzed Diesel Particle Filters

    SciTech Connect

    Alleman, T. L.; Eudy, L.; Miyasato, M.; Oshinuga, A.; Allison, S.; Corcoran, T.; Chatterjee, S.; Jacobs, T.; Cherrillo, R. A.; Clark, R.; Virrels, I.; Nine, R.; Wayne, S.; Lansing, R.

    2005-11-01

    A fleet of six 2001 International Class 6 trucks operating in southern California was selected for an operability and emissions study using gas-to-liquid (GTL) fuel and catalyzed diesel particle filters (CDPF). Three vehicles were fueled with CARB specification diesel fuel and no emission control devices (current technology), and three vehicles were fueled with GTL fuel and retrofit with Johnson Matthey's CCRT diesel particulate filter. No engine modifications were made.

  10. Employing a Flexible and Low-Cost Polypyrrole Nanotube Membrane as an Anode to Enhance Current Generation in Microbial Fuel Cells.

    PubMed

    Zhao, Cui-e; Wu, Jiansheng; Kjelleberg, Staffan; Loo, Joachim Say Chey; Zhang, Qichun

    2015-07-01

    The flexible and low-cost polypyrrole nanotube membrane is demonstrated as a promising anode in microbial fuel cells, which significantly enhances the extracellular electron transfer between Shewanella oneidensis MR-1 and the electrode, owing to the large active surface area and high electrical conductivity.

  11. Assessment of costs and benefits of flexible and alternative fuel use in the U.S. transportation sector. Technical report fourteen: Market potential and impacts of alternative fuel use in light-duty vehicles -- A 2000/2010 analysis

    SciTech Connect

    1996-01-01

    In this report, estimates are provided of the potential, by 2010, to displace conventional light-duty vehicle motor fuels with alternative fuels--compressed natural gas (CNG), liquefied petroleum gas (LPG), methanol from natural gas, ethanol from grain and from cellulosic feedstocks, and electricity--and with replacement fuels such as oxygenates added to gasoline. The 2010 estimates include the motor fuel displacement resulting both from government programs (including the Clean Air Act and EPACT) and from potential market forces. This report also provides an estimate of motor fuel displacement by replacement and alterative fuels in the year 2000. However, in contrast to the 2010 estimates, the year 2000 estimate is restricted to an accounting of the effects of existing programs and regulations. 27 figs., 108 tabs.

  12. Fission gas release restrictor for breached fuel rod

    DOEpatents

    Kadambi, N. Prasad; Tilbrook, Roger W.; Spencer, Daniel R.; Schwallie, Ambrose L.

    1986-01-01

    In the event of a breach in the cladding of a rod in an operating liquid metal fast breeder reactor, the rapid release of high-pressure gas from the fission gas plenum may result in a gas blanketing of the breached rod and rods adjacent thereto which impairs the heat transfer to the liquid metal coolant. In order to control the release rate of fission gas in the event of a breached rod, the substantial portion of the conventional fission gas plenum is formed as a gas bottle means which includes a gas pervious means in a small portion thereof. During normal reactor operation, as the fission gas pressure gradually increases, the gas pressure interiorly of and exteriorly of the gas bottle means equalizes. In the event of a breach in the cladding, the gas pervious means in the gas bottle means constitutes a sufficient restriction to the rapid flow of gas therethrough that under maximum design pressure differential conditions, the fission gas flow through the breach will not significantly reduce the heat transfer from the affected rod and adjacent rods to the liquid metal heat transfer fluid flowing therebetween.

  13. Light-controlling, flexible and transparent ethanol gas sensor based on ZnO nanoparticles for wearable devices.

    PubMed

    Zheng, Z Q; Yao, J D; Wang, B; Yang, G W

    2015-06-16

    In recent years, owing to the significant applications of health monitoring, wearable electronic devices such as smart watches, smart glass and wearable cameras have been growing rapidly. Gas sensor is an important part of wearable electronic devices for detecting pollutant, toxic, and combustible gases. However, in order to apply to wearable electronic devices, the gas sensor needs flexible, transparent, and working at room temperature, which are not available for traditional gas sensors. Here, we for the first time fabricate a light-controlling, flexible, transparent, and working at room-temperature ethanol gas sensor by using commercial ZnO nanoparticles. The fabricated sensor not only exhibits fast and excellent photoresponse, but also shows high sensing response to ethanol under UV irradiation. Meanwhile, its transmittance exceeds 62% in the visible spectral range, and the sensing performance keeps the same even bent it at a curvature angle of 90(o). Additionally, using commercial ZnO nanoparticles provides a facile and low-cost route to fabricate wearable electronic devices.

  14. A Novel Method for In-Situ Monitoring of Local Voltage, Temperature and Humidity Distributions in Fuel Cells Using Flexible Multi-Functional Micro Sensors

    PubMed Central

    Lee, Chi-Yuan; Fan, Wei-Yuan; Chang, Chih-Ping

    2011-01-01

    In this investigation, micro voltage, temperature and humidity sensors were fabricated and integrated for the first time on a stainless steel foil using micro-electro-mechanical systems (MEMS). These flexible multi-functional micro sensors have the advantages of high temperature resistance, flexibility, smallness, high sensitivity and precision of location. They were embedded in a proton exchange membrane fuel cell (PEMFC) and used to simultaneously measure variations in the inner voltage, temperature and humidity. The accuracy and reproducibility of the calibrated results obtained using the proposed micro sensors is excellent. The experimental results indicate that, at high current density and 100%RH or 75%RH, the relative humidity midstream and downstream saturates due to severe flooding. The performance of the PEM fuel cell can be stabilized using home-made flexible multi-functional micro sensors by the in-situ monitoring of local voltage, temperature and humidity distributions within it. PMID:22319361

  15. Experimental and Analytical Study of Balanced-Diaphragm Fuel Distributors for Gas-Turbine Engines

    NASA Technical Reports Server (NTRS)

    Straight, David M.; Gold, Harold

    1950-01-01

    A method of distributing fuel equally to a plurality of spray nozzles in a gas-turbine engine by means of balanced-diaphragm fuel distributors is presented. The experimental performance of three of eight possible distributor arrangements are discussed. An analysis of all eight arrangements is included. Criterions are given for choosing a fuel-distributor arrangement to meet specific fuel-system requirements of fuel-distribution accuracy, spray-nozzle pressure variations, and fuel-system pressures. Data obtained with a model of one distributor arrangement indicated a maximum deviation from perfect distribution of 3.3 percent for a 44 to 1 range (19.5 to 862 lb/hr) of fuel-flow rates. The maximum distributor pressure drop was 125 pounds per square inch. The method used to obtain the required wide range of flow control in the distributor valves consisted in varying the length of a constant-area flow path.

  16. 75 FR 81952 - Greenhouse Gas Emissions Standards and Fuel Efficiency Standards for Medium- and Heavy-Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-29

    ... Greenhouse Gas Emissions Standards and Fuel Efficiency Standards for Medium- and Heavy-Duty Engines and...-Duty National Program that will increase fuel efficiency and reduce greenhouse gas emissions for on... a comprehensive Heavy-Duty National Program that will increase fuel efficiency and reduce...

  17. Alternative fuels and chemicals from synthesis gas. Fourth quarterly report, 1994

    SciTech Connect

    1997-10-01

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE`s LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  18. Probabilistic Analysis of Solid Oxide Fuel Cell Based Hybrid Gas Turbine System

    NASA Technical Reports Server (NTRS)

    Gorla, Rama S. R.; Pai, Shantaram S.; Rusick, Jeffrey J.

    2003-01-01

    The emergence of fuel cell systems and hybrid fuel cell systems requires the evolution of analysis strategies for evaluating thermodynamic performance. A gas turbine thermodynamic cycle integrated with a fuel cell was computationally simulated and probabilistically evaluated in view of the several uncertainties in the thermodynamic performance parameters. Cumulative distribution functions and sensitivity factors were computed for the overall thermal efficiency and net specific power output due to the uncertainties in the thermodynamic random variables. These results can be used to quickly identify the most critical design variables in order to optimize the design and make it cost effective. The analysis leads to the selection of criteria for gas turbine performance.

  19. Systems and methods for detecting a flame in a fuel nozzle of a gas turbine

    DOEpatents

    Kraemer, Gilbert Otto; Storey, James Michael; Lipinski, John; Mestroni, Julio Enrique; Williamson, David Lee; Marshall, Jason Randolph; Krull, Anthony

    2013-05-07

    A system may detect a flame about a fuel nozzle of a gas turbine. The gas turbine may have a compressor and a combustor. The system may include a first pressure sensor, a second pressure sensor, and a transducer. The first pressure sensor may detect a first pressure upstream of the fuel nozzle. The second pressure sensor may detect a second pressure downstream of the fuel nozzle. The transducer may be operable to detect a pressure difference between the first pressure sensor and the second pressure sensor.

  20. Small scale biomass fueled gas turbine power plant. Report for February 1992--October 1997

    SciTech Connect

    Purvis, C.R.; Craig, J.D.

    1998-01-01

    The paper discusses a new-generation, small-scale (<20 MWe) biomass-fueled power plant that is being developed based on a gas turbine (Brayton cycle) prime mover. Such power plants are expected to increase the efficiency and lower the cost of generating power from fuels such as wood. The new power plants are also expected to economically utilize annual plant growth material (e.g., straw, grass, rice hulls, animal manure, cotton gin trash, and nut shells) that are not normally considered as fuel for power plants. The paper summarizes the new power generation concept with emphasis on the engineering challenges presented by the gas turbine component.

  1. Amine enhanced fuel lean gas reburn to maintain coal-fired competitiveness at Public Service Electric and Gas Mercer Station

    SciTech Connect

    Schrecengost, R.A.; Breen, B.P.; Gomez, A.F.; Huhmann, A.L.; Pratapas, J.M.; Johnson, R.A.

    1999-07-01

    This paper presents nitric oxide (NO{sub x}) reduction results of the first full-scale application of Amine Enhanced Fuel Lean Gas Reburn (AEFLGR). AEFLGR involves the co-injection of 3-10% natural gas heat input with amine-containing compounds such as urea via turbulent jets into the upper furnace of fossil fuel boilers while maintaining an overall fuel lean furnace. The co-injection of natural gas with urea in pilot scale tests has enhanced the NO{sub x} reduction potential of the natural gas. Maintaining an overall fuel lean furnace environment eliminates the need for downstream completion air and helps prevent excessive carbon monoxide emissions. Pilot scale tests achieved NO{sub x} reductions of 75% using 7% natural gas heat input and a urea net stoichiometric ratio (NSR) of 1.0. An Amine Enhanced Fuel Lean Gas Reburn system was installed on Mercer Station Furnace 22 in December of 1997. Optimization testing began in January of 1998. Mercer Station was chosen as the demonstration site because it has years of commercial operating experience with the NO{sub x}OUT{trademark} urea-based selective noncatalytic reduction (SNCR) system. Beginning this summer, the station needs deeper NO{sub x} reductions than those obtained with the existing SNCR system. PSE and G's economic analysis showed that AEFLGR would provide very cost-effective NO{sub x} reductions if the pilot scale results could be approached or duplicated. This demonstration program showed NO{sub x} reductions of 50--70% with only 6--7% gas heat input and urea NSRs of 1.0--1.2. NO{sub x} reduction operating costs in this demonstration program ranged from $750/ton to $900/ton for full load operation (310 MW net) through 135 MW net (two mill minimum operation). An $800/ton operating cost at full load corresponds to a $3/MWH environmental dispatch cost.

  2. METHANOL PRODUCTION FROM BIOMASS AND NATURAL GAS AS TRANSPORTATION FUEL

    EPA Science Inventory

    Two processes are examined for production of methanol. They are assessed against the essential requirements of a future alternative fuel for road transport: that it (i) is producible in amounts comparable to the 19 EJ of motor fuel annually consumed in the U.S., (ii) minimizes em...

  3. Apparatus for mixing fuel in a gas turbine

    DOEpatents

    Uhm, Jong Ho; Johnson, Thomas Edward

    2015-04-21

    A combustor nozzle includes an inlet surface and an outlet surface downstream from the inlet surface, wherein the outlet surface has an indented central portion. A plurality of fuel channels are arranged radially outward of the indented central portion, wherein the plurality of fuel channels extend through the outlet surface.

  4. Fuel nozzle assembly for use as structural support for a duct structure in a combustor of a gas turbine engine

    SciTech Connect

    Wiebe, David J; Fox, Timothy A

    2015-03-31

    A fuel nozzle assembly for use in a combustor apparatus of a gas turbine engine. An outer housing of the fuel nozzle assembly includes an inner volume and provides a direct structural connection between a duct structure and a fuel manifold. The duct structure defines a flow passage for combustion gases flowing within the combustor apparatus. The fuel manifold defines a fuel supply channel therein in fluid communication with a source of fuel. A fuel injector of the fuel nozzle assembly is provided in the inner volume of the outer housing and defines a fuel passage therein. The fuel passage is in fluid communication with the fuel supply channel of the fuel manifold for distributing the fuel from the fuel supply channel into the flow passage of the duct structure.

  5. Workshop on an Assessment of Gas-Side Fouling in Fossil Fuel Exhaust Environments

    NASA Technical Reports Server (NTRS)

    Marner, W. J. (Editor); Webb, R. L. (Editor)

    1982-01-01

    The state of the art of gas side fouling in fossil fuel exhaust environments was assessed. Heat recovery applications were emphasized. The deleterious effects of gas side fouling including increased energy consumption, increased material losses, and loss of production were identified.

  6. Combustion Gas Properties I-ASTM Jet a Fuel and Dry Air

    NASA Technical Reports Server (NTRS)

    Jones, R. E.; Trout, A. M.; Wear, J. D.; Mcbride, B. J.

    1984-01-01

    A series of computations was made to produce the equilibrium temperature and gas composition for ASTM jet A fuel and dry air. The computed tables and figures provide combustion gas property data for pressures from 0.5 to 50 atmospheres and equivalence ratios from 0 to 2.0.

  7. 76 FR 51027 - National Fuel Gas Supply Corporation; Notice of Request Under Blanket Authorization

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-17

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission National Fuel Gas Supply Corporation; Notice of Request Under Blanket... Gas Supply Corporation, 6363 Main Street, Williamsville, New York 14221-5887 at telephone (716)...

  8. Water Transport Characteristics of Gas Diffusion Layer in a PEM Fuel Cell

    SciTech Connect

    Damle, Ashok S; Cole, J Vernon

    2008-11-01

    A presentation addressing the following: Water transport in PEM Fuel Cells - a DoE Project 1. Gas Diffusion Layer--Role and Characteristics 2. Capillary Pressure Determinations of GDL Media 3. Gas Permeability Measurements of GDL Media 4. Conclusions and Future Activities

  9. DEMONSTRATION OF FUEL CELLS TO RECOVER ENERGY FROM LANDFILL GAS: PHASE II. PRETREATMENT SYSTEM PERFORMANCE MEASUREMENT

    EPA Science Inventory

    The report describes Phase II of a demonstration of the utilization of commercial phosphoric acid fuel cells to recover energy from landfill gas. This phase consisted primarily of the construction and testing of a Gas Pretreatment Unit (GPU) whose function is to remove those impu...

  10. Liquid natural gas as a transportation fuel in the heavy trucking industry. Final technical report

    SciTech Connect

    Sutton, W.H.

    1997-06-30

    This report encompasses the second year of a proposed three year project with emphasis focused on fundamental research issues in Use of Liquid Natural Gas as a Transportation Fuel in the Heavy Trucking Industry. These issues may be categorized as (1) direct diesel replacement with LNG fuel, and (2) long term storage/utilization of LNG vent gases produced by tank storage and fueling/handling operation. The results of this work are expected to enhance utilization of LNG as a transportation fuel. The paper discusses the following topics: (A) Fueling Delivery to the Engine, Engine Considerations, and Emissions: (1) Atomization and/or vaporization of LNG for direct injection diesel-type natural gas engines; (2) Fundamentals of direct replacement of diesel fuel by LNG in simulated combustion; (3) Distribution of nitric oxide and emissions formation from natural gas injection; and (B) Short and long term storage: (1) Modification by partial direct conversion of natural gas composition for improved storage characteristics; (2) LNG vent gas adsorption and recovery using activate carbon and modified adsorbents; (3) LNG storage at moderate conditions.

  11. Stable prices to fuel gas demand growth - GRI

    SciTech Connect

    O`Driscoll, M.

    1994-08-18

    The Gas Research Institute projects a significant rise in demand for natural gas over the next 16 years, but without new technology, consumption growth cannot be sustained. The record projected increase in gas consumption is due to low prices. In the overall energy market, fewer incentives for energy conservation exist. This article briefly review energy supplies, energy consumption and energy forecasts for the future.

  12. Effect of Gas Fueling Location on H-mode Access in NSTX

    SciTech Connect

    R. Maingi; M. Bell; R. Bell; T. Biewer; C. Bush; C.S. Chang; D. Gates; S. Kaye; H. Kugel; B. LeBlanc; R. Maqueda; J. Menard; D. Mueller; R. Raman; S. Sabbagh; V. Soukhanovskii; the NSTX Team

    2003-10-09

    The dependence of H-mode access on the poloidal location of the gas injection source has been investigated in the National Spherical Torus Experiment (NSTX). We find that gas fueling from the center stack midplane area produces the most reproducible H-mode access with generally the lowest L-H threshold power in lower single-null configuration. The edge toroidal rotation velocity is largest (in direction of the plasma current) just before the L-H transition with center stack midplane fueling, and then reverses direction after the L-H transition. Simulation of these results with a 2-D guiding-center Monte Carlo neoclassical transport code is qualitatively consistent with the trends in the measured velocities. Double-null discharges exhibit H-mode access with gas fueling from either the center stack midplane or center stack top locations, indicating a reduced sensitivity of H-mode access on fueling location in that shape.

  13. Unreviewed safety question evaluation of 100 K West fuel canister gas and liquid sampling

    SciTech Connect

    Alwardt, L.D.

    1995-01-12

    The purpose of this report is to provide the basis for answers to an Unreviewed Safety Question (USQ) safety evaluation for the gas and liquid sampling activities associated with the fuel characterization program at the 100 K West (KW) fuel storage basin. The scope of this safety evaluation is limited to the movement of canisters between the main storage basin, weasel pit, and south loadout pit transfer channel (also known as the decapping station); gas and liquid sampling of fuel canisters in the weasel pit; mobile laboratory preliminary sample analysis in or near the 105 KW basin building; and the placement of sample containers in an approved shipping container. It was concluded that the activities and potential accident consequences associated with the gas and liquid sampling of 100 KW fuel canisters are bounded by the current safety basis documents and do not constitute an Unreviewed Safety Question.

  14. Radiation re-solution of fission gas in non-oxide nuclear fuel

    NASA Astrophysics Data System (ADS)

    Matthews, Christopher; Schwen, Daniel; Klein, Andrew C.

    2015-02-01

    Renewed interest in fast nuclear reactors is creating a need for better understanding of fission gas bubble behavior in non-oxide fuels to support very long fuel lifetimes. Collisions between fission fragments and their subsequent cascades can knock fission gas atoms out of bubbles and back into the fuel lattice. We showed that these collisions can be treated as using the so-called "homogenous" atom-by-atom re-solution theory and calculated using the Binary Collision Approximation code 3DOT. The calculations showed that there is a decrease in the re-solution parameter as bubble radius increases until about 50 nm, at which the re-solution parameter stays nearly constant. Furthermore, our model shows ion cascades created in the fuel result in many more implanted fission gas atoms than collisions directly with fission fragments. This calculated re-solution parameter can be used to find a re-solution rate for future bubble simulations.

  15. Roadmap for Development of Natural Gas Vehicle Fueling Infrastructructure and Analysis of Vehicular Natural Gas Consumption by Niche Sector

    SciTech Connect

    Stephen C. Yborra

    2007-04-30

    Vehicular natural gas consumption is on the rise, totaling nearly 200 million GGEs in 2005, despite declines in total NGV inventory in recent years. This may be attributed to greater deployment of higher fuel use medium- and heavy-duty NGVs as compared to the low fuel use of the natural gas-powered LDVs that exited the market through attrition, many of which were bi-fuel. Natural gas station counts are down to about 1100 from their peak of about 1300. Many of the stations that closed were under-utilized or not used at all while most new stations were developed with greater attention to critical business fundamentals such as site selection, projected customer counts, peak and off-peak fueling capacity needs and total station throughput. Essentially, the nation's NGV fueling infrastructure has been--and will continue--going through a 'market correction'. While current economic fundamentals have shortened payback and improved life-cycle savings for investment in NGVs and fueling infrastructure, a combination of grants and other financial incentives will still be needed to overcome general fleet market inertia to maintain status quo. Also imperative to the market's adoption of NGVs and other alternative fueled vehicle and fueling technologies is a clear statement of long-term federal government commitment to diversifying our nation's transportation fuel use portfolio and, more specifically, the role of natural gas in that policy. Based on the current NGV market there, and the continued promulgation of clean air and transportation policies, the Western Region is--and will continue to be--the dominant region for vehicular natural gas use and growth. In other regions, especially the Northeast, Mid-Atlantic states and Texas, increased awareness and attention to air quality and energy security concerns by the public and - more important, elected officials--are spurring policies and programs that facilitate deployment of NGVs and fueling infrastructure. Because of their high

  16. Hydrocarbon Release During Fuel Storage and Transfer at Gas Stations: Environmental and Health Effects.

    PubMed

    Hilpert, Markus; Mora, Bernat Adria; Ni, Jian; Rule, Ana M; Nachman, Keeve E

    2015-12-01

    At gas stations, fuel is stored and transferred between tanker trucks, storage tanks, and vehicle tanks. During both storage and transfer, a small fraction of unburned fuel is typically released to the environment unless pollution prevention technology is used. While the fraction may be small, the cumulative release can be substantial because of the large quantities of fuel sold. The cumulative release of unburned fuel is a public health concern because gas stations are widely distributed in residential areas and because fuel contains toxic and carcinogenic chemicals. We review the pathways through which gasoline is chronically released to atmospheric, aqueous, and subsurface environments, and how these releases may adversely affect human health. Adoption of suitable pollution prevention technology should not only be based on equipment and maintenance cost but also on energy- and health care-saving benefits. PMID:26435043

  17. Porous nuclear fuel element with internal skeleton for high-temperature gas-cooled nuclear reactors

    DOEpatents

    Youchison, Dennis L.; Williams, Brian E.; Benander, Robert E.

    2013-09-03

    Porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's), and to processes for fabricating them. Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, the nuclear fuel may be deposited inside of a highly porous skeletal structure made of, for example, reticulated vitreous carbon foam.

  18. Porous nuclear fuel element for high-temperature gas-cooled nuclear reactors

    DOEpatents

    Youchison, Dennis L.; Williams, Brian E.; Benander, Robert E.

    2011-03-01

    Porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's), and to processes for fabricating them. Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, the nuclear fuel may be deposited inside of a highly porous skeletal structure made of, for example, reticulated vitreous carbon foam.

  19. Hydrocarbon Release During Fuel Storage and Transfer at Gas Stations: Environmental and Health Effects.

    PubMed

    Hilpert, Markus; Mora, Bernat Adria; Ni, Jian; Rule, Ana M; Nachman, Keeve E

    2015-12-01

    At gas stations, fuel is stored and transferred between tanker trucks, storage tanks, and vehicle tanks. During both storage and transfer, a small fraction of unburned fuel is typically released to the environment unless pollution prevention technology is used. While the fraction may be small, the cumulative release can be substantial because of the large quantities of fuel sold. The cumulative release of unburned fuel is a public health concern because gas stations are widely distributed in residential areas and because fuel contains toxic and carcinogenic chemicals. We review the pathways through which gasoline is chronically released to atmospheric, aqueous, and subsurface environments, and how these releases may adversely affect human health. Adoption of suitable pollution prevention technology should not only be based on equipment and maintenance cost but also on energy- and health care-saving benefits.

  20. Methods for manufacturing porous nuclear fuel elements for high-temperature gas-cooled nuclear reactors

    DOEpatents

    Youchison, Dennis L.; Williams, Brian E.; Benander, Robert E.

    2010-02-23

    Methods for manufacturing porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's). Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, a thin coating of nuclear fuel may be deposited inside of a highly porous skeletal structure made, for example, of reticulated vitreous carbon foam.

  1. An investigation of the use of odorants in liquefied natural gas used as a vehicle fuel

    SciTech Connect

    Green, T.; Williams, T.

    1994-12-31

    Interest in liquefied natural gas (LNG) as an alternative vehicle fuel has increased significantly. Its greater storage density relative to compressed natural gas makes it an attractive option for both volume and weight constrained vehicle applications. The public transportation market, specifically transit bus properties, have been very aggressive in pursuing LNG as an alternative vehicle fuel. Naturally, when dealing with the general public and a new transportation fuel, the issue of safety must be addressed. With this in mind, the Gas Research Institute has initiated a number of safety related studies including an investigation of the use of odorants in LNG. This paper presents the preliminary results of an investigation performed by the Institute of Gas Technology to determine both the applicability and effectiveness of odorizing LNG. This includes an overview of the current state-of-the-art in LNG vehicle fueling and safety systems as well as a discussion of an LNG odorization program conducted by San Diego Gas & Electric in the mid 70`s. Finally, the paper discusses the results of the modeling effort to determine whether conventional odorants used in natural gas can be injected and remain soluble in LNG at temperatures and pressures encountered in LNG fueling and on-board storage systems.

  2. 40 CFR 600.306-12 - Fuel economy label-special requirements for compressed natural gas vehicles.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 31 2012-07-01 2012-07-01 false Fuel economy label-special... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy Labeling § 600.306-12 Fuel economy label—special requirements for...

  3. 40 CFR 600.306-12 - Fuel economy label-special requirements for compressed natural gas vehicles.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 31 2013-07-01 2013-07-01 false Fuel economy label-special... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy Labeling § 600.306-12 Fuel economy label—special requirements for...

  4. 77 FR 51701 - EPA's Denial of the Petition To Reconsider the Greenhouse Gas Emissions Standards and Fuel...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-27

    ... Environmental Protection Agency FR Federal Register FCV fuel cell vehicle GHG greenhouse gas GVWR gross vehicle... electric vehicles (PHEV), and hydrogen fuel cell vehicles, where the technology itself necessitates use of... fuel cells questions legitimate policy choices unrelated to the issue of fuel use. EPA also does...

  5. Ztek`s ultra high efficiency fuel cell/gas turbine combination

    SciTech Connect

    Hsu, M.; Nathanson, D.

    1995-10-19

    Ztek is proceeding on development of an ultra-high efficiency hybrid system of its Planar SOFC with a gas turbine, realizing shared cost and performance benefits. The gas turbine as the Balance-of-Plant was a logical selection from a fuel cell system perspective because of (1) the high-power-density energy conversion of gas turbines; (2) the unique compatibility of the Ztek Planar SOFC with gas turbines, and (3) the availability of low-cost commercial gas turbine systems. A Tennessee Valley Authority/Ztek program is ongoing, which addresses operation of the advanced Planar SOFC stacks and design scale-up for utility power generation applications.

  6. Economics of liquefied natural gas production, transport and distribution for end use as a transportation fuel

    SciTech Connect

    Adkins, R.E.; Sutton, H.E.

    1994-12-31

    Natural gas vehicles have been operating in the United States for over 30 years. With few exceptions, these vehicles are owned and operated by local gas utilities that utilize the natural gas in the compressed form (CNG), at pressures of up to 3,600 psi. However, the limited range, system weight and the high cost of fueling facilities presents a serious handicap for these compressed fuel systems. Liquefied natural gas (LNG) automotive fuel systems, on the other hand, are a relatively new player in the emerging clean fuels market. While the technical feasibility, safety, and operational suitability of LNG fuel systems have been demonstrated during the past 20 years, in a variety of test projects including automotive, marine, aviation, and rail systems, little has been done to commercialize or promote this technology. Recent independent cost comparisons and technical evaluations have been conducted by several major transit organizations and national truck fleets with interesting results. They have concluded that LNG automotive fuel systems can meet the performance and operational criteria of their gasoline and diesel fuel systems without compromising vehicle range or imposing unacceptable weight and payload penalties on their vehicles. The purpose of this paper is to further define the economics of LNG production, transportation and distribution costs. The liquefaction of natural gas is a mature technology and was first accomplished by Faraday in 1855. The first large scale plants were installed in the United States in 1941 and this paper provides a summary of the issues and costs associated with the procurement, installation, and operation of modern day natural gas liquefaction systems. There are no technical barriers to building LNG plants where needed. In addition to these {open_quotes}peak shaving{close_quotes} liquefaction plants, operated by utilities, there are many liquefaction plants owned and operated by the industrial gas business sector.

  7. Gas separation process using membranes with permeate sweep to remove CO.sub.2 from gaseous fuel combustion exhaust

    DOEpatents

    Wijmans Johannes G.; Merkel, Timothy C.; Baker, Richard W.

    2012-05-15

    A gas separation process for treating exhaust gases from the combustion of gaseous fuels, and gaseous fuel combustion processes including such gas separation. The invention involves routing a first portion of the exhaust stream to a carbon dioxide capture step, while simultaneously flowing a second portion of the exhaust gas stream across the feed side of a membrane, flowing a sweep gas stream, usually air, across the permeate side, then passing the permeate/sweep gas back to the combustor.

  8. Hydrogen Fueled Hybrid Solid Oxide Fuel Cell-Gas Turbine (SOFC-GT) System for Long-Haul Rail Application

    NASA Astrophysics Data System (ADS)

    Chow, Justin Jeff

    Freight movement of goods is the artery for America's economic health. Long-haul rail is the premier mode of transport on a ton-mile basis. Concerns regarding greenhouse gas and criteria pollutant emissions, however, have motivated the creation of annually increasing locomotive emissions standards. Health issues from diesel particulate matter, especially near rail yards, have also been on the rise. These factors and the potential to raise conventional diesel-electric locomotive performance warrants the investigation of using future fuels in a more efficient system for locomotive application. This research evaluates the dynamic performance of a Solid Oxide Fuel Cell-Gas Turbine (SOFC-GT) Hybrid system operating on hydrogen fuel to power a locomotive over a rail path starting from the Port of Los Angeles and ending in the City of Barstow. Physical constraints, representative locomotive operation logic, and basic design are used from a previous feasibility study and simulations are performed in the MATLAB Simulink environment. In-house controls are adapted to and expanded upon. Results indicate high fuel-to-electricity efficiencies of at least 54% compared to a conventional diesel-electric locomotive efficiency of 35%. Incorporation of properly calibrated feedback and feed-forward controls enables substantial load following of difficult transients that result from train kinematics while maintaining turbomachinery operating requirements and suppressing thermal stresses in the fuel cell stack. The power split between the SOFC and gas turbine is deduced to be a deterministic factor in the balance between capital and operational costs. Using hydrogen results in no emissions if renewable and offers a potential of 24.2% fuel energy savings for the rail industry.

  9. 40 CFR 600.314-86 - Updating label values, annual fuel cost, Gas Guzzler Tax, and range of fuel economies for...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... cost, Gas Guzzler Tax, and range of fuel economies for comparable automobiles. 600.314-86 Section 600... ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy Regulations for 1977 and Later..., and range of fuel economies for comparable automobiles. (a) The label values established in §...

  10. 40 CFR 600.314-08 - Updating label values, annual fuel cost, Gas Guzzler Tax, and range of fuel economy for...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... cost, Gas Guzzler Tax, and range of fuel economy for comparable automobiles. 600.314-08 Section 600.314-08 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy Regulations for 1977 and...

  11. 40 CFR 600.314-01 - Updating label values, annual fuel cost, Gas Guzzler Tax, and range of fuel economies for...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... cost, Gas Guzzler Tax, and range of fuel economies for comparable automobiles. 600.314-01 Section 600... ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy Regulations for 1977 and Later..., and range of fuel economies for comparable automobiles. (a) The label values established in §...

  12. 40 CFR 600.314-86 - Updating label values, annual fuel cost, Gas Guzzler Tax, and range of fuel economies for...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... cost, Gas Guzzler Tax, and range of fuel economies for comparable automobiles. 600.314-86 Section 600... ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy Regulations for 1977 and Later..., and range of fuel economies for comparable automobiles. (a) The label values established in §...

  13. 40 CFR 600.314-08 - Updating label values, annual fuel cost, Gas Guzzler Tax, and range of fuel economy for...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... cost, Gas Guzzler Tax, and range of fuel economy for comparable automobiles. 600.314-08 Section 600.314-08 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy Regulations for 1977 and...

  14. 40 CFR 600.314-01 - Updating label values, annual fuel cost, Gas Guzzler Tax, and range of fuel economies for...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... cost, Gas Guzzler Tax, and range of fuel economies for comparable automobiles. 600.314-01 Section 600... ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy Regulations for 1977 and Later..., and range of fuel economies for comparable automobiles. (a) The label values established in §...

  15. A spatially resolved fuel-based inventory of Utah and Colorado oil and natural gas emissions

    NASA Astrophysics Data System (ADS)

    Gorchov Negron, A.; McDonald, B. C.; De Gouw, J. A.; Frost, G. J.

    2015-12-01

    A fuel-based approach is presented for estimating emissions from US oil and natural gas production that utilizes state-level fuel surveys of oil and gas engine activity, well-level production data, and emission factors for oil and gas equipment. Emissions of carbon dioxide (CO2) and nitrogen oxides (NOx) are mapped on a 4 km x 4 km horizontal grid for 2013-14 in Utah and Colorado. Emission sources include combustion from exploration (e.g., drilling), production (e.g., heaters, dehydrators, and compressor engines), and natural gas processing plants, which comprise a large fraction of the local combustion activity in oil and gas basins. Fuel-based emission factors of NOx are from the U.S. Environmental Protection Agency, and applied to spatially-resolved maps of CO2 emissions. Preliminary NOx emissions from this study are estimated for the Uintah Basin, Utah, to be ~5300 metric tons of NO2-equivalent in 2013. Our result compares well with an observations-based top-down emissions estimate of NOx derived from a previous study, ~4200 metric tons of NO2-equivalent. By contrast, the 2011 National Emissions Inventory estimates oil and gas emissions of NOx to be ~3 times higher than our study in the Uintah Basin. We intend to expand our fuel-based approach to map combustion-related emissions in other U.S. oil and natural gas basins and compare with additional observational datasets.

  16. Effect of water injection on nitric oxide emissions of a gas turbine combustor burning natural gas fuel

    NASA Technical Reports Server (NTRS)

    Marchionna, N. R.; Diehl, L. A.; Trout, A. M.

    1973-01-01

    The effect of direct water injection on the exhaust gas emissions of a turbojet combustor burning natural gas fuel was investigated. The results are compared with the results from similar tests using ASTM Jet-A fuel. Increasing water injection decreased the emissions of oxides of nitrogen (NOX) and increased the emissions of carbon monoxide and unburned hydrocarbons. The greatest percentage decrease in NOX with increasing water injection was at the lowest inlet-air temperature tested. The effect of increasing inlet-air temperature was to decrease the effect of the water injection. The reduction in NOX due to water injection was almost identical to the results obtained with Jet-A fuel. However, the emission indices of unburned hydrocarbons, carbon monoxide, and percentage nitric oxide in NOX were not.

  17. Investigation of gas generation in regenerative fuel cells by low-energy X-rays

    NASA Astrophysics Data System (ADS)

    Selamet, Omer Faruk; Deevanhxay, Phengxay; Tsushima, Shohji; Hirai, Shuichiro

    2015-11-01

    Gas generation and discharge behaviors in an operating regenerative fuel cell (RFC) are investigated using low-energy X-ray radiography. In situ visualization at high spatial and temporal resolution reveal dynamic and inhomogeneous behaviors of the gas generation in the membrane electrode assembly (MEA) in the RFC. Temporal and spatial variation of the gas thickness in the MEA is quantitatively discussed and shows an intermittent and periodic discharge processes of the gas generated by electrolysis, suggesting that the reaction sites in the catalyst layer and the discharging path of gas bubbles are well established in the MEA for the electrolysis. Larger gas accumulation and discharge in the gas diffusion layer (GDL) under the ribs are identified in comparison with those under the channels, which is attributed to the relatively longer path for accumulated gas under the ribs to be discharged into the flow channels.

  18. On0Line Fuel Failure Monitor for Fuel Testing and Monitoring of Gas Cooled Very High Temperature Reactor

    SciTech Connect

    Ayman I. Hawari; Mohamed A. Bourham

    2010-04-22

    IVery High Temperature Reactors (VHTR) utilize the TRISO microsphere as the fundamental fuel unit in the core. The TRISO microsphere (~ 1- mm diameter) is composed of a UO2 kernel surrounded by a porous pyrolytic graphite buffer, an inner pyrolytic graphite layer, a silicon carbide (SiC) coating, and an outer pyrolytic graphite layer. The U-235 enrichment of the fuel is expected to range from 4% – 10% (higher enrichments are also being considered). The layer/coating system that surrounds the UO2 kernel acts as the containment and main barrier against the environmental release of radioactivity. To understand better the behavior of this fuel under in-core conditions (e.g., high temperature, intense fast neutron flux, etc.), the US Department of Energy (DOE) is launching a fuel testing program that will take place at the Advanced Test Reactor (ATR) located at Idaho National Laboratory (INL). During this project North Carolina State University (NCSU) researchers will collaborate with INL staff for establishing an optimized system for fuel monitoring for the ATR tests. In addition, it is expected that the developed system and methods will be of general use for fuel failure monitoring in gas cooled VHTRs.

  19. Gas generator for fine-grained coal fuels

    SciTech Connect

    Waldhofer, R.

    1981-10-20

    A gas generator is described which uses fine-grained coal and includes a steam boiler, a combustion boiler and a stack leading from the combustion chamber to the steam boiler. The steam boiler is provided with a slanting bottom portion for the discharge of fly ash and slag. The stack from the combustion chamber to the boiler is composed of a gas outlet pipe attached to the combustion chamber and a gas inlet pipe leading to the boiler. The gas outlet and gas inlet pipes are connected by attaching means. The gas inlet pipe has a double wall of which the inner wall with its top extends freely into the slanting bottom portion of the boiler and thus is adapted for axial heat expansion. The outer wall is provided with a heat expansion compensator and is connected with its top end to the said slanting bottom of the boiler and with its bottom end to the connecting means between the gas inlet and gas outlet pipes. The inner wall of the gas inlet pipe may be in the form of a jacket for holding a cooling water.

  20. Environmental analysis of present and future fuels in 2D simple model marine gas tubines

    NASA Astrophysics Data System (ADS)

    El Gohary, M. Morsy

    2013-12-01

    Increased worldwide concerns about fossil fuel costs and effects on the environment lead many governments and scientific societies to consider the hydrogen as the fuel of the future. Many researches have been made to assess the suitability of using the hydrogen gas as fuel for internal combustion engines and gas turbines; this suitability was assessed from several viewpoints including the combustion characteristics, the fuel production and storage and also the thermodynamic cycle changes with the application of hydrogen instead of ordinary fossil fuels. This paper introduces the basic environmental differences happening when changing the fuel of a marine gas turbine from marine diesel fuel to gaseous hydrogen for the same power output. Environmentally, the hydrogen is the best when the CO2 emissions are considered, zero carbon dioxide emissions can be theoretically attained. But when the NOx emissions are considered, the hydrogen is not the best based on the unit heat input. The hydrogen produces 270% more NOx than the diesel case without any control measures. This is primarily due to the increased air flow rate bringing more nitrogen into the combustion chamber and the increased combustion temperature (10% more than the diesel case). Efficient and of course expensive NOx control measures are a must to control these emissions levels.

  1. The Measurement of Fuel-Air Ratio by Analysis for the Oxidized Exhaust Gas

    NASA Technical Reports Server (NTRS)

    Gerrish, Harold C.; Meem, J. Lawrence, Jr.

    1943-01-01

    An investigation was made to determine a method of measuring fuel-air ratio that could be used for test purposes in flight and for checking conventional equipment in the laboratory. Two single-cylinder test engines equipped with typical commercial engine cylinders were used. The fuel-air ratio of the mixture delivered to the engines was determined by direct measurement of the quantity of air and of fuel supplied and also by analysis of the oxidized exhaust gas and of the normal exhaust gas. Five fuels were used: gasoline that complied with Army-Navy fuel Specification No. AN-VV-F-781 and four mixtures of this gasoline with toluene, benzene, and xylene. The method of determining the fuel-air ratio described in this report involves the measurement of the carbon-dioxide content of the oxidized exhaust gas and the use of graphs for the presented equation. This method is considered useful in aircraft, in the field, or in the laboratory for a range of fuel-air ratios from 0.047 to 0.124.

  2. Quantification of aldehydes emissions from alternative and renewable aviation fuels using a gas turbine engine

    NASA Astrophysics Data System (ADS)

    Li, Hu; Altaher, Mohamed A.; Wilson, Chris W.; Blakey, Simon; Chung, Winson; Rye, Lucas

    2014-02-01

    In this research three renewable aviation fuel blends including two HEFA (Hydrotreated Ester and Fatty Acid) blends and one FAE (Fatty Acids Ethyl Ester) blend with conventional Jet A-1 along with a GTL (Gas To Liquid) fuel have been tested for their aldehydes emissions on a small gas turbine engine. Three strong ozone formation precursors: formaldehyde, acetaldehyde and acrolein were measured in the exhaust at different operational modes and compared to neat Jet A-1. The aim is to assess the impact of renewable and alternative aviation fuels on aldehydes emissions from aircraft gas turbine engines so as to provide informed knowledge for the future deployment of new fuels in aviation. The results show that formaldehyde was a major aldehyde species emitted with a fraction of around 60% of total measured aldehydes emissions for all fuels. Acrolein was the second major emitted aldehyde species with a fraction of ˜30%. Acetaldehyde emissions were very low for all the fuels and below the detention limit of the instrument. The formaldehyde emissions at cold idle were up to two to threefold higher than that at full power. The fractions of formaldehyde were 6-10% and 20% of total hydrocarbon emissions in ppm at idle and full power respectively and doubled on a g kg-1-fuel basis.

  3. A fuel cycle framework for evaluating greenhouse gas emission reduction technology

    SciTech Connect

    Ashton, W.B.; Barns, D.W. ); Bradley, R.A. . Office of Environmental Analysis)

    1990-05-01

    Energy-related greenhouse gas (GHG) emissions arise from a number of fossil fuels, processes and equipment types throughout the full cycle from primary fuel production to end-use. Many technology alternatives are available for reducing emissions based on efficiency improvements, fuel switching to low-emission fuels, GHG removal, and changes in end-use demand. To conduct systematic analysis of how new technologies can be used to alter current emission levels, a conceptual framework helps develop a comprehensive picture of both the primary and secondary impacts of a new technology. This paper describes a broad generic fuel cycle framework which is useful for this purpose. The framework is used for cataloging emission source technologies and for evaluating technology solutions to reduce GHG emissions. It is important to evaluate fuel mix tradeoffs when investigating various technology strategies for emission reductions. For instance, while substituting natural gas for coal or oil in end-use applications to reduce CO{sub 2} emissions, natural gas emissions of methane in the production phase of the fuel cycle may increase. Example uses of the framework are given.

  4. The Measurement of Fuel-air Ratio by Analysis of the Oxidized Exhaust Gas

    NASA Technical Reports Server (NTRS)

    Memm, J. Lawrence, Jr.

    1943-01-01

    An investigation was made to determine a method of measuring fuel-air ratio that could be used for test purposes in flight and for checking conventional equipment in the laboratory. Two single-cylinder test engines equipped with typical commercial engine cylinders were used. The fuel-air ratio of the mixture delivered to the engines was determined by direct measurement of the quantity of air and of fuel supplied and also by analysis of the oxidized exhaust gas and of the normal exhaust gas. Five fuels were used: gasoline that complied with Army-Navy Fuel Specification, No. AN-VV-F-781 and four mixtures of this gasoline with toluene, benzene, and xylene. The method of determining the fuel-air ratio described in this report involves the measurement of the carbon-dioxide content of the oxidized exhaust gas and the use of graphs or the presented equation. This method is considered useful in aircraft, in the field, or in the laboratory for a range of fuel-air ratios from 0.047 to 0.124

  5. Alternate routes for the production of fuels from coal and natural gas

    SciTech Connect

    Gray, D.; Tomlinson, G.; ElSawy, A.

    1994-06-01

    Almost all transportation worldwide is powered by high energy-density liquid hydrocarbon fuels produced from crude oil. Transportation fuels currently use over 50 percent of total world petroleum demand of 66 million barrels per day. Prior MITRE studies indicate that crude oil supply will become severely limited after the year 2030 as increasing world energy demand, driven by population growth and economic development, depletes oil resources. If conventional liquid hydrocarbon fuels that can use existing production and distribution infrastructures are still needed for transportation in the future, then alternate sources of these fuels will have to be utilized. Two such sources are natural gas and coal. Natural gas reserves worldwide are expected to last well into the 21st century, and coal resources are enormous. This paper examines the technologies for producing environmentally superior liquid transportation fuels from coal and natural gas using modern conversion technologies. Estimates of the costs of fuels from these sources are given, and the potential environmental impacts of these fuels are examined.

  6. Analysis of fission gas release in LWR fuel using the BISON code

    SciTech Connect

    G. Pastore; J.D. Hales; S.R. Novascone; D.M. Perez; B.W. Spencer; R.L. Williamson

    2013-09-01

    Recent advances in the development of the finite-element based, multidimensional fuel performance code BISON of Idaho National Laboratory are presented. Specifically, the development, implementation and testing of a new model for the analysis of fission gas behavior in LWR-UO2 fuel during irradiation are summarized. While retaining a physics-based description of the relevant mechanisms, the model is characterized by a level of complexity suitable for application to engineering-scale nuclear fuel analysis and consistent with the uncertainties pertaining to some parameters. The treatment includes the fundamental features of fission gas behavior, among which are gas diffusion and precipitation in fuel grains, growth and coalescence of gas bubbles at grain faces, grain growth and grain boundary sweeping effects, thermal, athermal, and transient gas release. The BISON code incorporating the new model is applied to the simulation of irradiation experiments from the OECD/NEA International Fuel Performance Experiments database, also included in the IAEA coordinated research projects FUMEX-II and FUMEX-III. The comparison of the results with the available experimental data at moderate burn-up is presented, pointing out an encouraging predictive accuracy, without any fitting applied to the model parameters.

  7. Special considerations on operating a fuel cell power plant using natural gas with marginal heating value

    SciTech Connect

    Moses, L. Ng; Chien-Liang Lin; Ya-Tang Cheng

    1996-12-31

    In realizing new power generation technologies in Taiwan, a phosphoric acid fuel cell power plant (model PC2513, ONSI Corporation) has been installed in the premises of the Power Research Institute of the Taiwan Power Company in Taipei County of Taiwan. The pipeline gas supplying to the site of this power plant has a high percentage of carbon dioxide and thus a slightly lower heating value than that specified by the manufacturer. Because of the lowering of heating value of input gas, the highest Output power from the power plant is understandably less than the rated power of 200 kW designed. Further, the transient response of the power plant as interrupted from the Grid is also affected. Since this gas is also the pipeline gas supplying to the heavily populated Taipei Municipal area, it is conceivable that the success of the operations of fuel cells using this fuel is of vital importance to the promotion of the use of this power generation technology in Taiwan. Hence, experiments were set up to assess the feasibility of this fuel cell power plant using the existing pipeline gas in this part of Taiwan where fuel cells would most likely find useful.

  8. Life-cycle assessment of diesel, natural gas and hydrogen fuel cell bus transportation systems

    NASA Astrophysics Data System (ADS)

    Ally, Jamie; Pryor, Trevor

    The Sustainable Transport Energy Programme (STEP) is an initiative of the Government of Western Australia, to explore hydrogen fuel cell technology as an alternative to the existing diesel and natural gas public transit infrastructure in Perth. This project includes three buses manufactured by DaimlerChrysler with Ballard fuel cell power sources operating in regular service alongside the existing natural gas and diesel bus fleets. The life-cycle assessment (LCA) of the fuel cell bus trial in Perth determines the overall environmental footprint and energy demand by studying all phases of the complete transportation system, including the hydrogen infrastructure, bus manufacturing, operation, and end-of-life disposal. The LCAs of the existing diesel and natural gas transportation systems are developed in parallel. The findings show that the trial is competitive with the diesel and natural gas bus systems in terms of global warming potential and eutrophication. Emissions that contribute to acidification and photochemical ozone are greater for the fuel cell buses. Scenario analysis quantifies the improvements that can be expected in future generations of fuel cell vehicles and shows that a reduction of greater than 50% is achievable in the greenhouse gas, photochemical ozone creation and primary energy demand impact categories.

  9. Partial Oxidation Gas Turbine for Power and Hydrogen Co-Production from Coal-Derived Fuel in Industrial Applications

    SciTech Connect

    Joseph Rabovitser

    2009-06-30

    , pressures, and volumetric flows practically identical. In POGT mode, the turbine specific power (turbine net power per lb mass flow from expander exhaust) is twice the value of the onventional turbine. POGT based IGCC plant conceptual design was developed and major components have been identified. Fuel flexible fluid bed gasifier, and novel POGT unit are the key components of the 100 MW IGCC plant for co producing electricity, hydrogen and/or yngas. Plant performances were calculated for bituminous coal and oxygen blown versions. Various POGT based, natural gas fueled systems for production of electricity only, coproduction of electricity and hydrogen, and co production of electricity and syngas for gas to liquid and hemical processes were developed and evaluated. Performance calculations for several versions of these systems were conducted. 64.6 % LHV efficiency for fuel to electricity in combined cycle was achieved. Such a high efficiency arise from using of syngas from POGT exhaust s a fuel that can provide required temperature level for superheated steam generation in HRSG, as well as combustion air preheating. Studies of POGT materials and combustion instabilities in POR were conducted and results reported. Preliminary market assessment was performed, and recommendations for POGT systems applications in oil industry were defined. POGT technology is ready to proceed to the engineering prototype stage, which is recommended.

  10. Processing of FRG high-temperature gas-cooled reactor fuel elements at General Atomic under the US/FRG cooperative agreement for spent fuel elements

    SciTech Connect

    Holder, N.D.; Strand, J.B.; Schwarz, F.A.; Drake, R.N.

    1981-11-01

    The Federal Republic of Germany (FRG) and the United States (US) are cooperating on certain aspects of gas-cooled reactor technology under an umbrella agreement. Under the spent fuel treatment development section of the agreement, both FRG mixed uranium/ thorium and low-enriched uranium fuel spheres have been processed in the Department of Energy-sponsored cold pilot plant for high-temperature gas-cooled reactor (HTGR) fuel processing at General Atomic Company in San Diego, California. The FRG fuel spheres were crushed and burned to recover coated fuel particles suitable for further treatment for uranium recovery. Successful completion of the tests described in this paper demonstrated certain modifications to the US HTGR fuel burining process necessary for FRG fuel treatment. Results of the tests will be used in the design of a US/FRG joint prototype headend facility for HTGR fuel.

  11. Performance evaluation of an advanced air-fuel ratio controller on a stationary, rich-burn natural gas engine

    NASA Astrophysics Data System (ADS)

    Kochuparampil, Roshan Joseph

    The advent of an era of abundant natural gas is making it an increasingly economical fuel source against incumbents such as crude oil and coal, in end-use sectors such as power generation, transportation and industrial chemical production, while also offering significant environmental benefits over these incumbents. Equipment manufacturers, in turn, are responding to widespread demand for power plants optimized for operation with natural gas. In several applications such as distributed power generation, gas transmission, and water pumping, stationary, spark-ignited, natural gas fueled internal combustion engines (ICEs) are the power plant of choice (over turbines) owing to their lower equipment and operational costs, higher thermal efficiencies across a wide load range, and the flexibility afforded to end-users when building fine-resolution horsepower topologies: modular size increments ranging from 100 kW -- 2 MW per ICE power plant compared to 2 -- 5 MW per turbine power plant. Under the U.S. Environment Protection Agency's (EPA) New Source Performance Standards (NSPS) and Reciprocating Internal Combustion Engine National Emission Standards for Hazardous Air Pollutants (RICE NESHAP) air quality regulations, these natural gas power plants are required to comply with stringent emission limits, with several states mandating even stricter emissions norms. In the case of rich-burn or stoichiometric natural gas ICEs, very high levels of sustained emissions reduction can be achieved through exhaust after-treatment that utilizes Non Selective Catalyst Reduction (NSCR) systems. The primary operational constraint with these systems is the tight air-fuel ratio (AFR) window of operation that needs to be maintained if the NSCR system is to achieve simultaneous reduction of carbon monoxide (CO), nitrogen oxides (NOx), total hydrocarbons (THC), volatile organic compounds (VOCs), and formaldehyde (CH 2O). Most commercially available AFR controllers utilizing lambda (oxygen

  12. Apparatus for converting garbage into a fuel gas

    SciTech Connect

    Szloboda, D.T.

    1982-10-05

    Garbage to be converted is fed into the upper end of a vertical chamber. A gas collection chamber is provided around the upper end of the chamber and a blower is used for lowering the pressure in this gas collection chamber. The lower pressure causes a draw within a combustion zone defined at the lower end of the garbage chamber. The draw promotes combustion of garbage in the combustion zone much in the same manner that the draw by a pipe smoker will promote combustion within the bowl of his pipe. The gas collected in the gas chamber is delivered through a water filled cleaner or filter. The gas discharged from the upper end of the filter is ready for use in a power device or a furnace, or it may be collected and compressed or even liquified, into a storage container, for easy mobility and later use.

  13. High pressure operation of tubular solid oxide fuel cells and their intergration with gas turbines

    SciTech Connect

    Haynes, C.; Wepfer, W.J.

    1996-12-31

    Fossil fuels continue to be used at a rate greater than that of their natural formation, and the current byproducts from their use are believed to have a detrimental effect on the environment (e.g. global warming). There is thus a significant impetus to have cleaner, more efficient fuel consumption alternatives. Recent progress has led to renewed vigor in the development of fuel cell technology, which has been shown to be capable of producing high efficiencies with relatively benign exhaust products. The tubular solid oxide fuel cell developed by Westinghouse Electric Corporation has shown significant promise. Modeling efforts have been and are underway to optimize and better understand this fuel cell technology. Thus far, the bulk of modeling efforts has been for operation at atmospheric pressure. There is now interest in developing high-efficiency integrated gas turbine/solid oxide fuel cell systems. Such operation of fuel cells would obviously occur at higher pressures. The fuel cells have been successfully modeled under high pressure operation and further investigated as integrated components of an open loop gas turbine cycle.

  14. Impact of compression on gas transport in non-woven gas diffusion layers of high temperature polymer electrolyte fuel cells

    NASA Astrophysics Data System (ADS)

    Froning, Dieter; Yu, Junliang; Gaiselmann, Gerd; Reimer, Uwe; Manke, Ingo; Schmidt, Volker; Lehnert, Werner

    2016-06-01

    Gas transport in non-woven gas diffusion layers of a high-temperature polymer electrolyte fuel cell was calculated with the Lattice Boltzmann method. The underlying micro structure was taken from two sources. A real micro structure was analyzed in the synchrotron under the impact of a compression mask mimicking the channel/rib structure of a flow field. Furthermore a stochastic geometry model based on synchrotron X-ray tomography studies was applied. The effect of compression is included in the stochastic model. Gas transport in these micro structures was simulated and the impact of compression was analyzed. Fiber bundles overlaying the micro structure were identified which affect the homogeneity of the gas flow. There are significant deviations between the impact of compression on effective material properties for this type of gas diffusion layers and the Kozeny-Carman equation.

  15. Mixed-linker solid solutions of functionalized pillared-layer MOFs - adjusting structural flexibility, gas sorption, and thermal responsiveness.

    PubMed

    Schwedler, Inke; Henke, Sebastian; Wharmby, Michael T; Bajpe, Sneha R; Cheetham, Anthony K; Fischer, Roland A

    2016-03-14

    Flexible metal-organic frameworks (MOFs) can undergo fascinating structural transitions triggered by external stimuli, such as adsorption/desorption of specific guest molecules or temperature changes. In this detailed study we investigate the potentials and limitations of tuning framework flexibility systematically by exploiting the powerful concept of mixed-linker solid solutions. We chose the prototypical family of functionalized pillared-layer MOFs of the general type Zn2(fu(1)-bdc)2x(fu(2)-bdc)(2-2x)dabco (with x = 1.00, 0.75, 0.50, 0.25 and 0.00; fu-bdc = 2,5-dialkoxy-1,4-benzenedicarboxylate with varying alkoxy chain length, dabco = 1,4-diazabicyclo[2.2.2]octane) and examined their guest responsive, as well as intrinsic temperature dependent structural flexibility by X-ray diffraction, gas physisorption and calorimetric measurements. The ratio of the different fu-bdc linkers can be adjusted freely, offering opportunity for a targeted design of these functional materials by modulating their key features, such as magnitude of framework contraction upon guest removal, breathing behaviour upon CO2 adsorption/desorption, thermoresponsive phase behaviour, and their general thermal expansivity, by the careful choice of fu-bdc linkers and their combination.

  16. Mixed-linker solid solutions of functionalized pillared-layer MOFs - adjusting structural flexibility, gas sorption, and thermal responsiveness.

    PubMed

    Schwedler, Inke; Henke, Sebastian; Wharmby, Michael T; Bajpe, Sneha R; Cheetham, Anthony K; Fischer, Roland A

    2016-03-14

    Flexible metal-organic frameworks (MOFs) can undergo fascinating structural transitions triggered by external stimuli, such as adsorption/desorption of specific guest molecules or temperature changes. In this detailed study we investigate the potentials and limitations of tuning framework flexibility systematically by exploiting the powerful concept of mixed-linker solid solutions. We chose the prototypical family of functionalized pillared-layer MOFs of the general type Zn2(fu(1)-bdc)2x(fu(2)-bdc)(2-2x)dabco (with x = 1.00, 0.75, 0.50, 0.25 and 0.00; fu-bdc = 2,5-dialkoxy-1,4-benzenedicarboxylate with varying alkoxy chain length, dabco = 1,4-diazabicyclo[2.2.2]octane) and examined their guest responsive, as well as intrinsic temperature dependent structural flexibility by X-ray diffraction, gas physisorption and calorimetric measurements. The ratio of the different fu-bdc linkers can be adjusted freely, offering opportunity for a targeted design of these functional materials by modulating their key features, such as magnitude of framework contraction upon guest removal, breathing behaviour upon CO2 adsorption/desorption, thermoresponsive phase behaviour, and their general thermal expansivity, by the careful choice of fu-bdc linkers and their combination. PMID:26526973

  17. The Use of Exhaust Gas Recirculation to Optimize Fuel Economy and Minimize Emission in Engines Operating on E85 Fuel

    SciTech Connect

    Wu, Ko-Jen

    2011-12-31

    This report summarizes activities conducted for the project “The Use of Exhaust Gas Recirculation to Optimized Fuel Economy and Minimize Emissions in Engines Operating on E85 Fuel” under COOPERATIVE AGREEMENT NUMBER DE-FC26-07NT43271, which are as outlined in the STATEMENT OF PROJECT OBJECTIVES (SOPO) dated March 2007 and in the supplemental SOPO dated October 2010. The project objective was to develop and demonstrate an internal combustion engine that is optimized for E85 (85% ethanol and 15% gasoline) fuel operation to achieve substantially improved fuel economy while operating with E85 fuel and that is also production viable in the near- to medium-term. The key engine technology selected for research and development was turbocharging, which is known to improve fuel economy thru downsizing and is in particular capable of exploiting ethanol fuel’s characteristics of high octane number and high latent heat of vaporization. The engine further integrated synergistic efficiency improving technologies of cooled exhaust gas recirculation (EGR), direct fuel injection and dual continuously variable intake and exhaust cam phasers. On the vehicle level, fuel economy was furthered thru powertrain system optimization by mating a state-of-the-art six-speed automatic transmission to the engine. In order to achieve the project’s objective of near- to medium-term production viability, it was essential to develop the engine to be flex-fuel capable of operating with fuels ranging from E0 (0% ethanol and 100% gasoline) to E85 and to use three-way type of catalyst technology for exhaust aftertreatment. Within these scopes, various technologies were developed through systems approach to focus on ways to help accelerate catalyst light-off. Significant amount of development took place during the course of the project within General Motors, LLC. Many prototype flex-fuel engines were designed, built and developed with various hardware configurations selected to achieve the project

  18. Impact of compressed natural gas fueled buses on street pavements

    SciTech Connect

    Yang, D.; Harrison, R.

    1995-07-01

    Capital Metro, the Ausin, Texas transit authority, is currently evaluating a number of CNG fueled buses. As part of the U.S. DOT Region Six University Transportation Centers Program (UTCP), a study was instigated into the scale of incremental pavement consumption associated with the operation of these buses. The study suggests that replacing current vehicles with CNG powered models utilizing aluminum storage tanks would raise average network equivalent single rehabilitation costs across the network of over four percent. Finally, it recommends that full cost study be undertaken with evaluation of the adoption of alternative bus fuels - which includes pavement and environmental impacts.

  19. Water removal characteristics of proton exchange membrane fuel cells using a dry gas purging method

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Yeop; Kim, Sang-Uk; Kim, Hyoung-Juhn; Jang, Jong Hyun; Oh, In-Hwan; Cho, Eun Ae; Hong, Seong-Ahn; Ko, Jaejun; Lim, Tae-Won; Lee, Kwan-Young; Lim, Tae-Hoon

    Water removal from proton exchange membrane fuel cells (PEMFC) is of great importance to improve start-up ability and mitigate cell degradation when the fuel cell operates at subfreezing temperatures. In this study, we report water removal characteristics under various shut down conditions including a dry gas-purging step. In order to estimate the dehydration level of the electrolyte membrane, the high frequency resistance of the fuel cell stack was observed. Also, a novel method for measuring the amount of residual water in the fuel cell was developed to determine the amount of water removal. The method used the phase change of liquid water and was successfully applied to examine the water removal characteristics. Based on these works, the effects of several parameters such as purging time, flow rate of purging gas, operation current, and stack temperature on the amount of residual water were investigated.

  20. Heat transfer analysis of fuel assemblies in a heterogeneous gas core nuclear rocket

    NASA Technical Reports Server (NTRS)

    Watanabe, Yoichi; Appelbaum, Jacob; Diaz, Nils; Maya, Isaac

    1991-01-01

    Heat transfer problems of a heterogeneous gaseous core nuclear rocket were studied. The reactor core consists of 1.5-m long hexagonal fuel assemblies filled with pressurized uranium tetrafluoride (UF4) gas. The fuel gas temperature ranges from 3500 to 7000 K at a nominal operating condition of 40 atm. Each fuel assembly has seven coolant tubes, through which hydrogen propellant flows. The propellant temperature is not constrained by the fuel temperature but by the maximum temperature of the graphite coolant tube. For a core achieving a fission power density of 1000 MW/cu m, the propellant core exit temperature can be as high as 3200 K. The physical size of a 1250 MW gaseous core nuclear rocket is comparable with that of a NERVA-type solid core nuclear rocket. The engine can deliver a specific impulse of 1020 seconds and a thrust of 330 kN.