Gas turbine engine control system
NASA Technical Reports Server (NTRS)
Idelchik, Michael S. (Inventor)
1991-01-01
A control system and method of controlling a gas turbine engine. The control system receives an error signal and processes the error signal to form a primary fuel control signal. The control system also receives at least one anticipatory demand signal and processes the signal to form an anticipatory fuel control signal. The control system adjusts the value of the anticipatory fuel control signal based on the value of the error signal to form an adjusted anticipatory signal and then the adjusted anticipatory fuel control signal and the primary fuel control signal are combined to form a fuel command signal.
Galvanic cell for processing of used nuclear fuel
Garcia-Diaz, Brenda L.; Martinez-Rodriguez, Michael J.; Gray, Joshua R.; Olson, Luke C.
2017-02-07
A galvanic cell and methods of using the galvanic cell is described for the recovery of uranium from used nuclear fuel according to an electrofluorination process. The galvanic cell requires no input energy and can utilize relatively benign gaseous fluorinating agents. Uranium can be recovered from used nuclear fuel in the form of gaseous uranium compound such as uranium hexafluoride, which can then be converted to metallic uranium or UO.sub.2 and processed according to known methodology to form a useful product, e.g., fuel pellets for use in a commercial energy production system.
Electrochemical fluorination for processing of used nuclear fuel
Garcia-Diaz, Brenda L.; Martinez-Rodriguez, Michael J.; Gray, Joshua R.; Olson, Luke C.
2016-07-05
A galvanic cell and methods of using the galvanic cell is described for the recovery of uranium from used nuclear fuel according to an electrofluorination process. The galvanic cell requires no input energy and can utilize relatively benign gaseous fluorinating agents. Uranium can be recovered from used nuclear fuel in the form of gaseous uranium compound such as uranium hexafluoride, which can then be converted to metallic uranium or UO.sub.2 and processed according to known methodology to form a useful product, e.g., fuel pellets for use in a commercial energy production system.
Recapturing Graphite-Based Fuel Element Technology for Nuclear Thermal Propulsion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trammell, Michael P; Jolly, Brian C; Miller, James Henry
ORNL is currently recapturing graphite based fuel forms for Nuclear Thermal Propulsion (NTP). This effort involves research and development on materials selection, extrusion, and coating processes to produce fuel elements representative of historical ROVER and NERVA fuel. Initially, lab scale specimens were fabricated using surrogate oxides to develop processing parameters that could be applied to full length NTP fuel elements. Progress toward understanding the effect of these processing parameters on surrogate fuel microstructure is presented.
Fabrication of thorium bearing carbide fuels
Gutierrez, Rueben L.; Herbst, Richard J.; Johnson, Karl W. R.
1981-01-01
Thorium-uranium carbide and thorium-plutonium carbide fuel pellets have been fabricated by the carbothermic reduction process. Temperatures of 1750.degree. C. and 2000.degree. C. were used during the reduction cycle. Sintering temperatures of 1800.degree. C. and 2000.degree. C. were used to prepare fuel pellet densities of 87% and >94% of theoretical, respectively. The process allows the fabrication of kilogram quantities of fuel with good reproducibility of chemicals and phase composition. Methods employing liquid techniques that form carbide microspheres or alloying-techniques which form alloys of thorium-uranium or thorium-plutonium suffer from limitation on the quantities processed of because of criticality concerns and lack of precise control of process conditions, respectively.
Bonded polyimide fuel cell package
Morse, Jeffrey D.; Jankowski, Alan; Graff, Robert T.; Bettencourt, Kerry
2010-06-08
Described herein are processes for fabricating microfluidic fuel cell systems with embedded components in which micron-scale features are formed by bonding layers of DuPont Kapton.TM. polyimide laminate. A microfluidic fuel cell system fabricated using this process is also described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
S. Frank
The current method for the immobilization of fission products that accumulate in electrorefiner salt during the electrochemical processing of used metallic nuclear fuel is to encapsulate the electrorefiner salt in a glass-bonded sodalite ceramic waste form. This process was developed by Argonne National Laboratory in the USA and is currently performed at the Idaho National Laboratory for the treatment of Experimental Breeder Reactor-II (EBR-II) used fuel. This process utilizes a “once-through” option for the disposal of spent electrorefiner salt; where, after the treatment of the EBR-II fuel, the electrorefiner salt containing the active fission products will be disposed of inmore » the ceramic waste form (CWF). The CWF produced will have low fission product loading of approximately 2 to 5 weight percent due to the limited fuel inventory currently being processed. However; the design and implementation of advanced electrochemical processing facilities to treat used fuel would process much greater quantities fuel. With an advanced processing facility, it would be necessary to selectively remove fission products from the electrorefiner salt for salt recycle and to concentrate the fission products to reduce the volume of high-level waste from the treatment facility. The Korean Atomic Energy Research Institute and the Idaho National Laboratory have been collaborating on I-NERI research projects for a number of years to investigate both aspects of selective fission product separation from electrorefiner salt, and to develop advanced waste forms for the immobilization of the collected fission products. The first joint KAERI/INL I-NERI project titled: 2006-002-K, Separation of Fission Products from Molten LiCl-KCl Salt Used for Electrorefining of Metal Fuels, was successfully completed in 2009 by concentrating and isolating fission products from actual electrorefiner salt used for the treated used EBR-II fuel. Two separation methods were tested and from these tests were produced concentrated salt products that acted as the feed material for development of advanced waste forms investigated in this proposal. Accomplishments from the first year activities associated with this I-NERI project included the down selection of candidate waste forms to immobilize fission products separated from electrorefiner salt, and the design of equipment to fabricate actual waste forms in the Hot Fuels Examination Facility (HFEF) at the INL. Reported in this document are accomplishments from the second year (FY10) work performed at the INL, and includes the testing of waste form fabrication equipment, repeating the fission product precipitation experiment, and initial waste form fabrication efforts.« less
High power density fuel cell comprising an array of microchannels
Morse, Jeffrey D.; Upadhye, Ravindra S.; Spadaccini, Christopher M.; Park, Hyung Gyu
2013-10-15
A fuel cell according to one embodiment includes a porous electrolyte support structure defining an array of microchannels, the microchannels including fuel and oxidant microchannels; fuel electrodes formed along some of the microchannels; and oxidant electrodes formed along other of the microchannels. A method of making a fuel cell according to one embodiment includes forming an array of walls defining microchannels therebetween using at least one of molding, stamping, extrusion, injection and electrodeposition; processing the walls to make the walls porous, thereby creating a porous electrolyte support structure; forming anode electrodes along some of the microchannels; and forming cathode electrodes along other of the microchannels. Additional embodiments are also disclosed.
Bonded polyimide fuel cell package and method thereof
Morse, Jeffrey D.; Jankowski, Alan; Graff, Robert T.; Bettencourt, Kerry
2005-11-01
Described herein are processes for fabricating microfluidic fuel cell systems with embedded components in which micron-scale features are formed by bonding layers of DuPont Kapton.TM. polyimide laminate. A microfluidic fuel cell system fabricated using this process is also described.
Method of preparation of bonded polyimide fuel cell package
Morse, Jeffrey D [Martinez, CA; Jankowski, Alan [Livermore, CA; Graff, Robert T [Modesto, CA; Bettencourt, Kerry [Dublin, CA
2011-04-26
Described herein are processes for fabricating microfluidic fuel cell systems with embedded components in which micron-scale features are formed by bonding layers of DuPont Kapton.TM. polyimide laminate. A microfluidic fuel cell system fabricated using this process is also described.
Fuel-rich, catalytic reaction experimental results
NASA Technical Reports Server (NTRS)
Rollbuhler, R. James
1991-01-01
Future aeropropulsion gas turbine combustion requirements call for operating at very high inlet temperatures, pressures, and large temperature rises. At the same time, the combustion process is to have minimum pollution effects on the environment. Aircraft gas turbine engines utilize liquid hydrocarbon fuels which are difficult to uniformly atomize and mix with combustion air. An approach for minimizing fuel related problems is to transform the liquid fuel into gaseous form prior to the completion of the combustion process. Experimentally obtained results are presented for vaporizing and partially oxidizing a liquid hydrocarbon fuel into burnable gaseous components. The presented experimental data show that 1200 to 1300 K reaction product gas, rich in hydrogen, carbon monoxide, and light-end hydrocarbons, is formed when flowing 0.3 to 0.6 fuel to air mixes through a catalyst reactor. The reaction temperatures are kept low enough that nitrogen oxides and carbon particles (soot) do not form. Results are reported for tests using different catalyst types and configurations, mass flowrates, input temperatures, and fuel to air ratios.
High power density fuel cell comprising an array of microchannels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sopchak, David A; Morse, Jeffrey D; Upadhye, Ravindra S
2014-05-06
A phosphoric acid fuel cell according to one embodiment includes an array of microchannels defined by a porous electrolyte support structure extending between bottom and upper support layers, the microchannels including fuel and oxidant microchannels; fuel electrodes formed along some of the microchannels; and air electrodes formed along other of the microchannels. A method of making a phosphoric acid fuel cell according to one embodiment includes etching an array of microchannels in a substrate, thereby forming walls between the microchannels; processing the walls to make the walls porous, thereby forming a porous electrolyte support structure; forming anode electrodes along somemore » of the walls; forming cathode electrodes along other of the walls; and filling the porous electrolyte support structure with a phosphoric acid electrolyte. Additional embodiments are also disclosed.« less
The myth of the ``proliferation-resistant'' closed nuclear fuel cycle
NASA Astrophysics Data System (ADS)
Lyman, Edwin S.
2000-07-01
National nuclear energy programs that engage in reprocessing of spent nuclear fuel (SNF) and the development of "closed" nuclear fuel cycles based on the utilization of plutonium process and store large quantities of weapons-usable nuclear materials in forms vulnerable to diversion or theft by national or subnational groups. Proliferation resistance, an idea dating back at least as far as the International Fuel Cycle Evaluation (INFCE) of the late 1970s, is a loosely defined term referring to processes for chemical separation of SNF that do not extract weapons-usable materials in a purified form.
Alternative Electrochemical Salt Waste Forms, Summary of FY11-FY12 Results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riley, Brian J.; Mccloy, John S.; Crum, Jarrod V.
2014-01-17
The Fuel Cycle Research and Development Program, sponsored by the U.S. Department of Energy Office of Nuclear Energy, is currently investigating alternative waste forms for wastes generated from nuclear fuel processing. One such waste results from an electrochemical separations process, called the “Echem” process. The Echem process utilizes a molten KCl-LiCl salt to dissolve the fuel. This process results in a spent salt containing alkali, alkaline earth, lanthanide halides and small quantities of actinide halides, where the primary halide is chloride with a minor iodide fraction. Pacific Northwest National Laboratory (PNNL) is concurrently investigating two candidate waste forms for themore » Echem spent-salt: high-halide minerals (i.e., sodalite and cancrinite) and tellurite (TeO2)-based glasses. Both of these candidates showed promise in fiscal year (FY) 2009 and FY2010 with a simplified nonradioactive simulant of the Echem waste. Further testing was performed on these waste forms in FY2011 and FY2012 to assess the possibility of their use in a sustainable fuel cycle. This report summarizes the combined results from FY2011 and FY2012 efforts.« less
Closed Fuel Cycle Waste Treatment Strategy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vienna, J. D.; Collins, E. D.; Crum, J. V.
This study is aimed at evaluating the existing waste management approaches for nuclear fuel cycle facilities in comparison to the objectives of implementing an advanced fuel cycle in the U.S. under current legal, regulatory, and logistical constructs. The study begins with the Global Nuclear Energy Partnership (GNEP) Integrated Waste Management Strategy (IWMS) (Gombert et al. 2008) as a general strategy and associated Waste Treatment Baseline Study (WTBS) (Gombert et al. 2007). The tenets of the IWMS are equally valid to the current waste management study. However, the flowsheet details have changed significantly from those considered under GNEP. In addition, significantmore » additional waste management technology development has occurred since the GNEP waste management studies were performed. This study updates the information found in the WTBS, summarizes the results of more recent technology development efforts, and describes waste management approaches as they apply to a representative full recycle reprocessing flowsheet. Many of the waste management technologies discussed also apply to other potential flowsheets that involve reprocessing. These applications are occasionally discussed where the data are more readily available. The report summarizes the waste arising from aqueous reprocessing of a typical light-water reactor (LWR) fuel to separate actinides for use in fabricating metal sodium fast reactor (SFR) fuel and from electrochemical reprocessing of the metal SFR fuel to separate actinides for recycle back into the SFR in the form of metal fuel. The primary streams considered and the recommended waste forms include; Tritium in low-water cement in high integrity containers (HICs); Iodine-129: As a reference case, a glass composite material (GCM) formed by the encapsulation of the silver Mordenite (AgZ) getter material in a low-temperature glass is assumed. A number of alternatives with distinct advantages are also considered including a fused silica waste form with encapsulated nano-sized AgI crystals; Carbon-14 immobilized as a CaCO3 in a cement waste form; Krypton-85 stored as a compressed gas; An aqueous reprocessing high-level waste (HLW) raffinate waste immobilized by the vitrification process; An undissolved solids (UDS) fraction from aqueous reprocessing of LWR fuel either included in the borosilicate HLW glass or immobilized in the form of a metal alloy or titanate ceramics; Zirconium-based LWR fuel cladding hulls and stainless steel (SS) fuel assembly hardware super-compacted for disposal or purified for reuse (or disposal as low-level waste, LLW) of Zr by reactive gas separations; Electrochemical process salt HLW incorporated into a glass bonded Sodalite waste form; and Electrochemical process UDS and SS cladding hulls melted into an iron based alloy waste form. Mass and volume estimates for each of the recommended waste forms based on the source terms from a representative flowsheet are reported. In addition to the above listed primary waste streams, a range of secondary process wastes are generated by aqueous reprocessing of LWR fuel, metal SFR fuel fabrication, and electrochemical reprocessing of SFR fuel. These secondary wastes have been summarized and volumes estimated by type and classification. The important waste management data gaps and research needs have been summarized for each primary waste stream and selected waste process.« less
Preparation of wood for energy use
Donald L. Sirois; Bryce J. Stokes
1985-01-01
This paper presents an overview & current sources and forms of raw materials for wood energy use and the types of machines available to convert them to the desired form for boiler fuel. Both the fuel source or raw material, and the combustion furnace will dictate the requirements for the processing system. Because of the wide range of processing equipment...
Process for immobilizing plutonium into vitreous ceramic waste forms
Feng, Xiangdong; Einziger, Robert E.
1997-01-01
Disclosed is a method for converting spent nuclear fuel and surplus plutonium into a vitreous ceramic final waste form wherein spent nuclear fuel is bound in a crystalline matrix which is in turn bound within glass.
Process for immobilizing plutonium into vitreous ceramic waste forms
Feng, X.; Einziger, R.E.
1997-08-12
Disclosed is a method for converting spent nuclear fuel and surplus plutonium into a vitreous ceramic final waste form wherein spent nuclear fuel is bound in a crystalline matrix which is in turn bound within glass.
Process for immobilizing plutonium into vitreous ceramic waste forms
Feng, X.; Einziger, R.E.
1997-01-28
Disclosed is a method for converting spent nuclear fuel and surplus plutonium into a vitreous ceramic final waste form wherein spent nuclear fuel is bound in a crystalline matrix which is in turn bound within glass.
Depleted uranium startup of spent-fuel treatment operations at ANL-West
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goff, K.M.; Mariani, R.D.; Bonomo, N.L.
1995-12-31
At Argonne National Laboratory-West (ANL-West) there are several thousand kilograms of Experimental Breeder Reactor II (EBR-II) spent nuclear fuel. This fuel will be treated using an electrometallurgical process in the fuel conditioning facility (FCF) at ANL-West to produce stable waste forms for storage and disposal. The process equipment is undergoing testing with depleted uranium in preparation for irradiated fuel operations during the summer of 1995.
System and process for producing fuel with a methane thermochemical cycle
Diver, Richard B.
2015-12-15
A thermochemical process and system for producing fuel are provided. The thermochemical process includes reducing an oxygenated-hydrocarbon to form an alkane and using the alkane in a reforming reaction as a reducing agent for water, a reducing agent for carbon dioxide, or a combination thereof. Another thermochemical process includes reducing a metal oxide to form a reduced metal oxide, reducing an oxygenated-hydrocarbon with the reduced metal oxide to form an alkane, and using the alkane in a reforming reaction as a reducing agent for water, a reducing agent for carbon dioxide, or a combination thereof. The system includes a reformer configured to perform a thermochemical process.
Nuclear Energy and Synthetic Liquid Transportation Fuels
NASA Astrophysics Data System (ADS)
McDonald, Richard
2012-10-01
This talk will propose a plan to combine nuclear reactors with the Fischer-Tropsch (F-T) process to produce synthetic carbon-neutral liquid transportation fuels from sea water. These fuels can be formed from the hydrogen and carbon dioxide in sea water and will burn to water and carbon dioxide in a cycle powered by nuclear reactors. The F-T process was developed nearly 100 years ago as a method of synthesizing liquid fuels from coal. This process presently provides commercial liquid fuels in South Africa, Malaysia, and Qatar, mainly using natural gas as a feedstock. Nuclear energy can be used to separate water into hydrogen and oxygen as well as to extract carbon dioxide from sea water using ion exchange technology. The carbon dioxide and hydrogen react to form synthesis gas, the mixture needed at the beginning of the F-T process. Following further refining, the products, typically diesel and Jet-A, can use existing infrastructure and can power conventional engines with little or no modification. We can then use these carbon-neutral liquid fuels conveniently long into the future with few adverse environmental impacts.
Process for making ultra-fine ceramic particles
Stangle, Gregory C.; Venkatachari, Koththavasal R.; Ostrander, Steven P.; Schulze, Walter A.
1995-01-01
A process for producing ultra-fine ceramic particles in which droplets are formed from a ceramic precursor mixture containing a metal cation, a nitrogen-containing fuel, a solvent, and an anion capable of participating in an anionic oxidation-reduction reaction with the nitrogen containing fuel. The nitrogen-containing fuel contains at least three nitrogen atoms, at least one oxygen atom, and at least one carbon atom. The ceramic precursor mixture is dried to remove at least 85 weight percent of the solvent, and the dried mixture is then ignited to form a combusted powder.
Electrochemical/Pyrometallurgical Waste Stream Processing and Waste Form Fabrication
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steven Frank; Hwan Seo Park; Yung Zun Cho
This report summarizes treatment and waste form options being evaluated for waste streams resulting from the electrochemical/pyrometallurgical (pyro ) processing of used oxide nuclear fuel. The technologies that are described are South Korean (Republic of Korea – ROK) and United States of America (US) ‘centric’ in the approach to treating pyroprocessing wastes and are based on the decade long collaborations between US and ROK researchers. Some of the general and advanced technologies described in this report will be demonstrated during the Integrated Recycle Test (IRT) to be conducted as a part of the Joint Fuel Cycle Study (JFCS) collaboration betweenmore » US Department of Energy (DOE) and ROK national laboratories. The JFCS means to specifically address and evaluated the technological, economic, and safe guard issues associated with the treatment of used nuclear fuel by pyroprocessing. The IRT will involve the processing of commercial, used oxide fuel to recover uranium and transuranics. The recovered transuranics will then be fabricated into metallic fuel and irradiated to transmutate, or burn the transuranic elements to shorter lived radionuclides. In addition, the various process streams will be evaluated and tested for fission product removal, electrolytic salt recycle, minimization of actinide loss to waste streams and waste form fabrication and characterization. This report specifically addresses the production and testing of those waste forms to demonstrate their compatibility with treatment options and suitability for disposal.« less
Method to fabricate high performance tubular solid oxide fuel cells
Chen, Fanglin; Yang, Chenghao; Jin, Chao
2013-06-18
In accordance with the present disclosure, a method for fabricating a solid oxide fuel cell is described. The method includes forming an asymmetric porous ceramic tube by using a phase inversion process. The method further includes forming an asymmetric porous ceramic layer on a surface of the asymmetric porous ceramic tube by using a phase inversion process. The tube is co-sintered to form a structure having a first porous layer, a second porous layer, and a dense layer positioned therebetween.
40 CFR 52.1881 - Control strategy: Sulfur oxides (sulfur dioxide).
Code of Federal Regulations, 2013 CFR
2013-07-01
... sulfur oxides. (iii) Fossil fuel means natural gas, refinery fuel gas, coke oven gas, petroleum, coal and any form of solid, liquid, or gaseous fuel derived from such materials. (iv) Fossil fuel-fired steam generating unit means a furnace or boiler used in the process of burning fossil fuel for the purpose of...
40 CFR 52.1881 - Control strategy: Sulfur oxides (sulfur dioxide).
Code of Federal Regulations, 2014 CFR
2014-07-01
... sulfur oxides. (iii) Fossil fuel means natural gas, refinery fuel gas, coke oven gas, petroleum, coal and any form of solid, liquid, or gaseous fuel derived from such materials. (iv) Fossil fuel-fired steam generating unit means a furnace or boiler used in the process of burning fossil fuel for the purpose of...
40 CFR 52.1881 - Control strategy: Sulfur oxides (sulfur dioxide).
Code of Federal Regulations, 2010 CFR
2010-07-01
... sulfur oxides. (iii) Fossil fuel means natural gas, refinery fuel gas, coke oven gas, petroleum, coal and any form of solid, liquid, or gaseous fuel derived from such materials. (iv) Fossil fuel-fired steam generating unit means a furnace or boiler used in the process of burning fossil fuel for the purpose of...
40 CFR 52.1881 - Control strategy: Sulfur oxides (sulfur dioxide).
Code of Federal Regulations, 2012 CFR
2012-07-01
... sulfur oxides. (iii) Fossil fuel means natural gas, refinery fuel gas, coke oven gas, petroleum, coal and any form of solid, liquid, or gaseous fuel derived from such materials. (iv) Fossil fuel-fired steam generating unit means a furnace or boiler used in the process of burning fossil fuel for the purpose of...
40 CFR 52.1881 - Control strategy: Sulfur oxides (sulfur dioxide).
Code of Federal Regulations, 2011 CFR
2011-07-01
... sulfur oxides. (iii) Fossil fuel means natural gas, refinery fuel gas, coke oven gas, petroleum, coal and any form of solid, liquid, or gaseous fuel derived from such materials. (iv) Fossil fuel-fired steam generating unit means a furnace or boiler used in the process of burning fossil fuel for the purpose of...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vienna, John D.; Todd, Terry A.; Gray, Kimberly D.
The U.S. Department of Energy, Office of Nuclear Energy has chartered an effort to develop technologies to enable safe and cost effective recycle of commercial used nuclear fuel (UNF) in the U.S. Part of this effort includes the evaluation of exiting waste management technologies for effective treatment of wastes in the context of current U.S. regulations and development of waste forms and processes with significant cost and/or performance benefits over those existing. This study summarizes the results of these ongoing efforts with a focus on the highly radioactive primary waste streams. The primary streams considered and the recommended waste formsmore » include: •Tritium separated from either a low volume gas stream or a high volume water stream. The recommended waste form is low-water cement in high integrity containers. •Iodine-129 separated from off-gas streams in aqueous processing. There are a range of potentially suitable waste forms. As a reference case, a glass composite material (GCM) formed by the encapsulation of the silver Mordenite (AgZ) getter material in a low-temperature glass is assumed. A number of alternatives with distinct advantages are also considered including a fused silica waste form with encapsulated nano-sized AgI crystals. •Carbon-14 separated from LWR fuel treatment off-gases and immobilized as a CaCO3 in a cement waste form. •Krypton-85 separated from LWR and SFR fuel treatment off-gases and stored as a compressed gas. •An aqueous reprocessing high-level waste (HLW) raffinate waste which is immobilized by the vitrification process in one of three forms: a single phase borosilicate glass, a borosilicate based glass ceramic, or a multi-phased titanate ceramic [e.g., synthetic rock (Synroc)]. •An undissolved solids (UDS) fraction from aqueous reprocessing of LWR fuel that is either included in the borosilicate HLW glass or is immobilized in the form of a metal alloy in the case of glass ceramics or titanate ceramics. •Zirconium-based LWR fuel cladding hulls and stainless steel (SS) fuel assembly hardware that are washed and super-compacted for disposal or as an alternative Zr purification and reuse (or disposal as low-level waste, LLW) by reactive gas separations. •Electrochemical process salt HLW which is immobilized in a glass bonded Sodalite waste form known as the ceramic waste form (CWF). •Electrochemical process UDS and SS cladding hulls which are melted into an iron based alloy waste form. Mass and volume estimates for each of the recommended waste forms based on the source terms from a representative flowsheet are reported.« less
METHOD OF OPERATING NUCLEAR REACTORS
Untermyer, S.
1958-10-14
A method is presented for obtaining enhanced utilization of natural uranium in heavy water moderated nuclear reactors by charging the reactor with an equal number of fuel elements formed of natural uranium and of fuel elements formed of uranium depleted in U/sup 235/ to the extent that the combination will just support a chain reaction. The reactor is operated until the rate of burnup of plutonium equals its rate of production, the fuel elements are processed to recover plutonium, the depleted uranium is discarded, and the remaining uranium is formed into fuel elements. These fuel elements are charged into a reactor along with an equal number of fuel elements formed of uranium depleted in U/sup 235/ to the extent that the combination will just support a chain reaction, and reuse of the uranium is continued as aforesaid until it wlll no longer support a chain reaction when combined with an equal quantity of natural uranium.
Nasrullah, Muhammad; Vainikka, Pasi; Hannula, Janne; Hurme, Markku; Kärki, Janne
2015-02-01
This is the third and final part of the three-part article written to describe the mass, energy and material balances of the solid recovered fuel production process produced from various types of waste streams through mechanical treatment. This article focused the production of solid recovered fuel from municipal solid waste. The stream of municipal solid waste used here as an input waste material to produce solid recovered fuel is energy waste collected from households of municipality. This article presents the mass, energy and material balances of the solid recovered fuel production process. These balances are based on the proximate as well as the ultimate analysis and the composition determination of various streams of material produced in a solid recovered fuel production plant. All the process streams are sampled and treated according to CEN standard methods for solid recovered fuel. The results of the mass balance of the solid recovered fuel production process showed that 72% of the input waste material was recovered in the form of solid recovered fuel; 2.6% as ferrous metal, 0.4% as non-ferrous metal, 11% was sorted as rejects material, 12% as fine faction and 2% as heavy fraction. The energy balance of the solid recovered fuel production process showed that 86% of the total input energy content of input waste material was recovered in the form of solid recovered fuel. The remaining percentage (14%) of the input energy was split into the streams of reject material, fine fraction and heavy fraction. The material balances of this process showed that mass fraction of paper and cardboard, plastic (soft) and wood recovered in the solid recovered fuel stream was 88%, 85% and 90%, respectively, of their input mass. A high mass fraction of rubber material, plastic (PVC-plastic) and inert (stone/rock and glass particles) was found in the reject material stream. © The Author(s) 2014.
Highly conductive thermoplastic composites for rapid production of fuel cell bipolar plates
Huang, Jianhua [Blacksburg, VA; Baird, Donald G [Blacksburg, VA; McGrath, James E [Blacksburg, VA
2008-04-29
A low cost method of fabricating bipolar plates for use in fuel cells utilizes a wet lay process for combining graphite particles, thermoplastic fibers, and reinforcing fibers to produce a plurality of formable sheets. The formable sheets are then molded into a bipolar plates with features impressed therein via the molding process. The bipolar plates formed by the process have conductivity in excess of 150 S/cm and have sufficient mechanical strength to be used in fuel cells. The bipolar plates can be formed as a skin/core laminate where a second polymer material is used on the skin surface which provides for enhanced conductivity, chemical resistance, and resistance to gas permeation.
Code of Federal Regulations, 2012 CFR
2012-07-01
... perfluoropolyether, and any hydrofluoropolyether. Fossil fuel means natural gas, petroleum, coal, or any form of... generator. Emergency equipment means any auxiliary fossil fuel-powered equipment, such as a fire pump, that... the kiln to produce heat to form the clinker product. Feedstock means raw material inputs to a process...
Code of Federal Regulations, 2011 CFR
2011-07-01
... perfluoropolyether, and any hydrofluoropolyether. Fossil fuel means natural gas, petroleum, coal, or any form of... generator. Emergency equipment means any auxiliary fossil fuel-powered equipment, such as a fire pump, that... the kiln to produce heat to form the clinker product. Feedstock means raw material inputs to a process...
Code of Federal Regulations, 2014 CFR
2014-07-01
... perfluoropolyether, and any hydrofluoropolyether. Fossil fuel means natural gas, petroleum, coal, or any form of... generator. Emergency equipment means any auxiliary fossil fuel-powered equipment, such as a fire pump, that... the kiln to produce heat to form the clinker product. Feedstock means raw material inputs to a process...
Code of Federal Regulations, 2013 CFR
2013-07-01
... perfluoropolyether, and any hydrofluoropolyether. Fossil fuel means natural gas, petroleum, coal, or any form of... generator. Emergency equipment means any auxiliary fossil fuel-powered equipment, such as a fire pump, that... the kiln to produce heat to form the clinker product. Feedstock means raw material inputs to a process...
Development of monolithic nuclear fuels for RERTR by hot isostatic pressing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jue, J.-F.; Park, Blair; Chapple, Michael
2008-07-15
The RERTR Program (Reduced Enrichment for Research and Test Reactors) is developing advanced nuclear fuels for high power test reactors. Monolithic fuel design provides a higher uranium loading than that of the traditional dispersion fuel design. In order to bond monolithic fuel meat to aluminum cladding, several bonding methods such as roll bonding, friction stir bonding and hot isostatic pressing, have been explored. Hot isostatic pressing is a promising process for low cost, batch fabrication of monolithic RERTR fuel plates. The progress on the development of this process at the Idaho National Laboratory will be presented. Due to the relativelymore » high processing temperature used, the reaction between fuel meat and aluminum cladding to form brittle intermetallic phases may be a concern. The effect of processing temperature and time on the fuel/cladding reaction will be addressed. The influence of chemical composition on the reaction will also be discussed. (author)« less
Sintered electrode for solid oxide fuel cells
Ruka, Roswell J.; Warner, Kathryn A.
1999-01-01
A solid oxide fuel cell fuel electrode is produced by a sintering process. An underlayer is applied to the electrolyte of a solid oxide fuel cell in the form of a slurry, which is then dried. An overlayer is applied to the underlayer and then dried. The dried underlayer and overlayer are then sintered to form a fuel electrode. Both the underlayer and the overlayer comprise a combination of electrode metal such as nickel, and stabilized zirconia such as yttria-stabilized zirconia, with the overlayer comprising a greater percentage of electrode metal. The use of more stabilized zirconia in the underlayer provides good adhesion to the electrolyte of the fuel cell, while the use of more electrode metal in the overlayer provides good electrical conductivity. The sintered fuel electrode is less expensive to produce compared with conventional electrodes made by electrochemical vapor deposition processes. The sintered electrodes exhibit favorable performance characteristics, including good porosity, adhesion, electrical conductivity and freedom from degradation.
Sintered electrode for solid oxide fuel cells
Ruka, R.J.; Warner, K.A.
1999-06-01
A solid oxide fuel cell fuel electrode is produced by a sintering process. An underlayer is applied to the electrolyte of a solid oxide fuel cell in the form of a slurry, which is then dried. An overlayer is applied to the underlayer and then dried. The dried underlayer and overlayer are then sintered to form a fuel electrode. Both the underlayer and the overlayer comprise a combination of electrode metal such as nickel, and stabilized zirconia such as yttria-stabilized zirconia, with the overlayer comprising a greater percentage of electrode metal. The use of more stabilized zirconia in the underlayer provides good adhesion to the electrolyte of the fuel cell, while the use of more electrode metal in the overlayer provides good electrical conductivity. The sintered fuel electrode is less expensive to produce compared with conventional electrodes made by electrochemical vapor deposition processes. The sintered electrodes exhibit favorable performance characteristics, including good porosity, adhesion, electrical conductivity and freedom from degradation. 4 figs.
Fuel cell plates with skewed process channels for uniform distribution of stack compression load
Granata, Jr., Samuel J.; Woodle, Boyd M.
1989-01-01
An electrochemical fuel cell includes an anode electrode, a cathode electrode, an electrolyte matrix sandwiched between electrodes, and a pair of plates above and below the electrodes. The plate above the electrodes has a lower surface with a first group of process gas flow channels formed thereon and the plate below the electrodes has an upper surface with a second group of process gas flow channels formed thereon. The channels of each group extend generally parallel to one another. The improvement comprises the process gas flow channels on the lower surface of the plate above the anode electrode and the process gas flow channels on the upper surface of the plate below the cathode electrode being skewed in opposite directions such that contact areas of the surfaces of the plates through the electrodes are formed in crisscross arrangements. Also, the plates have at least one groove in areas of the surfaces thereof where the channels are absent for holding process gas and increasing electrochemical activity of the fuel cell. The groove in each plate surface intersects with the process channels therein. Also, the opposite surfaces of a bipolar plate for a fuel cell contain first and second arrangements of process gas flow channels in the respective surfaces which are skewed the same amount in opposite directions relative to the longitudinal centerline of the plate.
Method of fabricating a monolithic solid oxide fuel cell
Minh, N.Q.; Horne, C.R.
1994-03-01
In a two-step densifying process of making a monolithic solid oxide fuel cell, a limited number of anode-electrolyte-cathode cells separated by an interconnect layer are formed and partially densified. Subsequently, the partially densified cells are stacked and further densified to form a monolithic array. 10 figures.
Method of fabricating a monolithic solid oxide fuel cell
Minh, Nguyen Q.; Horne, Craig R.
1994-01-01
In a two-step densifying process of making a monolithic solid oxide fuel cell, a limited number of anode-electrolyte-cathode cells separated by an interconnect layer are formed and partially densified. Subsequently, the partially densified cells are stacked and further densified to form a monolithic array.
40 CFR 51.165 - Permit requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... ethanol by natural fermentation included in NAICS codes 325193 or 312140; (21) Fossil-fuel boilers (or... processing plants; (24) Glass fiber processing plants; (25) Charcoal production plants; (26) Fossil fuel... source or activity which condense to form particulate matter at ambient temperatures. On or after January...
40 CFR 51.165 - Permit requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... ethanol by natural fermentation included in NAICS codes 325193 or 312140; (21) Fossil-fuel boilers (or... processing plants; (24) Glass fiber processing plants; (25) Charcoal production plants; (26) Fossil fuel... source or activity which condense to form particulate matter at ambient temperatures. On or after January...
40 CFR 51.165 - Permit requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... ethanol by natural fermentation included in NAICS codes 325193 or 312140; (21) Fossil-fuel boilers (or... processing plants; (24) Glass fiber processing plants; (25) Charcoal production plants; (26) Fossil fuel... source or activity which condense to form particulate matter at ambient temperatures. On or after January...
40 CFR 51.165 - Permit requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... ethanol by natural fermentation included in NAICS codes 325193 or 312140; (21) Fossil-fuel boilers (or... processing plants; (24) Glass fiber processing plants; (25) Charcoal production plants; (26) Fossil fuel... source or activity which condense to form particulate matter at ambient temperatures. On or after January...
40 CFR 51.165 - Permit requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... ethanol by natural fermentation included in NAICS codes 325193 or 312140; (21) Fossil-fuel boilers (or... processing plants; (24) Glass fiber processing plants; (25) Charcoal production plants; (26) Fossil fuel... source or activity which condense to form particulate matter at ambient temperatures. On or after January...
Feasibility of Using Alternate Fuels in the U.S. Antarctic Program: Initial Assessment
2017-09-01
Figures 1 Platts’ Jet A fuel prices per gallons from 1990 to 2013. Platts’ pricing is a real time market process for determining the cost of fossil ... fossil fuels. This process takes into account supply, demand, and current events. Since 1909, Platts has been reporting these real time prices and...refinery to upload NSF’s fuel to the day it arrives at a destination where it will per- form work for a different customer). Over the past decade, day
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hollaway, J.W.
1978-02-28
A process for forming a fuel-oil from coal is disclosed. The coal is treated in a low temperature carbonization retort to give coke, coal-gas and tar-oil. The coke is converted to water-gas which is then synthesized in a Fischer-Tropsch synthesizer to form fuel-oil. The tar-oil is hydrogenated in a hydro-treater by hydrogen produced from the coal-gas. Hydrogen is produced from coal-gas either in a thermal cracking chamber or by reforming the methane content to hydrogen and passing the resultant hydrogen/carbon monoxide mixture through a water-gas shift reactor and a carbon dioxide scrubber.
Mechanical Characteristics of SiC Coating Layer in TRISO Fuel Particles
DOE Office of Scientific and Technical Information (OSTI.GOV)
P. Hosemann; J. N. Martos; D. Frazer
2013-11-01
Tristructural isotropic (TRISO) particles are considered as advanced fuel forms for a variety of fission platforms. While these fuel structures have been tested and deployed in reactors, the mechanical properties of these structures as a function of production parameters need to be investigated in order to ensure their reliability during service. Nanoindentation techniques, indentation crack testing, and half sphere crush testing were utilized in order to evaluate the integrity of the SiC coating layer that is meant to prevent fission product release in the coated particle fuel form. The results are complimented by scanning electron microscopy (SEM) of the grainmore » structure that is subject to change as a function of processing parameters and can alter the mechanical properties such as hardness, elastic modulus, fracture toughness and fracture strength. Through utilization of these advanced techniques, subtle differences in mechanical properties that can be important for in-pile fuel performance can be distinguished and optimized in iteration with processing science of coated fuel particle production.« less
Manufactured caverns in carbonate rock
Bruce, David A.; Falta, Ronald W.; Castle, James W.; Murdoch, Lawrence C.
2007-01-02
Disclosed is a process for manufacturing underground caverns suitable in one embodiment for storage of large volumes of gaseous or liquid materials. The method is an acid dissolution process that can be utilized to form caverns in carbonate rock formations. The caverns can be used to store large quantities of materials near transportation facilities or destination markets. The caverns can be used for storage of materials including fossil fuels, such as natural gas, refined products formed from fossil fuels, or waste materials, such as hazardous waste materials. The caverns can also be utilized for applications involving human access such as recreation or research. The method can also be utilized to form calcium chloride as a by-product of the cavern formation process.
NASA Technical Reports Server (NTRS)
Feigenbaum, Haim (Inventor); Pudick, Sheldon (Inventor)
1988-01-01
A process for forming an integral edge seal in a gas distribution plate for use in a fuel cell. A seal layer is formed along an edge of a porous gas distribution plate by impregnating the pores in the layer with a material adapted to provide a seal which is operative dry or when wetted by an electrolyte of a fuel cell. Vibratory energy is supplied to the sealing material during the step of impregnating the pores to provide a more uniform seal throughout the cross section of the plate.
Code of Federal Regulations, 2014 CFR
2014-07-01
... used to heat waste gas to combustion temperatures. Any energy recovery section is not physically formed..., photoionization, or thermal conductivity. Primary fuel means the fuel that provides the principal heat input (i.e... flame, the primary purpose of which is to transfer heat to a process fluid or process material that is...
Code of Federal Regulations, 2013 CFR
2013-07-01
... used to heat waste gas to combustion temperatures. Any energy recovery section is not physically formed..., photoionization, or thermal conductivity. Primary fuel means the fuel that provides the principal heat input (i.e... flame, the primary purpose of which is to transfer heat to a process fluid or process material that is...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dr. Sean M. McDeavitt; Thomas J. Downar; Dr. Temitope A. Taiwo
2009-03-01
The U.S. Department of Energy is developing next generation processing methods to recycle uranium and transuranic (TRU) isotopes from spent nuclear fuel. The objective of the 3-year project described in this report was to develop near-term options for storing TRU oxides isolated through the uranium extraction (UREX+) process. More specifically, a Zircaloy matrix cermet was developed as a storage form for transuranics with the understanding that the cermet also has the ability to serve as a inert matrix fuel form for TRU burning after intermediate storage. The goals of this research projects were: 1) to develop the processing steps requiredmore » to transform the effluent TRU nitrate solutions and the spent Xircaloy cladding into a zireonium matrix cermet sotrage form; and 2) to evaluate the impact of phenomena that govern durability of the storage form, material processing, and TRU utiliztion in fast reactor fuel. This report represents a compilation of the results generated under this program. The information is presented as a brief technical narrative in the following sections with appended papers, presentations and academic theses to provide a detailed review of the project's accomplishments.« less
Solid oxide fuel cell power plant having a bootstrap start-up system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lines, Michael T
The bootstrap start-up system (42) achieves an efficient start-up of the power plant (10) that minimizes formation of soot within a reformed hydrogen rich fuel. A burner (48) receives un-reformed fuel directly from the fuel supply (30) and combusts the fuel to heat cathode air which then heats an electrolyte (24) within the fuel cell (12). A dilute hydrogen forming gas (68) cycles through a sealed heat-cycling loop (66) to transfer heat and generated steam from an anode side (32) of the electrolyte (24) through fuel processing system (36) components (38, 40) and back to an anode flow field (26)more » until fuel processing system components (38, 40) achieve predetermined optimal temperatures and steam content. Then, the heat-cycling loop (66) is unsealed and the un-reformed fuel is admitted into the fuel processing system (36) and anode flow (26) field to commence ordinary operation of the power plant (10).« less
Interim waste storage for the Integral Fast Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benedict, R.W.; Phipps, R.D.; Condiff, D.W.
1991-01-01
The Integral Fast Reactor (IFR), which Argonne National Laboratory is developing, is an innovative liquid metal breeder reactor that uses metallic fuel and has a close coupled fuel recovery process. A pyrochemical process is used to separate the fission products from the actinide elements. These actinides are used to make new fuel for the reactor. As part of the overall IFR development program, Argonne has refurbished an existing Fuel Cycle Facility at ANL-West and is installing new equipment to demonstrate the remote reprocessing and fabrication of fuel for the Experimental Breeder Reactor II (EBR-II). During this demonstration the wastes thatmore » are produced will be treated and packaged to produce waste forms that would be typical of future commercial operations. These future waste forms would, assuming Argonne development goals are fulfilled, be essentially free of long half-life transuranic isotopes. Promising early results indicate that actinide extraction processes can be developed to strip these isotopes from waste stream and return them to the IFR type reactors for fissioning. 1 fig.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amoroso, J. W.; Marra, J. C.
2015-08-26
A multi-phase ceramic waste form is being developed at the Savannah River National Laboratory (SRNL) for treatment of secondary waste streams generated by reprocessing commercial spent nuclear. The envisioned waste stream contains a mixture of transition, alkali, alkaline earth, and lanthanide metals. Ceramic waste forms are tailored (engineered) to incorporate waste components as part of their crystal structure based on knowledge from naturally found minerals containing radioactive and non-radioactive species similar to the radionuclides of concern in wastes from fuel reprocessing. The ability to tailor ceramics to mimic naturally occurring crystals substantiates the long term stability of such crystals (ceramics)more » over geologic timescales of interest for nuclear waste immobilization [1]. A durable multi-phase ceramic waste form tailored to incorporate all the waste components has the potential to broaden the available disposal options and thus minimize the storage and disposal costs associated with aqueous reprocessing. This report summarizes results from three years of work on the IAEA Coordinated Research Project on “Processing technologies for high level waste, formulation of matrices and characterization of waste forms” (T21027), and specific task “Melt Processed Crystalline Ceramic Waste Forms for Advanced Nuclear Fuel Cycles” (17208).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amoroso, J. W.; Marra, J. C.
2015-08-26
A multi-phase ceramic waste form is being developed at the Savannah River National Laboratory (SRNL) for treatment of secondary waste streams generated by reprocessing commercial spent nuclear. The envisioned waste stream contains a mixture of transition, alkali, alkaline earth, and lanthanide metals. Ceramic waste forms are tailored (engineered) to incorporate waste components as part of their crystal structure based on knowledge from naturally found minerals containing radioactive and non-radioactive species similar to the radionuclides of concern in wastes from fuel reprocessing. The ability to tailor ceramics to mimic naturally occurring crystals substantiates the long term stability of such crystals (ceramics)more » over geologic timescales of interest for nuclear waste immobilization [1]. A durable multi-phase ceramic waste form tailored to incorporate all the waste components has the potential to broaden the available disposal options and thus minimize the storage and disposal costs associated with aqueous reprocessing. This report summarizes results from three years of work on the IAEA Coordinated Research Project on “Processing technologies for high level waste, formulation of matrices and characterization of waste forms” (T21027), and specific task “Melt Processed Crystalline Ceramic Waste Forms for Advanced Nuclear Fuel Cycles” (17208).« less
Effect of Al(OH)3 on the sintering of UO2-Gd2O3 fuel pellets with addition of U3O8 from recycle
NASA Astrophysics Data System (ADS)
dos Santos, Lauro Roberto; Durazzo, Michelangelo; Urano de Carvalho, Elita Fontenele; Riella, Humberto Gracher
2017-09-01
The incorporation of gadolinium as burnable poison directly into nuclear fuel is important for reactivity compensation, which enables longer fuel cycles. The function of the burnable poison fuel is to control the neutron population in the reactor core during its startup and the beginning of the fuel burning cycle to extend the use of the fuel. The implementation of UO2-Gd2O3 poisoned fuel in Brazil has been proposed according to the future requirements established for the Angra-2 nuclear power plant. The UO2 powder used is produced from the Ammonium Uranyl Carbonate (AUC). The incorporation of Gd2O3 powder directly into the AUC-derived UO2 powder by dry mechanical blending is the most attractive process, because of its simplicity. Nevertheless, processing by this method leads to difficulties while obtaining sintered pellets with the minimum required density. The cause of the low densities is the bad sintering behavior of the UO2-Gd2O3 mixed fuel, which shows a blockage in the sintering process that hinders the densification. This effect has been overcome by microdoping of the fuel with small quantities of aluminum. The process for manufacturing the fuel inevitably generates uranium-rich scraps from various sources. This residue is reincorporated into the production process in the form of U3O8 powder additions. The addition of U3O8 also hinders densification in sintering. This study was carried out to investigate the influence of both aluminum and U3O8 additives on the density of fuel pellets after sintering. As the effects of these additives are counterposed, this work studied the combined effect thereof, seeking to find an applicable composition for the production process. The experimental results demonstrated the effectiveness of aluminum, in the form of Al(OH)3, as an additive to promote increase in the densification of the (U,Gd)O2 pellets during sintering, even with high additions of U3O8 recycled from the manufacturing process.
NASA Technical Reports Server (NTRS)
Houseman, J. (Inventor)
1976-01-01
A process and apparatus is described for producing a hydrogen rich gas by introducing a liquid hydrocarbon fuel in the form of a spray into a partial oxidation region and mixing with a mixture of steam and air that is preheated by indirect heat exchange with the formed hydrogen rich gas, igniting the hydrocarbon fuel spray mixed with the preheated mixture of steam and air within the partial oxidation region to form a hydrogen rich gas.
High-Resolution Characterization of UMo Alloy Microstructure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Devaraj, Arun; Kovarik, Libor; Joshi, Vineet V.
2016-11-30
This report highlights the capabilities and procedure for high-resolution characterization of UMo fuels in PNNL. Uranium-molybdenum (UMo) fuel processing steps, from casting to forming final fuel, directly affect the microstructure of the fuel, which in turn dictates the in-reactor performance of the fuel under irradiation. In order to understand the influence of processing on UMo microstructure, microstructure characterization techniques are necessary. Higher-resolution characterization techniques like transmission electron microscopy (TEM) and atom probe tomography (APT) are needed to interrogate the details of the microstructure. The findings from TEM and APT are also directly beneficial for developing predictive multiscale modeling tools thatmore » can predict the microstructure as a function of process parameters. This report provides background on focused-ion-beam–based TEM and APT sample preparation, TEM and APT analysis procedures, and the unique information achievable through such advanced characterization capabilities for UMo fuels, from a fuel fabrication capability viewpoint.« less
Precursor soot synthesis of fullerenes and nanotubes without formation of carbonaceous soot
Reilly, Peter T. A.
2007-03-20
The present invention is a method for the synthesis of fullerenes and/or nanotubes from precursor soot without the formation of carbonaceous soot. The method comprises the pyrolysis of a hydrocarbon fuel source by heating the fuel source at a sufficient temperature to transform the fuel source to a condensed hydrocarbon. The condensed hydrocarbon is a reaction medium comprising precursor soot wherein hydrogen exchange occurs within the reaction medium to form reactive radicals which cause continuous rearrangement of the carbon skeletal structure of the condensed hydrocarbon. Then, inducing dehydrogenation of the precursor soot to form fullerenes and/or nanotubes free from the formation of carbonaceous soot by continued heating at the sufficient temperature and by regulating the carbon to hydrogen ratio within the reaction medium. The dehydrogenation process produces hydrogen gas as a by-product. The method of the present invention in another embodiment is also a continuous synthesis process having a continuous supply of the fuel source. The method of the present invention can also be a continuous cyclic synthesis process wherein the reaction medium is fed back into the system as a fuel source after extraction of the fullerenes and/or nanotube products. The method of the present invention is also a method for producing precursor soot in bulk quantity, then forming fullerenes and/or nanotubes from the precursor bulk.
Simplified process for leaching precious metals from fuel cell membrane electrode assemblies
Shore, Lawrence [Edison, NJ; Matlin, Ramail [Berkeley Heights, NJ
2009-12-22
The membrane electrode assemblies of fuel cells are recycled to recover the catalyst precious metals from the assemblies. The assemblies are cryogenically embrittled and pulverized to form a powder. The pulverized assemblies are then mixed with a surfactant to form a paste which is contacted with an acid solution to leach precious metals from the pulverized membranes.
Method of forming densified edge seals for fuel cell components
DeCasperis, Anthony J.; Roethlein, Richard J.; Breault, Richard D.
1981-01-01
A porous fuel cell component, such as an electrode substrate, has a densified edge which forms an improved gas seal during operation when soaked with electrolyte. The edges are made from the same composition as the rest of the component and are made by compressing an increased thickness of this material along the edges during the fabrication process.
The study of integrated coal-gasifier molten carbonate fuel cell systems
NASA Technical Reports Server (NTRS)
1983-01-01
A novel integration concept for a coal-fueled coal gasifier-molten carbonate fuel cell power plant was studied. Effort focused on determining the efficiency potential of the concept, design, and development requirements of the processes in order to achieve the efficiency. The concept incorporates a methane producing catalytic gasifier of the type previously under development by Exxon Research and Development Corp., a reforming molten carbonate fuel cell power section of the type currently under development by United Technologies Corp., and a gasifier-fuel cell recycle loop. The concept utilizes the fuel cell waste heat, in the form of hydrogen and carbon monoxide, to generate additional fuel in the coal gasifier, thereby eliminating the use of both an O2 plant and a stream bottoming cycle from the power plant. The concept has the potential for achieving coal-pile-to-busbar efficiencies of 50-59%, depending on the process configuration and degree of process configuration and degree of process development requirements. This is significantly higher than any previously reported gasifier-molten carbonate fuel cell system.
Selection and properties of alternative forming fluids for TRISO fuel kernel production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, M. P.; King, J. C.; Gorman, B. P.
2013-01-01
Current Very High Temperature Reactor (VHTR) designs incorporate TRi-structural ISOtropic (TRISO) fuel, which consists of a spherical fissile fuel kernel surrounded by layers of pyrolytic carbon and silicon carbide. An internal sol-gel process forms the fuel kernel using wet chemistry to produce uranium oxyhydroxide gel spheres by dropping a cold precursor solution into a hot column of trichloroethylene (TCE). Over time, gelation byproducts inhibit complete gelation, and the TCE must be purified or discarded. The resulting TCE waste stream contains both radioactive and hazardous materials and is thus considered a mixed hazardous waste. Changing the forming fluid to a non-hazardousmore » alternative could greatly improve the economics of TRISO fuel kernel production. Selection criteria for a replacement forming fluid narrowed a list of ~10,800 chemicals to yield ten potential replacement forming fluids: 1-bromododecane, 1- bromotetradecane, 1-bromoundecane, 1-chlorooctadecane, 1-chlorotetradecane, 1-iododecane, 1-iodododecane, 1-iodohexadecane, 1-iodooctadecane, and squalane. The density, viscosity, and surface tension for each potential replacement forming fluid were measured as a function of temperature between 25 °C and 80 °C. Calculated settling velocities and heat transfer rates give an overall column height approximation. 1-bromotetradecane, 1-chlorooctadecane, and 1-iodododecane show the greatest promise as replacements, and future tests will verify their ability to form satisfactory fuel kernels.« less
Selection and properties of alternative forming fluids for TRISO fuel kernel production
NASA Astrophysics Data System (ADS)
Baker, M. P.; King, J. C.; Gorman, B. P.; Marshall, D. W.
2013-01-01
Current Very High Temperature Reactor (VHTR) designs incorporate TRi-structural ISOtropic (TRISO) fuel, which consists of a spherical fissile fuel kernel surrounded by layers of pyrolytic carbon and silicon carbide. An internal sol-gel process forms the fuel kernel using wet chemistry to produce uranium oxyhydroxide gel spheres by dropping a cold precursor solution into a hot column of trichloroethylene (TCE). Over time, gelation byproducts inhibit complete gelation, and the TCE must be purified or discarded. The resulting TCE waste stream contains both radioactive and hazardous materials and is thus considered a mixed hazardous waste. Changing the forming fluid to a non-hazardous alternative could greatly improve the economics of TRISO fuel kernel production. Selection criteria for a replacement forming fluid narrowed a list of ˜10,800 chemicals to yield ten potential replacement forming fluids: 1-bromododecane, 1-bromotetradecane, 1-bromoundecane, 1-chlorooctadecane, 1-chlorotetradecane, 1-iododecane, 1-iodododecane, 1-iodohexadecane, 1-iodooctadecane, and squalane. The density, viscosity, and surface tension for each potential replacement forming fluid were measured as a function of temperature between 25 °C and 80 °C. Calculated settling velocities and heat transfer rates give an overall column height approximation. 1-bromotetradecane, 1-chlorooctadecane, and 1-iodododecane show the greatest promise as replacements, and future tests will verify their ability to form satisfactory fuel kernels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
S.M. Frank
Work describe in this report represents the final year activities for the 3-year International Nuclear Energy Research Initiative (I-NERI) project: Development and Characterization of New High-Level Waste Forms for Achieving Waste Minimization from Pyroprocessing. Used electrorefiner salt that contained actinide chlorides and was highly loaded with surrogate fission products was processed into three candidate waste forms. The first waste form, a high-loaded ceramic waste form is a variant to the CWF produced during the treatment of Experimental Breeder Reactor-II used fuel at the Idaho National Laboratory (INL). The two other waste forms were developed by researchers at the Korean Atomicmore » Energy Research Institute (KAERI). These materials are based on a silica-alumina-phosphate matrix and a zinc/titanium oxide matrix. The proposed waste forms, and the processes to fabricate them, were designed to immobilize spent electrorefiner chloride salts containing alkali, alkaline earth, lanthanide, and halide fission products that accumulate in the salt during the processing of used nuclear fuel. This aspect of the I-NERI project was to demonstrate 'hot cell' fabrication and characterization of the proposed waste forms. The outline of the report includes the processing of the spent electrorefiner salt and the fabrication of each of the three waste forms. Also described is the characterization of the waste forms, and chemical durability testing of the material. While waste form fabrication and sample preparation for characterization must be accomplished in a radiological hot cell facility due to hazardous radioactivity levels, smaller quantities of each waste form were removed from the hot cell to perform various analyses. Characterization included density measurement, elemental analysis, x-ray diffraction, scanning electron microscopy and the Product Consistency Test, which is a leaching method to measure chemical durability. Favorable results from this demonstration project will provide additional options for fission product immobilization and waste management associated the electrochemical/pyrometallurgical processing of used nuclear fuel.« less
Coffinberry, A.S.
1962-04-10
A process for removing fission products from reactor liquid fuel without interfering with the reactor's normal operation or causing a significant change in its fuel composition is described. The process consists of mixing a liquid scavenger alloy composed of about 44 at.% plutoniunm, 33 at.% lanthanum, and 23 at.% nickel or cobalt with a plutonium alloy reactor fuel containing about 3 at.% lanthanum; removing a portion of the fuel and scavenger alloy from the reactor core and replacing it with an equal amount of the fresh scavenger alloy; transferring the portion to a quiescent zone where the scavenger and the plutonium fuel form two distinct liquid layers with the fission products being dissolved in the lanthanum-rich scavenger layer; and the clean plutonium-rich fuel layer being returned to the reactor core. (AEC)
Fuel conditioning facility electrorefiner start-up results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goff, K.M.; Mariani, R.D.; Vaden, D.
1996-05-01
At ANL-West, there are several thousand kilograms of metallic spent nuclear fuel containing bond sodium. This fuel will be treated in the Fuel Conditioning Facility (FCF) at ANL-West to produce stable waste forms for storage and disposal. The treatment operations will make use of an electrometallurgical process employing molten salts and liquid metals. The treatment equipment is presently undergoing testing with depleted uranium. Operations with irradiated fuel will commence when the environmental evaluation for FCF is complete.
Catalytic partial oxidation of hydrocarbons
Schmidt, Lanny D.; Krummenacher, Jakob J.; West, Kevin N.
2007-08-28
A process for the production of a reaction product including a carbon containing compound. The process includes providing a film of a fuel source including at least one organic compound on a wall of a reactor, contacting the fuel source with a source of oxygen, forming a vaporized mixture of fuel and oxygen, and contacting the vaporized mixture of fuel and oxygen with a catalyst under conditions effective to produce a reaction product including a carbon containing compound. Preferred products include .alpha.-olefins and synthesis gas. A preferred catalyst is a supported metal catalyst, preferably including rhodium, platinum, and mixtures thereof.
Catalytic partial oxidation of hydrocarbons
Schmidt, Lanny D [Minneapolis, MN; Krummenacher, Jakob J [Minneapolis, MN; West, Kevin N [Minneapolis, MN
2009-05-19
A process for the production of a reaction product including a carbon containing compound. The process includes providing a film of a fuel source including at least one organic compound on a wall of a reactor, contacting the fuel source with a source of oxygen, forming a vaporized mixture of fuel and oxygen, and contacting the vaporized mixture of fuel and oxygen with a catalyst under conditions effective to produce a reaction product including a carbon containing compound. Preferred products include .alpha.-olefins and synthesis gas. A preferred catalyst is a supported metal catalyst, preferably including rhodium, platinum, and mixtures thereof.
Affordable Development and Optimization of CERMET Fuels for NTP Ground Testing
NASA Technical Reports Server (NTRS)
Hickman, Robert R.; Broadway, Jeramie W.; Mireles, Omar R.
2014-01-01
CERMET fuel materials for Nuclear Thermal Propulsion (NTP) are currently being developed at NASA's Marshall Space Flight Center. The work is part of NASA's Advanced Space Exploration Systems Nuclear Cryogenic Propulsion Stage (NCPS) Project. The goal of the FY12-14 project is to address critical NTP technology challenges and programmatic issues to establish confidence in the affordability and viability of an NTP system. A key enabling technology for an NCPS system is the fabrication of a stable high temperature nuclear fuel form. Although much of the technology was demonstrated during previous programs, there are currently no qualified fuel materials or processes. The work at MSFC is focused on developing critical materials and process technologies for manufacturing robust, full-scale CERMET fuels. Prototypical samples are being fabricated and tested in flowing hot hydrogen to understand processing and performance relationships. As part of this initial demonstration task, a final full scale element test will be performed to validate robust designs. The next phase of the project will focus on continued development and optimization of the fuel materials to enable future ground testing. The purpose of this paper is to provide a detailed overview of the CERMET fuel materials development plan. The overall CERMET fuel development path is shown in Figure 2. The activities begin prior to ATP for a ground reactor or engine system test and include materials and process optimization, hot hydrogen screening, material property testing, and irradiation testing. The goal of the development is to increase the maturity of the fuel form and reduce risk. One of the main accomplishmens of the current AES FY12-14 project was to develop dedicated laboratories at MSFC for the fabrication and testing of full length fuel elements. This capability will enable affordable, near term development and optimization of the CERMET fuels for future ground testing. Figure 2 provides a timeline of the development and optimization tasks for the AES FY15-17 follow on program.
Gas turbine engine control system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Idelchik, M.S.
1991-02-19
This paper describes a method for controlling a gas turbine engine. It includes receiving an error signal and processing the error signal to form a primary control signal; receiving at least one anticipatory demand signal and processing the signal to form an anticipatory fuel control signal.
SCALE UP OF CERAMIC WASTE FORMS FOR THE EBR-II SPENT FUEL TREATMENT PROCESS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matthew C. Morrison; Kenneth J. Bateman; Michael F. Simpson
2010-11-01
ABSTRACT SCALE UP OF CERAMIC WASTE FORMS FOR THE EBR-II SPENT FUEL TREATMENT PROCESS Matthew C. Morrison, Kenneth J. Bateman, Michael F. Simpson Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415 The ceramic waste process is the intended method for disposing of waste salt electrolyte, which contains fission products from the fuel-processing electrorefiners (ER) at the INL. When mixed and processed with other materials, the waste salt can be stored in a durable ceramic waste form (CWF). The development of the CWF has recently progressed from small-scale testing and characterization to full-scale implementation and experimentation using surrogate materialsmore » in lieu of the ER electrolyte. Two full-scale (378 kg and 383 kg) CWF test runs have been successfully completed with final densities of 2.2 g/cm3 and 2.1 g/cm3, respectively. The purpose of the first CWF was to establish material preparation parameters. The emphasis of the second pre-qualification test run was to evaluate a preliminary multi-section CWF container design. Other considerations were to finalize material preparation parameters, measure the material height as it consolidates in the furnace, and identify when cracking occurs during the CWF cooldown process.« less
The importance of the wood biomass in environment protection
NASA Astrophysics Data System (ADS)
Spîrchez, Cosmin; Lunguleasa, Aurel; Croitoru, Cǎtǎlin
2017-12-01
Biomass is a natural vegetal component. As a form of storing energy is chemical form sun, biomass is one of the most popular and universal resource on Earth. Today biomass fuel can be used for various purposes from room heating to produce electricity and fuel for cars. Biomass is presented in various form for energy, including biodegradable fraction of products, remains and waste from agricultural, forestry and industrial wood processing residues from factories paste stationery and paper, remnants of industrial.
A U-bearing composite waste form for electrochemical processing wastes
NASA Astrophysics Data System (ADS)
Chen, X.; Ebert, W. L.; Indacochea, J. E.
2018-04-01
Metallic/ceramic composite waste forms are being developed to immobilize combined metallic and oxide waste streams generated during electrochemical recycling of used nuclear fuel. Composites were made for corrosion testing by reacting HT9 steel to represent fuel cladding, Zr and Mo to simulate metallic fuel waste, and a mixture of ZrO2, Nd2O3, and UO2 to represent oxide wastes. More than half of the added UO2 was reduced to metal and formed Fe-Zr-U intermetallics and most of the remaining UO2 and all of the Nd2O3 reacted to form zirconates. Fe-Cr-Mo intermetallics were also formed. Microstructure characterization of the intermetallic and ceramic phases that were generated and tests conducted to evaluate their corrosion behaviors indicate composite waste forms can accommodate both metallic and oxidized waste streams in durable host phases.
A U-bearing composite waste form for electrochemical processing wastes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, X.; Ebert, W. L.; Indacochea, J. E.
Metallic/ceramic composite waste forms are being developed to immobilize combined metallic and oxide waste streams generated during electrochemical recycling of used nuclear fuel. Composites were made for corrosion testing by reacting HT9 steel to represent fuel cladding, Zr and Mo to simulate metallic fuel waste, and a mixture of ZrO2, Nd2O3, and UO2 to represent oxide wastes. More than half of the added UO2 was reduced to metal and formed Fe-Zr-U intermetallics and most of the remaining UO2 and all of the Nd2O3 reacted to form zirconates. Fe-Cr-Mo intermetallics were also formed. Microstructure characterization of the intermetallic and ceramic phasesmore » that were generated and tests conducted to evaluate their corrosion behaviors indicate composite waste forms can accommodate both metallic and oxidized waste streams in durable host phases. (c) 2018 Elsevier B.V. All rights reserved.« less
Spent fuel treatment at ANL-West
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goff, K.M.; Benedict, R.W.; Levinskas, D.
1994-12-31
At Argonne National Laboratory-West (ANL-West) there are several thousand kilograms of metallic spent nuclear fuel containing bond sodium. This fuel will be treated in the Fuel Cycle Facility at ANL-West to produce stable waste forms for storage and disposal. The treatment operations will employ a pyrochemical process that also has applications for treating most of the fuel types within the Department of Energy complex. The treatment equipment is in its last stage of readiness, and operations will begin in the Fall of 1994.
Thamer, B.J.; Bidwell, R.M.; Hammond, R.P.
1959-09-15
Homogeneous reactor fuel solutions are reported which provide automatic recombination of radiolytic gases and exhibit large thermal expansion characteristics, thereby providing stability at high temperatures and enabling reactor operation without the necessity of apparatus to recombine gases formed by the radiolytic dissociation of water in the fuel and without the necessity of liquid fuel handling outside the reactor vessel except for recovery processes. The fuels consist of phosphoric acid and water solutions of enriched uranium, wherein the uranium is in either the hexavalent or tetravalent state.
Preventing CO poisoning in fuel cells
Gottesfeld, Shimshon
1990-01-01
Proton exchange membrane (PEM) fuel cell performance with CO contamination of the H.sub.2 fuel stream is substantially improved by injecting O.sub.2 into the fuel stream ahead of the fuel cell. It is found that a surface reaction occurs even at PEM operating temperatures below about 100.degree. C. to oxidatively remove the CO and restore electrode surface area for the H.sub.2 reaction to generate current. Using an O.sub.2 injection, a suitable fuel stream for a PEM fuel cell can be formed from a methanol source using conventional reforming processes for producing H.sub.2.
Coal liquefaction process wherein jet fuel, diesel fuel and/or ASTM No. 2 fuel oil is recovered
Bauman, Richard F.; Ryan, Daniel F.
1982-01-01
An improved process for the liquefaction of coal and similar solid carbonaceous materials wherein a hydrogen donor solvent or diluent derived from the solid carbonaceous material is used to form a slurry of the solid carbonaceous material and wherein the naphthenic components from the solvent or diluent fraction are separated and used as jet fuel components. The extraction increases the relative concentration of hydroaromatic (hydrogen donor) components and as a result reduces the gas yield during liquefaction and decreases hydrogen consumption during said liquefaction. The hydrogenation severity can be controlled to increase the yield of naphthenic components and hence the yield of jet fuel and in a preferred embodiment jet fuel yield is maximized while at the same time maintaining solvent balance.
NASA Astrophysics Data System (ADS)
Lee, C. H.; Yang, D. Y.; Lee, S. R.; Chang, I. G.; Lee, T. W.
2011-08-01
The shielded slot plate, which has a sheared corrugated trapezoidal pattern, is a component of the metallic bipolar plate for the molten carbonate fuel cell (MCFC). In order to increase the efficiency of the fuel cell, the unit cell of the shielded slot plate should have a relatively large upper area. Additionally, defects from the forming process should be minimized. In order to simulate the slitting process, whereby sheared corrugated patterns are formed, ductile fracture criteria based on the histories of stress and strain are employed. The user material subroutine VUMAT is employed for implementation of the material and ductile fracture criteria in the commercial FEM software ABAQUS. The variables of the ductile fracture criteria were determined by comparing the simulation results and the experimental results of the tension test and the shearing test. Parametric studies were conducted to determine the critical value of the ductile fracture criterion. Employing these ductile fracture criteria, the three dimensional forming process of the shielded slot plate was numerically simulated. The effects of the slitting process in the forming process of the shielded slot plate were analyzed through a FEM simulation and experimental studies. Finally, experiments involving microscopic and macroscopic observations were conducted to verify the numerical simulations of the 3-step forming process.
Alternative Fuels Data Center: ampCNG Puts Conventional Fuels Out to
; Steve Josephs, co-founder and director of engineering at ampCNG, Chicago, Illinois When ampCNG isn't the process. ampCNG's Cow-Powered Trucks ampCNG, a CNG station developer based in Chicago, Illinois interest in using more sustainable forms of fuel began in 2010, when the company partnered with Fair Oaks
Initial results of metal waste form development activities at ANL-West
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keiser, D.D. Jr.; Westphal, B.R.; Hersbt, R.S.
1997-10-01
Argonne National Laboratory is developing a metal alloy to contain metallic waste constituents from the electrometallurgical treatment of spent nuclear fuel. This alloy will contain stainless steel (from stainless steel-clad fuel elements), {approximately}15 wt.% zirconium (from alloy fuel), fission products noble to the process (e.g., Ru, Pd, Tc, etc.), and minor amounts of actinides. The alloy will serve as a final waste form for these components and will be disposed of in a geologic repository. The alloy ingot is produced in an induction furnace situated in a hot cell using Ar cover gas. This paper discusses results from the meltingmore » campaigns that have been initiated at ANL-West to generate the metal waste form using actual process materials. In addition, metal waste form samples have been doped with Tc and selected actinides and are described in the context of how elements of interest partition between various phases in the alloy and how this distribution of elements in the alloy may affect the leaching behavior of the components in an aqueous environment. 3 refs.« less
Initial results of metal waste-form development activities at ANL-West
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keiser, D.D. Jr.; Westphal, B.R.; Herbst, R.S.
1997-12-01
Argonne National Laboratory (ANL) is developing a metal alloy to contain metallic waste constituent residual from the electrometallurgical treatment of spent nuclear fuel. This alloy will contain stainless steel (from stainless steel-clad fuel elements), {approximately} 15 wt% zirconium (from alloy fuel), fission products noble to the process (e.g., ruthenium, palladium, technetium, etc.), and minor amounts of actinides. The alloy will serve as a final waste form for these components and will be disposed of in a geologic repository. The alloy ingot is produced in an induction furnace situated in a hot cell using argon cover gas. This paper discusses resultsmore » from the melting campaigns that have been initiated at ANL-West to generate the metal waste form using actual process materials. In addition, metal waste form samples have been doped with technetium and selected actinides and are described in the context of how elements of interest partition between various phases in the alloy and how this distribution of elements in the alloy may affect the leaching behavior of the components in an aqueous environment.« less
NASA Technical Reports Server (NTRS)
Houseman, J.; Rupe, J. H.; Kushida, R. O. (Inventor)
1976-01-01
A process and apparatus is described for producing a hydrogen rich gas by injecting air and hydrocarbon fuel at one end of a cylindrically shaped chamber to form a mixture and igniting the mixture to provide hot combustion gases by partial oxidation of the hydrocarbon fuel. The combustion gases move away from the ignition region to another region where water is injected to be turned into steam by the hot combustion gases. The steam which is formed mixes with the hot gases to yield a uniform hot gas whereby a steam reforming reaction with the hydrocarbon fuel takes place to produce a hydrogen rich gas.
Bond layer for a solid oxide fuel cell, and related processes and devices
Wu, Jian; Striker, Todd-Michael; Renou, Stephane; Gaunt, Simon William
2017-03-21
An electrically-conductive layer of material having a composition comprising lanthanum and strontium is described. The material is characterized by a microstructure having bimodal porosity. Another concept in this disclosure relates to a solid oxide fuel cell attached to at least one cathode interconnect by a cathode bond layer. The bond layer includes a microstructure having bimodal porosity. A fuel cell stack which incorporates at least one of the cathode bond layers is also described herein, along with related processes for forming the cathode bond layer.
Hames, Bonnie R.; Sluiter, Amie D.; Hayward, Tammy K.; Nagle, Nicholas J.
2004-05-18
A process of making a fuel or chemical from a biomass hydrolyzate is provided which comprises the steps of providing a biomass hydrolyzate, adjusting the pH of the hydrolyzate, contacting a metal oxide having an affinity for guaiacyl or syringyl functional groups, or both and the hydrolyzate for a time sufficient to form an adsorption complex; removing the complex wherein a sugar fraction is provided, and converting the sugar fraction to fuels or chemicals using a microorganism.
Method for cleaning solution used in nuclear fuel reprocessing
Tallent, O.K.; Crouse, D.J.; Mailen, J.C.
1980-12-17
Nuclear fuel processing solution consisting of tri-n-butyl phosphate and dodecane, with a complex of uranium, plutonium, or zirconium and with a solvent degradation product such as di-n-butyl phosphate therein, is contacted with an aqueous solution of a salt formed from hydrazine and either a dicarboxylic acid or a hydroxycarboxylic acid, thereby removing the aforesaid complex from the processing solution.
Method for cleaning solution used in nuclear fuel reprocessing
Tallent, Othar K.; Crouse, David J.; Mailen, James C.
1982-01-01
Nuclear fuel processing solution consisting of tri-n-butyl phosphate and dodecane, with a complex of uranium, plutonium, or zirconium and with a solvent degradation product such as di-n-butyl phosphate therein, is contacted with an aqueous solution of a salt formed from hydrazine and either a dicarboxylic acid or a hydroxycarboxylic acid, thereby removing the aforesaid complex from the processing solution.
NASA Technical Reports Server (NTRS)
Broadway, Jeramie; Hickman, Robert; Mireles, Omar
2012-01-01
NTP is attractive for space exploration because: (1) Higher Isp than traditional chemical rockets (2)Shorter trip times (3) Reduced propellant mass (4) Increased payload. Lack of qualified fuel material is a key risk (cost, schedule, and performance). Development of stable fuel form is a critical path, long lead activity. Goals of this project are: Mature CERMET and Graphite based fuel materials and Develop and demonstrate critical technologies and capabilities.
DISSOLUTION OF ZIRCONIUM AND ALLOYS THEREFOR
Swanson, J.L.
1961-07-11
The dissolution of zirconium cladding in a water solution of ammonium fluoride and ammonium nitrate is described. The method finds particular utility in processing spent fuel elements for nuclear reactors. The zirconium cladding is first dissolved in a water solution of ammonium fluoride and ammonium nitrate; insoluble uranium and plutonium fiuorides formed by attack of the solvent on the fuel materiai of the fuel element are then separated from the solution, and the fuel materiai is dissolved in another solution.
2015-05-13
ISS043E190395 (05/13/2015) --- NASA astronaut Terry Virts prepares the Multi-user Droplet Combustion Apparatus from inside the Combustion Integrated Rack for upcoming runs of the FLame Extinguishment Experiment, or FLEX-2. The FLEX-2 experiment studies how quickly fuel burns, the conditions required for soot to form, and how mixtures of fuels evaporate before burning. Understanding these processes could lead to the production of a safer spacecraft as well as increased fuel efficiency for engines using liquid fuel on Earth.
Tomczuk, Zygmunt; Miller, William E.; Wolson, Raymond D.; Gay, Eddie C.
1991-01-01
An electrochemical process and apparatus for the recovery of uranium and plutonium from spent metal clad fuel pins is disclosed. The process uses secondary reactions between U.sup.+4 cations and elemental uranium at the anode to increase reaction rates and improve anodic efficiency compared to prior art processes. In another embodiment of the process, secondary reactions between Cd.sup.+2 cations and elemental uranium to form uranium cations and elemental cadmium also assists in oxidizing the uranium at the anode.
Composite neutron absorbing coatings for nuclear criticality control
Wright, Richard N.; Swank, W. David; Mizia, Ronald E.
2005-07-19
Thermal neutron absorbing composite coating materials and methods of applying such coating materials to spent nuclear fuel storage systems are provided. A composite neutron absorbing coating applied to a substrate surface includes a neutron absorbing layer overlying at least a portion of the substrate surface, and a corrosion resistant top coat layer overlying at least a portion of the neutron absorbing layer. An optional bond coat layer can be formed on the substrate surface prior to forming the neutron absorbing layer. The neutron absorbing layer can include a neutron absorbing material, such as gadolinium oxide or gadolinium phosphate, dispersed in a metal alloy matrix. The coating layers may be formed by a plasma spray process or a high velocity oxygen fuel process.
Cost and performance prospects for composite bipolar plates in fuel cells and redox flow batteries
NASA Astrophysics Data System (ADS)
Minke, Christine; Hickmann, Thorsten; dos Santos, Antonio R.; Kunz, Ulrich; Turek, Thomas
2016-02-01
Carbon-polymer-composite bipolar plates (BPP) are suitable for fuel cell and flow battery applications. The advantages of both components are combined in a product with high electrical conductivity and good processability in convenient polymer forming processes. In a comprehensive techno-economic analysis of materials and production processes cost factors are quantified. For the first time a technical cost model for BPP is set up with tight integration of material characterization measurements.
Structures and fabrication techniques for solid state electrochemical devices
Visco, Steven J.; Jacobson, Craig P.; DeJonghe, Lutgard C.
2012-10-09
Porous substrates and associated structures for solid-state electrochemical devices, such as solid-oxide fuel cells (SOFCs), are low-cost, mechanically strong and highly electronically conductive. Some preferred structures have a thin layer of an electrocatalytically active material (e.g., Ni--YSZ) coating a porous high-strength alloy support (e.g., SS-430) to form a porous SOFC fuel electrode. Electrode/electrolyte structures can be formed by co-firing or constrained sintering processes.
Structures and fabrication techniques for solid state electrochemical devices
Visco, Steven J.; Jacobson, Craig P.; DeJonghe, Lutgard C.
2008-04-01
Porous substrates and associated structures for solid-state electrochemical devices, such as solid-oxide fuel cells (SOFCs), are low-cost, mechanically strong and highly electronically conductive. Some preferred structures have a thin layer of an electrocatalytically active material (e.g., Ni--YSZ) coating a porous high-strength alloy support (e.g., SS-430) to form a porous SOFC fuel electrode. Electrode/electrolyte structures can be formed by co-firing or constrained sintering processes.
Building dismantlement and site remediation at the Apollo Fuel Plant: When is technology the answer?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walton, L.
1995-01-01
The Apollo fuel plant was located in Pennsylvania on a site known to have been used continuously for stell production from before the Civil War until after World War II. Then the site became a nuclear fuel chemical processing plants. Finally it was used to convert uranium hexafluoride to various oxide fuel forms. After the fuel manufacturing operations were teminated, the processing equipment was partially decontaminated, removed, packaged and shipped to a licensed low-level radioactive waste burial site. The work was completed in 1984. In 1990 a detailed site characterization was initiated to establishe the extent of contamination and tomore » plan the building dismantlement and soil remediation efforts. This article discusses the site characterization and remedial action at the site in the following subsections: characterization; criticality control; mobile containment; soil washing; in-process measurements; and the final outcome of the project.« less
One-step catalytic conversion of biomass-derived carbohydrates to liquid fuels
Sen, Ayusman; Yang, Weiran
2014-03-18
The invention relates to a method for manufacture of hydrocarbon fuels and oxygenated hydrocarbon fuels such as alkyl substituted tetrahydrofurans such as 2,5-dimethyltetrahydrofuran, 2-methyltetrahydrofuran, 5-methylfurfural and mixtures thereof. The method generally entails forming a mixture of reactants that includes carbonaceous material, water, a metal catalyst and an acid reacting that mixture in the presence of hydrogen. The reaction is performed at a temperature and for a time sufficient to produce a furan type hydrocarbon fuel. The process may be adapted to provide continuous manufacture of hydrocarbon fuels such as a furan type fuel.
NASA Astrophysics Data System (ADS)
Cai, Zun; Liu, Xiao; Gong, Cheng; Sun, Mingbo; Wang, Zhenguo; Bai, Xue-Song
2016-09-01
Large Eddy Simulation (LES) was employed to investigate the fuel/oxidizer mixing process in an ethylene fueled scramjet combustor with a rearwall-expansion cavity. The numerical solver was first validated for an experimental flow, the DLR strut-based scramjet combustor case. Shock wave structures and wall-pressure distribution from the numerical simulations were compared with experimental data and the numerical results were shown in good agreement with the available experimental data. Effects of the injection location on the flow and mixing process were then studied. It was found that with a long injection distance upstream the cavity, the fuel is transported much further into the main flow and a smaller subsonic zone is formed inside the cavity. Conversely, with a short injection distance, the fuel is entrained more into the cavity and a larger subsonic zone is formed inside the cavity, which is favorable for ignition in the cavity. For the rearwall-expansion cavity, it is suggested that the optimized ignition location with a long upstream injection distance should be in the bottom wall in the middle part of the cavity, while the optimized ignition location with a short upstream injection distance should be in the bottom wall in the front side of the cavity. By employing a cavity direct injection on the rear wall, the fuel mass fraction inside the cavity and the local turbulent intensity will both be increased due to this fueling, and it will also enhance the mixing process which will also lead to increased mixing efficiency. For the rearwall-expansion cavity, the combined injection scheme is expected to be an optimized injection scheme.
Method of preparing electrolyte for use in fuel cells
Kinoshita, Kimio; Ackerman, John P.
1978-01-01
An electrolyte compact for fuel cells includes a particulate support material of lithium aluminate that contains a mixture of alkali metal compounds, such as carbonates or hydroxides, as the active electrolyte material. The porous lithium aluminate support structure is formed by mixing alumina particles with a solution of lithium hydroxide and another alkali metal hydroxide, evaporating the solvent from the solution and heating to a temperature sufficient to react the lithium hydroxide with alumina to form lithium aluminate. Carbonates are formed by reacting the alkali metal hydroxides with carbon dioxide gas in an exothermic reaction which may proceed simultaneously with the formation with the lithium aluminate. The mixture of lithium aluminate and alkali metal in an electrolyte active material is pressed or otherwise processed to form the electrolyte structure for assembly into a fuel cell.
Method for fabrication of electrodes
Jankowski, Alan F.; Morse, Jeffrey D.; Barksdale, Randy
2004-06-22
Described herein is a method to fabricate porous thin-film electrodes for fuel cells and fuel cell stacks. Furthermore, the method can be used for all fuel cell electrolyte materials which utilize a continuous electrolyte layer. An electrode layer is deposited on a porous host structure by flowing gas (for example, Argon) from the bottomside of the host structure while simultaneously depositing a conductive material onto the topside of the host structure. By controlling the gas flow rate through the pores, along with the process conditions and deposition rate of the thin-film electrode material, a film of a pre-determined thickness can be formed. Once the porous electrode is formed, a continuous electrolyte thin-film is deposited, followed by a second porous electrode to complete the fuel cell structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mariani, R.D.; Benedict, R.W.; Lell, R.M.
1996-05-01
As part of the termination activities of Experimental Breeder Reactor II (EBR-II) at Argonne National Laboratory (ANL) West, the spent metallic fuel from EBR-II will be treated in the fuel cycle facility (FCF). A key component of the spent-fuel treatment process in the FCF is the electrorefiner (ER) in which the actinide metals are separated from the active metal fission products and the reactive bond sodium. In the electrorefining process, the metal fuel is anodically dissolved into a high-temperature molten salt, and refined uranium or uranium/plutonium products are deposited at cathodes. The criticality safety strategy and analysis for the ANLmore » West FCF ER is summarized. The FCF ER operations and processes formed the basis for evaluating criticality safety and control during actinide metal fuel refining. To show criticality safety for the FCF ER, the reference operating conditions for the ER had to be defined. Normal operating envelopes (NOEs) were then defined to bracket the important operating conditions. To keep the operating conditions within their NOEs, process controls were identified that can be used to regulate the actinide forms and content within the ER. A series of operational checks were developed for each operation that will verify the extent or success of an operation. The criticality analysis considered the ER operating conditions at their NOE values as the point of departure for credible and incredible failure modes. As a result of the analysis, FCF ER operations were found to be safe with respect to criticality.« less
Code of Federal Regulations, 2011 CFR
2011-07-01
... contained in the concentrate as it passes through an oxidizing atmosphere, or the combustion of a fossil...) Sulfuric acid plant means any facility producing sulfuric acid by the contact process. (i) Fossil fuel means natural gas, petroleum, coal, and any form of solid, liquid, or gaseous fuel derived from such...
Code of Federal Regulations, 2014 CFR
2014-07-01
... contained in the concentrate as it passes through an oxidizing atmosphere, or the combustion of a fossil...) Sulfuric acid plant means any facility producing sulfuric acid by the contact process. (i) Fossil fuel means natural gas, petroleum, coal, and any form of solid, liquid, or gaseous fuel derived from such...
Code of Federal Regulations, 2012 CFR
2012-07-01
... contained in the concentrate as it passes through an oxidizing atmosphere, or the combustion of a fossil...) Sulfuric acid plant means any facility producing sulfuric acid by the contact process. (i) Fossil fuel means natural gas, petroleum, coal, and any form of solid, liquid, or gaseous fuel derived from such...
Code of Federal Regulations, 2010 CFR
2010-07-01
... contained in the concentrate as it passes through an oxidizing atmosphere, or the combustion of a fossil...) Sulfuric acid plant means any facility producing sulfuric acid by the contact process. (i) Fossil fuel means natural gas, petroleum, coal, and any form of solid, liquid, or gaseous fuel derived from such...
Code of Federal Regulations, 2013 CFR
2013-07-01
... contained in the concentrate as it passes through an oxidizing atmosphere, or the combustion of a fossil...) Sulfuric acid plant means any facility producing sulfuric acid by the contact process. (i) Fossil fuel means natural gas, petroleum, coal, and any form of solid, liquid, or gaseous fuel derived from such...
Molten salt destruction of energetic waste materials
Brummond, W.A.; Upadhye, R.S.; Pruneda, C.O.
1995-07-18
A molten salt destruction process is used to treat and destroy energetic waste materials such as high explosives, propellants, and rocket fuels. The energetic material is pre-blended with a solid or fluid diluent in safe proportions to form a fluid fuel mixture. The fuel mixture is rapidly introduced into a high temperature molten salt bath. A stream of molten salt is removed from the vessel and may be recycled as diluent. Additionally, the molten salt stream may be pumped from the reactor, circulated outside the reactor for further processing, and delivered back into the reactor or cooled and circulated to the feed delivery system to further dilute the fuel mixture entering the reactor. 4 figs.
Molten salt destruction of energetic waste materials
Brummond, William A.; Upadhye, Ravindra S.; Pruneda, Cesar O.
1995-01-01
A molten salt destruction process is used to treat and destroy energetic waste materials such as high explosives, propellants, and rocket fuels. The energetic material is pre-blended with a solid or fluid diluent in safe proportions to form a fluid fuel mixture. The fuel mixture is rapidly introduced into a high temperature molten salt bath. A stream of molten salt is removed from the vessel and may be recycled as diluent. Additionally, the molten salt stream may be pumped from the reactor, circulated outside the reactor for further processing, and delivered back into the reactor or cooled and circulated to the feed delivery system to further dilute the fuel mixture entering the reactor.
Ignition process in Diesel engines
NASA Technical Reports Server (NTRS)
Wentzel, W
1936-01-01
This report analyzes the heating and vaporization process of fuel droplets in a compression-ignition engine on the basis of the theory of similitude - according to which, the period for heating and complete vaporization of the average size fuel drop is only a fraction of the actually observed ignition lag. The result is that ignition takes place in the fuel vapor air mixture rather than on the surface of the drop. The theoretical result is in accord with the experimental observations by Rothrock and Waldron. The combustion shock occurring at lower terminal compression temperature, especially in the combustion of coal-tar oil, is attributable to a simultaneous igniting of a larger fuel-vapor volume formed prior to ignition.
Ketonization of levulinic acid and γ-valerolactone to hydrocarbon fuel precursors
Lilga, Michael A.; Padmaperuma, Asanga B.; Auberry, Deanna L.; ...
2017-06-21
We studied a new process for direct conversion of either levulinic acid (LA) or γ-valerolactone (GVL) to hydrocarbon fuel precursors. The process involves passing an aqueous solution of LA or GVL containing a reducing agent, such as ethylene glycol or formic acid, over a ketonization catalyst at 380–400 °C and atmospheric pressure to form a biphasic liquid product. The organic phase is significantly oligomerized and deoxygenated and comprises a complex mixture of open-chain alkanes and olefins, aromatics, and low concentrations of ketones, alcohols, ethers, and carboxylates or lactones. Carbon content in the aqueous phase decreases with decreasing feed rate; themore » aqueous phase can be reprocessed through the same catalyst to form additional organic oils to improve carbon yield. Catalysts are readily regenerated to restore initial activity. Furthermore, the process might be valuable in converting cellulosics to biorenewable gasoline, jet, and diesel fuels as a means to decrease petroleum use and decrease greenhouse gas emissions.« less
Technologies and Materials for Recovering Waste Heat in Harsh Environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nimbalkar, Sachin U.; Thekdi, Arvind; Rogers, Benjamin M.
2014-12-15
A large amount (7,204 TBtu/year) of energy is used for process heating by the manufacturing sector in the United States (US). This energy is in the form of fuels mostly natural gas with some coal or other fuels and steam generated using fuels such as natural gas, coal, by-product fuels, and some others. Combustion of these fuels results in the release of heat, which is used for process heating, and in the generation of combustion products that are discharged from the heating system. All major US industries use heating equipment such as furnaces, ovens, heaters, kilns, and dryers. The hotmore » exhaust gases from this equipment, after providing the necessary process heat, are discharged into the atmosphere through stacks. This report deals with identification of industries and industrial heating processes in which the exhaust gases are at high temperature (>1200 F), contain all of the types of reactive constituents described, and can be considered as harsh or contaminated. It also identifies specific issues related to WHR for each of these processes or waste heat streams.« less
Coupling of a 2.5 kW steam reformer with a 1 kW el PEM fuel cell
NASA Astrophysics Data System (ADS)
Mathiak, J.; Heinzel, A.; Roes, J.; Kalk, Th.; Kraus, H.; Brandt, H.
The University of Duisburg-Essen has developed a compact multi-fuel steam reformer suitable for natural gas, propane and butane. This steam reformer was combined with a polymer electrolyte membrane fuel cell (PEM FC) and a system test of the process chain was performed. The fuel processor comprises a prereformer step, a primary reformer, water gas shift reactors, a steam generator, internal heat exchangers in order to achieve an optimised heat integration and an external burner for heat supply as well as a preferential oxidation step (PROX) as CO purification. The fuel processor is designed to deliver a thermal hydrogen power output from 500 W to 2.5 kW. The PEM fuel cell stack provides about 1 kW electrical power. In the following paper experimental results of measurements of the single components PEM fuel cell and fuel processor as well as results of the coupling of both to form a process chain are presented.
40 CFR Appendix S to Part 51 - Emission Offset Interpretative Ruling
Code of Federal Regulations, 2011 CFR
2011-07-01
... included in NAICS codes 325193 or 312140; (u) Fossil-fuel boilers (or combination thereof) totaling more... fiber processing plants; (y) Charcoal production plants; (z) Fossil fuel-fired steam electric plants of... and PM10 emissions shall include gaseous emissions from a source or activity which condense to form...
40 CFR Appendix S to Part 51 - Emission Offset Interpretative Ruling
Code of Federal Regulations, 2013 CFR
2013-07-01
... included in NAICS codes 325193 or 312140; (u) Fossil-fuel boilers (or combination thereof) totaling more... fiber processing plants; (y) Charcoal production plants; (z) Fossil fuel-fired steam electric plants of... source or activity, which condense to form particulate matter at ambient temperatures. On or after...
40 CFR Appendix S to Part 51 - Emission Offset Interpretative Ruling
Code of Federal Regulations, 2014 CFR
2014-07-01
... included in NAICS codes 325193 or 312140; (u) Fossil-fuel boilers (or combination thereof) totaling more... fiber processing plants; (y) Charcoal production plants; (z) Fossil fuel-fired steam electric plants of... source or activity, which condense to form particulate matter at ambient temperatures. On or after...
40 CFR Appendix S to Part 51 - Emission Offset Interpretative Ruling
Code of Federal Regulations, 2012 CFR
2012-07-01
... included in NAICS codes 325193 or 312140; (u) Fossil-fuel boilers (or combination thereof) totaling more... fiber processing plants; (y) Charcoal production plants; (z) Fossil fuel-fired steam electric plants of... and PM10 emissions shall include gaseous emissions from a source or activity which condense to form...
40 CFR Appendix S to Part 51 - Emission Offset Interpretative Ruling
Code of Federal Regulations, 2010 CFR
2010-07-01
... included in NAICS codes 325193 or 312140; (u) Fossil-fuel boilers (or combination thereof) totaling more... fiber processing plants; (y) Charcoal production plants; (z) Fossil fuel-fired steam electric plants of... and PM10 emissions shall include gaseous emissions from a source or activity which condense to form...
COPROCESSING OF FOSSIL FUELS AND BIOMASS FOR CO2 EMISSION REDUCTION IN THE TRANSPORTATION SECTOR
The paper discusses an evaluation of the Hydrocarb process for conversion of carbonaceous raw material to clean carbon and methanol products. As fuel, methanol and carbon can be used economically, either independently or in slurry form, in efficient heat engines (turbines and int...
Fuel Subsystems Flight Test Handbook
1981-12-01
described in Flight and Maintenance Manuals and as it exists in hardware form. These versions may differ significantly in the development phase of a new ...Canter (AFFPTC), Edwards AFB, California. The work was done under the authority of the Study Plan for Development of a Handbook for Aircraft Fuel...10 Position of AFFTC in the Development and 10 Evaluation Process Agencies Involved 11 Multi-Purpose Flight Tests 11 FUEL SYSTEM FUNCTIONS AND
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simon, D.L.
1977-07-19
A process is described for making a fuel by combining turpentine, alcohol and blending agent and reducing the temperature of a batch to form two separate phases of differing densities, both of which are separately useable as fuels for internal combustion engines. The proportions of combustion favor the denser phase. However, under certain conditions, the less dense phase may be desired. Either phase may also be combined with gasoline to enhance the performance of the gasoline.
1978-07-01
degrades thermal stability and forms undesirable sulfur dioxide emissions . Although the original premises for controlling total sulfur may not still...eliminate corrosive trace contamination, presence of surfactants which deactivate filter/ separators, carry-over of refinery processing materials, and...increase raw vapor emissions from ground fuel handling facilities and during refueling operations. Controlling raw vapor emissions is difficult at 3
Autoignition Chemistry of Surrogate Fuel Components in an Engine Environment
2015-08-21
compression ratio (CR) on the auto - ignition of decane. Crank angle resolved cylinder pressure data was acquired and analyzed using an engine heat...schematic shown in Fig. 1, consists of a modified CFR (Cooperative Fuel Research) engine coupled to a dynamometer. In practical compression 2 ignition ...engines, auto - ignition occurs in the premixed spray envelope that forms during the fuel injection process. To focus on this regime without the
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bateman, K. J.; Capson, D. D.
2004-03-29
Argonne National Laboratory (ANL) has developed a process to immobilize waste salt containing fission products, uranium, and transuranic elements as chlorides in a glass-bonded ceramic waste form. This salt was generated in the electrorefining operation used in the electrometallurgical treatment of spent Experimental Breeder Reactor-II (EBR-II) fuel. The ceramic waste process culminates with an elevated temperature operation. The processing conditions used by the furnace, for demonstration scale and production scale operations, are to be developed at Argonne National Laboratory-West (ANL-West). To assist in selecting the processing conditions of the furnace and to reduce the number of costly experiments, a finitemore » difference model was developed to predict the consolidation of the ceramic waste. The model accurately predicted the heating as well as the bulk density of the ceramic waste form. The methodology used to develop the computer model and a comparison of the analysis to experimental data is presented.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Junge, D.C.
1978-12-01
Significant quantities of wood residue fuels are presently being used in industrial steam generating facilities. Recent studies indicate that substantial additional quantities of wood residue fuels are available for energy generation in the form of steam and/or electricity. A limited data base on the combustion characteristics of wood residue fuels has resulted in the installation and operation of inefficient combustion systems for these fuels. This investigation of the combustion characteristics of wood residue fuels was undertaken to provide a data base which could be used to optimize the combustion of such fuels. Optimization of the combustion process in industrial boilersmore » serves to improve combustion efficiency and to reduce air pollutant emissions generated in the combustion process. Data are presented on the combustion characteristics of eastern white pine bark mixed with Douglas fir planer shavings.« less
Molybdenum-base cermet fuel development
NASA Astrophysics Data System (ADS)
Pilger, James P.; Gurwell, William E.; Moss, Ronald W.; White, George D.; Seifert, David A.
Development of a multimegawatt (MMW) space nuclear power system requires identification and resolution of several technical feasibility issues before selecting one or more promising system concepts. Demonstration of reactor fuel fabrication technology is required for cermet-fueled reactor concepts. The MMW reactor fuel development activity at Pacific Northwest Laboratory (PNL) is focused on producing a molybdenum-matrix uranium-nitride (UN) fueled cermte. This cermet is to have a high matrix density (greater than or equal to 95 percent) for high strength and high thermal conductance coupled with a high particle (UN) porosity (approximately 25 percent) for retention of released fission gas at high burnup. Fabrication process development involves the use of porous TiN microspheres as surrogate fuel material until porous Un microspheres become available. Process development was conducted in the areas of microsphere synthesis, particle sealing/coating, and high-energy-rate forming (HERF) and the vacuum hot press consolidation techniques. This paper summarizes the status of these activities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eun, H.C.; Cho, Y.Z.; Choi, J.H.
A regeneration process of LiCl-KCl eutectic waste salt generated from the pyrochemical process of spent nuclear fuel has been studied. This regeneration process is composed of a chemical conversion process and a vacuum distillation process. Through the regeneration process, a high efficiency of renewable salt recovery can be obtained from the waste salt and rare earth nuclides in the waste salt can be separated as oxide or phosphate forms. Thus, the regeneration process can contribute greatly to a reduction of the waste volume and a creation of durable final waste forms. (authors)
Cortright, Randy D [Madison, WI; Dumesic, James A [Verona, WI
2012-04-10
A low-temperature catalytic process for converting biomass (preferably glycerol recovered from the fabrication of bio-diesel) to synthesis gas (i.e., H.sub.2/CO gas mixture) in an endothermic gasification reaction is described. The synthesis gas is used in exothermic carbon-carbon bond-forming reactions, such as Fischer-Tropsch, methanol, or dimethylether syntheses. The heat from the exothermic carbon-carbon bond-forming reaction is integrated with the endothermic gasification reaction, thus providing an energy-efficient route for producing fuels and chemicals from renewable biomass resources.
Cortright, Randy D.; Dumesic, James A.
2013-04-02
A low-temperature catalytic process for converting biomass (preferably glycerol recovered from the fabrication of bio-diesel) to synthesis gas (i.e., H.sub.2/CO gas mixture) in an endothermic gasification reaction is described. The synthesis gas is used in exothermic carbon-carbon bond-forming reactions, such as Fischer-Tropsch, methanol, or dimethylether syntheses. The heat from the exothermic carbon-carbon bond-forming reaction is integrated with the endothermic gasification reaction, thus providing an energy-efficient route for producing fuels and chemicals from renewable biomass resources.
Cortright, Randy D [Madison, WI; Dumesic, James A [Verona, WI
2011-01-18
A low-temperature catalytic process for converting biomass (preferably glycerol recovered from the fabrication of bio-diesel) to synthesis gas (i.e., H.sub.2/CO gas mixture) in an endothermic gasification reaction is described. The synthesis gas is used in exothermic carbon-carbon bond-forming reactions, such as Fischer-Tropsch, methanol, or dimethylether syntheses. The heat from the exothermic carbon-carbon bond-forming reaction is integrated with the endothermic gasification reaction, thus providing an energy-efficient route for producing fuels and chemicals from renewable biomass resources.
Gum and deposit formation in diesel fuels. Final report, 1984-1988
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayo, F.R.; Mill, T.
1988-05-15
The authors examined two aspects of the stability of diesel fuels in storage: the formation of sediments in suspension, which subsequently clog filters, and the formation of soluble gum, which passes the filters but then forms hard deposits on hot engine parts. Research on fuel stability at SRI during the last 6 years has shown that soluble gum appears first on storage, and then part of it grows into sediment. If the oxidation mixture is agitated gently, the precipitating gum grows on the surface gum, and no loose sediment is formed. Three mechanisms of gum formation were distinguished: (1) amore » process intimately associated with chain propagation and termination during oxidation, (2) a coupling of fuel molecules by decomposing peroxides in the absence of oxygen, and (3) a condensation of naphthols and aldehydes from the oxidation of alkylnaphthalenes. The polymeric oxidation products from a JP-8 fuel are shown to be largely responsible for deposits in the Jet Fuel Thermal Oxidation Tester (JFTOT).« less
NASA Astrophysics Data System (ADS)
Zakharevich, Arkadiy V.
2015-01-01
The results of an experimental study of laws governing the ignition of liquid propellants (kerosene, diesel fuel and petroleum residue) by the single spherical steel particle heated to high temperatures are presented. Is carried out the comparison of the ignition delay times of the investigated flammable substances by the particles in the sphere and disk forms. It is established that the particle shape does not exert a substantial influence on the ignition process characteristics.
System for operating solid oxide fuel cell generator on diesel fuel
NASA Technical Reports Server (NTRS)
Singh, Prabhu (Inventor); George, Raymond A. (Inventor)
1997-01-01
A system is provided for operating a solid oxide fuel cell generator on diesel fuel. The system includes a hydrodesulfurizer which reduces the sulfur content of commercial and military grade diesel fuel to an acceptable level. Hydrogen which has been previously separated from the process stream is mixed with diesel fuel at low pressure. The diesel/hydrogen mixture is then pressurized and introduced into the hydrodesulfurizer. The hydrodesulfurizer comprises a metal oxide such as ZnO which reacts with hydrogen sulfide in the presence of a metal catalyst to form a metal sulfide and water. After desulfurization, the diesel fuel is reformed and delivered to a hydrogen separator which removes most of the hydrogen from the reformed fuel prior to introduction into a solid oxide fuel cell generator. The separated hydrogen is then selectively delivered to the diesel/hydrogen mixer or to a hydrogen storage unit. The hydrogen storage unit preferably comprises a metal hydride which stores hydrogen in solid form at low pressure. Hydrogen may be discharged from the metal hydride to the diesel/hydrogen mixture at low pressure upon demand, particularly during start-up and shut-down of the system.
Plutonium Finishing Plant (PFP) Final Safety Analysis Report (FSAR) [SEC 1 THRU 11
DOE Office of Scientific and Technical Information (OSTI.GOV)
ULLAH, M K
2001-02-26
The Plutonium Finishing Plant (PFP) is located on the US Department of Energy (DOE) Hanford Site in south central Washington State. The DOE Richland Operations (DOE-RL) Project Hanford Management Contract (PHMC) is with Fluor Hanford Inc. (FH). Westinghouse Safety Management Systems (WSMS) provides management support to the PFP facility. Since 1991, the mission of the PFP has changed from plutonium material processing to preparation for decontamination and decommissioning (D and D). The PFP is in transition between its previous mission and the proposed D and D mission. The objective of the transition is to place the facility into a stablemore » state for long-term storage of plutonium materials before final disposition of the facility. Accordingly, this update of the Final Safety Analysis Report (FSAR) reflects the current status of the buildings, equipment, and operations during this transition. The primary product of the PFP was plutonium metal in the form of 2.2-kg, cylindrical ingots called buttoms. Plutonium nitrate was one of several chemical compounds containing plutonium that were produced as an intermediate processing product. Plutonium recovery was performed at the Plutonium Reclamation Facility (PRF) and plutonium conversion (from a nitrate form to a metal form) was performed at the Remote Mechanical C (RMC) Line as the primary processes. Plutonium oxide was also produced at the Remote Mechanical A (RMA) Line. Plutonium processed at the PFP contained both weapons-grade and fuels-grade plutonium materials. The capability existed to process both weapons-grade and fuels-grade material through the PRF and only weapons-grade material through the RMC Line although fuels-grade material was processed through the line before 1984. Amounts of these materials exist in storage throughout the facility in various residual forms left from previous years of operations.« less
LIQUID BIO-FUEL PRODUCTION FROM NON-FOOD BIOMASS VIA HIGH TEMPERATURE STEAM ELECTROLYSIS
DOE Office of Scientific and Technical Information (OSTI.GOV)
G. L. Hawkes; J. E. O'Brien; M. G. McKellar
2011-11-01
Bio-Syntrolysis is a hybrid energy process that enables production of synthetic liquid fuels that are compatible with the existing conventional liquid transportation fuels infrastructure. Using biomass as a renewable carbon source, and supplemental hydrogen from high-temperature steam electrolysis (HTSE), bio-syntrolysis has the potential to provide a significant alternative petroleum source that could reduce US dependence on imported oil. Combining hydrogen from HTSE with CO from an oxygen-blown biomass gasifier yields syngas to be used as a feedstock for synthesis of liquid transportation fuels via a Fischer-Tropsch process. Conversion of syngas to liquid hydrocarbon fuels, using a biomass-based carbon source, expandsmore » the application of renewable energy beyond the grid to include transportation fuels. It can also contribute to grid stability associated with non-dispatchable power generation. The use of supplemental hydrogen from HTSE enables greater than 90% utilization of the biomass carbon content which is about 2.5 times higher than carbon utilization associated with traditional cellulosic ethanol production. If the electrical power source needed for HTSE is based on nuclear or renewable energy, the process is carbon neutral. INL has demonstrated improved biomass processing prior to gasification. Recyclable biomass in the form of crop residue or energy crops would serve as the feedstock for this process. A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to heat steam for the hydrogen production via the high temperature steam electrolysis process. Oxygen produced form the electrolysis process is used to control the oxidation rate in the oxygen-blown biomass gasifier. Based on the gasifier temperature, 94% to 95% of the carbon in the biomass becomes carbon monoxide in the syngas (carbon monoxide and hydrogen). Assuming the thermal efficiency of the power cycle for electricity generation is 50%, (as expected from GEN IV nuclear reactors), the syngas production efficiency ranges from 70% to 73% as the gasifier temperature decreases from 1900 K to 1500 K. Parametric studies of system pressure, biomass moisture content and low temperature alkaline electrolysis are also presented.« less
Dry halide method for separating the components of spent nuclear fuels
Christian, Jerry Dale; Thomas, Thomas Russell; Kessinger, Glen F.
1998-01-01
The invention is a nonaqueous, single method for processing multiple spent nuclear fuel types by separating the fission- and transuranic products from the nonradioactive and fissile uranium product. The invention has four major operations: exposing the spent fuels to chlorine gas at temperatures preferably greater than 1200.degree. C. to form volatile metal chlorides; removal of the fission product chlorides, transuranic product chlorides, and any nickel chloride and chromium chloride in a molten salt scrubber at approximately 400.degree. C.; fractional condensation of the remaining volatile chlorides at temperatures ranging from 164.degree. C. to 2.degree. C.; and regeneration and recovery of the transferred spent molten salt by vacuum distillation. The residual fission products, transuranic products, and nickel- and chromium chlorides are converted to fluorides or oxides for vitrification. The method offers the significant advantages of a single, compact process that is applicable to most of the diverse nuclear fuels, minimizes secondary wastes, segregates fissile uranium from the high level wastes to resolve potential criticality concerns, segregates nonradioactive wastes from the high level wastes for volume reduction, and produces a common waste form glass or glass-ceramic.
Dry halide method for separating the components of spent nuclear fuels
Christian, J.D.; Thomas, T.R.; Kessinger, G.F.
1998-06-30
The invention is a nonaqueous, single method for processing multiple spent nuclear fuel types by separating the fission and transuranic products from the nonradioactive and fissile uranium product. The invention has four major operations: exposing the spent fuels to chlorine gas at temperatures preferably greater than 1200 C to form volatile metal chlorides; removal of the fission product chlorides, transuranic product chlorides, and any nickel chloride and chromium chloride in a molten salt scrubber at approximately 400 C; fractional condensation of the remaining volatile chlorides at temperatures ranging from 164 to 2 C; and regeneration and recovery of the transferred spent molten salt by vacuum distillation. The residual fission products, transuranic products, and nickel- and chromium chlorides are converted to fluorides or oxides for vitrification. The method offers the significant advantages of a single, compact process that is applicable to most of the diverse nuclear fuels, minimizes secondary wastes, segregates fissile uranium from the high level wastes to resolve potential criticality concerns, segregates nonradioactive wastes from the high level wastes for volume reduction, and produces a common waste form glass or glass-ceramic. 3 figs.
Fuel-rich catalytic combustion of Jet-A fuel-equivalence ratios 5.0 to 8.0
NASA Technical Reports Server (NTRS)
Brabbs, Theodore A.; Gracia-Salcedo, Carmen M.
1989-01-01
Fuel-rich catalytic combustion (E.R. greater than 5.0) is a unique technique for preheating a hydrocarbon fuel to temperatures much higher than those obtained by conventional heat exchangers. In addition to producing very reactive molecules, the process upgrades the structure of the fuel by the formation of hydrogen and smaller hydrocarbons and produces a cleaner burning fuel by removing some of the fuel carbon from the soot formation chain. With fuel-rich catalytic combustion as the first stage of a two stage combustion system, enhanced fuel properties can be utilized by both high speed engines, where time for ignition and complete combustion is limited, and engines where emission of thermal NO sub x is critical. Two-stage combustion (rich-lean) has been shown to be effective for NO sub x reduction in stationary burners where residence times are long enough to burn-up the soot formed in the first stage. Such residence times are not available in aircraft engines. Thus, the soot-free nature of the present process is critical for high speed engines. The successful application of fuel-rich catalytic combustion to Jet-A, a multicomponent fuel used in gas turbine combustors, is discusssed.
[Effects of wind speed on drying processes of fuelbeds composed of Mongolian oak broad-leaves.
Zhang, Li Bin; Sun, Ping; Jin, Sen
2016-11-18
Water desorption processes of fuel beds with Mongolian oak broad-leaves were observed under conditions with various wind speeds but nearly constant air temperature and humidity. The effects of wind speed on drying coefficients of fuel beds with various moisture contents were analyzed. Three phases of drying process, namely high initial moisture content (>75%) of phase 1, transition state of phase 2, and equilibrium phase III could be identified. During phase 1, water loss rate under higher wind speed was higher than that under lower wind speed. Water loss rate under higher wind speed was lower than that under lower wind speed during phase 2. During phase 3, water loss rates under different wind speeds were similar. The wind effects decreased with the decrease of fuel moisture. The drying coefficient of the Mongolian oak broad-leaves fuel beds was affected by wind speed and fuel bed compactness, and the interaction between these two factors. The coefficient increased with wind speed roughly in a monotonic cubic polynomial form.
Process Model of A Fusion Fuel Recovery System for a Direct Drive IFE Power Reactor
NASA Astrophysics Data System (ADS)
Natta, Saswathi; Aristova, Maria; Gentile, Charles
2008-11-01
A task has been initiated to develop a detailed representative model for the fuel recovery system (FRS) in the prospective direct drive inertial fusion energy (IFE) reactor. As part of the conceptual design phase of the project, a chemical process model is developed in order to observe the interaction of system components. This process model is developed using FEMLAB Multiphysics software with the corresponding chemical engineering module (CEM). Initially, the reactants, system structure, and processes are defined using known chemical species of the target chamber exhaust. Each step within the Fuel recovery system is modeled compartmentally and then merged to form the closed loop fuel recovery system. The output, which includes physical properties and chemical content of the products, is analyzed after each step of the system to determine the most efficient and productive system parameters. This will serve to attenuate possible bottlenecks in the system. This modeling evaluation is instrumental in optimizing and closing the fusion fuel cycle in a direct drive IFE power reactor. The results of the modeling are presented in this paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mariani, R.D.; Benedict, R.W.; Lell, R.M.
1993-09-01
The Integral Fast Reactor being developed by Argonne National Laboratory (ANL) combines the advantages of metal-fueled, liquid-metal-cooled reactors and a closed fuel cycle. Presently, the Fuel Cycle Facility (FCF) at ANL-West in Idaho Falls, Idaho is being modified to recycle spent metallic fuel from Experimental Breeder Reactor II as part of a demonstration project sponsored by the Department of Energy. A key component of the FCF is the electrorefiner (ER) in which the actinides are separated from the fission products. In the electrorefining process, the metal fuel is anodically dissolved into a high-temperature molten salt and refined uranium or uranium/plutoniummore » products are deposited at cathodes. In this report, the criticality safety strategy for the FCF ER is summarized. FCF ER operations and processes formed the basis for evaluating criticality safety and control during actinide metal fuel refining. In order to show criticality safety for the FCF ER, the reference operating conditions for the ER had to be defined. Normal operating envelopes (NOES) were then defined to bracket the important operating conditions. To keep the operating conditions within their NOES, process controls were identified that can be used to regulate the actinide forms and content within the ER. A series of operational checks were developed for each operation that wig verify the extent or success of an operation. The criticality analysis considered the ER operating conditions at their NOE values as the point of departure for credible and incredible failure modes. As a result of the analysis, FCF ER operations were found to be safe with respect to criticality.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stubbins, James
2012-12-19
The objective of this research program is to address major nuclear fuels performance issues for the design and use of oxide-type fuels in the current and advanced nuclear reactor applications. Fuel performance is a major issue for extending fuel burn-up which has the added advantage of reducing the used fuel waste stream. It will also be a significant issue with respect to developing advanced fuel cycle processes where it may be possible to incorporate minor actinides in various fuel forms so that they can be 'burned' rather than join the used fuel waste stream. The potential to fission or transmutemore » minor actinides and certain long-lived fission product isotopes would transform the high level waste storage strategy by removing the need to consider fuel storage on the millennium time scale.« less
Processing of U-2.5Zr-7.5Nb and U-3Zr-9Nb alloys by sintering process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dos Santos, A. M. M.; Ferraz, W. B.; Lameiras, F. S.
2012-07-01
To minimize the risk of nuclear proliferation, there is worldwide interest in reducing fuel enrichment of research and test reactors. To achieve this objective while still guaranteeing criticality and cycle length requirements, there is need of developing high density uranium metallic fuels. Alloying elements such as Zr, Nb and Mo are added to uranium to improve fuel performance in reactors. In this context, the Centro de Desenvolvimento da Tecnologia Nuclear (CDTN) is developing the U-2.5Zr-7.5Nb and U-3Zr-9Nb (weight %) alloys by the innovative process of sintering that utilizes raw materials in the form of powders. The powders were pressed atmore » 400 MPa and then sintered under a vacuum of about 1x10{sup -4} Torr at temperatures ranging from 1050 deg. to 1500 deg.C. The densities of the alloys were measured geometrically and by hydrostatic method and the phases identified by X ray diffraction (XRD). The microstructures of the pellets were observed by scanning electron microscopy (SEM) and the alloying elements were analyzed by energy dispersive X-ray spectroscopy (EDS). The results obtained showed the fuel density to slightly increase with the sintering temperature. The highest density achieved was approximately 80% of theoretical density. It was observed in the pellets a superficial oxide layer formed during the sintering process. (authors)« less
Fabrication and Testing of CERMET Fuel Materials for Nuclear Thermal Propulsion
NASA Technical Reports Server (NTRS)
Hickman, Robert; Broadway, Jeramie; Mireles, Omar
2012-01-01
A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on Nuclear Thermal Propulsion (NTP) is currently being developed for Advanced Space Exploration Systems. The overall goal of the project is to address critical NTP technology challenges and programmatic issues to establish confidence in the affordability and viability of NTP systems. The current technology roadmap for NTP identifies the development of a robust fuel form as a critical near term need. The lack of a qualified nuclear fuel is a significant technical risk that will require a considerable fraction of program resources to mitigate. Due to these risks and the cost for qualification, the development and selection of a primary fuel must begin prior to Authority to Proceed (ATP) for a specific mission. The fuel development is a progressive approach to incrementally reduce risk, converge the fuel materials, and mature the design and fabrication process of the fuel element. A key objective of the current project is to advance the maturity of CERMET fuels. The work includes fuel processing development and characterization, fuel specimen hot hydrogen screening, and prototypic fuel element testing. Early fuel materials development is critical to help validate requirements and fuel performance. The purpose of this paper is to provide an overview and status of the work at Marshall Space Flight Center (MSFC).
Process for producing furan from furfural aldehyde
Diebold, James P.; Evans, Robert J.
1988-01-01
A process of producing furan and derivatives thereof is disclosed. The process includes generating furfural aldehyde vapors and then passing those vapors over a zeolite catalyst at a temperature and for a residence time effective to decarbonylate the furfural aldehydes to form furans and derivatives thereof. The resultant furan vapors and derivatives are then separated. In a preferred form, the furfural aldehyde vapors are generated during the process of converting biomass materials to liquid and gaseous fuels.
Process for producing furan from furfural aldehyde
Diebold, J.P.; Evans, R.J.
1987-04-06
A process of producing furan and derivatives thereof as disclosed. The process includes generating furfural aldehyde vapors and then passing those vapors over a zeolite catalyst at a temperature and for a residence time effective to decarbonylate the furfural aldehydes to form furans and derivatives thereof. The resultant furan vapors and derivatives are then separated. In a preferred form, the furfural aldehyde vapors are generated during the process of converting biomass materials to liquid and gaseous fuels.
Bio-Fuel Production Assisted with High Temperature Steam Electrolysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grant Hawkes; James O'Brien; Michael McKellar
2012-06-01
Two hybrid energy processes that enable production of synthetic liquid fuels that are compatible with the existing conventional liquid transportation fuels infrastructure are presented. Using biomass as a renewable carbon source, and supplemental hydrogen from high-temperature steam electrolysis (HTSE), these two hybrid energy processes have the potential to provide a significant alternative petroleum source that could reduce dependence on imported oil. The first process discusses a hydropyrolysis unit with hydrogen addition from HTSE. Non-food biomass is pyrolyzed and converted to pyrolysis oil. The pyrolysis oil is upgraded with hydrogen addition from HTSE. This addition of hydrogen deoxygenates the pyrolysis oilmore » and increases the pH to a tolerable level for transportation. The final product is synthetic crude that could then be transported to a refinery and input into the already used transportation fuel infrastructure. The second process discusses a process named Bio-Syntrolysis. The Bio-Syntrolysis process combines hydrogen from HTSE with CO from an oxygen-blown biomass gasifier that yields syngas to be used as a feedstock for synthesis of liquid synthetic crude. Conversion of syngas to liquid synthetic crude, using a biomass-based carbon source, expands the application of renewable energy beyond the grid to include transportation fuels. It can also contribute to grid stability associated with non-dispatchable power generation. The use of supplemental hydrogen from HTSE enables greater than 90% utilization of the biomass carbon content which is about 2.5 times higher than carbon utilization associated with traditional cellulosic ethanol production. If the electrical power source needed for HTSE is based on nuclear or renewable energy, the process is carbon neutral. INL has demonstrated improved biomass processing prior to gasification. Recyclable biomass in the form of crop residue or energy crops would serve as the feedstock for this process. A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to heat steam for the hydrogen production via the high temperature steam electrolysis process. Oxygen produced form the electrolysis process is used to control the oxidation rate in the oxygen-blown biomass gasifier.« less
NASA Astrophysics Data System (ADS)
Turan, Cabir; Cora, Ömer Necati; Koç, Muammer
2013-12-01
In this study, results of an investigation on the effects of manufacturing and coating process sequence on the contact resistance (ICR) of metallic bipolar plates (BPP) for polymer electrolyte membrane fuel cells (PEMFCs) are presented. Firstly, uncoated stainless steel 316L blanks were formed into BPP through hydroforming and stamping processes. Then, these formed BPP samples were coated with three different PVD coatings (CrN, TiN and ZrN) at three different thicknesses (0.1, 0.5 and 1 μm). Secondly, blanks of the same alloy were coated first with the same coatings, thickness and technique; then, they were formed into BPPs of the same shape and dimensions using the manufacturing methods as in the first group. Finally, these two groups of BPP samples were tested for their ICR to reveal the effect of process sequence. ICR tests were also conducted on the BPP plates both before and after exposure to corrosion to disclose the effect of corrosion on ICR. Coated-then-formed BPP samples exhibited similar or even better ICR performance than formed-then-coated BPP samples. Thus, manufacturing of coated blanks can be concluded to be more favorable and worth further investigation in quest of making cost effective BPPs for mass production of PEMFC.
Fuel conditioning facility zone-to-zone transfer administrative controls.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pope, C. L.
2000-06-21
The administrative controls associated with transferring containers from one criticality hazard control zone to another in the Argonne National Laboratory (ANL) Fuel Conditioning Facility (FCF) are described. FCF, located at the ANL-West site near Idaho Falls, Idaho, is used to remotely process spent sodium bonded metallic fuel for disposition. The process involves nearly forty widely varying material forms and types, over fifty specific use container types, and over thirty distinct zones where work activities occur. During 1999, over five thousand transfers from one zone to another were conducted. Limits are placed on mass, material form and type, and container typesmore » for each zone. Ml material and containers are tracked using the Mass Tracking System (MTG). The MTG uses an Oracle database and numerous applications to manage the database. The database stores information specific to the process, including material composition and mass, container identification number and mass, transfer history, and the operators involved in each transfer. The process is controlled using written procedures which specify the zone, containers, and material involved in a task. Transferring a container from one zone to another is called a zone-to-zone transfer (ZZT). ZZTs consist of four distinct phases, select, request, identify, and completion.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blair, Sandra L.; MacMillan, Amanda C.; Drozd, Greg T.
Secondary organic aerosol (SOA), formed in a process of photooxidization of diesel fuel, biodiesel fuel, and 20% biodiesel fuel/80% diesel fuel mixture, are prepared under high-NOx conditions in the presence and absence of sulfur dioxide (SO2), ammonia (NH3), and relative humidity (RH). The composition of condensed-phase organic compounds in SOA is measured using several analytical techniques including aerosol mass spectrometry (AMS), high-resolution nanospray desorption electrospray ionization mass spectrometry (nano-DESI/HRMS), and ultra high resolution and mass accuracy 21T Fourier transform ion cyclotron resonance mass spectrometry (21T FT-ICR MS). Results demonstrate that sulfuric acid and condensed organosulfur species formed in photooxidation experimentsmore » with SO2 are present in the SOA particles. Fewer organosulfur species are formed in the high humidity experiments, performed at RH 90%, in comparison with experiments done under dry conditions. There is a strong overlap of organosulfur species observed in this study with previous field and chamber studies of SOA. Many mass spectrometry peaks of organosulfates (R–OS(O)2OH) in field studies previously designated as biogenic or of unknown origin might have originated from anthropogenic sources, such as photooxidation of hydrocarbons present in diesel and biodiesel fuel.« less
Densified edge seals for fuel cell components
DeCasperis, Anthony J.; Roethlein, Richard J.; Breault, Richard D.
1982-01-01
A porous fuel cell component, such as an electrode substrate, has a densified edge which forms an improved gas seal during operation when soaked with electrolyte. The edges are made from the same composition as the rest of the component and are made by compressing an increased thickness of this material along the edges during the fabrication process.
10 CFR 300.6 - Emissions inventories.
Code of Federal Regulations, 2010 CFR
2010-01-01
... limited to emissions resulting from combustion of fossil fuels, process emissions, and fugitive emissions... forms of purchased energy to reduce demand, an entity must include the indirect emissions from the... report other forms of indirect emissions, such as emissions associated with employee commuting, materials...
10 CFR 300.6 - Emissions inventories.
Code of Federal Regulations, 2014 CFR
2014-01-01
... limited to emissions resulting from combustion of fossil fuels, process emissions, and fugitive emissions... forms of purchased energy to reduce demand, an entity must include the indirect emissions from the... report other forms of indirect emissions, such as emissions associated with employee commuting, materials...
10 CFR 300.6 - Emissions inventories.
Code of Federal Regulations, 2011 CFR
2011-01-01
... limited to emissions resulting from combustion of fossil fuels, process emissions, and fugitive emissions... forms of purchased energy to reduce demand, an entity must include the indirect emissions from the... report other forms of indirect emissions, such as emissions associated with employee commuting, materials...
10 CFR 300.6 - Emissions inventories.
Code of Federal Regulations, 2013 CFR
2013-01-01
... limited to emissions resulting from combustion of fossil fuels, process emissions, and fugitive emissions... forms of purchased energy to reduce demand, an entity must include the indirect emissions from the... report other forms of indirect emissions, such as emissions associated with employee commuting, materials...
10 CFR 300.6 - Emissions inventories.
Code of Federal Regulations, 2012 CFR
2012-01-01
... limited to emissions resulting from combustion of fossil fuels, process emissions, and fugitive emissions... forms of purchased energy to reduce demand, an entity must include the indirect emissions from the... report other forms of indirect emissions, such as emissions associated with employee commuting, materials...
Dry compliant seal for phosphoric acid fuel cell
Granata, Jr., Samuel J.; Woodle, Boyd M.
1990-01-01
A dry compliant overlapping seal for a phosphoric acid fuel cell preformed f non-compliant Teflon to make an anode seal frame that encircles an anode assembly, a cathode seal frame that encircles a cathode assembly and a compliant seal frame made of expanded Teflon, generally encircling a matrix assembly. Each frame has a thickness selected to accommodate various tolerances of the fuel cell elements and are either bonded to one of the other frames or to a bipolar or end plate. One of the non-compliant frames is wider than the other frames forming an overlap of the matrix over the wider seal frame, which cooperates with electrolyte permeating the matrix to form a wet seal within the fuel cell that prevents process gases from intermixing at the periphery of the fuel cell and a dry seal surrounding the cell to keep electrolyte from the periphery thereof. The frames may be made in one piece, in L-shaped portions or in strips and have an outer perimeter which registers with the outer perimeter of bipolar or end plates to form surfaces upon which flanges of pan shaped, gas manifolds can be sealed.
Shuck, A.B.
1958-04-01
A device is described that is specifically designed to cast uraniumn fuel rods in a vacuunn, in order to obtain flawless, nonoxidized castings which subsequently require a maximum of machining or wastage of the expensive processed material. A chamber surrounded with heating elements is connected to the molds, and the entire apparatus is housed in an airtight container. A charge of uranium is placed in the chamber, heated, then is allowed to flow into the molds While being rotated. Water circulating through passages in the molds chills the casting to form a fine grained fuel rod in nearly finished form.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Junge, D.C.
1979-09-01
Significant quantits of wood resiue fuels are presently being used in industrial steam generating facilities. Recent studies indicate that substantial additional quantities of wood residue fuels are available for energy generation in the form of steam and/or electricity. A limited data base on the combustion characteristics of wood residue fuels has resulted in the installation and operation of inefficient combustion systems for these fuels. This investigation of the combustion characteristics of wood residue fuels was undertaken to provide a data base which could be used to optimize the combustion of such fuels. Optimization of the combustion process in industrial boilersmore » serves to improve combustion efficiency and to reduce air pollutant emissions generated in the combustion process. This report presents data on the combustion characteristics of lodge pole pine wood chips. The data were obtained in a pilot scale combustion test facility at Oregon State University.« less
Scheffer, Karl D.
1984-07-03
Air is caused to flow through the resin bonded mold to aid combustion of the resin binder to form a low BTU gas fuel. Casting heat is recovered for use in a waste heat boiler or other heat abstraction equipment. Foundry air pollution is reduced, the burned portion of the molding sand is recovered for immediate reuse and savings in fuel and other energy is achieved.
Scheffer, K.D.
1984-07-03
Air is caused to flow through the resin bonded mold to aid combustion of the resin binder to form a low Btu gas fuel. Casting heat is recovered for use in a waste heat boiler or other heat abstraction equipment. Foundry air pollutis reduced, the burned portion of the molding sand is recovered for immediate reuse and savings in fuel and other energy is achieved. 5 figs.
Process to convert biomass and refuse derived fuel to ethers and/or alcohols
Diebold, James P.; Scahill, John W.; Chum, Helena L.; Evans, Robert J.; Rejai, Bahman; Bain, Richard L.; Overend, Ralph P.
1996-01-01
A process for conversion of a feedstock selected from the group consisting of biomass and refuse derived fuel (RDF) to provide reformulated gasoline components comprising a substantial amount of materials selected from the group consisting of ethers, alcohols, or mixtures thereof, comprising: drying said feedstock; subjecting said dried feedstock to fast pyrolysis using a vortex reactor or other means; catalytically cracking vapors resulting from said pyrolysis using a zeolite catalyst; condensing any aromatic byproduct fraction; catalytically alkylating any benzene present in said vapors after condensation; catalytically oligomerizing any remaining ethylene and propylene to higher olefins; isomerizing said olefins to reactive iso-olefins; and catalytically reacting said iso-olefins with an alcohol to form ethers or with water to form alcohols.
Savannah River Site Spent Nuclear Fuel Management Final Environmental Impact Statement
DOE Office of Scientific and Technical Information (OSTI.GOV)
N /A
The proposed DOE action considered in this environmental impact statement (EIS) is to implement appropriate processes for the safe and efficient management of spent nuclear fuel and targets at the Savannah River Site (SRS) in Aiken County, South Carolina, including placing these materials in forms suitable for ultimate disposition. Options to treat, package, and store this material are discussed. The material included in this EIS consists of approximately 68 metric tons heavy metal (MTHM) of spent nuclear fuel 20 MTHM of aluminum-based spent nuclear fuel at SRS, as much as 28 MTHM of aluminum-clad spent nuclear fuel from foreign andmore » domestic research reactors to be shipped to SRS through 2035, and 20 MTHM of stainless-steel or zirconium-clad spent nuclear fuel and some Americium/Curium Targets stored at SRS. Alternatives considered in this EIS encompass a range of new packaging, new processing, and conventional processing technologies, as well as the No Action Alternative. A preferred alternative is identified in which DOE would prepare about 97% by volume (about 60% by mass) of the aluminum-based fuel for disposition using a melt and dilute treatment process. The remaining 3% by volume (about 40% by mass) would be managed using chemical separation. Impacts are assessed primarily in the areas of water resources, air resources, public and worker health, waste management, socioeconomic, and cumulative impacts.« less
Sun, Shaohui; Yang, Ruishu; Wang, Xin; Yan, Shaokang
2018-04-01
An attractive approach for the production of transportation fuels from renewable biomass resources is to convert oxygenates into alkanes. In this paper, C 5 -C 20 alkanes formed via the hydrogenation and hydrodeoxygenation of the oligomers of furfuryl alcohol(FA) can be used as gasoline, diesel and jet fuel fraction. The first step of the process is the oligomers of FA convert into hydrogenated products over Raney Ni catalyst in a batch reactor. The second step of the process converts hydrogenated products to alkanes via hydrodeoxygenation over different bi-functional catalysts include hydrogenation and acidic deoxidization active sites. After this process, the oxygen content decreased from 22.1 wt% in the oligomers of FA to 0.58 wt% in the hydrodeoxygenation products.
Conversion of carbohydrate into hydrogen fuel by a photocatalytic process
NASA Astrophysics Data System (ADS)
Kawai, T.; Sakata, T.
1980-07-01
A photocatalytic process for the conversion of carbohydrates into hydrogen fuel is presented. The method involves the irradiation of sugar, starch or cellulose in the presence of water and a RuO2/TiO2/Pt catalyst, which has been found to lead to the generation of CO2 and H2 at efficiencies 100 times larger than those obtained with TiO2 alone, with no detectable amounts of other products. The reaction mechanism can be explained in terms of an electrochemical microcell, in which electron-hole pairs generated in TiO2 cause redox reactions at the surface. The process may thus be used in the conversion of solar energy stored in the form of carbohydrates by green plant photosynthesis into useful hydrogen fuels.
Hollow-Wall Heat Shield for Fuel Injector Component
NASA Technical Reports Server (NTRS)
Hanson, Russell B. (Inventor)
2018-01-01
A fuel injector component includes a body, an elongate void and a plurality of bores. The body has a first surface and a second surface. The elongate void is enclosed by the body and is integrally formed between portions of the body defining the first surface and the second surface. The plurality of bores extends into the second surface to intersect the elongate void. A process for making a fuel injector component includes building an injector component body having a void and a plurality of ports connected to the void using an additive manufacturing process that utilizes a powdered building material, and removing residual powdered building material from void through the plurality of ports.
Technological survey of tellurium and its compounds
NASA Technical Reports Server (NTRS)
Steindler, M. J.; Vissers, D. R.
1968-01-01
Review includes data on the chemical and physical properties of tellurium, its oxides, and fluorides, pertinent to the process problem of handling fission product tellurium in fluoride form. The technology of tellurium handling in nonaqueous processing of nuclear fuels is also reviewed.
Layered method of electrode for solid oxide electrochemical cells
Jensen, Russell R.
1991-07-30
A process for fabricating a fuel electrode comprising: slurry dipping to form layers which are structurally graded from all or mostly all stabilized zirconia at a first layer, to an outer most layer of substantially all metal powder, such an nickel. Higher performaance fuel electrodes may be achieved if sinter active stabilized zirconia doped for electronic conductivity is used.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silva, Chinthaka M.; Hunt, Rodney Dale; Snead, Lance Lewis
Uranium mononitride (UN) is important as a nuclear fuel. Fabrication of UN in its microspherical form also has its own merits since the advent of the concept of accident-tolerant fuel, where UN is being considered as a potential fuel in the form of TRISO particles. But, not many processes have been well established to synthesize kernels of UN. Therefore, a process for synthesis of microspherical UN with a minimum amount of carbon is discussed herein. First, a series of single-phased microspheres of uranium sesquinitride (U 2N 3) were synthesized by nitridation of UO 2+C microspheres at a few different temperatures.more » Resulting microspheres were of low-density U 2N 3 and decomposed into low-density UN. The variation of density of the synthesized sesquinitrides as a function of its chemical composition indicated the presence of extra (interstitial) nitrogen atoms corresponding to its hyperstoichiometry, which is normally indicated as α-U 2N 3. Average grain sizes of both U 2N 3 and UN varied in a range of 1–2.5 μm. In addition, these had a considerably large amount of pore spacing, indicating the potential sinterability of UN toward its use as a nuclear fuel.« less
Brockman, R. A.; Kramer, D. P.; Barklay, C. D.; ...
2011-10-01
Recent deep space missions utilize the thermal output of the radioisotope plutonium-238 as the fuel in the thermal to electrical power system. Since the application of plutonium in its elemental state has several disadvantages, the fuel employed in these deep space power systems is typically in the oxide form such as plutonium-238 dioxide ( 238PuO 2). As an oxide, the processing of the plutonium dioxide into fuel pellets is performed via ''classical'' ceramic processing unit operations such as sieving of the powder, pressing, sintering, etc. Modeling of these unit operations can be beneficial in the understanding and control of processingmore » parameters with the goal of further enhancing the desired characteristics of the 238PuO 2 fuel pellets. A finite element model has been used to help identify the time-temperature-stress profile within a pellet during a furnace operation taking into account that 238PuO 2 itself has a significant thermal output. The results of the modeling efforts will be discussed.« less
ALD coating of nuclear fuel actinides materials
Yacout, A. M.; Pellin, Michael J.; Yun, Di; Billone, Mike
2017-09-05
The invention provides a method of forming a nuclear fuel pellet of a uranium containing fuel alternative to UO.sub.2, with the steps of obtaining a fuel form in a powdered state; coating the fuel form in a powdered state with at least one layer of a material; and sintering the powdered fuel form into a fuel pellet. Also provided is a sintered nuclear fuel pellet of a uranium containing fuel alternative to UO.sub.2, wherein the pellet is made from particles of fuel, wherein the particles of fuel are particles of a uranium containing moiety, and wherein the fuel particles are coated with at least one layer between about 1 nm to about 4 nm thick of a material using atomic layer deposition, and wherein the at least one layer of the material substantially surrounds each interfacial grain barrier after the powdered fuel form has been sintered.
Reactor-based management of used nuclear fuel: assessment of major options.
Finck, Phillip J; Wigeland, Roald A; Hill, Robert N
2011-01-01
This paper discusses the current status of the ongoing Advanced Fuel Cycle Initiative (AFCI) program in the U.S. Department of Energy that is investigating the potential for using the processing and recycling of used nuclear fuel to improve radioactive waste management, including used fuel. A key element of the strategies is to use nuclear reactors for further irradiation of recovered chemical elements to transmute certain long-lived highly-radioactive isotopes into less hazardous isotopes. Both thermal and fast neutron spectrum reactors are being studied as part of integrated nuclear energy systems where separations, transmutation, and disposal are considered. Radiotoxicity is being used as one of the metrics for estimating the hazard of used fuel and the processing of wastes resulting from separations and recycle-fuel fabrication. Decay heat from the used fuel and/or wastes destined for disposal is used as a metric for use of a geologic repository. Results to date indicate that the most promising options appear to be those using fast reactors in a repeated recycle mode to limit buildup of higher actinides, since the transuranic elements are a key contributor to the radiotoxicity and decay heat. Using such an approach, there could be much lower environmental impact from the high-level waste as compared to direct disposal of the used fuel, but there would likely be greater generation of low-level wastes that will also require disposal. An additional potential waste management benefit is having the ability to tailor waste forms and contents to one or more targeted disposal environments (i.e., to be able to put waste in environments best-suited for the waste contents and forms). Copyright © 2010 Health Physics Society
Technology readiness levels for advanced nuclear fuels and materials development
Carmack, W. J.; Braase, L. A.; Wigeland, R. A.; ...
2016-12-23
The Technology Readiness Level (TRL) process is used to quantitatively assess the maturity of a given technology. It was pioneered by the National Aeronautics and Space Administration (NASA) in the 1980s to develop and deploy new systems for space applications. The process was subsequently adopted by the Department of Defense (DoD) to develop and deploy new technology and systems for defense applications as well as the Department of Energy (DOE) to evaluate the maturity of new technologies in major construction projects. Advanced nuclear fuels and materials development is a critical technology needed for improving the performance and safety of currentmore » and advanced reactors, and ultimately closing the nuclear fuel cycle. Because deployment of new nuclear fuel forms requires a lengthy and expensive research, development, and demonstration program, applying the TRL concept to the advanced fuel development program is very useful as a management, communication and tracking tool. Furthermore, this article provides examples regarding the methods by which TRLs are currently used to assess the maturity of nuclear fuels and materials under development in the DOE Fuel Cycle Research and Development (FCRD) Program within the Advanced Fuels Campaign (AFC).« less
Technology readiness levels for advanced nuclear fuels and materials development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carmack, W. J.; Braase, L. A.; Wigeland, R. A.
The Technology Readiness Level (TRL) process is used to quantitatively assess the maturity of a given technology. It was pioneered by the National Aeronautics and Space Administration (NASA) in the 1980s to develop and deploy new systems for space applications. The process was subsequently adopted by the Department of Defense (DoD) to develop and deploy new technology and systems for defense applications as well as the Department of Energy (DOE) to evaluate the maturity of new technologies in major construction projects. Advanced nuclear fuels and materials development is a critical technology needed for improving the performance and safety of currentmore » and advanced reactors, and ultimately closing the nuclear fuel cycle. Because deployment of new nuclear fuel forms requires a lengthy and expensive research, development, and demonstration program, applying the TRL concept to the advanced fuel development program is very useful as a management, communication and tracking tool. Furthermore, this article provides examples regarding the methods by which TRLs are currently used to assess the maturity of nuclear fuels and materials under development in the DOE Fuel Cycle Research and Development (FCRD) Program within the Advanced Fuels Campaign (AFC).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moon, Seoksu; Huang, Weidi; Li, Zhilong
The needle shutdown of fuel injectors leads to an undesired fuel dribble that forms unburned hydrocarbons and decreases the engine thermal efficiency in modern engines. Understanding of the fuel dribbling process is of great importance to establish its minimization strategy for optimal use of conventional fuels. However, the detailed needle dynamics and in- and near-nozzle flow characteristics governing the fuel dribble process have not been thoroughly understood. In this study, the needle dynamics, in- and near-nozzle flow characteristics and fuel dribble of a mini-sac type three-hole diesel injector were investigated using a highspeed X-ray phase-contrast imaging technique at different injectionmore » pressures. The results showed that an increase in injection pressure increased the flow evacuation velocity at the needle close that induced a more intense fuel cavitation and air ingestion inside the nozzle. The fuel dribbling process showed a high shot-toshot deviation. A statistical analysis of 50-shot results exhibited two breakup modes of fuel dribble determined by the flow evacuation velocity at the needle close and presence of air ingestion. In the first mode, the fast breakup with a short residence time of fuel dribble occurred. Meanwhile, the dripping of undisturbed liquid column with a long residence time of fuel dribble occurred in the second mode. An increase in injection pressure increased the population of the first mode due to more intense air ingestion that primarily caused by an increase in needle closing speed other than an increase in peak injection velocity. Based on the results, the formation mechanism and control strategies of the fuel dribble from modern diesel injectors were discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lilga, Michael A.; Padmaperuma, Asanga B.; Auberry, Deanna L.
We studied a new process for direct conversion of either levulinic acid (LA) or γ-valerolactone (GVL) to hydrocarbon fuel precursors. The process involves passing an aqueous solution of LA or GVL containing a reducing agent, such as ethylene glycol or formic acid, over a ketonization catalyst at 380–400 °C and atmospheric pressure to form a biphasic liquid product. The organic phase is significantly oligomerized and deoxygenated and comprises a complex mixture of open-chain alkanes and olefins, aromatics, and low concentrations of ketones, alcohols, ethers, and carboxylates or lactones. Carbon content in the aqueous phase decreases with decreasing feed rate; themore » aqueous phase can be reprocessed through the same catalyst to form additional organic oils to improve carbon yield. Catalysts are readily regenerated to restore initial activity. Furthermore, the process might be valuable in converting cellulosics to biorenewable gasoline, jet, and diesel fuels as a means to decrease petroleum use and decrease greenhouse gas emissions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shadle, L.J.; Berry, D.A.; Syamlal, Madhava
2007-07-01
Coal gasification is the process of reacting coal with oxygen, steam, and carbon dioxide to form a product gas containing hydrogen and carbon monoxide. Gasification is essentially incomplete combustion. The chemical and physical processes are quite similar, the main difference being the nature of the final products. From a processing point of view the main operating difference is that gasification consumes heat evolved during combustion. Under the reducing environment of gasification the sulfur in the coal is released as hydrogen sulfide rather than sulfur dioxide and the coal's nitrogen is converted mostly to ammonia rather than nitrogen oxides. These reducedmore » forms of sulfur and nitrogen are easily isolated, captured, and utilized, and thus gasification is a clean coal technology with better environmental performance than coal combustion. Depending on the type of gasifier and the operating conditions, gasification can be used to produce a fuel gas suitable for any number of applications. A low heating value fuel gas is produced from an air blown gasifier for use as an industrial fuel and for power production. A medium heating value fuel gas is produced from enriched oxygen blown gasification for use as a synthesis gas in the production of chemicals such as ammonia, methanol, and transportation fuels. A high heating value gas can be produced from shifting the medium heating value product gas over catalysts to produce a substitute or synthetic natural gas (SNG).« less
Development of carbon slurry fuels for transportation (hybrid fuels, phase 2)
NASA Technical Reports Server (NTRS)
Ryan, T. W., III; Dodge, L. G.
1984-01-01
Slurry fuels of various forms of solids in diesel fuel are developed and evaluated for their relative potential as fuel for diesel engines. Thirteen test fuels with different solids concentrations are formulated using eight different materials. A variety of properties are examined including ash content, sulfur content, particle size distribution, and rheological properties. Attempts are made to determine the effects of these variations on these fuel properties on injection, atomization, and combustion processes. The slurries are also tested in a single cylinder CLR engine in both direct injection and prechamber configurations. The data includes the normal performance parameters as well as heat release rates and emissions. The slurries perform very much like the baseline fuel. The combustion data indicate that a large fraction (90 percent or more) of the solids are burning in the engine. It appears that the prechamber engine configuration is more tolerant of the slurries than the direct injection configuration.
METHOD FOR DECONTAMINATION OF REACTOR SOLUTIONS
Maraman, W.J.; Baxman, H.R.; Baker, R.D.
1959-05-01
A process for U recovery from phosphate fuel solutions is described. To fuel solution drawn from the reactor is added Fe(NO/sub 3/)/sub 3/ which destroys the U complex and forms ferric phosphate complex. The UO/sub 2/(NO/sub 3/)/sub 2/ formed is extracted into TBP-kerosene in a countercurrent column. The TBP contalning UO/sub 2/(NO/sub 3/)/sub 2/ is further purified by an aqueous Al(NO/ sub 3/)/sub 3/ scrub solution. The pregnant solution then goes to an H/sub 3/PO/ sub 4/ stripping and kerosene washing column. The H/sub 3/PO/sub 4/--uranyl phosphate solution is separated at the bottom and boiled to remove HNO/sub 3/ then diluted to fuel solution make-up strength. (T.R.H.)
Process for manufacture of inertial confinement fusion targets and resulting product
Masnari, Nino A.; Rensel, Walter B.; Robinson, Merrill G.; Solomon, David E.; Wise, Kensall D.; Wuttke, Gilbert H.
1982-01-01
An ICF target comprising a spherical pellet of fusion fuel surrounded by a concentric shell; and a process for manufacturing the same which includes the steps of forming hemispheric shells of a silicon or other substrate material, adhering the shell segments to each other with a fuel pellet contained concentrically therein, then separating the individual targets from the parent substrate. Formation of hemispheric cavities by deposition or coating of a mold substrate is also described. Coatings or membranes may also be applied to the interior of the hemispheric segments prior to joining.
Process to convert biomass and refuse derived fuel to ethers and/or alcohols
Diebold, J.P.; Scahill, J.W.; Chum, H.L.; Evans, R.J.; Rejai, B.; Bain, R.L.; Overend, R.P.
1996-04-02
A process is described for conversion of a feedstock selected from the group consisting of biomass and refuse derived fuel (RDF) to provide reformulated gasoline components comprising a substantial amount of materials selected from the group consisting of ethers, alcohols, or mixtures thereof, comprising: drying said feedstock; subjecting said dried feedstock to fast pyrolysis using a vortex reactor or other means; catalytically cracking vapors resulting from said pyrolysis using a zeolite catalyst; condensing any aromatic byproduct fraction; catalytically alkylating any benzene present in said vapors after condensation; catalytically oligomerizing any remaining ethylene and propylene to higher olefins; isomerizing said olefins to reactive iso-olefins; and catalytically reacting said iso-olefins with an alcohol to form ethers or with water to form alcohols. 35 figs.
Epsilon Metal Waste Form for Immobilization of Noble Metals from Used Nuclear Fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crum, Jarrod V.; Strachan, Denis M.; Rohatgi, Aashish
2013-10-01
Epsilon metal (ε-metal), an alloy of Mo, Pd, Rh, Ru, and Tc, is being developed as a waste form to treat and immobilize the undissolved solids and dissolved noble metals from aqueous reprocessing of commercial used nuclear fuel. Epsilon metal is an attractive waste form for several reasons: increased durability relative to borosilicate glass, it can be fabricated without additives (100% waste loading), and in addition it also benefits borosilicate glass waste loading by eliminating noble metals from the glass and thus the processing problems related there insolubility in glass. This work focused on the processing aspects of the epsilonmore » metal waste form development. Epsilon metal is comprised of refractory metals resulting in high reaction temperatures to form the alloy, expected to be 1500 - 2000°C making it a non-trivial phase to fabricate by traditional methods. Three commercially available advanced technologies were identified: spark-plasma sintering, microwave sintering, and hot isostatic pressing, and investigated as potential methods to fabricate this waste form. Results of these investigations are reported and compared in terms of bulk density, phase assemblage (X-ray diffraction and elemental analysis), and microstructure (scanning electron microscopy).« less
Nafion(TM) Coats For Electrodes In Liquid-Feed Fuel Cells
NASA Technical Reports Server (NTRS)
Narayanan, Sekharipuram R.; Surampudi, Subbarao; Halpert, Gerald; Vamos, Eugene; Frank, Harvey A.
1995-01-01
Coating or impregnation with commercially available material enables oxidation of organic liquid fuels. Nafion(TM) investigated for use in application because of known combination of desirable characteristics: It is perfluorinated, hydrophilic, proton-conducting ion-exchange polymer exhibiting relatively high thermal and electrochemical stability and not detrimental to kinetics of electrochemical processes. Available in solubilized form and used to apply stable coats to surfaces of electrodes.
Fuel Cells Provide Reliable Power to U.S. Postal Service Facility in Anchorage, Alaska
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker, Steven
2003-01-01
Working together, the U.S. Postal Service (USPS) and Chugach Electric Association, partnering with the Department of Defense (DOD), Department of Energy (DOE), US Army Corps of Engineers Construction Engineering Research Laboratories (USA CERL), Electric Power Research Institute (EPRI), and National Rural Electric Cooperative Association (NRECA), developed and installed one of the largest fuel cell installations in the world. The one-megawatt fuel cell combined heat and power plant sits behind the Anchorage U.S. Postal Service Mail Processing and Distribution Facility. Chugach Electric owns, operates, and maintains the fuel cell power plant, which provides clean, reliable power to the USPS facility. Inmore » addition, heat recovered from the fuel cells, in the form of hot water, is used to heat the USPS Mail Processing and Distribution Facility. By taking a leadership role, the USPS will save over $800,000 in electricity and natural gas costs over the 5 1/2-year contract term with Chugach Electric.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yanagawa, T.; Sakagami, H.; Nagatomo, H.
In inertial confinement fusion, the implosion process is important in forming a high-density plasma core. In the case of a fast ignition scheme using a cone-guided target, the fuel target is imploded with a cone inserted. This scheme is advantageous for efficiently heating the imploded fuel core; however, asymmetric implosion is essentially inevitable. Moreover, the effect of cone position and opening angle on implosion also becomes critical. Focusing on these problems, the effect of the asymmetric implosion, the initial position, and the opening angle on the compression rate of the fuel is investigated using a three-dimensional pure hydrodynamic code.
PLUTONIUM RECOVERY FROM NEUTRON-BOMBARDED URANIUM FUEL
Moore, R.H.
1962-04-10
A process of recovering plutonium from neutronbombarded uranium fuel by dissolving the fuel in equimolar aluminum chloride-potassium chloride; heating the mass to above 700 deg C for decomposition of plutonium tetrachloride to the trichloride; extracting the plutonium trichloride into a molten salt containing from 40 to 60 mole % of lithium chloride, from 15 to 40 mole % of sodium chloride, and from 0 to 40 mole % of potassium chloride or calcium chloride; and separating the layer of equimolar chlorides containing the uranium from the layer formed of the plutonium-containing salt is described. (AEC)
Code of Federal Regulations, 2014 CFR
2014-07-01
... from electrodes submerged in the molten glass, although some fossil fuel may be charged to the furnace... fibrous glass in the form of continuous strands having uniform thickness. With modified-processes means...
Code of Federal Regulations, 2013 CFR
2013-07-01
... from electrodes submerged in the molten glass, although some fossil fuel may be charged to the furnace... fibrous glass in the form of continuous strands having uniform thickness. With modified-processes means...
Code of Federal Regulations, 2010 CFR
2010-07-01
... from electrodes submerged in the molten glass, although some fossil fuel may be charged to the furnace... fibrous glass in the form of continuous strands having uniform thickness. With modified-processes means...
Code of Federal Regulations, 2012 CFR
2012-07-01
... from electrodes submerged in the molten glass, although some fossil fuel may be charged to the furnace... fibrous glass in the form of continuous strands having uniform thickness. With modified-processes means...
Code of Federal Regulations, 2011 CFR
2011-07-01
... from electrodes submerged in the molten glass, although some fossil fuel may be charged to the furnace... fibrous glass in the form of continuous strands having uniform thickness. With modified-processes means...
Cogeneration technology alternatives study. Volume 6: Computer data
NASA Technical Reports Server (NTRS)
1980-01-01
The potential technical capabilities of energy conversion systems in the 1985 - 2000 time period were defined with emphasis on systems using coal, coal-derived fuels or alternate fuels. Industrial process data developed for the large energy consuming industries serve as a framework for the cogeneration applications. Ground rules for the study were established and other necessary equipment (balance-of-plant) was defined. This combination of technical information, energy conversion system data ground rules, industrial process information and balance-of-plant characteristics was analyzed to evaluate energy consumption, capital and operating costs and emissions. Data in the form of computer printouts developed for 3000 energy conversion system-industrial process combinations are presented.
The Design of Connection Solid Oxide Fuel Cell (SOFC) Integrated Grid with Three-Phase Inverter
NASA Astrophysics Data System (ADS)
Darjat; Sulistyo; Triwiyatno, Aris; Thalib, Humaid
2018-03-01
Fuel cell technology is a relatively new energy-saving technology that has the potential to replace conventional energy technologies. Among the different types of generation technologies, fuel cells is the generation technologies considered as a potential source of power generation because it is flexible and can be placed anywhere based distribution system. Modeling of SOFC is done by using Nernst equation. The output power of the fuel cell can be controlled by controlling the flow rate of the fuels used in the process. Three-phase PWM inverter is used to get the form of three-phase voltage which same with the grid. In this paper, the planning and design of the SOFC are connected to the grid.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sutton, M; Blink, J A; Greenberg, H R
2012-04-25
The Used Fuel Disposition (UFD) Campaign within the Department of Energy's Office of Nuclear Energy (DOE-NE) Fuel Cycle Technology (FCT) program has been tasked with investigating the disposal of the nation's spent nuclear fuel (SNF) and high-level nuclear waste (HLW) for a range of potential waste forms and geologic environments. The planning, construction, and operation of a nuclear disposal facility is a long-term process that involves engineered barriers that are tailored to both the geologic environment and the waste forms being emplaced. The UFD Campaign is considering a range of fuel cycles that in turn produce a range of wastemore » forms. The UFD Campaign is also considering a range of geologic media. These ranges could be thought of as adding uncertainty to what the disposal facility design will ultimately be; however, it may be preferable to thinking about the ranges as adding flexibility to design of a disposal facility. For example, as the overall DOE-NE program and industrial actions result in the fuel cycles that will produce waste to be disposed, and the characteristics of those wastes become clear, the disposal program retains flexibility in both the choice of geologic environment and the specific repository design. Of course, other factors also play a major role, including local and State-level acceptance of the specific site that provides the geologic environment. In contrast, the Yucca Mountain Project (YMP) repository license application (LA) is based on waste forms from an open fuel cycle (PWR and BWR assemblies from an open fuel cycle). These waste forms were about 90% of the total waste, and they were the determining waste form in developing the engineered barrier system (EBS) design for the Yucca Mountain Repository design. About 10% of the repository capacity was reserved for waste from a full recycle fuel cycle in which some actinides were extracted for weapons use, and the remaining fission products and some minor actinides were encapsulated in borosilicate glass. Because the heat load of the glass was much less than the PWR and BWR assemblies, the glass waste form was able to be co-disposed with the open cycle waste, by interspersing glass waste packages among the spent fuel assembly waste packages. In addition, the Yucca Mountain repository was designed to include some research reactor spent fuel and naval reactor spent fuel, within the envelope that was set using the commercial reactor assemblies as the design basis waste form. This milestone report supports Sandia National Laboratory milestone M2FT-12SN0814052, and is intended to be a chapter in that milestone report. The independent technical review of this LLNL milestone was performed at LLNL and is documented in the electronic Information Management (IM) system at LLNL. The objective of this work is to investigate what aspects of quantifying, characterizing, and representing the uncertainty associated with the engineered barrier are affected by implementing different advanced nuclear fuel cycles (e.g., partitioning and transmutation scenarios) together with corresponding designs and thermal constraints.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Junge, D.C.
1978-12-01
Significant quantities of wood residue fuels are presently being used in industrial steam generating facilities. Recent studies indicate that substantial additional quantities of wood residue fuels are available for energy generation in the form of steam and/or electricity. A limited data base on the combustion characteristics of wood residue fuels has resulted in the installation and operation of inefficient combustion systems for these fuels. This investigation of the combustion characteristics of wood residue fuels was undertaken to provide a data base which could be used to optimize the combustion of such fuels. Optimization of the the combustion process in industrialmore » boilers serves to improve combustion efficiency and to reduce air pollutant emissions generated in the combustion process. This report presents data on the combustion characteristics of Douglas Fir planer shavings. The data were obtained in a pilot scale combustion test facility at Oregon State Univerisity. Other technical reports present data on the combustion characteristics of: Douglas Fir bark, Red Alder sawdust, Red Alder bark, Ponderosa pine bark, Hemlock bark, and Eastern White Pine bark. An executive summary report is also available which compares the combustion characteristics of the various fuel species.« less
Apparatus for inspecting fuel elements
Oakley, David J.; Groves, Oliver J.; Kaiser, Bruce J.
1986-01-01
Disclosed is an alpha monitor usable in an automated nuclear fuel pin loading and processing unit. Fuel pins or other elongated pins are fed laterally into the alpha monitor in a singular fashion and are translated by a first roller assembly into a weld flare machining and decontamination substation not forming a part of the invention. Pins return and are lifted upwardly and transferred across to a combined pin lifting and electrode operating means which lifts the pins upwardly into a clamshell electrode assembly which is spread open by a combined pin lifting and electrode operating means. Once inserted the clamshell type electrode arrangement closes around the fuel pins so that inspection can occur. Fuel pins are inspected by charging electrodes to a negative potential and measuring the change in charge occurring when positively charged alpha particles strike the negatively charged electrodes. After inspection, the fuel pins are lowered by the pin lifting and electrode operating means into a second roller assembly which longitudinally conveys approved pins from the airtight enclosure in which the alpha monitor is mounted. If the fuel pins are rejected then they are moved laterally by a second transfer means and onto another system for further processing.
Apparatus for inspecting fuel elements
Kaiser, B.J.; Oakley, D.J.; Groves, O.J.
1984-12-21
This disclosure describes an alpha monitor usable in an automated nuclear fuel pin loading and processing unit. Fuel pins or other elongated pins are fed laterally into the alpha monitor in a singular fashion and are translated by a first roller assembly into a weld flare machining and decontamination substation not forming a part of the invention. Pins return and are lifted upwardly and transferred across to a combined pin lifting and electrode operating means which lifts the pins upwardly into a clamshell electrode assembly which is spread open by a combined pin lifting and electrode operating means. Once inserted the clamshell type electrode arrangement closes around the fuel pins so that inspection can occur. Fuel pins are inspected by charging electrodes to a negative potential and measuring the change in charge occurring when positively charged alpha particles strike the negatively charged electrodes. After inspection, the fuel pins are lowered by the pin lifting and electrode operating means into a second roller assembly which longitudinally conveys approved pins from the airtight enclosure in which the alpha monitor is mounted. If the fuel pins are rejected then they are moved laterally by a second transfer means and onto another system for further processing.
The use of gaseous fuels mixtures for SI engines propulsion
NASA Astrophysics Data System (ADS)
Flekiewicz, M.; Kubica, G.
2016-09-01
Paper presents results of SI engine tests, carried on for different gaseous fuels. Carried out analysis made it possible to define correlation between fuel composition and engine operating parameters. Tests covered various gaseous mixtures: of methane and hydrogen and LPG with DME featuring different shares. The first group, considered as low carbon content fuels can be characterized by low CO2 emissions. Flammability of hydrogen added in those mixtures realizes the function of combustion process activator. That is why hydrogen addition improves the energy conversion by about 3%. The second group of fuels is constituted by LPG and DME mixtures. DME mixes perfectly with LPG, and differently than in case of other hydrocarbon fuels consists also of oxygen makes the stoichiometric mixture less oxygen demanding. In case of this fuel an improvement in engine volumetric and overall engine efficiency has been noticed, when compared to LPG. For the 11% DME share in the mixture an improvement of 2% in the efficiency has been noticed. During the tests standard CNG/LPG feeding systems have been used, what underlines utility value of the research. The stand tests results have been followed by combustion process simulation including exhaust forming and charge exchange.
Saturated Monoglyceride Polymorphism and Gel Formation of Biodiesel Blends
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chupka, Gina; Fouts, Lisa; McCormick, Robert
Crystallization or gel formation of normal paraffins in diesel fuel under cold weather conditions leading to fuel filter clogging is a common problem. Cold weather operability of biodiesel (B100) and blends with diesel fuel presents additional complexity because of the presence of saturated monoglycerides (SMGs) and other relatively polar species. Currently, the cloud point measurement (a measure of when the first component crystallizes out of solution) is used to define the lowest temperature at which the fuel can be used without causing cold weather issues. While filter plugging issues have declined, there still remain intermittent unexpected problems above the cloudmore » point for biodiesel blends. Development of a fundamental understanding of how minor components in biodiesel crystallize, gel, and transform is needed in order to prevent these unexpected issues. We have found that SMGs, a low level impurity present in B100 from the production process, can crystallize out of solution and undergo a solvent-mediated polymorphic phase transformation to a more stable, less soluble form. This causes them to persist at temperatures above the cloud point once they have some out of solution. Additionally, we have found that SMGs can cause other more soluble, lower melting point minor components in the B100 to co-crystallize and come out of solution. Monoolein, another minor component from the production process is an unsaturated monoglyceride with a much lower melting point and higher solubility than SMGs. It is able to form a co-crystal with the SMGs and is found together with the SMGs on plugged filters we have analyzed in our laboratory. An observation of isolated crystals in the lab led us to believe that the SMGs may also be forming a gel-like network with components of the B100 and diesel fuel. During filtration experiments, we have noted that in some cases a solid layer of crystals forms and blocks the filter completely, while in other cases this does not occur. Because SMGs are polar and can form layered networks once a sufficient amount of crystals have come out of solution, we recently began investigating the ability of SMGs to form a gel network with fuel components as well as with other minor polar components in the fuel in order to obtain a fundamental understanding of the mechanism of formation. It has been well established that this type of phenomena occurs in sub-sea pipelines where a chief crystallizing component begins to crystallize out of solution. Once a sufficient amount of crystals exists, a volume spanning network of solid crystals can trap liquid crude oil and form a solid-like gel network. We are investigating whether this type of phenomena can occur with SMGs and both fatty acid methyl esters from the B100 and normal paraffins from diesel fuel. Additionally, SMGs are well known to incorporate water into their layered crystal structure. Water is often used to stabilize less stable polymorphic forms of SMGs, therefore water was another minor component of interest. Also of interest is glycerin which has been found on clogged filters in our laboratory.« less
Effect of metallic additives on in situ combustion of Huntington Beach crude experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baena, C.J.; Castanier, L.M.; Brigham, W.E.
1990-08-01
The economics and applicability of an in-situ combustion process for the recovery of crude oil are dictated to a large extent by the nature and the amount of fuel formed during the process. The aim of this work is to use combustion tube studies to determine on a quantitative basis, how the nature and the amount of fuel formed could be changed by the presence of metallic additives. These experiments follow from the qualitative observations on the effect of metallic additives on the in-situ combustion of Huntington Beach crude oil made by De los Rios (1987) at SUPRI. He performedmore » kinetic studies on the oxidation of Huntington Beach crude in porous media and showed that the nature of the fuel formed changed when metallic additives were present. Combustion tube runs were performed using the metallic additives: ferrous chloride (FeCl{sub 2{center dot}}4H{sub 2}O), zinc chloride (ZnCl{sub 2}) and stannic chloride (SnCl{sub 4{center dot}}5H{sub 2}O). Unconsolidated cores were prepared by mixing predetermined amounts of an aqueous solution of the metal salt, Huntington Beach crude oil, Ottawa sand and clay in order to achieve the desired fluid saturations. The mixture was then tamped into the combustion tube. Dry air combustion tube runs were performed keeping the conditions of saturation, air flux and injection pressure approximately the same during each run. The nature of the fuel formed and its impact on the combustion parameters were determined and compared with a control run -- an experiment performed with no metallic additive. 30 refs., 33 figs., 6 tabs.« less
A Materials Compatibility and Thermal Stability Analysis of Common Hydrocarbon Fuels
NASA Technical Reports Server (NTRS)
Meyer, M. L.; Stiegemeier, B. R.
2005-01-01
A materials compatibility and thermal stability investigation was conducted using five common liquid hydrocarbon fuels and two structural materials. The tests were performed at the NASA Glenn Research Center Heated Tube Facility under environmental conditions similar to those encountered in regeneratively cooled rocket engines. Scanning-electron microscopic analysis in conjunction with energy dispersive spectroscopy (EDS) was utilized to characterize the condition of the tube inner wall surface and any carbon deposition or corrosion that was formed during selected runs. Results show that the carbon deposition process in stainless steel tubes was relatively insensitive to fuel type or test condition. The deposition rates were comparable for all fuels and none of the stainless steel test pieces showed any signs of corrosion. For tests conducted with copper tubing, the sulfur content of the fuel had a significant impact on both the condition of the tube wall and carbon deposition rates. Carbon deposition rates for the lowest sulfur fuels (2 ppm) were slightly higher than those recorded in the stainless steel tubes with no corrosion observed on the inner wall surface. For slightly higher sulfur content (25 ppm) fuels, nodules that intruded into the flow area were observed to form on the inner wall surface. These nodules induced moderate tube pressure drop increases. The highest sulfur content fuels (400 ppm) produced extensive wall pitting and dendritic copper sulfide growth that was continuous along the entire tube wall surface. The result of this tube degradation was the inability to maintain flow rate due to rapidly increasing test section pressure drops. Accompanying this corrosion were carbon deposition rates an order of magnitude greater than those observed in comparable stainless steel tests. The results of this investigation indicate that trace impurities in fuels (i.e. sulfur) can significantly impact the carbon deposition process and produce unacceptable corrosion levels in copper based structural materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dunn, Darrell; Poinssot, Christophe; Begg, Bruce
Management of nuclear waste remains an important international topic that includes reprocessing of commercial nuclear fuel, waste-form design and development, storage and disposal packaging, the process of repository site selection, system design, and performance assessment. Requirements to manage and dispose of materials from the production of nuclear weapons, and the renewed interest in nuclear power, in particular through the Generation IV Forum and the Advanced Fuel Cycle Initiative, can be expected to increase the need for scientific advances in waste management. A broad range of scientific and engineering disciplines is necessary to provide safe and effective solutions and address complexmore » issues. This volume offers an interdisciplinary perspective on materials-related issues associated with nuclear waste management programs. Invited and contributed papers cover a wide range of topics including studies on: spent fuel; performance assessment and models; waste forms for low- and intermediate-level waste; ceramic and glass waste forms for plutonium and high-level waste; radionuclides; containers and engineered barriers; disposal environments and site characteristics; and partitioning and transmutation.« less
Direct fabrication of /sup 238/PuO/sub 2/ fuel forms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burney, G.A.; Congdon, J.W.
1982-07-01
The current process for the fabrication of /sup 238/PuO/sub 2/ heat sources includes precipitation of small particle plutonium oxalate crystals (4 to 6 ..mu..m diameter), a calcination to PuO/sub 2/, ball milling, cold pressing, granulation (60 to 125 ..mu..m), and granule sintering prior to hot pressing the fuel pellet. A new two-step direct-strike Pu(III) oxalate precipitation method which yields mainly large well-developed rosettes (50 to 100 ..mu..m diameter) has been demonstrated in the laboratory and in the plant. These large rosettes are formed by agglomeration of small (2 to 4 ..mu..m) crystals, and after calcining and sintering, were directly hotmore » pressed into fuel forms, thus eliminating several of the powder conditioning steps. Conditions for direct hot pressing of the large heat-treated rosettes were determined and a full-scale General Purpose Heat Source pellet was fabricated. The pellet had the desired granule-type microstructure to provide dimensional stability at high temperature. 27 figures.« less
NASA Technical Reports Server (NTRS)
Hickman, Robert; Broadway, Jeramie
2014-01-01
CERMET fuel materials are being developed at the NASA Marshall Space Flight Center for a Nuclear Cryogenic Propulsion Stage. Recent work has resulted in the development and demonstration of a Compact Fuel Element Environmental Test (CFEET) System that is capable of subjecting depleted uranium fuel material samples to hot hydrogen. A critical obstacle to the development of an NCPS engine is the high-cost and safety concerns associated with developmental testing in nuclear environments. The purpose of this testing capability is to enable low-cost screening of candidate materials, fabrication processes, and further validation of concepts. The CERMET samples consist of depleted uranium dioxide (UO2) fuel particles in a tungsten metal matrix, which has been demonstrated on previous programs to provide improved performance and retention of fission products1. Numerous past programs have utilized hot hydrogen furnace testing to develop and evaluate fuel materials. The testing provides a reasonable simulation of temperature and thermal stress effects in a flowing hydrogen environment. Though no information is gained about radiation damage, the furnace testing is extremely valuable for development and verification of fuel element materials and processes. The current work includes testing of subscale W-UO2 slugs to evaluate fuel loss and stability. The materials are then fabricated into samples with seven cooling channels to test a more representative section of a fuel element. Several iterations of testing are being performed to evaluate fuel mass loss impacts from density, microstructure, fuel particle size and shape, chemistry, claddings, particle coatings, and stabilizers. The fuel materials and forms being evaluated on this effort have all been demonstrated to control fuel migration and loss. The objective is to verify performance improvements of the various materials and process options prior to expensive full scale fabrication and testing. Post test analysis will include weight percent fuel loss, microscopy, dimensional tolerance, and fuel stability.
U-Mo Monolithic Fuel for Nuclear Research and Test Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prabhakaran, Ramprashad
The metallic fuel selected to replace the current HEU fuels in the research and test reactors is the LEU-10 weight % Mo alloy in the form of a thin sheet or foil encapsulated in AA6061 aluminum alloy with a zirconium interlayer. In order to effectively lead this pursuit, new developments in processing and fabrication of the fuel elements have been initiated, along with a better understanding of material behavior before and after irradiation as a result of these new developments. This editorial note gives an introduction about research and test reactors, need for HEU to LEU conversion, fuel requirements, highmore » uranium density monolithic fuel development and an overview of the four articles published in the December 2017 issue of JOM under a special topic titled “U-Mo Monolithic Fuel for Nuclear Research and Test Reactors”.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rest, J.
1995-08-01
This report describes the primary physical models that form the basis of the DART mechanistic computer model for calculating fission-product-induced swelling of aluminum dispersion fuels; the calculated results are compared with test data. In addition, DART calculates irradiation-induced changes in the thermal conductivity of the dispersion fuel, as well as fuel restructuring due to aluminum fuel reaction, amorphization, and recrystallization. Input instructions for execution on mainframe, workstation, and personal computers are provided, as is a description of DART output. The theory of fission gas behavior and its effect on fuel swelling is discussed. The behavior of these fission products inmore » both crystalline and amorphous fuel and in the presence of irradiation-induced recrystallization and crystalline-to-amorphous-phase change phenomena is presented, as are models for these irradiation-induced processes.« less
Electrochemical cell and separator plate thereof
Baker, Bernard S.; Dharia, Dilip J.
1979-10-02
A fuel cell includes a separator plate having first and second flow channels extending there through contiguously with an electrode and respectively in flow communication with the cell electrolyte and in flow isolation with respect to such electrolyte. In fuel cell system arrangement, the diverse type channels are supplied in common with process gas for thermal control purposes. The separator plate is readily formed by corrugation of integral sheet material. 10 figs.
Transient High-Pressure Fuel Injection Processes
2012-11-21
ADDRESSES U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 15. SUBJECT TERMS Fuel injection, hydrodynamic instability...nonlinear waves resulting from hydrodynamic instability form vortex structures that affect the shear layer near the interface. Pro- trusions (which are...to increase the length of the orifice channel; the orifice channel for case (a) is twice that of (b). The effects of cavitation and flow recirculation
FUEL COMPOSITION FOR NUCLEAR REACTORS
Andersen, J.C.
1963-08-01
A process for making refractory nuclear fuel elements involves heating uranium and silicon powders in an inert atmosphere to 1600 to 1800 deg C to form USi/sub 3/; adding silicon carbide, carbon, 15% by weight of nickel and aluminum, and possibly also molybdenum and silicon powders; shaping the mixture; and heating to 1700 to 2050 deg C again in an inert atmosphere. Information on obtaining specific compositions is included. (AEC)
A Preliminary Study of the Preparation of Slurry Fuels from Vaporized Magnesium
NASA Technical Reports Server (NTRS)
Witzke, Walter R; Prok, George M; Walsh, Thomas J
1954-01-01
Slurry fuels containing extremely small particles of magnesium were prepared by concentrating the dilute slurry product resulting from the shock-cooling of magnesium metal vapors with a liquid hydrocarbon spray. A complete description of the equipment and procedure used in preparing the fuel is given. Ninety-five percent by weight of the solid particles formed by this process passed through a 100-mesh screen. The particle-size distribution of the screened fraction of one run, as determined by sedimentation analysis, indicated that 73 percent by weight of the metal particles were finer than 2 microns in equivalent spherical diameter. The purity of the solid particles ranged as high as 98.9 percent by weight of free magnesium. The screened product was concentrated by means of a bowl-type centrifuge from 0.5 to more than 50 percent by weight solids content to form an extremely viscous, clay-like mass. By addition of a surface active agent, this viscous material was converted into a pumpable slurry fuel.
Los Alamos National Laboratory considers the use of biodiesel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matlin, M. K.
2002-01-01
A new EPA-approved alternative fuel, called biodiesel, may soon be used at Los Alamos National Laboratory in everything from diesel trucks to laboratory equipment. Biodiesel transforms vegetable oils into a renewable, cleaner energy source that can be used in any machinery that uses diesel fuel. For the past couple years, the Laboratory has been exploring the possibility of switching over to soybean-based biodiesel. This change could lead to many health and environmental benefits, as well as help reduce the nation's dependence on foreign oil. Biodiesel is a clean, renewable diesel fuel substitute made from soybean and other vegetable oil crops,more » as well as from recycled cooking oils. A chemical process breaks down the vegetable oil into a usable form. Vegetable oil has a chain of about 18 carbons and ordinary diesel has about 12 or 13 carbons. The process breaks the carbon chains of the vegetable oil and separates out the glycerin (a fatty substance used in creams and soaps). The co-product of glycerin can be used by pharmaceutical and cosmetic companies, as well as many other markets. Once the chains are shortened and the glycerin is removed from the oil, the remaining liquid is similar to petroleum diesel fuel. It can be burned in pure form or in a blend of any proportion with petroleum diesel. To be considered an alternative fuel source by the EPA, the blend must be at least 20 percent biodiesel (B20). According to the U.S. Department of Energy (DOE), biodiesel is America's fastest growing alternative fuel.« less
Synthesis of phase-pure U 2N 3 microspheres and its decomposition into UN
Silva, Chinthaka M.; Hunt, Rodney Dale; Snead, Lance Lewis; ...
2014-12-12
Uranium mononitride (UN) is important as a nuclear fuel. Fabrication of UN in its microspherical form also has its own merits since the advent of the concept of accident-tolerant fuel, where UN is being considered as a potential fuel in the form of TRISO particles. But, not many processes have been well established to synthesize kernels of UN. Therefore, a process for synthesis of microspherical UN with a minimum amount of carbon is discussed herein. First, a series of single-phased microspheres of uranium sesquinitride (U 2N 3) were synthesized by nitridation of UO 2+C microspheres at a few different temperatures.more » Resulting microspheres were of low-density U 2N 3 and decomposed into low-density UN. The variation of density of the synthesized sesquinitrides as a function of its chemical composition indicated the presence of extra (interstitial) nitrogen atoms corresponding to its hyperstoichiometry, which is normally indicated as α-U 2N 3. Average grain sizes of both U 2N 3 and UN varied in a range of 1–2.5 μm. In addition, these had a considerably large amount of pore spacing, indicating the potential sinterability of UN toward its use as a nuclear fuel.« less
Process for depositing hard coating in a nozzle orifice
Flynn, P.L.; Giammarise, A.W.
1991-10-29
The present invention is directed to a process for coating the interior surfaces of an orifice in a substrate that forms a slurry fuel injection nozzle. In a specific embodiment, the nozzle is part of a fuel injection system for metering a coal-water slurry into a large, medium-speed, multi-cylinder diesel engine. In order to retard erosion of the orifice, the substrate is placed in a chemical vapor deposition (CVD) reaction chamber. A reaction gas is passed into the chamber at a gas temperature below its reaction temperature and is directed through the orifice in the substrate. The gas reaction temperature is a temperature at and above which the reaction gas deposits as a coating, and the reaction gas is of a composition whereby improved resistance to erosion by flow of the particulates in the slurry fuel is imparted by the deposited coating. Only the portion of the substrate in proximity to the orifice to be coated is selectively heated to at least the gas reaction temperature for effecting coating of the orifice's interior surfaces by the vapor deposited coating formed from the reaction gas. 2 figures.
Apparatus and process for depositing hard coating in a nozzle orifice
Flynn, Paul L.; Giammarise, Anthony W.
1994-01-01
The present invention is directed to a process for coating the interior surfaces of an orifice in a substrate that forms a slurry fuel injection nozzle. In a specific embodiment, the nozzle is part of a fuel injection system for metering a coal-water slurry into a large, medium-speed, multi-cylinder diesel engine. In order to retard erosion of the orifice, the substrate is placed in a chemical vapor deposition (CVD) reaction chamber. A reaction gas is passed into the chamber at a gas temperature below its reaction temperature and is directed through the orifice in the substrate. The gas reaction temperature is a temperature at and above which the reaction gas deposits as a coating, and the reaction gas is of a composition whereby improved resistance to erosion by flow of the particulates in the slurry fuel is imparted by the deposited coating. Only the portion of the substrate in proximity to the orifice to be coated is selectively heated to at least the gas reaction temperature for effecting coating of the orifice's interior surfaces by the vapor deposited coating formed from the reaction gas.
Process for depositing hard coating in a nozzle orifice
Flynn, Paul L.; Giammarise, Anthony W.
1991-01-01
The present invention is directed to a process for coating the interior surfaces of an orifice in a substrate that forms a slurry fuel injection nozzle. In a specific embodiment, the nozzle is part of a fuel injection system for metering a coal-water slurry into a large, medium-speed, multi-cylinder diesel engine. In order to retard erosion of the orifice, the substrate is placed in a chemical vapor deposition (CVD) reaction chamber. A reaction gas is passed into the chamber at a gas temperature below its reaction temperature and is directed through the orifice in the substrate. The gas reaction temperature is a temperature at and above which the reaction gas deposits as a coating, and the reaction gas is of a composition whereby improved resistance toerosion by flow of the particulates in the slurry fuel is imparted by the deposited coating. Only the portion of the substrate in proximity to the orifice to be coated is selectively heated to at least the gas reaction temperature for effecting coating of the orifice's interior surfaces by the vapor deposited coating formed from the reaction gas.
Epsilon metal waste form for immobilization of noble metals from used nuclear fuel
NASA Astrophysics Data System (ADS)
Crum, Jarrod V.; Strachan, Denis; Rohatgi, Aashish; Zumhoff, Mac
2013-10-01
Epsilon metal (ɛ-metal), an alloy of Mo, Pd, Rh, Ru, and Tc, is being developed as a waste form to treat and immobilize the undissolved solids and dissolved noble metals from aqueous reprocessing of commercial used nuclear fuel. Epsilon metal is an attractive waste form for several reasons: increased durability relative to borosilicate glass, it can be fabricated without additives (100% waste loading), and in addition it also benefits borosilicate glass waste loading by eliminating noble metals from the glass, thus the processing problems related to their insolubility in glass. This work focused on the processing aspects of the epsilon metal waste form development. Epsilon metal is comprised of refractory metals resulting in high alloying temperatures, expected to be 1500-2000 °C, making it a non-trivial phase to fabricate by traditional methods. Three commercially available advanced technologies were identified: spark-plasma sintering, microwave sintering, and hot isostatic pressing, and investigated as potential methods to fabricate this waste form. Results of these investigations are reported and compared in terms of bulk density, phase assemblage (X-ray diffraction and elemental analysis), and microstructure (scanning electron microscopy).
Evaluation of Uranium-235 Measurement Techniques
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaspar, Tiffany C.; Lavender, Curt A.; Dibert, Mark W.
2017-05-23
Monolithic U-Mo fuel plates are rolled to final fuel element form from the original cast ingot, and thus any inhomogeneities in 235U distribution present in the cast ingot are maintained, and potentially exaggerated, in the final fuel foil. The tolerance for inhomogeneities in the 235U concentration in the final fuel element foil is very low. A near-real-time, nondestructive technique to evaluate the 235U distribution in the cast ingot is required in order to provide feedback to the casting process. Based on the technical analysis herein, gamma spectroscopy has been recommended to provide a near-real-time measure of the 235U distribution inmore » U-Mo cast plates.« less
Square lattice honeycomb tri-carbide fuels for 50 to 250 KN variable thrust NTP design
NASA Astrophysics Data System (ADS)
Anghaie, Samim; Knight, Travis; Gouw, Reza; Furman, Eric
2001-02-01
Ultrahigh temperature solid solution of tri-carbide fuels are used to design an ultracompact nuclear thermal rocket generating 950 seconds of specific impulse with scalable thrust level in range of 50 to 250 kilo Newtons. Solid solutions of tri-carbide nuclear fuels such as uranium-zirconium-niobium carbide. UZrNbC, are processed to contain certain mixing ratio between uranium carbide and two stabilizing carbides. Zirconium or niobium in the tri-carbide could be replaced by tantalum or hafnium to provide higher chemical stability in hot hydrogen environment or to provide different nuclear design characteristics. Recent studies have demonstrated the chemical compatibility of tri-carbide fuels with hydrogen propellant for a few to tens of hours of operation at temperatures ranging from 2800 K to 3300 K, respectively. Fuel elements are fabricated from thin tri-carbide wafers that are grooved and locked into a square-lattice honeycomb (SLHC) shape. The hockey puck shaped SLHC fuel elements are stacked up in a grooved graphite tube to form a SLHC fuel assembly. A total of 18 fuel assemblies are arranged circumferentially to form two concentric rings of fuel assemblies with zirconium hydride filling the space between assemblies. For 50 to 250 kilo Newtons thrust operations, the reactor diameter and length including reflectors are 57 cm and 60 cm, respectively. Results of the nuclear design and thermal fluid analyses of the SLHC nuclear thermal propulsion system are presented. .
Method of preparing thin porous sheets of ceramic material
Swarr, Thomas E.; Nickols, Richard C.; Krasij, Myron
1987-03-24
A method of forming thin porous sheets of ceramic material for use as electrodes or other components in a molten carbonate fuel cell is disclosed. The method involves spray drying a slurry of fine ceramic particles in liquid carrier to produce generally spherical agglomerates of high porosity and a rough surface texture. The ceramic particles may include the electrode catalyst and the agglomerates can be calcined to improve mechanical strength. After slurrying with suitable volatile material and binder tape casting is used to form sheets that are sufficiently strong for further processing and handling in the assembly of a high temperature fuel cell.
Method of preparing thin porous sheets of ceramic material
Swarr, T.E.; Nickols, R.C.; Krasij, M.
1984-05-23
A method of forming thin porous sheets of ceramic material for use as electrodes or other components in a molten carbonate fuel cell is disclosed. The method involves spray drying a slurry of fine ceramic particles in liquid carrier to produce generally spherical agglomerates of high porosity and a rough surface texture. The ceramic particles may include the electrode catalyst and the agglomerates can be calcined to improve mechanical strength. After slurrying with suitable volatile material and binder tape casting is used to form sheets that are sufficiently strong for further processing and handling in the assembly of a high temperature fuel cell.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cortright, Randy
The purpose of this project was to demonstrate the technical and commercial feasibility of producing liquid fuels, particularly jet fuel, from lignocellulosic materials, such as corn stover. This project was led by Virent, Inc. (Virent) which has developed a novel chemical catalytic process (the BioForming ® platform) capable of producing “direct replacement” liquid fuels from biomass-derived feedstocks. Virent has shown it is possible to produce an advantaged jet fuel from biomass that meets or exceeds specifications for commercial and military jet fuel through Fuel Readiness Level (FRL) 5, Process Validation. This project leveraged The National Renewable Energy Lab’s (NREL) expertisemore » in converting corn stover to sugars via dilute acid pretreatment and enzymatic hydrolysis. NREL had previously developed this deconstruction technology for the conversion of corn stover to ethanol. In this project, Virent and NREL worked together to condition the NREL generated hydrolysate for use in Virent’s catalytic process through solids removal, contaminant reduction, and concentration steps. The Idaho National Laboratory (INL) was contracted in this project for the procurement, formatting, storage and analysis of corn stover and Northwestern University developed fundamental knowledge of lignin deconstruction that can help improve overall carbon recovery of the combined technologies. Virent conducted fundamental catalytic studies to improve the performance of the catalytic process and NREL provided catalyst characterization support. A technoeconomic analysis (TEA) was conducted at each stage of the project, with results from these analyses used to inform the direction of the project.« less
NASA Astrophysics Data System (ADS)
Kireev, S. V.; Simanovsky, I. G.; Shnyrev, S. L.
2010-12-01
The study is aimed at an increase in the accuracy of the optical method for the detection of the iodine-containing substances in technological liquids resulting form the processing of the waste nuclear fuel. It is demonstrated that the accuracy can be increased owing to the measurements at various combinations of wavelengths depending on the concentrations of impurities that are contained in the sample under study and absorb in the spectral range used for the detection of the iodine-containing substances.
Conductivity fuel cell collector plate and method of fabrication
Braun, James C.
2002-01-01
An improved method of manufacturing a PEM fuel cell collector plate is disclosed. During molding a highly conductive polymer composite is formed having a relatively high polymer concentration along its external surfaces. After molding the polymer rich layer is removed from the land areas by machining, grinding or similar process. This layer removal results in increased overall conductivity of the molded collector plate. The polymer rich surface remains in the collector plate channels, providing increased mechanical strength and other benefits to the channels. The improved method also permits greater mold cavity thickness providing a number of advantages during the molding process.
Projected Salt Waste Production from a Commercial Pyroprocessing Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simpson, Michael F.
Pyroprocessing of used nuclear fuel inevitably produces salt waste from electrorefining and/or oxide reduction unit operations. Various process design characteristics can affect the actual mass of such waste produced. This paper examines both oxide and metal fuel treatment, estimates the amount of salt waste generated, and assesses potential benefit of process options to mitigate the generation of salt waste. For reference purposes, a facility is considered in which 100 MT/year of fuel is processed. Salt waste estimates range from 8 to 20 MT/year from considering numerous scenarios. It appears that some benefit may be derived from advanced processes for separatingmore » fission products from molten salt waste, but the degree of improvement is limited. Waste form production is also considered but appears to be economically unfavorable. Direct disposal of salt into a salt basin type repository is found to be the most promising with respect to minimizing the impact of waste generation on the economic feasibility and sustainability of pyroprocessing.« less
A physical description of fission product behavior fuels for advanced power reactors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaganas, G.; Rest, J.; Nuclear Engineering Division
2007-10-18
The Global Nuclear Energy Partnership (GNEP) is considering a list of reactors and nuclear fuels as part of its chartered initiative. Because many of the candidate materials have not been explored experimentally under the conditions of interest, and in order to economize on program costs, analytical support in the form of combined first principle and mechanistic modeling is highly desirable. The present work is a compilation of mechanistic models developed in order to describe the fission product behavior of irradiated nuclear fuel. The mechanistic nature of the model development allows for the possibility of describing a range of nuclear fuelsmore » under varying operating conditions. Key sources include the FASTGRASS code with an application to UO{sub 2} power reactor fuel and the Dispersion Analysis Research Tool (DART ) with an application to uranium-silicide and uranium-molybdenum research reactor fuel. Described behavior mechanisms are divided into subdivisions treating fundamental materials processes under normal operation as well as the effect of transient heating conditions on these processes. Model topics discussed include intra- and intergranular gas-atom and bubble diffusion, bubble nucleation and growth, gas-atom re-solution, fuel swelling and ?scion gas release. In addition, the effect of an evolving microstructure on these processes (e.g., irradiation-induced recrystallization) is considered. The uranium-alloy fuel, U-xPu-Zr, is investigated and behavior mechanisms are proposed for swelling in the {alpha}-, intermediate- and {gamma}-uranium zones of this fuel. The work reviews the FASTGRASS kinetic/mechanistic description of volatile ?scion products and, separately, the basis for the DART calculation of bubble behavior in amorphous fuels. Development areas and applications for physical nuclear fuel models are identified.« less
Energy recovery from solid waste. [production engineering model
NASA Technical Reports Server (NTRS)
Dalton, C.; Huang, C. J.
1974-01-01
A recent group study on the problem of solid waste disposal provided a decision making model for a community to use in determining the future for its solid waste. The model is a combination of the following factors: technology, legal, social, political, economic and environmental. An assessment of local or community needs determines what form of energy recovery is desirable. A market for low pressure steam or hot water would direct a community to recover energy from solid waste by incineration to generate steam. A fuel gas could be produced by a process known as pyrolysis if there is a local market for a low heating value gaseous fuel. Solid waste can also be used directly as a fuel supplemental to coal in a steam generator. An evaluation of these various processes is made.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bates, J. K.; Buck, E. C.; Emery, J. W.
1998-09-18
This document reports on the work done by the Nuclear Waste Management Section of the Chemical Technology Division of Argonne National Laboratory in the period of October 1996 through September 1997. Studies have been performed to evaluate the behavior of nuclear waste glass and spent fuel samples under the unsaturated conditions (low-volume water contact) that are likely to exist in the Yucca Mountain environment being considered as a potential site for a high-level waste repository. Tests with actinide-doped waste glasses, in progress for over 11 years, indicate that the transuranic element release is dominated by colloids that continuously form andmore » span from the glass surface. The nature of the colloids that form in the glass and spent fuel testing programs is being investigated by dynamic light scattering to determine the size distribution, by autoradiography to determine the chemistry, and by zeta potential to measure the electrical properties of the colloids. Tests with UO{sub 2} have been ongoing for 12 years. They show that the oxidation of UO{sub 2} occurs rapidly, and the resulting paragenetic sequence of secondary phases forming on the sample surface is similar to that observed for uranium found in natural oxidizing environments. The reaction of spent fuel samples in conditions similar to those used with UO{sub 2} have been in progress for over six years, and the results suggest that spent fuel forms many of the same alteration products as UO{sub 2}. With spent fuel, the bulk of the reaction occurs via a through-grain reaction process, although grain boundary attack is sufficient to have reacted all of the grain boundary regions in the samples. New test methods are under development to evaluate the behavior of spent fuel samples with intact cladding: the rate at which alteration and radionuclide release occurs when water penetrates fuel sections and whether the reaction causes the cladding to split. Alteration phases have been formed on fine grains of UO{sub 2} in contact with small volumes of water within a several month period when the radiolysis product H{sub 2}O{sub 2} is added to the groundwater solution. The test setup has been mocked up for operation with spent fuel in the hot-cell.« less
Method for converting hydrocarbon fuel into hydrogen gas and carbon dioxide
Clawson, Lawrence G.; Mitchell, William L.; Bentley, Jeffrey M.; Thijssen, Johannes H. J.
2000-01-01
A method for converting hydrocarbon fuel into hydrogen gas and carbon dioxide within a reformer 10 is disclosed. According to the method, a stream including an oxygen-containing gas is directed adjacent to a first vessel 18 and the oxygen-containing gas is heated. A stream including unburned fuel is introduced into the oxygen-containing gas stream to form a mixture including oxygen-containing gas and fuel. The mixture of oxygen-containing gas and unburned fuel is directed tangentially into a partial oxidation reaction zone 24 within the first vessel 18. The mixture of oxygen-containing gas and fuel is further directed through the partial oxidation reaction zone 24 to produce a heated reformate stream including hydrogen gas and carbon monoxide. Steam may also be mixed with the oxygen-containing gas and fuel, and the reformate stream from the partial oxidation reaction zone 24 directed into a steam reforming zone 26. High- and low-temperature shift reaction zones 64,76 may be employed for further fuel processing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The Mulled Coal process was developed as a means of overcoming the adverse handling characteristics of wet fine coal without thermal drying. The process involves the addition of a low cost, harmless reagent to wet fine coal using off-the-shelf mixing equipment. Based on laboratory- and bench-scale testing, Mulled coal can be stored, shipped, and burned without causing any of the plugging, pasting, carryback and freezing problems normally associated with wet coal. On the other hand, Mulled Coal does not cause the fugitive and airborne dust problems normally associated with thermally dried coal. The objectives of this project are to demonstratemore » that: the Mulled Coal process, which has been proved to work on a wide range of wet fine coals at bench scale, will work equally well on a continuous basis, producing consistent quality, and at a convincing rate of production in a commercial coal preparation plant; the wet product from a fine coal cleaning circuit can be converted to a solid fuel form for ease of handling and cost savings in storage and rail car transportation; and a wet fine coal product thus converted to a solid fuel form, can be stored, shipped, and burned with conventional fuel handling, transportation, and combustion systems.« less
METHOD AND APPARATUS FOR EXAMINING FUEL ELEMENTS FOR LEAKAGE
Smith, R.R.; Echo, M.W.; Doe, C.B.
1963-12-31
A process and a device for the continuous monitoring of fuel elements while in use in a liquid-metal-cooled, argonblanketed nuclear reactor are presented. A fraction of the argon gas is withdrawn, contacted with a negative electrical charge for attraction of any alkali metal formed from argon by neutron reaction, and recycled into the reactor. The electrical charge is introduced into water, and the water is examined for radioactive alkali metals. (AEC)
Nitride Fuel Development Using Cryo-process Technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Brien, Brandi M; Windes, William E
A new cryo-process technique has been developed for the fabrication of advanced fuel for nuclear systems. The process uses a new cryo-processing technique whereby small, porous microspheres (<2000 µm) are formed from sub-micron oxide powder. A simple aqueous particle slurry of oxide powder is pumped through a microsphere generator consisting of a vibrating needle with controlled amplitude and frequency. As the water-based droplets are formed and pass through the microsphere generator they are frozen in a bath of liquid nitrogen and promptly vacuum freeze-dried to remove the water. The resulting porous microspheres consist of half micron sized oxide particles heldmore » together by electrostatic forces and mechanical interlocking of the particles. Oxide powder microspheres ranging from 750 µm to 2000 µm are then converted into a nitride form using a high temperature fluidized particle bed. Carbon black can be added to the oxide powder before microsphere formation to augment the carbothermic reaction during conversion to a nitride. Also, the addition of ethyl alcohol to the aqueous slurry reduces the surface tension energy of the droplets resulting in even smaller droplets forming in the microsphere generator. Initial results from this new process indicate a lower impurity contamination in the final nitrides due to the single feed stream of particles, material handling and conversion are greatly simplified, a minimum of waste and personnel exposure are anticipated, and finally the conversion kinetics may be greatly increased because of the small oxide powder size (sub-micron) forming the porous microsphere. Thus far the fabrication process has been successful in demonstrating all of these improvements with surrogate ZrO2 powder. Further tests will be conducted in the future using the technique on UO2 powders.« less
Karthikeyan, C; Sathishkumar, Y; Lee, Yang Soo; Kim, Ae Rhan; Yoo, Dong Jin; Kumar, G Gnana
2017-01-01
A simple, environmental friendly and biologically important sediment interfaced fuel cell was developed for the green energy generation. The soil sediment used for the study is enriched of rich anthropogenic free organic carbon, sufficient manganese and high level potassium contents as evidenced from the geochemical characterizations. The saccharides produced by the catalytic reaction of substrate chitosan were utilized for the growth of microorganisms and electron shuttling processes. Chitosan substrate influenced sediment microbial fuel cells exhibited the nearly two fold power increment over the substrate free fuel cells. The fuel cell efficiencies were further increased by bringing the substrate chitosan at nanometric level, which is nearly three and two fold higher than that of substrate free and chitosan influenced sediment microbial fuel cells, respectively, and the influential parameters involved in the power and longevity issues were addressed with different perspectives.
Manufacture of a UO2-Based Nuclear Fuel with Improved Thermal Conductivity with the Addition of BeO
NASA Astrophysics Data System (ADS)
Garcia, Chad B.; Brito, Ryan A.; Ortega, Luis H.; Malone, James P.; McDeavitt, Sean M.
2017-12-01
The low thermal conductivity of oxide nuclear fuels is a performance-limiting parameter. Enhancing this property may provide a contribution toward establishing accident-tolerant fuel forms. In this study, the thermal conductivity of UO2 was increased through the fabrication of ceramic-ceramic composite forms with UO2 containing a continuous BeO matrix. Fuel with a higher thermal conductivity will have reduced thermal gradients and lower centerline temperatures in the fuel pin. Lower operational temperatures will reduce fission gas release and reduce fuel restructuring. Additions of BeO were made to UO2 fuel pellets in 2.5, 5, 7.5, and 10 vol pct concentrations with the goals of establishing reliable lab-scale processing procedures, minimizing porosity, and maximizing thermal conductivity. The microstructure was characterized with electron probe microanalysis, and the thermal properties were assessed by light flash analysis and differential scanning calorimetry. Reliable, high-density samples were prepared using compaction pressure between 200 and 225 MPa and sintering times between 4 and 6 hours. It was found that the thermal conductivity of UO2 improved approximately 10 pct for each 1 vol pct BeO added over the measured temperature range 298.15 K to 523.15 K (25 °C to 250 °C) with the maximum observed improvement being ˜ 100 pct, or doubled, at 10 vol pct BeO.
Process for producing fluid fuel from coal
Hyde, Richard W.; Reber, Stephen A.; Schutte, August H.; Nadkarni, Ravindra M.
1977-01-01
Process for producing fluid fuel from coal. Moisture-free coal in particulate form is slurried with a hydrogen-donor solvent and the heated slurry is charged into a drum wherein the pressure is so regulated as to maintain a portion of the solvent in liquid form. During extraction of the hydrocarbons from the coal, additional solvent is added to agitate the drum mass and keep it up to temperature. Subsequently, the pressure is released to vaporize the solvent and at least a portion of the hydrocarbons extracted. The temperature of the mass in the drum is then raised under conditions required to crack the hydrocarbons in the drum and to produce, after subsequent stripping, a solid coke residue. The hydrocarbon products are removed and fractionated into several cuts, one of which is hydrotreated to form the required hydrogen-donor solvent while other fractions can be hydrotreated or hydrocracked to produce a synthetic crude product. The heaviest fraction can be used to produce ash-free coke especially adapted for hydrogen manufacture. The process can be made self-sufficient in hydrogen and furnishes as a by-product a solid carbonaceous material with a useful heating value.
NASA Astrophysics Data System (ADS)
Zhang, Shenli; Yu, Erick; Gates, Sean; Cassata, William S.; Makel, James; Thron, Andrew M.; Bartel, Christopher; Weimer, Alan W.; Faller, Roland; Stroeve, Pieter; Tringe, Joseph W.
2018-02-01
Helium gas accumulation from alpha decay during extended storage of spent fuel has potential to compromise the structural integrity the fuel. Here we report results obtained with surrogate nickel particles which suggest that alumina formed by atomic layer deposition can serve as a low volume-fraction, uniformly-distributed phase for retention of helium generated in fuel particles such as uranium oxide. Thin alumina layers may also form transport paths for helium in the fuel rod, which would otherwise be impermeable. Micron-scale nickel particles, representative of uranium oxide particles in their low helium solubility and compatibility with the alumina synthesis process, were homogeneously coated with alumina approximately 3-20 nm by particle atomic layer deposition (ALD) using a fluidized bed reactor. Particles were then loaded with helium at 800 °C in a tube furnace. Subsequent helium spectroscopy measurements showed that the alumina phase, or more likely a related nickel/alumina interface structure, retains helium at a density of at least 1017 atoms/cm3. High resolution transmission electron microscopy revealed that the thermal treatment increased the alumina thickness and generated additional porosity. Results from Monte Carlo simulations on amorphous alumina predict the helium retention concentration at room temperature could reach 1021 atoms/cm3 at 400 MPa, a pressure predicted by others to be developed in uranium oxide without an alumina secondary phase. This concentration is sufficient to eliminate bubble formation in the nuclear fuel for long-term storage scenarios, for example. Measurements by others of the diffusion coefficient in polycrystalline alumina indicate values several orders of magnitude higher than in uranium oxide, which then can also allow for helium transport out of the spent fuel.
Diamond nanoparticles as a support for Pt and PtRu catalysts for direct methanol fuel cells.
La-Torre-Riveros, Lyda; Guzman-Blas, Rolando; Méndez-Torres, Adrián E; Prelas, Mark; Tryk, Donald A; Cabrera, Carlos R
2012-02-01
Diamond in nanoparticle form is a promising material that can be used as a robust and chemically stable catalyst support in fuel cells. It has been studied and characterized physically and electrochemically, in its thin film and powder forms, as reported in the literature. In the present work, the electrochemical properties of undoped and boron-doped diamond nanoparticle electrodes, fabricated using the ink-paste method, were investigated. Methanol oxidation experiments were carried out in both half-cell and full fuel cell modes. Platinum and ruthenium nanoparticles were chemically deposited on undoped and boron doped diamond nanoparticles through the use of NaBH(4) as reducing agent and sodium dodecyl benzene sulfonate (SDBS) as a surfactant. Before and after the reduction process, samples were characterized by electron microscopy and spectroscopic techniques. The ink-paste method was also used to prepare the membrane electrode assembly with Pt and Pt-Ru modified undoped and boron-doped diamond nanoparticle catalytic systems, to perform the electrochemical experiments in a direct methanol fuel cell system. The results obtained demonstrate that diamond supported catalyst nanomaterials are promising for methanol fuel cells.
NASA Technical Reports Server (NTRS)
Suder, Jennifer L.
2004-01-01
Today's form of jet engine power comes from what is called a gas turbine engine. This engine is on average 14% efficient and emits great quantities of green house gas carbon dioxide and air pollutants, Le. nitrogen oxides and sulfur oxides. The alternate method being researched involves a reformer and a solid oxide fuel cell (SOFC). Reformers are becoming a popular area of research within the industry scale. NASA Glenn Research Center's approach is based on modifying the large aspects of industry reforming processes into a smaller jet fuel reformer. This process must not only be scaled down in size, but also decrease in weight and increase in efficiency. In comparison to today's method, the Jet A fuel reformer will be more efficient as well as reduce the amount of air pollutants discharged. The intent is to develop a 10kW process that can be used to satisfy the needs of commercial jet engines. Presently, commercial jets use Jet-A fuel, which is a kerosene based hydrocarbon fuel. Hydrocarbon fuels cannot be directly fed into a SOFC for the reason that the high temperature causes it to decompose into solid carbon and Hz. A reforming process converts fuel into hydrogen and supplies it to a fuel cell for power, as well as eliminating sulfur compounds. The SOFC produces electricity by converting H2 and CO2. The reformer contains a catalyst which is used to speed up the reaction rate and overall conversion. An outside company will perform a catalyst screening with our baseline Jet-A fuel to determine the most durable catalyst for this application. Our project team is focusing on the overall research of the reforming process. Eventually we will do a component evaluation on the different reformer designs and catalysts. The current status of the project is the completion of buildup in the test rig and check outs on all equipment and electronic signals to our data system. The objective is to test various reformer designs and catalysts in our test rig to determine the most efficient configuration to incorporate into the specific compact jet he1 reformer test rig. Additional information is included in the original extended abstract.
Square lattice honeycomb reactor for space power and propulsion
NASA Astrophysics Data System (ADS)
Gouw, Reza; Anghaie, Samim
2000-01-01
The most recent nuclear design study at the Innovative Nuclear Space Power and Propulsion Institute (INSPI) is the Moderated Square-Lattice Honeycomb (M-SLHC) reactor design utilizing the solid solution of ternary carbide fuels. The reactor is fueled with solid solution of 93% enriched (U,Zr,Nb)C. The square-lattice honeycomb design provides high strength and is amenable to the processing complexities of these ultrahigh temperature fuels. The optimum core configuration requires a balance between high specific impulse and thrust level performance, and maintaining the temperature and strength limits of the fuel. The M-SLHC design is based on a cylindrical core that has critical radius and length of 37 cm and 50 cm, respectively. This design utilized zirconium hydrate to act as moderator. The fuel sub-assemblies are designed as cylindrical tubes with 12 cm in diameter and 10 cm in length. Five fuel subassemblies are stacked up axially to form one complete fuel assembly. These fuel assemblies are then arranged in the circular arrangement to form two fuel regions. The first fuel region consists of six fuel assemblies, and 18 fuel assemblies for the second fuel region. A 10-cm radial beryllium reflector in addition to 10-cm top axial beryllium reflector is used to reduce neutron leakage from the system. To perform nuclear design analysis of the M-SLHC design, a series of neutron transport and diffusion codes are used. To optimize the system design, five axial regions are specified. In each axial region, temperature and fuel density are varied. The axial and radial power distributions for the system are calculated, as well as the axial and radial flux distributions. Temperature coefficients of the system are also calculated. A water submersion accident scenario is also analyzed for these systems. Results of the nuclear design analysis indicate that a compact core can be designed based on ternary uranium carbide square-lattice honeycomb fuel, which provides a relatively high thrust to weight ratio. .
Physical particularities of nuclear reactors using heavy moderators of neutrons
NASA Astrophysics Data System (ADS)
Kulikov, G. G.; Shmelev, A. N.
2016-12-01
In nuclear reactors, thermal neutron spectra are formed using moderators with small atomic weights. For fast reactors, inserting such moderators in the core may create problems since they efficiently decelerate the neutrons. In order to form an intermediate neutron spectrum, it is preferable to employ neutron moderators with sufficiently large atomic weights, using 233U as a fissile nuclide and 232Th and 231Pa as fertile ones. The aim of the work is to investigate the properties of heavy neutron moderators and to assess their advantages. The analysis employs the JENDL-4.0 nuclear data library and the SCALE program package for simulating the variation of fuel composition caused by irradiation in the reactor. The following main results are obtained. By using heavy moderators with small neutron moderation steps, one is able to (1) increase the rate of resonance capture, so that the amount of fertile material in the fuel may be reduced while maintaining the breeding factor of the core; (2) use the vacant space for improving the fuel-element properties by adding inert, strong, and thermally conductive materials and by implementing dispersive fuel elements in which the fissile material is self-replenished and neutron multiplication remains stable during the process of fuel burnup; and (3) employ mixtures of different fertile materials with resonance capture cross sections in order to increase the resonance-lattice density and the probability of resonance neutron capture leading to formation of fissile material. The general conclusion is that, by forming an intermediate neutron spectrum with heavy neutron moderators, one can use the fuel more efficiently and improve nuclear safety.
Injector nozzle for molten salt destruction of energetic waste materials
Brummond, William A.; Upadhye, Ravindra S.
1996-01-01
An injector nozzle has been designed for safely injecting energetic waste materials, such as high explosives, propellants, and rocket fuels, into a molten salt reactor in a molten salt destruction process without premature detonation or back burn in the injection system. The energetic waste material is typically diluted to form a fluid fuel mixture that is injected rapidly into the reactor. A carrier gas used in the nozzle serves as a carrier for the fuel mixture, and further dilutes the energetic material and increases its injection velocity into the reactor. The injector nozzle is cooled to keep the fuel mixture below the decomposition temperature to prevent spontaneous detonation of the explosive materials before contact with the high-temperature molten salt bath.
Injector nozzle for molten salt destruction of energetic waste materials
Brummond, W.A.; Upadhye, R.S.
1996-02-13
An injector nozzle has been designed for safely injecting energetic waste materials, such as high explosives, propellants, and rocket fuels, into a molten salt reactor in a molten salt destruction process without premature detonation or back burn in the injection system. The energetic waste material is typically diluted to form a fluid fuel mixture that is injected rapidly into the reactor. A carrier gas used in the nozzle serves as a carrier for the fuel mixture, and further dilutes the energetic material and increases its injection velocity into the reactor. The injector nozzle is cooled to keep the fuel mixture below the decomposition temperature to prevent spontaneous detonation of the explosive materials before contact with the high-temperature molten salt bath. 2 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ivan R. Thomas
INMM Abstract 51st Annual Meeting Decommissioning the Fuel Process Building, a Shift in Paradigm for Terminating Safeguards on Process Holdup The Fuel Process Building at the Idaho Nuclear Technology and Engineering Center (INTEC) is being decommissioned after nearly four decades of recovering high enriched uranium from various government owned spent nuclear fuels. The separations process began with fuel dissolution in one of multiple head-ends, followed by three cycles of uranium solvent extraction, and ending with denitration of uranyl nitrate product. The entire process was very complex, and the associated equipment formed an extensive maze of vessels, pumps, piping, and instrumentationmore » within several layers of operating corridors and process cells. Despite formal flushing and cleanout procedures, an accurate accounting for the residual uranium held up in process equipment over extended years of operation, presented a daunting safeguards challenge. Upon cessation of domestic reprocessing, the holdup remained inaccessible and was exempt from measurement during ensuing physical inventories. In decommissioning the Fuel Process Building, the Idaho Cleanup Project, which operates the INTEC, deviated from the established requirements that all nuclear material holdup be measured and credited to the accountability books and that all nuclear materials, except attractiveness level E residual holdup, be transferred to another facility. Instead, the decommissioning involved grouting the process equipment in place, rather than measuring and removing the contained holdup for subsequent transfer. The grouting made the potentially attractiveness level C and D holdup even more inaccessible, thereby effectually converting the holdup to attractiveness level E and allowing for termination of safeguards controls. Prior to grouting the facility, the residual holdup was estimated by limited sampling and destructive analysis of solutions in process lines and by acceptable knowledge based upon the separations process, plant layout, and operating history. The use of engineering estimates, in lieu of approved measurement methods, was justified by the estimated small quantity of holdup remaining, the infeasibility of measuring the holdup in a highly radioactive background, and the perceived hazards to personnel. The alternate approach to quantifying and terminating safeguards on process holdup was approved by deviation.« less
Solar to fuels conversion technologies: a perspective.
Tuller, Harry L
2017-01-01
To meet increasing energy needs, while limiting greenhouse gas emissions over the coming decades, power capacity on a large scale will need to be provided from renewable sources, with solar expected to play a central role. While the focus to date has been on electricity generation via photovoltaic (PV) cells, electricity production currently accounts for only about one-third of total primary energy consumption. As a consequence, solar-to-fuel conversion will need to play an increasingly important role and, thereby, satisfy the need to replace high energy density fossil fuels with cleaner alternatives that remain easy to transport and store. The solar refinery concept (Herron et al. in Energy Environ Sci 8:126-157, 2015), in which captured solar radiation provides energy in the form of heat, electricity or photons, used to convert the basic chemical feedstocks CO 2 and H 2 O into fuels, is reviewed as are the key conversion processes based on (1) combined PV and electrolysis, (2) photoelectrochemically driven electrolysis and (3) thermochemical processes, all focused on initially converting H 2 O and CO 2 to H 2 and CO. Recent advances, as well as remaining challenges, associated with solar-to-fuel conversion are discussed, as is the need for an intensive research and development effort to bring such processes to scale.
Fabrication of simulated DUPIC fuel
NASA Astrophysics Data System (ADS)
Kang, Kweon Ho; Song, Ki Chan; Park, Hee Sung; Moon, Je Sun; Yang, Myung Seung
2000-12-01
Simulated DUPIC fuel provides a convenient way to investigate the DUPIC fuel properties and behavior such as thermal conductivity, thermal expansion, fission gas release, leaching, and so on without the complications of handling radioactive materials. Several pellets simulating the composition and microstructure of DUPIC fuel are fabricated by resintering the powder, which was treated through OREOX process of simulated spent PWR fuel pellets, which had been prepared from a mixture of UO2 and stable forms of constituent nuclides. The key issues for producing simulated pellets that replicate the phases and microstructure of irradiated fuel are to achieve a submicrometre dispersion during mixing and diffusional homogeneity during sintering. This study describes the powder treatment, OREOX, compaction and sintering to fabricate simulated DUPIC fuel using the simulated spent PWR fuel. The homogeneity of additives in the powder was observed after attrition milling. The microstructure of the simulated spent PWR fuel agrees well with the other studies. The leading structural features observed are as follows: rare earth and other oxides dissolved in the UO2 matrix, small metallic precipitates distributed throughout the matrix, and a perovskite phase finely dispersed on grain boundaries.
Advanced fuels campaign 2013 accomplishments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Braase, Lori; Hamelin, Doug
The mission of the Advanced Fuels Campaign (AFC) is to perform Research, Development, and Demonstration (RD&D) activities for advanced fuel forms (including cladding) to enhance the performance and safety of the nation’s current and future reactors; enhance proliferation resistance of nuclear fuel; effectively utilize nuclear energy resources; and address the longer-term waste management challenges. This includes development of a state-of-the art Research and Development (R&D) infrastructure to support the use of “goal-oriented science-based approach.” In support of the Fuel Cycle Research and Development (FCRD) program, AFC is responsible for developing advanced fuels technologies to support the various fuel cycle optionsmore » defined in the Department of Energy (DOE) Nuclear Energy Research and Development Roadmap, Report to Congress, April 2010. Accomplishments made during fiscal year (FY) 2013 are highlighted in this report, which focuses on completed work and results. The process details leading up to the results are not included; however, the technical contact is provided for each section.« less
Fuel-Mediated Transient Clustering of Colloidal Building Blocks.
van Ravensteijn, Bas G P; Hendriksen, Wouter E; Eelkema, Rienk; van Esch, Jan H; Kegel, Willem K
2017-07-26
Fuel-driven assembly operates under the continuous influx of energy and results in superstructures that exist out of equilibrium. Such dissipative processes provide a route toward structures and transient behavior unreachable by conventional equilibrium self-assembly. Although perfected in biological systems like microtubules, this class of assembly is only sparsely used in synthetic or colloidal analogues. Here, we present a novel colloidal system that shows transient clustering driven by a chemical fuel. Addition of fuel causes an increase in hydrophobicity of the building blocks by actively removing surface charges, thereby driving their aggregation. Depletion of fuel causes reappearance of the charged moieties and leads to disassembly of the formed clusters. This reassures that the system returns to its initial, equilibrium state. By taking advantage of the cyclic nature of our system, we show that clustering can be induced several times by simple injection of new fuel. The fuel-mediated assembly of colloidal building blocks presented here opens new avenues to the complex landscape of nonequilibrium colloidal structures, guided by biological design principles.
78 FR 23184 - Proposed Significant New Use Rules on Certain Chemical Substances
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-18
... the use of special characters, any form of encryption, and be free of any defects or viruses. Docket... manufacturing and processing of a chemical substance. The extent to which a use changes the type or form of... blend-stock for conventional fossil fuels (P-11-329, P-11-330, and P-11-331), and use in a manner...
Naval facility energy conversion plants as resource recovery system components
NASA Astrophysics Data System (ADS)
Capps, A. G.
1980-01-01
This interim report addresses concepts for recovering energy from solid waste by using Naval facilities steam plants as principle building blocks of candidate solid waste/resource recovery systems at Navy installations. The major conclusions of this portion of the project are: although it is technically feasible to adapt Navy energy conversion systems to fire Waste Derived Fuels (WDF) in one or more of its forms, the optimal form selected should be a site-specific total system; near- to intermediate-term programs should probably continue to give first consideration to waterwall incinerators and to the cofiring of solid WDF in coal-capable plants; package incinerators and conversions of oil burning plants to fire a fluff form of solid waste fuel may be the options with the greatest potential for the intermediate term because waterwalls would be uneconomical in many small plants and because the majority of medium-sized oil-burning plants will not be converted to burn coal; and pyrolytic processes to produce gaseous and liquid fuels have not been sufficiently developed as yet to be specified for commerical operation.
Fuels Containing Methane of Natural Gas in Solution
NASA Technical Reports Server (NTRS)
Sullivan, Thomas A.
2004-01-01
While exploring ways of producing better fuels for propulsion of a spacecraft on the Mars sample return mission, a researcher at Johnson Space Center (JSC) devised a way of blending fuel by combining methane or natural gas with a second fuel to produce a fuel that can be maintained in liquid form at ambient temperature and under moderate pressure. The use of such a blended fuel would be a departure for both spacecraft engines and terrestrial internal combustion engines. For spacecraft, it would enable reduction of weights on long flights. For the automotive industry on Earth, such a fuel could be easily distributed and could be a less expensive, more efficient, and cleaner-burning alternative to conventional fossil fuels. The concept of blending fuels is not new: for example, the production of gasoline includes the addition of liquid octane enhancers. For the future, it has been commonly suggested to substitute methane or compressed natural gas for octane-enhanced gasoline as a fuel for internal-combustion engines. Unfortunately, methane or natural gas must be stored either as a compressed gas (if kept at ambient temperature) or as a cryogenic liquid. The ranges of automobiles would be reduced from their present values because of limitations on the capacities for storage of these fuels. Moreover, technical challenges are posed by the need to develop equipment to handle these fuels and, especially, to fill tanks acceptably rapidly. The JSC alternative to provide a blended fuel that can be maintained in liquid form at moderate pressure at ambient temperature has not been previously tried. A blended automotive fuel according to this approach would be made by dissolving natural gas in gasoline. The autogenous pressure of this fuel would eliminate the need for a vehicle fuel pump, but a pressure and/or flow regulator would be needed to moderate the effects of temperature and to respond to changing engine power demands. Because the fuel would flash as it entered engine cylinders, relative to gasoline, it would disperse more readily and therefore would mix with air more nearly completely. As a consequence, this fuel would burn more nearly completely (and, hence, more cleanly) than gasoline does. The storage density of this fuel would be similar to that of gasoline, but its energy density would be such that the mileage (more precisely, the distance traveled per unit volume of fuel) would be greater than that of either gasoline or compressed natural gas. Because the pressure needed to maintain the fuel in liquid form would be more nearly constant and generally lower than that needed to maintain compressed natural gas in liquid form, the pressure rating of a tank used to hold this fuel could be lower than that of a tank used to hold compressed natural gas. A mixture of natural gas and gasoline could be distributed more easily than could some alternative fuels. A massive investment in new equipment would not be necessary: One could utilize the present fuel-distribution infrastructure and could blend the gasoline and natural gas at almost any place in the production or distribution process - perhaps even at the retail fuel pump. Yet another advantage afforded by use of a blend of gasoline and natural gas would be a reduction in the amount of gasoline consumed. Because natural gas costs less than gasoline does and is in abundant supply in the United States, the cost of automotive fuel and the demand for imported oil could be reduced.
Cryochemical and CVD processing of shperical carbide fuels for propulsion reactors
NASA Astrophysics Data System (ADS)
Blair, H. Thomas; Carroll, David W.; Matthews, R. Bruce
1991-01-01
Many of the nuclear propulsion reactor concepts proposed for a manned mission to Mars use a coated spherical particle fuel form similar to that used in the Rover and NERVA propulsion reactors. The formation of uranium dicarbide microspheres using a cryochemical process and the coating of the UC2 spheres with zirconium carbide using chemical vapor deposition are being developed at Los Alamos National Laboratory. The cryochemical process is described with a discussion of the variables affecting the sphere formation and carbothermic reduction to produce UC2 spheres from UO2. Emphasis is placed on minimizing the wastes produced by the process. The ability to coat particles with ZrC was recaptured, and improvements in the process and equipment were developed. Volatile organometallic precursors were investigated as alternatives to the original ZrCl4 precursor.
PROCESS OF FORMING POWDERED MATERIAL
Glatter, J.; Schaner, B.E.
1961-07-14
A process of forming high-density compacts of a powdered ceramic material is described by agglomerating the powdered ceramic material with a heat- decompossble binder, adding a heat-decompossble lubricant to the agglomerated material, placing a quantity of the material into a die cavity, pressing the material to form a compact, pretreating the compacts in a nonoxidizing atmosphere to remove the binder and lubricant, and sintering the compacts. When this process is used for making nuclear reactor fuel elements, the ceramic material is an oxide powder of a fissionsble material and after forming, the compacts are placed in a cladding tube which is closed at its ends by vapor tight end caps, so that the sintered compacts are held in close contact with each other and with the interior wall of the cladding tube.
Apparatus and process for depositing hard coating in a nozzle orifice
Flynn, P.L.; Giammarise, A.W.
1994-12-20
The present invention is directed to a process for coating the interior surfaces of an orifice in a substrate that forms a slurry fuel injection nozzle. In a specific embodiment, the nozzle is part of a fuel injection system for metering a coal-water slurry into a large, medium-speed, multi-cylinder diesel engine. In order to retard erosion of the orifice, the substrate is placed in a chemical vapor deposition (CVD) reaction chamber. A reaction gas is passed into the chamber at a gas temperature below its reaction temperature and is directed through the orifice in the substrate. The gas reaction temperature is a temperature at and above which the reaction gas deposits as a coating, and the reaction gas is of a composition whereby improved resistance to erosion by flow of the particulates in the slurry fuel is imparted by the deposited coating. Only the portion of the substrate in proximity to the orifice to be coated is selectively heated to at least the gas reaction temperature for effecting coating of the orifice's interior surfaces by the vapor deposited coating formed from the reaction gas. 2 figures.
Effects of Annealing Process on the Formability of Friction Stir Welded Al-Li Alloy 2195 Plates
NASA Technical Reports Server (NTRS)
Chen, Po-Shou; Bradford, Vann; Russell, Carolyn
2011-01-01
Large rocket cryogenic tank domes have typically been fabricated using Al-Cu based alloys like Al-Cu alloy 2219. The use of aluminum-lithium based alloys for rocket fuel tank domes can reduce weight because aluminum-lithium alloys have lower density and higher strength than Al-Cu alloy 2219. However, Al-Li alloys have rarely been used to fabricate rocket fuel tank domes because of the inherent low formability characteristic that make them susceptible to cracking during the forming operations. The ability to form metal by stretch forming or spin forming without excessive thinning or necking depends on the strain hardening exponent "n". The stain hardening exponent is a measure of how rapidly a metal becomes stronger and harder. A high strain hardening exponent is beneficial to a material's ability to uniformly distribute the imposed strain. Marshall Space Flight Center has developed a novel annealing process that can achieve a work hardening exponent on the order of 0.27 to 0.29, which is approximately 50% higher than what is typically obtained for Al-Li alloys using the conventional method. The strain hardening exponent of the Al-Li alloy plates or blanks heat treated using the conventional method is typically on the order of 0.17 to 0.19. The effects of this novel annealing process on the formability of friction stir welded Al-Li alloy blanks are being studied at Marshall Space Flight Center. The formability ratings will be generated using the strain hardening exponent, strain rate sensitivity and forming range. The effects of forming temperature on the formability will also be studied. The objective of this work is to study the deformation behavior of the friction stir welded Al-Li alloy 2195 blank and determine the formability enhancement by the new annealing process.
Constituent Redistribution in U-Zr Metallic Fuel Using the Advanced Fuel Performance Code BISON
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galloway, Jack D.; Unal, Cetin; Matthews, Christopher
2016-09-30
Previous work done by Galloway, et. al. on EBR-II ternary (U-Pu-Zr) fuel constituent redistribution yielded accurate simulation data for the limited data sets of Zr redistribution. The data sets included EPMA scans of two different irradiated rods. First, T179, which was irradiated to 1.9 at% burnup, was analyzed. Second, DP16, which was irradiated to 11 at% burnup, was analyzed. One set of parameters that most accurately represented the zirconium profiles for both experiments was determined. Since the binary fuel (U-Zr) has previously been used as the driver fuel for sodium fast reactors (SFR) as well as being the likely drivermore » fuel if a new SFR is constructed, this same process has been initiated on the binary fuel form. From limited binary EPMA scans as well as other fuel characterization techniques, it has been observed that zirconium redistribution also occurs in the binary fuel, albeit at a reduced rate compared to observation in the ternary fuel, as noted by Kim et. al. While the rate of redistribution has been observed to be slower, numerous metallographs of U-Zr fuel show distinct zone formations.« less
77 FR 64849 - Proposed Collection; Comment Request for Form 6478
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-23
... 6478, Alcohol and Cellulosic Biofuel Fuels Credit. DATES: Written comments should be received on or... . SUPPLEMENTARY INFORMATION: Title: Alcohol and Cellulosic Biofuel Fuels Credit. OMB Number: 1545-0231. Form Number: Form 6478. Abstract: Use Form 6478 to figure your alcohol and cellulosic biofuel fuels credit...
Laser Fusion - A New Thermonuclear Concept
ERIC Educational Resources Information Center
Cooper, Ralph S.
1975-01-01
Describes thermonuclear processes induced by interaction of a laser beam with the surface of a fuel pellet. An expanding plasma is formed which results in compression of the element. Laser and reactor technology are discussed. Pictures and diagrams are included. (GH)
Understanding Kelvin-Helmholtz instability in paraffin-based hybrid rocket fuels
NASA Astrophysics Data System (ADS)
Petrarolo, Anna; Kobald, Mario; Schlechtriem, Stefan
2018-04-01
Liquefying fuels show higher regression rates than the classical polymeric ones. They are able to form, along their burning surface, a low viscosity and surface tension liquid layer, which can become unstable (Kelvin-Helmholtz instability) due to the high velocity gas flow in the fuel port. This causes entrainment of liquid droplets from the fuel surface into the oxidizer gas flow. To better understand the droplets entrainment mechanism, optical investigations on the combustion behaviour of paraffin-based hybrid rocket fuels in combination with gaseous oxygen have been conducted in the framework of this research. Combustion tests were performed in a 2D single-slab burner at atmospheric conditions. High speed videos were recorded and analysed with two decomposition techniques. Proper orthogonal decomposition (POD) and independent component analysis (ICA) were applied to the scalar field of the flame luminosity. The most excited frequencies and wavelengths of the wave-like structures characterizing the liquid melt layer were computed. The fuel slab viscosity and the oxidizer mass flow were varied to study their influence on the liquid layer instability process. The combustion is dominated by periodic, wave-like structures for all the analysed fuels. Frequencies and wavelengths characterizing the liquid melt layer depend on the fuel viscosity and oxidizer mass flow. Moreover, for very low mass flows, no wavelength peaks are detected for the higher viscosity fuels. This is important to better understand and predict the onset and development of the entrainment process, which is connected to the amplification of the longitudinal waves.
Nuclear reactor fuel rod attachment system
Not Available
1980-09-17
A reusable system is described for removably attaching a nuclear reactor fuel rod to a support member. A locking cap is secured to the fuel rod and a locking strip is fastened to the support member. The locking cap has two opposing fingers shaped to form a socket having a body portion. The locking strip has an extension shaped to rigidly attach to the socket's body portion. The locking cap's fingers are resiliently deflectable. For attachment, the locking cap is longitudinally pushed onto the locking strip causing the extension to temporarily deflect open the fingers to engage the socket's body portion. For removal, the process is reversed.
Dry Storage of Research Reactor Spent Nuclear Fuel - 13321
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, T.M.; Dunsmuir, M.D.; Leduc, D.R.
2013-07-01
Spent fuel from domestic and foreign research reactors is received and stored at the Savannah River Site's L Area Material Storage (L Basin) Facility. This DOE-owned fuel consists primarily of highly enriched uranium in metal, oxide or silicide form with aluminum cladding. Upon receipt, the fuel is unloaded and transferred to basin storage awaiting final disposition. Disposition alternatives include processing via the site's H Canyon facility for uranium recovery, or packaging and shipment of the spent fuel to a waste repository. A program has been developed to provide a phased approach for dry storage of the L Basin fuel. Themore » initial phase of the dry storage program will demonstrate loading, drying, and storage of fuel in twelve instrumented canisters to assess fuel performance. After closure, the loaded canisters are transferred to pad-mounted concrete overpacks, similar to those used for dry storage of commercial fuel. Unlike commercial spent fuel, however, the DOE fuel has high enrichment, very low to high burnup, and low decay heat. The aluminum cladding presents unique challenges due to the presence of an oxide layer that forms on the cladding surface, and corrosion degradation resulting from prolonged wet storage. The removal of free and bound water is essential to the prevention of fuel corrosion and radiolytic generation of hydrogen. The demonstration will validate models predicting pressure, temperature, gas generation, and corrosion performance, provide an engineering scale demonstration of fuel handling, drying, leak testing, and canister backfill operations, and establish 'road-ready' storage of fuel that is suitable for offsite repository shipment or retrievable for onsite processing. Implementation of the Phase I demonstration can be completed within three years. Phases II and III, leading to the de-inventory of L Basin, would require an additional 750 canisters and 6-12 years to complete. Transfer of the fuel from basin storage to dry storage requires integration with current facility operations, and selection of equipment that will allow safe operation within the constraints of existing facility conditions. Examples of such constraints that are evaluated and addressed by the dry storage program include limited basin depth, varying fuel lengths up to 4 m, (13 ft), fissile loading limits, canister closure design, post-load drying and closure of the canisters, instrument selection and installation, and movement of the canisters to storage casks. The initial pilot phase restricts the fuels to shorter length fuels that can be loaded to the canister directly underwater; subsequent phases will require use of a shielded transfer system. Removal of the canister from the basin, followed by drying, inerting, closure of the canister, and transfer of the canister to the storage cask are completed with remotely operated equipment and appropriate shielding to reduce personnel radiation exposure. (authors)« less
Chemical kinetic models for combustion of hydrocarbons and formation of nitric oxide
NASA Technical Reports Server (NTRS)
Jachimowski, C. J.; Wilson, C. H.
1980-01-01
The formation of nitrogen oxides NOx during combustion of methane, propane, and a jet fuel, JP-4, was investigated in a jet stirred combustor. The results of the experiments were interpreted using reaction models in which the nitric oxide (NO) forming reactions were coupled to the appropriate hydrocarbon combustion reaction mechanisms. Comparison between the experimental data and the model predictions reveals that the CH + N2 reaction process has a significant effect on NO formation especially in stoichiometric and fuel rich mixtures. Reaction models were assembled that predicted nitric oxide levels that were in reasonable agreement with the jet stirred combustor data and with data obtained from a high pressure (5.9 atm (0.6 MPa)), prevaporized, premixed, flame tube type combustor. The results also suggested that the behavior of hydrocarbon mixtures, like JP-4, may not be significantly different from that of pure hydrocarbons. Application of the propane combustion and nitric oxide formation model to the analysis of NOx emission data reported for various aircraft gas turbines showed the contribution of the various nitric oxide forming processes to the total NOx formed.
Code of Federal Regulations, 2011 CFR
2011-04-01
... Fuel Price Data, FPC Form No. 423 Versus Monthly Energy Review, 1976-January 1980 A Appendix A 1 to... Selected Fuel Price Data, FPC Form No. 423 Versus Monthly Energy Review, 1976—January 1980 Type of fuel FPC form No. 423 price data 1 1976 1977 1978 1979 January 1980 Monthly energy review price data 2 1976 1977...
Code of Federal Regulations, 2013 CFR
2013-04-01
... Fuel Price Data, FPC Form No. 423 Versus Monthly Energy Review, 1976-January 1980 A Appendix A 1 to... Selected Fuel Price Data, FPC Form No. 423 Versus Monthly Energy Review, 1976—January 1980 Type of fuel FPC form No. 423 price data 1 1976 1977 1978 1979 January 1980 Monthly energy review price data 2 1976 1977...
Code of Federal Regulations, 2012 CFR
2012-04-01
... Fuel Price Data, FPC Form No. 423 Versus Monthly Energy Review, 1976-January 1980 A Appendix A 1 to... Selected Fuel Price Data, FPC Form No. 423 Versus Monthly Energy Review, 1976—January 1980 Type of fuel FPC form No. 423 price data 1 1976 1977 1978 1979 January 1980 Monthly energy review price data 2 1976 1977...
Code of Federal Regulations, 2014 CFR
2014-04-01
... Fuel Price Data, FPC Form No. 423 Versus Monthly Energy Review, 1976-January 1980 A Appendix A 1 to... Selected Fuel Price Data, FPC Form No. 423 Versus Monthly Energy Review, 1976—January 1980 Type of fuel FPC form No. 423 price data 1 1976 1977 1978 1979 January 1980 Monthly energy review price data 2 1976 1977...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clarke, Kester Diederik
The intent of this report is to document a procedure used at LANL for HIP bonding aluminum cladding to U-10Mo fuel foils using a formed HIP can for the Domestic Reactor Conversion program in the NNSA Office of Material, Management and Minimization, and provide some details that may not have been published elsewhere. The HIP process is based on the procedures that have been used to develop the formed HIP can process, including the baseline process developed at Idaho National Laboratory (INL). The HIP bonding cladding process development is summarized in the listed references. Further iterations with Babcock & Wilcoxmore » (B&W) to refine the process to meet production and facility requirements is expected.« less
Molten carbonate fuel cell cathode with mixed oxide coating
Hilmi, Abdelkader; Yuh, Chao-Yi
2013-05-07
A molten carbonate fuel cell cathode having a cathode body and a coating of a mixed oxygen ion conductor materials. The mixed oxygen ion conductor materials are formed from ceria or doped ceria, such as gadolinium doped ceria or yttrium doped ceria. The coating is deposited on the cathode body using a sol-gel process, which utilizes as precursors organometallic compounds, organic and inorganic salts, hydroxides or alkoxides and which uses as the solvent water, organic solvent or a mixture of same.
Local negotiation on compensation siting of the spent nuclear fuel repository in Finland
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kojo, Matti
The aim of the paper is to analyse the local negotiation process between the Municipality of Eurajoki and the nuclear power company Teollisuuden Voima (TVO) and the nuclear waste management company Posiva Oy. The aim of the negotiations was to find an acceptable form of compensation for siting a spent nuclear fuel repository in Olkiluoto, Finland. The paper includes background information on the siting process in Finland, the local political setting in the Municipality of Eurajoki and a description of the negotiation process. The analysis of the negotiations on compensation is important for better understanding the progress of the Finnishmore » siting process. The paper describes the picture of the contest to host the spent nuclear fuel repository. It also provides more information on the relationship between the Municipality of Eurajoki and the power company TVO. The negotiations on compensation and the roles of various players in the negotiations have not been studied in detail because the minutes of the Vuojoki liaison group were not available before the decision of the Supreme Administrative Court in May 2006. (author)« less
OSPREY Model Development Status Update
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veronica J Rutledge
2014-04-01
During the processing of used nuclear fuel, volatile radionuclides will be discharged to the atmosphere if no recovery processes are in place to limit their release. The volatile radionuclides of concern are 3H, 14C, 85Kr, and 129I. Methods are being developed, via adsorption and absorption unit operations, to capture these radionuclides. It is necessary to model these unit operations to aid in the evaluation of technologies and in the future development of an advanced used nuclear fuel processing plant. A collaboration between Fuel Cycle Research and Development Offgas Sigma Team member INL and a NEUP grant including ORNL, Syracuse University,more » and Georgia Institute of Technology has been formed to develop off gas models and support off gas research. Georgia Institute of Technology is developing fundamental level model to describe the equilibrium and kinetics of the adsorption process, which are to be integrated with OSPREY. This report discusses the progress made on expanding OSPREY to be multiple component and the integration of macroscale and microscale level models. Also included in this report is a brief OSPREY user guide.« less
Spent fuel treatment and mineral waste form development at Argonne National Laboratory-West
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goff, K.M.; Benedict, R.W.; Bateman, K.
1996-07-01
At Argonne National Laboratory-West (ANL-West) there are several thousand kilograms of metallic spent nuclear fuel containing bond sodium. This fuel will be treated in the Fuel Conditioning Facility (FCF) at ANL-West to produce stable waste forms for storage and disposal. Both mineral and metal high-level waste forms will be produced. The mineral waste form will contain the active metal fission products and the transuranics. Cold small-scale waste form testing has been on-going at Argonne in Illinois. Large-scale testing is commencing at ANL-West.
Determination of the NPP Kr\\vsko spent fuel decay heat
NASA Astrophysics Data System (ADS)
Kromar, Marjan; Kurinčič, Bojan
2017-07-01
Nuclear fuel is designed to support fission process in a reactor core. Some of the isotopes, formed during the fission, decay and produce decay heat and radiation. Accurate knowledge of the nuclide inventory producing decay heat is important after reactor shut down, during the fuel storage and subsequent reprocessing or disposal. In this paper possibility to calculate the fuel isotopic composition and determination of the fuel decay heat with the Serpent code is investigated. Serpent is a well-known Monte Carlo code used primarily for the calculation of the neutron transport in a reactor. It has been validated for the burn-up calculations. In the calculation of the fuel decay heat different set of isotopes is important than in the neutron transport case. Comparison with the Origen code is performed to verify that the Serpent is taking into account all isotopes important to assess the fuel decay heat. After the code validation, a sensitivity study is carried out. Influence of several factors such as enrichment, fuel temperature, moderator temperature (density), soluble boron concentration, average power, burnable absorbers, and burnup is analyzed.
Two-stage coal gasification and desulfurization apparatus
Bissett, Larry A.; Strickland, Larry D.
1991-01-01
The present invention is directed to a system which effectively integrates a two-stage, fixed-bed coal gasification arrangement with hot fuel gas desulfurization of a first stream of fuel gas from a lower stage of the two-stage gasifier and the removal of sulfur from the sulfur sorbent regeneration gas utilized in the fuel-gas desulfurization process by burning a second stream of fuel gas from the upper stage of the gasifier in a combustion device in the presence of calcium-containing material. The second stream of fuel gas is taken from above the fixed bed in the coal gasifier and is laden with ammonia, tar and sulfur values. This second stream of fuel gas is burned in the presence of excess air to provide heat energy sufficient to effect a calcium-sulfur compound forming reaction between the calcium-containing material and sulfur values carried by the regeneration gas and the second stream of fuel gas. Any ammonia values present in the fuel gas are decomposed during the combustion of the fuel gas in the combustion chamber. The substantially sulfur-free products of combustion may then be combined with the desulfurized fuel gas for providing a combustible fluid utilized for driving a prime mover.
Bid opening report : Federal-aid highway construction contracts : calendar year 1999
DOT National Transportation Integrated Search
1996-01-01
The publication of FHWA's A Guide to Reporting Highway Statistics was a significant milestone in unifying the data-reporting process. The Guide consolidated 16 reporting forms and provided instructions for reporting highway-related data on motor-fuel...
NASA Astrophysics Data System (ADS)
Rom, Frank E.; Finnegan, Patrick M.
1994-07-01
The ``NEW'' solid-core fuel form is the old Vapor Transport (VT) fuel pin investigated at NASA about 30 years ago. It is simply a tube sealed at both ends partially filled with UO2. During operation the UO2 forms an annular layer on the inside of the tube by vaporization and condensation. This form is an ideal structure for overall strength and retention of fission products. All of the structural material lies between the fuel (including fission products) and the reactor coolant. The isothermal inside fuel surface temperature that results from the vaporization and condensation of fuel during operation eliminates hotspots, significantly increasing the design fuel pin surface temperature. For NTP, W-UO2 fuel pins yield higher operating temperatures than for other fuel forms, because W has about a ten-fold lower vaporization rate compared to any other known material. The use of perigee propulsion using W-UO2 fuel pins can result in a more than ten-fold reduction in reactor power. Lower reactor power, together with zero fission product release potential, and the simplicity of fabrication of VT fuel pins should greatly simplify and reduce the cost of development of NTP. For NEP, VT fuel pins can increase fast neutron spectrum reactor life with no fission product release. Thermal spectrum NEP reactors using W184 or Mo VT fuel pins, with only small amounts of high neutron absorbing additives, offer benefits because of much lower fissionable fuel requirements. The VT fuel pin has application to commercial power reactors with similar benefits.
On Soot Inception in Nonpremixed Flames and the Effects of Flame Structure
NASA Technical Reports Server (NTRS)
Chao, B. H.; Liu, S.; Axelbaum, R. L.; Gokoglu, Suleyman (Technical Monitor)
1998-01-01
A simplified three-step model of soot inception has been employed with high activation energy asymptotics to study soot inception in nonpremixed counterflow systems with emphasis on understanding the effects of hydrodynamics and transport. The resulting scheme yields three zones: (1) a fuel oxidation zone wherein the fuel and oxidizer react to form product as well as a radical R, (e.g., H), (2) a soot/precursor formation zone where the radical R reacts with fuel to form "soot/precursor" S, and (3) a soot/precursor consumption zone where S reacts with the oxidizer to form product. The kinetic scheme, although greatly simplified, allows the coupling between soot inception and flame structure to be assessed. The results yield flame temperature, flame location, and a soot/precursor index S(sub I) as functions of Damkohler number for S formation. The soot/precursor index indicates the amount of S at the boundary of the formation region. The flame temperature indirectly indicates the total amount of S integrated over the formation region because as S is formed less heat release is available. The results show that unlike oxidation reactions, an extinction turning-point behavior does not exist for soot. Instead, the total amount of S slowly decreases with decreasing Damkohler number (increasing strain rate), which is consistent with counterflow flame experiments. When the Lewis number of the radical is decreased from unity, the total S reduces due to reduced residence time for the radical in the soot formation region. Similarly, when the Lewis number of the soot/precursor is increased from unity the amount of S increases for all Damkohler numbers. In addition to studying fuel-air (low stoichiometric mixture fraction) flames, the air-side nitrogen was substituted into the fuel, yielding diluted fuel-oxygen (high stoichiometric mixture fraction) flames with the same flame temperature as the fuel - air flames. The relative flame locations were different however, and, consistent with counterflow flame experiments, this difference was found to dramatically reduce the total amount of S generated because the change in stoichiometric mixture fraction affects residence times, temperatures and concentrations in the soot/precursor formation and consumption zones. Furthermore, while the soot/precursor consumption reaction had a negligible effect on the soot process for fuel-air flames it was very important to diluted fuel - oxygen flames.
Method of forming a package for MEMS-based fuel cell
Morse, Jeffrey D; Jankowski, Alan F
2013-05-21
A MEMS-based fuel cell package and method thereof is disclosed. The fuel cell package comprises seven layers: (1) a sub-package fuel reservoir interface layer, (2) an anode manifold support layer, (3) a fuel/anode manifold and resistive heater layer, (4) a Thick Film Microporous Flow Host Structure layer containing a fuel cell, (5) an air manifold layer, (6) a cathode manifold support structure layer, and (7) a cap. Fuel cell packages with more than one fuel cell are formed by positioning stacks of these layers in series and/or parallel. The fuel cell package materials such as a molded plastic or a ceramic green tape material can be patterned, aligned and stacked to form three dimensional microfluidic channels that provide electrical feedthroughs from various layers which are bonded together and mechanically support a MEMS-based miniature fuel cell. The package incorporates resistive heating elements to control the temperature of the fuel cell stack. The package is fired to form a bond between the layers and one or more microporous flow host structures containing fuel cells are inserted within the Thick Film Microporous Flow Host Structure layer of the package.
Method of forming a package for mems-based fuel cell
Morse, Jeffrey D.; Jankowski, Alan F.
2004-11-23
A MEMS-based fuel cell package and method thereof is disclosed. The fuel cell package comprises seven layers: (1) a sub-package fuel reservoir interface layer, (2) an anode manifold support layer, (3) a fuel/anode manifold and resistive heater layer, (4) a Thick Film Microporous Flow Host Structure layer containing a fuel cell, (5) an air manifold layer, (6) a cathode manifold support structure layer, and (7) a cap. Fuel cell packages with more than one fuel cell are formed by positioning stacks of these layers in series and/or parallel. The fuel cell package materials such as a molded plastic or a ceramic green tape material can be patterned, aligned and stacked to form three dimensional microfluidic channels that provide electrical feedthroughs from various layers which are bonded together and mechanically support a MEMOS-based miniature fuel cell. The package incorporates resistive heating elements to control the temperature of the fuel cell stack. The package is fired to form a bond between the layers and one or more microporous flow host structures containing fuel cells are inserted within the Thick Film Microporous Flow Host Structure layer of the package.
NASA Astrophysics Data System (ADS)
Beygel‧, A. G.; Kutsenko, K. V.; Lavrukhin, A. A.; Magomedbekov, E. P.; Pershukov, V. A.; Sofronov, V. L.; Tyupina, E. A.; Zhiganov, A. N.
2017-01-01
The experience of implementation of the basic educational program of magistracy on direction «Nuclear Physics and Technologies» in a network form is presented. Examples of joint implementation of the educational process with employers organizations, other universities and intranet mobility of students are given.
Hydrogen and elemental carbon production from natural gas and other hydrocarbons
Detering, Brent A.; Kong, Peter C.
2002-01-01
Diatomic hydrogen and unsaturated hydrocarbons are produced as reactor gases in a fast quench reactor. During the fast quench, the unsaturated hydrocarbons are further decomposed by reheating the reactor gases. More diatomic hydrogen is produced, along with elemental carbon. Other gas may be added at different stages in the process to form a desired end product and prevent back reactions. The product is a substantially clean-burning hydrogen fuel that leaves no greenhouse gas emissions, and elemental carbon that may be used in powder form as a commodity for several processes.
Energy Supply- Production of Fuel from Agricultural and Animal Waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gabriel Miller
2009-03-25
The Society for Energy and Environmental Research (SEER) was funded in March 2004 by the Department of Energy, under grant DE-FG-36-04GO14268, to produce a study, and oversee construction and implementation, for the thermo-chemical production of fuel from agricultural and animal waste. The grant focuses on the Changing World Technologies (CWT) of West Hempstead, NY, thermal conversion process (TCP), which converts animal residues and industrial food processing biproducts into fuels, and as an additional product, fertilizers. A commercial plant was designed and built by CWT, partially using grant funds, in Carthage, Missouri, to process animal residues from a nearby turkey processingmore » plant. The DOE sponsored program consisted of four tasks. These were: Task 1 Optimization of the CWT Plant in Carthage - This task focused on advancing and optimizing the process plant operated by CWT that converts organic waste to fuel and energy. Task 2 Characterize and Validate Fuels Produced by CWT - This task focused on testing of bio-derived hydrocarbon fuels from the Carthage plant in power generating equipment to determine the regulatory compliance of emissions and overall performance of the fuel. Task 3 Characterize Mixed Waste Streams - This task focused on studies performed at Princeton University to better characterize mixed waste incoming streams from animal and vegetable residues. Task 4 Fundamental Research in Waste Processing Technologies - This task focused on studies performed at the Massachusetts Institute of Technology (MIT) on the chemical reformation reaction of agricultural biomass compounds in a hydrothermal medium. Many of the challenges to optimize, improve and perfect the technology, equipment and processes in order to provide an economically viable means of creating sustainable energy were identified in the DOE Stage Gate Review, whose summary report was issued on July 30, 2004. This summary report appears herein as Appendix 1, and the findings of the report formed the basis for much of the subsequent work under the grant. An explanation of the process is presented as well as the completed work on the four tasks.« less
Willit, James L [Ratavia, IL
2007-09-11
An improved process and device for the recovery of the minor actinides and the transuranic elements (TRU's) from a molten salt electrolyte. The process involves placing the device, an electrically non-conducting barrier between an anode salt and a cathode salt. The porous barrier allows uranium to diffuse between the anode and cathode, yet slows the diffusion of uranium ions so as to cause depletion of uranium ions in the catholyte. This allows for the eventual preferential deposition of transuranics present in spent nuclear fuel such as Np, Pu, Am, Cm. The device also comprises an uranium oxidation anode. The oxidation anode is solid uranium metal in the form of spent nuclear fuel. The spent fuel is placed in a ferric metal anode basket which serves as the electrical lead or contact between the molten electrolyte and the anodic uranium metal.
Willit, James L [Batavia, IL
2010-09-21
An improved process and device for the recovery of the minor actinides and the transuranic elements (TRU's) from a molten salt electrolyte. The process involves placing the device, an electrically non-conducting barrier between an anode salt and a cathode salt. The porous barrier allows uranium to diffuse between the anode and cathode, yet slows the diffusion of uranium ions so as to cause depletion of uranium ions in the catholyte. This allows for the eventual preferential deposition of transuranics present in spent nuclear fuel such as Np, Pu, Am, Cm. The device also comprises an uranium oxidation anode. The oxidation anode is solid uranium metal in the form of spent nuclear fuel. The spent fuel is placed in a ferric metal anode basket which serves as the electrical lead or contact between the molten electrolyte and the anodic uranium metal.
Physical particularities of nuclear reactors using heavy moderators of neutrons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kulikov, G. G., E-mail: ggkulikov@mephi.ru; Shmelev, A. N.
2016-12-15
In nuclear reactors, thermal neutron spectra are formed using moderators with small atomic weights. For fast reactors, inserting such moderators in the core may create problems since they efficiently decelerate the neutrons. In order to form an intermediate neutron spectrum, it is preferable to employ neutron moderators with sufficiently large atomic weights, using {sup 233}U as a fissile nuclide and {sup 232}Th and {sup 231}Pa as fertile ones. The aim of the work is to investigate the properties of heavy neutron moderators and to assess their advantages. The analysis employs the JENDL-4.0 nuclear data library and the SCALE program packagemore » for simulating the variation of fuel composition caused by irradiation in the reactor. The following main results are obtained. By using heavy moderators with small neutron moderation steps, one is able to (1) increase the rate of resonance capture, so that the amount of fertile material in the fuel may be reduced while maintaining the breeding factor of the core; (2) use the vacant space for improving the fuel-element properties by adding inert, strong, and thermally conductive materials and by implementing dispersive fuel elements in which the fissile material is self-replenished and neutron multiplication remains stable during the process of fuel burnup; and (3) employ mixtures of different fertile materials with resonance capture cross sections in order to increase the resonance-lattice density and the probability of resonance neutron capture leading to formation of fissile material. The general conclusion is that, by forming an intermediate neutron spectrum with heavy neutron moderators, one can use the fuel more efficiently and improve nuclear safety.« less
Organized energetic composites based on micro and nanostructures and methods thereof
Gash, Alexander E.; Han, Thomas Yong-Jin; Sirbuly, Donald J.
2012-09-04
An ordered energetic composite structure according to one embodiment includes an ordered array of metal fuel portions; and an oxidizer in gaps located between the metal fuel portions. An ordered energetic composite structure according to another embodiment includes at least one metal fuel portion having an ordered array of nanopores; and an oxidizer in the nanopores. A method for forming an ordered energetic composite structure according to one embodiment includes forming an ordered array of metal fuel portions; and depositing an oxidizer in gaps located between the metal fuel portions. A method for forming an ordered energetic composite structure according to another embodiment includes forming an ordered array of nanopores in at least one metal fuel portion; and depositing an oxidizer in the nanopores.
Status of Fuel Development and Manufacturing for Space Nuclear Reactors at BWX Technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carmack, W.J.; Husser, D.L.; Mohr, T.C.
2004-02-04
New advanced nuclear space propulsion systems will soon seek a high temperature, stable fuel form. BWX Technologies Inc (BWXT) has a long history of fuel manufacturing. UO2, UCO, and UCx have been fabricated at BWXT for various US and international programs. Recent efforts at BWXT have focused on establishing the manufacturing techniques and analysis capabilities needed to provide a high quality, high power, compact nuclear reactor for use in space nuclear powered missions. To support the production of a space nuclear reactor, uranium nitride has recently been manufactured by BWXT. In addition, analytical chemistry and analysis techniques have been developedmore » to provide verification and qualification of the uranium nitride production process. The fabrication of a space nuclear reactor will require the ability to place an unclad fuel form into a clad structure for assembly into a reactor core configuration. To this end, BWX Technologies has reestablished its capability for machining, GTA welding, and EB welding of refractory metals. Specifically, BWX Technologies has demonstrated GTA welding of niobium flat plate and EB welding of niobium and Nb-1Zr tubing. In performing these demonstration activities, BWX Technologies has established the necessary infrastructure to manufacture UO2, UCx, or UNx fuel, components, and complete reactor assemblies in support of space nuclear programs.« less
Growth of the interaction layer around fuel particles in dispersion fuel
NASA Astrophysics Data System (ADS)
Olander, D.
2009-01-01
Corrosion of uranium particles in dispersion fuel by the aluminum matrix produces interaction layers (an intermetallic-compound corrosion product) around the shrinking fuel spheres. The rate of this process was modeled as series resistances due to Al diffusion through the interaction layer and reaction of aluminum with uranium in the fuel particle to produce UAl x. The overall kinetics are governed by the relative rates of these two steps, the slowest of which is reaction at the interface between Al in the interaction layer and U in the fuel particle. The substantial volume change as uranium is transferred from the fuel to the interaction layer was accounted for. The model was compared to literature data on in-reactor growth of the interaction layer and the Al/U gradient in this layer, the latter measured in ex-reactor experiments. The rate constant of the Al-U interface reaction and the diffusivity of Al in the interaction layer were obtained from this fitting procedure. The second feature of the corrosion process is the transfer of fission products from the fuel particle to the interaction layer due to the reaction. It is commonly assumed that the observed swelling of irradiated fuel elements of this type is due to release of fission gas in the interaction layer to form large bubbles. This hypothesis was tested by using the model to compute the quantity of fission gas available from this source and comparing the pressure of the resulting gas with the observed swelling of fuel plates. It was determined that the gas pressure so generated is too small to account for the observed delamination of the fuel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mcwilliams, A. J.
2015-09-08
This report reviews literature on reprocessing high temperature gas-cooled reactor graphite fuel components. A basic review of the various fuel components used in the pebble bed type reactors is provided along with a survey of synthesis methods for the fabrication of the fuel components. Several disposal options are considered for the graphite pebble fuel elements including the storage of intact pebbles, volume reduction by separating the graphite from fuel kernels, and complete processing of the pebbles for waste storage. Existing methods for graphite removal are presented and generally consist of mechanical separation techniques such as crushing and grinding chemical techniquesmore » through the use of acid digestion and oxidation. Potential methods for reprocessing the graphite pebbles include improvements to existing methods and novel technologies that have not previously been investigated for nuclear graphite waste applications. The best overall method will be dependent on the desired final waste form and needs to factor in the technical efficiency, political concerns, cost, and implementation.« less
The Outlook for Low-Grade Fuels in Tomsk Region: Research Experience at Tomsk Polytechnic University
NASA Astrophysics Data System (ADS)
Khaustov, Sergei A.; Kazakov, Alexander V.; Cherkashina, Galina A.; Sobinova, Liubov A.
2016-02-01
The urgency of the discussed issue is caused by the need to substitute in the regional fuel-energy balances imported energy resources with local low-grade fuels. The main aim of the study is to estimate thermal properties of local fuels in Tomsk region and evaluate its energy use viability. The methods used in the study were based standard GOST 52911-2008, 11022-95 and 6382-2001, by means of a bomb calorimeter ABK-1 and Vario micro cube analyzer. The mineral ash of researched fuels was studied agreeing with GOST 10538-87. The results state the fact that discussed low-grade fuels of Tomsk region in the unprepared form are not able to replace imported coal in regional energy balance, because of the high moisture and ash content values. A promosing direction of a low-temperature fue processing is a catalytic converter, which allows receiving hydrogen-enriched syngas from the initial solid raw.
Strmcnik, Dusan; Cuesta, Angel; Stamenkovic, Vojislav; Markovic, Nenad
2015-06-23
A process includes patterning a surface of a platinum group metal-based electrode by contacting the electrode with an adsorbate to form a patterned platinum group metal-based electrode including platinum group metal sites blocked with adsorbate molecules and platinum group metal sites which are not blocked.
Process for forming hydrogen and other fuels utilizing magma
Galt, John K.; Gerlach, Terrence M.; Modreski, Peter J.; Northrup, Jr., Clyde J. M.
1978-01-01
The disclosure relates to a method for extracting hydrogen from magma and water by injecting water from above the earth's surface into a pocket of magma and extracting hydrogen produced by the water-magma reaction from the vicinity of the magma.
Methods and apparatuses for the development of microstructured nuclear fuels
Jarvinen, Gordon D [Los Alamos, NM; Carroll, David W [Los Alamos, NM; Devlin, David J [Santa Fe, NM
2009-04-21
Microstructured nuclear fuel adapted for nuclear power system use includes fissile material structures of micrometer-scale dimension dispersed in a matrix material. In one method of production, fissile material particles are processed in a chemical vapor deposition (CVD) fluidized-bed reactor including a gas inlet for providing controlled gas flow into a particle coating chamber, a lower bed hot zone region to contain powder, and an upper bed region to enable powder expansion. At least one pneumatic or electric vibrator is operationally coupled to the particle coating chamber for causing vibration of the particle coater to promote uniform powder coating within the particle coater during fuel processing. An exhaust associated with the particle coating chamber and can provide a port for placement and removal of particles and powder. During use of the fuel in a nuclear power reactor, fission products escape from the fissile material structures and come to rest in the matrix material. After a period of use in a nuclear power reactor and subsequent cooling, separation of the fissile material from the matrix containing the embedded fission products will provide an efficient partitioning of the bulk of the fissile material from the fission products. The fissile material can be reused by incorporating it into new microstructured fuel. The fission products and matrix material can be incorporated into a waste form for disposal or processed to separate valuable components from the fission products mixture.
Reductions in aircraft particulate emissions due to the use of Fischer-Tropsch fuels
NASA Astrophysics Data System (ADS)
Beyersdorf, A. J.; Timko, M. T.; Ziemba, L. D.; Bulzan, D.; Corporan, E.; Herndon, S. C.; Howard, R.; Miake-Lye, R.; Thornhill, K. L.; Winstead, E.; Wey, C.; Yu, Z.; Anderson, B. E.
2013-06-01
The use of alternative fuels for aviation is likely to increase due to concerns over fuel security, price stability and the sustainability of fuel sources. Concurrent reductions in particulate emissions from these alternative fuels are expected because of changes in fuel composition including reduced sulfur and aromatic content. The NASA Alternative Aviation Fuel Experiment (AAFEX) was conducted in January-February 2009 to investigate the effects of synthetic fuels on gas-phase and particulate emissions. Standard petroleum JP-8 fuel, pure synthetic fuels produced from natural gas and coal feedstocks using the Fischer-Tropsch (FT) process, and 50% blends of both fuels were tested in the CFM-56 engines on a DC-8 aircraft. To examine plume chemistry and particle evolution with time, samples were drawn from inlet probes positioned 1, 30, and 145 m downstream of the aircraft engines. No significant alteration to engine performance was measured when burning the alternative fuels. However, leaks in the aircraft fuel system were detected when operated with the pure FT fuels as a result of the absence of aromatic compounds in the fuel. Dramatic reductions in soot emissions were measured for both the pure FT fuels (reductions of 84% averaged over all powers) and blended fuels (64%) relative to the JP-8 baseline with the largest reductions at idle conditions. The alternative fuels also produced smaller soot (e.g. at 85% power, volume mean diameters were reduced from 78 nm for JP-8 to 51 nm for the FT fuel), which may reduce their ability to act as cloud condensation nuclei (CCN). The reductions in particulate emissions are expected for all alternative fuels with similar reductions in fuel sulfur and aromatic content regardless of the feedstock. As the plume cools downwind of the engine, nucleation-mode aerosols form. For the pure FT fuels, reductions (94% averaged over all powers) in downwind particle number emissions were similar to those measured at the exhaust plane (84%). However, the blended fuels had less of a reduction (reductions of 30-44%) than initially measured (64%). The likely explanation is that the reduced soot emissions in the blended fuel exhaust plume results in promotion of new particle formation microphysics, rather than coating on pre-existing soot particles, which is dominant in the JP-8 exhaust plume. Downwind particle volume emissions were reduced for both the pure (79 and 86% reductions) and blended FT fuels (36 and 46%) due to the large reductions in soot emissions. In addition, the alternative fuels had reduced particulate sulfate production (near-zero for FT fuels) due to decreased fuel sulfur content. To study the formation of volatile aerosols (defined as any aerosol formed as the plume ages) in more detail, tests were performed at varying ambient temperatures (-4 to 20 °C). At idle, particle number and volume emissions were reduced linearly with increasing ambient temperature, with best fit slopes corresponding to -1.2 × 106 # (kg fuel)-1 °C-1 for particle number emissions and -9.7 mm3 (kg fuel)-1 °C-1 for particle volume emissions. The temperature dependence of aerosol formation can have large effects on local air quality surrounding airports in cold regions. Aircraft produced aerosols in these regions will be much larger than levels expected based solely on measurements made directly at the engine exit plane. The majority (90% at idle) of the volatile aerosol mass formed as nucleation-mode aerosols with a smaller fraction as a soot coating. Conversion efficiencies of up to 3.8% were measured for the partitioning of gas-phase precursors (unburned hydrocarbons and SO2) to form volatile aerosols. Highest conversion efficiencies were measured at 45% power.
Calculation of Heat-Bearing Agent’s Steady Flow in Fuel Bundle
NASA Astrophysics Data System (ADS)
Amosova, E. V.; Guba, G. G.
2017-11-01
This paper introduces the result of studying the heat exchange in the fuel bundle of the nuclear reactor’s fuel magazine. The article considers the fuel bundle of the infinite number of fuel elements, fuel elements are considered in the checkerboard fashion (at the tops of a regular triangle a fuel element is a plain round rod. The inhomogeneity of volume energy release in the rod forms the inhomogeneity of temperature and velocity fields, and pressure. Computational methods for studying hydrodynamics in magazines and cores with rod-shape fuel elements are based on a significant simplification of the problem: using basic (averaged) equations, isobaric section hypothesis, porous body model, etc. This could be explained by the complexity of math description of the three-dimensional fluid flow in the multi-connected area with the transfer coefficient anisotropy, curved boundaries and technical computation difficulties. Thus, calculative studying suggests itself as promising and important. There was developed a method for calculating the heat-mass exchange processes of inter-channel fuel element motions, which allows considering the contribution of natural convection to the heat-mass exchange based on the Navier-Stokes equations and Boussinesq approximation.
NASA Astrophysics Data System (ADS)
Baker, M. P.; King, J. C.; Gorman, B. P.; Braley, J. C.
2015-03-01
Current methods of TRISO fuel kernel production in the United States use a sol-gel process with trichloroethylene (TCE) as the forming fluid. After contact with radioactive materials, the spent TCE becomes a mixed hazardous waste, and high costs are associated with its recycling or disposal. Reducing or eliminating this mixed waste stream would not only benefit the environment, but would also enhance the economics of kernel production. Previous research yielded three candidates for testing as alternatives to TCE: 1-bromotetradecane, 1-chlorooctadecane, and 1-iodododecane. This study considers the production of yttria-stabilized zirconia (YSZ) kernels in silicone oil and the three chosen alternative formation fluids, with subsequent characterization of the produced kernels and used forming fluid. Kernels formed in silicone oil and bromotetradecane were comparable to those produced by previous kernel production efforts, while those produced in chlorooctadecane and iodododecane experienced gelation issues leading to poor kernel formation and geometry.
Fuel cells with doped lanthanum gallate electrolyte
NASA Astrophysics Data System (ADS)
Feng, Man; Goodenough, John B.; Huang, Keqin; Milliken, Christopher
Single cells with doped lanthanum gallate electrolyte material were constructed and tested from 600 to 800°C. Both ceria and the electrolyte material were mixed with NiO powder respectively to form composite anodes. Doped lanthanum cobaltite was used exclusively as the cathode material. While high power density from the solid oxide fuel cells at 800°C was achieved. our results clearly indicate that anode overpotential is the dominant factor in the power loss of the cells. Better anode materials and anode processing methods need to be found to fully utilize the high ionic conductivity of the doped lanthanum galiate and achieve higher power density at 800°C from solid oxide fuel cells.
ASRM test report: Autoclave cure process development
NASA Technical Reports Server (NTRS)
Nachbar, D. L.; Mitchell, Suzanne
1992-01-01
ASRM insulated segments will be autoclave cured following insulation pre-form installation and strip wind operations. Following competitive bidding, Aerojet ASRM Division (AAD) Purchase Order 100142 was awarded to American Fuel Cell and Coated Fabrics Company, Inc. (Amfuel), Magnolia, AR, for subcontracted insulation autoclave cure process development. Autoclave cure process development test requirements were included in Task 3 of TM05514, Manufacturing Process Development Specification for Integrated Insulation Characterization and Stripwind Process Development. The test objective was to establish autoclave cure process parameters for ASRM insulated segments. Six tasks were completed to: (1) evaluate cure parameters that control acceptable vulcanization of ASRM Kevlar-filled EPDM insulation material; (2) identify first and second order impact parameters on the autoclave cure process; and (3) evaluate insulation material flow-out characteristics to support pre-form configuration design.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lampert, David J.; Cai, Hao; Wang, Zhichao
The production of all forms of energy consumes water. To meet increased energy demands, it is essential to quantify the amount of water consumed in the production of different forms of energy. By analyzing the water consumed in different technologies, it is possible to identify areas for improvement in water conservation and reduce water stress in energy-producing regions. The transportation sector is a major consumer of energy in the United States. Because of the relationships between water and energy, the sustainability of transportation is tied to management of water resources. Assessment of water consumption throughout the life cycle of amore » fuel is necessary to understand its water resource implications. To perform a comparative life cycle assessment of transportation fuels, it is necessary first to develop an inventory of the water consumed in each process in each production supply chain. The Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model is an analytical tool that can used to estimate the full life-cycle environmental impacts of various transportation fuel pathways from wells to wheels. GREET is currently being expanded to include water consumption as a sustainability metric. The purpose of this report was to document data sources and methodologies to estimate water consumption factors (WCF) for the various transportation fuel pathways in GREET. WCFs reflect the quantity of freshwater directly consumed per unit production for various production processes in GREET. These factors do not include consumption of precipitation or low-quality water (e.g., seawater) and reflect only water that is consumed (i.e., not returned to the source from which it was withdrawn). The data in the report can be combined with GREET to compare the life cycle water consumption for different transportation fuels.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agrawal, Rakesh; Delgass, W. N.; Ribeiro, F.
2013-08-31
The primary objective and outcome of this project was the development and validation of a novel, low-cost, high-pressure fast-hydropyrolysis/hydrodeoxygenation (HDO) process (H 2Bioil) using supplementary hydrogen (H 2) to produce liquid hydrocarbons from biomass. The research efforts under the various tasks of the project have culminated in the first experimental demonstration of the H 2Bioil process, producing 100% deoxygenated >C4+ hydrocarbons containing 36-40% of the carbon in the feed of pyrolysis products from biomass. The demonstrated H{sub 2}Bioil process technology (i.e. reactor, catalyst, and downstream product recovery) is scalable to a commercial level and is estimated to be economically competitivemore » for the cases when supplementary H 2 is sourced from coal, natural gas, or nuclear. Additionally, energy systems modeling has revealed several process integration options based on the H 2Bioilprocess for energy and carbon efficient liquid fuel production. All project tasks and milestones were completed or exceeded. Novel, commercially-scalable, high-pressure reactors for both fast-hydropyrolysis and hydrodeoxygenation were constructed, completing Task A. These reactors were capable of operation under a wide-range of conditions; enabling process studies that lead to identification of optimum process conditions. Model compounds representing biomass pyrolysis products were studied, completing Task B. These studies were critical in identifying and developing HDO catalysts to target specific oxygen functional groups. These process and model compound catalyst studies enabled identification of catalysts that achieved 100% deoxygenation of the real biomass feedstock, sorghum, to form hydrocarbons in high yields as part of Task C. The work completed during this grant has identified and validated the novel and commercially scalable H 2Bioil process for production of hydrocarbon fuels from biomass. Studies on model compounds as well as real biomass feedstocks were utilized to identify optimized process conditions and selective HDO catalyst for high yield production of hydrocarbons from biomass. In addition to these experimental efforts, in Tasks D and E, we have developed a mathematical optimization framework to identify carbon and energy efficient biomass-to-liquid fuel process designs that integrate the use of different primary energy sources along with biomass (e.g. solar, coal or natural gas) for liquid fuel production. Using this tool, we have identified augmented biomass-to-liquid fuel configurations based on the fast-hydropyrolysis/HDO pathway, which was experimentally studied in this project. The computational approach used for screening alternative process configurations represents a unique contribution to the field of biomass processing for liquid fuel production.« less
NASA Astrophysics Data System (ADS)
Satyanarayana, G.; Narayana, K. L.; Boggarapu, Nageswara Rao
2018-03-01
In the nuclear industry, a critical welding process is joining of an end plate to a fuel rod to form a fuel bundle. Literature on zirconium welding in such a critical operation is limited. A CFD model is developed and performed for the three-dimensional non-linear thermo-fluid analysis incorporating buoyancy and Marnangoni stress and specifying temperature dependent properties to predict weld geometry and temperature field in and around the melt pool of laser spot during welding of a zirconium alloy E110 endplate with a fuel rod. Using this method, it is possible to estimate the weld pool dimensions for the specified laser power and laser-on-time. The temperature profiles will estimate the HAZ and microstructure. The adequacy of generic nature of the model is validated with existing experimental data.
Direct Coal -to-Liquids (CTL) for Jet Fuel Using Biomass-Derived Solvents
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chauhan, Satya P.; Garbark, Daniel B.; Taha, Rachid
Battelle has demonstrated a novel and potentially breakthrough technology for a direct coal-to-liquids (CTL) process for producing jet fuel using biomass-derived coal solvents (bio-solvents). The Battelle process offers a significant reduction in capital and operating costs and a substantial reduction in greenhouse gas (GHG) emissions, without requiring carbon capture and storage (CCS). The results of the project are the advancement of three steps of the hybrid coal/biomass-to-jet fuel process to the technology readiness level (TRL) of 5. The project objectives were achieved over two phases. In Phase 1, all three major process steps were explored and refined at bench-scale, including:more » (1) biomass conversion to high hydrogen-donor bio-solvent; (2) coal dissolution in biomass-derived bio-solvent, without requiring molecular H 2, to produce a synthetic crude (syncrude); and (3) two-stage catalytic hydrotreating/hydrogenation of syncrude to jet fuel and other distillates. In Phase 2, all three subsystems of the CTL process were scaled up to a pre-pilot scale, and an economic analysis was carried out. A total of over 40 bio-solvents were identified and prepared. The most unique attribute of Battelle’s bio-solvents is their ability to provide much-needed hydrogen to liquefy coal and thus increase its hydrogen content so much that the resulting syncrude is liquid at room temperature. Based on the laboratory-scale testing with bituminous coals from Ohio and West Virginia, a total of 12 novel bio-solvent met the goal of greater than 80% coal solubility, with 8 bio-solvents being as good as or better than a well-known but expensive hydrogen-donor solvent, tetralin. The Battelle CTL process was then scaled up to 1 ton/day (1TPD) at a pre-pilot facility operated in Morgantown, WV. These tests were conducted, in part, to produce enough material for syncrude-upgrading testing. To convert the Battelle-CTL syncrude into a form suitable as a blending stock for jet turbine fuel, a two-step catalytic upgrading process was developed at laboratory scale and then demonstrated at pre-pilot scale facility in Pittsburg, PA. Several drums of distillate products were produced, which were then distilled into unblended (neat) synthetic jet fuel and diesel products for a detailed characterization. Based on a detailed characterization of the synthetic jet fuel, a 20% synthetic, 80% commercial jet fuel blend was prepared, which met all specifications. An analysis of the synthetic diesel product showed that it has the promise of being a drop-in fuel as super-low (less than 15 ppm)-sulfur diesel fuel. A detailed economic analysis showed that the Battelle liquefaction process is economical at between 1000 metric tons/day (MT/day) and 2000 MT/day. The unit capital cost for Battelle CTL process for making jet fuel is 50K USD/daily bbl compared to 151K USD/daily bbl for indirect CTL, based on 2011 dollars. The jet-fuel selling cost at the refinery, including a 12% capital cost factor (which included profit), for the Battelle CTL process is 61USD/bbl (1.45 USD/gallon). This is competitive with crude oil price of 48 USD/bbl. At the same time, the GHG emissions of 3.56 MT CO 2/MT fuel were lower than the GHG emissions of 3.79 MT CO 2/MTfuel for petroleum-based fuels and 7.77 MT CO 2/MT fuel for indirect CTL. Thus, the use of bio-solvents completely eliminates the need for carbon capture in the case of Battelle CTL process. The superior economics and low GHG emissions for the Battelle CTL process has thus sparked worldwide interest and some potential commercialization opportunities are emerging.« less
CFD-Modeling of the Multistage Gasifier Capacity of 30 KW
NASA Astrophysics Data System (ADS)
Levin, A. A.; Kozlov, A. N.; Svishchev, D. A.; Donskoy, I. G.
2017-11-01
Single-stage fuel gasification processes have been developed and widely studied in Russia and abroad throughout the 20th century. They are fundamental to the creation and design of modern gas generator equipment. Many studies have shown that single-stage gasification process, have already reached the limit of perfection, which was a significant improvement in their performance becomes impossible and unprofitable. The most fully meet modern technical requirements of multistage gasification technology. In the first step of the process, is organized allothermic biomass pyrolysis using heat of exhaust gas and generating power plant. At this stage, the yield of volatile products (gas and tar) of fuel. In the second step, the layer of fuel is, the tar is decomposed by the action of hot air and steam, steam-gas mixture is formed further reacts with the charcoal in the third process stage. The paper presents a model developed by the authors of the multi-stage gasifier for wood chips. The model is made with the use of CFD-modeling software package (COMSOL Multiphisics). To describe the kinetics of wood pyrolysis and gasification of charcoal studies were carried out using a set of simultaneous thermal analysis. For this complex developed original methods of interpretation of measurements, including methods of technical analysis of fuels and determine the parameters of the detailed kinetics and mechanism of pyrolysis.
Electrochemical hydrogen Storage Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dr. Digby Macdonald
2010-08-09
As the global need for energy increases, scientists and engineers have found a possible solution by using hydrogen to power our world. Although hydrogen can be combusted as a fuel, it is considered an energy carrier for use in fuel cells wherein it is consumed (oxidized) without the production of greenhouse gases and produces electrical energy with high efficiency. Chemical storage of hydrogen involves release of hydrogen in a controlled manner from materials in which the hydrogen is covalently bound. Sodium borohydride and aminoborane are two materials given consideration as chemical hydrogen storage materials by the US Department of Energy.more » A very significant barrier to adoption of these materials as hydrogen carriers is their regeneration from 'spent fuel,' i.e., the material remaining after discharge of hydrogen. The U.S. Department of Energy (DOE) formed a Center of Excellence for Chemical Hydrogen Storage, and this work stems from that project. The DOE has identified boron hydrides as being the main compounds of interest as hydrogen storage materials. The various boron hydrides are then oxidized to release their hydrogen, thereby forming a 'spent fuel' in the form of a lower boron hydride or even a boron oxide. The ultimate goal of this project is to take the oxidized boron hydrides as the spent fuel and hydrogenate them back to their original form so they can be used again as a fuel. Thus this research is essentially a boron hydride recycling project. In this report, research directed at regeneration of sodium borohydride and aminoborane is described. For sodium borohydride, electrochemical reduction of boric acid and sodium metaborate (representing spent fuel) in alkaline, aqueous solution has been investigated. Similarly to literature reports (primarily patents), a variety of cathode materials were tried in these experiments. Additionally, approaches directed at overcoming electrostatic repulsion of borate anion from the cathode, not described in the previous literature for electrochemical reduction of spent fuels, have been attempted. A quantitative analytical method for measuring the concentration of sodium borohydride in alkaline aqueous solution has been developed as part of this work and is described herein. Finally, findings from stability tests for sodium borohydride in aqueous solutions of several different compositions are reported. For aminoborane, other research institutes have developed regeneration schemes involving tributyltin hydride. In this report, electrochemical reduction experiments attempting to regenerate tributyltin hydride from tributyltin chloride (a representative by-product of the regeneration scheme) are described. These experiments were performed in the non-aqueous solvents acetonitrile and 1,2-dimethoxyethane. A non-aqueous reference electrode for electrolysis experiments in acetonitrile was developed and is described. One class of boron hydrides, called polyhedral boranes, became of interest to the DOE due to their ability to contain a sufficient amount of hydrogen to meet program goals and because of their physical and chemical safety attributes. Unfortunately, the research performed here has shown that polyhedral boranes do not react in such a way as to allow enough hydrogen to be released, nor do they appear to undergo hydrogenation from the spent fuel form back to the original hydride. After the polyhedral boranes were investigated, the project goals remained the same but the hydrogen storage material was switched by the DOE to ammonia borane. Ammonia borane was found to undergo an irreversible hydrogen release process, so a direct hydrogenation was not able to occur. To achieve the hydrogenation of the spent ammonia borane fuel, an indirect hydrogenation reaction is possible by using compounds called organotin hydrides. In this process, the organotin hydrides will hydrogenate the spent ammonia borane fuel at the cost of their own oxidation, which forms organotin halides. To enable a closed-loop cycle, our task was then to be able to hydrogenate the organotin halides back to their hydride form. In addition to this experimental work, a parallel project was carried out to develop a new model of electrochemical impedance spectroscopy (EIS) that could be used to define the mechanisms of the electrochemical hydrogenation reactions. The EIS technique is capable of probing complex chemical and electrochemical reactions, and our model was written into a computer code that allowed the input of experimental EIS data and the extraction of kinetic parameters based on a best-fit analysis of theoretical reaction schemes. Finally, electrochemical methods for hydrogenating organic and metallo-organic materials have been explored.« less
Boardman, Richard D.; Carrington, Robert A.
2010-05-04
Pollution control substances may be formed from the combustion of oil shale, which may produce a kerogen-based pyrolysis gas and shale sorbent, each of which may be used to reduce, absorb, or adsorb pollutants in pollution producing combustion processes, pyrolysis processes, or other reaction processes. Pyrolysis gases produced during the combustion or gasification of oil shale may also be used as a combustion gas or may be processed or otherwise refined to produce synthetic gases and fuels.
Physical and chemical behavior of flowing endothermic jet fuels
NASA Astrophysics Data System (ADS)
Ward, Thomas Arthur
Hydrocarbon fuels have been used as cooling media for aircraft jet engines for decades. However, modern aircraft engines are reaching a practical heat transfer limit beyond which the convective heat transfer provided by fuels is no longer adequate. One solution is to use an endothermic fuel that absorbs heat through a series of pyrolytic chemical reactions. However, many of the physical and chemical processes involved in endothermic fuel degradation are not well understood. The purpose of this dissertation is to study different characteristics of endothermic fuels using experiments and computational models. In the first section, data from three flow experiments using heated Jet-A fuel and additives were analyzed (with the aid of CFD calculations) to study the effects of treated surfaces on surface deposition. Surface deposition is the primary impediment in creating an operational endothermic fuel heat exchanger system, because deposits can obstruct fuel pathways causing a catastrophic system failure. As heated fuel flows through a fuel system, trace species within the fuel react with dissolved O2 to form surface deposits. At relatively higher fuel temperatures, the dissolved O2 is depleted, and pyrolytic chemistry becomes dominant (at temperatures greater than ˜500 °C). In the first experiment, the dissolved O2 consumption of heated fuel was measured on different surface types over a range of temperatures. It is found that use of treated tubes significantly delays oxidation of the fuel. In the second experiment, the treated length of tubing was progressively increased, which varied the characteristics of the thermal-oxidative deposits formed. In the third experiment, pyrolytic surface deposition in either fully treated or untreated tubes is studied. It is found that the treated surface significantly reduced the formation of surface deposits for both thermal oxidative and pyrolytic degradation mechanisms. Moreover, it is found that the chemical reactions resulting in pyrolytic deposition on the untreated surface are more sensitive to pressure level than those causing pyrolytic deposition on the treated surface. The second section describes the development of a two-dimensional computational model of the heat and mass transport associated with a flowing fuel using a unique global chemical kinetics model. This model calculates the changing flow properties of a supercritical reacting fuel by use of experimentally derived proportional product distributions. The third section studies the effects of pressure on flowing; mildly-cracked, supercritical n-decane. The experimental results are studied with the aid of the computational model described in section 2, expanded to deal with variable pressures. The experiments indicate that increasing pressure enhances the processes in which n-decane converts to (C5--C9) n-alkane products instead of decomposing into lower molecular weight products (C1--C4): Increasing pressure also increases the overall conversion rate of supercritical n-decane flowing through a reactor. Computational modeling of the experiment shows how the flow properties are influenced by pressure. (Abstract shortened by UMI.)
Void forming pyrolytic carbon coating process
Beatty, Ronald L.; Cook, Jackie L.
2000-01-01
A pyrolytic carbon coated nuclear fuel particle and method of making it. The fuel particle has a core composed of a refractory compound of an actinide metal. The pyrolytic carbon coating surrounds the core so as to provide a void volume therebetween. The coating has an initial density of no greater than 1.45 grams/cm.sup.3 and an anisotropy factor than 3.0 and a final density upon heat treatment above about 2000.degree. C. of greater than 1.7 grams/cm.sup.3 and an anisotropy factor greater than 5.
NASA Astrophysics Data System (ADS)
Kijo-Kleczkowska, Agnieszka
2012-10-01
In the paper the problem of heavily-watered fuel combustion has been undertaken as the requirements of qualitative coals combusted in power stations have been growing. Coal mines that want to fulfill expectations of power engineers have been forced to extend and modernize the coal enrichment plants. This causes growing quantity of waste materials that arise during the process of wet coal enrichment containing smaller and smaller under-grains. In this situation the idea of combustion of transported waste materials, for example in a hydraulic way to the nearby power stations appears attractive because of a possible elimination of the necessary deep dehydration and drying as well as because of elimination of the finest coal fraction loss arising during discharging of silted water from coal wet cleaning plants. The paper presents experimental research results, analyzing the process of combustion of coal-water suspension depending on the process conditions. Combustion of coal-water suspensions in fluidized beds meets very well the difficult conditions, which should be obtained to use the examined fuel efficiently and ecologically. The suitable construction of the research stand enables recognition of the mechanism of coal-water suspension contact with the inert material, that affects the fluidized bed. The form of this contact determines conditions of heat and mass exchange, which influence the course of a combustion process. The specificity of coal-water fuel combustion in a fluidized bed changes mechanism and kinetics of the process.
76 FR 32404 - Proposed Collection; Comment Request for Form 8864
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-06
... 8864, Biodiesel Fuels Credit. DATES: Written comments should be received on or before August 5, 2011 to...: Biodiesel Fuels Credit. OMB Number: 1545-1924. Form Number: 8864. Abstract: The American Jobs Creation Act of 2004, section 302, added new code section 40A, credit for biodiesel used as a fuel. Form 8864 has...
Temporal Control over Transient Chemical Systems using Structurally Diverse Chemical Fuels.
Chen, Jack L-Y; Maiti, Subhabrata; Fortunati, Ilaria; Ferrante, Camilla; Prins, Leonard J
2017-08-25
The next generation of adaptive, intelligent chemical systems will rely on a continuous supply of energy to maintain the functional state. Such systems will require chemical methodology that provides precise control over the energy dissipation process, and thus, the lifetime of the transiently activated function. This manuscript reports on the use of structurally diverse chemical fuels to control the lifetime of two different systems under dissipative conditions: transient signal generation and the transient formation of self-assembled aggregates. The energy stored in the fuels is dissipated at different rates by an enzyme, which installs a dependence of the lifetime of the active system on the chemical structure of the fuel. In the case of transient signal generation, it is shown that different chemical fuels can be used to generate a vast range of signal profiles, allowing temporal control over two orders of magnitude. Regarding self-assembly under dissipative conditions, the ability to control the lifetime using different fuels turns out to be particularly important as stable aggregates are formed only at well-defined surfactant/fuel ratios, meaning that temporal control cannot be achieved by simply changing the fuel concentration. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
The Effects of Sooting and Radiation on Droplet Combustion
NASA Technical Reports Server (NTRS)
Lee, Kyeong-Ook; Manzello, Samuel L.; Choi, Mun Young
1997-01-01
The burning of liquid hydrocarbon fuels accounts for a significant portion of global energy production. With predicted future increases in demand and limited reserves of hydrocarbon fuel, it is important to maximize the efficiency of all processes that involve conversion of fuel. With the exception of unwanted fires, most applications involve introduction of liquid fuels into an oxidizing environment in the form of sprays which are comprised of groups of individual droplets. Therefore, tremendous benefits can result from a better understanding of spray combustion processes. Yet, theoretical developments and experimental measurements of spray combustion remains a daunting task due to the complex coupling of a turbulent, two-phase flow with phase change and chemical reactions. However, it is recognized that individual droplet behavior (including ignition, evaporation and combustion) is a necessary component for laying the foundation for a better understanding of spray processes. Droplet combustion is also an ideal problem for gaining a better understanding of non-premixed flames. Under the idealized situation producing spherically-symmetric flames (produced under conditions of reduced natural and forced convection), it represents the simplest geometry in which to formulate and solve the governing equations of mass, species and heat transfer for a chemically reacting two phase flow with phase change. The importance of this topic has promoted extensive theoretical investigations for more than 40 years.
NASA Astrophysics Data System (ADS)
Li, Chaoyue; Feng, Shiyu; Shao, Lei; Pan, Jun; Liu, Weihua
2018-04-01
The diffusion coefficient of water in jet fuel was measured employing double-exposure digital holographic interferometry to clarify the diffusion process and make the aircraft fuel system safe. The experimental method and apparatus are introduced in detail, and the digital image processing program is coded in MATLAB according to the theory of the Fourier transform. At temperatures ranging from 278.15 K to 333.15 K in intervals of 5 K, the diffusion coefficient of water in RP-3 and RP-5 jet fuels ranges from 2.6967 × 10 -10 m2·s-1 to 8.7332 × 10 -10 m2·s-1 and from 2.3517 × 10 -10 m2·s-1 to 8.0099 × 10-10 m2·s-1, respectively. The relationship between the measured diffusion coefficient and temperature can be well fitted by the Arrhenius law. The diffusion coefficient of water in RP-3 jet fuel is higher than that of water in RP-5 jet fuel at the same temperature. Furthermore, the viscosities of the two jet fuels were measured and found to be expressible in the form of the Arrhenius equation. The relationship among the diffusion coefficient, viscosity and temperature is analyzed according to the classic prediction model, namely the Stokes-Einstein correlation, and this correlation is further revised via experimental data to obtain a more accurate predication result.
Support grid for fuel elements in a nuclear reactor
Finch, Lester M.
1977-01-01
A support grid is provided for holding nuclear fuel rods in a rectangular array. Intersecting sheet metal strips are interconnected using opposing slots in the strips to form a rectangular cellular grid structure for engaging the sides of a multiplicity of fuel rods. Spring and dimple supports for engaging fuel and guide rods extending through each cell in the support grid are formed in the metal strips with the springs thus formed being characterized by nonlinear spring rates.
Laser-fusion targets for reactors
Nuckolls, John H.; Thiessen, Albert R.
1987-01-01
A laser target comprising a thermonuclear fuel capsule composed of a centrally located quantity of fuel surrounded by at least one or more layers or shells of material for forming an atmosphere around the capsule by a low energy laser prepulse. The fuel may be formed as a solid core or hollow shell, and, under certain applications, a pusher-layer or shell is located intermediate the fuel and the atmosphere forming material. The fuel is ignited by symmetrical implosion via energy produced by a laser, or other energy sources such as an electron beam machine or ion beam machine, whereby thermonuclear burn of the fuel capsule creates energy for applications such as generation of electricity via a laser fusion reactor.
NASA Technical Reports Server (NTRS)
Tomsik, Thomas M.; Yen, Judy C.H.; Budge, John R.
2006-01-01
Solid oxide fuel cell systems used in the aerospace or commercial aviation environment require a compact, light-weight and highly durable catalytic fuel processor. The fuel processing method considered here is an autothermal reforming (ATR) step. The ATR converts Jet-A fuel by a reaction with steam and air forming hydrogen (H2) and carbon monoxide (CO) to be used for production of electrical power in the fuel cell. This paper addresses the first phase of an experimental catalyst screening study, looking at the relative effectiveness of several monolith catalyst types when operating with untreated Jet-A fuel. Six monolith catalyst materials were selected for preliminary evaluation and experimental bench-scale screening in a small 0.05 kWe micro-reactor test apparatus. These tests were conducted to assess relative catalyst performance under atmospheric pressure ATR conditions and processing Jet-A fuel at a steam-to-carbon ratio of 3.5, a value higher than anticipated to be run in an optimized system. The average reformer efficiencies for the six catalysts tested ranged from 75 to 83 percent at a constant gas-hourly space velocity of 12,000 hr 1. The corresponding hydrocarbon conversion efficiency varied from 86 to 95 percent during experiments run at reaction temperatures between 750 to 830 C. Based on the results of the short-duration 100 hr tests reported herein, two of the highest performing catalysts were selected for further evaluation in a follow-on 1000 hr life durability study in Phase II.
NASA Technical Reports Server (NTRS)
Mulac, Richard A.; Celestina, Mark L.; Adamczyk, John J.; Misegades, Kent P.; Dawson, Jef M.
1987-01-01
A procedure is outlined which utilizes parallel processing to solve the inviscid form of the average-passage equation system for multistage turbomachinery along with a description of its implementation in a FORTRAN computer code, MSTAGE. A scheme to reduce the central memory requirements of the program is also detailed. Both the multitasking and I/O routines referred to are specific to the Cray X-MP line of computers and its associated SSD (Solid-State Disk). Results are presented for a simulation of a two-stage rocket engine fuel pump turbine.
2011-12-01
aqueous film forming foam ( AFFF ) firefighting agents and equipment are capable of...AFRL-RX-TY-TR-2012-0012 PERFORMANCE OF AQUEOUS FILM FORMING FOAM ( AFFF ) ON LARGE-SCALE HYDROPROCESSED RENEWABLE JET (HRJ) FUEL FIRES...Performance of Aqueous Film Forming Foam ( AFFF ) on Large-Scale Hydroprocessed Renewable Jet (HRJ) Fuel Fires FA4819-09-C-0030 0602102F 4915 D0
Reforming of fuel inside fuel cell generator
Grimble, Ralph E.
1988-01-01
Disclosed is an improved method of reforming a gaseous reformable fuel within a solid oxide fuel cell generator, wherein the solid oxide fuel cell generator has a plurality of individual fuel cells in a refractory container, the fuel cells generating a partially spent fuel stream and a partially spent oxidant stream. The partially spent fuel stream is divided into two streams, spent fuel stream I and spent fuel stream II. Spent fuel stream I is burned with the partially spent oxidant stream inside the refractory container to produce an exhaust stream. The exhaust stream is divided into two streams, exhaust stream I and exhaust stream II, and exhaust stream I is vented. Exhaust stream II is mixed with spent fuel stream II to form a recycle stream. The recycle stream is mixed with the gaseous reformable fuel within the refractory container to form a fuel stream which is supplied to the fuel cells. Also disclosed is an improved apparatus which permits the reforming of a reformable gaseous fuel within such a solid oxide fuel cell generator. The apparatus comprises a mixing chamber within the refractory container, means for diverting a portion of the partially spent fuel stream to the mixing chamber, means for diverting a portion of exhaust gas to the mixing chamber where it is mixed with the portion of the partially spent fuel stream to form a recycle stream, means for injecting the reformable gaseous fuel into the recycle stream, and means for circulating the recycle stream back to the fuel cells.
Reforming of fuel inside fuel cell generator
Grimble, R.E.
1988-03-08
Disclosed is an improved method of reforming a gaseous reformable fuel within a solid oxide fuel cell generator, wherein the solid oxide fuel cell generator has a plurality of individual fuel cells in a refractory container, the fuel cells generating a partially spent fuel stream and a partially spent oxidant stream. The partially spent fuel stream is divided into two streams, spent fuel stream 1 and spent fuel stream 2. Spent fuel stream 1 is burned with the partially spent oxidant stream inside the refractory container to produce an exhaust stream. The exhaust stream is divided into two streams, exhaust stream 1 and exhaust stream 2, and exhaust stream 1 is vented. Exhaust stream 2 is mixed with spent fuel stream 2 to form a recycle stream. The recycle stream is mixed with the gaseous reformable fuel within the refractory container to form a fuel stream which is supplied to the fuel cells. Also disclosed is an improved apparatus which permits the reforming of a reformable gaseous fuel within such a solid oxide fuel cell generator. The apparatus comprises a mixing chamber within the refractory container, means for diverting a portion of the partially spent fuel stream to the mixing chamber, means for diverting a portion of exhaust gas to the mixing chamber where it is mixed with the portion of the partially spent fuel stream to form a recycle stream, means for injecting the reformable gaseous fuel into the recycle stream, and means for circulating the recycle stream back to the fuel cells. 1 fig.
Innovation Symposium 2017: Transforming the Organization
2017-05-31
ones. Innovation can also take the form of discontinuing an inefficient or out-of-date service, system, or process.3 An Exponential Organization...compelling reasons for this goes beyond the burning of fossil fuels to the fact that an electric car has 90 percent fewer parts, making it exponentially...winner, in a showdown of trivial expertise. In 2016, Watson diagnosed a woman’s rare form of leukemia in just 10 minutes after doctors had spent
Oscillatory bursting of gel fuel droplets in a reacting environment.
Miglani, Ankur; Nandagopalan, Purushothaman; John, Jerin; Baek, Seung Wook
2017-06-12
Understanding the combustion behavior of gel fuel droplets is pivotal for enhancing burn rates, lowering ignition delay and improving the operational performance of next-generation propulsion systems. Vapor jetting in burning gel fuel droplets is a crucial process that enables an effective transport (convectively) of unreacted fuel from the droplet domain to the flame zone and accelerates the gas-phase mixing process. Here, first we show that the combusting ethanol gel droplets (organic gellant laden) exhibit a new oscillatory jetting mode due to aperiodic bursting of the droplet shell. Second, we show how the initial gellant loading rate (GLR) leads to a distinct shell formation which self-tunes temporally to burst the droplet at different frequencies. Particularly, a weak-flexible shell is formed at low GLR that undergoes successive rupture cascades occurring in same region of the droplet. This region weakens due to repeated ruptures and causes droplet bursting at progressively higher frequencies. Contrarily, high GLRs facilitate a strong-rigid shell formation where consecutive cascades occur at scattered locations across the droplet surface. This leads to droplet bursting at random frequencies. This method of modulating jetting frequency would enable an effective control of droplet trajectory and local fuel-oxidizer ratio in any gel-spray based energy formulation.
10. Fuel tanks concrete form plans, elevations and details, sheet ...
10. Fuel tanks concrete form plans, elevations and details, sheet 95 of 130 - Naval Air Station Fallon, Fuel Tanks, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV
NASA Astrophysics Data System (ADS)
Eun, H. C.; Kim, T. J.; Jang, J. H.; Kim, G. Y.; Park, S. B.; Yoon, D. S.; Kim, S. H.; Paek, S. W.; Lee, S. J.
2018-04-01
In this study, the chlorination of uranium oxide (UO2) using ammonium chloride and zirconium as chemical agents was conducted to recover the uranium in the anode basket residues from the pyrochemical process of used nuclear fuel. The chlorination of UO2 was predicted using thermodynamic equilibrium calculations. The experimental conditions for the chlorination were determined using a chlorination test with cerium oxide (CeO2). In the chlorination test, it was confirmed that UO2 was chlorinated into UCl3 at 320 °C, some UO2 remained without changes in the chemical form, and ZrO2, Zr2O, and ZrCl2 were generated as byproducts.
Zambrow, J.; Hausner, H.
1957-09-24
A method of joining metal parts for the preparation of relatively long, thin fuel element cores of uranium or alloys thereof for nuclear reactors is described. The process includes the steps of cleaning the surfaces to be jointed, placing the sunfaces together, and providing between and in contact with them, a layer of a compound in finely divided form that is decomposable to metal by heat. The fuel element members are then heated at the contact zone and maintained under pressure during the heating to decompose the compound to metal and sinter the members and reduced metal together producing a weld. The preferred class of decomposable compounds are the metal hydrides such as uranium hydride, which release hydrogen thus providing a reducing atmosphere in the vicinity of the welding operation.
Willit, James L [Batavia, IL; Ackerman, John P [Prescott, AZ; Williamson, Mark A [Naperville, IL
2009-12-29
This is a single stage process for treating spent nuclear fuel from light water reactors. The spent nuclear fuel, uranium oxide, UO.sub.2, is added to a solution of UCl.sub.4 dissolved in molten LiCl. A carbon anode and a metallic cathode is positioned in the molten salt bath. A power source is connected to the electrodes and a voltage greater than or equal to 1.3 volts is applied to the bath. At the anode, the carbon is oxidized to form carbon dioxide and uranium chloride. At the cathode, uranium is electroplated. The uranium chloride at the cathode reacts with more uranium oxide to continue the reaction. The process may also be used with other transuranic oxides and rare earth metal oxides.
Nuclear reactor fuel rod attachment system
Christiansen, David W.
1982-01-01
A reusable system for removably attaching a nuclear reactor fuel rod (12) to a support member (14). A locking cap (22) is secured to the fuel rod (12) and a locking strip (24) is fastened to the support member (14). The locking cap (22) has two opposing fingers (24a and 24b) shaped to form a socket having a body portion (26). The locking strip has an extension (36) shaped to rigidly attach to the socket's body portion (26). The locking cap's fingers are resiliently deflectable. For attachment, the locking cap (22) is longitudinally pushed onto the locking strip (24) causing the extension (36) to temporarily deflect open the fingers (24a and 24b) to engage the socket's body portion (26). For removal, the process is reversed.
Agrawal, Rakesh; Singh, Navneet R
2010-01-01
In a solar economy, sustainably available biomass holds the potential to be an excellent nonfossil source of high energy density transportation fuel. However, if sustainably available biomass cannot supply the liquid fuel need for the entire transport sector, alternatives must be sought. This article reviews biomass to liquid fuel conversion processes that treat biomass primarily as a carbon source and boost liquid fuel production substantially by using supplementary energy that is recovered from solar energy at much higher efficiencies than the biomass itself. The need to develop technologies for an energy-efficient future sustainable transport sector infrastructure that will use different forms of energy, such as electricity, H(2), and heat, in a synergistic interaction with each other is emphasized. An enabling template for such a future transport infrastructure is presented. An advantage of the use of such a template is that it reduces the land area needed to propel an entire transport sector. Also, some solutions for the transition period that synergistically combine biomass with fossil fuels are briefly discussed.
Integrated oil production and upgrading using molten alkali metal
Gordon, John Howard
2016-10-04
A method that combines the oil retorting process (or other process needed to obtain/extract heavy oil or bitumen) with the process for upgrading these materials using sodium or other alkali metals. Specifically, the shale gas or other gases that are obtained from the retorting/extraction process may be introduced into the upgrading reactor and used to upgrade the oil feedstock. Also, the solid materials obtained from the reactor may be used as a fuel source, thereby providing the heat necessary for the retorting/extraction process. Other forms of integration are also disclosed.
NASA Technical Reports Server (NTRS)
Choi, W.; Leu, M. T.
1998-01-01
Black carbon particles (soot) are formed as a result of incomplete combustion processes and are ubiquitous in the atmosphere. The lower troposphere contains plenty of soot particles whose principal sources are fossil fuel and biomass combustion at the ground level.
CONSTRUCTION PROGRESS PHOTO OF HOT PILOT PLANT (CPP640) LOOKING EAST ...
CONSTRUCTION PROGRESS PHOTO OF HOT PILOT PLANT (CPP-640) LOOKING EAST SHOWING EXCAVATION AND FORMING; CONSTRUCTION 6 PERCENT COMPLETE. INL PHOTO NUMBER NRTS-59-4935. J. Anderson, Photographer, 9/21/1959 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID
Atmospheric mercury is predominantly present in the gaseous elemental form (Hg0). However, anthropogenic emissions (e.g. incineration, fossil fuel combustion) emit and natural processes create particulate-phase mercury (Hg(p)) and divalent reactive gas-phase mercury (RGM). RG...
CONTINUOUS BLACK CARBON MEASUREMENTS INDOORS AND OUTDOORS AT AN OCCUPIED HOUSE FOR ONE YEAR
Black carbon is one of the components of particulate matter, and is of importance because the only known source of aerosol black carbon in the atmosphere is the combustion of carbonaceous fuels (Hansen, 1997). Polyaromatic hydrocarbons (PAH) formed in the combustion process ar...
Low hydrostatic head electrolyte addition to fuel cell stacks
Kothmann, Richard E.
1983-01-01
A fuel cell and system for supply electrolyte, as well as fuel and an oxidant to a fuel cell stack having at least two fuel cells, each of the cells having a pair of spaced electrodes and a matrix sandwiched therebetween, fuel and oxidant paths associated with a bipolar plate separating each pair of adjacent fuel cells and an electrolyte fill path for adding electrolyte to the cells and wetting said matrices. Electrolyte is flowed through the fuel cell stack in a back and forth fashion in a path in each cell substantially parallel to one face of opposite faces of the bipolar plate exposed to one of the electrodes and the matrices to produce an overall head uniformly between cells due to frictional pressure drop in the path for each cell free of a large hydrostatic head to thereby avoid flooding of the electrodes. The bipolar plate is provided with channels forming paths for the flow of the fuel and oxidant on opposite faces thereof, and the fuel and the oxidant are flowed along a first side of the bipolar plate and a second side of the bipolar plate through channels formed into the opposite faces of the bipolar plate, the fuel flowing through channels formed into one of the opposite faces and the oxidant flowing through channels formed into the other of the opposite faces.
NASA Astrophysics Data System (ADS)
Buechi, F. N.; Gupta, B.; Rouilly, M.; Hauser, P. C.; Chapiro, A.; Scherer, G. G.
Partially fluorinated proton exchange membranes (PEMs) were synthesized for fuel cell applications by simultaneous radiation grafting of styrene on FEP films followed by sulfonation. Properties of the synthesized membranes can be tailored by varying the degree of grafting and crosslinking. The performance of these membranes was tested in H2/O2 fuel cells. Long time testing showed steady performance for high grafted membranes over periods of more than 300 h at a cell temperature of 60 C. Low grafted membranes and the Morgane CDS membrane showed considerable decay of cell power on the same time scale. A fast degradation of all membranes occurred at a cell temperature of 80 C. It is noted that grafting in film form makes this process a potentially cheap and easy technique for the preparation of solid polymer fuel cell electrolytes.
Means for supporting fuel elements in a nuclear reactor
Andrews, Harry N.; Keller, Herbert W.
1980-01-01
A grid structure for a nuclear reactor fuel assembly comprising a plurality of connecting members forming at least one longitudinally extending opening peripheral and inner fuel element openings through each of which openings at least one nuclear fuel element extends, said connecting members forming wall means surrounding said each peripheral and inner fuel element opening, a pair of rigid projections longitudinally spaced from one another extending from a portion of said wall means into said each peripheral and inner opening for rigidly engaging said each fuel element, respectively, yet permit individual longitudinal slippage thereof, and resilient means formed integrally on and from said wall means and positioned in said each peripheral and inner opening in opposed relationship with said projections and located to engage said fuel element to bias the latter into engagement with said rigid projections, respectively
Wheelock, C.W.; Baumeister, E.B.
1961-09-01
A reactor fuel element utilizing fissionable fuel materials in plate form is described. This fuel element consists of bundles of fuel-bearing plates. The bundles are stacked inside of a tube which forms the shell of the fuel element. The plates each have longitudinal fins running parallel to the direction of coolant flow, and interspersed among and parallel to the fins are ribs which position the plates relative to each other and to the fuel element shell. The plate bundles are held together by thin bands or wires. The ex tended surface increases the heat transfer capabilities of a fuel element by a factor of 3 or more over those of a simple flat plate.
Multiphase transport in polymer electrolyte membrane fuel cells
NASA Astrophysics Data System (ADS)
Gauthier, Eric D.
Polymer electrolyte membrane fuel cells (PEMFCs) enable efficient conversion of fuels to electricity. They have enormous potential due to the high energy density of the fuels they utilize (hydrogen or alcohols). Power density is a major limitation to wide-scale introduction of PEMFCs. Power density in hydrogen fuel cells is limited by accumulation of water in what is termed fuel cell `flooding.' Flooding may occur in either the gas diffusion layer (GDL) or within the flow channels of the bipolar plate. These components comprise the electrodes of the fuel cell and balance transport of reactants/products with electrical conductivity. This thesis explores the role of electrode materials in the fuel cell and examines the fundamental connection between material properties and multiphase transport processes. Water is generated at the cathode catalyst layer. As liquid water accumulates it will utilize the largest pores in the GDL to go from the catalyst layer to the flow channels. Water collects to large pores via lateral transport at the interface between the GDL and catalyst layer. We have shown that water may be collected in these large pores from several centimeters away, suggesting that we could engineer the GDL to control flooding with careful placement and distribution of large flow-directing pores. Once liquid water is in the flow channels it forms slugs that block gas flow. The slugs are pushed along the channel by a pressure gradient that is dependent on the material wettability. The permeable nature of the GDL also plays a major role in slug growth and allowing bypass of gas between adjacent channels. Direct methanol fuel cells (DMFCs) have analogous multiphase flow issues where carbon dioxide bubbles accumulate, `blinding' regions of the fuel cell. This problem is fundamentally similar to water management in hydrogen fuel cells but with a gas/liquid phase inversion. Gas bubbles move laterally through the porous GDL and emerge to form large bubbles within the flow channel. We have compared the role of GDL materials in liquid drop and gas bubble formation and movement within fuel cells.
Reductions in aircraft particulate emissions due to the use of Fischer-Tropsch fuels
NASA Astrophysics Data System (ADS)
Beyersdorf, A. J.; Timko, M. T.; Ziemba, L. D.; Bulzan, D.; Corporan, E.; Herndon, S. C.; Howard, R.; Miake-Lye, R.; Thornhill, K. L.; Winstead, E.; Wey, C.; Yu, Z.; Anderson, B. E.
2014-01-01
The use of alternative fuels for aviation is likely to increase due to concerns over fuel security, price stability, and the sustainability of fuel sources. Concurrent reductions in particulate emissions from these alternative fuels are expected because of changes in fuel composition including reduced sulfur and aromatic content. The NASA Alternative Aviation Fuel Experiment (AAFEX) was conducted in January-February 2009 to investigate the effects of synthetic fuels on gas-phase and particulate emissions. Standard petroleum JP-8 fuel, pure synthetic fuels produced from natural gas and coal feedstocks using the Fischer-Tropsch (FT) process, and 50% blends of both fuels were tested in the CFM-56 engines on a DC-8 aircraft. To examine plume chemistry and particle evolution with time, samples were drawn from inlet probes positioned 1, 30, and 145 m downstream of the aircraft engines. No significant alteration to engine performance was measured when burning the alternative fuels. However, leaks in the aircraft fuel system were detected when operated with the pure FT fuels as a result of the absence of aromatic compounds in the fuel. Dramatic reductions in soot emissions were measured for both the pure FT fuels (reductions in mass of 86% averaged over all powers) and blended fuels (66%) relative to the JP-8 baseline with the largest reductions at idle conditions. At 7% power, this corresponds to a reduction from 7.6 mg kg-1 for JP-8 to 1.2 mg kg-1 for the natural gas FT fuel. At full power, soot emissions were reduced from 103 to 24 mg kg-1 (JP-8 and natural gas FT, respectively). The alternative fuels also produced smaller soot (e.g., at 85% power, volume mean diameters were reduced from 78 nm for JP-8 to 51 nm for the natural gas FT fuel), which may reduce their ability to act as cloud condensation nuclei (CCN). The reductions in particulate emissions are expected for all alternative fuels with similar reductions in fuel sulfur and aromatic content regardless of the feedstock. As the plume cools downwind of the engine, nucleation-mode aerosols form. For the pure FT fuels, reductions (94% averaged over all powers) in downwind particle number emissions were similar to those measured at the exhaust plane (84%). However, the blended fuels had less of a reduction (reductions of 30-44%) than initially measured (64%). The likely explanation is that the reduced soot emissions in the blended fuel exhaust plume results in promotion of new particle formation microphysics, rather than coating on pre-existing soot particles, which is dominant in the JP-8 exhaust plume. Downwind particle volume emissions were reduced for both the pure (79 and 86% reductions) and blended FT fuels (36 and 46%) due to the large reductions in soot emissions. In addition, the alternative fuels had reduced particulate sulfate production (near zero for FT fuels) due to decreased fuel sulfur content. To study the formation of volatile aerosols (defined as any aerosol formed as the plume ages) in more detail, tests were performed at varying ambient temperatures (-4 to 20 °C). At idle, particle number and volume emissions were reduced linearly with increasing ambient temperature, with best fit slopes corresponding to -8 × 1014 particles (kg fuel)-1 °C-1 for particle number emissions and -10 mm3 (kg fuel)-1 °C-1 for particle volume emissions. The temperature dependency of aerosol formation can have large effects on local air quality surrounding airports in cold regions. Aircraft-produced aerosols in these regions will be much larger than levels expected based solely on measurements made directly at the engine exit plane. The majority (90% at idle) of the volatile aerosol mass formed as nucleation-mode aerosols, with a smaller fraction as a soot coating. Conversion efficiencies of up to 2.8% were measured for the partitioning of gas-phase precursors (unburned hydrocarbons and SO2) to form volatile aerosols. Highest conversion efficiencies were measured at 45% power.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mizia, R.E.; Atteridge, D.G.; Buckentin, J.
1994-08-01
The research addressed under this project is the recycling of metallic nuclear-related by-product materials under the direction of Westinghouse Idaho Nuclear Company (WINCO). The program addresses the recycling of radioactive scrap metals (RSM) for beneficial re-use within the DOE complex; in particular, this program addresses the recycling of stainless steel RSM. It is anticipated that various stainless steel components under WINCO control at the Idaho Falls Engineering Laboratory (INEL), such as fuel pool criticality barriers and fuel storage racks will begin to be recycled in FY94-95. The end product of this recycling effort is expected to be waste and overpackmore » canisters for densified high level waste for the Idaho Waste Immobilization Facility and/or the Universal Canister System for dry (interim) storage of spent fuel. The specific components of this problem area that are presently being, or have been, addressed by CAAMSEC are: (1) the melting/remelting of stainless steel RSM into billet form; (2) the melting/remelting initial research focus will be on the use of radioactive surrogates to study; (3) the cost effectiveness of RSM processing oriented towards privatization of RSM reuse and/or resale. Other components of this problem that may be addressed under program extension are: (4) the melting/remelting of carbon steel; (5) the processing of billet material into product form which shall meet all applicable ASTM requirements; and, (6) the fabrication of an actual prototypical product; the present concept of an end product is a low carbon Type 304/316 stainless steel cylindrical container for densified and/or vitrified high level radioactive waste and/or the Universal Canister System for dry (interim) storage of spent fuel. The specific work reported herein covers the melting/remelting of stainless steel {open_quotes}scrap{close_quotes} metal into billet form and the study of surrogate material removal effectiveness by various remelting techniques.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mickalonis, J. I.
2015-08-31
Aluminum-clad spent nuclear fuel will be transported for processing in the 70-ton nuclear fuel element cask from L Basin to H-canyon. During transport these fuels would be expected to experience high temperature aqueous corrosion from the residual L Basin water that will be present in the cask. Cladding corrosion losses during transport were calculated for material test reactor (MTR) and high flux isotope reactors (HFIR) fuels using literature and site information on aqueous corrosion at a range of time/temperature conditions. Calculations of the cladding corrosion loss were based on Arrhenius relationships developed for aluminum alloys typical of cladding material withmore » the primary assumption that an adherent passive film does not form to retard the initial corrosion rate. For MTR fuels a cladding thickness loss of 33 % was found after 1 year in the cask with a maximum temperature of 263 °C. HFIR fuels showed a thickness loss of only 6% after 1 year at a maximum temperature of 180 °C. These losses are not expected to impact the overall confinement function of the aluminum cladding.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mickalonis, J. I.
2015-08-01
Aluminum-clad spent nuclear fuel will be transported for processing in the 70-ton nuclear fuel element cask from L Basin to H-canyon. During transport these fuels would be expected to experience high temperature aqueous corrosion from the residual L Basin water that will be present in the cask. Cladding corrosion losses during transport were calculated for material test reactor (MTR) and high flux isotope reactors (HFIR) fuels using literature and site information on aqueous corrosion at a range of time/temperature conditions. Calculations of the cladding corrosion loss were based on Arrhenius relationships developed for aluminum alloys typical of cladding material withmore » the primary assumption that an adherent passive film does not form to retard the initial corrosion rate. For MTR fuels a cladding thickness loss of 33% was found after 1 year in the cask with a maximum temperature of 263 °C. HFIR fuels showed a thickness loss of only 6% after 1 year at a maximum temperature of 180 °C. These losses are not expected to impact the overall confinement function of the aluminum cladding.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soloveichik, Grigorii
2015-11-30
EFRC vision. The direct use of organic hydrides in fuel cells as virtual hydrogen carriers that generate stable organic molecules, protons, and electrons upon electro-oxidation and can be electrochemically charged by re-hydrogenating the oxidized carrier was the major focus of the Center for Electrocatalysis, Transport Phenomena and Materials for Innovative Energy Storage (EFRC-ETM). Compared to a hydrogen-on-demand design that includes thermal decomposition of organic hydrides in a catalytic reactor, the proposed approach is much simpler and does not require additional dehydrogenation catalysts or heat exchangers. Further, this approach utilizes the advantages of a flow battery (i.e., separation of power andmore » energy, ease of transport and storage of liquid fuels) with fuels that have system energy densities similar to current hydrogen PEM fuel cells. EFRC challenges. Two major EFRC challenges were electrocatalysis and transport phenomena. The electrocatalysis challenge addresses fundamental processes which occur at a single molecular catalyst (microscopic level) and involve electron and proton transfer between the hydrogen rich and hydrogen depleted forms of organic liquid fuel and the catalyst. To form stable, non-radical dehydrogenation products from the organic liquid fuel, it is necessary to ensure fast transport of at least two electrons and two protons (per double bond formation). The same is true for the reverse hydrogenation reaction. The transport phenomena challenge addresses transport of electrons to/from the electrocatalyst and the current collector as well as protons across the polymer membrane. Additionally it addresses prevention of organic liquid fuel, water and oxygen transport through the PEM. In this challenge, the transport of protons or molecules involves multiple sites or a continuum (macroscopic level) and water serves as a proton conducting medium for the majority of known sulfonic acid based PEMs. Proton transfer in the presence of prospective organic liquid fuels was studied. During EFRC program various types of electrocatalysts, classes of fuels, and membranes have been investigated.« less
Kraemer, Gilbert Otto; Varatharajan, Balachandar; Evulet, Andrei Tristan; Yilmaz, Ertan; Lacy, Benjamin Paul
2013-12-31
Methods and systems are provided for premixing combustion fuel and air within gas turbines. In one embodiment, a combustor includes an upstream mixing panel configured to direct compressed air and combustion fuel through premixing zone to form a fuel-air mixture. The combustor includes a downstream mixing panel configured to mix additional combustion fuel with the fule-air mixture to form a combustion mixture.
Electric Power Quarterly, July-September 1984
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1985-01-01
The Electric Power Quarterly (EPQ) provides electric utilities' plant-level information about the cost, quantity, and quality of fossil fuel receipts, net generation, fuel consumption, and fuel stocks. The EPQ contains monthly data and quarterly totals for the reporting quarter. In this report, data collected on Form EIA-759 regarding electric utilities' net generation, fuel consumption, and fuel stocks are presented on a plant-by-plant basis. In addition, quantity, cost, and quality of fossil fuel receipts collected on the Federal Energy Regulatory Commission (FERC) Form 423 are presented on a plant-by-plant basis.
Electric Power Quarterly, October-December 1984
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1985-04-01
The Electric Power Quarterly (EPQ) provides electric utilities' plant-level information about the cost, quantity, and quality of fossil fuel receipts, net generation, fuel consumption, and fuel stocks. The EPQ contains monthly data and quarterly totals for the reporting quarter. In this report, data collected on Form EIA-759 regarding electric utilities' net generation, fuel consumption, and fuel stocks are presented on a plant-by-plant basis. In addition, quantity, cost, and quality of fossil fuel receipts collected on the Federal Energy Regulatory Commission (FERC) Form 423 are presented on a plant-by-plant basis.
A numerical analysis on forming limits during spiral and concentric single point incremental forming
NASA Astrophysics Data System (ADS)
Gipiela, M. L.; Amauri, V.; Nikhare, C.; Marcondes, P. V. P.
2017-01-01
Sheet metal forming is one of the major manufacturing industries, which are building numerous parts for aerospace, automotive and medical industry. Due to the high demand in vehicle industry and environmental regulations on less fuel consumption on other hand, researchers are innovating new methods to build these parts with energy efficient sheet metal forming process instead of conventionally used punch and die to form the parts to achieve the lightweight parts. One of the most recognized manufacturing process in this category is Single Point Incremental Forming (SPIF). SPIF is the die-less sheet metal forming process in which the single point tool incrementally forces any single point of sheet metal at any process time to plastic deformation zone. In the present work, finite element method (FEM) is applied to analyze the forming limits of high strength low alloy steel formed by single point incremental forming (SPIF) by spiral and concentric tool path. SPIF numerical simulations were model with 24 and 29 mm cup depth, and the results were compare with Nakajima results obtained by experiments and FEM. It was found that the cup formed with Nakajima tool failed at 24 mm while cups formed by SPIF surpassed the limit for both depths with both profiles. It was also notice that the strain achieved in concentric profile are lower than that in spiral profile.
Assessment of Nuclear Fuels using Radiographic Thickness Measurement Method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muhammad Abir; Fahima Islam; Hyoung Koo Lee
2014-11-01
The Convert branch of the National Nuclear Security Administration (NNSA) Global Threat Reduction Initiative (GTRI) focuses on the development of high uranium density fuels for research and test reactors for nonproliferation. This fuel is aimed to convert low density high enriched uranium (HEU) based fuel to high density low enriched uranium (LEU) based fuel for high performance research reactors (HPRR). There are five U.S. reactors that fall under the HPRR category, including: the Massachusetts Institute of Technology Reactor (MITR), the National Bureau of Standards Reactor (NBSR), the Missouri University Research Reactor (UMRR), the Advanced Test Reactor (ATR), and the Highmore » Flux Isotope Reactor (HFIR). U-Mo alloy fuel phase in the form of either monolithic or dispersion foil type fuels, such as ATR Full-size In center flux trap Position (AFIP) and Reduced Enrichment for Research and Test Reactor (RERTR), are being designed for this purpose. The fabrication process1 of RERTR is susceptible to introducing a variety of fuel defects. A dependable quality control method is required during fabrication of RERTR miniplates to maintain the allowable design tolerances, therefore evaluating and analytically verifying the fabricated miniplates for maintaining quality standards as well as safety. The purpose of this work is to analyze the thickness of the fabricated RERTR-12 miniplates using non-destructive technique to meet the fuel plate specification for RERTR fuel to be used in the ATR.« less
77 FR 71481 - Proposed Collection; Comment Request for Form 8911
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-30
... 8911, Alternative Fuel Vehicle Refueling Property Credit. DATES: Written comments should be received [email protected] . SUPPLEMENTARY INFORMATION: Title: Alternative Fuel Vehicle Refueling Property Credit. OMB... vehicle refueling property. Form 8911, Alternative Fuel Vehicle Refueling Property Credit, will be used by...
The effect of functional forms of nitrogen on fuel-NOx emissions.
Zhang, Linghui; Su, Dagen; Zhong, Mingfeng
2015-01-01
This work explores the effects of different nitrogen functional forms on fuel-NOx emissions at 900 °C. The majority of tests are performed with an excess air coefficient of 1.4. Fuel-NOx is detected by measuring N-(1-naphthyl) ethylenediamine dihydrochloride (C₁₂H₁₆Cl₂N₂) via spectrophotometry. The different functional forms of nitrogen in the raw materials are identified by using X-ray photoelectron spectroscopy (XPS). A reliable density functional theory (DFT) method at the B3LYP/6-311++G** level is employed to investigate the reaction pathways of all functional forms of nitrogen during combustion. The results indicate that the functional forms of nitrogen influence the formation of nitrogen oxides. While under the same experimental conditions, fuel-NOx emissions increase by using less activation energy and nitrogen-containing groups with poor thermal stability. It is determined that fuel-NOx emissions vary in the following order: glycine > pyrrole > pyridine > methylenedi-p-phenylene diisocyanate (MDI). Glycine is the chain structure of amino acids in waste-leather and has low activation energy and poor thermal stability. With these properties, it is noted that glycine produces the most fuel-NOx in all of the raw materials studied. More pyrrole than pyridine in coal lead to high yields of fuel-NOx. The lowest yields of fuel-NO x are obtained using polyurethanes in waste-PU.
Electric power quarterly, July-September 1986
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1987-02-04
The Electric Power Quarterly (EPQ) provides information on electric utilities at the plant level. The information concerns the following: cost, quantity, and quality of fossil fuel receipts; net generation; fuel consumption; and fuel stocks. The EPQ contains monthly data and quarterly totals for the reporting quarter. In this report, data collected on Form EIA-759 regarding electric utilities' net generation, fuel consumption, and fuel stocks are presented on a plant-by-plant basis. In addition, quantity, cost, and quality of fossil fuel receipts collected on the Form 423 are presented on a plant-by-plant basis. The EPQ presents a quarterly summary of disturbances andmore » unusual occurrences affecting the electric power industry collected by the Office of International Affairs and Energy Emergencies (IE) on Form IE-417.« less
Apparatus for depositing hard coating in a nozzle orifice
Flynn, P.L.; Giammarise, A.W.
1995-02-21
The present invention is directed to a process for coating the interior surfaces of an orifice in a substrate that forms a slurry fuel injection nozzle. In a specific embodiment, the nozzle is part of a fuel injection system for metering a coal-water slurry into a large, medium-speed, multi-cylinder diesel engine. In order to retard erosion of the orifice, the substrate is placed in a chemical vapor deposition (CVD) reaction chamber. A reaction gas is passed into the chamber at a gas temperature below its reaction temperature and is directed through the orifice in the substrate. The gas reaction temperature is a temperature at and above which the reaction gas deposits as a coating, and the reaction gas is of a composition whereby improved resistance to erosion by flow of the particulates in the slurry fuel is imparted by the deposited coating. Only the portion of the substrate in proximity to the orifice to be coated is selectively heated to at least the gas reaction temperature for effecting coating of the orifice`s interior surfaces by the vapor deposited coating formed from the reaction gas. 2 figs.
Apparatus for depositing hard coating in a nozzle orifice
Flynn, Paul L.; Giammarise, Anthony W.
1995-01-01
The present invention is directed to a process for coating the interior surfaces of an orifice in a substrate that forms a slurry fuel injection nozzle. In a specific embodiment, the nozzle is part of a fuel injection system for metering a coal-water slurry into a large, medium-speed, multi-cylinder diesel engine. In order to retard erosion of the orifice, the substrate is placed in a chemical vapor deposition (CVD) reaction chamber. A reaction gas is passed into the chamber at a gas temperature below its reaction temperature and is directed through the orifice in the substrate. The gas reaction temperature is a temperature at and above which the reaction gas deposits as a coating, and the reaction gas is of a composition whereby improved resistance to erosion by flow of the particulates in the slurry fuel is imparted by the deposited coating. Only the portion of the substrate in proximity to the orifice to be coated is selectively heated to at least the gas reaction temperature for effecting coating of the orifice's interior surfaces by the vapor deposited coating formed from the reaction gas.
On the Use of Thermal NF3 as the Fluorination and Oxidation Agent in Treatment of Used Nuclear Fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scheele, Randall D.; McNamara, Bruce K.; Casella, Andrew M.
2012-05-01
This paper presents results of our investigation on the use of nitrogen trifluoride as the fluorination or fluorination/oxidation agent for use in a process for separating valuable constituents from used nuclear fuels by employing the volatility of many transition metal and actinide fluorides. Nitrogen trifluoride is less chemically and reactively hazardous than the hazardous and aggressive fluorinating agents used to prepare uranium hexafluoride and considered for fluoride volatility based nuclear fuels reprocessing. In addition, nitrogen trifluoride’s less aggressive character may be used to separate the volatile fluorides from used fuel and from themselves based on the fluorination reaction’s temperature sensitivitymore » (thermal tunability) rather than relying on differences in sublimation/boiling temperature and sorbents. Our thermodynamic calculations found that nitrogen trifluoride has the potential to produce volatile fission product and actinide fluorides from candidate oxides and metals. Our simultaneous thermogravimetric and differential thermal analyses found that the oxides of lanthanum, cerium, rhodium, and plutonium fluorinated but did not form volatile fluorides and that depending on temperature volatile fluorides formed from the oxides of niobium, molybdenum, ruthenium, tellurium, uranium, and neptunium. We also demonstrated near-quantitative removal of uranium from plutonium in a mixed oxide.« less
Fuel Cell Power Plant Initiative. Volume 2; Preliminary Design of a Fixed-Base LFP/SOFC Power System
NASA Technical Reports Server (NTRS)
Veyo, S.E.
1997-01-01
This report documents the preliminary design for a military fixed-base power system of 3 MWe nominal capacity using Westinghouse's tubular Solid Oxide Fuel Cell [SOFC] and Haldor Topsoe's logistic fuels processor [LFP]. The LFP provides to the fuel cell a methane rich sulfur free fuel stream derived from either DF-2 diesel fuel, or JP-8 turbine fuel. Fuel cells are electrochemical devices that directly convert the chemical energy contained in fuels such as hydrogen, natural gas, or coal gas into electricity at high efficiency with no intermediate heat engine or dynamo. The SOFC is distinguished from other fuel cell types by its solid state ceramic structure and its high operating temperature, nominally 1000'C. The SOFC pioneered by Westinghouse has a tubular geometry closed at one end. A power generation stack is formed by aggregating many cells in an ordered array. The Westinghouse stack design is distinguished from other fuel cell stacks by the complete absence of high integrity seals between cell elements, cells, and between stack and manifolds. Further, the reformer for natural gas [predominantly methane] and the stack are thermally and hydraulically integrated with no requirement for process water. The technical viability of combining the tubular SOFC and a logistic fuels processor was demonstrated at 27 kWe scale in a test program sponsored by the Advanced Research Projects Agency [ARPA) and carried out at the Southern California Edison's [SCE] Highgrove generating station near San Bernardino, California in 1994/95. The LFP was a breadboard design supplied by Haldor Topsoe, Inc. under subcontract to Westinghouse. The test program was completely successful. The LFP fueled the SOFC for 766 hours on JP-8 and 1555 hours of DF-2. In addition, the fuel cell operated for 3261 hours on pipeline natural gas. Over the 5582 hours of operation, the SOFC generated 118 MVVH of electricity with no perceptible degradation in performance. The LFP processed military specification JP-8 and DF-2 removing the sulfur and reforming these liquid fuels to a methane rich gaseous fuel. Results of this program are documented in a companion report titled 'Final Report-Solid Oxide Fuel Cell/ Logistic Fuels Processor 27 kWe Power System'.
Method of producing a colloidal fuel from coal and a heavy petroleum fraction
Longanbach, James R.
1983-08-09
A method is provided for combining coal as a colloidal suspension within a heavy petroleum fraction. The coal is broken to a medium particle size and is formed into a slurry with a heavy petroleum fraction such as a decanted oil having a boiling point of about 300.degree.-550.degree. C. The slurry is heated to a temperature of 400.degree.-500.degree. C. for a limited time of only about 1-5 minutes before cooling to a temperature of less than 300.degree. C. During this limited contact time at elevated temperature the slurry can be contacted with hydrogen gas to promote conversion. The liquid phase containing dispersed coal solids is filtered from the residual solids and recovered for use as a fuel or feed stock for other processes. The residual solids containing some carbonaceous material are further processed to provide hydrogen gas and heat for use as required in this process.
Park, Seunghyun; Ra, Youngchul; Reitz, Rolf D.; ...
2016-03-01
A reduced chemical kinetic mechanism for Tri-Propylene Glycol Monomethyl Ether (TPGME) has been developed and applied to computational fluid dynamics (CFD) calculations for predicting combustion and soot formation processes. The reduced TPGME mechanism was combined with a reduced n-hexadecane mechanism and a Poly-Aromatic Hydrocarbon (PAH) mechanism to investigate the effect of fuel oxygenation on combustion and soot emissions. The final version of the TPGME-n-hexadecane-PAH mechanism consists of 144 species and 730 reactions and was validated with experiments in shock tubes as well as in a constant volume spray combustion vessel (CVCV) from the Engine Combustion Network (ECN). The effects ofmore » ambient temperature, varying oxygen content in the tested fuels on ignition delay, spray liftoff length and soot formation under diesel-like conditions were analyzed and addressed using multidimensional reacting flow simulations and the reduced mechanism. Here, the results show that the present reduced mechanism gives reliable predictions of the combustion characteristics and soot formation processes. In the CVCV simulations, two important trends were identified. First, increasing the initial temperature in the CVCV shortens the ignition delay and lift-off length, reduces the fuel-air mixing, thereby increasing the soot levels. Secondly, fuel oxygenation introduces more oxygen into the central region of a fuel jet and reduces residence times of fuel rich area in active soot forming regions, thereby reducing soot levels.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Seunghyun; Ra, Youngchul; Reitz, Rolf D.
A reduced chemical kinetic mechanism for Tri-Propylene Glycol Monomethyl Ether (TPGME) has been developed and applied to computational fluid dynamics (CFD) calculations for predicting combustion and soot formation processes. The reduced TPGME mechanism was combined with a reduced n-hexadecane mechanism and a Poly-Aromatic Hydrocarbon (PAH) mechanism to investigate the effect of fuel oxygenation on combustion and soot emissions. The final version of the TPGME-n-hexadecane-PAH mechanism consists of 144 species and 730 reactions and was validated with experiments in shock tubes as well as in a constant volume spray combustion vessel (CVCV) from the Engine Combustion Network (ECN). The effects ofmore » ambient temperature, varying oxygen content in the tested fuels on ignition delay, spray liftoff length and soot formation under diesel-like conditions were analyzed and addressed using multidimensional reacting flow simulations and the reduced mechanism. Here, the results show that the present reduced mechanism gives reliable predictions of the combustion characteristics and soot formation processes. In the CVCV simulations, two important trends were identified. First, increasing the initial temperature in the CVCV shortens the ignition delay and lift-off length, reduces the fuel-air mixing, thereby increasing the soot levels. Secondly, fuel oxygenation introduces more oxygen into the central region of a fuel jet and reduces residence times of fuel rich area in active soot forming regions, thereby reducing soot levels.« less
Composite carbon foam electrode
Mayer, Steven T.; Pekala, Richard W.; Kaschmitter, James L.
1997-01-01
Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivty and power to system energy.
On the lightweighting of automobile engine components : forming sheet metal connecting rod
NASA Astrophysics Data System (ADS)
Date, P. P.; Kasture, R. N.; Kore, A. S.
2017-09-01
Reducing the inertia of the reciprocating engine components can lead to significant savings on fuel. A lighter connecting rod (for the same functionality and performance) with a lower material input would be an advantage to the user (customer) and the manufacturer alike. Light materials will make the connecting rod much more expensive compared to those made from steel. Non-ferrous metals are amenable to cold forging of engine components to achieve lightweighting. Alternately, one can make a hollow connecting rod formed from steel sheet, thereby making it lighter, and with many advantages over the conventionally hot forged product. The present paper describes the process of forming a connecting rod from sheet metal. Cold forming (as opposed to high energy needs, lower tool life and the need for greater number of operations and finishing processes in hot forming) would be expected to reduce the cost of manufacture by cold forming. Work hardening during forming is also expected to enhance the in-service performance of the connecting rod.
Method and means of packaging nuclear fuel rods for handling
Adam, Milton F.
1979-01-01
Nuclear fuel rods, especially spent nuclear fuel rods that may show physical distortion, are encased within a metallic enclosing structure by forming a tube about the fuel rod. The tube has previously been rolled to form an overlapping tubular structure and then unrolled and coiled about an axis perpendicular to the tube. The fuel rod is inserted into the tube as the rolled tube is removed from a coiled strip and allowed to reassume its tubular shape about the fuel rod. Rollers support the coiled strip in an open position as the coiled strip is uncoiled and allowed to roll about the fuel rod.
Reduction of CO2 to C1 products and fuel
Mill, T.; Ross, D.
2002-01-01
Photochemical semiconductor processes readily reduced CO2 to a broad range of C1 products. However the intrinsic and solar efficiencies for the processes were low. Improved quantum efficiencies could be realized utilizing quantum-sized particles, but at the expense of using less of the visible solar spectrum. Conversely, semiconductors with small bandgaps used more of the visible solar spectrum at the expense of quantum efficiency. Thermal reduction of CO2 with Fe(II) was thermodynamically favored for forming many kinds of organic compounds and occurred readily with olivine and other Fe(II) minerals above 200??C to form higher alkanes and alkenes. No added hydrogen was required.
NASA Technical Reports Server (NTRS)
Mulac, Richard A.; Celestina, Mark L.; Adamczyk, John J.; Misegades, Kent P.; Dawson, Jef M.
1987-01-01
A procedure is outlined which utilizes parallel processing to solve the inviscid form of the average-passage equation system for multistage turbomachinery along with a description of its implementation in a FORTRAN computer code, MSTAGE. A scheme to reduce the central memory requirements of the program is also detailed. Both the multitasking and I/O routines referred to in this paper are specific to the Cray X-MP line of computers and its associated SSD (Solid-state Storage Device). Results are presented for a simulation of a two-stage rocket engine fuel pump turbine.
SUNY Contracts for Cogeneration.
ERIC Educational Resources Information Center
Freeman, Laurie
1996-01-01
The State University of New York-Stony Brook forged a public-private partnership to fund a new plan for cogeneration, a two-step process that uses one fuel source--natural gas--to make two forms of energy. The agreement is designed to free the university from the need to make ongoing capital investment in its utility infrastructure. (MLF)
CONSTRUCTION PROGRESS PHOTO OF HOT PILOT PLANT (CPP640) LOOKING NORTHEAST ...
CONSTRUCTION PROGRESS PHOTO OF HOT PILOT PLANT (CPP-640) LOOKING NORTHEAST SHOWING DECK FORMING FOR SOUTH SECTION OF OPERATING CORRIDOR; CONSTRUCTION 44 PERCENT COMPLETE. INL PHOTO NUMBER NRTS-60-3624. Holmes, Photographer, 7/25/1960 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID
CONSTRUCTION PROGRESS PHOTO OF HOT PILOT PLANT (CPP640) LOOKING NORTHWEST, ...
CONSTRUCTION PROGRESS PHOTO OF HOT PILOT PLANT (CPP-640) LOOKING NORTHWEST, SHOWING FORMING FOR NORTH WALLS OF CELLS 1, 4 AND 5; CONSTRUCTION 21 PERCENT COMPLETE. INL PHOTO NUMBER NRTS-60-1874. Holmes, Photographer, 4/21/1960 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID
Vouk, V B; Piver, W T
1983-01-01
Metallic elements contained in coal, oil and gasoline are mobilized by combustion processes and may be emitted into the atmosphere, mainly as components of submicron particles. The information about the amounts, composition and form of metal compounds is reviewed for some fuels and combustion processes. Since metal compounds are always contained in urban air pollutants, they have to be considered whenever an evaluation of biological impact of air pollutants is made. The value of currently used bioassays for the evaluation of the role of trace metal compounds, either as major biologically active components or as modifiers of biological effects of organic compounds is assessed. The whole animal bioassays for carcinogenicity do not seem to be an appropriate approach. They are costly, time-consuming and not easily amenable to the testing of complex mixtures. Some problems related to the application and interpretation of short-term bioassays are considered, and the usefulness of such bioassays for the evaluation of trace metal components contained in complex air pollution mixtures is examined.
NASA Astrophysics Data System (ADS)
Meier, Roland; Souček, Pavel; Walter, Olaf; Malmbeck, Rikard; Rodrigues, Alcide; Glatz, Jean-Paul; Fanghänel, Thomas
2018-01-01
Two steps of a pyrochemical route for the recovery of actinides from spent metallic nuclear fuel are being investigated at JRC-Karlsruhe. The first step consists in electrorefining the fuel in molten salt medium implying aluminium cathodes. The second step is a chlorination process for the separation of actinides (An) from An-Al alloys formed on the cathodes. The chlorination process, in turn, consists of three steps; the distillation of adhered salt (1), the chlorination of An-Al by HCl/Cl2 under formation of AlCl3 and An chlorides (2), and the subsequent sublimation of AlCl3 (3). In the present work UAl2, UAl3, NpAl2, and PuAl2 were chlorinated with HCl(g) in a temperature range between 300 and 400 °C forming UCl4, NpCl4 or PuCl3 as the major An containing phases, respectively. Thermodynamic calculations were carried out to support the experimental work. The results showed a high chlorination efficiency for all used starting materials and indicated that the sublimation step may not be necessary when using HCl(g).
Torrefaction study for energy upgrading on Indonesian biomass as low emission solid fuel
NASA Astrophysics Data System (ADS)
Alamsyah, R.; Siregar, N. C.; Hasanah, F.
2017-05-01
Torrefaction is a pyrolysis process with low heating rate and temperature lower than 300°C in an inert condition which transforms biomass into a low emission solid fuel with relatively high energy. Through the torrefaction process biomass can be altered so that the end product is easy to grind and simple in the supply chain. The research was aimed at designing torrefaction reactor and upgrading energy content of some Indonesian biomass. The biomass used consist of empty fruit bunches of oil palm (EFB), cassava peel solid waste, and cocopeat (waste of coconut fiber). These biomass were formed into briquette and pellet form and were torrified with 300°C temperature during 1.5 hours without air. The results of terrified biomass and non-torrefied biomass were compared after burning on the stove in term of energy content and air emission quality. The result shows that energy content of biomass have increased by 1.1 up to 1.36 times. Meanwhile emission air resulted from its combustion was met with Indonesian emission regulation.
Fuel cells provide a revenue-generating solution to power quality problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, J.M. Jr.
Electric power quality and reliability are becoming increasingly important as computers and microprocessors assume a larger role in commercial, health care and industrial buildings and processes. At the same time, constraints on transmission and distribution of power from central stations are making local areas vulnerable to low voltage, load addition limitations, power quality and power reliability problems. Many customers currently utilize some form of premium power in the form of standby generators and/or UPS systems. These include customers where continuous power is required because of health and safety or security reasons (hospitals, nursing homes, places of public assembly, air trafficmore » control, military installations, telecommunications, etc.) These also include customers with industrial or commercial processes which can`t tolerance an interruption of power because of product loss or equipment damage. The paper discusses the use of the PC25 fuel cell power plant for backup and parallel power supplies for critical industrial applications. Several PC25 installations are described: the use of propane in a PC25; the use by rural cooperatives; and a demonstration of PC25 technology using landfill gas.« less
Vouk, V B; Piver, W T
1983-01-01
Metallic elements contained in coal, oil and gasoline are mobilized by combustion processes and may be emitted into the atmosphere, mainly as components of submicron particles. The information about the amounts, composition and form of metal compounds is reviewed for some fuels and combustion processes. Since metal compounds are always contained in urban air pollutants, they have to be considered whenever an evaluation of biological impact of air pollutants is made. The value of currently used bioassays for the evaluation of the role of trace metal compounds, either as major biologically active components or as modifiers of biological effects of organic compounds is assessed. The whole animal bioassays for carcinogenicity do not seem to be an appropriate approach. They are costly, time-consuming and not easily amenable to the testing of complex mixtures. Some problems related to the application and interpretation of short-term bioassays are considered, and the usefulness of such bioassays for the evaluation of trace metal components contained in complex air pollution mixtures is examined. PMID:6337825
NASA Astrophysics Data System (ADS)
Yu, Junliang; Froning, Dieter; Reimer, Uwe; Lehnert, Werner
2018-06-01
The lattice Boltzmann method is adopted to simulate the three dimensional dynamic process of liquid water breaking through the gas diffusion layer (GDL) in the polymer electrolyte membrane fuel cell. 22 micro-structures of Toray GDL are built based on a stochastic geometry model. It is found that more than one breakthrough locations are formed randomly on the GDL surface. Breakthrough location distance (BLD) are analyzed statistically in two ways. The distribution is evaluated statistically by the Lilliefors test. It is concluded that the BLD can be described by the normal distribution with certain statistic characteristics. Information of the shortest neighbor breakthrough location distance can be the input modeling setups on the cell-scale simulations in the field of fuel cell simulation.
Fuels processing for transportation fuel cell systems
NASA Astrophysics Data System (ADS)
Kumar, R.; Ahmed, S.
Fuel cells primarily use hydrogen as the fuel. This hydrogen must be produced from other fuels such as natural gas or methanol. The fuel processor requirements are affected by the fuel to be converted, the type of fuel cell to be supplied, and the fuel cell application. The conventional fuel processing technology has been reexamined to determine how it must be adapted for use in demanding applications such as transportation. The two major fuel conversion processes are steam reforming and partial oxidation reforming. The former is established practice for stationary applications; the latter offers certain advantages for mobile systems and is presently in various stages of development. This paper discusses these fuel processing technologies and the more recent developments for fuel cell systems used in transportation. The need for new materials in fuels processing, particularly in the area of reforming catalysis and hydrogen purification, is discussed.
Electric Power Quarterly, October-December 1985. [Glossary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1986-05-05
The Electric Power Quarterly (EPQ) provides information on electric utilities at the plant level. The information concerns the following: cost, quantity, and quality of fossil fuel receipts; net generation; fuel consumption; and fuel stocks. The EPQ contains monthly data and quarterly totals for the reporting quarter. Data collected on Form EIA-759 regarding electric utilities' net generation, fuel consumption, and fuel stocks are presented on a plant-by-plant basis. In addition, quantity, cost, and quality of fossil fuel receipts collected on the Federal Energy Regulatory Commission (FERC) Form 423 are presented on a plant-by-plant basis.
Electric Power Quarterly, January-March 1986
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1986-07-21
The ''Electric Power Quarterly (EPQ)'' provides information on electric utilities at the plant level. The information concerns the following: cost, quantity, and quality of fossil fuel receipts; net generation; fuel consumption; and fuel stocks. The ''EPQ'' contains monthly data and quarterly totals for the reporting quarter. In this report, data collected on Form EIA-759 regarding electric utilities' net generation, fuel consumption, and fuel stocks are presented on a plant-by-plant basis. In addition, quantity, cost, and quality of fossil fuel receipts collected on the Federal Energy Regulatory Commission (FERC) Form 423 are presented on a plant-by-plant basis.
Modeling of Thermal Performance of Multiphase Nuclear Fuel Cell Under Variable Gravity Conditions
NASA Technical Reports Server (NTRS)
Ding, Z.; Anghaie, S.
1996-01-01
A unique numerical method has been developed to model the dynamic processes of bulk evaporation and condensation processes, associated with internal heat generation and natural convection under different gravity levels. The internal energy formulation, for the bulk liquid-vapor phase change problems in an encapsulated container, was employed. The equations, governing the conservation of mass, momentum and energy for both phases involved in phase change, were solved. The thermal performance of a multiphase uranium tetra-fluoride fuel element under zero gravity, micro-gravity and normal gravity conditions has been investigated. The modeling yielded results including the evolution of the bulk liquid-vapor phase change process, the evolution of the liquid-vapor interface, the formation and development of the liquid film covering the side wall surface, the temperature distribution and the convection flow field in the fuel element. The strong dependence of the thermal performance of such multiphase nuclear fuel cell on the gravity condition has been revealed. Under all three gravity conditions, 0-g, 10(exp -3)-g, and 1-g, the liquid film is formed and covers the entire side wall. The liquid film covering the side wall is more isothermalized at the wall surface, which can prevent the side wall from being over-heated. As the gravity increases, the liquid film is thinner, the temperature gradient is larger across the liquid film and smaller across the vapor phase. This investigation provides valuable information about the thermal performance of multi-phase nuclear fuel element for the potential space and ground applications.
Electrocatalytic upgrading of biomass pyrolysis oils to chemical and fuel
NASA Astrophysics Data System (ADS)
Lam, Chun Ho
The present project's aim is to liquefy biomass through fast pyrolysis and then upgrade the resulting "bio-oil" to renewable fuels and chemicals by intensifying its energy content using electricity. This choice reflects three points: (a) Liquid hydrocarbons are and will long be the most practical fuels and chemical feedstocks because of their energy density (both mass and volume basis), their stability and relative ease of handling, and the well-established infrastructure for their processing, distribution and use; (b) In the U.S., the total carbon content of annually harvestable, non-food biomass is significantly less than that in a year's petroleum usage, so retention of plant-captured carbon is a priority; and (c) Modern technologies for conversion of sunlight into usable energy forms---specifically, electrical power---are already an order of magnitude more efficient than plants are at storing solar energy in chemical form. Biomass fast pyrolysis (BFP) generates flammable gases, char, and "bio-oil", a viscous, corrosive, and highly oxygenated liquid consisting of large amounts of acetic acid and water together with hundreds of other organic compounds. With essentially the same energy density as biomass and a tendency to polymerize, this material cannot practically be stored or transported long distances. It must be upgraded by dehydration, deoxygenation, and hydrogenation to make it both chemically and energetically compatible with modern vehicles and fuels. Thus, this project seeks to develop low cost, general, scalable, robust electrocatalytic methods for reduction of bio-oil into fuels and chemicals.
Integrated process modeling for the laser inertial fusion energy (LIFE) generation system
NASA Astrophysics Data System (ADS)
Meier, W. R.; Anklam, T. M.; Erlandson, A. C.; Miles, R. R.; Simon, A. J.; Sawicki, R.; Storm, E.
2010-08-01
A concept for a new fusion-fission hybrid technology is being developed at Lawrence Livermore National Laboratory. The primary application of this technology is base-load electrical power generation. However, variants of the baseline technology can be used to "burn" spent nuclear fuel from light water reactors or to perform selective transmutation of problematic fission products. The use of a fusion driver allows very high burn-up of the fission fuel, limited only by the radiation resistance of the fuel form and system structures. As a part of this process, integrated process models have been developed to aid in concept definition. Several models have been developed. A cost scaling model allows quick assessment of design changes or technology improvements on cost of electricity. System design models are being used to better understand system interactions and to do design trade-off and optimization studies. Here we describe the different systems models and present systems analysis results. Different market entry strategies are discussed along with potential benefits to US energy security and nuclear waste disposal. Advanced technology options are evaluated and potential benefits from additional R&D targeted at the different options is quantified.
Fuels Registration, Reporting, and Compliance Help
Information about the requirements for registration and health effects testing of new fuels or fuel additives and mandatory registration for fuels reporting and about mandatory reporting forms for parties regulated under EPA fuel programs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, Curtis; Patterson, Brad; Perdue, Jayson
A burner assembly combines oxygen and fuel to produce a flame. The burner assembly includes an oxygen supply tube adapted to receive a stream of oxygen and a solid fuel conduit arranged to extend through the oxygen tube to convey a stream of fluidized, pulverized, solid fuel into a flame chamber. Oxygen flowing through the oxygen supply tube passes generally tangentially through a first set of oxygen-injection holes formed in the solid fuel conduit and off-tangentially from a second set of oxygen-injection holes formed in the solid fuel conduit and then mixes with fluidized, pulverized, solid fuel passing through themore » solid fuel conduit to create an oxygen-fuel mixture in a downstream portion of the solid fuel conduit. This mixture is discharged into a flame chamber and ignited in the flame chamber to produce a flame.« less
Ablation study of tungsten-based nuclear thermal rocket fuel
NASA Astrophysics Data System (ADS)
Smith, Tabitha Elizabeth Rose
The research described in this thesis has been performed in order to support the materials research and development efforts of NASA Marshall Space Flight Center (MSFC), of Tungsten-based Nuclear Thermal Rocket (NTR) fuel. The NTR was developed to a point of flight readiness nearly six decades ago and has been undergoing gradual modification and upgrading since then. Due to the simplicity in design of the NTR, and also in the modernization of the materials fabrication processes of nuclear fuel since the 1960's, the fuel of the NTR has been upgraded continuously. Tungsten-based fuel is of great interest to the NTR community, seeking to determine its advantages over the Carbide-based fuel of the previous NTR programs. The materials development and fabrication process contains failure testing, which is currently being conducted at MSFC in the form of heating the material externally and internally to replicate operation within the nuclear reactor of the NTR, such as with hot gas and RF coils. In order to expand on these efforts, experiments and computational studies of Tungsten and a Tungsten Zirconium Oxide sample provided by NASA have been conducted for this dissertation within a plasma arc-jet, meant to induce ablation on the material. Mathematical analysis was also conducted, for purposes of verifying experiments and making predictions. The computational method utilizes Anisimov's kinetic method of plasma ablation, including a thermal conduction parameter from the Chapman Enskog expansion of the Maxwell Boltzmann equations, and has been modified to include a tangential velocity component. Experimental data matches that of the computational data, in which plasma ablation at an angle shows nearly half the ablation of plasma ablation at no angle. Fuel failure analysis of two NASA samples post-testing was conducted, and suggestions have been made for future materials fabrication processes. These studies, including the computational kinetic model at an angle and the ablation of the NASA sample, could be applied to an atmospheric reentry body, reentering at a ballistic trajectory at hypersonic velocities.
Code of Federal Regulations, 2010 CFR
2010-07-01
... hydrofluoropolyether. Fossil fuel means natural gas, petroleum, coal, or any form of solid, liquid, or gaseous fuel... maintenance shall not be considered an emergency generator. Emergency equipment means any auxiliary fossil... fed to the kiln. Feed does not include the fuels used in the kiln to produce heat to form the clinker...
Non-equilibrium radiation nuclear reactor
NASA Technical Reports Server (NTRS)
Thom, K.; Schneider, R. T. (Inventor)
1978-01-01
An externally moderated thermal nuclear reactor is disclosed which is designed to provide output power in the form of electromagnetic radiation. The reactor is a gaseous fueled nuclear cavity reactor device which can operate over wide ranges of temperature and pressure, and which includes the capability of processing and recycling waste products such as long-lived transuranium actinides. The primary output of the device may be in the form of coherent radiation, so that the reactor may be utilized as a self-critical nuclear pumped laser.
REGENERATION OF REACTOR FUEL ELEMENTS
Lyon, W.L.
1960-04-01
A process is described for concentrating uranium and/or plutonium metal in aluminum alloys in which the actinide content was partially consumed by neutron bombardinent. Two embodiments are claimed: Either the alloy is heated, together with zinc chloride to at least 1000 deg C whereby some aluminum, in the form of aluminum chloride, and any zinc formed volatilize; or else aluminum fluoride is added and reacted at 800 to 1000 deg O and substmospheric pressure whereby pant of the aluminum volatilizes and aluminum subfluoride.
Microfluidic fuel cell systems with embedded materials and structures and method thereof
Morse, Jeffrey D.; Rose, Klint A; Maghribi, Mariam; Benett, William; Krulevitch, Peter; Hamilton, Julie; Graff, Robert T.; Jankowski, Alan
2005-07-26
Described herein is a process for fabricating microfluidic systems with embedded components in which micron-scale features are molded into the polymeric material polydimethylsiloxane (PDMS). Micromachining is used to create a mold master and the liquid precursors for PDMS are poured over the mold and allowed to cure. The PDMS is then removed form the mold and bonded to another material such as PDMS, glass, or silicon after a simple surface preparation step to form sealed microchannels.
Agarwal, Manu; Tardio, James; Venkata Mohan, S
2013-11-01
To understand the potential of cellulosic based municipal waste as a renewable feed-stock, application of pyrolysis by biorefinery approach was comprehensively studied for its practicable application towards technical and environmental viability in Indian context. In India, where the energy requirements are high, the pyrolysis of the cellulosic waste shows numerous advantages for its applicability as a potential waste-to-energy technology. The multiple energy outputs of the process viz., bio-gas, bio-oil and bio-char can serve the two major energy sectors, viz., electricity and transportation. The process suits best for high bio-gas and electrical energy production when energy input is satisfied from bio-char in form of steam (scheme-1). The bio-gas generated through the process shows its direct utility as a transportation fuel while the bio-oil produced can serve as fuel or raw material to chemical synthesis. On a commercial scale the process is a potent technology towards sustainable development. The process is self-sustained when operated on a continuous mode. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Orr, R. M.; Sims, H. E.; Taylor, R. J.
2015-10-01
Plutonium (IV) and (III) ions in nitric acid solution readily form insoluble precipitates with oxalic acid. The plutonium oxalates are then easily thermally decomposed to form plutonium dioxide powder. This simple process forms the basis of current industrial conversion or 'finishing' processes that are used in commercial scale reprocessing plants. It is also widely used in analytical or laboratory scale operations and for waste residues treatment. However, the mechanisms of the thermal decompositions in both air and inert atmospheres have been the subject of various studies over several decades. The nature of intermediate phases is of fundamental interest whilst understanding the evolution of gases at different temperatures is relevant to process control. The thermal decomposition is also used to control a number of powder properties of the PuO2 product that are important to either long term storage or mixed oxide fuel manufacturing. These properties are the surface area, residual carbon impurities and adsorbed volatile species whereas the morphology and particle size distribution are functions of the precipitation process. Available data and experience regarding the thermal and radiation-induced decompositions of plutonium oxalate to oxide are reviewed. The mechanisms of the thermal decompositions are considered with a particular focus on the likely redox chemistry involved. Also, whilst it is well known that the surface area is dependent on calcination temperature, there is a wide variation in the published data and so new correlations have been derived. Better understanding of plutonium (III) and (IV) oxalate decompositions will assist the development of more proliferation resistant actinide co-conversion processes that are needed for advanced reprocessing in future closed nuclear fuel cycles.
METHOD AND APPARATUS FOR IMPROVING PERFORMANCE OF A FAST REACTOR
Koch, L.J.
1959-01-20
A specific arrangement of the fertile material and fissionable material in the active portion of a fast reactor to achieve improvement in performance and to effectively lower the operating temperatures in the center of the reactor is described. According to this invention a group of fuel elements containing fissionable material are assembled to form a hollow fuel core. Elements containing a fertile material, such as depleted uranium, are inserted into the interior of the fuel core to form a central blanket. Additional elemenis of fertile material are arranged about the fuel core to form outer blankets which in tunn are surrounded by a reflector. This arrangement of fuel core and blankets results in substantial flattening of the flux pattern.
High temperature methods for forming oxidizer fuel
Bravo, Jose Luis [Houston, TX
2011-01-11
A method of treating a formation fluid includes providing formation fluid from a subsurface in situ heat treatment process. The formation fluid is separated to produce a liquid stream and a first gas stream. The first gas stream includes carbon dioxide, hydrogen sulfide, hydrocarbons, hydrogen or mixtures thereof. Molecular oxygen is separated from air to form a molecular oxygen stream comprising molecular oxygen. The first gas stream is combined with the molecular oxygen stream to form a combined stream comprising molecular oxygen and the first gas stream. The combined stream is provided to one or more downhole burners.
Composite nuclear fuel fabrication methodology for gas fast reactors
NASA Astrophysics Data System (ADS)
Vasudevamurthy, Gokul
An advanced fuel form for use in Gas Fast Reactors (GFR) was investigated. Criteria for the fuel includes operation at high temperature (˜1400°C) and high burnup (˜150 MWD/MTHM) with effective retention of fission products even during transient temperatures exceeding 1600°C. The GFR fuel is expected to contain up to 20% transuranics for a closed fuel cycle. Earlier evaluations of reference fuels for the GFR have included ceramic-ceramic (cercer) dispersion type composite fuels of mixed carbide or nitride microspheres coated with SiC in a SiC matrix. Studies have indicated that ZrC is a potential replacement for SiC on account of its higher melting point, increased fission product corrosion resistance and better chemical stability. The present work investigated natural uranium carbide microspheres in a ZrC matrix instead of SiC. Known issues of minor actinide volatility during traditional fabrication procedures necessitated the investigation of still high temperature but more rapid fabrication techniques to minimize these anticipated losses. In this regard, fabrication of ZrC matrix by combustion synthesis from zirconium and graphite powders was studied. Criteria were established to obtain sufficient matrix density with UC microsphere volume fractions up to 30%. Tests involving production of microspheres by spark erosion method (similar to electrodischarge machining) showed the inability of the method to produce UC microspheres in the desired range of 300 to 1200 mum. A rotating electrode device was developed using a minimum current of 80A and rotating at speeds up to 1500 rpm to fabricate microspheres between 355 and 1200 mum. Using the ZrC process knowledge, UC electrodes were fabricated and studied for use in the rotating electrode device to produce UC microspheres. Fabrication of the cercer composite form was studied using microsphere volume fractions of 10%, 20%, and 30%. The macrostructure of the composite and individual components at various stages were characterized to understand the required fabrication techniques and at the same time meet the necessary GFR fuel characteristics.
Combustor nozzles in gas turbine engines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Thomas Edward; Keener, Christopher Paul; Stewart, Jason Thurman
2017-09-12
A micro-mixer nozzle for use in a combustor of a combustion turbine engine, the micro-mixer nozzle including: a fuel plenum defined by a shroud wall connecting a periphery of a forward tube sheet to a periphery of an aft tubesheet; a plurality of mixing tubes extending across the fuel plenum for mixing a supply of compressed air and fuel, each of the mixing tubes forming a passageway between an inlet formed through the forward tubesheet and an outlet formed through the aft tubesheet; and a wall mixing tube formed in the shroud wall.
Separation of harmful impurities from refuse derived fuels (RDF) by a fluidized bed.
Krüger, B; Mrotzek, A; Wirtz, S
2014-02-01
In firing systems of cement production plants and coal-fired power plants, regular fossil fuels are increasingly substituted by alternative fuels. Rising energy prices and ambitious CO2-reduction goals promote the use of alternative fuels as a significant contribution to efficient energy recovery. One possibility to protect energy resources are refuse-derived fuels (RDF), which are produced during the treatment of municipal solid, commercial and industrial waste. The waste fractions suitable for RDF have a high calorific value and are often not suitable for material recycling. With current treatment processes, RDF still contains components which impede the utilization in firing systems or limit the degree of substitution. The content of these undesired components may amount to 4 wt%. These, in most cases incombustible particles which consist of mineral, ceramic and metallic materials can cause damages in the conveying systems (e. g. rotary feeder) or result in contaminations of the products (e. g. cement, chalk). Up-to-date separation processes (sieve machine, magnet separator or air classifier) have individual weaknesses that could hamper a secure separation of these particles. This article describes a new technology for the separation of impurities from refuse derived fuels based on a rotating fluidized bed. In this concept a rotating motion of the particle bed is obtained by the tangential injection of the fluidization gas in a static geometry. The RDF-particles experience a centrifugal force which fluidized the bed radially. The technical principle allows tearing up of particle clusters to single particles. Radially inwards the vertical velocity is much lower thus particles of every description can fall down there. For the subsequent separation of the particles by form and density an additionally cone shaped plate was installed in the centre. Impurities have a higher density and a compact form compared to combustible particles and can be separated with a high efficiency. The new technology was experimentally investigated and proven using model-RDF, actual-RDF and impurities of different densities. In addition, numerical simulations were also done. The fluidization chamber was operated in batch mode. The article describes experiences and difficulties in using rotating fluidized bed systems. Copyright © 2013 Elsevier Ltd. All rights reserved.
Stadis{reg_sign} 450 in Merox-sweetened jet fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henry, C.P.
1995-05-01
Stadis{reg_sign} 450 has been used in aviation fuels since 1983, and in many cases is the additive of choice due to conductivity retention of treated fuels during distribution, and other characteristics. In the past several years, manufacture of Shell ASA-3 (the other aviation-approved static dissipator additive) has been discontinued; current stores are being drawn down and for some refiners conversion from ASA-3 to Stadis{reg_sign} 450 is underway. In fuels sweetened by hydrogen-treating, Stadis{reg_sign} 450 performs very well and there are few reported difficulties. Chemically sweetened fuels sometimes contain trace materials not removed by the sweetening process. When treated with Stadis{reg_sign}more » 450 some of these fuels have exhibited two behaviors which are being addressed: in one case, the formation of a precipitate which disarmed coalescers; in several other cases, reduced conductivity response and loss of conductivity during storage coupled with unusually large effects on the microseparatometer water separation properties. In late 1992, a Coordinating Research Council (CRC) Panel on Coalescer Deactivation was formed to address these problems. The results of DuPont and CRC efforts are discussed, along with actions taken and underway to eliminate these problems.« less
NASA Technical Reports Server (NTRS)
Blumenthal, Rob; Kim, Dongmoon; Bache, George
1992-01-01
The hydrogen mixer for the Space Transportation Main Engine is used to mix cold hydrogen bypass flow with warm hydrogen coolant chamber gas, which is then fed to the injectors. It is very important to have a uniform fuel temperature at the injectors in order to minimize mixture ratio problems due to the fuel density variations. In addition, the fuel at the injector has certain total pressure requirements. In order to achieve these objectives, the hydrogen mixer must provide a thoroughly mixed fluid with a minimum pressure loss. The AEROVISC computational fluid dynamics (CFD) code was used to analyze the STME hydrogen mixer, and proved to be an effective tool in optimizing the mixer design. AEROVISC, which solves the Reynolds Stress-Averaged Navier-Stokes equations in primitive variable form, was used to assess the effectiveness of different mixer designs. Through a parametric study of mixer design variables, an optimal design was selected which minimized mixed fuel temperature variation and fuel mixer pressure loss. The use of CFD in the design process of the STME hydrogen mixer was effective in achieving an optimal mixer design while reducing the amount of hardware testing.
Method of depositing a catalyst on a fuel cell electrode
Dearnaley, Geoffrey; Arps, James H.
2000-01-01
Fuel cell electrodes comprising a minimal load of catalyst having maximum catalytic activity and a method of forming such fuel cell electrodes. The method comprises vaporizing a catalyst, preferably platinum, in a vacuum to form a catalyst vapor. A catalytically effective amount of the catalyst vapor is deposited onto a carbon catalyst support on the fuel cell electrode. The electrode preferably is carbon cloth. The method reduces the amount of catalyst needed for a high performance fuel cell electrode to about 0.3 mg/cm.sup.2 or less.
NEUTRONIC REACTOR FUEL ELEMENT
Shackleford, M.H.
1958-12-16
A fuel element possessing good stability and heat conducting properties is described. The fuel element comprises an outer tube formed of material selected from the group consisting of stainhess steel, V, Ti. Mo. or Zr, a fuel tube concentrically fitting within the outer tube and containing an oxide of an isotope selected from the group consisting of U/sup 235/, U/sup 233/, and Pu/sup 239/, and a hollow, porous core concentrically fitting within the fuel tube and formed of an oxide of an element selected from the group consisting of Mg, Be, and Zr.
76 FR 10669 - Proposed Collection; Comment Request for Form 8896
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-25
... 8896, Low Sulfur Diesel Fuel Production Credit. DATES: Written comments should be received on or before...: Title: Low Sulfur Diesel Fuel Production Credit. OMB Number: 1545-1914. Form Number: 8896. Abstract: IRC section 45H allows small business refiners to claim a credit for the production of low sulfur diesel fuel...
40 CFR 63.7575 - What definitions apply to this subpart?
Code of Federal Regulations, 2011 CFR
2011-07-01
.... Liquid fossil fuel means petroleum, distillate oil, residual oil and any form of liquid fuel derived from... primary purpose of recovering thermal energy in the form of steam or hot water. Waste heat boilers are... unit means a fossil fuel-fired combustion unit of more than 25 megawatts that serves a generator that...
40 CFR 63.7575 - What definitions apply to this subpart?
Code of Federal Regulations, 2012 CFR
2012-07-01
.... Liquid fossil fuel means petroleum, distillate oil, residual oil and any form of liquid fuel derived from... primary purpose of recovering thermal energy in the form of steam or hot water. Waste heat boilers are... unit means a fossil fuel-fired combustion unit of more than 25 megawatts that serves a generator that...
40 CFR 63.7575 - What definitions apply to this subpart?
Code of Federal Regulations, 2010 CFR
2010-07-01
.... Liquid fossil fuel means petroleum, distillate oil, residual oil and any form of liquid fuel derived from... primary purpose of recovering thermal energy in the form of steam or hot water. Waste heat boilers are... unit means a fossil fuel-fired combustion unit of more than 25 megawatts that serves a generator that...
DISSOLUTION OF ZIRCONIUM-CONTAINING FUEL ELEMENTS
Horn, F.L.
1961-12-12
Uranium is recovered from spent uranium fuel elements containing or clad with zirconium. These fuel elements are placed in an anhydrous solution of hydrogen fluoride and nitrogen dioxide. Within this system uranium forms a soluble complex and zirconium forms an insoluble complex. The uranium can then be separated, treated, and removed from solution as uranium hexafluoride. (AEC)
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-08
..., 72, et al. Proposed Guidance for Fuel Cycle Facility; Material Control and Accounting Plans and Completing NRC Form 327 and Amendments to Material Control and Accounting Regulations; Proposed Rules #0;#0... Guidance for Fuel Cycle Facility; Material Control and Accounting Plans and Completing NRC Form 327 AGENCY...
Dirbeba, Meheretu Jaleta; Brink, Anders; DeMartini, Nikolai; Zevenhoven, Maria; Hupa, Mikko
2017-06-01
In this work, potential for thermochemical conversion of biomass residues from an integrated sugar-ethanol process and the fate of ash and ash-forming elements in the process are presented. Ash, ash-forming elements, and energy flows in the process were determined using mass balances and analyses of eight different biomass samples for ash contents, elemental compositions, and heating values. The results show that the ash content increases from the sugarcane to the final residue, vinasse. The cane straw, which is left in the field, contains one-third of the energy and 25% of the K and Cl while the vinasse contains 2% of the energy and 40% of the K and Cl in the cane. K and Cl in biomass fuels cause corrosion and fouling problems in boilers and gasifiers. Over 85% of these elements in the straw are water soluble indicating that water leaching would improve it for utilization in thermochemical conversion. Copyright © 2017 Elsevier Ltd. All rights reserved.
77 FR 36423 - Labeling Requirements for Alternative Fuels and Alternative Fueled Vehicles
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-19
...: Interested parties are invited to submit written comments electronically or in paper form by following the instructions in section V of the SUPPLEMENTARY INFORMATION section below. Comments in electronic form should be... following the instructions on the web-based form). Comments filed in paper form should be mailed or...
78 FR 43871 - Commission Information Collection Activities (FERC-580); Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-22
... submitting the information collection, FERC Form No. 580 (Interrogatory on Fuel and Energy Purchase Practices.... SUPPLEMENTARY INFORMATION: Title: Interrogatory on Fuel and Energy Purchase Practices (FERC Form No. 580), OMB...: Three-year approval of the FERC Form No. 580. Abstract: FERC Form No. 580 is collected in even numbered...
Apparatus for mixing fuel in a gas turbine nozzle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barker, Carl Robert
A fuel nozzle in a combustion turbine engine that includes: a fuel plenum defined between an circumferentially extending shroud and axially by a forward tube-sheet and an aft tube-sheet; and a mixing-tube that extends across the fuel plenum that defines a passageway connecting an inlet formed through the forward tube-sheet and an outlet formed through the aft tube-sheet, the mixing-tube comprising one or more fuel ports that fluidly communicate with the fuel plenum. The mixing-tube may include grooves on an outer surface, and be attached to the forward tube-sheet by a connection having a fail-safe leakage path.
Locking support for nuclear fuel assemblies
Ledin, Eric
1980-01-01
A locking device for supporting and locking a nuclear fuel assembly within a cylindrical bore formed by a support plate, the locking device including a support and locking sleeve having upwardly extending fingers forming wedge shaped contact portions arranged for interaction between an annular tapered surface on the fuel assembly and the support plate bore as well as downwardly extending fingers having wedge shaped contact portions arranged for interaction between an annularly tapered surface on the support plate bore and the fuel assembly whereby the sleeve tends to support and lock the fuel assembly in place within the bore by its own weight while facilitating removal and/or replacement of the fuel assembly.
Integral gas seal for fuel cell gas distribution assemblies and method of fabrication
Dettling, Charles J.; Terry, Peter L.
1985-03-19
A porous gas distribution plate assembly for a fuel cell, such as a bipolar assembly, includes an inner impervious region wherein the bipolar assembly has good surface porosity but no through-plane porosity and wherein electrical conductivity through the impervious region is maintained. A hot-pressing process for forming the bipolar assembly includes placing a layer of thermoplastic sealant material between a pair of porous, electrically conductive plates, applying pressure to the assembly at elevated temperature, and allowing the assembly to cool before removing the pressure whereby the layer of sealant material is melted and diffused into the porous plates to form an impervious bond along a common interface between the plates holding the porous plates together. The distribution of sealant within the pores along the surface of the plates provides an effective barrier at their common interface against through-plane transmission of gas.
Method of fabricating an integral gas seal for fuel cell gas distribution assemblies
Dettling, Charles J.; Terry, Peter L.
1988-03-22
A porous gas distribution plate assembly for a fuel cell, such as a bipolar assembly, includes an inner impervious region wherein the bipolar assembly has good surface porosity but no through-plane porosity and wherein electrical conductivity through the impervious region is maintained. A hot-pressing process for forming the bipolar assembly includes placing a layer of thermoplastic sealant material between a pair of porous, electrically conductive plates, applying pressure to the assembly at elevated temperature, and allowing the assembly to cool before removing the pressure whereby the layer of sealant material is melted and diffused into the porous plates to form an impervious bond along a common interface between the plates holding the porous plates together. The distribution of sealant within the pores along the surface of the plates provides an effective barrier at their common interface against through-plane transmission of gas.
Finding a Place for Energy: Siting Coal Conversion Facilities. Resource Publications in Geography.
ERIC Educational Resources Information Center
Calzonetti, Frank J.; Eckert, Mark S.
The process of identifying, licensing, and developing energy facility sites for the conversion of coal into more useful forms is the focus of this book, intended for geography students, professors, and researchers. The use of domestic coal resources will ameliorate U.S. dependency on imported fuel. However, because coal is a bulky, dirty fuel…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-29
... program of financial assistance to the rail industry in the form of loans and loan guarantees and other..., 2005 (70 FR 56207) and provides policy guidance. The public has an interest in how federal funds are... following: Reduce the consumption of fossil fuels and otherwise improve energy efficiency of rail operations...
Apparatus for converting biomass to a pumpable slurry
Ergun, Sabri; Schaleger, Larry L.; Wrathall, James A.; Yaghoubzadeh, Nasser
1986-01-01
An apparatus used in the pretreatment of wood chips in a process for converting biomass to a liquid hydrocarbonaceous fuel. The apparatus functions to break down the wood chips to a size distribution that can be readily handled in a slurry form. Low maintenance operation is obtained by hydrolyzing the chips in a pressure vessel having no moving parts.
Capacitor with a composite carbon foam electrode
Mayer, Steven T.; Pekala, Richard W.; Kaschmitter, James L.
1999-01-01
Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid partides being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy.
Method for fabricating composite carbon foam
Mayer, Steven T.; Pekala, Richard W.; Kaschmitter, James L.
2001-01-01
Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy.
Capacitor with a composite carbon foam electrode
Mayer, S.T.; Pekala, R.W.; Kaschmitter, J.L.
1999-04-27
Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy. 1 fig.
Composite carbon foam electrode
Mayer, S.T.; Pekala, R.W.; Kaschmitter, J.L.
1997-05-06
Carbon aerogels used as a binder for granulated materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy. 1 fig.
Reducing Actinide Production Using Inert Matrix Fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deinert, Mark
2017-08-23
The environmental and geopolitical problems that surround nuclear power stem largely from the longlived transuranic isotopes of Am, Cm, Np and Pu that are contained in spent nuclear fuel. New methods for transmuting these elements into more benign forms are needed. Current research efforts focus largely on the development of fast burner reactors, because it has been shown that they could dramatically reduce the accumulation of transuranics. However, despite five decades of effort, fast reactors have yet to achieve industrial viability. A critical limitation to this, and other such strategies, is that they require a type of spent fuel reprocessingmore » that can efficiently separate all of the transuranics from the fission products with which they are mixed. Unfortunately, the technology for doing this on an industrial scale is still in development. In this project, we explore a strategy for transmutation that can be deployed using existing, current generation reactors and reprocessing systems. We show that use of an inert matrix fuel to recycle transuranics in a conventional pressurized water reactor could reduce overall production of these materials by an amount that is similar to what is achievable using proposed fast reactor cycles. Furthermore, we show that these transuranic reductions can be achieved even if the fission products are carried into the inert matrix fuel along with the transuranics, bypassing the critical separations hurdle described above. The implications of these findings are significant, because they imply that inert matrix fuel could be made directly from the material streams produced by the commercially available PUREX process. Zirconium dioxide would be an ideal choice of inert matrix in this context because it is known to form a stable solid solution with both fission products and transuranics.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ozaltun, Hakan; Medvedev, Pavel G
2015-06-01
Monolithic plate-type fuel is a fuel form being developed for high performance research and test reactors to minimize the use of enriched material. These fuel elements are comprised of a high density, low enrichment, U-Mo alloy based fuel foil, sandwiched between Zirconium liners and encapsulated in Aluminum cladding. The use of a high density fuel in a foil form presents a number of fabrication and operational concerns, such as: foil centering, flatness of the foil, fuel thickness variation, geometrical tilting, foil corner shape etc. To benchmark this new design, effects of various geometrical and operational variables on irradiation performance havemore » been evaluated. As a part of these series of sensitivity studies, the shape of the foil corners were studied. To understand the effects of the corner shapes of the foil on thermo-mechanical performance of the plates, a behavioral model was developed for a selected plate from RERTR-12 experiments (Plate L1P785). Both fabrication and irradiation processes were simulated. Once the thermo-mechanical behavior the plate is understood for the nominal case, the simulations were repeated for two additional corner shapes to observe the changes in temperature, displacement and stress-strain fields. The results from the fabrication simulations indicated that the foil corners do not alter the post-fabrication stress-strain magnitudes. Furthermore, the irradiation simulations revealed that post-fabrication stresses of the foil would be relieved very quickly in operation. While, foils with chamfered and filleted corners yielded stresses with comparable magnitudes, they are slightly lower in magnitudes, and provided a more favorable mechanical response compared with the foil with sharp corners.« less
NASA Astrophysics Data System (ADS)
Stange, Gary Michael
Medical radioisotopes are used in tens of millions of procedures every year to detect and image a wide variety of maladies and conditions in the human body. The most widely-used diagnostic radioisotope is technetium-99m, a metastable isomer of technetium-99 that is generated by the radioactive decay of molybdenum-99. For a number of reasons, the supply of molybdenum-99 has become unreliable and the techniques used to produce it have become unattractive. This has spurred the investigation of new technologies that avoid the use of highly enriched uranium to produce molybdenum-99 in the United States, where approximately half of the demand originates. The first goal of this research is to develop a critical nuclear reactor design powered by solid, discrete pins of low enriched uranium. Analyses of single-pin heat transfer and whole-core neutronics are performed to determine the required specifications. Molybdenum-99 is produced directly in the fuel of this reactor and then extracted through a series of chemical processing steps. After this extraction, the fuel is left in an aqueous state. The second goal of this research is to describe a process by which the uranium may be recovered from this spent fuel solution and reconstituted into the original fuel form. Fuel recovery is achieved through a crystallization step that generates solid uranyl nitrate hexahydrate while leaving the majority of fission products and transuranic isotopes in solution. This report provides background information on molybdenum-99 production and crystallization chemistry. The previously unknown thermal conductivity of the fuel material is measured. Following this is a description of the modeling and calculations used to develop a reactor concept. The operational characteristics of the reactor core model are analyzed and reported. Uranyl nitrate crystallization experiments have also been conducted, and the results of this work are presented here. Finally, a process flow scheme for uranium recovery is examined, in part qualitatively and in part quantitatively, based upon the preceding data garnered through literature review, modeling, and experimentation. The sum of this research is meant to allow for a complete understanding of the process flow, from the beginning of one production cycle to the beginning of another.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Indacochea, J. E.; Gattu, V. K.; Chen, X.
The results of electrochemical corrosion tests and modeling activities performed collaboratively by researchers at the University of Illinois at Chicago and Argonne National Laboratory as part of workpackage NU-13-IL-UIC-0203-02 are summarized herein. The overall objective of the project was to develop and demonstrate testing and modeling approaches that could be used to evaluate the use of composite alloy/ceramic materials as high-level durable waste forms. Several prototypical composite waste form materials were made from stainless steels representing fuel cladding, reagent metals representing metallic fuel waste streams, and reagent oxides representing oxide fuel waste streams to study the microstructures and corrosion behaviorsmore » of the oxide and alloy phases. Microelectrodes fabricated from small specimens of the composite materials were used in a series of electrochemical tests to assess the corrosion behaviors of the constituent phases and phase boundaries in an aggressive acid brine solution at various imposed surface potentials. The microstructures were characterized in detail before and after the electrochemical tests to relate the electrochemical responses to changes in both the electrode surface and the solution composition. The results of microscopic, electrochemical, and solution analyses were used to develop equivalent circuit and physical models representing the measured corrosion behaviors of the different materials pertinent to long-term corrosion behavior. This report provides details regarding (1) the production of the composite materials, (2) the protocol for the electrochemical measurements and interpretations of the responses of multi-phase alloy and oxide composites, (3) relating corrosion behaviors to microstructures of multi-phase alloys based on 316L stainless steel and HT9 (410 stainless steel was used as a substitute) with added Mo, Ni, and/or Mn, and (4) modeling the corrosion behaviors and rates of several alloy/oxide composite materials made with added lanthanide and uranium oxides. These analyses show the corrosion behaviors of the alloy/ceramic composite materials are very similar to the corrosion behaviors of multi-phase alloy waste forms, and that the presence of oxide inclusions does not impact the corrosion behaviors of the alloy phases. Mixing with metallic waste streams is beneficial to lanthanide and uranium oxides in that they react with Zr in the fuel waste to form highly durable zirconates. The measured corrosion behaviors suggest properly formulated composite materials would be suitable waste forms for combined metallic and oxide waste streams generated during electrometallurgical reprocessing of spent nuclear fuel. Electrochemical methods are suitable for evaluating the durability and modeling long-term behavior of composite waste forms: the degradation model developed for metallic waste forms can be applied to the alloy phases formed in the composite and an affinity-based mineral dissolution model can be applied to the ceramic phases.« less
Advanced Fuels Campaign FY 2014 Accomplishments Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Braase, Lori; May, W. Edgar
The mission of the Advanced Fuels Campaign (AFC) is to perform Research, Development, and Demonstration (RD&D) activities for advanced fuel forms (including cladding) to enhance the performance and safety of the nation’s current and future reactors; enhance proliferation resistance of nuclear fuel; effectively utilize nuclear energy resources; and address the longer-term waste management challenges. This includes development of a state-of-the art Research and Development (R&D) infrastructure to support the use of a “goal-oriented science-based approach.” In support of the Fuel Cycle Research and Development (FCRD) program, AFC is responsible for developing advanced fuels technologies to support the various fuel cyclemore » options defined in the Department of Energy (DOE) Nuclear Energy Research and Development Roadmap, Report to Congress, April 2010. AFC uses a “goal-oriented, science-based approach” aimed at a fundamental understanding of fuel and cladding fabrication methods and performance under irradiation, enabling the pursuit of multiple fuel forms for future fuel cycle options. This approach includes fundamental experiments, theory, and advanced modeling and simulation. The modeling and simulation activities for fuel performance are carried out under the Nuclear Energy Advanced Modeling and Simulation (NEAMS) program, which is closely coordinated with AFC. In this report, the word “fuel” is used generically to include fuels, targets, and their associated cladding materials. R&D of light water reactor (LWR) fuels with enhanced accident tolerance is also conducted by AFC. These fuel systems are designed to achieve significantly higher fuel and plant performance to allow operation to significantly higher burnup, and to provide enhanced safety during design basis and beyond design basis accident conditions. The overarching goal is to develop advanced nuclear fuels and materials that are robust, have high performance capability, and are more tolerant to accident conditions than traditional fuel systems. AFC management and integration activities included continued support for international collaborations, primarily with France, Japan, the European Union, Republic of Korea, and China, as well as various working group and expert group activities in the Organization for Economic Cooperation and Development Nuclear Energy Agency (OECD-NEA) and the International Atomic Energy Agency (IAEA). Three industry-led Funding Opportunity Announcements (FOAs) and two university-led Integrated Research Projects (IRPs), funded in 2013, made significant progress in fuels and materials development. All are closely integrated with AFC and Accident Tolerant Fuels (ATF) research. Accomplishments made during fiscal year (FY) 2014 are highlighted in this report, which focuses on completed work and results. The process details leading up to the results are not included; however, the lead technical contact is provided for each section.« less
Amorphization of the interaction products in U-Mo/Al dispersion fuel during irradiation
NASA Astrophysics Data System (ADS)
Ryu, Ho Jin; Kim, Yeon Soo; Hofman, G. L.
2009-04-01
The microstructures of the product resulting from interaction between U-Mo fuel particles and the Al matrix in U-Mo/Al dispersion fuel are discussed. We analyzed the available characterization results for the Al matrix dispersion fuels from both the out-of-pile and in-pile tests and examined the difference between these results. The morphology of pores that form in the interaction products during irradiation is similar to the porosity previously observed in irradiation-induced amorphized uranium compounds. The available diffraction studies for the interaction products formed in both the out-of-pile and in-pile tests are analyzed. We have concluded that the interaction products in the U-Mo/Al dispersion fuel are formed as an amorphous state or become amorphous during irradiation, depending on the irradiation conditions.
Low temperature synthesis and sintering of d-UO2 nanoparticles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nenoff, Tina Maria; Ferreira, Summer Rhodes; Robinson, David B.
We report on the novel room temperature method of synthesizing advanced nuclear fuels; a method that virtually eliminates any volatility of components. This process uses radiolysis to form stable nanoparticle (NP) nuclear transuranic (TRU) fuel surrogates and in-situ heated stage TEM to sinter the NPs. The radiolysis is performed at Sandia's Gamma Irradiation Facility (GIF) 60Co source (3 x 10{sup 6} rad/hr). Using this method, sufficient quantities of fuels for research purposes can be produced for accelerated advanced nuclear fuel development. We are focused on both metallic and oxide alloy nanoparticles of varying compositions, in particular d-U, d-U/La alloys andmore » d-UO2 NPs. We present detailed descriptions of the synthesis procedures, the characterization of the NPs, the sintering of the NPs, and their stability with temperature. We have employed UV-vis, HRTEM, HAADF-STEM imaging, single particle EDX and EFTEM mapping characterization techniques to confirm the composition and alloying of these NPs.« less
NASA Astrophysics Data System (ADS)
Hartini, Entin; Andiwijayakusuma, Dinan
2014-09-01
This research was carried out on the development of code for uncertainty analysis is based on a statistical approach for assessing the uncertainty input parameters. In the butn-up calculation of fuel, uncertainty analysis performed for input parameters fuel density, coolant density and fuel temperature. This calculation is performed during irradiation using Monte Carlo N-Particle Transport. The Uncertainty method based on the probabilities density function. Development code is made in python script to do coupling with MCNPX for criticality and burn-up calculations. Simulation is done by modeling the geometry of PWR terrace, with MCNPX on the power 54 MW with fuel type UO2 pellets. The calculation is done by using the data library continuous energy cross-sections ENDF / B-VI. MCNPX requires nuclear data in ACE format. Development of interfaces for obtaining nuclear data in the form of ACE format of ENDF through special process NJOY calculation to temperature changes in a certain range.
Hodoscope Cineradiography Of Nuclear Fuel Destruction Experiments
NASA Astrophysics Data System (ADS)
De Volpi, A.
1983-08-01
Nuclear reactor safety studies have applied cineradiographic techniques to achieve key information regarding the durability of fuel elements that are subjected to destructive transients in test reactors. Beginning with its development in 1963, the fast-neutron hodoscope has recorded data at the TREAT reactor in the United States of America. Consisting of a collimator instrumented with several hundred parallel channels of detectors and associated instrumentation, the hodoscope measures fuel motion that takes place within thick-walled steel test containers. Fuel movement is determined by detecting the emission of fast neutrons induced in the test capsule by bursts of the test reactor that last from 0.3 to 30 s. The system has been designed so as to achieve under certain typical conditions( horizontal) spatial resolution less than lmm, time resolution close to lms, mass resolution below 0.1 g, with adequate dynamic range and recording duration. A variety of imaging forms have been developed to display the results of processing and analyzing recorded data.*
Underground thermal generation of hydrocarbons from dry, southwestern coals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vanderborgh, N.E.; Elliott, G.R.B.
1978-01-01
The LASL underground coal conversion concept produces intermediate-BTU fuel gas for nearby industries such as ''minemouth'' electric power plants, plus major byproducts in the form of liquid and gaseous hydrocarbons for feedstocks to chemical plants e.g., substitute natural gas (SNG) producers. The concept involves controlling the water influx and drying the coal, generating hydrocarbons, by pyrolysis and finally gasifying the residual char with O/sub 2//CO/sub 2/ or air/CO/sub 2/ mixtures to produce industrial fuel gases. Underground conversion can be frustrated by uncontrolled water in the coal bed. Moisture can (a) prevent combustion, (b) preclude fuel gas formation by lowering reactionmore » zone temperatures and creating kinetic problems, (c) ruin product gas quality by dropping temperatures into a thermodynamically unsatisfactory regime, (d) degrade an initially satisfactory fuel gas by consuming carbon monoxide, (e) waste large amounts of heat, and (f) isolate reaction zones so that the processing will bypass blocks of coal.« less
Dissolution of Used Nuclear Fuel Using a TBP/N-Paraffin Solvent
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rudisill, T. S.; Shehee, T. C.; Jones, D. H.
2017-10-02
The dissolution of unirradiated used nuclear fuel (UNF) pellets pretreated for tritium removal was demonstrated using a tributly phosphate (TBP) solvent. Dissolution of pretreated fuel in TBP could potentially combine dissolution with two cycle of solvent extraction required for separating the actinides and lanthanides from other fission products. Dissolutions were performed using UNF surrogates prepared from both uranyl nitrate and uranium trioxide produced from the pretreatment process by adding selected actinide and stable fission product elements. In laboratory-scale experiments, the U dissolution efficiency ranged from 80-99+% for both the nitrate and oxide surrogate fuels. On average, 80% of the Pumore » and 50% of the Np and Am in the nitrate surrogate dissolved; however, little of the transuranic elements dissolved in the oxide form. The majority of the 3+ lanthanide elements dissolved. Only small amounts of Sr (0-1.6%) and Mo (0.1-1.7%) and essentially no Cs, Ru, Zr, or Pd dissolved.« less
Global models for synthetic fuels planning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lamontagne, J.
1983-10-01
This study was performed to identify the set of existing global models with the best potential for use in the US Synthetic Fuels Corporation's strategic planning process, and to recommend the most appropriate model. The study was limited to global models with representations that encompass time horizons beyond the year 2000, multiple fuel forms, and significant regional detail. Potential accessibility to the Synthetic Fuels Corporation and adequate documentation were also required. Four existing models (LORENDAS, WIM, IIASA, and IEA/ORAU) were judged to be the best candidates for the SFC's use at this time; none of the models appears to bemore » ideal for the SFC's purposes. On the basis of currently available information, the most promising short-term option open to the SFC is the use of LORENDAS, with careful attention to definition of alternative energy demand scenarios. Longer-term options which deserve further study are coupling LORENDAS with an explicit model of energy demand, and modification of the IEA/ORAU model to include finer time-period definition and additional technological detail.« less
NASA Astrophysics Data System (ADS)
Monterde Rey, Ana Maria
In the area of terminology, one can find very little literature about the relationships and dependencies between linguistic and non-linguistic forms of concept representation. Furthermore, a large gap exists in the studies of non-linguistic forms. All of this constitutes the central problem in our thesis that we attempt to solve. Following an onomasiologic process of creating a terminological database, we have analysed and related, using three levels of specialisation (expert, student, and general public), the various linguistic forms (term, definition, and explanation) and a non-linguistic form (illustration) of concept representation in the area of aeronautical fuel-system installations. Specifically, of the aforementioned forms of conceptual representation, we have studied the adaptation of the level of knowledge of the material to those to whom the texts are addressed. Additionally, we have examined the formation, origin, etimology, foreign words, polysemy, synonymy, and typology of each term. We have also described in the following detail the characteristics of each type of illustration isolated in our corpus: the relationship to the object or to the concept, the existence of text and terms (linguistic media) within the illustrations, the degree of abstraction, the a priori knowledge necessary to interpret the illustrations, and, the existence of grafic symbols. Finally, we have related all linguistic and non-linguistic forms of conceptual representation.
Linked strategy for the production of fuels via formose reaction
Deng, Jin; Pan, Tao; Xu, Qing; Chen, Meng-Yuan; Zhang, Ying; Guo, Qing-Xiang; Fu, Yao
2013-01-01
Formose reaction converts formaldehyde to carbohydrates. We found that formose reaction can be used linking the biomass gasification with the aqueous-phase processing (APP) to produce liquid transportation fuel in three steps. First, formaldehyde from syn-gas was converted to triose. This was followed by aldol condensation and dehydration to 4-hydroxymethylfurfural (4-HMF). Finally, 4-HMF was hydrogenated to produce 2,4-dimethylfuran (2,4-DMF) or C9-C15 branched-chain alkanes as liquid transportation fuels. In the linked strategy, high energy-consuming pretreatment as well as expensive and polluting hydrolysis of biomass were omitted, but the high energy recovery of APP was inherited. In addition, the hexoketoses via formose reaction could be converted to HMFs directly without isomerization. A potential platform molecule 4-HMF was formed simultaneously in APP. PMID:23393625
Material processing with hydrogen and carbon monoxide on Mars
NASA Astrophysics Data System (ADS)
Hepp, Aloysius F.; Landis, Geoffrey A.; Linne, Diane L.
Several novel proposals are examined for propellant production from carbon dioxide and monoxide and hydrogen. Potential uses were also examined of CO as a fuel or as a reducing agent in metal oxide processing as obtained or further reduced to carbon. Hydrogen can be reacted with CO to produce a wide variety of hydrocarbons, alcohols, and other organic compounds. Methanol, produced by Fischer-Tropsch chemistry may be useful as a fuel; it is easy to store and handle because it is a liquid at Mars temperatures. The reduction of CO2 to hydrocarbons such as methane or acetylene can be accomplished with hydrogen. Carbon monoxide and hydrogen require cryogenic temperatures for storage as liquids. Noncryogenic storage of hydrogen may be accomplished using hydrocarbons, inorganic hydrides, or metal hydrides. Noncryogenic storage of CO may be accomplished in the form of iron carbonyl (FE(CO)5) or other metal carbonyls. Low hydrogen content fuels such as acetylene (C2H2) may be effective propellants with low requirements for earth derived resources. The impact on manned Mars missions of alternative propellant production and utilization is discussed.
Material processing with hydrogen and carbon monoxide on Mars
NASA Astrophysics Data System (ADS)
Hepp, Aloysius F.; Linne, Diane L.; Landis, Geoffrey A.
Several novel proposals are examined for propellant production from carbon dioxide and monoxide and hydrogen. Potential uses were also examined of CO as a fuel or as a reducing agent in metal oxide processing as obtained or further reduced to carbon. Hydrogen can be reacted with CO to produce a wide variety of hydrocarbons, alcohols, and other organic compounds. Methanol, produced by Fischer-Tropsch chemistry may be useful as a fuel; it is easy to store and handle because it is a liquid at Mars temperatures. The reduction of CO2 to hydrocarbons such as methane or acetylene can be accomplished with hydrocarbons. Carbon monoxide and hydrogen require cryogenic temperatures for storage as liquid. Noncryogenic storage of hydrogen may be accomplished using hydrocarbons, inorganic hydrides, or metal hydrides. Noncryogenic storage of CO may be accomplished in the form of iron carbonyl (FE(CO)5) or other metal carbonyls. Low hydrogen content fuels such as acetylene (C2H2) may be effective propellants with low requirements for earth derived resources. The impact on manned Mars missions of alternative propellant production and utilization is discussed.
Material processing with hydrogen and carbon monoxide on Mars
NASA Technical Reports Server (NTRS)
Hepp, Aloysius F.; Landis, Geoffrey A.; Linne, Diane L.
1991-01-01
Several novel proposals are examined for propellant production from carbon dioxide and monoxide and hydrogen. Potential uses were also examined of CO as a fuel or as a reducing agent in metal oxide processing as obtained or further reduced to carbon. Hydrogen can be reacted with CO to produce a wide variety of hydrocarbons, alcohols, and other organic compounds. Methanol, produced by Fischer-Tropsch chemistry may be useful as a fuel; it is easy to store and handle because it is a liquid at Mars temperatures. The reduction of CO2 to hydrocarbons such as methane or acetylene can be accomplished with hydrogen. Carbon monoxide and hydrogen require cryogenic temperatures for storage as liquids. Noncryogenic storage of hydrogen may be accomplished using hydrocarbons, inorganic hydrides, or metal hydrides. Noncryogenic storage of CO may be accomplished in the form of iron carbonyl (FE(CO)5) or other metal carbonyls. Low hydrogen content fuels such as acetylene (C2H2) may be effective propellants with low requirements for earth derived resources. The impact on manned Mars missions of alternative propellant production and utilization is discussed.
FUEL ELEMENT FOR NUCLEAR REACTORS
Dickson, J.J.
1963-09-24
A method is described whereby fuel tubes or pins are cut, loaded with fuel pellets and a heat transfer medium, sealed at each end with slotted fittings, and assembled into a rectangular tube bundle to form a fuel element. The tubes comprising the fuel element are laterally connected between their ends by clips and tabs to form a linear group of spaced parallel tubes, which receive their vertical support by resting on a grid. The advantages of this method are that it permits elimination of structural material (e.g., fuel-element cans) within the reactor core, and removal of at least one fuel pin from an element and replacement thereof so that a burnable poison may be utilized during the core lifetime. (AEC)
NASA Astrophysics Data System (ADS)
Mosunova, N. A.
2018-05-01
The article describes the basic models included in the EUCLID/V1 integrated code intended for safety analysis of liquid metal (sodium, lead, and lead-bismuth) cooled fast reactors using fuel rods with a gas gap and pellet dioxide, mixed oxide or nitride uranium-plutonium fuel under normal operation, under anticipated operational occurrences and accident conditions by carrying out interconnected thermal-hydraulic, neutronics, and thermal-mechanical calculations. Information about the Russian and foreign analogs of the EUCLID/V1 integrated code is given. Modeled objects, equation systems in differential form solved in each module of the EUCLID/V1 integrated code (the thermal-hydraulic, neutronics, fuel rod analysis module, and the burnup and decay heat calculation modules), the main calculated quantities, and also the limitations on application of the code are presented. The article also gives data on the scope of functions performed by the integrated code's thermal-hydraulic module, using which it is possible to describe both one- and twophase processes occurring in the coolant. It is shown that, owing to the availability of the fuel rod analysis module in the integrated code, it becomes possible to estimate the performance of fuel rods in different regimes of the reactor operation. It is also shown that the models implemented in the code for calculating neutron-physical processes make it possible to take into account the neutron field distribution over the fuel assembly cross section as well as other features important for the safety assessment of fast reactors.
Strategic Minimization of High Level Waste from Pyroprocessing of Spent Nuclear Fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simpson, Michael F.; Benedict, Robert W.
The pyroprocessing of spent nuclear fuel results in two high-level waste streams--ceramic and metal waste. Ceramic waste contains active metal fission product-loaded salt from the electrorefining, while the metal waste contains cladding hulls and undissolved noble metals. While pyroprocessing was successfully demonstrated for treatment of spent fuel from Experimental Breeder Reactor-II in 1999, it was done so without a specific objective to minimize high-level waste generation. The ceramic waste process uses “throw-away” technology that is not optimized with respect to volume of waste generated. In looking past treatment of EBR-II fuel, it is critical to minimize waste generation for technologymore » developed under the Global Nuclear Energy Partnership (GNEP). While the metal waste cannot be readily reduced, there are viable routes towards minimizing the ceramic waste. Fission products that generate high amounts of heat, such as Cs and Sr, can be separated from other active metal fission products and placed into short-term, shallow disposal. The remaining active metal fission products can be concentrated into the ceramic waste form using an ion exchange process. It has been estimated that ion exchange can reduce ceramic high-level waste quantities by as much as a factor of 3 relative to throw-away technology.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elander, Rick
NREL will provide scientific and engineering support to Virent Energy Systems in three technical areas: Process Development/Biomass Deconstruction; Catalyst Fundamentals; and Technoeconomic Analysis. The overarching objective of this project is to develop the first fully integrated process that can convert a lignocellulosic feedstock (e.g., corn stover) efficiently and cost effectively to a mix of hydrocarbons ideally suited for blending into jet fuel. The proposed project will investigate the integration of Virent Energy System’s novel aqueous phase reforming (APR) catalytic conversion technology (BioForming®) with deconstruction technologies being investigated by NREL at the 1-500L scale. Corn stover was chosen as a representativemore » large volume, sustainable feedstock.« less
Ochiai, Asumi; Imoto, Junpei; Suetake, Mizuki; Komiya, Tatsuki; Furuki, Genki; Ikehara, Ryohei; Yamasaki, Shinya; Law, Gareth T W; Ohnuki, Toshihiko; Grambow, Bernd; Ewing, Rodney C; Utsunomiya, Satoshi
2018-03-06
Trace U was released from the Fukushima Daiichi Nuclear Power Plant (FDNPP) during the meltdowns, but the speciation of the released components of the nuclear fuel remains unknown. We report, for the first time, the atomic-scale characteristics of nanofragments of the nuclear fuels that were released from the FDNPP into the environment. Nanofragments of an intrinsic U-phase were discovered to be closely associated with radioactive cesium-rich microparticles (CsMPs) in paddy soils collected ∼4 km from the FDNPP. The nanoscale fuel fragments were either encapsulated by or attached to CsMPs and occurred in two different forms: (i) UO 2+X nanocrystals of ∼70 nm size, which are embedded into magnetite associated with Tc and Mo on the surface and (ii) Isometric (U,Zr)O 2+X nanocrystals of ∼200 nm size, with the U/(U+Zr) molar ratio ranging from 0.14 to 0.91, with intrinsic pores (∼6 nm), indicating the entrapment of vapors or fission-product gases during crystallization. These results document the heterogeneous physical and chemical properties of debris at the nanoscale, which is a mixture of melted fuel and reactor materials, reflecting the complex thermal processes within the FDNPP reactor during meltdown. Still CsMPs are an important medium for the transport of debris fragments into the environment in a respirable form.
Detering, Brent A.; Kong, Peter C.
2006-08-29
A fast-quench reactor for production of diatomic hydrogen and unsaturated carbons is provided. During the fast quench in the downstream diverging section of the nozzle, such as in a free expansion chamber, the unsaturated hydrocarbons are further decomposed by reheating the reactor gases. More diatomic hydrogen is produced, along with elemental carbon. Other gas may be added at different stages in the process to form a desired end product and prevent back reactions. The product is a substantially clean-burning hydrogen fuel that leaves no greenhouse gas emissions, and elemental carbon that may be used in powder form as a commodity for several processes.
Separation of the rare-earth fission product poisons from spent nuclear fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christian, Jerry D.; Sterbentz, James W.
A method for the separation of the rare-earth fission product poisons comprising providing a spent nuclear fuel. The spent nuclear fuel comprises UO.sub.2 and rare-earth oxides, preferably Sm, Gd, Nd, Eu oxides, with other elements depending on the fuel composition. Preferably, the provided nuclear fuel is a powder, preferably formed by crushing the nuclear fuel or using one or more oxidation-reduction cycles. A compound comprising Th or Zr, preferably metal, is provided. The provided nuclear fuel is mixed with the Th or Zr, thereby creating a mixture. The mixture is then heated to a temperature sufficient to reduce the UO.sub.2more » in the nuclear fuel, preferably to at least to 850.degree. C. for Th and up to 600.degree. C. for Zr. Rare-earth metals are then extracted to form the heated mixture thereby producing a treated nuclear fuel. The treated nuclear fuel comprises the provided nuclear fuel having a significant reduction in rare-earths.« less
Annular feed air breathing fuel cell stack
Wilson, Mahlon S.; Neutzler, Jay K.
1997-01-01
A stack of polymer electrolyte fuel cells is formed from a plurality of unit cells where each unit cell includes fuel cell components defining a periphery and distributed along a common axis, where the fuel cell components include a polymer electrolyte membrane, an anode and a cathode contacting opposite sides of the membrane, and fuel and oxygen flow fields contacting the anode and the cathode, respectively, wherein the components define an annular region therethrough along the axis. A fuel distribution manifold within the annular region is connected to deliver fuel to the fuel flow field in each of the unit cells. The fuel distribution manifold is formed from a hydrophilic-like material to redistribute water produced by fuel and oxygen reacting at the cathode. In a particular embodiment, a single bolt through the annular region clamps the unit cells together. In another embodiment, separator plates between individual unit cells have an extended radial dimension to function as cooling fins for maintaining the operating temperature of the fuel cell stack.
Theoretical Investigation For The Effect of Fuel Quality on Gas Turbine Power Plants
NASA Astrophysics Data System (ADS)
AbdulRazzak khudair, Omar; Alwan Abass, Khetam; Saadi Abed, Noor; Hussain Ali, Khalid; AbdulAziz, Saad; Chlaib Shaboot, Ali
2018-05-01
Gas turbine engine power generation is declined dramatically because of the reduction in thermodynamic parameters as a work of turbine, compressor ratio, compressor work, and air mass flow rate and fuel consumption. There are two main objectives of this work, the first is related with the effect of fuel kinds and their quality on the operation of fuel flow divider and its performance specifically gear pump displacement and fuel flow rate to the combustion chambers of gas power plant. AL-DORA gas turbine power plant 35MW was chosen to predict these effects on its performance MATLAB Software program is used to perform thermodynamic calculations. Fuel distribution stage before the process of combustion and as a result of the kind and its quality, chemical reaction will occur between the fuel and the parts of the gear system of each pump of the flow divider, which causes the erosion of the internal pump wall and the teeth of the gear system, thus hampering the pump operation in terms of fuel discharge. The discharge of fuel form the eight external gates of flow divider is decreased and varied when going to the combustion chambers, so that, flow divider does not give reliable mass flow rate due to absence of accurate pressure in each of eight exit pipes. The second objective deals with the stage of fuel combustion process inside the combustion chamber. A comparative study based upon performance parameters, such as specific fuel consumption for gas and gasoil and power generation. Fuel poor quality causes incomplete combustion and increased its consumption, so that combustion products are interacted with the surface of the turbine blades, causing the erosion and create surface roughness of the blade and disruption of gas flow. As a result of this situation, turbulence flow of these gases will increase causing the separation of gas boundary layers over the suction surface of the blade. Therefore the amount of extracted gas will decrease causing retreat work done by turbine, as a result decline of power and gas turbine power plant efficiency causing the drop in the level of electric generation. The fuel quality is found to be a strong function of specific fuel consumption and its effects on the power generation and the efficiency of the gas turbine power plants and hence, the cycle performance shifts towards favorable conditions.
Monolithic fuel injector and related manufacturing method
Ziminsky, Willy Steve [Greenville, SC; Johnson, Thomas Edward [Greenville, SC; Lacy, Benjamin [Greenville, SC; York, William David [Greenville, SC; Stevenson, Christian Xavier [Greenville, SC
2012-05-22
A monolithic fuel injection head for a fuel nozzle includes a substantially hollow vesicle body formed with an upstream end face, a downstream end face and a peripheral wall extending therebetween, an internal baffle plate extending radially outwardly from a downstream end of the bore, terminating short of the peripheral wall, thereby defining upstream and downstream fuel plenums in the vesicle body, in fluid communication by way of a radial gap between the baffle plate and the peripheral wall. A plurality of integral pre-mix tubes extend axially through the upstream and downstream fuel plenums in the vesicle body and through the baffle plate, with at least one fuel injection hole extending between each of the pre-mix tubes and the upstream fuel plenum, thereby enabling fuel in the upstream plenum to be injected into the plurality of pre-mix tubes. The fuel injection head is formed by direct metal laser sintering.
Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells.
Chaudhuri, Swades K; Lovley, Derek R
2003-10-01
Abundant energy, stored primarily in the form of carbohydrates, can be found in waste biomass from agricultural, municipal and industrial sources as well as in dedicated energy crops, such as corn and other grains. Potential strategies for deriving useful forms of energy from carbohydrates include production of ethanol and conversion to hydrogen, but these approaches face technical and economic hurdles. An alternative strategy is direct conversion of sugars to electrical power. Existing transition metal-catalyzed fuel cells cannot be used to generate electric power from carbohydrates. Alternatively, biofuel cells in which whole cells or isolated redox enzymes catalyze the oxidation of the sugar have been developed, but their applicability has been limited by several factors, including (i) the need to add electron-shuttling compounds that mediate electron transfer from the cell to the anode, (ii) incomplete oxidation of the sugars and (iii) lack of long-term stability of the fuel cells. Here we report on a novel microorganism, Rhodoferax ferrireducens, that can oxidize glucose to CO(2) and quantitatively transfer electrons to graphite electrodes without the need for an electron-shuttling mediator. Growth is supported by energy derived from the electron transfer process itself and results in stable, long-term power production.
Catalytic conversion of light alkanes: Quarterly report, January 1-March 31, 1992
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biscardi, J.; Bowden, P.T.; Durante, V.A.
The first Quarterly Report of 1992 on the Catalytic Conversion of Light Alkanes reviews the work done between January 1. 1992 and March 31, 1992 on the Cooperative Agreement. The mission of this work is to devise a new catalyst which can be used in a simple economic process to convert the light alkanes in natural gas to oxygenate products which can either be used as clean-burning, high octane liquid fuels, as fuel components or as precursors to liquid hydrocarbon transportation fuel. During the past quarter we have continued to design, prepare, characterize and test novel catalysts for the mildmore » selective reaction of light hydrocarbons with air or oxygen to produce alcohols directly. These catalysts are designed to form active metal oxo (MO) species and to be uniquely active for the homolytic cleavage of the carbon-hydrogen bonds in light alkanes producing intermediates which can form alcohols. We continue to investigate three molecular environments for the active catalytic species that we are trying to generate: electron-deficient porphryinic macrocycles (PHASE I), polyoxometallates (PHASE II), and regular oxidic lattices including zeolites and related structures as well as other molecular surface structures having metal oxo groups (PHASE III).« less
Microstructural observation of fuel cell catalyst inks by Cryo-SEM and Cryo-TEM.
Shimanuki, Junichi; Takahashi, Shinichi; Tohma, Hajime; Ohma, Atsushi; Ishihara, Ayumi; Ito, Yoshiko; Nishino, Yuri; Miyazawa, Atsuo
2017-06-01
In order to improve the electricity generation performance of fuel cell electric vehicles, it is necessary to optimize the microstructure of the catalyst layer of a polymer electrolyte fuel cell. The catalyst layer is formed by a wet coating process using catalyst inks. Therefore, it is very important to observe the microstructure of the catalyst ink. In this study, the morphology of carbon-supported platinum (Pt/C) particles in catalyst inks with a different solvent composition was investigated by cryogenic scanning electron microscopy (cryo-SEM). In addition, the morphology of the ionomer, which presumably influences the formation of agglomerated Pt/C particles in a catalyst ink, was investigated by cryogenic transmission electron microscopy (cryo-TEM). The results of a cryo-SEM observation revealed that the agglomerated Pt/C particles tended to become coarser with a higher 1-propanol (NPA) weight fraction. The results of a cryo-TEM observation indicated that the actual ionomer dispersion in a catalyst ink formed a network structure different from that of the ionomer in the solvent. © The Author 2017. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Rejuvenation of automotive fuel cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Yu Seung; Langlois, David A.
A process for rejuvenating fuel cells has been demonstrated to improve the performance of polymer exchange membrane fuel cells with platinum/ionomer electrodes. The process involves dehydrating a fuel cell and exposing at least the cathode of the fuel cell to dry gas (nitrogen, for example) at a temperature higher than the operating temperature of the fuel cell. The process may be used to prolong the operating lifetime of an automotive fuel cell.
Zumwalt, L.R.
1961-08-01
Fuel elements having a solid core of fissionable material encased in a cladding material are described. A conversion material is provided within the cladding to react with the fission products to form stable, relatively non- volatile compounds thereby minimizing the migration of the fission products into the coolant. The conversion material is preferably a metallic fluoride, such as lead difluoride, and may be in the form of a coating on the fuel core or interior of the cladding, or dispersed within the fuel core. (AEC)
Fuel cell anode configuration for CO tolerance
Uribe, Francisco A.; Zawodzinski, Thomas A.
2004-11-16
A polymer electrolyte fuel cell (PEFC) is designed to operate on a reformate fuel stream containing oxygen and diluted hydrogen fuel with CO impurities. A polymer electrolyte membrane has an electrocatalytic surface formed from an electrocatalyst mixed with the polymer and bonded on an anode side of the membrane. An anode backing is formed of a porous electrically conductive material and has a first surface abutting the electrocatalytic surface and a second surface facing away from the membrane. The second surface has an oxidation catalyst layer effective to catalyze the oxidation of CO by oxygen present in the fuel stream where at least the layer of oxidation catalyst is formed of a non-precious metal oxidation catalyst selected from the group consisting of Cu, Fe, Co, Tb, W, Mo, Sn, and oxides thereof, and other metals having at least two low oxidation states.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riley, Brian J.; Pierce, David A.; Frank, Steven M.
2015-04-01
This paper describes various approaches for making sodalite with a LiCl-Li2O oxide reduction salt used to recover uranium from used oxide fuel. The approaches include sol-gel and solution-based synthesis processes. As-made products were mixed with 5 and 10 mass% of a Na2O-B2O3-SiO2 glass binder and these, along with product without a binder, were heated using either a cold-press-and-sinter method or hot uniaxial pressing. The results demonstrate the limitation of sodalite yield due to the fast intermediate reactions between Na+ and Cl- to form halite in solution and Li2O and SiO2 to form lithium silicates (e.g., Li2SiO3 or Li2Si2O5) in themore » calcined and sintered pellets. The results show that pellets can be made with high sodalite fractions (~92 mass%) and low porosities using a solution-based approach and this LiCl-Li2O salt.« less
Hot compression process for making edge seals for fuel cells
Dunyak, Thomas J.; Granata, Jr., Samuel J.
1994-01-01
A hot compression process for forming integral edge seals in anode and cade assemblies wherein the assemblies are made to a nominal size larger than a finished size, beads of AFLAS are applied to a band adjacent the peripheral margins on both sides of the assemblies, the assemblies are placed in a hot press and compressed for about five minutes with a force sufficient to permeate the peripheral margins with the AFLAS, cooled and cut to finished size.
A Feasibility Study of Burning Waste Paper in Coal-Fired Boilers on Air Force Installations
1993-09-01
from coal emissions is known as wet flue - gas desulfurization . This process involves the spraying of pulverized limestone (CaCO3 ) mixed with water...conversion to natural gas fuel or additional air : 13-tion controls . However, both of these options can be very costly, and a 6 less expensive alternative may...into the flue gas . The SO, is absorbed by the spray, creating calcium sulfite (Masters, 1991:349). The process is represented in equation form as CaCO3
Numerical simulation on chain-die forming of an AHSS top-hat section
NASA Astrophysics Data System (ADS)
Majji, Raju; Xiang, Yang; Ding, Scott; Yang, Chunhui
2018-05-01
The applications of Advanced High-Strength Steels (AHSS) in the automotive industry are rapidly increasing due to a demand for a lightweight material that significantly reduces fuel consumption without compromising passenger safety. Automotive industries and material suppliers are expected by consumers to deliver reliable and affordable products, thus stimulating these manufacturers to research solutions to meet these customer requirements. The primary advantage of AHSS is its extremely high strength to weight ratio, an ideal material for the automotive industry. However, its low ductility is a major disadvantage, in particular, when using traditional cold forming processes such as roll forming and deep drawing process to form profiles. Consequently, AHSS parts frequently fail to form. Thereby, in order to improve quality and reliability on manufacturing AHSS products, a recently-developed incremental cold sheet metal forming technology called Chain-die Forming (CDF) is recognised as a potential solution to the forming process of AHSS. The typical CDF process is a combination of bending and roll forming processes which is equivalent to a roll with a large deforming radius, and incrementally forms the desired shape with split die and segments. This study focuses on manufacturing an AHSS top-hat section with minimum passes without geometrical or surface defects by using finite element modelling and simulations. The developed numerical simulation is employed to investigate the influences on the main control parameter of the CDF process while forming AHSS products and further develop new die-punch sets of compensation design via a numerical optimal process. In addition, the study focuses on the tool design to compensate spring-back and reduce friction between tooling and sheet-metal. This reduces the number of passes, thereby improving productivity and reducing energy consumption and material waste. This numerical study reveals that CDF forms AHSS products of complex profiles with much less residual stress, low spring back, low strain and of higher geometrical accuracy compared to other traditional manufacturing processes.
77 FR 15362 - Proposed Agency Information Collection
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-15
....'' Schedule 2 of the Form EIA-923, ``Power Plant Operations Report,'' collects the cost and quality of fossil... primarily fueled by fossil fuels. The selection of respondents for Schedule 2 and its predecessors, the Form... EIA is soliciting comments on two proposed actions (1) revisions to the Form EIA-923, ``Power Plant...
Self-regulating fuel staging port for turbine combustor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Nieuwenhuizen, William F.; Fox, Timothy A.; Williams, Steven
2014-07-08
A port (60) for axially staging fuel and air into a combustion gas flow path 28 of a turbine combustor (10A). A port enclosure (63) forms an air path through a combustor wall (30). Fuel injectors (64) in the enclosure provide convergent fuel streams (72) that oppose each other, thus converting velocity pressure to static pressure. This forms a flow stagnation zone (74) that acts as a valve on airflow (40, 41) through the port, in which the air outflow (41) is inversely proportion to the fuel flow (25). The fuel flow rate is controlled (65) in proportion to enginemore » load. At high loads, more fuel and less air flow through the port, making more air available to the premixing assemblies (36).« less
Systems and processes for conversion of ethylene feedstocks to hydrocarbon fuels
Lilga, Michael A.; Hallen, Richard T.; Albrecht, Karl O.; Cooper, Alan R.; Frye, John G.; Ramasamy, Karthikeyan Kallupalayam
2018-04-03
Systems, processes, and catalysts are disclosed for obtaining fuel and fuel blends containing selected ratios of open-chain and closed-chain fuel-range hydrocarbons suitable for production of alternate fuels including gasolines, jet fuels, and diesel fuels. Fuel-range hydrocarbons may be derived from ethylene-containing feedstocks and ethanol-containing feedstocks.
Systems and processes for conversion of ethylene feedstocks to hydrocarbon fuels
Lilga, Michael A.; Hallen, Richard T.; Albrecht, Karl O.; Cooper, Alan R.; Frye, John G.; Ramasamy, Karthikeyan Kallupalayam
2017-05-30
Systems, processes, and catalysts are disclosed for obtaining fuel and fuel blends containing selected ratios of open-chain and closed-chain fuel-range hydrocarbons suitable for production of alternate fuels including gasolines, jet fuels, and diesel fuels. Fuel-range hydrocarbons may be derived from ethylene-containing feedstocks and ethanol-containing feedstocks.
Systems and processes for conversion of ethylene feedstocks to hydrocarbon fuels
Lilga, Michael A.; Hallen, Richard T.; Albrecht, Karl O.; Cooper, Alan R.; Frye, John G.; Ramasamy, Karthikeyan Kallupalayam
2017-09-26
Systems, processes, and catalysts are disclosed for obtaining fuels and fuel blends containing selected ratios of open-chain and closed-chain fuel-range hydrocarbons suitable for production of alternate fuels including gasolines, jet fuels, and diesel fuels. Fuel-range hydrocarbons may be derived from ethylene-containing feedstocks and ethanol-containing feedstocks.
The development of the new Eureka process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watari, R.; Shoji, Y.; Ishikawa, T.
1987-01-01
Fuji Oil and Chiyoda have jointly developed this new Eureka (ET-II) process. It utilizes the unique technology of the original Eureka process, such as the injection of superheated steam into the reaction atmosphere and the handling of pitch in a molten state. It also combines a cracking heater with a high conversion rate and a single flow type reactor. In comparison with the original Eureka process, the advantages offered by the ET-II process are: Lower capital investment; lower operating cost; higher yield of lighter distillates. The cracked oil products can also be processed in secondary upgrading processes and the pitchmore » can then be utilized as a form of pitch water slurry fuel.« less
Heating subsurface formations by oxidizing fuel on a fuel carrier
Costello, Michael; Vinegar, Harold J.
2012-10-02
A method of heating a portion of a subsurface formation includes drawing fuel on a fuel carrier through an opening formed in the formation. Oxidant is supplied to the fuel at one or more locations in the opening. The fuel is combusted with the oxidant to provide heat to the formation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
David A. Tillman; Dao Duong; Bruce Miller
2009-07-15
Chlorine is a significant source of corrosion and deposition, both from coal and from biomass, and in PF boilers. This investigation was designed to highlight the potential for corrosion risks associated with once-through units and advanced cycles. The research took the form of a detailed literature investigation to evaluate chlorine in solid fuels: coals of various ranks and origins, biomass fuels of a variety of types, petroleum cokes, and blends of the above. The investigation focused upon an extensive literature review of documents dating back to 1991. The focus is strictly corrosion and deposition. To address the deposition and corrosionmore » issues, this review evaluates the following considerations: concentrations of chlorine in available solid fuels including various coals and biomass fuels, forms of chlorine in those fuels, and reactions - including reactivities - of chlorine in such fuels. The assessment includes consideration of alkali metals and alkali earth elements as they react with, and to, the chlorine and other elements (e.g., sulfur) in the fuel and in the gaseous products of combustion. The assessment also includes other factors of combustion: for example, combustion conditions including excess O{sub 2} and combustion temperatures. It also considers analyses conducted at all levels: theoretical calculations, bench scale laboratory data and experiments, pilot plant experiments, and full scale plant experience. Case studies and plant surveys form a significant consideration in this review. The result of this investigation focuses upon the concentrations of chlorine acceptable in coals burned exclusively, in coals burned with biomass, and in biomass cofired with coal. Values are posited based upon type of fuel and combustion technology. Values are also posited based upon both first principles and field experience. 86 refs., 8 figs., 7 tabs.« less
Final report of fuel dynamics Test E7
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doerner, R.C.; Murphy, W.F.; Stanford, G.S.
1977-04-01
Test data from an in-pile failure experiment of high-power LMFBR-type fuel pins in a simulated $3/s transient-overpower (TOP) accident are reported and analyzed. Major conclusions are that (1) a series of cladding ruptures during the 100-ms period preceding fuel release injected small bursts of fission gas into the flow stream; (2) gas release influenced subsequent cladding melting and fuel release (there were no measurable FCI's (fuel-coolant interactions), and all fuel motion observed by the hodoscope was very slow); (3) the predominant postfailure fuel motion appears to be radial swelling that left a spongy fuel crust on the holder wall; (4)more » less than 4 to 6 percent of the fuel moved axially out of the original fuel zone, and most of this froze within a 10-cm region above the original top of the fuel zone to form the outlet blockage. An inlet blockage approximately 1 cm long was formed and consisted of large interconnected void regions. Both blockages began just beyond the ends of the fuel pellets.« less
Molten carbonate fuel cell separator
Nickols, Richard C.
1986-09-02
In a stacked array of molten carbonate fuel cells, a fuel cell separator is positioned between adjacent fuel cells to provide isolation as well as a conductive path therebetween. The center portion of the fuel cell separator includes a generally rectangular, flat, electrical conductor. Around the periphery of the flat portion of the separator are positioned a plurality of elongated resilient flanges which form a gas-tight seal around the edges of the fuel cell. With one elongated flange resiliently engaging a respective edge of the center portion of the separator, the sealing flanges, which are preferably comprised of a noncorrosive material such as an alloy of yttrium, iron, aluminum or chromium, form a tight-fitting wet seal for confining the corrosive elements of the fuel cell therein. This arrangement permits a good conductive material which may be highly subject to corrosion and dissolution to be used in combination with a corrosion-resistant material in the fuel cell separator of a molten carbonate fuel cell for improved fuel cell conductivity and a gas-tight wet seal.
Molten carbonate fuel cell separator
Nickols, R.C.
1984-10-17
In a stacked array of molten carbonate fuel cells, a fuel cell separator is positioned between adjacent fuel cells to provide isolation as well as a conductive path therebetween. The center portion of the fuel cell separator includes a generally rectangular, flat, electrical conductor. Around the periphery of the flat portion of the separator are positioned a plurality of elongated resilient flanges which form a gas-tight seal around the edges of the fuel cell. With one elongated flange resiliently engaging a respective edge of the center portion of the separator, the sealing flanges, which are preferably comprised of a noncorrosive material such as an alloy of yttrium, iron, aluminum or chromium, form a tight-fitting wet seal for confining the corrosive elements of the fuel cell therein. This arrangement permits a good conductive material which may be highly subject to corrosion and dissolution to be used in combination with a corrosion-resistant material in the fuel cell separator of a molten carbonate fuel cell for improved fuel cell conductivity and a gas-tight wet seal.
Thermal conversion of biomass to valuable fuels, chemical feedstocks and chemicals
Peters, William A [Lexington, MA; Howard, Jack B [Winchester, MA; Modestino, Anthony J [Hanson, MA; Vogel, Fredreric [Villigen PSI, CH; Steffin, Carsten R [Herne, DE
2009-02-24
A continuous process for the conversion of biomass to form a chemical feedstock is described. The biomass and an exogenous metal oxide, preferably calcium oxide, or metal oxide precursor are continuously fed into a reaction chamber that is operated at a temperature of at least 1400.degree. C. to form reaction products including metal carbide. The metal oxide or metal oxide precursor is capable of forming a hydrolizable metal carbide. The reaction products are quenched to a temperature of 800.degree. C. or less. The resulting metal carbide is separated from the reaction products or, alternatively, when quenched with water, hydolyzed to provide a recoverable hydrocarbon gas feedstock.
Tedder, Daniel W.
1985-05-14
Alcohol substantially free of water is prepared by continuously fermenting a fermentable biomass feedstock in a fermentation unit, thereby forming an aqueous fermentation liquor containing alcohol and microorganisms. Continuously extracting a portion of alcohol from said fermentation liquor with an organic solvent system containing an extractant for said alcohol, thereby forming an alcohol-organic solvent extract phase and an aqueous raffinate. Said alcohol is separated from said alcohol-organic solvent phase. A raffinate comprising microorganisms and unextracted alcohol is returned to the fermentation unit.
Jane E. Smith; Donaraye McKay; Greg Brenner; Jim McIver; Joseph W. Spatafora
2005-01-01
1. The obligate symbiosis formed between ectomycorrhizal fungi (EMF) and roots of tree species in the Pinaceae influences nutrient uptake and surrounding soil structure. Understanding how EMF respond to prescribed fire and thinning will assist forest managers in selecting fuel-reducing restoration treatments that maintain critical soil processes and site productivity....
Joseph L. Ganey; Scott C. Vojta
2017-01-01
Logs provide an important form of coarse woody debris in forest systems, contributing to numerous ecological processes and affecting wildlife habitat and fuel complexes. Despite this, little information is available on the dynamics of log populations in southwestern ponderosa pine (Pinus ponderosa) and especially mixed-conifer forests. A recent episode of elevated tree...
Process for converting coal into liquid fuel and metallurgical coke
Wolfe, Richard A.; Im, Chang J.; Wright, Robert E.
1994-01-01
A method of recovering coal liquids and producing metallurgical coke utilizes low ash, low sulfur coal as a parent for a coal char formed by pyrolysis with a volatile content of less than 8%. The char is briquetted and heated in an inert gas over a prescribed heat history to yield a high strength briquette with less than 2% volatile content.
Ethylene-forming enzyme and bioethylene production
2014-01-01
Worldwide, ethylene is the most produced organic compound. It serves as a building block for a wide variety of plastics, textiles, and chemicals, and a process has been developed for its conversion into liquid transportation fuels. Currently, commercial ethylene production involves steam cracking of fossil fuels, and is the highest CO2-emitting process in the chemical industry. Therefore, there is great interest in developing technology for ethylene production from renewable resources including CO2 and biomass. Ethylene is produced naturally by plants and some microbes that live with plants. One of the metabolic pathways used by microbes is via an ethylene-forming enzyme (EFE), which uses α-ketoglutarate and arginine as substrates. EFE is a promising biotechnology target because the expression of a single gene is sufficient for ethylene production in the absence of toxic intermediates. Here we present the first comprehensive review and analysis of EFE, including its discovery, sequence diversity, reaction mechanism, predicted involvement in diverse metabolic modes, heterologous expression, and requirements for harvesting of bioethylene. A number of knowledge gaps and factors that limit ethylene productivity are identified, as well as strategies that could guide future research directions. PMID:24589138
NASA Astrophysics Data System (ADS)
Damberger, Thomas A.
Traditionally, electrical and thermal energy is produced in a conventional combustion process. Coal, fuel oil, and natural gas are common fuels used for electrical generation, while nuclear, hydroelectric, and solar are non-combustion processes. All fossil fuels release their stored energy and air pollution simultaneously when burned in a contemporary combustion process. To reduce or eliminate air pollution, the combustion process must be shifted in some way to another type of process. Extracting pollution-free energy from fossil fuels can be accomplished through the electrochemical reaction of a fuel cell. A non-combustion process is a foundation from which pollution-free energy emerges, fulfilling our incessant need for energy without environmental compromise.
Longanbach, J.R.
1981-11-13
A method is provided for combining coal as a colloidal suspension within a heavy petroleum fraction. The coal is broken to a medium particle size and is formed into a slurry with a heavy petroleum fraction such as a decanted oil having a boiling point of about 300 to 550/sup 0/C. The slurry is heated to a temperature of 400 to 500/sup 0/C for a limited time of only about 1 to 5 minutes before cooling to a temperature of less than 300/sup 0/C. During this limited contact time at elevated temperature the slurry can be contacted with hydrogen gas to promote conversion. The liquid phase containing dispersed coal solids is filtered from the residual solids and recovered for use as a fuel or feed stock for other processes. The residual solids containing some carbonaceous material are further processed to provide hydrogen gas and heat for use as required in this process.
The degradation of wheat straw lignin
NASA Astrophysics Data System (ADS)
Liang, Jiaqi
2017-03-01
Lignin is a kind of formed by polymerization of aromatic alcohol, prices are lower and sources of renewable resources. Using lignin as raw material, through the push to resolve together preparation phenolic high value-added fine chemicals alkanes and aromatic hydrocarbons, such as the high grade biofuels, can partly replace fossil fuels as raw material to the production process, biomass resources is an important part of the comprehensive utilization of effective components. In lignin push solve clustering method, catalytic hydrogenolysis can directly to the lignin into liquid fuels, low oxygen content in the use of biofuels shows great potential. In this paper, through the optimization of the reaction time, reaction temperature, catalyst type and solvent type, dosage of catalyst, etc factors, determines the alcoholysis - hydrogen solution two-step degradation of lignin, the optimal process conditions: lignin alcoholysis under 50% methanol and NaOH catalyst in the solution, the lignin in methanol solution and 50% hydrogen solution under the Pd/C catalyst. In this process, the degradation of lignin yield can reach 42%.
The removal of sulfur dioxide from flue gases
Kettner, Helmut
1965-01-01
The growth of industrialization makes it imperative to reduce the amounts of sulfur dioxide emitted into the atmosphere. This article describes various processes for cleaning flue gases, and gives details of new methods being investigated. Wet scrubbing with water, though widely practised, has many disadvantages. Scrubbing with zinc oxide, feasible in zinc works, is more satisfactory. Dry methods use a solid absorbent; they have the advantage of a high emission temperature. Other methods are based on the addition to the fuel or the flue gases of substances such as activated metal oxides, which react with the sulfur to form compounds less harmful than sulfur dioxide. Also being investigated are a two-stage combustion system, in which the sulfur dioxide is removed in the first stage, and the injection of activated powdered dolomite into burning fuel; the resulting sulfates being removed by electrostatic precipitation. A wet catalysis process has recently been developed. Most of the cleaning processes are not yet technically mature, but first results show good efficiency and relatively low cost. PMID:14315714
Active Polar Gels: a Paradigm for Cytoskeletal Dynamics
NASA Astrophysics Data System (ADS)
Julicher, Frank
2006-03-01
The cytoskeleton of eucaryotic cells is an intrinsically dynamic network of rod-like filaments. Active processes on the molecular scale such as the action of motor proteins and the polymerization and depolymerization of filaments drive active dynamic behaviors while consuming chemical energy in the form of a fuel. Such emergent dynamics is regulated by the cell and is important for many cellular processes such as cell locomotion and cell division. From a general point of view the cytoskeleton represents an active gel-like material with interesting material properties. We present a general theory of active viscoelastic materials made of polar filaments which is motivated by the the cytoskeleton. The continuous consumption of a fuel generates a non- equilibrium state characterized by the generation of flows and stresses. Our theory can be applied to experiments in which cytoskeletal patterns are set in motion by active processes such as those which are at work in cells. It can also capture generic aspects of the flows and stress profiles which occur during cell locomotion.
Unsteady Spherical Diffusion Flames in Microgravity
NASA Technical Reports Server (NTRS)
Atreya, Arvind; Berhan, S.; Chernovsky, M.; Sacksteder, Kurt R.
2001-01-01
The absence of buoyancy-induced flows in microgravity (mu-g) and the resulting increase in the reactant residence time significantly alters the fundamentals of many combustion processes. Substantial differences between normal gravity (ng) and (mu-g) flames have been reported in experiments on candle flames, flame spread over solids, droplet combustion, and others. These differences are more basic than just in the visible flame shape. Longer residence times and higher concentration of combustion products in the flame zone create a thermochemical environment that changes the flame chemistry and the heat and mass transfer processes. Processes such as flame radiation, that are often ignored in ng, become very important and sometimes even controlling. Furthermore, microgravity conditions considerably enhance flame radiation by: (i) the build-up of combustion products in the high-temperature reaction zone which increases the gas radiation, and (ii) longer residence times make conditions appropriate for substantial amounts of soot to form which is also responsible for radiative heat loss. Thus, it is anticipated that radiative heat loss may eventually extinguish the "weak" (low burning rate per unit flame area) mu-g diffusion flame. Yet, space shuttle experiments on candle flames show that in an infinite ambient atmosphere, the hemispherical candle flame in mu-g will burn indefinitely. This may be because of the coupling between the fuel production rate and the flame via the heat-feedback mechanism for candle flames, flames over solids and fuel droplet flames. Thus, to focus only on the gas-phase phenomena leading to radiative extinction, aerodynamically stabilized gaseous diffusion flames are examined. This enables independent control of the fuel flow rate to help identify conditions under which radiative extinction occurs. Also, spherical geometry is chosen for the mu-g experiments and modeling because: (i) It reduces the complexity by making the problem one-dimensional; (ii) The spherical diffusion flame completely encloses the soot which is formed on the fuel rich side of the reaction zone. This increases the importance of flame radiation because now both soot and gaseous combustion products co-exist inside the high temperature spherical diffusion flame. (iii) For small fuel injection velocities, as is usually the case for a pyrolyzing solid, the diffusion flame in mu-g around the solid naturally develops spherical symmetry. Thus, spherical diffusion flames are of interest to fires in mu-g and identifying conditions that lead to radiation-induced extinction is important for spacecraft fire safety.
Code of Federal Regulations, 2011 CFR
2011-07-01
.... Fossil fuel means natural gas, petroleum, coal, or any form of solid, liquid, or gaseous fuel derived... trimmings. Boiler means an enclosed fossil- or other-fuel-fired combustion device used to produce heat and... any other fuel. Cogeneration unit means a stationary, fossil-fuel-fired boiler or stationary, fossil...
Code of Federal Regulations, 2011 CFR
2011-07-01
..., petroleum, coal, or any form of solid, liquid, or gaseous fuel derived from such material. Fossil-fuel-fired... right-of-way tree trimmings. Boiler means an enclosed fossil-or other-fuel-fired combustion device used... means a stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine: (1...
Code of Federal Regulations, 2010 CFR
2010-07-01
..., petroleum, coal, or any form of solid, liquid, or gaseous fuel derived from such material. Fossil-fuel-fired... enclosed fossil- or other-fuel-fired combustion device used to produce heat and to transfer heat to... means a stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine: (1...
Code of Federal Regulations, 2011 CFR
2011-07-01
..., petroleum, coal, or any form of solid, liquid, or gaseous fuel derived from such material. Fossil-fuel-fired... right-of-way tree trimmings. Boiler means an enclosed fossil- or other-fuel-fired combustion device used..., fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine: (1) Having equipment used...
Code of Federal Regulations, 2014 CFR
2014-07-01
..., petroleum, coal, or any form of solid, liquid, or gaseous fuel derived from such material. Fossil-fuel-fired... right-of-way tree trimmings. Boiler means an enclosed fossil- or other-fuel-fired combustion device used..., fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine: (1) Having equipment used...
Code of Federal Regulations, 2011 CFR
2011-07-01
..., petroleum, coal, or any form of solid, liquid, or gaseous fuel derived from such material. Fossil-fuel-fired... enclosed fossil- or other-fuel-fired combustion device used to produce heat and to transfer heat to... means a stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine: (1...
Code of Federal Regulations, 2012 CFR
2012-07-01
..., petroleum, coal, or any form of solid, liquid, or gaseous fuel derived from such material. Fossil-fuel-fired... right-of-way tree trimmings. Boiler means an enclosed fossil- or other-fuel-fired combustion device used..., fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine: (1) Having equipment used...
Code of Federal Regulations, 2013 CFR
2013-07-01
..., petroleum, coal, or any form of solid, liquid, or gaseous fuel derived from such material. Fossil-fuel-fired... enclosed fossil- or other-fuel-fired combustion device used to produce heat and to transfer heat to... means a stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine: (1...
Code of Federal Regulations, 2012 CFR
2012-07-01
..., petroleum, coal, or any form of solid, liquid, or gaseous fuel derived from such material. Fossil-fuel-fired... right-of-way tree trimmings. Boiler means an enclosed fossil-or other-fuel-fired combustion device used... means a stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine: (1...
Code of Federal Regulations, 2014 CFR
2014-07-01
..., petroleum, coal, or any form of solid, liquid, or gaseous fuel derived from such material. Fossil-fuel-fired... right-of-way tree trimmings. Boiler means an enclosed fossil-or other-fuel-fired combustion device used... means a stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine: (1...
Code of Federal Regulations, 2010 CFR
2010-07-01
..., petroleum, coal, or any form of solid, liquid, or gaseous fuel derived from such material. Fossil-fuel-fired... right-of-way tree trimmings. Boiler means an enclosed fossil- or other-fuel-fired combustion device used..., fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine: (1) Having equipment used...
Code of Federal Regulations, 2014 CFR
2014-07-01
..., petroleum, coal, or any form of solid, liquid, or gaseous fuel derived from such material. Fossil-fuel-fired... enclosed fossil- or other-fuel-fired combustion device used to produce heat and to transfer heat to... means a stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine: (1...
Code of Federal Regulations, 2013 CFR
2013-07-01
..., petroleum, coal, or any form of solid, liquid, or gaseous fuel derived from such material. Fossil-fuel-fired... right-of-way tree trimmings. Boiler means an enclosed fossil- or other-fuel-fired combustion device used..., fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine: (1) Having equipment used...
Code of Federal Regulations, 2013 CFR
2013-07-01
..., petroleum, coal, or any form of solid, liquid, or gaseous fuel derived from such material. Fossil-fuel-fired... right-of-way tree trimmings. Boiler means an enclosed fossil-or other-fuel-fired combustion device used... means a stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine: (1...
Code of Federal Regulations, 2010 CFR
2010-07-01
..., petroleum, coal, or any form of solid, liquid, or gaseous fuel derived from such material. Fossil-fuel-fired... right-of-way tree trimmings. Boiler means an enclosed fossil-or other-fuel-fired combustion device used... means a stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine: (1...
Code of Federal Regulations, 2012 CFR
2012-07-01
..., petroleum, coal, or any form of solid, liquid, or gaseous fuel derived from such material. Fossil-fuel-fired... enclosed fossil- or other-fuel-fired combustion device used to produce heat and to transfer heat to... means a stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine: (1...
Code of Federal Regulations, 2012 CFR
2012-07-01
.... Fossil fuel means natural gas, petroleum, coal, or any form of solid, liquid, or gaseous fuel derived... trimmings. Boiler means an enclosed fossil- or other-fuel-fired combustion device used to produce heat and... any other fuel. Cogeneration unit means a stationary, fossil-fuel-fired boiler or stationary, fossil...
Code of Federal Regulations, 2014 CFR
2014-07-01
.... Fossil fuel means natural gas, petroleum, coal, or any form of solid, liquid, or gaseous fuel derived... trimmings. Boiler means an enclosed fossil- or other-fuel-fired combustion device used to produce heat and... any other fuel. Cogeneration unit means a stationary, fossil-fuel-fired boiler or stationary, fossil...
Code of Federal Regulations, 2010 CFR
2010-07-01
.... Fossil fuel means natural gas, petroleum, coal, or any form of solid, liquid, or gaseous fuel derived... trimmings. Boiler means an enclosed fossil- or other-fuel-fired combustion device used to produce heat and... any other fuel. Cogeneration unit means a stationary, fossil-fuel-fired boiler or stationary, fossil...
Code of Federal Regulations, 2013 CFR
2013-07-01
.... Fossil fuel means natural gas, petroleum, coal, or any form of solid, liquid, or gaseous fuel derived... trimmings. Boiler means an enclosed fossil- or other-fuel-fired combustion device used to produce heat and... any other fuel. Cogeneration unit means a stationary, fossil-fuel-fired boiler or stationary, fossil...
Microstructural characteristics of HIP-bonded monolithic nuclear fuels with a diffusion barrier
NASA Astrophysics Data System (ADS)
Jue, Jan-Fong; Keiser, Dennis D.; Breckenridge, Cynthia R.; Moore, Glenn A.; Meyer, Mitchell K.
2014-05-01
Due to the limitation of maximum uranium load achievable by dispersion fuel type, the Global Threat Reduction Initiative is developing an advanced monolithic fuel to convert US high-performance research reactors to low-enriched uranium. Hot-isostatic-press (HIP) bonding was the single process down-selected to bond monolithic U-Mo fuel meat to aluminum alloy cladding. A diffusion barrier was applied to the U-Mo fuel meat by roll-bonding process to prevent extensive interaction between fuel meat and aluminum-alloy cladding. Microstructural characterization was performed on fresh fuel plates fabricated at Idaho National Laboratory. Interfaces between the fuel meat, the cladding, and the diffusion barrier, as well as between the U-10Mo fuel meat and the Al-6061 cladding, were characterized by scanning electron microscopy. Preliminary results indicate that the interfaces contain many different phases while decomposition, second phases, and chemical banding were also observed in the fuel meat. The important attributes of the HIP-bonded monolithic fuel are:
Microstructural Characteristics of HIP-bonded Monolithic Nuclear Fuels with a Diffusion Barrier
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jan-Fong Jue; Dennis D. Keiser, Jr.; Cynthia R. Breckenridge
Due to the limitation of maximum uranium load achievable by dispersion fuel type, the Global Threat Reduction Initiative (GTRI) is developing an advanced monolithic fuel to convert US high performance research reactors to low-enriched uranium. Hot-isostatic-press bonding was the single process down-selected to bond monolithic U-Mo fuel meat to aluminum alloy cladding. A diffusion barrier was applied to the U–Mo fuel meat by roll-bonding process to prevent extensive interaction between fuel meat and aluminum-alloy cladding. Microstructural characterization was performed on fresh fuel plates fabricated at Idaho National Laboratory. Interfaces between fuel meat, cladding, and diffusion barrier, as well as U–10Momore » fuel meat and Al–6061 cladding were characterized by scanning electron microscopy. Preliminary results indicate that the interfaces contain many different phases while decomposition, second phases, and chemical banding were also observed in the fuel meat. The important attributes of the HIP-bonded monolithic fuel are • A typical Zr diffusion barrier of thickness 25 µm • Transverse cross section that exhibits relatively equiaxed grains with an average grain diameter of 10 µm • Chemical banding, in some areas more than 100 µm in length, that is very pronounced in longitudinal (i.e., rolling) direction with Mo concentration varying from 7–13 wt% • Decomposed areas containing plate-shaped low-Mo phase • A typical Zr/cladding interaction layer of thickness 1-2 µm • A visible UZr2 bearing layer of thickness 1-2 µm • Mo-rich precipitates (mainly Mo2Zr, forming a layer in some areas) followed by a Mo-depleted sub-layer between the visible UZr2-bearing layer and the U–Mo matrix • No excessive interaction between cladding and the uncoated fuel edge • Cladding-to-cladding bonding that exhibits no cracks or porosity with second phases high in Mg, Si, and O decorating the bond line. • Some of these attributes might be critical to the irradiation performance of monolithic U-10Mo nuclear fuel. There are several issues or concerns that warrant more detailed study, such as precipitation along cladding-to-cladding bond line, chemical banding, uncovered fuel-zone edge, and interaction layer between U–Mo fuel meat and zirconium. Future post-irradiation examination results will focus, among other things, on identifying in-reactor failure mechanisms and, eventually, directing further fresh fuel characterization efforts.« less