Science.gov

Sample records for fuel identification techniques

  1. Detailed fuel spray analysis techniques

    NASA Technical Reports Server (NTRS)

    Mularz, E. J.; Bosque, M. A.; Humenik, F. M.

    1983-01-01

    Detailed fuel spray analyses are a necessary input to the analytical modeling of the complex mixing and combustion processes which occur in advanced combustor systems. It is anticipated that by controlling fuel-air reaction conditions, combustor temperatures can be better controlled, leading to improved combustion system durability. Thus, a research program is underway to demonstrate the capability to measure liquid droplet size, velocity, and number density throughout a fuel spray and to utilize this measurement technique in laboratory benchmark experiments. The research activities from two contracts and one grant are described with results to data. The experiment to characterize fuel sprays is also described. These experiments and data should be useful for application to and validation of turbulent flow modeling to improve the design systems of future advanced technology engines.

  2. Microorganism identification technique

    SciTech Connect

    Sillman, R. E.

    1985-07-02

    An identification technique for micro-organisms in which a dilute solution of a culture medium containing an unknown micro-organism has added thereto an emissive agent such as a radioactive amino acid to produce a mix of emissive products that depends on the metabolic mechanism of the micro-organism. After a predetermined incubation period, the reaction is arrested and the solution layered onto a gel plate where it is subjected to electrophoresis. The plate is then autoradiographed by exposing the gel to a sensitive photographic film for a period sufficient to produce thereon a characteristic band pattern functioning as an identifier for the micro-organism. Identification may be effected by comparing the identifier for the unknown with a collection of identifiers for known micro-organisms to find a match with one of these known identifiers. The comparison is preferably carried out by scanning the unknown identifier to produce a signal which is compared with signals representing known identifiers stored in a computer which, when a match is found, yields identification data. Alternatively, the emissive products, after separation, may be detected by direct scanning to provide an identifier signal for computer processing.

  3. Bayesian techniques for surface fuel loading estimation

    Treesearch

    Kathy Gray; Robert Keane; Ryan Karpisz; Alyssa Pedersen; Rick Brown; Taylor Russell

    2016-01-01

    A study by Keane and Gray (2013) compared three sampling techniques for estimating surface fine woody fuels. Known amounts of fine woody fuel were distributed on a parking lot, and researchers estimated the loadings using different sampling techniques. An important result was that precise estimates of biomass required intensive sampling for both the planar intercept...

  4. Identification of failed fuel element

    DOEpatents

    Fryer, Richard M.; Matlock, Robert G.

    1976-06-22

    A passive fission product gas trap is provided in the upper portion of each fuel subassembly in a nuclear reactor. The gas trap consists of an inverted funnel of less diameter than the subassembly having a valve at the apex thereof. An actuating rod extends upwardly from the valve through the subassembly to a point where it can be contacted by the fuel handling mechanism for the reactor. Interrogation of the subassembly for the presence of fission products is accomplished by lowering the fuel handling machine onto the subassembly to press down on the actuating rod and open the valve.

  5. Identification to a breached fuel pin in the IEM cell

    SciTech Connect

    McGuinness, P.W.; Kalk, J.J.; Hicks, D.F.

    1987-01-01

    Novel methods were successfully employed to identify one breached fuel pin in a 217-pin fuel assembly. The assembly was an experiment that had been irradiated at the Fast Flux Test Facility (FFTF), an experimental liquid-metal reactor operated by Westinghouse Hanford Company for the US Dept. of Energy. A fuel assembly known to contain breached fuel pins was removed from the sodium-cooled FFTF reactor in November 1984. Later, this assembly was brought into the FFTF's Interim Examination and Maintenance (IEM) cell to be disassembled and, for the first time ever at FFTF, to identify a breached fuel pin. The synergistic evaluation of the four different verification techniques - visual examination, cladding swipe activity, wash water radiochemistry, and pin weight - provided rapid and positive identification. The capability to perform future detective work of this kind has been conclusively demonstrated.

  6. Used Fuel Cask Identification through Neutron Profile

    SciTech Connect

    Rauch, Eric Benton

    2015-11-20

    Currently, most spent fuel is stored near reactors. An interim consolidated fuel storage facility would receive fuel from multiple sites and store it in casks on site for decades. For successful operation of such a facility there is need for a way to restore continuity of knowledge if lost as well as a method that will indicate state of fuel inside the cask. Used nuclear fuel is identifiable by its radiation emission, both gamma and neutron. Neutron emission from fission products, multiplication from remaining fissile material, and the unique distribution of both in each cask produce a unique neutron signature. If two signatures taken at different times do not match, either changes within the fuel content or misidentification of a cask occurred. It was found that identification of cask loadings works well through the profile of emitted neutrons in simulated real casks. Even casks with similar overall neutron emission or average counts around the circumference can be distinguished from each other by analyzing the profile. In conclusion, (1) identification of unaltered casks through neutron signature profile is viable; (2) collecting the profile provides insight to the condition and intactness of the fuel stored inside the cask; and (3) the signature profile is stable over time.

  7. Optical fuel pin scanner. [Patent application; for reading identifications

    DOEpatents

    Kirchner, T.L.; Powers, H.G.

    1980-12-09

    This patent relates to an optical identification system developed for post-irradiation disassembly and analysis of fuel bundle assemblies. The apparatus is designed to be lowered onto a stationary fuel pin to read identification numbers or letters imprinted on the circumference of the top fuel pin and cap. (DLC)

  8. Viscosity Meaurement Technique for Metal Fuels

    SciTech Connect

    Ban, Heng; Kennedy, Rory

    2015-02-09

    Metallic fuels have exceptional transient behavior, excellent thermal conductivity, and a more straightforward reprocessing path, which does not separate out pure plutonium from the process stream. Fabrication of fuel containing minor actinides and rare earth (RE) elements for irradiation tests, for instance, U-20Pu-3Am-2Np-1.0RE-15Zr samples at the Idaho National Laboratory, is generally done by melt casting in an inert atmosphere. For the design of a casting system and further scale up development, computational modeling of the casting process is needed to provide information on melt flow and solidification for process optimization. Therefore, there is a need for melt viscosity data, the most important melt property that controls the melt flow. The goal of the project was to develop a measurement technique that uses fully sealed melt sample with no Americium vapor loss to determine the viscosity of metallic melts and at temperatures relevant to the casting process. The specific objectives of the project were to: develop mathematical models to establish the principle of the measurement method, design and build a viscosity measurement prototype system based on the established principle, and calibrate the system and quantify the uncertainty range. The result of the project indicates that the oscillation cup technique is applicable for melt viscosity measurement. Detailed mathematical models of innovative sample ampoule designs were developed to not only determine melt viscosity, but also melt density under certain designs. Measurement uncertainties were analyzed and quantified. The result of this project can be used as the initial step toward the eventual goal of establishing a viscosity measurement system for radioactive melts.

  9. 40 CFR 80.521 - What are the standards and identification requirements for diesel fuel additives?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... consumer in diesel motor vehicles or nonroad diesel engines. ... identification requirements for diesel fuel additives? 80.521 Section 80.521 Protection of Environment... Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel...

  10. 40 CFR 80.521 - What are the standards and identification requirements for diesel fuel additives?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... consumer in diesel motor vehicles or nonroad diesel engines. ... identification requirements for diesel fuel additives? 80.521 Section 80.521 Protection of Environment... Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel...

  11. 40 CFR 80.521 - What are the standards and identification requirements for diesel fuel additives?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... consumer in diesel motor vehicles or nonroad diesel engines. ... identification requirements for diesel fuel additives? 80.521 Section 80.521 Protection of Environment... Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel...

  12. 40 CFR 80.521 - What are the standards and identification requirements for diesel fuel additives?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... consumer in diesel motor vehicles or nonroad diesel engines. ... identification requirements for diesel fuel additives? 80.521 Section 80.521 Protection of Environment... Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel...

  13. 40 CFR 80.521 - What are the standards and identification requirements for diesel fuel additives?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... consumer in diesel motor vehicles or nonroad diesel engines. ... identification requirements for diesel fuel additives? 80.521 Section 80.521 Protection of Environment... Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel...

  14. Fuel processing requirements and techniques for fuel cell propulsion power

    SciTech Connect

    Kumar, R.; Ahmed, S.; Yu, M.

    1993-08-01

    Fuels for fuel cells in transportation systems are likely to be methanol, natural gas, hydrogen, propane, or ethanol. Fuels other than hydrogen wig need to be reformed to hydrogen on-board the vehicle. The fuel reformer must meet stringent requirements for weight and volume, product quality, and transient operation. It must be compact and lightweight, must produce low levels of CO and other byproducts, and must have rapid start-up and good dynamic response. Catalytic steam reforming, catalytic or noncatalytic partial oxidation reforming, or some combination of these processes may be used. This paper discusses salient features of the different kinds of reformers and describes the catalysts and processes being examined for the oxidation reforming of methanol and the steam reforming of ethanol. Effective catalysts and reaction conditions for the former have been identified; promising catalysts and reaction conditions for the latter are being investigated.

  15. Comparison of two dissimilar modal identification techniques

    NASA Technical Reports Server (NTRS)

    Pappa, Richard S.; Schenk, Axel; Niedbal, Norbert; Klusowski, Erhard

    1992-01-01

    Recent laboratory results using a refined phase resonance method and the eigensystem realization algorithm on the same test structure are reported. These methods are dissimilar modal identification techniques suitable for future large spacecraft. The theory, application approach, and results obtained for each technique are summarized and compared. Although both methods worked well in this investigation, significant differences occurred in some identified mode shapes. Comparison of independently derived modal parameters provides the means for disclosing such discrepancies in flight projects.

  16. Wavelets for ultrasonic echo identification in aircraft fuel tanks

    NASA Astrophysics Data System (ADS)

    Sadok, Mokhtar

    2002-03-01

    Recently, Goodrich Corp.- Fuels and Utility systems Division, has launched a research effort to investigate various sensing and computing techniques to gauge fuel in commercial and military aircrafts. Ultrasonics are among other techniques that were tested for such purpose. Generally, in ultrasonic fuel measurement systems, a transducer is excited to create sonic bursts into fuel and measure reflected echo off the fuel surface. A fixed target or pin is usually disposed at a fixed and predetermined distance from the ultrasonic transducer within the tank so as to compute the speed of sound through across fuel in the tank. Knowing the speed of sound in fuel and being able to measure the round trip time from when an ultrasonic burst is generated until its reflected off the fuel surface, the fuel height may be calculated. With a priori knowledge of the tank geometry, the fuel quantity can be estimated. This measurement process seems straightforward. A problem however is being able to discriminate between echoes reflected off various objects within the tank. In particular, it is crucial to discriminate among echoes reflected off various objects within the tank. In particular, it is crucial to discriminate among echoes reflected off the fuel surface and echoes reflected off other object withhin the tank, like the fixed target or tank sides. This paper presents a discrimination method based on wavelets to assign various ultrasonic echoes to their appropriate reflective surfaces.

  17. Identification of a breached fuel pin in the IEM (Interim Examination and Maintenance) cell

    SciTech Connect

    McGuinness, P.W.; Kalk, J.J.; Hicks, D.F.

    1987-01-01

    Novel methods were successfully employed to identify one breached fuel pin in a 217-pin fuel assembly. The assembly was an experiment that had been irradiated at the Fast Flux Test Facility (FFTF), an experimental liquid-metal reactor operated by Westinghouse Hanford Company for the US Department of Energy. A fuel assembly known to contain breached fuel pins was removed from the sodium-cooled FFTF reactor in November 1984. Later, this assembly was brought into the FFTF's Interim Examination and Maintenance (IEM) cell to be disassembled and, for the first time ever at FFTF, to identify a breached fuel pin. The synergistic evaluation of the four different verification techniques - visual examination, cladding swipe activity, wash water radiochemistry, and pin weight - provided rapid and positive identification. The capability to perform future detective work of this kind has been conclusively demonstrated.

  18. A hybrid sequential deposition fabrication technique for micro fuel cells

    NASA Astrophysics Data System (ADS)

    Stanley, Kevin G.; Czyzewska, Eva K.; Vanderhoek, Tom P. K.; Fan, Lilian L. Y.; Abel, Keith A.; Wu, Q. M. Jonathan; Parameswaran, M. Ash

    2005-10-01

    Micro fuel cell systems have elicited significant interest due to their promise for instantly rechargeable, longer duration and portable power. Most micro fuel cell systems are either built as miniaturized plate-and-frame or silicon-based microelectromechanical systems (MEMS). Plate-and-frame systems are difficult to fabricate smaller than 20 cm3. Existing micro fuel cell designs cannot meet the cost, scale and power requirements of some portable power markets. Traditional MEMS scaling advantages do not apply to fuel cells because the minimum area for the fuel cell is fixed by the catalyst area required for a given power output, and minimum volume set by mass transport limitations. We have developed a new hybrid technique that borrows from both micro and macro machining techniques to create fuel cells in the 1-20 cm3 range, suitable for cell phones, PDAs and smaller devices.

  19. Decision Tree Technique for Particle Identification

    SciTech Connect

    Quiller, Ryan

    2003-09-05

    Particle identification based on measurements such as the Cerenkov angle, momentum, and the rate of energy loss per unit distance (-dE/dx) is fundamental to the BaBar detector for particle physics experiments. It is particularly important to separate the charged forms of kaons and pions. Currently, the Neural Net, an algorithm based on mapping input variables to an output variable using hidden variables as intermediaries, is one of the primary tools used for identification. In this study, a decision tree classification technique implemented in the computer program, CART, was investigated and compared to the Neural Net over the range of momenta, 0.25 GeV/c to 5.0 GeV/c. For a given subinterval of momentum, three decision trees were made using different sets of input variables. The sensitivity and specificity were calculated for varying kaon acceptance thresholds. This data was used to plot Receiver Operating Characteristic curves (ROC curves) to compare the performance of the classification methods. Also, input variables used in constructing the decision trees were analyzed. It was found that the Neural Net was a significant contributor to decision trees using dE/dx and the Cerenkov angle as inputs. Furthermore, the Neural Net had poorer performance than the decision tree technique, but tended to improve decision tree performance when used as an input variable. These results suggest that the decision tree technique using Neural Net input may possibly increase accuracy of particle identification in BaBar.

  20. Engine control techniques to account for fuel effects

    DOEpatents

    Kumar, Shankar; Frazier, Timothy R.; Stanton, Donald W.; Xu, Yi; Bunting, Bruce G.; Wolf, Leslie R.

    2014-08-26

    A technique for engine control to account for fuel effects including providing an internal combustion engine and a controller to regulate operation thereof, the engine being operable to combust a fuel to produce an exhaust gas; establishing a plurality of fuel property inputs; establishing a plurality of engine performance inputs; generating engine control information as a function of the fuel property inputs and the engine performance inputs; and accessing the engine control information with the controller to regulate at least one engine operating parameter.

  1. Isolation and Identification of Nitrogen Species in Jet Fuel and Diesel Fuel

    SciTech Connect

    Link, D.D.; Baltrus, J.P.; Zandhuis, P.H.

    2007-05-01

    Many performance characteristics of liquid fuels--including lubricity, the ability to swell seal materials, storage stability, and thermal stability--are determined, to a large degree, by the trace polar species that the fuel contains. Because the polar fraction comprises such a small portion of the fuel matrix, it is difficult to detect these species without first isolating them from the bulk fuel. This manuscript describes the extension of previous work that established a protocol for the isolation and identification of oxygenates in jet fuels. The current work shows that a liquid-liquid extraction using methanol, followed by an isolation step using high-performance liquid chromatography (HPLC) with a silica column, can successfully separate polar nitrogen-containing species from the fuel, in addition to separating oxygenates. The analytical protocol further isolates the polar target species using a polar capillary gas chromatography (GC) column and a nontraditional oven heating program. The method is amenable to milliliter quantitites of fuel samples and produces a matrix that can be analyzed directly, using typical GC methods. The method was evaluated using spiked surrogate fuels, as well as actual petroleum-derived jet fuel samples. Furthermore, it is shown that the method also can be extended for use on diesel fuels.

  2. Isolation and Identification of Nitrogen Species in Jet Fuel and Diesel Fuel

    SciTech Connect

    Link, D.D.; Baltrus, J.P.; Zandhuis, P.H.

    2007-05-01

    Many performance characteristics of liquid fuels-including lubricity, the ability to swell seal materials, storage stability, and thermal stability-are determined, to a large degree, by the trace polar species that the fuel contains. Because the polar fraction comprises such a small portion of the fuel matrix, it is difficult to detect these species without first isolating them from the bulk fuel. This manuscript describes the extension of previous work that established a protocol for the isolation and identification of oxygenates in jet fuels. The current work shows that a liquid-liquid extraction using methanol, followed by an isolation step using high-performance liquid chromatography (HPLC) with a silica column, can successfully separate polar nitrogen-containing species from the fuel, in addition to separating oxygenates. The analytical protocol further isolates the polar target species using a polar capillary gas chromatography (GC) column and a nontraditional oven heating program. The method is amenable to milliliter quantitites of fuel samples and produces a matrix that can be analyzed directly, using typical GC methods. The method was evaluated using spiked surrogate fuels, as well as actual petroleum-derived jet fuel samples. Furthermore, it is shown that the method also can be extended for use on diesel fuels.

  3. The statistical analysis techniques to support the NGNP fuel performance experiments

    SciTech Connect

    Binh T. Pham; Jeffrey J. Einerson

    2013-10-01

    This paper describes the development and application of statistical analysis techniques to support the Advanced Gas Reactor (AGR) experimental program on Next Generation Nuclear Plant (NGNP) fuel performance. The experiments conducted in the Idaho National Laboratory’s Advanced Test Reactor employ fuel compacts placed in a graphite cylinder shrouded by a steel capsule. The tests are instrumented with thermocouples embedded in graphite blocks and the target quantity (fuel temperature) is regulated by the He–Ne gas mixture that fills the gap volume. Three techniques for statistical analysis, namely control charting, correlation analysis, and regression analysis, are implemented in the NGNP Data Management and Analysis System for automated processing and qualification of the AGR measured data. The neutronic and thermal code simulation results are used for comparative scrutiny. The ultimate objective of this work includes (a) a multi-faceted system for data monitoring and data accuracy testing, (b) identification of possible modes of diagnostics deterioration and changes in experimental conditions, (c) qualification of data for use in code validation, and (d) identification and use of data trends to support effective control of test conditions with respect to the test target. Analysis results and examples given in the paper show the three statistical analysis techniques providing a complementary capability to warn of thermocouple failures. It also suggests that the regression analysis models relating calculated fuel temperatures and thermocouple readings can enable online regulation of experimental parameters (i.e. gas mixture content), to effectively maintain the fuel temperature within a given range.

  4. 77 FR 13009 - Regulation of Fuels and Fuel Additives: Identification of Additional Qualifying Renewable Fuel...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-05

    ... Qualifying Renewable Fuel Pathways Under the Renewable Fuel Standard Program AGENCY: Environmental Protection... January 5, 2012 to amend the Renewable Fuel Standard program regulations. Because EPA received adverse... on January 5, 2012 (77 FR 700) to amend the Renewable Fuel Standard program regulations....

  5. Safeguards techniques in a pilot conditioning plant for spent fuel

    SciTech Connect

    Leitner, E.; Rudolf, K.; Weh, R. )

    1991-01-01

    The pilot conditioning plant at Gorleben, Germany, is designed as a multi-purpose plant. Its primary task is the conditioning of spent fuel assemblies into a form suitable for final disposal. As a pilot plant, it allows furthermore for the development and testing of various conditioning techniques. In terms of international safeguards, the pilot conditioning plant is basically considered an item facility. Entire fuel assemblies enter the plant in transport casks, whereas bins filled with fuel rods or canisters containing cut fuel rods leave the facility in final disposal packages (e.g. POLLUX). Each POLLUX final disposal package content is uniquely correlated to a definite number of fuel assemblies which have entered the conditioning process. For this type of facility, containment/surveillance (C/S) should take over the major role in nuclear material safeguards. This paper discusses the safeguards at the Gorleben plant.

  6. Developing clean fuels: Novel techniques for desulfurization

    NASA Astrophysics Data System (ADS)

    Nehlsen, James P.

    The removal of sulfur compounds from petroleum is crucial to producing clean burning fuels. Sulfur compounds poison emission control catalysts and are the source of acid rain. New federal regulations require the removal of sulfur in both gasoline and diesel to very low levels, forcing existing technologies to be pushed into inefficient operating regimes. New technology is required to efficiently produce low sulfur fuels. Two processes for the removal of sulfur compounds from petroleum have been developed: the removal of alkanethiols by heterogeneous reaction with metal oxides; and oxidative desulfurization of sulfides and thiophene by reaction with sulfuric acid. Alkanethiols, common in hydrotreated gasoline, can be selectively removed and recovered from a hydrocarbon stream by heterogeneous reaction with oxides of Pb, Hg(II), and Ba. The choice of reactive metal oxides may be predicted from simple thermodynamic considerations. The reaction is found to be autocatalytic, first order in water, and zero order in thiol in the presence of excess oxide. The thiols are recovered by reactive extraction with dilute oxidizing acid. The potential for using polymer membrane hydrogenation reactors (PEMHRs) to perform hydrogenation reactions such as hydrodesulfurization is explored by hydrogenating ketones and olefins over Pt and Au group metals. The dependence of reaction rate on current density suggests that the first hydrogen addition to the olefin is the rate limiting step, rather than the adsorption of hydrogen, for all of the metals tested. PEMHRs proved unsuccessful in hydrogenating sulfur compounds to perform HDS. For the removal of sulfides, a two-phase reactor is used in which concentrated sulfuric acid oxidizes aromatic and aliphatic sulfides present in a hydrocarbon solvent, generating sulfoxides and other sulfonated species. The polar oxidized species are extracted into the acid phase, effectively desulfurizing the hydrocarbon. A reaction scheme is proposed for this

  7. An Investigation of System Identification Techniques for Simulation Model Abstraction

    DTIC Science & Technology

    2000-02-01

    This report summarizes research into the application of system identification techniques to simulation model abstraction. System identification produces...34Mission Simulation," a simulation of a squadron of aircraft performing battlefield air interdiction. The system identification techniques were...simplified mathematical models that approximate the dynamic behaviors of the underlying stochastic simulations. Four state-space system

  8. Determining plutonium in spent fuel with nondestructive assay techniques

    SciTech Connect

    Tobin, Stephen J; Charlton, William S; Fensin, Michael L; Menlove, Howard O; Hoover, A S; Quiter, B J; Rajasingam, A; Swinhoe, M T; Thompson, S J; Charlton, W S; Ehinger, M H; Sandoval, N P; Saavedra, S F; Strohmeyer, D

    2009-01-01

    There are a variety of motivations for quantifying plutonium in used (spent) fuel assemblies by means of nondestructive assay including the following: shipper/receiver difference, input accountability at reprocessing facilities and burnup credit at repositories or fuel storage facilities. Twelve NDA techniques were identified that provide information about the composition of an assembly. Unfortunately, none of these techniques is capable of determining the Pu mass in an assembly on its own. However, it is expected that the Pu mass can be quantified by combining a few of the techniques. Determining which techniques to combine and estimating the expected performance of such a system is the purpose of the research effort recently begun. The research presented here is a complimentarily experimental effort. This paper will focus on experimental results of one of the twelve non-destructive assay techniques - passive neutron albedo reactivity. The passive neutron albedo reactivity techniques work by changing the multiplication the pin experiences between two separate measurements. Since a single spent fuel pin has very little multiplication, this is a challenging measurement situation for the technique. Singles and Doubles neutron count rate were measured at Oak Ridge National Laboratory for three different burnup pins to test the capability of the passive neutron albedo reactivity technique.

  9. Tau identification using multivariate techniques in ATLAS

    NASA Astrophysics Data System (ADS)

    O'Neil, D. C.; ATLAS Collaboration

    2012-06-01

    Tau leptons play an important role in the physics program of the LHC. They are being used in electroweak measurements, in detector related studies and in searches for new phenomena like the Higgs boson or Supersymmetry. In the detector, tau leptons are reconstructed as collimated jets with low track multiplicity. Due to the background from QCD multijet processes, efficient tau identification techniques with large fake rejection are essential. Since single variable criteria are not enough to efficiently separate them from jets and electrons, modern multivariate techniques are used. In ATLAS, several advanced algorithms are applied to identify taus, including a projective likelihood estimator and boosted decision trees. All multivariate methods applied to the ATLAS simulated data perform better than the baseline cut analysis. Their performance is shown using high energy data collected at the ATLAS experiment. The improvement ranges from a factor of 2 to 5 in rejection for the same efficiency, depending on the selected efficiency operating point and the number of prongs in the tau decay. The strengths and weaknesses of each technique are also discussed.

  10. Laser Shockwave Technique For Characterization Of Nuclear Fuel Plate Interfaces

    SciTech Connect

    James A. Smith; Barry H. Rabin; Mathieu Perton; Daniel Lévesque; Jean-Pierre Monchalin; Martin Lord

    2012-07-01

    The US National Nuclear Security Agency is tasked with minimizing the worldwide use of high-enriched uranium. One aspect of that effort is the conversion of research reactors to monolithic fuel plates of low-enriched uranium. The manufacturing process includes hot isostatic press bonding of an aluminum cladding to the fuel foil. The Laser Shockwave Technique (LST) is here evaluated for characterizing the interface strength of fuel plates using depleted Uranium/Mo foils. LST is a non-contact method that uses lasers for the generation and detection of large amplitude acoustic waves and is therefore well adapted to the quality assurance of this process. Preliminary results show a clear signature of well-bonded and debonded interfaces and the method is able to classify/rank the bond strength of fuel plates prepared under different HIP conditions.

  11. Laser shockwave technique for characterization of nuclear fuel plate interfaces

    SciTech Connect

    Perton, M.; Levesque, D.; Monchalin, J.-P.; Lord, M.; Smith, J. A.; Rabin, B. H.

    2013-01-25

    The US National Nuclear Security Agency is tasked with minimizing the worldwide use of high-enriched uranium. One aspect of that effort is the conversion of research reactors to monolithic fuel plates of low-enriched uranium. The manufacturing process includes hot isostatic press bonding of an aluminum cladding to the fuel foil. The Laser Shockwave Technique (LST) is here evaluated for characterizing the interface strength of fuel plates using depleted Uranium/Mo foils. LST is a non-contact method that uses lasers for the generation and detection of large amplitude acoustic waves and is therefore well adapted to the quality assurance of this process. Preliminary results show a clear signature of well-bonded and debonded interfaces and the method is able to classify/rank the bond strength of fuel plates prepared under different HIP conditions.

  12. Measurement of fuel spray vaporisation by laser techniques

    NASA Technical Reports Server (NTRS)

    Yule, A. J.; Seng, C. A.; Felton, P. G.; Ungut, A.; Chigier, N. A.

    1980-01-01

    Comparison of fuel spray structures in heated and in cold environments is made by using a new laser tomographic technique and laser anemometry. The tomography technique is shown to give accurate and rapid 'point' measurements of droplet sizes and concentrations. Experimental results show acceleration of droplets to the local gas velocity, preferential vaporisation of the smallest droplets and the dispersion of droplets by the turbulence.

  13. Nuclear fuel pellet quality control using artificial intelligence techniques

    NASA Astrophysics Data System (ADS)

    Song, Xiaolong

    Inspection of nuclear fuel pellets is a complex and time-consuming process. At present, quality control in the fuel fabrication field mainly relies on human manual inspection, which is essentially a judgement call. Considering the high quality requirement of fuel pellets in the nuclear industry, pellet inspection systems must have a high accuracy rate in addition to a high inspection speed. Furthermore, any inspection process should have a low rejection rate of good pellets from the manufacturer point of view. It is very difficult to use traditional techniques, such as simple image comparison, to adequately perform the inspection process of the nuclear fuel pellet. Knowledge-based inspection and a defect-recognition algorithm, which maps the human inspection knowledge, is more robust and effective. A novel method is introduced here for pellet image processing. Three artificial intelligence techniques are studied and applied for fuel pellet inspection in this research. They are an artificial neural network, fuzzy logic, and the decision tree method. A dynamic reference model is located on each input fuel pellet image. Then, those pixels that belong to the abnormal defect are enhanced with high speed and high accuracy. Next, the content-based features for the defect are extracted from those abno1mal pixels and used in the inspection algorithm. Finally, an automated inspection prototype system---Visual Inspection Studio---which combines machine vision and these three AI techniques, is developed and tested. The experimental results indicate a very successful system with a high potential for on-line automatic inspection process.

  14. The Statistical Analysis Techniques to Support the NGNP Fuel Performance Experiments

    SciTech Connect

    Bihn T. Pham; Jeffrey J. Einerson

    2010-06-01

    This paper describes the development and application of statistical analysis techniques to support the AGR experimental program on NGNP fuel performance. The experiments conducted in the Idaho National Laboratory’s Advanced Test Reactor employ fuel compacts placed in a graphite cylinder shrouded by a steel capsule. The tests are instrumented with thermocouples embedded in graphite blocks and the target quantity (fuel/graphite temperature) is regulated by the He-Ne gas mixture that fills the gap volume. Three techniques for statistical analysis, namely control charting, correlation analysis, and regression analysis, are implemented in the SAS-based NGNP Data Management and Analysis System (NDMAS) for automated processing and qualification of the AGR measured data. The NDMAS also stores daily neutronic (power) and thermal (heat transfer) code simulation results along with the measurement data, allowing for their combined use and comparative scrutiny. The ultimate objective of this work includes (a) a multi-faceted system for data monitoring and data accuracy testing, (b) identification of possible modes of diagnostics deterioration and changes in experimental conditions, (c) qualification of data for use in code validation, and (d) identification and use of data trends to support effective control of test conditions with respect to the test target. Analysis results and examples given in the paper show the three statistical analysis techniques providing a complementary capability to warn of thermocouple failures. It also suggests that the regression analysis models relating calculated fuel temperatures and thermocouple readings can enable online regulation of experimental parameters (i.e. gas mixture content), to effectively maintain the target quantity (fuel temperature) within a given range.

  15. Coupled LC-GC techniques for the characterisation of polycyclic aromatic compounds in fuel materials

    SciTech Connect

    Askey, S.A.; Holden, K.M.L.; Bartle, K.D.

    1995-12-31

    Exposure to polycyclic aromatic compounds (PAC) has long been identified as of considerable environmental concern. Originating from both natural and anthropogenic sources, many PAC exhibit significant carcinogenic and mutagenic properties. Multi-dimensional chromatographic techniques which provide separation by virtue of chemical class (group-type) or by molecular mass greatly simplifies the analysis of inherently complex fuel materials. In this study, on-line LC-GC techniques in which high resolution gas chromatography (HPLC) have been investigated. Comprehensive characterisation of fuel feedstocks and post-pyrolysis and combustion products was achieved by coupling LC-GC to low resolution ion trap mass spectrometry (ITD-MS) and atomic emission detection (AED). The identification of PAC in diesel and coal materials, as well as urban air and diesel exhaust particulate extracts has provided valuable insight into the source, formation and distribution of such compounds pre- and post processing.

  16. A selective hybrid stochastic strategy for fuel-cell multi-parameter identification

    NASA Astrophysics Data System (ADS)

    Guarnieri, Massimo; Negro, Enrico; Di Noto, Vito; Alotto, Piergiorgio

    2016-11-01

    The in situ identification of fuel-cell material parameters is crucial both for guiding the research for advanced functionalized materials and for fitting multiphysics models, which can be used in fuel cell performance evaluation and optimization. However, this identification still remains challenging when dealing with direct measurements. This paper presents a method for achieving this aim by stochastic optimization. Such techniques have been applied to the analysis of fuel cells for ten years, but typically to specific problems and by means of semi-empirical models, with an increased number of articles published in the last years. We present an original formulation that makes use of an accurate zero-dimensional multi-physical model of a polymer electrolyte membrane fuel cell and of two cooperating stochastic algorithms, particle swarm optimization and differential evolution, to extract multiple material parameters (exchange current density, mass transfer coefficient, diffusivity, conductivity, activation barriers …) from the experimental data of polarization curves (i.e. in situ measurements) under some controlled temperature, gas back pressure and humidification. The method is suitable for application in other fields where fitting of multiphysics nonlinear models is involved.

  17. Novel injector techniques for coal-fueled diesel engines

    SciTech Connect

    Badgley, P.R.

    1992-09-01

    This report, entitled Novel Injector Techniques for Coal-Fueled Diesel Engines,'' describes the progress and findings of a research program aimed at development of a dry coal powder fuel injector in conjunction with the Thermal Ignition Combustion System (TICS) concept to achieve autoignition of dry powdered coal in a single-cylinder high speed diesel engine. The basic program consisted of concept selection, analysis and design, bench testing and single cylinder engine testing. The coal injector concept which was selected was a one moving part dry-coal-powder injector utilizing air blast injection. Adiabatics has had previous experience running high speed diesel engines on both direct injected directed coal-water-slurry (CWS) fuel and also with dry coal powder aspirated into the intake air. The Thermal Ignition Combustion System successfully ignited these fuels at all speeds and loads without requiring auxiliary ignition energy such as pilot diesel fuel, heated intake air or glow or spark plugs. Based upon this prior experience, it was shown that the highest efficiency and fastest combustion was with the dry coal, but that the use of aspiration of coal resulted in excessive coal migration into the engine lubrication system. Based upon a desire of DOE to utilize a more modern test engine, the previous naturally-aspirated Caterpillar model 1Y73 single cylinder engine was replaced with a turbocharged (by use of shop air compressor and back pressure control valve) single cylinder version of the Cummins model 855 engine.

  18. [Application of molecular biological techniques in Taenia identification].

    PubMed

    Li, Yan; Liu, Hang; Yang, Yi-Mei

    2011-10-01

    The traditional identification of Taenia spp. based on morphological features of adult and cysticercus has difficulties in identifying the morphologically similar species. The recent development of molecular techniques provides more scientific ways for distinguishing Taenia species. This paper summarizes the application of molecular biological techniques in the identification of Taenia, such as analysis of DNA sequence, PCR-RFLP and LAMP.

  19. A comparison of five sampling techniques to estimate surface fuel loading in montane forests

    Treesearch

    Pamela G. Sikkink; Robert E. Keane

    2008-01-01

    Designing a fuel-sampling program that accurately and efficiently assesses fuel load at relevant spatial scales requires knowledge of each sample method's strengths and weaknesses.We obtained loading values for six fuel components using five fuel load sampling techniques at five locations in western Montana, USA. The techniques included fixed-area plots, planar...

  20. Identification of a Methane Oxidation Intermediate on Solid Oxide Fuel Cell Anode Surfaces with Fourier Transform Infrared Emission.

    PubMed

    Pomfret, Michael B; Steinhurst, Daniel A; Owrutsky, Jeffrey C

    2013-04-18

    Fuel interactions on solid oxide fuel cell (SOFC) anodes are studied with in situ Fourier transform infrared emission spectroscopy (FTIRES). SOFCs are operated at 800 °C with CH4 as a representative hydrocarbon fuel. IR signatures of gas-phase oxidation products, CO2(g) and CO(g), are observed while cells are under load. A broad feature at 2295 cm(-1) is assigned to CO2 adsorbed on Ni as a CH4 oxidation intermediate during cell operation and while carbon deposits are electrochemically oxidized after CH4 operation. Electrochemical control provides confirmation of the assignment of adsorbed CO2. FTIRES has been demonstrated as a viable technique for the identification of fuel oxidation intermediates and products in working SOFCs, allowing for the elucidation of the mechanisms of fuel chemistry.

  1. Advanced techniques in safeguarding a conditioning facility for spent fuel

    SciTech Connect

    Rudolf, K.; Weh, R. )

    1992-01-01

    Although reprocessing continues to be the main factor in the waste management of nuclear reactors, the alternative of direct final disposal is currently being developed to the level of industrial applications, based on an agreement between the heads of the federal government and the federal states of Germany. Thus, the Konrad and Gorleben sites are being studied as potential final repositories as is the pilot conditioning facility (PKA) under construction. Discussions on the application of safeguards measures have led to the drafting of an approach that will cover the entire back end of the fuel cycle. The conditioning of fuel prior to direct final disposal represents one element in the overall approach. A modern facility equipped with advanced technology, PKA is a pilot plant with regard to conditioning techniques as well as to safeguards. Therefore, the PKA safeguards approach is expected to facilitate future industrial applications of the conditioning procedure. This cannot be satisfactorily implemented without advanced safeguards techniques. The level of development of the safeguards techniques varies. While advanced camera and seal systems are basically available, the other techniques and methods still require research and development. Feasibility studies and equipment development are geared to providing applicable safeguards techniques in time for commissioning of the PKA.

  2. System identification techniques for helicopter higher harmonic control

    NASA Technical Reports Server (NTRS)

    Jacklin, S. A.

    1986-01-01

    This paper presents and compares several system identification techniques proposed for use with higher harmonic control algorithms designed to alleviate helicopter vibration. All method for actively controlling helicopter vibration require the knowledge of how the vibration outputs are related to the control inputs. Off-line or batch identification methods for obtaining this knowledge are presented first. Then the more advanced, adaptive identification techniques proposed to track the helicopter model parameters in flight are discussed. Considerations regarding system identifiability, identification algorithm stability, and computer implementation are also discussed.

  3. Antimisting kerosene: Base fuel effects, blending and quality control techniques

    NASA Technical Reports Server (NTRS)

    Yavrouian, A. H.; Ernest, J.; Sarohia, V.

    1984-01-01

    The problems associated with blending of the AMK additive with Jet A, and the base fuel effects on AMK properties are addressed. The results from the evaluation of some of the quality control techniques for AMK are presented. The principal conclusions of this investigation are: significant compositional differences for base fuel (Jet A) within the ASTM specification DI655; higher aromatic content of the base fuel was found to be beneficial for the polymer dissolution at ambient (20 C) temperature; using static mixer technology, the antimisting additive (FM-9) is in-line blended with Jet A, producing AMK which has adequate fire-protection properties 15 to 20 minutes after blending; degradability of freshly blended and equilibrated AMK indicated that maximum degradability is reached after adequate fire protection is obtained; the results of AMK degradability as measured by filter ratio, confirmed previous RAE data that power requirements to decade freshly blended AMK are significantly higher than equilibrated AMK; blending of the additive by using FM-9 concentrate in Jet A produces equilibrated AMK almost instantly; nephelometry offers a simple continuous monitoring capability and is used as a real time quality control device for AMK; and trajectory (jet thurst) and pressure drop tests are useful laboratory techniques for evaluating AMK quality.

  4. A novel online adaptive time delay identification technique

    NASA Astrophysics Data System (ADS)

    Bayrak, Alper; Tatlicioglu, Enver

    2016-05-01

    Time delay is a phenomenon which is common in signal processing, communication, control applications, etc. The special feature of time delay that makes it attractive is that it is a commonly faced problem in many systems. A literature search on time-delay identification highlights the fact that most studies focused on numerical solutions. In this study, a novel online adaptive time-delay identification technique is proposed. This technique is based on an adaptive update law through a minimum-maximum strategy which is firstly applied to time-delay identification. In the design of the adaptive identification law, Lyapunov-based stability analysis techniques are utilised. Several numerical simulations were conducted with Matlab/Simulink to evaluate the performance of the proposed technique. It is numerically demonstrated that the proposed technique works efficiently in identifying both constant and disturbed time delays, and is also robust to measurement noise.

  5. Structural damage identification using mathematical optimization techniques

    NASA Technical Reports Server (NTRS)

    Shen, Mo-How Herman

    1991-01-01

    An identification procedure is proposed to identify damage characteristics (location and size of the damage) from dynamic measurements. This procedure was based on minimization of the mean-square measure of difference between measurement data (natural frequencies and mode shapes) and the corresponding predictions obtained from the computational model. The procedure is tested for simulated damage in the form of stiffness changes in a simple fixed free spring mass system and symmetric cracks in a simply supported Bernoulli Euler beam. It is shown that when all the mode information is used in the identification procedure it is possible to uniquely determine the damage properties. Without knowing the complete set of modal information, a restricted region in the initial data space has been found for realistic and convergent solution from the identification process.

  6. Development of nuclear fuel microsphere handling techniques and equipment

    SciTech Connect

    Mack, J.E.; Suchomel, R.R.; Angelini, P.

    1980-01-01

    Considerable progress has been made in the development of microsphere handling techniques and equipment for nuclear applications. Work at Oak Ridge National Laboratory with microspherical fuel forms dates back to the early sixties with the development of the sol-gel process. Since that time a number of equipment items and systems specifically related to microsphere handling and characterization have been identified and developed for eventual application in a remote recycle facility. These include positive and negative pressure transfer systems, samplers, weighers, a blender-dispenser, and automated devices for particle size distribution and crushing strength analysis. The current status of these and other components and systems is discussed.

  7. The photoload sampling technique: estimating surface fuel loadings from downward-looking photographs of synthetic fuelbeds

    Treesearch

    Robert E. Keane; Laura J. Dickinson

    2007-01-01

    Fire managers need better estimates of fuel loading so they can more accurately predict the potential fire behavior and effects of alternative fuel and ecosystem restoration treatments. This report presents a new fuel sampling method, called the photoload sampling technique, to quickly and accurately estimate loadings for six common surface fuel components (1 hr, 10 hr...

  8. Deconvolution/identification techniques for nonnegative signals

    SciTech Connect

    Goodman, D.M.; Yu, D.R.

    1991-11-01

    Several methods for solving the nonparametric deconvolution/identification problem when the unknown is nonnegative are presented. First we consider the constrained least squares method and discuss three ways to estimate the regularization parameter: the discrepancy principle, Mallow`s C{sub L}, and generalized cross validation. Next we consider maximum entropy methods. Last, we present a new conjugate gradient algorithm. A preliminary comparison is presented; detailed Monte-Carlo experiments will be presented at the conference. 13 refs.

  9. The use of interval calculation technique for fuel characteristic uncertainty estimations into a fuel cycle

    SciTech Connect

    Kamayev, D. A.; Kolesov, V. V.; Ukraintsev, V. F.; Hitrik, D. V.

    2006-07-01

    Authors realized a technique of the Cauchy problem decision for system of the linear equations (isotope kinetics) with use of interval arithmetic for the fuel burning up problem. Thus there is an opportunity to research a neutron flux, fission and capture cross-section uncertainties impact (and also of nuclide yield and decay constants) on nuclide concentration uncertainties and, accordingly, on change of a fuel cycle characteristics (such K{sub eff}, breeding ratio etc). We also carried out research of sensitivity of concentration uncertainties to uncertainties of neutron flux and uncertainties of the initial cross-section data. Calculations were carried out for neutron flux uncertainties of 1 % and 5 % and for uncertainties in the initial cross-section data of 1 % for {sup 235}U and {sup 238}U. Results are presented for one and three years of a reactor operation. (authors)

  10. Fuel Injector Patternation Evaluation in Advanced Liquid-Fueled, High Pressure, Gas Turbine Combustors, Using Nonintrusive Optical Diagnostic Techniques

    NASA Technical Reports Server (NTRS)

    Locke, R. J.; Hicks, Y. R.; Anderson, R. C.; Zaller, M. M.

    1998-01-01

    Planar laser-induced fluorescence (PLIF) imaging and planar Mie scattering are used to examine the fuel distribution pattern (patternation) for advanced fuel injector concepts in kerosene burning, high pressure gas turbine combustors. Three diverse fuel injector concepts for aerospace applications were investigated under a broad range of operating conditions. Fuel PLIF patternation results are contrasted with those obtained by planar Mie scattering. Further comparison is also made for one injector with data obtained through phase Doppler measurements. Differences in spray patterns for diverse conditions and fuel injector configurations are readily discernible. An examination of the data has shown that a direct determination of the fuel spray angle at realistic conditions is also possible. The results obtained in this study demonstrate the applicability and usefulness of these nonintrusive optical techniques for investigating fuel spray patternation under actual combustor conditions.

  11. Parameter estimation techniques for LTP system identification

    NASA Astrophysics Data System (ADS)

    Nofrarias Serra, Miquel

    LISA Pathfinder (LPF) is the precursor mission of LISA (Laser Interferometer Space Antenna) and the first step towards gravitational waves detection in space. The main instrument onboard the mission is the LTP (LISA Technology Package) whose scientific goal is to test LISA's drag-free control loop by reaching a differential acceleration noise level between two masses in √ geodesic motion of 3 × 10-14 ms-2 / Hz in the milliHertz band. The mission is not only challenging in terms of technology readiness but also in terms of data analysis. As with any gravitational wave detector, attaining the instrument performance goals will require an extensive noise hunting campaign to measure all contributions with high accuracy. But, opposite to on-ground experiments, LTP characterisation will be only possible by setting parameters via telecommands and getting a selected amount of information through the available telemetry downlink. These two conditions, high accuracy and high reliability, are the main restrictions that the LTP data analysis must overcome. A dedicated object oriented Matlab Toolbox (LTPDA) has been set up by the LTP analysis team for this purpose. Among the different toolbox methods, an essential part for the mission are the parameter estimation tools that will be used for system identification during operations: Linear Least Squares, Non-linear Least Squares and Monte Carlo Markov Chain methods have been implemented as LTPDA methods. The data analysis team has been testing those methods with a series of mock data exercises with the following objectives: to cross-check parameter estimation methods and compare the achievable accuracy for each of them, and to develop the best strategies to describe the physics underlying a complex controlled experiment as the LTP. In this contribution we describe how these methods were tested with simulated LTP-like data to recover the parameters of the model and we report on the latest results of these mock data exercises.

  12. Biometric Identification Using Holographic Radar Imaging Techniques

    SciTech Connect

    McMakin, Douglas L.; Sheen, David M.; Hall, Thomas E.; Kennedy, Mike O.; Foote, Harlan P.

    2007-04-01

    Pacific Northwest National Laboratory researchers have been at the forefront of developing innovative screening systems to enhance security and a novel imaging system to provide custom-fit clothing using holographic radar imaging techniques. First-of-a-kind cylindrical holographic imaging systems have been developed to screen people at security checkpoints for the detection of concealed, body worn, non-metallic threats such as plastic and liquid explosives, knifes and contraband. Another embodiment of this technology is capable of obtaining full sized body measurements in near real time without the person under surveillance removing their outer garments. Radar signals readily penetrate clothing and reflect off the water in skin. This full body measurement system is commercially available for best fitting ready to wear clothing, which was the first “biometric” application for this technology. One compelling feature of this technology for security biometric applications is that it can see effectively through disguises, appliances and body hair.

  13. Biometric identification using holographic radar imaging techniques

    NASA Astrophysics Data System (ADS)

    McMakin, Douglas L.; Sheen, David M.; Hall, Thomas E.; Kennedy, Mike O.; Foote, Harlen P.

    2007-04-01

    Pacific Northwest National Laboratory researchers have been at the forefront of developing innovative screening systems to enhance security and a novel imaging system to provide custom-fit clothing using holographic radar imaging techniques. First-of-a-kind cylindrical holographic imaging systems have been developed to screen people at security checkpoints for the detection of concealed, body worn, non-metallic threats such as plastic and liquid explosives, knifes and contraband. Another embodiment of this technology is capable of obtaining full sized body measurements in near real time without the person under surveillance removing their outer garments. Radar signals readily penetrate clothing and reflect off the water in skin. This full body measurement system is commercially available for best fitting ready to wear clothing, which was the first "biometric" application for this technology. One compelling feature of this technology for security biometric applications is that it can see effectively through disguises, appliances and body hair.

  14. Microbiological and molecular identification of bacterial species isolated from nasal and oropharyngeal mucosa of fuel workers in Riyadh, Saudi Arabia.

    PubMed

    AlWakeel, Suaad S

    2017-09-01

    This study aimed to determine the bacterial species colonizing the nasal and oropharyngeal mucosa of fuel workers in Central Riyadh, Saudi Arabia on a microbiological and molecular level. Throat and nasal swab samples were obtained from 29 fuel station attendants in the period of time extending from March to May 2014 in Riyadh, Saudi Arabia. Microbiological identification techniques were utilized to identify the bacterial species isolated. Antibiotic sensitivity was assessed for each of the bacterial isolates. Molecular identification techniques based on PCR analysis of specific genomic sequences was conducted and was the basis on which phylogeny representation was done for 10 randomly selected samples of the isolates. Blood was drawn and a complete blood count was conducted to note the hematological indices for each of the study participants. Nineteen bacterial species were isolated from both the nasal cavity and the oropharynx including Streptococcus thoraltensis, alpha-hemolytic streptococci, Staphylococcus hominis, coagulase-negative staphylococci, Leuconostoc mesenteroides, Erysipelothrix rhusiopathiae and several others. We found 100% sensitivity of the isolates to ciprofloxacin, cefuroxime and gentamicin. Whereas cefotaxime and azithromycin posted sensitivities of 85.7% and 91.4%, respectively. Low sensitivities (<60% sensitivity) to the antibiotics ampicillin, erythromycin, clarithromycin and norfloxacin were observed. Ninety-seven percent similarity to the microbial bank species was noted when the isolates were compared to it. Most hematological indices recorded were within the normal range. In conclusion, exposure to toxic fumes and compounds within fuel products may be a contributing factor to bacterial colonization of the respiratory tract in fuel workers.

  15. Identification of apolipoprotein using feature selection technique.

    PubMed

    Tang, Hua; Zou, Ping; Zhang, Chunmei; Chen, Rong; Chen, Wei; Lin, Hao

    2016-07-22

    Apolipoprotein is a kind of protein which can transport the lipids through the lymphatic and circulatory systems. The abnormal expression level of apolipoprotein always causes angiocardiopathy. Thus, correct recognition of apolipoprotein from proteomic data is very crucial to the comprehension of cardiovascular system and drug design. This study is to develop a computational model to predict apolipoproteins. In the model, the apolipoproteins and non-apolipoproteins were collected to form benchmark dataset. On the basis of the dataset, we extracted the g-gap dipeptide composition information from residue sequences to formulate protein samples. To exclude redundant information or noise, the analysis of various (ANOVA)-based feature selection technique was proposed to find out the best feature subset. The support vector machine (SVM) was selected as discrimination algorithm. Results show that 96.2% of sensitivity and 99.3% of specificity were achieved in five-fold cross-validation. These findings open new perspectives to improve apolipoproteins prediction by considering the specific dipeptides. We expect that these findings will help to improve drug development in anti-angiocardiopathy disease.

  16. Identification of apolipoprotein using feature selection technique

    PubMed Central

    Tang, Hua; Zou, Ping; Zhang, Chunmei; Chen, Rong; Chen, Wei; Lin, Hao

    2016-01-01

    Apolipoprotein is a kind of protein which can transport the lipids through the lymphatic and circulatory systems. The abnormal expression level of apolipoprotein always causes angiocardiopathy. Thus, correct recognition of apolipoprotein from proteomic data is very crucial to the comprehension of cardiovascular system and drug design. This study is to develop a computational model to predict apolipoproteins. In the model, the apolipoproteins and non-apolipoproteins were collected to form benchmark dataset. On the basis of the dataset, we extracted the g-gap dipeptide composition information from residue sequences to formulate protein samples. To exclude redundant information or noise, the analysis of various (ANOVA)-based feature selection technique was proposed to find out the best feature subset. The support vector machine (SVM) was selected as discrimination algorithm. Results show that 96.2% of sensitivity and 99.3% of specificity were achieved in five-fold cross-validation. These findings open new perspectives to improve apolipoproteins prediction by considering the specific dipeptides. We expect that these findings will help to improve drug development in anti-angiocardiopathy disease. PMID:27443605

  17. Deconvolution/identification techniques for 1-D transient signals

    SciTech Connect

    Goodman, D.M.

    1990-10-01

    This paper discusses a variety of nonparametric deconvolution and identification techniques that we have developed for application to 1-D transient signal problems. These methods are time-domain techniques that use direct methods for matrix inversion. Therefore, they are not appropriate for large data'' problems. These techniques involve various regularization methods and permit the use of certain kinds of a priori information in estimating the unknown. These techniques have been implemented in a package using standard FORTRAN that should make the package readily transportable to most computers. This paper is also meant to be an instruction manual for the package. 25 refs., 17 figs., 1 tab.

  18. Fuel Element Transfer Cask Modelling Using MCNP Technique

    SciTech Connect

    Darmawan, Rosli; Topah, Budiman Naim

    2010-01-05

    After operating for more than 25 years, some of the Reaktor TRIGA Puspati (RTP) fuel elements would have been depleted. A few addition and fuel reconfiguration exercises have to be conducted in order to maintain RTP capacity. Presently, RTP spent fuels are stored at the storage area inside RTP tank. The need to transfer the fuel element outside of RTP tank may be prevalence in the near future. The preparation shall be started from now. A fuel element transfer cask has been designed according to the recommendation by the fuel manufacturer and experience of other countries. A modelling using MCNP code has been conducted to analyse the design. The result shows that the design of transfer cask fuel element is safe for handling outside the RTP tank according to recent regulatory requirement.

  19. Fuel Element Transfer Cask Modelling Using MCNP Technique

    NASA Astrophysics Data System (ADS)

    Darmawan, Rosli; Topah, Budiman Naim

    2010-01-01

    After operating for more than 25 years, some of the Reaktor TRIGA Puspati (RTP) fuel elements would have been depleted. A few addition and fuel reconfiguration exercises have to be conducted in order to maintain RTP capacity. Presently, RTP spent fuels are stored at the storage area inside RTP tank. The need to transfer the fuel element outside of RTP tank may be prevalence in the near future. The preparation shall be started from now. A fuel element transfer cask has been designed according to the recommendation by the fuel manufacturer and experience of other countries. A modelling using MCNP code has been conducted to analyse the design. The result shows that the design of transfer cask fuel element is safe for handling outside the RTP tank according to recent regulatory requirement.

  20. Nitride Fuel Development Using Cryo-process Technique

    SciTech Connect

    O'Brien, Brandi M; Windes, William E

    2007-06-01

    A new cryo-process technique has been developed for the fabrication of advanced fuel for nuclear systems. The process uses a new cryo-processing technique whereby small, porous microspheres (<2000 µm) are formed from sub-micron oxide powder. A simple aqueous particle slurry of oxide powder is pumped through a microsphere generator consisting of a vibrating needle with controlled amplitude and frequency. As the water-based droplets are formed and pass through the microsphere generator they are frozen in a bath of liquid nitrogen and promptly vacuum freeze-dried to remove the water. The resulting porous microspheres consist of half micron sized oxide particles held together by electrostatic forces and mechanical interlocking of the particles. Oxide powder microspheres ranging from 750 µm to 2000 µm are then converted into a nitride form using a high temperature fluidized particle bed. Carbon black can be added to the oxide powder before microsphere formation to augment the carbothermic reaction during conversion to a nitride. Also, the addition of ethyl alcohol to the aqueous slurry reduces the surface tension energy of the droplets resulting in even smaller droplets forming in the microsphere generator. Initial results from this new process indicate a lower impurity contamination in the final nitrides due to the single feed stream of particles, material handling and conversion are greatly simplified, a minimum of waste and personnel exposure are anticipated, and finally the conversion kinetics may be greatly increased because of the small oxide powder size (sub-micron) forming the porous microsphere. Thus far the fabrication process has been successful in demonstrating all of these improvements with surrogate ZrO2 powder. Further tests will be conducted in the future using the technique on UO2 powders.

  1. New time-domain technique for flutter boundary identification

    NASA Technical Reports Server (NTRS)

    Pak, Chan-Gi; Friedmann, Peretz P.

    1992-01-01

    A new methodology for flutter boundary identification in the time domain is presented. This technique is based on a single-input single-output deterministic ARMA model and an on-line parameter estimation procedure. It is capable of simultaneous identification of the aeroelastic modal parameters as well as the static offset term which represents the static deformation or state of the aeroelastic system. The capabilities of the method are illustrated by applying it to several examples, such as: damped free oscillations, a two degree of freedom NACA 64A010 airfoil in transonic flight, and a cantilevered rectangular wing in subsonic flow. Numerical implementations of the new methodology developed in this study demonstrates that it is a cost effective time-domain technique for flutter boundary identification.

  2. Detection, identification, and quantification techniques for spills of hazardous chemicals

    NASA Technical Reports Server (NTRS)

    Washburn, J. F.; Sandness, G. A.

    1977-01-01

    The first 400 chemicals listed in the Coast Guard's Chemical Hazards Response Information System were evaluated with respect to their detectability, identifiability, and quantifiability by 12 generalized remote and in situ sensing techniques. Identification was also attempted for some key areas in water pollution sensing technology.

  3. Development of evaluation method for software hazard identification techniques

    SciTech Connect

    Huang, H. W.; Chen, M. H.; Shih, C.; Yih, S.; Kuo, C. T.; Wang, L. H.; Yu, Y. C.; Chen, C. W.

    2006-07-01

    This research evaluated the applicable software hazard identification techniques nowadays, such as, Preliminary Hazard Analysis (PHA), Failure Modes and Effects Analysis (FMEA), Fault Tree Analysis (FTA), Markov chain modeling, Dynamic Flow-graph Methodology (DFM), and simulation-based model analysis; and then determined indexes in view of their characteristics, which include dynamic capability, completeness, achievability, detail, signal/noise ratio, complexity, and implementation cost. By this proposed method, the analysts can evaluate various software hazard identification combinations for specific purpose. According to the case study results, the traditional PHA + FMEA + FTA (with failure rate) + Markov chain modeling (with transfer rate) combination is not competitive due to the dilemma for obtaining acceptable software failure rates. However, the systematic architecture of FTA and Markov chain modeling is still valuable for realizing the software fault structure. The system centric techniques, such as DFM and simulation-based model-analysis, show the advantage on dynamic capability, achievability, detail, signal/noise ratio. However, their disadvantages are the completeness complexity and implementation cost. This evaluation method can be a platform to reach common consensus for the stakeholders. Following the evolution of software hazard identification techniques, the evaluation results could be changed. However, the insight of software hazard identification techniques is much more important than the numbers obtained by the evaluation. (authors)

  4. An experimental modal testing/identification technique for personal computers

    NASA Technical Reports Server (NTRS)

    Roemer, Michael J.; Schlonski, Steven T.; Mook, D. Joseph

    1990-01-01

    A PC-based system for mode shape identification is evaluated. A time-domain modal identification procedure is utilized to identify the mode shapes of a beam apparatus from discrete time-domain measurements. The apparatus includes a cantilevered aluminum beam, four accelerometers, four low-pass filters, and the computer. The method's algorithm is comprised of an identification algorithm: the Eigensystem Realization Algorithm (ERA) and an estimation algorithm called Minimum Model Error (MME). The identification ability of this algorithm is compared with ERA alone, a frequency-response-function technique, and an Euler-Bernoulli beam model. Detection of modal parameters and mode shapes by the PC-based time-domain system is shown to be accurate in an application with an aluminum beam, while mode shapes identified by the frequency-domain technique are not as accurate as predicted. The new method is shown to be significantly less sensitive to noise and poorly excited modes than other leading methods. The results support the use of time-domain identification systems for mode shape prediction.

  5. Rapid identification of single microbes by various Raman spectroscopic techniques

    NASA Astrophysics Data System (ADS)

    Rösch, Petra; Harz, Michaela; Schmitt, Michael; Peschke, Klaus-Dieter; Ronneberger, Olaf; Burkhardt, Hans; Motzkus, Hans-Walter; Lankers, Markus; Hofer, Stefan; Thiele, Hans; Popp, Jürgen

    2006-02-01

    A fast and unambiguous identification of microorganisms is necessary not only for medical purposes but also in technical processes such as the production of pharmaceuticals. Conventional microbiological identification methods are based on the morphology and the ability of microbes to grow under different conditions on various cultivation media depending on their biochemical properties. These methods require pure cultures which need cultivation of at least 6 h but normally much longer. Recently also additional methods to identify bacteria are established e.g. mass spectroscopy, polymerase chain reaction (PCR), flow cytometry or fluorescence spectroscopy. Alternative approaches for the identification of microorganisms are vibrational spectroscopic techniques. With Raman spectroscopy a spectroscopic fingerprint of the microorganisms can be achieved. Using UV-resonance Raman spectroscopy (UVRR) macromolecules like DNA/RNA and proteins are resonantly enhanced. With an excitation wavelength of e.g. 244 nm it is possible to determine the ratio of guanine/cytosine to all DNA bases which allows a genotypic identification of microorganisms. The application of UVRR requires a large amount of microorganisms (> 10 6 cells) e.g. at least a micro colony. For the analysis of single cells micro-Raman spectroscopy with an excitation wavelength of 532 nm can be used. Here, the obtained information is from all type of molecules inside the cells which lead to a chemotaxonomic identification. In this contribution we show how wavelength dependent Raman spectroscopy yields significant molecular information applicable for the identification of microorganisms on a single cell level.

  6. Comparison of three advanced chromatographic techniques for cannabis identification.

    PubMed

    Debruyne, D; Albessard, F; Bigot, M C; Moulin, M

    1994-01-01

    The development of chromatography technology, with the increasing availability of easier-to-use mass spectrometers combined with gas chromatography (GC), the use of diode-array or programmable variable-wavelength ultraviolet absorption detectors in conjunction with high-performance liquid chromatography (HPLC), and the availability of scanners capable of reading thin-layer chromatography (TLC) plates in the ultraviolet and visible regions, has made for easier, quicker and more positive identification of cannabis samples that standard analytical laboratories are occasionally required to undertake in the effort to combat drug addiction. At laboratories that do not possess the technique of GC combined with mass spectrometry, which provides an irrefutable identification, the following procedure involving HPLC or TLC techniques may be used: identification of the chromatographic peaks corresponding to each of the three main cannabis constituents-cannabidiol (CBD), delta-9-tetrahydrocannabinol (delta-9-THC) and cannabinol (CBN)-by comparison with published data in conjunction with a specific absorption spectrum for each of those constituents obtained between 200 and 300 nm. The collection of the fractions corresponding to the three major cannabinoids at the HPLC system outlet and the cross-checking of their identity in the GC process with flame ionization detection can further corroborate the identification and minimize possible errors due to interference.

  7. Technique for examining the fuel/cladding interface by TEM. [LMFBR

    SciTech Connect

    Yang, W.J.S.; Makenas, B.J.; Thomas, L.E.

    1983-05-01

    Fuel and fission-product interactions with the fuel-pin cladding is an area of concern and has been evaluated in the past principally by in-cell optical metallographic and electron-microprobe examinations. The applicability of three techniques for preparing specimens to reveal the microstructural details and local microchemistry of the fuel/cladding interface under conditions of high-resolution-scanning transmission-electron microscopy has been investigated. The specimen preparation techniques were designed to preserve the fuel/cladding interface and provide and maintain a specimen surface free from smearable alpha contamination. One of the techniques, Ni plating of a fuel cladding sample, preserved the entire cladding cross-section for examination. An Fe-oxide layer on the cladding inner surface was found in specimens prepared by this method. All three techniques of specimen preparation are described in some detail, along with their advantages and disadvantages.

  8. Application of nondestructive gamma-ray and neutron techniques for the safeguarding of irradiated fuel materials

    SciTech Connect

    Phillips, J.R.; Halbig, J.K.; Lee, D.M.; Beach, S.E.; Bement, T.R.; Dermendjiev, E.; Hatcher, C.R.; Kaieda, K.; Medina, E.G.

    1980-05-01

    Nondestructive gamma-ray and neutron techniques were used to characterize the irradiation exposures of irradiated fuel assemblies. Techniques for the rapid measurement of the axial-activity profiles of fuel assemblies have been developed using ion chambers and Be(..gamma..,n) detectors. Detailed measurements using high-resolution gamma-ray spectrometry and passive neutron techniques were correlated with operator-declared values of cooling times and burnup.

  9. Identification of fuel cycle simulator functionalities for analysis of transition to a new fuel cycle

    DOE PAGES

    Brown, Nicholas R.; Carlsen, Brett W.; Dixon, Brent W.; ...

    2016-06-09

    Dynamic fuel cycle simulation tools are intended to model holistic transient nuclear fuel cycle scenarios. As with all simulation tools, fuel cycle simulators require verification through unit tests, benchmark cases, and integral tests. Model validation is a vital aspect as well. Although compara-tive studies have been performed, there is no comprehensive unit test and benchmark library for fuel cycle simulator tools. The objective of this paper is to identify the must test functionalities of a fuel cycle simulator tool within the context of specific problems of interest to the Fuel Cycle Options Campaign within the U.S. Department of Energy smore » Office of Nuclear Energy. The approach in this paper identifies the features needed to cover the range of promising fuel cycle options identified in the DOE-NE Fuel Cycle Evaluation and Screening (E&S) and categorizes these features to facilitate prioritization. Features were categorized as essential functions, integrating features, and exemplary capabilities. One objective of this paper is to propose a library of unit tests applicable to each of the essential functions. Another underlying motivation for this paper is to encourage an international dialog on the functionalities and standard test methods for fuel cycle simulator tools.« less

  10. Identification of fuel cycle simulator functionalities for analysis of transition to a new fuel cycle

    SciTech Connect

    Brown, Nicholas R.; Carlsen, Brett W.; Dixon, Brent W.; Feng, Bo; Greenberg, Harris R.; Hays, Ross D.; Passerini, Stefano; Todosow, Michael; Worrall, Andrew

    2016-06-09

    Dynamic fuel cycle simulation tools are intended to model holistic transient nuclear fuel cycle scenarios. As with all simulation tools, fuel cycle simulators require verification through unit tests, benchmark cases, and integral tests. Model validation is a vital aspect as well. Although compara-tive studies have been performed, there is no comprehensive unit test and benchmark library for fuel cycle simulator tools. The objective of this paper is to identify the must test functionalities of a fuel cycle simulator tool within the context of specific problems of interest to the Fuel Cycle Options Campaign within the U.S. Department of Energy s Office of Nuclear Energy. The approach in this paper identifies the features needed to cover the range of promising fuel cycle options identified in the DOE-NE Fuel Cycle Evaluation and Screening (E&S) and categorizes these features to facilitate prioritization. Features were categorized as essential functions, integrating features, and exemplary capabilities. One objective of this paper is to propose a library of unit tests applicable to each of the essential functions. Another underlying motivation for this paper is to encourage an international dialog on the functionalities and standard test methods for fuel cycle simulator tools.

  11. Identification of fuel cycle simulator functionalities for analysis of transition to a new fuel cycle

    SciTech Connect

    Brown, Nicholas R.; Carlsen, Brett W.; Dixon, Brent W.; Feng, Bo; Greenberg, Harris R.; Hays, Ross D.; Passerini, Stefano; Todosow, Michael; Worrall, Andrew

    2016-06-09

    Dynamic fuel cycle simulation tools are intended to model holistic transient nuclear fuel cycle scenarios. As with all simulation tools, fuel cycle simulators require verification through unit tests, benchmark cases, and integral tests. Model validation is a vital aspect as well. Although compara-tive studies have been performed, there is no comprehensive unit test and benchmark library for fuel cycle simulator tools. The objective of this paper is to identify the must test functionalities of a fuel cycle simulator tool within the context of specific problems of interest to the Fuel Cycle Options Campaign within the U.S. Department of Energy s Office of Nuclear Energy. The approach in this paper identifies the features needed to cover the range of promising fuel cycle options identified in the DOE-NE Fuel Cycle Evaluation and Screening (E&S) and categorizes these features to facilitate prioritization. Features were categorized as essential functions, integrating features, and exemplary capabilities. One objective of this paper is to propose a library of unit tests applicable to each of the essential functions. Another underlying motivation for this paper is to encourage an international dialog on the functionalities and standard test methods for fuel cycle simulator tools.

  12. A novel analytical technique suitable for the identification of plastics.

    PubMed

    Nečemer, Marijan; Kump, Peter; Sket, Primož; Plavec, Janez; Grdadolnik, Jože; Zvanut, Maja

    2013-01-01

    The enormous development and production of plastic materials in the last century resulted in increasing numbers of such kinds of objects. Development of a simple and fast technique to classify different types of plastics could be used in many activities dealing with plastic materials such as packaging of food, sorting of used plastic materials, and also, if technique would be non-destructive, for conservation of plastic artifacts in museum collections, a relatively new field of interest since 1990. In our previous paper we introduced a non-destructive technique for fast identification of unknown plastics based on EDXRF spectrometry,1 using as a case study some plastic artifacts archived in the Museum in order to show the advantages of the nondestructive identification of plastic material. In order to validate our technique it was necessary to apply for this purpose the comparison of analyses with some of the analytical techniques, which are more suitable and so far rather widely applied in identifying some most common sorts of plastic materials.

  13. Development of Techniques for Spent Fuel Assay – Differential Dieaway Final Report

    SciTech Connect

    Swinhoe, Martyn Thomas; Goodsell, Alison; Ianakiev, Kiril Dimitrov; Iliev, Metodi; Desimone, David J.; Rael, Carlos D.; Henzl, Vladimir; Polk, Paul John

    2016-07-28

    This report summarizes the work done under a DNDO R&D funded project on the development of the differential dieaway method to measure plutonium in spent fuel. There are large amounts of plutonium that are contained in spent fuel assemblies, and currently there is no way to make quantitative non-destructive assay. This has led NA24 under the Next Generation Safeguards Initiative (NGSI) to establish a multi-year program to investigate, develop and implement measurement techniques for spent fuel. The techniques which are being experimentally tested by the existing NGSI project do not include any pulsed neutron active techniques. The present work covers the active neutron differential dieaway technique and has advanced the state of knowledge of this technique as well as produced a design for a practical active neutron interrogation instrument for spent fuel. Monte Carlo results from the NGSI effort show that much higher accuracy (1-2%) for the Pu content in spent fuel assemblies can be obtained with active neutron interrogation techniques than passive techniques, and this would allow their use for nuclear material accountancy independently of any information from the operator. The main purpose of this work was to develop an active neutron interrogation technique for spent nuclear fuel.

  14. A Technique for Evaluating Fuel and Hydraulic Fluid Ballistic Vulnerability

    DTIC Science & Technology

    1977-12-01

    only. III. BALLISTIC FACILITIES The experimental ballistic range had four major sections: a 20-mm Mann rifle assembly; a projectile velocity-measuritig...clad, sand-filled wall. The 20- mm Mann rifle assembly was located under an open shed. The rifle barrel was mounted in a rigid universal cradle. All...Weatherford, W.D., Jr., and Schaekel, F.W., "U.S. Army Helicopter Modified Fuel Development Program-Review of Emulsified and Gelled Fuel Studies," U.S

  15. Stalked protozoa identification by image analysis and multivariable statistical techniques.

    PubMed

    Amaral, A L; Ginoris, Y P; Nicolau, A; Coelho, M A Z; Ferreira, E C

    2008-06-01

    Protozoa are considered good indicators of the treatment quality in activated sludge systems as they are sensitive to physical, chemical and operational processes. Therefore, it is possible to correlate the predominance of certain species or groups and several operational parameters of the plant. This work presents a semiautomatic image analysis procedure for the recognition of the stalked protozoa species most frequently found in wastewater treatment plants by determining the geometrical, morphological and signature data and subsequent processing by discriminant analysis and neural network techniques. Geometrical descriptors were found to be responsible for the best identification ability and the identification of the crucial Opercularia and Vorticella microstoma microorganisms provided some degree of confidence to establish their presence in wastewater treatment plants.

  16. Analytical Techniques for Aromatic Components in Aircraft Fuels.

    DTIC Science & Technology

    1979-10-01

    IN AIRCRAFT FUELS J . Scott Warner Richard P. Kenan Battelle Columbus Laboratories 505 King Avenue Columbus, Ohio 43201 DTIC October 1979 ELECTE JUL...1979. Dr. J . Scott Warner, Battelle’s Columbus Laboratories, was the Principal Investigator for the program and had the primary responsibility for

  17. Robotic Spent Fuel Monitoring – It is time to improve old approaches and old techniques!

    SciTech Connect

    Tobin, Stephen Joseph; Dasari, Venkateswara Rao; Trellue, Holly Renee

    2016-12-13

    This report describes various approaches and techniques associated with robotic spent fuel monitoring. The purpose of this description is to improve the quality of measured signatures, reduce the inspection burden on the IAEA, and to provide frequent verification.

  18. A technique to measure fuel oil viscosity in a fuel power plant.

    PubMed

    Delgadillo, Miguel Angel; Ibargüengoytia, Pablo H; García, Uriel A

    2016-01-01

    The viscosity measurement and control of fuel oil in power plants is very important for a proper combustion. However, the conventional viscometers are only reliable for a short period of time. This paper proposes an on-line analytic viscosity evaluation based on energy balance applied to a piece of tube entering the fuel oil main heater and a new control strategy for temperature control. This analytic evaluation utilizes a set of temperature versus viscosity graphs were defined during years of analysis of fuel oil in Mexican power plants. Also the temperature set-point for the fuel oil main heater output is obtained by interpolating in the corresponding graph. Validation tests of the proposed analytic equations were carried out in the Tuxpan power plant in Veracruz, Mexico.

  19. Applications of photoacoustic techniques to the study of jet fuel residue

    NASA Technical Reports Server (NTRS)

    Claspy, P. C.

    1983-01-01

    It has been known for many years that fuels for jet aircraft engines demonstrate thermal instability. One manifestation of this thermal instability is the formation of deleterious fuel-derived thermally-induced deposits on surfaces of the aircraft's fuel-handling system. The results of an investigation of the feasibility of applying photoacoustic techniques to the study of the physical properties of these thermal deposits are presented. Both phase imaging and magnitude imaging and spectroscopy were investigated. It is concluded that the use of photoacoustic techniques in the study of films of the type encountered in this investigation is not practical.

  20. Low power proton exchange membrane fuel cell system identification and adaptive control

    NASA Astrophysics Data System (ADS)

    Yang, Yee-Pien; Wang, Fu-Cheng; Chang, Hsin-Ping; Ma, Ying-Wei; Weng, Biing-Jyh

    This paper proposes a systematic method of system identification and control of a proton exchange membrane (PEM) fuel cell. This fuel cell can be used for low-power communication devices involving complex electrochemical reactions of nonlinear and time-varying dynamic properties. From a system point of view, the dynamic model of PEM fuel cell is reduced to a configuration of two inputs, hydrogen and air flow rates, and two outputs, cell voltage and current. The corresponding transfer functions describe linearized subsystem dynamics with finite orders and time-varying parameters, which are expressed as discrete-time auto-regression moving-average with auxiliary input models for system identification by the recursive least square algorithm. In the experiments, a pseudo-random binary sequence of hydrogen or air flow rate is fed to a single fuel cell device to excite its dynamics. By measuring the corresponding output signals, each subsystem transfer function of reduced order is identified, while the unmodeled, higher-order dynamics and disturbances are described by the auxiliary input term. This provides a basis of adaptive control strategy to improve the fuel cell performance in terms of efficiency, as well as transient and steady state specifications. Simulation shows that adaptive controller is robust to the variation of fuel cell system dynamics, and it has proved promising from the experimental results.

  1. Automated Coronal Loop Identification Using Digital Image Processing Techniques

    NASA Technical Reports Server (NTRS)

    Lee, Jong K.; Gary, G. Allen; Newman, Timothy S.

    2003-01-01

    The results of a master thesis project on a study of computer algorithms for automatic identification of optical-thin, 3-dimensional solar coronal loop centers from extreme ultraviolet and X-ray 2-dimensional images will be presented. These center splines are proxies of associated magnetic field lines. The project is pattern recognition problems in which there are no unique shapes or edges and in which photon and detector noise heavily influence the images. The study explores extraction techniques using: (1) linear feature recognition of local patterns (related to the inertia-tensor concept), (2) parametric space via the Hough transform, and (3) topological adaptive contours (snakes) that constrains curvature and continuity as possible candidates for digital loop detection schemes. We have developed synthesized images for the coronal loops to test the various loop identification algorithms. Since the topology of these solar features is dominated by the magnetic field structure, a first-order magnetic field approximation using multiple dipoles provides a priori information in the identification process. Results from both synthesized and solar images will be presented.

  2. Automated Coronal Loop Identification Using Digital Image Processing Techniques

    NASA Technical Reports Server (NTRS)

    Lee, Jong K.; Gary, G. Allen; Newman, Timothy S.

    2003-01-01

    The results of a master thesis project on a study of computer algorithms for automatic identification of optical-thin, 3-dimensional solar coronal loop centers from extreme ultraviolet and X-ray 2-dimensional images will be presented. These center splines are proxies of associated magnetic field lines. The project is pattern recognition problems in which there are no unique shapes or edges and in which photon and detector noise heavily influence the images. The study explores extraction techniques using: (1) linear feature recognition of local patterns (related to the inertia-tensor concept), (2) parametric space via the Hough transform, and (3) topological adaptive contours (snakes) that constrains curvature and continuity as possible candidates for digital loop detection schemes. We have developed synthesized images for the coronal loops to test the various loop identification algorithms. Since the topology of these solar features is dominated by the magnetic field structure, a first-order magnetic field approximation using multiple dipoles provides a priori information in the identification process. Results from both synthesized and solar images will be presented.

  3. Line identification studies using traditional techniques and wavelength coincidence statistics

    NASA Technical Reports Server (NTRS)

    Cowley, Charles R.; Adelman, Saul J.

    1990-01-01

    Traditional line identification techniques result in the assignment of individual lines to an atomic or ionic species. These methods may be supplemented by wavelength coincidence statistics (WCS). The strength and weakness of these methods are discussed using spectra of a number of normal and peculiar B and A stars that have been studied independently by both methods. The present results support the overall findings of some earlier studies. WCS would be most useful in a first survey, before traditional methods have been applied. WCS can quickly make a global search for all species and in this way may enable identifications of an unexpected spectrum that could easily be omitted entirely from a traditional study. This is illustrated by O I. WCS is a subject to well known weakness of any statistical technique, for example, a predictable number of spurious results are to be expected. The danger of small number statistics are illustrated. WCS is at its best relative to traditional methods in finding a line-rich atomic species that is only weakly present in a complicated stellar spectrum.

  4. Reliability of Identification of Behavior Change Techniques in Intervention Descriptions.

    PubMed

    Abraham, Charles; Wood, Caroline E; Johnston, Marie; Francis, Jill; Hardeman, Wendy; Richardson, Michelle; Michie, Susan

    2015-12-01

    The aim of this paper is to assess the frequency of identification as well as the inter-coder and test-retest reliability of identification of behavior change techniques (BCTs) in written intervention descriptions. Forty trained coders applied the "Behavior Change Technique Taxonomy version 1" (BCTTv1) to 40 intervention descriptions published in protocols and repeated this 1 month later. Eighty of 93 defined BCTs were identified by at least one trained coder, and 22 BCTs were identified in 16 (40 %) or more of 40 descriptions. Good inter-coder reliability was observed across 80 BCTs identified in the protocols: 66 (80 %) achieved mean prevalence and bias-adjusted kappa (PABAK) scores of 0.70 or greater, and 59 (74 %) achieved mean scores of 0.80 or greater. There was good within-coder agreement between baseline and 1 month, demonstrating good test-retest reliability. BCTTv1 can be used by trained coders to identify BCTs in intervention descriptions reliably. However, some frequently occurring BCT definitions require further clarification.

  5. A robust approach to battery fuel gauging, part I: Real time model identification

    NASA Astrophysics Data System (ADS)

    Balasingam, B.; Avvari, G. V.; Pattipati, B.; Pattipati, K. R.; Bar-Shalom, Y.

    2014-12-01

    In this paper, the first of a series of papers on battery fuel gauge (BFG), we present a real time parameter estimation strategy for robust state of charge (SOC) tracking. The proposed parameter estimation scheme has the following novel features: it models hysteresis as an error in the open circuit voltage (OCV) and employs a combination of real time, linear parameter estimation and SOC tracking technique to compensate for it. This obviates the need for modeling of hysteresis as a function of SOC and load current. We identify the presence of correlated noise that has been so far ignored in the literature and use it to enhance the accuracy of model identification. As a departure from the conventional "one model fits all" strategy, we identify four different equivalent models of the battery that represent four modes of typical battery operation and develop the framework for seamless SOC tracking by switching. The proposed parameter approach enables a robust initialization/re-initialization strategy for continuous operation of the BFG. The performance of the online parameter estimation scheme was first evaluated through simulated data. Then, the proposed algorithm was validated using hardware-in-the-loop (HIL) data collected from commercially available Li-ion batteries.

  6. Antimisting Kerosene: Base Fuel Effects; Blending and Quality Control Techniques.

    DTIC Science & Technology

    1984-01-01

    composition aromatics, vol % max 20* 20* sulfur , wt% max 0.3 0.3 volatility dist. j 10% rec’d 204 temp. 50% rec’d 188 max * C end pt 300 flash pt, 0 C...34 *, , - - a,’% Table 4. EXXON* JET A FUEL SPECIFICATIONS ANALYSIS Aromatics, % volume 19 S-’ Mercaptan sulfur , % weight 0.0003 Sulfur , % total weight...1319 Napthalenes , vol. % 1.6 2.7 2.1 D 184U Distillation, 0 F D 86 Initial B.P. 340 342 325 5% 369 368 350 10 377 374 360 20 388 386 370 30 399 398

  7. Effective techniques for the identification and accommodation of disturbances

    NASA Technical Reports Server (NTRS)

    Johnson, C. D.

    1989-01-01

    The successful control of dynamic systems such as space stations, or launch vehicles, requires a controller design methodology that acknowledges and addresses the disruptive effects caused by external and internal disturbances that inevitably act on such systems. These disturbances, technically defined as uncontrollable inputs, typically vary with time in an uncertain manner and usually cannot be directly measured in real time. A relatively new non-statistical technique for modeling, and (on-line) identification, of those complex uncertain disturbances that are not as erratic and capricious as random noise is described. This technique applies to multi-input cases and to many of the practical disturbances associated with the control of space stations, or launch vehicles. Then, a collection of smart controller design techniques that allow controlled dynamic systems, with possible multi-input controls, to accommodate (cope with) such disturbances with extraordinary effectiveness are associated. These new smart controllers are designed by non-statistical techniques and typically turn out to be unconventional forms of dynamic linear controllers (compensators) with constant coefficients. The simplicity and reliability of linear, constant coefficient controllers is well-known in the aerospace field.

  8. Measurement techniques in dry-powdered processing of spent nuclear fuels.

    SciTech Connect

    Bowers, D. L.; Hong, J.-S.; Kim, H.-D.; Persiani, P. J.; Wolf, S. F.

    1999-07-21

    High-performance liquid chromatography (HPLC) with inductively coupled plasma mass spectrometry (ICPMS) detection, {alpha}-spectrometry ({alpha}-S), and {gamma}-spectrometry ({gamma}-S) were used for the determination of nuclide content in five samples excised from a high-burnup fuel rod taken from a pressurized water reactor (PWR). The samples were prepared for analysis by dissolution of dry-powdered samples. The measurement techniques required no separation of the plutonium, uranium, and fission products. The sample preparation and analysis techniques showed promise for in-line analysis of highly-irradiated spent fuels in a dry-powdered process. The analytical results allowed the determination of fuel burnup based on {sup 148}Nd, Pu, and U content. A goal of this effort is to develop the HPLC-ICPMS method for direct fissile material accountancy in the dry-powdered processing of spent nuclear fuel.

  9. Techniques for cutting irradiated fuel ducts at the FFTF/IEM cell

    SciTech Connect

    Payzant, W.H.

    1990-01-01

    The interim examination and maintenance (IEM) cell at the Fast Flux Test Facility (FFTF) contains horizontal and vertical duct cutters for remote disassembly of irradiated fuel assemblies. During the 7 yr of use, cutters have been used to disassemble 18 fuel assemblies. At first, cutting problems were common, but their frequency diminished as experience was gained and equipment upgrades were incorporated. Techniques have been developed to the point that cutting is becoming routine.

  10. Techniques for cutting irradiated fuel ducts at FFTF/IEM cell

    SciTech Connect

    Payzant, W.H.

    1990-09-01

    Two remotely controlled mill-type cutters have been used in the Fast Flux Test Facility Interim Examination and Maintenance Cell to assist in the disassembly of 18 fuel assemblies. These cutters slit the outer duct of the fuel assemblies, which allows the ducts to be removed and provides access to the encased fuel pins. The cutters were developed by Westinghouse Hanford Company and thoroughly tested by cutting prototypic ducts. During actual use, however, occasional loss of cutting depth control occurred. A discussion of the control problems and the operation and design techniques developed for their resolution is presented. 3 refs., 7 figs.

  11. Chemical Detection and Identification Techniques for Exobiology Flight Experiments

    NASA Technical Reports Server (NTRS)

    Kojiro, Daniel R.; Sheverev, Valery A.; Khromov, Nikolai A.

    2002-01-01

    Exobiology flight experiments require highly sensitive instrumentation for in situ analysis of the volatile chemical species that occur in the atmospheres and surfaces of various bodies within the solar system. The complex mixtures encountered place a heavy burden on the analytical Instrumentation to detect and identify all species present. The minimal resources available onboard for such missions mandate that the instruments provide maximum analytical capabilities with minimal requirements of volume, weight and consumables. Advances in technology may be achieved by increasing the amount of information acquired by a given technique with greater analytical capabilities and miniaturization of proven terrestrial technology. We describe here methods to develop analytical instruments for the detection and identification of a wide range of chemical species using Gas Chromatography. These efforts to expand the analytical capabilities of GC technology are focused on the development of detectors for the GC which provide sample identification independent of the GC retention time data. A novel new approach employs Penning Ionization Electron Spectroscopy (PIES).

  12. Development of Hot Pressing as a Low Cost Processing Technique for Fuel Cell Fabrication

    SciTech Connect

    Sarin, V

    2003-01-14

    Dependable, plentiful, and economical energy has been the driving force for financial, industrial, and political growth in the US since the mid 19th century. For a country whose progress is so deeply rooted in abundant energy and whose current political agenda involves stabilizing world fossil fuel prices, the development of a reliable, efficient and environmentally friendly power generating source seems compulsory. The maturing of high technology fuel cells may be the panacea the country will find indispensable to free itself from foreign dependence. Fuel cells offer an efficient, combustion-less, virtually pollution-free power source, capable of being sited in downtown urban areas or in remote regions. Fuel cells have few moving parts and run almost silently. Fuel cells are electrochemical devices that convert the chemical energy of a fuel directly to electrical energy. Unlike batteries, which store a finite amount of energy, fuel cells will generate electricity continuously, as long as fuel and oxidant are available to the electrodes. Additionally, fuel cells offer clean, efficient, and reliable power and they can be operated using a variety of fuels. Hence, the fuel cell is an extremely promising technology. Over the course of this research, the fundamental knowledge related to ceramic processing, sintering, and hot pressing to successfully hot press a single operational SOFC in one step has been developed. Ceramic powder processing for each of the components of an SOFC has bene tailored towards this goal. Processing parameter for the electrolyte and cathode have been studied and developed until they converted. Several anode fabrication techniques have been developed. Additionally, a novel anode structured has been developed and refined. These individual processes have been cultivated until a single cell SOFC has been fabricated in one step.

  13. The development of two-dimensional object identification techniques

    NASA Technical Reports Server (NTRS)

    Lebby, Gary; Sherrod, Earnest E.

    1989-01-01

    This report marks the end of the first year of an anticipated three year effort to study methods for numerically identifying objects according to shape in two dimensions. The method is based upon comparing the unit gradient of an observed object and the unit gradient of a standard object over a specified range of points. The manner in which the gradients are compared forms the basis of a shape recognition scheme, which is then applied to simple closed plane figures. The gradient based method is calibrated by using various distorted objects in comparison with a set of standard reference objects. The use of pattern recognition techniques for computer identification of two-dimensional figures will be investigated during the second and third years of this project.

  14. Phenomena Identification and Ranking Technique (PIRT) Panel Meeting Summary Report

    SciTech Connect

    Mark Holbrook

    2007-07-01

    Phenomena Identification and Ranking Technique (PIRT) is a systematic way of gathering information from experts on a specific subject and ranking the importance of the information. NRC, in collaboration with DOE and the working group, conducted the PIRT exercises to identify safety-relevant phenomena for NGNP, and to assess and rank the importance and knowledge base for each phenomenon. The overall objective was to provide NRC with an expert assessment of the safety-relevant NGNP phenomena, and an overall assessment of R and D needs for NGNP licensing. The PIRT process was applied to five major topical areas relevant to NGNP safety and licensing: (1) thermofluids and accident analysis (including neutronics), (2) fission product transport, (3) high temperature materials, (4) graphite, and (5) process heat for hydrogen cogeneration.

  15. An anatomical and photographic technique for forensic facial identification.

    PubMed

    Porter, G; Doran, G

    2000-11-13

    The increase in the use of photographs on individual identification credentials such as driving licences, credit cards, security passes and passports has led, for the purpose of criminal activities, to the falsification of genuine documents bearing photographs of the perpetrating criminal. These photographs may be used as valuable physical evidence when compared with known photographs of a suspect as they form somewhat of a signature of the suspect that is left behind on the evidence. The comparison of ID photographs requires the cooperation of two predominantly visual disciplines; forensic photography and morphological anatomy. This paper describes a photographic technique which allows accurate anatomical measurement and tracing of facial features, which allows direct physical comparison of ID document images.

  16. System identification and model reduction using modulating function techniques

    NASA Technical Reports Server (NTRS)

    Shen, Yan

    1993-01-01

    Weighted least squares (WLS) and adaptive weighted least squares (AWLS) algorithms are initiated for continuous-time system identification using Fourier type modulating function techniques. Two stochastic signal models are examined using the mean square properties of the stochastic calculus: an equation error signal model with white noise residuals, and a more realistic white measurement noise signal model. The covariance matrices in each model are shown to be banded and sparse, and a joint likelihood cost function is developed which links the real and imaginary parts of the modulated quantities. The superior performance of above algorithms is demonstrated by comparing them with the LS/MFT and popular predicting error method (PEM) through 200 Monte Carlo simulations. A model reduction problem is formulated with the AWLS/MFT algorithm, and comparisons are made via six examples with a variety of model reduction techniques, including the well-known balanced realization method. Here the AWLS/MFT algorithm manifests higher accuracy in almost all cases, and exhibits its unique flexibility and versatility. Armed with this model reduction, the AWLS/MFT algorithm is extended into MIMO transfer function system identification problems. The impact due to the discrepancy in bandwidths and gains among subsystem is explored through five examples. Finally, as a comprehensive application, the stability derivatives of the longitudinal and lateral dynamics of an F-18 aircraft are identified using physical flight data provided by NASA. A pole-constrained SIMO and MIMO AWLS/MFT algorithm is devised and analyzed. Monte Carlo simulations illustrate its high-noise rejecting properties. Utilizing the flight data, comparisons among different MFT algorithms are tabulated and the AWLS is found to be strongly favored in almost all facets.

  17. Expert system for identification of simultaneous and sequential reactor fuel failures with gas tagging

    DOEpatents

    Gross, K.C.

    1994-07-26

    Failure of a fuel element in a nuclear reactor core is determined by a gas tagging failure detection system and method. Failures are catalogued and characterized after the event so that samples of the reactor's cover gas are taken at regular intervals and analyzed by mass spectroscopy. Employing a first set of systematic heuristic rules which are applied in a transformed node space allows the number of node combinations which must be processed within a barycentric algorithm to be substantially reduced. A second set of heuristic rules treats the tag nodes of the most recent one or two leakers as background'' gases, further reducing the number of trial node combinations. Lastly, a fuzzy'' set theory formalism minimizes experimental uncertainties in the identification of the most likely volumes of tag gases. This approach allows for the identification of virtually any number of sequential leaks and up to five simultaneous gas leaks from fuel elements. 14 figs.

  18. Expert system for identification of simultaneous and sequential reactor fuel failures with gas tagging

    DOEpatents

    Gross, Kenny C.

    1994-01-01

    Failure of a fuel element in a nuclear reactor core is determined by a gas tagging failure detection system and method. Failures are catalogued and characterized after the event so that samples of the reactor's cover gas are taken at regular intervals and analyzed by mass spectroscopy. Employing a first set of systematic heuristic rules which are applied in a transformed node space allows the number of node combinations which must be processed within a barycentric algorithm to be substantially reduced. A second set of heuristic rules treats the tag nodes of the most recent one or two leakers as "background" gases, further reducing the number of trial node combinations. Lastly, a "fuzzy" set theory formalism minimizes experimental uncertainties in the identification of the most likely volumes of tag gases. This approach allows for the identification of virtually any number of sequential leaks and up to five simultaneous gas leaks from fuel elements.

  19. Nondestructive techniques for assaying fuel debris in piping at Three Mile Island Unit 2

    SciTech Connect

    Vinjamuri, K.; McIsaac, C.V.; Beller, L.S.; Isaacson, L.; Mandler, J.W.; Hobbins, R.R. Jr.

    1981-11-01

    Four major categories of nondestructive techniques - ultrasonic, passive gamma ray, infrared detection, and remote video examination - have been determined to be feasible for assaying fuel debris in the primary coolant system of the Three Mile Island Unit 2 (TMI-2) Reactor. Passive gamma ray detection is the most suitable technique for the TMI-2 piping; however, further development of this technique is needed for specific application to TMI-2.

  20. Automated Coronal Loop Identification using Digital Image Processing Techniques

    NASA Astrophysics Data System (ADS)

    Lee, J. K.; Gary, G. A.; Newman, T. S.

    2003-05-01

    The results of a Master's thesis study of computer algorithms for automatic extraction and identification (i.e., collectively, "detection") of optically-thin, 3-dimensional, (solar) coronal-loop center "lines" from extreme ultraviolet and X-ray 2-dimensional images will be presented. The center lines, which can be considered to be splines, are proxies of magnetic field lines. Detecting the loops is challenging because there are no unique shapes, the loop edges are often indistinct, and because photon and detector noise heavily influence the images. Three techniques for detecting the projected magnetic field lines have been considered and will be described in the presentation. The three techniques used are (i) linear feature recognition of local patterns (related to the inertia-tensor concept), (ii) parametric space inferences via the Hough transform, and (iii) topological adaptive contours (snakes) that constrain curvature and continuity. Since coronal loop topology is dominated by the magnetic field structure, a first-order magnetic field approximation using multiple dipoles provides a priori information that has also been incorporated into the detection process. Synthesized images have been generated to benchmark the suitability of the three techniques, and the performance of the three techniques on both synthesized and solar images will be presented and numerically evaluated in the presentation. The process of automatic detection of coronal loops is important in the reconstruction of the coronal magnetic field where the derived magnetic field lines provide a boundary condition for magnetic models ( cf. , Gary (2001, Solar Phys., 203, 71) and Wiegelmann & Neukirch (2002, Solar Phys., 208, 233)). . This work was supported by NASA's Office of Space Science - Solar and Heliospheric Physics Supporting Research and Technology Program.

  1. A Second Look at Neutron Resonance Transmission Analysis as a Spent Fuel NDA Technique

    SciTech Connect

    James W .Sterbentz; David L. Chichester

    2011-07-01

    Many different nondestructive analysis techniques are currently being investigated as a part of the United States Department of Energy's Next Generation Safeguards Initiative (NGSI) seeking methods to quantify plutonium in spent fuel. Neutron Resonance Transmission Analysis (NRTA) is one of these techniques. Having first been explored in the mid-1970s for the analysis of individual spent-fuel pins a second look, using advanced simulation and modeling methods, is now underway to investigate the suitability of the NRTA technique for assaying complete spent nuclear fuel assemblies. The technique is similar to neutron time-of-flight methods used for cross-section determinations but operates over only the narrow 0.1-20 eV range where strong, distinguishable resonances exist for both the plutonium (239, 240, 241,242Pu) and uranium (235,236,238U) isotopes of interest in spent fuel. Additionally, in this energy range resonances exists for six important fission products (99Tc, 103Rh, 131Xe, 133Cs, 145Nd, and 152Sm) which provide additional information to support spent fuel plutonium assay determinations. Initial modeling shows excellent agreement with previously published experimental data for measurements of individual spent-fuel pins where plutonium assays were demonstrated to have a precision of 2-4%. Within the simulation and modeling analyses of this project scoping studies have explored fourteen different aspects of the technique including the neutron source, drift tube configurations, and gross neutron transmission as well as the impacts of fuel burn up, cooling time, and fission-product interferences. These results show that NRTA may be a very capable experimental technique for spent-fuel assay measurements. The results suggest sufficient transmission strength and signal differentiability is possible for assays through up to 8 pins. For an 8-pin assay (looking at an assembly diagonally), 64% of the pins in a typical 17 ? 17 array of a pressurized water reactor fuel

  2. Online fuel tracking by combining principal component analysis and neural network techniques

    SciTech Connect

    Xu, L.J.; Yan, Y.; Cornwell, S.; Riley, G.

    2005-08-01

    This paper presents a novel approach to the online tracking of pulverized fuel during combustion. A specially designed flame detector containing three photodiodes is used to derive multiple signals covering a wide spectrum of flame radiation from the infrared to ultraviolet regions through the visible band. Various flame features are extracted from the time and frequency domains. A back-propagation neural network is deployed to map the flame features to an individual type of fuel. The neural network has incorporated principal component analysis to reduce the complexity of the network and hence its training time. Experimental tests were conducted on a 0.5 MWth combustion test facility using eight different types of coal. Results obtained demonstrate that the approach is effective for the online identification of the type of fuel being fired under steady combustion conditions, and the average success rate is 93.4%.

  3. Rapid identification of chromosomal rearrangements by PRINS technique

    SciTech Connect

    Pellestor, F.; Giradet, A.; Andreo, B.

    1994-09-01

    Chromosomal rearrangements contribute significantly to human reproductive failure, malformation/mental retardation syndromes and carcinogenesis. The variety of structural rearrangements is almost infinite and an identification by conventional cytogenetics is often labor intensive and may remain doubtful. Recent advances in molecular cytogenetics have provided new tools for detecting chromosomal abnormalities. The fluorescence in situ hybridization (FISH) procedure is actually the most employed technique and has led to numerous clinical applications. However, techniques required to produce suitable probes are time consuming and not accessible to all cytogenetics laboratories. The PRimed In Situ labeling (PRINS) method provides an alternate way for in situ chromosome screening. In this procedure, the chromosomal detection is performed by in situ annealing of a specific primer and subsequent primer extension by a Taq DNA polymerase in the presence of labeled nucleotides. Application of PRINS in clinical diagnosis is still limited. We have developed a semi-automatic PRINS protocol and used it to identify the origin of several chromosomal abnormalities. We report here the results of studies of three structural rearrangements: a translocation t(21;21), a supernumerary ring marker chromosome 18 and a complex chromosome 13 mosaicism involving a 13;13 Robertsonian translocation and a ring chromosome 13.

  4. Advanced Techniques for Power System Identification from Measured Data

    SciTech Connect

    Pierre, John W.; Wies, Richard; Trudnowski, Daniel

    2008-11-25

    Time-synchronized measurements provide rich information for estimating a power-system's electromechanical modal properties via advanced signal processing. This information is becoming critical for the improved operational reliability of interconnected grids. A given mode's properties are described by its frequency, damping, and shape. Modal frequencies and damping are useful indicators of power-system stress, usually declining with increased load or reduced grid capacity. Mode shape provides critical information for operational control actions. This project investigated many advanced techniques for power system identification from measured data focusing on mode frequency and damping ratio estimation. Investigators from the three universities coordinated their effort with Pacific Northwest National Laboratory (PNNL). Significant progress was made on developing appropriate techniques for system identification with confidence intervals and testing those techniques on field measured data and through simulation. Experimental data from the western area power system was provided by PNNL and Bonneville Power Administration (BPA) for both ambient conditions and for signal injection tests. Three large-scale tests were conducted for the western area in 2005 and 2006. Measured field PMU (Phasor Measurement Unit) data was provided to the three universities. A 19-machine simulation model was enhanced for testing the system identification algorithms. Extensive simulations were run with this model to test the performance of the algorithms. University of Wyoming researchers participated in four primary activities: (1) Block and adaptive processing techniques for mode estimation from ambient signals and probing signals, (2) confidence interval estimation, (3) probing signal design and injection method analysis, and (4) performance assessment and validation from simulated and field measured data. Subspace based methods have been use to improve previous results from block processing

  5. Identification and Quantification of Carbon Phases in Conversion Fuel for the Transient Reactor Test Facility

    SciTech Connect

    Steele, Robert; Mata, Angelica; Dunzik-Gougar, Mary Lou; van Rooyen, Isabella

    2016-06-01

    As part of an overall effort to convert US research reactors to low-enriched uranium (LEU) fuel use, a LEU conversion fuel is being designed for the Transient Reactor Test Facility (TREAT) at the Idaho National Laboratory. TREAT fuel compacts are comprised of UO2 fuel particles in a graphitic matrix material. In order to refine heat transfer modeling, as well as determine other physical and nuclear characteristics of the fuel, the amount and type of graphite and non-graphite phases within the fuel matrix must be known. In this study, we performed a series of complementary analyses, designed to allow detailed characterization of the graphite and phenolic resin based fuel matrix. Methods included Scanning Electron and Transmission Electron Microscopies, Raman spectroscopy, X-ray Diffraction, and Dual-Beam Focused Ion Beam Tomography. Our results indicate that no single characterization technique will yield all of the desired information; however, through the use of statistical and empirical data analysis, such as curve fitting, partial least squares regression, volume extrapolation and spectra peak ratios, a degree of certainty for the quantity of each phase can be obtained.

  6. Method of preparing gas tags for identification of single and multiple failures of nuclear reactor fuel assemblies

    DOEpatents

    McCormick, Norman J.

    1976-01-01

    For use in the identification of failed fuel assemblies in a nuclear reactor, the ratios of the tag gas isotopic concentrations are located on curved surfaces to enable the ratios corresponding to failure of a single fuel assembly to be distinguished from those formed from any combination of two or more failed assemblies.

  7. Spent-fuel verification measurements using passive and active radiation techniques

    SciTech Connect

    Ewing, R.I.; Seager, K.D.

    1996-08-01

    This paper describes an evolutionary development process that will lead to spent fuel measurements that directly measure fissile reactivity. First, the Fork measurement system has been used to verify the burnup of pressurized water reactor (PWR) spent-fuel assemblies at U.S. nuclear utilities. Fork measurements have demonstrated the utility of the passive Fork system to verify reactor records with a single 100-second measurement on each assembly. Second, an Advanced Fork system incorporating collimated gamma-ray spectroscopy has been designed to permit advanced calibration techniques that are independent of reactor burnup records and to allow rapid axial scanning of spent fuel assemblies. Third, an Active Fork system incorporating a neutron source to interrogate spent fuel is proposed to provide the capability to measure fissile reactivity, when compared to measurements on fresh fuel assemblies of the same design. The Advanced and Active Fork systems have wide applicability to spent fuel verification for PWR, boiling water reactor (BWR), and U.S. Department of Energy (DOE) spent fuel.

  8. Neutron measurement techniques for the nondestructive analysis of irradiated fuel assemblies

    SciTech Connect

    Phillips, J.R.; Bosler, G.E.; Halbig, J.K.; Klosterbuer, S.F.; Lee, D.M.; Menlove, H.O.

    1981-11-01

    Nondestructive measurement of the passive neutron signatures of irradiated light-water reactor fuel assemblies is a rapid and simple technique for verifying operator-declared exposure values. Fuel assemblies from four different reactor facilities have been measured to establish the functional relationship between the operator-declared exposure values and the experimentally measured neutron emission rates. Experimentally measured neutron emission rates of small fuel rod sections have been shown to agree with the predicted results from our calculational model. Destructive results for the actinide isotopes also agreed very well with our prediction. Neutron emission rates varied by 30 to 40% between opposite corners of the source fuel assembly. Symmetrical neutron detector systems that measure all sides simultaneously were evaluated.

  9. Approximation techniques for domain identification in two-dimensional parabolic systems under boundary observations

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Kojima, Fumio

    1987-01-01

    The identification of the geometrical structure of the system boundary for a two-dimensional diffusion system is considered. The domain identification treated is converted into an optimization problem based on a fit-to-data criterion and theoretical convergence results for approximate identification techniques are discussed. Results of numerical experiments to demonstrate the efficiency of the theoretical ideas are reported.

  10. Critique of Sikkink and Keane's comparison of surface fuel sampling techniques

    Treesearch

    Clinton S. Wright; Roger D. Ottmar; Robert E. Vihnanek

    2010-01-01

    The 2008 paper of Sikkink and Keane compared several methods to estimate surface fuel loading in western Montana: two widely used inventory techniques (planar intersect and fixed-area plot) and three methods that employ photographs as visual guides (photo load, photoload macroplot and photo series). We feel, however, that their study design was inadequate to evaluate...

  11. Chaparral shrub recovery after fuel reduction: a comparison of prescribed fire and mastication techniques

    Treesearch

    J. Potts; E. Marino; S. Stephens

    2010-01-01

    Fuel management techniques are commonly used in shrublands to reduce wildfire risk. However, more information about the ecological effects of these treatments is needed by managers and ecologists. In an effort to address this need, we performed a replicated (4 replicates per treatment) 48-ha experiment in northern California chaparral dominated by Adenostoma...

  12. A laser induced fluorescence technique for quantifying transient liquid fuel films utilising total internal reflection

    NASA Astrophysics Data System (ADS)

    Alonso, Mario; Kay, Peter J.; Bowen, Phil J.; Gilchrist, Robert; Sapsford, Steve

    2010-01-01

    This paper describes the development of a laser induced fluorescence (LIF) technique to quantify the thickness and spatial distribution of transient liquid fuel films formed as a result of spray-wall interaction. The LIF technique relies on the principle that upon excitation by laser radiation the intensity of the fluorescent signal from a tracer like 3-pentanone is proportional to the film thickness. A binary solution of 10% (v/v) of 3-pentanone in iso-octane is used as a test fuel with a Nd:YAG laser as the excitation light source (utilising the fourth harmonic at wavelength 266 nm) and an intensified CCD camera is used to record the results as fluorescent images. The propagation of the excitation laser beam through the optical piston is carefully controlled by total internal reflection so that only the fuel film is excited and not the airborne droplets above the film, which had been previously shown to induce significant error. Other known sources of error are also carefully minimised. Calibrated temporally resolved benchmark results of a transient spray from a gasoline direct injector impinging on a flat quartz crown under atmospheric conditions are presented, with observations and discussion of the transient development of the fuel film. The calibrated measurements are consistent with previous studies of this event and demonstrate the applicability of the technique particularly for appraisal of CFD predictions. The potential utilisation of the technique under typical elevated ambient conditions is commented upon.

  13. Ivory species identification using electrophoresis-based techniques.

    PubMed

    Kitpipit, Thitika; Thanakiatkrai, Phuvadol; Penchart, Kitichaya; Ouithavon, Kanita; Satasook, Chutamas; Linacre, Adrian

    2016-12-01

    Despite continuous conservation efforts by national and international organizations, the populations of the three extant elephant species are still dramatically declining due to the illegal trade in ivory leading to the killing of elephants. A requirement to aid investigations and prosecutions is the accurate identification of the elephant species from which the ivory was removed. We report on the development of the first fully validated multiplex PCR-electrophoresis assay for ivory DNA analysis that can be used as a screening or confirmatory test. SNPs from the NADH dehydrogenase 5 and cytochrome b gene loci were identified and used in the development of the assay. The three extant elephant species could be identified based on three peaks/bands. Elephas maximus exhibited two distinct PCR fragments at approximate 129 and 381 bp; Loxodonta cyclotis showed two PCR fragments at 89 and 129 bp; and Loxodonta africana showed a single fragment of 129 bp. The assay correctly identified the elephant species using all 113 ivory and blood samples used in this report. We also report on the high sensitivity and specificity of the assay. All single-blinded samples were correctly classified, which demonstrated the assay's ability to be used for real casework. In addition, the assay could be used in conjunction with the technique of direct amplification. We propose that the test will benefit wildlife forensic laboratories and aid in the transition to the criminal justice system.

  14. Non-Intrusive Measurement Techniques Applied to the Hybrid Solid Fuel Degradation

    NASA Astrophysics Data System (ADS)

    Cauty, F.

    2004-10-01

    The knowledge of the solid fuel regression rate and the time evolution of the grain geometry are requested for hybrid motor design and control of its operating conditions. Two non-intrusive techniques (NDT) have been applied to hybrid propulsion : both are based on wave propagation, the X-rays and the ultrasounds, through the materials. X-ray techniques allow local thickness measurements (attenuated signal level) using small probes or 2D images (Real Time Radiography), with a link between the size of field of view and accuracy. Beside the safety hazards associated with the high-intensity X-ray systems, the image analysis requires the use of quite complex post-processing techniques. The ultrasound technique is more widely used in energetic material applications, including hybrid fuels. Depending upon the transducer size and the associated equipment, the application domain is large, from tiny samples to the quad-port wagon wheel grain of the 1.1 MN thrust HPDP motor. The effect of the physical quantities has to be taken into account in the wave propagation analysis. With respect to the various applications, there is no unique and perfect experimental method to measure the fuel regression rate. The best solution could be obtained by combining two techniques at the same time, each technique enhancing the quality of the global data.

  15. Nonlinear modelling of polymer electrolyte membrane fuel cell stack using nonlinear cancellation technique

    SciTech Connect

    Barus, R. P. P.; Tjokronegoro, H. A.; Leksono, E.; Ismunandar

    2014-09-25

    Fuel cells are promising new energy conversion devices that are friendly to the environment. A set of control systems are required in order to operate a fuel cell based power plant system optimally. For the purpose of control system design, an accurate fuel cell stack model in describing the dynamics of the real system is needed. Currently, linear model are widely used for fuel cell stack control purposes, but it has limitations in narrow operation range. While nonlinear models lead to nonlinear control implemnetation whos more complex and hard computing. In this research, nonlinear cancellation technique will be used to transform a nonlinear model into a linear form while maintaining the nonlinear characteristics. The transformation is done by replacing the input of the original model by a certain virtual input that has nonlinear relationship with the original input. Then the equality of the two models is tested by running a series of simulation. Input variation of H2, O2 and H2O as well as disturbance input I (current load) are studied by simulation. The error of comparison between the proposed model and the original nonlinear model are less than 1 %. Thus we can conclude that nonlinear cancellation technique can be used to represent fuel cell nonlinear model in a simple linear form while maintaining the nonlinear characteristics and therefore retain the wide operation range.

  16. Microstructural Examination to Aid in Understanding Friction Bonding Fabrication Technique for Monolithic Nuclear Fuel

    SciTech Connect

    Karen L. Shropshire

    2008-04-01

    Monolithic nuclear fuel is currently being developed for use in research reactors, and friction bonding (FB) is a technique being developed to help in this fuel’s fabrication. Since both FB and monolithic fuel are new concepts, research is needed to understand the impact of varying FB fabrication parameters on fuel plate characteristics. This thesis research provides insight into the FB process and its application to the monolithic fuel design by recognizing and understanding the microstructural effects of varying fabrication parameters (a) FB tool load, and (b) FB tool face alloy. These two fabrication parameters help drive material temperature during fabrication, and thus the material properties, bond strength, and possible formation of interface reaction layers. This study analyzed temperatures and tool loads measured during those FB processes and examined microstructural characteristics of materials and bonds in samples taken from the resulting fuel plates. This study shows that higher tool load increases aluminum plasticization and forging during FB, and that the tool face alloy helps determine the tool’s heat extraction efficacy. The study concludes that successful aluminum bonds can be attained in fuel plates using a wide range of FB tool loads. The range of tool loads yielding successful uranium-aluminum bonding was not established, but it was demonstrated that such bonding can be attained with FB tool load of 48,900 N (11,000 lbf) when using a FB tool faced with a tungsten alloy. This tool successfully performed FB, and with better results than tools faced with other materials. Results of this study correlate well with results reported for similar aluminum bonding techniques. This study’s results also provide support and validation for other nuclear fuel development studies and conclusions. Recommendations are offered for further research.

  17. Application of System Identification Techniques to Turbine Engine Post-Stall Test and Evaluation. Volume 1

    DTIC Science & Technology

    1990-12-01

    Application of System Identification Techniques to Turbine Engine Post-Stall Test and Evaluation was an Air Force funded study to investigate and...apply system identification techniques to post-stall engine models in a manner which allowed AEDC personnel to become proficient in the use of these

  18. Dynamic fuel cell stack model for real-time simulation based on system identification

    NASA Astrophysics Data System (ADS)

    Meiler, M.; Schmid, O.; Schudy, M.; Hofer, E. P.

    The authors have been developing an empirical mathematical model to predict the dynamic behaviour of a polymer electrolyte membrane fuel cell (PEMFC) stack. Today there is a great number of models, describing steady-state behaviour of fuel cells by estimating the equilibrium voltage for a certain set of operating parameters, but models capable of predicting the transient process between two steady-state points are rare. However, in automotive applications round about 80% of operating situations are dynamic. To improve the reliability of fuel cell systems by model-based control for real-time simulation dynamic fuel cell stack model is needed. Physical motivated models, described by differential equations, usually are complex and need a lot of computing time. To meet the real-time capability the focus is set on empirical models. Fuel cells are highly nonlinear systems, so often used auto-regressive (AR), output-error (OE) or Box-Jenkins (BJ) models do not accomplish satisfying accuracy. Best results are achieved by splitting the behaviour into a nonlinear static and a linear dynamic subsystem, a so-called Uryson-Model. For system identification and model validation load steps with different amplitudes are applied to the fuel cell stack at various operation points and the voltage response is recorded. The presented model is implemented in MATLAB environment and has a computing time of less than 1 ms per step on a standard desktop computer with a 2.8 MHz CPU and 504 MB RAM. Lab tests are carried out at DaimlerChrysler R&D Centre with DaimlerChrysler PEMFC hardware and a good agreement is found between model simulations and lab tests.

  19. FY2015 ceramic fuels development annual highlights

    SciTech Connect

    Mcclellan, Kenneth James

    2015-09-22

    Key challenges for the Advanced Fuels Campaign are the development of fuel technologies to enable major increases in fuel performance (safety, reliability, power and burnup) beyond current technologies, and development of characterization methods and predictive fuel performance models to enable more efficient development and licensing of advanced fuels. Ceramic fuel development activities for fiscal year 2015 fell within the areas of 1) National and International Technical Integration, 2) Advanced Accident Tolerant Ceramic Fuel Development, 3) Advanced Techniques and Reference Materials Development, and 4) Fabrication of Enriched Ceramic Fuels. High uranium density fuels were the focus of the ceramic fuels efforts. Accomplishments for FY15 primarily reflect the prioritization of identification and assessment of new ceramic fuels for light water reactors which have enhanced accident tolerance while also maintaining or improving normal operation performance, and exploration of advanced post irradiation examination techniques which will support more efficient testing and qualification of new fuel systems.

  20. Further Evaluation of the Neutron Resonance Transmission Analysis (NRTA) Technique for Assaying Plutonium in Spent Fuel

    SciTech Connect

    J. W. Sterbentz; D. L. Chichester

    2011-09-01

    This is an end-of-year report (Fiscal Year (FY) 2011) for the second year of effort on a project funded by the National Nuclear Security Administration's Office of Nuclear Safeguards (NA-241). The goal of this project is to investigate the feasibility of using Neutron Resonance Transmission Analysis (NRTA) to assay plutonium in commercial light-water-reactor spent fuel. This project is part of a larger research effort within the Next-Generation Safeguards Initiative (NGSI) to evaluate methods for assaying plutonium in spent fuel, the Plutonium Assay Challenge. The second-year goals for this project included: (1) assessing the neutron source strength needed for the NRTA technique, (2) estimating count times, (3) assessing the effect of temperature on the transmitted signal, (4) estimating plutonium content in a spent fuel assembly, (5) providing a preliminary assessment of the neutron detectors, and (6) documenting this work in an end of the year report (this report). Research teams at Los Alamos National Laboratory (LANL), Lawrence Berkeley National Laboratory (LBNL), Pacific Northwest National Laboratory (PNNL), and at several universities are also working to investigate plutonium assay methods for spent-fuel safeguards. While the NRTA technique is well proven in the scientific literature for assaying individual spent fuel pins, it is a newcomer to the current NGSI efforts studying Pu assay method techniques having just started in March 2010; several analytical techniques have been under investigation within this program for two to three years or more. This report summarizes work performed over a nine month period from January-September 2011 and is to be considered a follow-on or add-on report to our previous published summary report from December 2010 (INL/EXT-10-20620).

  1. Fuel Cell Manufacturing Diagnostic Techniques: IR Thermography with Reactive Flow through Excitation

    SciTech Connect

    Manak, A. J.; Ulsh, M.; Bender, G.

    2012-01-01

    While design and material considerations for PEMFCs have a large impact on cost, it is also necessary to consider a transition to high volume production of fuel cell systems, including MEA components, to enable economies of scale and reduce per unit cost. One of the critical manufacturing tasks is developing and deploying techniques to provide in‐process measurement of fuel cell components for quality control. This effort requires a subsidiary task: The study of the effect of manufacturing defects on performance and durability with the objective to establish validated manufacturing tolerances for fuel cell components. This work focuses on the development of a potential quality control method for gas diffusion electrodes (GDEs). The method consists of infrared (IR) thermography combined with reactive flow through (RFT) excitation. Detection of catalyst loading reduction defects in GDE catalyst layers will be presented.

  2. Identification of a breached fuel pin in the Interim Examination and Maintenance Cell

    SciTech Connect

    McGuiness, P.W.; Kalk, J.J.; Hicks, D.F.

    1987-09-01

    At the Interim Examination and Maintenance (IEM) Cell, experiments are routinely disassembled and examined following irradiation in the Fast Flux Test Facility (FFTF). Recently and for the first time, a fueled experiment which had breached its cladding during irradiation was disassembled in the cell. The processing objective was to locate and identify the one pin (out of 217 pins) with breached cladding, and recover selected test pins for further examination. Identification of the breached pin proved to be challenging. After all pins were weighed the data were inconclusive, and alternate procedures had to be developed and implemented. Ultimately, four independent methods were used to pinpoint the breached pin.

  3. Determining Plutonium Mass in Spent Fuel with Nondestructive Assay Techniques -- Preliminary Modeling Results Emphasizing Integration among Techniques

    SciTech Connect

    Tobin, S. J.; Fensin, M. L.; Ludewigt, B. A.; Menlove, H. O.; Quiter, B. J.; Sandoval, N. P.; Swinhoe, M. T.; Thompson, S. J.

    2009-08-03

    There are a variety of motivations for quantifying Pu in spent (used) fuel assemblies by means of nondestructive assay (NDA) including the following: strengthen the capabilities of the International Atomic Energy Agencies to safeguards nuclear facilities, quantifying shipper/receiver difference, determining the input accountability value at reprocessing facilities and providing quantitative input to burnup credit determination for repositories. For the purpose of determining the Pu mass in spent fuel assemblies, twelve NDA techniques were identified that provide information about the composition of an assembly. A key point motivating the present research path is the realization that none of these techniques, in isolation, is capable of both (1) quantifying the elemental Pu mass of an assembly and (2) detecting the diversion of a significant number of pins. As such, the focus of this work is determining how to best integrate 2 or 3 techniques into a system that can quantify elemental Pu and to assess how well this system can detect material diversion. Furthermore, it is important economically to down-select among the various techniques before advancing to the experimental phase. In order to achieve this dual goal of integration and down-selection, a Monte Carlo library of PWR assemblies was created and is described in another paper at Global 2009 (Fensin et al.). The research presented here emphasizes integration among techniques. An overview of a five year research plan starting in 2009 is given. Preliminary modeling results for the Monte Carlo assembly library are presented for 3 NDA techniques: Delayed Neutrons, Differential Die-Away, and Nuclear Resonance Fluorescence. As part of the focus on integration, the concept of"Pu isotopic correlation" is discussed and the role of cooling time determination.

  4. Novel injector techniques for coal-fueled diesel engines. Final report

    SciTech Connect

    Badgley, P.R.

    1992-09-01

    This report, entitled ``Novel Injector Techniques for Coal-Fueled Diesel Engines,`` describes the progress and findings of a research program aimed at development of a dry coal powder fuel injector in conjunction with the Thermal Ignition Combustion System (TICS) concept to achieve autoignition of dry powdered coal in a single-cylinder high speed diesel engine. The basic program consisted of concept selection, analysis and design, bench testing and single cylinder engine testing. The coal injector concept which was selected was a one moving part dry-coal-powder injector utilizing air blast injection. Adiabatics has had previous experience running high speed diesel engines on both direct injected directed coal-water-slurry (CWS) fuel and also with dry coal powder aspirated into the intake air. The Thermal Ignition Combustion System successfully ignited these fuels at all speeds and loads without requiring auxiliary ignition energy such as pilot diesel fuel, heated intake air or glow or spark plugs. Based upon this prior experience, it was shown that the highest efficiency and fastest combustion was with the dry coal, but that the use of aspiration of coal resulted in excessive coal migration into the engine lubrication system. Based upon a desire of DOE to utilize a more modern test engine, the previous naturally-aspirated Caterpillar model 1Y73 single cylinder engine was replaced with a turbocharged (by use of shop air compressor and back pressure control valve) single cylinder version of the Cummins model 855 engine.

  5. Application of green chemistry techniques to prepare electrocatalysts for direct methanol fuel cells.

    PubMed

    Shimizu, Kenichi; Wang, Joanna S; Wai, Chien M

    2010-03-25

    A series of green techniques for synthesizing carbon nanotube-supported platinum nanoparticles and their high electrocatalytic activity toward methanol fuel cell applications are reported. The techniques utilize either the supercritical fluid carbon dioxide or water as a medium for depositing platinum nanoparticles on surfaces of multiwalled or single-walled carbon nanotubes. The catalytic properties of the carbon nanotubes-supported Pt nanoparticle catalysts prepared by four different techniques are compared for anodic oxidation of methanol and cathodic reduction of oxygen using cyclic voltammetry. One technique using galvanic exchange of Pt(2+) in water with zerovalent iron present on the surfaces of as-grown single-walled carbon nanotubes produces a Pt catalyst that shows an unusually high catalytic activity for reduction of oxygen but a negligible activity for oxidation of methanol. This fuel-selective catalyst may have a unique application as a cathode catalyst in methanol fuel cells to alleviate the problems caused by crossover of methanol through the polymer electrolyte membrane.

  6. Identification of Potential Fishing Grounds Using Geospatial Technique

    NASA Astrophysics Data System (ADS)

    Abdullah, Muhammad

    2016-07-01

    Fishery resources surveys using actual sampling and data collection methods require extensive ship time and sampling time. Informative data from satellite plays a vital role in fisheries application. Satellite Remote Sensing techniques can be used to detect fish aggregation just like visual fish identification ultimately these techniques can be used to predict the potential fishing zones by measuring the parameters which affect the distribution of fishes. Remote sensing is a time saving technique to locate fishery resources along the coast. Pakistan has a continental shelf area of 50,270 km2 and coastline length of 1,120 km. The total maritime zone of Pakistan is over 30 percent of the land area. Fishery plays an important role in the national economy. The marine fisheries sector is the main component, contributing about 57 percent in terms of production. Fishery is the most important economic activity in the villages and towns along the coast, and in most of the coastal villages and settlements it is the sole source of employment and income generation. Fishing by fishermen is done on the sole basis of repeated experiments and collection of information from other fishermen. Often they are in doubt about the location of potential fishing zones. This leads to waste of time and money, adversely affecting fishermen incomes and over or under-exploitation of fishing zones. The main purpose of this study was to map potential fishing grounds by identifying various environmental parameters which impact fish aggregation along the Pakistan coastline. The primary reason of this study is the fact that the fishing communities of Pakistan's coastal regions are extremely poor and lack knowledge of the modern tools and techniques that may be incorporated to enhance their yield and thus, improve their livelihood. Using geospatial techniques in order to accurately map the potential fishing zones based on sea surface temperature (SST) and chlorophyll -a content, in conjunction with

  7. Development of a direct match technique for star identification on the SWAS mission

    NASA Technical Reports Server (NTRS)

    Daniel, Walter K.; Correll, Thomas E.; Anderson, Mark O.

    1995-01-01

    A direct match technique for star identification was developed for use with the star tracker on the SWAS (Submillimeter Wave Astronomy Satellite) spacecraft. In this technique, tracker searches are used in a two-step process for an implicit direct match star identification. A simulation of the star acquisition process was created and used in the preparation of guide star selection requirements. Flight software implementing this star acquisition technique has been developed and tested.

  8. Application of digital image analysis techniques to antimisting fuel spray characterization

    SciTech Connect

    Fleeter, R.; Sarohia, V.; Toaz, R.

    1983-01-01

    A system for fuel mist characterization using digital image analysis and processing techniques has been developed and applied to research on aviation safety fuels. Pulsed ruby laser sheet illumination of the spray is used for initial data recording on very high resolution photographic film. Digitization of mosaic elements is accomplished with a vidicon and video digitizer whose output is stored in computer RAM (Random Access Memory) memory for processing. Highly non-spherical elements and a wide range of drop diameters (8-2000 ..mu..m) resulting from the unusual rheological properties of the fuel-additive system are accomodated by the device configuration and algorithms. Generation of two-dimensional images via scattered light also eliminates errors resulting from variations in the index of refraction and from the presence of submicron scattering sites often present within the modified fuel. No a priori information on the drop size distribution nor on system response to various drop sizes is required. This wide dynamic range, insensitivity to drop optical properties and the lack of a priori assumptions concerning drop shape are some of the unique features of the present analysis technique which are not available in single currently available drop counting methods. A drop histogram is generated for any portion of a spray or for an entire spray field along with local and global spray Sauter mean diameter (SMD) and density information. The technique is applied to analysis of sprays formed in a simulation of an aircraft crash with fuel spillage. Measurements of spray SMD and density are correlated with the results of flammability tests.

  9. Material accountancy measurement techniques in dry-powdered processing of nuclear spent fuels.

    SciTech Connect

    Wolf, S. F.

    1999-03-24

    The paper addresses the development of inductively coupled plasma-mass spectrometry (ICPMS), thermal ionization-mass spectrometry (TIMS), alpha-spectrometry, and gamma spectrometry techniques for in-line analysis of highly irradiated (18 to 64 GWD/T) PWR spent fuels in a dry-powdered processing cycle. The dry-powdered technique for direct elemental and isotopic accountancy assay measurements was implemented without the need for separation of the plutonium, uranium and fission product elements in the bulk powdered process. The analyses allow the determination of fuel burn-up based on the isotopic composition of neodymium and/or cesium. An objective of the program is to develop the ICPMS method for direct fissile nuclear materials accountancy in the dry-powdered processing of spent fuel. The ICPMS measurement system may be applied to the KAERI DUPIC (direct use of spent PWR fuel in CANDU reactors) experiment, and in a near-real-time mode for international safeguards verification and non-proliferation policy concerns.

  10. Estimation of longitudinal aircraft characteristics using parameter identification techniques

    NASA Technical Reports Server (NTRS)

    Wingrove, R. C.

    1978-01-01

    This study compares the results from different parameter identification methods used to determine longitudinal aircraft characteristics from flight data. In general, these comparisons have found that the estimated short-period dynamics (natural frequency, damping, transfer functions) are only weakly affected by the type of identification method, however, the estimated aerodynamic coefficients may be strongly affected by the type of identification method. The estimated values for aerodynamic coefficients were found to depend upon the type of math model and type of test data used with each of the identification methods. The use of fairly complete math models and the use of long data lengths, combining both steady and nonsteady motion, are shown to provide aerodynamic coefficient values that compare favorably with the results from other testing methods such as steady-state flight and full-scale wind-tunnel experiments.

  11. An indirect sensing technique for diesel fuel quantity control. Progress report, April 1--June 30, 1998

    SciTech Connect

    MacCarley, C.A.

    1998-08-31

    This reports on a project to develop an indirect sensing technique for diesel fuel quantity control. Development has continued on a vehicle-installed prototype for EPA certification and demonstration. Focus of development is on the use of this technology for retrofitting existing diesel vehicles to reduce emissions rather than exclusively upon deployment in the OEM market. Technical obstacles that have been encountered and their solutions and remaining project tasks are described.

  12. An analytical investigation of NO sub x control techniques for methanol fueled spark ignition engines

    NASA Technical Reports Server (NTRS)

    Browning, L. H.; Argenbright, L. A.

    1983-01-01

    A thermokinetic SI engine simulation was used to study the effects of simple nitrogen oxide control techniques on performance and emissions of a methanol fueled engine. As part of this simulation, a ring crevice storage model was formulated to predict UBF emissions. The study included spark retard, two methods of compression ratio increase and EGR. The study concludes that use of EGR in high turbulence, high compression engines will both maximize power and thermal efficiency while minimizing harmful exhaust pollutants.

  13. Characterization techniques for gas diffusion layers for proton exchange membrane fuel cells - A review

    NASA Astrophysics Data System (ADS)

    Arvay, A.; Yli-Rantala, E.; Liu, C.-H.; Peng, X.-H.; Koski, P.; Cindrella, L.; Kauranen, P.; Wilde, P. M.; Kannan, A. M.

    2012-09-01

    The gas diffusion layer (GDL) in a proton exchange membrane fuel cell (PEMFC) is one of the functional components that provide a support structure for gas and water transport. The GDL plays a crucial role when the oxidant is air, especially when the fuel cell operates in the higher current density region. There has been an exponential growth in research and development because the PEMFC has the potential to become the future energy source for automotive applications. In order to serve in this capacity, the GDL requires due innovative analysis and characterization toward performance and durability. It is possible to achieve the optimum fuel cell performance only by understanding the characteristics of GDLs such as structure, pore size, porosity, gas permeability, wettability, thermal and electrical conductivities, surface morphology and water management. This review attempts to bring together the characterization techniques for the essential properties of the GDLs as handy tools for R&D institutions. Topics are categorized based on the ex-situ and in-situ characterization techniques of GDLs along with related modeling and simulation. Recently reported techniques used for accelerated durability evaluation of the GDLs are also consolidated within the ex-situ and in-situ methods.

  14. Application of System Identification Techniques to Turbine Engine Post-Stall Test and Evaluation. Volume 2

    DTIC Science & Technology

    1990-12-01

    System identification is valuable for the estimation of gas turbine engine models because high fidelity models of jet engines are very useful for...report is an overview of techniques for system identification of gas turbine engine models. The emphasis in this report is on an overview of the set of...the SCIDNT parameter estimation code, which was developed by Systems Control Technology, Inc., is included. Although system identification is often

  15. Comparison of Techniques for Non-Intrusive Fuel Drop Size Measurements in a Subscale Gas Turbine Combustor

    NASA Technical Reports Server (NTRS)

    Zaller, Michelle; Anderson, Robert C.; Hicks, Yolanda R.; Locke, Randy J.

    1999-01-01

    In aviation gas turbine combustors, many factors, such as the degree and extent of fuel/air mixing and fuel vaporization achieved prior to combustion, influence the formation of undesirable pollutants. To assist in analyzing the extent of fuel/air mixing, flow visualization techniques have been used to interrogate the fuel distributions during subcomponent tests of lean-burning fuel injectors. Discrimination between liquid and vapor phases of the fuel was determined by comparing planar laser-induced fluorescence (PLIF) images, elastically-scattered light images, and phase/Doppler interferometer measurements. Estimates of Sauter mean diameters are made by ratioing PLIF and Mie scattered intensities for various sprays, and factors affecting the accuracy of these estimates are discussed. Mie calculations of absorption coefficients indicate that the fluorescence intensities of individual droplets are proportional to their surface areas, instead of their volumes, due to the high absorbance of the liquid fuel for the selected excitation wavelengths.

  16. Methods of discovery and techniques to study endophytic fungi producing fuel-related hydrocarbons.

    PubMed

    Strobel, Gary A

    2014-01-17

    One promising area in the search for renewable bio-fuels is the discovery of microorganisms that produce fuel-related hydrocarbons (mycodiesel) that is in stark contrast to yeast fermentation that utilizes expensive sugars or starch to produce ethanol, which is a proven and useful source of fuel, but by no means is it ideal. Recently, a number of endophytic fungi have been isolated and described that make compounds such as mono- terpenoids, alkanes, cyclohexanes, cyclopentanes, and alkyl alcohols/ketones, benzenes and polyaromatic hydrocarbons. Many of these compounds are either identical to or are closely related to those specific classes of molecules that are found in diesel. Most importantly, these organisms make hydrocarbons while utilizing cellulosic polymers found in all plant-based agricultural wastes. Also discussed are some novel methods and techniques to quantitatively and qualitatively study hydrocarbon production by these microbes. Two models are discussed for identifying potential fuel-related compounds, scaling up production of them and advanced engine testing. Finally, it seems possible that endophytic fungi may have an additional attribute of having contributed to the formation of crude oil in the first place and a description of the paleobiosphere, to test this hypothesis, is in this review.

  17. Differential die-away technique for determination of the fissile contents in spent fuel assembly

    SciTech Connect

    Lee, Tachoon; Menlove, Howard O; Swinhoe, Nartyn T; Tobin, Stephen J

    2010-01-01

    Monte Carlo simulations were performed for the differential die-away (DDA) technique to quantify its capability to measure the fissile contents in spent fuel assemblies of 64 different cases in terms of initial enrichment, burnup, and cooling time. The DDA count rate varies according to the contents of fissile isotopes such as {sup 235}U, {sup 239}Pu, and {sup 241}Pu contained in the spent fuel assembly. The effective {sup 239}Pu concept was introduced to quantify the total fissile mass of spent fuel by weighting the relative signal contributions of {sup 235}U and {sup 241}Pu compared to that of {sup 239}Pu. The Monte Carlo simulation results show that the count rate of the DDA instrument for a spent fuel assembly of 4% initial enrichment, 45 GWD/MTU burnup, and 5 year cooling time is {approx} 9.8 x 10{sup 4} counts per second (c/s) with the 100-Hz repeated interrogation pattern of 0 to 10 {micro}s interrogation, 0.2 ms to 1 ms counting time, and 1 x 10{sup 9} n/s neutron source. The {sup 244}Cm neutron background count rate for this counting time scheme is {approx} 1 x 10{sup 4} c/s, and thus the signal to background ratio is {approx}10.

  18. Techniques and Materials for Developing Positive Sex Role Identification.

    ERIC Educational Resources Information Center

    Sheridan, E. Marcia

    The premise of this paper is that teacher behavior and attitudes which uphold traditional sex stereotypes of masculinity and femininity, in which the male is always aggressive and unfeeling and the female is always passive and sensitive, are harmful to the psychological development of children. A positive sex role identification would include a…

  19. Surface modification techniques for increased corrosion tolerance of zirconium fuel cladding

    NASA Astrophysics Data System (ADS)

    Carr, James Patrick, IV

    Corrosion is a major issue in applications involving materials in normal and severe environments, especially when it involves corrosive fluids, high temperatures, and radiation. Left unaddressed, corrosion can lead to catastrophic failures, resulting in economic and environmental liabilities. In nuclear applications, where metals and alloys, such as steel and zirconium, are extensively employed inside and outside of the nuclear reactor, corrosion accelerated by high temperatures, neutron radiation, and corrosive atmospheres, corrosion becomes even more concerning. The objectives of this research are to study and develop surface modification techniques to protect zirconium cladding by the incorporation of a specific barrier coating, and to understand the issues related to the compatibility of the coatings examined in this work. The final goal of this study is to recommend a coating and process that can be scaled-up for the consideration of manufacturing and economic limits. This dissertation study builds on previous accident tolerant fuel cladding research, but is unique in that advanced corrosion methods are tested and considerations for implementation by industry are practiced and discussed. This work will introduce unique studies involving the materials and methods for accident tolerant fuel cladding research by developing, demonstrating, and considering materials and processes for modifying the surface of zircaloy fuel cladding. This innovative research suggests that improvements in the technique to modify the surface of zirconium fuel cladding are likely. Three elements selected for the investigation of their compatibility on zircaloy fuel cladding are aluminum, silicon, and chromium. These materials are also currently being investigated at other labs as alternate alloys and coatings for accident tolerant fuel cladding. This dissertation also investigates the compatibility of these three elements as surface modifiers, by comparing their microstructural and

  20. Technical management techniques for identification and control of industrial safety and pollution hazards

    NASA Technical Reports Server (NTRS)

    Campbell, R.; Dyer, M. K.; Hoard, E. G.; Little, D. G.; Taylor, A. C.

    1972-01-01

    Constructive recommendations are suggested for pollution problems from offshore energy resources industries on outer continental shelf. Technical management techniques for pollution identification and control offer possible applications to space engineering and management.

  1. Fuel spill identification using solid-phase extraction and solid-phase microextraction. 1. Aviation turbine fuels.

    PubMed

    Lavine, B K; Brzozowski, D M; Ritter, J; Moores, A J; Mayfield, H T

    2001-12-01

    The water-soluble fraction of aviation jet fuels is examined using solid-phase extraction and solid-phase microextraction. Gas chromatographic profiles of solid-phase extracts and solid-phase microextracts of the water-soluble fraction of kerosene- and nonkerosene-based jet fuels reveal that each jet fuel possesses a unique profile. Pattern recognition analysis reveals fingerprint patterns within the data characteristic of fuel type. By using a novel genetic algorithm (GA) that emulates human pattern recognition through machine learning, it is possible to identify features characteristic of the chromatographic profile of each fuel class. The pattern recognition GA identifies a set of features that optimize the separation of the fuel classes in a plot of the two largest principal components of the data. Because principal components maximize variance, the bulk of the information encoded by the selected features is primarily about the differences between the fuel classes.

  2. In situ neutron imaging technique for evaluation of water management systems in operating PEM fuel cells

    NASA Astrophysics Data System (ADS)

    Satija, R.; Jacobson, D. L.; Arif, M.; Werner, S. A.

    This paper explores the method of neutron imaging as an experimental tool to perform in situ non-destructive analysis on an operating polymer electrolyte membrane hydrogen fuel cell. Neutrons are ideal for the imaging of hydrogen fuel cells because of their sensitivity to hydrogen-containing compounds such as water. This research focused on using imaging techniques to develop methods for testing and evaluating the water management system of a fuel cell. A real-time radiography dataset consisting of 1000 images at 2-s intervals was used to create a movie which showed water production, transport, and removal throughout the cell. This dataset was also analyzed to quantify and calculate the amount of water present in the cell at any time and masking techniques were used to differentiate between water in the cell flow channels and in the gas diffusion layer. Additionally, a tomography dataset allowed for the creation of a digital 3-dimensional (3-D) reconstruction of the dry cell which can be analyzed for structural defects.

  3. Performance and cost evaluation of bioremediation techniques for fuel spills. Book chapter

    SciTech Connect

    Ward, C.H.; Wilson, J.T.; Kampbell, D.H.; Hutchins, S.

    1993-01-01

    Soils and ground water beneath the US Coast Guard Air Station at Traverse City, MI, have been contaminated with separate spills of aviation gasoline and JP-4 jet fuel. Contamination from both plumes has affected a shallow water table aquifer consisting of a medium grained sand. This site has been the location of a cooperative effort between the US Coast Guard and US EPA to extensively characterize the site to determine three dimensional extent of contamination, local hydrogeology, geochemistry of the solids and water, and nature of microbial activity. Evaluation concerning feasibility and cost of three innovative bioremediation techniques has also been completed at the Air Station. One evaluation demonstrated the use of hydrogen peroxide as the electron acceptor to enhance aerobic biodegradation in a portion of the aviation gasoline area. Nitrate was used as the electron acceptor for a portion of the JP-4 jet fuel contamination. Bioventing of a second portion of the aviation gasoline contamination was the third innovative technique evaluated. Each treatment reduced benzene levels to less than 5 micrograms/l, with 25% to 60% reduction in total fuel levels. For these evaluations, bioventing had the lowest capital and operating costs, followed by nitrate addition and finally hydrogen peroxide.

  4. A system identification technique based on the random decrement signatures. Part 1: Theory and simulation

    NASA Technical Reports Server (NTRS)

    Bedewi, Nabih E.; Yang, Jackson C. S.

    1987-01-01

    Identification of the system parameters of a randomly excited structure may be treated using a variety of statistical techniques. Of all these techniques, the Random Decrement is unique in that it provides the homogeneous component of the system response. Using this quality, a system identification technique was developed based on a least-squares fit of the signatures to estimate the mass, damping, and stiffness matrices of a linear randomly excited system. The mathematics of the technique is presented in addition to the results of computer simulations conducted to demonstrate the prediction of the response of the system and the random forcing function initially introduced to excite the system.

  5. An esoteric technique useful in the identification of unidentified remains from the examination of faded, illegible hospital identification wristbands.

    PubMed

    Anthony, Arthur T; Gayton, Betty C; McVicker, Brian C

    2003-07-01

    A technique routinely used in the examination of questioned documents has been found to be of assistance when employed in the examination of faded and/or partially legible hospital identification wristbands found with unidentified remains (UIDs). A non-destructive test used predominately by forensic document examiners in the analysis of writing inks, handwritten alterations, and obliterations has proven useful throughout the years when confronted with this unusual type of documentary evidence. This discussion paper was prompted by the Tri-State Crematory disaster, Walker County, Georgia, from a request by investigators as to whether or not any information could be obtained from the examination of faded hospital identification wristbands where no information was readily discernable. Subsequent analysis by non-destructive infrared inspection, a standard technique used in the examination of questioned documents, proved useful in assisting with the identification of unidentified skeletal remains.

  6. Essential data and techniques for conducting microbial fuel cell and other types of bioelectrochemical system experiments.

    PubMed

    Logan, Bruce E

    2012-06-01

    Microbial fuel cells (MFCs) and other bioelectrochemical systems are new technologies that require expertise in a variety of technical areas, ranging from electrochemistry to biological wastewater treatment. There are certain data and critical information that should be included in every MFC study, such as specific surface area of the electrodes, solution conductivity, and power densities normalized to electrode surface area and volumes. Electrochemical techniques such as linear sweep voltammetry can be used to understand the performance of the MFC, but extremely slow scans are required for these biological systems compared to more traditional fuel cells. In this Minireview, the critical information needed for MFC studies is provided with examples of how results can be better conveyed through a full description of materials, the use of proper controls, and inclusion of a more complete electrochemical analysis.

  7. Characterization of the Seismic Medium Using Nonlinear Identification Techniques

    DTIC Science & Technology

    1976-09-01

    Measuring Kernels The identification methed proposed by Wiener allows the direct measure- ment of the Laguerre coefficients through synthesis by...8217{ titti )’{tl)i’(ti) > (1.3) The discrete Fourier transform, F(kAf), used in this computation is 1 t1 F(kAf) = i £ f(nAt)e -j2Trkn/N n=0 (14) where N

  8. Identification of Fissionable Materials Using the Tagged Neutron Technique

    SciTech Connect

    R.P. Keegan, J.P. Hurley, J.R. Tinsley, R. Trainham

    2009-06-30

    This summary describes experiments to detect and identify fissionable materials using the tagged neutron technique. The objective of this work is to enhance homeland security capability to find fissionable material that may be smuggled inside shipping boxes, containers, or vehicles. The technique distinguishes depleted uranium from lead, steel, and tungsten. Future work involves optimizing the technique to increase the count rate by many orders of magnitude and to build in the additional capability to image hidden fissionable materials. The tagged neutron approach is very different to other techniques based on neutron die-away or photo-fission. This work builds on the development of the Associated Particle Imaging (API) technique at the Special Technologies Laboratory (STL) [1]. Similar investigations have been performed by teams at the Oak Ridge National Laboratory (ORNL), the Khlopin Radium Institute in Russia, and by the EURITRACK collaboration in the European Union [2,3,4].

  9. A facial reconstruction and identification technique for seriously devastating head wounds.

    PubMed

    Joukal, Marek; Frišhons, Jan

    2015-07-01

    Many authors have focused on facial identification techniques, and facial reconstructions for cases when skulls have been found are especially well known. However, a standardized facial identification technique for an unknown body with seriously devastating head injuries has not yet been developed. A reconstruction and identification technique was used in 7 cases of accidents involving trains striking pedestrians. This identification technique is based on the removal of skull bone fragments, subsequent fixation of soft tissue onto a universal commercial polystyrene head model, precise suture of dermatomuscular flaps, and definitive adjustment using cosmetic treatments. After reconstruction, identifying marks such as scars, eyebrows, facial lines, facial hair and partly hairstyle become evident. It is then possible to present a modified picture of the reconstructed face to relatives. After comparing the results with photos of the person before death, this technique has proven to be very useful for identifying unknown bodies when other identification techniques are not available. This technique is useful for its being rather quick and especially for its results. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. Contemporary nucleic acid-based molecular techniques for detection, identification, and characterization of Bifidobacterium.

    PubMed

    Mianzhi, Yao; Shah, Nagendra P

    2017-03-24

    Bifidobacteria are one of the most important bacterial groups found in the gastrointestinal tract of humans. Medical and food industry researchers have focused on bifidobacteria because of their health-promoting properties. Researchers have historically relied on classic phenotypic approaches (culture and biochemical tests) for detection and identification of bifidobacteria. Those approaches still have values for the identification and detection of some bifidobacterial species, but they are often labor-intensive and time-consuming and can be problematic in differentiating closely related species. Rapid, accurate, and reliable methods for detection, identification, and characterization of bifidobacteria in a mixed bacterial population have become a major challenge. The advent of nucleic acid-based molecular techniques has significantly advanced isolation and detection of bifidobacteria. Diverse nucleic acid-based molecular techniques have been employed, including hybridization, target amplification, and fingerprinting. Certain techniques enable the detection, characterization, and identification at genus-, species-, and strains-levels, whereas others allow typing of species or strains of bifidobacteria. In this review, an overview of methodological principle, technique complexity, and application of various nucleic acid-based molecular techniques for detection, identification, and characterization of bifidobacteria is presented. Advantages and limitations of each technique are discussed, and significant findings based on particular techniques are also highlighted.

  11. Comparison of two inductive learning methods: A case study in failed fuel identification

    SciTech Connect

    Reifman, J.; Lee, J.C.

    1992-05-01

    Two inductive learning methods, the ID3 and Rg algorithms, are studied as a means for systematically and automatically constructing the knowledge base of expert systems. Both inductive learning methods are general-purpose and use information entropy as a discriminatory measure in order to group objects of a common class. ID3 constructs a knowledge base by building decision trees that discriminate objects of a data set as a function of their class. Rg constructs a knowledge base by grouping objects of the same class into patterns or clusters. The two inductive methods are applied to the construction of a knowledge base for failed fuel identification in the Experimental Breeder Reactor II. Through analysis of the knowledge bases generated, the ID3 and Rg algorithms are compared for their knowledge representation, data overfitting, feature space partition, feature selection, and search procedure.

  12. Comparison of two inductive learning methods: A case study in failed fuel identification

    SciTech Connect

    Reifman, J. ); Lee, J.C. . Dept. of Nuclear Engineering)

    1992-01-01

    Two inductive learning methods, the ID3 and Rg algorithms, are studied as a means for systematically and automatically constructing the knowledge base of expert systems. Both inductive learning methods are general-purpose and use information entropy as a discriminatory measure in order to group objects of a common class. ID3 constructs a knowledge base by building decision trees that discriminate objects of a data set as a function of their class. Rg constructs a knowledge base by grouping objects of the same class into patterns or clusters. The two inductive methods are applied to the construction of a knowledge base for failed fuel identification in the Experimental Breeder Reactor II. Through analysis of the knowledge bases generated, the ID3 and Rg algorithms are compared for their knowledge representation, data overfitting, feature space partition, feature selection, and search procedure.

  13. Identification Of Natural Dyes On Archaeological Textile Objects Using Laser Induced Fluorescent Technique

    NASA Astrophysics Data System (ADS)

    Abdel-Kareem, O.; Eltokhy, A.; Harith, M. A.

    2011-09-01

    This study aims to evaluate the use of Laser Fluorescent as a non-destructive technique for identification of natural dyes on archaeological textile objects. In this study wool textile samples were dyed with 10 natural dyes such as cochineal, cutch, henna, indigo, Lac, madder, safflower, saffron, sumac and turmeric. These dyes common present on archaeological textile objects to be used as standard dyed textile samples. These selected natural dyes will be used as known references that can be used a guide to identify unknown archaeological dyes. The dyed textile samples were investigated with laser radiation in different wavelengths to detect the best wavelengths for identification each dye. This study confirms that Laser Florescent is very useful and a rapid technique can be used as a non-destructive technique for identification of natural dyes on archaeological textile objects. The results obtained with this study can be a guide for all conservators in identification of natural organic dyes on archaeological textile objects.

  14. Identification Of Natural Dyes On Archaeological Textile Objects Using Laser Induced Fluorescent Technique

    SciTech Connect

    Abdel-Kareem, O.; Eltokhy, A.; Harith, M. A.

    2011-09-22

    This study aims to evaluate the use of Laser Fluorescent as a non-destructive technique for identification of natural dyes on archaeological textile objects. In this study wool textile samples were dyed with 10 natural dyes such as cochineal, cutch, henna, indigo, Lac, madder, safflower, saffron, sumac and turmeric. These dyes common present on archaeological textile objects to be used as standard dyed textile samples. These selected natural dyes will be used as known references that can be used a guide to identify unknown archaeological dyes. The dyed textile samples were investigated with laser radiation in different wavelengths to detect the best wavelengths for identification each dye. This study confirms that Laser Florescent is very useful and a rapid technique can be used as a non-destructive technique for identification of natural dyes on archaeological textile objects. The results obtained with this study can be a guide for all conservators in identification of natural organic dyes on archaeological textile objects.

  15. Design Optimization of Liquid Fueled High Velocity Oxy- Fuel Thermal Spraying Technique for Durable Coating for Fossil Power Systems

    SciTech Connect

    Choudhuri, Ahsan; Love, Norman

    2016-11-04

    High-velocity oxy–fuel (HVOF) thermal spraying was developed in 1930 and has been commercially available for twenty-five years. HVOF thermal spraying has several benefits over the more conventional plasma spray technique including a faster deposition rate which leads to quicker turn-around, with more durable coatings and higher bond strength, hardness and wear resistance due to a homogeneous distribution of the sprayed particles. HVOF thermal spraying is frequently used in engineering to deposit cermets, metallic alloys, composites and polymers, to enhance product life and performance. HVOF thermal spraying system is a highly promising technique for applying durable coatings on structural materials for corrosive and high temperature environments in advanced ultra-supercritical coal- fired (AUSC) boilers, steam turbines and gas turbines. HVOF thermal spraying is the preferred method for producing coatings with low porosity and high adhesion. HVOF thermal spray process has been shown to be one of the most efficient techniques to deposit high performance coatings at moderate cost. Variables affecting the deposit formation and coating properties include hardware characteristics such as nozzle geometry and spraying distance and process parameters such as equivalence ratio, gas flow density, and powder feedstock. In the spray process, the powder particles experience very high speeds combined with fast heating to the powder material melting point or above. This high temperature causes evaporation of the powder, dissolution, and phase transformations. Due to the complex nature of the HVOF technique, the control and optimization of the process is difficult. In general, good coating quality with suitable properties and required performance for specific applications is the goal in producing thermal spray coatings. In order to reach this goal, a deeper understanding of the spray process as a whole is needed. Although many researchers studied commercial HVOF thermal spray

  16. Identification and Discrimination of Brands of Fuels by Gas Chromatography and Neural Networks Algorithm in Forensic Research

    PubMed Central

    Ugena, L.; Moncayo, S.; Manzoor, S.; Rosales, D.

    2016-01-01

    The detection of adulteration of fuels and its use in criminal scenes like arson has a high interest in forensic investigations. In this work, a method based on gas chromatography (GC) and neural networks (NN) has been developed and applied to the identification and discrimination of brands of fuels such as gasoline and diesel without the necessity to determine the composition of the samples. The study included five main brands of fuels from Spain, collected from fifteen different local petrol stations. The methodology allowed the identification of the gasoline and diesel brands with a high accuracy close to 100%, without any false positives or false negatives. A success rate of three blind samples was obtained as 73.3%, 80%, and 100%, respectively. The results obtained demonstrate the potential of this methodology to help in resolving criminal situations. PMID:27375919

  17. Component Hiding Using Identification and Boundary Blurring Techniques

    DTIC Science & Technology

    2010-03-01

    number of PC processors, type of operating system , and hard drive speed. We do not analyze these parameters during this research. 30 3.8 Factors...performance of the identification tool and reduce system I/O operations . 5.3.4 Error Checking in BENCH File Tool. Time required to produce circuit...domain knowledge in program understanding”. Ann. Softw. Eng., 9(1-4):143–192, 2000. ISSN 1022-7091. 13. Tanenbaum , Andrew . “News Summary of Broken Dutch

  18. Identification of cancer protein biomarkers using proteomic techniques

    DOEpatents

    Mor, Gil G.; Ward, David C.; Bray-Ward, Patricia

    2010-02-23

    The claimed invention describes methods to diagnose or aid in the diagnosis of cancer. The claimed methods are based on the identification of biomarkers which are particularly well suited to discriminate between cancer subjects and healthy subjects. These biomarkers were identified using a unique and novel screening method described herein. The biomarkers identified herein can also be used in the prognosis and monitoring of cancer. The invention comprises the use of leptin, prolactin, OPN and IGF-II for diagnosing, prognosis and monitoring of ovarian cancer.

  19. Identification of cancer protein biomarkers using proteomic techniques

    DOEpatents

    Mor, Gil G.; Ward, David C.; Bray-Ward, Patricia

    2016-10-18

    The claimed invention describes methods to diagnose or aid in the diagnosis of cancer. The claimed methods are based on the identification of biomarkers which are particularly well suited to discriminate between cancer subjects and healthy subjects. These biomarkers were identified using a unique and novel screening method described herein. The biomarkers identified herein can also be used in the prognosis and monitoring of cancer. The invention comprises the use of leptin, prolactin, OPN and IGF-II for diagnosing, prognosis and monitoring of ovarian cancer.

  20. Identification of cancer protein biomarkers using proteomic techniques

    DOEpatents

    Mor, Gil G; Ward, David C; Bray-Ward, Patricia

    2015-03-10

    The claimed invention describes methods to diagnose or aid in the diagnosis of cancer. The claimed methods are based on the identification of biomarkers which are particularly well suited to discriminate between cancer subjects and healthy subjects. These biomarkers were identified using a unique and novel screening method described herein. The biomarkers identified herein can also be used in the prognosis and monitoring of cancer. The invention comprises the use of leptin, prolactin, OPN and IGF-II for diagnosing, prognosis and monitoring of ovarian cancer.

  1. A delayed neutron technique for measuring induced fission rates in fresh and burnt LWR fuel

    NASA Astrophysics Data System (ADS)

    Jordan, K. A.; Perret, G.

    2011-04-01

    The LIFE@PROTEUS program at the Paul Scherrer Institut is being undertaken to characterize the interfaces between burnt and fresh fuel assemblies in modern LWRs. Techniques are being developed to measure fission rates in burnt fuel following re-irradiation in the zero-power PROTEUS research reactor. One such technique utilizes the measurement of delayed neutrons. To demonstrate the feasibility of the delayed neutron technique, fresh and burnt UO 2 fuel samples were irradiated in different positions in the PROTEUS reactor, and their neutron outputs were recorded shortly after irradiation. Fission rate ratios of the same sample irradiated in two different positions (inter-positional) and of two different samples irradiated in the same position (inter-sample) were derived from the measurements and compared with Monte Carlo predictions. Derivation of fission rate ratios from the delayed neutron measured signal requires correcting the signal for the delayed neutron source properties, the efficiency of the measurement setup, and the time dependency of the signal. In particular, delayed neutron source properties strongly depend on the fissile and fertile isotopes present in the irradiated sample and must be accounted for when deriving inter-sample fission rate ratios. Measured inter-positional fission rate ratios generally agree within 1σ uncertainty (on the order of 1.0%) with the calculation predictions. For a particular irradiation position, however, a bias of about 2% is observed and is currently under investigation. Calculated and measured inter-sample fission rate ratios have C/E values deviating from unity by less than 1% and within 2σ of the statistical uncertainties. Uncertainty arising from delayed neutron data is also assessed, and is found to give an additional 3% uncertainty factor. The measurement data indicate that uncertainty is overestimated.

  2. A new computer-assisted technique to aid personal identification.

    PubMed

    De Angelis, Danilo; Sala, Remo; Cantatore, Angela; Grandi, Marco; Cattaneo, Cristina

    2009-07-01

    The paper describes a procedure aimed at identification from two-dimensional (2D) images (video-surveillance tapes, for example) by comparison with a three-dimensional (3D) facial model of a suspect. The application is intended to provide a tool which can help in analyzing compatibility or incompatibility between a criminal and a suspect's facial traits. The authors apply the concept of "geometrically compatible images". The idea is to use a scanner to reconstruct a 3D facial model of a suspect and to compare it to a frame extracted from the video-surveillance sequence which shows the face of the perpetrator. Repositioning and reorientation of the 3D model according to subject's face framed in the crime scene photo are manually accomplished, after automatic resizing. Repositioning and reorientation are performed in correspondence of anthropometric landmarks, distinctive for that person and detected both on the 2D face and on the 3D model. In this way, the superimposition between the original two-dimensional facial image and the three-dimensional one is obtained and a judgment is formulated by an expert on the basis of the fit between the anatomical facial districts of the two subjects. The procedure reduces the influence of face orientation and may be a useful tool in identification.

  3. Towards large-scale FAME-based bacterial species identification using machine learning techniques.

    PubMed

    Slabbinck, Bram; De Baets, Bernard; Dawyndt, Peter; De Vos, Paul

    2009-05-01

    In the last decade, bacterial taxonomy witnessed a huge expansion. The swift pace of bacterial species (re-)definitions has a serious impact on the accuracy and completeness of first-line identification methods. Consequently, back-end identification libraries need to be synchronized with the List of Prokaryotic names with Standing in Nomenclature. In this study, we focus on bacterial fatty acid methyl ester (FAME) profiling as a broadly used first-line identification method. From the BAME@LMG database, we have selected FAME profiles of individual strains belonging to the genera Bacillus, Paenibacillus and Pseudomonas. Only those profiles resulting from standard growth conditions have been retained. The corresponding data set covers 74, 44 and 95 validly published bacterial species, respectively, represented by 961, 378 and 1673 standard FAME profiles. Through the application of machine learning techniques in a supervised strategy, different computational models have been built for genus and species identification. Three techniques have been considered: artificial neural networks, random forests and support vector machines. Nearly perfect identification has been achieved at genus level. Notwithstanding the known limited discriminative power of FAME analysis for species identification, the computational models have resulted in good species identification results for the three genera. For Bacillus, Paenibacillus and Pseudomonas, random forests have resulted in sensitivity values, respectively, 0.847, 0.901 and 0.708. The random forests models outperform those of the other machine learning techniques. Moreover, our machine learning approach also outperformed the Sherlock MIS (MIDI Inc., Newark, DE, USA). These results show that machine learning proves very useful for FAME-based bacterial species identification. Besides good bacterial identification at species level, speed and ease of taxonomic synchronization are major advantages of this computational species

  4. Coordinated Parameter Identification Technique for the Inertial Parameters of Non-Cooperative Target

    PubMed Central

    Ning, Xin; Zhang, Teng; Wu, Yaofa; Zhang, Pihui; Zhang, Jiawei; Li, Shuai; Yue, Xiaokui; Yuan, Jianping

    2016-01-01

    Space operations will be the main space missions in the future. This paper focuses on the precise operations for non-cooperative target, and researches of coordinated parameter identification (CPI) which allows the motion of multi-joints. The contents of this paper are organized: (1) Summarize the inertial parameters identification techniques which have been conducted now, and the technique based on momentum conservation is selected for reliability and realizability; (2) Elaborate the basic principles and primary algorithm of coordinated parameter identification, and analyze some special problems in calculation (3) Numerical simulation of coordinated identification technique by an case study on non-cooperative target of spacecraft mounting dual-arm with six joints is done. The results show that the coordinated parameter identification technique could get all the inertial parameters of the target in 3D by one-time identification, and does not need special configuration or driven joints, moreover the results are highly precise and save much more time than traditional ones. PMID:27116187

  5. Combining pole and ramp-based techniques for target identification

    SciTech Connect

    Miller, E.K.; Clark, G.A.; Poe, G.D.; Cook, B.D.; Jackson, J.A.

    1984-08-01

    The problem of deducing the geometry and electrical characteristics of a radar target from its scattered fields is one of continuing interest. This general problem is one which may be decomposed into a sequence of problems of increasing difficulty, as: (1) detection; (2) classification; (3) identification; and (4) imaging or inversion. Generally speaking, the amount of data which is needed, and the amount of processing that data will require, can be expected to grow commensurately with the specificity and confidence in the answer being sought. The general inverse problem is by far the most difficult of those listed above. Fortunately, many problems of practical importance do not require the most general answer. For example, airborne radar targets naturally fall into one or more of a few sets, i.e., friend or foe, missile or aircraft, etc. In such circumstances, their classification and identification (C/I) can be based less on a rigorous inverse approach and more on whether their radar signatures match prestored information about the targets of potential interest. This prestored information is usually given as a set of parameters, or feature set. The success of such an approach will depend in part on the degree to which the features span the space of target-radar and target-geometry characteristics, individually and as a set. When the features chosen are target-radar characteristics, we observe that it is the data domain in which C/I is being attempted. On the other hand, when the features are derived from the radar signature to yield target-geometry characteristics, we see that C/I is being pursued in the target domain. Clearly, target-domain features would be more desirable, everything else being equal, because these are features closer to describing the target in ways which are recognizable to human observers. 59 references.

  6. Comparison of Three Statistical Classification Techniques for Maser Identification

    NASA Astrophysics Data System (ADS)

    Manning, Ellen M.; Holland, Barbara R.; Ellingsen, Simon P.; Breen, Shari L.; Chen, Xi; Humphries, Melissa

    2016-04-01

    We applied three statistical classification techniques-linear discriminant analysis (LDA), logistic regression, and random forests-to three astronomical datasets associated with searches for interstellar masers. We compared the performance of these methods in identifying whether specific mid-infrared or millimetre continuum sources are likely to have associated interstellar masers. We also discuss the interpretability of the results of each classification technique. Non-parametric methods have the potential to make accurate predictions when there are complex relationships between critical parameters. We found that for the small datasets the parametric methods logistic regression and LDA performed best, for the largest dataset the non-parametric method of random forests performed with comparable accuracy to parametric techniques, rather than any significant improvement. This suggests that at least for the specific examples investigated here accuracy of the predictions obtained is not being limited by the use of parametric models. We also found that for LDA, transformation of the data to match a normal distribution led to a significant improvement in accuracy. The different classification techniques had significant overlap in their predictions; further astronomical observations will enable the accuracy of these predictions to be tested.

  7. Data Mining Techniques to Estimate Plutonium, Initial Enrichment, Burnup, and Cooling Time in Spent Fuel Assemblies

    SciTech Connect

    Trellue, Holly Renee; Fugate, Michael Lynn; Tobin, Stephen Joesph

    2015-03-19

    The Next Generation Safeguards Initiative (NGSI), Office of Nonproliferation and Arms Control (NPAC), National Nuclear Security Administration (NNSA) of the U.S. Department of Energy (DOE) has sponsored a multi-laboratory, university, international partner collaboration to (1) detect replaced or missing pins from spent fuel assemblies (SFA) to confirm item integrity and deter diversion, (2) determine plutonium mass and related plutonium and uranium fissile mass parameters in SFAs, and (3) verify initial enrichment (IE), burnup (BU), and cooling time (CT) of facility declaration for SFAs. A wide variety of nondestructive assay (NDA) techniques were researched to achieve these goals [Veal, 2010 and Humphrey, 2012]. In addition, the project includes two related activities with facility-specific benefits: (1) determination of heat content and (2) determination of reactivity (multiplication). In this research, a subset of 11 integrated NDA techniques was researched using data mining solutions at Los Alamos National Laboratory (LANL) for their ability to achieve the above goals.

  8. Characterization of (Th,U)O 2 fuel pellets made by impregnation technique

    NASA Astrophysics Data System (ADS)

    Kutty, T. R. G.; Nair, M. R.; Sengupta, P.; Basak, U.; Kumar, Arun; Kamath, H. S.

    2008-02-01

    Impregnation technique is an attractive alternative for manufacturing highly radiotoxic 233U bearing thoria based mixed oxide fuel pellets, which are remotely treated in hot cell or shielded glove-box facilities. This technique is being investigated to fabricate the fuel for the forthcoming Indian Advanced Heavy Water Reactor (AHWR). In the impregnation process, porous ThO 2 pellets are prepared in an unshielded facility which are then impregnated with 1.5 molar uranyl nitrate solution in a shielded facility. The resulting composites are dried and denitrated at 500 °C and then sintered in reducing/oxidizing atmosphere to obtain high density (Th,U)O 2 pellets. In this work, the densification behaviour of ThO 2-2% UO 2 and ThO 2-4% UO 2 pellets was studied in reducing and oxidizing atmospheres using a high temperature dilatometer. Densification was found to be larger in air than in Ar-8% H 2. The characterization of the sintered pellets was made by optical microscopy, scanning electron microscopy (SEM) and electron probe microanalysis (EPMA). The grain structure of ThO 2-2% UO 2 and ThO 2-4% UO 2 pellets was uniform. The EPMA data confirmed that the uranium concentration was slightly higher at the periphery of the pellet than that at the centre.

  9. Projects for introduction of coal-water fuel technique in Ukraine

    SciTech Connect

    Papayani, F.A.; Switly, Y.G.; Vlasov, Y.F.; Titov, Y.V.; Khilko, S.L.

    1996-12-31

    Dramatic reduction in oil and gas supplies to Ukraine and the lack of its own developed oil production industry considerably raise the significance of coal in the fuel and energy complex of the country. Higher consumption of coal and simultaneous deterioration of its quality, however, come into conflict with environmental regulations, which is most strongly pronounced in such industrial-developed, densely-populated areas as the Donbas. Combustion problems with gas and candle coals are associated with the combustion efficiency and ecology, whereas in the case of brown and lean coals as well as anthracites, a combustion technique is the primary concern, which accounts for quite a limited application of the above coals for power generation. The abundant resources of brown, lean and hard coals in Ukraine create favorable conditions for wide introduction of coal-water fuel (CWF) produced primarily from the above ranks into the national heat and power industry. On the other hand, these coals are the least investigated in terms of a CWF technique. Small studies have been undertaken, but larger studies on a pilot scale are, for the present, economically impossible given the current situation in the Ukraine coal industry.

  10. [Study on identification of four kinds of Gentianaceae Mongolian medicine Digeda with spectroscopy techniques].

    PubMed

    Lv, Li-juan; Guo, Yong-hui; Zhao, Ya-chan; Zhao, Dong-dong; Li, Min-hui

    2015-03-01

    To study the identification of Gentianaceae Mongolian medicine Digeda with spectroscopy techniques, near infrared spectroscopy and differential scanning calorimetry techniques were applied to study on the identification of 4 kinds of Gentianaceae Mongolian medicine Digeda, and characteristic spectrums obtained were systematically analyzed. In NIR study, the four species of Digeda exist some differences in 4 250-4 400 cm(-1) and 5 650-5 800 cm(-1) of one-dimensional spectra, and show significant differences in 4 100- 4 400 cm(-1), 4 401-4 900 cm(-1) and 5 400-5 800 cm(-1) of the second derivative spectra. DSC curves of them present distinct topological pattern, characteristic peak and peak temperature. Using near infrared spectroscopy and differential scanning calorimetry analysis can realize efficient and accurate identification of four kinds of Mongolian medicine Digeda, and provide scientific basis for the efficient and accurate identification of other Gentianaceae Mongolian medicine Digeda.

  11. Rocket engine failure detection using system identification techniques

    NASA Technical Reports Server (NTRS)

    Meyer, Claudia M.; Zakrajsek, June F.

    1990-01-01

    The theoretical foundation and application of two univariate failure detection algorithms to Space Shuttle Main Engine (SSME) test firing data is presented. Both algorithms were applied to data collected during steady state operation of the engine. One algorithm, the time series algorithm, is based on time series techniques and involves the computation of autoregressive models. Time series techniques have been previously applied to SSME data. The second algorithm is based on standard signal processing techniques. It consists of tracking the variations in the average signal power with time. The average signal power algorithm is a newly proposed SSME failure detection algorithm. Seven nominal test firings were used to develop failure indication thresholds for each algorithm. These thresholds were tested using four anomalous firings and one additional nominal firing. Both algorithms provided significantly earlier failure indication times than did the current redline limit system. Neither algorithm gave false failure indications for the nominal firing. The strengths and weaknesses of the two algorithms are discussed and compared. The average signal algorithm was found to have several advantages over the time series algorithm.

  12. A novel system identification technique for improved wearable hemodynamics assessment.

    PubMed

    Wiens, Andrew D; Inan, Omer T

    2015-05-01

    Recent advances have led to renewed interest in ballistocardiography (BCG), a noninvasive measure of the small movements of the body due to cardiovascular events. A broad range of platforms have been developed and verified for BCG measurement including beds, chairs, and weighing scales: while the body is coupled to such a platform, the cardiogenic movements are measured. Wearable BCG, measured with an accelerometer affixed to the body, may enable continuous, or more regular, monitoring during the day; however, the signals from such wearable BCGs represent local or distal accelerations of skin and tissue rather than the whole body. In this paper, we propose a novel method to reconstruct the BCG measured with a weighing scale (WS BCG) from a wearable sensor via a training step to remove these local effects. Preliminary validation of this method was performed with 15 subjects: the wearable sensor was placed at three locations on the surface of the body while WS BCG measurements were recorded simultaneously. A regularized system identification approach was used to reconstruct the WS BCG from the wearable BCG. Preliminary results suggest that the relationship between local and central disturbances is highly dependent on both the individual and the location where the accelerometer is placed on the body and that these differences can be resolved via calibration to accurately measure changes in cardiac output and contractility from a wearable sensor. Such measurements could be highly effective, for example, for improved monitoring of heart failure patients at home.

  13. MICRO/NANO-STRUCTURAL EXAMINATION AND FISSION PRODUCT IDENTIFICATION IN NEUTRON IRRADIATED AGR-1 TRISO FUEL

    SciTech Connect

    van Rooyen, I. J.; Lillo, T. M.; Wen, H. M.; Hill, C. M.; Holesinger, T. G.; Wu, Y. Q.; Aguiara, J. A.

    2016-11-01

    Advanced microscopic and microanalysis techniques were developed and applied to study irradiation effects and fission product behavior in selected low-enriched uranium oxide/uranium carbide TRISO-coated particles from fuel compacts in six capsules irradiated to burnups of 11.2 to 19.6% FIMA. Although no TRISO coating failures were detected during the irradiation, the fraction of Ag-110m retained in individual particles often varied considerably within a single compact and at the capsule level. At the capsule level Ag-110m release fractions ranged from 1.2 to 38% and within a single compact, silver release from individual particles often spanned a range that extended from 100% retention to nearly 100% release. In this paper, selected irradiated particles from Baseline, Variant 1 and Variant 3 type fueled TRISO coated particles were examined using Scanning Electron Microscopy, Atom Probe Tomography; Electron Energy Loss Spectroscopy; Precession Electron Diffraction, Transmission Electron Microscopy, Scanning Transmission Electron Microscopy (STEM), High Resolution Electron Microscopy (HRTEM) examinations and Electron Probe Micro-Analyzer. Particle selection in this study allowed for comparison of the fission product distribution with Ag retention, fuel type and irradiation level. Nano sized Ag-containing features were predominantly identified in SiC grain boundaries and/or triple points in contrast with only two sitings of Ag inside a SiC grain in two different compacts (Baseline and Variant 3 fueled compacts). STEM and HRTEM analysis showed evidence of Ag and Pd co-existence in some cases and it was found that fission product precipitates can consist of multiple or single phases. STEM analysis also showed differences in precipitate compositions between Baseline and Variant 3 fuels. A higher density of fission product precipitate clusters were identified in the SiC layer in particles from the Variant 3 compact compared with the Variant 1 compact. Trend analysis shows

  14. An evaluation of the carbon balance technique for estimating emission factors and fuel consumption in forest fires

    Treesearch

    Nelson, Jr. Ralph M.

    1982-01-01

    Eighteen experimental fires were used to compare measured and calculated values for emission factors and fuel consumption to evaluate the carbon balance technique. The technique is based on a model for the emission factor of carbon dioxide, corrected for the production of other emissions, and which requires measurements of effluent concentrations and air volume in the...

  15. Performance comparison of five frequency domain system identification techniques for helicopter higher harmonic control

    NASA Technical Reports Server (NTRS)

    Jacklin, Stephen A.

    1988-01-01

    This paper presents the results of a computer simulation comparing the performance of five system identification techniques currently proposed for use with helicopter, frequency domain, higher harmonic vibration control algorithms. The system identification techniques studied were: (1) the weighted least squares method in moving block format, (2) the classical Kalman filter, (3) a generalized Kalman filter, (4) the classical least mean square (LMS) filter, and (5) a generalized LMS filter. The generalized Kalman and LMS filters were derived by allowing for multistep operation, rather than the single-step update approach used by their classical versions. Both open-loop and closed-loop (vibration control mode) identification results are presented in the paper. The algorithms are evaluated in terms of their accuracy, stability, convergence properties, computation speeds, and the relative ease with which these techniques may be directly applied to the helicopter vibration control problem.

  16. Modeling XV-15 tilt-rotor aircraft dynamics by frequency and time-domain identification techniques

    NASA Technical Reports Server (NTRS)

    Tischler, Mark B.; Kaletka, Juergen

    1987-01-01

    Models of the open-loop hover dynamics of the XV-15 Tilt-Rotor Aircraft are extracted from flight data using two approaches: frequency domain and time-domain identification. Both approaches are reviewed and the identification results are presented and compared in detail. The extracted models are compared favorably, with the differences associated mostly with the inherent weighing of each technique. Step responses are used to show that the predictive capability of the models from both techniques is excellent. Based on the results of this study, the relative strengths and weaknesses of the frequency and time-domain techniques are summarized and a proposal for a coordinated parameter identification approach is presented.

  17. Modeling XV-15 tilt-rotor aircraft dynamics by frequency and time-domain identification techniques

    NASA Technical Reports Server (NTRS)

    Tischler, Mark B.; Kaletka, Juergen

    1986-01-01

    Models of the open-loop hover dynamics of the XV-15 Tilt-Rotor Aircraft are extracted from flight data using two approaches: frequency-domain and time-domain identification. Both approaches are reviewed and the identification results are presented and compared in detail. The extracted models compare favorable, with the differences associated mostly with the inherent weighting of each technique. Step responses are used to show that the predictive capability of the models from both techniques is excellent. Based on the results of this study, the relative strengths and weaknesses of the frequency- and time-domain techniques are summarized, and a proposal for a coordinated parameter identification approach is presented.

  18. A Novel System Identification Technique for Improved Wearable Hemodynamics Assessment

    PubMed Central

    Wiens, Andrew D.; Inan, Omer T.

    2015-01-01

    Recent advances have led to renewed interest in ballistocardiography (BCG), a non-invasive measure of the small reaction forces on the body from cardiovascular events. A broad range of platforms have been developed and verified for BCG measurement including beds, chairs, and weighing scales: while the body is coupled to such a platform, the cardiogenic movements of the center-of-mass (COM) are measured. Wearable BCG, measured with an accelerometer affixed to the body, may enable continuous, or more regular, monitoring during the day; however, the signals from such wearable BCGs represent local or distal accelerations of skin and tissue rather than the displacement of the body's COM. In this paper we propose a novel method to reconstruct the COM BCG from a wearable sensor via a training step to remove these local effects. Preliminary validation of this method was performed with fifteen subjects: the wearable sensor was placed at three locations on the surface of the body while COM BCG measurements were recorded simultaneously with a modified weighing scale. A regularized system identification approach was used to reconstruct the COM BCG from the wearable signal. Preliminary results suggest that the relationship between local and central forces is highly dependent on both the individual and the location where the wearable sensor is placed on the body and that these differences can be resolved via calibration to accurately measure changes in cardiac output and contractility from a wearable sensor. Such measurements could be highly effective, for example, for improved monitoring of heart failure patients at home. PMID:25561589

  19. Predicting fissile content of spent nuclear fuel assemblies with the passive neutron Albedo reactivity technique and Monte Carlo code emulation

    SciTech Connect

    Conlin, Jeremy Lloyd; Tobin, Stephen J

    2010-10-13

    There is a great need in the safeguards community to be able to nondestructively quantify the mass of plutonium of a spent nuclear fuel assembly. As part of the Next Generation of Safeguards Initiative, we are investigating several techniques, or detector systems, which, when integrated, will be capable of quantifying the plutonium mass of a spent fuel assembly without dismantling the assembly. This paper reports on the simulation of one of these techniques, the Passive Neutron Albedo Reactivity with Fission Chambers (PNAR-FC) system. The response of this system over a wide range of spent fuel assemblies with different burnup, initial enrichment, and cooling time characteristics is shown. A Monte Carlo method of using these modeled results to estimate the fissile content of a spent fuel assembly has been developed. A few numerical simulations of using this method are shown. Finally, additional developments still needed and being worked on are discussed.

  20. Imaging of Droplets and Vapor Distributions in a Diesel Fuel Spray by Means of a Laser Absorption Scattering Technique

    NASA Astrophysics Data System (ADS)

    Zhang, Yu-Yin; Yoshizaki, Takuo; Nishida, Keiya

    2000-11-01

    The droplets and vapor distributions in a fuel spray were imaged by a dual-wavelength laser absorption scattering technique. 1,3-dimethylnaphthalene, which has physical properties similar to those of Diesel fuel, strongly absorbs the ultraviolet light near the fourth harmonic (266 nm) of a Nd:YAG laser but is nearly transparent to the visible light near the second harmonic (532 nm) of a Nd:YAG laser. Therefore, droplets and vapor distributions in a Diesel spray can be visualized by an imaging system that uses a Nd:YAG laser as the incident light and 1,3-dimethylnaphthalene as the test fuel. For a quantitative application consideration, the absorption coefficients of dimethylnapthalene vapor at different temperatures and pressures were examined with an optical spectrometer. The findings of this study suggest that this imaging technique has great promise for simultaneously obtaining quantitative information of droplet density and vapor concentration in Diesel fuel spray.

  1. Imaging of droplets and vapor distributions in a diesel fuel spray by means of a laser absorption-scattering technique.

    PubMed

    Zhang, Y Y; Yoshizaki, T; Nishida, K

    2000-11-20

    The droplets and vapor distributions in a fuel spray were imaged by a dual-wavelength laser absorption-scattering technique. 1,3-dimethylnaphthalene, which has physical properties similar to those of Diesel fuel, strongly absorbs the ultraviolet light near the fourth harmonic (266 nm) of a Nd:YAG laser but is nearly transparent to the visible light near the second harmonic (532 nm) of a Nd:YAG laser. Therefore, droplets and vapor distributions in a Diesel spray can be visualized by an imaging system that uses a Nd:YAG laser as the incident light and 1,3-dimethylnaphthalene as the test fuel. For a quantitative application consideration, the absorption coefficients of dimethylnapthalene vapor at different temperatures and pressures were examined with an optical spectrometer. The findings of this study suggest that this imaging technique has great promise for simultaneously obtaining quantitative information of droplet density and vapor concentration in Diesel fuel spray.

  2. Wafer hot spot identification through advanced photomask characterization techniques

    NASA Astrophysics Data System (ADS)

    Choi, Yohan; Green, Michael; McMurran, Jeff; Ham, Young; Lin, Howard; Lan, Andy; Yang, Richer; Lung, Mike

    2016-10-01

    As device manufacturers progress through advanced technology nodes, limitations in standard 1-dimensional (1D) mask Critical Dimension (CD) metrics are becoming apparent. Historically, 1D metrics such as Mean to Target (MTT) and CD Uniformity (CDU) have been adequate for end users to evaluate and predict the mask impact on the wafer process. However, the wafer lithographer's process margin is shrinking at advanced nodes to a point that the classical mask CD metrics are no longer adequate to gauge the mask contribution to wafer process error. For example, wafer CDU error at advanced nodes is impacted by mask factors such as 3-dimensional (3D) effects and mask pattern fidelity on subresolution assist features (SRAFs) used in Optical Proximity Correction (OPC) models of ever-increasing complexity. These items are not quantifiable with the 1D metrology techniques of today. Likewise, the mask maker needs advanced characterization methods in order to optimize the mask process to meet the wafer lithographer's needs. These advanced characterization metrics are what is needed to harmonize mask and wafer processes for enhanced wafer hot spot analysis. In this paper, we study advanced mask pattern characterization techniques and their correlation with modeled wafer performance.

  3. [THE COMPARATIVE ANALYSIS OF TECHNIQUES OF IDENTIFICATION OF CORYNEBACTERIUM NON DIPHTHERIAE].

    PubMed

    Kharseeva, G G; Voronina, N A; Mironov, A Yu; Alutina, E L

    2015-12-01

    The comparative analysis was carried out concerning effectiveness of three techniques of identification of Corynebacterium non diphtheriae: bacteriological, molecular genetic (sequenation on 16SpRNA) andmass-spectrometric (MALDI-ToFMS). The analysis covered 49 strains of Corynebacterium non diphtheriae (C.pseudodiphheriticum, C.amycolatum, C.propinquum, C.falsenii) and 2 strains of Corynebacterium diphtheriae isolated under various pathology form urogenital tract and upper respiratory ways. The corinbacteria were identified using bacteriologic technique, sequenation on 16SpRNA and mass-spectrometric technique (MALDIToF MS). The full concordance of results of species' identification was marked in 26 (51%) of strains of Corynebacterium non diphtheriae at using three analysis techniques; in 43 (84.3%) strains--at comparison of bacteriologic technique with sequenation on 16S pRNA and in 29 (57%)--at mass-spectrometric analysis and sequenation on 16S pRNA. The bacteriologic technique is effective for identification of Corynebacterium diphtheriae. The precise establishment of species belonging of corynebacteria with variable biochemical characteristics the molecular genetic technique of analysis is to be applied. The mass-spectrometric technique (MALDI-ToF MS) requires further renewal of data bases for identifying larger spectrum of representatives of genus Corynebacterium.

  4. Direct Experimental Evaluation of the Grain Boundaries Gas Content in PWR fuels: New Insight and Perspective of the ADAGIO Technique

    SciTech Connect

    Pontillon, Y.; Noirot, J.; Caillot, L.

    2007-07-01

    Over the last decades, many analytical experiments (in-pile and out-of-pile) have underlined the active role of the inter-granular gases on the global fuel transient behavior under accidental conditions such as RIA and/or LOCA. In parallel, the improvement of fission gas release modeling in nuclear fuel performance codes needs direct experimental determination/validation regarding the local gas distribution inside the fuel sample. In this context, an experimental program, called 'ADAGIO' (French acronym for Discriminating Analysis of Accumulation of Inter-granular and Occluded Gas), has been initiated through a joint action of CEA, EDF and AREVA NP in order to develop a new device/technique for quantitative and direct measurement of local fission gas distribution within an irradiated fuel pellet. ADAGIO technique is based on the fact that fission gas inventory (intra and inter-granular parts) can be distinguished by controlled fuel oxidation, since grain boundaries oxidize faster than the bulk. The purpose of the current paper is to present both the methodology and the associated results of the ADAGIO program performed at CEA. It has been divided into two main parts: (i) feasibility (UO{sub 2} and MOX fuels), (ii) application on high burn up UO{sub 2} fuel. (authors)

  5. Underwater DVI: Simple fingerprint technique for positive identification.

    PubMed

    Khoo, Lay See; Hasmi, Ahmad Hafizam; Mahmood, Mohd Shah; Vanezis, Peter

    2016-09-01

    An underwater disaster can be declared when a maritime accident occurred or when an aircraft is plunged into water area, be it ocean, sea or river. Nevertheless, handling of human remains in an underwater recovery operation is often a difficult and demanding task as working conditions may be challenging with poor to no visibility, location of remains at considerable depths and associated hazards from surrounding water. A case of the recent helicopter crash, into a famous river in Sarawak, domiciled by huge crocodiles, is discussed in this paper. Search and recovery team as well as the combat divers from the Special Elite Troop Commando, known as VAT 69, were deployed to the scene to perform the underwater recovery to search for all the victims on board involving five Malaysians with a pilot of Philippines nationality. This paper highlights the limitations and challenges faced during the underwater search and recovery. All the bodies recovered were in moderate decomposition stage with crushed injuries and mutilated face and body. A simple and conventional fingerprint technique were used to record the fingerprint. The prints impressions were later photographed using a smartphone and transferred back to the RMP headquarters in Kuala Lumpur for fingerprint match by using WhatsApp Messenger, a phone application. All the first five victims were identified within an average of 10min. The last victim recovered was the pilot. For foreign nationals, the Immigration Department of Malaysia will record the prints of both index fingers only. The lifting of the fingerprint of the last victim was the most challenging in which only one index finger left that can be used for comparison. A few techniques were attempted using the black printer's ink, glass and tape techniques for the last victim. Subsequently, images of the prints impression were taken using the same smartphone with additional macro lens attached to it to enhance the resolution. The images were transferred to the RMP

  6. An Identification Technique for Non-Linear Dynamical Systems Under Stochastic Excitations

    NASA Astrophysics Data System (ADS)

    Kulisiewicz, M.; Iwankiewicz, R.; Piesiak, S.

    1997-02-01

    An identification technique is devised for SDOF dynamical mechanical systems under random excitations. The system is assumed to be governed by a non-linear equation of motion in general form, in which the restoring force and the dissipative terms are given by arbitrary power functions. Algebraic equations are obtained for the expectations of some suitable excitation and response quantities. It is shown that these equations are valid for any stationary random excitations if the system attains the steady state. Based on these equations, an identification technique has been devised and verified experimentally for white noise and coloured (pink) noise random excitations.

  7. Identification of unique repeated patterns, location of mutation in DNA finger printing using artificial intelligence technique.

    PubMed

    Mukunthan, B; Nagaveni, N

    2014-01-01

    In genetic engineering, conventional techniques and algorithms employed by forensic scientists to assist in identification of individuals on the basis of their respective DNA profiles involves more complex computational steps and mathematical formulae, also the identification of location of mutation in a genomic sequence in laboratories is still an exigent task. This novel approach provides ability to solve the problems that do not have an algorithmic solution and the available solutions are also too complex to be found. The perfect blend made of bioinformatics and neural networks technique results in efficient DNA pattern analysis algorithm with utmost prediction accuracy.

  8. Detection and Identification of Sulfur Compounds in an Australian Jet Fuel

    DTIC Science & Technology

    2010-06-01

    Australian Jet Fuel Executive Summary Jet fuel contains a wide range of sulfur compounds that affect the properties and performance of...the fuel in a number of ways, including corrosion of uncoated metals, effects on fuel lubricity, and on both thermal and storage stability properties ...All of these properties are ongoing concerns for the ADF. Jet fuel used by the ADF has its sulfur content controlled through specification DEF(AUST

  9. Identification of optimal solar fuel electrocatalysts via high throughput in situ optical measurements

    DOE PAGES

    Shinde, Aniketa; Guevarra, Dan; Haber, Joel A.; ...

    2014-10-21

    For many solar fuel generator designs involve illumination of a photoabsorber stack coated with a catalyst for the oxygen evolution reaction (OER). In this design, impinging light must pass through the catalyst layer before reaching the photoabsorber(s), and thus optical transmission is an important function of the OER catalyst layer. Many oxide catalysts, such as those containing elements Ni and Co, form oxide or oxyhydroxide phases in alkaline solution at operational potentials that differ from the phases observed in ambient conditions. To characterize the transparency of such catalysts during OER operation, 1031 unique compositions containing the elements Ni, Co, Ce,more » La, and Fe were prepared by a high throughput inkjet printing technique. Moreover, the catalytic current of each composition was recorded at an OER overpotential of 0.33 V with simultaneous measurement of the spectral transmission. By combining the optical and catalytic properties, the combined catalyst efficiency was calculated to identify the optimal catalysts for solar fuel applications within the material library. Our measurements required development of a new high throughput instrument with integrated electrochemistry and spectroscopy measurements, which enables various spectroelectrochemistry experiments.« less

  10. Identification of optimal solar fuel electrocatalysts via high throughput in situ optical measurements

    SciTech Connect

    Shinde, Aniketa; Guevarra, Dan; Haber, Joel A.; Jin, Jian; Gregoire, John M.

    2014-10-21

    For many solar fuel generator designs involve illumination of a photoabsorber stack coated with a catalyst for the oxygen evolution reaction (OER). In this design, impinging light must pass through the catalyst layer before reaching the photoabsorber(s), and thus optical transmission is an important function of the OER catalyst layer. Many oxide catalysts, such as those containing elements Ni and Co, form oxide or oxyhydroxide phases in alkaline solution at operational potentials that differ from the phases observed in ambient conditions. To characterize the transparency of such catalysts during OER operation, 1031 unique compositions containing the elements Ni, Co, Ce, La, and Fe were prepared by a high throughput inkjet printing technique. Moreover, the catalytic current of each composition was recorded at an OER overpotential of 0.33 V with simultaneous measurement of the spectral transmission. By combining the optical and catalytic properties, the combined catalyst efficiency was calculated to identify the optimal catalysts for solar fuel applications within the material library. Our measurements required development of a new high throughput instrument with integrated electrochemistry and spectroscopy measurements, which enables various spectroelectrochemistry experiments.

  11. Artificial Intelligence Techniques for the Estimation of Direct Methanol Fuel Cell Performance

    NASA Astrophysics Data System (ADS)

    Hasiloglu, Abdulsamet; Aras, Ömür; Bayramoglu, Mahmut

    2016-04-01

    Artificial neural networks and neuro-fuzzy inference systems are well known artificial intelligence techniques used for black-box modelling of complex systems. In this study, Feed-forward artificial neural networks (ANN) and adaptive neuro-fuzzy inference system (ANFIS) are used for modelling the performance of direct methanol fuel cell (DMFC). Current density (I), fuel cell temperature (T), methanol concentration (C), liquid flow-rate (q) and air flow-rate (Q) are selected as input variables to predict the cell voltage. Polarization curves are obtained for 35 different operating conditions according to a statistically designed experimental plan. In modelling study, various subsets of input variables and various types of membership function are considered. A feed -forward architecture with one hidden layer is used in ANN modelling. The optimum performance is obtained with the input set (I, T, C, q) using twelve hidden neurons and sigmoidal activation function. On the other hand, first order Sugeno inference system is applied in ANFIS modelling and the optimum performance is obtained with the input set (I, T, C, q) using sixteen fuzzy rules and triangular membership function. The test results show that ANN model estimates the polarization curve of DMFC more accurately than ANFIS model.

  12. Automated identification of cancerous smears using various competitive intelligent techniques.

    PubMed

    Dounias, G; Bjerregaard, B; Jantzen, J; Tsakonas, A; Ampazis, N; Panagi, G; Panourgias, E

    2006-01-01

    In this study the performance of various intelligent methodologies is compared in the task of pap-smear diagnosis. The selected intelligent methodologies are briefly described and explained, and then, the acquired results are presented and discussed for their comprehensibility and usefulness to medical staff, either for fault diagnosis tasks, or for the construction of automated computer-assisted classification of smears. The intelligent methodologies used for the construction of pap-smear classifiers, are different clustering approaches, feature selection, neuro-fuzzy systems, inductive machine learning, genetic programming, and second order neural networks. Acquired results reveal the power of most intelligent techniques to obtain high quality solutions in this difficult problem of medical diagnosis. Some of the methods obtain almost perfect diagnostic accuracy in test data, but the outcome lacks comprehensibility. On the other hand, results scoring high in terms of comprehensibility are acquired from some methods, but with the drawback of achieving lower diagnostic accuracy. The experimental data used in this study were collected at a previous stage, for the purpose of combining intelligent diagnostic methodologies with other existing computer imaging technologies towards the construction of an automated smear cell classification device.

  13. TEM identification of subsurface phases in ternary U-Pu-Zr fuel

    NASA Astrophysics Data System (ADS)

    Aitkaliyeva, Assel; Madden, James W.; Papesch, Cynthia A.; Cole, James I.

    2016-05-01

    Phases and microstructure in as-cast, annealed at 850 °C, and subsequently cooled U-23Pu-9Zr fuel were characterized using scanning and transmission electron microscopy techniques. SEM examination shows formation of three phases in the alloy that were identified in TEM using selective area diffraction pattern analysis: α-Zr globular and elongated δ-UZr2 inclusions and a thick oxide layer formed on top of β-Pu phase, which has been initially assumed to be ζ-(U, Pu). However, further examination of the cross-sectional TEM specimens identified the matrix phases as δ-UZr2, β-Pu, and (U, Zr)ht. Two types of inclusions were observed in the immediate vicinity of the specimen surface and they were consistent with α-Zr and ζ-(U, Pu).

  14. New acoustic techniques for leak detection in fossil fuel plant components

    NASA Astrophysics Data System (ADS)

    Parini, G.; Possa, G.

    Two on-line acoustic monitoring techniques for leak detection in feedwater preheaters and boilers of fossil fuel power plants are presented. The leak detection is based on the acoustic noise produced by the turbulent leak outflow. The primary sensors are piezoelectric pressure transducers, installed near the feedwater preheater inlets, in direct contact with the water, or mounted on boiler observation windows. The frequency band of the auscultation ranges from a few kHz, to 10 to 15 kHz. The signals are characterized by their rms value, continuously recorded by means of potentiometric strip chart recorders. The leak occurrence is signalled by the signal rms overcoming predetermined threshold levels. Sensitivity, reliability, acceptance in plant control practice, and costs-benefits balance are satisfactory.

  15. Comparison of modal identification techniques using a hybrid-data approach

    NASA Technical Reports Server (NTRS)

    Pappa, Richard S.

    1986-01-01

    Modal identification of seemingly simple structures, such as the generic truss is often surprisingly difficult in practice due to high modal density, nonlinearities, and other nonideal factors. Under these circumstances, different data analysis techniques can generate substantially different results. The initial application of a new hybrid-data method for studying the performance characteristics of various identification techniques with such data is summarized. This approach offers new pieces of information for the system identification researcher. First, it allows actual experimental data to be used in the studies, while maintaining the traditional advantage of using simulated data. That is, the identification technique under study is forced to cope with the complexities of real data, yet the performance can be measured unquestionably for the artificial modes because their true parameters are known. Secondly, the accuracy achieved for the true structural modes in the data can be estimated from the accuracy achieved for the artificial modes if the results show similar characteristics. This similarity occurred in the study, for example, for a weak structural mode near 56 Hz. It may even be possible--eventually--to use the error information from the artificial modes to improve the identification accuracy for the structural modes.

  16. Use of DWPF redox measurement technique on glasses from West Valley Nuclear Fuel Services Demonstration Project

    SciTech Connect

    Jantzen, C.M.

    1990-10-01

    Liquid high-level nuclear waste will be immobilized at the Savannah River Site (SRS) by vitrification in borosilicate glass in the Defense Waste Processing Facility (DWPF). A similar vitrification facility exists at the West Valley Nuclear Fuel Services. In both of these facilities, control of the oxidation/reduction (redox) equilibrium in the glass melter is critical for processing of the nuclear waste. Redox can be determined by measuring the ratio of ferrous to ferric ions in the glass melt. A colorimetric procedure has been developed for the DWPF which has been shown to give rapid and reliable analytical results. This colorimetric technique has been shown to measure the Fe{sup 2+} component of glasses more accurately than other existing redox measurement methods. The DWPF redox technique was applied to a series of six glasses taken from the West Valley melter during a transient melter excursion. This excursion caused the glasses to become progressively more reducing with time. Application of the DWPF redox technique to these glasses correctly indicated the redox trends with a higher precision and with more accuracy than the West Valley wet chemical method and/or Alfred University's Mossbauer method. 1 fig., 18 refs.

  17. Parameter identification of aggregated thermostatically controlled loads for smart grids using PDE techniques

    NASA Astrophysics Data System (ADS)

    Moura, Scott; Bendtsen, Jan; Ruiz, Victor

    2014-07-01

    This paper develops methods for model identification of aggregated thermostatically controlled loads (TCLs) in smart grids, via partial differential equation (PDE) techniques. Control of aggregated TCLs provides a promising opportunity to mitigate the mismatch between power generation and demand, thus enhancing grid reliability and enabling renewable energy penetration. To this end, this paper focuses on developing parameter identification algorithms for a PDE-based model of aggregated TCLs. First, a two-state boundary-coupled hyperbolic PDE model for homogenous TCL populations is derived. This model is extended to heterogeneous populations by including a diffusive term, which provides an elegant control-oriented model. Next, a passive parameter identification scheme and a swapping-based identification scheme are derived for the PDE model structure. Simulation results demonstrate the efficacy of each method under various autonomous and non-autonomous scenarios. The proposed models can subsequently be employed to provide system critical information for power system monitoring and control.

  18. Microbial source tracking: a forensic technique for microbial source identification?

    PubMed

    Stapleton, Carl M; Wyer, Mark D; Kay, David; Crowther, John; McDonald, Adrian T; Walters, Martin; Gawler, Andrew; Hindle, Terry

    2007-05-01

    information did not provide quantitative source apportionment for the study catchment. Thus, it could not replace detailed empirical measurement of microbial flux at key catchment outlets to underpin faecal indicator source apportionment. Therefore, the MST techniques reported herein currently may not meet the standards required to be a useful forensic tool, although continued development of the methods and further catchment scale studies could increase confidence in such methods for future application.

  19. The application of a biometric identification technique for linking community and hospital data in rural Ghana

    PubMed Central

    Odei-Lartey, Eliezer Ofori; Boateng, Dennis; Danso, Samuel; Kwarteng, Anthony; Abokyi, Livesy; Amenga-Etego, Seeba; Gyaase, Stephaney; Asante, Kwaku Poku; Owusu-Agyei, Seth

    2016-01-01

    Background The reliability of counts for estimating population dynamics and disease burdens in communities depends on the availability of a common unique identifier for matching general population data with health facility data. Biometric data has been explored as a feasible common identifier between the health data and sociocultural data of resident members in rural communities within the Kintampo Health and Demographic Surveillance System located in the central part of Ghana. Objective Our goal was to assess the feasibility of using fingerprint identification to link community data and hospital data in a rural African setting. Design A combination of biometrics and other personal identification techniques were used to identify individual's resident within a surveillance population seeking care in two district hospitals. Visits from resident individuals were successfully recorded and categorized by the success of the techniques applied during identification. The successes of visits that involved identification by fingerprint were further examined by age. Results A total of 27,662 hospital visits were linked to resident individuals. Over 85% of those visits were successfully identified using at least one identification method. Over 65% were successfully identified and linked using their fingerprints. Supervisory support from the hospital administration was critical in integrating this identification system into its routine activities. No concerns were expressed by community members about the fingerprint registration and identification processes. Conclusions Fingerprint identification should be combined with other methods to be feasible in identifying community members in African rural settings. This can be enhanced in communities with some basic Demographic Surveillance System or census information. PMID:26993473

  20. Identification of co-occurring diseases using ontological data mining techniques.

    PubMed

    Popescu, Mihail

    2007-10-11

    In this work we investigate the identification of co-occurring diseases in a patient database using two ontological data mining techniques: fuzzy clustering and fuzzy co-clustering. We present preliminary results on a pilot data set of 107 patients.

  1. Double-staining techniques allows electrophysiological identification of monoamine-containing neurons.

    PubMed

    Audesirk, T E; Audesirk, G J

    1985-08-01

    Electrophysiological recording provides important evidence for positive identification of many neurons in gastropods. We describe a technique which combines intracellular recording and injection of a persistent, non-fluorescent dye (Fast Green) with subsequent histofluorescence treatment using a modification of the wholemount glyoxylic acid procedure developed by Barber (1983) to establish the presence or absence of monoamine transmitters in positively identified single gastropod neurons.

  2. Shape identification technique for a two-dimensional elliptic system by boundary integral equation method

    NASA Technical Reports Server (NTRS)

    Kojima, Fumio

    1989-01-01

    The geometrical structure of the boundary shape for a two-dimensional boundary value problem is identified. The output least square identification method is considered for estimating partially unknown boundary shapes. A numerical parameter estimation technique using the spline collocation method is proposed.

  3. Characterization of Bond Strength of U-Mo Fuel Plates Using the Laser Shockwave Technique: Capabilities and Preliminary Results

    SciTech Connect

    J. A. Smith; D. L. Cottle; B. H. Rabin

    2013-09-01

    This report summarizes work conducted to-date on the implementation of new laser-based capabilities for characterization of bond strength in nuclear fuel plates, and presents preliminary results obtained from fresh fuel studies on as-fabricated monolithic fuel consisting of uranium-10 wt.% molybdenum alloys clad in 6061 aluminum by hot isostatic pressing. Characterization involves application of two complementary experimental methods, laser-shock testing and laser-ultrasonic imaging, collectively referred to as the Laser Shockwave Technique (LST), that allows the integrity, physical properties and interfacial bond strength in fuel plates to be evaluated. Example characterization results are provided, including measurement of layer thicknesses, elastic properties of the constituents, and the location and nature of generated debonds (including kissing bonds). LST provides spatially localized, non-contacting measurements with minimum specimen preparation, and is ideally suited for applications involving radioactive materials, including irradiated materials. The theoretical principles and experimental approaches employed in characterizing nuclear fuel plates are described, and preliminary bond strength measurement results are discussed, with emphasis on demonstrating the capabilities and limitations of these methods. These preliminary results demonstrate the ability to distinguish bond strength variations between different fuel plates. Although additional development work is necessary to validate and qualify the test methods, these results suggest LST is viable as a method to meet fuel qualification requirements to demonstrate acceptable bonding integrity.

  4. On the combination of delayed neutron and delayed gamma techniques for fission rate measurement in nuclear fuel

    SciTech Connect

    Perret, G.; Jordan, K. A.

    2011-07-01

    Novel techniques to measure newly induced fissions in spent fuel after re-irradiation at low power have been developed and tested at the Proteus zero-power research reactor. The two techniques are based on the detection of high energy gamma-rays emitted by short-lived fission products and delayed neutrons. The two techniques relate the measured signals to the total fission rate, the isotopic composition of the fuel, and nuclear data. They can be combined to derive better estimates on each of these parameters. This has potential for improvement in many areas. Spent fuel characterisation and safeguard applications can benefit from these techniques for non-destructive assay of plutonium content. Another application of choice is the reduction of uncertainties on nuclear data. As a first application of the combination of the delayed neutron and gamma measurement techniques, this paper shows how to reduce the uncertainties on the relative abundances of the longest delayed neutron group for thermal fissions in {sup 235}U, {sup 239}Pu and fast fissions in {sup 238}U. The proposed experiments are easily achievable in zero-power research reactors using fresh UO{sub 2} and MOX fuel and do not require fast extraction systems. The relative uncertainties (1{sigma}) on the relative abundances are expected to be reduced from 13% to 4%, 16% to 5%, and 38% to 12% for {sup 235}U, {sup 238}U and {sup 239}Pu, respectively. (authors)

  5. Multi technique amalgamation for enhanced information identification with content based image data.

    PubMed

    Das, Rik; Thepade, Sudeep; Ghosh, Saurav

    2015-01-01

    Image data has emerged as a resourceful foundation for information with proliferation of image capturing devices and social media. Diverse applications of images in areas including biomedicine, military, commerce, education have resulted in huge image repositories. Semantically analogous images can be fruitfully recognized by means of content based image identification. However, the success of the technique has been largely dependent on extraction of robust feature vectors from the image content. The paper has introduced three different techniques of content based feature extraction based on image binarization, image transform and morphological operator respectively. The techniques were tested with four public datasets namely, Wang Dataset, Oliva Torralba (OT Scene) Dataset, Corel Dataset and Caltech Dataset. The multi technique feature extraction process was further integrated for decision fusion of image identification to boost up the recognition rate. Classification result with the proposed technique has shown an average increase of 14.5 % in Precision compared to the existing techniques and the retrieval result with the introduced technique has shown an average increase of 6.54 % in Precision over state-of-the art techniques.

  6. Applications of integrated human error identification techniques on the chemical cylinder change task.

    PubMed

    Cheng, Ching-Min; Hwang, Sheue-Ling

    2015-03-01

    This paper outlines the human error identification (HEI) techniques that currently exist to assess latent human errors. Many formal error identification techniques have existed for years, but few have been validated to cover latent human error analysis in different domains. This study considers many possible error modes and influential factors, including external error modes, internal error modes, psychological error mechanisms, and performance shaping factors, and integrates several execution procedures and frameworks of HEI techniques. The case study in this research was the operational process of changing chemical cylinders in a factory. In addition, the integrated HEI method was used to assess the operational processes and the system's reliability. It was concluded that the integrated method is a valuable aid to develop much safer operational processes and can be used to predict human error rates on critical tasks in the plant.

  7. How automated image analysis techniques help scientists in species identification and classification?

    PubMed

    Yousef Kalafi, Elham; Town, Christopher; Kaur Dhillon, Sarinder

    2017-09-04

    Identification of taxonomy at a specific level is time consuming and reliant upon expert ecologists. Hence the demand for automated species identification increased over the last two decades. Automation of data classification is primarily focussed on images, incorporating and analysing image data has recently become easier due to developments in computational technology. Research efforts in identification of species include specimens' image processing, extraction of identical features, followed by classifying them into correct categories. In this paper, we discuss recent automated species identification systems, categorizing and evaluating their methods. We reviewed and compared different methods in step by step scheme of automated identification and classification systems of species images. The selection of methods is influenced by many variables such as level of classification, number of training data and complexity of images. The aim of writing this paper is to provide researchers and scientists an extensive background study on work related to automated species identification, focusing on pattern recognition techniques in building such systems for biodiversity studies.

  8. Remote sensing techniques for the detection of soil erosion and the identification of soil conservation practices

    NASA Technical Reports Server (NTRS)

    Pelletier, R. E.; Griffin, R. H.

    1985-01-01

    The following paper is a summary of a number of techniques initiated under the AgRISTARS (Agriculture and Resources Inventory Surveys Through Aerospace Remote Sensing) project for the detection of soil degradation caused by water erosion and the identification of soil conservation practices for resource inventories. Discussed are methods to utilize a geographic information system to determine potential soil erosion through a USLE (Universal Soil Loss Equation) model; application of the Kauth-Thomas Transform to detect present erosional status; and the identification of conservation practices through visual interpretation and a variety of enhancement procedures applied to digital remotely sensed data.

  9. Remote sensing techniques for the detection of soil erosion and the identification of soil conservation practices

    NASA Technical Reports Server (NTRS)

    Pelletier, R. E.; Griffin, R. H.

    1985-01-01

    The following paper is a summary of a number of techniques initiated under the AgRISTARS (Agriculture and Resources Inventory Surveys Through Aerospace Remote Sensing) project for the detection of soil degradation caused by water erosion and the identification of soil conservation practices for resource inventories. Discussed are methods to utilize a geographic information system to determine potential soil erosion through a USLE (Universal Soil Loss Equation) model; application of the Kauth-Thomas Transform to detect present erosional status; and the identification of conservation practices through visual interpretation and a variety of enhancement procedures applied to digital remotely sensed data.

  10. CODEHOP-mediated PCR – A powerful technique for the identification and characterization of viral genomes

    PubMed Central

    Rose, Timothy M

    2005-01-01

    Consensus-Degenerate Hybrid Oligonucleotide Primer (CODEHOP) PCR primers derived from amino acid sequence motifs which are highly conserved between members of a protein family have proven to be highly effective in the identification and characterization of distantly related family members. Here, the use of the CODEHOP strategy to identify novel viruses and obtain sequence information for phylogenetic characterization, gene structure determination and genome analysis is reviewed. While this review describes techniques for the identification of members of the herpesvirus family of DNA viruses, the same methodology and approach is applicable to other virus families. PMID:15769292

  11. Writing trace identification using ultraviolet Fourier-transform imaging spectroscopy technique

    NASA Astrophysics Data System (ADS)

    Lyu, Hang; Liao, Ningfang; Wu, Wenmin; Li, Yasheng; Cao, Bin

    2015-08-01

    Conventional identification methods of writing traces commonly utilize imaging or spectroscopic techniques which work in visible to near infrared range or short-wave infrared range. Yet they cannot be applied in identifying the erased writing traces. In this study, we perform a research in identification of erased writing traces applying an ultraviolet Fouriertransform imaging spectrometer. Experiments of classifying the reflected ultraviolet spectra of erasable pens are made. The resulting hyperspectral images demonstrate that the erased writing traces on printing paper can be clearly identified by this ultraviolet imaging spectrometer.

  12. Mass Processing—An Improved Technique for Protein Identification with Mass Spectrometry Data

    PubMed Central

    Henkin, Josh A.; Jennings, Mark E.; Matthews, Dwight E.; Vigoreaux, Jim O.

    2004-01-01

    Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis following tryptic digestion of polyacrylamide gel pieces is a common technique used to identify proteins. This approach is rapid, sensitive, and user friendly, and is becoming widely available to scientists in a variety of biological fields. Here we introduce a simple and effective strategy called “mass processing” where the list of masses generated from a mass spectrometer undergoes two stages of data reduction before identification. Mass processing improves the ability to identify in-gel tryptic-digested proteins by reducing the number of nonsample masses submitted to protein identification database search engines. Our results demonstrate that mass processing improves the statistical score and rank of putative protein identifications, especially with low-quantity samples, thus increasing the ability to confidently identify proteins with mass spectrometry data. PMID:15585819

  13. Nondestructive determination of plutonium mass in spent fuel: prelliminary modeling results using the passive neutron Albedo reactivity technique

    SciTech Connect

    Evans, Louise G; Tobin, Stephen J; Schear, Melissa A; Menlove, Howard O; Lee, Sang Y; Swinhoe, Martyn T

    2009-01-01

    There are a variety of motivations for quantifying plutonium (Pu) in spent fuel assemblies by means of nondestructive assay (NDA) including the following: strengthening the capability of the International Atomic Energy Agency (LAEA) to safeguard nuclear facilities, quantifying shipper/receiver difference, determining the input accountability value at pyrochemical processing facilities, providing quantitative input to burnup credit and final safeguards measurements at a long-term repository. In order to determine Pu mass in spent fuel assemblies, thirteen NDA techniques were identified that provide information about the composition of an assembly. A key motivation of the present research is the realization that none of these techniques, in isolation, is capable of both (1) quantifying the Pu mass of an assembly and (2) detecting the diversion of a significant number of rods. It is therefore anticipated that a combination of techniques will be required. A 5 year effort funded by the Next Generation Safeguards Initiative (NGSI) of the U.S. DOE was recently started in pursuit of these goals. The first two years involves researching all thirteen techniques using Monte Carlo modeling while the final three years involves fabricating hardware and measuring spent fuel. Here, we present the work in two main parts: (1) an overview of this NGSI effort describing the motivations and approach being taken; (2) The preliminary results for one of the NDA techniques - Passive Neutron Albedo Reactivity (PNAR). The PNAR technique functions by using the intrinsic neutron emission of the fuel (primarily from the spontaneous fission of curium) to self-interrogate any fissile material present. Two separate measurements of the spent fuel are made, both with and without cadmium (Cd) present. The ratios of the Singles, Doubles and Triples count rates obtained in each case are analyzed; known as the Cd ratio. The primary differences between the two measurements are the neutron energy spectrum

  14. A feasibility and optimization study to determine cooling time and burnup of advanced test reactor fuels using a nondestructive technique

    SciTech Connect

    Navarro, Jorge

    2013-12-01

    The goal of this study presented is to determine the best available non-destructive technique necessary to collect validation data as well as to determine burn-up and cooling time of the fuel elements onsite at the Advanced Test Reactor (ATR) canal. This study makes a recommendation of the viability of implementing a permanent fuel scanning system at the ATR canal and leads3 to the full design of a permanent fuel scan system. The study consisted at first in determining if it was possible and which equipment was necessary to collect useful spectra from ATR fuel elements at the canal adjacent to the reactor. Once it was establish that useful spectra can be obtained at the ATR canal the next step was to determine which detector and which configuration was better suited to predict burnup and cooling time of fuel elements non-destructively. Three different detectors of High Purity Germanium (HPGe), Lanthanum Bromide (LaBr3), and High Pressure Xenon (HPXe) in two system configurations of above and below the water pool were used during the study. The data collected and analyzed was used to create burnup and cooling time calibration prediction curves for ATR fuel. The next stage of the study was to determine which of the three detectors tested was better suited for the permanent system. From spectra taken and the calibration curves obtained, it was determined that although the HPGe detector yielded better results, a detector that could better withstand the harsh environment of the ATR canal was needed. The in-situ nature of the measurements required a rugged fuel scanning system, low in maintenance and easy to control system. Based on the ATR canal feasibility measurements and calibration results it was determined that the LaBr3 detector was the best alternative for canal in-situ measurements; however in order to enhance the quality of the spectra collected using this scintillator a deconvolution method was developed. Following the development of the deconvolution method

  15. Parameter Identification of Spin-Stabilized Projectiles Using a Modified Nowton-Raphson Minimization Technique

    NASA Astrophysics Data System (ADS)

    Kuo, Zeal-Sain; Huang, Hsiao-Yu

    A modified Newton-Raphson minimization technique for determining aerodynamic coefficients and stability derivatives of spin-stabilized projectiles with a six-degree-of-freedom nonlinear dynamical model was developed. The dynamical model for the projectiles is constructed having process noise in the system, and the instrumentation noise of the system outputs is simulated by a data model statistically similar to the measured data. The state equations of the dynamical system are continuous types while the measurement data are discrete. A continuous-discrete estimation model for the motion of the projectiles is constructed in this paper. The state variables of the system were estimated by the extended Kalman filter, and the system parameters were identified by the modified Newton-Raphson technique based on the maximum likelihood criterion. Research results show that parts of the parameters can be identified under proper noise intensity. However, the accuracy of identification is strongly influenced by both process and measurement noise, Moreover, parameter sensitivity to the system behavior is crucial for the success of identification. Two typical aerodynamic characteristics of projectiles, 105 and 20mm, are imposed to investigate the applicability of state estimation and parameter identification. It is found that the drag coefficient of zero angle-of-attack and the rolling moment derivative and identified with effective accuracy in a wide range of noise levels. On the other hand, other parameters are more difficult to identify, but the causes of deficiency for particular parameters in identification are discussed.

  16. Comparison of System Identification Techniques for the Hydraulic Manipulator Test Bed (HMTB)

    NASA Technical Reports Server (NTRS)

    Morris, A. Terry

    1996-01-01

    In this thesis linear, dynamic, multivariable state-space models for three joints of the ground-based Hydraulic Manipulator Test Bed (HMTB) are identified. HMTB, housed at the NASA Langley Research Center, is a ground-based version of the Dexterous Orbital Servicing System (DOSS), a representative space station manipulator. The dynamic models of the HMTB manipulator will first be estimated by applying nonparametric identification methods to determine each joint's response characteristics using various input excitations. These excitations include sum of sinusoids, pseudorandom binary sequences (PRBS), bipolar ramping pulses, and chirp input signals. Next, two different parametric system identification techniques will be applied to identify the best dynamical description of the joints. The manipulator is localized about a representative space station orbital replacement unit (ORU) task allowing the use of linear system identification methods. Comparisons, observations, and results of both parametric system identification techniques are discussed. The thesis concludes by proposing a model reference control system to aid in astronaut ground tests. This approach would allow the identified models to mimic on-orbit dynamic characteristics of the actual flight manipulator thus providing astronauts with realistic on-orbit responses to perform space station tasks in a ground-based environment.

  17. PEM fuel cell cost minimization using ``Design For Manufacture and Assembly`` techniques

    SciTech Connect

    Lomax, F.D. Jr.; James, B.D.; Mooradian, R.P.

    1997-12-31

    Polymer Electrolyte Membrane (PEM) fuel cells fueled with direct hydrogen have demonstrated substantial technical potential to replace Internal Combustion Engines (ICE`s) in light duty vehicles. Such a transition to a hydrogen economy offers the potential of substantial benefits from reduced criteria and greenhouse emissions as well as reduced foreign fuel dependence. Research conducted for the Ford Motor Co. under a US Department of Energy contract suggests that hydrogen fuel, when used in a fuel cell vehicle (FCV), can achieve a cost per vehicle mile less than or equal to the gasoline cost per mile when used in an ICE vehicle. However, fuel cost parity is not sufficient to ensure overall economic success: the PEM fuel cell power system itself must be of comparable cost to the ICE. To ascertain if low cost production of PEM fuel cells is feasible, a powerful set of mechanical engineering tools collectively referred to as Design for Manufacture and Assembly (DFMA) has been applied to several representative PEM fuel cell designs. The preliminary results of this work are encouraging, as presented.

  18. Application of optimization techniques to spacecaft fuel usage minimization in deep space navigation

    NASA Technical Reports Server (NTRS)

    Wang, Tseng-Chan; Sunseri, Richard F.; Stanford, Richard H.; Gray, Donald L.; Breckheimer, Peter J.

    1987-01-01

    Mathematical analysis of the minimization of spacecraft fuel usage for both impulsive and finite motor burns is presented. A high precision integrated trajectory search program (SEPV) and several optimization software libraries are used to solve minimum fuel usage problems. The SEPV program has the capacity to vary either the initial spacecraft state or the finite burn parameters to acquire a specified set of target values. Several test examples for the Voyager 2 Uranus Encounter and the Galileo Jupiter Orbiter are presented to show that spacecraft fuel consumption can be minimized in targeting maneuver strategies. The fuel savings achieved by the optimum solution can be significant.

  19. Novel fabrication technique of hollow fibre support for micro-tubular solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Othman, Mohd Hafiz Dzarfan; Droushiotis, Nicolas; Wu, Zhentao; Kelsall, Geoff; Li, K.

    In this work, a cerium-gadolinium oxide (CGO)/nickel (Ni)-CGO hollow fibre (HF) for micro-tubular solid oxide fuel cells (SOFCs), which consists of a fully gas-tight outer electrolyte layer supported on a porous inner composite anode layer, has been developed via a novel single-step co-extrusion/co-sintering technique, followed by an easy reduction process. After depositing a multi-layers cathode layer and applying current collectors on both anode and cathode, a micro-tubular SOFC is developed with the maximum power densities of 440-1000 W m -2 at 450-580 °C. Efforts have been made in enhancing the performance of the cell by reducing the co-sintering temperature and improving the cathode layer and current collection from inner (anode) wall. The improved cell produces maximum power densities of 3400-6800 W m -2 at 550-600 °C, almost fivefold higher than the previous cell. Further improvement has been carried out by reducing thickness of the electrolyte layer. Uniform and defect-free outer electrolyte layer as thin as 10 μm can be achieved when the extrusion rate of the outer layer is controlled. The highest power output of 11,100 W m -2 is obtained for the cell of 10 μm electrolyte layer at 600 °C. This result further highlights the potential of co-extrusion technique in producing high quality dual-layer HF support for micro-tubular SOFC.

  20. Gender identification of Grasshopper Sparrows comparing behavioral, morphological, and molecular techniques

    USGS Publications Warehouse

    Ammer, F.K.; Wood, P.B.; McPherson, R.J.

    2008-01-01

    Correct gender identification in monomorphic species is often difficult especially if males and females do not display obvious behavioral and breeding differences. We compared gender specific morphology and behavior with recently developed DNA techniques for gender identification in the monomorphic Grasshopper Sparrow (Ammodramus savannarum). Gender was ascertained with DNA in 213 individuals using the 2550F/2718R primer set and 3% agarose gel electrophoresis. Field observations using behavior and breeding characteristics to identify gender matched DNA analyses with 100% accuracy for adult males and females. Gender was identified with DNA for all captured juveniles that did not display gender specific traits or behaviors in the field. The molecular techniques used offered a high level of accuracy and may be useful in studies of dispersal mechanisms and winter assemblage composition in monomorphic species.

  1. Correlation techniques to determine model form in robust nonlinear system realization/identification

    NASA Technical Reports Server (NTRS)

    Stry, Greselda I.; Mook, D. Joseph

    1991-01-01

    The fundamental challenge in identification of nonlinear dynamic systems is determining the appropriate form of the model. A robust technique is presented which essentially eliminates this problem for many applications. The technique is based on the Minimum Model Error (MME) optimal estimation approach. A detailed literature review is included in which fundamental differences between the current approach and previous work is described. The most significant feature is the ability to identify nonlinear dynamic systems without prior assumption regarding the form of the nonlinearities, in contrast to existing nonlinear identification approaches which usually require detailed assumptions of the nonlinearities. Model form is determined via statistical correlation of the MME optimal state estimates with the MME optimal model error estimates. The example illustrations indicate that the method is robust with respect to prior ignorance of the model, and with respect to measurement noise, measurement frequency, and measurement record length.

  2. Modelling and disentangling physiological mechanisms: linear and nonlinear identification techniques for analysis of cardiovascular regulation

    PubMed Central

    Batzel, Jerry; Baselli, Giuseppe; Mukkamala, Ramakrishna; Chon, Ki H

    2009-01-01

    Cardiovascular (CV) regulation is the result of a number of very complex control interactions. As computational power increases and new methods for collecting experimental data emerge, the potential for exploring these interactions through modelling increases as does the potential for clinical application of such models. Understanding these interactions requires the application of a diverse set of modelling techniques. Several recent mathematical modelling techniques will be described in this review paper. Starting from Granger's causality, the problem of closed-loop identification is recalled. The main aspects of linear identification and of grey-box modelling tailored to CV regulation analysis are summarized as well as basic concepts and trends for nonlinear extensions. Sensitivity analysis is presented and discussed as a potent tool for model validation and refinement. The integration of methods and models is fostered for a further physiological comprehension and for the development of more potent and robust diagnostic tools. PMID:19324714

  3. Reliability of System Identification Techniques to Assess Standing Balance in Healthy Elderly

    PubMed Central

    Maier, Andrea B.; Aarts, Ronald G. K. M.; van Gerven, Joop M. A.; Arendzen, J. Hans; Schouten, Alfred C.; Meskers, Carel G. M.; van der Kooij, Herman

    2016-01-01

    Objectives System identification techniques have the potential to assess the contribution of the underlying systems involved in standing balance by applying well-known disturbances. We investigated the reliability of standing balance parameters obtained with multivariate closed loop system identification techniques. Methods In twelve healthy elderly balance tests were performed twice a day during three days. Body sway was measured during two minutes of standing with eyes closed and the Balance test Room (BalRoom) was used to apply four disturbances simultaneously: two sensory disturbances, to the proprioceptive and the visual system, and two mechanical disturbances applied at the leg and trunk segment. Using system identification techniques, sensitivity functions of the sensory disturbances and the neuromuscular controller were estimated. Based on the generalizability theory (G theory), systematic errors and sources of variability were assessed using linear mixed models and reliability was assessed by computing indexes of dependability (ID), standard error of measurement (SEM) and minimal detectable change (MDC). Results A systematic error was found between the first and second trial in the sensitivity functions. No systematic error was found in the neuromuscular controller and body sway. The reliability of 15 of 25 parameters and body sway were moderate to excellent when the results of two trials on three days were averaged. To reach an excellent reliability on one day in 7 out of 25 parameters, it was predicted that at least seven trials must be averaged. Conclusion This study shows that system identification techniques are a promising method to assess the underlying systems involved in standing balance in elderly. However, most of the parameters do not appear to be reliable unless a large number of trials are collected across multiple days. To reach an excellent reliability in one third of the parameters, a training session for participants is needed and at

  4. Reliability of System Identification Techniques to Assess Standing Balance in Healthy Elderly.

    PubMed

    Pasma, Jantsje H; Engelhart, Denise; Maier, Andrea B; Aarts, Ronald G K M; van Gerven, Joop M A; Arendzen, J Hans; Schouten, Alfred C; Meskers, Carel G M; van der Kooij, Herman

    2016-01-01

    System identification techniques have the potential to assess the contribution of the underlying systems involved in standing balance by applying well-known disturbances. We investigated the reliability of standing balance parameters obtained with multivariate closed loop system identification techniques. In twelve healthy elderly balance tests were performed twice a day during three days. Body sway was measured during two minutes of standing with eyes closed and the Balance test Room (BalRoom) was used to apply four disturbances simultaneously: two sensory disturbances, to the proprioceptive and the visual system, and two mechanical disturbances applied at the leg and trunk segment. Using system identification techniques, sensitivity functions of the sensory disturbances and the neuromuscular controller were estimated. Based on the generalizability theory (G theory), systematic errors and sources of variability were assessed using linear mixed models and reliability was assessed by computing indexes of dependability (ID), standard error of measurement (SEM) and minimal detectable change (MDC). A systematic error was found between the first and second trial in the sensitivity functions. No systematic error was found in the neuromuscular controller and body sway. The reliability of 15 of 25 parameters and body sway were moderate to excellent when the results of two trials on three days were averaged. To reach an excellent reliability on one day in 7 out of 25 parameters, it was predicted that at least seven trials must be averaged. This study shows that system identification techniques are a promising method to assess the underlying systems involved in standing balance in elderly. However, most of the parameters do not appear to be reliable unless a large number of trials are collected across multiple days. To reach an excellent reliability in one third of the parameters, a training session for participants is needed and at least seven trials of two minutes must be

  5. Developments in techniques for the isolation, enrichment, main culture conditions and identification of spermatogonial stem cells.

    PubMed

    He, Yanan; Chen, Xiaoli; Zhu, Huabin; Wang, Dong

    2015-12-01

    The in vitro culture system of spermatogonial stem cells (SSCs) provides a basis for studies on spermatogenesis, and also contributes to the development of new methods for the preservation of livestock and animal genetic modification. In vitro culture systems have mainly been established for mouse SSCs, but are lacking for farm animals. We reviewed and analyzed the current progress in SSC techniques such as isolation, purification, cultivation and identification. Based on the published studies, we concluded that two-step enzyme digestion and magnetic-activated cell sorting are fast becoming the main methods for isolation and enrichment of SSCs. With regard to the culture systems, serum and feeders were earlier thought to play an important role in the self-renewal and proliferation of SSCs, but serum- and feeder-free culture systems as a means of overcoming the limitations of SSC differentiation in long-term SSC culture are being explored. However, there is still a need to establish more efficient and ideal culture systems that can also be used for SSC culture in larger mammals. Although the lack of SSC-specific surface markers has seriously affected the efficiency of purification and identification, the transgenic study is helpful for our identification of SSCs. Therefore, future studies on SSC techniques should focus on improving serum- and feeder-free culture techniques, and discovering and identifying specific surface markers of SSCs, which will provide new ideas for the optimization of SSC culture systems for mice and promote related studies in farm animals.

  6. Individual identification from semen by the deoxyribonucleic acid (DNA) fingerprint technique.

    PubMed

    Honma, M; Yoshii, T; Ishiyama, I; Mitani, K; Kominami, R; Muramatsu, M

    1989-01-01

    For individual identification from semen, the deoxyribonucleic acid (DNA) fingerprint technique was used. In a blind trial, we succeeded in determining the semen donors among several volunteers comparing the DNA fingerprints of the blood and semen samples, respectively. Thereafter, we examined semen in a condom left beside a naked female dead body. The DNA fingerprint of the semen was recognized to be identical to that of the blood from a suspected man arrested later. This is the first report that the DNA fingerprint technique was practically used in a criminal investigation in Japan.

  7. Cerenkov detectors for cosmic ray telescopes employing the Cerenkov x total energy technique of mass identification

    NASA Technical Reports Server (NTRS)

    Webber, W. R.; Kish, J. C.

    1983-01-01

    Considerable progress has been made regarding the evolution of the 'Cerenkov x total energy technique' for mass identification of cosmic ray nuclei since the introduction of telescopes employing this technique by Webber et al. (1973). Thus, significant improvements in mass resolution have been made. These improvements are mainly related to the resolution of the Cerenkov counter. The present investigation is, therefore, concerned with the properties of various types of Cerenkov detectors. In addition, a description is provided of the characteristics of a large area (approximately 0.5 sq m-ster) cosmic ray isotope telescope, which is being developed for use on balloons or spacecraft.

  8. Materials and characterization techniques for high-temperature polymer electrolyte membrane fuel cells.

    PubMed

    Zeis, Roswitha

    2015-01-01

    The performance of high-temperature polymer electrolyte membrane fuel cells (HT-PEMFC) is critically dependent on the selection of materials and optimization of individual components. A conventional high-temperature membrane electrode assembly (HT-MEA) primarily consists of a polybenzimidazole (PBI)-type membrane containing phosphoric acid and two gas diffusion electrodes (GDE), the anode and the cathode, attached to the two surfaces of the membrane. This review article provides a survey on the materials implemented in state-of-the-art HT-MEAs. These materials must meet extremely demanding requirements because of the severe operating conditions of HT-PEMFCs. They need to be electrochemically and thermally stable in highly acidic environment. The polymer membranes should exhibit high proton conductivity in low-hydration and even anhydrous states. Of special concern for phosphoric-acid-doped PBI-type membranes is the acid loss and management during operation. The slow oxygen reduction reaction in HT-PEMFCs remains a challenge. Phosphoric acid tends to adsorb onto the surface of the platinum catalyst and therefore hampers the reaction kinetics. Additionally, the binder material plays a key role in regulating the hydrophobicity and hydrophilicity of the catalyst layer. Subsequently, the binder controls the electrode-membrane interface that establishes the triple phase boundary between proton conductive electrolyte, electron conductive catalyst, and reactant gases. Moreover, the elevated operating temperatures promote carbon corrosion and therefore degrade the integrity of the catalyst support. These are only some examples how materials properties affect the stability and performance of HT-PEMFCs. For this reason, materials characterization techniques for HT-PEMFCs, either in situ or ex situ, are highly beneficial. Significant progress has recently been made in this field, which enables us to gain a better understanding of underlying processes occurring during fuel cell

  9. Materials and characterization techniques for high-temperature polymer electrolyte membrane fuel cells

    PubMed Central

    2015-01-01

    Summary The performance of high-temperature polymer electrolyte membrane fuel cells (HT-PEMFC) is critically dependent on the selection of materials and optimization of individual components. A conventional high-temperature membrane electrode assembly (HT-MEA) primarily consists of a polybenzimidazole (PBI)-type membrane containing phosphoric acid and two gas diffusion electrodes (GDE), the anode and the cathode, attached to the two surfaces of the membrane. This review article provides a survey on the materials implemented in state-of-the-art HT-MEAs. These materials must meet extremely demanding requirements because of the severe operating conditions of HT-PEMFCs. They need to be electrochemically and thermally stable in highly acidic environment. The polymer membranes should exhibit high proton conductivity in low-hydration and even anhydrous states. Of special concern for phosphoric-acid-doped PBI-type membranes is the acid loss and management during operation. The slow oxygen reduction reaction in HT-PEMFCs remains a challenge. Phosphoric acid tends to adsorb onto the surface of the platinum catalyst and therefore hampers the reaction kinetics. Additionally, the binder material plays a key role in regulating the hydrophobicity and hydrophilicity of the catalyst layer. Subsequently, the binder controls the electrode–membrane interface that establishes the triple phase boundary between proton conductive electrolyte, electron conductive catalyst, and reactant gases. Moreover, the elevated operating temperatures promote carbon corrosion and therefore degrade the integrity of the catalyst support. These are only some examples how materials properties affect the stability and performance of HT-PEMFCs. For this reason, materials characterization techniques for HT-PEMFCs, either in situ or ex situ, are highly beneficial. Significant progress has recently been made in this field, which enables us to gain a better understanding of underlying processes occurring during

  10. Various extraction and analytical techniques for isolation and identification of secondary metabolites from Nigella sativa seeds.

    PubMed

    Liu, X; Abd El-Aty, A M; Shim, J-H

    2011-10-01

    Nigella sativa L. (black cumin), commonly known as black seed, is a member of the Ranunculaceae family. This seed is used as a natural remedy in many Middle Eastern and Far Eastern countries. Extracts prepared from N. sativa have, for centuries, been used for medical purposes. Thus far, the organic compounds in N. sativa, including alkaloids, steroids, carbohydrates, flavonoids, fatty acids, etc. have been fairly well characterized. Herein, we summarize some new extraction techniques, including microwave assisted extraction (MAE) and supercritical extraction techniques (SFE), in addition to the classical method of hydrodistillation (HD), which have been employed for isolation and various analytical techniques used for the identification of secondary metabolites in black seed. We believe that some compounds contained in N. sativa remain to be identified, and that high-throughput screening could help to identify new compounds. A study addressing environmentally-friendly techniques that have minimal or no environmental effects is currently underway in our laboratory.

  11. Identification and Analysis of Critical Gaps in Nuclear Fuel Cycle Codes Required by the SINEMA Program

    SciTech Connect

    Adrian Miron; Joshua Valentine; John Christenson; Majd Hawwari; Santosh Bhatt; Mary Lou Dunzik-Gougar: Michael Lineberry

    2009-10-01

    The current state of the art in nuclear fuel cycle (NFC) modeling is an eclectic mixture of codes with various levels of applicability, flexibility, and availability. In support of the advanced fuel cycle systems analyses, especially those by the Advanced Fuel Cycle Initiative (AFCI), Unviery of Cincinnati in collaboration with Idaho State University carried out a detailed review of the existing codes describing various aspects of the nuclear fuel cycle and identified the research and development needs required for a comprehensive model of the global nuclear energy infrastructure and the associated nuclear fuel cycles. Relevant information obtained on the NFC codes was compiled into a relational database that allows easy access to various codes' properties. Additionally, the research analyzed the gaps in the NFC computer codes with respect to their potential integration into programs that perform comprehensive NFC analysis.

  12. Determining plutonium mass in spent fuel with non-destructive assay techniques - NGSU research overview and update on 6 NDA techniques

    SciTech Connect

    Tobin, Stephen J; Conlin, Jeremy L; Evans, Louise G; Hu, Jianwei; Blanc, Pauline C; Lafleur, Adrienne M; Menlove, Howard O; Schear, Melissa A; Swinhoe, Martyn T; Croft, Stephen; Fensin, Michael L; Freeman, Corey R; Koehler, William E; Mozin, V; Sandoval, N P; Lee, T H; Cambell, L W; Cheatham, J R; Gesh, C J; Hunt, A; Ludewigt, B A; Smith, L E; Sterbentz, J

    2010-09-15

    This poster is one of two complementary posters. The Next Generation Safeguards Initiative (NGSI) of the U.S. DOE has initiated a multi-lab/university collaboration to quantify the plutonium (Pu) mass in, and detect the diversion of pins from, spent nuclear fuel assemblies with non-destructive assay (NDA). This research effort has the goal of quantifying the capability of 14 NDA techniques as well as training a future generation of safeguards practitioners. By November of 2010, we will be 1.5 years into the first phase (2.5 years) of work. This first phase involves primarily Monte Carlo modelling while the second phase (also 2.5 years) will focus on experimental work. The goal of phase one is to quantify the detection capability of the various techniques for the benefit of safeguard technology developers, regulators, and policy makers as well as to determine what integrated techniques merit experimental work, We are considering a wide range of possible technologies since our research horizon is longer term than the focus of most regulator bodies. The capability of all of the NDA techniques will be determined for a library of 64 17 x 17 PWR assemblies [burnups (15, 30, 45, 60 GWd/tU), initial enrichments (2, 3, 4, 5%) and cooling times (1, 5, 20, 80 years)]. The burnup and cooling time were simulated with each fuel pin being comprised of four radial regions. In this paper an overview of the purpose will be given as well as a technical update on the following 6 neutron techniques: {sup 252}Cf Interrogation with Prompt Neutron Detection, Delayed Neutrons, Differential Die-Away, Differential Die-Away Self-Interrogation, Passive Neutron Albedo Reactivity, Self-Integration Neutron Resonance Densitometry. The technical update will quantify the anticipated performance of each technique for the 64 assemblies of the spent fuel library.

  13. Identification of vapor-phase chemical warfare agent simulants and rocket fuels using laser-induced breakdown spectroscopy

    SciTech Connect

    Stearns, Jaime A.; McElman, Sarah E.; Dodd, James A.

    2010-05-01

    Application of laser-induced breakdown spectroscopy (LIBS) to the identification of security threats is a growing area of research. This work presents LIBS spectra of vapor-phase chemical warfare agent simulants and typical rocket fuels. A large dataset of spectra was acquired using a variety of gas mixtures and background pressures and processed using partial least squares analysis. The five compounds studied were identified with a 99% success rate by the best method. The temporal behavior of the emission lines as a function of chamber pressure and gas mixture was also investigated, revealing some interesting trends that merit further study.

  14. Comparison of techniques and immunoreagents used for indirect immunofluorescence and immunoperoxidase identification of enteroviruses.

    PubMed

    Herrmann, J E; Morse, S A; Collins, M F

    1974-07-01

    Peroxidase-conjugated antibodies were found to be as sensitive as those conjugated to fluorescein-isothiocyanate (FITC) for identification of selected enterovirus types by the indirect technique. Peroxidase conjugates, however, were found to give fewer nonspecific reactions. The reasons for the higher specificity of the immunoperoxidase technique appear to be related to the relative size, charge, and uniformity of the preparations. Monomers of peroxidase-conjugated globulin are larger than those of FITC conjugates, but the latter readily form aggregates. This was shown by chromatography on Sepharose 6B columns: various FITC-conjugated globulins eluted before those conjugated to peroxidase and before (125)I-labeled immunoglobulin G. The net charge of the conjugates was determined by adsorption to ion-exchange columns. FITC-labeled globulins had a negative net charge, eluting at pH 5.1 from diethylamino-ethyl-Sephadex A-50 columns. Peroxidase conjugates were not retained by either cationic or anionic exchangers at pH values ranging from 4.0 to 10.5. Further, the fluorescein/protein ratios of FITC conjugates from different commercial sources and of those prepared in the laboratory were found to be variable; higher fluorescein/protein ratios (>2:1) give a higher degree of nonspecific reactions, whereas the peroxidase/protein ratio does not appear to affect specificity. These characteristics of peroxidase conjugates make the immunoperoxidase technique easier to standardize and more reliable for enterovirus identification than the immunofluorescence technique.

  15. An analysis of nuclear fuel burnup in the AGR-1 TRISO fuel experiment using gamma spectrometry, mass spectrometry, and computational simulation techniques

    SciTech Connect

    Harp, Jason M.; Demkowicz, Paul A.; Winston, Philip L.; Sterbentz, James W.

    2014-09-03

    AGR 1 was the first in a series of experiments designed to test US TRISO fuel under high temperature gas-cooled reactor irradiation conditions. This experiment was irradiated in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) and is currently undergoing post irradiation examination (PIE) at INL and Oak Ridge National Laboratory. One component of the AGR 1 PIE is the experimental evaluation of the burnup of the fuel by two separate techniques. Gamma spectrometry was used to non destructively evaluate the burnup of all 72 of the TRISO fuel compacts that comprised the AGR 1 experiment. Two methods for evaluating burnup by gamma spectrometry were developed, one based on the Cs 137 activity and the other based on the ratio of Cs 134 and Cs 137 activities. Burnup values determined from both methods compared well with the values predicted from simulations. The highest measured burnup was 20.1% FIMA for the direct method and 20.0% FIMA for the ratio method (compared to 19.56% FIMA from simulations). An advantage of the ratio method is that the burnup of the cylindrical fuel compacts can determined in small (2.5 mm) axial increments and an axial burnup profile can be produced. Destructive chemical analysis by inductively coupled mass spectrometry (ICP MS) was then performed on selected compacts that were representative of the expected range of fuel burnups in the experiment to compare with the burnup values determined by gamma spectrometry. The compacts analyzed by mass spectrometry had a burnup range of 19.3% FIMA to 10.7% FIMA. The mass spectrometry evaluation of burnup for the four compacts agreed well with the gamma spectrometry burnup evaluations and the expected burnup from simulation. For all four compacts analyzed by mass spectrometry, the maximum range in the three experimentally determined values and the predicted value was 6% or less. Furthermore, the results confirm the accuracy of the nondestructive burnup evaluation from gamma spectrometry

  16. An analysis of nuclear fuel burnup in the AGR-1 TRISO fuel experiment using gamma spectrometry, mass spectrometry, and computational simulation techniques

    DOE PAGES

    Harp, Jason M.; Demkowicz, Paul A.; Winston, Philip L.; ...

    2014-09-03

    AGR 1 was the first in a series of experiments designed to test US TRISO fuel under high temperature gas-cooled reactor irradiation conditions. This experiment was irradiated in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) and is currently undergoing post irradiation examination (PIE) at INL and Oak Ridge National Laboratory. One component of the AGR 1 PIE is the experimental evaluation of the burnup of the fuel by two separate techniques. Gamma spectrometry was used to non destructively evaluate the burnup of all 72 of the TRISO fuel compacts that comprised the AGR 1 experiment. Two methodsmore » for evaluating burnup by gamma spectrometry were developed, one based on the Cs 137 activity and the other based on the ratio of Cs 134 and Cs 137 activities. Burnup values determined from both methods compared well with the values predicted from simulations. The highest measured burnup was 20.1% FIMA for the direct method and 20.0% FIMA for the ratio method (compared to 19.56% FIMA from simulations). An advantage of the ratio method is that the burnup of the cylindrical fuel compacts can determined in small (2.5 mm) axial increments and an axial burnup profile can be produced. Destructive chemical analysis by inductively coupled mass spectrometry (ICP MS) was then performed on selected compacts that were representative of the expected range of fuel burnups in the experiment to compare with the burnup values determined by gamma spectrometry. The compacts analyzed by mass spectrometry had a burnup range of 19.3% FIMA to 10.7% FIMA. The mass spectrometry evaluation of burnup for the four compacts agreed well with the gamma spectrometry burnup evaluations and the expected burnup from simulation. For all four compacts analyzed by mass spectrometry, the maximum range in the three experimentally determined values and the predicted value was 6% or less. Furthermore, the results confirm the accuracy of the nondestructive burnup evaluation from gamma

  17. Determining fissile content in PWR spent fuel assemblies using a passive neutron Albedo reactivity with fission chambers technique

    SciTech Connect

    Conlin, Jeremy Lloyd; Tobin, Stephen J

    2010-01-01

    State regulatory bodies and organizations such as the IAEA that are concerned with preventing the proliferation of nuclear weapons are interested in a means of quantifying the amount of plutonium in a given spent fuel assembly. The complexity of spent nuclear fuel makes the measurement of plutonium content challenging. There are a variety of techniques that can measure various properties of spent nuclear fuel including burnup, and mass of fissile content. No single technique can provide all desired information, necessitating an approach using multiple detector systems and types. This paper presents our analysis of the Passive Neutron Albedo Reactivity Fission Chamber (PNAR-FC) detector system. PNAR-FC is a simplified version of the PNAR technique originally developed in 1997. This earlier research was performed with a high efficiency, {sup 3}He-based system (PNAR-3He) with which multiplicty analysis was performed. With the PNAR technique a portion of the spent fuel assembly is wrapped in a 1 mm thick cadmium liner. Neutron count rates are measured both with and without the cadmium liner present. The ratio of the count rate with the cadmium liner to the count rate without the cadmium liner is calculated and called the cadmium ratio. In the PNAR-3He technique, multiplicity measurements were made and the cadmium ratio was shown to scale with the fissile content of the material being measured. PNAR-FC simplifies the PNAR technique by using only a few fission chambers instead of many {sup 3}He tubes. Using a simplified PNAR-FC technique provides for a cheaper, lighter, and thus more portable detector system than was possible with the PNAR-3He system. The challenge with the PNAR-FC system are two-fold: (1) the change in the cadmium ratio is weaker as a afunction of the changing fissile content relative to multiplicity count rates, and (2) the efficiency for the fission chamber based system are poorer than for the {sup 3}He based detectors. In this paper, we present our

  18. Advanced system identification techniques for wind turbine structures with special emphasis on modal parameters

    NASA Astrophysics Data System (ADS)

    Bialasiewicz, J. T.

    1995-06-01

    The goal is to develop advanced system identification techniques that can be used to accurately measure the frequency response functions of a wind-turbine structure immersed in wind noise. To allow for accurate identification, the authors have developed a special test signal called the pseudo-random binary sequence (PRBS). The Matlab program that generates this signal allows the user to interactively tailor its parameters for the frequency range of interest based on the response of the wind turbine under test. By controlling NREL's Mobile Hydraulic Shaker System, which is attached to the wind turbine structure, the PRBS signal produces the wide-band excitation necessary to perform system identification in the presence of wind noise. The techniques presented here will enable researchers to obtain modal parameters from an operating wind turbine, including frequencies, damping coefficients, and mode shapes. More importantly, the algorithms they have developed and tested (so far using input-output data from a simulated structure) permit state-space representation of the system under test, particularly the modal state space representation. This is the only system description that reveals the internal behavior of the system, such as the interaction between the physical parameters, and which, in contrast to transfer functions, is valid for non-zero initial conditions.

  19. Identification of piecewise affine systems based on fuzzy PCA-guided robust clustering technique

    NASA Astrophysics Data System (ADS)

    Khanmirza, Esmaeel; Nazarahari, Milad; Mousavi, Alireza

    2016-12-01

    Hybrid systems are a class of dynamical systems whose behaviors are based on the interaction between discrete and continuous dynamical behaviors. Since a general method for the analysis of hybrid systems is not available, some researchers have focused on specific types of hybrid systems. Piecewise affine (PWA) systems are one of the subsets of hybrid systems. The identification of PWA systems includes the estimation of the parameters of affine subsystems and the coefficients of the hyperplanes defining the partition of the state-input domain. In this paper, we have proposed a PWA identification approach based on a modified clustering technique. By using a fuzzy PCA-guided robust k-means clustering algorithm along with neighborhood outlier detection, the two main drawbacks of the well-known clustering algorithms, i.e., the poor initialization and the presence of outliers, are eliminated. Furthermore, this modified clustering technique enables us to determine the number of subsystems without any prior knowledge about system. In addition, applying the structure of the state-input domain, that is, considering the time sequence of input-output pairs, provides a more efficient clustering algorithm, which is the other novelty of this work. Finally, the proposed algorithm has been evaluated by parameter identification of an IGV servo actuator. Simulation together with experiment analysis has proved the effectiveness of the proposed method.

  20. Application of fuel/time minimization techniques to route planning and trajectory optimization

    NASA Technical Reports Server (NTRS)

    Knox, C. E.

    1984-01-01

    Rising fuel costs combined with other economic pressures have resulted in industry requirements for more efficient air traffic control and airborne operations. NASA has responded with an on-going research program to investigate the requirements and benefits of using new airborne guidance and pilot procedures that are compatible with advanced air traffic control systems and that will result in more fuel efficient flight. The results of flight testing an airborne computer algorithm designed to provide either open-loop or closed-loop guidance for fuel efficient descents while satisfying time constraints imposed by the air traffic control system is summarized. Some of the potential cost and fuel savings that are obtained with sophisticated vertical path optimization capabilities are described.

  1. Application of the successive linear programming technique to the optimum design of a high flux reactor using LEU fuel

    SciTech Connect

    Mo, S.C.

    1991-01-01

    The successive linear programming technique is applied to obtain the optimum thermal flux in the reflector region of a high flux reactor using LEU fuel. The design variables are the reactor power, core radius and coolant channel thickness. The constraints are the cycle length, average heat flux and peak/average power density ratio. The characteristics of the optimum solutions with various constraints are discussed.

  2. Application of the successive linear programming technique to the optimum design of a high flux reactor using LEU fuel

    SciTech Connect

    Mo, S.C.

    1991-12-31

    The successive linear programming technique is applied to obtain the optimum thermal flux in the reflector region of a high flux reactor using LEU fuel. The design variables are the reactor power, core radius and coolant channel thickness. The constraints are the cycle length, average heat flux and peak/average power density ratio. The characteristics of the optimum solutions with various constraints are discussed.

  3. Identification and Quantification of Processes Affecting the Fate of Ethanol-Blended Fuel in the Subsurface

    NASA Astrophysics Data System (ADS)

    Devries, J. M.; Mayer, K. U.

    2015-12-01

    At present, the oil and gas industry distributes gasoline with an ethanol content of up to 10% (E10) to the consumer. However, ethanol advocates are promoting gasoline blends with higher ethanol content to be introduced into the market (e.g., E20, corresponding to an ethanol content of 20%). The likelihood of unintended fuel releases with elevated ethanol concentrations through surficial spills or from underground storage systems will therefore increase. A particular concern is the increased rate of CH4 and CO2 production as the spill biodegrades, which is believed to be associated with the increased ethanol content in the fuel. Consequently, high gas generation rates associated with ethanol-blended fuels may amplify the risk of vapor intrusion of CH4 and BTEX into basements or other subsurface structures that may be nearby. A comprehensive and comparative study on the fate of higher concentration ethanol-blended fuels in the subsurface has not been conducted to date. The present study focuses on determining the fate of ethanol blended fuels in the subsurface through a series of controlled and instrumented laboratory column experiments. The experiments compare the behavior of pure gasoline with that of ethanol-blended fuels for different soil types (sand and silt) in columns 2 meters tall and 30cm in diameter. The column experiments focus on the quantification of gas generation by volatilization and biodegradation and 1-D vertical fate and transport of CO2, CH4, benzene and toluene through the vadose zone. The fuel blends have been injected into the lower third of the columns and gas composition and fluxes within the column are being monitored over time. The goal of this study is to contribute to the scientific foundation that will allow gauging the level of risk and the need for remediation at fuel spill sites with higher ethanol blends.

  4. Use of cluster counting technique for particle identification in a drift chamber with the cathode strip readout

    SciTech Connect

    Berdnikov, Vladimir V.; Somov, S. V.; Pentchev, Lubomir P.

    2015-07-01

    The possibility of using the clusters counting technique for particle identification in a drift chamber with the cathode strip readout is experimentally investigated. Results of counting of primary ionization clusters on a relativistic particle track, as well as results of computer simulation of pion, kaon, and proton identification in the momentum range of 1–8 GeV/c, are presented.

  5. Assessment of the quality of dna extracted by two techniques from Mycobacterium tuberculosis for fast molecular identification and genotyping

    PubMed Central

    Miyata, Marcelo; Santos, Adolfo Carlos Barreto; Mendes, Natália Helena; Cunha, Eunice Atsuko; de Melo, Fernando Augusto Fiúza; Leite, Clarice Queico Fujimura

    2011-01-01

    We report a comparative study of two DNA extraction techniques, thermolysis and chemical lysis (CTAB), for molecular identification and genotyping of M. tuberculosis. Forty DNA samples were subjected to PCR and the results demonstrated that with thermolysis it is possible to obtain useful data that enables fast identification and genotyping. PMID:24031692

  6. A Comparison of Direction Finding Results From an FFT Peak Identification Technique With Those From the Music Algorithm

    DTIC Science & Technology

    1991-07-01

    MUSIC ALGORITHM (U) by L.E. Montbrland go I July 1991 CRC REPORT NO. 1438 Ottawa I* Government of Canada Gouvsrnweient du Canada I o DParunnt of...FINDING RESULTS FROM AN FFT PEAK IDENTIFICATION TECHNIQUE WITH THOSE FROM THE MUSIC ALGORITHM (U) by L.E. Montbhrand CRC REPORT NO. 1438 July 1991...Ottawa A Comparison of Direction Finding Results From an FFT Peak Identification Technique With Those From the Music Algorithm L.E. Montbriand Abstract A

  7. Neutron Detection With Ultra-Fast Digitizer and Pulse Identification Techniques on DIII-D

    NASA Astrophysics Data System (ADS)

    Zhu, Y. B.; Heidbrink, W. W.; Piglowski, D. A.

    2013-10-01

    A prototype system for neutron detection with an ultra-fast digitizer and pulse identification techniques has been implemented on the DIII-D tokamak. The system consists of a cylindrical neutron fission chamber, a charge sensitive amplifier, and a GaGe Octopus 12-bit CompuScope digitizer card installed in a Linux computer. Digital pulse identification techniques have been successfully performed at maximum data acquisition rate of 50 MSPS with on-board memory of 2 GS. Compared to the traditional approach with fast nuclear electronics for pulse counting, this straightforward digital solution has many advantages, including reduced expense, improved accuracy, higher counting rate, and easier maintenance. The system also provides the capability of neutron-gamma pulse shape discrimination and pulse height analysis. Plans for the upgrade of the old DIII-D neutron counting system with these techniques will be presented. Work supported by the US Department of Energy under SC-G903402, and DE-FC02-04ER54698.

  8. Acoustic puncture assist device versus loss of resistance technique for epidural space identification.

    PubMed

    Mittal, Amit Kumar; Goel, Nitesh; Chowdhury, Itee; Shah, Shagun Bhatia; Singh, Brijesh Pratap; Jakhar, Pradeep

    2016-05-01

    The conventional techniques of epidural space (EDS) identification based on loss of resistance (LOR) have a higher chance of complications, patchy analgesia and epidural failure, which can be minimised by objective confirmation of space before catheter placement. Acoustic puncture assist device (APAD) technique objectively confirms EDS, thus enhancing success, with lesser complications. This study was planned with the objective to evaluate the APAD technique and compare it to LOR technique for EDS identification and its correlation with ultrasound guided EDS depth. In this prospective study, the lumbar vertebral spaces were scanned by the ultrasound for measuring depth of the EDS and later correlated with procedural depth measured by either of the technique (APAD or LOR). The data were subjected to descriptive statistics; the concordance correlation coefficient and Bland-Altman analysis with 95% confidence limits. Acoustic dip in pitch and descent in pressure tracing on EDS localisation was observed among the patients of APAD group. Analysis of concordance correlation between the ultrasonography (USG) depth and APAD or LOR depth was significant (r ≥ 0.97 in both groups). Bland-Altman analysis revealed a mean difference of 0.171cm in group APAD and 0.154 cm in group LOR. The 95% limits of agreement for the difference between the two measurements were - 0.569 and 0.226 cm in APAD and - 0.530 to 0.222 cm in LOR group. We found APAD to be a precise tool for objective localisation of the EDS, co-relating well with the pre-procedural USG depth of EDS.

  9. The identification of diphtheria, tetanus and pertussis vaccines by single radial and double immunodiffusion techniques.

    PubMed

    Winsnes, R; Møgster, B

    1985-01-01

    The identification tests for adsorbed diphtheria, tetanus and pertussis vaccines, which are required by the European Pharmacopoeia to be undertaken in animals, may be replaced by precipitation tests, for instance in agaros gels. Such in vitro tests eliminate the use of animals and are less expensive and time-consuming. The single radial immunodiffusion technique is a suitable semiquantitative test, while the double diffusion test is necessary for the investigation of complete or partial identity. The precipitates obtained in the single radial diffusion tests and in double diffusion tests with diphtheria toxoid were visible without staining; those obtained in the double diffusion tests with tetanus toxoid were weaker and staining was sometimes needed.

  10. Isolation and identification of epithelial-like cells in culture by a collagenase-separation technique.

    PubMed

    Kanoza, R J; Brunette, D M; Purdon, A D; Sodek, J

    1978-09-01

    An operational criterion for the identification and isolation of epithelial-like (E) cells, based on their ability to cover and protect a collagen gel from the action of collagenase, has been developed. The E cells isolated by this collagenase-separation technique (CST) exhibited the ultrastructural features, including desmosomes and abundant tonofilaments, that are considered characteristic of this cell type. Unlike confluent cultures of fibroblast-like (F) cells, E cells were not found to have large external transformation-sensitive (LETS) protein on their surface membranes. The CST provides a nondestructive and efficient means of identifying and isolating E cells from mixed populations.

  11. High-accuracy thickness measurement of a transparent plate with the heterodyne central fringe identification technique

    SciTech Connect

    Wu, Wang-Tsung; Hsieh, Hung-Chih; Chang, Wei-Yao; Chen, Yen-Liang; Su, Der-Chin

    2011-07-20

    In a modified Twyman-Green interferometer, the optical path variation is measured with the heterodyne central fringe identification technique, as the light beam is focused by a displaced microscopic objective on the front/rear surface of the test transparent plate. The optical path length variation is then measured similarly after the test plate is removed. The geometrical thickness of the test plate can be calculated under the consideration of dispersion effect. This method has a wide measurable range and a high accuracy in the measurable range.

  12. High-accuracy thickness measurement of a transparent plate with the heterodyne central fringe identification technique.

    PubMed

    Wu, Wang-Tsung; Hsieh, Hung-Chih; Chang, Wei-Yao; Chen, Yen-Liang; Su, Der-Chin

    2011-07-20

    In a modified Twyman-Green interferometer, the optical path variation is measured with the heterodyne central fringe identification technique, as the light beam is focused by a displaced microscopic objective on the front/rear surface of the test transparent plate. The optical path length variation is then measured similarly after the test plate is removed. The geometrical thickness of the test plate can be calculated under the consideration of dispersion effect. This method has a wide measurable range and a high accuracy in the measurable range.

  13. High-accuracy thickness measurement of a transparent plate with the heterodyne central fringe identification technique

    NASA Astrophysics Data System (ADS)

    Wu, Wang-Tsung; Hsieh, Hung-Chih; Chang, Wei-Yao; Chen, Yen-Liang; Su, Der-Chin

    2011-07-01

    In a modified Twyman--Green interferometer, the optical path variation is measured with the heterodyne central fringe identification technique, as the light beam is focused by a displaced microscopic objective on the front/rear surface of the test transparent plate. The optical path length variation is then measured similarly after the test plate is removed. The geometrical thickness of the test plate can be calculated under the consideration of dispersion effect. This method has a wide measurable range and a high accuracy in the measurable range.

  14. Study of operational parameters impacting helicopter fuel consumption. [using computer techniques (computer programs)

    NASA Technical Reports Server (NTRS)

    Cross, J. L.; Stevens, D. D.

    1976-01-01

    A computerized study of operational parameters affecting helicopter fuel consumption was conducted as an integral part of the NASA Civil Helicopter Technology Program. The study utilized the Helicopter Sizing and Performance Computer Program (HESCOMP) developed by the Boeing-Vertol Company and NASA Ames Research Center. An introduction to HESCOMP is incorporated in this report. The results presented were calculated using the NASA CH-53 civil helicopter research aircraft specifications. Plots from which optimum flight conditions for minimum fuel use that can be obtained are presented for this aircraft. The results of the study are considered to be generally indicative of trends for all helicopters.

  15. Economic technique for analyzing fuel saving technology in the seafood industry

    SciTech Connect

    Nissan, E.; Daniel, D.; Williams, D.C. Jr

    1983-06-01

    This research was aimed at supplementing and expanding the ongoing Mississippi-Alabama Sea Grant Consortium's efforts to aid the shrimp fleets in their battle against high fuel costs. This report is essentially a research application of tried methodologies in the areas of economics and finance and will analyze the fuel-savings additions to the capital stock. Since the use of such technology requires considerable investment, it is necessary to determine whether its introduction is profitable in the long run. The use of information provided by this report should prove helpful in making decisions regarding energy-conserving alternatives.

  16. Application of digital sampling techniques to a "single chip telescope" for isotopic particle identification

    NASA Astrophysics Data System (ADS)

    Bardelli, L.; Poggi, G.; Bini, M.; Pasquali, G.; Taccetti, N.

    2004-12-01

    Some applications of digital sampling techniques are presented which can simplify experiments involving sub-nanosecond timing determinations and energy measurements with nuclear detectors used for Pulse Shape Analysis and Time of Flight measurements in heavy ion experiments. The basic principles of the method are discussed as well as the main parameters that influence the accuracy of the measurements. The method allows to obtain both high resolution time and amplitude information with an electronic chain simply consisting of a charge preamplifier and a fast high resolution ADC (in the present application: 100 MSample/s, 12 bit) coupled to an efficient on-line software: for example the timing resolution can be as good as 100 ps FWHM. Examples of this technique applied to various detectors in heavy-ion experiments involving particle identification via Pulse Shape Analysis (PSA) are presented. Particular attention is devoted to the analysis of the performance of a "Single Chip Telescope" detector coupled to such a sampling system.

  17. [Identification of mosquitoes' human food source by using the co-agglutination technique].

    PubMed

    Castex, M; Fachado, A; Fonte, L

    1997-01-01

    The utilization of a coagglutination technique for the identification of a human source for feeding mosquitoes is described. The dilution of ingested blood samples in filter paper was performed in 2 mL of a sodium chloride solution at 0.85%. It was used a suspension of sensibilized Staphylococcus aureus with rabbit's serum, human plasmatic anti-proteins, and human anti-IgG rabbit's serum discriminated well between human and non human blood. No agglutination was observed with the negative control. This technique proved to be sensitive to identify 100% of the human blood samples taken to the paper 24 hours after the mosquitoes completed their feeding at a temperature of 26 to 28 degrees C. Among mosquitoes fed and collected in the fields the test had a satisfactory result. Therefore, it may be used in routine work in the fields. The results showed the sensitivity and specificity of this method for identifying human blood ingested by mosquitoes.

  18. Performance analysis of various techniques applied in human identification using dental X-rays.

    PubMed

    Banumathi, A; Vijayakumari, B; Geetha, A; Shanmugavadivu, N; Raju, S

    2007-06-01

    This paper proposes a novel approach for automating the analysis of identifying the person based on their ante mortem and postmortem reports. This approach involves three techniques (i.e.) morphological contour detector, Gaussian filtering and an existing semi-automatic contour extraction method. Forensic dentistry involves the identification of people based on their dental records, mainly available as radiograph images. Our goal is to automate this process using image processing and pattern recognition techniques. Given a postmortem radiograph, we search a database of antemortem radiographs in order to retrieve the closest match with respect to some salient features. In this paper, we use the contours of the teeth as the feature for matching. The algorithm completes the task in three steps: radiograph segmentation, pixel classification and contour matching. In this paper a hit rate of 0.7 is achieved by the Morphological contour detectors which are comparable with the other two methods.

  19. Identification of Organic Binders in Ancient Chinese Paintings by Immunological Techniques.

    PubMed

    Hu, Wenjing; Zhang, Hui; Zhang, Bingjian

    2015-10-01

    The identification and localization of organic binders in artworks are big challenges in archaeology and conservation science. Immunological techniques, such as enzyme-linked immunosorbent assay (ELISA) and immunofluorescence microscopy (IFM) have the potential to become powerful tools for the analysis of organic materials in ancient samples. In this study, ELISA and IFM techniques were combined to identify chicken ovalbumin, glue from several mammalian species, bovine milk, and fish glue in ancient Chinese painting samples. As binders, egg ovalbumin was found in two painting samples and animal glue was found in three samples, which were dated from the 4th to 8th centuries. The results clearly demonstrate that ELISA and IFM can be used to validate results from ancient samples.

  20. Utilization of the Differential Die-Away Self-Interrogation Technique for Characterization and Verification of Spent Nuclear Fuel

    NASA Astrophysics Data System (ADS)

    Trahan, Alexis Chanel

    New nondestructive assay techniques are sought to better characterize spent nuclear fuel. One of the NDA instruments selected for possible deployment is differential die-away self-interrogation (DDSI). The proposed DDSI approach for spent fuel assembly assay utilizes primarily the spontaneous fission and (alpha, n) neutrons in the assemblies as an internal interrogating radiation source. The neutrons released in spontaneous fission or (alpha,n) reactions are thermalized in the surrounding water and induce fission in fissile isotopes, thereby creating a measurable signal from isotopes of interest that would be otherwise difficult to measure. The DDSI instrument employs neutron coincidence counting with 3He tubes and list-mode-based data acquisition to allow for production of Rossi-alpha distributions (RADs) in post-processing. The list-mode approach to data collection and subsequent construction of RADs has expanded the analytical possibilities, as will be demonstrated throughout this thesis. One of the primary advantages is that the measured signal in the form of a RAD can be analyzed in its entirety including determination of die-away times in different time domains. This capability led to the development of the early die-away method, a novel leakage multiplication determination method which is tested throughout the thesis on different sources in simulation space and fresh fuel experiments. The early die-away method is a robust, accurate, improved method of determining multiplication without the need for knowledge of the (alpha,n) source term. The DDSI technique and instrument are presented along with the many novel capabilities enabled by and discovered through RAD analysis. Among the new capabilities presented are the early die-away method, total plutonium content determination, and highly sensitive missing pin detection. Simulation of hundreds of different spent and fresh fuel assemblies were used to develop the analysis algorithms and the techniques were

  1. Utilization of the Differential Die-Away Self-Interrogation Technique for Characterization and Verification of Spent Nuclear Fuel

    SciTech Connect

    Trahan, Alexis Chanel

    2016-01-27

    New nondestructive assay techniques are sought to better characterize spent nuclear fuel. One of the NDA instruments selected for possible deployment is differential die-away self-interrogation (DDSI). The proposed DDSI approach for spent fuel assembly assay utilizes primarily the spontaneous fission and (α, n) neutrons in the assemblies as an internal interrogating radiation source. The neutrons released in spontaneous fission or (α,n) reactions are thermalized in the surrounding water and induce fission in fissile isotopes, thereby creating a measurable signal from isotopes of interest that would be otherwise difficult to measure. The DDSI instrument employs neutron coincidence counting with 3He tubes and list-mode-based data acquisition to allow for production of Rossi-alpha distributions (RADs) in post-processing. The list-mode approach to data collection and subsequent construction of RADs has expanded the analytical possibilities, as will be demonstrated throughout this thesis. One of the primary advantages is that the measured signal in the form of a RAD can be analyzed in its entirety including determination of die-away times in different time domains. This capability led to the development of the early die-away method, a novel leakage multiplication determination method which is tested throughout the thesis on different sources in simulation space and fresh fuel experiments. The early die-away method is a robust, accurate, improved method of determining multiplication without the need for knowledge of the (α,n) source term. The DDSI technique and instrument are presented along with the many novel capabilities enabled by and discovered through RAD analysis. Among the new capabilities presented are the early die-away method, total plutonium content determination, and highly sensitive missing pin detection. Simulation of hundreds of different spent and fresh fuel assemblies were used to develop the analysis algorithms and the techniques were tested on a

  2. Identification of scleractinian coral recruits using fluorescent censusing and DNA barcoding techniques.

    PubMed

    Hsu, Chia-Min; de Palmas, Stéphane; Kuo, Chao-Yang; Denis, Vianney; Chen, Chaolun Allen

    2014-01-01

    The identification of coral recruits has been problematic due to a lack of definitive morphological characters being available for higher taxonomic resolution. In this study, we tested whether fluorescent detection of coral recruits used in combinations of different DNA-barcoding markers (cytochrome oxidase I gene [COI], open reading frame [ORF], and nuclear Pax-C intron [PaxC]) could be useful for increasing the resolution of coral spat identification in ecological studies. One hundred and fifty settlement plates were emplaced at nine sites on the fringing reefs of Kenting National Park in southern Taiwan between April 2011 and September 2012. A total of 248 living coral spats and juveniles (with basal areas ranging from 0.21 to 134.57 mm(2)) were detected on the plates with the aid of fluorescent light and collected for molecular analyses. Using the COI DNA barcoding technique, 90.3% (224/248) of coral spats were successfully identified into six genera, including Acropora, Isopora, Montipora, Pocillopora, Porites, and Pavona. PaxC further separated I. cuneata and I. palifera of Isopora from Acropora, and ORF successfully identified the species of Pocillopora (except P. meandrina and P. eydouxi). Moreover, other cnidarian species such as actinarians, zoanthids, and Millepora species were visually found using fluorescence and identified by COI DNA barcoding. This combination of existing approaches greatly improved the taxonomic resolution of early coral life stages, which to date has been mainly limited to the family level based on skeletal identification. Overall, this study suggests important improvements for the identification of coral recruits in ecological studies.

  3. Identification of Scleractinian Coral Recruits Using Fluorescent Censusing and DNA Barcoding Techniques

    PubMed Central

    Hsu, Chia-Min; de Palmas, Stéphane; Kuo, Chao-Yang; Denis, Vianney; Chen, Chaolun Allen

    2014-01-01

    The identification of coral recruits has been problematic due to a lack of definitive morphological characters being available for higher taxonomic resolution. In this study, we tested whether fluorescent detection of coral recruits used in combinations of different DNA-barcoding markers (cytochrome oxidase I gene [COI], open reading frame [ORF], and nuclear Pax-C intron [PaxC]) could be useful for increasing the resolution of coral spat identification in ecological studies. One hundred and fifty settlement plates were emplaced at nine sites on the fringing reefs of Kenting National Park in southern Taiwan between April 2011 and September 2012. A total of 248 living coral spats and juveniles (with basal areas ranging from 0.21 to 134.57 mm2) were detected on the plates with the aid of fluorescent light and collected for molecular analyses. Using the COI DNA barcoding technique, 90.3% (224/248) of coral spats were successfully identified into six genera, including Acropora, Isopora, Montipora, Pocillopora, Porites, and Pavona. PaxC further separated I. cuneata and I. palifera of Isopora from Acropora, and ORF successfully identified the species of Pocillopora (except P. meandrina and P. eydouxi). Moreover, other cnidarian species such as actinarians, zoanthids, and Millepora species were visually found using fluorescence and identified by COI DNA barcoding. This combination of existing approaches greatly improved the taxonomic resolution of early coral life stages, which to date has been mainly limited to the family level based on skeletal identification. Overall, this study suggests important improvements for the identification of coral recruits in ecological studies. PMID:25211345

  4. [Cotton identification and extraction using near infrared sensor and object-oriented spectral segmentation technique].

    PubMed

    Deng, Jin-Song; Shi, Yuan-Yuan; Chen, Li-Su; Wang, Ke; Zhu, Jin-Xia

    2009-07-01

    The real-time, effective and reliable method of identifying crop is the foundation of scientific management for crop in the precision agriculture. It is also one of the key techniques for the precision agriculture. However, this expectation cannot be fulfilled by the traditional pixel-based information extraction method with respect to complicated image processing and accurate objective identification. In the present study, visible-near infrared image of cotton was acquired using high-resolution sensor. Object-oriented segmentation technique was performed on the image to produce image objects and spatial/spectral features of cotton. Afterwards, nearest neighbor classifier integrated the spectral, shape and topologic information of image objects to precisely identify cotton according to various features. Finally, 300 random samples and an error matrix were applied to undertake the accuracy assessment of identification. Although errors and confusion exist, this method shows satisfying results with an overall accuracy of 96.33% and a KAPPA coefficient of 0.926 7, which can meet the demand of automatic management and decision-making in precision agriculture.

  5. Biochemical component identification by light scattering techniques in whispering gallery mode optical resonance based sensor

    NASA Astrophysics Data System (ADS)

    Saetchnikov, Vladimir A.; Tcherniavskaia, Elina A.; Saetchnikov, Anton V.; Schweiger, Gustav; Ostendorf, Andreas

    2014-03-01

    Experimental data on detection and identification of variety of biochemical agents, such as proteins (albumin, interferon, C reactive protein), microelements (Na+, Ca+), antibiotic of different generations, in both single and multi component solutions under varied in wide range concentration are represented. Analysis has been performed on the light scattering parameters of whispering gallery mode (WGM) optical resonance based sensor with dielectric microspheres from glass and PMMA as sensitive elements fixed by spin - coating techniques in adhesive layer on the surface of substrate or directly on the coupling element. Sensitive layer was integrated into developed fluidic cell with a digital syringe. Light from tuneable laser strict focusing on and scattered by the single microsphere was detected by a CMOS camera. The image was filtered for noise reduction and integrated on two coordinates for evaluation of integrated energy of a measured signal. As the entrance data following signal parameters were used: relative (to a free spectral range) spectral shift of frequency of WGM optical resonance in microsphere and relative efficiency of WGM excitation obtained within a free spectral range which depended on both type and concentration of investigated agents. Multiplexing on parameters and components has been realized using spatial and spectral parameters of scattered by microsphere light with developed data processing. Biochemical component classification and identification of agents under investigation has been performed by network analysis techniques based on probabilistic network and multilayer perceptron. Developed approach is demonstrated to be applicable both for single agent and for multi component biochemical analysis.

  6. ADVANCING THE FUNDAMENTAL UNDERSTANDING AND SCALE-UP OF TRISO FUEL COATERS VIA ADVANCED MEASUREMENT AND COMPUTATIONAL TECHNIQUES

    SciTech Connect

    Biswas, Pratim; Al-Dahhan, Muthanna

    2012-11-01

    to advance the fundamental understanding of the hydrodynamics by systematically investigating the effect of design and operating variables, to evaluate the reported dimensionless groups as scaling factors, and to establish a reliable scale-up methodology for the TRISO fuel particle spouted bed coaters based on hydrodynamic similarity via advanced measurement and computational techniques. An additional objective is to develop an on-line non-invasive measurement technique based on gamma ray densitometry (i.e. Nuclear Gauge Densitometry) that can be installed and used for coater process monitoring to ensure proper performance and operation and to facilitate the developed scale-up methodology. To achieve the objectives set for the project, the work will use optical probes and gamma ray computed tomography (CT) (for the measurements of solids/voidage holdup cross-sectional distribution and radial profiles along the bed height, spouted diameter, and fountain height) and radioactive particle tracking (RPT) (for the measurements of the 3D solids flow field, velocity, turbulent parameters, circulation time, solids lagrangian trajectories, and many other of spouted bed related hydrodynamic parameters). In addition, gas dynamic measurement techniques and pressure transducers will be utilized to complement the obtained information. The measurements obtained by these techniques will be used as benchmark data to evaluate and validate the computational fluid dynamic (CFD) models (two fluid model or discrete particle model) and their closures. The validated CFD models and closures will be used to facilitate the developed methodology for scale-up, design and hydrodynamic similarity. Successful execution of this work and the proposed tasks will advance the fundamental understanding of the coater flow field and quantify it for proper and safe design, scale-up, and performance. Such achievements will overcome the barriers to AGR applications and will help assure that the US maintains

  7. Non-destructive evaluation of the cladding thickness in LEU fuel plates by accurate ultrasonic scanning technique

    SciTech Connect

    Borring, J.; Gundtoft, H.E.; Borum, K.K.; Toft, P.

    1997-08-01

    In an effort to improve their ultrasonic scanning technique for accurate determination of the cladding thickness in LEU fuel plates, new equipment and modifications to the existing hardware and software have been tested and evaluated. The authors are now able to measure an aluminium thickness down to 0.25 mm instead of the previous 0.35 mm. Furthermore, they have shown how the measuring sensitivity can be improved from 0.03 mm to 0.01 mm. It has now become possible to check their standard fuel plates for DR3 against the minimum cladding thickness requirements non-destructively. Such measurements open the possibility for the acceptance of a thinner nominal cladding than normally used today.

  8. Potential fire behavior in pine flatwood forests following three different fuel reduction techniques

    Treesearch

    Patrick Brose; Dale Wade

    2002-01-01

    A computer modeling study to determine the potential fire behavior in pine flatwood forests following three fuel hazard reduction treatments: herbicide, prescribed fire and thinning was conducted in Florida following the 1998 wildfire season. Prescribed fire provided immediate protection but this protection quickly disappeared as the rough recovered. Thinning had a...

  9. Computer technique for simulating the combustion of cellulose and other fuels

    Treesearch

    Andrew M. Stein; Brian W. Bauske

    1971-01-01

    A computer method has been developed for simulating the combustion of wood and other cellulosic fuels. The products of combustion are used as input for a convection model that slimulates real fires. The method allows the chemical process to proceed to equilibrium and then examines the effects of mass addition and repartitioning on the fluid mechanics of the convection...

  10. The evaluation of meta-analysis techniques for quantifying prescribed fire effects on fuel loadings.

    Treesearch

    Karen E. Kopper; Donald McKenzie; David L. Peterson

    2009-01-01

    Models and effect-size metrics for meta-analysis were compared in four separate meta-analyses quantifying surface fuels after prescribed fires in ponderosa pine (Pinus ponderosa Dougl. ex Laws.) forests of the Western United States. An aggregated data set was compiled from eight published reports that contained data from 65 fire treatment units....

  11. Application of Isothermal Amplification Techniques for Identification of Madurella mycetomatis, the Prevalent Agent of Human Mycetoma

    PubMed Central

    Ahmed, Sarah A.; van de Sande, Wendy W. J.; Desnos-Ollivier, Marie; Fahal, Ahmed H.; Mhmoud, Najwa A.

    2015-01-01

    Appropriate diagnosis and treatment of eumycetoma may vary significantly depending on the causative agent. To date, the most common fungus causing mycetoma worldwide is Madurella mycetomatis. This species fails to express any recognizable morphological characteristics, and reliable identification can therefore only be achieved with the application of molecular techniques. Recombinase polymerase amplification (RPA) and loop-mediated isothermal amplification (LAMP) are proposed as alternatives to phenotypic methods. Species-specific primers were developed to target the ribosomal DNA (rDNA) internal transcribed spacer (ITS) region of M. mycetomatis. Both isothermal amplification techniques showed high specificity and sufficient sensitivity to amplify fungal DNA and proved to be appropriate for detection of M. mycetomatis. Diagnostic performance of the techniques was assessed in comparison to conventional PCR using biopsy specimens from eumycetoma patients. RPA is reliable and easy to operate and has the potential to be implemented in areas where mycetoma is endemic. The techniques may be expanded to detect fungal DNA from environmental samples. PMID:26246484

  12. Application of Isothermal Amplification Techniques for Identification of Madurella mycetomatis, the Prevalent Agent of Human Mycetoma.

    PubMed

    Ahmed, Sarah A; van de Sande, Wendy W J; Desnos-Ollivier, Marie; Fahal, Ahmed H; Mhmoud, Najwa A; de Hoog, G S

    2015-10-01

    Appropriate diagnosis and treatment of eumycetoma may vary significantly depending on the causative agent. To date, the most common fungus causing mycetoma worldwide is Madurella mycetomatis. This species fails to express any recognizable morphological characteristics, and reliable identification can therefore only be achieved with the application of molecular techniques. Recombinase polymerase amplification (RPA) and loop-mediated isothermal amplification (LAMP) are proposed as alternatives to phenotypic methods. Species-specific primers were developed to target the ribosomal DNA (rDNA) internal transcribed spacer (ITS) region of M. mycetomatis. Both isothermal amplification techniques showed high specificity and sufficient sensitivity to amplify fungal DNA and proved to be appropriate for detection of M. mycetomatis. Diagnostic performance of the techniques was assessed in comparison to conventional PCR using biopsy specimens from eumycetoma patients. RPA is reliable and easy to operate and has the potential to be implemented in areas where mycetoma is endemic. The techniques may be expanded to detect fungal DNA from environmental samples. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  13. Miso Model Identification of Proton Exchange Membrane Fuel Cell (PEM-FC) using Least-Square Method

    NASA Astrophysics Data System (ADS)

    Yusivar, F.; Subiantoro, A.; Aryani, D.; Gunawan, R.; Priambodo, P. S.

    2009-09-01

    This paper presents a dynamic model of Polymer Electrolyte Membrane Fuel Cell (PEM FC) as a MISO system using an identification model. The actual PEMFC system is represented in a non linear mathematical model. By identifying the non linear model with Least Square Method, a linear state space model is generated, with and without compensation vector. Another model is derived from linearization in the operating conditions of PEMFC. The Voltage-Current characteristics of each PEMFC models are generated from simulation results, and are compared. It can be seen that the best model is the linear model with compensation vector, since its characteristic is very similar with the typical characteristic of PEMFC. Its Criterion Function of 0.0142 is the smallest among the other models. The smaller the Criterion Function, the model can represent the actual system more accurate. The resulting model can be used for model-based control system.

  14. The technique and preliminary results of LEU U-Mo full-size IRT type fuel testing in the MIR reactor

    SciTech Connect

    Izhutov, A.L.; Starkov, V.A.; Pimenov, V.V.; Fedoseev, V.Ye.; Dobrikova, I.V.; Vatulin, A.V.; Suprun, V.B.; Kartashov, Ye.F.; Lukichev, V.A.; Troyanov, V.M.; Enin, A.A.; Tkachev, A.A.

    2008-07-15

    In March 2007 in-pile testing of LEU U-Mo full-size IRT type fuel elements was started in the MIR reactor. Four prototype fuel elements for Uzbekistan WWR SM reactor are being tested simultaneously - two of tube type design and two of pin type design. The dismountable irradiation devices were constructed for intermediate reloading and inspection of fuel elements during reactor testing. The objective of the test is to obtain the experimental results for determination of more reliable design and licensing fuel elements for conversion of the WWR SM reactor. The heat power of fuel elements is measured on-line by thermal balance method. The distribution of fission density and burn-up of uranium in the volume of elements are calculated by using the MIR reactor MCU code (Monte-Carlo) model. In this paper the design of fuel elements, the technique, main parameters and preliminary results are described. (author)

  15. Optimization of enrichment distributions in nuclear fuel assemblies loaded with uranium and plutonium via a modified linear programming technique

    NASA Astrophysics Data System (ADS)

    Cuevas Vivas, Gabriel Francisco

    A methodology to optimize enrichment distributions in Light Water Reactor (LWR) fuel assemblies is developed and tested. The optimization technique employed is the linear programming revised simplex method, and the fuel assembly's performance is evaluated with a neutron transport code that is also utilized in the calculation of sensitivity coefficients. The enrichment distribution optimization procedure begins from a single-value (flat) enrichment distribution until a target, maximum local power peaking factor, is achieved. The optimum rod enrichment distribution, with 1.00 for the maximum local power peaking factor and with each rod having its own enrichment, is calculated at an intermediate stage of the analysis. Later, the best locations and values for a reduced number of rod enrichments is obtained as a function of a target maximum local power peaking factor by applying sensitivity to change techniques. Finally, a shuffling process that assigns individual rod enrichments among the enrichment groups is performed. The relative rod power distribution is then slightly modified and the rod grouping redefined until the optimum configuration is attained. To verify the accuracy of the relative rod power distribution, a full computation with the neutron transport code using the optimum enrichment distribution is carried out. The results are compared and tested for assembly designs loaded with fresh Low Enriched Uranium (LEU) and plutonium Mixed OXide (MOX) fuels. MOX isotopics for both reactor-grade and weapons-grade plutonium were utilized to demonstrate the wide-range of applicability of the optimization technique. The features of the assembly designs used for evaluation purposes included burnable absorbers and internal water regions, and were prepared to resemble the configurations of modern assemblies utilized in commercial Boiling Water Reactors (BWRs) and Pressurized Water Reactors (PWRs). In some cases, a net improvement in the relative rod power distribution or

  16. Isolation and identification of cobalt- and caesium-resistant bacteria from a nuclear fuel storage pond.

    PubMed

    Dekker, Linda; Osborne, Thomas H; Santini, Joanne M

    2014-10-01

    One of the issues facing the nuclear power industry is how to store spent nuclear fuel which is contaminated with radionuclides produced during nuclear fission, including caesium ((134)Cs(+), (135)Cs(+) and (137)Cs(+)) and cobalt ((60)Co(2+)). In this study, we have isolated Co(2+)- and Cs(+)-resistant bacteria from water collected from a nuclear fuel storage pond. The most resistant Cs(+) and Co(2+) isolates grew in the presence of 500 mM CsCl and 3 mM CoCl2. Strain Cs67-2 is resistant to fourfold more Cs(+) than Cupriavidus metallidurans str. CH34 making it the most Cs(+)-resistant strain identified to date. The Cs(+)-resistant isolates were closely related to bacteria in the Serratia and Yersinia genera, while the Co(2+)-resistant isolates were closely related to the Curvibacter and Tardiphaga genera. These new isolates could be used for bioremediation.

  17. Upgrade of the Resonance Ionization Mass Spectrometer for Precise Identification of Failed Fuel in a Fast Reactor

    SciTech Connect

    Iwata, Yoshihiro; Ito, Chikara; Harano, Hideki; Aoyama, Takafumi

    2011-12-13

    Isotopic analysis of krypton (Kr) and xenon (Xe) by resonance ionization mass spectrometry (RIMS) is an effective tool for identification of failed fuel in fast reactors to achieve their safety operation and high plant availability. Reliability of the failed fuel detection and location (FFDL) system depends on the precise determination of {sup 78}Kr/{sup 80}Kr, {sup 82}Kr/{sup 80}Kr and {sup 126}Xe/{sup 129}Xe isotopic ratios, which is mainly hampered by statistical errors for detection of the corresponding isotopes except {sup 82}Kr generated in large amounts during operation of fast reactors. In this paper, we report on improvements of the laser optical system of our spectrometer to increase the resonance ionization efficiency of Kr and Xe atoms, focusing on (i) utilization of the uniform YAG laser beam to improve the wavelength conversion efficiency of sum frequency generation and (ii) reflection of the ultraviolet light by a concave mirror to increase the photon density. The results indicate that our upgraded resonance ionization mass spectrometer has enough performance for isotopic analysis of Kr and Xe required in the Monju FFDL system.

  18. Application of digital image analysis techniques to antimisting fuel spray characterization

    NASA Technical Reports Server (NTRS)

    Fleeter, R.; Toaz, R.; Sarohia, V.

    1982-01-01

    Pulsed ruby laser sheet illumination of the spray is used for the initial recording of data on very-high-resolution photographic film. The digitization of mosaic elements is effected with a vidicon and video digitizer whose output is stored in computer RAM memory for processing. Highly nonspherical elements and a broad range of drop diameters (8-2000 microns) resulting from the unusual rheological properties of the fuel-additive system are accommodated by the device configuration and algorithms. It is found that the generation of two-dimensional images by means of scattered light also eliminates errors resulting from variations in the index of refraction and from the submicron scattering sites that are often present within the modified fuel. No a priori information on the drop size distribution or on the system response to various drop sizes is required.

  19. Failed fuel monitoring and surveillance techniques for liquid metal cooled fast reactors

    SciTech Connect

    Lambert, J.D.B.; Mikaili, R.; Gross, K.C.; Strain, R.V.; Aoyama, T.; Ukai, S.; Nomura, S.; Nakae, N.

    1995-05-01

    The Experimental Breeder Reactor II (EBR-II) has been used as a facility for irradiation of LMR fuels and components for thirty years. During this time many tests of experimental fuel were continued to cladding breach in order to study modes of element failure; the methods used to identify such failures are described in a parallel paper. This paper summarizes experience of monitoring the delayed-neutron (DN) and fission-gas (FG) release behavior of a smaller number of elements that continued operation in the run-beyond-cladding-breach (RBCB) mode. The scope of RBCB testing, the methods developed to characterize failures on-line, and examples of DN/FG behavior are described.

  20. Environmental issues: New techniques for managing and using wood fuel ash

    SciTech Connect

    Fehrs, J.E.; Donovan, C.T.

    1993-12-31

    Continued research and development of environmentally-acceptable and cost-effective end uses for wood ash is having a significant affect on the ability to use wood and wood waste for fuel. This is particularly true for ash resulting from treated wood combustion. Concerns about the contents of ash from wood containing paint, stain, preservatives, or other chemicals is one of the largest regulatory barriers to its use as fuel. The purpose of this paper is to: (1) Identify the physical and chemical characteristics of ashes produced from the combustion of untreated and treated wood; (2) Explain the types of {open_quotes}clean, untreated{close_quotes} and {open_quotes}treated{close_quotes} wood that are likely to produce ash that can beneficially used; (3) Describe existing and potential products and end uses for untreated and treated wood ash.

  1. Development of techniques for joining fuel rod simulators to test assemblies

    SciTech Connect

    Moorhead, A.J.; Reed, R.W.

    1980-01-01

    A unique tubular electrode carrier is described for gas tungsten-arc welding small-diameter nuclear fuel rod simulators to the tubesheet of a test assembly. Both the close-packed geometry of the array of simulators and the extension of coaxial electrical conductors from each simulator hindered access to the weld joint. Consequently, a conventional gas tungsten-arc torch could not be used. Two seven-rod assemblies that were mockups of the simulator-to-tubesheet joint area were welded and successfully tested. Modified versions of the electrode carrier for brazing electrical leads to the upper ends of the fuel pin simulators are also described. Satisfactory brazes have been made on both single-rod mockups and an array of 25 simulators by using the modified electrode carrier and a filler metal with a composition of 71.5 Ag-28 Cu-0.5 Ni.

  2. Advanced Ultrasonic Inspection Techniques for General Purpose Heat Source Fueled Clad Closure Welds

    SciTech Connect

    Moyer, M.W.

    2001-01-11

    A radioisotope thermoelectric generator is used to provide a power source for long-term deep space missions. This General Purpose Heat Source (GPHS) is fabricated using iridium clad vent sets to contain the plutonium oxide fuel pellets. Integrity of the closure weld is essential to ensure containment of the plutonium. The Oak Ridge Y-12 Plant took the lead role in developing the ultrasonic inspection for the closure weld and transferring the inspection to Los Alamos National Laboratory for use in fueled clad inspection for the Cassini mission. Initially only amplitude and time-of-flight data were recorded. However, a number of benign geometric conditions produced signals that were larger than the acceptance threshold. To identify these conditions, a B-scan inspection was developed that acquired full ultrasonic waveforms. Using a test protocol the B-scan inspection was able to identify benign conditions such as weld shield fusion and internal mismatch. Tangential radiography was used to confirm the ultrasonic results. All but two of 29 fueled clads for which ultrasonic B-scan data was evaluated appeared to have signals that could be attributed to benign geometric conditions. This report describes the ultrasonic inspection developed at Y-12 for the Cassini mission.

  3. Evaluation of micro-homogeneity in plutonium based nuclear reactor fuel pellets by alpha-autoradiography technique

    NASA Astrophysics Data System (ADS)

    Baghra, Chetan; Sathe, D. B.; Sharma, Jitender; Walinjkar, Nilima; Behere, P. G.; Afzal, Mohd; Kumar, Arun

    2015-12-01

    Alpha-autoradiography is a fast and non-destructive technique which is used at Advanced Fuel Fabrication Facility (India) to evaluate micro-homogeneity of plutonium in uranium and plutonium mixed oxide (U-Pu)O2 fuel pellets fabricated for both thermal and fast breeder reactors. In this study, various theoretical calculations to understand effect of alpha autoradiography process parameters and limiting conditions for measuring micro-homogeneity of plutonium in the pellets having different concentrations of plutonium were reported. Experiments were carried out to establish the procedure to evaluate micro-homogeneity of plutonium in (U-x%Pu)O2 pellets where x varies from 0.4 to 44% and to measure the size of agglomerates, if any, present in the pellet. An attempt had been made to measure plutonium content in the agglomerate using alpha-autoradiography. This study can also be useful for carrying out alpha-autoradiography of spent fuel pellets during post-irradiation examination.

  4. Post-acquisition data mining techniques for LC-MS/MS-acquired data in drug metabolite identification.

    PubMed

    Dhurjad, Pooja Sukhdev; Marothu, Vamsi Krishna; Rathod, Rajeshwari

    2017-08-01

    Metabolite identification is a crucial part of the drug discovery process. LC-MS/MS-based metabolite identification has gained widespread use, but the data acquired by the LC-MS/MS instrument is complex, and thus the interpretation of data becomes troublesome. Fortunately, advancements in data mining techniques have simplified the process of data interpretation with improved mass accuracy and provide a potentially selective, sensitive, accurate and comprehensive way for metabolite identification. In this review, we have discussed the targeted (extracted ion chromatogram, mass defect filter, product ion filter, neutral loss filter and isotope pattern filter) and untargeted (control sample comparison, background subtraction and metabolomic approaches) post-acquisition data mining techniques, which facilitate the drug metabolite identification. We have also discussed the importance of integrated data mining strategy.

  5. Research Techniques Made Simple: Identification and Characterization of Long Noncoding RNA in Dermatological Research.

    PubMed

    Antonini, Dario; Mollo, Maria Rosaria; Missero, Caterina

    2017-03-01

    Long noncoding RNAs (lncRNAs) are a functionally heterogeneous and abundant class of RNAs acting in all cellular compartments that can form complexes with DNA, RNA, and proteins. Recent advances in high-throughput sequencing and techniques leading to the identification of DNA-RNA, RNA-RNA, and RNA-protein complexes have allowed the functional characterization of a small set of lncRNAs. However, characterization of the full repertoire of lncRNAs playing essential roles in a number of normal and dysfunctional cellular processes remains an important goal for future studies. Here we describe the most commonly used techniques to identify lncRNAs, and to characterize their biological functions. In addition, we provide examples of these techniques applied to cutaneous research in healthy skin, that is, epidermal differentiation, and in diseases such as cutaneous squamous cell carcinomas and psoriasis. As with protein-coding RNA transcripts, lncRNAs are differentially regulated in disease, and can serve as novel biomarkers for the diagnosis and prognosis of skin diseases.

  6. Clones identification of Sequoia sempervirens (D. Don) Endl. in Chile by using PCR-RAPDs technique*

    PubMed Central

    Toral Ibañez, Manuel; Caru, Margarita; Herrera, Miguel A.; Gonzalez, Luis; Martin, Luis M.; Miranda, Jorge; Navarro-Cerrillo, Rafael M.

    2009-01-01

    A protocol of polymerase chain reaction-random amplified polymorphic DNAs (PCR-RAPDs) was established to analyse the gene diversity and genotype identification for clones of Sequoia sempervirens (D. Don) Endl. in Chile. Ten (out of 34) clones from introduction trial located in Voipir-Villarrica, Chile, were studied. The PCR-RAPDs technique and a modified hexadecyltrimethylammonium bromide (CTAB) protocol were used for genomic DNA extraction. The PCR tests were carried out employing 10-mer random primers. The amplification products were detected by electrophoresis in agarose gels. Forty nine polymorphic bands were obtained with the selected primers (BG04, BF07, BF12, BF13, and BF14) and were ordered according to their molecular size. The genetic similarity between samples was calculated by the Jaccard index and a dendrogram was constructed using a cluster analysis of unweighted pair group method using arithmetic averages (UPGMA). Of the primers tested, 5 (out of 60) RAPD primers were selected for their reproducibility and high polymorphism. A total of 49 polymorphic RAPD bands were detected out of 252 bands. The genetic similarity analysis demonstrates an extensive genetic variability between the tested clones and the dendrogram depicts the genetic relationships among the clones, suggesting a geographic relationship. The results indicate that the RAPD markers permitted the identification of the assayed clones, although they are derived from the same geographic origin. PMID:19235269

  7. Clones identification of Sequoia sempervirens (D. Don) Endl. in Chile by using PCR-RAPDs technique.

    PubMed

    Toral Ibañez, Manuel; Caru, Margarita; Herrera, Miguel A; Gonzalez, Luis; Martin, Luis M; Miranda, Jorge; Navarro-Cerrillo, Rafael M

    2009-02-01

    A protocol of polymerase chain reaction-random amplified polymorphic DNAs (PCR-RAPDs) was established to analyse the gene diversity and genotype identification for clones of Sequoia sempervirens (D. Don) Endl. in Chile. Ten (out of 34) clones from introduction trial located in Voipir-Villarrica, Chile, were studied. The PCR-RAPDs technique and a modified hexadecyltrimethylammonium bromide (CTAB) protocol were used for genomic DNA extraction. The PCR tests were carried out employing 10-mer random primers. The amplification products were detected by electrophoresis in agarose gels. Forty nine polymorphic bands were obtained with the selected primers (BG04, BF07, BF12, BF13, and BF14) and were ordered according to their molecular size. The genetic similarity between samples was calculated by the Jaccard index and a dendrogram was constructed using a cluster analysis of unweighted pair group method using arithmetic averages (UPGMA). Of the primers tested, 5 (out of 60) RAPD primers were selected for their reproducibility and high polymorphism. A total of 49 polymorphic RAPD bands were detected out of 252 bands. The genetic similarity analysis demonstrates an extensive genetic variability between the tested clones and the dendrogram depicts the genetic relationships among the clones, suggesting a geographic relationship. The results indicate that the RAPD markers permitted the identification of the assayed clones, although they are derived from the same geographic origin.

  8. The crash of Colgan Air flight 3407: Advanced techniques in victim identification.

    PubMed

    Bush, Mary; Miller, Raymond

    2011-12-01

    Identifying disaster victims by means of dental records is a well-established technique. In cases in which high temperatures are involved, destruction of the structural relationship of the dentition necessitates that adjunctive aids be used in the identification process. Analysis of tooth fragments by means of scanning electron microscopy with energy dispersive x-ray spectroscopy can reveal evidence of restorative procedures, as well as trace amounts of dental materials remaining on tooth surfaces. In addition, dental materials can be analyzed and identified according to brand, even if the materials have been cremated. The authors describe the identification of three victims from the crash of Colgan Air flight 3407, a commuter airplane flying between Newark, N.J., and Buffalo, N.Y. The crash involved a fire, and a portion of the airplane burned for nearly 11 hours. Dental fragments that had restorative material adhering to them were recovered and analyzed. These fragments contained corroborative information that helped confirm the identity of the victims. Detailed record keeping is part of clinical practice. The level of detail present in dental records can affect the ability of forensic odontologists to determine the identity of a victim's remains. Documenting the brand names of dental materials used in restorative procedures can make the difference between identifying and not identifying a victim's remains.

  9. Comparison between traditional strategies and classification technique (SIMCA) in the identification of old proteinaceous binders.

    PubMed

    Checa-Moreno, R; Manzano, E; Mirón, G; Capitan-Vallvey, L F

    2008-05-15

    In this paper, we performed a comparison between commonly used strategies amino acid ratios (Aa ratios), two-dimensional ratio plots (2D-Plot) and statistical correlation factor (SCF) and a classification technique, soft independent modelling of class analogy (SIMCA), to identify protein binders present in old artwork samples. To do this, we used a natural standard collection of proteinaceous binders prepared in our laboratory using old recipes and eleven samples coming from Cultural Heritage, such as mural and easel paintings, manuscripts and polychrome sculptures from the 15-18th centuries. Protein binder samples were hydrolyzed and their constitutive amino acids were determined as PITC-derivatives using HPLC-DAD. Amino acid profile data were used to perform the comparison between the four different strategies mentioned above. Traditional strategies can lead to ambiguous or non-conclusive results. With SIMCA, it is possible to provide a more robust and less subjective identification knowing the confidence level of identification. As a standard, we used proteinaceous albumin (whole egg, yolk and glair); casein (goat, cow and sheep) and collagen (mammalian and fish). The process results in a more robust understanding of proteinaceous binding media in old artworks that makes it possible to distinguish them according to their origin.

  10. An overview of the essential differences and similarities of system identification techniques

    NASA Technical Reports Server (NTRS)

    Mehra, Raman K.

    1991-01-01

    Information is given in the form of outlines, graphs, tables and charts. Topics include system identification, Bayesian statistical decision theory, Maximum Likelihood Estimation, identification methods, structural mode identification using a stochastic realization algorithm, and identification results regarding membrane simulations and X-29 flutter flight test data.

  11. Vibrio parahaemolyticus: a review on the pathogenesis, prevalence, and advance molecular identification techniques

    PubMed Central

    Letchumanan, Vengadesh; Chan, Kok-Gan; Lee, Learn-Han

    2014-01-01

    Vibrio parahaemolyticus is a Gram-negative halophilic bacterium that is found in estuarine, marine and coastal environments. V. parahaemolyticus is the leading causal agent of human acute gastroenteritis following the consumption of raw, undercooked, or mishandled marine products. In rare cases, V. parahaemolyticus causes wound infection, ear infection or septicaemia in individuals with pre-existing medical conditions. V. parahaemolyticus has two hemolysins virulence factors that are thermostable direct hemolysin (tdh)-a pore-forming protein that contributes to the invasiveness of the bacterium in humans, and TDH-related hemolysin (trh), which plays a similar role as tdh in the disease pathogenesis. In addition, the bacterium is also encodes for adhesions and type III secretion systems (T3SS1 and T3SS2) to ensure its survival in the environment. This review aims at discussing the V. parahaemolyticus growth and characteristics, pathogenesis, prevalence and advances in molecular identification techniques. PMID:25566219

  12. Isolation, Identification, and Characterization of One Degradation Product in Ambroxol by HPLC-Hyphenated Techniques

    PubMed Central

    Thummala, Veera Raghava Raju; Ivaturi, Mrutyunjaya Rao; Nittala, Someswara Rao

    2014-01-01

    This study details the isolation, identification, and characterization of ambroxol’s unknown impurity. One unknown impurity of ambroxol was formed in the formulated drug under stress conditions [40°C /75% relative humidity (RH) for 6 months] with the relative retention time (RRT) 0.68 in RP-HPLC. The impurity was enriched by exposing it to heat and it was isolated by using preparative HPLC. The enriched impurity was purified and characterized using the following sophisticated techniques: 2D NMR (gDQ-COSY, gHSQC, and gHMBC), FTIR, and LC-MS/MS. On the basis of the spectral data, the impurity was characterized as trans-4-(6,8-dibromoquinazolin-3(4H)-yl)cyclohexanol. PMID:24959402

  13. Comparison of sonochemiluminescence images using image analysis techniques and identification of acoustic pressure fields via simulation.

    PubMed

    Tiong, T Joyce; Chandesa, Tissa; Yap, Yeow Hong

    2017-05-01

    One common method to determine the existence of cavitational activity in power ultrasonics systems is by capturing images of sonoluminescence (SL) or sonochemiluminescence (SCL) in a dark environment. Conventionally, the light emitted from SL or SCL was detected based on the number of photons. Though this method is effective, it could not identify the sonochemical zones of an ultrasonic systems. SL/SCL images, on the other hand, enable identification of 'active' sonochemical zones. However, these images often provide just qualitative data as the harvesting of light intensity data from the images is tedious and require high resolution images. In this work, we propose a new image analysis technique using pseudo-colouring images to quantify the SCL zones based on the intensities of the SCL images and followed by comparison of the active SCL zones with COMSOL simulated acoustic pressure zones.

  14. Development of advanced techniques for rotorcraft state estimation and parameter identification

    NASA Technical Reports Server (NTRS)

    Hall, W. E., Jr.; Bohn, J. G.; Vincent, J. H.

    1980-01-01

    An integrated methodology for rotorcraft system identification consists of rotorcraft mathematical modeling, three distinct data processing steps, and a technique for designing inputs to improve the identifiability of the data. These elements are as follows: (1) a Kalman filter smoother algorithm which estimates states and sensor errors from error corrupted data. Gust time histories and statistics may also be estimated; (2) a model structure estimation algorithm for isolating a model which adequately explains the data; (3) a maximum likelihood algorithm for estimating the parameters and estimates for the variance of these estimates; and (4) an input design algorithm, based on a maximum likelihood approach, which provides inputs to improve the accuracy of parameter estimates. Each step is discussed with examples to both flight and simulated data cases.

  15. Vibrio parahaemolyticus: a review on the pathogenesis, prevalence, and advance molecular identification techniques.

    PubMed

    Letchumanan, Vengadesh; Chan, Kok-Gan; Lee, Learn-Han

    2014-01-01

    Vibrio parahaemolyticus is a Gram-negative halophilic bacterium that is found in estuarine, marine and coastal environments. V. parahaemolyticus is the leading causal agent of human acute gastroenteritis following the consumption of raw, undercooked, or mishandled marine products. In rare cases, V. parahaemolyticus causes wound infection, ear infection or septicaemia in individuals with pre-existing medical conditions. V. parahaemolyticus has two hemolysins virulence factors that are thermostable direct hemolysin (tdh)-a pore-forming protein that contributes to the invasiveness of the bacterium in humans, and TDH-related hemolysin (trh), which plays a similar role as tdh in the disease pathogenesis. In addition, the bacterium is also encodes for adhesions and type III secretion systems (T3SS1 and T3SS2) to ensure its survival in the environment. This review aims at discussing the V. parahaemolyticus growth and characteristics, pathogenesis, prevalence and advances in molecular identification techniques.

  16. Use of system identification techniques for improving airframe finite element models using test data

    NASA Technical Reports Server (NTRS)

    Hanagud, Sathya V.; Zhou, Weiyu; Craig, James I.; Weston, Neil J.

    1991-01-01

    A method for using system identification techniques to improve airframe finite element models was developed and demonstrated. The method uses linear sensitivity matrices to relate changes in selected physical parameters to changes in total system matrices. The values for these physical parameters were determined using constrained optimization with singular value decomposition. The method was confirmed using both simple and complex finite element models for which pseudo-experimental data was synthesized directly from the finite element model. The method was then applied to a real airframe model which incorporated all the complexities and details of a large finite element model and for which extensive test data was available. The method was shown to work, and the differences between the identified model and the measured results were considered satisfactory.

  17. Use of system identification techniques for improving airframe finite element models using test data

    NASA Technical Reports Server (NTRS)

    Hanagud, Sathya V.; Zhou, Weiyu; Craig, James I.; Weston, Neil J.

    1993-01-01

    A method for using system identification techniques to improve airframe finite element models using test data was developed and demonstrated. The method uses linear sensitivity matrices to relate changes in selected physical parameters to changes in the total system matrices. The values for these physical parameters were determined using constrained optimization with singular value decomposition. The method was confirmed using both simple and complex finite element models for which pseudo-experimental data was synthesized directly from the finite element model. The method was then applied to a real airframe model which incorporated all of the complexities and details of a large finite element model and for which extensive test data was available. The method was shown to work, and the differences between the identified model and the measured results were considered satisfactory.

  18. Delamination identification of laminated composite plates using a continuum damage mechanics model and subset selection technique

    NASA Astrophysics Data System (ADS)

    Shang, Shen; Yun, Gun Jin; Qiao, Pizhong

    2010-05-01

    In this paper, a new model-based delamination detection methodology is presented for laminated composite plates and its performance is studied both numerically and experimentally. This methodology consists of two main parts: (1) modal analysis of an undamaged baseline finite element (FE) model and experimental modal testing of panels with delamination damage at single or multiple locations and (2) a sensitivity based subset selection technique for single or multiple delamination damage localizations. As an identification model, a higher-order finite element model is combined with a rational micromechanics-based CDM model which defines the delamination damage parameter as a ratio of delaminated area to entire area. The subset selection technique based on sensitivity of the dynamic residual force has been known to be capable of detecting multiple damage locations. However, there has been no experimental study specifically for the applications in laminated composite structures. To implement the methodology, a sensitivity matrix for the laminated composite plate model has been derived. Applications of the proposed methodology to an E-glass/epoxy symmetric composite panel composed of 16 plies [CSM/UM1208/3 layers of C1800]s = [CSM/0/(90/0)3]s with delamination damage are demonstrated both numerically and experimentally. A non-contact scanning laser vibrometer (SLV), a lead zirconate titanate (PZT) actuator and a polyvinylidene fluoride (PVDF) sensor are used to conduct experimental modal testing. From the experimental example, capabilities of the proposed methodology for damage identification are successfully demonstrated for a 2D laminated composite panel. Furthermore, various damage scenarios are considered to show its performance and detailed results are discussed for future improvements.

  19. In situ identification of bacterial species in marine microfouling films by using an immunofluorescence technique.

    PubMed Central

    Zambon, J J; Huber, P S; Meyer, A E; Slots, J; Fornalik, M S; Baier, R E

    1984-01-01

    An immunofluorescence technique was developed for the in situ identification of specific bacteria in marine microfouling films. Microorganisms adherent to glass plates after 30 days of immersion in a synthetic seawater system were cultured and classified by biochemical tests, flagellar arrangement, and the API 20E system. All isolates were gram-negative aerobic or facultative motile rods, predominantly Pseudomonas spp. Rabbit antisera to the five dominant organisms including Achromobacter spp., Comamonas terrigena, P. putrefaciens, a yellow-pigmented Pseudomonas sp., and Vibrio alginolyticus were prepared. These antisera were shown to be species specific in indirect immunofluorescence assays against a battery of 26 marine isolates from 14 bacterial species, with the exception of antisera to the Pseudomonas spp, which cross-reacted with each other but not with test bacteria of other genera. These immunofluorescent reagents enabled the in situ identification of all five bacterial species in microfouling films. Low-surface-energy test plates had smaller numbers of adherent bacteria in microfouling films than medium-surface-energy test plates, suggesting that the degree of microfouling may be influenced by the surface energy. In addition, the reagents could identify up to 39% of the attached bacteria in microfouling films spontaneously formed on steel plates in flow cells deployed in different areas of the Atlantic Ocean. The microbial composition of the ocean-formed films varied with the geographical area of their formation. The present results indicate that immunofluorescence techniques may provide a rapid and reliable means to identify, in situ, specific bacteria in marine microfouling films. PMID:6393875

  20. Air versus saline in the loss of resistance technique for identification of the epidural space.

    PubMed

    Antibas, Pedro L; do Nascimento Junior, Paulo; Braz, Leandro G; Vitor Pereira Doles, João; Módolo, Norma S P; El Dib, Regina

    2014-07-18

    The success of epidural anaesthesia depends on correct identification of the epidural space. For several decades, the decision of whether to use air or physiological saline during the loss of resistance technique for identification of the epidural space has been governed by the personal experience of the anaesthesiologist. Epidural block remains one of the main regional anaesthesia techniques. It is used for surgical anaesthesia, obstetrical analgesia, postoperative analgesia and treatment of chronic pain and as a complement to general anaesthesia. The sensation felt by the anaesthesiologist from the syringe plunger with loss of resistance is different when air is compared with saline (fluid). Frequently fluid allows a rapid change from resistance to non-resistance and increased movement of the plunger. However, the ideal technique for identification of the epidural space remains unclear. • To evaluate the efficacy and safety of both air and saline in the loss of resistance technique for identification of the epidural space.• To evaluate complications related to the air or saline injected. We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (2013, Issue 9), MEDLINE, EMBASE and the Latin American and Caribbean Health Science Information Database (LILACS) (from inception to September 2013). We applied no language restrictions. The date of the most recent search was 7 September 2013. We included randomized controlled trials (RCTs) and quasi-randomized controlled trials (quasi-RCTs) on air and saline in the loss of resistance technique for identification of the epidural space. Two review authors independently assessed trial quality and extracted data. We included in the review seven studies with a total of 852 participants. The methodological quality of the included studies was generally ranked as showing low risk of bias in most domains, with the exception of one study, which did not mask participants. We were able to include data from 838

  1. An Evaluation of Image Based Techniques for Early Wildfire Detection and Fuel Mapping

    SciTech Connect

    Gabbert, Dustin W.

    2015-05-01

    Few events can cause the catastrophic impact to ecology, infrastructure, and human safety of a wildland fire along the wildland urban interface. The suppression of natural wildland fires over the past decade has caused a buildup of dry, dead surface fuels: a condition that, coupled with the right weather conditions, can cause large destructive wildfires that are capable of threatening both ancient tree stands and manmade infrastructure. Firefighters use fire danger models to determine staffing needs on high fire risk days; however models are only as effective as the spatial and temporal density of their observations. OKFIRE, an Oklahoma initiative created by a partnership between Oklahoma State University and the University of Oklahoma, has proven that fire danger assessments close to the fire – both geographically and temporally – can give firefighters a significant increase in their situational awareness while fighting a wildland fire. This paper investigates several possible solutions for a small Unmanned Aerial System (UAS) which could gather information useful for detecting ground fires and constructing fire danger maps. Multiple fire detection and fuel mapping programs utilize satellites, manned aircraft, and large UAS equipped with hyperspectral sensors to gather useful information. Their success provides convincing proof of the utility that could be gained from low-altitude UAS gathering information at the exact time and place firefighters and land managers are interested in. Close proximity, both geographically and operationally, to the end can reduce latency times below what could ever be possible with satellite observation. This paper expands on recent advances in computer vision, photogrammetry, and infrared and color imagery to develop a framework for a next-generation UAS which can assess fire danger and aid firefighters in real time as they observe, contain, or extinguish wildland fires. It also investigates the impact information gained by this

  2. An evaluation of image based techniques for wildfire detection and fuel mapping

    NASA Astrophysics Data System (ADS)

    Gabbert, Dustin W.

    Few events can cause the catastrophic impact to ecology, infrastructure, and human safety of a wildland fire along the wildland urban interface. The suppression of natural wildland fires over the past decade has caused a buildup of dry, dead surface fuels: a condition that, coupled with the right weather conditions, can cause large destructive wildfires that are capable of threatening both ancient tree stands and manmade infrastructure. Firefighters use fire danger models to determine staffing needs on high fire risk days; however models are only as effective as the spatial and temporal density of their observations. OKFIRE, an Oklahoma initiative created by a partnership between Oklahoma State University and the University of Oklahoma, has proven that fire danger assessments close to the fire - both geographically and temporally - can give firefighters a significant increase in their situational awareness while fighting a wildland fire. This paper investigates several possible solutions for a small Unmanned Aerial System (UAS) which could gather information useful for detecting ground fires and constructing fire danger maps. Multiple fire detection and fuel mapping programs utilize satellites, manned aircraft, and large UAS equipped with hyperspectral sensors to gather useful information. Their success provides convincing proof of the utility that could be gained from low-altitude UAS gathering information at the exact time and place firefighters and land managers are interested in. Close proximity, both geographically and operationally, to the end can reduce latency times below what could ever be possible with satellite observation. This paper expands on recent advances in computer vision, photogrammetry, and infrared and color imagery to develop a framework for a next-generation UAS which can assess fire danger and aid firefighters in real time as they observe, contain, or extinguish wildland fires. It also investigates the impact information gained by this

  3. Effect of fabrication technique on direct methanol fuel cells designed to operate at low airflow

    NASA Technical Reports Server (NTRS)

    Valdez, T. I.; Narayanan, S. R.

    2002-01-01

    This study investigates the effects of catalyst ink constituents and MEA fabrication techniques on improving cell performance. Particular attention was focused on increasing the overall cell efficiency.

  4. Effect of fabrication technique on direct methanol fuel cells designed to operate at low airflow

    NASA Technical Reports Server (NTRS)

    Valdez, T. I.; Narayanan, S. R.

    2002-01-01

    This study investigates the effects of catalyst ink constituents and MEA fabrication techniques on improving cell performance. Particular attention was focused on increasing the overall cell efficiency.

  5. Capillary and gel electromigration techniques and MALDI-TOF MS--suitable tools for identification of filamentous fungi.

    PubMed

    Horká, Marie; Kubesová, Anna; Salplachta, Jiří; Zapletalová, Eva; Horký, Jaroslav; Slais, Karel

    2012-02-24

    Microbial strains are now spreading out of their original geographical areas of incidence and previously adequate morphological identification methods often must be accompanied by a phenotypic characterization for the successful microbial identification. The fungal genus Monilinia represents a suitable example. Monilinia species represent important fruit pathogens responsible for major losses in fruit production. Four closely related spp. of Monilinia: Monilinia laxa, Monilinia fructigena, Monilinia fructicola and Monilia polystroma have been yet identified. However, the classical characterization methods are not sufficient for current requirements, especially for phytosanitary purposes. In this study, rapid and reproducible methods have been developed for the characterization of Monilinia spp. based on the utilization of five well-established analytical techniques: CZE, CIEF, gel IEF, SDS-PAGE and MALDI-TOF MS, respectively. The applicability of these techniques for the identification of unknown spores of Monilinia spp. collected from infected fruits was also evaluated. It was found that isoelectric points, migration velocities or the protein patterns can be used as the identification markers in the case of cultivated filamentous fungi. Moreover, the results obtained by capillary electromigration techniques are independent on the host origin of the spores. On the other hand, the host origin of the fungi can play an important role in the precise fungi identification by the other techniques.

  6. Laser-Induced Breakdown Spectroscopy Technique in Identification of Ancient Ceramics Bodies and Glazes

    NASA Astrophysics Data System (ADS)

    Elsayed, Khaled; Imam, Hisham; Madkour, Fatma; Meheina, Galila; Gamal, Yosr

    2011-06-01

    In this paper we report a study on Laser Induced Breakdown Spectroscopy (LIBS) as a promising non-destructive technique for the identification of the colored glazes, and clay's bodies of Fatimid ceramics ancient artifacts. The scientific examination of ceramics may be helpful in unraveling the history of ancient shards, particularly as the process of its production such as firing condition and temperatures. The analysis of pottery, ceramic bodies and glazed coatings is required in order to structure the conservation or restoration of a piece. Revealing the technical skills of ancient potters has been one of the most important issues for gaining a deep insight of bygone culture and also it is required in order to structure the conservation or restoration of a piece of art. LIBS measurements were carried out by focusing a Nd-YAG laser at 1064 nm with pulse width of 10 ns and 50 mJ pulse energy on the surface of the sample by a 100-mm focal length lens. The plasma emission was collected by telescopic system and transferred through a fiber to Echelle spectrometer attached to an ICCD camera. The focal spot diameter is found to be in the range of 100-150 μm. which is small enough to consider this technique as a non-destructive technique. LIBS technique clarified that each piece of archaeological objects has its own finger print. X-ray diffraction (XRD) analysis was carried out on these archaeological ceramic body samples to study raw materials such as clays, which allowed the investigation of the crystal structure and showed the changes in its structure through firing process. This provided information on the ceramic characteristic and composition of the ceramic bodies.

  7. Identification of Dekkera bruxellensis as a major contaminant yeast in continuous fuel ethanol fermentation.

    PubMed

    de Souza Liberal, A T; Basílio, A C M; do Monte Resende, A; Brasileiro, B T V; da Silva-Filho, E A; de Morais, J O F; Simões, D A; de Morais, M A

    2007-02-01

    To identify and characterize the main contaminant yeast species detected in fuel-ethanol production plants in Northeast region of Brazil by using molecular methods. Total DNA from yeast colonies isolated from the fermentation must of industrial alcohol plants was submitted to PCR fingerprinting, D1/D2 28S rDNA sequencing and species-specific PCR analysis. The most frequent non-Saccharomyces cerevisiae isolates were identified as belonging to the species Dekkera bruxellensis, and several genetic strains could be discriminated among the isolates. The yeast population dynamics was followed on a daily basis during a whole crop harvesting period in a particular industry, showing the potential of D. bruxellensis to grow faster than S. cerevisiae in industrial conditions, causing recurrent and severe contamination episodes. The results showed that D. bruxellensis is one of the most important contaminant yeasts in distilleries producing fuel-ethanol from crude sugar cane juice, specially in continuous fermentation systems. Severe contamination of the industrial fermentation process by Dekkera yeasts has a negative impact on ethanol yield and productivity. Therefore, early detection of D. bruxellensis in industrial musts may avoid operational problems in alcohol-producing plants.

  8. Power production and wastewater treatment simultaneously by dual-chamber microbial fuel cell technique.

    PubMed

    Izadi, Paniz; Rahimnejad, Mostafa; Ghoreyshi, Ali

    2015-01-01

    Microbial fuel cell (MFC) is a novel technology that is able to convert the chemical energy of organic and inorganic substrates to electrical energy directly. The use of fossil fuels and recent energy crisis bring increasing attention to this technology. Besides electricity generation, wastewater treatment is another application of MFCs. Sulfide is a hazardous ion that is common in wastes. In this article, dual-chamber MFC was fabricated and a mixed culture of microorganisms was used as an active biocatalyst in an anaerobic anodic chamber to convert substrate to electricity. The obtained experimental results indicate that this MFC can successfully alter sulfide to elementary sulfur and power generation. The initial concentration of sulfide in wastewater was 1.5 g L(-1) , and it was removed after 10 days of MFC operation. Maximum produced power and current density were 48.68 mW⋅m(-2) and 231.47 mA⋅m(-2) , respectively. Besides, the influences of a biocathode were investigated and accordingly the data obtained for power and current density were increased to 372.27 mW⋅m(-2) and 1,665.15 mA⋅m(-2) , respectively.

  9. A new technique for effective core fueling and density control in RFX-mod

    NASA Astrophysics Data System (ADS)

    de Masi, Gianluca; Auriemma, Fulvio; Cavazzana, Roberto; Martines, Emilio; Spizzo, Gianluca

    2014-10-01

    High current plasmas in the RFX-mod Reversed Field Pinch device can be presently sustained either operating at low density (ne/nG < 0.3, being nG the Greenwald density) or transiently at high density by pellet injection. Discharges at ne/nG > 0.3 are difficult to sustain due to the high ohmic power required and a confinement properties downgrading. In these regimes, the transport mechanism results in a hollow density profile preventing an effective core fueling. A different behavior is observed in Ultra-low q configuration (q[r = a] > 0), in which the increased particle diffusivity produces flat density profiles and makes easier neutral particle penetration. In this contribution we show the main results of a new method to produce a more effective core fueling based on the previous empirical observations. The idea was to produce during the discharges narrow time windows with q[r = a] >= 0 values and, during this phase, to apply a strong gas puffing. This experimental condition is found to allow an increased particles core penetration. From the operational point of view, a lower input power was needed to sustain the discharges with similar core density. A deeper analysis through the ASTRA code will highlight the relation between transport properties and magnetic topology.

  10. Quantitative identification and analysis of sub-seismic extensional structure system: technique schemes and processes

    NASA Astrophysics Data System (ADS)

    Chenghua, Ou; Chen, Wei; Ma, Zhonggao

    2015-06-01

    Quantitative characterization of complex sub-seismic extensional structure system that essentially controls petroleum exploitation is difficult to implement in seismic profile interpretation. This research, based on a case study in block M of Myanmar, established a set of quantitative treatment schemes and technique processes for the identification of sub-seismic low-displacement (SSLD) extensional faults or fractures upon structural deformation restoration and geometric inversion. Firstly, the master-subsidiary inheritance relations and configuration of the seismic-scale extensional fault systems are determined by analyzing the structural pattern. Besides, three-dimensional (3D) pattern and characteristics of the seismic-scale extensional structure have been illustrated by a 3D structure model built upon seismic sections. Moreover, according to the dilatancy obtained from structural restoration on the basis of inclined shear method, as well as the fracture-flow index, potential SSLD extensional faults or fractures have been quantitatively identified. Application of the technique processes to the sub-seismic low-displacement extensional structures in block M in Myanmar is instructive to quantitatively interpret those SSLD extensional structure systems in practice.

  11. [Operations research in group feeding programs: techniques for the identification and analysis of management problems].

    PubMed

    Montealegre, J; Fuentes, F; Mata, A; Cuevas, R

    1989-09-01

    The operations of the group feeding programs (PAG--"Programas de Alimentación a Grupos"--) can be viewed as a sequence of decisions and activities that according to their direction, order, relationship and dependency, will influence the quality and quantity of the service's delivery. While searching for the essential characteristics of a PAG: components, relationship, variables, pertinent parameters, restrictions, underlying criteria and objective functions, operations research can be useful for its analysis, the identification of its management problems, and to develop, evaluate and finally, implement solutions. Various operation research techniques are presented in this article, which are geared towards responding to those knowledge needs of the national technicians and program managers, in order to give a solid foundation to solutions for the management problems identified in a PAG. Failures of different quantitative models had been due, mainly, to the tendency to formulate models or investigate problems without users being prepared to implement the solutions. The techniques presented herein take into consideration the interaction between specialists and users.

  12. Primary plate identification of group A beta-hemolytic streptococci utilizing a two-disk technique.

    PubMed Central

    Baron, E J; Gates, J W

    1979-01-01

    A two-disk system is described which allows primary plate identification of group A beta-hemolytic streptococci. Group A beta-hemolytic streptococci could be visualized on primary throat culture plates by using trimethoprim-sulfamethoxazole to inhibit normal flora. In the heavily inoculated area of Trypticase soy agar plates containing 5% sheep blood, a 25-microgram/ml trimethoprim-sulfamethoxazole disk was placed contiguous to a 0.04-U bacitracin disk. A total of 259 throat specimens were examined with this two-disk system. The swabs from these throat specimens were incubated in Todd-Hewitt broth. The bacterial pellet from the broths was stained by fluorescent antibody as a control. Of the cultures that were determined to be positive on the plates, 75% could be read unequivocally after overnight incubation, whereas the remaining 25% required subculture. The plates recovered 91% of the cultures which were considered as true positives by the broth-fluorescent-antibody technique. This method provided a significant savings in time compared with standard plate methods and in cost of materials compared with broth-fluorescent-antibody methods. This technique is particularly valuable for producing rapid results in laboratories where fluorescence microscopy would not be cost-effective. Images PMID:387811

  13. Structure of porous electrodes in polymer electrolyte membrane fuel cells: An optical reconstruction technique

    NASA Astrophysics Data System (ADS)

    Berejnov, Viatcheslav; Sinton, David; Djilali, Ned

    Computing flows and phase transport in porous media requires a physically representative geometric model. We present a simple method of digitizing the structure of fibrous porous media commonly used in polymer electrolyte membrane (PEM) fuel cells, the so-called gas diffusion layer (GDL). Employing an inverted microscope and image recognition software we process images of the GDL surface collected manually at different focal lengths with micrometer accuracy. Processing the series of images allows retrieval of local depths of the salient in-focus structural elements in each of the different images. These elements are then recombined into a depth-map representing the three-dimensional structure of the GDL surface. Superimposition of the in-focus portions of the structural elements distributed throughout the stack of images yields digitized data describing the geometry and structural attributes of the 3D surface of the GDL fibrous material.

  14. Measuring fuel contamination using high speed gas chromatography and cone penetration techniques

    SciTech Connect

    Farrington, S.P.; Bratton, W.L.; Akard, M.L.

    1995-10-01

    Decision processes during characterization and cleanup of hazardous waste sites are greatly retarded by the turnaround time and expense incurred through the use of conventional sampling and laboratory analyses. Furthermore, conventional soil and groundwater sampling procedures present many opportunities for loss of volatile organic compounds (VOC) by exposing sample media to the atmosphere during transfers between and among sampling devices and containers. While on-site analysis by conventional gas chromatography can reduce analytical turnaround time, time-consuming sample preparation procedures are still often required, and the potential for loss of VOC is not reduced. This report describes the development of a high speed gas chromatography and cone penetration testing system which can detect and measure subsurface fuel contamination in situ during the cone penetration process.

  15. Investigation on the spontaneous combustion of refuse-derived fuels during storage using a chemiluminescence technique.

    PubMed

    Matunaga, Atsushi; Yasuhara, Akio; Shimizu, Yoshitada; Wakakura, Masahide; Shibamoto, Takayuki

    2008-12-01

    Refuse-derived fuel (RDF), a high-caloric material, is used by various combustion processes, such as power plants, as alternative fuel. Several explosion accidents, however, possibly initiated by the spontaneous combustion of stored RDF, have been reported in Japan. Therefore the spontaneous combustion of RDF prepared from domestic garbage was investigated using chemiluminescence. RDF samples were heated either under air or under nitrogen for 1, 2, or 4 h at 120 or 140 degrees C and then cooled by an air or nitrogen stream. All RDF samples exhibited chemiluminescence. In air-treated RDF samples (heated and cooled by air), chemiluminescence after ageing was shown to be slightly lower than before ageing, whereas in nitrogen-treated samples (both heated and cooled by nitrogen) chemiluminescence decreased significantly after ageing. When nitrogen was replaced with air during aging, however, a sudden increase of chemiluminescence was observed. On the other hand, when cooling was done with air, chemiluminescence increased. Higher chemiluminescence was also observed during high-temperature treatment. Further experiments on cellulose, one of the major components of domestic garbage, exhibited similar chemiluminescence patterns to those of RDF when treated by the same methods as those used for RDF ageing. Chemiluminescence from cellulose increased significantly when the atmospheric gas was changed from nitrogen to air, suggesting that oxygen in the air promoted the formation of hydroperoxide from cellulose. Therefore, it is hypothesized that cellulose plays an important role in the formation of chemiluminescence from RDF. The formation of chemiluminescence indicated that radicals are formed from RDF by oxidation or thermal degradation at room or atmospheric temperatures and may subsequently lead to spontaneous combustion.

  16. Yangon River Geomorphology Identification and its Enviromental Imapacts Analsysi by Optical and Radar Sensing Techniques

    NASA Astrophysics Data System (ADS)

    Lwin, A.; Khaing, M. M.

    2012-07-01

    The Yangon river, also known as the Rangoon river, is about 40 km long (25miles), and flows from southern Myanmar as an outlet of the Irrawaddy (Ayeyarwady) river into the Ayeyarwady delta. The Yangon river drains the Pegu Mountains; both the Yangon and the Pathein rivers enter the Ayeyarwady at the delta. Fluvial geomorphology is based primarily on rivers of manageable dimensions. The emphasis is on geomorphology, sedimentology of Yangon river and techniques for their identification and management. Present techniques such as remote sensing have made it easier to investigate and interpret in details analysis of river geomorphology. In this paper, attempt has been made the complicated issues of geomorphology, sedimentation patterns and management of river system and evolution studied. The analysis was carried out for the impact of land use/ land cover (LULC) changes on stream flow patterns. The hydrologic response to intense, flood producing rainfall events bears the signatures of the geomorphic structure of the channel network and of the characteristic slope lengths defining the drainage density of the basin. The interpretation of the hydrologic response as the travel time distribution of a water particle randomly injected in a distributed manner across the landscape inspired many geomorphic insights. In 2008, Cyclone Nargis was seriously damaged to mangrove area and its biodiversity system in and around of Yangon river terraces. A combination of digital image processing techniques was employed for enhancement and classification process. It is observed from the study that middle infra red band (0.77mm - 0.86mm) is highly suitable for mapping mangroves. Two major classes of mangroves, dense and open mangroves were delineated from the digital data.

  17. [Glycopeptide-resistant enterococci carriage: Are actual isolation and identification techniques sufficient?].

    PubMed

    Surcouf, C; Fabre, M; Enouf, V; Cadé, S; Soler, C; Mac Nab, C; Samson, T; Foissaud, V

    2011-06-01

    The monitoring of infection by glycopeptide-resistant enterococci (GRE) is one of the main elements of hospital hygiene policy. It involves systematic rectal swabs in clinics at risk (asymptomatic carriage). We compare two GRE screening methods and evaluate a new kit associating multiplex PCR and hybridization (Génotype(®) Enterococcus, Hain Lifescience) on a panel of 448 samples collected over a 4-month period. The first method is based on direct inoculation of the sample; the second one involves a preliminary enrichment phase followed by molecular diagnosis allowing the identification of species of enterococci as well as glycopeptide resistance genes. All the resistant strains were isolated using the enrichment technique. The incidence of GRE (VanA) carriage was 0,55% (two out of 362 patients, two out of 448 isolates) with two Enterococcus faecium VanA. Six Enterococcus gallinarum VanC1 and two Enterococcus casseliflavus VanC2/C3 were also isolated and identified. The main clinics concerned are intensive care and hematology. The two patients with E. faecium VanA had been previously given glycopeptides for 10 days. For three strains, the molecular method allowed to correct prior erroneous results based on rapid identification (RapidID32Strep V2.0). The method using direct samples inoculation underestimates real incidence of GRE carriage. The performances of Génotype(®) Enterococcus molecular method, evaluated for other parameters using reference strains and DNA sequencing, offer new possibilities applicable to routine laboratory. Copyright © 2009 Elsevier Masson SAS. All rights reserved.

  18. A Combined Texture-principal Component Image Classification Technique For Landslide Identification Using Airborne Multispectral Imagery

    NASA Astrophysics Data System (ADS)

    Whitworth, M.; Giles, D.; Murphy, W.

    The Jurassic strata of the Cotswolds escarpment of southern central United Kingdom are associated with extensive mass movement activity, including mudslide systems, rotational and translational landslides. These mass movements can pose a significant engineering risk and have been the focus of research into the use of remote sensing techniques as a tool for landslide identification and delineation on clay slopes. The study has utilised a field site on the Cotswold escarpment above the village of Broad- way, Worcestershire, UK. Geomorphological investigation was initially undertaken at the site in order to establish ground control on landslides and other landforms present at the site. Subsequent to this, Airborne Thematic Mapper (ATM) imagery and colour stereo photography were acquired by the UK Natural Environment Research Coun- cil (NERC) for further analysis and interpretation. This paper describes the textu- ral enhancement of the airborne imagery undertaken using both mean euclidean dis- tance (MEUC) and grey level co-occurrence matrix entropy (GLCM) together with a combined texture-principal component based supervised image classification that was adopted as the method for landslide identification. The study highlights the importance of image texture for discriminating mass movements within multispectral imagery and demonstrates that by adopting a combined texture-principal component image classi- fication we have been able to achieve classification accuracy of 84 % with a Kappa statistic of 0.838 for landslide classes. This paper also highlights the potential prob- lems that can be encountered when using high-resolution multispectral imagery, such as the presence of dense variable woodland present within the image, and presents a solution using principal component analysis.

  19. Dual redundant sensor FDI techniques applied to the NASA F8C DFBW aircraft. [Failure Detection and Identification

    NASA Technical Reports Server (NTRS)

    Desai, M. N.; Deckert, J. C.; Deyst, J. J.; Willsky, A. S.; Chow, E. Y.

    1976-01-01

    An onboard failure detection and identification (FDI) technique for dual redundant sensors on the NASA F8C digital fly-by-wire (DFBW) aircraft is presented. The failure of one of a pair of sensors of the same type is detected by a direct redundancy trigger which observes the difference between the outputs of these two sensors. Identification of the failed sensor is accomplished utilizing the analytic redundancy that exists as kinematic and functional relationships among the variables being measured by dissimilar instruments. In addition, identification of generic failures, common to both instruments of a given type, is accomplished by using a time trigger to periodically initiate analytic redundancy failure identification tests for individual sensors. The basic form of these tests is the comparison of the measurement of a variable using the suspect instrument with another measurement of the same variable obtained using other instrument types.

  20. Identification of the fragmentation of brittle particles during compaction process by the acoustic emission technique.

    PubMed

    Favretto-Cristini, Nathalie; Hégron, Lise; Sornay, Philippe

    2016-04-01

    Some nuclear fuels are currently manufactured by a powder metallurgy process that consists of three main steps, namely preparation of the powders, powder compaction, and sintering of the compact. An optimum between size, shape and cohesion of the particles of the nuclear fuels must be sought in order to obtain a compact with a sufficient mechanical strength, and to facilitate the release of helium and fission gases during irradiation through pores connected to the outside of the pellet after sintering. Being simple to adapt to nuclear-oriented purposes, the Acoustic Emission (AE) technique is used to control the microstructure of the compact by monitoring the compaction of brittle Uranium Dioxide (UO2) particles of a few hundred micrometers. The objective is to identify in situ the mechanisms that occur during the UO2 compaction, and more specifically the particle fragmentation that is linked to the open porosity of the nuclear matter. Three zones of acoustic activity, strongly related to the applied stress, can be clearly defined from analysis of the continuous signals recorded during the compaction process. They correspond to particle rearrangement and/or fragmentation. The end of the noteworthy fragmentation process is clearly defined as the end of the significant process that increases the compactness of the material. Despite the fact that the wave propagation strongly evolves during the compaction process, the acoustic signature of the fragmentation of a single UO2 particle and a bed of UO2 particles under compaction is well identified. The waveform, with a short rise time and an exponential-like decay of the signal envelope, is the most reliable descriptor. The impact of the particle size and cohesion on the AE activity, and then on the fragmentation domain, is analyzed through the discrete AE signals. The maximum amplitude of the burst signals, as well as the mean stress corresponding to the end of the recorded AE, increase with increasing mean diameter of

  1. Identifying Unknown Words through Association with Known Words: Consonant Substitution as a Technique in Word Identification. Final Report.

    ERIC Educational Resources Information Center

    Griffin, Margaret May

    This study investigated the ability of second-grade children to employ initial and final consonant substitution as a technique in word identification. An instrument of 44 one-syllable simulated words and a measurement to ascertain consonant phoneme knowledge were used to study 90 second-grade pupils, approximately equal in general characteristics.…

  2. Low platinum loading for high temperature proton exchange membrane fuel cell developed by ultrasonic spray coating technique

    NASA Astrophysics Data System (ADS)

    Su, Huaneng; Jao, Ting-Chu; Barron, Olivia; Pollet, Bruno G.; Pasupathi, Sivakumar

    2014-12-01

    This paper reports use of an ultrasonic-spray for producing low Pt loadings membrane electrode assemblies (MEAs) with the catalyst coated substrate (CCS) fabrication technique. The main MEA sub-components (catalyst, membrane and gas diffusion layer (GDL)) are supplied from commercial manufacturers. In this study, high temperature (HT) MEAs with phosphoric acid (PA)-doped poly(2,5-benzimidazole) (AB-PBI) membrane are fabricated and tested under 160 °C, hydrogen and air feed 100 and 250 cc min-1 and ambient pressure conditions. Four different Pt loadings (from 0.138 to 1.208 mg cm-2) are investigated in this study. The experiment data are determined by in-situ electrochemical methods such as polarization curve, electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The high Pt loading MEA exhibits higher performance at high voltage operating conditions but lower performances at peak power due to the poor mass transfer. The Pt loading 0.350 mg cm-2 GDE performs the peak power density and peak cathode mass power to 0.339 W cm-2 and 0.967 W mgPt-1, respectively. This work presents impressive cathode mass power and high fuel cell performance for high temperature proton exchange membrane fuel cells (HT-PEMFCs) with low Pt loadings.

  3. Reactive impinging-flow technique for polymer-electrolyte-fuel-cell electrode-defect detection

    DOE PAGES

    Zenyuk, Iryna V.; Englund, Nicholas; Bender, Guido; ...

    2016-09-29

    Reactive impinging flow (RIF) is a novel quality-control method for defect detection (i.e., reduction in Pt catalyst loading) in gas-diffusion electrodes (GDEs) on weblines. The technique uses infrared thermography to detect temperature of a nonflammable (<4% H2) reactive mixture of H2/O2 in N2 impinging and reacting on a Pt catalytic surface. In this article, different GDE size defects (with catalyst-loading reductions of 25, 50, and 100%) are detected at various webline speeds (3.048 and 9.144 m min-1) and gas flowrates (32.5 or 50 standard L min-1). Furthermore, a model is developed and validated for the technique, and it is subsequentlymore » used to optimize operating conditions and explore the applicability of the technique to a range of defects. The model suggests that increased detection can be achieved by recting more of the impinging H2, which can be accomplished by placing blocking substrates on the top, bottom, or both of the GDE; placing a substrate on both results in a factor of four increase in the temperature differential, which is needed for smaller defect detection. Lastly, overall, the RIF technique is shown to be a promising route for in-line, high-speed, large-area detection of GDE defects on moving weblines.« less

  4. Reactive impinging-flow technique for polymer-electrolyte-fuel-cell electrode-defect detection

    SciTech Connect

    Zenyuk, Iryna V.; Englund, Nicholas; Bender, Guido; Weber, Adam Z.; Ulsh, Michael

    2016-09-29

    Reactive impinging flow (RIF) is a novel quality-control method for defect detection (i.e., reduction in Pt catalyst loading) in gas-diffusion electrodes (GDEs) on weblines. The technique uses infrared thermography to detect temperature of a nonflammable (<4% H2) reactive mixture of H2/O2 in N2 impinging and reacting on a Pt catalytic surface. In this article, different GDE size defects (with catalyst-loading reductions of 25, 50, and 100%) are detected at various webline speeds (3.048 and 9.144 m min-1) and gas flowrates (32.5 or 50 standard L min-1). Furthermore, a model is developed and validated for the technique, and it is subsequently used to optimize operating conditions and explore the applicability of the technique to a range of defects. The model suggests that increased detection can be achieved by recting more of the impinging H2, which can be accomplished by placing blocking substrates on the top, bottom, or both of the GDE; placing a substrate on both results in a factor of four increase in the temperature differential, which is needed for smaller defect detection. Lastly, overall, the RIF technique is shown to be a promising route for in-line, high-speed, large-area detection of GDE defects on moving weblines.

  5. Reactive impinging-flow technique for polymer-electrolyte-fuel-cell electrode-defect detection

    SciTech Connect

    Zenyuk, Iryna V.; Englund, Nicholas; Bender, Guido; Weber, Adam Z.; Ulsh, Michael

    2016-09-29

    Reactive impinging flow (RIF) is a novel quality-control method for defect detection (i.e., reduction in Pt catalyst loading) in gas-diffusion electrodes (GDEs) on weblines. The technique uses infrared thermography to detect temperature of a nonflammable (<4% H2) reactive mixture of H2/O2 in N2 impinging and reacting on a Pt catalytic surface. In this article, different GDE size defects (with catalyst-loading reductions of 25, 50, and 100%) are detected at various webline speeds (3.048 and 9.144 m min-1) and gas flowrates (32.5 or 50 standard L min-1). Furthermore, a model is developed and validated for the technique, and it is subsequently used to optimize operating conditions and explore the applicability of the technique to a range of defects. The model suggests that increased detection can be achieved by recting more of the impinging H2, which can be accomplished by placing blocking substrates on the top, bottom, or both of the GDE; placing a substrate on both results in a factor of four increase in the temperature differential, which is needed for smaller defect detection. Lastly, overall, the RIF technique is shown to be a promising route for in-line, high-speed, large-area detection of GDE defects on moving weblines.

  6. Reactive impinging-flow technique for polymer-electrolyte-fuel-cell electrode-defect detection

    NASA Astrophysics Data System (ADS)

    Zenyuk, Iryna V.; Englund, Nicholas; Bender, Guido; Weber, Adam Z.; Ulsh, Michael

    2016-11-01

    Reactive impinging flow (RIF) is a novel quality-control method for defect detection (i.e., reduction in Pt catalyst loading) in gas-diffusion electrodes (GDEs) on weblines. The technique uses infrared thermography to detect temperature of a nonflammable (<4% H2) reactive mixture of H2/O2 in N2 impinging and reacting on a Pt catalytic surface. In this paper, different GDE size defects (with catalyst-loading reductions of 25, 50, and 100%) are detected at various webline speeds (3.048 and 9.144 m min-1) and gas flowrates (32.5 or 50 standard L min-1). Furthermore, a model is developed and validated for the technique, and it is subsequently used to optimize operating conditions and explore the applicability of the technique to a range of defects. The model suggests that increased detection can be achieved by recting more of the impinging H2, which can be accomplished by placing blocking substrates on the top, bottom, or both of the GDE; placing a substrate on both results in a factor of four increase in the temperature differential, which is needed for smaller defect detection. Overall, the RIF technique is shown to be a promising route for in-line, high-speed, large-area detection of GDE defects on moving weblines.

  7. The Feasibility of Cask "Fingerprinting" as a Spent-Fuel, Dry-Storage Cask Safeguards Technique

    SciTech Connect

    Ziock, K P; Vanier, P; Forman, L; Caffrey, G; Wharton, J; Lebrun, A

    2005-07-27

    This report documents a week-long measurement campaign conducted on six, dry-storage, spent-nuclear-fuel storage casks at the Idaho National Laboratory. A gamma-ray imager, a thermal-neutron imager and a germanium spectrometer were used to collect data on the casks. The campaign was conducted to examine the feasibility of using the cask radiation signatures as unique identifiers for individual casks as part of a safeguards regime. The results clearly show different morphologies for the various cask types although the signatures are deemed insufficient to uniquely identify individual casks of the same type. Based on results with the germanium spectrometer and differences between thermal neutron images and neutron-dose meters, this result is thought to be due to the limitations of the extant imagers used, rather than of the basic concept. Results indicate that measurements with improved imagers could contain significantly more information. Follow-on measurements with new imagers either currently available as laboratory prototypes or under development are recommended.

  8. Techniques for chamfer and taper grinding of oxide fuel pellets (LWBR Development Program)

    SciTech Connect

    Johnson, R.G.R.; Allison, J.W.

    1981-10-01

    Floor mounted centerless grinding machines were adapted for shaping the edges of cylindrical oxide fuel pellets for the Light Water Breeder Reactor (LWBR) by plunge grinding. Edge configurations consisted of chamfers, either 0.015 inch x 45/sup 0/ or 0.006 inch x 45/sup 0/, or tapers 0.150 inch long x .0025 inch deep. Grinding was done by plunging the pellet against a shaped grinding wheel which ground both the diameter to the required size and shaped the edges of the pellet. Two plunges per pellet were required to complete the operation. Separate wheels were needed for grinding either a chamfer or a taper, the set up was adjustable to vary the size of the chamfer or taper as needed. The set up also had the flexibility to accommodate the multiple pellet lengths and diameters required by the LWBR design. Tight manufacturing tolerances in the chamfer and taper dimensions required the use of dimensional control charts and statistical sampling plans as process controls.

  9. Test plan for techniques to measure and remove coatings from K West Basin fuel elements

    SciTech Connect

    Bridges, A.E.

    1998-06-17

    Several types of coatings have previously been visually identified on the surface of 105-K East and 105-K West Basins fuel elements. One type of coating (found only in K West Basin) in particular was found to be a thick translucent material that was often seen to be dislodged from the elements as flakes when the elements were handled during visual examinations (Pitner 1997). Subsequently it was determined (for one element only in a hot cell) that this material, in the dry condition, could easily be removed from the element using a scraping tool. The coating was identified as Al(OH){sub 3} through X-ray diffraction (XRD) analyses and to be approximately 60 {micro}m thick via scanning electron microscopy (SEM). However, brushing under water in the basin using numerous mechanical strokes failed to satisfactorily remove these coatings in their thickest form as judged by appearance. Such brushing was done with only one type of metal brush, a brush design previously found satisfactory for removing UO{sub 4}.xH{sub 2}O coatings from the elements.

  10. Adaptive critic learning techniques for engine torque and air-fuel ratio control.

    PubMed

    Liu, Derong; Javaherian, Hossein; Kovalenko, Olesia; Huang, Ting

    2008-08-01

    A new approach for engine calibration and control is proposed. In this paper, we present our research results on the implementation of adaptive critic designs for self-learning control of automotive engines. A class of adaptive critic designs that can be classified as (model-free) action-dependent heuristic dynamic programming is used in this research project. The goals of the present learning control design for automotive engines include improved performance, reduced emissions, and maintained optimum performance under various operating conditions. Using the data from a test vehicle with a V8 engine, we developed a neural network model of the engine and neural network controllers based on the idea of approximate dynamic programming to achieve optimal control. We have developed and simulated self-learning neural network controllers for both engine torque (TRQ) and exhaust air-fuel ratio (AFR) control. The goal of TRQ control and AFR control is to track the commanded values. For both control problems, excellent neural network controller transient performance has been achieved.

  11. Regional refining models for alternative fuels using shale and coal synthetic crudes: identification and evaluation of optimized alternative fuels. Annual report, March 20, 1979-March 19, 1980

    SciTech Connect

    Sefer, N.R.; Russell, J.A.

    1980-11-01

    The initial phase has been completed in the project to evaluate alternative fuels for highway transportation from synthetic crudes. Three refinery models were developed for Rocky Mountain, Mid-Continent and Great Lakes regions to make future product volumes and qualities forecast for 1995. Projected quantities of shale oil and coal oil syncrudes were introduced into the raw materials slate. Product slate was then varied from conventional products to evaluate maximum diesel fuel and broadcut fuel in all regions. Gasoline supplement options were evaluated in one region for 10% each of methanol, ethanol, MTBE or synthetic naphtha in the blends along with syncrude components. Compositions and qualities of the fuels were determined for the variation in constraints and conditions established for the study. Effects on raw materials, energy consumption and investment costs were reported. Results provide the basis to formulate fuels for laboratory and engine evaluation in future phases of the project.

  12. Nonlinear data-driven identification of polymer electrolyte membrane fuel cells for diagnostic purposes: A Volterra series approach

    NASA Astrophysics Data System (ADS)

    Ritzberger, D.; Jakubek, S.

    2017-09-01

    In this work, a data-driven identification method, based on polynomial nonlinear autoregressive models with exogenous inputs (NARX) and the Volterra series, is proposed to describe the dynamic and nonlinear voltage and current characteristics of polymer electrolyte membrane fuel cells (PEMFCs). The structure selection and parameter estimation of the NARX model is performed on broad-band voltage/current data. By transforming the time-domain NARX model into a Volterra series representation using the harmonic probing algorithm, a frequency-domain description of the linear and nonlinear dynamics is obtained. With the Volterra kernels corresponding to different operating conditions, information from existing diagnostic tools in the frequency domain such as electrochemical impedance spectroscopy (EIS) and total harmonic distortion analysis (THDA) are effectively combined. Additionally, the time-domain NARX model can be utilized for fault detection by evaluating the difference between measured and simulated output. To increase the fault detectability, an optimization problem is introduced which maximizes this output residual to obtain proper excitation frequencies. As a possible extension it is shown, that by optimizing the periodic signal shape itself that the fault detectability is further increased.

  13. Airborne Fungi in Sahara Dust Aerosols Reaching the Eastern Caribbean: II. Species Identification Using Molecular Techniques

    NASA Astrophysics Data System (ADS)

    de La Mota, A.; Betancourt, C.; Detres, Y.; Armstrong, R.

    2003-12-01

    Fungi samples from filters collected in Castle Bruce, Dominica from March through July 2002, were previously purified and identified to genus level using classic macroscopic and microscopic techniques. A total of 105 isolated colonies were cultured in liquid media and the mycelial mats used for DNA extraction. PCR was used to amplify the ITS region of the rDNA using the ITS1 and ITS4 primers. Both strands of the amplified products were sequenced and the final identification to species level was completed by a GenBank search. Fourteen different species and one fungal endophyte were identified from genders Aspergillus,Penicillium, Fusarium, Cladosporium, Curvularia and Phanerochaete. Some of these species such as A. fumigatus, A. japonicus, P. citrinum and C. cladosporoides are known to cause respiratory disorders in humans. A. fumigatus causes an aggressive pulmonary allergic response that might result in allergic bronchopulmonary aspergillosis. Other species such as F. equiseti and C. brachyspora are plant pathogens affecting economically important crops. Sahara dust is an important source of fungal spores of species that are not common in the Caribbean region.

  14. Species identification of Mycobacterium avium complex isolates by a variety of molecular techniques.

    PubMed

    Beggs, M L; Stevanova, R; Eisenach, K D

    2000-02-01

    Organisms in the Mycobacterium avium complex (MAC; M. avium, M. intracellulare, and "nonspecific or X" MAC) are emerging pathogens among individual organisms of which significant genetic variability is displayed. The objective of the present study was to evaluate various molecular methods for the rapid and definitive identification of MAC species. Isolates were obtained from both human immunodeficiency virus (HIV)-positive patients and HIV-negative patients with and without known predisposing conditions. The isolates were initially hybridized with nucleic acid probes complementary to the rRNA of the respective mycobacterial species (AccuProbe Culture Confirmation kits for M. avium, M. intracellulare, and MAC species; Gen-Probe). Isolates were also examined by PCR and in some cases by Southern blot hybridization for the insertion element IS1245. Two other techniques included a PCR assay that amplifies the mig gene, a putative virulence factor for MAC, and hsp65 gene amplification and sequencing. This study led to the following observations. Eighty-five percent of the isolates from HIV-positive patients were M. avium and 86% of the isolates from HIV-negative patients were M. intracellulare. Fifteen of the M. avium isolates did not contain IS1245 and 7% of the M. intracellulare isolates were found to carry IS1245. All of the M. avium strains were mig positive, and all of the M. intracellulare strains were mig negative.

  15. pH fractionation and identification of proteins: comparing column chromatofocusing versus liquid isoelectric focusing techniques.

    PubMed

    Gunther, Nereus W; Paul, Moushumi; Nuñez, Alberto; Liu, Yanhong

    2012-06-01

    In proteomic investigations, a number of different separation techniques can be applied to fractionate whole cell proteomes into more manageable fractions for subsequent analysis. In this work, utilizing HPLC and mass spectrometry for protein identification, two different fractionation methods were compared and contrasted to determine the potential of each method for the simple and reproducible fractionation of a bacterial proteome. Column-based chromatofocusing and liquid-based isoelectric focusing both utilized pH gradients to produce similar results in terms of the numbers of proteins successfully identified (402 and 378 proteins) and the consistency of proteins identified from one experiment to the next (<10% change). However, there was limited overlap in the protein sets with <50% of the proteins identified as common between the sets of proteins identified by the different systems. In addition to the numbers of proteins identified and consistency of those identified, the reduced monetary costs of experimentation and increased assay flexibility produced by using isoelectric focusing was considered in order to adopt a system best suited for comparative proteomic projects. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Identification of cross-formation flow in multireservoir systems using isotopic techniques

    SciTech Connect

    Szpakiewicz, M.

    1991-10-01

    This study was designed to add quantitative solutions to the problem of undesirable hydraulic communication which results in active fluid flow between productive horizons. Transfer of novel geochemical methods, based on effective, economic, and environmentally acceptable isotopic techniques for identification of leaking hydrocarbon reservoirs, is a major objective of this study. The effectiveness of a continuous trap's seal depends on an equilibrium between the capillary forces holding formation water in pore spaces of the seal and the buoyancy forces of the oil and gas column in a system. Therefore, some seals may leak selectively at changing pressure and temperature conditions with respect to different fluid phases (oil, gas, and water). A break in continuity of confining layers will promote relatively fast interreservoir migration of fluids. It may intensify in reservoirs subjected to high pressures during implementation of secondary and tertiary processes of recovery. Such fluid flow should result in identifiable chemical, isotopic, and often thermal anomalies in the area of an open flow path. Quantitative hydrodynamic reservoir modeling based on geochemical/isotopic and other evidence of fluid migration in a system require, however, more systematic methodological study. Such a study is being recommended in addition to a field demonstration of the method in a selected oil/gas reservoir where geochemical and production anomalies have been documented. 62 refs., 7 figs., 2 tabs.

  17. In situ mineral identification - Raman technique in future robotic explorations on planetary surfaces

    SciTech Connect

    Wang, A.; Jolliff, B.L.; Haskin, L.A.

    1995-12-31

    Rover and lander missions are being continually planned for the characterization of planetary surface materials. With a series of simulated Raman measurements of lunar soils, rock chips and Martian analogues, we have demonstrated that mineral identification for the main phases in these planetary materials can be unambiguously achieved. We also obtained significant information on composition and structural features of important phases, such as the Mg/(Mg+Fe) ration in olivines, the dominant structural forms of pyroxenes, and the characteristics of hydrous components and cations in carbonates and sulfates, that are very important for Martian geology. Recent developments of Raman spectroscopic instrumentation make it possible to build a small, sensitive, and robust Raman system for rover and lander missions. Compared to other spectroscopic techniques (VIS-NIR, mid-IR and Moessbauer spectroscopy) that have been used or proposed for planetary application, Raman spectroscopy has many advantages, such as sharp, non-overlapping peaks in mineral spectra, no need for spectral deconvolution in order to identify the phases, and operation in visible spectral region. A rover Raman system could work nicely as a mineral indicator in future missions to Mars and Moon.

  18. Multiple techniques for mineral identification of terrestrial evaporites relevant to Mars exploration

    NASA Astrophysics Data System (ADS)

    Stivaletta, N.; Dellisanti, F.; D'Elia, M.; Fonti, S.; Mancarella, F.

    2013-05-01

    Sulfates, commonly found in evaporite deposits, were observed on Mars surface during orbital remote sensing and surface exploration. In terrestrial environments, evaporite precipitation creates excellent microniches for microbial colonization, especially in desert areas. Deposits comprised of gypsum, calcite, quartz and silicate deposits (phyllosilicates, feldspars) from Sahara Desert in southern Tunisia contain endolithic colonies just below the rock surface. Previous optical observations verified the presence of microbial communities and, as described in this paper, spectral visible analyses have led to identification of chlorophylls belonging to photosynthetic bacteria. Spectral analyses in the infrared region have clearly detected the presence of gypsum and phyllosilicates (mainly illite and/or smectite), as well as traces of calcite, but not quartz. X-ray diffraction (XRD) analysis has identified the dominant presence of gypsum as well as that of other secondary minerals such as quartz, feldspars and Mg-Al-rich phyllosilicates, such as chlorite, illite and smectite. The occurrence of a small quantity of calcite in all the samples was also highlighted by the loss of CO2 by thermal analysis (TG-DTA). A normative calculation using XRD, thermal data and X-ray fluorescence (XRF) analysis has permitted to obtain the mineralogical concentration of the minerals occurring in the samples. The combination of multiple techniques provides information about the mineralogy of rocks and hence indication of environments suitable for supporting microbial life on Mars surface.

  19. Solid oxide fuel cell processing using plasma arc spray deposition techniques. Final report

    SciTech Connect

    Ray, E.R.; Spengler, C.J.; Herman, H.

    1991-07-01

    The Westinghouse Electric Corporation, in conjunction with the Thermal Spray Laboratory of the State University of New York, Stony Brook, investigated the fabrication of a gas-tight interconnect layer on a tubular solid oxide fuel cell with plasma arc spray deposition. The principal objective was to determine the process variables for the plasma spray deposition of an interconnect with adequate electrical conductivity and other desired properties. Plasma arc spray deposition is a process where the coating material in powder form is heated to or above its melting temperature, while being accelerated by a carrier gas stream through a high power electric arc. The molten powder particles are directed at the substrate, and on impact, form a coating consisting of many layers of overlapping, thin, lenticular particles or splats. The variables investigated were gun power, spray distance, powder feed rate, plasma gas flow rates, number of gun passes, powder size distribution, injection angle of powder into the plasma plume, vacuum or atmospheric plasma spraying, and substrate heating. Typically, coatings produced by both systems showed bands of lanthanum rich material and cracking with the coating. Preheating the substrate reduced but did not eliminate internal coating cracking. A uniformly thick, dense, adherent interconnect of the desired chemistry was finally achieved with sufficient gas- tightness to allow fabrication of cells and samples for measurement of physical and electrical properties. A cell was tested successfully at 1000{degree}C for over 1,000 hours demonstrating the mechanical, electrical, and chemical stability of a plasma-arc sprayed interconnect layer.

  20. Solid oxide fuel cell processing using plasma arc spray deposition techniques

    SciTech Connect

    Ray, E.R.; Spengler, C.J.; Herman, H.

    1991-07-01

    The Westinghouse Electric Corporation, in conjunction with the Thermal Spray Laboratory of the State University of New York, Stony Brook, investigated the fabrication of a gas-tight interconnect layer on a tubular solid oxide fuel cell with plasma arc spray deposition. The principal objective was to determine the process variables for the plasma spray deposition of an interconnect with adequate electrical conductivity and other desired properties. Plasma arc spray deposition is a process where the coating material in powder form is heated to or above its melting temperature, while being accelerated by a carrier gas stream through a high power electric arc. The molten powder particles are directed at the substrate, and on impact, form a coating consisting of many layers of overlapping, thin, lenticular particles or splats. The variables investigated were gun power, spray distance, powder feed rate, plasma gas flow rates, number of gun passes, powder size distribution, injection angle of powder into the plasma plume, vacuum or atmospheric plasma spraying, and substrate heating. Typically, coatings produced by both systems showed bands of lanthanum rich material and cracking with the coating. Preheating the substrate reduced but did not eliminate internal coating cracking. A uniformly thick, dense, adherent interconnect of the desired chemistry was finally achieved with sufficient gas- tightness to allow fabrication of cells and samples for measurement of physical and electrical properties. A cell was tested successfully at 1000{degree}C for over 1,000 hours demonstrating the mechanical, electrical, and chemical stability of a plasma-arc sprayed interconnect layer.

  1. Time-of-flight technique for particle identification at energies from 2 to 400 keV/nucleon

    NASA Technical Reports Server (NTRS)

    Gloeckler, G.; Hsieh, K. C.

    1979-01-01

    The time of flight technique for particle identification was extended to 2 keV/nucleon and the size of the start-time detector was reduced considerably by the use of carbon foils of few micrograms/cm square in thickness combined with microchannel plates for detecting secondary electrons. Time of flight telescopes incorporating this start-time device were used to measure the stopping power of a number of low energy heavy ions in thin carbon foils and the charge states of these ions emerging from such foils. Applications for the detection and identification of low energy interplanetary and magnetospheric particles are suggested.

  2. Use of the gas-filled-magnet technique for particle identification at low energies

    SciTech Connect

    Rehm, K.K.; Jiang, C.L.; Paul, M.

    1995-08-01

    Reaction studies of interest to astrophysics with radioactive ion beams will be done mainly in inverse reaction kinematics, i.e., heavy particles bombarding a hydrogen target. The low energy of the outgoing heavy reaction products makes particle identification with respect to mass and nuclear charge a major challenge. For the planned {sup 18}F(p,{alpha}) experiment one expects five different types of particles in the outgoing channels: {sup 18}F and {sup 18}O (from elastic scattering of {sup 18}F and {sup 18}O on {sup 12}C), {sup 15}O and {sup 15}N (from the {sup 18}F and {sup 18}O induced (p,{alpha}) reactions) and {sup 12}C recoils from the polypropylene target. While mass determination can be achieved easily by time-of-flight (TOF) measurements, a determination of the nuclear charge presents a challenge, especially if the energy of the particles is below 500 keV/u. We studied the gas-filled magnet technique for Z-identification of light ions between Z = 6-9. In a gas-filled magnet the particles move with an average charge state {bar q} which in one parameterization is given by {bar q} = Z ln(avZ{sup {alpha}})/ln(bZ{sup {beta}}) where Z is the nuclear charge of the ions and v their velocity. Introducing into the expression for the magnetic rigidity B{rho} = mv/{bar q} results in a Z dependence of B{rho} which is valid to very low velocities. As a magnet we used the Enge split-pole spectrograph which was filled with nitrogen gas at a pressure of 0.5 Torr. The particles were detected in the focal plane with a 50 x 10 cm{sup 2} parallel-grid-avalanche counter which measured TOF and magnetic rigidity. The mass and Z separation was tested with {sup 13}C and {sup 18}O beams at energies of about 600 keV/u and recoil particles ranging from {sup 12}C to {sup 19}F. The Z-separation obtained at these energies was {triangle}Z/Z = 0.28 which is sufficient to separate individual elements for Z < 10.

  3. Real-time PCR for Leishmania species identification: Evaluation and comparison with classical techniques.

    PubMed

    de Morais, Rayana Carla Silva; da Costa Oliveira, Cintia Nascimento; de Albuquerque, Suênia da Cunha Gonçalves; Mendonça Trajano Silva, Lays Adrianne; Pessoa-E-Silva, Rômulo; Alves da Cruz, Heidi Lacerda; de Brito, Maria Edileuza Felinto; de Paiva Cavalcanti, Milena

    2016-06-01

    Cutaneous leishmaniasis (CL) is a parasitic disease caused by various Leishmania species. Several studies have shown that real time quantitative PCR (qPCR) can be used for Leishmania spp. identification by analyzing the melting temperature (Tm). Thus, the aim of this study was to evaluate the viability of qPCR for differentiating eight closely related Leishmania species that cause the same clinical form of the disease and to compare the results with classical techniques. qPCR assays for standardizing the Tm using reference strains were performed. After the CL diagnosis on blood samples of domestic animals, positive samples were analyzed by their Tm and qPCR products were purified and sequenced. Ten human samples previously characterized by Multilocus Enzyme Electrophoresis (MLEE) were also analyzed by Tm. A Restriction Fragment Length Polymorphism (RFLP) assay, a reference test, was also standardized, by using the reference strains. Through standardization of Tm for Leishmania spp., two Tm ranges were created for analysis: 1 (Tm = 78-79.99 °C) included Leishmania (V.) braziliensis, Leishmania (V.) panamensis, Leishmania (V.) lainsoni, Leishmania (V.) guyanensis and Leishmania (V.) shawi; and 2 (Tm = 80-82.2 °C) included Leishmania (V.) naiffi, Leishmania (L.) amazonensis and Leishmania (L.) mexicana. A total of 223 positive blood samples were analyzed, with 58 included in range 1 and 165 in range 2. L. (V.) braziliensis, L. (V.) panamensis and L. (V.) guyanensis were identified by sequencing, while L. (V.) braziliensis, L. (L.) mexicana and L. (V.) panamensis were identified by RFLP analysis. Ten human samples previously characterized by Multilocus Enzyme Electrophoresis (MLEE) were also analyzed by qPCR Tm analysis; five were classified in range 1 and five in range 2. A concordance of 80% was calculated between qPCR and the gold-standard (MLEE) with no significant difference between the methods (p = 0.6499); a similar result was observed for sequencing

  4. Automatic Whole-Spectrum Matching Techniques for Identification of Pure and Mixed Minerals using Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Dyar, M. D.; Carey, C. J.; Breitenfeld, L.; Tague, T.; Wang, P.

    2015-12-01

    In situuse of Raman spectroscopy on Mars is planned for three different instruments in the next decade. Although implementations differ, they share the potential to identify surface minerals and organics and inform Martian geology and geochemistry. Their success depends on the availability of appropriate databases and software for phase identification. For this project, we have consolidated all known publicly-accessible Raman data on minerals for which independent confirmation of phase identity is available, and added hundreds of additional spectra acquired using varying instruments and laser energies. Using these data, we have developed software tools to improve mineral identification accuracy. For pure minerals, whole-spectrum matching algorithms far outperform existing tools based on diagnostic peaks in individual phases. Optimal matching accuracy does depend on subjective end-user choices for data processing (such as baseline removal, intensity normalization, and intensity squashing), as well as specific dataset characteristics. So, to make this tuning process amenable to automated optimization methods, we developed a machine learning-based generalization of these choices within a preprocessing and matching framework. Our novel method dramatically reduces the burden on the user and results in improved matching accuracy. Moving beyond identifying pure phases into quantification of relative abundances is a complex problem because relationships between peak intensity and mineral abundance are obscured by complicating factors: exciting laser frequency, the Raman cross section of the mineral, crystal orientation, and long-range chemical and structural ordering in the crystal lattices. Solving this un-mixing problem requires adaptation of our whole-spectrum algorithms and a large number of test spectra of minerals in known volume proportions, which we are creating for this project. Key to this effort is acquisition of spectra from mixtures of pure minerals paired

  5. A Technique to Determine Billet Core Charge Weight for P/M Fuel Tubes

    SciTech Connect

    Peacock, H.B.

    2001-07-02

    The core length in an extruded tube depends on the weight of powder in the billet core. In the past, the amount of aluminum powder needed to give a specified core length was determined empirically. This report gives a technique for calculating the weight of aluminum powder for the P/M core. An equation has been derived which can be used to determine the amount of aluminum needed for P/M billet core charge weights. Good agreement was obtained when compared to Mark 22 tube extrusion data. From the calculated charge weight, the elastomeric bag can be designed and made to compact the U3O8-Al core.

  6. Solving fuel-optimal low-thrust orbital transfers with bang-bang control using a novel continuation technique

    NASA Astrophysics Data System (ADS)

    Zhu, Zhengfan; Gan, Qingbo; Yang, Xin; Gao, Yang

    2017-08-01

    We have developed a novel continuation technique to solve optimal bang-bang control for low-thrust orbital transfers considering the first-order necessary optimality conditions derived from Lawden's primer vector theory. Continuation on the thrust amplitude is mainly described in this paper. Firstly, a finite-thrust transfer with an ;On-Off-On; thrusting sequence is modeled using a two-impulse transfer as initial solution, and then the thrust amplitude is decreased gradually to find an optimal solution with minimum thrust. Secondly, the thrust amplitude is continued from its minimum value to positive infinity to find the optimal bang-bang control, and a thrust switching principle is employed to determine the control structure by monitoring the variation of the switching function. In the continuation process, a bifurcation of bang-bang control is revealed and the concept of critical thrust is proposed to illustrate this phenomenon. The same thrust switching principle is also applicable to the continuation on other parameters, such as transfer time, orbital phase angle, etc. By this continuation technique, fuel-optimal orbital transfers with variable mission parameters can be found via an automated algorithm, and there is no need to provide an initial guess for the costate variables. Moreover, continuation is implemented in the solution space of bang-bang control that is either optimal or non-optimal, which shows that a desired solution of bang-bang control is obtained via continuation on a single parameter starting from an existing solution of bang-bang control. Finally, numerical examples are presented to demonstrate the effectiveness of the proposed continuation technique. Specifically, this continuation technique provides an approach to find multiple solutions satisfying the first-order necessary optimality conditions to the same orbital transfer problem, and a continuation strategy is presented as a preliminary approach for solving the bang-bang control of many

  7. Profiling refined hydrocarbon fuels using polar components

    USGS Publications Warehouse

    Rostad, C.E.; Hostettler, F.D.

    2007-01-01

    Identification of a fuel released into the environment can be difficult due to biodegradation or weathering. Negative electrospray ionization/mass spectrometry was used to screen for unique polar components in a wide variety of commercial hydrocarbon products and mixtures. These fuels produced unique and relatively simple spectra. When applied to hydrocarbon samples from a large, long-term fuel spill in a relatively cool climate in which the alkane, isoprenoid, and alkylcyclohexane portions had begun to biodegrade or weather, the polar components in these samples had changed little over time. This technique provided rapid fuel identification on hydrocarbons released into the environment, without sample preparation, fractionation, or chromatography. Copyright ?? Taylor & Francis Group, LLC.

  8. Nano-structured composite cathodes for intermediate temperature solid oxide fuel cells via an infiltration/impregnation technique

    SciTech Connect

    Jiang, Zhiyi; Xia, Changrong; Chen, Fanglin

    2010-02-12

    Solid oxide fuel cells (SOFCs) are high temperature energy conversion devices working efficiently and environmental friendly. SOFC requires a functional cathode with high electrocatalytic activity for the electrochemical reduction of oxygen. The electrode is often fabricated at high temperature to achieve good bonding between the electrode and electrolyte. The high temperature not only limits material choice but also results in coarse particles with low electrocatalytic activity. Nano-structured electrodes fabricated at low temperature by an infiltration/impregnation technique have shown many advantages including superior activity and wider range of material choices. The impregnation technique involves depositing nanoparticle catalysts into a pre-sintered electrode backbone. Two basic types of nano-structures are developed since the electrode is usually a composite consists of an electrolyte and an electrocatalyst. One is infiltrating electronically conducting nano-catalyst into a single phase ionic conducting backbone, while the other is infiltrating ionically conducting nanoparticles into a single phase electronically conducting backbone. In addition, nanoparticles of the electrocatalyst, electrolyte and other oxides have also been infiltrated into mixed conducting backbones. These nano-structured cathodes are reviewed here regarding the preparation methods, their electrochemical performance, and stability upon thermal cycling.

  9. Acoustic emission: Towards a real-time diagnosis technique for Proton Exchange Membrane Fuel Cell operation

    NASA Astrophysics Data System (ADS)

    Legros, B.; Thivel, P.-X.; Bultel, Y.; Boinet, M.; Nogueira, R. P.

    This paper deals with one of the needs for PEMFC to be economically reliable: diagnosis tool for water management. This issue is actually a key parameter for both performance and durability improvement. Acoustic emission (AE) technique was employed to survey PEM single cell under various operating conditions. AE events coming from different sources have thus been identified, classified and finally ascribed to different phenomena induced by MEA water uptake and/or biphasic flow in the gas channel thanks to a statistical post-treatment of the acoustic data. Results, although qualitative, seems trusty enough to unravel hidden correlations between AE hits and physicochemical phenomena taking place during the cell operation and open up the way for an innovative and non-invasive online diagnosis tool.

  10. A Survey and Proposed Framework on the Soft Biometrics Technique for Human Identification in Intelligent Video Surveillance System

    PubMed Central

    Kim, Min-Gu; Moon, Hae-Min; Chung, Yongwha; Pan, Sung Bum

    2012-01-01

    Biometrics verification can be efficiently used for intrusion detection and intruder identification in video surveillance systems. Biometrics techniques can be largely divided into traditional and the so-called soft biometrics. Whereas traditional biometrics deals with physical characteristics such as face features, eye iris, and fingerprints, soft biometrics is concerned with such information as gender, national origin, and height. Traditional biometrics is versatile and highly accurate. But it is very difficult to get traditional biometric data from a distance and without personal cooperation. Soft biometrics, although featuring less accuracy, can be used much more freely though. Recently, many researchers have been made on human identification using soft biometrics data collected from a distance. In this paper, we use both traditional and soft biometrics for human identification and propose a framework for solving such problems as lighting, occlusion, and shadowing. PMID:22919273

  11. A survey and proposed framework on the soft biometrics technique for human identification in intelligent video surveillance system.

    PubMed

    Kim, Min-Gu; Moon, Hae-Min; Chung, Yongwha; Pan, Sung Bum

    2012-01-01

    Biometrics verification can be efficiently used for intrusion detection and intruder identification in video surveillance systems. Biometrics techniques can be largely divided into traditional and the so-called soft biometrics. Whereas traditional biometrics deals with physical characteristics such as face features, eye iris, and fingerprints, soft biometrics is concerned with such information as gender, national origin, and height. Traditional biometrics is versatile and highly accurate. But it is very difficult to get traditional biometric data from a distance and without personal cooperation. Soft biometrics, although featuring less accuracy, can be used much more freely though. Recently, many researchers have been made on human identification using soft biometrics data collected from a distance. In this paper, we use both traditional and soft biometrics for human identification and propose a framework for solving such problems as lighting, occlusion, and shadowing.

  12. [Identification of Six Isomers of Dimethylbenzoic Acid by Using Terahertz Time-Domain Spectroscopy Technique].

    PubMed

    Liu, Jian-wei; Shen, Jing-ling; Zhang, Bo

    2015-11-01

    In this paper, the absorption spectra of 6 isomers of dimethylbenzoic acid, which were widely used in chemical and pharmaceutical production as intermediate substance, were measured by using the terahertz time-domain spectroscopy (THz-TDS) system in the range 0.2-2.2 THz at room temperature. The experimental results show that the six measured isomers present apparent different spectral response. However, the results of using infrared spectroscopy indicates that different isomers show high similarity in absorption spectra in the range 1450-1700 cm⁻¹. The vibrational frequencies are calculated by using the density functional theory (DFT), and identification of vibrational modes are given. It is clear that the absorption peaks of the 6 isomers in the range 1450-1700 cm⁻¹ come from the stretching vibration of benzene ring and C==O, while the absorption peaks in the terahertz range are caused by the relative wagging of benzene ring and all the chains out of plane, which lead to the different absorption characteristics of the 6 isomers in the range 0.2-2.2 THz. The results suggest that the difference and similarity of the absorption spectra observed in the two different frequency range are resulted from the difference and similarity of the molecular structures of the six isomers. By using the different absorption characteristics, we can identify the six isomers of dimethylbenzoic acid effectively. Our study indicates that it is feasible to distinguish the isomers by using terahertz and infrared spectroscopy technique. It provides an effective way to identify different isomers and test the purity of the intermediate substance in the process of production quickly and accurately.

  13. [Identification of varieties of textile fibers by using Vis/NIR infrared spectroscopy technique].

    PubMed

    Wu, Gui-Fang; He, Yong

    2010-02-01

    The aim of the present paper was to provide new insight into Vis/NIR spectroscopic analysis of textile fibers. In order to achieve rapid identification of the varieties of fibers, the authors selected 5 kinds of fibers of cotton, flax, wool, silk and tencel to do a study with Vis/NIR spectroscopy. Firstly, the spectra of each kind of fiber were scanned by spectrometer, and principal component analysis (PCA) method was used to analyze the characteristics of the pattern of Vis/NIR spectra. Principal component scores scatter plot (PC1 x PC2 x PC3) of fiber indicated the classification effect of five varieties of fibers. The former 6 principal components (PCs) were selected according to the quantity and size of PCs. The PCA classification model was optimized by using the least-squares support vector machines (LS-SVM) method. The authors used the 6 PCs extracted by PCA as the inputs of LS-SVM, and PCA-LS-SVM model was built to achieve varieties validation as well as mathematical model building and optimization analysis. Two hundred samples (40 samples for each variety of fibers) of five varieties of fibers were used for calibration of PCA-LS-SVM model, and the other 50 samples (10 samples for each variety of fibers) were used for validation. The result of validation showed that Vis/NIR spectroscopy technique based on PCA-LS-SVM had a powerful classification capability. It provides a new method for identifying varieties of fibers rapidly and real time, so it has important significance for protecting the rights of consumers, ensuring the quality of textiles, and implementing rationalization production and transaction of textile materials and its production.

  14. Multidirectional In Vivo Characterization of Skin Using Wiener Nonlinear Stochastic System Identification Techniques.

    PubMed

    Parker, Matthew D; Jones, Lynette A; Hunter, Ian W; Taberner, A J; Nash, M P; Nielsen, P M F

    2017-01-01

    A triaxial force-sensitive microrobot was developed to dynamically perturb skin in multiple deformation modes, in vivo. Wiener static nonlinear identification was used to extract the linear dynamics and static nonlinearity of the force-displacement behavior of skin. Stochastic input forces were applied to the volar forearm and thenar eminence of the hand, producing probe tip perturbations in indentation and tangential extension. Wiener static nonlinear approaches reproduced the resulting displacements with variances accounted for (VAF) ranging 94-97%, indicating a good fit to the data. These approaches provided VAF improvements of 0.1-3.4% over linear models. Thenar eminence stiffness measures were approximately twice those measured on the forearm. Damping was shown to be significantly higher on the palm, whereas the perturbed mass typically was lower. Coefficients of variation (CVs) for nonlinear parameters were assessed within and across individuals. Individual CVs ranged from 2% to 11% for indentation and from 2% to 19% for extension. Stochastic perturbations with incrementally increasing mean amplitudes were applied to the same test areas. Differences between full-scale and incremental reduced-scale perturbations were investigated. Different incremental preloading schemes were investigated. However, no significant difference in parameters was found between different incremental preloading schemes. Incremental schemes provided depth-dependent estimates of stiffness and damping, ranging from 300 N/m and 2 Ns/m, respectively, at the surface to 5 kN/m and 50 Ns/m at greater depths. The device and techniques used in this research have potential applications in areas, such as evaluating skincare products, assessing skin hydration, or analyzing wound healing.

  15. A novel technique towards deployment of hydrostatic pressure based level sensor in nuclear fuel reprocessing facility.

    PubMed

    Praveen, K; Rajiniganth, M P; Arun, A D; Sahoo, P; Murty, S A V Satya

    2016-02-01

    A novel approach towards deployment of a hydrostatic pressure based level monitoring device is presented for continuous monitoring of liquid level in a reservoir with high resolution and precision. Some of the major drawbacks such as spurious information of measured level due to change in ambient temperature, requirement of high resolution pressure sensor, and bubbling effect by passing air or any gaseous fluid into the liquid are overcome by using such a newly designed hydrostatic pressure based level monitoring device. The technique involves precise measurement of hydrostatic pressure exerted by the process liquid using a high sensitive pulsating-type differential pressure sensor (capacitive type differential pressure sensor using a specially designed oil manometer) and correlating it to the liquid level. In order to avoid strong influence of temperature on liquid level, a temperature compensation methodology is derived and used in the system. A wireless data acquisition feature has also been provided in the level monitoring device in order to work in a remote area such as a radioactive environment. At the outset, a prototype level measurement system for a 1 m tank is constructed and its test performance has been well studied. The precision, accuracy, resolution, uncertainty, sensitivity, and response time of the prototype level measurement system are found to be less than 1.1 mm in the entire range, 1%, 3 mm, <1%, 10 Hz/mm, and ∼4 s, respectively.

  16. A novel technique towards deployment of hydrostatic pressure based level sensor in nuclear fuel reprocessing facility

    NASA Astrophysics Data System (ADS)

    Praveen, K.; Rajiniganth, M. P.; Arun, A. D.; Sahoo, P.; Satya Murty, S. A. V.

    2016-02-01

    A novel approach towards deployment of a hydrostatic pressure based level monitoring device is presented for continuous monitoring of liquid level in a reservoir with high resolution and precision. Some of the major drawbacks such as spurious information of measured level due to change in ambient temperature, requirement of high resolution pressure sensor, and bubbling effect by passing air or any gaseous fluid into the liquid are overcome by using such a newly designed hydrostatic pressure based level monitoring device. The technique involves precise measurement of hydrostatic pressure exerted by the process liquid using a high sensitive pulsating-type differential pressure sensor (capacitive type differential pressure sensor using a specially designed oil manometer) and correlating it to the liquid level. In order to avoid strong influence of temperature on liquid level, a temperature compensation methodology is derived and used in the system. A wireless data acquisition feature has also been provided in the level monitoring device in order to work in a remote area such as a radioactive environment. At the outset, a prototype level measurement system for a 1 m tank is constructed and its test performance has been well studied. The precision, accuracy, resolution, uncertainty, sensitivity, and response time of the prototype level measurement system are found to be less than 1.1 mm in the entire range, 1%, 3 mm, <1%, 10 Hz/mm, and ˜4 s, respectively.

  17. Tracer-based laser-induced fluorescence measurement technique for quantitative fuel/air-ratio measurements in a hydrogen internal combustion engine.

    PubMed

    Blotevogel, Thomas; Hartmann, Matthias; Rottengruber, Hermann; Leipertz, Alfred

    2008-12-10

    A measurement technique for the quantitative investigation of mixture formation processes in hydrogen internal combustion engines (ICEs) has been developed using tracer-based laser-induced fluorescence (TLIF). This technique can be employed to fired and motored engine operation. The quantitative TLIF fuel/air-ratio results have been verified by means of linear Raman scattering measurements. Exemplary results of the simultaneous investigation of mixture formation and combustion obtained at an optical accessible hydrogen ICE are shown.

  18. 3D surface real-time measurement using phase-shifted interference fringe technique for craniofacial identification

    NASA Astrophysics Data System (ADS)

    Levin, Gennady G.; Vishnyakov, Gennady N.; Naumov, Alexey V.; Abramov, Sergey

    1998-03-01

    We offer to use the 3D surface profile real-time measurement using phase-shifted interference fringe projection technique for the cranioficial identification. Our system realizes the profile measurement by projecting interference fringe pattern on the object surface and by observing the deformed fringe pattern at the direction different from the projection. Fringes are formed by a Michelson interferometer with one mirror mounted on a piezoelectric translator. Four steps self- calibration phase-shift method was used.

  19. Formulation and evaluation of highway transportation fuels from shale and coal oils: project identification and evaluation of optimized alternative fuels. Second annual report, March 20, 1980-March 19, 1981. [Broadcut fuel mixtures of petroleum, shale, and coal products

    SciTech Connect

    Sefer, N.R.; Russell, J.A.

    1981-12-01

    Project work is reported for the formulation and testing of diesel and broadcut fuels containing components from petroleum, shale oil, and coal liquids. Formulation of most of the fuels was based on refinery modeling studies in the first year of the project. Product blends were prepared with a variety of compositions for use in this project and to distribute to other, similar research programs. Engine testing was conducted in a single-cylinder CLR engine over a range of loads and speeds. Relative performance and emissions were determined in comparison with typical petroleum diesel fuel. With the eight diesel fuels tested, it was found that well refined shale oil products show only minor differences in engine performance and emissions which are related to differences in boiling range. A less refined coal distillate can be used at low concentrations with normal engine performance and increased emissions of particulates and hydrocarbons. Higher concentrations of coal distillate degrade both performance and emissions. Broadcut fuels were tested in the same engine with variable results. All fuels showed increased fuel consumption and hydrocarbon emissions. The increase was greater with higher naphtha content or lower cetane number of the blends. Particulates and nitrogen oxides were high for blends with high 90% distillation temperatures. Operation may have been improved by modifying fuel injection. Cetane and distillation specifications may be advisable for future blends. Additional multi-cylinder and durability testing is planned using diesel fuels and broadcut fuels. Nine gasolines are scheduled for testing in the next phase of the project.

  20. Forensic human identification in the United States and Canada: a review of the law, admissible techniques, and the legal implications of their application in forensic cases.

    PubMed

    Holobinko, Anastasia

    2012-10-10

    Forensic human identification techniques are successful if they lead to positive personal identification. However, the strongest personal identification is of no use in the prosecution--or vindication--of an accused if the associated evidence and testimony is ruled inadmissible in a court of law. This review examines the U.S. and Canadian legal rulings regarding the admissibility of expert evidence and testimony, and subsequently explores four established methods of human identification (i.e., DNA profiling, forensic anthropology, forensic radiography, forensic odontology) and one complementary technique useful in determining identity, and the legal implications of their application in forensic cases. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  1. A NOVEL TECHNIQUE FOR THE RAPID IDENTIFICATION OF ALPHA EMITTERS RELEASED DURING A RADIOLOGICAL INCIDENT.

    EPA Science Inventory

    Currently there are no standard radioanalytical methods applicable to the initial phase of a radiological emergency, for the early identification and quantification of alpha emitting radionuclides. Of particular interest are determinations of the presence and concentration of is...

  2. A NOVEL TECHNIQUE FOR THE RAPID IDENTIFICATION OF ALPHA EMITTERS RELEASED DURING A RADIOLOGICAL INCIDENT.

    EPA Science Inventory

    Currently there are no standard radioanalytical methods applicable to the initial phase of a radiological emergency, for the early identification and quantification of alpha emitting radionuclides. Of particular interest are determinations of the presence and concentration of is...

  3. Modal identification using the frequency-scale domain decomposition technique of ambient vibration responses

    NASA Astrophysics Data System (ADS)

    Le, Thien-Phu; Argoul, Pierre

    2016-12-01

    This paper proposes a new modal identification method of ambient vibration responses. The application of the singular value decomposition to continuous wavelet transform of power spectral density matrix gives singular values and singular vectors in frequency-scale domain. Analytical development shows a direct relation between local maxima in frequency-scale representation of singular values and modal parameters. This relation is then carried on for the identification of modal parameters via a complete practical procedure. The main novelties of this work involve the new formulation in frequency-scale domain and the capacity for the identification of modal parameters without the step of ridges extraction in comparison with previous wavelet-based modal identification methods.

  4. Neural Networks and other Techniques for Fault Identification and Isolation of Aircraft Systems

    DTIC Science & Technology

    2003-06-01

    in this paper is based on the use of neural networks (NNs) as on-line learning non-linear approximators. The performances of two different neural...Fault identification, isolation. and accommodation have become critical issues in the overall performance of advanced aircraft systems. Neural ... Networks have shown to be a very attractive alternative to classic adaptation methods for identification and control of non-linear dynamic systems. The

  5. Hybrid approach combining multiple characterization techniques and simulations for microstructural analysis of proton exchange membrane fuel cell electrodes

    NASA Astrophysics Data System (ADS)

    Cetinbas, Firat C.; Ahluwalia, Rajesh K.; Kariuki, Nancy; De Andrade, Vincent; Fongalland, Dash; Smith, Linda; Sharman, Jonathan; Ferreira, Paulo; Rasouli, Somaye; Myers, Deborah J.

    2017-03-01

    The cost and performance of proton exchange membrane fuel cells strongly depend on the cathode electrode due to usage of expensive platinum (Pt) group metal catalyst and sluggish reaction kinetics. Development of low Pt content high performance cathodes requires comprehensive understanding of the electrode microstructure. In this study, a new approach is presented to characterize the detailed cathode electrode microstructure from nm to μm length scales by combining information from different experimental techniques. In this context, nano-scale X-ray computed tomography (nano-CT) is performed to extract the secondary pore space of the electrode. Transmission electron microscopy (TEM) is employed to determine primary C particle and Pt particle size distributions. X-ray scattering, with its ability to provide size distributions of orders of magnitude more particles than TEM, is used to confirm the TEM-determined size distributions. The number of primary pores that cannot be resolved by nano-CT is approximated using mercury intrusion porosimetry. An algorithm is developed to incorporate all these experimental data in one geometric representation. Upon validation of pore size distribution against gas adsorption and mercury intrusion porosimetry data, reconstructed ionomer size distribution is reported. In addition, transport related characteristics and effective properties are computed by performing simulations on the hybrid microstructure.

  6. Nonlinear torque and air-to-fuel ratio control of spark ignition engines using neuro-sliding mode techniques.

    PubMed

    Huang, Ting; Javaherian, Hossein; Liu, Derong

    2011-06-01

    This paper presents a new approach for the calibration and control of spark ignition engines using a combination of neural networks and sliding mode control technique. Two parallel neural networks are utilized to realize a neuro-sliding mode control (NSLMC) for self-learning control of automotive engines. The equivalent control and the corrective control terms are the outputs of the neural networks. Instead of using error backpropagation algorithm, the network weights of equivalent control are updated using the Levenberg-Marquardt algorithm. Moreover, a new approach is utilized to update the gain of corrective control. Both modifications of the NSLMC are aimed at improving the transient performance and speed of convergence. Using the data from a test vehicle with a V8 engine, we built neural network models for the engine torque (TRQ) and the air-to-fuel ratio (AFR) dynamics and developed NSLMC controllers to achieve tracking control. The goal of TRQ control and AFR control is to track the commanded values under various operating conditions. From simulation studies, the feasibility and efficiency of the approach are illustrated. For both control problems, excellent tracking performance has been achieved.

  7. Combustion rate limits of hydrogen plus hydrocarbon fuel: Air diffusion flames from an opposed jet burner technique

    NASA Technical Reports Server (NTRS)

    Pellett, Gerald L.; Guerra, Rosemary; Wilson, Lloyd G.; Reeves, Ronald N.; Northam, G. Burton

    1987-01-01

    Combustion of H2/hydrocarbon (HC) fuel mixtures may be considered in certain volume-limited supersonic airbreathing propulsion applications. Effects of HC addition to H2 were evaluated, using a recent argon-bathed, coaxial, tubular opposed jet burner (OJB) technique to measure the extinction limits of counterflow diffusion flames. The OJB flames were formed by a laminar jet of (N2 and/or HC)-diluted H2 mixture opposed by a similar jet of air at ambient conditions. The OJB data, derived from respective binary mixtures of H2 and methane, ethylene, or propane HCs, were used to characterize BLOWOFF and RESTORE. BLOWOFF is a sudden breaking of the dish-shaped OJB flame to a stable torus or ring shape, and RESTORE marks sudden restoration of the central flame by radial inward flame propagation. BLOWOFF is a measure of kinetically-limited flame reactivity/speed under highly stretched, but relatively ideal impingement flow conditions. RESTORE measures inward radial flame propagation rate, which is sensitive to ignition processes in the cool central core. It is concluded that relatively small molar amounts of added HC greatly reduce the reactivity characteristics of counterflow hydrogen-air diffusion flames, for ambient initial conditions.

  8. Combustion rate limits of hydrogen plus hydrocarbon fuel: Air diffusion flames from an opposed jet burner technique

    NASA Technical Reports Server (NTRS)

    Pellett, Gerald L.; Guerra, Rosemary; Wilson, Lloyd G.; Reeves, Ronald N.; Northam, G. Burton

    1987-01-01

    Combustion of H2/hydrocarbon (HC) fuel mixtures may be considered in certain volume-limited supersonic airbreathing propulsion applications. Effects of HC addition to H2 were evaluated, using a recent argon-bathed, coaxial, tubular opposed jet burner (OJB) technique to measure the extinction limits of counterflow diffusion flames. The OJB flames were formed by a laminar jet of (N2 and/or HC)-diluted H2 mixture opposed by a similar jet of air at ambient conditions. The OJB data, derived from respective binary mixtures of H2 and methane, ethylene, or propane HCs, were used to characterize BLOWOFF and RESTORE. BLOWOFF is a sudden breaking of the dish-shaped OJB flame to a stable torus or ring shape, and RESTORE marks sudden restoration of the central flame by radial inward flame propagation. BLOWOFF is a measure of kinetically-limited flame reactivity/speed under highly stretched, but relatively ideal impingement flow conditions. RESTORE measures inward radial flame propagation rate, which is sensitive to ignition processes in the cool central core. It is concluded that relatively small molar amounts of added HC greatly reduce the reactivity characteristics of counterflow hydrogen-air diffusion flames, for ambient initial conditions.

  9. Integration of microbial fuel cell techniques into activated sludge wastewater treatment processes to improve nitrogen removal and reduce sludge production.

    PubMed

    Gajaraj, Shashikanth; Hu, Zhiqiang

    2014-12-01

    Bioelectrochemical systems are emerging for wastewater treatment, yet little is known about how well they can be integrated with current wastewater treatment processes. In this bench-scale study, the microbial fuel cell (MFC) technique was incorporated into the Modified Ludzack-Ettinger (MLE) process (phase I) and later with the membrane bioreactor (MBR) process (phase II) to evaluate the performance of MFC assisted wastewater treatment systems (i.e., MLE-MFC and MBR-MFC). There was no significant difference in the effluent NH4(+)-N concentration between the systems integrating MFC and the open circuit controls. The average effluent COD concentration was significantly lower in the MLE-MFC, but it did not change much in the MBR-MFC because of the already low COD concentrations in MBR operation. The MLE-MFC and MBR-MFC systems increased the NO3(-)-N removal efficiencies by 31% (±12%) and 20% (±12%), respectively, and reduced sludge production by 11% and 6%, respectively, while generating an average voltage of 0.13 (±0.03) V in both systems. Analysis of the bacterial specific oxygen uptake rate, the sludge volume index, and ammonia-oxidizing bacterial population (dominated by Nitrosomonas through terminal restriction fragment length polymorphism analysis) indicated that there was no significant difference in sludge activity, settling property, and nitrifying community structure between the MFC assisted systems and the open circuit controls. The results suggest that the wastewater treatment systems could achieve higher effluent water quality and lower sludge production if it is integrated well with MFC techniques. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Ionospheric parameter analysis techniques and anomaly identification in periods of ionospheric perturbations

    NASA Astrophysics Data System (ADS)

    Mandrikova, Oksana; Polozov, Yury; Fetisova Glushkova, Nadejda; Shevtsov, Boris

    In the present paper we suggest intellectual techniques intended for the analysis of ionospheric parameters. These techniques are directed at studying dynamic processes in the "magnetosphere-ionosphere" system during perturbations. Using the combination of the wavelet transform and neural networks, the authors have developed a technique of approximating the time variation of ionospheric parameters. This technique allows us to make data predictions and detect anomalies in the ionosphere. Multiscale component approximations of the critical frequency of the ionosphere layer F2 were constructed. These approximations can be presented in the following form: begin{center} c_{l,k+m} (t) = varphi_m(3) Bigl (sum_i omega(3_{mi}) varphi_i(2) Bigl (sum_j omega(2_{ij}) varphi_j(1) Bigl (sum_k omega(1_{jk}) c_{l,k} (t) Bigr ) Bigr ) Bigr ) , where c_{l,k} = bigl < f , Psi_{l,k} bigr > ; Psi_{l,k} (t) = 2(l/2) Psi (2(l) t - k) is the wavelet basis; omega(1_{jk}) are the weighting coefficients of the neuron j of the network input layer; omega(2_{ij}) are the weighting coefficients of the neuron i of the network hidden layer; omega(3_{mi}) are the weighting coefficients of the neuron m of the network output layer; varphi(1_j) (z) = varphi(2_i) (z) = (1)/(1+exp(-z))) ; varphi(3_m) (z) = x*z+y . The coefficients c_{l,k} can be found as a result of transforming the original function f into the space with the scale l . In order to obtain the approximations of the time variation of data, neural networks can be united in groups. In the paper we have suggested a multicomponent time variation model of ionospheric parameters, which makes it possible to perform the analysis of the ionospheric dynamic mode, receive predictions about parameter variations, and detect anomalies in periods of perturbations. The multicomponent model also allows us to fill missing values in critical frequency data taking into account diurnal and seasonal variations. Identification of the model is based on combining

  11. A qualitative analysis of the neutron population in fresh and spent fuel assemblies during simulated interrogation using the differential die-away technique

    SciTech Connect

    Tobin, Stephen J.; Lundkvist, Niklas; Goodsell, Alison V.; Grape, Sophie; Hendricks, John S.; Henzl, Vladimir; Swinhoe, Martyn T.

    2015-12-01

    In this study, Monte Carlo simulations were performed for the differential die-away (DDA) technique to analyse the time-dependent behaviour of the neutron population in fresh and spent nuclear fuel assemblies as part of the Next Generation Safeguards Initiative Spent Fuel (NGSI-SF) Project. Simulations were performed to investigate both a possibly portable as well as a permanent DDA instrument. Taking advantage of a custom made modification to the MCNPX code, the variation in the neutron population, simultaneously in time and space, was examined. The motivation for this research was to improve the design of the DDA instrument, as it is be ing considered for possible deployment at the Central Storage of Spent Nuclear Fuel and Encapsulation Plant in Sweden (Clab), as well as to assist in the interpretation of the both simulated and measured signals.

  12. A qualitative analysis of the neutron population in fresh and spent fuel assemblies during simulated interrogation using the differential die-away technique

    DOE PAGES

    Tobin, Stephen J.; Lundkvist, Niklas; Goodsell, Alison V.; ...

    2015-12-01

    In this study, Monte Carlo simulations were performed for the differential die-away (DDA) technique to analyse the time-dependent behaviour of the neutron population in fresh and spent nuclear fuel assemblies as part of the Next Generation Safeguards Initiative Spent Fuel (NGSI-SF) Project. Simulations were performed to investigate both a possibly portable as well as a permanent DDA instrument. Taking advantage of a custom made modification to the MCNPX code, the variation in the neutron population, simultaneously in time and space, was examined. The motivation for this research was to improve the design of the DDA instrument, as it is bemore » ing considered for possible deployment at the Central Storage of Spent Nuclear Fuel and Encapsulation Plant in Sweden (Clab), as well as to assist in the interpretation of the both simulated and measured signals.« less

  13. Study of influence of fuel on dielectric and ferroelectric properties of bismuth titanate ceramics synthesized using solution based combustion technique

    NASA Astrophysics Data System (ADS)

    Subohi, Oroosa; Kumar, G. S.; Malik, M. M.; Kurchania, Rajnish

    2015-03-01

    The effect of fuel characteristics on the processing and properties of bismuth titanate (BIT) ceramics obtained by solution combustion route using different fuels are reported in this paper. Dextrose, urea and glycine were used as fuel in this study. The obtained bismuth titanate ceramics were characterized by using XRD, SEM at different stages of sample preparation. It was observed that BIT obtained by using dextrose as fuel shows higher dielectric constant and higher remnant polarization due to smaller grain size and lesser c-axis growth as compared to the samples with urea and glycine as fuel. The electrical behavior of the samples with respect to temperature and frequency was also investigated to understand relaxation phenomenon.

  14. Applications of advanced electrochemical techniques in the study of microbial fuel cells and corrosion protection by polymer coatings

    NASA Astrophysics Data System (ADS)

    Manohar, Aswin Karthik

    The results of a detailed evaluation of the properties of the anode and the cathode of a mediator-less microbial fuel cell (MFC) and the factors determining the power output of the MFC using different electrochemical techniques are presented in Chapter 1. In the MFC under investigation, the biocatalyst - Shewanella oneidensis MR-1 - oxidizes the fuel and transfers the electrons directly into the anode which consists of graphite felt. Oxygen is reduced at the cathode which consists of Pt-plated graphite felt. A proton exchange membrane separates the anode and the cathode compartments. The electrolyte was a PIPES buffer solution and lactate was used as the fuel. Separate tests were performed with the buffer solution containing lactate and with the buffer solution with lactate and MR-1 as anolytes. Electrochemical Impedance Spectroscopy (EIS) carried out at the open-circuit potential (OCP) has been used to determine the electrochemical properties of the anode and the cathode at different anolyte conditions. Cell voltage (V) -- current (I) curves were recorded using a potentiodynamic sweep between the open-circuit cell voltage and the short- circuit cell voltage. Power (P)-V curves were constructed from the recorded V-I data and the cell voltage, Vmax, at which the maximum power could be obtained, was determined. P- time (t) curves were obtained by applying Vmax or using a resistor between the anode and the cathode that would result in a similar cell voltage. Cyclic voltammograms (CV) were recorded for the anode for the different anolytes. Finally, anodic polarization curves were obtained for the anode with different anolytes and a cathodic polarization curve was recorded for the cathode. The internal resistance (Rint) of the MFC has been determined as a function of the cell voltage V using EIS for the MFC described above and a MFC in which stainless steel (SS) balls had been added to the anode compartment. The experimental values of Rint of the MFCs studied here are

  15. A review of techniques for the identification and measurement of fish in underwater stereo-video image sequences

    NASA Astrophysics Data System (ADS)

    Shortis, Mark R.; Ravanbakskh, Mehdi; Shaifat, Faisal; Harvey, Euan S.; Mian, Ajmal; Seager, James W.; Culverhouse, Philip F.; Cline, Danelle E.; Edgington, Duane R.

    2013-04-01

    Underwater stereo-video measurement systems are used widely for counting and measuring fish in aquaculture, fisheries and conservation management. To determine population counts, spatial or temporal frequencies, and age or weight distributions, snout to fork length measurements are captured from the video sequences, most commonly using a point and click process by a human operator. Current research aims to automate the measurement and counting task in order to improve the efficiency of the process and expand the use of stereo-video systems within marine science. A fully automated process will require the detection and identification of candidates for measurement, followed by the snout to fork length measurement, as well as the counting and tracking of fish. This paper presents a review of the techniques used for the detection, identification, measurement, counting and tracking of fish in underwater stereo-video image sequences, including consideration of the changing body shape. The review will analyse the most commonly used approaches, leading to an evaluation of the techniques most likely to be a general solution to the complete process of detection, identification, measurement, counting and tracking.

  16. Identification and evaluation of alternatives for the disposition of fluoride fuel and flush salts from the molten salt reactor experiment at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    1996-08-15

    This document presents an initial identification and evaluation of the alternatives for disposition of the fluoride fuel and flush salts stored in the drain tanks at the Molten Salt Reactor Experiment (MSRE) at Oak Ridge National Laboratory (ORNL). It will serve as a resource for the U.S. Department of Energy contractor preparing the feasibility study for this activity under the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA). This document will also facilitate further discussion on the range of credible alternatives, and the relative merits of alternatives, throughout the time that a final alternative is selected under the CERCLA process.

  17. An adaptive optimal control for smart structures based on the subspace tracking identification technique

    NASA Astrophysics Data System (ADS)

    Ripamonti, Francesco; Resta, Ferruccio; Borroni, Massimo; Cazzulani, Gabriele

    2014-04-01

    A new method for the real-time identification of mechanical system modal parameters is used in order to design different adaptive control logics aiming to reduce the vibrations in a carbon fiber plate smart structure. It is instrumented with three piezoelectric actuators, three accelerometers and three strain gauges. The real-time identification is based on a recursive subspace tracking algorithm whose outputs are elaborated by an ARMA model. A statistical approach is finally applied to choose the modal parameter correct values. These are given in input to model-based control logics such as a gain scheduling and an adaptive LQR control.

  18. Basalt identification by interpreting nuclear and electrical well logging measurements using fuzzy technique (case study from southern Syria).

    PubMed

    Asfahani, J; Abdul Ghani, B; Ahmad, Z

    2015-11-01

    Fuzzy analysis technique is proposed in this research for interpreting the combination of nuclear and electrical well logging data, which include natural gamma ray, density and neutron-porosity, while the electrical well logging include long and short normal. The main objective of this work is to describe, characterize and establish the lithology of the large extended basaltic areas in southern Syria. Kodana well logging measurements have been used and interpreted for testing and applying the proposed technique. The established lithological cross section shows the distribution and the identification of four kinds of basalt, which are hard massive basalt, hard basalt, pyroclastic basalt and the alteration basalt products, clay. The fuzzy analysis technique is successfully applied on the Kodana well logging data, and can be therefore utilized as a powerful tool for interpreting huge well logging data with higher number of variables required for lithological estimations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. A Paradigm for the Nondestructive Assay of Spent Fuel Assemblies and Similar Large Objects, with Emphasis on the Role of Photon-Based Techniques

    NASA Astrophysics Data System (ADS)

    Bolind, Alan Michael

    2015-10-01

    The practice of nondestructive assay (NDA) of nuclear materials has, until now, been focused primarily (1) on smaller objects (2) with less fissile material and (3) with less self-generated radiation. The transition to the application of NDA to spent fuel assemblies and similar large objects violates these three conditions, thereby bringing the assumptions and paradigm of traditional NDA practice into question for the new applications. In this paper, a new paradigm for these new applications is presented which is based on the fundamental principles of nuclear engineering. It is shown that the NDA of spent fuel assemblies is mostly a three-dimensional problem that requires the integration of three independent NDA measurements in order to achieve a unique and accurate assay. The only NDA techniques that can avoid this requirement are those that analyze signals that are characteristic to specific isotopes (such as those caused by characteristic resonance interactions), and that are neither distorted nor overly attenuated by the other surrounding material. Some photon-based NDA techniques fall into this exceptional category. Such exceptional NDA techniques become essential to employ when assaying large objects that, unlike spent fuel assemblies, do not have a consistent geometry. With this new NDA paradigm, the advanced photon-based NDA techniques can be put into their proper context, and their development can thereby be properly motivated.

  20. Modelling the relationship between peripheral blood pressure and blood volume pulses using linear and neural network system identification techniques.

    PubMed

    Allen, J; Murray, A

    1999-08-01

    The relationships between peripheral blood pressure and blood volume pulse waveforms can provide valuable physiological data about the peripheral vascular system, and are the subject of this study. Blood pressure and volume pulse waveforms were collected from 12 normal male subjects using non-invasive optical techniques, finger arterial blood pressure (BP, Finapres: Datex-Ohmeda) and photoelectric plethysmography (PPG) respectively, and captured to computer for three equal (1 min) measurement phases: baseline, hand raising and hand elevated. This simple physiological challenge was designed to induce a significant drop in peripheral blood pressure. A simple first order lag transfer function was chosen to study the relationship between blood pressure (system input) and blood volume pulse waveforms (system output), with parameters describing the dynamics (time constant, tau) and input-output gain (K). Tau and K were estimated for each subject using two different system identification techniques: a recursive parameter estimation algorithm which calculated tau and K from a linear auto-regressive with exogenous variable (ARX) model, and an artificial neural network which was trained to learn the non-linear process input-output relationships and then derive a linearized ARX model of the system. The identification techniques allowed the relationship between the blood pressure and blood volume pulses to be described simply, with the neural network technique providing a better model fit overall (p < 0.05, Wilcoxon). The median falls in tau following the hand raise challenge were 26% and 31% for the linear and neural network based techniques respectively (both p < 0.05, Wilcoxon). This preliminary study has shown that the time constant and gain parameters obtained using these techniques can provide physiological data for the clinical assessment of the peripheral circulation.

  1. Using Torrance's Problem Identification Techniques To Increase Fluency and Flexibility in the Classroom.

    ERIC Educational Resources Information Center

    Kurtzberg, Richard L.; Reale, Amelia

    1999-01-01

    A study investigated whether it would be possible to increase creative output of 43 eight-graders by teaching a portion of the Future Problem Solving (FPS) process, the identification of problems, as part of a middle school curriculum. Results indicated that fluency and flexibility could be taught utilizing the FPS process. (Author/CR)

  2. [The use of the spectral analysis techniques for the medico-criminalistic identification of the speaker].

    PubMed

    Kir'yanov, P A; Kaganov, A Sh

    2016-01-01

    The objective of the present article is to discuss the theoretical foundations and the methodological basis for the use of the apparatus of spectral analysis for the purpose of medico-criminalistic personality identification from the characteristics of the subject's voice and sounding speech. The article is based on the review of the literature sources and the methodological approaches developed by the author.

  3. Application of microsatellite PCR techniques in the identification of mixed up tissue specimens in surgical pathology.

    PubMed

    Gras, E; Matias-Guiu, X; Catasus, L; Arguelles, R; Cardona, D; Prat, J

    2000-03-01

    A fragment of tumour was erroneously mixed up with an endometrial biopsy. Micro-satellite polymerase chain reaction (PCR) clearly demonstrated the extraneous nature of the fragment. Micro-satellite PCR may be useful for the identification of mis-labelled or mismatched tissue fragments in surgical pathology specimens.

  4. Method and Apparatus for Reading Two Dimensional Identification Symbols Using Radar Techniques

    NASA Technical Reports Server (NTRS)

    Schramm, Harry F., Jr. (Inventor); Roxby, Donald L. (Inventor)

    2003-01-01

    A method and apparatus are provided for sensing two-dimensional identification marks provided on a substrate or embedded within a substrate below a surface of the substrate. Micropower impulse radar is used to transmit a high risetime, short duration pulse to a focussed radar target area of the substrate having the two dimensional identification marks. The method further includes the steps of listening for radar echoes returned from the identification marks during a short listening period window occurring a predetermined time after transmission of the radar pulse. If radar echoes are detected, an image processing step is carried out. If no radar echoes are detected, the method further includes sequentially transmitting further high risetime, short duration pulses, and listening for radar echoes from each of said further pulses after different elapsed times for each of the further pulses until radar echoes are detected. When radar echoes are detected, data based on the detected echoes is processed to produce an image of the identification marks.

  5. Advanced driver assistance system: Road sign identification using VIAPIX system and a correlation technique

    NASA Astrophysics Data System (ADS)

    Ouerhani, Y.; Alfalou, A.; Desthieux, M.; Brosseau, C.

    2017-02-01

    We present a three-step approach based on the commercial VIAPIX® module for road traffic sign recognition and identification. Firstly, detection in a scene of all objects having characteristics of traffic signs is performed. This is followed by a first-level recognition based on correlation which consists in making a comparison between each detected object with a set of reference images of a database. Finally, a second level of identification allows us to confirm or correct the previous identification. In this study, we perform a correlation-based analysis by combining and adapting the Vander Lugt correlator with the nonlinear joint transformation correlator (JTC). Of particular significance, this approach permits to make a reliable decision on road traffic sign identification. We further discuss a robust scheme allowing us to track a detected road traffic sign in a video sequence for the purpose of increasing the decision performance of our system. This approach can have broad practical applications in the maintenance and rehabilitation of transportation infrastructure, or for drive assistance.

  6. Multiple techniques for mineral identification on Mars:. a study of hydrothermal rocks as potential analogues for astrobiology sites on Mars

    NASA Astrophysics Data System (ADS)

    Bishop, Janice L.; Murad, Enver; Lane, Melissa D.; Mancinelli, Rocco L.

    2004-06-01

    Spectroscopic studies of Mars analog materials combining multiple spectral ranges and techniques are necessary in order to obtain ground truth information for interpretation of rocks and soils on Mars. Two hydrothermal rocks from Yellowstone National Park, Wyoming, were characterized here because they contain minerals requiring water for formation and they provide a possible niche for some of the earliest organisms on Earth. If related rocks formed in hydrothermal sites on Mars, identification of these would be important for understanding the geology of the planet and potential habitability for life. XRD, thermal properties, VNIR, mid-IR, and Raman spectroscopy were employed to identify the mineralogy of the samples in this study. The rocks studied here include a travertine from Mammoth Formation that contains primarily calcite with some aragonite and gypsum and a siliceous sinter from Octopus Spring that contains a variety of poorly crystalline to amorphous silicate minerals. Calcite was detected readily in the travertine rock using any one of the techniques studied. The small amount of gypsum was uniquely identified using XRD, VNIR, and mid-IR, while the aragonite was uniquely identified using XRD and Raman. The siliceous sinter sample was more difficult to characterize using each of these techniques and a combination of all techniques was more useful than any single technique. Although XRD is the historical standard for mineral identification, it presents some challenges for remote investigations. Thermal properties are most useful for minerals with discrete thermal transitions. Raman spectroscopy is most effective for detecting polarized species such as CO 3, OH, and CH, and exhibits sharp bands for most highly crystalline minerals when abundant. Mid-IR spectroscopy is most useful in characterizing Si-O (and metal-O) bonds and also has the advantage that remote information about sample texture (e.g., particle size) can be determined. Mid-IR spectroscopy is also

  7. Therapeutic identification of depression in young people: lessons fromthe introduction of a new technique in general practice

    PubMed Central

    Iliffe, Steve; Gallant, Ceri; Kramer, Tami; Gledhill, Julia; Bye, Amanda; Fernandez, Victoria; Vila, Mar; Miller, Lisa; Garralda, M Elena

    2012-01-01

    Background Mild-to-moderate depression in young people is associated with impaired social functioning and high rates of affective disorder in adult life. Earlier recognition of depression in young people has the potential to reduce the burden of depression in adulthood. However, depression in teenagers is underdiagnosed and undertreated. Aim To assess the usability and usefulness of a cognitive-behavioural-therapy-based technique for Therapeutic Identification of Depression in Young people (TIDY). Design and setting A qualitative study of four group practices in northwest London. Method Face-to-face semi-structured interviews were conducted with practitioners who had been trained in the use of the TIDY technique. Results Twenty-five GPs and six nurses were interviewed. The key themes that emerged from the interviews were: practitioners were ‘making sense of teenage depression’ when interpreting signs and symptoms; the training in the technique was variable in its impact on practitioners' attitudes and practice; and time factors constrained practitioners in the application of the technique. Conclusion The TIDY technique is usable in routine practice, but only if practitioners are allowed to use it selectively. This need for selectivity arises partly from concerns about time management, and partly to avoid medicalisation of psychological distress in young people. The perceived usefulness of the TIDY technique depends on the practitioner's prior knowledge, experience, and awareness. PMID:22429434

  8. Mass defect filter technique and its applications to drug metabolite identification by high-resolution mass spectrometry.

    PubMed

    Zhang, Haiying; Zhang, Donglu; Ray, Kenneth; Zhu, Mingshe

    2009-07-01

    Identification of drug metabolites by liquid chromatography/mass spectrometry (LC/MS) involves metabolite detection in biological matrixes and structural characterization based on product ion spectra. Traditionally, metabolite detection is accomplished primarily on the basis of predicted molecular masses or fragmentation patterns of metabolites using triple-quadrupole and ion trap mass spectrometers. Recently, a novel mass defect filter (MDF) technique has been developed, which enables high-resolution mass spectrometers to be utilized for detecting both predicted and unexpected drug metabolites based on narrow, well-defined mass defect ranges for these metabolites. This is a new approach that is completely different from, but complementary to, traditional molecular mass- or MS/MS fragmentation-based LC/MS approaches. This article reviews the mass defect patterns of various classes of drug metabolites and the basic principles of the MDF approach. Examples are given on the applications of the MDF technique to the detection of stable and chemically reactive metabolites in vitro and in vivo. Advantages, limitations, and future applications are also discussed on MDF and its combinations with other data mining techniques for the detection and identification of drug metabolites.

  9. The applicability of holography in forensic identification: a fusion of the traditional optical technique and digital technique.

    PubMed

    Biwasaka, Hitoshi; Saigusa, Kiyoshi; Aoki, Yasuhiro

    2005-03-01

    In this study, the applicability of holography in the 3-dimensional recording of forensic objects such as skulls and mandibulae, and the accuracy of the reconstructed 3-D images, were examined. The virtual holographic image, which records the 3-dimensional data of the original object, is visually observed on the other side of the holographic plate, and reproduces the 3-dimensional shape of the object well. Another type of holographic image, the real image, is focused on a frosted glass screen, and cross-sectional images of the object can be observed. When measuring the distances between anatomical reference points using an image-processing software, the average deviations in the holographic images as compared to the actual objects were less than 0.1 mm. Therefore, holography could be useful as a 3-dimensional recording method of forensic objects. Two superimposition systems using holographic images were examined. In the 2D-3D system, the transparent virtual holographic image of an object is directly superimposed onto the digitized photograph of the same object on the LCD monitor. On the other hand, in the video system, the holographic image captured by the CCD camera is superimposed onto the digitized photographic image using a personal computer. We found that the discrepancy between the outlines of the superimposed holographic and photographic dental images using the video system was smaller than that using the 2D-3D system. Holography seemed to perform comparably to the computer graphic system; however, a fusion with the digital technique would expand the utility of holography in superimposition.

  10. Manufacturing the Gas Diffusion Layer for PEM Fuel Cell Using a Novel 3D Printing Technique and Critical Assessment of the Challenges Encountered

    PubMed Central

    Singamneni, Sarat; Ramos, Maximiano; Al-Jumaily, Ahmed M

    2017-01-01

    The conventional gas diffusion layer (GDL) of polymer electrolyte membrane (PEM) fuel cells incorporates a carbon-based substrate, which suffers from electrochemical oxidation as well as mechanical degradation, resulting in reduced durability and performance. In addition, it involves a complex manufacturing process to produce it. The proposed technique aims to resolve both these issues by an advanced 3D printing technique, namely selective laser sintering (SLS). In the proposed work, polyamide (PA) is used as the base powder and titanium metal powder is added at an optimised level to enhance the electrical conductivity, thermal, and mechanical properties. The application of selective laser sintering to fabricate a robust gas diffusion substrate for PEM fuel cell applications is quite novel and is attempted here for the first time. PMID:28773156

  11. Manufacturing the Gas Diffusion Layer for PEM Fuel Cell Using a Novel 3D Printing Technique and Critical Assessment of the Challenges Encountered.

    PubMed

    Jayakumar, Arunkumar; Singamneni, Sarat; Ramos, Maximiano; Al-Jumaily, Ahmed M; Pethaiah, Sethu Sundar

    2017-07-14

    The conventional gas diffusion layer (GDL) of polymer electrolyte membrane (PEM) fuel cells incorporates a carbon-based substrate, which suffers from electrochemical oxidation as well as mechanical degradation, resulting in reduced durability and performance. In addition, it involves a complex manufacturing process to produce it. The proposed technique aims to resolve both these issues by an advanced 3D printing technique, namely selective laser sintering (SLS). In the proposed work, polyamide (PA) is used as the base powder and titanium metal powder is added at an optimised level to enhance the electrical conductivity, thermal, and mechanical properties. The application of selective laser sintering to fabricate a robust gas diffusion substrate for PEM fuel cell applications is quite novel and is attempted here for the first time.

  12. Laboratory and Field Testing of Commercially Available Detectors for the Identification of Chemicals of Interest in the Nuclear Fuel Cycle for the Detection of Undeclared Activities

    SciTech Connect

    Carla Miller; Mary Adamic; Stacey Barker; Barry Siskind; Joe Brady; Warren Stern; Heidi Smartt; Mike McDaniel; Mike Stern; Rollin Lakis

    2014-07-01

    Traditionally, IAEA inspectors have focused on the detection of nuclear indicators as part of infield inspection activities. The ability to rapidly detect and identify chemical as well as nuclear signatures can increase the ability of IAEA inspectors to detect undeclared activities at a site. Identification of chemical indicators have been limited to use in the analysis of environmental samples. Although IAEA analytical laboratories are highly effective, environmental sample processing does not allow for immediate or real-time results to an IAEA inspector at a facility. During a complementary access inspection, under the Additional Protocol, the use of fieldable technologies that can quickly provide accurate information on chemicals that may be indicative of undeclared activities can increase the ability of IAEA to effectively and efficiently complete their mission. The Complementary Access Working Group (CAWG) is a multi-laboratory team with members from Brookhaven National Laboratory, Idaho National Laboratory, Los Alamos National Laboratory, and Sandia National Laboratory. The team identified chemicals at each stage of the nuclear fuel cycle that may provide IAEA inspectors with indications that proliferation activities may be occurring. The group eliminated all indicators related to equipment, technology and training, developing a list of by-products/effluents, non-nuclear materials, nuclear materials, and other observables. These proliferation indicators were prioritized based on detectability from a conduct of operations (CONOPS) perspective of a CA inspection (for example, whether an inspector actually can access the S&O or whether it is in process with no physical access), and the IAEA’s interest in the detection technology in conjunction with radiation detectors. The list was consolidated to general categories (nuclear materials from a chemical detection technique, inorganic chemicals, organic chemicals, halogens, and miscellaneous materials). The team

  13. Fuel flexible fuel injector

    DOEpatents

    Tuthill, Richard S; Davis, Dustin W; Dai, Zhongtao

    2015-02-03

    A disclosed fuel injector provides mixing of fuel with airflow by surrounding a swirled fuel flow with first and second swirled airflows that ensures mixing prior to or upon entering the combustion chamber. Fuel tubes produce a central fuel flow along with a central airflow through a plurality of openings to generate the high velocity fuel/air mixture along the axis of the fuel injector in addition to the swirled fuel/air mixture.

  14. NREL Develops Technique to Measure Membrane Thickness and Defects in Polymer Electrode Membrane Fuel Cells (Fact Sheet)

    SciTech Connect

    Not Available

    2010-11-01

    This fact sheet describes NREL's accomplishments in fuel cell membrane electrode assembly research and development. Work was performed by the Hydrogen Technologies and Systems Center and the National Center for Photovoltaics.

  15. Adaptive/learning control of large space structures - System identification techniques. [for multi-configuration flexible spacecraft

    NASA Technical Reports Server (NTRS)

    Thau, F. E.; Montgomery, R. C.

    1980-01-01

    Techniques developed for the control of aircraft under changing operating conditions are used to develop a learning control system structure for a multi-configuration, flexible space vehicle. A configuration identification subsystem that is to be used with a learning algorithm and a memory and control process subsystem is developed. Adaptive gain adjustments can be achieved by this learning approach without prestoring of large blocks of parameter data and without dither signal inputs which will be suppressed during operations for which they are not compatible. The Space Shuttle Solar Electric Propulsion (SEP) experiment is used as a sample problem for the testing of adaptive/learning control system algorithms.

  16. Identification of source of a marine oil-spill using geochemical and chemometric techniques.

    PubMed

    Lobão, Marcio M; Cardoso, Jari N; Mello, Marcio R; Brooks, Paul W; Lopes, Claudio C; Lopes, Rosangela S C

    2010-12-01

    The current work aimed to identify the source of an oil spill off the coast of Maranhão, Brazil, in September 2005 and effect a preliminary geochemical survey of this environment. A combination of bulk analytical parameters, such as carbon isotope (δ(13)C) and Ni/V ratios, and conventional fingerprinting methods (High Resolution Gas Chromatography and Mass Spectrometry) were used. The use of bulk methods greatly speeded source identification for this relatively unaltered spill: identification of the likely source was possible at this stage. Subsequent fingerprinting of biomarker distributions supported source assignment, pointing to a non-Brazilian oil. Steranes proved the most useful biomarkers for sample correlation in this work. Distribution patterns of environmentally more resilient compound types, such as certain aromatic structures, proved inconclusive for correlation, probably in view of their presence in the background.

  17. Modeling clear-air turbulence with vortices using parameter-identification techniques

    NASA Technical Reports Server (NTRS)

    Mehta, R. S.

    1984-01-01

    A vortex model of winds associated with clear-air turbulence (CAT) is shown to be useful for characterizing actual airline CAT encounters. The model consists of an array of vortices with solid-body cores embedded in a potential flow field. Parameters such as the size and strength of the vortices and their locations are identified using a modified Newton-Raphson algorithm. A manual identification start-up scheme is used to minimize errors in the initial parameter estimates, and the identification algorithm is found to be robust in regard to the remaining errors. The analysis of a CAT encounter involving a commercial airliner demonstrates the success of the model and estimation procedure. The analysis finds vortices with core diameters of 1000 ft and tangential velocities of 87 ft/sec in this encounter.

  18. Neural Networks and other Techniques for Fault Identification and Isolation of Aircraft Systems

    NASA Technical Reports Server (NTRS)

    Innocenti, M.; Napolitano, M.

    2003-01-01

    Fault identification, isolation, and accomodation have become critical issues in the overall performance of advanced aircraft systems. Neural Networks have shown to be a very attractive alternative to classic adaptation methods for identification and control of non-linear dynamic systems. The purpose of this paper is to show the improvements in neural network applications achievable through the use of learning algorithms more efficient than the classic Back-Propagation, and through the implementation of the neural schemes in parallel hardware. The results of the analysis of a scheme for Sensor Failure, Detection, Identification and Accommodation (SFDIA) using experimental flight data of a research aircraft model are presented. Conventional approaches to the problem are based on observers and Kalman Filters while more recent methods are based on neural approximators. The work described in this paper is based on the use of neural networks (NNs) as on-line learning non-linear approximators. The performances of two different neural architectures were compared. The first architecture is based on a Multi Layer Perceptron (MLP) NN trained with the Extended Back Propagation algorithm (EBPA). The second architecture is based on a Radial Basis Function (RBF) NN trained with the Extended-MRAN (EMRAN) algorithms. In addition, alternative methods for communications links fault detection and accomodation are presented, relative to multiple unmanned aircraft applications.

  19. Neural Networks and other Techniques for Fault Identification and Isolation of Aircraft Systems

    NASA Technical Reports Server (NTRS)

    Innocenti, M.; Napolitano, M.

    2003-01-01

    Fault identification, isolation, and accomodation have become critical issues in the overall performance of advanced aircraft systems. Neural Networks have shown to be a very attractive alternative to classic adaptation methods for identification and control of non-linear dynamic systems. The purpose of this paper is to show the improvements in neural network applications achievable through the use of learning algorithms more efficient than the classic Back-Propagation, and through the implementation of the neural schemes in parallel hardware. The results of the analysis of a scheme for Sensor Failure, Detection, Identification and Accommodation (SFDIA) using experimental flight data of a research aircraft model are presented. Conventional approaches to the problem are based on observers and Kalman Filters while more recent methods are based on neural approximators. The work described in this paper is based on the use of neural networks (NNs) as on-line learning non-linear approximators. The performances of two different neural architectures were compared. The first architecture is based on a Multi Layer Perceptron (MLP) NN trained with the Extended Back Propagation algorithm (EBPA). The second architecture is based on a Radial Basis Function (RBF) NN trained with the Extended-MRAN (EMRAN) algorithms. In addition, alternative methods for communications links fault detection and accomodation are presented, relative to multiple unmanned aircraft applications.

  20. Identification of early cancerous lesion of esophagus with endoscopic images by hyperspectral image technique (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Huang, Shih-Wei; Chen, Shih-Hua; Chen, Weichung; Wu, I.-Chen; Wu, Ming Tsang; Kuo, Chie-Tong; Wang, Hsiang-Chen

    2016-03-01

    This study presents a method to identify early esophageal cancer within endoscope using hyperspectral imaging technology. The research samples are three kinds of endoscopic images including white light endoscopic, chromoendoscopic, and narrow-band endoscopic images with different stages of pathological changes (normal, dysplasia, dysplasia - esophageal cancer, and esophageal cancer). Research is divided into two parts: first, we analysis the reflectance spectra of endoscopic images with different stages to know the spectral responses by pathological changes. Second, we identified early cancerous lesion of esophagus by principal component analysis (PCA) of the reflectance spectra of endoscopic images. The results of this study show that the identification of early cancerous lesion is possible achieve from three kinds of images. In which the spectral characteristics of NBI endoscopy images of a gray area than those without the existence of the problem the first two, and the trend is very clear. Therefore, if simply to reflect differences in the degree of spectral identification, chromoendoscopic images are suitable samples. The best identification of early esophageal cancer is using the NBI endoscopic images. Based on the results, the use of hyperspectral imaging technology in the early endoscopic esophageal cancer lesion image recognition helps clinicians quickly diagnose. We hope for the future to have a relatively large amount of endoscopic image by establishing a hyperspectral imaging database system developed in this study, so the clinician can take this repository more efficiently preliminary diagnosis.

  1. A Feasibility Study to Determine Cooling Time and Burnup of ATR Fuel Using a Nondestructive Technique and Three Types of Gamma-ray Detectors

    SciTech Connect

    Jorge Navarro; Rahmat Aryaeinejad,; David W. Nigg

    2011-05-01

    A Feasibility Study to Determine Cooling Time and Burnup of ATR Fuel Using a Nondestructive Technique1 Rahmat Aryaeinejad, Jorge Navarro, and David W Nigg Idaho National Laboratory Abstract Effective and efficient Advanced Test Reactor (ATR) fuel management require state of the art core modeling tools. These new tools will need isotopic and burnup validation data before they are put into production. To create isotopic, burn up validation libraries and to determine the setup for permanent fuel scanner system a feasibility study was perform. The study consisted in measuring short and long cooling time fuel elements at the ATR canal. Three gamma spectroscopy detectors (HPGe, LaBr3, and HPXe) and two system configurations (above and under water) were used in the feasibility study. The first stage of the study was to investigate which detector and system configuration would be better suited for different scenarios. The second stage of the feasibility study was to create burnup and cooling time calibrations using experimental isotopic data collected and ORIGEN 2.2 burnup data. The results of the study establish that a better spectra resolution is achieve with an above the water configuration and that three detectors can be used in the permanent fuel scanner system for different situations. In addition it was conclude that a number of isotopic ratios and absolute measurements could be used to predict ATR fuel burnup and cooling times. 1This work was supported by the U.S. Depart¬ment of Energy (DOE) under Battelle Energy Alliance, LLC Contract No. DE-AC07-05ID14517.

  2. Fast technique for the identification of Gilbertella persicaria via optical microscopy.

    PubMed

    Cruz-Lachica, Isabel; Marquez-Zequera, Isidro; Allende-Molar, Raul; Sañudo-Barajas, Josefa Adriana; Leon-Felix, Josefina; Garcia-Estrada, Raymundo Saul

    2017-09-09

    Gilbertella persicaria is an important phytopathogen that is confused with Mucor spp. and Rhizopus spp. The main distinguishing characteristic of G. persicaria is the presence of appendages in sporangiospores, and their observation by conventional staining techniques generally fails. A technique is described using light microscopy for fast and reliable diagnosis. Copyright © 2017. Published by Elsevier B.V.

  3. Comparison of the techniques for the identification of the epidural space using the loss-of-resistance technique or an automated syringe - results of a randomized double-blind study.

    PubMed

    Duniec, Larysa; Nowakowski, Piotr; Sieczko, Jakub; Chlebus, Marcin; Łazowski, Tomasz

    2016-01-01

    The conventional, loss of resistance technique for identification of the epidural space is highly dependent on the anaesthetist's personal experience and is susceptible to technical errors. Therefore, an alternative, automated technique was devised to overcome the drawbacks of the traditional method. The aim of the study was to compare the efficacy of epidural space identification and the complication rate between the two groups - the automatic syringe and conventional loss of resistance methods. 47 patients scheduled for orthopaedic and gynaecology procedures under epidural anaesthesia were enrolled into the study. The number of attempts, ease of epidural space identification, complication rate and the patients' acceptance regarding the two techniques were evaluated. The majority of blocks were performed by trainee anaesthetists (91.5%). No statistical difference was found between the number of needle insertion attempts (1 vs. 2), the efficacy of epidural anaesthesia or the number of complications between the groups. The ease of epidural space identification, as assessed by an anaesthetist, was significantly better (P = 0.011) in the automated group (87.5% vs. 52.4%). A similar number of patients (92% vs. 94%) in both groups stated they would accept epidural anaesthesia in the future. The automated and loss of resistance methods of epidural space identification were proved to be equivalent in terms of efficacy and safety. Since the use of the automated technique may facilitate epidural space identification, it may be regarded as useful technique for anaesthetists inexperienced in epidural anaesthesia, or for trainees.

  4. Source identification of underground fuel spills by solid-phase microextraction/high-resolution gas chromatography/genetic algorithms.

    PubMed

    Lavine, B K; Ritter, J; Moores, A J; Wilson, M; Faruque, A; Mayfield, H T

    2000-01-15

    Solid-phase microextraction (SPME), capillary column gas chromatography, and pattern recognition methods were used to develop a potential method for typing jet fuels so a spill sample in the environment can be traced to its source. The test data consisted of gas chromatograms from 180 neat jet fuel samples representing common aviation turbine fuels found in the United States (JP-4, Jet-A, JP-7, JPTS, JP-5, JP-8). SPME sampling of the fuel's headspace afforded well-resolved reproducible profiles, which were standardized using special peak-matching software. The peak-matching procedure yielded 84 standardized retention time windows, though not all peaks were present in all gas chromatograms. A genetic algorithm (GA) was employed to identify features (in the standardized chromatograms of the neat jet fuels) suitable for pattern recognition analysis. The GA selected peaks, whose two largest principal components showed clustering of the chromatograms on the basis of fuel type. The principal component analysis routine in the fitness function of the GA acted as an information filter, significantly reducing the size of the search space, since it restricted the search to feature subsets whose variance is primarily about differences between the various fuel types in the training set. In addition, the GA focused on those classes and/or samples that were difficult to classify as it trained using a form of boosting. Samples that consistently classify correctly were not as heavily weighted as samples that were difficult to classify. Over time, the GA learned its optimal parameters in a manner similar to a perceptron. The pattern recognition GA integrated aspects of strong and weak learning to yield a "smart" one-pass procedure for feature selection.

  5. Identification of wood between Phoebe zhennan and Machilus pingii using the gas chromatography-mass spectrometry direct injection technique.

    PubMed

    Xu, Bin; Zhu, Tao; Li, Jingya; Liu, Shuai

    2013-01-01

    In this paper, the technique of direct injection gas chromatography-mass spectrometer (GC-MS) was employed to discriminate between two batches of wood (Phoebe zhennan and Machilus pingii) with characteristic smells. Based on the GC-MS fingerprints obtained, similarities between samples were evaluated via correlation coefficient, hierarchical clustering and characteristic constituents analysis. The results showed that distinct differences in total ion chromatograms existed between the two species of wood and their correlation coefficients were low; however, the relationship between the same species of different batches showed the opposite; meanwhile, the analysis of hierarchical clustering and characteristic constituents also demonstrated an interrelationship. All the analytical methods achieved the goal of identification between the two species of wood, which verified that the technique can be used to identify different species of wood with characteristic smells.

  6. Identification and evaluation of facilitation techniques for decommissioning light water power reactors

    SciTech Connect

    LaGuardia, T.S.; Risley, J.F.

    1986-06-01

    This report describes a study sponsored by the US Nuclear Regulatory Commission to identify practical techniques to facilitate the decommissioning of nuclear power generating facilities. The objective of these ''facilitation techniques'' is to reduce the radioactive exposures and/or volumes of waste generated during the decommissioning process. The report presents the possible facilitation techniques identified during the study and discusses the corresponding facilitation of the decommissioning process. Techniques are categorized by their applicability of being implemented during the three stages of power reactor life: design/construction, operation, or decommissioning. Detailed cost-benefit analyses were performed for each technique to determine the anticipated exposure and/or radioactive waste reduction; the estimated costs for implementing each technique were then calculated. Finally, these techniques were ranked by their effectiveness in facilitating the decommissioning process. This study is a part of the Nuclear Regulatory Commission's evaluation of decommissioning policy and its modification of regulations pertaining to the decommissioning process. The findings can be used by the utilities in the planning and establishment of activities to ensure that all objectives of decommissioning will be achieved.

  7. Semi-automated identification of white blood cell using active contour technique

    NASA Astrophysics Data System (ADS)

    Marzuki, Nurhanis Izzati Binti Che; Mahmood, Nasrul Humaimi Bin; Razak, Mohd Azhar Bin Abdul

    2015-05-01

    Manual and automated diagnosis can be used to identify the morphology of blood cells. However, the manual diagnosis of the blood cells is time consuming and need hematologist and pathologist experts in order to diagnose diseases. Recently, the automated diagnosis which is require image processing technique are often been used in this area. This paper focuses on image processing technique to do segmentation on the nucleus of white blood cells (WBC). To identify the nucleus region, there are several image processing techniques applied besides the active contour method. The results obtained show that the detection on the edge of the nucleus is almost same as the original image of the nucleus.

  8. Enhancing accurate identification of food insecurity using quality-improvement techniques.

    PubMed

    Burkhardt, Mary Carol; Beck, Andrew F; Conway, Patrick H; Kahn, Robert S; Klein, Melissa D

    2012-02-01

    Infants who live in households experiencing food insecurity are at risk for negative health and developmental outcomes. Despite large numbers of households within our population experiencing food insecurity, identification of household food insecurity during standard clinical care is rare. The objective of this study was to use quality-improvement methods to increase identification of household food insecurity by the second-year pediatric residents working in the Pediatric Primary Care Center from 1.9% to 15.0% within 6 months. A secondary aim was to increase the proportion of second-year pediatric residents identifying food insecurity. A team was formed to identify key drivers thought to be critical to the process of identifying food insecurity during well-child care. This project addressed 5 key drivers and tested interventions based on these drivers over a 6-month period at a hospital-based primary care site that serves ∼15 000 children from underserved neighborhoods. Tests included implementing an evidence-based electronic screen for food insecurity, educational interventions to improve understanding of food insecurity, empowerment exercises targeting clinicians and families, and gaining buy-in and support from ancillary personnel. Implementation of these changes led to an increase in the identification rate of household food insecurity from 1.9% to 11.2% over the 6 months (P < .01). The proportion of residents identifying food insecurity increased from 37.5% to 91.9% (P < .01). Application of quality-improvement methods in a primary care clinic increased ability to effectively screen and positively identify households with food insecurity in this population.

  9. Development of a Robust star identification technique for use in attitude determination of the ACE spacecraft

    NASA Technical Reports Server (NTRS)

    Woodard, Mark; Rohrbaugh, Dave

    1995-01-01

    The Advanced Composition Explorer (ACE) spacecraft is designed to fly in a spin-stabilized attitude. The spacecraft will carry two attitude sensors - a digital fine Sun sensor and a charge coupled device (CCD) star tracker - to allow ground-based determination of the spacecraft attitude and spin rate. Part of the processing that must be performed on the CCD star tracker data is the star identification. Star data received from the spacecraft must be matched with star information in the SKYMAP catalog to determine exactly which stars the sensor is tracking. This information, along with the Sun vector measured by the Sun sensor, is used to determine the spacecraft attitude. Several existing star identification (star ID) systems were examined to determine whether they could be modified for use on the ACE mission. Star ID systems which exist for three-axis stabilized spacecraft tend to be complex in nature and many require fairly good knowledge of the spacecraft attitude, making their use for ACE excessive. Star ID systems used for spinners carrying traditional slit star sensors would have to be modified to model the CCD star tracker. The ACE star ID algorithm must also be robust, in that it will be able to correctly identify stars even though the attitude is not known to a high degree of accuracy, and must be very efficient to allow real-time star identification. The paper presents the star ID algorithm that was developed for ACE. Results from prototype testing are also presented to demonstrate the efficiency, accuracy, and robustness of the algorithm.

  10. Rapid Identification and Characterization of Francisella by Molecular Biology and Other Techniques

    PubMed Central

    Lai, Xin-He; Zhao, Long-Fei; Chen, Xiao-Ming; Ren, Yi

    2016-01-01

    Francisella tularensis is the causative pathogen of tularemia and a Tier 1 bioterror agent on the CDC list. Considering the fact that some subpopulation of the F. tularensis strains is more virulent, more significantly associated with mortality, and therefore poses more threat to humans, rapid identification and characterization of this subpopulation strains is of invaluable importance. This review summarizes the up-to-date developments of assays for mainly detecting and characterizing F. tularensis and a touch of caveats of some of the assays. PMID:27335619

  11. Advanced techniques for detection and identification of microbial agents of gastroenteritis.

    PubMed

    Dunbar, Sherry A; Zhang, Hongwei; Tang, Yi-Wei

    2013-09-01

    Gastroenteritis persists as a worldwide problem, responsible for approximately 2 million deaths annually. Traditional diagnostic methods used in the clinical microbiology laboratory include a myriad of tests, such as culture, microscopy, and immunodiagnostics, which can be labor intensive and suffer from long turnaround times and, in some cases, poor sensitivity. [corrected]. This article reviews recent advances in genomic and proteomic technologies that have been applied to the detection and identification of gastrointestinal pathogens. These methods simplify and speed up the detection of pathogenic microorganisms, and their implementation in the clinical microbiology laboratory has potential to revolutionize the diagnosis of gastroenteritis.

  12. The REV project -- Experiments, techniques and theoretical considerations with a view to an ILW and spent HTR fuel emplacement test at the Asse salt mine

    SciTech Connect

    Niephaus, D.

    1993-12-31

    In the Federal Republic of Germany, radioactive waste forms of pronounced decay heat generation shall be disposed of in deep vertical boreholes in the planned underground repository at Gorleben site. The disposal technique for heat generating intermediate-level waste and for spent HTR fuel is under development in the R and D project, entitled ``Intermediate-Level Waste and Spent HTR Fuel element Test Disposal in Boreholes`` (MHV Project). The project work is divided in two subprojects and has been going on since 1983. In the subproject ``Retrievable Emplacement Test`` (REV project) an emplacement test with already existing waste packages, i.e. steel drums with cladding hulls, fuel hardware and dissolver sludges from LWR-FE reprocessing and steel canisters with spent HTR pebble bed fuel will be conducted in the Asse salt mine. This paper deals with the results obtained from a long term precursory test program, the description of the installation work that has been done with a view to measure and analyze gases released into the atmospheres of the unlined emplacement boreholes, and a brief description of engineered equipment needed for handling, shipping and emplacing the waste packages.

  13. Instrumentation Report No. 2: identification, evaluation, and remedial actions related to transducer failures at the spent fuel test-climax

    SciTech Connect

    Patrick, W.C.; Carlson, R.C.; Rector, N.L.

    1981-11-30

    The Spent Fuel Test-Climax (SFT-C) is a test of the feasibility of safe and reliable short-term storage and retrieval of spent fuel from commercial nuclear reactors. In support of operational and technical goals of the test, about 850 channels of instrumentation have been installed at the SFT-C. Failure of several near-field instruments began less than six months after emplacement of 11 canisters of spent fuel and activation of six thermally similar simulators. The failed units were linear potentiometers (used to make displacement measurements) and vibrating wire stressmeters (used to make change-in-stress measurements). This report discusses the observed problems and remedial actions taken to date.

  14. Powerful GC-TOF-MS Techniques for Screening, Identification and Quantification of Halogenated Natural Products.

    PubMed

    S Haglund, Peter; Löfstrand, Karin; Siek, Kevin; Asplund, Lillemor

    2013-01-01

    Comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry (GC×GC TOFMS) and gas chromatography/high-resolution time-of-flight mass spectrometry (GC-HRT) were used to detect and identify halogenated natural products (HNPs) in tissue homogenate, in this case brominated analytes present in a marine snail. Two classes of brominated anthropogenic compounds, polybrominated diphenyl ethers (PBDEs) and brominated dibenzofurans, were analyzed for comparison. Following conventional preparation, the sample was analyzed using GC×GC-TOF-MS. Isotope ratio scripts were used to compile a list of putatively brominated analytes from amongst the thousands of features resolved in the two-dimensional chromatogram. The structured nature of the chromatogram was exploited to propose identifications for several classes of brominated compounds, and include additional candidates that fell marginally outside the script tolerances. The sample was subsequently analyzed by GC-HRT. The high-resolution mass spectral data confirmed many formula assignments, facilitated confident assignment of an alternate formula when an original proposal did not hold, and enabled unknown identification. Identified HNPs include hydroxylated and methoxylated PBDE analogs, polybrominated dibenzo-p-dioxins (PBDDs) and hydroxyl-PBDDs, permitting the environmental occurrence and fate of such compounds to be studied.

  15. Powerful GC-TOF-MS Techniques for Screening, Identification and Quantification of Halogenated Natural Products

    PubMed Central

    S. Haglund, Peter; Löfstrand, Karin; Siek, Kevin; Asplund, Lillemor

    2013-01-01

    Comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry (GC×GC TOFMS) and gas chromatography/high-resolution time-of-flight mass spectrometry (GC-HRT) were used to detect and identify halogenated natural products (HNPs) in tissue homogenate, in this case brominated analytes present in a marine snail. Two classes of brominated anthropogenic compounds, polybrominated diphenyl ethers (PBDEs) and brominated dibenzofurans, were analyzed for comparison. Following conventional preparation, the sample was analyzed using GC×GC-TOF-MS. Isotope ratio scripts were used to compile a list of putatively brominated analytes from amongst the thousands of features resolved in the two-dimensional chromatogram. The structured nature of the chromatogram was exploited to propose identifications for several classes of brominated compounds, and include additional candidates that fell marginally outside the script tolerances. The sample was subsequently analyzed by GC-HRT. The high-resolution mass spectral data confirmed many formula assignments, facilitated confident assignment of an alternate formula when an original proposal did not hold, and enabled unknown identification. Identified HNPs include hydroxylated and methoxylated PBDE analogs, polybrominated dibenzo-p-dioxins (PBDDs) and hydroxyl-PBDDs, permitting the environmental occurrence and fate of such compounds to be studied. PMID:24349937

  16. [Application of Raman spectroscopic technique to the identification and investigation of Chinese ancient jades and jade artifacts].

    PubMed

    Zhao, Hong-Xia; Gan, Fu-Xi

    2009-11-01

    Laser Raman spectroscopic technique is one of the essential methods in scientific archaeological research, which belongs to the nondestructive analysis. As a very good nondestructive analysis approach, it has not been widely applied in the research of the Chinese ancient jade artifacts. First of all in the present paper the fundamentals of laser Raman spectroscopic technique and the new research progress in this field were reviewed. Secondly, the Raman spectra of five familiar jades including nephrite (mainly composed of tremolite), Xiuyan Jade (mainly composed of serpentine), Dushan Jade (mainly composed of anorthite and Zoisite), turquoise and lapis lazuli were summarized respectively. As for an example, the Raman spectra of the four Chinese ancient jade artifacts excavated from Liangzhu Site of Zhejiang Province and Yinxu Site of Anyang in Henan Province were compared with that of the nephrite sample in Hetian of Xinjiang Province. It was shown that the Raman spectroscopic technique is a good nondestructive approach to the identification and investigation of the structures and mineral composition of Chinese ancient jade artifacts. Finally, the limitations and the foreground of this technique were discussed.

  17. WE-G-204-08: Optimized Digital Radiographic Technique for Lost Surgical Devices/Needle Identification

    SciTech Connect

    Gorman, A; Seabrook, G; Brakken, A; Dubois, M; Marn, C; Wilson, C; Jacobson, D; Liu, Y

    2015-06-15

    Purpose: Small surgical devices and needles are used in many surgical procedures. Conventionally, an x-ray film is taken to identify missing devices/needles if post procedure count is incorrect. There is no data to indicate smallest surgical devices/needles that can be identified with digital radiography (DR), and its optimized acquisition technique. Methods: In this study, the DR equipment used is a Canon RadPro mobile with CXDI-70c wireless DR plate, and the same DR plate on a fixed Siemens Multix unit. Small surgical devices and needles tested include Rubber Shod, Bulldog, Fogarty Hydrogrip, and needles with sizes 3-0 C-T1 through 8-0 BV175-6. They are imaged with PMMA block phantoms with thickness of 2–8 inch, and an abdomen phantom. Various DR techniques are used. Images are reviewed on the portable x-ray acquisition display, a clinical workstation, and a diagnostic workstation. Results: all small surgical devices and needles are visible in portable DR images with 2–8 inch of PMMA. However, when they are imaged with the abdomen phantom plus 2 inch of PMMA, needles smaller than 9.3 mm length can not be visualized at the optimized technique of 81 kV and 16 mAs. There is no significant difference in visualization with various techniques, or between mobile and fixed radiography unit. However, there is noticeable difference in visualizing the smallest needle on a diagnostic reading workstation compared to the acquisition display on a portable x-ray unit. Conclusion: DR images should be reviewed on a diagnostic reading workstation. Using optimized DR techniques, the smallest needle that can be identified on all phantom studies is 9.3 mm. Sample DR images of various small surgical devices/needles available on diagnostic workstation for comparison may improve their identification. Further in vivo study is needed to confirm the optimized digital radiography technique for identification of lost small surgical devices and needles.

  18. Rapid differentiation of refined fuels using negative electrospray ionization/mass spectrometry

    USGS Publications Warehouse

    Rostad, C.E.; Hostettler, F.D.

    2005-01-01

    An application of electrospray ionization/mass spectrometry for identification of various commercially refined fuels using the unique signature of polar components, was investigated. The samples were analyzed by mass spectrometry using negative electrospray on an Agilent Series 1100 liquid chromatograph/mass spectrometer. These analysis were applied to hydrocarbon samples from a large, long-term fuel spill which were taken from the subsurface and different extent of biodegradation or weathering. The technique provided rapid identification of hydrocarbons released into the environment because these polar compounds are unique in different fuels.

  19. A newly-developed effective direct current assisted sintering technique for electrolyte film densification of anode-supported solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Liu, Yajie; Hao, Xiaoming; Wang, Zhenhua; Wang, Jiawei; Qiao, Jinshuo; Yan, Yiming; Sun, Kening

    2012-10-01

    In order to lower the sintering temperature and shorten firing time, a novel, effective and facile technique has been developed for sintering Yttria-stabilized zirconia (YSZ) electrolyte thin film. Herein this technique, which employs a weak direct current (DC), is used for the first time in the manufacture of the anode-supported solid oxide fuel cell (SOFC). A single cell is directly assembled using a pre-sintered anode/electrolyte and screen printed cathode and subsequently sintered under electric assistance from room temperature to 800 °C at a heating rate of 5 °C min-1. A fully dense YSZ electrolyte film can be observed by scanning electron microscopy (SEM) and the open circuit voltages (OCVs) are in accordance with theoretical values, confirming that the cell possesses a dense YSZ film. Using hydrogen fuel, the maximum power density of this cell was 0.8, 1.1 and 1.4 W cm-2 at 650, 700 and 750 °C, respectively. We believe this DC assisted sintering technique (DC-AST) may not only reduce the cost, but also maintain the anode nanostructure, thus offering a potentially useful manufacturing technique for SOFCs.

  20. Fusing modeling techniques to support domain analysis for reuse opportunities identification

    NASA Technical Reports Server (NTRS)

    Hall, Susan Main; Mcguire, Eileen

    1993-01-01

    Functional modeling techniques or object-oriented graphical representations, which are more useful to someone trying to understand the general design or high level requirements of a system? For a recent domain analysis effort, the answer was a fusion of popular modeling techniques of both types. By using both functional and object-oriented techniques, the analysts involved were able to lean on their experience in function oriented software development, while taking advantage of the descriptive power available in object oriented models. In addition, a base of familiar modeling methods permitted the group of mostly new domain analysts to learn the details of the domain analysis process while producing a quality product. This paper describes the background of this project and then provides a high level definition of domain analysis. The majority of this paper focuses on the modeling method developed and utilized during this analysis effort.

  1. Remote spectral identification of surface aggregates by thermal imaging techniques - Progress report

    NASA Technical Reports Server (NTRS)

    Scholen, Douglas E.; Clerke, William H.; Burns, Gregory S.

    1991-01-01

    The NASA Thermal Infrared Multispectral Scanner (TIMS) has been successfully used for the remote identification of a variety of soil and aggregate deposits in vegetated areas of two states. Over three million cubic meters of gravel deposits were identified from the imagery during a two year period. Verification was accomplished by ground reconnaissance using drilling machinery and by ground instrumentation. The method has been used to differentiate between fine and coarse grained soils, and gravel deposits. The deposits were found to have been naturally sorted according to grain size by depositional processes, providing each deposit with distinct spectral qualities. It was found that the masking effects of relatively dense vegetation were largely overcome by using imagery acquired at higher altitudes above terrain than 9000 meters, due to loss of resolution of the finer detail. The mechanics of image resolution are discussed, a method of data analysis used is described, and sample spectral signatures are illustrated.

  2. Coherent Structure Identification Techniques applied to Stereoscopic PIV Measurements in an Urban-type Boundary Layer

    NASA Astrophysics Data System (ADS)

    Wark, Candace; Monnier, Bruno; Neiswander, Brian

    2008-11-01

    An experimental investigation of the flow through an urban-type boundary layer (4 rows of 3 cuboid Plexiglas blocks) in an experimentally modeled atmospheric boundary layer will be presented. This work focuses on the effect of the incidence angle of the approaching boundary layer as well as the streamwise spacing between adjacent rows covering two different flow regimes, the wake interference and skimming flow regimes. This study utilizes Stereo PIV measurements: a 2D traverse system carrying the entire SPIV system allows us to precisely position the measurement plane at hundreds of positions within the domain. The spacing between adjacent planes is chosen in order to resolve details close to the edges of the blocks. Various existing coherent structure identification tools are used and compared: isosurfaces of vorticity, lambda 2, swirling strength, second invariant of the velocity gradient tensor (Q) and normalized angular momentum.

  3. Resident identification using kinect depth image data and fuzzy clustering techniques.

    PubMed

    Banerjee, Tanvi; Keller, James M; Skubic, Marjorie

    2012-01-01

    As a part of our passive fall risk assessment research in home environments, we present a method to identify older residents using features extracted from their gait information from a single depth camera. Depth images have been collected continuously for about eight months from several apartments at a senior housing facility. Shape descriptors such as bounding box information and image moments were extracted from silhouettes of the depth images. The features were then clustered using Possibilistic C Means for resident identification. This technology will allow researchers and health professionals to gather more information on the individual residents by filtering out data belonging to non-residents. Gait related information belonging exclusively to the older residents can then be gathered. The data can potentially help detect changes in gait patterns which can be used to analyze fall risk for elderly residents by passively observing them in their home environments.

  4. Identification of sources of tar balls deposited along the Southwest Caspian Coast, Iran using fingerprinting techniques.

    PubMed

    Shirneshan, Golshan; Bakhtiari, Alireza Riyahi; Memariani, Mahmoud

    2016-10-15

    In 2012, a significant number of tar balls occurred along the Southwest coasts of the Caspian Sea (Iran). Several oil fields of Turkmenistan, Azerbaijan and Iran might be sources of oil spills and lead to the formation of these tar balls. For source identification, 6 tar ball samples were collected from the Southwest beaches of the Caspian Sea and subjected to fingerprint analysis based on the distribution of the source-specific biomarkers of pentacyclic tri-terpanes and steranes. Comparing the diagenic ratios revealed that the tar balls were chemically similar and originated from the same source. Results of double ratio plots (e.g., C29/C30 versus ∑C31-C35/C30 and C28 αββ/(C27 αββ+C29 αββ) versus C29 αββ/(C27 αββ+C28 αββ)) in the tar balls and oils from Iran, Turkmenistan and Azerbaijan indicated that the tar balls might be the result of spills from Turkmenistan oil. Moreover, principle component analysis (PCA) using biomarker ratios on the tar balls and 20 crude oil samples from different wells of Azerbaijan, Iran and Turkmenistan oils showed that the tar balls collected at the Southwest beaches are highly similar to the Turkmenistan oil but one of the Azerbaijan oils (from Bahar field oils) was found to be also slightly close to the tar balls. The weathering characterizations based on the presence of UCM (unresolved complex mixture) and low/high molecular weight ratios (L/H) of alkanes and PAHs indicated the tar ball samples have been significantly influenced by natural weathering processes such as evaporation, photo-degradation and biodegradation. This is the first study of its kind in Iran to use fingerprinting for source identification of tar balls.

  5. Identification of Linear and Nonlinear Aerodynamic Impulse Responses Using Digital Filter Techniques

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.

    1997-01-01

    This paper discusses the mathematical existence and the numerically-correct identification of linear and nonlinear aerodynamic impulse response functions. Differences between continuous-time and discrete-time system theories, which permit the identification and efficient use of these functions, will be detailed. Important input/output definitions and the concept of linear and nonlinear systems with memory will also be discussed. It will be shown that indicial (step or steady) responses (such as Wagner's function), forced harmonic responses (such as Theodorsen's function or those from doublet lattice theory), and responses to random inputs (such as gusts) can all be obtained from an aerodynamic impulse response function. This paper establishes the aerodynamic impulse response function as the most fundamental, and, therefore, the most computationally efficient, aerodynamic function that can be extracted from any given discrete-time, aerodynamic system. The results presented in this paper help to unify the understanding of classical two-dimensional continuous-time theories with modern three-dimensional, discrete-time theories. First, the method is applied to the nonlinear viscous Burger's equation as an example. Next the method is applied to a three-dimensional aeroelastic model using the CAP-TSD (Computational Aeroelasticity Program - Transonic Small Disturbance) code and then to a two-dimensional model using the CFL3D Navier-Stokes code. Comparisons of accuracy and computational cost savings are presented. Because of its mathematical generality, an important attribute of this methodology is that it is applicable to a wide range of nonlinear, discrete-time problems.

  6. Identification of Linear and Nonlinear Aerodynamic Impulse Responses Using Digital Filter Techniques

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.

    1997-01-01

    This paper discusses the mathematical existence and the numerically-correct identification of linear and nonlinear aerodynamic impulse response functions. Differences between continuous-time and discrete-time system theories, which permit the identification and efficient use of these functions, will be detailed. Important input/output definitions and the concept of linear and nonlinear systems with memory will also be discussed. It will be shown that indicial (step or steady) responses (such as Wagner's function), forced harmonic responses (such as Tbeodorsen's function or those from doublet lattice theory), and responses to random inputs (such as gusts) can all be obtained from an aerodynamic impulse response function. This paper establishes the aerodynamic impulse response function as the most fundamental, and, therefore, the most computationally efficient, aerodynamic function that can be extracted from any given discrete-time, aerodynamic system. The results presented in this paper help to unify the understanding of classical two-dimensional continuous-time theories with modem three-dimensional, discrete-time theories. First, the method is applied to the nonlinear viscous Burger's equation as an example. Next the method is applied to a three-dimensional aeroelastic model using the CAP-TSD (Computational Aeroelasticity Program - Transonic Small Disturbance) code and then to a two-dimensional model using the CFL3D Navier-Stokes code. Comparisons of accuracy and computational cost savings are presented. Because of its mathematical generality, an important attribute of this methodology is that it is applicable to a wide range of nonlinear, discrete-time problems.

  7. Evaluation of Advanced Signal Processing Techniques to Improve Detection and Identification of Embedded Defects

    SciTech Connect

    Clayton, Dwight A.; Santos-Villalobos, Hector J.; Baba, Justin S.

    2016-09-01

    By the end of 1996, 109 Nuclear Power Plants were operating in the United States, producing 22% of the Nation’s electricity [1]. At present, more than two thirds of these power plants are more than 40 years old. The purpose of the U.S. Department of Energy Office of Nuclear Energy’s Light Water Reactor Sustainability (LWRS) Program is to develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the operating lifetimes of nuclear power plants (NPPs) beyond 60 years [2]. The most important safety structures in an NPP are constructed of concrete. The structures generally do not allow for destructive evaluation and access is limited to one side of the concrete element. Therefore, there is a need for techniques and technologies that can assess the internal health of complex, reinforced concrete structures nondestructively. Previously, we documented the challenges associated with Non-Destructive Evaluation (NDE) of thick, reinforced concrete sections and prioritized conceptual designs of specimens that could be fabricated to represent NPP concrete structures [3]. Consequently, a 7 feet tall, by 7 feet wide, by 3 feet and 4-inch-thick concrete specimen was constructed with 2.257-inch-and 1-inch-diameter rebar every 6 to 12 inches. In addition, defects were embedded the specimen to assess the performance of existing and future NDE techniques. The defects were designed to give a mix of realistic and controlled defects for assessment of the necessary measures needed to overcome the challenges with more heavily reinforced concrete structures. Information on the embedded defects is documented in [4]. We also documented the superiority of Frequency Banded Decomposition (FBD) Synthetic Aperture Focusing Technique (SAFT) over conventional SAFT when probing defects under deep concrete cover. Improvements include seeing an intensity corresponding to a defect that is either not visible at all in regular, full frequency content SAFT

  8. IDENTIFICATION OF SOURCES OF GROUND-WATER SALINIZA- TION USING GEOCHEMICAL TECHNIQUES

    EPA Science Inventory

    This report deals with salt-water sources that commonly mix and deteriorate fresh ground water. It reviews characteristics of salt-water sources and geochemical techniques that can be used to identify these sources after mixing has occurred. The report is designed to assist inves...

  9. Modal shape identification of large structure exposed to wind excitation by operational modal analysis technique

    NASA Astrophysics Data System (ADS)

    De Vivo, A.; Brutti, C.; Leofanti, J. L.

    2013-08-01

    Research efforts during recent decades qualify Operational Modal Analysis (OMA) as an interesting tool that is able to identify the modal characteristic parameters of structures excited randomly by environmental loads, eliminating the problem of measuring the external exciting forces. In this paper, an existing OMA technique, the Natural Excitation Technique (NExT) was studied and implemented in order to achieve, from the wind force, the modal parameters of Vega Launcher, the new European launcher vehicle for small and medium satellites. Following a brief summary of the fundamental equations of the method, the modal parameters of Vega are calculated using the OMA technique; the results are then compared with those achieved using a traditional Experimental Modal Analysis under excitation induced by shakers. The comparison shows there is a very good agreement between the results obtained by the two different methods, OMA and the traditional experimental analysis, proving that OMA is a reliable tool to analyse the dynamic behaviour of large structures. Finally, this approach can be used for any type of large structure in civil and mechanical fields and the technique appears to be very promising for further applications.

  10. Automated identification of peristaltic pressure waves in oesophageal manometry investigations using the rolling correlation technique.

    PubMed

    Perring, S; Jones, E

    2009-11-01

    We have implemented the technique of rolling correlation coefficient as proposed by Buttfield and Bolton (2005 Real time measurement of RR intervals using a digital signal processor J. Med. Eng. Technol. 29 8-13) for ECG R-wave detection in the detection and timing of oesophageal peristalsis. 43 sequential patients attending for oesophageal manometry were retrospectively reviewed. Two expert reviewers visually assessed each swallow for normality of peristaltic amplitude and propagation speed. Automatic assessment was performed using rolling correlation, maximum amplitude, threshold and maximum gradient techniques of identifying onset of peristalsis. Rolling correlation was comparable with the maximum amplitude technique at identifying peristaltic pressure waves visually identified as present. Rolling correlation was most effective at correctly identifying propagation velocity as normal (698 out of 845 normally propagating waves) and highest correlation with expert visual assessment of percentage abnormal propagation for each patient (R value 0.918). In a sub-group of 11 studies assessed as displaying normal motility, rolling correlation gave lowest variation of propagation speed and highest consistency with visual assessment. The rolling correlation technique is effective and accurate at identifying oesophageal peristalsis and characterizing peristaltic propagation in manometric studies even in the presence of abnormally weak peristalsis and other confounding pressure perturbations.

  11. Rapid Screening and Species Identification of E. Coli, Listeria, and Salmonella by SERS Technique

    USDA-ARS?s Scientific Manuscript database

    Techniques for routine and rapid screening of the presence of foodborne bacteria are needed, and this study reports the feasibility of citrate-reduced silver colloidal SERS for identifying E. coli, Listeria, and Salmonella. Relative standard deviation (RSD) of SERS spectra from silver colloidal susp...

  12. Quantitative Techniques for the Identification of Social Sub-Groups in Natural Settings.

    ERIC Educational Resources Information Center

    Gariepy, Jean-Louis; Kindermann, Thomas

    Addressing a common problem in the analysis of social networks, this study describes quantitative techniques for identifying social subgroups using individual perceptions of social affinities within natural groups. Compared are four analytic methods for abstracting composite representations of sub-structures. These methods, formally evaluated…

  13. A Historical Perspective on the Identification of Cell Types in Pancreatic Islets of Langerhans by Staining and Histochemical Techniques

    PubMed Central

    2015-01-01

    Before the middle of the previous century, cell types of the pancreatic islets of Langerhans were identified primarily on the basis of their color reactions with histological dyes. At that time, the chemical basis for the staining properties of islet cells in relation to the identity, chemistry and structure of their hormones was not fully understood. Nevertheless, the definitive islet cell types that secrete glucagon, insulin, and somatostatin (A, B, and D cells, respectively) could reliably be differentiated from each other with staining protocols that involved variations of one or more tinctorial techniques, such as the Mallory-Heidenhain azan trichrome, chromium hematoxylin and phloxine, aldehyde fuchsin, and silver impregnation methods, which were popularly used until supplanted by immunohistochemical techniques. Before antibody-based staining methods, the most bona fide histochemical techniques for the identification of islet B cells were based on the detection of sulfhydryl and disulfide groups of insulin. The application of the classical islet tinctorial staining methods for pathophysiological studies and physiological experiments was fundamental to our understanding of islet architecture and the physiological roles of A and B cells in glucose regulation and diabetes. PMID:26216133

  14. Ring-oven based preconcentration technique for microanalysis: simultaneous determination of Na, Fe, and Cu in fuel ethanol by laser induced breakdown spectroscopy.

    PubMed

    Cortez, Juliana; Pasquini, Celio

    2013-02-05

    The ring-oven technique, originally applied for classical qualitative analysis in the years 1950s to 1970s, is revisited to be used in a simple though highly efficient and green procedure for analyte preconcentration prior to its determination by the microanalytical techniques presently available. The proposed preconcentration technique is based on the dropwise delivery of a small volume of sample to a filter paper substrate, assisted by a flow-injection-like system. The filter paper is maintained in a small circular heated oven (the ring oven). Drops of the sample solution diffuse by capillarity from the center to a circular area of the paper substrate. After the total sample volume has been delivered, a ring with a sharp (c.a. 350 μm) circular contour, of about 2.0 cm diameter, is formed on the paper to contain most of the analytes originally present in the sample volume. Preconcentration coefficients of the analyte can reach 250-fold (on a m/m basis) for a sample volume as small as 600 μL. The proposed system and procedure have been evaluated to concentrate Na, Fe, and Cu in fuel ethanol, followed by simultaneous direct determination of these species in the ring contour, employing the microanalytical technique of laser induced breakdown spectroscopy (LIBS). Detection limits of 0.7, 0.4, and 0.3 μg mL(-1) and mean recoveries of (109 ± 13)%, (92 ± 18)%, and (98 ± 12)%, for Na, Fe, and Cu, respectively, were obtained in fuel ethanol. It is possible to anticipate the application of the technique, coupled to modern microanalytical and multianalyte techniques, to several analytical problems requiring analyte preconcentration and/or sample stabilization.

  15. Identification of Aroma Compounds of Lamiaceae Species in Turkey Using the Purge and Trap Technique.

    PubMed

    Sonmezdag, Ahmet Salih; Kelebek, Hasim; Selli, Serkan

    2017-02-08

    The present research was planned to characterize the aroma composition of important members of the Lamiaceae family such as Salvia officinalis, Lavandula angustifolia and Mentha asiatica. Aroma components of the S. officinalis, L. angustifolia and M. asiatica were extracted with the purge and trap technique with dichloromethane and analyzed with the gas chromatography-mass spectrometry (GC-MS) technique. A total of 23, 33 and 33 aroma compounds were detected in Salvia officinalis, Lavandula angustifolia and Mentha asiatica, respectively including, acids, alcohols, aldehydes, esters, hydrocarbons and terpenes. Terpene compounds were both qualitatively and quantitatively the major chemical group among the identified aroma compounds, followed by esters. The main terpene compounds were 1,8-cineole, sabinene and linalool in Salvia officinalis, Lavandula angustifolia and Mentha asiatica, respectively. Among esters, linalyl acetate was the only and most important ester compound which was detected in all samples.

  16. Rectovaginal fistulography: a technique for the identification of recurrent elusive fistulas.

    PubMed

    Shobeiri, S Abbas; Quiroz, Lieschen; Nihira, Mikio

    2009-05-01

    The purpose of this study is to review our experience with a technique for diagnosing small rectovaginal fistulas that occasionally permit passage of air or mucus. During an in-office visit suspicious areas of the vagina were probed with a cone-tip catheter and injected with a contrast dye to visualize the suspected fistula tract communicating to the rectum under fluoroscopic guidance. The fistulous tracts were further isolated using a flexi-tip glide wire. Five out of nine patients were found to have fistulas not diagnosed by other means. Three patients had recurrent rectovaginal fistula after a vaginal delivery, one patient was identified with a high rectovaginal fistula due to diverticular disease, and one patient had a rectovaginal fistula due to prior hemorrhoidectomy. One patient had a negative test, and the fistula that was diagnosed intraoperatively was due to underlying Crohn's disease. Direct fistulography is a useful technique to visualize otherwise elusive symptomatic rectovaginal fistula tracts.

  17. Identification of Aroma Compounds of Lamiaceae Species in Turkey Using the Purge and Trap Technique

    PubMed Central

    Sonmezdag, Ahmet Salih; Kelebek, Hasim; Selli, Serkan

    2017-01-01

    The present research was planned to characterize the aroma composition of important members of the Lamiaceae family such as Salvia officinalis, Lavandula angustifolia and Mentha asiatica. Aroma components of the S. officinalis, L. angustifolia and M. asiatica were extracted with the purge and trap technique with dichloromethane and analyzed with the gas chromatography–mass spectrometry (GC–MS) technique. A total of 23, 33 and 33 aroma compounds were detected in Salvia officinalis, Lavandula angustifolia and Mentha asiatica, respectively including, acids, alcohols, aldehydes, esters, hydrocarbons and terpenes. Terpene compounds were both qualitatively and quantitatively the major chemical group among the identified aroma compounds, followed by esters. The main terpene compounds were 1,8-cineole, sabinene and linalool in Salvia officinalis, Lavandula angustifolia and Mentha asiatica, respectively. Among esters, linalyl acetate was the only and most important ester compound which was detected in all samples. PMID:28231089

  18. Enamel paint techniques in archaeology and their identification using XRF and micro-XRF

    NASA Astrophysics Data System (ADS)

    Hložek, M.; Trojek, T.; Komoróczy, B.; Prokeš, R.

    2017-08-01

    This investigation focuses in detail on the analysis of discoveries in South Moravia - important sites from the Roman period in Pasohlávky and Mušov. Using X-ray fluorescence analysis and micro-analysis we help identify the techniques of enamel paint and give a thorough chemical analysis in details which would not be possible to determine by means of macroscopic examination. We thus address the influence of elemental composition on the final colour of the enamel paint and describe the less known technique of combining enamel with millefiori. The material analyses of the metal artefacts decorated with enamel paint significantly contribute to our knowledge of the technology being used during the Roman period.

  19. Carotenoids and flavonoids identification in Brazilian tropical fruits and vegetables using photoacoustic technique

    NASA Astrophysics Data System (ADS)

    Lima, R. J. S.; Vasconcelos, A. S.; Suassuna, J. F.

    2005-06-01

    In this work we present results of the application of PAS technique in the UV-Vis region in a variety of organic materials in natural form such as plant leaves, fruits and vegetables. The observed PAS spectra were associated to the presence of several carotenoids and flavonoids molecules in leaves, fruits and vegetables. Our results confirm PAS as a rapid direct and efficient analytical method in material science, particularly in the very promising field of photochemistry and photobiology.

  20. Analytical techniques for identification and study of organic matter in returned lunar samples

    NASA Technical Reports Server (NTRS)

    Burlingame, A. L.

    1974-01-01

    The results of geochemical research are reviewed. Emphasis is placed on the contribution of mass spectrometric data to the solution of specific structural problems. Information on the mass spectrometric behavior of compounds of geochemical interest is reviewed and currently available techniques of particular importance to geochemistry, such as gas chromatograph-mass spectrometer coupling, modern sample introduction methods, and computer application in high resolution mass spectrometry, receive particular attention.

  1. [Identification of internal fistolous orifice: evolution of methylene blue technique with a mini-probe].

    PubMed

    Gaj, F; Andreuccetti, J; Trecca, A; Crispino, P

    2012-01-01

    Often perianal fistulas can be difficult typing and traditional anatomical classifications do not help the surgeon in accurate diagnosis of the fistula as an outpatient procedure and therefore does not allow a timely surgical currettage. The aim of our study was to introduce in the management of anal fistulas performed on an outpatient injection with methylene blue of the fistula through a small polyethylene catheter in order to detect in real time the internal opening of the fistula and drive so the next currettage surgery. A total of 50 consecutive patients 21 female and 29 male, relating to our clinic with symptoms suggestive of colon proctology perianal fistula, aged between 36 and 69 years were selected for our study. After running the news-gathering medical history, physical examination, digital examination through examination anoscope, using a polyethylene catheter in a small scale, of methylene blue was injected through the external fistula orifice looking inside the spreading of liquid. Subsequently, the patient was started on specillazione currettage and possible surgery. 62 outpatients were treated intramural fistulas, diagnosed with the injection technique with methylene blue running always probing and practiced a wide dish made of the mucosa, submucosa and circular muscle layer of the internal drainage with sphincterotomy. In particular, the technique injection of methylene blue was sufficient to diagnose 42 out of 62 cases examined (67.7%). In the remaining 20 cases it was necessary to integrate diagnosis with MRI-defecates on the complexity of fistulas (10 horseshoe, 6 trans sphincteric and 4 intersphincteric. Methylene blue injection is a low-cost screening technique, simple to perform on an outpatient basis and in the case of suprasphincteric fistulas also a simple diagnostic technique is sufficient to allow the closure of the fistula.

  2. Identification of behaviors and techniques for promoting autonomy in the operating room.

    PubMed

    Torbeck, Laura; Wilson, Adam; Choi, Jennifer; Dunnington, Gary L

    2015-10-01

    To further understand how faculty promote resident autonomy in the operating room (OR), we explored their perceptions, and those of senior residents, on the behaviors and techniques they employ to foster independence. Twenty postgraduate year PGY4 and PGY5 residents were asked to list 3 general surgery faculty who give the most and least autonomy to residents in the OR. Two focus groups were conducted with residents to identify behaviors and techniques for promoting autonomy from the resident perspective. Individual semistructured interviews were conducted with top-rated and low-rated faculty to identify behaviors and techniques from the attending perspective. Behaviors and techniques faculty exhibit to promote increased autonomy included allowing residents time to struggle, letting residents begin case themselves, and forcing residents to think about steps of procedure before case. The main "triggers" for granting autonomy were increased familiarity and trust with resident's capabilities, how well resident comes prepared to OR, and faculty confidence that they can "fix anything." Reasons why low-rated faculty seldom give autonomy included feeling a deep moral obligation for personally seeing patient through the operation, residents not coming fully prepared to perform case, and being young in their own maturation process. Our results suggest that increased autonomy depends greatly on establishing a trusting relationship between faculty and resident; a partnership that can only happen when time is given for trust to mature. Program directors must work to refine the training paradigm in order to build relationships. Residents can also be coached to demonstrate increased OR preparedness. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Environmental Hazard Identification Technique Developing of Territorial Administrations Strategy as Exemplified in Siberian Federal District

    NASA Astrophysics Data System (ADS)

    Timofeeva, S. S.; Garmishev, V. V.; Lugovtsova, N. Yu

    2016-04-01

    This work, on the example of the Siberian Federal District of the Russian Federation, presents a method for determining mass airbursts of combustion gaseous eco-toxicants, as a technique for assessing the contributory environmental load on the atmosphere. Potential environmental hazards are analyzed by mass of contaminated airbursts. A comparison of specific gross toxicants’ emissions in territorial entities of the Russian Federation is made.

  4. FAST CARS: Engineering a laser spectroscopic technique for rapid identification of bacterial spores

    PubMed Central

    Scully, M. O.; Kattawar, G. W.; Lucht, R. P.; Opatrný, T.; Pilloff, H.; Rebane, A.; Sokolov, A. V.; Zubairy, M. S.

    2002-01-01

    Airborne contaminants, e.g., bacterial spores, are usually analyzed by time-consuming microscopic, chemical, and biological assays. Current research into real-time laser spectroscopic detectors of such contaminants is based on e.g., resonance fluorescence. The present approach derives from recent experiments in which atoms and molecules are prepared by one (or more) coherent laser(s) and probed by another set of lasers. However, generating and using maximally coherent oscillation in macromolecules having an enormous number of degrees of freedom is challenging. In particular, the short dephasing times and rapid internal conversion rates are major obstacles. However, adiabatic fast passage techniques and the ability to generate combs of phase-coherent femtosecond pulses provide tools for the generation and utilization of maximal quantum coherence in large molecules and biopolymers. We call this technique FAST CARS (femtosecond adaptive spectroscopic techniques for coherent anti-Stokes Raman spectroscopy), and the present article proposes and analyses ways in which it could be used to rapidly identify preselected molecules in real time. PMID:12177405

  5. A Waveform Library Technique for Multi-Site Identification with the MAJORANA DEMONSTRATOR

    NASA Astrophysics Data System (ADS)

    Buuck, Micah; MAJORANA Collaboration

    2017-01-01

    The MAJORANA DEMONSTRATOR is a low-background array of 44.8 kg of germanium detectors searching for neutrinoless double-beta (0 νββ) decay in germanium-76, deployed 4,850 feet underground at the Sanford Underground Research Facility in Lead, South Dakota, USA. We aim to demonstrate background levels low enough to justify construction of a ton-scale experiment which will be able to fully probe the inverted-hierarchy region of the 0 νββ decay phase-space. In addition to reducing background through materials selection and experimental design, we are developing a range of analysis-based background-suppression techniques. One example is a waveform-library-based technique to reject background multi-site interactions. Here we present an overview of the technique and its current status. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, the Particle Astrophysics and Nuclear Physics Programs of the National Science Foundation, and the Sanford Underground Research Facility.

  6. Bolt-loosening identification of bolt connections by vision image-based technique

    NASA Astrophysics Data System (ADS)

    Nguyen, Tuan-Cuong; Huynh, Thanh-Canh; Ryu, Joo-Young; Park, Jae-Hyung; Kim, Jeong-Tae

    2016-04-01

    In this study, an algorithm using image processing techniques is proposed to identify bolt-loosening in bolted connections of steel structures. Its basic concept is to identify rotation angles of nuts from a pictured image, and is mainly consisted of the following 3 steps: (1) taking a picture for a bolt joint, (2) segmenting the images for each nut by image processing techniques, and (3) identifying rotation angle of each nut and detecting bolt-loosening. By using the concept, an algorithm is designed for continuous monitoring and inspection of the bolt connections. As a key imageprocessing technique, Hough transform is used to identify rotation angles of nuts, and then bolt-loosening is detected by comparing the angles before and after bolt-loosening. Then the applicability of the proposed algorithm is evaluated by experimental tests for two lab-scaled models. A bolted joint model which consists of a splice plate and 8 sets of bolts and nuts with 2×4 array is used to simulate inspection of bridge connections, and a model which is consisted of a ring flange and 32 sets of bolt and nut is used to simulate continuous monitoring of bolted connections in wind turbine towers.

  7. Investigation on the application of DNA forensic human identification techniques to detect homologous blood transfusions in doping control.

    PubMed

    Donati, Francesco; Stampella, Alessandra; de la Torre, Xavier; Botrè, Francesco

    2013-06-15

    Homologous blood transfusion is an illicit practice used by athletes to improve the delivery of oxygen to tissues and, as such, it is banned in sports. The current method of detection is based on the flow cytofluorimetric phenotypic identification of red blood cells mismatch of minor blood group antigens between the donor and the recipient. The selectivity of this method to clearly identify transfused samples is related to the number of blood group antigens tested. Despite the fact that several different antigens are investigated, two individuals sharing the expression of the same minor blood group antigens pattern cannot be distinguished. We tested the possibility to use a different approach based on DNA forensic human identification techniques. Analysis of the DNA short tandem repeats (STRs) demonstrated its suitability in detecting mixed whole blood samples simulating homologous blood transfusion in 100% of the samples tested, ensuring the capability of clearly detecting mixed blood cell populations also on samples where the fraction of the minoritary population is as low as 2.5%.

  8. A spectrum-driven damage identification technique: Application and validation through the numerical simulation of the Z24 Bridge

    NASA Astrophysics Data System (ADS)

    Masciotta, Maria-Giovanna; Ramos, Luís F.; Lourenço, Paulo B.; Vasta, Marcello; De Roeck, Guido

    2016-03-01

    The present paper focuses on a damage identification method based on the use of the second order spectral properties of the nodal response processes. The explicit dependence on the frequency content of the outputs power spectral densities makes them suitable for damage detection and localization. The well-known case study of the Z24 Bridge in Switzerland is chosen to apply and further investigate this technique with the aim of validating its reliability. Numerical simulations of the dynamic response of the structure subjected to different types of excitation are carried out to assess the variability of the spectrum-driven method with respect to both type and position of the excitation sources. The simulated data obtained from random vibrations, impulse, ramp and shaking forces, allowed to build the power spectrum matrix from which the main eigenparameters of reference and damage scenarios are extracted. Afterwards, complex eigenvectors and real eigenvalues are properly weighed and combined and a damage index based on the difference between spectral modes is computed to pinpoint the damage. Finally, a group of vibration-based damage identification methods are selected from the literature to compare the results obtained and to evaluate the performance of the spectral index.

  9. Species identification of mixed algal bloom in the Northern Arabian Sea using remote sensing techniques.

    PubMed

    Dwivedi, R; Rafeeq, M; Smitha, B R; Padmakumar, K B; Thomas, Lathika Cicily; Sanjeevan, V N; Prakash, Prince; Raman, Mini

    2015-02-01

    Oceanic waters of the Northern Arabian Sea experience massive algal blooms during winter-spring (mid Feb-end Mar), which prevail for at least for 3 months covering the entire northern half of the basin from east to west. Ship cruises were conducted during winter-spring of 2001-2012 covering different stages of the bloom to study the biogeochemistry of the region. Phytoplankton analysis indicated the presence of green tides of dinoflagellate, Noctiluca scintillans (=N. miliaris), in the oceanic waters. Our observations indicated that diatoms are coupled and often co-exist with N. scintillans, making it a mixed-species ecosystem. In this paper, we describe an approach for detection of bloom-forming algae N. scintillans and its discrimination from diatoms using Moderate Resolution Imaging Spectroradiometer (MODIS)-Aqua data in a mixed-species environment. In situ remote sensing reflectance spectra were generated using Satlantic™ hyperspectral radiometer for the bloom and non-bloom waters. Spectral shapes of the reflectance spectra for different water types were distinct, and the same were used for species identification. Scatter of points representing different phytoplankton classes on a derivative plot revealed four diverse clusters, viz. N. scintillans, diatoms, non-bloom oceanic, and non-bloom coastal waters. The criteria developed for species discrimination were implemented on MODIS data and validated using inputs from a recent ship cruise conducted in March 2013.

  10. Identification of active root zone by data assimilation techniques: monitoring and modelling of irrigation experiments

    NASA Astrophysics Data System (ADS)

    Busato, Laura; Vanella, Daniela; Boaga, Jacopo; Manoli, Gabriele; Marani, Marco; Putti, Mario; Consoli, Simona; Binley, Andrew M.; Cassiani, Giorgio

    2015-04-01

    The identification of active root distribution and the quantification of relevant water fluxes (root water uptake-RWU) are key elements in understanding the exchanges of mass and energy in soil-plant-atmosphere systems. In this contribution we present the assimilation of 3D time-lapse Electrical Resistivity Tomography (ERT) data, acquired around an orange tree during irrigation experiments, in a soil-plant model that accounts for soil moisture dynamics and root water uptake (RWU), whole plant transpiration, and leaf-level photosynthesis. The model is based on a numerical solution to the 3D Richards equation modified to account for a 3D RWU, trunk xylem, and stomatal conductances. The data assimilation procedure, assisted also by independent information concerning the soil properties, aims specifically at identifying the distribution and strength of active roots modelled as sinks in the unsaturated flow model. In addition the flow model is enhanced by a forward electrical current model in order to predict the electrical response measured by ERT in dependence of the soil water content distribution. Strengths and weaknesses of the proposed approach are discussed.

  11. Identification of immunoglobulins using Chou's pseudo amino acid composition with feature selection technique.

    PubMed

    Tang, Hua; Chen, Wei; Lin, Hao

    2016-04-01

    Immunoglobulins, also called antibodies, are a group of cell surface proteins which are produced by the immune system in response to the presence of a foreign substance (called antigen). They play key roles in many medical, diagnostic and biotechnological applications. Correct identification of immunoglobulins is crucial to the comprehension of humoral immune function. With the avalanche of protein sequences identified in postgenomic age, it is highly desirable to develop computational methods to timely identify immunoglobulins. In view of this, we designed a predictor called "IGPred" by formulating protein sequences with the pseudo amino acid composition into which nine physiochemical properties of amino acids were incorporated. Jackknife cross-validated results showed that 96.3% of immunoglobulins and 97.5% of non-immunoglobulins can be correctly predicted, indicating that IGPred holds very high potential to become a useful tool for antibody analysis. For the convenience of most experimental scientists, a web-server for IGPred was established at http://lin.uestc.edu.cn/server/IGPred. We believe that the web-server will become a powerful tool to study immunoglobulins and to guide related experimental validations.

  12. Identification of protein motifs using conserved amino acid properties and partitioning techniques

    SciTech Connect

    Wu, T.D.; Brutlag, D.L.

    1995-12-31

    Analyzing a set of protein sequences involves a fundamental relationship between the coherency of the set and the specificity of the motif that describes it. Motifs may be obscured by training sets that contain incoherent sequences, in part due to protein subclasses, contamination, or errors. We develop an algorithm for motif identification that systematically explores possible patterns of coherency within a set of protein sequences, Our algorithm constructs alternative partitions of the training set data, where one subset of each partition is presumed to contain coherent data and is used for forming a motif. The motif is represented by multiple overlapping amino acid groups based on evolutionary, biochemical, or physical properties. We demonstrate our method on a training set of reverse transcriptases that contains subclasses, sequence errors, misalignments, and contaminating sequences. Despite these complications, our program identifies a novel motif for the subclass of retroviral and retrovirus-related reverse transcriptases. This motif has a much higher specificity than previously reported motifs and suggests the importance of conserved hydrophilic and hydrophobic residues in the structure of reverse transcriptases.

  13. Simultaneous virus identification and characterization of severe unexplained pneumonia cases using a metagenomics sequencing technique.

    PubMed

    Zou, Xiaohui; Tang, Guangpeng; Zhao, Xiang; Huang, Yan; Chen, Tao; Lei, Mingyu; Chen, Wenbing; Yang, Lei; Zhu, Wenfei; Zhuang, Li; Yang, Jing; Feng, Zhaomin; Wang, Dayan; Wang, Dingming; Shu, Yuelong

    2017-03-01

    Many viruses can cause respiratory diseases in humans. Although great advances have been achieved in methods of diagnosis, it remains challenging to identify pathogens in unexplained pneumonia (UP) cases. In this study, we applied next-generation sequencing (NGS) technology and a metagenomic approach to detect and characterize respiratory viruses in UP cases from Guizhou Province, China. A total of 33 oropharyngeal swabs were obtained from hospitalized UP patients and subjected to NGS. An unbiased metagenomic analysis pipeline identified 13 virus species in 16 samples. Human rhinovirus C was the virus most frequently detected and was identified in seven samples. Human measles virus, adenovirus B 55 and coxsackievirus A10 were also identified. Metagenomic sequencing also provided virus genomic sequences, which enabled genotype characterization and phylogenetic analysis. For cases of multiple infection, metagenomic sequencing afforded information regarding the quantity of each virus in the sample, which could be used to evaluate each viruses' role in the disease. Our study highlights the potential of metagenomic sequencing for pathogen identification in UP cases.

  14. Determination and identification of synthetic cannabinoids and their metabolites in different matrices by modern analytical techniques - a review.

    PubMed

    Znaleziona, Joanna; Ginterová, Pavlína; Petr, Jan; Ondra, Peter; Válka, Ivo; Ševčík, Juraj; Chrastina, Jan; Maier, Vítězslav

    2015-05-18

    Synthetic cannabinoids have gained popularity due to their easy accessibility and psychoactive effects. Furthermore, they cannot be detected in urine by routine drug monitoring. The wide range of active ingredients in analyzed matrices hinders the development of a standard analytical method for their determination. Moreover, their possible side effects are not well known which increases the danger. This review is focused on the sample preparation and the determination of synthetic cannabinoids in different matrices (serum, urine, herbal blends, oral fluid, hair) published since 2004. The review includes separation and identification techniques, such as thin layer chromatography, gas and liquid chromatography and capillary electrophoresis, mostly coupled with mass spectrometry. The review also includes results by spectral methods like infrared spectroscopy, nuclear magnetic resonance or direct-injection mass spectrometry.

  15. Direct Measurement of Initial Enrichment and Burn-up of Spent Fuel Assembly with a Differential Die-Away Technique Based Instrument

    SciTech Connect

    Henzl, Vladimir; Swinhoe, Martyn T.; Tobin, Stephen J.

    2012-07-16

    A key objective of the Next Generation Safeguards Initiative (NGSI) is to utilize non-destructive assay (NDA) techniques to determine the elemental plutonium (Pu) content in a commercial-grade nuclear spent fuel assembly (SFA). In the third year of the NGSI Spent Fuel NDA project, the research focus is on the integration of a few NDA techniques. One of the reoccurring challenges to the accurate determination of Pu content has been the explicit dependence of the measured signal on the presence of neutron absorbers which build up in the assembly in accordance with its operating and irradiation history. The history of any SFA is often summarized by the parameters of burn-up (BU), initial enrichment (IE) and cooling time (CT). While such parameters can typically be provided by the operator, the ability to directly measure and verify them would significantly enhance the autonomy of the IAEA inspectorate. Within this paper, we demonstrate that an instrument based on a Differential Die-Away technique is in principle capable of direct measurement of IE and, should the CT be known, also the BU.

  16. Hazard identification of exhausts from gasoline-ethanol fuel blends using a multi-cellular human lung model.

    PubMed

    Bisig, Christoph; Roth, Michèle; Müller, Loretta; Comte, Pierre; Heeb, Norbert; Mayer, Andreas; Czerwinski, Jan; Petri-Fink, Alke; Rothen-Rutishauser, Barbara

    2016-11-01

    Ethanol can be produced from biomass and as such is renewable, unlike petroleum-based fuel. Almost all gasoline cars can drive with fuel containing 10% ethanol (E10), flex-fuel cars can even use 85% ethanol (E85). Brazil and the USA already include 10-27% ethanol in their standard fuel by law. Most health effect studies on car emissions are however performed with diesel exhausts, and only few data exists for other fuels. In this work we investigated possible toxic effects of exhaust aerosols from ethanol-gasoline blends using a multi-cellular model of the human lung. A flex-fuel passenger car was driven on a chassis dynamometer and fueled with E10, E85, or pure gasoline (E0). Exhausts obtained from a steady state cycle were directly applied for 6h at a dilution of 1:10 onto a multi-cellular human lung model mimicking the bronchial compartment composed of human bronchial cells (16HBE14o-), supplemented with human monocyte-derived dendritic cells and monocyte-derived macrophages, cultured at the air-liquid interface. Biological endpoints were assessed after 6h post incubation and included cytotoxicity, pro-inflammation, oxidative stress, and DNA damage. Filtered air was applied to control cells in parallel to the different exhausts; for comparison an exposure to diesel exhaust was also included in the study. No differences were measured for the volatile compounds, i.e. CO, NOx, and T.HC for the different ethanol supplemented exhausts. Average particle number were 6×10(2) #/cm(3) (E0), 1×10(5) #/cm(3) (E10), 3×10(3) #/cm(3) (E85), and 2.8×10(6) #/cm(3) (diesel). In ethanol-gasoline exposure conditions no cytotoxicity and no morphological changes were observed in the lung cell cultures, in addition no oxidative stress - as analyzed with the glutathione assay - was measured. Gene expression analysis also shows no induction in any of the tested genes, including mRNA levels of genes related to oxidative stress and pro-inflammation, as well as indoleamine 2

  17. Identification of metastasis-associated proteins in a human tumor metastasis model using the mass-mapping technique

    PubMed Central

    Kreunin, Paweena; Urquidi, Virginia; Lubman, David M; Goodison, Steve

    2005-01-01

    For most cancer cell types, the acquisition of metastatic ability leads to clinically incurable disease. The identification of molecules whose expression is specifically correlated with the metastatic spread of cancer would facilitate the design of therapeutic interventions to inhibit this lethal process. In order to facilitate metastasis gene discovery we have previously characterized a pair of monoclonal cell lines from the human breast carcinoma cell line MDA-MB-435 that have different metastatic phenotypes in immune-compromised mice. In this study, serum-free conditioned media was collected from the cultured monoclonal cell lines and a mass mapping technique was applied in order to profile a component of each cell line proteome. We utilized chromatofocusing in the first dimension to obtain a high resolution separation based on protein pI, and nonporous silica reverse-phase high performance liquid chromatography was used for the second dimension. Selected proteins were identified on the basis of electrospray ionization time of flight mass spectrometry (ESI-TOF MS) intact protein mapping and matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) peptide mass fingerprinting. Using this approach we were able to map over 400 proteins and plot them as a 2-D map of pI versus accurate Mr. This was performed over a pI range of 4.0–6.2, and a mass range of 6–80 kDa. ESI-TOF MS data and further analysis using MALDI-TOF MS confirmed and identified 27 differentially expressed proteins. Proteins associated with the metastatic phenotype included osteopontin and extracellular matrix protein 1, whereas the matrix metalloproteinase-1 and annexin 1 proteins were associated with the non-metastatic phenotype. These findings demonstrate that the mass mapping technique is a powerful tool for the detection and identification of proteins in complex biological samples and which are specifically associated with a cellular phenotype. PMID:15352249

  18. Identification of metastasis-associated proteins in a human tumor metastasis model using the mass-mapping technique.

    PubMed

    Kreunin, Paweena; Urquidi, Virginia; Lubman, David M; Goodison, Steve

    2004-09-01

    For most cancer cell types, the acquisition of metastatic ability leads to clinically incurable disease. The identification of molecules whose expression is specifically correlated with the metastatic spread of cancer would facilitate the design of therapeutic interventions to inhibit this lethal process. In order to facilitate metastasis gene discovery we have previously characterized a pair of monoclonal cell lines from the human breast carcinoma cell line MDA-MB-435 that have different metastatic phenotypes in immune-compromised mice. In this study, serum-free conditioned media was collected from the cultured monoclonal cell lines and a mass mapping technique was applied in order to profile a component of each cell line proteome. We utilized chromatofocusing in the first dimension to obtain a high resolution separation based on protein pI, and nonporous silica reverse-phase high performance liquid chromatography was used for the second dimension. Selected proteins were identified on the basis of electrospray ionization time of flight mass spectrometry (ESI-TOF MS) intact protein mapping and matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) peptide mass fingerprinting. Using this approach we were able to map over 400 proteins and plot them as a 2-D map of pI versus accurate M(r). This was performed over a pI range of 4.0-6.2, and a mass range of 6-80 kDa. ESI-TOF MS data and further analysis using MALDI-TOF MS confirmed and identified 27 differentially expressed proteins. Proteins associated with the metastatic phenotype included osteopontin and extracellular matrix protein 1, whereas the matrix metalloproteinase-1 and annexin 1 proteins were associated with the non-metastatic phenotype. These findings demonstrate that the mass mapping technique is a powerful tool for the detection and identification of proteins in complex biological samples and which are specifically associated with a cellular phenotype.

  19. Identification of metal elements by time-resolved LIBS technique in sediments lake the “Cisne”

    NASA Astrophysics Data System (ADS)

    Pacheco, P.; Arregui, E.; Álvarez, J.; Rangel, N.; Sarmiento, R.

    2017-01-01

    Laser induced breakdown spectroscopy (LIBS), is a kind of spectral method of atomic emission that uses pulses of radiation high energy laser as excitation source. One of the advantages of technical LIBS lies in the possibility of analyse the substances in any State of aggregation, already is solid, liquid or gaseous, even in colloids as aerosols, gels and others. Another advantage over other conventional techniques is the simultaneous analysis of elements present in a sample of multielement. This work is made in the use of this technique for the identification of metal pollutants in the Swan Lake sediment samples, collected by drilling cores. Plasmas were generated by focusing the radiation of Nd: YAG laser with an energy per pulse 13mJ and 4ns duration, wavelength of 532nm. The spectra of radiation from the plasmas of sediment were recorded with an Echelle spectrograph type coupled to an ICCD camera. The delay times were between 0.5μs and 7μs, while the gate width was of 2μs. To ensure the homogeneity of the plasmas, the sediment sample was placed in a positioning system of linear and rotary adjustment of smooth step synchronized with the trigger of the laser pulse. The registration of the spectra of the sediment to different times of delay, allowed to identify the lines prominent of the different elements present in the sample. The analysis of the Spectra allowed the identification of some elements in the sample as if, Ca, Na, Mg, and Al through the measurement of wavelengths of the prominent peaks.

  20. Technique of laser calibration for wavelength-modulation spectroscopy with application to proton exchange membrane fuel cell measurements.

    PubMed

    Sur, Ritobrata; Boucher, Thomas J; Renfro, Michael W; Cetegen, Baki M

    2010-01-01

    A diode laser sensor was developed for partial pressure and temperature measurements using a single water vapor transition. The Lorentzian half-width and line intensity of the transition were calibrated for conditions relevant to proton exchange membrane (PEM) fuel cell operation. Comparison of measured and simulated harmonics from wavelength-modulation spectroscopy is shown to yield accuracy of +/-2.5% in water vapor partial pressure and +/-3 degrees C in temperature despite the use of a single transition over a narrow range of temperatures. Collisional half-widths in air or hydrogen are measured so that calibrations can be applied to both anode and cathode channels of a PEM fuel cell. An in situ calibration of the nonlinear impact of modulation on laser wavelength is presented and used to improve the accuracy of the numerical simulation of the signal.

  1. Rapid identification of multiple supernumerary ring chromosomes with a new FISH technique.

    PubMed Central

    Mackie-Ogilvie, C; Waddle, K; Mandeville, J; Seller, M J; Docherty, Z

    1997-01-01

    Multiple supernumerary ring chromosomes are a rare cytogenetic finding which is poorly understood. With the introduction of FISH techniques, their chromosomal origin can now be defined clearly. The techniques described previously are complicated and time consuming. We report a new rapid technique which has been used to investigate two new cases. Multiple probes were hybridised to a single slide by means of marking the underside with a diamond pen to form a grid of squares, pipetting fixed cell suspension into the centre of each square, forming a rubber solution grid on the denatured, dehydrated slide following the lines on the underside, adding a mixture of probes into each square, and sealing the slide with a silicone rubber rim and a covering slide. The type of probe and the size, dimensions, and number of squares in the grid can be tailored to individual cases. The two new cases examined here are mosaic for three (case 1) and four (case 2) supernumerary ring chromosomes derived from different chromosomes. Normal cell lines were also present. The karyotypes were established as 47,XY,+r(4)/47,XY,+r(17)/.../48,XY,+r(17),+r(20)/ 49,XY,+r(4),+r(17),+r(20)/46,XY for case 1 and 47,XX,+r(4)/47,XX,+r(8)/47,XX,+r (10)/48,XX,+r(X),+r(4)/... /49,XX,+r(X),+r (8),+r(10)/46,XX for case 2. Our findings suggest that the ring chromosomes were formed during meiosis, perhaps involving complex rearrangements, resulting in a germ cell containing all markers, with subsequent loss of markers during cell division. Our second case also shows that the outcome is not invariably mental or physical handicap. Images PMID:9391885

  2. Characterization and source identification of hydrocarbons in water samples using multiple analytical techniques.

    PubMed

    Wang, Zhendi; Li, K; Fingas, M; Sigouin, L; Ménard, L

    2002-09-20

    This paper describes a case study in which multiple analytical techniques were used to identify and characterize trace petroleum-related hydrocarbons and other volatile organic compounds in groundwater samples collected in a bedrock aquifer exploited for drinking water purposes. The objective of the study was to confirm the presence of gasoline and other petroleum products or other volatile organic pollutants in those samples in order to assess the respective implication of each of the potentially responsible parties to the contamination of the aquifer. In addition, the degree of contamination at different depths in the aquifer was also of interest. The analytical techniques used for analyses of water samples included gas chromatography-mass spectrometry (GC-MS) and capillary GC with flame-ionization detection, solid-phase microextraction and headspace GC-MS techniques. Chemical characterization results revealed the following: (1) The hydrocarbons in sample A (near-surface groundwater, 0-5 m) were clearly of two types, one being gasoline and the other a heavy petroleum product. The significant distribution of five target petroleum-characteristic alkylkated polycyclic aromatic hydrocarbon homologues and biomarkers confirmed the presence of another heavy petroleum product. The concentrations of the TPHs (total petroleum hydrocarbons) and BTEX (collective name of benzene, toluene, ethylbenzene, and p-, m-, and o-xylenes) were determined to be 1070 and 155 microg/kg of water for sample A, respectively. (2) The deepest groundwater (sample B, collected at a depth ranging between 15 and 60 m) was also contaminated, but to a much lesser degree. The concentrations of the TPH and BTEX were determined to be only 130 and 2.6 microg/kg of water for sample B, respectively. (3) The presence of a variety of volatile chlorinated compounds to the groundwater was also clearly identified.

  3. Hyperspectral Imaging Techniques for Rapid Identification of Arabidopsis Mutants with Altered Leaf Pigment Status

    PubMed Central

    Matsuda, Osamu; Tanaka, Ayako; Fujita, Takao; Iba, Koh

    2012-01-01

    The spectral reflectance signature of living organisms provides information that closely reflects their physiological status. Because of its high potential for the estimation of geomorphic biological parameters, particularly of gross photosynthesis of plants, two-dimensional spectroscopy, via the use of hyperspectral instruments, has been widely used in remote sensing applications. In genetics research, in contrast, the reflectance phenotype has rarely been the subject of quantitative analysis; its potential for illuminating the pathway leading from the gene to phenotype remains largely unexplored. In this study, we employed hyperspectral imaging techniques to identify Arabidopsis mutants with altered leaf pigment status. The techniques are comprised of two modes; the first is referred to as the ‘targeted mode’ and the second as the ‘non-targeted mode’. The ‘targeted’ mode is aimed at visualizing individual concentrations and compositional parameters of leaf pigments based on reflectance indices (RIs) developed for Chls a and b, carotenoids and anthocyanins. The ‘non-targeted’ mode highlights differences in reflectance spectra of leaf samples relative to reference spectra from the wild-type leaves. Through the latter approach, three mutant lines with weak irregular reflectance phenotypes, that are hardly identifiable by simple observation, were isolated. Analysis of these and other mutants revealed that the RI-based targeted pigment estimation was robust at least against changes in trichome density, but was confounded by genetic defects in chloroplast photorelocation movement. Notwithstanding such a limitation, the techniques presented here provide rapid and high-sensitive means to identify genetic mechanisms that coordinate leaf pigment status with developmental stages and/or environmental stress conditions. PMID:22470059

  4. Techniques for improving the performance of a simplified electronic fuel controller with incremental actuation for small gas turbine engines

    NASA Astrophysics Data System (ADS)

    Georgantas, Antanios Ioannou

    1990-04-01

    Concepts are introduced which improve the performance of an inexpensive electronic fuel control unit for small gas turbine engines suitable for use in small aircraft and helicopters. A conventional hydromechanical fuel control unit is modified and adapted for digital electronic control. The conversion involves the replacement of the pneumatic computing and actuating mechanism with digital computation and incremental electronic actuation of a flow metering valve. A mathematical model of the unit is developed, implemented, and validated. The model is used for simulation and study of the system dynamics. Some new methods are applied in the design and development of a digital controller. An optimization scheme for tuning the controller is formulated and implemented experimentally. As a next step toward improvement of the simple electronic fuel controller, a concept of two electronic actuators, one operating the metering valve and the other a bypass valve, is introduced and investigated. Higher flexibility and faster transient response, as compared to the conventional system and the single actuator unit, are demonstrated. The possibility of a backup scheme in case of failure of one of two actuating mechanisms is also discussed.

  5. Novelty detection technique with SLV for identification of core properties in honeycombs and cellular solids

    NASA Astrophysics Data System (ADS)

    Scarpa, Fabrizio; Manson, Graeme; Ruzzene, M.

    2003-08-01

    This paper presents a Novelty-based detection technique to identify core material properties of honeycombs and cellular structures. A numerical model (FE) representing full scale and/or reduced size of the cellular solid is used to generate transmissibilities between topological points at cells in different locations, with a statistical Gaussian distribution of the core material property target variable. The numerical set of transmissibilities is then used in a Novelty detection framework to find Euclidean and Mahalanobis distances from analogous data from a point excitation experimental test carried out with SLV.

  6. Applications of data compression techniques in modal analysis for on-orbit system identification

    NASA Technical Reports Server (NTRS)

    Carlin, Robert A.; Saggio, Frank; Garcia, Ephrahim

    1992-01-01

    Data compression techniques have been investigated for use with modal analysis applications. A redundancy-reduction algorithm was used to compress frequency response functions (FRFs) in order to reduce the amount of disk space necessary to store the data and/or save time in processing it. Tests were performed for both single- and multiple-degree-of-freedom (SDOF and MDOF, respectively) systems, with varying amounts of noise. Analysis was done on both the compressed and uncompressed FRFs using an SDOF Nyquist curve fit as well as the Eigensystem Realization Algorithm. Significant savings were realized with minimal errors incurred by the compression process.

  7. Sensing and identification of carbon monoxide using carbon films fabricated by methane arc discharge decomposition technique

    PubMed Central

    2014-01-01

    Carbonaceous materials have recently received attention in electronic applications and measurement systems. In this work, we demonstrate the electrical behavior of carbon films fabricated by methane arc discharge decomposition technique. The current-voltage (I-V) characteristics of carbon films are investigated in the presence and absence of gas. The experiment reveals that the current passing through the carbon films increases when the concentration of CO2 gas is increased from 200 to 800 ppm. This phenomenon which is a result of conductance changes can be employed in sensing applications such as gas sensors. PMID:25177219

  8. Identification of Strategies to Facilitate Organ Donation among African Americans using the Nominal Group Technique

    PubMed Central

    Qu, Haiyan; Shewchuk, Richard; Mannon, Roslyn B.; Gaston, Robert; Segev, Dorry L.; Mannon, Elinor C.; Martin, Michelle Y.

    2015-01-01

    Background and objectives African Americans are disproportionately affected by ESRD, but few receive a living donor kidney transplant. Surveys assessing attitudes toward donation have shown that African Americans are less likely to express a willingness to donate their own organs. Studies aimed at understanding factors that may facilitate the willingness of African Americans to become organ donors are needed. Design, setting, participants, & measurements A novel formative research method was used (the nominal group technique) to identify and prioritize strategies for facilitating increases in organ donation among church-attending African Americans. Four nominal group technique panel interviews were convened (three community and one clergy). Each community panel represented a distinct local church; the clergy panel represented five distinct faith-based denominations. Before nominal group technique interviews, participants completed a questionnaire that assessed willingness to become a donor; 28 African-American adults (≥19 years old) participated in the study. Results In total, 66.7% of participants identified knowledge- or education-related strategies as most important strategies in facilitating willingness to become an organ donor, a view that was even more pronounced among clergy. Three of four nominal group technique panels rated a knowledge-based strategy as the most important and included strategies, such as information on donor involvement and donation-related risks; 29.6% of participants indicated that they disagreed with deceased donation, and 37% of participants disagreed with living donation. Community participants’ reservations about becoming an organ donor were similar for living (38.1%) and deceased (33.4%) donation; in contrast, clergy participants were more likely to express reservations about living donation (33.3% versus 16.7%). Conclusions These data indicate a greater opposition to living donation compared with donation after one’s death

  9. Identification of strategies to facilitate organ donation among African Americans using the nominal group technique.

    PubMed

    Locke, Jayme E; Qu, Haiyan; Shewchuk, Richard; Mannon, Roslyn B; Gaston, Robert; Segev, Dorry L; Mannon, Elinor C; Martin, Michelle Y

    2015-02-06

    African Americans are disproportionately affected by ESRD, but few receive a living donor kidney transplant. Surveys assessing attitudes toward donation have shown that African Americans are less likely to express a willingness to donate their own organs. Studies aimed at understanding factors that may facilitate the willingness of African Americans to become organ donors are needed. A novel formative research method was used (the nominal group technique) to identify and prioritize strategies for facilitating increases in organ donation among church-attending African Americans. Four nominal group technique panel interviews were convened (three community and one clergy). Each community panel represented a distinct local church; the clergy panel represented five distinct faith-based denominations. Before nominal group technique interviews, participants completed a questionnaire that assessed willingness to become a donor; 28 African-American adults (≥19 years old) participated in the study. In total, 66.7% of participants identified knowledge- or education-related strategies as most important strategies in facilitating willingness to become an organ donor, a view that was even more pronounced among clergy. Three of four nominal group technique panels rated a knowledge-based strategy as the most important and included strategies, such as information on donor involvement and donation-related risks; 29.6% of participants indicated that they disagreed with deceased donation, and 37% of participants disagreed with living donation. Community participants' reservations about becoming an organ donor were similar for living (38.1%) and deceased (33.4%) donation; in contrast, clergy participants were more likely to express reservations about living donation (33.3% versus 16.7%). These data indicate a greater opposition to living donation compared with donation after one's death among African Americans and suggest that improving knowledge about organ donation, particularly

  10. Identification of Plant Growth-Promoting Bacteria Using Titanium Dioxide Photocatalysis-Assisted Photoacoustic Technique

    NASA Astrophysics Data System (ADS)

    Gordillo-Delgado, F.; Marín, E.; Calderón, A.

    2013-09-01

    The effect of titanium dioxide photocatalysis against bacteria that are dangerous for human health has been investigated in the past, suggesting the possibility of using a specific behavior for each microorganism during this process for its discrimination. In this study, the behavior of some plants’ growth promoting bacteria ( Burkholderia unamae (Strain MTI 641), Acetobacter diazotrophicus (Strain PAl 5T), A. diazotrophicus (Strain CFN-Cf 52), and B. unamae (Strain TATl-371)) interacting with light and bactericidal titanium dioxide films have been analyzed using the photoacoustic technique. The monitoring of these interactions shows particular characteristics that could serve for identifying these species.

  11. Accurate in silico identification of protein succinylation sites using an iterative semi-supervised learning technique.

    PubMed

    Zhao, Xiaowei; Ning, Qiao; Chai, Haiting; Ma, Zhiqiang

    2015-06-07

    As a widespread type of protein post-translational modifications (PTMs), succinylation plays an important role in regulating protein conformation, function and physicochemical properties. Compared with the labor-intensive and time-consuming experimental approaches, computational predictions of succinylation sites are much desirable due to their convenient and fast speed. Currently, numerous computational models have been developed to identify PTMs sites through various types of two-class machine learning algorithms. These methods require both positive and negative samples for training. However, designation of the negative samples of PTMs was difficult and if it is not properly done can affect the performance of computational models dramatically. So that in this work, we implemented the first application of positive samples only learning (PSoL) algorithm to succinylation sites prediction problem, which was a special class of semi-supervised machine learning that used positive samples and unlabeled samples to train the model. Meanwhile, we proposed a novel succinylation sites computational predictor called SucPred (succinylation site predictor) by using multiple feature encoding schemes. Promising results were obtained by the SucPred predictor with an accuracy of 88.65% using 5-fold cross validation on the training dataset and an accuracy of 84.40% on the independent testing dataset, which demonstrated that the positive samples only learning algorithm presented here was particularly useful for identification of protein succinylation sites. Besides, the positive samples only learning algorithm can be applied to build predictors for other types of PTMs sites with ease. A web server for predicting succinylation sites was developed and was freely accessible at http://59.73.198.144:8088/SucPred/. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. A Combination of Receptor-Based Pharmacophore Modeling & QM Techniques for Identification of Human Chymase Inhibitors

    PubMed Central

    Arooj, Mahreen; Sakkiah, Sugunadevi; Kim, Songmi; Arulalapperumal, Venkatesh; Lee, Keun Woo

    2013-01-01

    Inhibition of chymase is likely to divulge therapeutic ways for the treatment of cardiovascular diseases, and fibrotic disorders. To find novel and potent chymase inhibitors and to provide a new idea for drug design, we used both ligand-based and structure-based methods to perform the virtual screening(VS) of commercially available databases. Different pharmacophore models generated from various crystal structures of enzyme may depict diverse inhibitor binding modes. Therefore, multiple pharmacophore-based approach is applied in this study. X-ray crystallographic data of chymase in complex with different inhibitors were used to generate four structure–based pharmacophore models. One ligand–based pharmacophore model was also developed from experimentally known inhibitors. After successful validation, all pharmacophore models were employed in database screening to retrieve hits with novel chemical scaffolds. Drug-like hit compounds were subjected to molecular docking using GOLD and AutoDock. Finally four structurally diverse compounds with high GOLD score and binding affinity for several crystal structures of chymase were selected as final hits. Identification of final hits by three different pharmacophore models necessitates the use of multiple pharmacophore-based approach in VS process. Quantum mechanical calculation is also conducted for analysis of electrostatic characteristics of compounds which illustrates their significant role in driving the inhibitor to adopt a suitable bioactive conformation oriented in the active site of enzyme. In general, this study is used as example to illustrate how multiple pharmacophore approach can be useful in identifying structurally diverse hits which may bind to all possible bioactive conformations available in the active site of enzyme. The strategy used in the current study could be appropriate to design drugs for other enzymes as well. PMID:23658661

  13. An empirical comparison of stock identification techniques applied to striped bass

    USGS Publications Warehouse

    Waldman, John R.; Richards, R. Anne; Schill, W. Bane; Wirgin, Isaac; Fabrizio, Mary C.

    1997-01-01

    Managers of migratory striped bass stocks that mix along the Atlantic coast of the USA require periodic estimates of the relative contributions of the individual stocks to coastal mixed- stock fisheries; however, to date, a standard approach has not been adopted. We compared the performances of alternative stock identification approaches, using samples taken from the same sets of fish. Reference (known) samples were collected from three Atlantic coast spawning systems: the Hudson River, Chesapeake Bay, and the Roanoke River. Striped bass of mixed-stock origin were collected from eastern Long Island, New York, and were used as test (unknown) samples. The approaches applied were discriminant analysis of morphometric data and of meristic data, logistic regression analysis of combined meristic and morphometric data, discriminant analysis of scale-shape features, discriminant analysis of immunoassay data, and mixed-stock analysis of mitochondrial DNA (mtDNA) data. Overall correct classification rates of reference samples ranged from 94% to 66% when just the Hudson and Chesapeake stocks were considered and were comparable when the Chesapeake and Roanoke stocks were grouped as the ''southern'' stock. When all three stocks were treated independently, correct classification rates ranged from 82% to 49%. Despite the moderate range in correct classification rates, bias due to misallocation was relatively low for all methods, suggesting that resulting stock composition estimates should be fairly accurate. However, relative contribution estimates for the mixed-stock sample varied widely (e.g., from 81% to 47% for the Hudson River stock, when only the Hudson River and Chesapeake Bay stocks were considered). Discrepancies may be related to the reliance by all of these approaches (except mtDNA) on phenotypic features. Our results support future use of either a morphometrics-based approach (among the phenotypic methods) or a genotypic approach based on mtDNA analysis. We further

  14. Increased situation awareness in major incidents-radio frequency identification (RFID) technique: a promising tool.

    PubMed

    Jokela, Jorma; Rådestad, Monica; Gryth, Dan; Nilsson, Helené; Rüter, Anders; Svensson, Leif; Harkke, Ville; Luoto, Markku; Castrén, Maaret

    2012-02-01

    In mass-casualty situations, communications and information management to improve situational awareness is a major challenge for responders. In this study, the feasibility of a prototype system that utilizes commercially available, low-cost components, including Radio Frequency Identification (RFID) and mobile phone technology, was tested in two simulated mass-casualty incidents. The feasibility and the direct benefits of the system were evaluated in two simulated mass-casualty situations: one in Finland involving a passenger ship accident resulting in multiple drowning/hypothermia patients, and another at a major airport in Sweden using an aircraft crash scenario. Both simulations involved multiple agencies and functioned as test settings for comparing the disaster management's situational awareness with and without using the RFID-based system. Triage documentation was done using both an RFID-based system, which automatically sent the data to the Medical Command, and a traditional method using paper triage tags. The situational awareness was measured by comparing the availability of up-to date information at different points in the care chain using both systems. Information regarding the numbers and status or triage classification of the casualties was available approximately one hour earlier using the RFID system compared to the data obtained using the traditional method. The tested prototype system was quick, stable, and easy to use, and proved to work seamlessly even in harsh field conditions. It surpassed the paper-based system in all respects except simplicity of use. It also improved the general view of the mass-casualty situations, and enhanced medical emergency readiness in a multi-organizational medical setting. The tested technology is feasible in a mass-casualty incident; further development and testing should take place.

  15. In situ measurement technique for simultaneous detection of K, KCl, and KOH vapors released during combustion of solid biomass fuel in a single particle reactor.

    PubMed

    Sorvajärvi, Tapio; DeMartini, Nikolai; Rossi, Jussi; Toivonen, Juha

    2014-01-01

    A quantitative and simultaneous measurement of K, KCl, and KOH vapors from a burning fuel sample combusted in a single particle reactor was performed using collinear photofragmentation and atomic absorption spectroscopy (CPFAAS) with a time resolution of 0.2 s. The previously presented CPFAAS technique was extended in this work to cover two consecutive fragmentation pulses for the photofragmentation of KCl and KOH. The spectral overlapping of the fragmentation spectra of KCl and KOH is discussed, and a linear equation system for the correction of the spectral interference is introduced. The detection limits for KCl, KOH, and K with the presented measurement arrangement and with 1 cm sample length were 0.5, 0.1, and 0.001 parts per million, respectively. The experimental setup was applied to analyze K, KCl, and KOH release from 10 mg spruce bark samples combusted at the temperatures of 850, 950, and 1050 °C with 10% of O2. The combustion experiments provided data on the form of K vapors and their release during different combustion phases and at different temperatures. The measured release histories agreed with earlier studies of K release. The simultaneous direct measurement of atomic K, KCl, and KOH will help in the impact of both the form of K in the biomass and fuel variables, such as particle size, on the release of K from biomass fuels.

  16. Statistical signal processing technique for identification of different infected sites of the diseased lungs.

    PubMed

    Abbas, Ali

    2012-06-01

    Accurate Diagnosis of lung disease depends on understanding the sounds emanating from lung and its location. Lung sounds are of significance as they supply precise and important information on the health of the respiratory system. In addition, correct interpretation of breath sounds depends on a systematic approach to auscultation; it also requires the ability to describe the location of abnormal finding in relation to bony structures and anatomic landmark lines. Lungs consist of number of lobes; each lung lobe is further subdivided into smaller segments. These segments are attached to each other. Knowledge of the position of the lung segments is useful and important during the auscultation and diagnosis of the lung diseases. Usually the medical doctors give the location of the infection a segmental position reference. Breath sounds are auscultated over the anterior chest wall surface, the lateral chest wall surfaces, and posterior chest wall surface. Adventitious sounds from different location can be detected. It is common to seek confirmation of the sound detection and its location using invasive and potentially harmful imaging diagnosis techniques like x-rays. To overcome this limitation and for fast, reliable, accurate, and inexpensive diagnose a technique is developed in this research for identifying the location of infection through a computerized auscultation system.

  17. Identification of Viable Helicobacter pylori in Drinking Water Supplies by Cultural and Molecular Techniques.

    PubMed

    Santiago, Paula; Moreno, Yolanda; Ferrús, M Antonía

    2015-08-01

    Helicobacter pylori is one of the most common causes of chronic bacterial infection in humans, directly related to peptic ulcer and gastric cancer. It has been suggested that H. pylori can be acquired through different transmission routes, including water. In this study, culture and qPCR were used to detect and identify the presence of H. pylori in drinking water. Furthermore, the combined techniques PMA-qPCR and DVC-FISH were applied for detection of viable cells of H. pylori. Among 24 drinking water samples, 16 samples were positive for the presence of H. pylori, but viable cells were only detected in six samples. Characteristic colonies, covered by a mass of bacterial unspecific growth, were observed on selective agar plates from an only sample, after enrichment. The mixed culture was submitted to DVC-FISH and qPCR analysis, followed by sequencing of the amplicons. Molecular techniques confirmed the growth of H. pylori on the agar plate. Our results demonstrate for the first time that H. pylori can survive and be potentially infective in drinking water, showing that water distribution systems could be a potential route for H. pylori transmission. © 2015 John Wiley & Sons Ltd.

  18. Rapid screening and species identification of E. coli, Listeria, and Salmonella by SERS technique

    NASA Astrophysics Data System (ADS)

    Liu, Yongliang; Chao, Kuanglin; Kim, Moon S.; Nou, Xiangwu

    2008-04-01

    Techniques for routine and rapid screening of the presence of foodborne bacteria are needed, and this study reports the feasibility of citrate-reduced silver colloidal SERS for identifying E. coli, Listeria, and Salmonella. Relative standard deviation (RSD) of SERS spectra from silver colloidal suspensions and ratios of P-O SERS peaks from small molecule (K3PO4) were used to assess the reproducibility, stability, and binding effectiveness of citrate-reduced silver colloids over batch and storage process. The results suggested the reproducibility of silver colloids over batch process and also stability and consistent binding effectiveness over 60-day storage period. Notably, although silver colloidal nanoparticles were stable for at least 90 days, their binding effectiveness began to decrease slightly after 60-day storage, with a binding reduction of about 12% at 90th day. Colloidal silver SERS, as demonstrated here, could be an important alternative technique in the rapid and simultaneous screening of the presence of three most outbreak bacteria due to the exclusive biomarkers, label-free and easy sampling attribute.

  19. Identification of novel antibacterial peptides isolated from a commercially available casein hydrolysate by autofocusing technique.

    PubMed

    Elbarbary, Hend A; Abdou, Adham M; Nakamura, Yasushi; Park, Eun Young; Mohamed, Hamdi A; Sato, Kenji

    2012-01-01

    Autofocusing, as a simple and safe technique, was used to fractionate casein hydrolysate based on the amphoteric nature of its peptides. The antibacterial activity of casein hydrolysate and its autofocusing fractions (A1-10) was examined against Escherichia coli and Bacillus subtilis. The basic fraction A9 exhibited the highest activity with minimum inhibitory concentration (MIC) of 150 μg/mL, whereas casein hydrolysate showed MIC values ranging from 2000 to 8000 μg/mL. The antibacterial peptides in A9 were purified by using a series of size exclusion and reversed phase chromatographies. Three peptides exhibited the most potent antibacterial activity with MIC values ranging from 12.5 to 100 μg/mL. These peptides were generated from α(s2)-casein, α(s1)-casein, and κ-casein and identified as K165 KISQRYQKFALPQYLKTVYQHQK188, I6KHQGLPQEV15, and T136EAVESTVATL146, respectively. Therefore, the results revealed that casein hydrolysate had potent antibacterial peptides that could be isolated by autofocusing technique.

  20. Comparative analysis of system identification techniques for nonlinear modeling of the neuron-microelectrode junction.

    PubMed

    Khan, Saad Ahmad; Thakore, Vaibhav; Behal, Aman; Bölöni, Ladislau; Hickman, James J

    2013-03-01

    Applications of non-invasive neuroelectronic interfacing in the fields of whole-cell biosensing, biological computation and neural prosthetic devices depend critically on an efficient decoding and processing of information retrieved from a neuron-electrode junction. This necessitates development of mathematical models of the neuron-electrode interface that realistically represent the extracellular signals recorded at the neuroelectronic junction without being computationally expensive. Extracellular signals recorded using planar microelectrode or field effect transistor arrays have, until now, primarily been represented using linear equivalent circuit models that fail to reproduce the correct amplitude and shape of the signals recorded at the neuron-microelectrode interface. In this paper, to explore viable alternatives for a computationally inexpensive and efficient modeling of the neuron-electrode junction, input-output data from the neuron-electrode junction is modeled using a parametric Wiener model and a Nonlinear Auto-Regressive network with eXogenous input trained using a dynamic Neural Network model (NARX-NN model). Results corresponding to a validation dataset from these models are then employed to compare and contrast the computational complexity and efficiency of the aforementioned modeling techniques with the Lee-Schetzen technique of cross-correlation for estimating a nonlinear dynamic model of the neuroelectronic junction.

  1. An interlaboratory comparison of nanosilver characterisation and hazard identification: Harmonising techniques for high quality data.

    PubMed

    Jemec, Anita; Kahru, Anne; Potthoff, Annegret; Drobne, Damjana; Heinlaan, Margit; Böhme, Steffi; Geppert, Mark; Novak, Sara; Schirmer, Kristin; Rekulapally, Rohit; Singh, Shashi; Aruoja, Villem; Sihtmäe, Mariliis; Juganson, Katre; Käkinen, Aleksandr; Kühnel, Dana

    2016-02-01

    metal ions species in each toxicity test medium at a range of concentrations, and (ii) including soluble metal salt control both in toxicity testing as well as in Ag(+)-species measurements. The present study is among the first nanomaterial interlaboratory comparison studies with the aim to improve the hazard identification testing protocols. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. miRNAs target databases: developmental methods and target identification techniques with functional annotations.

    PubMed

    Singh, Nagendra Kumar

    2017-06-01

    the need of more intelligent computational improvement for the miRNA target identification, their functional annotations and datasbase development.

  3. Identification techniques for highly boosted W bosons that decay into hadrons

    SciTech Connect

    Khachatryan, Vardan

    2014-12-02

    In searches for new physics in the energy regime of the LHC, it is becoming increasingly important to distinguish single-jet objects that originate from the merging of the decay products of W bosons produced with high transverse momenta from jets initiated by single partons. Algorithms are defined to identify such W jets for different signals of interest, using techniques that are also applicable to other decays of bosons to hadrons that result in a single jet, such as those from highly boosted Z and Higgs bosons. The efficiency for tagging W jets is measured in data collected with the CMS detector at a center-of-mass energy of 8 TeV, corresponding to an integrated luminosity of 19.7 fb-1. The performance of W tagging in data is compared with predictions from several Monte Carlo simulators.

  4. Identification techniques for highly boosted W bosons that decay into hadrons

    DOE PAGES

    Khachatryan, Vardan

    2014-12-02

    In searches for new physics in the energy regime of the LHC, it is becoming increasingly important to distinguish single-jet objects that originate from the merging of the decay products of W bosons produced with high transverse momenta from jets initiated by single partons. Algorithms are defined to identify such W jets for different signals of interest, using techniques that are also applicable to other decays of bosons to hadrons that result in a single jet, such as those from highly boosted Z and Higgs bosons. The efficiency for tagging W jets is measured in data collected with the CMSmore » detector at a center-of-mass energy of 8 TeV, corresponding to an integrated luminosity of 19.7 fb-1. The performance of W tagging in data is compared with predictions from several Monte Carlo simulators.« less

  5. A noise source identification technique using an inverse Helmholtz integral equation method

    NASA Technical Reports Server (NTRS)

    Gardner, B. K.; Bernhard, R. J.

    1988-01-01

    A technique is developed which utilizes numerical models and field pressure information to characterize acoustic fields and identify acoustic sources. The numerical models are based on boundary element numerical procedures. Either pressure, velocity, or passive boundary conditions, in the form of impedance boundary conditions, may be imposed on the numerical model. Alternatively, if no boundary information is known, a boundary condition can be left unspecified. Field pressure data may be specified to overdetermine the numerical problem. The problem is solved numerically for the complete sound field from which the acoustic sources may be determined. The model can then be used to idenfify acoustic intensity paths in the field. The solution can be modified and the model used to evaluate design alternatives. In this investigation the method is tested analytically and verified. In addition, the sensitivity of the method to random and bias error in the input data is demonstrated.

  6. First identification of excited states in Ba117 using the recoil- β -delayed proton tagging technique

    DOE PAGES

    Ding, B.; Liu, Z.; Seweryniak, D.; ...

    2017-02-01

    Excited states have been observed for the first time in the neutron-deficient nucleus 117Ba using the recoil-decay tagging technique following the heavy-ion fusion-evaporation reaction 64Zn(58Ni, 2p3n)117Ba. Prompt γ rays have been assigned to 117Ba through correlations with β-delayed protons following the decay of A = 117 recoils. Through the analysis of the γ–γ coincidence relationships, a high-spin level scheme consisting of two bands has been established in 117Ba. Based on the systematics of the level spacings in the neighboring barium isotopes, the two bands are proposed to have νh11/2[532]5/2– and νd5/2[413]5/2+ configurations, respectively. Lastly, the observed band-crossing properties are interpretedmore » in the framework of cranked shell model.« less

  7. The value of the Lugol's iodine staining technique for the identification of vaginal epithelial cells.

    PubMed

    Hausmann, R; Pregler, C; Schellmann, B

    1994-01-01

    This paper reports on the specificity of the Lugol's iodine staining technique for the detection of vaginal epithelial cells on penile swabs. Air-dried swabs taken from the glans of the penis of 153 hospital patients and from 50 healthy volunteers, whose last sexual intercourse had taken place at least 5 days previously, were stained with Lugol's solution. Glycogenated cells were found in more than 50% of the cases studied, even in healthy volunteers without urethritis. In almost all of these cases the smear contained at least a few polygonal nucleated epithelial cells showing an unequivocal positive Lugol reaction. These cells cannot be distinguished from superficial or intermediate vaginal cells, by cytomorphology or staining. Urinary tract infections had no influence on the glycogen content of male squamous epithelial cells. On the basis of these results the Lugol's method can no longer be assumed to prove the presence of vaginal cells in penile swabs.

  8. TL and ESR based identification of gamma-irradiated frozen fish using different hydrolysis techniques

    NASA Astrophysics Data System (ADS)

    Ahn, Jae-Jun; Akram, Kashif; Shahbaz, Hafiz Muhammad; Kwon, Joong-Ho

    2014-12-01

    Frozen fish fillets (walleye Pollack and Japanese Spanish mackerel) were selected as samples for irradiation (0-10 kGy) detection trials using different hydrolysis methods. Photostimulated luminescence (PSL)-based screening analysis for gamma-irradiated frozen fillets showed low sensitivity due to limited silicate mineral contents on the samples. Same limitations were found in the thermoluminescence (TL) analysis on mineral samples isolated by density separation method. However, acid (HCl) and alkali (KOH) hydrolysis methods were effective in getting enough minerals to carry out TL analysis, which was reconfirmed through the normalization step by calculating the TL ratios (TL1/TL2). For improved electron spin resonance (ESR) analysis, alkali and enzyme (alcalase) hydrolysis methods were compared in separating minute-bone fractions. The enzymatic method provided more clear radiation-specific hydroxyapatite radicals than that of the alkaline method. Different hydrolysis methods could extend the application of TL and ESR techniques in identifying the irradiation history of frozen fish fillets.

  9. Identification criteria of the rare multi-flagellate Lophomonas blattarum: comparison of different staining techniques.

    PubMed

    Alam-Eldin, Yosra Hussein; Abdulaziz, Amany Mamdouh

    2015-09-01

    Bronchopulmonary lophomoniasis (BPL) is an emerging disease of potential importance. BPL is presented by non-specific clinical picture and is usually accompanied by immunosuppression. Culture of Lophomonas blattarum is difficult and its molecular diagnosis has not yet been developed. Therefore, microscopic examination of respiratory samples, e.g., bronchoalveolar lavage (BAL) or sputum, is the mainstay of BPL diagnosis. Creola bodies and ciliocytophthoria are two forms of bronchial cells which occur in chest diseases with non-specific clinical picture like that of BPL. Both forms could be misrecognized as multi-flagellates because of their motile cilia in the wet mounts and due to shape variability of L. blattarum in stained smears. The aim of the study is to compare different staining techniques for visualizing L. blattarum to improve the recognition and diagnosis of BPL, to distinguish respiratory epithelial cells from L. blattarum and to decide which stain is recommended in suspected cases of BPL. BAL samples from patients which contain L. blattarum, creola bodies, and ciliocytophthoria were collected then wet mounts were examined. The BAL samples were also stained by Papanicolaou (PAP), Giemsa, hematoxylin and eosin (H & E), trichrome, Gram, and Diff-Quik (DQ) stains. The different staining techniques were compared regarding the stain quality. In wet mounts, the ciliary movement was coordinate and synchronous while the flagellar movement was wavy and leaded to active swimming of L. blattarum. In stained slides, bronchial cells were characterized by the presence of basal nucleus and the terminal bar from which the cilia arise. Trichrome was the best stain in demonstration of cellular details of L. blattarum. H & E, PAP, and Giemsa stains showed good quality of stains. Gram and DQ stains showed only pale hues of L. blattarum. We recommended adding Wheatley's trichrome staining to the differential diagnosis workup of cases of non-specific chest infections

  10. Wafer hot spot identification through advanced photomask characterization techniques: part 2

    NASA Astrophysics Data System (ADS)

    Choi, Yohan; Green, Michael; Cho, Young; Ham, Young; Lin, Howard; Lan, Andy; Yang, Richer; Lung, Mike

    2017-03-01

    Historically, 1D metrics such as Mean to Target (MTT) and CD Uniformity (CDU) have been adequate for mask end users to evaluate and predict the mask impact on the wafer process. However, the wafer lithographer's process margin is shrinking at advanced nodes to a point that classical mask CD metrics are no longer adequate to gauge the mask contribution to wafer process error. For example, wafer CDU error at advanced nodes is impacted by mask factors such as 3-dimensional (3D) effects and mask pattern fidelity on sub-resolution assist features (SRAFs) used in Optical Proximity Correction (OPC) models of ever-increasing complexity. To overcome the limitation of 1D metrics, there are numerous on-going industry efforts to better define wafer-predictive metrics through both standard mask metrology and aerial CD methods. Even with these improvements, the industry continues to struggle to define useful correlative metrics that link the mask to final device performance. In part 1 of this work, we utilized advanced mask pattern characterization techniques to extract potential hot spots on the mask and link them, theoretically, to issues with final wafer performance. In this paper, part 2, we complete the work by verifying these techniques at wafer level. The test vehicle (TV) that was used for hot spot detection on the mask in part 1 will be used to expose wafers. The results will be used to verify the mask-level predictions. Finally, wafer performance with predicted and verified mask/wafer condition will be shown as the result of advanced mask characterization. The goal is to maximize mask end user yield through mask-wafer technology harmonization. This harmonization will provide the necessary feedback to determine optimum design, mask specifications, and mask-making conditions for optimal wafer process margin.

  11. A new method for the identification and quantification of magnetite-maghemite mixture using conventional X-ray diffraction technique.

    PubMed

    Kim, Wonbaek; Suh, Chang-Yul; Cho, Sung-Wook; Roh, Ki-Min; Kwon, Hanjung; Song, Kyungsun; Shon, In-Jin

    2012-05-30

    The electrical explosion of Fe wire in air produced nanoparticles containing the binary mixture of magnetite (Fe(3)O(4)) and maghemite (γ-Fe(2)O(3)). The phase identification of magnetite and maghemite by the conventional X-ray diffraction method is not a simple matter because both have the same cubic structure and their lattice parameters are almost identical. Here, we propose a convenient method to assess the presence of magnetite-maghemite mixture and to further quantify its phase composition using the conventional peak deconvolution technique. A careful step scan around the high-angle peaks as (511) and (440) revealed the clear doublets indicative of the mixture phases. The quantitative analysis of the mixture phase was carried out by constructing a calibration curve using the pure magnetite and maghemite powders commercially available. The correlation coefficients, R(2), for magnetite-maghemite mixture was 0.9941. According to the method, the iron oxide nanoparticles prepared by the wire explosion in this study was calculated to contain 55.8 wt.% maghemite and 44.2 wt.% magnetite. We believe that the proposed method would be a convenient tool for the study of the magnetite-maghemite mixture which otherwise requires highly sophisticated equipments and techniques. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Nuclear fuels status

    NASA Technical Reports Server (NTRS)

    Kania, Michael

    1991-01-01

    A discussion on coated particle fuel performance from a modular High Temperature Gas Reactor (HTGR) is presented along with experimental results. The following topics are covered: (1) the coated particle fuel concept; (2) the functional requirements; (3) performance limiting mechanisms; (4) fuel performance; and (5) methods/techniques for characterizing performance.

  13. Analysis of Culture-Dependent versus Culture-Independent Techniques for Identification of Bacteria in Clinically Obtained Bronchoalveolar Lavage Fluid

    PubMed Central

    Dickson, Robert P.; Erb-Downward, John R.; Prescott, Hallie C.; Martinez, Fernando J.; Curtis, Jeffrey L.; Lama, Vibha N.

    2014-01-01

    The diagnosis and management of pneumonia are limited by the use of culture-based techniques of microbial identification, which may fail to identify unculturable, fastidious, and metabolically active viable but unculturable bacteria. Novel high-throughput culture-independent techniques hold promise but have not been systematically compared to conventional culture. We analyzed 46 clinically obtained bronchoalveolar lavage (BAL) fluid specimens from symptomatic and asymptomatic lung transplant recipients both by culture (using a clinical microbiology laboratory protocol) and by bacterial 16S rRNA gene pyrosequencing. Bacteria were identified in 44 of 46 (95.7%) BAL fluid specimens by culture-independent sequencing, significantly more than the number of specimens in which bacteria were detected (37 of 46, 80.4%, P ≤ 0.05) or “pathogen” species reported (18 of 46, 39.1%, P ≤ 0.0001) via culture. Identification of bacteria by culture was positively associated with culture-independent indices of infection (total bacterial DNA burden and low bacterial community diversity) (P ≤ 0.01). In BAL fluid specimens with no culture growth, the amount of bacterial DNA was greater than that in reagent and rinse controls, and communities were markedly dominated by select Gammaproteobacteria, notably Escherichia species and Pseudomonas fluorescens. Culture growth above the threshold of 104 CFU/ml was correlated with increased bacterial DNA burden (P < 0.01), decreased community diversity (P < 0.05), and increased relative abundance of Pseudomonas aeruginosa (P < 0.001). We present two case studies in which culture-independent techniques identified a respiratory pathogen missed by culture and clarified whether a cultured “oral flora” species represented a state of acute infection. In summary, we found that bacterial culture of BAL fluid is largely effective in discriminating acute infection from its absence and identified some specific limitations of BAL fluid culture in

  14. Analysis of culture-dependent versus culture-independent techniques for identification of bacteria in clinically obtained bronchoalveolar lavage fluid.

    PubMed

    Dickson, Robert P; Erb-Downward, John R; Prescott, Hallie C; Martinez, Fernando J; Curtis, Jeffrey L; Lama, Vibha N; Huffnagle, Gary B

    2014-10-01

    The diagnosis and management of pneumonia are limited by the use of culture-based techniques of microbial identification, which may fail to identify unculturable, fastidious, and metabolically active viable but unculturable bacteria. Novel high-throughput culture-independent techniques hold promise but have not been systematically compared to conventional culture. We analyzed 46 clinically obtained bronchoalveolar lavage (BAL) fluid specimens from symptomatic and asymptomatic lung transplant recipients both by culture (using a clinical microbiology laboratory protocol) and by bacterial 16S rRNA gene pyrosequencing. Bacteria were identified in 44 of 46 (95.7%) BAL fluid specimens by culture-independent sequencing, significantly more than the number of specimens in which bacteria were detected (37 of 46, 80.4%, P ≤ 0.05) or "pathogen" species reported (18 of 46, 39.1%, P ≤ 0.0001) via culture. Identification of bacteria by culture was positively associated with culture-independent indices of infection (total bacterial DNA burden and low bacterial community diversity) (P ≤ 0.01). In BAL fluid specimens with no culture growth, the amount of bacterial DNA was greater than that in reagent and rinse controls, and communities were markedly dominated by select Gammaproteobacteria, notably Escherichia species and Pseudomonas fluorescens. Culture growth above the threshold of 10(4) CFU/ml was correlated with increased bacterial DNA burden (P < 0.01), decreased community diversity (P < 0.05), and increased relative abundance of Pseudomonas aeruginosa (P < 0.001). We present two case studies in which culture-independent techniques identified a respiratory pathogen missed by culture and clarified whether a cultured "oral flora" species represented a state of acute infection. In summary, we found that bacterial culture of BAL fluid is largely effective in discriminating acute infection from its absence and identified some specific limitations of BAL fluid culture in the

  15. Neutron analysis of spent fuel storage installation using parallel computing and advance discrete ordinates and Monte Carlo techniques.

    PubMed

    Shedlock, Daniel; Haghighat, Alireza

    2005-01-01

    In the United States, the Nuclear Waste Policy Act of 1982 mandated centralised storage of spent nuclear fuel by 1988. However, the Yucca Mountain project is currently scheduled to start accepting spent nuclear fuel in 2010. Since many nuclear power plants were only designed for -10 y of spent fuel pool storage, > 35 plants have been forced into alternate means of spent fuel storage. In order to continue operation and make room in spent fuel pools, nuclear generators are turning towards independent spent fuel storage installations (ISFSIs). Typical vertical concrete ISFSIs are -6.1 m high and 3.3 m in diameter. The inherently large system, and the presence of thick concrete shields result in difficulties for both Monte Carlo (MC) and discrete ordinates (SN) calculations. MC calculations require significant variance reduction and multiple runs to obtain a detailed dose distribution. SN models need a large number of spatial meshes to accurately model the geometry and high quadrature orders to reduce ray effects, therefore, requiring significant amounts of computer memory and time. The use of various differencing schemes is needed to account for radial heterogeneity in material cross sections and densities. Two P3, S12, discrete ordinate, PENTRAN (parallel environment neutral-particle TRANsport) models were analysed and different MC models compared. A multigroup MCNP model was developed for direct comparison to the SN models. The biased A3MCNP (automated adjoint accelerated MCNP) and unbiased (MCNP) continuous energy MC models were developed to assess the adequacy of the CASK multigroup (22 neutron, 18 gamma) cross sections. The PENTRAN SN results are in close agreement (5%) with the multigroup MC results; however, they differ by -20-30% from the continuous-energy MC predictions. This large difference can be attributed to the expected difference between multigroup and continuous energy cross sections, and the fact that the CASK library is based on the old ENDF

  16. Application of adaptive neuro-fuzzy inference system techniques and artificial neural networks to predict solid oxide fuel cell performance in residential microgeneration installation

    NASA Astrophysics Data System (ADS)

    Entchev, Evgueniy; Yang, Libing

    This study applies adaptive neuro-fuzzy inference system (ANFIS) techniques and artificial neural network (ANN) to predict solid oxide fuel cell (SOFC) performance while supplying both heat and power to a residence. A microgeneration 5 kW el SOFC system was installed at the Canadian Centre for Housing Technology (CCHT), integrated with existing mechanical systems and connected in parallel to the grid. SOFC performance data were collected during the winter heating season and used for training of both ANN and ANFIS models. The ANN model was built on back propagation algorithm as for ANFIS model a combination of least squares method and back propagation gradient decent method were developed and applied. Both models were trained with experimental data and used to predict selective SOFC performance parameters such as fuel cell stack current, stack voltage, etc. The study revealed that both ANN and ANFIS models' predictions agreed well with variety of experimental data sets representing steady-state, start-up and shut-down operations of the SOFC system. The initial data set was subjected to detailed sensitivity analysis and statistically insignificant parameters were excluded from the training set. As a result, significant reduction of computational time was achieved without affecting models' accuracy. The study showed that adaptive models can be applied with confidence during the design process and for performance optimization of existing and newly developed solid oxide fuel cell systems. It demonstrated that by using ANN and ANFIS techniques SOFC microgeneration system's performance could be modelled with minimum time demand and with a high degree of accuracy.

  17. Overview of tracer techniques in studies of material erosion, re-deposition and fuel inventory in tokamaks

    NASA Astrophysics Data System (ADS)

    Rubel, M. J.; Coad, J. P.; Stenström, K.; Wienhold, P.; Likonen, J.; Matthews, G. F.; Philipps, V.

    2004-08-01

    C-13 labeled methane and rhenium-boron coated plates were used at the JET tokamak as tracers for studies of the material transport, its erosion and re-deposition. Experimental procedures are described. The results are discussed in terms of processes underlying the material transport and the change of morphology of targets exposed to the plasma: physical sputtering, chemical erosion, prompt re-deposition. The influence of wall materials on fuel inventory is also addressed. C-14 measurements in the TEXTOR tokamak are presented and possibilities of using 14C in carbon migration studies are considered.

  18. A model identification technique to characterize the low frequency behaviour of surrogate explosive materials

    NASA Astrophysics Data System (ADS)

    Paripovic, Jelena; Davies, Patricia

    2016-09-01

    The mechanical response of energetic materials, especially those used in improvised explosive devices, is of great interest to improve understanding of how mechanical excitations may lead to improved detection or detonation. The materials are comprised of crystals embedded into a binder. Microstructural modelling can give insight into the interactions between the binder and the crystals and thus the mechanisms that may lead to material heating and but there needs to be validation of these models and they also require estimates of constituent material properties. Addressing these issues, nonlinear viscoelastic models of the low frequency behavior of a surrogate material-mass system undergoing base excitation have been constructed, and experimental data have been collected and used to estimate the order of components in the system model and the parameters in the model. The estimation technique is described and examples of its application to both simulated and experimental data are given. From the estimated system model the material properties are extracted. Material properties are estimated for a variety of materials and the effect of aging on the estimated material properties is shown.

  19. Fault identification using multidisciplinary techniques at the Mars/Uranus Station antenna sites

    NASA Technical Reports Server (NTRS)

    Santo, D. S.; Schluter, M. B.; Shlemon, R. J.

    1992-01-01

    A fault investigation was performed at the Mars and Uranus antenna sites at the Goldstone Deep Space Communications Complex in the Mojave desert. The Mars/Uranus Station consists of two large-diameter reflector antennas used for communication and control of deep-space probes and other missions. The investigation included interpretation of Landsat thematic mapper scenes, side-looking airborne radar transparencies, and both color-infrared and black-and-white aerial photography. Four photolineaments suggestive of previously undocumented faults were identified. Three generally discrete morphostratigraphic alluvial-fan deposits were also recognized and dated using geomorphic and soil stratigraphic techniques. Fourteen trenches were excavated across the four lineaments; the trenches show that three of the photolineaments coincide with faults. The last displacement of two of the faults occurred between about 12,000 and 35,000 years ago. The third fault was judged to be older than 12,000 years before present (ybp), although uncertainty remains. None of the surface traces of the three faults crosses under existing antennas or structures; however, their potential activity necessitates appropriate seismic retrofit designs and loss-prevention measures to mitigate potential earthquake damage to facilities and structures.

  20. Development of advanced techniques for identification of flow stress and friction parameters for metal forming analysis

    NASA Astrophysics Data System (ADS)

    Cho, Hyunjoong

    The accuracy of process simulation in metal forming by finite element method depends on the accuracy of flow stress data and friction value that are input to FEM programs. Therefore, it is essential that these input values are determined using reliable tests and evaluation methods. This study presents the development of inverse analysis methodology and its application to determine flow stress data of bulk and sheet materials at room and elevated temperatures. The inverse problem is defined as the minimization of the differences between the experimental measurements and the corresponding FEM predictions. Rigid-viscoplastic FEM is used to analyze the metal flow while a numerical optimization algorithm adjusts the material parameters used in the simulation until the calculated response matches the measured data within a specified tolerance. The use of the developed inverse analysis methodology has been demonstrated by applying it to the selected reference rheological tests; cylinder compression test, ring compression test, instrumented indentation test, modified limiting dome height test, and sheet hydraulic bulge test. Furthermore, using the determined material property data, full 3-D finite element simulation models, as examples of industrial applications for orbital forming and thermoforming processes have been developed for reliable process simulation. As results of this study, it was shown that the developed inverse analysis methodology could identify both the material parameters and friction factors from one set of tests, simultaneously. Therefore, this technique can offer a systematic and cost effective way for determining material property data for simulation of metal forming processes.