Science.gov

Sample records for fuel identification techniques

  1. Microorganism identification technique

    SciTech Connect

    Sillman, R. E.

    1985-07-02

    An identification technique for micro-organisms in which a dilute solution of a culture medium containing an unknown micro-organism has added thereto an emissive agent such as a radioactive amino acid to produce a mix of emissive products that depends on the metabolic mechanism of the micro-organism. After a predetermined incubation period, the reaction is arrested and the solution layered onto a gel plate where it is subjected to electrophoresis. The plate is then autoradiographed by exposing the gel to a sensitive photographic film for a period sufficient to produce thereon a characteristic band pattern functioning as an identifier for the micro-organism. Identification may be effected by comparing the identifier for the unknown with a collection of identifiers for known micro-organisms to find a match with one of these known identifiers. The comparison is preferably carried out by scanning the unknown identifier to produce a signal which is compared with signals representing known identifiers stored in a computer which, when a match is found, yields identification data. Alternatively, the emissive products, after separation, may be detected by direct scanning to provide an identifier signal for computer processing.

  2. Identification of failed fuel element

    DOEpatents

    Fryer, Richard M.; Matlock, Robert G.

    1976-06-22

    A passive fission product gas trap is provided in the upper portion of each fuel subassembly in a nuclear reactor. The gas trap consists of an inverted funnel of less diameter than the subassembly having a valve at the apex thereof. An actuating rod extends upwardly from the valve through the subassembly to a point where it can be contacted by the fuel handling mechanism for the reactor. Interrogation of the subassembly for the presence of fission products is accomplished by lowering the fuel handling machine onto the subassembly to press down on the actuating rod and open the valve.

  3. Identification to a breached fuel pin in the IEM cell

    SciTech Connect

    McGuinness, P.W.; Kalk, J.J.; Hicks, D.F.

    1987-01-01

    Novel methods were successfully employed to identify one breached fuel pin in a 217-pin fuel assembly. The assembly was an experiment that had been irradiated at the Fast Flux Test Facility (FFTF), an experimental liquid-metal reactor operated by Westinghouse Hanford Company for the US Dept. of Energy. A fuel assembly known to contain breached fuel pins was removed from the sodium-cooled FFTF reactor in November 1984. Later, this assembly was brought into the FFTF's Interim Examination and Maintenance (IEM) cell to be disassembled and, for the first time ever at FFTF, to identify a breached fuel pin. The synergistic evaluation of the four different verification techniques - visual examination, cladding swipe activity, wash water radiochemistry, and pin weight - provided rapid and positive identification. The capability to perform future detective work of this kind has been conclusively demonstrated.

  4. Used Fuel Cask Identification through Neutron Profile

    SciTech Connect

    Rauch, Eric Benton

    2015-11-20

    Currently, most spent fuel is stored near reactors. An interim consolidated fuel storage facility would receive fuel from multiple sites and store it in casks on site for decades. For successful operation of such a facility there is need for a way to restore continuity of knowledge if lost as well as a method that will indicate state of fuel inside the cask. Used nuclear fuel is identifiable by its radiation emission, both gamma and neutron. Neutron emission from fission products, multiplication from remaining fissile material, and the unique distribution of both in each cask produce a unique neutron signature. If two signatures taken at different times do not match, either changes within the fuel content or misidentification of a cask occurred. It was found that identification of cask loadings works well through the profile of emitted neutrons in simulated real casks. Even casks with similar overall neutron emission or average counts around the circumference can be distinguished from each other by analyzing the profile. In conclusion, (1) identification of unaltered casks through neutron signature profile is viable; (2) collecting the profile provides insight to the condition and intactness of the fuel stored inside the cask; and (3) the signature profile is stable over time.

  5. Optical fuel pin scanner. [Patent application; for reading identifications

    DOEpatents

    Kirchner, T.L.; Powers, H.G.

    1980-12-09

    This patent relates to an optical identification system developed for post-irradiation disassembly and analysis of fuel bundle assemblies. The apparatus is designed to be lowered onto a stationary fuel pin to read identification numbers or letters imprinted on the circumference of the top fuel pin and cap. (DLC)

  6. Viscosity Meaurement Technique for Metal Fuels

    SciTech Connect

    Ban, Heng; Kennedy, Rory

    2015-02-09

    Metallic fuels have exceptional transient behavior, excellent thermal conductivity, and a more straightforward reprocessing path, which does not separate out pure plutonium from the process stream. Fabrication of fuel containing minor actinides and rare earth (RE) elements for irradiation tests, for instance, U-20Pu-3Am-2Np-1.0RE-15Zr samples at the Idaho National Laboratory, is generally done by melt casting in an inert atmosphere. For the design of a casting system and further scale up development, computational modeling of the casting process is needed to provide information on melt flow and solidification for process optimization. Therefore, there is a need for melt viscosity data, the most important melt property that controls the melt flow. The goal of the project was to develop a measurement technique that uses fully sealed melt sample with no Americium vapor loss to determine the viscosity of metallic melts and at temperatures relevant to the casting process. The specific objectives of the project were to: develop mathematical models to establish the principle of the measurement method, design and build a viscosity measurement prototype system based on the established principle, and calibrate the system and quantify the uncertainty range. The result of the project indicates that the oscillation cup technique is applicable for melt viscosity measurement. Detailed mathematical models of innovative sample ampoule designs were developed to not only determine melt viscosity, but also melt density under certain designs. Measurement uncertainties were analyzed and quantified. The result of this project can be used as the initial step toward the eventual goal of establishing a viscosity measurement system for radioactive melts.

  7. Comparison of two dissimilar modal identification techniques

    NASA Technical Reports Server (NTRS)

    Pappa, Richard S.; Schenk, Axel; Niedbal, Norbert; Klusowski, Erhard

    1992-01-01

    Recent laboratory results using a refined phase resonance method and the eigensystem realization algorithm on the same test structure are reported. These methods are dissimilar modal identification techniques suitable for future large spacecraft. The theory, application approach, and results obtained for each technique are summarized and compared. Although both methods worked well in this investigation, significant differences occurred in some identified mode shapes. Comparison of independently derived modal parameters provides the means for disclosing such discrepancies in flight projects.

  8. 40 CFR 80.521 - What are the standards and identification requirements for diesel fuel additives?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... consumer in diesel motor vehicles or nonroad diesel engines. ... identification requirements for diesel fuel additives? 80.521 Section 80.521 Protection of Environment... Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel...

  9. 40 CFR 80.521 - What are the standards and identification requirements for diesel fuel additives?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... consumer in diesel motor vehicles or nonroad diesel engines. ... identification requirements for diesel fuel additives? 80.521 Section 80.521 Protection of Environment... Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel...

  10. 40 CFR 80.521 - What are the standards and identification requirements for diesel fuel additives?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... consumer in diesel motor vehicles or nonroad diesel engines. ... identification requirements for diesel fuel additives? 80.521 Section 80.521 Protection of Environment... Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel...

  11. 40 CFR 80.521 - What are the standards and identification requirements for diesel fuel additives?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... consumer in diesel motor vehicles or nonroad diesel engines. ... identification requirements for diesel fuel additives? 80.521 Section 80.521 Protection of Environment... Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel...

  12. 40 CFR 80.521 - What are the standards and identification requirements for diesel fuel additives?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... consumer in diesel motor vehicles or nonroad diesel engines. ... identification requirements for diesel fuel additives? 80.521 Section 80.521 Protection of Environment... Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel...

  13. Fuel processing requirements and techniques for fuel cell propulsion power

    SciTech Connect

    Kumar, R.; Ahmed, S.; Yu, M.

    1993-08-01

    Fuels for fuel cells in transportation systems are likely to be methanol, natural gas, hydrogen, propane, or ethanol. Fuels other than hydrogen wig need to be reformed to hydrogen on-board the vehicle. The fuel reformer must meet stringent requirements for weight and volume, product quality, and transient operation. It must be compact and lightweight, must produce low levels of CO and other byproducts, and must have rapid start-up and good dynamic response. Catalytic steam reforming, catalytic or noncatalytic partial oxidation reforming, or some combination of these processes may be used. This paper discusses salient features of the different kinds of reformers and describes the catalysts and processes being examined for the oxidation reforming of methanol and the steam reforming of ethanol. Effective catalysts and reaction conditions for the former have been identified; promising catalysts and reaction conditions for the latter are being investigated.

  14. Identification of a breached fuel pin in the IEM (Interim Examination and Maintenance) cell

    SciTech Connect

    McGuinness, P.W.; Kalk, J.J.; Hicks, D.F.

    1987-01-01

    Novel methods were successfully employed to identify one breached fuel pin in a 217-pin fuel assembly. The assembly was an experiment that had been irradiated at the Fast Flux Test Facility (FFTF), an experimental liquid-metal reactor operated by Westinghouse Hanford Company for the US Department of Energy. A fuel assembly known to contain breached fuel pins was removed from the sodium-cooled FFTF reactor in November 1984. Later, this assembly was brought into the FFTF's Interim Examination and Maintenance (IEM) cell to be disassembled and, for the first time ever at FFTF, to identify a breached fuel pin. The synergistic evaluation of the four different verification techniques - visual examination, cladding swipe activity, wash water radiochemistry, and pin weight - provided rapid and positive identification. The capability to perform future detective work of this kind has been conclusively demonstrated.

  15. A hybrid sequential deposition fabrication technique for micro fuel cells

    NASA Astrophysics Data System (ADS)

    Stanley, Kevin G.; Czyzewska, Eva K.; Vanderhoek, Tom P. K.; Fan, Lilian L. Y.; Abel, Keith A.; Wu, Q. M. Jonathan; Parameswaran, M. Ash

    2005-10-01

    Micro fuel cell systems have elicited significant interest due to their promise for instantly rechargeable, longer duration and portable power. Most micro fuel cell systems are either built as miniaturized plate-and-frame or silicon-based microelectromechanical systems (MEMS). Plate-and-frame systems are difficult to fabricate smaller than 20 cm3. Existing micro fuel cell designs cannot meet the cost, scale and power requirements of some portable power markets. Traditional MEMS scaling advantages do not apply to fuel cells because the minimum area for the fuel cell is fixed by the catalyst area required for a given power output, and minimum volume set by mass transport limitations. We have developed a new hybrid technique that borrows from both micro and macro machining techniques to create fuel cells in the 1-20 cm3 range, suitable for cell phones, PDAs and smaller devices.

  16. Engine control techniques to account for fuel effects

    SciTech Connect

    Kumar, Shankar; Frazier, Timothy R.; Stanton, Donald W.; Xu, Yi; Bunting, Bruce G.; Wolf, Leslie R.

    2014-08-26

    A technique for engine control to account for fuel effects including providing an internal combustion engine and a controller to regulate operation thereof, the engine being operable to combust a fuel to produce an exhaust gas; establishing a plurality of fuel property inputs; establishing a plurality of engine performance inputs; generating engine control information as a function of the fuel property inputs and the engine performance inputs; and accessing the engine control information with the controller to regulate at least one engine operating parameter.

  17. The statistical analysis techniques to support the NGNP fuel performance experiments

    SciTech Connect

    Binh T. Pham; Jeffrey J. Einerson

    2013-10-01

    This paper describes the development and application of statistical analysis techniques to support the Advanced Gas Reactor (AGR) experimental program on Next Generation Nuclear Plant (NGNP) fuel performance. The experiments conducted in the Idaho National Laboratory’s Advanced Test Reactor employ fuel compacts placed in a graphite cylinder shrouded by a steel capsule. The tests are instrumented with thermocouples embedded in graphite blocks and the target quantity (fuel temperature) is regulated by the He–Ne gas mixture that fills the gap volume. Three techniques for statistical analysis, namely control charting, correlation analysis, and regression analysis, are implemented in the NGNP Data Management and Analysis System for automated processing and qualification of the AGR measured data. The neutronic and thermal code simulation results are used for comparative scrutiny. The ultimate objective of this work includes (a) a multi-faceted system for data monitoring and data accuracy testing, (b) identification of possible modes of diagnostics deterioration and changes in experimental conditions, (c) qualification of data for use in code validation, and (d) identification and use of data trends to support effective control of test conditions with respect to the test target. Analysis results and examples given in the paper show the three statistical analysis techniques providing a complementary capability to warn of thermocouple failures. It also suggests that the regression analysis models relating calculated fuel temperatures and thermocouple readings can enable online regulation of experimental parameters (i.e. gas mixture content), to effectively maintain the fuel temperature within a given range.

  18. The statistical analysis techniques to support the NGNP fuel performance experiments

    NASA Astrophysics Data System (ADS)

    Pham, Binh T.; Einerson, Jeffrey J.

    2013-10-01

    This paper describes the development and application of statistical analysis techniques to support the Advanced Gas Reactor (AGR) experimental program on Next Generation Nuclear Plant (NGNP) fuel performance. The experiments conducted in the Idaho National Laboratory's Advanced Test Reactor employ fuel compacts placed in a graphite cylinder shrouded by a steel capsule. The tests are instrumented with thermocouples embedded in graphite blocks and the target quantity (fuel temperature) is regulated by the He-Ne gas mixture that fills the gap volume. Three techniques for statistical analysis, namely control charting, correlation analysis, and regression analysis, are implemented in the NGNP Data Management and Analysis System for automated processing and qualification of the AGR measured data. The neutronic and thermal code simulation results are used for comparative scrutiny. The ultimate objective of this work includes (a) a multi-faceted system for data monitoring and data accuracy testing, (b) identification of possible modes of diagnostics deterioration and changes in experimental conditions, (c) qualification of data for use in code validation, and (d) identification and use of data trends to support effective control of test conditions with respect to the test target. Analysis results and examples given in the paper show the three statistical analysis techniques providing a complementary capability to warn of thermocouple failures. It also suggests that the regression analysis models relating calculated fuel temperatures and thermocouple readings can enable online regulation of experimental parameters (i.e. gas mixture content), to effectively maintain the fuel temperature within a given range.

  19. An Investigation of System Identification Techniques for Simulation Model Abstraction

    DTIC Science & Technology

    2000-02-01

    This report summarizes research into the application of system identification techniques to simulation model abstraction. System identification produces...34Mission Simulation," a simulation of a squadron of aircraft performing battlefield air interdiction. The system identification techniques were...simplified mathematical models that approximate the dynamic behaviors of the underlying stochastic simulations. Four state-space system

  20. 77 FR 13009 - Regulation of Fuels and Fuel Additives: Identification of Additional Qualifying Renewable Fuel...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-05

    ... Qualifying Renewable Fuel Pathways Under the Renewable Fuel Standard Program AGENCY: Environmental Protection... January 5, 2012 to amend the Renewable Fuel Standard program regulations. Because EPA received adverse... on January 5, 2012 (77 FR 700) to amend the Renewable Fuel Standard program regulations....

  1. Safeguards techniques in a pilot conditioning plant for spent fuel

    SciTech Connect

    Leitner, E.; Rudolf, K.; Weh, R. )

    1991-01-01

    The pilot conditioning plant at Gorleben, Germany, is designed as a multi-purpose plant. Its primary task is the conditioning of spent fuel assemblies into a form suitable for final disposal. As a pilot plant, it allows furthermore for the development and testing of various conditioning techniques. In terms of international safeguards, the pilot conditioning plant is basically considered an item facility. Entire fuel assemblies enter the plant in transport casks, whereas bins filled with fuel rods or canisters containing cut fuel rods leave the facility in final disposal packages (e.g. POLLUX). Each POLLUX final disposal package content is uniquely correlated to a definite number of fuel assemblies which have entered the conditioning process. For this type of facility, containment/surveillance (C/S) should take over the major role in nuclear material safeguards. This paper discusses the safeguards at the Gorleben plant.

  2. Developing clean fuels: Novel techniques for desulfurization

    NASA Astrophysics Data System (ADS)

    Nehlsen, James P.

    The removal of sulfur compounds from petroleum is crucial to producing clean burning fuels. Sulfur compounds poison emission control catalysts and are the source of acid rain. New federal regulations require the removal of sulfur in both gasoline and diesel to very low levels, forcing existing technologies to be pushed into inefficient operating regimes. New technology is required to efficiently produce low sulfur fuels. Two processes for the removal of sulfur compounds from petroleum have been developed: the removal of alkanethiols by heterogeneous reaction with metal oxides; and oxidative desulfurization of sulfides and thiophene by reaction with sulfuric acid. Alkanethiols, common in hydrotreated gasoline, can be selectively removed and recovered from a hydrocarbon stream by heterogeneous reaction with oxides of Pb, Hg(II), and Ba. The choice of reactive metal oxides may be predicted from simple thermodynamic considerations. The reaction is found to be autocatalytic, first order in water, and zero order in thiol in the presence of excess oxide. The thiols are recovered by reactive extraction with dilute oxidizing acid. The potential for using polymer membrane hydrogenation reactors (PEMHRs) to perform hydrogenation reactions such as hydrodesulfurization is explored by hydrogenating ketones and olefins over Pt and Au group metals. The dependence of reaction rate on current density suggests that the first hydrogen addition to the olefin is the rate limiting step, rather than the adsorption of hydrogen, for all of the metals tested. PEMHRs proved unsuccessful in hydrogenating sulfur compounds to perform HDS. For the removal of sulfides, a two-phase reactor is used in which concentrated sulfuric acid oxidizes aromatic and aliphatic sulfides present in a hydrocarbon solvent, generating sulfoxides and other sulfonated species. The polar oxidized species are extracted into the acid phase, effectively desulfurizing the hydrocarbon. A reaction scheme is proposed for this

  3. 77 FR 462 - Regulation of Fuels and Fuel Additives: Identification of Additional Qualifying Renewable Fuel...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-05

    ...), the Renewable Fuel Standard Program, as amended by the Energy Independence and Security Act of 2007... for energy grass-based renewable fuel production. Furthermore, any energy grass production on existing... bring the overall GHG impact of fuel made from energy cane, giant reed or napier grass to come close...

  4. Determining plutonium in spent fuel with nondestructive assay techniques

    SciTech Connect

    Tobin, Stephen J; Charlton, William S; Fensin, Michael L; Menlove, Howard O; Hoover, A S; Quiter, B J; Rajasingam, A; Swinhoe, M T; Thompson, S J; Charlton, W S; Ehinger, M H; Sandoval, N P; Saavedra, S F; Strohmeyer, D

    2009-01-01

    There are a variety of motivations for quantifying plutonium in used (spent) fuel assemblies by means of nondestructive assay including the following: shipper/receiver difference, input accountability at reprocessing facilities and burnup credit at repositories or fuel storage facilities. Twelve NDA techniques were identified that provide information about the composition of an assembly. Unfortunately, none of these techniques is capable of determining the Pu mass in an assembly on its own. However, it is expected that the Pu mass can be quantified by combining a few of the techniques. Determining which techniques to combine and estimating the expected performance of such a system is the purpose of the research effort recently begun. The research presented here is a complimentarily experimental effort. This paper will focus on experimental results of one of the twelve non-destructive assay techniques - passive neutron albedo reactivity. The passive neutron albedo reactivity techniques work by changing the multiplication the pin experiences between two separate measurements. Since a single spent fuel pin has very little multiplication, this is a challenging measurement situation for the technique. Singles and Doubles neutron count rate were measured at Oak Ridge National Laboratory for three different burnup pins to test the capability of the passive neutron albedo reactivity technique.

  5. Laser Shockwave Technique For Characterization Of Nuclear Fuel Plate Interfaces

    SciTech Connect

    James A. Smith; Barry H. Rabin; Mathieu Perton; Daniel Lévesque; Jean-Pierre Monchalin; Martin Lord

    2012-07-01

    The US National Nuclear Security Agency is tasked with minimizing the worldwide use of high-enriched uranium. One aspect of that effort is the conversion of research reactors to monolithic fuel plates of low-enriched uranium. The manufacturing process includes hot isostatic press bonding of an aluminum cladding to the fuel foil. The Laser Shockwave Technique (LST) is here evaluated for characterizing the interface strength of fuel plates using depleted Uranium/Mo foils. LST is a non-contact method that uses lasers for the generation and detection of large amplitude acoustic waves and is therefore well adapted to the quality assurance of this process. Preliminary results show a clear signature of well-bonded and debonded interfaces and the method is able to classify/rank the bond strength of fuel plates prepared under different HIP conditions.

  6. Laser shockwave technique for characterization of nuclear fuel plate interfaces

    SciTech Connect

    Perton, M.; Levesque, D.; Monchalin, J.-P.; Lord, M.; Smith, J. A.; Rabin, B. H.

    2013-01-25

    The US National Nuclear Security Agency is tasked with minimizing the worldwide use of high-enriched uranium. One aspect of that effort is the conversion of research reactors to monolithic fuel plates of low-enriched uranium. The manufacturing process includes hot isostatic press bonding of an aluminum cladding to the fuel foil. The Laser Shockwave Technique (LST) is here evaluated for characterizing the interface strength of fuel plates using depleted Uranium/Mo foils. LST is a non-contact method that uses lasers for the generation and detection of large amplitude acoustic waves and is therefore well adapted to the quality assurance of this process. Preliminary results show a clear signature of well-bonded and debonded interfaces and the method is able to classify/rank the bond strength of fuel plates prepared under different HIP conditions.

  7. [Application of molecular biological techniques in Taenia identification].

    PubMed

    Li, Yan; Liu, Hang; Yang, Yi-Mei

    2011-10-01

    The traditional identification of Taenia spp. based on morphological features of adult and cysticercus has difficulties in identifying the morphologically similar species. The recent development of molecular techniques provides more scientific ways for distinguishing Taenia species. This paper summarizes the application of molecular biological techniques in the identification of Taenia, such as analysis of DNA sequence, PCR-RFLP and LAMP.

  8. Measurement of fuel spray vaporisation by laser techniques

    NASA Technical Reports Server (NTRS)

    Yule, A. J.; Seng, C. A.; Felton, P. G.; Ungut, A.; Chigier, N. A.

    1980-01-01

    Comparison of fuel spray structures in heated and in cold environments is made by using a new laser tomographic technique and laser anemometry. The tomography technique is shown to give accurate and rapid 'point' measurements of droplet sizes and concentrations. Experimental results show acceleration of droplets to the local gas velocity, preferential vaporisation of the smallest droplets and the dispersion of droplets by the turbulence.

  9. 78 FR 14190 - Regulation of Fuels and Fuel Additives: Identification of Additional Qualifying Renewable Fuel...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-05

    ... System (NAICS). \\2\\ Standard Industrial Classification (SIC) system code. This table is not intended to... Fuel, Heating Oil, Naphtha, and Liquefied Petroleum Gas (LPG) Produced From Camelina Oil B. Lifecycle Greenhouse Gas Emissions Analysis for Ethanol, Diesel, Jet Fuel, Heating Oil, and Naphtha Produced...

  10. Coupled LC-GC techniques for the characterisation of polycyclic aromatic compounds in fuel materials

    SciTech Connect

    Askey, S.A.; Holden, K.M.L.; Bartle, K.D.

    1995-12-31

    Exposure to polycyclic aromatic compounds (PAC) has long been identified as of considerable environmental concern. Originating from both natural and anthropogenic sources, many PAC exhibit significant carcinogenic and mutagenic properties. Multi-dimensional chromatographic techniques which provide separation by virtue of chemical class (group-type) or by molecular mass greatly simplifies the analysis of inherently complex fuel materials. In this study, on-line LC-GC techniques in which high resolution gas chromatography (HPLC) have been investigated. Comprehensive characterisation of fuel feedstocks and post-pyrolysis and combustion products was achieved by coupling LC-GC to low resolution ion trap mass spectrometry (ITD-MS) and atomic emission detection (AED). The identification of PAC in diesel and coal materials, as well as urban air and diesel exhaust particulate extracts has provided valuable insight into the source, formation and distribution of such compounds pre- and post processing.

  11. System identification techniques for helicopter higher harmonic control

    NASA Technical Reports Server (NTRS)

    Jacklin, S. A.

    1986-01-01

    This paper presents and compares several system identification techniques proposed for use with higher harmonic control algorithms designed to alleviate helicopter vibration. All method for actively controlling helicopter vibration require the knowledge of how the vibration outputs are related to the control inputs. Off-line or batch identification methods for obtaining this knowledge are presented first. Then the more advanced, adaptive identification techniques proposed to track the helicopter model parameters in flight are discussed. Considerations regarding system identifiability, identification algorithm stability, and computer implementation are also discussed.

  12. A selective hybrid stochastic strategy for fuel-cell multi-parameter identification

    NASA Astrophysics Data System (ADS)

    Guarnieri, Massimo; Negro, Enrico; Di Noto, Vito; Alotto, Piergiorgio

    2016-11-01

    The in situ identification of fuel-cell material parameters is crucial both for guiding the research for advanced functionalized materials and for fitting multiphysics models, which can be used in fuel cell performance evaluation and optimization. However, this identification still remains challenging when dealing with direct measurements. This paper presents a method for achieving this aim by stochastic optimization. Such techniques have been applied to the analysis of fuel cells for ten years, but typically to specific problems and by means of semi-empirical models, with an increased number of articles published in the last years. We present an original formulation that makes use of an accurate zero-dimensional multi-physical model of a polymer electrolyte membrane fuel cell and of two cooperating stochastic algorithms, particle swarm optimization and differential evolution, to extract multiple material parameters (exchange current density, mass transfer coefficient, diffusivity, conductivity, activation barriers …) from the experimental data of polarization curves (i.e. in situ measurements) under some controlled temperature, gas back pressure and humidification. The method is suitable for application in other fields where fitting of multiphysics nonlinear models is involved.

  13. Novel injector techniques for coal-fueled diesel engines

    SciTech Connect

    Badgley, P.R.

    1992-09-01

    This report, entitled Novel Injector Techniques for Coal-Fueled Diesel Engines,'' describes the progress and findings of a research program aimed at development of a dry coal powder fuel injector in conjunction with the Thermal Ignition Combustion System (TICS) concept to achieve autoignition of dry powdered coal in a single-cylinder high speed diesel engine. The basic program consisted of concept selection, analysis and design, bench testing and single cylinder engine testing. The coal injector concept which was selected was a one moving part dry-coal-powder injector utilizing air blast injection. Adiabatics has had previous experience running high speed diesel engines on both direct injected directed coal-water-slurry (CWS) fuel and also with dry coal powder aspirated into the intake air. The Thermal Ignition Combustion System successfully ignited these fuels at all speeds and loads without requiring auxiliary ignition energy such as pilot diesel fuel, heated intake air or glow or spark plugs. Based upon this prior experience, it was shown that the highest efficiency and fastest combustion was with the dry coal, but that the use of aspiration of coal resulted in excessive coal migration into the engine lubrication system. Based upon a desire of DOE to utilize a more modern test engine, the previous naturally-aspirated Caterpillar model 1Y73 single cylinder engine was replaced with a turbocharged (by use of shop air compressor and back pressure control valve) single cylinder version of the Cummins model 855 engine.

  14. A novel online adaptive time delay identification technique

    NASA Astrophysics Data System (ADS)

    Bayrak, Alper; Tatlicioglu, Enver

    2016-05-01

    Time delay is a phenomenon which is common in signal processing, communication, control applications, etc. The special feature of time delay that makes it attractive is that it is a commonly faced problem in many systems. A literature search on time-delay identification highlights the fact that most studies focused on numerical solutions. In this study, a novel online adaptive time-delay identification technique is proposed. This technique is based on an adaptive update law through a minimum-maximum strategy which is firstly applied to time-delay identification. In the design of the adaptive identification law, Lyapunov-based stability analysis techniques are utilised. Several numerical simulations were conducted with Matlab/Simulink to evaluate the performance of the proposed technique. It is numerically demonstrated that the proposed technique works efficiently in identifying both constant and disturbed time delays, and is also robust to measurement noise.

  15. Structural damage identification using mathematical optimization techniques

    NASA Technical Reports Server (NTRS)

    Shen, Mo-How Herman

    1991-01-01

    An identification procedure is proposed to identify damage characteristics (location and size of the damage) from dynamic measurements. This procedure was based on minimization of the mean-square measure of difference between measurement data (natural frequencies and mode shapes) and the corresponding predictions obtained from the computational model. The procedure is tested for simulated damage in the form of stiffness changes in a simple fixed free spring mass system and symmetric cracks in a simply supported Bernoulli Euler beam. It is shown that when all the mode information is used in the identification procedure it is possible to uniquely determine the damage properties. Without knowing the complete set of modal information, a restricted region in the initial data space has been found for realistic and convergent solution from the identification process.

  16. Identification of a Methane Oxidation Intermediate on Solid Oxide Fuel Cell Anode Surfaces with Fourier Transform Infrared Emission.

    PubMed

    Pomfret, Michael B; Steinhurst, Daniel A; Owrutsky, Jeffrey C

    2013-04-18

    Fuel interactions on solid oxide fuel cell (SOFC) anodes are studied with in situ Fourier transform infrared emission spectroscopy (FTIRES). SOFCs are operated at 800 °C with CH4 as a representative hydrocarbon fuel. IR signatures of gas-phase oxidation products, CO2(g) and CO(g), are observed while cells are under load. A broad feature at 2295 cm(-1) is assigned to CO2 adsorbed on Ni as a CH4 oxidation intermediate during cell operation and while carbon deposits are electrochemically oxidized after CH4 operation. Electrochemical control provides confirmation of the assignment of adsorbed CO2. FTIRES has been demonstrated as a viable technique for the identification of fuel oxidation intermediates and products in working SOFCs, allowing for the elucidation of the mechanisms of fuel chemistry.

  17. Advanced techniques in safeguarding a conditioning facility for spent fuel

    SciTech Connect

    Rudolf, K.; Weh, R. )

    1992-01-01

    Although reprocessing continues to be the main factor in the waste management of nuclear reactors, the alternative of direct final disposal is currently being developed to the level of industrial applications, based on an agreement between the heads of the federal government and the federal states of Germany. Thus, the Konrad and Gorleben sites are being studied as potential final repositories as is the pilot conditioning facility (PKA) under construction. Discussions on the application of safeguards measures have led to the drafting of an approach that will cover the entire back end of the fuel cycle. The conditioning of fuel prior to direct final disposal represents one element in the overall approach. A modern facility equipped with advanced technology, PKA is a pilot plant with regard to conditioning techniques as well as to safeguards. Therefore, the PKA safeguards approach is expected to facilitate future industrial applications of the conditioning procedure. This cannot be satisfactorily implemented without advanced safeguards techniques. The level of development of the safeguards techniques varies. While advanced camera and seal systems are basically available, the other techniques and methods still require research and development. Feasibility studies and equipment development are geared to providing applicable safeguards techniques in time for commissioning of the PKA.

  18. 77 FR 699 - Regulation of Fuels and Fuel Additives: Identification of Additional Qualifying Renewable Fuel...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-05

    ...'' system, which means EPA will not know your identity or contact information unless you provide it in the... Classification System (NAICS) \\2\\ Standard Industrial Classification (SIC) system code. This table is not... renewable diesel (including jet fuel and heating oil) -- qualifying as biomass-based diesel and...

  19. Deconvolution/identification techniques for nonnegative signals

    SciTech Connect

    Goodman, D.M.; Yu, D.R.

    1991-11-01

    Several methods for solving the nonparametric deconvolution/identification problem when the unknown is nonnegative are presented. First we consider the constrained least squares method and discuss three ways to estimate the regularization parameter: the discrepancy principle, Mallow`s C{sub L}, and generalized cross validation. Next we consider maximum entropy methods. Last, we present a new conjugate gradient algorithm. A preliminary comparison is presented; detailed Monte-Carlo experiments will be presented at the conference. 13 refs.

  20. Antimisting kerosene: Base fuel effects, blending and quality control techniques

    NASA Technical Reports Server (NTRS)

    Yavrouian, A. H.; Ernest, J.; Sarohia, V.

    1984-01-01

    The problems associated with blending of the AMK additive with Jet A, and the base fuel effects on AMK properties are addressed. The results from the evaluation of some of the quality control techniques for AMK are presented. The principal conclusions of this investigation are: significant compositional differences for base fuel (Jet A) within the ASTM specification DI655; higher aromatic content of the base fuel was found to be beneficial for the polymer dissolution at ambient (20 C) temperature; using static mixer technology, the antimisting additive (FM-9) is in-line blended with Jet A, producing AMK which has adequate fire-protection properties 15 to 20 minutes after blending; degradability of freshly blended and equilibrated AMK indicated that maximum degradability is reached after adequate fire protection is obtained; the results of AMK degradability as measured by filter ratio, confirmed previous RAE data that power requirements to decade freshly blended AMK are significantly higher than equilibrated AMK; blending of the additive by using FM-9 concentrate in Jet A produces equilibrated AMK almost instantly; nephelometry offers a simple continuous monitoring capability and is used as a real time quality control device for AMK; and trajectory (jet thurst) and pressure drop tests are useful laboratory techniques for evaluating AMK quality.

  1. Development of nuclear fuel microsphere handling techniques and equipment

    SciTech Connect

    Mack, J.E.; Suchomel, R.R.; Angelini, P.

    1980-01-01

    Considerable progress has been made in the development of microsphere handling techniques and equipment for nuclear applications. Work at Oak Ridge National Laboratory with microspherical fuel forms dates back to the early sixties with the development of the sol-gel process. Since that time a number of equipment items and systems specifically related to microsphere handling and characterization have been identified and developed for eventual application in a remote recycle facility. These include positive and negative pressure transfer systems, samplers, weighers, a blender-dispenser, and automated devices for particle size distribution and crushing strength analysis. The current status of these and other components and systems is discussed.

  2. Parameter estimation techniques for LTP system identification

    NASA Astrophysics Data System (ADS)

    Nofrarias Serra, Miquel

    LISA Pathfinder (LPF) is the precursor mission of LISA (Laser Interferometer Space Antenna) and the first step towards gravitational waves detection in space. The main instrument onboard the mission is the LTP (LISA Technology Package) whose scientific goal is to test LISA's drag-free control loop by reaching a differential acceleration noise level between two masses in √ geodesic motion of 3 × 10-14 ms-2 / Hz in the milliHertz band. The mission is not only challenging in terms of technology readiness but also in terms of data analysis. As with any gravitational wave detector, attaining the instrument performance goals will require an extensive noise hunting campaign to measure all contributions with high accuracy. But, opposite to on-ground experiments, LTP characterisation will be only possible by setting parameters via telecommands and getting a selected amount of information through the available telemetry downlink. These two conditions, high accuracy and high reliability, are the main restrictions that the LTP data analysis must overcome. A dedicated object oriented Matlab Toolbox (LTPDA) has been set up by the LTP analysis team for this purpose. Among the different toolbox methods, an essential part for the mission are the parameter estimation tools that will be used for system identification during operations: Linear Least Squares, Non-linear Least Squares and Monte Carlo Markov Chain methods have been implemented as LTPDA methods. The data analysis team has been testing those methods with a series of mock data exercises with the following objectives: to cross-check parameter estimation methods and compare the achievable accuracy for each of them, and to develop the best strategies to describe the physics underlying a complex controlled experiment as the LTP. In this contribution we describe how these methods were tested with simulated LTP-like data to recover the parameters of the model and we report on the latest results of these mock data exercises.

  3. Biometric identification using holographic radar imaging techniques

    NASA Astrophysics Data System (ADS)

    McMakin, Douglas L.; Sheen, David M.; Hall, Thomas E.; Kennedy, Mike O.; Foote, Harlen P.

    2007-04-01

    Pacific Northwest National Laboratory researchers have been at the forefront of developing innovative screening systems to enhance security and a novel imaging system to provide custom-fit clothing using holographic radar imaging techniques. First-of-a-kind cylindrical holographic imaging systems have been developed to screen people at security checkpoints for the detection of concealed, body worn, non-metallic threats such as plastic and liquid explosives, knifes and contraband. Another embodiment of this technology is capable of obtaining full sized body measurements in near real time without the person under surveillance removing their outer garments. Radar signals readily penetrate clothing and reflect off the water in skin. This full body measurement system is commercially available for best fitting ready to wear clothing, which was the first "biometric" application for this technology. One compelling feature of this technology for security biometric applications is that it can see effectively through disguises, appliances and body hair.

  4. Biometric Identification Using Holographic Radar Imaging Techniques

    SciTech Connect

    McMakin, Douglas L.; Sheen, David M.; Hall, Thomas E.; Kennedy, Mike O.; Foote, Harlan P.

    2007-04-01

    Pacific Northwest National Laboratory researchers have been at the forefront of developing innovative screening systems to enhance security and a novel imaging system to provide custom-fit clothing using holographic radar imaging techniques. First-of-a-kind cylindrical holographic imaging systems have been developed to screen people at security checkpoints for the detection of concealed, body worn, non-metallic threats such as plastic and liquid explosives, knifes and contraband. Another embodiment of this technology is capable of obtaining full sized body measurements in near real time without the person under surveillance removing their outer garments. Radar signals readily penetrate clothing and reflect off the water in skin. This full body measurement system is commercially available for best fitting ready to wear clothing, which was the first “biometric” application for this technology. One compelling feature of this technology for security biometric applications is that it can see effectively through disguises, appliances and body hair.

  5. Deconvolution/identification techniques for 1-D transient signals

    SciTech Connect

    Goodman, D.M.

    1990-10-01

    This paper discusses a variety of nonparametric deconvolution and identification techniques that we have developed for application to 1-D transient signal problems. These methods are time-domain techniques that use direct methods for matrix inversion. Therefore, they are not appropriate for large data'' problems. These techniques involve various regularization methods and permit the use of certain kinds of a priori information in estimating the unknown. These techniques have been implemented in a package using standard FORTRAN that should make the package readily transportable to most computers. This paper is also meant to be an instruction manual for the package. 25 refs., 17 figs., 1 tab.

  6. Identification of apolipoprotein using feature selection technique

    PubMed Central

    Tang, Hua; Zou, Ping; Zhang, Chunmei; Chen, Rong; Chen, Wei; Lin, Hao

    2016-01-01

    Apolipoprotein is a kind of protein which can transport the lipids through the lymphatic and circulatory systems. The abnormal expression level of apolipoprotein always causes angiocardiopathy. Thus, correct recognition of apolipoprotein from proteomic data is very crucial to the comprehension of cardiovascular system and drug design. This study is to develop a computational model to predict apolipoproteins. In the model, the apolipoproteins and non-apolipoproteins were collected to form benchmark dataset. On the basis of the dataset, we extracted the g-gap dipeptide composition information from residue sequences to formulate protein samples. To exclude redundant information or noise, the analysis of various (ANOVA)-based feature selection technique was proposed to find out the best feature subset. The support vector machine (SVM) was selected as discrimination algorithm. Results show that 96.2% of sensitivity and 99.3% of specificity were achieved in five-fold cross-validation. These findings open new perspectives to improve apolipoproteins prediction by considering the specific dipeptides. We expect that these findings will help to improve drug development in anti-angiocardiopathy disease. PMID:27443605

  7. Fuel Injector Patternation Evaluation in Advanced Liquid-Fueled, High Pressure, Gas Turbine Combustors, Using Nonintrusive Optical Diagnostic Techniques

    NASA Technical Reports Server (NTRS)

    Locke, R. J.; Hicks, Y. R.; Anderson, R. C.; Zaller, M. M.

    1998-01-01

    Planar laser-induced fluorescence (PLIF) imaging and planar Mie scattering are used to examine the fuel distribution pattern (patternation) for advanced fuel injector concepts in kerosene burning, high pressure gas turbine combustors. Three diverse fuel injector concepts for aerospace applications were investigated under a broad range of operating conditions. Fuel PLIF patternation results are contrasted with those obtained by planar Mie scattering. Further comparison is also made for one injector with data obtained through phase Doppler measurements. Differences in spray patterns for diverse conditions and fuel injector configurations are readily discernible. An examination of the data has shown that a direct determination of the fuel spray angle at realistic conditions is also possible. The results obtained in this study demonstrate the applicability and usefulness of these nonintrusive optical techniques for investigating fuel spray patternation under actual combustor conditions.

  8. Detection, identification, and quantification techniques for spills of hazardous chemicals

    NASA Technical Reports Server (NTRS)

    Washburn, J. F.; Sandness, G. A.

    1977-01-01

    The first 400 chemicals listed in the Coast Guard's Chemical Hazards Response Information System were evaluated with respect to their detectability, identifiability, and quantifiability by 12 generalized remote and in situ sensing techniques. Identification was also attempted for some key areas in water pollution sensing technology.

  9. Development of evaluation method for software hazard identification techniques

    SciTech Connect

    Huang, H. W.; Chen, M. H.; Shih, C.; Yih, S.; Kuo, C. T.; Wang, L. H.; Yu, Y. C.; Chen, C. W.

    2006-07-01

    This research evaluated the applicable software hazard identification techniques nowadays, such as, Preliminary Hazard Analysis (PHA), Failure Modes and Effects Analysis (FMEA), Fault Tree Analysis (FTA), Markov chain modeling, Dynamic Flow-graph Methodology (DFM), and simulation-based model analysis; and then determined indexes in view of their characteristics, which include dynamic capability, completeness, achievability, detail, signal/noise ratio, complexity, and implementation cost. By this proposed method, the analysts can evaluate various software hazard identification combinations for specific purpose. According to the case study results, the traditional PHA + FMEA + FTA (with failure rate) + Markov chain modeling (with transfer rate) combination is not competitive due to the dilemma for obtaining acceptable software failure rates. However, the systematic architecture of FTA and Markov chain modeling is still valuable for realizing the software fault structure. The system centric techniques, such as DFM and simulation-based model-analysis, show the advantage on dynamic capability, achievability, detail, signal/noise ratio. However, their disadvantages are the completeness complexity and implementation cost. This evaluation method can be a platform to reach common consensus for the stakeholders. Following the evolution of software hazard identification techniques, the evaluation results could be changed. However, the insight of software hazard identification techniques is much more important than the numbers obtained by the evaluation. (authors)

  10. An experimental modal testing/identification technique for personal computers

    NASA Technical Reports Server (NTRS)

    Roemer, Michael J.; Schlonski, Steven T.; Mook, D. Joseph

    1990-01-01

    A PC-based system for mode shape identification is evaluated. A time-domain modal identification procedure is utilized to identify the mode shapes of a beam apparatus from discrete time-domain measurements. The apparatus includes a cantilevered aluminum beam, four accelerometers, four low-pass filters, and the computer. The method's algorithm is comprised of an identification algorithm: the Eigensystem Realization Algorithm (ERA) and an estimation algorithm called Minimum Model Error (MME). The identification ability of this algorithm is compared with ERA alone, a frequency-response-function technique, and an Euler-Bernoulli beam model. Detection of modal parameters and mode shapes by the PC-based time-domain system is shown to be accurate in an application with an aluminum beam, while mode shapes identified by the frequency-domain technique are not as accurate as predicted. The new method is shown to be significantly less sensitive to noise and poorly excited modes than other leading methods. The results support the use of time-domain identification systems for mode shape prediction.

  11. Rapid identification of single microbes by various Raman spectroscopic techniques

    NASA Astrophysics Data System (ADS)

    Rösch, Petra; Harz, Michaela; Schmitt, Michael; Peschke, Klaus-Dieter; Ronneberger, Olaf; Burkhardt, Hans; Motzkus, Hans-Walter; Lankers, Markus; Hofer, Stefan; Thiele, Hans; Popp, Jürgen

    2006-02-01

    A fast and unambiguous identification of microorganisms is necessary not only for medical purposes but also in technical processes such as the production of pharmaceuticals. Conventional microbiological identification methods are based on the morphology and the ability of microbes to grow under different conditions on various cultivation media depending on their biochemical properties. These methods require pure cultures which need cultivation of at least 6 h but normally much longer. Recently also additional methods to identify bacteria are established e.g. mass spectroscopy, polymerase chain reaction (PCR), flow cytometry or fluorescence spectroscopy. Alternative approaches for the identification of microorganisms are vibrational spectroscopic techniques. With Raman spectroscopy a spectroscopic fingerprint of the microorganisms can be achieved. Using UV-resonance Raman spectroscopy (UVRR) macromolecules like DNA/RNA and proteins are resonantly enhanced. With an excitation wavelength of e.g. 244 nm it is possible to determine the ratio of guanine/cytosine to all DNA bases which allows a genotypic identification of microorganisms. The application of UVRR requires a large amount of microorganisms (> 10 6 cells) e.g. at least a micro colony. For the analysis of single cells micro-Raman spectroscopy with an excitation wavelength of 532 nm can be used. Here, the obtained information is from all type of molecules inside the cells which lead to a chemotaxonomic identification. In this contribution we show how wavelength dependent Raman spectroscopy yields significant molecular information applicable for the identification of microorganisms on a single cell level.

  12. Antimisting Kerosene: Base Fuel Effects; Blending and Quality Control Techniques.

    DTIC Science & Technology

    1984-01-01

    carried out to match as closely as practical to the various specification limits . At this point, additives may be introduced, e.g. antioxidants, metal...contained in refer- ences 5 and 6. In order to select representative base fuel samples a limited survey of local (Los Angeles) jet fuel suppliers was done...that the fuel must meet the ASTM D 1655 specification requirements for commercial fuels. This prescribes test limits that must be met by the refiner who

  13. Nitride Fuel Development Using Cryo-process Technique

    SciTech Connect

    O'Brien, Brandi M; Windes, William E

    2007-06-01

    A new cryo-process technique has been developed for the fabrication of advanced fuel for nuclear systems. The process uses a new cryo-processing technique whereby small, porous microspheres (<2000 µm) are formed from sub-micron oxide powder. A simple aqueous particle slurry of oxide powder is pumped through a microsphere generator consisting of a vibrating needle with controlled amplitude and frequency. As the water-based droplets are formed and pass through the microsphere generator they are frozen in a bath of liquid nitrogen and promptly vacuum freeze-dried to remove the water. The resulting porous microspheres consist of half micron sized oxide particles held together by electrostatic forces and mechanical interlocking of the particles. Oxide powder microspheres ranging from 750 µm to 2000 µm are then converted into a nitride form using a high temperature fluidized particle bed. Carbon black can be added to the oxide powder before microsphere formation to augment the carbothermic reaction during conversion to a nitride. Also, the addition of ethyl alcohol to the aqueous slurry reduces the surface tension energy of the droplets resulting in even smaller droplets forming in the microsphere generator. Initial results from this new process indicate a lower impurity contamination in the final nitrides due to the single feed stream of particles, material handling and conversion are greatly simplified, a minimum of waste and personnel exposure are anticipated, and finally the conversion kinetics may be greatly increased because of the small oxide powder size (sub-micron) forming the porous microsphere. Thus far the fabrication process has been successful in demonstrating all of these improvements with surrogate ZrO2 powder. Further tests will be conducted in the future using the technique on UO2 powders.

  14. Fuel Element Transfer Cask Modelling Using MCNP Technique

    SciTech Connect

    Darmawan, Rosli; Topah, Budiman Naim

    2010-01-05

    After operating for more than 25 years, some of the Reaktor TRIGA Puspati (RTP) fuel elements would have been depleted. A few addition and fuel reconfiguration exercises have to be conducted in order to maintain RTP capacity. Presently, RTP spent fuels are stored at the storage area inside RTP tank. The need to transfer the fuel element outside of RTP tank may be prevalence in the near future. The preparation shall be started from now. A fuel element transfer cask has been designed according to the recommendation by the fuel manufacturer and experience of other countries. A modelling using MCNP code has been conducted to analyse the design. The result shows that the design of transfer cask fuel element is safe for handling outside the RTP tank according to recent regulatory requirement.

  15. Fuel Element Transfer Cask Modelling Using MCNP Technique

    NASA Astrophysics Data System (ADS)

    Darmawan, Rosli; Topah, Budiman Naim

    2010-01-01

    After operating for more than 25 years, some of the Reaktor TRIGA Puspati (RTP) fuel elements would have been depleted. A few addition and fuel reconfiguration exercises have to be conducted in order to maintain RTP capacity. Presently, RTP spent fuels are stored at the storage area inside RTP tank. The need to transfer the fuel element outside of RTP tank may be prevalence in the near future. The preparation shall be started from now. A fuel element transfer cask has been designed according to the recommendation by the fuel manufacturer and experience of other countries. A modelling using MCNP code has been conducted to analyse the design. The result shows that the design of transfer cask fuel element is safe for handling outside the RTP tank according to recent regulatory requirement.

  16. Comparison of three advanced chromatographic techniques for cannabis identification.

    PubMed

    Debruyne, D; Albessard, F; Bigot, M C; Moulin, M

    1994-01-01

    The development of chromatography technology, with the increasing availability of easier-to-use mass spectrometers combined with gas chromatography (GC), the use of diode-array or programmable variable-wavelength ultraviolet absorption detectors in conjunction with high-performance liquid chromatography (HPLC), and the availability of scanners capable of reading thin-layer chromatography (TLC) plates in the ultraviolet and visible regions, has made for easier, quicker and more positive identification of cannabis samples that standard analytical laboratories are occasionally required to undertake in the effort to combat drug addiction. At laboratories that do not possess the technique of GC combined with mass spectrometry, which provides an irrefutable identification, the following procedure involving HPLC or TLC techniques may be used: identification of the chromatographic peaks corresponding to each of the three main cannabis constituents-cannabidiol (CBD), delta-9-tetrahydrocannabinol (delta-9-THC) and cannabinol (CBN)-by comparison with published data in conjunction with a specific absorption spectrum for each of those constituents obtained between 200 and 300 nm. The collection of the fractions corresponding to the three major cannabinoids at the HPLC system outlet and the cross-checking of their identity in the GC process with flame ionization detection can further corroborate the identification and minimize possible errors due to interference.

  17. A novel analytical technique suitable for the identification of plastics.

    PubMed

    Nečemer, Marijan; Kump, Peter; Sket, Primož; Plavec, Janez; Grdadolnik, Jože; Zvanut, Maja

    2013-01-01

    The enormous development and production of plastic materials in the last century resulted in increasing numbers of such kinds of objects. Development of a simple and fast technique to classify different types of plastics could be used in many activities dealing with plastic materials such as packaging of food, sorting of used plastic materials, and also, if technique would be non-destructive, for conservation of plastic artifacts in museum collections, a relatively new field of interest since 1990. In our previous paper we introduced a non-destructive technique for fast identification of unknown plastics based on EDXRF spectrometry,1 using as a case study some plastic artifacts archived in the Museum in order to show the advantages of the nondestructive identification of plastic material. In order to validate our technique it was necessary to apply for this purpose the comparison of analyses with some of the analytical techniques, which are more suitable and so far rather widely applied in identifying some most common sorts of plastic materials.

  18. Stalked protozoa identification by image analysis and multivariable statistical techniques.

    PubMed

    Amaral, A L; Ginoris, Y P; Nicolau, A; Coelho, M A Z; Ferreira, E C

    2008-06-01

    Protozoa are considered good indicators of the treatment quality in activated sludge systems as they are sensitive to physical, chemical and operational processes. Therefore, it is possible to correlate the predominance of certain species or groups and several operational parameters of the plant. This work presents a semiautomatic image analysis procedure for the recognition of the stalked protozoa species most frequently found in wastewater treatment plants by determining the geometrical, morphological and signature data and subsequent processing by discriminant analysis and neural network techniques. Geometrical descriptors were found to be responsible for the best identification ability and the identification of the crucial Opercularia and Vorticella microstoma microorganisms provided some degree of confidence to establish their presence in wastewater treatment plants.

  19. Application of nondestructive gamma-ray and neutron techniques for the safeguarding of irradiated fuel materials

    SciTech Connect

    Phillips, J.R.; Halbig, J.K.; Lee, D.M.; Beach, S.E.; Bement, T.R.; Dermendjiev, E.; Hatcher, C.R.; Kaieda, K.; Medina, E.G.

    1980-05-01

    Nondestructive gamma-ray and neutron techniques were used to characterize the irradiation exposures of irradiated fuel assemblies. Techniques for the rapid measurement of the axial-activity profiles of fuel assemblies have been developed using ion chambers and Be(..gamma..,n) detectors. Detailed measurements using high-resolution gamma-ray spectrometry and passive neutron techniques were correlated with operator-declared values of cooling times and burnup.

  20. Identification of fuel cycle simulator functionalities for analysis of transition to a new fuel cycle

    SciTech Connect

    Brown, Nicholas R.; Carlsen, Brett W.; Dixon, Brent W.; Feng, Bo; Greenberg, Harris R.; Hays, Ross D.; Passerini, Stefano; Todosow, Michael; Worrall, Andrew

    2016-06-09

    Dynamic fuel cycle simulation tools are intended to model holistic transient nuclear fuel cycle scenarios. As with all simulation tools, fuel cycle simulators require verification through unit tests, benchmark cases, and integral tests. Model validation is a vital aspect as well. Although compara-tive studies have been performed, there is no comprehensive unit test and benchmark library for fuel cycle simulator tools. The objective of this paper is to identify the must test functionalities of a fuel cycle simulator tool within the context of specific problems of interest to the Fuel Cycle Options Campaign within the U.S. Department of Energy s Office of Nuclear Energy. The approach in this paper identifies the features needed to cover the range of promising fuel cycle options identified in the DOE-NE Fuel Cycle Evaluation and Screening (E&S) and categorizes these features to facilitate prioritization. Features were categorized as essential functions, integrating features, and exemplary capabilities. One objective of this paper is to propose a library of unit tests applicable to each of the essential functions. Another underlying motivation for this paper is to encourage an international dialog on the functionalities and standard test methods for fuel cycle simulator tools.

  1. Identification of fuel cycle simulator functionalities for analysis of transition to a new fuel cycle

    DOE PAGES

    Brown, Nicholas R.; Carlsen, Brett W.; Dixon, Brent W.; ...

    2016-06-09

    Dynamic fuel cycle simulation tools are intended to model holistic transient nuclear fuel cycle scenarios. As with all simulation tools, fuel cycle simulators require verification through unit tests, benchmark cases, and integral tests. Model validation is a vital aspect as well. Although compara-tive studies have been performed, there is no comprehensive unit test and benchmark library for fuel cycle simulator tools. The objective of this paper is to identify the must test functionalities of a fuel cycle simulator tool within the context of specific problems of interest to the Fuel Cycle Options Campaign within the U.S. Department of Energy smore » Office of Nuclear Energy. The approach in this paper identifies the features needed to cover the range of promising fuel cycle options identified in the DOE-NE Fuel Cycle Evaluation and Screening (E&S) and categorizes these features to facilitate prioritization. Features were categorized as essential functions, integrating features, and exemplary capabilities. One objective of this paper is to propose a library of unit tests applicable to each of the essential functions. Another underlying motivation for this paper is to encourage an international dialog on the functionalities and standard test methods for fuel cycle simulator tools.« less

  2. Automated Coronal Loop Identification Using Digital Image Processing Techniques

    NASA Technical Reports Server (NTRS)

    Lee, Jong K.; Gary, G. Allen; Newman, Timothy S.

    2003-01-01

    The results of a master thesis project on a study of computer algorithms for automatic identification of optical-thin, 3-dimensional solar coronal loop centers from extreme ultraviolet and X-ray 2-dimensional images will be presented. These center splines are proxies of associated magnetic field lines. The project is pattern recognition problems in which there are no unique shapes or edges and in which photon and detector noise heavily influence the images. The study explores extraction techniques using: (1) linear feature recognition of local patterns (related to the inertia-tensor concept), (2) parametric space via the Hough transform, and (3) topological adaptive contours (snakes) that constrains curvature and continuity as possible candidates for digital loop detection schemes. We have developed synthesized images for the coronal loops to test the various loop identification algorithms. Since the topology of these solar features is dominated by the magnetic field structure, a first-order magnetic field approximation using multiple dipoles provides a priori information in the identification process. Results from both synthesized and solar images will be presented.

  3. Development of Techniques for Spent Fuel Assay – Differential Dieaway Final Report

    SciTech Connect

    Swinhoe, Martyn Thomas; Goodsell, Alison; Ianakiev, Kiril Dimitrov; Iliev, Metodi; Desimone, David J.; Rael, Carlos D.; Henzl, Vladimir; Polk, Paul John

    2016-07-28

    This report summarizes the work done under a DNDO R&D funded project on the development of the differential dieaway method to measure plutonium in spent fuel. There are large amounts of plutonium that are contained in spent fuel assemblies, and currently there is no way to make quantitative non-destructive assay. This has led NA24 under the Next Generation Safeguards Initiative (NGSI) to establish a multi-year program to investigate, develop and implement measurement techniques for spent fuel. The techniques which are being experimentally tested by the existing NGSI project do not include any pulsed neutron active techniques. The present work covers the active neutron differential dieaway technique and has advanced the state of knowledge of this technique as well as produced a design for a practical active neutron interrogation instrument for spent fuel. Monte Carlo results from the NGSI effort show that much higher accuracy (1-2%) for the Pu content in spent fuel assemblies can be obtained with active neutron interrogation techniques than passive techniques, and this would allow their use for nuclear material accountancy independently of any information from the operator. The main purpose of this work was to develop an active neutron interrogation technique for spent nuclear fuel.

  4. A Technique for Evaluating Fuel and Hydraulic Fluid Ballistic Vulnerability

    DTIC Science & Technology

    1977-12-01

    only. III. BALLISTIC FACILITIES The experimental ballistic range had four major sections: a 20-mm Mann rifle assembly; a projectile velocity-measuritig...clad, sand-filled wall. The 20- mm Mann rifle assembly was located under an open shed. The rifle barrel was mounted in a rigid universal cradle. All...Weatherford, W.D., Jr., and Schaekel, F.W., "U.S. Army Helicopter Modified Fuel Development Program-Review of Emulsified and Gelled Fuel Studies," U.S

  5. Line identification studies using traditional techniques and wavelength coincidence statistics

    NASA Technical Reports Server (NTRS)

    Cowley, Charles R.; Adelman, Saul J.

    1990-01-01

    Traditional line identification techniques result in the assignment of individual lines to an atomic or ionic species. These methods may be supplemented by wavelength coincidence statistics (WCS). The strength and weakness of these methods are discussed using spectra of a number of normal and peculiar B and A stars that have been studied independently by both methods. The present results support the overall findings of some earlier studies. WCS would be most useful in a first survey, before traditional methods have been applied. WCS can quickly make a global search for all species and in this way may enable identifications of an unexpected spectrum that could easily be omitted entirely from a traditional study. This is illustrated by O I. WCS is a subject to well known weakness of any statistical technique, for example, a predictable number of spurious results are to be expected. The danger of small number statistics are illustrated. WCS is at its best relative to traditional methods in finding a line-rich atomic species that is only weakly present in a complicated stellar spectrum.

  6. Analytical Techniques for Aromatic Components in Aircraft Fuels.

    DTIC Science & Technology

    1979-10-01

    IN AIRCRAFT FUELS J . Scott Warner Richard P. Kenan Battelle Columbus Laboratories 505 King Avenue Columbus, Ohio 43201 DTIC October 1979 ELECTE JUL...1979. Dr. J . Scott Warner, Battelle’s Columbus Laboratories, was the Principal Investigator for the program and had the primary responsibility for

  7. Effective techniques for the identification and accommodation of disturbances

    NASA Technical Reports Server (NTRS)

    Johnson, C. D.

    1989-01-01

    The successful control of dynamic systems such as space stations, or launch vehicles, requires a controller design methodology that acknowledges and addresses the disruptive effects caused by external and internal disturbances that inevitably act on such systems. These disturbances, technically defined as uncontrollable inputs, typically vary with time in an uncertain manner and usually cannot be directly measured in real time. A relatively new non-statistical technique for modeling, and (on-line) identification, of those complex uncertain disturbances that are not as erratic and capricious as random noise is described. This technique applies to multi-input cases and to many of the practical disturbances associated with the control of space stations, or launch vehicles. Then, a collection of smart controller design techniques that allow controlled dynamic systems, with possible multi-input controls, to accommodate (cope with) such disturbances with extraordinary effectiveness are associated. These new smart controllers are designed by non-statistical techniques and typically turn out to be unconventional forms of dynamic linear controllers (compensators) with constant coefficients. The simplicity and reliability of linear, constant coefficient controllers is well-known in the aerospace field.

  8. Robotic Spent Fuel Monitoring – It is time to improve old approaches and old techniques!

    SciTech Connect

    Tobin, Stephen Joseph; Dasari, Venkateswara Rao; Trellue, Holly Renee

    2016-12-13

    This report describes various approaches and techniques associated with robotic spent fuel monitoring. The purpose of this description is to improve the quality of measured signatures, reduce the inspection burden on the IAEA, and to provide frequent verification.

  9. A technique to measure fuel oil viscosity in a fuel power plant.

    PubMed

    Delgadillo, Miguel Angel; Ibargüengoytia, Pablo H; García, Uriel A

    2016-01-01

    The viscosity measurement and control of fuel oil in power plants is very important for a proper combustion. However, the conventional viscometers are only reliable for a short period of time. This paper proposes an on-line analytic viscosity evaluation based on energy balance applied to a piece of tube entering the fuel oil main heater and a new control strategy for temperature control. This analytic evaluation utilizes a set of temperature versus viscosity graphs were defined during years of analysis of fuel oil in Mexican power plants. Also the temperature set-point for the fuel oil main heater output is obtained by interpolating in the corresponding graph. Validation tests of the proposed analytic equations were carried out in the Tuxpan power plant in Veracruz, Mexico.

  10. Applications of photoacoustic techniques to the study of jet fuel residue

    NASA Technical Reports Server (NTRS)

    Claspy, P. C.

    1983-01-01

    It has been known for many years that fuels for jet aircraft engines demonstrate thermal instability. One manifestation of this thermal instability is the formation of deleterious fuel-derived thermally-induced deposits on surfaces of the aircraft's fuel-handling system. The results of an investigation of the feasibility of applying photoacoustic techniques to the study of the physical properties of these thermal deposits are presented. Both phase imaging and magnitude imaging and spectroscopy were investigated. It is concluded that the use of photoacoustic techniques in the study of films of the type encountered in this investigation is not practical.

  11. Chemical Detection and Identification Techniques for Exobiology Flight Experiments

    NASA Technical Reports Server (NTRS)

    Kojiro, Daniel R.; Sheverev, Valery A.; Khromov, Nikolai A.

    2002-01-01

    Exobiology flight experiments require highly sensitive instrumentation for in situ analysis of the volatile chemical species that occur in the atmospheres and surfaces of various bodies within the solar system. The complex mixtures encountered place a heavy burden on the analytical Instrumentation to detect and identify all species present. The minimal resources available onboard for such missions mandate that the instruments provide maximum analytical capabilities with minimal requirements of volume, weight and consumables. Advances in technology may be achieved by increasing the amount of information acquired by a given technique with greater analytical capabilities and miniaturization of proven terrestrial technology. We describe here methods to develop analytical instruments for the detection and identification of a wide range of chemical species using Gas Chromatography. These efforts to expand the analytical capabilities of GC technology are focused on the development of detectors for the GC which provide sample identification independent of the GC retention time data. A novel new approach employs Penning Ionization Electron Spectroscopy (PIES).

  12. Phenomena Identification and Ranking Technique (PIRT) Panel Meeting Summary Report

    SciTech Connect

    Mark Holbrook

    2007-07-01

    Phenomena Identification and Ranking Technique (PIRT) is a systematic way of gathering information from experts on a specific subject and ranking the importance of the information. NRC, in collaboration with DOE and the working group, conducted the PIRT exercises to identify safety-relevant phenomena for NGNP, and to assess and rank the importance and knowledge base for each phenomenon. The overall objective was to provide NRC with an expert assessment of the safety-relevant NGNP phenomena, and an overall assessment of R and D needs for NGNP licensing. The PIRT process was applied to five major topical areas relevant to NGNP safety and licensing: (1) thermofluids and accident analysis (including neutronics), (2) fission product transport, (3) high temperature materials, (4) graphite, and (5) process heat for hydrogen cogeneration.

  13. An anatomical and photographic technique for forensic facial identification.

    PubMed

    Porter, G; Doran, G

    2000-11-13

    The increase in the use of photographs on individual identification credentials such as driving licences, credit cards, security passes and passports has led, for the purpose of criminal activities, to the falsification of genuine documents bearing photographs of the perpetrating criminal. These photographs may be used as valuable physical evidence when compared with known photographs of a suspect as they form somewhat of a signature of the suspect that is left behind on the evidence. The comparison of ID photographs requires the cooperation of two predominantly visual disciplines; forensic photography and morphological anatomy. This paper describes a photographic technique which allows accurate anatomical measurement and tracing of facial features, which allows direct physical comparison of ID document images.

  14. The development of two-dimensional object identification techniques

    NASA Technical Reports Server (NTRS)

    Lebby, Gary; Sherrod, Earnest E.

    1989-01-01

    This report marks the end of the first year of an anticipated three year effort to study methods for numerically identifying objects according to shape in two dimensions. The method is based upon comparing the unit gradient of an observed object and the unit gradient of a standard object over a specified range of points. The manner in which the gradients are compared forms the basis of a shape recognition scheme, which is then applied to simple closed plane figures. The gradient based method is calibrated by using various distorted objects in comparison with a set of standard reference objects. The use of pattern recognition techniques for computer identification of two-dimensional figures will be investigated during the second and third years of this project.

  15. System identification and model reduction using modulating function techniques

    NASA Technical Reports Server (NTRS)

    Shen, Yan

    1993-01-01

    Weighted least squares (WLS) and adaptive weighted least squares (AWLS) algorithms are initiated for continuous-time system identification using Fourier type modulating function techniques. Two stochastic signal models are examined using the mean square properties of the stochastic calculus: an equation error signal model with white noise residuals, and a more realistic white measurement noise signal model. The covariance matrices in each model are shown to be banded and sparse, and a joint likelihood cost function is developed which links the real and imaginary parts of the modulated quantities. The superior performance of above algorithms is demonstrated by comparing them with the LS/MFT and popular predicting error method (PEM) through 200 Monte Carlo simulations. A model reduction problem is formulated with the AWLS/MFT algorithm, and comparisons are made via six examples with a variety of model reduction techniques, including the well-known balanced realization method. Here the AWLS/MFT algorithm manifests higher accuracy in almost all cases, and exhibits its unique flexibility and versatility. Armed with this model reduction, the AWLS/MFT algorithm is extended into MIMO transfer function system identification problems. The impact due to the discrepancy in bandwidths and gains among subsystem is explored through five examples. Finally, as a comprehensive application, the stability derivatives of the longitudinal and lateral dynamics of an F-18 aircraft are identified using physical flight data provided by NASA. A pole-constrained SIMO and MIMO AWLS/MFT algorithm is devised and analyzed. Monte Carlo simulations illustrate its high-noise rejecting properties. Utilizing the flight data, comparisons among different MFT algorithms are tabulated and the AWLS is found to be strongly favored in almost all facets.

  16. A robust approach to battery fuel gauging, part I: Real time model identification

    NASA Astrophysics Data System (ADS)

    Balasingam, B.; Avvari, G. V.; Pattipati, B.; Pattipati, K. R.; Bar-Shalom, Y.

    2014-12-01

    In this paper, the first of a series of papers on battery fuel gauge (BFG), we present a real time parameter estimation strategy for robust state of charge (SOC) tracking. The proposed parameter estimation scheme has the following novel features: it models hysteresis as an error in the open circuit voltage (OCV) and employs a combination of real time, linear parameter estimation and SOC tracking technique to compensate for it. This obviates the need for modeling of hysteresis as a function of SOC and load current. We identify the presence of correlated noise that has been so far ignored in the literature and use it to enhance the accuracy of model identification. As a departure from the conventional "one model fits all" strategy, we identify four different equivalent models of the battery that represent four modes of typical battery operation and develop the framework for seamless SOC tracking by switching. The proposed parameter approach enables a robust initialization/re-initialization strategy for continuous operation of the BFG. The performance of the online parameter estimation scheme was first evaluated through simulated data. Then, the proposed algorithm was validated using hardware-in-the-loop (HIL) data collected from commercially available Li-ion batteries.

  17. Advanced Techniques for Power System Identification from Measured Data

    SciTech Connect

    Pierre, John W.; Wies, Richard; Trudnowski, Daniel

    2008-11-25

    Time-synchronized measurements provide rich information for estimating a power-system's electromechanical modal properties via advanced signal processing. This information is becoming critical for the improved operational reliability of interconnected grids. A given mode's properties are described by its frequency, damping, and shape. Modal frequencies and damping are useful indicators of power-system stress, usually declining with increased load or reduced grid capacity. Mode shape provides critical information for operational control actions. This project investigated many advanced techniques for power system identification from measured data focusing on mode frequency and damping ratio estimation. Investigators from the three universities coordinated their effort with Pacific Northwest National Laboratory (PNNL). Significant progress was made on developing appropriate techniques for system identification with confidence intervals and testing those techniques on field measured data and through simulation. Experimental data from the western area power system was provided by PNNL and Bonneville Power Administration (BPA) for both ambient conditions and for signal injection tests. Three large-scale tests were conducted for the western area in 2005 and 2006. Measured field PMU (Phasor Measurement Unit) data was provided to the three universities. A 19-machine simulation model was enhanced for testing the system identification algorithms. Extensive simulations were run with this model to test the performance of the algorithms. University of Wyoming researchers participated in four primary activities: (1) Block and adaptive processing techniques for mode estimation from ambient signals and probing signals, (2) confidence interval estimation, (3) probing signal design and injection method analysis, and (4) performance assessment and validation from simulated and field measured data. Subspace based methods have been use to improve previous results from block processing

  18. Rapid identification of chromosomal rearrangements by PRINS technique

    SciTech Connect

    Pellestor, F.; Giradet, A.; Andreo, B.

    1994-09-01

    Chromosomal rearrangements contribute significantly to human reproductive failure, malformation/mental retardation syndromes and carcinogenesis. The variety of structural rearrangements is almost infinite and an identification by conventional cytogenetics is often labor intensive and may remain doubtful. Recent advances in molecular cytogenetics have provided new tools for detecting chromosomal abnormalities. The fluorescence in situ hybridization (FISH) procedure is actually the most employed technique and has led to numerous clinical applications. However, techniques required to produce suitable probes are time consuming and not accessible to all cytogenetics laboratories. The PRimed In Situ labeling (PRINS) method provides an alternate way for in situ chromosome screening. In this procedure, the chromosomal detection is performed by in situ annealing of a specific primer and subsequent primer extension by a Taq DNA polymerase in the presence of labeled nucleotides. Application of PRINS in clinical diagnosis is still limited. We have developed a semi-automatic PRINS protocol and used it to identify the origin of several chromosomal abnormalities. We report here the results of studies of three structural rearrangements: a translocation t(21;21), a supernumerary ring marker chromosome 18 and a complex chromosome 13 mosaicism involving a 13;13 Robertsonian translocation and a ring chromosome 13.

  19. Techniques for cutting irradiated fuel ducts at the FFTF/IEM cell

    SciTech Connect

    Payzant, W.H.

    1990-01-01

    The interim examination and maintenance (IEM) cell at the Fast Flux Test Facility (FFTF) contains horizontal and vertical duct cutters for remote disassembly of irradiated fuel assemblies. During the 7 yr of use, cutters have been used to disassemble 18 fuel assemblies. At first, cutting problems were common, but their frequency diminished as experience was gained and equipment upgrades were incorporated. Techniques have been developed to the point that cutting is becoming routine.

  20. Techniques for cutting irradiated fuel ducts at FFTF/IEM cell

    SciTech Connect

    Payzant, W.H.

    1990-09-01

    Two remotely controlled mill-type cutters have been used in the Fast Flux Test Facility Interim Examination and Maintenance Cell to assist in the disassembly of 18 fuel assemblies. These cutters slit the outer duct of the fuel assemblies, which allows the ducts to be removed and provides access to the encased fuel pins. The cutters were developed by Westinghouse Hanford Company and thoroughly tested by cutting prototypic ducts. During actual use, however, occasional loss of cutting depth control occurred. A discussion of the control problems and the operation and design techniques developed for their resolution is presented. 3 refs., 7 figs.

  1. Development of Hot Pressing as a Low Cost Processing Technique for Fuel Cell Fabrication

    SciTech Connect

    Sarin, V

    2003-01-14

    Dependable, plentiful, and economical energy has been the driving force for financial, industrial, and political growth in the US since the mid 19th century. For a country whose progress is so deeply rooted in abundant energy and whose current political agenda involves stabilizing world fossil fuel prices, the development of a reliable, efficient and environmentally friendly power generating source seems compulsory. The maturing of high technology fuel cells may be the panacea the country will find indispensable to free itself from foreign dependence. Fuel cells offer an efficient, combustion-less, virtually pollution-free power source, capable of being sited in downtown urban areas or in remote regions. Fuel cells have few moving parts and run almost silently. Fuel cells are electrochemical devices that convert the chemical energy of a fuel directly to electrical energy. Unlike batteries, which store a finite amount of energy, fuel cells will generate electricity continuously, as long as fuel and oxidant are available to the electrodes. Additionally, fuel cells offer clean, efficient, and reliable power and they can be operated using a variety of fuels. Hence, the fuel cell is an extremely promising technology. Over the course of this research, the fundamental knowledge related to ceramic processing, sintering, and hot pressing to successfully hot press a single operational SOFC in one step has been developed. Ceramic powder processing for each of the components of an SOFC has bene tailored towards this goal. Processing parameter for the electrolyte and cathode have been studied and developed until they converted. Several anode fabrication techniques have been developed. Additionally, a novel anode structured has been developed and refined. These individual processes have been cultivated until a single cell SOFC has been fabricated in one step.

  2. Expert system for identification of simultaneous and sequential reactor fuel failures with gas tagging

    DOEpatents

    Gross, Kenny C.

    1994-01-01

    Failure of a fuel element in a nuclear reactor core is determined by a gas tagging failure detection system and method. Failures are catalogued and characterized after the event so that samples of the reactor's cover gas are taken at regular intervals and analyzed by mass spectroscopy. Employing a first set of systematic heuristic rules which are applied in a transformed node space allows the number of node combinations which must be processed within a barycentric algorithm to be substantially reduced. A second set of heuristic rules treats the tag nodes of the most recent one or two leakers as "background" gases, further reducing the number of trial node combinations. Lastly, a "fuzzy" set theory formalism minimizes experimental uncertainties in the identification of the most likely volumes of tag gases. This approach allows for the identification of virtually any number of sequential leaks and up to five simultaneous gas leaks from fuel elements.

  3. Expert system for identification of simultaneous and sequential reactor fuel failures with gas tagging

    DOEpatents

    Gross, K.C.

    1994-07-26

    Failure of a fuel element in a nuclear reactor core is determined by a gas tagging failure detection system and method. Failures are catalogued and characterized after the event so that samples of the reactor's cover gas are taken at regular intervals and analyzed by mass spectroscopy. Employing a first set of systematic heuristic rules which are applied in a transformed node space allows the number of node combinations which must be processed within a barycentric algorithm to be substantially reduced. A second set of heuristic rules treats the tag nodes of the most recent one or two leakers as background'' gases, further reducing the number of trial node combinations. Lastly, a fuzzy'' set theory formalism minimizes experimental uncertainties in the identification of the most likely volumes of tag gases. This approach allows for the identification of virtually any number of sequential leaks and up to five simultaneous gas leaks from fuel elements. 14 figs.

  4. Ivory species identification using electrophoresis-based techniques.

    PubMed

    Kitpipit, Thitika; Thanakiatkrai, Phuvadol; Penchart, Kitichaya; Ouithavon, Kanita; Satasook, Chutamas; Linacre, Adrian

    2016-12-01

    Despite continuous conservation efforts by national and international organizations, the populations of the three extant elephant species are still dramatically declining due to the illegal trade in ivory leading to the killing of elephants. A requirement to aid investigations and prosecutions is the accurate identification of the elephant species from which the ivory was removed. We report on the development of the first fully validated multiplex PCR-electrophoresis assay for ivory DNA analysis that can be used as a screening or confirmatory test. SNPs from the NADH dehydrogenase 5 and cytochrome b gene loci were identified and used in the development of the assay. The three extant elephant species could be identified based on three peaks/bands. Elephas maximus exhibited two distinct PCR fragments at approximate 129 and 381 bp; Loxodonta cyclotis showed two PCR fragments at 89 and 129 bp; and Loxodonta africana showed a single fragment of 129 bp. The assay correctly identified the elephant species using all 113 ivory and blood samples used in this report. We also report on the high sensitivity and specificity of the assay. All single-blinded samples were correctly classified, which demonstrated the assay's ability to be used for real casework. In addition, the assay could be used in conjunction with the technique of direct amplification. We propose that the test will benefit wildlife forensic laboratories and aid in the transition to the criminal justice system.

  5. A Second Look at Neutron Resonance Transmission Analysis as a Spent Fuel NDA Technique

    SciTech Connect

    James W .Sterbentz; David L. Chichester

    2011-07-01

    Many different nondestructive analysis techniques are currently being investigated as a part of the United States Department of Energy's Next Generation Safeguards Initiative (NGSI) seeking methods to quantify plutonium in spent fuel. Neutron Resonance Transmission Analysis (NRTA) is one of these techniques. Having first been explored in the mid-1970s for the analysis of individual spent-fuel pins a second look, using advanced simulation and modeling methods, is now underway to investigate the suitability of the NRTA technique for assaying complete spent nuclear fuel assemblies. The technique is similar to neutron time-of-flight methods used for cross-section determinations but operates over only the narrow 0.1-20 eV range where strong, distinguishable resonances exist for both the plutonium (239, 240, 241,242Pu) and uranium (235,236,238U) isotopes of interest in spent fuel. Additionally, in this energy range resonances exists for six important fission products (99Tc, 103Rh, 131Xe, 133Cs, 145Nd, and 152Sm) which provide additional information to support spent fuel plutonium assay determinations. Initial modeling shows excellent agreement with previously published experimental data for measurements of individual spent-fuel pins where plutonium assays were demonstrated to have a precision of 2-4%. Within the simulation and modeling analyses of this project scoping studies have explored fourteen different aspects of the technique including the neutron source, drift tube configurations, and gross neutron transmission as well as the impacts of fuel burn up, cooling time, and fission-product interferences. These results show that NRTA may be a very capable experimental technique for spent-fuel assay measurements. The results suggest sufficient transmission strength and signal differentiability is possible for assays through up to 8 pins. For an 8-pin assay (looking at an assembly diagonally), 64% of the pins in a typical 17 ? 17 array of a pressurized water reactor fuel

  6. Application of System Identification Techniques to Turbine Engine Post-Stall Test and Evaluation. Volume 1

    DTIC Science & Technology

    1990-12-01

    Application of System Identification Techniques to Turbine Engine Post-Stall Test and Evaluation was an Air Force funded study to investigate and...apply system identification techniques to post-stall engine models in a manner which allowed AEDC personnel to become proficient in the use of these

  7. Method of preparing gas tags for identification of single and multiple failures of nuclear reactor fuel assemblies

    DOEpatents

    McCormick, Norman J.

    1976-01-01

    For use in the identification of failed fuel assemblies in a nuclear reactor, the ratios of the tag gas isotopic concentrations are located on curved surfaces to enable the ratios corresponding to failure of a single fuel assembly to be distinguished from those formed from any combination of two or more failed assemblies.

  8. A laser induced fluorescence technique for quantifying transient liquid fuel films utilising total internal reflection

    NASA Astrophysics Data System (ADS)

    Alonso, Mario; Kay, Peter J.; Bowen, Phil J.; Gilchrist, Robert; Sapsford, Steve

    2010-01-01

    This paper describes the development of a laser induced fluorescence (LIF) technique to quantify the thickness and spatial distribution of transient liquid fuel films formed as a result of spray-wall interaction. The LIF technique relies on the principle that upon excitation by laser radiation the intensity of the fluorescent signal from a tracer like 3-pentanone is proportional to the film thickness. A binary solution of 10% (v/v) of 3-pentanone in iso-octane is used as a test fuel with a Nd:YAG laser as the excitation light source (utilising the fourth harmonic at wavelength 266 nm) and an intensified CCD camera is used to record the results as fluorescent images. The propagation of the excitation laser beam through the optical piston is carefully controlled by total internal reflection so that only the fuel film is excited and not the airborne droplets above the film, which had been previously shown to induce significant error. Other known sources of error are also carefully minimised. Calibrated temporally resolved benchmark results of a transient spray from a gasoline direct injector impinging on a flat quartz crown under atmospheric conditions are presented, with observations and discussion of the transient development of the fuel film. The calibrated measurements are consistent with previous studies of this event and demonstrate the applicability of the technique particularly for appraisal of CFD predictions. The potential utilisation of the technique under typical elevated ambient conditions is commented upon.

  9. Identification of Potential Fishing Grounds Using Geospatial Technique

    NASA Astrophysics Data System (ADS)

    Abdullah, Muhammad

    2016-07-01

    Fishery resources surveys using actual sampling and data collection methods require extensive ship time and sampling time. Informative data from satellite plays a vital role in fisheries application. Satellite Remote Sensing techniques can be used to detect fish aggregation just like visual fish identification ultimately these techniques can be used to predict the potential fishing zones by measuring the parameters which affect the distribution of fishes. Remote sensing is a time saving technique to locate fishery resources along the coast. Pakistan has a continental shelf area of 50,270 km2 and coastline length of 1,120 km. The total maritime zone of Pakistan is over 30 percent of the land area. Fishery plays an important role in the national economy. The marine fisheries sector is the main component, contributing about 57 percent in terms of production. Fishery is the most important economic activity in the villages and towns along the coast, and in most of the coastal villages and settlements it is the sole source of employment and income generation. Fishing by fishermen is done on the sole basis of repeated experiments and collection of information from other fishermen. Often they are in doubt about the location of potential fishing zones. This leads to waste of time and money, adversely affecting fishermen incomes and over or under-exploitation of fishing zones. The main purpose of this study was to map potential fishing grounds by identifying various environmental parameters which impact fish aggregation along the Pakistan coastline. The primary reason of this study is the fact that the fishing communities of Pakistan's coastal regions are extremely poor and lack knowledge of the modern tools and techniques that may be incorporated to enhance their yield and thus, improve their livelihood. Using geospatial techniques in order to accurately map the potential fishing zones based on sea surface temperature (SST) and chlorophyll -a content, in conjunction with

  10. Non-Intrusive Measurement Techniques Applied to the Hybrid Solid Fuel Degradation

    NASA Astrophysics Data System (ADS)

    Cauty, F.

    2004-10-01

    The knowledge of the solid fuel regression rate and the time evolution of the grain geometry are requested for hybrid motor design and control of its operating conditions. Two non-intrusive techniques (NDT) have been applied to hybrid propulsion : both are based on wave propagation, the X-rays and the ultrasounds, through the materials. X-ray techniques allow local thickness measurements (attenuated signal level) using small probes or 2D images (Real Time Radiography), with a link between the size of field of view and accuracy. Beside the safety hazards associated with the high-intensity X-ray systems, the image analysis requires the use of quite complex post-processing techniques. The ultrasound technique is more widely used in energetic material applications, including hybrid fuels. Depending upon the transducer size and the associated equipment, the application domain is large, from tiny samples to the quad-port wagon wheel grain of the 1.1 MN thrust HPDP motor. The effect of the physical quantities has to be taken into account in the wave propagation analysis. With respect to the various applications, there is no unique and perfect experimental method to measure the fuel regression rate. The best solution could be obtained by combining two techniques at the same time, each technique enhancing the quality of the global data.

  11. Estimation of longitudinal aircraft characteristics using parameter identification techniques

    NASA Technical Reports Server (NTRS)

    Wingrove, R. C.

    1978-01-01

    This study compares the results from different parameter identification methods used to determine longitudinal aircraft characteristics from flight data. In general, these comparisons have found that the estimated short-period dynamics (natural frequency, damping, transfer functions) are only weakly affected by the type of identification method, however, the estimated aerodynamic coefficients may be strongly affected by the type of identification method. The estimated values for aerodynamic coefficients were found to depend upon the type of math model and type of test data used with each of the identification methods. The use of fairly complete math models and the use of long data lengths, combining both steady and nonsteady motion, are shown to provide aerodynamic coefficient values that compare favorably with the results from other testing methods such as steady-state flight and full-scale wind-tunnel experiments.

  12. Nonlinear modelling of polymer electrolyte membrane fuel cell stack using nonlinear cancellation technique

    SciTech Connect

    Barus, R. P. P.; Tjokronegoro, H. A.; Leksono, E.; Ismunandar

    2014-09-25

    Fuel cells are promising new energy conversion devices that are friendly to the environment. A set of control systems are required in order to operate a fuel cell based power plant system optimally. For the purpose of control system design, an accurate fuel cell stack model in describing the dynamics of the real system is needed. Currently, linear model are widely used for fuel cell stack control purposes, but it has limitations in narrow operation range. While nonlinear models lead to nonlinear control implemnetation whos more complex and hard computing. In this research, nonlinear cancellation technique will be used to transform a nonlinear model into a linear form while maintaining the nonlinear characteristics. The transformation is done by replacing the input of the original model by a certain virtual input that has nonlinear relationship with the original input. Then the equality of the two models is tested by running a series of simulation. Input variation of H2, O2 and H2O as well as disturbance input I (current load) are studied by simulation. The error of comparison between the proposed model and the original nonlinear model are less than 1 %. Thus we can conclude that nonlinear cancellation technique can be used to represent fuel cell nonlinear model in a simple linear form while maintaining the nonlinear characteristics and therefore retain the wide operation range.

  13. Microstructural Examination to Aid in Understanding Friction Bonding Fabrication Technique for Monolithic Nuclear Fuel

    SciTech Connect

    Karen L. Shropshire

    2008-04-01

    Monolithic nuclear fuel is currently being developed for use in research reactors, and friction bonding (FB) is a technique being developed to help in this fuel’s fabrication. Since both FB and monolithic fuel are new concepts, research is needed to understand the impact of varying FB fabrication parameters on fuel plate characteristics. This thesis research provides insight into the FB process and its application to the monolithic fuel design by recognizing and understanding the microstructural effects of varying fabrication parameters (a) FB tool load, and (b) FB tool face alloy. These two fabrication parameters help drive material temperature during fabrication, and thus the material properties, bond strength, and possible formation of interface reaction layers. This study analyzed temperatures and tool loads measured during those FB processes and examined microstructural characteristics of materials and bonds in samples taken from the resulting fuel plates. This study shows that higher tool load increases aluminum plasticization and forging during FB, and that the tool face alloy helps determine the tool’s heat extraction efficacy. The study concludes that successful aluminum bonds can be attained in fuel plates using a wide range of FB tool loads. The range of tool loads yielding successful uranium-aluminum bonding was not established, but it was demonstrated that such bonding can be attained with FB tool load of 48,900 N (11,000 lbf) when using a FB tool faced with a tungsten alloy. This tool successfully performed FB, and with better results than tools faced with other materials. Results of this study correlate well with results reported for similar aluminum bonding techniques. This study’s results also provide support and validation for other nuclear fuel development studies and conclusions. Recommendations are offered for further research.

  14. Dynamic fuel cell stack model for real-time simulation based on system identification

    NASA Astrophysics Data System (ADS)

    Meiler, M.; Schmid, O.; Schudy, M.; Hofer, E. P.

    The authors have been developing an empirical mathematical model to predict the dynamic behaviour of a polymer electrolyte membrane fuel cell (PEMFC) stack. Today there is a great number of models, describing steady-state behaviour of fuel cells by estimating the equilibrium voltage for a certain set of operating parameters, but models capable of predicting the transient process between two steady-state points are rare. However, in automotive applications round about 80% of operating situations are dynamic. To improve the reliability of fuel cell systems by model-based control for real-time simulation dynamic fuel cell stack model is needed. Physical motivated models, described by differential equations, usually are complex and need a lot of computing time. To meet the real-time capability the focus is set on empirical models. Fuel cells are highly nonlinear systems, so often used auto-regressive (AR), output-error (OE) or Box-Jenkins (BJ) models do not accomplish satisfying accuracy. Best results are achieved by splitting the behaviour into a nonlinear static and a linear dynamic subsystem, a so-called Uryson-Model. For system identification and model validation load steps with different amplitudes are applied to the fuel cell stack at various operation points and the voltage response is recorded. The presented model is implemented in MATLAB environment and has a computing time of less than 1 ms per step on a standard desktop computer with a 2.8 MHz CPU and 504 MB RAM. Lab tests are carried out at DaimlerChrysler R&D Centre with DaimlerChrysler PEMFC hardware and a good agreement is found between model simulations and lab tests.

  15. Further Evaluation of the Neutron Resonance Transmission Analysis (NRTA) Technique for Assaying Plutonium in Spent Fuel

    SciTech Connect

    J. W. Sterbentz; D. L. Chichester

    2011-09-01

    This is an end-of-year report (Fiscal Year (FY) 2011) for the second year of effort on a project funded by the National Nuclear Security Administration's Office of Nuclear Safeguards (NA-241). The goal of this project is to investigate the feasibility of using Neutron Resonance Transmission Analysis (NRTA) to assay plutonium in commercial light-water-reactor spent fuel. This project is part of a larger research effort within the Next-Generation Safeguards Initiative (NGSI) to evaluate methods for assaying plutonium in spent fuel, the Plutonium Assay Challenge. The second-year goals for this project included: (1) assessing the neutron source strength needed for the NRTA technique, (2) estimating count times, (3) assessing the effect of temperature on the transmitted signal, (4) estimating plutonium content in a spent fuel assembly, (5) providing a preliminary assessment of the neutron detectors, and (6) documenting this work in an end of the year report (this report). Research teams at Los Alamos National Laboratory (LANL), Lawrence Berkeley National Laboratory (LBNL), Pacific Northwest National Laboratory (PNNL), and at several universities are also working to investigate plutonium assay methods for spent-fuel safeguards. While the NRTA technique is well proven in the scientific literature for assaying individual spent fuel pins, it is a newcomer to the current NGSI efforts studying Pu assay method techniques having just started in March 2010; several analytical techniques have been under investigation within this program for two to three years or more. This report summarizes work performed over a nine month period from January-September 2011 and is to be considered a follow-on or add-on report to our previous published summary report from December 2010 (INL/EXT-10-20620).

  16. Determining Plutonium Mass in Spent Fuel with Nondestructive Assay Techniques -- Preliminary Modeling Results Emphasizing Integration among Techniques

    SciTech Connect

    Tobin, S. J.; Fensin, M. L.; Ludewigt, B. A.; Menlove, H. O.; Quiter, B. J.; Sandoval, N. P.; Swinhoe, M. T.; Thompson, S. J.

    2009-08-03

    There are a variety of motivations for quantifying Pu in spent (used) fuel assemblies by means of nondestructive assay (NDA) including the following: strengthen the capabilities of the International Atomic Energy Agencies to safeguards nuclear facilities, quantifying shipper/receiver difference, determining the input accountability value at reprocessing facilities and providing quantitative input to burnup credit determination for repositories. For the purpose of determining the Pu mass in spent fuel assemblies, twelve NDA techniques were identified that provide information about the composition of an assembly. A key point motivating the present research path is the realization that none of these techniques, in isolation, is capable of both (1) quantifying the elemental Pu mass of an assembly and (2) detecting the diversion of a significant number of pins. As such, the focus of this work is determining how to best integrate 2 or 3 techniques into a system that can quantify elemental Pu and to assess how well this system can detect material diversion. Furthermore, it is important economically to down-select among the various techniques before advancing to the experimental phase. In order to achieve this dual goal of integration and down-selection, a Monte Carlo library of PWR assemblies was created and is described in another paper at Global 2009 (Fensin et al.). The research presented here emphasizes integration among techniques. An overview of a five year research plan starting in 2009 is given. Preliminary modeling results for the Monte Carlo assembly library are presented for 3 NDA techniques: Delayed Neutrons, Differential Die-Away, and Nuclear Resonance Fluorescence. As part of the focus on integration, the concept of"Pu isotopic correlation" is discussed and the role of cooling time determination.

  17. Application of System Identification Techniques to Turbine Engine Post-Stall Test and Evaluation. Volume 2

    DTIC Science & Technology

    1990-12-01

    System identification is valuable for the estimation of gas turbine engine models because high fidelity models of jet engines are very useful for...report is an overview of techniques for system identification of gas turbine engine models. The emphasis in this report is on an overview of the set of...the SCIDNT parameter estimation code, which was developed by Systems Control Technology, Inc., is included. Although system identification is often

  18. Fuel Cell Manufacturing Diagnostic Techniques: IR Thermography with Reactive Flow through Excitation

    SciTech Connect

    Manak, A. J.; Ulsh, M.; Bender, G.

    2012-01-01

    While design and material considerations for PEMFCs have a large impact on cost, it is also necessary to consider a transition to high volume production of fuel cell systems, including MEA components, to enable economies of scale and reduce per unit cost. One of the critical manufacturing tasks is developing and deploying techniques to provide in‐process measurement of fuel cell components for quality control. This effort requires a subsidiary task: The study of the effect of manufacturing defects on performance and durability with the objective to establish validated manufacturing tolerances for fuel cell components. This work focuses on the development of a potential quality control method for gas diffusion electrodes (GDEs). The method consists of infrared (IR) thermography combined with reactive flow through (RFT) excitation. Detection of catalyst loading reduction defects in GDE catalyst layers will be presented.

  19. Identification of a breached fuel pin in the Interim Examination and Maintenance Cell

    SciTech Connect

    McGuiness, P.W.; Kalk, J.J.; Hicks, D.F.

    1987-09-01

    At the Interim Examination and Maintenance (IEM) Cell, experiments are routinely disassembled and examined following irradiation in the Fast Flux Test Facility (FFTF). Recently and for the first time, a fueled experiment which had breached its cladding during irradiation was disassembled in the cell. The processing objective was to locate and identify the one pin (out of 217 pins) with breached cladding, and recover selected test pins for further examination. Identification of the breached pin proved to be challenging. After all pins were weighed the data were inconclusive, and alternate procedures had to be developed and implemented. Ultimately, four independent methods were used to pinpoint the breached pin.

  20. FY2015 ceramic fuels development annual highlights

    SciTech Connect

    Mcclellan, Kenneth James

    2015-09-22

    Key challenges for the Advanced Fuels Campaign are the development of fuel technologies to enable major increases in fuel performance (safety, reliability, power and burnup) beyond current technologies, and development of characterization methods and predictive fuel performance models to enable more efficient development and licensing of advanced fuels. Ceramic fuel development activities for fiscal year 2015 fell within the areas of 1) National and International Technical Integration, 2) Advanced Accident Tolerant Ceramic Fuel Development, 3) Advanced Techniques and Reference Materials Development, and 4) Fabrication of Enriched Ceramic Fuels. High uranium density fuels were the focus of the ceramic fuels efforts. Accomplishments for FY15 primarily reflect the prioritization of identification and assessment of new ceramic fuels for light water reactors which have enhanced accident tolerance while also maintaining or improving normal operation performance, and exploration of advanced post irradiation examination techniques which will support more efficient testing and qualification of new fuel systems.

  1. Application of green chemistry techniques to prepare electrocatalysts for direct methanol fuel cells.

    PubMed

    Shimizu, Kenichi; Wang, Joanna S; Wai, Chien M

    2010-03-25

    A series of green techniques for synthesizing carbon nanotube-supported platinum nanoparticles and their high electrocatalytic activity toward methanol fuel cell applications are reported. The techniques utilize either the supercritical fluid carbon dioxide or water as a medium for depositing platinum nanoparticles on surfaces of multiwalled or single-walled carbon nanotubes. The catalytic properties of the carbon nanotubes-supported Pt nanoparticle catalysts prepared by four different techniques are compared for anodic oxidation of methanol and cathodic reduction of oxygen using cyclic voltammetry. One technique using galvanic exchange of Pt(2+) in water with zerovalent iron present on the surfaces of as-grown single-walled carbon nanotubes produces a Pt catalyst that shows an unusually high catalytic activity for reduction of oxygen but a negligible activity for oxidation of methanol. This fuel-selective catalyst may have a unique application as a cathode catalyst in methanol fuel cells to alleviate the problems caused by crossover of methanol through the polymer electrolyte membrane.

  2. Technical management techniques for identification and control of industrial safety and pollution hazards

    NASA Technical Reports Server (NTRS)

    Campbell, R.; Dyer, M. K.; Hoard, E. G.; Little, D. G.; Taylor, A. C.

    1972-01-01

    Constructive recommendations are suggested for pollution problems from offshore energy resources industries on outer continental shelf. Technical management techniques for pollution identification and control offer possible applications to space engineering and management.

  3. Techniques and Materials for Developing Positive Sex Role Identification.

    ERIC Educational Resources Information Center

    Sheridan, E. Marcia

    The premise of this paper is that teacher behavior and attitudes which uphold traditional sex stereotypes of masculinity and femininity, in which the male is always aggressive and unfeeling and the female is always passive and sensitive, are harmful to the psychological development of children. A positive sex role identification would include a…

  4. Novel injector techniques for coal-fueled diesel engines. Final report

    SciTech Connect

    Badgley, P.R.

    1992-09-01

    This report, entitled ``Novel Injector Techniques for Coal-Fueled Diesel Engines,`` describes the progress and findings of a research program aimed at development of a dry coal powder fuel injector in conjunction with the Thermal Ignition Combustion System (TICS) concept to achieve autoignition of dry powdered coal in a single-cylinder high speed diesel engine. The basic program consisted of concept selection, analysis and design, bench testing and single cylinder engine testing. The coal injector concept which was selected was a one moving part dry-coal-powder injector utilizing air blast injection. Adiabatics has had previous experience running high speed diesel engines on both direct injected directed coal-water-slurry (CWS) fuel and also with dry coal powder aspirated into the intake air. The Thermal Ignition Combustion System successfully ignited these fuels at all speeds and loads without requiring auxiliary ignition energy such as pilot diesel fuel, heated intake air or glow or spark plugs. Based upon this prior experience, it was shown that the highest efficiency and fastest combustion was with the dry coal, but that the use of aspiration of coal resulted in excessive coal migration into the engine lubrication system. Based upon a desire of DOE to utilize a more modern test engine, the previous naturally-aspirated Caterpillar model 1Y73 single cylinder engine was replaced with a turbocharged (by use of shop air compressor and back pressure control valve) single cylinder version of the Cummins model 855 engine.

  5. Material accountancy measurement techniques in dry-powdered processing of nuclear spent fuels.

    SciTech Connect

    Wolf, S. F.

    1999-03-24

    The paper addresses the development of inductively coupled plasma-mass spectrometry (ICPMS), thermal ionization-mass spectrometry (TIMS), alpha-spectrometry, and gamma spectrometry techniques for in-line analysis of highly irradiated (18 to 64 GWD/T) PWR spent fuels in a dry-powdered processing cycle. The dry-powdered technique for direct elemental and isotopic accountancy assay measurements was implemented without the need for separation of the plutonium, uranium and fission product elements in the bulk powdered process. The analyses allow the determination of fuel burn-up based on the isotopic composition of neodymium and/or cesium. An objective of the program is to develop the ICPMS method for direct fissile nuclear materials accountancy in the dry-powdered processing of spent fuel. The ICPMS measurement system may be applied to the KAERI DUPIC (direct use of spent PWR fuel in CANDU reactors) experiment, and in a near-real-time mode for international safeguards verification and non-proliferation policy concerns.

  6. An indirect sensing technique for diesel fuel quantity control. Progress report, April 1--June 30, 1998

    SciTech Connect

    MacCarley, C.A.

    1998-08-31

    This reports on a project to develop an indirect sensing technique for diesel fuel quantity control. Development has continued on a vehicle-installed prototype for EPA certification and demonstration. Focus of development is on the use of this technology for retrofitting existing diesel vehicles to reduce emissions rather than exclusively upon deployment in the OEM market. Technical obstacles that have been encountered and their solutions and remaining project tasks are described.

  7. Characterization techniques for gas diffusion layers for proton exchange membrane fuel cells - A review

    NASA Astrophysics Data System (ADS)

    Arvay, A.; Yli-Rantala, E.; Liu, C.-H.; Peng, X.-H.; Koski, P.; Cindrella, L.; Kauranen, P.; Wilde, P. M.; Kannan, A. M.

    2012-09-01

    The gas diffusion layer (GDL) in a proton exchange membrane fuel cell (PEMFC) is one of the functional components that provide a support structure for gas and water transport. The GDL plays a crucial role when the oxidant is air, especially when the fuel cell operates in the higher current density region. There has been an exponential growth in research and development because the PEMFC has the potential to become the future energy source for automotive applications. In order to serve in this capacity, the GDL requires due innovative analysis and characterization toward performance and durability. It is possible to achieve the optimum fuel cell performance only by understanding the characteristics of GDLs such as structure, pore size, porosity, gas permeability, wettability, thermal and electrical conductivities, surface morphology and water management. This review attempts to bring together the characterization techniques for the essential properties of the GDLs as handy tools for R&D institutions. Topics are categorized based on the ex-situ and in-situ characterization techniques of GDLs along with related modeling and simulation. Recently reported techniques used for accelerated durability evaluation of the GDLs are also consolidated within the ex-situ and in-situ methods.

  8. A facial reconstruction and identification technique for seriously devastating head wounds.

    PubMed

    Joukal, Marek; Frišhons, Jan

    2015-07-01

    Many authors have focused on facial identification techniques, and facial reconstructions for cases when skulls have been found are especially well known. However, a standardized facial identification technique for an unknown body with seriously devastating head injuries has not yet been developed. A reconstruction and identification technique was used in 7 cases of accidents involving trains striking pedestrians. This identification technique is based on the removal of skull bone fragments, subsequent fixation of soft tissue onto a universal commercial polystyrene head model, precise suture of dermatomuscular flaps, and definitive adjustment using cosmetic treatments. After reconstruction, identifying marks such as scars, eyebrows, facial lines, facial hair and partly hairstyle become evident. It is then possible to present a modified picture of the reconstructed face to relatives. After comparing the results with photos of the person before death, this technique has proven to be very useful for identifying unknown bodies when other identification techniques are not available. This technique is useful for its being rather quick and especially for its results.

  9. Identification Of Natural Dyes On Archaeological Textile Objects Using Laser Induced Fluorescent Technique

    NASA Astrophysics Data System (ADS)

    Abdel-Kareem, O.; Eltokhy, A.; Harith, M. A.

    2011-09-01

    This study aims to evaluate the use of Laser Fluorescent as a non-destructive technique for identification of natural dyes on archaeological textile objects. In this study wool textile samples were dyed with 10 natural dyes such as cochineal, cutch, henna, indigo, Lac, madder, safflower, saffron, sumac and turmeric. These dyes common present on archaeological textile objects to be used as standard dyed textile samples. These selected natural dyes will be used as known references that can be used a guide to identify unknown archaeological dyes. The dyed textile samples were investigated with laser radiation in different wavelengths to detect the best wavelengths for identification each dye. This study confirms that Laser Florescent is very useful and a rapid technique can be used as a non-destructive technique for identification of natural dyes on archaeological textile objects. The results obtained with this study can be a guide for all conservators in identification of natural organic dyes on archaeological textile objects.

  10. Identification Of Natural Dyes On Archaeological Textile Objects Using Laser Induced Fluorescent Technique

    SciTech Connect

    Abdel-Kareem, O.; Eltokhy, A.; Harith, M. A.

    2011-09-22

    This study aims to evaluate the use of Laser Fluorescent as a non-destructive technique for identification of natural dyes on archaeological textile objects. In this study wool textile samples were dyed with 10 natural dyes such as cochineal, cutch, henna, indigo, Lac, madder, safflower, saffron, sumac and turmeric. These dyes common present on archaeological textile objects to be used as standard dyed textile samples. These selected natural dyes will be used as known references that can be used a guide to identify unknown archaeological dyes. The dyed textile samples were investigated with laser radiation in different wavelengths to detect the best wavelengths for identification each dye. This study confirms that Laser Florescent is very useful and a rapid technique can be used as a non-destructive technique for identification of natural dyes on archaeological textile objects. The results obtained with this study can be a guide for all conservators in identification of natural organic dyes on archaeological textile objects.

  11. Comparison of Techniques for Non-Intrusive Fuel Drop Size Measurements in a Subscale Gas Turbine Combustor

    NASA Technical Reports Server (NTRS)

    Zaller, Michelle; Anderson, Robert C.; Hicks, Yolanda R.; Locke, Randy J.

    1999-01-01

    In aviation gas turbine combustors, many factors, such as the degree and extent of fuel/air mixing and fuel vaporization achieved prior to combustion, influence the formation of undesirable pollutants. To assist in analyzing the extent of fuel/air mixing, flow visualization techniques have been used to interrogate the fuel distributions during subcomponent tests of lean-burning fuel injectors. Discrimination between liquid and vapor phases of the fuel was determined by comparing planar laser-induced fluorescence (PLIF) images, elastically-scattered light images, and phase/Doppler interferometer measurements. Estimates of Sauter mean diameters are made by ratioing PLIF and Mie scattered intensities for various sprays, and factors affecting the accuracy of these estimates are discussed. Mie calculations of absorption coefficients indicate that the fluorescence intensities of individual droplets are proportional to their surface areas, instead of their volumes, due to the high absorbance of the liquid fuel for the selected excitation wavelengths.

  12. Identification of cancer protein biomarkers using proteomic techniques

    DOEpatents

    Mor, Gil G.; Ward, David C.; Bray-Ward, Patricia

    2010-02-23

    The claimed invention describes methods to diagnose or aid in the diagnosis of cancer. The claimed methods are based on the identification of biomarkers which are particularly well suited to discriminate between cancer subjects and healthy subjects. These biomarkers were identified using a unique and novel screening method described herein. The biomarkers identified herein can also be used in the prognosis and monitoring of cancer. The invention comprises the use of leptin, prolactin, OPN and IGF-II for diagnosing, prognosis and monitoring of ovarian cancer.

  13. Identification of cancer protein biomarkers using proteomic techniques

    DOEpatents

    Mor, Gil G.; Ward, David C.; Bray-Ward, Patricia

    2016-10-18

    The claimed invention describes methods to diagnose or aid in the diagnosis of cancer. The claimed methods are based on the identification of biomarkers which are particularly well suited to discriminate between cancer subjects and healthy subjects. These biomarkers were identified using a unique and novel screening method described herein. The biomarkers identified herein can also be used in the prognosis and monitoring of cancer. The invention comprises the use of leptin, prolactin, OPN and IGF-II for diagnosing, prognosis and monitoring of ovarian cancer.

  14. Identification of cancer protein biomarkers using proteomic techniques

    DOEpatents

    Mor, Gil G; Ward, David C; Bray-Ward, Patricia

    2015-03-10

    The claimed invention describes methods to diagnose or aid in the diagnosis of cancer. The claimed methods are based on the identification of biomarkers which are particularly well suited to discriminate between cancer subjects and healthy subjects. These biomarkers were identified using a unique and novel screening method described herein. The biomarkers identified herein can also be used in the prognosis and monitoring of cancer. The invention comprises the use of leptin, prolactin, OPN and IGF-II for diagnosing, prognosis and monitoring of ovarian cancer.

  15. Differential die-away technique for determination of the fissile contents in spent fuel assembly

    SciTech Connect

    Lee, Tachoon; Menlove, Howard O; Swinhoe, Nartyn T; Tobin, Stephen J

    2010-01-01

    Monte Carlo simulations were performed for the differential die-away (DDA) technique to quantify its capability to measure the fissile contents in spent fuel assemblies of 64 different cases in terms of initial enrichment, burnup, and cooling time. The DDA count rate varies according to the contents of fissile isotopes such as {sup 235}U, {sup 239}Pu, and {sup 241}Pu contained in the spent fuel assembly. The effective {sup 239}Pu concept was introduced to quantify the total fissile mass of spent fuel by weighting the relative signal contributions of {sup 235}U and {sup 241}Pu compared to that of {sup 239}Pu. The Monte Carlo simulation results show that the count rate of the DDA instrument for a spent fuel assembly of 4% initial enrichment, 45 GWD/MTU burnup, and 5 year cooling time is {approx} 9.8 x 10{sup 4} counts per second (c/s) with the 100-Hz repeated interrogation pattern of 0 to 10 {micro}s interrogation, 0.2 ms to 1 ms counting time, and 1 x 10{sup 9} n/s neutron source. The {sup 244}Cm neutron background count rate for this counting time scheme is {approx} 1 x 10{sup 4} c/s, and thus the signal to background ratio is {approx}10.

  16. Methods of discovery and techniques to study endophytic fungi producing fuel-related hydrocarbons.

    PubMed

    Strobel, Gary A

    2014-01-17

    One promising area in the search for renewable bio-fuels is the discovery of microorganisms that produce fuel-related hydrocarbons (mycodiesel) that is in stark contrast to yeast fermentation that utilizes expensive sugars or starch to produce ethanol, which is a proven and useful source of fuel, but by no means is it ideal. Recently, a number of endophytic fungi have been isolated and described that make compounds such as mono- terpenoids, alkanes, cyclohexanes, cyclopentanes, and alkyl alcohols/ketones, benzenes and polyaromatic hydrocarbons. Many of these compounds are either identical to or are closely related to those specific classes of molecules that are found in diesel. Most importantly, these organisms make hydrocarbons while utilizing cellulosic polymers found in all plant-based agricultural wastes. Also discussed are some novel methods and techniques to quantitatively and qualitatively study hydrocarbon production by these microbes. Two models are discussed for identifying potential fuel-related compounds, scaling up production of them and advanced engine testing. Finally, it seems possible that endophytic fungi may have an additional attribute of having contributed to the formation of crude oil in the first place and a description of the paleobiosphere, to test this hypothesis, is in this review.

  17. Surface modification techniques for increased corrosion tolerance of zirconium fuel cladding

    NASA Astrophysics Data System (ADS)

    Carr, James Patrick, IV

    Corrosion is a major issue in applications involving materials in normal and severe environments, especially when it involves corrosive fluids, high temperatures, and radiation. Left unaddressed, corrosion can lead to catastrophic failures, resulting in economic and environmental liabilities. In nuclear applications, where metals and alloys, such as steel and zirconium, are extensively employed inside and outside of the nuclear reactor, corrosion accelerated by high temperatures, neutron radiation, and corrosive atmospheres, corrosion becomes even more concerning. The objectives of this research are to study and develop surface modification techniques to protect zirconium cladding by the incorporation of a specific barrier coating, and to understand the issues related to the compatibility of the coatings examined in this work. The final goal of this study is to recommend a coating and process that can be scaled-up for the consideration of manufacturing and economic limits. This dissertation study builds on previous accident tolerant fuel cladding research, but is unique in that advanced corrosion methods are tested and considerations for implementation by industry are practiced and discussed. This work will introduce unique studies involving the materials and methods for accident tolerant fuel cladding research by developing, demonstrating, and considering materials and processes for modifying the surface of zircaloy fuel cladding. This innovative research suggests that improvements in the technique to modify the surface of zirconium fuel cladding are likely. Three elements selected for the investigation of their compatibility on zircaloy fuel cladding are aluminum, silicon, and chromium. These materials are also currently being investigated at other labs as alternate alloys and coatings for accident tolerant fuel cladding. This dissertation also investigates the compatibility of these three elements as surface modifiers, by comparing their microstructural and

  18. A new computer-assisted technique to aid personal identification.

    PubMed

    De Angelis, Danilo; Sala, Remo; Cantatore, Angela; Grandi, Marco; Cattaneo, Cristina

    2009-07-01

    The paper describes a procedure aimed at identification from two-dimensional (2D) images (video-surveillance tapes, for example) by comparison with a three-dimensional (3D) facial model of a suspect. The application is intended to provide a tool which can help in analyzing compatibility or incompatibility between a criminal and a suspect's facial traits. The authors apply the concept of "geometrically compatible images". The idea is to use a scanner to reconstruct a 3D facial model of a suspect and to compare it to a frame extracted from the video-surveillance sequence which shows the face of the perpetrator. Repositioning and reorientation of the 3D model according to subject's face framed in the crime scene photo are manually accomplished, after automatic resizing. Repositioning and reorientation are performed in correspondence of anthropometric landmarks, distinctive for that person and detected both on the 2D face and on the 3D model. In this way, the superimposition between the original two-dimensional facial image and the three-dimensional one is obtained and a judgment is formulated by an expert on the basis of the fit between the anatomical facial districts of the two subjects. The procedure reduces the influence of face orientation and may be a useful tool in identification.

  19. Towards large-scale FAME-based bacterial species identification using machine learning techniques.

    PubMed

    Slabbinck, Bram; De Baets, Bernard; Dawyndt, Peter; De Vos, Paul

    2009-05-01

    In the last decade, bacterial taxonomy witnessed a huge expansion. The swift pace of bacterial species (re-)definitions has a serious impact on the accuracy and completeness of first-line identification methods. Consequently, back-end identification libraries need to be synchronized with the List of Prokaryotic names with Standing in Nomenclature. In this study, we focus on bacterial fatty acid methyl ester (FAME) profiling as a broadly used first-line identification method. From the BAME@LMG database, we have selected FAME profiles of individual strains belonging to the genera Bacillus, Paenibacillus and Pseudomonas. Only those profiles resulting from standard growth conditions have been retained. The corresponding data set covers 74, 44 and 95 validly published bacterial species, respectively, represented by 961, 378 and 1673 standard FAME profiles. Through the application of machine learning techniques in a supervised strategy, different computational models have been built for genus and species identification. Three techniques have been considered: artificial neural networks, random forests and support vector machines. Nearly perfect identification has been achieved at genus level. Notwithstanding the known limited discriminative power of FAME analysis for species identification, the computational models have resulted in good species identification results for the three genera. For Bacillus, Paenibacillus and Pseudomonas, random forests have resulted in sensitivity values, respectively, 0.847, 0.901 and 0.708. The random forests models outperform those of the other machine learning techniques. Moreover, our machine learning approach also outperformed the Sherlock MIS (MIDI Inc., Newark, DE, USA). These results show that machine learning proves very useful for FAME-based bacterial species identification. Besides good bacterial identification at species level, speed and ease of taxonomic synchronization are major advantages of this computational species

  20. Performance and cost evaluation of bioremediation techniques for fuel spills. Book chapter

    SciTech Connect

    Ward, C.H.; Wilson, J.T.; Kampbell, D.H.; Hutchins, S.

    1993-01-01

    Soils and ground water beneath the US Coast Guard Air Station at Traverse City, MI, have been contaminated with separate spills of aviation gasoline and JP-4 jet fuel. Contamination from both plumes has affected a shallow water table aquifer consisting of a medium grained sand. This site has been the location of a cooperative effort between the US Coast Guard and US EPA to extensively characterize the site to determine three dimensional extent of contamination, local hydrogeology, geochemistry of the solids and water, and nature of microbial activity. Evaluation concerning feasibility and cost of three innovative bioremediation techniques has also been completed at the Air Station. One evaluation demonstrated the use of hydrogen peroxide as the electron acceptor to enhance aerobic biodegradation in a portion of the aviation gasoline area. Nitrate was used as the electron acceptor for a portion of the JP-4 jet fuel contamination. Bioventing of a second portion of the aviation gasoline contamination was the third innovative technique evaluated. Each treatment reduced benzene levels to less than 5 micrograms/l, with 25% to 60% reduction in total fuel levels. For these evaluations, bioventing had the lowest capital and operating costs, followed by nitrate addition and finally hydrogen peroxide.

  1. Coordinated Parameter Identification Technique for the Inertial Parameters of Non-Cooperative Target

    PubMed Central

    Ning, Xin; Zhang, Teng; Wu, Yaofa; Zhang, Pihui; Zhang, Jiawei; Li, Shuai; Yue, Xiaokui; Yuan, Jianping

    2016-01-01

    Space operations will be the main space missions in the future. This paper focuses on the precise operations for non-cooperative target, and researches of coordinated parameter identification (CPI) which allows the motion of multi-joints. The contents of this paper are organized: (1) Summarize the inertial parameters identification techniques which have been conducted now, and the technique based on momentum conservation is selected for reliability and realizability; (2) Elaborate the basic principles and primary algorithm of coordinated parameter identification, and analyze some special problems in calculation (3) Numerical simulation of coordinated identification technique by an case study on non-cooperative target of spacecraft mounting dual-arm with six joints is done. The results show that the coordinated parameter identification technique could get all the inertial parameters of the target in 3D by one-time identification, and does not need special configuration or driven joints, moreover the results are highly precise and save much more time than traditional ones. PMID:27116187

  2. Combining pole and ramp-based techniques for target identification

    SciTech Connect

    Miller, E.K.; Clark, G.A.; Poe, G.D.; Cook, B.D.; Jackson, J.A.

    1984-08-01

    The problem of deducing the geometry and electrical characteristics of a radar target from its scattered fields is one of continuing interest. This general problem is one which may be decomposed into a sequence of problems of increasing difficulty, as: (1) detection; (2) classification; (3) identification; and (4) imaging or inversion. Generally speaking, the amount of data which is needed, and the amount of processing that data will require, can be expected to grow commensurately with the specificity and confidence in the answer being sought. The general inverse problem is by far the most difficult of those listed above. Fortunately, many problems of practical importance do not require the most general answer. For example, airborne radar targets naturally fall into one or more of a few sets, i.e., friend or foe, missile or aircraft, etc. In such circumstances, their classification and identification (C/I) can be based less on a rigorous inverse approach and more on whether their radar signatures match prestored information about the targets of potential interest. This prestored information is usually given as a set of parameters, or feature set. The success of such an approach will depend in part on the degree to which the features span the space of target-radar and target-geometry characteristics, individually and as a set. When the features chosen are target-radar characteristics, we observe that it is the data domain in which C/I is being attempted. On the other hand, when the features are derived from the radar signature to yield target-geometry characteristics, we see that C/I is being pursued in the target domain. Clearly, target-domain features would be more desirable, everything else being equal, because these are features closer to describing the target in ways which are recognizable to human observers. 59 references.

  3. Essential data and techniques for conducting microbial fuel cell and other types of bioelectrochemical system experiments.

    PubMed

    Logan, Bruce E

    2012-06-01

    Microbial fuel cells (MFCs) and other bioelectrochemical systems are new technologies that require expertise in a variety of technical areas, ranging from electrochemistry to biological wastewater treatment. There are certain data and critical information that should be included in every MFC study, such as specific surface area of the electrodes, solution conductivity, and power densities normalized to electrode surface area and volumes. Electrochemical techniques such as linear sweep voltammetry can be used to understand the performance of the MFC, but extremely slow scans are required for these biological systems compared to more traditional fuel cells. In this Minireview, the critical information needed for MFC studies is provided with examples of how results can be better conveyed through a full description of materials, the use of proper controls, and inclusion of a more complete electrochemical analysis.

  4. Comparison of Three Statistical Classification Techniques for Maser Identification

    NASA Astrophysics Data System (ADS)

    Manning, Ellen M.; Holland, Barbara R.; Ellingsen, Simon P.; Breen, Shari L.; Chen, Xi; Humphries, Melissa

    2016-04-01

    We applied three statistical classification techniques-linear discriminant analysis (LDA), logistic regression, and random forests-to three astronomical datasets associated with searches for interstellar masers. We compared the performance of these methods in identifying whether specific mid-infrared or millimetre continuum sources are likely to have associated interstellar masers. We also discuss the interpretability of the results of each classification technique. Non-parametric methods have the potential to make accurate predictions when there are complex relationships between critical parameters. We found that for the small datasets the parametric methods logistic regression and LDA performed best, for the largest dataset the non-parametric method of random forests performed with comparable accuracy to parametric techniques, rather than any significant improvement. This suggests that at least for the specific examples investigated here accuracy of the predictions obtained is not being limited by the use of parametric models. We also found that for LDA, transformation of the data to match a normal distribution led to a significant improvement in accuracy. The different classification techniques had significant overlap in their predictions; further astronomical observations will enable the accuracy of these predictions to be tested.

  5. Fuel spill identification using solid-phase extraction and solid-phase microextraction. 1. Aviation turbine fuels.

    PubMed

    Lavine, B K; Brzozowski, D M; Ritter, J; Moores, A J; Mayfield, H T

    2001-12-01

    The water-soluble fraction of aviation jet fuels is examined using solid-phase extraction and solid-phase microextraction. Gas chromatographic profiles of solid-phase extracts and solid-phase microextracts of the water-soluble fraction of kerosene- and nonkerosene-based jet fuels reveal that each jet fuel possesses a unique profile. Pattern recognition analysis reveals fingerprint patterns within the data characteristic of fuel type. By using a novel genetic algorithm (GA) that emulates human pattern recognition through machine learning, it is possible to identify features characteristic of the chromatographic profile of each fuel class. The pattern recognition GA identifies a set of features that optimize the separation of the fuel classes in a plot of the two largest principal components of the data. Because principal components maximize variance, the bulk of the information encoded by the selected features is primarily about the differences between the fuel classes.

  6. [Study on identification of four kinds of Gentianaceae Mongolian medicine Digeda with spectroscopy techniques].

    PubMed

    Lv, Li-juan; Guo, Yong-hui; Zhao, Ya-chan; Zhao, Dong-dong; Li, Min-hui

    2015-03-01

    To study the identification of Gentianaceae Mongolian medicine Digeda with spectroscopy techniques, near infrared spectroscopy and differential scanning calorimetry techniques were applied to study on the identification of 4 kinds of Gentianaceae Mongolian medicine Digeda, and characteristic spectrums obtained were systematically analyzed. In NIR study, the four species of Digeda exist some differences in 4 250-4 400 cm(-1) and 5 650-5 800 cm(-1) of one-dimensional spectra, and show significant differences in 4 100- 4 400 cm(-1), 4 401-4 900 cm(-1) and 5 400-5 800 cm(-1) of the second derivative spectra. DSC curves of them present distinct topological pattern, characteristic peak and peak temperature. Using near infrared spectroscopy and differential scanning calorimetry analysis can realize efficient and accurate identification of four kinds of Mongolian medicine Digeda, and provide scientific basis for the efficient and accurate identification of other Gentianaceae Mongolian medicine Digeda.

  7. Comparison of two inductive learning methods: A case study in failed fuel identification

    SciTech Connect

    Reifman, J.; Lee, J.C.

    1992-05-01

    Two inductive learning methods, the ID3 and Rg algorithms, are studied as a means for systematically and automatically constructing the knowledge base of expert systems. Both inductive learning methods are general-purpose and use information entropy as a discriminatory measure in order to group objects of a common class. ID3 constructs a knowledge base by building decision trees that discriminate objects of a data set as a function of their class. Rg constructs a knowledge base by grouping objects of the same class into patterns or clusters. The two inductive methods are applied to the construction of a knowledge base for failed fuel identification in the Experimental Breeder Reactor II. Through analysis of the knowledge bases generated, the ID3 and Rg algorithms are compared for their knowledge representation, data overfitting, feature space partition, feature selection, and search procedure.

  8. Comparison of two inductive learning methods: A case study in failed fuel identification

    SciTech Connect

    Reifman, J. ); Lee, J.C. . Dept. of Nuclear Engineering)

    1992-01-01

    Two inductive learning methods, the ID3 and Rg algorithms, are studied as a means for systematically and automatically constructing the knowledge base of expert systems. Both inductive learning methods are general-purpose and use information entropy as a discriminatory measure in order to group objects of a common class. ID3 constructs a knowledge base by building decision trees that discriminate objects of a data set as a function of their class. Rg constructs a knowledge base by grouping objects of the same class into patterns or clusters. The two inductive methods are applied to the construction of a knowledge base for failed fuel identification in the Experimental Breeder Reactor II. Through analysis of the knowledge bases generated, the ID3 and Rg algorithms are compared for their knowledge representation, data overfitting, feature space partition, feature selection, and search procedure.

  9. A novel system identification technique for improved wearable hemodynamics assessment.

    PubMed

    Wiens, Andrew D; Inan, Omer T

    2015-05-01

    Recent advances have led to renewed interest in ballistocardiography (BCG), a noninvasive measure of the small movements of the body due to cardiovascular events. A broad range of platforms have been developed and verified for BCG measurement including beds, chairs, and weighing scales: while the body is coupled to such a platform, the cardiogenic movements are measured. Wearable BCG, measured with an accelerometer affixed to the body, may enable continuous, or more regular, monitoring during the day; however, the signals from such wearable BCGs represent local or distal accelerations of skin and tissue rather than the whole body. In this paper, we propose a novel method to reconstruct the BCG measured with a weighing scale (WS BCG) from a wearable sensor via a training step to remove these local effects. Preliminary validation of this method was performed with 15 subjects: the wearable sensor was placed at three locations on the surface of the body while WS BCG measurements were recorded simultaneously. A regularized system identification approach was used to reconstruct the WS BCG from the wearable BCG. Preliminary results suggest that the relationship between local and central disturbances is highly dependent on both the individual and the location where the accelerometer is placed on the body and that these differences can be resolved via calibration to accurately measure changes in cardiac output and contractility from a wearable sensor. Such measurements could be highly effective, for example, for improved monitoring of heart failure patients at home.

  10. Identification and Discrimination of Brands of Fuels by Gas Chromatography and Neural Networks Algorithm in Forensic Research

    PubMed Central

    Ugena, L.; Moncayo, S.; Manzoor, S.; Rosales, D.

    2016-01-01

    The detection of adulteration of fuels and its use in criminal scenes like arson has a high interest in forensic investigations. In this work, a method based on gas chromatography (GC) and neural networks (NN) has been developed and applied to the identification and discrimination of brands of fuels such as gasoline and diesel without the necessity to determine the composition of the samples. The study included five main brands of fuels from Spain, collected from fifteen different local petrol stations. The methodology allowed the identification of the gasoline and diesel brands with a high accuracy close to 100%, without any false positives or false negatives. A success rate of three blind samples was obtained as 73.3%, 80%, and 100%, respectively. The results obtained demonstrate the potential of this methodology to help in resolving criminal situations. PMID:27375919

  11. A delayed neutron technique for measuring induced fission rates in fresh and burnt LWR fuel

    NASA Astrophysics Data System (ADS)

    Jordan, K. A.; Perret, G.

    2011-04-01

    The LIFE@PROTEUS program at the Paul Scherrer Institut is being undertaken to characterize the interfaces between burnt and fresh fuel assemblies in modern LWRs. Techniques are being developed to measure fission rates in burnt fuel following re-irradiation in the zero-power PROTEUS research reactor. One such technique utilizes the measurement of delayed neutrons. To demonstrate the feasibility of the delayed neutron technique, fresh and burnt UO 2 fuel samples were irradiated in different positions in the PROTEUS reactor, and their neutron outputs were recorded shortly after irradiation. Fission rate ratios of the same sample irradiated in two different positions (inter-positional) and of two different samples irradiated in the same position (inter-sample) were derived from the measurements and compared with Monte Carlo predictions. Derivation of fission rate ratios from the delayed neutron measured signal requires correcting the signal for the delayed neutron source properties, the efficiency of the measurement setup, and the time dependency of the signal. In particular, delayed neutron source properties strongly depend on the fissile and fertile isotopes present in the irradiated sample and must be accounted for when deriving inter-sample fission rate ratios. Measured inter-positional fission rate ratios generally agree within 1σ uncertainty (on the order of 1.0%) with the calculation predictions. For a particular irradiation position, however, a bias of about 2% is observed and is currently under investigation. Calculated and measured inter-sample fission rate ratios have C/E values deviating from unity by less than 1% and within 2σ of the statistical uncertainties. Uncertainty arising from delayed neutron data is also assessed, and is found to give an additional 3% uncertainty factor. The measurement data indicate that uncertainty is overestimated.

  12. Performance comparison of five frequency domain system identification techniques for helicopter higher harmonic control

    NASA Technical Reports Server (NTRS)

    Jacklin, Stephen A.

    1988-01-01

    This paper presents the results of a computer simulation comparing the performance of five system identification techniques currently proposed for use with helicopter, frequency domain, higher harmonic vibration control algorithms. The system identification techniques studied were: (1) the weighted least squares method in moving block format, (2) the classical Kalman filter, (3) a generalized Kalman filter, (4) the classical least mean square (LMS) filter, and (5) a generalized LMS filter. The generalized Kalman and LMS filters were derived by allowing for multistep operation, rather than the single-step update approach used by their classical versions. Both open-loop and closed-loop (vibration control mode) identification results are presented in the paper. The algorithms are evaluated in terms of their accuracy, stability, convergence properties, computation speeds, and the relative ease with which these techniques may be directly applied to the helicopter vibration control problem.

  13. Modeling XV-15 tilt-rotor aircraft dynamics by frequency and time-domain identification techniques

    NASA Technical Reports Server (NTRS)

    Tischler, Mark B.; Kaletka, Juergen

    1987-01-01

    Models of the open-loop hover dynamics of the XV-15 Tilt-Rotor Aircraft are extracted from flight data using two approaches: frequency domain and time-domain identification. Both approaches are reviewed and the identification results are presented and compared in detail. The extracted models are compared favorably, with the differences associated mostly with the inherent weighing of each technique. Step responses are used to show that the predictive capability of the models from both techniques is excellent. Based on the results of this study, the relative strengths and weaknesses of the frequency and time-domain techniques are summarized and a proposal for a coordinated parameter identification approach is presented.

  14. Modeling XV-15 tilt-rotor aircraft dynamics by frequency and time-domain identification techniques

    NASA Technical Reports Server (NTRS)

    Tischler, Mark B.; Kaletka, Juergen

    1986-01-01

    Models of the open-loop hover dynamics of the XV-15 Tilt-Rotor Aircraft are extracted from flight data using two approaches: frequency-domain and time-domain identification. Both approaches are reviewed and the identification results are presented and compared in detail. The extracted models compare favorable, with the differences associated mostly with the inherent weighting of each technique. Step responses are used to show that the predictive capability of the models from both techniques is excellent. Based on the results of this study, the relative strengths and weaknesses of the frequency- and time-domain techniques are summarized, and a proposal for a coordinated parameter identification approach is presented.

  15. A Novel System Identification Technique for Improved Wearable Hemodynamics Assessment

    PubMed Central

    Wiens, Andrew D.; Inan, Omer T.

    2015-01-01

    Recent advances have led to renewed interest in ballistocardiography (BCG), a non-invasive measure of the small reaction forces on the body from cardiovascular events. A broad range of platforms have been developed and verified for BCG measurement including beds, chairs, and weighing scales: while the body is coupled to such a platform, the cardiogenic movements of the center-of-mass (COM) are measured. Wearable BCG, measured with an accelerometer affixed to the body, may enable continuous, or more regular, monitoring during the day; however, the signals from such wearable BCGs represent local or distal accelerations of skin and tissue rather than the displacement of the body's COM. In this paper we propose a novel method to reconstruct the COM BCG from a wearable sensor via a training step to remove these local effects. Preliminary validation of this method was performed with fifteen subjects: the wearable sensor was placed at three locations on the surface of the body while COM BCG measurements were recorded simultaneously with a modified weighing scale. A regularized system identification approach was used to reconstruct the COM BCG from the wearable signal. Preliminary results suggest that the relationship between local and central forces is highly dependent on both the individual and the location where the wearable sensor is placed on the body and that these differences can be resolved via calibration to accurately measure changes in cardiac output and contractility from a wearable sensor. Such measurements could be highly effective, for example, for improved monitoring of heart failure patients at home. PMID:25561589

  16. [THE COMPARATIVE ANALYSIS OF TECHNIQUES OF IDENTIFICATION OF CORYNEBACTERIUM NON DIPHTHERIAE].

    PubMed

    Kharseeva, G G; Voronina, N A; Mironov, A Yu; Alutina, E L

    2015-12-01

    The comparative analysis was carried out concerning effectiveness of three techniques of identification of Corynebacterium non diphtheriae: bacteriological, molecular genetic (sequenation on 16SpRNA) andmass-spectrometric (MALDI-ToFMS). The analysis covered 49 strains of Corynebacterium non diphtheriae (C.pseudodiphheriticum, C.amycolatum, C.propinquum, C.falsenii) and 2 strains of Corynebacterium diphtheriae isolated under various pathology form urogenital tract and upper respiratory ways. The corinbacteria were identified using bacteriologic technique, sequenation on 16SpRNA and mass-spectrometric technique (MALDIToF MS). The full concordance of results of species' identification was marked in 26 (51%) of strains of Corynebacterium non diphtheriae at using three analysis techniques; in 43 (84.3%) strains--at comparison of bacteriologic technique with sequenation on 16S pRNA and in 29 (57%)--at mass-spectrometric analysis and sequenation on 16S pRNA. The bacteriologic technique is effective for identification of Corynebacterium diphtheriae. The precise establishment of species belonging of corynebacteria with variable biochemical characteristics the molecular genetic technique of analysis is to be applied. The mass-spectrometric technique (MALDI-ToF MS) requires further renewal of data bases for identifying larger spectrum of representatives of genus Corynebacterium.

  17. Wafer hot spot identification through advanced photomask characterization techniques

    NASA Astrophysics Data System (ADS)

    Choi, Yohan; Green, Michael; McMurran, Jeff; Ham, Young; Lin, Howard; Lan, Andy; Yang, Richer; Lung, Mike

    2016-10-01

    As device manufacturers progress through advanced technology nodes, limitations in standard 1-dimensional (1D) mask Critical Dimension (CD) metrics are becoming apparent. Historically, 1D metrics such as Mean to Target (MTT) and CD Uniformity (CDU) have been adequate for end users to evaluate and predict the mask impact on the wafer process. However, the wafer lithographer's process margin is shrinking at advanced nodes to a point that the classical mask CD metrics are no longer adequate to gauge the mask contribution to wafer process error. For example, wafer CDU error at advanced nodes is impacted by mask factors such as 3-dimensional (3D) effects and mask pattern fidelity on subresolution assist features (SRAFs) used in Optical Proximity Correction (OPC) models of ever-increasing complexity. These items are not quantifiable with the 1D metrology techniques of today. Likewise, the mask maker needs advanced characterization methods in order to optimize the mask process to meet the wafer lithographer's needs. These advanced characterization metrics are what is needed to harmonize mask and wafer processes for enhanced wafer hot spot analysis. In this paper, we study advanced mask pattern characterization techniques and their correlation with modeled wafer performance.

  18. Identification of unique repeated patterns, location of mutation in DNA finger printing using artificial intelligence technique.

    PubMed

    Mukunthan, B; Nagaveni, N

    2014-01-01

    In genetic engineering, conventional techniques and algorithms employed by forensic scientists to assist in identification of individuals on the basis of their respective DNA profiles involves more complex computational steps and mathematical formulae, also the identification of location of mutation in a genomic sequence in laboratories is still an exigent task. This novel approach provides ability to solve the problems that do not have an algorithmic solution and the available solutions are also too complex to be found. The perfect blend made of bioinformatics and neural networks technique results in efficient DNA pattern analysis algorithm with utmost prediction accuracy.

  19. Underwater DVI: Simple fingerprint technique for positive identification.

    PubMed

    Khoo, Lay See; Hasmi, Ahmad Hafizam; Mahmood, Mohd Shah; Vanezis, Peter

    2016-09-01

    An underwater disaster can be declared when a maritime accident occurred or when an aircraft is plunged into water area, be it ocean, sea or river. Nevertheless, handling of human remains in an underwater recovery operation is often a difficult and demanding task as working conditions may be challenging with poor to no visibility, location of remains at considerable depths and associated hazards from surrounding water. A case of the recent helicopter crash, into a famous river in Sarawak, domiciled by huge crocodiles, is discussed in this paper. Search and recovery team as well as the combat divers from the Special Elite Troop Commando, known as VAT 69, were deployed to the scene to perform the underwater recovery to search for all the victims on board involving five Malaysians with a pilot of Philippines nationality. This paper highlights the limitations and challenges faced during the underwater search and recovery. All the bodies recovered were in moderate decomposition stage with crushed injuries and mutilated face and body. A simple and conventional fingerprint technique were used to record the fingerprint. The prints impressions were later photographed using a smartphone and transferred back to the RMP headquarters in Kuala Lumpur for fingerprint match by using WhatsApp Messenger, a phone application. All the first five victims were identified within an average of 10min. The last victim recovered was the pilot. For foreign nationals, the Immigration Department of Malaysia will record the prints of both index fingers only. The lifting of the fingerprint of the last victim was the most challenging in which only one index finger left that can be used for comparison. A few techniques were attempted using the black printer's ink, glass and tape techniques for the last victim. Subsequently, images of the prints impression were taken using the same smartphone with additional macro lens attached to it to enhance the resolution. The images were transferred to the RMP

  20. Data Mining Techniques to Estimate Plutonium, Initial Enrichment, Burnup, and Cooling Time in Spent Fuel Assemblies

    SciTech Connect

    Trellue, Holly Renee; Fugate, Michael Lynn; Tobin, Stephen Joesph

    2015-03-19

    The Next Generation Safeguards Initiative (NGSI), Office of Nonproliferation and Arms Control (NPAC), National Nuclear Security Administration (NNSA) of the U.S. Department of Energy (DOE) has sponsored a multi-laboratory, university, international partner collaboration to (1) detect replaced or missing pins from spent fuel assemblies (SFA) to confirm item integrity and deter diversion, (2) determine plutonium mass and related plutonium and uranium fissile mass parameters in SFAs, and (3) verify initial enrichment (IE), burnup (BU), and cooling time (CT) of facility declaration for SFAs. A wide variety of nondestructive assay (NDA) techniques were researched to achieve these goals [Veal, 2010 and Humphrey, 2012]. In addition, the project includes two related activities with facility-specific benefits: (1) determination of heat content and (2) determination of reactivity (multiplication). In this research, a subset of 11 integrated NDA techniques was researched using data mining solutions at Los Alamos National Laboratory (LANL) for their ability to achieve the above goals.

  1. Characterization of (Th,U)O 2 fuel pellets made by impregnation technique

    NASA Astrophysics Data System (ADS)

    Kutty, T. R. G.; Nair, M. R.; Sengupta, P.; Basak, U.; Kumar, Arun; Kamath, H. S.

    2008-02-01

    Impregnation technique is an attractive alternative for manufacturing highly radiotoxic 233U bearing thoria based mixed oxide fuel pellets, which are remotely treated in hot cell or shielded glove-box facilities. This technique is being investigated to fabricate the fuel for the forthcoming Indian Advanced Heavy Water Reactor (AHWR). In the impregnation process, porous ThO 2 pellets are prepared in an unshielded facility which are then impregnated with 1.5 molar uranyl nitrate solution in a shielded facility. The resulting composites are dried and denitrated at 500 °C and then sintered in reducing/oxidizing atmosphere to obtain high density (Th,U)O 2 pellets. In this work, the densification behaviour of ThO 2-2% UO 2 and ThO 2-4% UO 2 pellets was studied in reducing and oxidizing atmospheres using a high temperature dilatometer. Densification was found to be larger in air than in Ar-8% H 2. The characterization of the sintered pellets was made by optical microscopy, scanning electron microscopy (SEM) and electron probe microanalysis (EPMA). The grain structure of ThO 2-2% UO 2 and ThO 2-4% UO 2 pellets was uniform. The EPMA data confirmed that the uranium concentration was slightly higher at the periphery of the pellet than that at the centre.

  2. Automated identification of cancerous smears using various competitive intelligent techniques.

    PubMed

    Dounias, G; Bjerregaard, B; Jantzen, J; Tsakonas, A; Ampazis, N; Panagi, G; Panourgias, E

    2006-01-01

    In this study the performance of various intelligent methodologies is compared in the task of pap-smear diagnosis. The selected intelligent methodologies are briefly described and explained, and then, the acquired results are presented and discussed for their comprehensibility and usefulness to medical staff, either for fault diagnosis tasks, or for the construction of automated computer-assisted classification of smears. The intelligent methodologies used for the construction of pap-smear classifiers, are different clustering approaches, feature selection, neuro-fuzzy systems, inductive machine learning, genetic programming, and second order neural networks. Acquired results reveal the power of most intelligent techniques to obtain high quality solutions in this difficult problem of medical diagnosis. Some of the methods obtain almost perfect diagnostic accuracy in test data, but the outcome lacks comprehensibility. On the other hand, results scoring high in terms of comprehensibility are acquired from some methods, but with the drawback of achieving lower diagnostic accuracy. The experimental data used in this study were collected at a previous stage, for the purpose of combining intelligent diagnostic methodologies with other existing computer imaging technologies towards the construction of an automated smear cell classification device.

  3. Comparison of modal identification techniques using a hybrid-data approach

    NASA Technical Reports Server (NTRS)

    Pappa, Richard S.

    1986-01-01

    Modal identification of seemingly simple structures, such as the generic truss is often surprisingly difficult in practice due to high modal density, nonlinearities, and other nonideal factors. Under these circumstances, different data analysis techniques can generate substantially different results. The initial application of a new hybrid-data method for studying the performance characteristics of various identification techniques with such data is summarized. This approach offers new pieces of information for the system identification researcher. First, it allows actual experimental data to be used in the studies, while maintaining the traditional advantage of using simulated data. That is, the identification technique under study is forced to cope with the complexities of real data, yet the performance can be measured unquestionably for the artificial modes because their true parameters are known. Secondly, the accuracy achieved for the true structural modes in the data can be estimated from the accuracy achieved for the artificial modes if the results show similar characteristics. This similarity occurred in the study, for example, for a weak structural mode near 56 Hz. It may even be possible--eventually--to use the error information from the artificial modes to improve the identification accuracy for the structural modes.

  4. Parameter identification of aggregated thermostatically controlled loads for smart grids using PDE techniques

    NASA Astrophysics Data System (ADS)

    Moura, Scott; Bendtsen, Jan; Ruiz, Victor

    2014-07-01

    This paper develops methods for model identification of aggregated thermostatically controlled loads (TCLs) in smart grids, via partial differential equation (PDE) techniques. Control of aggregated TCLs provides a promising opportunity to mitigate the mismatch between power generation and demand, thus enhancing grid reliability and enabling renewable energy penetration. To this end, this paper focuses on developing parameter identification algorithms for a PDE-based model of aggregated TCLs. First, a two-state boundary-coupled hyperbolic PDE model for homogenous TCL populations is derived. This model is extended to heterogeneous populations by including a diffusive term, which provides an elegant control-oriented model. Next, a passive parameter identification scheme and a swapping-based identification scheme are derived for the PDE model structure. Simulation results demonstrate the efficacy of each method under various autonomous and non-autonomous scenarios. The proposed models can subsequently be employed to provide system critical information for power system monitoring and control.

  5. The application of a biometric identification technique for linking community and hospital data in rural Ghana

    PubMed Central

    Odei-Lartey, Eliezer Ofori; Boateng, Dennis; Danso, Samuel; Kwarteng, Anthony; Abokyi, Livesy; Amenga-Etego, Seeba; Gyaase, Stephaney; Asante, Kwaku Poku; Owusu-Agyei, Seth

    2016-01-01

    Background The reliability of counts for estimating population dynamics and disease burdens in communities depends on the availability of a common unique identifier for matching general population data with health facility data. Biometric data has been explored as a feasible common identifier between the health data and sociocultural data of resident members in rural communities within the Kintampo Health and Demographic Surveillance System located in the central part of Ghana. Objective Our goal was to assess the feasibility of using fingerprint identification to link community data and hospital data in a rural African setting. Design A combination of biometrics and other personal identification techniques were used to identify individual's resident within a surveillance population seeking care in two district hospitals. Visits from resident individuals were successfully recorded and categorized by the success of the techniques applied during identification. The successes of visits that involved identification by fingerprint were further examined by age. Results A total of 27,662 hospital visits were linked to resident individuals. Over 85% of those visits were successfully identified using at least one identification method. Over 65% were successfully identified and linked using their fingerprints. Supervisory support from the hospital administration was critical in integrating this identification system into its routine activities. No concerns were expressed by community members about the fingerprint registration and identification processes. Conclusions Fingerprint identification should be combined with other methods to be feasible in identifying community members in African rural settings. This can be enhanced in communities with some basic Demographic Surveillance System or census information. PMID:26993473

  6. Microbial source tracking: a forensic technique for microbial source identification?

    PubMed

    Stapleton, Carl M; Wyer, Mark D; Kay, David; Crowther, John; McDonald, Adrian T; Walters, Martin; Gawler, Andrew; Hindle, Terry

    2007-05-01

    information did not provide quantitative source apportionment for the study catchment. Thus, it could not replace detailed empirical measurement of microbial flux at key catchment outlets to underpin faecal indicator source apportionment. Therefore, the MST techniques reported herein currently may not meet the standards required to be a useful forensic tool, although continued development of the methods and further catchment scale studies could increase confidence in such methods for future application.

  7. Double-staining techniques allows electrophysiological identification of monoamine-containing neurons.

    PubMed

    Audesirk, T E; Audesirk, G J

    1985-08-01

    Electrophysiological recording provides important evidence for positive identification of many neurons in gastropods. We describe a technique which combines intracellular recording and injection of a persistent, non-fluorescent dye (Fast Green) with subsequent histofluorescence treatment using a modification of the wholemount glyoxylic acid procedure developed by Barber (1983) to establish the presence or absence of monoamine transmitters in positively identified single gastropod neurons.

  8. Shape identification technique for a two-dimensional elliptic system by boundary integral equation method

    NASA Technical Reports Server (NTRS)

    Kojima, Fumio

    1989-01-01

    The geometrical structure of the boundary shape for a two-dimensional boundary value problem is identified. The output least square identification method is considered for estimating partially unknown boundary shapes. A numerical parameter estimation technique using the spline collocation method is proposed.

  9. Imaging of droplets and vapor distributions in a diesel fuel spray by means of a laser absorption-scattering technique.

    PubMed

    Zhang, Y Y; Yoshizaki, T; Nishida, K

    2000-11-20

    The droplets and vapor distributions in a fuel spray were imaged by a dual-wavelength laser absorption-scattering technique. 1,3-dimethylnaphthalene, which has physical properties similar to those of Diesel fuel, strongly absorbs the ultraviolet light near the fourth harmonic (266 nm) of a Nd:YAG laser but is nearly transparent to the visible light near the second harmonic (532 nm) of a Nd:YAG laser. Therefore, droplets and vapor distributions in a Diesel spray can be visualized by an imaging system that uses a Nd:YAG laser as the incident light and 1,3-dimethylnaphthalene as the test fuel. For a quantitative application consideration, the absorption coefficients of dimethylnapthalene vapor at different temperatures and pressures were examined with an optical spectrometer. The findings of this study suggest that this imaging technique has great promise for simultaneously obtaining quantitative information of droplet density and vapor concentration in Diesel fuel spray.

  10. Multi technique amalgamation for enhanced information identification with content based image data.

    PubMed

    Das, Rik; Thepade, Sudeep; Ghosh, Saurav

    2015-01-01

    Image data has emerged as a resourceful foundation for information with proliferation of image capturing devices and social media. Diverse applications of images in areas including biomedicine, military, commerce, education have resulted in huge image repositories. Semantically analogous images can be fruitfully recognized by means of content based image identification. However, the success of the technique has been largely dependent on extraction of robust feature vectors from the image content. The paper has introduced three different techniques of content based feature extraction based on image binarization, image transform and morphological operator respectively. The techniques were tested with four public datasets namely, Wang Dataset, Oliva Torralba (OT Scene) Dataset, Corel Dataset and Caltech Dataset. The multi technique feature extraction process was further integrated for decision fusion of image identification to boost up the recognition rate. Classification result with the proposed technique has shown an average increase of 14.5 % in Precision compared to the existing techniques and the retrieval result with the introduced technique has shown an average increase of 6.54 % in Precision over state-of-the art techniques.

  11. Direct Experimental Evaluation of the Grain Boundaries Gas Content in PWR fuels: New Insight and Perspective of the ADAGIO Technique

    SciTech Connect

    Pontillon, Y.; Noirot, J.; Caillot, L.

    2007-07-01

    Over the last decades, many analytical experiments (in-pile and out-of-pile) have underlined the active role of the inter-granular gases on the global fuel transient behavior under accidental conditions such as RIA and/or LOCA. In parallel, the improvement of fission gas release modeling in nuclear fuel performance codes needs direct experimental determination/validation regarding the local gas distribution inside the fuel sample. In this context, an experimental program, called 'ADAGIO' (French acronym for Discriminating Analysis of Accumulation of Inter-granular and Occluded Gas), has been initiated through a joint action of CEA, EDF and AREVA NP in order to develop a new device/technique for quantitative and direct measurement of local fission gas distribution within an irradiated fuel pellet. ADAGIO technique is based on the fact that fission gas inventory (intra and inter-granular parts) can be distinguished by controlled fuel oxidation, since grain boundaries oxidize faster than the bulk. The purpose of the current paper is to present both the methodology and the associated results of the ADAGIO program performed at CEA. It has been divided into two main parts: (i) feasibility (UO{sub 2} and MOX fuels), (ii) application on high burn up UO{sub 2} fuel. (authors)

  12. Applications of integrated human error identification techniques on the chemical cylinder change task.

    PubMed

    Cheng, Ching-Min; Hwang, Sheue-Ling

    2015-03-01

    This paper outlines the human error identification (HEI) techniques that currently exist to assess latent human errors. Many formal error identification techniques have existed for years, but few have been validated to cover latent human error analysis in different domains. This study considers many possible error modes and influential factors, including external error modes, internal error modes, psychological error mechanisms, and performance shaping factors, and integrates several execution procedures and frameworks of HEI techniques. The case study in this research was the operational process of changing chemical cylinders in a factory. In addition, the integrated HEI method was used to assess the operational processes and the system's reliability. It was concluded that the integrated method is a valuable aid to develop much safer operational processes and can be used to predict human error rates on critical tasks in the plant.

  13. Detection and Identification of Sulfur Compounds in an Australian Jet Fuel

    DTIC Science & Technology

    2010-06-01

    Australian Jet Fuel Executive Summary Jet fuel contains a wide range of sulfur compounds that affect the properties and performance of...the fuel in a number of ways, including corrosion of uncoated metals, effects on fuel lubricity, and on both thermal and storage stability properties ...All of these properties are ongoing concerns for the ADF. Jet fuel used by the ADF has its sulfur content controlled through specification DEF(AUST

  14. Artificial Intelligence Techniques for the Estimation of Direct Methanol Fuel Cell Performance

    NASA Astrophysics Data System (ADS)

    Hasiloglu, Abdulsamet; Aras, Ömür; Bayramoglu, Mahmut

    2016-04-01

    Artificial neural networks and neuro-fuzzy inference systems are well known artificial intelligence techniques used for black-box modelling of complex systems. In this study, Feed-forward artificial neural networks (ANN) and adaptive neuro-fuzzy inference system (ANFIS) are used for modelling the performance of direct methanol fuel cell (DMFC). Current density (I), fuel cell temperature (T), methanol concentration (C), liquid flow-rate (q) and air flow-rate (Q) are selected as input variables to predict the cell voltage. Polarization curves are obtained for 35 different operating conditions according to a statistically designed experimental plan. In modelling study, various subsets of input variables and various types of membership function are considered. A feed -forward architecture with one hidden layer is used in ANN modelling. The optimum performance is obtained with the input set (I, T, C, q) using twelve hidden neurons and sigmoidal activation function. On the other hand, first order Sugeno inference system is applied in ANFIS modelling and the optimum performance is obtained with the input set (I, T, C, q) using sixteen fuzzy rules and triangular membership function. The test results show that ANN model estimates the polarization curve of DMFC more accurately than ANFIS model.

  15. Identification of optimal solar fuel electrocatalysts via high throughput in situ optical measurements

    SciTech Connect

    Shinde, Aniketa; Guevarra, Dan; Haber, Joel A.; Jin, Jian; Gregoire, John M.

    2014-10-21

    For many solar fuel generator designs involve illumination of a photoabsorber stack coated with a catalyst for the oxygen evolution reaction (OER). In this design, impinging light must pass through the catalyst layer before reaching the photoabsorber(s), and thus optical transmission is an important function of the OER catalyst layer. Many oxide catalysts, such as those containing elements Ni and Co, form oxide or oxyhydroxide phases in alkaline solution at operational potentials that differ from the phases observed in ambient conditions. To characterize the transparency of such catalysts during OER operation, 1031 unique compositions containing the elements Ni, Co, Ce, La, and Fe were prepared by a high throughput inkjet printing technique. Moreover, the catalytic current of each composition was recorded at an OER overpotential of 0.33 V with simultaneous measurement of the spectral transmission. By combining the optical and catalytic properties, the combined catalyst efficiency was calculated to identify the optimal catalysts for solar fuel applications within the material library. Our measurements required development of a new high throughput instrument with integrated electrochemistry and spectroscopy measurements, which enables various spectroelectrochemistry experiments.

  16. Identification of optimal solar fuel electrocatalysts via high throughput in situ optical measurements

    DOE PAGES

    Shinde, Aniketa; Guevarra, Dan; Haber, Joel A.; ...

    2014-10-21

    For many solar fuel generator designs involve illumination of a photoabsorber stack coated with a catalyst for the oxygen evolution reaction (OER). In this design, impinging light must pass through the catalyst layer before reaching the photoabsorber(s), and thus optical transmission is an important function of the OER catalyst layer. Many oxide catalysts, such as those containing elements Ni and Co, form oxide or oxyhydroxide phases in alkaline solution at operational potentials that differ from the phases observed in ambient conditions. To characterize the transparency of such catalysts during OER operation, 1031 unique compositions containing the elements Ni, Co, Ce,more » La, and Fe were prepared by a high throughput inkjet printing technique. Moreover, the catalytic current of each composition was recorded at an OER overpotential of 0.33 V with simultaneous measurement of the spectral transmission. By combining the optical and catalytic properties, the combined catalyst efficiency was calculated to identify the optimal catalysts for solar fuel applications within the material library. Our measurements required development of a new high throughput instrument with integrated electrochemistry and spectroscopy measurements, which enables various spectroelectrochemistry experiments.« less

  17. CODEHOP-mediated PCR – A powerful technique for the identification and characterization of viral genomes

    PubMed Central

    Rose, Timothy M

    2005-01-01

    Consensus-Degenerate Hybrid Oligonucleotide Primer (CODEHOP) PCR primers derived from amino acid sequence motifs which are highly conserved between members of a protein family have proven to be highly effective in the identification and characterization of distantly related family members. Here, the use of the CODEHOP strategy to identify novel viruses and obtain sequence information for phylogenetic characterization, gene structure determination and genome analysis is reviewed. While this review describes techniques for the identification of members of the herpesvirus family of DNA viruses, the same methodology and approach is applicable to other virus families. PMID:15769292

  18. Remote sensing techniques for the detection of soil erosion and the identification of soil conservation practices

    NASA Technical Reports Server (NTRS)

    Pelletier, R. E.; Griffin, R. H.

    1985-01-01

    The following paper is a summary of a number of techniques initiated under the AgRISTARS (Agriculture and Resources Inventory Surveys Through Aerospace Remote Sensing) project for the detection of soil degradation caused by water erosion and the identification of soil conservation practices for resource inventories. Discussed are methods to utilize a geographic information system to determine potential soil erosion through a USLE (Universal Soil Loss Equation) model; application of the Kauth-Thomas Transform to detect present erosional status; and the identification of conservation practices through visual interpretation and a variety of enhancement procedures applied to digital remotely sensed data.

  19. Use of DWPF redox measurement technique on glasses from West Valley Nuclear Fuel Services Demonstration Project

    SciTech Connect

    Jantzen, C.M.

    1990-10-01

    Liquid high-level nuclear waste will be immobilized at the Savannah River Site (SRS) by vitrification in borosilicate glass in the Defense Waste Processing Facility (DWPF). A similar vitrification facility exists at the West Valley Nuclear Fuel Services. In both of these facilities, control of the oxidation/reduction (redox) equilibrium in the glass melter is critical for processing of the nuclear waste. Redox can be determined by measuring the ratio of ferrous to ferric ions in the glass melt. A colorimetric procedure has been developed for the DWPF which has been shown to give rapid and reliable analytical results. This colorimetric technique has been shown to measure the Fe{sup 2+} component of glasses more accurately than other existing redox measurement methods. The DWPF redox technique was applied to a series of six glasses taken from the West Valley melter during a transient melter excursion. This excursion caused the glasses to become progressively more reducing with time. Application of the DWPF redox technique to these glasses correctly indicated the redox trends with a higher precision and with more accuracy than the West Valley wet chemical method and/or Alfred University's Mossbauer method. 1 fig., 18 refs.

  20. New acoustic techniques for leak detection in fossil fuel plant components

    NASA Astrophysics Data System (ADS)

    Parini, G.; Possa, G.

    Two on-line acoustic monitoring techniques for leak detection in feedwater preheaters and boilers of fossil fuel power plants are presented. The leak detection is based on the acoustic noise produced by the turbulent leak outflow. The primary sensors are piezoelectric pressure transducers, installed near the feedwater preheater inlets, in direct contact with the water, or mounted on boiler observation windows. The frequency band of the auscultation ranges from a few kHz, to 10 to 15 kHz. The signals are characterized by their rms value, continuously recorded by means of potentiometric strip chart recorders. The leak occurrence is signalled by the signal rms overcoming predetermined threshold levels. Sensitivity, reliability, acceptance in plant control practice, and costs-benefits balance are satisfactory.

  1. Characterization of Bond Strength of U-Mo Fuel Plates Using the Laser Shockwave Technique: Capabilities and Preliminary Results

    SciTech Connect

    J. A. Smith; D. L. Cottle; B. H. Rabin

    2013-09-01

    This report summarizes work conducted to-date on the implementation of new laser-based capabilities for characterization of bond strength in nuclear fuel plates, and presents preliminary results obtained from fresh fuel studies on as-fabricated monolithic fuel consisting of uranium-10 wt.% molybdenum alloys clad in 6061 aluminum by hot isostatic pressing. Characterization involves application of two complementary experimental methods, laser-shock testing and laser-ultrasonic imaging, collectively referred to as the Laser Shockwave Technique (LST), that allows the integrity, physical properties and interfacial bond strength in fuel plates to be evaluated. Example characterization results are provided, including measurement of layer thicknesses, elastic properties of the constituents, and the location and nature of generated debonds (including kissing bonds). LST provides spatially localized, non-contacting measurements with minimum specimen preparation, and is ideally suited for applications involving radioactive materials, including irradiated materials. The theoretical principles and experimental approaches employed in characterizing nuclear fuel plates are described, and preliminary bond strength measurement results are discussed, with emphasis on demonstrating the capabilities and limitations of these methods. These preliminary results demonstrate the ability to distinguish bond strength variations between different fuel plates. Although additional development work is necessary to validate and qualify the test methods, these results suggest LST is viable as a method to meet fuel qualification requirements to demonstrate acceptable bonding integrity.

  2. Comparison of System Identification Techniques for the Hydraulic Manipulator Test Bed (HMTB)

    NASA Technical Reports Server (NTRS)

    Morris, A. Terry

    1996-01-01

    In this thesis linear, dynamic, multivariable state-space models for three joints of the ground-based Hydraulic Manipulator Test Bed (HMTB) are identified. HMTB, housed at the NASA Langley Research Center, is a ground-based version of the Dexterous Orbital Servicing System (DOSS), a representative space station manipulator. The dynamic models of the HMTB manipulator will first be estimated by applying nonparametric identification methods to determine each joint's response characteristics using various input excitations. These excitations include sum of sinusoids, pseudorandom binary sequences (PRBS), bipolar ramping pulses, and chirp input signals. Next, two different parametric system identification techniques will be applied to identify the best dynamical description of the joints. The manipulator is localized about a representative space station orbital replacement unit (ORU) task allowing the use of linear system identification methods. Comparisons, observations, and results of both parametric system identification techniques are discussed. The thesis concludes by proposing a model reference control system to aid in astronaut ground tests. This approach would allow the identified models to mimic on-orbit dynamic characteristics of the actual flight manipulator thus providing astronauts with realistic on-orbit responses to perform space station tasks in a ground-based environment.

  3. Correlation techniques to determine model form in robust nonlinear system realization/identification

    NASA Technical Reports Server (NTRS)

    Stry, Greselda I.; Mook, D. Joseph

    1991-01-01

    The fundamental challenge in identification of nonlinear dynamic systems is determining the appropriate form of the model. A robust technique is presented which essentially eliminates this problem for many applications. The technique is based on the Minimum Model Error (MME) optimal estimation approach. A detailed literature review is included in which fundamental differences between the current approach and previous work is described. The most significant feature is the ability to identify nonlinear dynamic systems without prior assumption regarding the form of the nonlinearities, in contrast to existing nonlinear identification approaches which usually require detailed assumptions of the nonlinearities. Model form is determined via statistical correlation of the MME optimal state estimates with the MME optimal model error estimates. The example illustrations indicate that the method is robust with respect to prior ignorance of the model, and with respect to measurement noise, measurement frequency, and measurement record length.

  4. Modelling and disentangling physiological mechanisms: linear and nonlinear identification techniques for analysis of cardiovascular regulation

    PubMed Central

    Batzel, Jerry; Baselli, Giuseppe; Mukkamala, Ramakrishna; Chon, Ki H

    2009-01-01

    Cardiovascular (CV) regulation is the result of a number of very complex control interactions. As computational power increases and new methods for collecting experimental data emerge, the potential for exploring these interactions through modelling increases as does the potential for clinical application of such models. Understanding these interactions requires the application of a diverse set of modelling techniques. Several recent mathematical modelling techniques will be described in this review paper. Starting from Granger's causality, the problem of closed-loop identification is recalled. The main aspects of linear identification and of grey-box modelling tailored to CV regulation analysis are summarized as well as basic concepts and trends for nonlinear extensions. Sensitivity analysis is presented and discussed as a potent tool for model validation and refinement. The integration of methods and models is fostered for a further physiological comprehension and for the development of more potent and robust diagnostic tools. PMID:19324714

  5. Gender identification of Grasshopper Sparrows comparing behavioral, morphological, and molecular techniques

    USGS Publications Warehouse

    Ammer, F.K.; Wood, P.B.; McPherson, R.J.

    2008-01-01

    Correct gender identification in monomorphic species is often difficult especially if males and females do not display obvious behavioral and breeding differences. We compared gender specific morphology and behavior with recently developed DNA techniques for gender identification in the monomorphic Grasshopper Sparrow (Ammodramus savannarum). Gender was ascertained with DNA in 213 individuals using the 2550F/2718R primer set and 3% agarose gel electrophoresis. Field observations using behavior and breeding characteristics to identify gender matched DNA analyses with 100% accuracy for adult males and females. Gender was identified with DNA for all captured juveniles that did not display gender specific traits or behaviors in the field. The molecular techniques used offered a high level of accuracy and may be useful in studies of dispersal mechanisms and winter assemblage composition in monomorphic species.

  6. Developments in techniques for the isolation, enrichment, main culture conditions and identification of spermatogonial stem cells.

    PubMed

    He, Yanan; Chen, Xiaoli; Zhu, Huabin; Wang, Dong

    2015-12-01

    The in vitro culture system of spermatogonial stem cells (SSCs) provides a basis for studies on spermatogenesis, and also contributes to the development of new methods for the preservation of livestock and animal genetic modification. In vitro culture systems have mainly been established for mouse SSCs, but are lacking for farm animals. We reviewed and analyzed the current progress in SSC techniques such as isolation, purification, cultivation and identification. Based on the published studies, we concluded that two-step enzyme digestion and magnetic-activated cell sorting are fast becoming the main methods for isolation and enrichment of SSCs. With regard to the culture systems, serum and feeders were earlier thought to play an important role in the self-renewal and proliferation of SSCs, but serum- and feeder-free culture systems as a means of overcoming the limitations of SSC differentiation in long-term SSC culture are being explored. However, there is still a need to establish more efficient and ideal culture systems that can also be used for SSC culture in larger mammals. Although the lack of SSC-specific surface markers has seriously affected the efficiency of purification and identification, the transgenic study is helpful for our identification of SSCs. Therefore, future studies on SSC techniques should focus on improving serum- and feeder-free culture techniques, and discovering and identifying specific surface markers of SSCs, which will provide new ideas for the optimization of SSC culture systems for mice and promote related studies in farm animals.

  7. Cerenkov detectors for cosmic ray telescopes employing the Cerenkov x total energy technique of mass identification

    NASA Technical Reports Server (NTRS)

    Webber, W. R.; Kish, J. C.

    1983-01-01

    Considerable progress has been made regarding the evolution of the 'Cerenkov x total energy technique' for mass identification of cosmic ray nuclei since the introduction of telescopes employing this technique by Webber et al. (1973). Thus, significant improvements in mass resolution have been made. These improvements are mainly related to the resolution of the Cerenkov counter. The present investigation is, therefore, concerned with the properties of various types of Cerenkov detectors. In addition, a description is provided of the characteristics of a large area (approximately 0.5 sq m-ster) cosmic ray isotope telescope, which is being developed for use on balloons or spacecraft.

  8. Various extraction and analytical techniques for isolation and identification of secondary metabolites from Nigella sativa seeds.

    PubMed

    Liu, X; Abd El-Aty, A M; Shim, J-H

    2011-10-01

    Nigella sativa L. (black cumin), commonly known as black seed, is a member of the Ranunculaceae family. This seed is used as a natural remedy in many Middle Eastern and Far Eastern countries. Extracts prepared from N. sativa have, for centuries, been used for medical purposes. Thus far, the organic compounds in N. sativa, including alkaloids, steroids, carbohydrates, flavonoids, fatty acids, etc. have been fairly well characterized. Herein, we summarize some new extraction techniques, including microwave assisted extraction (MAE) and supercritical extraction techniques (SFE), in addition to the classical method of hydrodistillation (HD), which have been employed for isolation and various analytical techniques used for the identification of secondary metabolites in black seed. We believe that some compounds contained in N. sativa remain to be identified, and that high-throughput screening could help to identify new compounds. A study addressing environmentally-friendly techniques that have minimal or no environmental effects is currently underway in our laboratory.

  9. Nondestructive determination of plutonium mass in spent fuel: prelliminary modeling results using the passive neutron Albedo reactivity technique

    SciTech Connect

    Evans, Louise G; Tobin, Stephen J; Schear, Melissa A; Menlove, Howard O; Lee, Sang Y; Swinhoe, Martyn T

    2009-01-01

    There are a variety of motivations for quantifying plutonium (Pu) in spent fuel assemblies by means of nondestructive assay (NDA) including the following: strengthening the capability of the International Atomic Energy Agency (LAEA) to safeguard nuclear facilities, quantifying shipper/receiver difference, determining the input accountability value at pyrochemical processing facilities, providing quantitative input to burnup credit and final safeguards measurements at a long-term repository. In order to determine Pu mass in spent fuel assemblies, thirteen NDA techniques were identified that provide information about the composition of an assembly. A key motivation of the present research is the realization that none of these techniques, in isolation, is capable of both (1) quantifying the Pu mass of an assembly and (2) detecting the diversion of a significant number of rods. It is therefore anticipated that a combination of techniques will be required. A 5 year effort funded by the Next Generation Safeguards Initiative (NGSI) of the U.S. DOE was recently started in pursuit of these goals. The first two years involves researching all thirteen techniques using Monte Carlo modeling while the final three years involves fabricating hardware and measuring spent fuel. Here, we present the work in two main parts: (1) an overview of this NGSI effort describing the motivations and approach being taken; (2) The preliminary results for one of the NDA techniques - Passive Neutron Albedo Reactivity (PNAR). The PNAR technique functions by using the intrinsic neutron emission of the fuel (primarily from the spontaneous fission of curium) to self-interrogate any fissile material present. Two separate measurements of the spent fuel are made, both with and without cadmium (Cd) present. The ratios of the Singles, Doubles and Triples count rates obtained in each case are analyzed; known as the Cd ratio. The primary differences between the two measurements are the neutron energy spectrum

  10. Identification of piecewise affine systems based on fuzzy PCA-guided robust clustering technique

    NASA Astrophysics Data System (ADS)

    Khanmirza, Esmaeel; Nazarahari, Milad; Mousavi, Alireza

    2016-12-01

    Hybrid systems are a class of dynamical systems whose behaviors are based on the interaction between discrete and continuous dynamical behaviors. Since a general method for the analysis of hybrid systems is not available, some researchers have focused on specific types of hybrid systems. Piecewise affine (PWA) systems are one of the subsets of hybrid systems. The identification of PWA systems includes the estimation of the parameters of affine subsystems and the coefficients of the hyperplanes defining the partition of the state-input domain. In this paper, we have proposed a PWA identification approach based on a modified clustering technique. By using a fuzzy PCA-guided robust k-means clustering algorithm along with neighborhood outlier detection, the two main drawbacks of the well-known clustering algorithms, i.e., the poor initialization and the presence of outliers, are eliminated. Furthermore, this modified clustering technique enables us to determine the number of subsystems without any prior knowledge about system. In addition, applying the structure of the state-input domain, that is, considering the time sequence of input-output pairs, provides a more efficient clustering algorithm, which is the other novelty of this work. Finally, the proposed algorithm has been evaluated by parameter identification of an IGV servo actuator. Simulation together with experiment analysis has proved the effectiveness of the proposed method.

  11. Advanced system identification techniques for wind turbine structures with special emphasis on modal parameters

    NASA Astrophysics Data System (ADS)

    Bialasiewicz, J. T.

    1995-06-01

    The goal is to develop advanced system identification techniques that can be used to accurately measure the frequency response functions of a wind-turbine structure immersed in wind noise. To allow for accurate identification, the authors have developed a special test signal called the pseudo-random binary sequence (PRBS). The Matlab program that generates this signal allows the user to interactively tailor its parameters for the frequency range of interest based on the response of the wind turbine under test. By controlling NREL's Mobile Hydraulic Shaker System, which is attached to the wind turbine structure, the PRBS signal produces the wide-band excitation necessary to perform system identification in the presence of wind noise. The techniques presented here will enable researchers to obtain modal parameters from an operating wind turbine, including frequencies, damping coefficients, and mode shapes. More importantly, the algorithms they have developed and tested (so far using input-output data from a simulated structure) permit state-space representation of the system under test, particularly the modal state space representation. This is the only system description that reveals the internal behavior of the system, such as the interaction between the physical parameters, and which, in contrast to transfer functions, is valid for non-zero initial conditions.

  12. A feasibility and optimization study to determine cooling time and burnup of advanced test reactor fuels using a nondestructive technique

    SciTech Connect

    Navarro, Jorge

    2013-12-01

    The goal of this study presented is to determine the best available non-destructive technique necessary to collect validation data as well as to determine burn-up and cooling time of the fuel elements onsite at the Advanced Test Reactor (ATR) canal. This study makes a recommendation of the viability of implementing a permanent fuel scanning system at the ATR canal and leads3 to the full design of a permanent fuel scan system. The study consisted at first in determining if it was possible and which equipment was necessary to collect useful spectra from ATR fuel elements at the canal adjacent to the reactor. Once it was establish that useful spectra can be obtained at the ATR canal the next step was to determine which detector and which configuration was better suited to predict burnup and cooling time of fuel elements non-destructively. Three different detectors of High Purity Germanium (HPGe), Lanthanum Bromide (LaBr3), and High Pressure Xenon (HPXe) in two system configurations of above and below the water pool were used during the study. The data collected and analyzed was used to create burnup and cooling time calibration prediction curves for ATR fuel. The next stage of the study was to determine which of the three detectors tested was better suited for the permanent system. From spectra taken and the calibration curves obtained, it was determined that although the HPGe detector yielded better results, a detector that could better withstand the harsh environment of the ATR canal was needed. The in-situ nature of the measurements required a rugged fuel scanning system, low in maintenance and easy to control system. Based on the ATR canal feasibility measurements and calibration results it was determined that the LaBr3 detector was the best alternative for canal in-situ measurements; however in order to enhance the quality of the spectra collected using this scintillator a deconvolution method was developed. Following the development of the deconvolution method

  13. PEM fuel cell cost minimization using ``Design For Manufacture and Assembly`` techniques

    SciTech Connect

    Lomax, F.D. Jr.; James, B.D.; Mooradian, R.P.

    1997-12-31

    Polymer Electrolyte Membrane (PEM) fuel cells fueled with direct hydrogen have demonstrated substantial technical potential to replace Internal Combustion Engines (ICE`s) in light duty vehicles. Such a transition to a hydrogen economy offers the potential of substantial benefits from reduced criteria and greenhouse emissions as well as reduced foreign fuel dependence. Research conducted for the Ford Motor Co. under a US Department of Energy contract suggests that hydrogen fuel, when used in a fuel cell vehicle (FCV), can achieve a cost per vehicle mile less than or equal to the gasoline cost per mile when used in an ICE vehicle. However, fuel cost parity is not sufficient to ensure overall economic success: the PEM fuel cell power system itself must be of comparable cost to the ICE. To ascertain if low cost production of PEM fuel cells is feasible, a powerful set of mechanical engineering tools collectively referred to as Design for Manufacture and Assembly (DFMA) has been applied to several representative PEM fuel cell designs. The preliminary results of this work are encouraging, as presented.

  14. Application of optimization techniques to spacecaft fuel usage minimization in deep space navigation

    NASA Technical Reports Server (NTRS)

    Wang, Tseng-Chan; Sunseri, Richard F.; Stanford, Richard H.; Gray, Donald L.; Breckheimer, Peter J.

    1987-01-01

    Mathematical analysis of the minimization of spacecraft fuel usage for both impulsive and finite motor burns is presented. A high precision integrated trajectory search program (SEPV) and several optimization software libraries are used to solve minimum fuel usage problems. The SEPV program has the capacity to vary either the initial spacecraft state or the finite burn parameters to acquire a specified set of target values. Several test examples for the Voyager 2 Uranus Encounter and the Galileo Jupiter Orbiter are presented to show that spacecraft fuel consumption can be minimized in targeting maneuver strategies. The fuel savings achieved by the optimum solution can be significant.

  15. Use of cluster counting technique for particle identification in a drift chamber with the cathode strip readout

    SciTech Connect

    Berdnikov, Vladimir V.; Somov, S. V.; Pentchev, Lubomir P.

    2015-07-01

    The possibility of using the clusters counting technique for particle identification in a drift chamber with the cathode strip readout is experimentally investigated. Results of counting of primary ionization clusters on a relativistic particle track, as well as results of computer simulation of pion, kaon, and proton identification in the momentum range of 1–8 GeV/c, are presented.

  16. Determining plutonium mass in spent fuel with non-destructive assay techniques - NGSU research overview and update on 6 NDA techniques

    SciTech Connect

    Tobin, Stephen J; Conlin, Jeremy L; Evans, Louise G; Hu, Jianwei; Blanc, Pauline C; Lafleur, Adrienne M; Menlove, Howard O; Schear, Melissa A; Swinhoe, Martyn T; Croft, Stephen; Fensin, Michael L; Freeman, Corey R; Koehler, William E; Mozin, V; Sandoval, N P; Lee, T H; Cambell, L W; Cheatham, J R; Gesh, C J; Hunt, A; Ludewigt, B A; Smith, L E; Sterbentz, J

    2010-09-15

    This poster is one of two complementary posters. The Next Generation Safeguards Initiative (NGSI) of the U.S. DOE has initiated a multi-lab/university collaboration to quantify the plutonium (Pu) mass in, and detect the diversion of pins from, spent nuclear fuel assemblies with non-destructive assay (NDA). This research effort has the goal of quantifying the capability of 14 NDA techniques as well as training a future generation of safeguards practitioners. By November of 2010, we will be 1.5 years into the first phase (2.5 years) of work. This first phase involves primarily Monte Carlo modelling while the second phase (also 2.5 years) will focus on experimental work. The goal of phase one is to quantify the detection capability of the various techniques for the benefit of safeguard technology developers, regulators, and policy makers as well as to determine what integrated techniques merit experimental work, We are considering a wide range of possible technologies since our research horizon is longer term than the focus of most regulator bodies. The capability of all of the NDA techniques will be determined for a library of 64 17 x 17 PWR assemblies [burnups (15, 30, 45, 60 GWd/tU), initial enrichments (2, 3, 4, 5%) and cooling times (1, 5, 20, 80 years)]. The burnup and cooling time were simulated with each fuel pin being comprised of four radial regions. In this paper an overview of the purpose will be given as well as a technical update on the following 6 neutron techniques: {sup 252}Cf Interrogation with Prompt Neutron Detection, Delayed Neutrons, Differential Die-Away, Differential Die-Away Self-Interrogation, Passive Neutron Albedo Reactivity, Self-Integration Neutron Resonance Densitometry. The technical update will quantify the anticipated performance of each technique for the 64 assemblies of the spent fuel library.

  17. Materials and characterization techniques for high-temperature polymer electrolyte membrane fuel cells

    PubMed Central

    2015-01-01

    Summary The performance of high-temperature polymer electrolyte membrane fuel cells (HT-PEMFC) is critically dependent on the selection of materials and optimization of individual components. A conventional high-temperature membrane electrode assembly (HT-MEA) primarily consists of a polybenzimidazole (PBI)-type membrane containing phosphoric acid and two gas diffusion electrodes (GDE), the anode and the cathode, attached to the two surfaces of the membrane. This review article provides a survey on the materials implemented in state-of-the-art HT-MEAs. These materials must meet extremely demanding requirements because of the severe operating conditions of HT-PEMFCs. They need to be electrochemically and thermally stable in highly acidic environment. The polymer membranes should exhibit high proton conductivity in low-hydration and even anhydrous states. Of special concern for phosphoric-acid-doped PBI-type membranes is the acid loss and management during operation. The slow oxygen reduction reaction in HT-PEMFCs remains a challenge. Phosphoric acid tends to adsorb onto the surface of the platinum catalyst and therefore hampers the reaction kinetics. Additionally, the binder material plays a key role in regulating the hydrophobicity and hydrophilicity of the catalyst layer. Subsequently, the binder controls the electrode–membrane interface that establishes the triple phase boundary between proton conductive electrolyte, electron conductive catalyst, and reactant gases. Moreover, the elevated operating temperatures promote carbon corrosion and therefore degrade the integrity of the catalyst support. These are only some examples how materials properties affect the stability and performance of HT-PEMFCs. For this reason, materials characterization techniques for HT-PEMFCs, either in situ or ex situ, are highly beneficial. Significant progress has recently been made in this field, which enables us to gain a better understanding of underlying processes occurring during

  18. A Comparison of Direction Finding Results From an FFT Peak Identification Technique With Those From the Music Algorithm

    DTIC Science & Technology

    1991-07-01

    MUSIC ALGORITHM (U) by L.E. Montbrland go I July 1991 CRC REPORT NO. 1438 Ottawa I* Government of Canada Gouvsrnweient du Canada I o DParunnt of...FINDING RESULTS FROM AN FFT PEAK IDENTIFICATION TECHNIQUE WITH THOSE FROM THE MUSIC ALGORITHM (U) by L.E. Montbhrand CRC REPORT NO. 1438 July 1991...Ottawa A Comparison of Direction Finding Results From an FFT Peak Identification Technique With Those From the Music Algorithm L.E. Montbriand Abstract A

  19. Neutron Detection With Ultra-Fast Digitizer and Pulse Identification Techniques on DIII-D

    NASA Astrophysics Data System (ADS)

    Zhu, Y. B.; Heidbrink, W. W.; Piglowski, D. A.

    2013-10-01

    A prototype system for neutron detection with an ultra-fast digitizer and pulse identification techniques has been implemented on the DIII-D tokamak. The system consists of a cylindrical neutron fission chamber, a charge sensitive amplifier, and a GaGe Octopus 12-bit CompuScope digitizer card installed in a Linux computer. Digital pulse identification techniques have been successfully performed at maximum data acquisition rate of 50 MSPS with on-board memory of 2 GS. Compared to the traditional approach with fast nuclear electronics for pulse counting, this straightforward digital solution has many advantages, including reduced expense, improved accuracy, higher counting rate, and easier maintenance. The system also provides the capability of neutron-gamma pulse shape discrimination and pulse height analysis. Plans for the upgrade of the old DIII-D neutron counting system with these techniques will be presented. Work supported by the US Department of Energy under SC-G903402, and DE-FC02-04ER54698.

  20. Identification of vapor-phase chemical warfare agent simulants and rocket fuels using laser-induced breakdown spectroscopy

    SciTech Connect

    Stearns, Jaime A.; McElman, Sarah E.; Dodd, James A.

    2010-05-01

    Application of laser-induced breakdown spectroscopy (LIBS) to the identification of security threats is a growing area of research. This work presents LIBS spectra of vapor-phase chemical warfare agent simulants and typical rocket fuels. A large dataset of spectra was acquired using a variety of gas mixtures and background pressures and processed using partial least squares analysis. The five compounds studied were identified with a 99% success rate by the best method. The temporal behavior of the emission lines as a function of chamber pressure and gas mixture was also investigated, revealing some interesting trends that merit further study.

  1. Identification and Analysis of Critical Gaps in Nuclear Fuel Cycle Codes Required by the SINEMA Program

    SciTech Connect

    Adrian Miron; Joshua Valentine; John Christenson; Majd Hawwari; Santosh Bhatt; Mary Lou Dunzik-Gougar: Michael Lineberry

    2009-10-01

    The current state of the art in nuclear fuel cycle (NFC) modeling is an eclectic mixture of codes with various levels of applicability, flexibility, and availability. In support of the advanced fuel cycle systems analyses, especially those by the Advanced Fuel Cycle Initiative (AFCI), Unviery of Cincinnati in collaboration with Idaho State University carried out a detailed review of the existing codes describing various aspects of the nuclear fuel cycle and identified the research and development needs required for a comprehensive model of the global nuclear energy infrastructure and the associated nuclear fuel cycles. Relevant information obtained on the NFC codes was compiled into a relational database that allows easy access to various codes' properties. Additionally, the research analyzed the gaps in the NFC computer codes with respect to their potential integration into programs that perform comprehensive NFC analysis.

  2. High-accuracy thickness measurement of a transparent plate with the heterodyne central fringe identification technique

    SciTech Connect

    Wu, Wang-Tsung; Hsieh, Hung-Chih; Chang, Wei-Yao; Chen, Yen-Liang; Su, Der-Chin

    2011-07-20

    In a modified Twyman-Green interferometer, the optical path variation is measured with the heterodyne central fringe identification technique, as the light beam is focused by a displaced microscopic objective on the front/rear surface of the test transparent plate. The optical path length variation is then measured similarly after the test plate is removed. The geometrical thickness of the test plate can be calculated under the consideration of dispersion effect. This method has a wide measurable range and a high accuracy in the measurable range.

  3. High-accuracy thickness measurement of a transparent plate with the heterodyne central fringe identification technique.

    PubMed

    Wu, Wang-Tsung; Hsieh, Hung-Chih; Chang, Wei-Yao; Chen, Yen-Liang; Su, Der-Chin

    2011-07-20

    In a modified Twyman-Green interferometer, the optical path variation is measured with the heterodyne central fringe identification technique, as the light beam is focused by a displaced microscopic objective on the front/rear surface of the test transparent plate. The optical path length variation is then measured similarly after the test plate is removed. The geometrical thickness of the test plate can be calculated under the consideration of dispersion effect. This method has a wide measurable range and a high accuracy in the measurable range.

  4. High-accuracy thickness measurement of a transparent plate with the heterodyne central fringe identification technique

    NASA Astrophysics Data System (ADS)

    Wu, Wang-Tsung; Hsieh, Hung-Chih; Chang, Wei-Yao; Chen, Yen-Liang; Su, Der-Chin

    2011-07-01

    In a modified Twyman--Green interferometer, the optical path variation is measured with the heterodyne central fringe identification technique, as the light beam is focused by a displaced microscopic objective on the front/rear surface of the test transparent plate. The optical path length variation is then measured similarly after the test plate is removed. The geometrical thickness of the test plate can be calculated under the consideration of dispersion effect. This method has a wide measurable range and a high accuracy in the measurable range.

  5. Identification of Organic Binders in Ancient Chinese Paintings by Immunological Techniques.

    PubMed

    Hu, Wenjing; Zhang, Hui; Zhang, Bingjian

    2015-10-01

    The identification and localization of organic binders in artworks are big challenges in archaeology and conservation science. Immunological techniques, such as enzyme-linked immunosorbent assay (ELISA) and immunofluorescence microscopy (IFM) have the potential to become powerful tools for the analysis of organic materials in ancient samples. In this study, ELISA and IFM techniques were combined to identify chicken ovalbumin, glue from several mammalian species, bovine milk, and fish glue in ancient Chinese painting samples. As binders, egg ovalbumin was found in two painting samples and animal glue was found in three samples, which were dated from the 4th to 8th centuries. The results clearly demonstrate that ELISA and IFM can be used to validate results from ancient samples.

  6. [Identification of mosquitoes' human food source by using the co-agglutination technique].

    PubMed

    Castex, M; Fachado, A; Fonte, L

    1997-01-01

    The utilization of a coagglutination technique for the identification of a human source for feeding mosquitoes is described. The dilution of ingested blood samples in filter paper was performed in 2 mL of a sodium chloride solution at 0.85%. It was used a suspension of sensibilized Staphylococcus aureus with rabbit's serum, human plasmatic anti-proteins, and human anti-IgG rabbit's serum discriminated well between human and non human blood. No agglutination was observed with the negative control. This technique proved to be sensitive to identify 100% of the human blood samples taken to the paper 24 hours after the mosquitoes completed their feeding at a temperature of 26 to 28 degrees C. Among mosquitoes fed and collected in the fields the test had a satisfactory result. Therefore, it may be used in routine work in the fields. The results showed the sensitivity and specificity of this method for identifying human blood ingested by mosquitoes.

  7. An analysis of nuclear fuel burnup in the AGR-1 TRISO fuel experiment using gamma spectrometry, mass spectrometry, and computational simulation techniques

    SciTech Connect

    Harp, Jason M.; Demkowicz, Paul A.; Winston, Philip L.; Sterbentz, James W.

    2014-09-03

    AGR 1 was the first in a series of experiments designed to test US TRISO fuel under high temperature gas-cooled reactor irradiation conditions. This experiment was irradiated in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) and is currently undergoing post irradiation examination (PIE) at INL and Oak Ridge National Laboratory. One component of the AGR 1 PIE is the experimental evaluation of the burnup of the fuel by two separate techniques. Gamma spectrometry was used to non destructively evaluate the burnup of all 72 of the TRISO fuel compacts that comprised the AGR 1 experiment. Two methods for evaluating burnup by gamma spectrometry were developed, one based on the Cs 137 activity and the other based on the ratio of Cs 134 and Cs 137 activities. Burnup values determined from both methods compared well with the values predicted from simulations. The highest measured burnup was 20.1% FIMA for the direct method and 20.0% FIMA for the ratio method (compared to 19.56% FIMA from simulations). An advantage of the ratio method is that the burnup of the cylindrical fuel compacts can determined in small (2.5 mm) axial increments and an axial burnup profile can be produced. Destructive chemical analysis by inductively coupled mass spectrometry (ICP MS) was then performed on selected compacts that were representative of the expected range of fuel burnups in the experiment to compare with the burnup values determined by gamma spectrometry. The compacts analyzed by mass spectrometry had a burnup range of 19.3% FIMA to 10.7% FIMA. The mass spectrometry evaluation of burnup for the four compacts agreed well with the gamma spectrometry burnup evaluations and the expected burnup from simulation. For all four compacts analyzed by mass spectrometry, the maximum range in the three experimentally determined values and the predicted value was 6% or less. Furthermore, the results confirm the accuracy of the nondestructive burnup evaluation from gamma spectrometry

  8. An analysis of nuclear fuel burnup in the AGR-1 TRISO fuel experiment using gamma spectrometry, mass spectrometry, and computational simulation techniques

    DOE PAGES

    Harp, Jason M.; Demkowicz, Paul A.; Winston, Philip L.; ...

    2014-09-03

    AGR 1 was the first in a series of experiments designed to test US TRISO fuel under high temperature gas-cooled reactor irradiation conditions. This experiment was irradiated in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) and is currently undergoing post irradiation examination (PIE) at INL and Oak Ridge National Laboratory. One component of the AGR 1 PIE is the experimental evaluation of the burnup of the fuel by two separate techniques. Gamma spectrometry was used to non destructively evaluate the burnup of all 72 of the TRISO fuel compacts that comprised the AGR 1 experiment. Two methodsmore » for evaluating burnup by gamma spectrometry were developed, one based on the Cs 137 activity and the other based on the ratio of Cs 134 and Cs 137 activities. Burnup values determined from both methods compared well with the values predicted from simulations. The highest measured burnup was 20.1% FIMA for the direct method and 20.0% FIMA for the ratio method (compared to 19.56% FIMA from simulations). An advantage of the ratio method is that the burnup of the cylindrical fuel compacts can determined in small (2.5 mm) axial increments and an axial burnup profile can be produced. Destructive chemical analysis by inductively coupled mass spectrometry (ICP MS) was then performed on selected compacts that were representative of the expected range of fuel burnups in the experiment to compare with the burnup values determined by gamma spectrometry. The compacts analyzed by mass spectrometry had a burnup range of 19.3% FIMA to 10.7% FIMA. The mass spectrometry evaluation of burnup for the four compacts agreed well with the gamma spectrometry burnup evaluations and the expected burnup from simulation. For all four compacts analyzed by mass spectrometry, the maximum range in the three experimentally determined values and the predicted value was 6% or less. Furthermore, the results confirm the accuracy of the nondestructive burnup evaluation from gamma

  9. Identification of Scleractinian Coral Recruits Using Fluorescent Censusing and DNA Barcoding Techniques

    PubMed Central

    Hsu, Chia-Min; de Palmas, Stéphane; Kuo, Chao-Yang; Denis, Vianney; Chen, Chaolun Allen

    2014-01-01

    The identification of coral recruits has been problematic due to a lack of definitive morphological characters being available for higher taxonomic resolution. In this study, we tested whether fluorescent detection of coral recruits used in combinations of different DNA-barcoding markers (cytochrome oxidase I gene [COI], open reading frame [ORF], and nuclear Pax-C intron [PaxC]) could be useful for increasing the resolution of coral spat identification in ecological studies. One hundred and fifty settlement plates were emplaced at nine sites on the fringing reefs of Kenting National Park in southern Taiwan between April 2011 and September 2012. A total of 248 living coral spats and juveniles (with basal areas ranging from 0.21 to 134.57 mm2) were detected on the plates with the aid of fluorescent light and collected for molecular analyses. Using the COI DNA barcoding technique, 90.3% (224/248) of coral spats were successfully identified into six genera, including Acropora, Isopora, Montipora, Pocillopora, Porites, and Pavona. PaxC further separated I. cuneata and I. palifera of Isopora from Acropora, and ORF successfully identified the species of Pocillopora (except P. meandrina and P. eydouxi). Moreover, other cnidarian species such as actinarians, zoanthids, and Millepora species were visually found using fluorescence and identified by COI DNA barcoding. This combination of existing approaches greatly improved the taxonomic resolution of early coral life stages, which to date has been mainly limited to the family level based on skeletal identification. Overall, this study suggests important improvements for the identification of coral recruits in ecological studies. PMID:25211345

  10. Application of fuel/time minimization techniques to route planning and trajectory optimization

    NASA Technical Reports Server (NTRS)

    Knox, C. E.

    1984-01-01

    Rising fuel costs combined with other economic pressures have resulted in industry requirements for more efficient air traffic control and airborne operations. NASA has responded with an on-going research program to investigate the requirements and benefits of using new airborne guidance and pilot procedures that are compatible with advanced air traffic control systems and that will result in more fuel efficient flight. The results of flight testing an airborne computer algorithm designed to provide either open-loop or closed-loop guidance for fuel efficient descents while satisfying time constraints imposed by the air traffic control system is summarized. Some of the potential cost and fuel savings that are obtained with sophisticated vertical path optimization capabilities are described.

  11. Biochemical component identification by light scattering techniques in whispering gallery mode optical resonance based sensor

    NASA Astrophysics Data System (ADS)

    Saetchnikov, Vladimir A.; Tcherniavskaia, Elina A.; Saetchnikov, Anton V.; Schweiger, Gustav; Ostendorf, Andreas

    2014-03-01

    Experimental data on detection and identification of variety of biochemical agents, such as proteins (albumin, interferon, C reactive protein), microelements (Na+, Ca+), antibiotic of different generations, in both single and multi component solutions under varied in wide range concentration are represented. Analysis has been performed on the light scattering parameters of whispering gallery mode (WGM) optical resonance based sensor with dielectric microspheres from glass and PMMA as sensitive elements fixed by spin - coating techniques in adhesive layer on the surface of substrate or directly on the coupling element. Sensitive layer was integrated into developed fluidic cell with a digital syringe. Light from tuneable laser strict focusing on and scattered by the single microsphere was detected by a CMOS camera. The image was filtered for noise reduction and integrated on two coordinates for evaluation of integrated energy of a measured signal. As the entrance data following signal parameters were used: relative (to a free spectral range) spectral shift of frequency of WGM optical resonance in microsphere and relative efficiency of WGM excitation obtained within a free spectral range which depended on both type and concentration of investigated agents. Multiplexing on parameters and components has been realized using spatial and spectral parameters of scattered by microsphere light with developed data processing. Biochemical component classification and identification of agents under investigation has been performed by network analysis techniques based on probabilistic network and multilayer perceptron. Developed approach is demonstrated to be applicable both for single agent and for multi component biochemical analysis.

  12. A Cost Estimation Analysis of U.S. Navy Ship Fuel-Savings Techniques and Technologies

    DTIC Science & Technology

    2009-09-01

    Steaming on Convex Hulls,” a paper on optimizing ship’s fuel usage by mixing transit speeds and plant configurations during independent steaming ...measure hours underway (UW), hours auxiliary steaming , barrels consumed, barrel consumed per hour, class averages, and percentage of over burn and...during normal steaming ? Is awareness of fuel efficiency written into the Night Orders? Are TYCOM-regulated ENCON awards enough to motivate better

  13. Identification and Quantification of Processes Affecting the Fate of Ethanol-Blended Fuel in the Subsurface

    NASA Astrophysics Data System (ADS)

    Devries, J. M.; Mayer, K. U.

    2015-12-01

    At present, the oil and gas industry distributes gasoline with an ethanol content of up to 10% (E10) to the consumer. However, ethanol advocates are promoting gasoline blends with higher ethanol content to be introduced into the market (e.g., E20, corresponding to an ethanol content of 20%). The likelihood of unintended fuel releases with elevated ethanol concentrations through surficial spills or from underground storage systems will therefore increase. A particular concern is the increased rate of CH4 and CO2 production as the spill biodegrades, which is believed to be associated with the increased ethanol content in the fuel. Consequently, high gas generation rates associated with ethanol-blended fuels may amplify the risk of vapor intrusion of CH4 and BTEX into basements or other subsurface structures that may be nearby. A comprehensive and comparative study on the fate of higher concentration ethanol-blended fuels in the subsurface has not been conducted to date. The present study focuses on determining the fate of ethanol blended fuels in the subsurface through a series of controlled and instrumented laboratory column experiments. The experiments compare the behavior of pure gasoline with that of ethanol-blended fuels for different soil types (sand and silt) in columns 2 meters tall and 30cm in diameter. The column experiments focus on the quantification of gas generation by volatilization and biodegradation and 1-D vertical fate and transport of CO2, CH4, benzene and toluene through the vadose zone. The fuel blends have been injected into the lower third of the columns and gas composition and fluxes within the column are being monitored over time. The goal of this study is to contribute to the scientific foundation that will allow gauging the level of risk and the need for remediation at fuel spill sites with higher ethanol blends.

  14. Application of Isothermal Amplification Techniques for Identification of Madurella mycetomatis, the Prevalent Agent of Human Mycetoma

    PubMed Central

    Ahmed, Sarah A.; van de Sande, Wendy W. J.; Desnos-Ollivier, Marie; Fahal, Ahmed H.; Mhmoud, Najwa A.

    2015-01-01

    Appropriate diagnosis and treatment of eumycetoma may vary significantly depending on the causative agent. To date, the most common fungus causing mycetoma worldwide is Madurella mycetomatis. This species fails to express any recognizable morphological characteristics, and reliable identification can therefore only be achieved with the application of molecular techniques. Recombinase polymerase amplification (RPA) and loop-mediated isothermal amplification (LAMP) are proposed as alternatives to phenotypic methods. Species-specific primers were developed to target the ribosomal DNA (rDNA) internal transcribed spacer (ITS) region of M. mycetomatis. Both isothermal amplification techniques showed high specificity and sufficient sensitivity to amplify fungal DNA and proved to be appropriate for detection of M. mycetomatis. Diagnostic performance of the techniques was assessed in comparison to conventional PCR using biopsy specimens from eumycetoma patients. RPA is reliable and easy to operate and has the potential to be implemented in areas where mycetoma is endemic. The techniques may be expanded to detect fungal DNA from environmental samples. PMID:26246484

  15. Study of operational parameters impacting helicopter fuel consumption. [using computer techniques (computer programs)

    NASA Technical Reports Server (NTRS)

    Cross, J. L.; Stevens, D. D.

    1976-01-01

    A computerized study of operational parameters affecting helicopter fuel consumption was conducted as an integral part of the NASA Civil Helicopter Technology Program. The study utilized the Helicopter Sizing and Performance Computer Program (HESCOMP) developed by the Boeing-Vertol Company and NASA Ames Research Center. An introduction to HESCOMP is incorporated in this report. The results presented were calculated using the NASA CH-53 civil helicopter research aircraft specifications. Plots from which optimum flight conditions for minimum fuel use that can be obtained are presented for this aircraft. The results of the study are considered to be generally indicative of trends for all helicopters.

  16. Utilization of the Differential Die-Away Self-Interrogation Technique for Characterization and Verification of Spent Nuclear Fuel

    SciTech Connect

    Trahan, Alexis Chanel

    2016-01-27

    New nondestructive assay techniques are sought to better characterize spent nuclear fuel. One of the NDA instruments selected for possible deployment is differential die-away self-interrogation (DDSI). The proposed DDSI approach for spent fuel assembly assay utilizes primarily the spontaneous fission and (α, n) neutrons in the assemblies as an internal interrogating radiation source. The neutrons released in spontaneous fission or (α,n) reactions are thermalized in the surrounding water and induce fission in fissile isotopes, thereby creating a measurable signal from isotopes of interest that would be otherwise difficult to measure. The DDSI instrument employs neutron coincidence counting with 3He tubes and list-mode-based data acquisition to allow for production of Rossi-alpha distributions (RADs) in post-processing. The list-mode approach to data collection and subsequent construction of RADs has expanded the analytical possibilities, as will be demonstrated throughout this thesis. One of the primary advantages is that the measured signal in the form of a RAD can be analyzed in its entirety including determination of die-away times in different time domains. This capability led to the development of the early die-away method, a novel leakage multiplication determination method which is tested throughout the thesis on different sources in simulation space and fresh fuel experiments. The early die-away method is a robust, accurate, improved method of determining multiplication without the need for knowledge of the (α,n) source term. The DDSI technique and instrument are presented along with the many novel capabilities enabled by and discovered through RAD analysis. Among the new capabilities presented are the early die-away method, total plutonium content determination, and highly sensitive missing pin detection. Simulation of hundreds of different spent and fresh fuel assemblies were used to develop the analysis algorithms and the techniques were tested on a

  17. Utilization of the Differential Die-Away Self-Interrogation Technique for Characterization and Verification of Spent Nuclear Fuel

    NASA Astrophysics Data System (ADS)

    Trahan, Alexis Chanel

    New nondestructive assay techniques are sought to better characterize spent nuclear fuel. One of the NDA instruments selected for possible deployment is differential die-away self-interrogation (DDSI). The proposed DDSI approach for spent fuel assembly assay utilizes primarily the spontaneous fission and (alpha, n) neutrons in the assemblies as an internal interrogating radiation source. The neutrons released in spontaneous fission or (alpha,n) reactions are thermalized in the surrounding water and induce fission in fissile isotopes, thereby creating a measurable signal from isotopes of interest that would be otherwise difficult to measure. The DDSI instrument employs neutron coincidence counting with 3He tubes and list-mode-based data acquisition to allow for production of Rossi-alpha distributions (RADs) in post-processing. The list-mode approach to data collection and subsequent construction of RADs has expanded the analytical possibilities, as will be demonstrated throughout this thesis. One of the primary advantages is that the measured signal in the form of a RAD can be analyzed in its entirety including determination of die-away times in different time domains. This capability led to the development of the early die-away method, a novel leakage multiplication determination method which is tested throughout the thesis on different sources in simulation space and fresh fuel experiments. The early die-away method is a robust, accurate, improved method of determining multiplication without the need for knowledge of the (alpha,n) source term. The DDSI technique and instrument are presented along with the many novel capabilities enabled by and discovered through RAD analysis. Among the new capabilities presented are the early die-away method, total plutonium content determination, and highly sensitive missing pin detection. Simulation of hundreds of different spent and fresh fuel assemblies were used to develop the analysis algorithms and the techniques were

  18. Research Techniques Made Simple: Identification and Characterization of Long Noncoding RNA in Dermatological Research.

    PubMed

    Antonini, Dario; Mollo, Maria Rosaria; Missero, Caterina

    2017-03-01

    Long noncoding RNAs (lncRNAs) are a functionally heterogeneous and abundant class of RNAs acting in all cellular compartments that can form complexes with DNA, RNA, and proteins. Recent advances in high-throughput sequencing and techniques leading to the identification of DNA-RNA, RNA-RNA, and RNA-protein complexes have allowed the functional characterization of a small set of lncRNAs. However, characterization of the full repertoire of lncRNAs playing essential roles in a number of normal and dysfunctional cellular processes remains an important goal for future studies. Here we describe the most commonly used techniques to identify lncRNAs, and to characterize their biological functions. In addition, we provide examples of these techniques applied to cutaneous research in healthy skin, that is, epidermal differentiation, and in diseases such as cutaneous squamous cell carcinomas and psoriasis. As with protein-coding RNA transcripts, lncRNAs are differentially regulated in disease, and can serve as novel biomarkers for the diagnosis and prognosis of skin diseases.

  19. Clones identification of Sequoia sempervirens (D. Don) Endl. in Chile by using PCR-RAPDs technique.

    PubMed

    Toral Ibañez, Manuel; Caru, Margarita; Herrera, Miguel A; Gonzalez, Luis; Martin, Luis M; Miranda, Jorge; Navarro-Cerrillo, Rafael M

    2009-02-01

    A protocol of polymerase chain reaction-random amplified polymorphic DNAs (PCR-RAPDs) was established to analyse the gene diversity and genotype identification for clones of Sequoia sempervirens (D. Don) Endl. in Chile. Ten (out of 34) clones from introduction trial located in Voipir-Villarrica, Chile, were studied. The PCR-RAPDs technique and a modified hexadecyltrimethylammonium bromide (CTAB) protocol were used for genomic DNA extraction. The PCR tests were carried out employing 10-mer random primers. The amplification products were detected by electrophoresis in agarose gels. Forty nine polymorphic bands were obtained with the selected primers (BG04, BF07, BF12, BF13, and BF14) and were ordered according to their molecular size. The genetic similarity between samples was calculated by the Jaccard index and a dendrogram was constructed using a cluster analysis of unweighted pair group method using arithmetic averages (UPGMA). Of the primers tested, 5 (out of 60) RAPD primers were selected for their reproducibility and high polymorphism. A total of 49 polymorphic RAPD bands were detected out of 252 bands. The genetic similarity analysis demonstrates an extensive genetic variability between the tested clones and the dendrogram depicts the genetic relationships among the clones, suggesting a geographic relationship. The results indicate that the RAPD markers permitted the identification of the assayed clones, although they are derived from the same geographic origin.

  20. Clones identification of Sequoia sempervirens (D. Don) Endl. in Chile by using PCR-RAPDs technique*

    PubMed Central

    Toral Ibañez, Manuel; Caru, Margarita; Herrera, Miguel A.; Gonzalez, Luis; Martin, Luis M.; Miranda, Jorge; Navarro-Cerrillo, Rafael M.

    2009-01-01

    A protocol of polymerase chain reaction-random amplified polymorphic DNAs (PCR-RAPDs) was established to analyse the gene diversity and genotype identification for clones of Sequoia sempervirens (D. Don) Endl. in Chile. Ten (out of 34) clones from introduction trial located in Voipir-Villarrica, Chile, were studied. The PCR-RAPDs technique and a modified hexadecyltrimethylammonium bromide (CTAB) protocol were used for genomic DNA extraction. The PCR tests were carried out employing 10-mer random primers. The amplification products were detected by electrophoresis in agarose gels. Forty nine polymorphic bands were obtained with the selected primers (BG04, BF07, BF12, BF13, and BF14) and were ordered according to their molecular size. The genetic similarity between samples was calculated by the Jaccard index and a dendrogram was constructed using a cluster analysis of unweighted pair group method using arithmetic averages (UPGMA). Of the primers tested, 5 (out of 60) RAPD primers were selected for their reproducibility and high polymorphism. A total of 49 polymorphic RAPD bands were detected out of 252 bands. The genetic similarity analysis demonstrates an extensive genetic variability between the tested clones and the dendrogram depicts the genetic relationships among the clones, suggesting a geographic relationship. The results indicate that the RAPD markers permitted the identification of the assayed clones, although they are derived from the same geographic origin. PMID:19235269

  1. ADVANCING THE FUNDAMENTAL UNDERSTANDING AND SCALE-UP OF TRISO FUEL COATERS VIA ADVANCED MEASUREMENT AND COMPUTATIONAL TECHNIQUES

    SciTech Connect

    Biswas, Pratim; Al-Dahhan, Muthanna

    2012-11-01

    to advance the fundamental understanding of the hydrodynamics by systematically investigating the effect of design and operating variables, to evaluate the reported dimensionless groups as scaling factors, and to establish a reliable scale-up methodology for the TRISO fuel particle spouted bed coaters based on hydrodynamic similarity via advanced measurement and computational techniques. An additional objective is to develop an on-line non-invasive measurement technique based on gamma ray densitometry (i.e. Nuclear Gauge Densitometry) that can be installed and used for coater process monitoring to ensure proper performance and operation and to facilitate the developed scale-up methodology. To achieve the objectives set for the project, the work will use optical probes and gamma ray computed tomography (CT) (for the measurements of solids/voidage holdup cross-sectional distribution and radial profiles along the bed height, spouted diameter, and fountain height) and radioactive particle tracking (RPT) (for the measurements of the 3D solids flow field, velocity, turbulent parameters, circulation time, solids lagrangian trajectories, and many other of spouted bed related hydrodynamic parameters). In addition, gas dynamic measurement techniques and pressure transducers will be utilized to complement the obtained information. The measurements obtained by these techniques will be used as benchmark data to evaluate and validate the computational fluid dynamic (CFD) models (two fluid model or discrete particle model) and their closures. The validated CFD models and closures will be used to facilitate the developed methodology for scale-up, design and hydrodynamic similarity. Successful execution of this work and the proposed tasks will advance the fundamental understanding of the coater flow field and quantify it for proper and safe design, scale-up, and performance. Such achievements will overcome the barriers to AGR applications and will help assure that the US maintains

  2. Non-destructive evaluation of the cladding thickness in LEU fuel plates by accurate ultrasonic scanning technique

    SciTech Connect

    Borring, J.; Gundtoft, H.E.; Borum, K.K.; Toft, P.

    1997-08-01

    In an effort to improve their ultrasonic scanning technique for accurate determination of the cladding thickness in LEU fuel plates, new equipment and modifications to the existing hardware and software have been tested and evaluated. The authors are now able to measure an aluminium thickness down to 0.25 mm instead of the previous 0.35 mm. Furthermore, they have shown how the measuring sensitivity can be improved from 0.03 mm to 0.01 mm. It has now become possible to check their standard fuel plates for DR3 against the minimum cladding thickness requirements non-destructively. Such measurements open the possibility for the acceptance of a thinner nominal cladding than normally used today.

  3. Use of system identification techniques for improving airframe finite element models using test data

    NASA Technical Reports Server (NTRS)

    Hanagud, Sathya V.; Zhou, Weiyu; Craig, James I.; Weston, Neil J.

    1991-01-01

    A method for using system identification techniques to improve airframe finite element models was developed and demonstrated. The method uses linear sensitivity matrices to relate changes in selected physical parameters to changes in total system matrices. The values for these physical parameters were determined using constrained optimization with singular value decomposition. The method was confirmed using both simple and complex finite element models for which pseudo-experimental data was synthesized directly from the finite element model. The method was then applied to a real airframe model which incorporated all the complexities and details of a large finite element model and for which extensive test data was available. The method was shown to work, and the differences between the identified model and the measured results were considered satisfactory.

  4. Vibrio parahaemolyticus: a review on the pathogenesis, prevalence, and advance molecular identification techniques.

    PubMed

    Letchumanan, Vengadesh; Chan, Kok-Gan; Lee, Learn-Han

    2014-01-01

    Vibrio parahaemolyticus is a Gram-negative halophilic bacterium that is found in estuarine, marine and coastal environments. V. parahaemolyticus is the leading causal agent of human acute gastroenteritis following the consumption of raw, undercooked, or mishandled marine products. In rare cases, V. parahaemolyticus causes wound infection, ear infection or septicaemia in individuals with pre-existing medical conditions. V. parahaemolyticus has two hemolysins virulence factors that are thermostable direct hemolysin (tdh)-a pore-forming protein that contributes to the invasiveness of the bacterium in humans, and TDH-related hemolysin (trh), which plays a similar role as tdh in the disease pathogenesis. In addition, the bacterium is also encodes for adhesions and type III secretion systems (T3SS1 and T3SS2) to ensure its survival in the environment. This review aims at discussing the V. parahaemolyticus growth and characteristics, pathogenesis, prevalence and advances in molecular identification techniques.

  5. Use of system identification techniques for improving airframe finite element models using test data

    NASA Technical Reports Server (NTRS)

    Hanagud, Sathya V.; Zhou, Weiyu; Craig, James I.; Weston, Neil J.

    1993-01-01

    A method for using system identification techniques to improve airframe finite element models using test data was developed and demonstrated. The method uses linear sensitivity matrices to relate changes in selected physical parameters to changes in the total system matrices. The values for these physical parameters were determined using constrained optimization with singular value decomposition. The method was confirmed using both simple and complex finite element models for which pseudo-experimental data was synthesized directly from the finite element model. The method was then applied to a real airframe model which incorporated all of the complexities and details of a large finite element model and for which extensive test data was available. The method was shown to work, and the differences between the identified model and the measured results were considered satisfactory.

  6. Isolation, Identification, and Characterization of One Degradation Product in Ambroxol by HPLC-Hyphenated Techniques

    PubMed Central

    Thummala, Veera Raghava Raju; Ivaturi, Mrutyunjaya Rao; Nittala, Someswara Rao

    2014-01-01

    This study details the isolation, identification, and characterization of ambroxol’s unknown impurity. One unknown impurity of ambroxol was formed in the formulated drug under stress conditions [40°C /75% relative humidity (RH) for 6 months] with the relative retention time (RRT) 0.68 in RP-HPLC. The impurity was enriched by exposing it to heat and it was isolated by using preparative HPLC. The enriched impurity was purified and characterized using the following sophisticated techniques: 2D NMR (gDQ-COSY, gHSQC, and gHMBC), FTIR, and LC-MS/MS. On the basis of the spectral data, the impurity was characterized as trans-4-(6,8-dibromoquinazolin-3(4H)-yl)cyclohexanol. PMID:24959402

  7. Development of advanced techniques for rotorcraft state estimation and parameter identification

    NASA Technical Reports Server (NTRS)

    Hall, W. E., Jr.; Bohn, J. G.; Vincent, J. H.

    1980-01-01

    An integrated methodology for rotorcraft system identification consists of rotorcraft mathematical modeling, three distinct data processing steps, and a technique for designing inputs to improve the identifiability of the data. These elements are as follows: (1) a Kalman filter smoother algorithm which estimates states and sensor errors from error corrupted data. Gust time histories and statistics may also be estimated; (2) a model structure estimation algorithm for isolating a model which adequately explains the data; (3) a maximum likelihood algorithm for estimating the parameters and estimates for the variance of these estimates; and (4) an input design algorithm, based on a maximum likelihood approach, which provides inputs to improve the accuracy of parameter estimates. Each step is discussed with examples to both flight and simulated data cases.

  8. Comparison of sonochemiluminescence images using image analysis techniques and identification of acoustic pressure fields via simulation.

    PubMed

    Tiong, T Joyce; Chandesa, Tissa; Yap, Yeow Hong

    2017-05-01

    One common method to determine the existence of cavitational activity in power ultrasonics systems is by capturing images of sonoluminescence (SL) or sonochemiluminescence (SCL) in a dark environment. Conventionally, the light emitted from SL or SCL was detected based on the number of photons. Though this method is effective, it could not identify the sonochemical zones of an ultrasonic systems. SL/SCL images, on the other hand, enable identification of 'active' sonochemical zones. However, these images often provide just qualitative data as the harvesting of light intensity data from the images is tedious and require high resolution images. In this work, we propose a new image analysis technique using pseudo-colouring images to quantify the SCL zones based on the intensities of the SCL images and followed by comparison of the active SCL zones with COMSOL simulated acoustic pressure zones.

  9. Vibrio parahaemolyticus: a review on the pathogenesis, prevalence, and advance molecular identification techniques

    PubMed Central

    Letchumanan, Vengadesh; Chan, Kok-Gan; Lee, Learn-Han

    2014-01-01

    Vibrio parahaemolyticus is a Gram-negative halophilic bacterium that is found in estuarine, marine and coastal environments. V. parahaemolyticus is the leading causal agent of human acute gastroenteritis following the consumption of raw, undercooked, or mishandled marine products. In rare cases, V. parahaemolyticus causes wound infection, ear infection or septicaemia in individuals with pre-existing medical conditions. V. parahaemolyticus has two hemolysins virulence factors that are thermostable direct hemolysin (tdh)-a pore-forming protein that contributes to the invasiveness of the bacterium in humans, and TDH-related hemolysin (trh), which plays a similar role as tdh in the disease pathogenesis. In addition, the bacterium is also encodes for adhesions and type III secretion systems (T3SS1 and T3SS2) to ensure its survival in the environment. This review aims at discussing the V. parahaemolyticus growth and characteristics, pathogenesis, prevalence and advances in molecular identification techniques. PMID:25566219

  10. In situ identification of bacterial species in marine microfouling films by using an immunofluorescence technique.

    PubMed Central

    Zambon, J J; Huber, P S; Meyer, A E; Slots, J; Fornalik, M S; Baier, R E

    1984-01-01

    An immunofluorescence technique was developed for the in situ identification of specific bacteria in marine microfouling films. Microorganisms adherent to glass plates after 30 days of immersion in a synthetic seawater system were cultured and classified by biochemical tests, flagellar arrangement, and the API 20E system. All isolates were gram-negative aerobic or facultative motile rods, predominantly Pseudomonas spp. Rabbit antisera to the five dominant organisms including Achromobacter spp., Comamonas terrigena, P. putrefaciens, a yellow-pigmented Pseudomonas sp., and Vibrio alginolyticus were prepared. These antisera were shown to be species specific in indirect immunofluorescence assays against a battery of 26 marine isolates from 14 bacterial species, with the exception of antisera to the Pseudomonas spp, which cross-reacted with each other but not with test bacteria of other genera. These immunofluorescent reagents enabled the in situ identification of all five bacterial species in microfouling films. Low-surface-energy test plates had smaller numbers of adherent bacteria in microfouling films than medium-surface-energy test plates, suggesting that the degree of microfouling may be influenced by the surface energy. In addition, the reagents could identify up to 39% of the attached bacteria in microfouling films spontaneously formed on steel plates in flow cells deployed in different areas of the Atlantic Ocean. The microbial composition of the ocean-formed films varied with the geographical area of their formation. The present results indicate that immunofluorescence techniques may provide a rapid and reliable means to identify, in situ, specific bacteria in marine microfouling films. PMID:6393875

  11. Delamination identification of laminated composite plates using a continuum damage mechanics model and subset selection technique

    NASA Astrophysics Data System (ADS)

    Shang, Shen; Yun, Gun Jin; Qiao, Pizhong

    2010-05-01

    In this paper, a new model-based delamination detection methodology is presented for laminated composite plates and its performance is studied both numerically and experimentally. This methodology consists of two main parts: (1) modal analysis of an undamaged baseline finite element (FE) model and experimental modal testing of panels with delamination damage at single or multiple locations and (2) a sensitivity based subset selection technique for single or multiple delamination damage localizations. As an identification model, a higher-order finite element model is combined with a rational micromechanics-based CDM model which defines the delamination damage parameter as a ratio of delaminated area to entire area. The subset selection technique based on sensitivity of the dynamic residual force has been known to be capable of detecting multiple damage locations. However, there has been no experimental study specifically for the applications in laminated composite structures. To implement the methodology, a sensitivity matrix for the laminated composite plate model has been derived. Applications of the proposed methodology to an E-glass/epoxy symmetric composite panel composed of 16 plies [CSM/UM1208/3 layers of C1800]s = [CSM/0/(90/0)3]s with delamination damage are demonstrated both numerically and experimentally. A non-contact scanning laser vibrometer (SLV), a lead zirconate titanate (PZT) actuator and a polyvinylidene fluoride (PVDF) sensor are used to conduct experimental modal testing. From the experimental example, capabilities of the proposed methodology for damage identification are successfully demonstrated for a 2D laminated composite panel. Furthermore, various damage scenarios are considered to show its performance and detailed results are discussed for future improvements.

  12. Capillary and gel electromigration techniques and MALDI-TOF MS--suitable tools for identification of filamentous fungi.

    PubMed

    Horká, Marie; Kubesová, Anna; Salplachta, Jiří; Zapletalová, Eva; Horký, Jaroslav; Slais, Karel

    2012-02-24

    Microbial strains are now spreading out of their original geographical areas of incidence and previously adequate morphological identification methods often must be accompanied by a phenotypic characterization for the successful microbial identification. The fungal genus Monilinia represents a suitable example. Monilinia species represent important fruit pathogens responsible for major losses in fruit production. Four closely related spp. of Monilinia: Monilinia laxa, Monilinia fructigena, Monilinia fructicola and Monilia polystroma have been yet identified. However, the classical characterization methods are not sufficient for current requirements, especially for phytosanitary purposes. In this study, rapid and reproducible methods have been developed for the characterization of Monilinia spp. based on the utilization of five well-established analytical techniques: CZE, CIEF, gel IEF, SDS-PAGE and MALDI-TOF MS, respectively. The applicability of these techniques for the identification of unknown spores of Monilinia spp. collected from infected fruits was also evaluated. It was found that isoelectric points, migration velocities or the protein patterns can be used as the identification markers in the case of cultivated filamentous fungi. Moreover, the results obtained by capillary electromigration techniques are independent on the host origin of the spores. On the other hand, the host origin of the fungi can play an important role in the precise fungi identification by the other techniques.

  13. Laser-Induced Breakdown Spectroscopy Technique in Identification of Ancient Ceramics Bodies and Glazes

    NASA Astrophysics Data System (ADS)

    Elsayed, Khaled; Imam, Hisham; Madkour, Fatma; Meheina, Galila; Gamal, Yosr

    2011-06-01

    In this paper we report a study on Laser Induced Breakdown Spectroscopy (LIBS) as a promising non-destructive technique for the identification of the colored glazes, and clay's bodies of Fatimid ceramics ancient artifacts. The scientific examination of ceramics may be helpful in unraveling the history of ancient shards, particularly as the process of its production such as firing condition and temperatures. The analysis of pottery, ceramic bodies and glazed coatings is required in order to structure the conservation or restoration of a piece. Revealing the technical skills of ancient potters has been one of the most important issues for gaining a deep insight of bygone culture and also it is required in order to structure the conservation or restoration of a piece of art. LIBS measurements were carried out by focusing a Nd-YAG laser at 1064 nm with pulse width of 10 ns and 50 mJ pulse energy on the surface of the sample by a 100-mm focal length lens. The plasma emission was collected by telescopic system and transferred through a fiber to Echelle spectrometer attached to an ICCD camera. The focal spot diameter is found to be in the range of 100-150 μm. which is small enough to consider this technique as a non-destructive technique. LIBS technique clarified that each piece of archaeological objects has its own finger print. X-ray diffraction (XRD) analysis was carried out on these archaeological ceramic body samples to study raw materials such as clays, which allowed the investigation of the crystal structure and showed the changes in its structure through firing process. This provided information on the ceramic characteristic and composition of the ceramic bodies.

  14. Miso Model Identification of Proton Exchange Membrane Fuel Cell (PEM-FC) using Least-Square Method

    NASA Astrophysics Data System (ADS)

    Yusivar, F.; Subiantoro, A.; Aryani, D.; Gunawan, R.; Priambodo, P. S.

    2009-09-01

    This paper presents a dynamic model of Polymer Electrolyte Membrane Fuel Cell (PEM FC) as a MISO system using an identification model. The actual PEMFC system is represented in a non linear mathematical model. By identifying the non linear model with Least Square Method, a linear state space model is generated, with and without compensation vector. Another model is derived from linearization in the operating conditions of PEMFC. The Voltage-Current characteristics of each PEMFC models are generated from simulation results, and are compared. It can be seen that the best model is the linear model with compensation vector, since its characteristic is very similar with the typical characteristic of PEMFC. Its Criterion Function of 0.0142 is the smallest among the other models. The smaller the Criterion Function, the model can represent the actual system more accurate. The resulting model can be used for model-based control system.

  15. The technique and preliminary results of LEU U-Mo full-size IRT type fuel testing in the MIR reactor

    SciTech Connect

    Izhutov, A.L.; Starkov, V.A.; Pimenov, V.V.; Fedoseev, V.Ye.; Dobrikova, I.V.; Vatulin, A.V.; Suprun, V.B.; Kartashov, Ye.F.; Lukichev, V.A.; Troyanov, V.M.; Enin, A.A.; Tkachev, A.A.

    2008-07-15

    In March 2007 in-pile testing of LEU U-Mo full-size IRT type fuel elements was started in the MIR reactor. Four prototype fuel elements for Uzbekistan WWR SM reactor are being tested simultaneously - two of tube type design and two of pin type design. The dismountable irradiation devices were constructed for intermediate reloading and inspection of fuel elements during reactor testing. The objective of the test is to obtain the experimental results for determination of more reliable design and licensing fuel elements for conversion of the WWR SM reactor. The heat power of fuel elements is measured on-line by thermal balance method. The distribution of fission density and burn-up of uranium in the volume of elements are calculated by using the MIR reactor MCU code (Monte-Carlo) model. In this paper the design of fuel elements, the technique, main parameters and preliminary results are described. (author)

  16. Failed fuel monitoring and surveillance techniques for liquid metal cooled fast reactors

    SciTech Connect

    Lambert, J.D.B.; Mikaili, R.; Gross, K.C.; Strain, R.V.; Aoyama, T.; Ukai, S.; Nomura, S.; Nakae, N.

    1995-05-01

    The Experimental Breeder Reactor II (EBR-II) has been used as a facility for irradiation of LMR fuels and components for thirty years. During this time many tests of experimental fuel were continued to cladding breach in order to study modes of element failure; the methods used to identify such failures are described in a parallel paper. This paper summarizes experience of monitoring the delayed-neutron (DN) and fission-gas (FG) release behavior of a smaller number of elements that continued operation in the run-beyond-cladding-breach (RBCB) mode. The scope of RBCB testing, the methods developed to characterize failures on-line, and examples of DN/FG behavior are described.

  17. Primary plate identification of group A beta-hemolytic streptococci utilizing a two-disk technique.

    PubMed Central

    Baron, E J; Gates, J W

    1979-01-01

    A two-disk system is described which allows primary plate identification of group A beta-hemolytic streptococci. Group A beta-hemolytic streptococci could be visualized on primary throat culture plates by using trimethoprim-sulfamethoxazole to inhibit normal flora. In the heavily inoculated area of Trypticase soy agar plates containing 5% sheep blood, a 25-microgram/ml trimethoprim-sulfamethoxazole disk was placed contiguous to a 0.04-U bacitracin disk. A total of 259 throat specimens were examined with this two-disk system. The swabs from these throat specimens were incubated in Todd-Hewitt broth. The bacterial pellet from the broths was stained by fluorescent antibody as a control. Of the cultures that were determined to be positive on the plates, 75% could be read unequivocally after overnight incubation, whereas the remaining 25% required subculture. The plates recovered 91% of the cultures which were considered as true positives by the broth-fluorescent-antibody technique. This method provided a significant savings in time compared with standard plate methods and in cost of materials compared with broth-fluorescent-antibody methods. This technique is particularly valuable for producing rapid results in laboratories where fluorescence microscopy would not be cost-effective. Images PMID:387811

  18. Quantitative identification and analysis of sub-seismic extensional structure system: technique schemes and processes

    NASA Astrophysics Data System (ADS)

    Chenghua, Ou; Chen, Wei; Ma, Zhonggao

    2015-06-01

    Quantitative characterization of complex sub-seismic extensional structure system that essentially controls petroleum exploitation is difficult to implement in seismic profile interpretation. This research, based on a case study in block M of Myanmar, established a set of quantitative treatment schemes and technique processes for the identification of sub-seismic low-displacement (SSLD) extensional faults or fractures upon structural deformation restoration and geometric inversion. Firstly, the master-subsidiary inheritance relations and configuration of the seismic-scale extensional fault systems are determined by analyzing the structural pattern. Besides, three-dimensional (3D) pattern and characteristics of the seismic-scale extensional structure have been illustrated by a 3D structure model built upon seismic sections. Moreover, according to the dilatancy obtained from structural restoration on the basis of inclined shear method, as well as the fracture-flow index, potential SSLD extensional faults or fractures have been quantitatively identified. Application of the technique processes to the sub-seismic low-displacement extensional structures in block M in Myanmar is instructive to quantitatively interpret those SSLD extensional structure systems in practice.

  19. Upgrade of the Resonance Ionization Mass Spectrometer for Precise Identification of Failed Fuel in a Fast Reactor

    SciTech Connect

    Iwata, Yoshihiro; Ito, Chikara; Harano, Hideki; Aoyama, Takafumi

    2011-12-13

    Isotopic analysis of krypton (Kr) and xenon (Xe) by resonance ionization mass spectrometry (RIMS) is an effective tool for identification of failed fuel in fast reactors to achieve their safety operation and high plant availability. Reliability of the failed fuel detection and location (FFDL) system depends on the precise determination of {sup 78}Kr/{sup 80}Kr, {sup 82}Kr/{sup 80}Kr and {sup 126}Xe/{sup 129}Xe isotopic ratios, which is mainly hampered by statistical errors for detection of the corresponding isotopes except {sup 82}Kr generated in large amounts during operation of fast reactors. In this paper, we report on improvements of the laser optical system of our spectrometer to increase the resonance ionization efficiency of Kr and Xe atoms, focusing on (i) utilization of the uniform YAG laser beam to improve the wavelength conversion efficiency of sum frequency generation and (ii) reflection of the ultraviolet light by a concave mirror to increase the photon density. The results indicate that our upgraded resonance ionization mass spectrometer has enough performance for isotopic analysis of Kr and Xe required in the Monju FFDL system.

  20. Advanced Ultrasonic Inspection Techniques for General Purpose Heat Source Fueled Clad Closure Welds

    SciTech Connect

    Moyer, M.W.

    2001-01-11

    A radioisotope thermoelectric generator is used to provide a power source for long-term deep space missions. This General Purpose Heat Source (GPHS) is fabricated using iridium clad vent sets to contain the plutonium oxide fuel pellets. Integrity of the closure weld is essential to ensure containment of the plutonium. The Oak Ridge Y-12 Plant took the lead role in developing the ultrasonic inspection for the closure weld and transferring the inspection to Los Alamos National Laboratory for use in fueled clad inspection for the Cassini mission. Initially only amplitude and time-of-flight data were recorded. However, a number of benign geometric conditions produced signals that were larger than the acceptance threshold. To identify these conditions, a B-scan inspection was developed that acquired full ultrasonic waveforms. Using a test protocol the B-scan inspection was able to identify benign conditions such as weld shield fusion and internal mismatch. Tangential radiography was used to confirm the ultrasonic results. All but two of 29 fueled clads for which ultrasonic B-scan data was evaluated appeared to have signals that could be attributed to benign geometric conditions. This report describes the ultrasonic inspection developed at Y-12 for the Cassini mission.

  1. Isolation and identification of cobalt- and caesium-resistant bacteria from a nuclear fuel storage pond.

    PubMed

    Dekker, Linda; Osborne, Thomas H; Santini, Joanne M

    2014-10-01

    One of the issues facing the nuclear power industry is how to store spent nuclear fuel which is contaminated with radionuclides produced during nuclear fission, including caesium ((134)Cs(+), (135)Cs(+) and (137)Cs(+)) and cobalt ((60)Co(2+)). In this study, we have isolated Co(2+)- and Cs(+)-resistant bacteria from water collected from a nuclear fuel storage pond. The most resistant Cs(+) and Co(2+) isolates grew in the presence of 500 mM CsCl and 3 mM CoCl2. Strain Cs67-2 is resistant to fourfold more Cs(+) than Cupriavidus metallidurans str. CH34 making it the most Cs(+)-resistant strain identified to date. The Cs(+)-resistant isolates were closely related to bacteria in the Serratia and Yersinia genera, while the Co(2+)-resistant isolates were closely related to the Curvibacter and Tardiphaga genera. These new isolates could be used for bioremediation.

  2. Yangon River Geomorphology Identification and its Enviromental Imapacts Analsysi by Optical and Radar Sensing Techniques

    NASA Astrophysics Data System (ADS)

    Lwin, A.; Khaing, M. M.

    2012-07-01

    The Yangon river, also known as the Rangoon river, is about 40 km long (25miles), and flows from southern Myanmar as an outlet of the Irrawaddy (Ayeyarwady) river into the Ayeyarwady delta. The Yangon river drains the Pegu Mountains; both the Yangon and the Pathein rivers enter the Ayeyarwady at the delta. Fluvial geomorphology is based primarily on rivers of manageable dimensions. The emphasis is on geomorphology, sedimentology of Yangon river and techniques for their identification and management. Present techniques such as remote sensing have made it easier to investigate and interpret in details analysis of river geomorphology. In this paper, attempt has been made the complicated issues of geomorphology, sedimentation patterns and management of river system and evolution studied. The analysis was carried out for the impact of land use/ land cover (LULC) changes on stream flow patterns. The hydrologic response to intense, flood producing rainfall events bears the signatures of the geomorphic structure of the channel network and of the characteristic slope lengths defining the drainage density of the basin. The interpretation of the hydrologic response as the travel time distribution of a water particle randomly injected in a distributed manner across the landscape inspired many geomorphic insights. In 2008, Cyclone Nargis was seriously damaged to mangrove area and its biodiversity system in and around of Yangon river terraces. A combination of digital image processing techniques was employed for enhancement and classification process. It is observed from the study that middle infra red band (0.77mm - 0.86mm) is highly suitable for mapping mangroves. Two major classes of mangroves, dense and open mangroves were delineated from the digital data.

  3. A Combined Texture-principal Component Image Classification Technique For Landslide Identification Using Airborne Multispectral Imagery

    NASA Astrophysics Data System (ADS)

    Whitworth, M.; Giles, D.; Murphy, W.

    The Jurassic strata of the Cotswolds escarpment of southern central United Kingdom are associated with extensive mass movement activity, including mudslide systems, rotational and translational landslides. These mass movements can pose a significant engineering risk and have been the focus of research into the use of remote sensing techniques as a tool for landslide identification and delineation on clay slopes. The study has utilised a field site on the Cotswold escarpment above the village of Broad- way, Worcestershire, UK. Geomorphological investigation was initially undertaken at the site in order to establish ground control on landslides and other landforms present at the site. Subsequent to this, Airborne Thematic Mapper (ATM) imagery and colour stereo photography were acquired by the UK Natural Environment Research Coun- cil (NERC) for further analysis and interpretation. This paper describes the textu- ral enhancement of the airborne imagery undertaken using both mean euclidean dis- tance (MEUC) and grey level co-occurrence matrix entropy (GLCM) together with a combined texture-principal component based supervised image classification that was adopted as the method for landslide identification. The study highlights the importance of image texture for discriminating mass movements within multispectral imagery and demonstrates that by adopting a combined texture-principal component image classi- fication we have been able to achieve classification accuracy of 84 % with a Kappa statistic of 0.838 for landslide classes. This paper also highlights the potential prob- lems that can be encountered when using high-resolution multispectral imagery, such as the presence of dense variable woodland present within the image, and presents a solution using principal component analysis.

  4. Dual redundant sensor FDI techniques applied to the NASA F8C DFBW aircraft. [Failure Detection and Identification

    NASA Technical Reports Server (NTRS)

    Desai, M. N.; Deckert, J. C.; Deyst, J. J.; Willsky, A. S.; Chow, E. Y.

    1976-01-01

    An onboard failure detection and identification (FDI) technique for dual redundant sensors on the NASA F8C digital fly-by-wire (DFBW) aircraft is presented. The failure of one of a pair of sensors of the same type is detected by a direct redundancy trigger which observes the difference between the outputs of these two sensors. Identification of the failed sensor is accomplished utilizing the analytic redundancy that exists as kinematic and functional relationships among the variables being measured by dissimilar instruments. In addition, identification of generic failures, common to both instruments of a given type, is accomplished by using a time trigger to periodically initiate analytic redundancy failure identification tests for individual sensors. The basic form of these tests is the comparison of the measurement of a variable using the suspect instrument with another measurement of the same variable obtained using other instrument types.

  5. Effect of fabrication technique on direct methanol fuel cells designed to operate at low airflow

    NASA Technical Reports Server (NTRS)

    Valdez, T. I.; Narayanan, S. R.

    2002-01-01

    This study investigates the effects of catalyst ink constituents and MEA fabrication techniques on improving cell performance. Particular attention was focused on increasing the overall cell efficiency.

  6. An evaluation of image based techniques for wildfire detection and fuel mapping

    NASA Astrophysics Data System (ADS)

    Gabbert, Dustin W.

    Few events can cause the catastrophic impact to ecology, infrastructure, and human safety of a wildland fire along the wildland urban interface. The suppression of natural wildland fires over the past decade has caused a buildup of dry, dead surface fuels: a condition that, coupled with the right weather conditions, can cause large destructive wildfires that are capable of threatening both ancient tree stands and manmade infrastructure. Firefighters use fire danger models to determine staffing needs on high fire risk days; however models are only as effective as the spatial and temporal density of their observations. OKFIRE, an Oklahoma initiative created by a partnership between Oklahoma State University and the University of Oklahoma, has proven that fire danger assessments close to the fire - both geographically and temporally - can give firefighters a significant increase in their situational awareness while fighting a wildland fire. This paper investigates several possible solutions for a small Unmanned Aerial System (UAS) which could gather information useful for detecting ground fires and constructing fire danger maps. Multiple fire detection and fuel mapping programs utilize satellites, manned aircraft, and large UAS equipped with hyperspectral sensors to gather useful information. Their success provides convincing proof of the utility that could be gained from low-altitude UAS gathering information at the exact time and place firefighters and land managers are interested in. Close proximity, both geographically and operationally, to the end can reduce latency times below what could ever be possible with satellite observation. This paper expands on recent advances in computer vision, photogrammetry, and infrared and color imagery to develop a framework for a next-generation UAS which can assess fire danger and aid firefighters in real time as they observe, contain, or extinguish wildland fires. It also investigates the impact information gained by this

  7. An Evaluation of Image Based Techniques for Early Wildfire Detection and Fuel Mapping

    SciTech Connect

    Gabbert, Dustin W.

    2015-05-01

    Few events can cause the catastrophic impact to ecology, infrastructure, and human safety of a wildland fire along the wildland urban interface. The suppression of natural wildland fires over the past decade has caused a buildup of dry, dead surface fuels: a condition that, coupled with the right weather conditions, can cause large destructive wildfires that are capable of threatening both ancient tree stands and manmade infrastructure. Firefighters use fire danger models to determine staffing needs on high fire risk days; however models are only as effective as the spatial and temporal density of their observations. OKFIRE, an Oklahoma initiative created by a partnership between Oklahoma State University and the University of Oklahoma, has proven that fire danger assessments close to the fire – both geographically and temporally – can give firefighters a significant increase in their situational awareness while fighting a wildland fire. This paper investigates several possible solutions for a small Unmanned Aerial System (UAS) which could gather information useful for detecting ground fires and constructing fire danger maps. Multiple fire detection and fuel mapping programs utilize satellites, manned aircraft, and large UAS equipped with hyperspectral sensors to gather useful information. Their success provides convincing proof of the utility that could be gained from low-altitude UAS gathering information at the exact time and place firefighters and land managers are interested in. Close proximity, both geographically and operationally, to the end can reduce latency times below what could ever be possible with satellite observation. This paper expands on recent advances in computer vision, photogrammetry, and infrared and color imagery to develop a framework for a next-generation UAS which can assess fire danger and aid firefighters in real time as they observe, contain, or extinguish wildland fires. It also investigates the impact information gained by this

  8. Power production and wastewater treatment simultaneously by dual-chamber microbial fuel cell technique.

    PubMed

    Izadi, Paniz; Rahimnejad, Mostafa; Ghoreyshi, Ali

    2015-01-01

    Microbial fuel cell (MFC) is a novel technology that is able to convert the chemical energy of organic and inorganic substrates to electrical energy directly. The use of fossil fuels and recent energy crisis bring increasing attention to this technology. Besides electricity generation, wastewater treatment is another application of MFCs. Sulfide is a hazardous ion that is common in wastes. In this article, dual-chamber MFC was fabricated and a mixed culture of microorganisms was used as an active biocatalyst in an anaerobic anodic chamber to convert substrate to electricity. The obtained experimental results indicate that this MFC can successfully alter sulfide to elementary sulfur and power generation. The initial concentration of sulfide in wastewater was 1.5 g L(-1) , and it was removed after 10 days of MFC operation. Maximum produced power and current density were 48.68 mW⋅m(-2) and 231.47 mA⋅m(-2) , respectively. Besides, the influences of a biocathode were investigated and accordingly the data obtained for power and current density were increased to 372.27 mW⋅m(-2) and 1,665.15 mA⋅m(-2) , respectively.

  9. pH fractionation and identification of proteins: comparing column chromatofocusing versus liquid isoelectric focusing techniques.

    PubMed

    Gunther, Nereus W; Paul, Moushumi; Nuñez, Alberto; Liu, Yanhong

    2012-06-01

    In proteomic investigations, a number of different separation techniques can be applied to fractionate whole cell proteomes into more manageable fractions for subsequent analysis. In this work, utilizing HPLC and mass spectrometry for protein identification, two different fractionation methods were compared and contrasted to determine the potential of each method for the simple and reproducible fractionation of a bacterial proteome. Column-based chromatofocusing and liquid-based isoelectric focusing both utilized pH gradients to produce similar results in terms of the numbers of proteins successfully identified (402 and 378 proteins) and the consistency of proteins identified from one experiment to the next (<10% change). However, there was limited overlap in the protein sets with <50% of the proteins identified as common between the sets of proteins identified by the different systems. In addition to the numbers of proteins identified and consistency of those identified, the reduced monetary costs of experimentation and increased assay flexibility produced by using isoelectric focusing was considered in order to adopt a system best suited for comparative proteomic projects.

  10. Species identification of Mycobacterium avium complex isolates by a variety of molecular techniques.

    PubMed

    Beggs, M L; Stevanova, R; Eisenach, K D

    2000-02-01

    Organisms in the Mycobacterium avium complex (MAC; M. avium, M. intracellulare, and "nonspecific or X" MAC) are emerging pathogens among individual organisms of which significant genetic variability is displayed. The objective of the present study was to evaluate various molecular methods for the rapid and definitive identification of MAC species. Isolates were obtained from both human immunodeficiency virus (HIV)-positive patients and HIV-negative patients with and without known predisposing conditions. The isolates were initially hybridized with nucleic acid probes complementary to the rRNA of the respective mycobacterial species (AccuProbe Culture Confirmation kits for M. avium, M. intracellulare, and MAC species; Gen-Probe). Isolates were also examined by PCR and in some cases by Southern blot hybridization for the insertion element IS1245. Two other techniques included a PCR assay that amplifies the mig gene, a putative virulence factor for MAC, and hsp65 gene amplification and sequencing. This study led to the following observations. Eighty-five percent of the isolates from HIV-positive patients were M. avium and 86% of the isolates from HIV-negative patients were M. intracellulare. Fifteen of the M. avium isolates did not contain IS1245 and 7% of the M. intracellulare isolates were found to carry IS1245. All of the M. avium strains were mig positive, and all of the M. intracellulare strains were mig negative.

  11. Airborne Fungi in Sahara Dust Aerosols Reaching the Eastern Caribbean: II. Species Identification Using Molecular Techniques

    NASA Astrophysics Data System (ADS)

    de La Mota, A.; Betancourt, C.; Detres, Y.; Armstrong, R.

    2003-12-01

    Fungi samples from filters collected in Castle Bruce, Dominica from March through July 2002, were previously purified and identified to genus level using classic macroscopic and microscopic techniques. A total of 105 isolated colonies were cultured in liquid media and the mycelial mats used for DNA extraction. PCR was used to amplify the ITS region of the rDNA using the ITS1 and ITS4 primers. Both strands of the amplified products were sequenced and the final identification to species level was completed by a GenBank search. Fourteen different species and one fungal endophyte were identified from genders Aspergillus,Penicillium, Fusarium, Cladosporium, Curvularia and Phanerochaete. Some of these species such as A. fumigatus, A. japonicus, P. citrinum and C. cladosporoides are known to cause respiratory disorders in humans. A. fumigatus causes an aggressive pulmonary allergic response that might result in allergic bronchopulmonary aspergillosis. Other species such as F. equiseti and C. brachyspora are plant pathogens affecting economically important crops. Sahara dust is an important source of fungal spores of species that are not common in the Caribbean region.

  12. Multiple techniques for mineral identification of terrestrial evaporites relevant to Mars exploration

    NASA Astrophysics Data System (ADS)

    Stivaletta, N.; Dellisanti, F.; D'Elia, M.; Fonti, S.; Mancarella, F.

    2013-05-01

    Sulfates, commonly found in evaporite deposits, were observed on Mars surface during orbital remote sensing and surface exploration. In terrestrial environments, evaporite precipitation creates excellent microniches for microbial colonization, especially in desert areas. Deposits comprised of gypsum, calcite, quartz and silicate deposits (phyllosilicates, feldspars) from Sahara Desert in southern Tunisia contain endolithic colonies just below the rock surface. Previous optical observations verified the presence of microbial communities and, as described in this paper, spectral visible analyses have led to identification of chlorophylls belonging to photosynthetic bacteria. Spectral analyses in the infrared region have clearly detected the presence of gypsum and phyllosilicates (mainly illite and/or smectite), as well as traces of calcite, but not quartz. X-ray diffraction (XRD) analysis has identified the dominant presence of gypsum as well as that of other secondary minerals such as quartz, feldspars and Mg-Al-rich phyllosilicates, such as chlorite, illite and smectite. The occurrence of a small quantity of calcite in all the samples was also highlighted by the loss of CO2 by thermal analysis (TG-DTA). A normative calculation using XRD, thermal data and X-ray fluorescence (XRF) analysis has permitted to obtain the mineralogical concentration of the minerals occurring in the samples. The combination of multiple techniques provides information about the mineralogy of rocks and hence indication of environments suitable for supporting microbial life on Mars surface.

  13. In situ mineral identification - Raman technique in future robotic explorations on planetary surfaces

    SciTech Connect

    Wang, A.; Jolliff, B.L.; Haskin, L.A.

    1995-12-31

    Rover and lander missions are being continually planned for the characterization of planetary surface materials. With a series of simulated Raman measurements of lunar soils, rock chips and Martian analogues, we have demonstrated that mineral identification for the main phases in these planetary materials can be unambiguously achieved. We also obtained significant information on composition and structural features of important phases, such as the Mg/(Mg+Fe) ration in olivines, the dominant structural forms of pyroxenes, and the characteristics of hydrous components and cations in carbonates and sulfates, that are very important for Martian geology. Recent developments of Raman spectroscopic instrumentation make it possible to build a small, sensitive, and robust Raman system for rover and lander missions. Compared to other spectroscopic techniques (VIS-NIR, mid-IR and Moessbauer spectroscopy) that have been used or proposed for planetary application, Raman spectroscopy has many advantages, such as sharp, non-overlapping peaks in mineral spectra, no need for spectral deconvolution in order to identify the phases, and operation in visible spectral region. A rover Raman system could work nicely as a mineral indicator in future missions to Mars and Moon.

  14. Measuring fuel contamination using high speed gas chromatography and cone penetration techniques

    SciTech Connect

    Farrington, S.P.; Bratton, W.L.; Akard, M.L.

    1995-10-01

    Decision processes during characterization and cleanup of hazardous waste sites are greatly retarded by the turnaround time and expense incurred through the use of conventional sampling and laboratory analyses. Furthermore, conventional soil and groundwater sampling procedures present many opportunities for loss of volatile organic compounds (VOC) by exposing sample media to the atmosphere during transfers between and among sampling devices and containers. While on-site analysis by conventional gas chromatography can reduce analytical turnaround time, time-consuming sample preparation procedures are still often required, and the potential for loss of VOC is not reduced. This report describes the development of a high speed gas chromatography and cone penetration testing system which can detect and measure subsurface fuel contamination in situ during the cone penetration process.

  15. Structure of porous electrodes in polymer electrolyte membrane fuel cells: An optical reconstruction technique

    NASA Astrophysics Data System (ADS)

    Berejnov, Viatcheslav; Sinton, David; Djilali, Ned

    Computing flows and phase transport in porous media requires a physically representative geometric model. We present a simple method of digitizing the structure of fibrous porous media commonly used in polymer electrolyte membrane (PEM) fuel cells, the so-called gas diffusion layer (GDL). Employing an inverted microscope and image recognition software we process images of the GDL surface collected manually at different focal lengths with micrometer accuracy. Processing the series of images allows retrieval of local depths of the salient in-focus structural elements in each of the different images. These elements are then recombined into a depth-map representing the three-dimensional structure of the GDL surface. Superimposition of the in-focus portions of the structural elements distributed throughout the stack of images yields digitized data describing the geometry and structural attributes of the 3D surface of the GDL fibrous material.

  16. Investigation on the spontaneous combustion of refuse-derived fuels during storage using a chemiluminescence technique.

    PubMed

    Matunaga, Atsushi; Yasuhara, Akio; Shimizu, Yoshitada; Wakakura, Masahide; Shibamoto, Takayuki

    2008-12-01

    Refuse-derived fuel (RDF), a high-caloric material, is used by various combustion processes, such as power plants, as alternative fuel. Several explosion accidents, however, possibly initiated by the spontaneous combustion of stored RDF, have been reported in Japan. Therefore the spontaneous combustion of RDF prepared from domestic garbage was investigated using chemiluminescence. RDF samples were heated either under air or under nitrogen for 1, 2, or 4 h at 120 or 140 degrees C and then cooled by an air or nitrogen stream. All RDF samples exhibited chemiluminescence. In air-treated RDF samples (heated and cooled by air), chemiluminescence after ageing was shown to be slightly lower than before ageing, whereas in nitrogen-treated samples (both heated and cooled by nitrogen) chemiluminescence decreased significantly after ageing. When nitrogen was replaced with air during aging, however, a sudden increase of chemiluminescence was observed. On the other hand, when cooling was done with air, chemiluminescence increased. Higher chemiluminescence was also observed during high-temperature treatment. Further experiments on cellulose, one of the major components of domestic garbage, exhibited similar chemiluminescence patterns to those of RDF when treated by the same methods as those used for RDF ageing. Chemiluminescence from cellulose increased significantly when the atmospheric gas was changed from nitrogen to air, suggesting that oxygen in the air promoted the formation of hydroperoxide from cellulose. Therefore, it is hypothesized that cellulose plays an important role in the formation of chemiluminescence from RDF. The formation of chemiluminescence indicated that radicals are formed from RDF by oxidation or thermal degradation at room or atmospheric temperatures and may subsequently lead to spontaneous combustion.

  17. Time-of-flight technique for particle identification at energies from 2 to 400 keV/nucleon

    NASA Technical Reports Server (NTRS)

    Gloeckler, G.; Hsieh, K. C.

    1979-01-01

    The time of flight technique for particle identification was extended to 2 keV/nucleon and the size of the start-time detector was reduced considerably by the use of carbon foils of few micrograms/cm square in thickness combined with microchannel plates for detecting secondary electrons. Time of flight telescopes incorporating this start-time device were used to measure the stopping power of a number of low energy heavy ions in thin carbon foils and the charge states of these ions emerging from such foils. Applications for the detection and identification of low energy interplanetary and magnetospheric particles are suggested.

  18. Use of the gas-filled-magnet technique for particle identification at low energies

    SciTech Connect

    Rehm, K.K.; Jiang, C.L.; Paul, M.

    1995-08-01

    Reaction studies of interest to astrophysics with radioactive ion beams will be done mainly in inverse reaction kinematics, i.e., heavy particles bombarding a hydrogen target. The low energy of the outgoing heavy reaction products makes particle identification with respect to mass and nuclear charge a major challenge. For the planned {sup 18}F(p,{alpha}) experiment one expects five different types of particles in the outgoing channels: {sup 18}F and {sup 18}O (from elastic scattering of {sup 18}F and {sup 18}O on {sup 12}C), {sup 15}O and {sup 15}N (from the {sup 18}F and {sup 18}O induced (p,{alpha}) reactions) and {sup 12}C recoils from the polypropylene target. While mass determination can be achieved easily by time-of-flight (TOF) measurements, a determination of the nuclear charge presents a challenge, especially if the energy of the particles is below 500 keV/u. We studied the gas-filled magnet technique for Z-identification of light ions between Z = 6-9. In a gas-filled magnet the particles move with an average charge state {bar q} which in one parameterization is given by {bar q} = Z ln(avZ{sup {alpha}})/ln(bZ{sup {beta}}) where Z is the nuclear charge of the ions and v their velocity. Introducing into the expression for the magnetic rigidity B{rho} = mv/{bar q} results in a Z dependence of B{rho} which is valid to very low velocities. As a magnet we used the Enge split-pole spectrograph which was filled with nitrogen gas at a pressure of 0.5 Torr. The particles were detected in the focal plane with a 50 x 10 cm{sup 2} parallel-grid-avalanche counter which measured TOF and magnetic rigidity. The mass and Z separation was tested with {sup 13}C and {sup 18}O beams at energies of about 600 keV/u and recoil particles ranging from {sup 12}C to {sup 19}F. The Z-separation obtained at these energies was {triangle}Z/Z = 0.28 which is sufficient to separate individual elements for Z < 10.

  19. Automatic Whole-Spectrum Matching Techniques for Identification of Pure and Mixed Minerals using Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Dyar, M. D.; Carey, C. J.; Breitenfeld, L.; Tague, T.; Wang, P.

    2015-12-01

    In situuse of Raman spectroscopy on Mars is planned for three different instruments in the next decade. Although implementations differ, they share the potential to identify surface minerals and organics and inform Martian geology and geochemistry. Their success depends on the availability of appropriate databases and software for phase identification. For this project, we have consolidated all known publicly-accessible Raman data on minerals for which independent confirmation of phase identity is available, and added hundreds of additional spectra acquired using varying instruments and laser energies. Using these data, we have developed software tools to improve mineral identification accuracy. For pure minerals, whole-spectrum matching algorithms far outperform existing tools based on diagnostic peaks in individual phases. Optimal matching accuracy does depend on subjective end-user choices for data processing (such as baseline removal, intensity normalization, and intensity squashing), as well as specific dataset characteristics. So, to make this tuning process amenable to automated optimization methods, we developed a machine learning-based generalization of these choices within a preprocessing and matching framework. Our novel method dramatically reduces the burden on the user and results in improved matching accuracy. Moving beyond identifying pure phases into quantification of relative abundances is a complex problem because relationships between peak intensity and mineral abundance are obscured by complicating factors: exciting laser frequency, the Raman cross section of the mineral, crystal orientation, and long-range chemical and structural ordering in the crystal lattices. Solving this un-mixing problem requires adaptation of our whole-spectrum algorithms and a large number of test spectra of minerals in known volume proportions, which we are creating for this project. Key to this effort is acquisition of spectra from mixtures of pure minerals paired

  20. Low platinum loading for high temperature proton exchange membrane fuel cell developed by ultrasonic spray coating technique

    NASA Astrophysics Data System (ADS)

    Su, Huaneng; Jao, Ting-Chu; Barron, Olivia; Pollet, Bruno G.; Pasupathi, Sivakumar

    2014-12-01

    This paper reports use of an ultrasonic-spray for producing low Pt loadings membrane electrode assemblies (MEAs) with the catalyst coated substrate (CCS) fabrication technique. The main MEA sub-components (catalyst, membrane and gas diffusion layer (GDL)) are supplied from commercial manufacturers. In this study, high temperature (HT) MEAs with phosphoric acid (PA)-doped poly(2,5-benzimidazole) (AB-PBI) membrane are fabricated and tested under 160 °C, hydrogen and air feed 100 and 250 cc min-1 and ambient pressure conditions. Four different Pt loadings (from 0.138 to 1.208 mg cm-2) are investigated in this study. The experiment data are determined by in-situ electrochemical methods such as polarization curve, electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The high Pt loading MEA exhibits higher performance at high voltage operating conditions but lower performances at peak power due to the poor mass transfer. The Pt loading 0.350 mg cm-2 GDE performs the peak power density and peak cathode mass power to 0.339 W cm-2 and 0.967 W mgPt-1, respectively. This work presents impressive cathode mass power and high fuel cell performance for high temperature proton exchange membrane fuel cells (HT-PEMFCs) with low Pt loadings.

  1. Reactive impinging-flow technique for polymer-electrolyte-fuel-cell electrode-defect detection

    DOE PAGES

    Zenyuk, Iryna V.; Englund, Nicholas; Bender, Guido; ...

    2016-09-29

    Reactive impinging flow (RIF) is a novel quality-control method for defect detection (i.e., reduction in Pt catalyst loading) in gas-diffusion electrodes (GDEs) on weblines. The technique uses infrared thermography to detect temperature of a nonflammable (<4% H2) reactive mixture of H2/O2 in N2 impinging and reacting on a Pt catalytic surface. In this article, different GDE size defects (with catalyst-loading reductions of 25, 50, and 100%) are detected at various webline speeds (3.048 and 9.144 m min-1) and gas flowrates (32.5 or 50 standard L min-1). Furthermore, a model is developed and validated for the technique, and it is subsequentlymore » used to optimize operating conditions and explore the applicability of the technique to a range of defects. The model suggests that increased detection can be achieved by recting more of the impinging H2, which can be accomplished by placing blocking substrates on the top, bottom, or both of the GDE; placing a substrate on both results in a factor of four increase in the temperature differential, which is needed for smaller defect detection. Lastly, overall, the RIF technique is shown to be a promising route for in-line, high-speed, large-area detection of GDE defects on moving weblines.« less

  2. Reactive impinging-flow technique for polymer-electrolyte-fuel-cell electrode-defect detection

    NASA Astrophysics Data System (ADS)

    Zenyuk, Iryna V.; Englund, Nicholas; Bender, Guido; Weber, Adam Z.; Ulsh, Michael

    2016-11-01

    Reactive impinging flow (RIF) is a novel quality-control method for defect detection (i.e., reduction in Pt catalyst loading) in gas-diffusion electrodes (GDEs) on weblines. The technique uses infrared thermography to detect temperature of a nonflammable (<4% H2) reactive mixture of H2/O2 in N2 impinging and reacting on a Pt catalytic surface. In this paper, different GDE size defects (with catalyst-loading reductions of 25, 50, and 100%) are detected at various webline speeds (3.048 and 9.144 m min-1) and gas flowrates (32.5 or 50 standard L min-1). Furthermore, a model is developed and validated for the technique, and it is subsequently used to optimize operating conditions and explore the applicability of the technique to a range of defects. The model suggests that increased detection can be achieved by recting more of the impinging H2, which can be accomplished by placing blocking substrates on the top, bottom, or both of the GDE; placing a substrate on both results in a factor of four increase in the temperature differential, which is needed for smaller defect detection. Overall, the RIF technique is shown to be a promising route for in-line, high-speed, large-area detection of GDE defects on moving weblines.

  3. Reactive impinging-flow technique for polymer-electrolyte-fuel-cell electrode-defect detection

    SciTech Connect

    Zenyuk, Iryna V.; Englund, Nicholas; Bender, Guido; Weber, Adam Z.; Ulsh, Michael

    2016-09-29

    Reactive impinging flow (RIF) is a novel quality-control method for defect detection (i.e., reduction in Pt catalyst loading) in gas-diffusion electrodes (GDEs) on weblines. The technique uses infrared thermography to detect temperature of a nonflammable (<4% H2) reactive mixture of H2/O2 in N2 impinging and reacting on a Pt catalytic surface. In this article, different GDE size defects (with catalyst-loading reductions of 25, 50, and 100%) are detected at various webline speeds (3.048 and 9.144 m min-1) and gas flowrates (32.5 or 50 standard L min-1). Furthermore, a model is developed and validated for the technique, and it is subsequently used to optimize operating conditions and explore the applicability of the technique to a range of defects. The model suggests that increased detection can be achieved by recting more of the impinging H2, which can be accomplished by placing blocking substrates on the top, bottom, or both of the GDE; placing a substrate on both results in a factor of four increase in the temperature differential, which is needed for smaller defect detection. Lastly, overall, the RIF technique is shown to be a promising route for in-line, high-speed, large-area detection of GDE defects on moving weblines.

  4. A survey and proposed framework on the soft biometrics technique for human identification in intelligent video surveillance system.

    PubMed

    Kim, Min-Gu; Moon, Hae-Min; Chung, Yongwha; Pan, Sung Bum

    2012-01-01

    Biometrics verification can be efficiently used for intrusion detection and intruder identification in video surveillance systems. Biometrics techniques can be largely divided into traditional and the so-called soft biometrics. Whereas traditional biometrics deals with physical characteristics such as face features, eye iris, and fingerprints, soft biometrics is concerned with such information as gender, national origin, and height. Traditional biometrics is versatile and highly accurate. But it is very difficult to get traditional biometric data from a distance and without personal cooperation. Soft biometrics, although featuring less accuracy, can be used much more freely though. Recently, many researchers have been made on human identification using soft biometrics data collected from a distance. In this paper, we use both traditional and soft biometrics for human identification and propose a framework for solving such problems as lighting, occlusion, and shadowing.

  5. A Survey and Proposed Framework on the Soft Biometrics Technique for Human Identification in Intelligent Video Surveillance System

    PubMed Central

    Kim, Min-Gu; Moon, Hae-Min; Chung, Yongwha; Pan, Sung Bum

    2012-01-01

    Biometrics verification can be efficiently used for intrusion detection and intruder identification in video surveillance systems. Biometrics techniques can be largely divided into traditional and the so-called soft biometrics. Whereas traditional biometrics deals with physical characteristics such as face features, eye iris, and fingerprints, soft biometrics is concerned with such information as gender, national origin, and height. Traditional biometrics is versatile and highly accurate. But it is very difficult to get traditional biometric data from a distance and without personal cooperation. Soft biometrics, although featuring less accuracy, can be used much more freely though. Recently, many researchers have been made on human identification using soft biometrics data collected from a distance. In this paper, we use both traditional and soft biometrics for human identification and propose a framework for solving such problems as lighting, occlusion, and shadowing. PMID:22919273

  6. Techniques for chamfer and taper grinding of oxide fuel pellets (LWBR Development Program)

    SciTech Connect

    Johnson, R.G.R.; Allison, J.W.

    1981-10-01

    Floor mounted centerless grinding machines were adapted for shaping the edges of cylindrical oxide fuel pellets for the Light Water Breeder Reactor (LWBR) by plunge grinding. Edge configurations consisted of chamfers, either 0.015 inch x 45/sup 0/ or 0.006 inch x 45/sup 0/, or tapers 0.150 inch long x .0025 inch deep. Grinding was done by plunging the pellet against a shaped grinding wheel which ground both the diameter to the required size and shaped the edges of the pellet. Two plunges per pellet were required to complete the operation. Separate wheels were needed for grinding either a chamfer or a taper, the set up was adjustable to vary the size of the chamfer or taper as needed. The set up also had the flexibility to accommodate the multiple pellet lengths and diameters required by the LWBR design. Tight manufacturing tolerances in the chamfer and taper dimensions required the use of dimensional control charts and statistical sampling plans as process controls.

  7. The Feasibility of Cask "Fingerprinting" as a Spent-Fuel, Dry-Storage Cask Safeguards Technique

    SciTech Connect

    Ziock, K P; Vanier, P; Forman, L; Caffrey, G; Wharton, J; Lebrun, A

    2005-07-27

    This report documents a week-long measurement campaign conducted on six, dry-storage, spent-nuclear-fuel storage casks at the Idaho National Laboratory. A gamma-ray imager, a thermal-neutron imager and a germanium spectrometer were used to collect data on the casks. The campaign was conducted to examine the feasibility of using the cask radiation signatures as unique identifiers for individual casks as part of a safeguards regime. The results clearly show different morphologies for the various cask types although the signatures are deemed insufficient to uniquely identify individual casks of the same type. Based on results with the germanium spectrometer and differences between thermal neutron images and neutron-dose meters, this result is thought to be due to the limitations of the extant imagers used, rather than of the basic concept. Results indicate that measurements with improved imagers could contain significantly more information. Follow-on measurements with new imagers either currently available as laboratory prototypes or under development are recommended.

  8. Test plan for techniques to measure and remove coatings from K West Basin fuel elements

    SciTech Connect

    Bridges, A.E.

    1998-06-17

    Several types of coatings have previously been visually identified on the surface of 105-K East and 105-K West Basins fuel elements. One type of coating (found only in K West Basin) in particular was found to be a thick translucent material that was often seen to be dislodged from the elements as flakes when the elements were handled during visual examinations (Pitner 1997). Subsequently it was determined (for one element only in a hot cell) that this material, in the dry condition, could easily be removed from the element using a scraping tool. The coating was identified as Al(OH){sub 3} through X-ray diffraction (XRD) analyses and to be approximately 60 {micro}m thick via scanning electron microscopy (SEM). However, brushing under water in the basin using numerous mechanical strokes failed to satisfactorily remove these coatings in their thickest form as judged by appearance. Such brushing was done with only one type of metal brush, a brush design previously found satisfactory for removing UO{sub 4}.xH{sub 2}O coatings from the elements.

  9. Adaptive critic learning techniques for engine torque and air-fuel ratio control.

    PubMed

    Liu, Derong; Javaherian, Hossein; Kovalenko, Olesia; Huang, Ting

    2008-08-01

    A new approach for engine calibration and control is proposed. In this paper, we present our research results on the implementation of adaptive critic designs for self-learning control of automotive engines. A class of adaptive critic designs that can be classified as (model-free) action-dependent heuristic dynamic programming is used in this research project. The goals of the present learning control design for automotive engines include improved performance, reduced emissions, and maintained optimum performance under various operating conditions. Using the data from a test vehicle with a V8 engine, we developed a neural network model of the engine and neural network controllers based on the idea of approximate dynamic programming to achieve optimal control. We have developed and simulated self-learning neural network controllers for both engine torque (TRQ) and exhaust air-fuel ratio (AFR) control. The goal of TRQ control and AFR control is to track the commanded values. For both control problems, excellent neural network controller transient performance has been achieved.

  10. Multidirectional In Vivo Characterization of Skin Using Wiener Nonlinear Stochastic System Identification Techniques.

    PubMed

    Parker, Matthew D; Jones, Lynette A; Hunter, Ian W; Taberner, A J; Nash, M P; Nielsen, P M F

    2017-01-01

    A triaxial force-sensitive microrobot was developed to dynamically perturb skin in multiple deformation modes, in vivo. Wiener static nonlinear identification was used to extract the linear dynamics and static nonlinearity of the force-displacement behavior of skin. Stochastic input forces were applied to the volar forearm and thenar eminence of the hand, producing probe tip perturbations in indentation and tangential extension. Wiener static nonlinear approaches reproduced the resulting displacements with variances accounted for (VAF) ranging 94-97%, indicating a good fit to the data. These approaches provided VAF improvements of 0.1-3.4% over linear models. Thenar eminence stiffness measures were approximately twice those measured on the forearm. Damping was shown to be significantly higher on the palm, whereas the perturbed mass typically was lower. Coefficients of variation (CVs) for nonlinear parameters were assessed within and across individuals. Individual CVs ranged from 2% to 11% for indentation and from 2% to 19% for extension. Stochastic perturbations with incrementally increasing mean amplitudes were applied to the same test areas. Differences between full-scale and incremental reduced-scale perturbations were investigated. Different incremental preloading schemes were investigated. However, no significant difference in parameters was found between different incremental preloading schemes. Incremental schemes provided depth-dependent estimates of stiffness and damping, ranging from 300 N/m and 2 Ns/m, respectively, at the surface to 5 kN/m and 50 Ns/m at greater depths. The device and techniques used in this research have potential applications in areas, such as evaluating skincare products, assessing skin hydration, or analyzing wound healing.

  11. [Identification of varieties of textile fibers by using Vis/NIR infrared spectroscopy technique].

    PubMed

    Wu, Gui-Fang; He, Yong

    2010-02-01

    The aim of the present paper was to provide new insight into Vis/NIR spectroscopic analysis of textile fibers. In order to achieve rapid identification of the varieties of fibers, the authors selected 5 kinds of fibers of cotton, flax, wool, silk and tencel to do a study with Vis/NIR spectroscopy. Firstly, the spectra of each kind of fiber were scanned by spectrometer, and principal component analysis (PCA) method was used to analyze the characteristics of the pattern of Vis/NIR spectra. Principal component scores scatter plot (PC1 x PC2 x PC3) of fiber indicated the classification effect of five varieties of fibers. The former 6 principal components (PCs) were selected according to the quantity and size of PCs. The PCA classification model was optimized by using the least-squares support vector machines (LS-SVM) method. The authors used the 6 PCs extracted by PCA as the inputs of LS-SVM, and PCA-LS-SVM model was built to achieve varieties validation as well as mathematical model building and optimization analysis. Two hundred samples (40 samples for each variety of fibers) of five varieties of fibers were used for calibration of PCA-LS-SVM model, and the other 50 samples (10 samples for each variety of fibers) were used for validation. The result of validation showed that Vis/NIR spectroscopy technique based on PCA-LS-SVM had a powerful classification capability. It provides a new method for identifying varieties of fibers rapidly and real time, so it has important significance for protecting the rights of consumers, ensuring the quality of textiles, and implementing rationalization production and transaction of textile materials and its production.

  12. [Identification of Six Isomers of Dimethylbenzoic Acid by Using Terahertz Time-Domain Spectroscopy Technique].

    PubMed

    Liu, Jian-wei; Shen, Jing-ling; Zhang, Bo

    2015-11-01

    In this paper, the absorption spectra of 6 isomers of dimethylbenzoic acid, which were widely used in chemical and pharmaceutical production as intermediate substance, were measured by using the terahertz time-domain spectroscopy (THz-TDS) system in the range 0.2-2.2 THz at room temperature. The experimental results show that the six measured isomers present apparent different spectral response. However, the results of using infrared spectroscopy indicates that different isomers show high similarity in absorption spectra in the range 1450-1700 cm⁻¹. The vibrational frequencies are calculated by using the density functional theory (DFT), and identification of vibrational modes are given. It is clear that the absorption peaks of the 6 isomers in the range 1450-1700 cm⁻¹ come from the stretching vibration of benzene ring and C==O, while the absorption peaks in the terahertz range are caused by the relative wagging of benzene ring and all the chains out of plane, which lead to the different absorption characteristics of the 6 isomers in the range 0.2-2.2 THz. The results suggest that the difference and similarity of the absorption spectra observed in the two different frequency range are resulted from the difference and similarity of the molecular structures of the six isomers. By using the different absorption characteristics, we can identify the six isomers of dimethylbenzoic acid effectively. Our study indicates that it is feasible to distinguish the isomers by using terahertz and infrared spectroscopy technique. It provides an effective way to identify different isomers and test the purity of the intermediate substance in the process of production quickly and accurately.

  13. Solid oxide fuel cell processing using plasma arc spray deposition techniques. Final report

    SciTech Connect

    Ray, E.R.; Spengler, C.J.; Herman, H.

    1991-07-01

    The Westinghouse Electric Corporation, in conjunction with the Thermal Spray Laboratory of the State University of New York, Stony Brook, investigated the fabrication of a gas-tight interconnect layer on a tubular solid oxide fuel cell with plasma arc spray deposition. The principal objective was to determine the process variables for the plasma spray deposition of an interconnect with adequate electrical conductivity and other desired properties. Plasma arc spray deposition is a process where the coating material in powder form is heated to or above its melting temperature, while being accelerated by a carrier gas stream through a high power electric arc. The molten powder particles are directed at the substrate, and on impact, form a coating consisting of many layers of overlapping, thin, lenticular particles or splats. The variables investigated were gun power, spray distance, powder feed rate, plasma gas flow rates, number of gun passes, powder size distribution, injection angle of powder into the plasma plume, vacuum or atmospheric plasma spraying, and substrate heating. Typically, coatings produced by both systems showed bands of lanthanum rich material and cracking with the coating. Preheating the substrate reduced but did not eliminate internal coating cracking. A uniformly thick, dense, adherent interconnect of the desired chemistry was finally achieved with sufficient gas- tightness to allow fabrication of cells and samples for measurement of physical and electrical properties. A cell was tested successfully at 1000{degree}C for over 1,000 hours demonstrating the mechanical, electrical, and chemical stability of a plasma-arc sprayed interconnect layer.

  14. Solid oxide fuel cell processing using plasma arc spray deposition techniques

    SciTech Connect

    Ray, E.R.; Spengler, C.J.; Herman, H.

    1991-07-01

    The Westinghouse Electric Corporation, in conjunction with the Thermal Spray Laboratory of the State University of New York, Stony Brook, investigated the fabrication of a gas-tight interconnect layer on a tubular solid oxide fuel cell with plasma arc spray deposition. The principal objective was to determine the process variables for the plasma spray deposition of an interconnect with adequate electrical conductivity and other desired properties. Plasma arc spray deposition is a process where the coating material in powder form is heated to or above its melting temperature, while being accelerated by a carrier gas stream through a high power electric arc. The molten powder particles are directed at the substrate, and on impact, form a coating consisting of many layers of overlapping, thin, lenticular particles or splats. The variables investigated were gun power, spray distance, powder feed rate, plasma gas flow rates, number of gun passes, powder size distribution, injection angle of powder into the plasma plume, vacuum or atmospheric plasma spraying, and substrate heating. Typically, coatings produced by both systems showed bands of lanthanum rich material and cracking with the coating. Preheating the substrate reduced but did not eliminate internal coating cracking. A uniformly thick, dense, adherent interconnect of the desired chemistry was finally achieved with sufficient gas- tightness to allow fabrication of cells and samples for measurement of physical and electrical properties. A cell was tested successfully at 1000{degree}C for over 1,000 hours demonstrating the mechanical, electrical, and chemical stability of a plasma-arc sprayed interconnect layer.

  15. Regional refining models for alternative fuels using shale and coal synthetic crudes: identification and evaluation of optimized alternative fuels. Annual report, March 20, 1979-March 19, 1980

    SciTech Connect

    Sefer, N.R.; Russell, J.A.

    1980-11-01

    The initial phase has been completed in the project to evaluate alternative fuels for highway transportation from synthetic crudes. Three refinery models were developed for Rocky Mountain, Mid-Continent and Great Lakes regions to make future product volumes and qualities forecast for 1995. Projected quantities of shale oil and coal oil syncrudes were introduced into the raw materials slate. Product slate was then varied from conventional products to evaluate maximum diesel fuel and broadcut fuel in all regions. Gasoline supplement options were evaluated in one region for 10% each of methanol, ethanol, MTBE or synthetic naphtha in the blends along with syncrude components. Compositions and qualities of the fuels were determined for the variation in constraints and conditions established for the study. Effects on raw materials, energy consumption and investment costs were reported. Results provide the basis to formulate fuels for laboratory and engine evaluation in future phases of the project.

  16. 3D surface real-time measurement using phase-shifted interference fringe technique for craniofacial identification

    NASA Astrophysics Data System (ADS)

    Levin, Gennady G.; Vishnyakov, Gennady N.; Naumov, Alexey V.; Abramov, Sergey

    1998-03-01

    We offer to use the 3D surface profile real-time measurement using phase-shifted interference fringe projection technique for the cranioficial identification. Our system realizes the profile measurement by projecting interference fringe pattern on the object surface and by observing the deformed fringe pattern at the direction different from the projection. Fringes are formed by a Michelson interferometer with one mirror mounted on a piezoelectric translator. Four steps self- calibration phase-shift method was used.

  17. A Technique to Determine Billet Core Charge Weight for P/M Fuel Tubes

    SciTech Connect

    Peacock, H.B.

    2001-07-02

    The core length in an extruded tube depends on the weight of powder in the billet core. In the past, the amount of aluminum powder needed to give a specified core length was determined empirically. This report gives a technique for calculating the weight of aluminum powder for the P/M core. An equation has been derived which can be used to determine the amount of aluminum needed for P/M billet core charge weights. Good agreement was obtained when compared to Mark 22 tube extrusion data. From the calculated charge weight, the elastomeric bag can be designed and made to compact the U3O8-Al core.

  18. Forensic human identification in the United States and Canada: a review of the law, admissible techniques, and the legal implications of their application in forensic cases.

    PubMed

    Holobinko, Anastasia

    2012-10-10

    Forensic human identification techniques are successful if they lead to positive personal identification. However, the strongest personal identification is of no use in the prosecution--or vindication--of an accused if the associated evidence and testimony is ruled inadmissible in a court of law. This review examines the U.S. and Canadian legal rulings regarding the admissibility of expert evidence and testimony, and subsequently explores four established methods of human identification (i.e., DNA profiling, forensic anthropology, forensic radiography, forensic odontology) and one complementary technique useful in determining identity, and the legal implications of their application in forensic cases.

  19. A NOVEL TECHNIQUE FOR THE RAPID IDENTIFICATION OF ALPHA EMITTERS RELEASED DURING A RADIOLOGICAL INCIDENT.

    EPA Science Inventory

    Currently there are no standard radioanalytical methods applicable to the initial phase of a radiological emergency, for the early identification and quantification of alpha emitting radionuclides. Of particular interest are determinations of the presence and concentration of is...

  20. Modal identification using the frequency-scale domain decomposition technique of ambient vibration responses

    NASA Astrophysics Data System (ADS)

    Le, Thien-Phu; Argoul, Pierre

    2016-12-01

    This paper proposes a new modal identification method of ambient vibration responses. The application of the singular value decomposition to continuous wavelet transform of power spectral density matrix gives singular values and singular vectors in frequency-scale domain. Analytical development shows a direct relation between local maxima in frequency-scale representation of singular values and modal parameters. This relation is then carried on for the identification of modal parameters via a complete practical procedure. The main novelties of this work involve the new formulation in frequency-scale domain and the capacity for the identification of modal parameters without the step of ridges extraction in comparison with previous wavelet-based modal identification methods.

  1. Neural Networks and other Techniques for Fault Identification and Isolation of Aircraft Systems

    DTIC Science & Technology

    2003-06-01

    in this paper is based on the use of neural networks (NNs) as on-line learning non-linear approximators. The performances of two different neural...Fault identification, isolation. and accommodation have become critical issues in the overall performance of advanced aircraft systems. Neural ... Networks have shown to be a very attractive alternative to classic adaptation methods for identification and control of non-linear dynamic systems. The

  2. Nano-structured composite cathodes for intermediate temperature solid oxide fuel cells via an infiltration/impregnation technique

    SciTech Connect

    Jiang, Zhiyi; Xia, Changrong; Chen, Fanglin

    2010-02-12

    Solid oxide fuel cells (SOFCs) are high temperature energy conversion devices working efficiently and environmental friendly. SOFC requires a functional cathode with high electrocatalytic activity for the electrochemical reduction of oxygen. The electrode is often fabricated at high temperature to achieve good bonding between the electrode and electrolyte. The high temperature not only limits material choice but also results in coarse particles with low electrocatalytic activity. Nano-structured electrodes fabricated at low temperature by an infiltration/impregnation technique have shown many advantages including superior activity and wider range of material choices. The impregnation technique involves depositing nanoparticle catalysts into a pre-sintered electrode backbone. Two basic types of nano-structures are developed since the electrode is usually a composite consists of an electrolyte and an electrocatalyst. One is infiltrating electronically conducting nano-catalyst into a single phase ionic conducting backbone, while the other is infiltrating ionically conducting nanoparticles into a single phase electronically conducting backbone. In addition, nanoparticles of the electrocatalyst, electrolyte and other oxides have also been infiltrated into mixed conducting backbones. These nano-structured cathodes are reviewed here regarding the preparation methods, their electrochemical performance, and stability upon thermal cycling.

  3. Profiling refined hydrocarbon fuels using polar components

    USGS Publications Warehouse

    Rostad, C.E.; Hostettler, F.D.

    2007-01-01

    Identification of a fuel released into the environment can be difficult due to biodegradation or weathering. Negative electrospray ionization/mass spectrometry was used to screen for unique polar components in a wide variety of commercial hydrocarbon products and mixtures. These fuels produced unique and relatively simple spectra. When applied to hydrocarbon samples from a large, long-term fuel spill in a relatively cool climate in which the alkane, isoprenoid, and alkylcyclohexane portions had begun to biodegrade or weather, the polar components in these samples had changed little over time. This technique provided rapid fuel identification on hydrocarbons released into the environment, without sample preparation, fractionation, or chromatography. Copyright ?? Taylor & Francis Group, LLC.

  4. Ionospheric parameter analysis techniques and anomaly identification in periods of ionospheric perturbations

    NASA Astrophysics Data System (ADS)

    Mandrikova, Oksana; Polozov, Yury; Fetisova Glushkova, Nadejda; Shevtsov, Boris

    In the present paper we suggest intellectual techniques intended for the analysis of ionospheric parameters. These techniques are directed at studying dynamic processes in the "magnetosphere-ionosphere" system during perturbations. Using the combination of the wavelet transform and neural networks, the authors have developed a technique of approximating the time variation of ionospheric parameters. This technique allows us to make data predictions and detect anomalies in the ionosphere. Multiscale component approximations of the critical frequency of the ionosphere layer F2 were constructed. These approximations can be presented in the following form: begin{center} c_{l,k+m} (t) = varphi_m(3) Bigl (sum_i omega(3_{mi}) varphi_i(2) Bigl (sum_j omega(2_{ij}) varphi_j(1) Bigl (sum_k omega(1_{jk}) c_{l,k} (t) Bigr ) Bigr ) Bigr ) , where c_{l,k} = bigl < f , Psi_{l,k} bigr > ; Psi_{l,k} (t) = 2(l/2) Psi (2(l) t - k) is the wavelet basis; omega(1_{jk}) are the weighting coefficients of the neuron j of the network input layer; omega(2_{ij}) are the weighting coefficients of the neuron i of the network hidden layer; omega(3_{mi}) are the weighting coefficients of the neuron m of the network output layer; varphi(1_j) (z) = varphi(2_i) (z) = (1)/(1+exp(-z))) ; varphi(3_m) (z) = x*z+y . The coefficients c_{l,k} can be found as a result of transforming the original function f into the space with the scale l . In order to obtain the approximations of the time variation of data, neural networks can be united in groups. In the paper we have suggested a multicomponent time variation model of ionospheric parameters, which makes it possible to perform the analysis of the ionospheric dynamic mode, receive predictions about parameter variations, and detect anomalies in periods of perturbations. The multicomponent model also allows us to fill missing values in critical frequency data taking into account diurnal and seasonal variations. Identification of the model is based on combining

  5. A novel technique towards deployment of hydrostatic pressure based level sensor in nuclear fuel reprocessing facility

    NASA Astrophysics Data System (ADS)

    Praveen, K.; Rajiniganth, M. P.; Arun, A. D.; Sahoo, P.; Satya Murty, S. A. V.

    2016-02-01

    A novel approach towards deployment of a hydrostatic pressure based level monitoring device is presented for continuous monitoring of liquid level in a reservoir with high resolution and precision. Some of the major drawbacks such as spurious information of measured level due to change in ambient temperature, requirement of high resolution pressure sensor, and bubbling effect by passing air or any gaseous fluid into the liquid are overcome by using such a newly designed hydrostatic pressure based level monitoring device. The technique involves precise measurement of hydrostatic pressure exerted by the process liquid using a high sensitive pulsating-type differential pressure sensor (capacitive type differential pressure sensor using a specially designed oil manometer) and correlating it to the liquid level. In order to avoid strong influence of temperature on liquid level, a temperature compensation methodology is derived and used in the system. A wireless data acquisition feature has also been provided in the level monitoring device in order to work in a remote area such as a radioactive environment. At the outset, a prototype level measurement system for a 1 m tank is constructed and its test performance has been well studied. The precision, accuracy, resolution, uncertainty, sensitivity, and response time of the prototype level measurement system are found to be less than 1.1 mm in the entire range, 1%, 3 mm, <1%, 10 Hz/mm, and ˜4 s, respectively.

  6. Tracer-based laser-induced fluorescence measurement technique for quantitative fuel/air-ratio measurements in a hydrogen internal combustion engine.

    PubMed

    Blotevogel, Thomas; Hartmann, Matthias; Rottengruber, Hermann; Leipertz, Alfred

    2008-12-10

    A measurement technique for the quantitative investigation of mixture formation processes in hydrogen internal combustion engines (ICEs) has been developed using tracer-based laser-induced fluorescence (TLIF). This technique can be employed to fired and motored engine operation. The quantitative TLIF fuel/air-ratio results have been verified by means of linear Raman scattering measurements. Exemplary results of the simultaneous investigation of mixture formation and combustion obtained at an optical accessible hydrogen ICE are shown.

  7. A review of techniques for the identification and measurement of fish in underwater stereo-video image sequences

    NASA Astrophysics Data System (ADS)

    Shortis, Mark R.; Ravanbakskh, Mehdi; Shaifat, Faisal; Harvey, Euan S.; Mian, Ajmal; Seager, James W.; Culverhouse, Philip F.; Cline, Danelle E.; Edgington, Duane R.

    2013-04-01

    Underwater stereo-video measurement systems are used widely for counting and measuring fish in aquaculture, fisheries and conservation management. To determine population counts, spatial or temporal frequencies, and age or weight distributions, snout to fork length measurements are captured from the video sequences, most commonly using a point and click process by a human operator. Current research aims to automate the measurement and counting task in order to improve the efficiency of the process and expand the use of stereo-video systems within marine science. A fully automated process will require the detection and identification of candidates for measurement, followed by the snout to fork length measurement, as well as the counting and tracking of fish. This paper presents a review of the techniques used for the detection, identification, measurement, counting and tracking of fish in underwater stereo-video image sequences, including consideration of the changing body shape. The review will analyse the most commonly used approaches, leading to an evaluation of the techniques most likely to be a general solution to the complete process of detection, identification, measurement, counting and tracking.

  8. Basalt identification by interpreting nuclear and electrical well logging measurements using fuzzy technique (case study from southern Syria).

    PubMed

    Asfahani, J; Abdul Ghani, B; Ahmad, Z

    2015-11-01

    Fuzzy analysis technique is proposed in this research for interpreting the combination of nuclear and electrical well logging data, which include natural gamma ray, density and neutron-porosity, while the electrical well logging include long and short normal. The main objective of this work is to describe, characterize and establish the lithology of the large extended basaltic areas in southern Syria. Kodana well logging measurements have been used and interpreted for testing and applying the proposed technique. The established lithological cross section shows the distribution and the identification of four kinds of basalt, which are hard massive basalt, hard basalt, pyroclastic basalt and the alteration basalt products, clay. The fuzzy analysis technique is successfully applied on the Kodana well logging data, and can be therefore utilized as a powerful tool for interpreting huge well logging data with higher number of variables required for lithological estimations.

  9. Modelling the relationship between peripheral blood pressure and blood volume pulses using linear and neural network system identification techniques.

    PubMed

    Allen, J; Murray, A

    1999-08-01

    The relationships between peripheral blood pressure and blood volume pulse waveforms can provide valuable physiological data about the peripheral vascular system, and are the subject of this study. Blood pressure and volume pulse waveforms were collected from 12 normal male subjects using non-invasive optical techniques, finger arterial blood pressure (BP, Finapres: Datex-Ohmeda) and photoelectric plethysmography (PPG) respectively, and captured to computer for three equal (1 min) measurement phases: baseline, hand raising and hand elevated. This simple physiological challenge was designed to induce a significant drop in peripheral blood pressure. A simple first order lag transfer function was chosen to study the relationship between blood pressure (system input) and blood volume pulse waveforms (system output), with parameters describing the dynamics (time constant, tau) and input-output gain (K). Tau and K were estimated for each subject using two different system identification techniques: a recursive parameter estimation algorithm which calculated tau and K from a linear auto-regressive with exogenous variable (ARX) model, and an artificial neural network which was trained to learn the non-linear process input-output relationships and then derive a linearized ARX model of the system. The identification techniques allowed the relationship between the blood pressure and blood volume pulses to be described simply, with the neural network technique providing a better model fit overall (p < 0.05, Wilcoxon). The median falls in tau following the hand raise challenge were 26% and 31% for the linear and neural network based techniques respectively (both p < 0.05, Wilcoxon). This preliminary study has shown that the time constant and gain parameters obtained using these techniques can provide physiological data for the clinical assessment of the peripheral circulation.

  10. Using Torrance's Problem Identification Techniques To Increase Fluency and Flexibility in the Classroom.

    ERIC Educational Resources Information Center

    Kurtzberg, Richard L.; Reale, Amelia

    1999-01-01

    A study investigated whether it would be possible to increase creative output of 43 eight-graders by teaching a portion of the Future Problem Solving (FPS) process, the identification of problems, as part of a middle school curriculum. Results indicated that fluency and flexibility could be taught utilizing the FPS process. (Author/CR)

  11. Method and Apparatus for Reading Two Dimensional Identification Symbols Using Radar Techniques

    NASA Technical Reports Server (NTRS)

    Schramm, Harry F., Jr. (Inventor); Roxby, Donald L. (Inventor)

    2003-01-01

    A method and apparatus are provided for sensing two-dimensional identification marks provided on a substrate or embedded within a substrate below a surface of the substrate. Micropower impulse radar is used to transmit a high risetime, short duration pulse to a focussed radar target area of the substrate having the two dimensional identification marks. The method further includes the steps of listening for radar echoes returned from the identification marks during a short listening period window occurring a predetermined time after transmission of the radar pulse. If radar echoes are detected, an image processing step is carried out. If no radar echoes are detected, the method further includes sequentially transmitting further high risetime, short duration pulses, and listening for radar echoes from each of said further pulses after different elapsed times for each of the further pulses until radar echoes are detected. When radar echoes are detected, data based on the detected echoes is processed to produce an image of the identification marks.

  12. Advanced driver assistance system: Road sign identification using VIAPIX system and a correlation technique

    NASA Astrophysics Data System (ADS)

    Ouerhani, Y.; Alfalou, A.; Desthieux, M.; Brosseau, C.

    2017-02-01

    We present a three-step approach based on the commercial VIAPIX® module for road traffic sign recognition and identification. Firstly, detection in a scene of all objects having characteristics of traffic signs is performed. This is followed by a first-level recognition based on correlation which consists in making a comparison between each detected object with a set of reference images of a database. Finally, a second level of identification allows us to confirm or correct the previous identification. In this study, we perform a correlation-based analysis by combining and adapting the Vander Lugt correlator with the nonlinear joint transformation correlator (JTC). Of particular significance, this approach permits to make a reliable decision on road traffic sign identification. We further discuss a robust scheme allowing us to track a detected road traffic sign in a video sequence for the purpose of increasing the decision performance of our system. This approach can have broad practical applications in the maintenance and rehabilitation of transportation infrastructure, or for drive assistance.

  13. Application of microsatellite PCR techniques in the identification of mixed up tissue specimens in surgical pathology.

    PubMed

    Gras, E; Matias-Guiu, X; Catasus, L; Arguelles, R; Cardona, D; Prat, J

    2000-03-01

    A fragment of tumour was erroneously mixed up with an endometrial biopsy. Micro-satellite polymerase chain reaction (PCR) clearly demonstrated the extraneous nature of the fragment. Micro-satellite PCR may be useful for the identification of mis-labelled or mismatched tissue fragments in surgical pathology specimens.

  14. Multiple techniques for mineral identification on Mars:. a study of hydrothermal rocks as potential analogues for astrobiology sites on Mars

    NASA Astrophysics Data System (ADS)

    Bishop, Janice L.; Murad, Enver; Lane, Melissa D.; Mancinelli, Rocco L.

    2004-06-01

    Spectroscopic studies of Mars analog materials combining multiple spectral ranges and techniques are necessary in order to obtain ground truth information for interpretation of rocks and soils on Mars. Two hydrothermal rocks from Yellowstone National Park, Wyoming, were characterized here because they contain minerals requiring water for formation and they provide a possible niche for some of the earliest organisms on Earth. If related rocks formed in hydrothermal sites on Mars, identification of these would be important for understanding the geology of the planet and potential habitability for life. XRD, thermal properties, VNIR, mid-IR, and Raman spectroscopy were employed to identify the mineralogy of the samples in this study. The rocks studied here include a travertine from Mammoth Formation that contains primarily calcite with some aragonite and gypsum and a siliceous sinter from Octopus Spring that contains a variety of poorly crystalline to amorphous silicate minerals. Calcite was detected readily in the travertine rock using any one of the techniques studied. The small amount of gypsum was uniquely identified using XRD, VNIR, and mid-IR, while the aragonite was uniquely identified using XRD and Raman. The siliceous sinter sample was more difficult to characterize using each of these techniques and a combination of all techniques was more useful than any single technique. Although XRD is the historical standard for mineral identification, it presents some challenges for remote investigations. Thermal properties are most useful for minerals with discrete thermal transitions. Raman spectroscopy is most effective for detecting polarized species such as CO 3, OH, and CH, and exhibits sharp bands for most highly crystalline minerals when abundant. Mid-IR spectroscopy is most useful in characterizing Si-O (and metal-O) bonds and also has the advantage that remote information about sample texture (e.g., particle size) can be determined. Mid-IR spectroscopy is also

  15. Hybrid approach combining multiple characterization techniques and simulations for microstructural analysis of proton exchange membrane fuel cell electrodes

    NASA Astrophysics Data System (ADS)

    Cetinbas, Firat C.; Ahluwalia, Rajesh K.; Kariuki, Nancy; De Andrade, Vincent; Fongalland, Dash; Smith, Linda; Sharman, Jonathan; Ferreira, Paulo; Rasouli, Somaye; Myers, Deborah J.

    2017-03-01

    The cost and performance of proton exchange membrane fuel cells strongly depend on the cathode electrode due to usage of expensive platinum (Pt) group metal catalyst and sluggish reaction kinetics. Development of low Pt content high performance cathodes requires comprehensive understanding of the electrode microstructure. In this study, a new approach is presented to characterize the detailed cathode electrode microstructure from nm to μm length scales by combining information from different experimental techniques. In this context, nano-scale X-ray computed tomography (nano-CT) is performed to extract the secondary pore space of the electrode. Transmission electron microscopy (TEM) is employed to determine primary C particle and Pt particle size distributions. X-ray scattering, with its ability to provide size distributions of orders of magnitude more particles than TEM, is used to confirm the TEM-determined size distributions. The number of primary pores that cannot be resolved by nano-CT is approximated using mercury intrusion porosimetry. An algorithm is developed to incorporate all these experimental data in one geometric representation. Upon validation of pore size distribution against gas adsorption and mercury intrusion porosimetry data, reconstructed ionomer size distribution is reported. In addition, transport related characteristics and effective properties are computed by performing simulations on the hybrid microstructure.

  16. Combustion rate limits of hydrogen plus hydrocarbon fuel: Air diffusion flames from an opposed jet burner technique

    NASA Technical Reports Server (NTRS)

    Pellett, Gerald L.; Guerra, Rosemary; Wilson, Lloyd G.; Reeves, Ronald N.; Northam, G. Burton

    1987-01-01

    Combustion of H2/hydrocarbon (HC) fuel mixtures may be considered in certain volume-limited supersonic airbreathing propulsion applications. Effects of HC addition to H2 were evaluated, using a recent argon-bathed, coaxial, tubular opposed jet burner (OJB) technique to measure the extinction limits of counterflow diffusion flames. The OJB flames were formed by a laminar jet of (N2 and/or HC)-diluted H2 mixture opposed by a similar jet of air at ambient conditions. The OJB data, derived from respective binary mixtures of H2 and methane, ethylene, or propane HCs, were used to characterize BLOWOFF and RESTORE. BLOWOFF is a sudden breaking of the dish-shaped OJB flame to a stable torus or ring shape, and RESTORE marks sudden restoration of the central flame by radial inward flame propagation. BLOWOFF is a measure of kinetically-limited flame reactivity/speed under highly stretched, but relatively ideal impingement flow conditions. RESTORE measures inward radial flame propagation rate, which is sensitive to ignition processes in the cool central core. It is concluded that relatively small molar amounts of added HC greatly reduce the reactivity characteristics of counterflow hydrogen-air diffusion flames, for ambient initial conditions.

  17. Nonlinear torque and air-to-fuel ratio control of spark ignition engines using neuro-sliding mode techniques.

    PubMed

    Huang, Ting; Javaherian, Hossein; Liu, Derong

    2011-06-01

    This paper presents a new approach for the calibration and control of spark ignition engines using a combination of neural networks and sliding mode control technique. Two parallel neural networks are utilized to realize a neuro-sliding mode control (NSLMC) for self-learning control of automotive engines. The equivalent control and the corrective control terms are the outputs of the neural networks. Instead of using error backpropagation algorithm, the network weights of equivalent control are updated using the Levenberg-Marquardt algorithm. Moreover, a new approach is utilized to update the gain of corrective control. Both modifications of the NSLMC are aimed at improving the transient performance and speed of convergence. Using the data from a test vehicle with a V8 engine, we built neural network models for the engine torque (TRQ) and the air-to-fuel ratio (AFR) dynamics and developed NSLMC controllers to achieve tracking control. The goal of TRQ control and AFR control is to track the commanded values under various operating conditions. From simulation studies, the feasibility and efficiency of the approach are illustrated. For both control problems, excellent tracking performance has been achieved.

  18. Mass defect filter technique and its applications to drug metabolite identification by high-resolution mass spectrometry.

    PubMed

    Zhang, Haiying; Zhang, Donglu; Ray, Kenneth; Zhu, Mingshe

    2009-07-01

    Identification of drug metabolites by liquid chromatography/mass spectrometry (LC/MS) involves metabolite detection in biological matrixes and structural characterization based on product ion spectra. Traditionally, metabolite detection is accomplished primarily on the basis of predicted molecular masses or fragmentation patterns of metabolites using triple-quadrupole and ion trap mass spectrometers. Recently, a novel mass defect filter (MDF) technique has been developed, which enables high-resolution mass spectrometers to be utilized for detecting both predicted and unexpected drug metabolites based on narrow, well-defined mass defect ranges for these metabolites. This is a new approach that is completely different from, but complementary to, traditional molecular mass- or MS/MS fragmentation-based LC/MS approaches. This article reviews the mass defect patterns of various classes of drug metabolites and the basic principles of the MDF approach. Examples are given on the applications of the MDF technique to the detection of stable and chemically reactive metabolites in vitro and in vivo. Advantages, limitations, and future applications are also discussed on MDF and its combinations with other data mining techniques for the detection and identification of drug metabolites.

  19. Formulation and evaluation of highway transportation fuels from shale and coal oils: project identification and evaluation of optimized alternative fuels. Second annual report, March 20, 1980-March 19, 1981. [Broadcut fuel mixtures of petroleum, shale, and coal products

    SciTech Connect

    Sefer, N.R.; Russell, J.A.

    1981-12-01

    Project work is reported for the formulation and testing of diesel and broadcut fuels containing components from petroleum, shale oil, and coal liquids. Formulation of most of the fuels was based on refinery modeling studies in the first year of the project. Product blends were prepared with a variety of compositions for use in this project and to distribute to other, similar research programs. Engine testing was conducted in a single-cylinder CLR engine over a range of loads and speeds. Relative performance and emissions were determined in comparison with typical petroleum diesel fuel. With the eight diesel fuels tested, it was found that well refined shale oil products show only minor differences in engine performance and emissions which are related to differences in boiling range. A less refined coal distillate can be used at low concentrations with normal engine performance and increased emissions of particulates and hydrocarbons. Higher concentrations of coal distillate degrade both performance and emissions. Broadcut fuels were tested in the same engine with variable results. All fuels showed increased fuel consumption and hydrocarbon emissions. The increase was greater with higher naphtha content or lower cetane number of the blends. Particulates and nitrogen oxides were high for blends with high 90% distillation temperatures. Operation may have been improved by modifying fuel injection. Cetane and distillation specifications may be advisable for future blends. Additional multi-cylinder and durability testing is planned using diesel fuels and broadcut fuels. Nine gasolines are scheduled for testing in the next phase of the project.

  20. Identification of source of a marine oil-spill using geochemical and chemometric techniques.

    PubMed

    Lobão, Marcio M; Cardoso, Jari N; Mello, Marcio R; Brooks, Paul W; Lopes, Claudio C; Lopes, Rosangela S C

    2010-12-01

    The current work aimed to identify the source of an oil spill off the coast of Maranhão, Brazil, in September 2005 and effect a preliminary geochemical survey of this environment. A combination of bulk analytical parameters, such as carbon isotope (δ(13)C) and Ni/V ratios, and conventional fingerprinting methods (High Resolution Gas Chromatography and Mass Spectrometry) were used. The use of bulk methods greatly speeded source identification for this relatively unaltered spill: identification of the likely source was possible at this stage. Subsequent fingerprinting of biomarker distributions supported source assignment, pointing to a non-Brazilian oil. Steranes proved the most useful biomarkers for sample correlation in this work. Distribution patterns of environmentally more resilient compound types, such as certain aromatic structures, proved inconclusive for correlation, probably in view of their presence in the background.

  1. Identification of early cancerous lesion of esophagus with endoscopic images by hyperspectral image technique (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Huang, Shih-Wei; Chen, Shih-Hua; Chen, Weichung; Wu, I.-Chen; Wu, Ming Tsang; Kuo, Chie-Tong; Wang, Hsiang-Chen

    2016-03-01

    This study presents a method to identify early esophageal cancer within endoscope using hyperspectral imaging technology. The research samples are three kinds of endoscopic images including white light endoscopic, chromoendoscopic, and narrow-band endoscopic images with different stages of pathological changes (normal, dysplasia, dysplasia - esophageal cancer, and esophageal cancer). Research is divided into two parts: first, we analysis the reflectance spectra of endoscopic images with different stages to know the spectral responses by pathological changes. Second, we identified early cancerous lesion of esophagus by principal component analysis (PCA) of the reflectance spectra of endoscopic images. The results of this study show that the identification of early cancerous lesion is possible achieve from three kinds of images. In which the spectral characteristics of NBI endoscopy images of a gray area than those without the existence of the problem the first two, and the trend is very clear. Therefore, if simply to reflect differences in the degree of spectral identification, chromoendoscopic images are suitable samples. The best identification of early esophageal cancer is using the NBI endoscopic images. Based on the results, the use of hyperspectral imaging technology in the early endoscopic esophageal cancer lesion image recognition helps clinicians quickly diagnose. We hope for the future to have a relatively large amount of endoscopic image by establishing a hyperspectral imaging database system developed in this study, so the clinician can take this repository more efficiently preliminary diagnosis.

  2. Neural Networks and other Techniques for Fault Identification and Isolation of Aircraft Systems

    NASA Technical Reports Server (NTRS)

    Innocenti, M.; Napolitano, M.

    2003-01-01

    Fault identification, isolation, and accomodation have become critical issues in the overall performance of advanced aircraft systems. Neural Networks have shown to be a very attractive alternative to classic adaptation methods for identification and control of non-linear dynamic systems. The purpose of this paper is to show the improvements in neural network applications achievable through the use of learning algorithms more efficient than the classic Back-Propagation, and through the implementation of the neural schemes in parallel hardware. The results of the analysis of a scheme for Sensor Failure, Detection, Identification and Accommodation (SFDIA) using experimental flight data of a research aircraft model are presented. Conventional approaches to the problem are based on observers and Kalman Filters while more recent methods are based on neural approximators. The work described in this paper is based on the use of neural networks (NNs) as on-line learning non-linear approximators. The performances of two different neural architectures were compared. The first architecture is based on a Multi Layer Perceptron (MLP) NN trained with the Extended Back Propagation algorithm (EBPA). The second architecture is based on a Radial Basis Function (RBF) NN trained with the Extended-MRAN (EMRAN) algorithms. In addition, alternative methods for communications links fault detection and accomodation are presented, relative to multiple unmanned aircraft applications.

  3. A qualitative analysis of the neutron population in fresh and spent fuel assemblies during simulated interrogation using the differential die-away technique

    DOE PAGES

    Tobin, Stephen J.; Lundkvist, Niklas; Goodsell, Alison V.; ...

    2015-12-01

    In this study, Monte Carlo simulations were performed for the differential die-away (DDA) technique to analyse the time-dependent behaviour of the neutron population in fresh and spent nuclear fuel assemblies as part of the Next Generation Safeguards Initiative Spent Fuel (NGSI-SF) Project. Simulations were performed to investigate both a possibly portable as well as a permanent DDA instrument. Taking advantage of a custom made modification to the MCNPX code, the variation in the neutron population, simultaneously in time and space, was examined. The motivation for this research was to improve the design of the DDA instrument, as it is bemore » ing considered for possible deployment at the Central Storage of Spent Nuclear Fuel and Encapsulation Plant in Sweden (Clab), as well as to assist in the interpretation of the both simulated and measured signals.« less

  4. A qualitative analysis of the neutron population in fresh and spent fuel assemblies during simulated interrogation using the differential die-away technique

    SciTech Connect

    Tobin, Stephen J.; Lundkvist, Niklas; Goodsell, Alison V.; Grape, Sophie; Hendricks, John S.; Henzl, Vladimir; Swinhoe, Martyn T.

    2015-12-01

    In this study, Monte Carlo simulations were performed for the differential die-away (DDA) technique to analyse the time-dependent behaviour of the neutron population in fresh and spent nuclear fuel assemblies as part of the Next Generation Safeguards Initiative Spent Fuel (NGSI-SF) Project. Simulations were performed to investigate both a possibly portable as well as a permanent DDA instrument. Taking advantage of a custom made modification to the MCNPX code, the variation in the neutron population, simultaneously in time and space, was examined. The motivation for this research was to improve the design of the DDA instrument, as it is be ing considered for possible deployment at the Central Storage of Spent Nuclear Fuel and Encapsulation Plant in Sweden (Clab), as well as to assist in the interpretation of the both simulated and measured signals.

  5. Applications of advanced electrochemical techniques in the study of microbial fuel cells and corrosion protection by polymer coatings

    NASA Astrophysics Data System (ADS)

    Manohar, Aswin Karthik

    The results of a detailed evaluation of the properties of the anode and the cathode of a mediator-less microbial fuel cell (MFC) and the factors determining the power output of the MFC using different electrochemical techniques are presented in Chapter 1. In the MFC under investigation, the biocatalyst - Shewanella oneidensis MR-1 - oxidizes the fuel and transfers the electrons directly into the anode which consists of graphite felt. Oxygen is reduced at the cathode which consists of Pt-plated graphite felt. A proton exchange membrane separates the anode and the cathode compartments. The electrolyte was a PIPES buffer solution and lactate was used as the fuel. Separate tests were performed with the buffer solution containing lactate and with the buffer solution with lactate and MR-1 as anolytes. Electrochemical Impedance Spectroscopy (EIS) carried out at the open-circuit potential (OCP) has been used to determine the electrochemical properties of the anode and the cathode at different anolyte conditions. Cell voltage (V) -- current (I) curves were recorded using a potentiodynamic sweep between the open-circuit cell voltage and the short- circuit cell voltage. Power (P)-V curves were constructed from the recorded V-I data and the cell voltage, Vmax, at which the maximum power could be obtained, was determined. P- time (t) curves were obtained by applying Vmax or using a resistor between the anode and the cathode that would result in a similar cell voltage. Cyclic voltammograms (CV) were recorded for the anode for the different anolytes. Finally, anodic polarization curves were obtained for the anode with different anolytes and a cathodic polarization curve was recorded for the cathode. The internal resistance (Rint) of the MFC has been determined as a function of the cell voltage V using EIS for the MFC described above and a MFC in which stainless steel (SS) balls had been added to the anode compartment. The experimental values of Rint of the MFCs studied here are

  6. Identification and evaluation of alternatives for the disposition of fluoride fuel and flush salts from the molten salt reactor experiment at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    1996-08-15

    This document presents an initial identification and evaluation of the alternatives for disposition of the fluoride fuel and flush salts stored in the drain tanks at the Molten Salt Reactor Experiment (MSRE) at Oak Ridge National Laboratory (ORNL). It will serve as a resource for the U.S. Department of Energy contractor preparing the feasibility study for this activity under the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA). This document will also facilitate further discussion on the range of credible alternatives, and the relative merits of alternatives, throughout the time that a final alternative is selected under the CERCLA process.

  7. Study of influence of fuel on dielectric and ferroelectric properties of bismuth titanate ceramics synthesized using solution based combustion technique

    NASA Astrophysics Data System (ADS)

    Subohi, Oroosa; Kumar, G. S.; Malik, M. M.; Kurchania, Rajnish

    2015-03-01

    The effect of fuel characteristics on the processing and properties of bismuth titanate (BIT) ceramics obtained by solution combustion route using different fuels are reported in this paper. Dextrose, urea and glycine were used as fuel in this study. The obtained bismuth titanate ceramics were characterized by using XRD, SEM at different stages of sample preparation. It was observed that BIT obtained by using dextrose as fuel shows higher dielectric constant and higher remnant polarization due to smaller grain size and lesser c-axis growth as compared to the samples with urea and glycine as fuel. The electrical behavior of the samples with respect to temperature and frequency was also investigated to understand relaxation phenomenon.

  8. Identification of wood between Phoebe zhennan and Machilus pingii using the gas chromatography-mass spectrometry direct injection technique.

    PubMed

    Xu, Bin; Zhu, Tao; Li, Jingya; Liu, Shuai

    2013-01-01

    In this paper, the technique of direct injection gas chromatography-mass spectrometer (GC-MS) was employed to discriminate between two batches of wood (Phoebe zhennan and Machilus pingii) with characteristic smells. Based on the GC-MS fingerprints obtained, similarities between samples were evaluated via correlation coefficient, hierarchical clustering and characteristic constituents analysis. The results showed that distinct differences in total ion chromatograms existed between the two species of wood and their correlation coefficients were low; however, the relationship between the same species of different batches showed the opposite; meanwhile, the analysis of hierarchical clustering and characteristic constituents also demonstrated an interrelationship. All the analytical methods achieved the goal of identification between the two species of wood, which verified that the technique can be used to identify different species of wood with characteristic smells.

  9. A Paradigm for the Nondestructive Assay of Spent Fuel Assemblies and Similar Large Objects, with Emphasis on the Role of Photon-Based Techniques

    NASA Astrophysics Data System (ADS)

    Bolind, Alan Michael

    2015-10-01

    The practice of nondestructive assay (NDA) of nuclear materials has, until now, been focused primarily (1) on smaller objects (2) with less fissile material and (3) with less self-generated radiation. The transition to the application of NDA to spent fuel assemblies and similar large objects violates these three conditions, thereby bringing the assumptions and paradigm of traditional NDA practice into question for the new applications. In this paper, a new paradigm for these new applications is presented which is based on the fundamental principles of nuclear engineering. It is shown that the NDA of spent fuel assemblies is mostly a three-dimensional problem that requires the integration of three independent NDA measurements in order to achieve a unique and accurate assay. The only NDA techniques that can avoid this requirement are those that analyze signals that are characteristic to specific isotopes (such as those caused by characteristic resonance interactions), and that are neither distorted nor overly attenuated by the other surrounding material. Some photon-based NDA techniques fall into this exceptional category. Such exceptional NDA techniques become essential to employ when assaying large objects that, unlike spent fuel assemblies, do not have a consistent geometry. With this new NDA paradigm, the advanced photon-based NDA techniques can be put into their proper context, and their development can thereby be properly motivated.

  10. Identification and evaluation of facilitation techniques for decommissioning light water power reactors

    SciTech Connect

    LaGuardia, T.S.; Risley, J.F.

    1986-06-01

    This report describes a study sponsored by the US Nuclear Regulatory Commission to identify practical techniques to facilitate the decommissioning of nuclear power generating facilities. The objective of these ''facilitation techniques'' is to reduce the radioactive exposures and/or volumes of waste generated during the decommissioning process. The report presents the possible facilitation techniques identified during the study and discusses the corresponding facilitation of the decommissioning process. Techniques are categorized by their applicability of being implemented during the three stages of power reactor life: design/construction, operation, or decommissioning. Detailed cost-benefit analyses were performed for each technique to determine the anticipated exposure and/or radioactive waste reduction; the estimated costs for implementing each technique were then calculated. Finally, these techniques were ranked by their effectiveness in facilitating the decommissioning process. This study is a part of the Nuclear Regulatory Commission's evaluation of decommissioning policy and its modification of regulations pertaining to the decommissioning process. The findings can be used by the utilities in the planning and establishment of activities to ensure that all objectives of decommissioning will be achieved.

  11. Semi-automated identification of white blood cell using active contour technique

    NASA Astrophysics Data System (ADS)

    Marzuki, Nurhanis Izzati Binti Che; Mahmood, Nasrul Humaimi Bin; Razak, Mohd Azhar Bin Abdul

    2015-05-01

    Manual and automated diagnosis can be used to identify the morphology of blood cells. However, the manual diagnosis of the blood cells is time consuming and need hematologist and pathologist experts in order to diagnose diseases. Recently, the automated diagnosis which is require image processing technique are often been used in this area. This paper focuses on image processing technique to do segmentation on the nucleus of white blood cells (WBC). To identify the nucleus region, there are several image processing techniques applied besides the active contour method. The results obtained show that the detection on the edge of the nucleus is almost same as the original image of the nucleus.

  12. Development of a Robust star identification technique for use in attitude determination of the ACE spacecraft

    NASA Technical Reports Server (NTRS)

    Woodard, Mark; Rohrbaugh, Dave

    1995-01-01

    The Advanced Composition Explorer (ACE) spacecraft is designed to fly in a spin-stabilized attitude. The spacecraft will carry two attitude sensors - a digital fine Sun sensor and a charge coupled device (CCD) star tracker - to allow ground-based determination of the spacecraft attitude and spin rate. Part of the processing that must be performed on the CCD star tracker data is the star identification. Star data received from the spacecraft must be matched with star information in the SKYMAP catalog to determine exactly which stars the sensor is tracking. This information, along with the Sun vector measured by the Sun sensor, is used to determine the spacecraft attitude. Several existing star identification (star ID) systems were examined to determine whether they could be modified for use on the ACE mission. Star ID systems which exist for three-axis stabilized spacecraft tend to be complex in nature and many require fairly good knowledge of the spacecraft attitude, making their use for ACE excessive. Star ID systems used for spinners carrying traditional slit star sensors would have to be modified to model the CCD star tracker. The ACE star ID algorithm must also be robust, in that it will be able to correctly identify stars even though the attitude is not known to a high degree of accuracy, and must be very efficient to allow real-time star identification. The paper presents the star ID algorithm that was developed for ACE. Results from prototype testing are also presented to demonstrate the efficiency, accuracy, and robustness of the algorithm.

  13. Advanced techniques for detection and identification of microbial agents of gastroenteritis.

    PubMed

    Dunbar, Sherry A; Zhang, Hongwei; Tang, Yi-Wei

    2013-09-01

    Gastroenteritis persists as a worldwide problem, responsible for approximately 2 million deaths annually. Traditional diagnostic methods used in the clinical microbiology laboratory include a myriad of tests, such as culture, microscopy, and immunodiagnostics, which can be labor intensive and suffer from long turnaround times and, in some cases, poor sensitivity. [corrected]. This article reviews recent advances in genomic and proteomic technologies that have been applied to the detection and identification of gastrointestinal pathogens. These methods simplify and speed up the detection of pathogenic microorganisms, and their implementation in the clinical microbiology laboratory has potential to revolutionize the diagnosis of gastroenteritis.

  14. Rapid Identification and Characterization of Francisella by Molecular Biology and Other Techniques

    PubMed Central

    Lai, Xin-He; Zhao, Long-Fei; Chen, Xiao-Ming; Ren, Yi

    2016-01-01

    Francisella tularensis is the causative pathogen of tularemia and a Tier 1 bioterror agent on the CDC list. Considering the fact that some subpopulation of the F. tularensis strains is more virulent, more significantly associated with mortality, and therefore poses more threat to humans, rapid identification and characterization of this subpopulation strains is of invaluable importance. This review summarizes the up-to-date developments of assays for mainly detecting and characterizing F. tularensis and a touch of caveats of some of the assays. PMID:27335619

  15. Powerful GC-TOF-MS Techniques for Screening, Identification and Quantification of Halogenated Natural Products.

    PubMed

    S Haglund, Peter; Löfstrand, Karin; Siek, Kevin; Asplund, Lillemor

    2013-01-01

    Comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry (GC×GC TOFMS) and gas chromatography/high-resolution time-of-flight mass spectrometry (GC-HRT) were used to detect and identify halogenated natural products (HNPs) in tissue homogenate, in this case brominated analytes present in a marine snail. Two classes of brominated anthropogenic compounds, polybrominated diphenyl ethers (PBDEs) and brominated dibenzofurans, were analyzed for comparison. Following conventional preparation, the sample was analyzed using GC×GC-TOF-MS. Isotope ratio scripts were used to compile a list of putatively brominated analytes from amongst the thousands of features resolved in the two-dimensional chromatogram. The structured nature of the chromatogram was exploited to propose identifications for several classes of brominated compounds, and include additional candidates that fell marginally outside the script tolerances. The sample was subsequently analyzed by GC-HRT. The high-resolution mass spectral data confirmed many formula assignments, facilitated confident assignment of an alternate formula when an original proposal did not hold, and enabled unknown identification. Identified HNPs include hydroxylated and methoxylated PBDE analogs, polybrominated dibenzo-p-dioxins (PBDDs) and hydroxyl-PBDDs, permitting the environmental occurrence and fate of such compounds to be studied.

  16. Laboratory and Field Testing of Commercially Available Detectors for the Identification of Chemicals of Interest in the Nuclear Fuel Cycle for the Detection of Undeclared Activities

    SciTech Connect

    Carla Miller; Mary Adamic; Stacey Barker; Barry Siskind; Joe Brady; Warren Stern; Heidi Smartt; Mike McDaniel; Mike Stern; Rollin Lakis

    2014-07-01

    Traditionally, IAEA inspectors have focused on the detection of nuclear indicators as part of infield inspection activities. The ability to rapidly detect and identify chemical as well as nuclear signatures can increase the ability of IAEA inspectors to detect undeclared activities at a site. Identification of chemical indicators have been limited to use in the analysis of environmental samples. Although IAEA analytical laboratories are highly effective, environmental sample processing does not allow for immediate or real-time results to an IAEA inspector at a facility. During a complementary access inspection, under the Additional Protocol, the use of fieldable technologies that can quickly provide accurate information on chemicals that may be indicative of undeclared activities can increase the ability of IAEA to effectively and efficiently complete their mission. The Complementary Access Working Group (CAWG) is a multi-laboratory team with members from Brookhaven National Laboratory, Idaho National Laboratory, Los Alamos National Laboratory, and Sandia National Laboratory. The team identified chemicals at each stage of the nuclear fuel cycle that may provide IAEA inspectors with indications that proliferation activities may be occurring. The group eliminated all indicators related to equipment, technology and training, developing a list of by-products/effluents, non-nuclear materials, nuclear materials, and other observables. These proliferation indicators were prioritized based on detectability from a conduct of operations (CONOPS) perspective of a CA inspection (for example, whether an inspector actually can access the S&O or whether it is in process with no physical access), and the IAEA’s interest in the detection technology in conjunction with radiation detectors. The list was consolidated to general categories (nuclear materials from a chemical detection technique, inorganic chemicals, organic chemicals, halogens, and miscellaneous materials). The team

  17. [Application of Raman spectroscopic technique to the identification and investigation of Chinese ancient jades and jade artifacts].

    PubMed

    Zhao, Hong-Xia; Gan, Fu-Xi

    2009-11-01

    Laser Raman spectroscopic technique is one of the essential methods in scientific archaeological research, which belongs to the nondestructive analysis. As a very good nondestructive analysis approach, it has not been widely applied in the research of the Chinese ancient jade artifacts. First of all in the present paper the fundamentals of laser Raman spectroscopic technique and the new research progress in this field were reviewed. Secondly, the Raman spectra of five familiar jades including nephrite (mainly composed of tremolite), Xiuyan Jade (mainly composed of serpentine), Dushan Jade (mainly composed of anorthite and Zoisite), turquoise and lapis lazuli were summarized respectively. As for an example, the Raman spectra of the four Chinese ancient jade artifacts excavated from Liangzhu Site of Zhejiang Province and Yinxu Site of Anyang in Henan Province were compared with that of the nephrite sample in Hetian of Xinjiang Province. It was shown that the Raman spectroscopic technique is a good nondestructive approach to the identification and investigation of the structures and mineral composition of Chinese ancient jade artifacts. Finally, the limitations and the foreground of this technique were discussed.

  18. NREL Develops Technique to Measure Membrane Thickness and Defects in Polymer Electrode Membrane Fuel Cells (Fact Sheet)

    SciTech Connect

    Not Available

    2010-11-01

    This fact sheet describes NREL's accomplishments in fuel cell membrane electrode assembly research and development. Work was performed by the Hydrogen Technologies and Systems Center and the National Center for Photovoltaics.

  19. WE-G-204-08: Optimized Digital Radiographic Technique for Lost Surgical Devices/Needle Identification

    SciTech Connect

    Gorman, A; Seabrook, G; Brakken, A; Dubois, M; Marn, C; Wilson, C; Jacobson, D; Liu, Y

    2015-06-15

    Purpose: Small surgical devices and needles are used in many surgical procedures. Conventionally, an x-ray film is taken to identify missing devices/needles if post procedure count is incorrect. There is no data to indicate smallest surgical devices/needles that can be identified with digital radiography (DR), and its optimized acquisition technique. Methods: In this study, the DR equipment used is a Canon RadPro mobile with CXDI-70c wireless DR plate, and the same DR plate on a fixed Siemens Multix unit. Small surgical devices and needles tested include Rubber Shod, Bulldog, Fogarty Hydrogrip, and needles with sizes 3-0 C-T1 through 8-0 BV175-6. They are imaged with PMMA block phantoms with thickness of 2–8 inch, and an abdomen phantom. Various DR techniques are used. Images are reviewed on the portable x-ray acquisition display, a clinical workstation, and a diagnostic workstation. Results: all small surgical devices and needles are visible in portable DR images with 2–8 inch of PMMA. However, when they are imaged with the abdomen phantom plus 2 inch of PMMA, needles smaller than 9.3 mm length can not be visualized at the optimized technique of 81 kV and 16 mAs. There is no significant difference in visualization with various techniques, or between mobile and fixed radiography unit. However, there is noticeable difference in visualizing the smallest needle on a diagnostic reading workstation compared to the acquisition display on a portable x-ray unit. Conclusion: DR images should be reviewed on a diagnostic reading workstation. Using optimized DR techniques, the smallest needle that can be identified on all phantom studies is 9.3 mm. Sample DR images of various small surgical devices/needles available on diagnostic workstation for comparison may improve their identification. Further in vivo study is needed to confirm the optimized digital radiography technique for identification of lost small surgical devices and needles.

  20. Fusing modeling techniques to support domain analysis for reuse opportunities identification

    NASA Technical Reports Server (NTRS)

    Hall, Susan Main; Mcguire, Eileen

    1993-01-01

    Functional modeling techniques or object-oriented graphical representations, which are more useful to someone trying to understand the general design or high level requirements of a system? For a recent domain analysis effort, the answer was a fusion of popular modeling techniques of both types. By using both functional and object-oriented techniques, the analysts involved were able to lean on their experience in function oriented software development, while taking advantage of the descriptive power available in object oriented models. In addition, a base of familiar modeling methods permitted the group of mostly new domain analysts to learn the details of the domain analysis process while producing a quality product. This paper describes the background of this project and then provides a high level definition of domain analysis. The majority of this paper focuses on the modeling method developed and utilized during this analysis effort.

  1. Remote spectral identification of surface aggregates by thermal imaging techniques - Progress report

    NASA Technical Reports Server (NTRS)

    Scholen, Douglas E.; Clerke, William H.; Burns, Gregory S.

    1991-01-01

    The NASA Thermal Infrared Multispectral Scanner (TIMS) has been successfully used for the remote identification of a variety of soil and aggregate deposits in vegetated areas of two states. Over three million cubic meters of gravel deposits were identified from the imagery during a two year period. Verification was accomplished by ground reconnaissance using drilling machinery and by ground instrumentation. The method has been used to differentiate between fine and coarse grained soils, and gravel deposits. The deposits were found to have been naturally sorted according to grain size by depositional processes, providing each deposit with distinct spectral qualities. It was found that the masking effects of relatively dense vegetation were largely overcome by using imagery acquired at higher altitudes above terrain than 9000 meters, due to loss of resolution of the finer detail. The mechanics of image resolution are discussed, a method of data analysis used is described, and sample spectral signatures are illustrated.

  2. Identification of sources of tar balls deposited along the Southwest Caspian Coast, Iran using fingerprinting techniques.

    PubMed

    Shirneshan, Golshan; Bakhtiari, Alireza Riyahi; Memariani, Mahmoud

    2016-10-15

    In 2012, a significant number of tar balls occurred along the Southwest coasts of the Caspian Sea (Iran). Several oil fields of Turkmenistan, Azerbaijan and Iran might be sources of oil spills and lead to the formation of these tar balls. For source identification, 6 tar ball samples were collected from the Southwest beaches of the Caspian Sea and subjected to fingerprint analysis based on the distribution of the source-specific biomarkers of pentacyclic tri-terpanes and steranes. Comparing the diagenic ratios revealed that the tar balls were chemically similar and originated from the same source. Results of double ratio plots (e.g., C29/C30 versus ∑C31-C35/C30 and C28 αββ/(C27 αββ+C29 αββ) versus C29 αββ/(C27 αββ+C28 αββ)) in the tar balls and oils from Iran, Turkmenistan and Azerbaijan indicated that the tar balls might be the result of spills from Turkmenistan oil. Moreover, principle component analysis (PCA) using biomarker ratios on the tar balls and 20 crude oil samples from different wells of Azerbaijan, Iran and Turkmenistan oils showed that the tar balls collected at the Southwest beaches are highly similar to the Turkmenistan oil but one of the Azerbaijan oils (from Bahar field oils) was found to be also slightly close to the tar balls. The weathering characterizations based on the presence of UCM (unresolved complex mixture) and low/high molecular weight ratios (L/H) of alkanes and PAHs indicated the tar ball samples have been significantly influenced by natural weathering processes such as evaporation, photo-degradation and biodegradation. This is the first study of its kind in Iran to use fingerprinting for source identification of tar balls.

  3. Identification of Linear and Nonlinear Aerodynamic Impulse Responses Using Digital Filter Techniques

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.

    1997-01-01

    This paper discusses the mathematical existence and the numerically-correct identification of linear and nonlinear aerodynamic impulse response functions. Differences between continuous-time and discrete-time system theories, which permit the identification and efficient use of these functions, will be detailed. Important input/output definitions and the concept of linear and nonlinear systems with memory will also be discussed. It will be shown that indicial (step or steady) responses (such as Wagner's function), forced harmonic responses (such as Theodorsen's function or those from doublet lattice theory), and responses to random inputs (such as gusts) can all be obtained from an aerodynamic impulse response function. This paper establishes the aerodynamic impulse response function as the most fundamental, and, therefore, the most computationally efficient, aerodynamic function that can be extracted from any given discrete-time, aerodynamic system. The results presented in this paper help to unify the understanding of classical two-dimensional continuous-time theories with modern three-dimensional, discrete-time theories. First, the method is applied to the nonlinear viscous Burger's equation as an example. Next the method is applied to a three-dimensional aeroelastic model using the CAP-TSD (Computational Aeroelasticity Program - Transonic Small Disturbance) code and then to a two-dimensional model using the CFL3D Navier-Stokes code. Comparisons of accuracy and computational cost savings are presented. Because of its mathematical generality, an important attribute of this methodology is that it is applicable to a wide range of nonlinear, discrete-time problems.

  4. Identification of Linear and Nonlinear Aerodynamic Impulse Responses Using Digital Filter Techniques

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.

    1997-01-01

    This paper discusses the mathematical existence and the numerically-correct identification of linear and nonlinear aerodynamic impulse response functions. Differences between continuous-time and discrete-time system theories, which permit the identification and efficient use of these functions, will be detailed. Important input/output definitions and the concept of linear and nonlinear systems with memory will also be discussed. It will be shown that indicial (step or steady) responses (such as Wagner's function), forced harmonic responses (such as Tbeodorsen's function or those from doublet lattice theory), and responses to random inputs (such as gusts) can all be obtained from an aerodynamic impulse response function. This paper establishes the aerodynamic impulse response function as the most fundamental, and, therefore, the most computationally efficient, aerodynamic function that can be extracted from any given discrete-time, aerodynamic system. The results presented in this paper help to unify the understanding of classical two-dimensional continuous-time theories with modem three-dimensional, discrete-time theories. First, the method is applied to the nonlinear viscous Burger's equation as an example. Next the method is applied to a three-dimensional aeroelastic model using the CAP-TSD (Computational Aeroelasticity Program - Transonic Small Disturbance) code and then to a two-dimensional model using the CFL3D Navier-Stokes code. Comparisons of accuracy and computational cost savings are presented. Because of its mathematical generality, an important attribute of this methodology is that it is applicable to a wide range of nonlinear, discrete-time problems.

  5. A Feasibility Study to Determine Cooling Time and Burnup of ATR Fuel Using a Nondestructive Technique and Three Types of Gamma-ray Detectors

    SciTech Connect

    Jorge Navarro; Rahmat Aryaeinejad,; David W. Nigg

    2011-05-01

    A Feasibility Study to Determine Cooling Time and Burnup of ATR Fuel Using a Nondestructive Technique1 Rahmat Aryaeinejad, Jorge Navarro, and David W Nigg Idaho National Laboratory Abstract Effective and efficient Advanced Test Reactor (ATR) fuel management require state of the art core modeling tools. These new tools will need isotopic and burnup validation data before they are put into production. To create isotopic, burn up validation libraries and to determine the setup for permanent fuel scanner system a feasibility study was perform. The study consisted in measuring short and long cooling time fuel elements at the ATR canal. Three gamma spectroscopy detectors (HPGe, LaBr3, and HPXe) and two system configurations (above and under water) were used in the feasibility study. The first stage of the study was to investigate which detector and system configuration would be better suited for different scenarios. The second stage of the feasibility study was to create burnup and cooling time calibrations using experimental isotopic data collected and ORIGEN 2.2 burnup data. The results of the study establish that a better spectra resolution is achieve with an above the water configuration and that three detectors can be used in the permanent fuel scanner system for different situations. In addition it was conclude that a number of isotopic ratios and absolute measurements could be used to predict ATR fuel burnup and cooling times. 1This work was supported by the U.S. Depart¬ment of Energy (DOE) under Battelle Energy Alliance, LLC Contract No. DE-AC07-05ID14517.

  6. Rapid Screening and Species Identification of E. Coli, Listeria, and Salmonella by SERS Technique

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Techniques for routine and rapid screening of the presence of foodborne bacteria are needed, and this study reports the feasibility of citrate-reduced silver colloidal SERS for identifying E. coli, Listeria, and Salmonella. Relative standard deviation (RSD) of SERS spectra from silver colloidal susp...

  7. Modal shape identification of large structure exposed to wind excitation by operational modal analysis technique

    NASA Astrophysics Data System (ADS)

    De Vivo, A.; Brutti, C.; Leofanti, J. L.

    2013-08-01

    Research efforts during recent decades qualify Operational Modal Analysis (OMA) as an interesting tool that is able to identify the modal characteristic parameters of structures excited randomly by environmental loads, eliminating the problem of measuring the external exciting forces. In this paper, an existing OMA technique, the Natural Excitation Technique (NExT) was studied and implemented in order to achieve, from the wind force, the modal parameters of Vega Launcher, the new European launcher vehicle for small and medium satellites. Following a brief summary of the fundamental equations of the method, the modal parameters of Vega are calculated using the OMA technique; the results are then compared with those achieved using a traditional Experimental Modal Analysis under excitation induced by shakers. The comparison shows there is a very good agreement between the results obtained by the two different methods, OMA and the traditional experimental analysis, proving that OMA is a reliable tool to analyse the dynamic behaviour of large structures. Finally, this approach can be used for any type of large structure in civil and mechanical fields and the technique appears to be very promising for further applications.

  8. Automated identification of peristaltic pressure waves in oesophageal manometry investigations using the rolling correlation technique.

    PubMed

    Perring, S; Jones, E

    2009-11-01

    We have implemented the technique of rolling correlation coefficient as proposed by Buttfield and Bolton (2005 Real time measurement of RR intervals using a digital signal processor J. Med. Eng. Technol. 29 8-13) for ECG R-wave detection in the detection and timing of oesophageal peristalsis. 43 sequential patients attending for oesophageal manometry were retrospectively reviewed. Two expert reviewers visually assessed each swallow for normality of peristaltic amplitude and propagation speed. Automatic assessment was performed using rolling correlation, maximum amplitude, threshold and maximum gradient techniques of identifying onset of peristalsis. Rolling correlation was comparable with the maximum amplitude technique at identifying peristaltic pressure waves visually identified as present. Rolling correlation was most effective at correctly identifying propagation velocity as normal (698 out of 845 normally propagating waves) and highest correlation with expert visual assessment of percentage abnormal propagation for each patient (R value 0.918). In a sub-group of 11 studies assessed as displaying normal motility, rolling correlation gave lowest variation of propagation speed and highest consistency with visual assessment. The rolling correlation technique is effective and accurate at identifying oesophageal peristalsis and characterizing peristaltic propagation in manometric studies even in the presence of abnormally weak peristalsis and other confounding pressure perturbations.

  9. Source identification of underground fuel spills by solid-phase microextraction/high-resolution gas chromatography/genetic algorithms.

    PubMed

    Lavine, B K; Ritter, J; Moores, A J; Wilson, M; Faruque, A; Mayfield, H T

    2000-01-15

    Solid-phase microextraction (SPME), capillary column gas chromatography, and pattern recognition methods were used to develop a potential method for typing jet fuels so a spill sample in the environment can be traced to its source. The test data consisted of gas chromatograms from 180 neat jet fuel samples representing common aviation turbine fuels found in the United States (JP-4, Jet-A, JP-7, JPTS, JP-5, JP-8). SPME sampling of the fuel's headspace afforded well-resolved reproducible profiles, which were standardized using special peak-matching software. The peak-matching procedure yielded 84 standardized retention time windows, though not all peaks were present in all gas chromatograms. A genetic algorithm (GA) was employed to identify features (in the standardized chromatograms of the neat jet fuels) suitable for pattern recognition analysis. The GA selected peaks, whose two largest principal components showed clustering of the chromatograms on the basis of fuel type. The principal component analysis routine in the fitness function of the GA acted as an information filter, significantly reducing the size of the search space, since it restricted the search to feature subsets whose variance is primarily about differences between the various fuel types in the training set. In addition, the GA focused on those classes and/or samples that were difficult to classify as it trained using a form of boosting. Samples that consistently classify correctly were not as heavily weighted as samples that were difficult to classify. Over time, the GA learned its optimal parameters in a manner similar to a perceptron. The pattern recognition GA integrated aspects of strong and weak learning to yield a "smart" one-pass procedure for feature selection.

  10. Identification of Aroma Compounds of Lamiaceae Species in Turkey Using the Purge and Trap Technique

    PubMed Central

    Sonmezdag, Ahmet Salih; Kelebek, Hasim; Selli, Serkan

    2017-01-01

    The present research was planned to characterize the aroma composition of important members of the Lamiaceae family such as Salvia officinalis, Lavandula angustifolia and Mentha asiatica. Aroma components of the S. officinalis, L. angustifolia and M. asiatica were extracted with the purge and trap technique with dichloromethane and analyzed with the gas chromatography–mass spectrometry (GC–MS) technique. A total of 23, 33 and 33 aroma compounds were detected in Salvia officinalis, Lavandula angustifolia and Mentha asiatica, respectively including, acids, alcohols, aldehydes, esters, hydrocarbons and terpenes. Terpene compounds were both qualitatively and quantitatively the major chemical group among the identified aroma compounds, followed by esters. The main terpene compounds were 1,8-cineole, sabinene and linalool in Salvia officinalis, Lavandula angustifolia and Mentha asiatica, respectively. Among esters, linalyl acetate was the only and most important ester compound which was detected in all samples. PMID:28231089

  11. Identification of Aroma Compounds of Lamiaceae Species in Turkey Using the Purge and Trap Technique.

    PubMed

    Sonmezdag, Ahmet Salih; Kelebek, Hasim; Selli, Serkan

    2017-02-08

    The present research was planned to characterize the aroma composition of important members of the Lamiaceae family such as Salvia officinalis, Lavandula angustifolia and Mentha asiatica. Aroma components of the S. officinalis, L. angustifolia and M. asiatica were extracted with the purge and trap technique with dichloromethane and analyzed with the gas chromatography-mass spectrometry (GC-MS) technique. A total of 23, 33 and 33 aroma compounds were detected in Salvia officinalis, Lavandula angustifolia and Mentha asiatica, respectively including, acids, alcohols, aldehydes, esters, hydrocarbons and terpenes. Terpene compounds were both qualitatively and quantitatively the major chemical group among the identified aroma compounds, followed by esters. The main terpene compounds were 1,8-cineole, sabinene and linalool in Salvia officinalis, Lavandula angustifolia and Mentha asiatica, respectively. Among esters, linalyl acetate was the only and most important ester compound which was detected in all samples.

  12. Investigation on the application of DNA forensic human identification techniques to detect homologous blood transfusions in doping control.

    PubMed

    Donati, Francesco; Stampella, Alessandra; de la Torre, Xavier; Botrè, Francesco

    2013-06-15

    Homologous blood transfusion is an illicit practice used by athletes to improve the delivery of oxygen to tissues and, as such, it is banned in sports. The current method of detection is based on the flow cytofluorimetric phenotypic identification of red blood cells mismatch of minor blood group antigens between the donor and the recipient. The selectivity of this method to clearly identify transfused samples is related to the number of blood group antigens tested. Despite the fact that several different antigens are investigated, two individuals sharing the expression of the same minor blood group antigens pattern cannot be distinguished. We tested the possibility to use a different approach based on DNA forensic human identification techniques. Analysis of the DNA short tandem repeats (STRs) demonstrated its suitability in detecting mixed whole blood samples simulating homologous blood transfusion in 100% of the samples tested, ensuring the capability of clearly detecting mixed blood cell populations also on samples where the fraction of the minoritary population is as low as 2.5%.

  13. Analytical techniques for identification and study of organic matter in returned lunar samples

    NASA Technical Reports Server (NTRS)

    Burlingame, A. L.

    1974-01-01

    The results of geochemical research are reviewed. Emphasis is placed on the contribution of mass spectrometric data to the solution of specific structural problems. Information on the mass spectrometric behavior of compounds of geochemical interest is reviewed and currently available techniques of particular importance to geochemistry, such as gas chromatograph-mass spectrometer coupling, modern sample introduction methods, and computer application in high resolution mass spectrometry, receive particular attention.

  14. Environmental Hazard Identification Technique Developing of Territorial Administrations Strategy as Exemplified in Siberian Federal District

    NASA Astrophysics Data System (ADS)

    Timofeeva, S. S.; Garmishev, V. V.; Lugovtsova, N. Yu

    2016-04-01

    This work, on the example of the Siberian Federal District of the Russian Federation, presents a method for determining mass airbursts of combustion gaseous eco-toxicants, as a technique for assessing the contributory environmental load on the atmosphere. Potential environmental hazards are analyzed by mass of contaminated airbursts. A comparison of specific gross toxicants’ emissions in territorial entities of the Russian Federation is made.

  15. The REV project -- Experiments, techniques and theoretical considerations with a view to an ILW and spent HTR fuel emplacement test at the Asse salt mine

    SciTech Connect

    Niephaus, D.

    1993-12-31

    In the Federal Republic of Germany, radioactive waste forms of pronounced decay heat generation shall be disposed of in deep vertical boreholes in the planned underground repository at Gorleben site. The disposal technique for heat generating intermediate-level waste and for spent HTR fuel is under development in the R and D project, entitled ``Intermediate-Level Waste and Spent HTR Fuel element Test Disposal in Boreholes`` (MHV Project). The project work is divided in two subprojects and has been going on since 1983. In the subproject ``Retrievable Emplacement Test`` (REV project) an emplacement test with already existing waste packages, i.e. steel drums with cladding hulls, fuel hardware and dissolver sludges from LWR-FE reprocessing and steel canisters with spent HTR pebble bed fuel will be conducted in the Asse salt mine. This paper deals with the results obtained from a long term precursory test program, the description of the installation work that has been done with a view to measure and analyze gases released into the atmospheres of the unlined emplacement boreholes, and a brief description of engineered equipment needed for handling, shipping and emplacing the waste packages.

  16. FAST CARS: engineering a laser spectroscopic technique for rapid identification of bacterial spores.

    PubMed

    Scully, M O; Kattawar, G W; Lucht, R P; Opatrny, T; Pilloff, H; Rebane, A; Sokolov, A V; Zubairy, M S

    2002-08-20

    Airborne contaminants, e.g., bacterial spores, are usually analyzed by time-consuming microscopic, chemical, and biological assays. Current research into real-time laser spectroscopic detectors of such contaminants is based on e.g., resonance fluorescence. The present approach derives from recent experiments in which atoms and molecules are prepared by one (or more) coherent laser(s) and probed by another set of lasers. However, generating and using maximally coherent oscillation in macromolecules having an enormous number of degrees of freedom is challenging. In particular, the short dephasing times and rapid internal conversion rates are major obstacles. However, adiabatic fast passage techniques and the ability to generate combs of phase-coherent femtosecond pulses provide tools for the generation and utilization of maximal quantum coherence in large molecules and biopolymers. We call this technique FAST CARS (femtosecond adaptive spectroscopic techniques for coherent anti-Stokes Raman spectroscopy), and the present article proposes and analyses ways in which it could be used to rapidly identify preselected molecules in real time.

  17. FAST CARS: Engineering a laser spectroscopic technique for rapid identification of bacterial spores

    PubMed Central

    Scully, M. O.; Kattawar, G. W.; Lucht, R. P.; Opatrný, T.; Pilloff, H.; Rebane, A.; Sokolov, A. V.; Zubairy, M. S.

    2002-01-01

    Airborne contaminants, e.g., bacterial spores, are usually analyzed by time-consuming microscopic, chemical, and biological assays. Current research into real-time laser spectroscopic detectors of such contaminants is based on e.g., resonance fluorescence. The present approach derives from recent experiments in which atoms and molecules are prepared by one (or more) coherent laser(s) and probed by another set of lasers. However, generating and using maximally coherent oscillation in macromolecules having an enormous number of degrees of freedom is challenging. In particular, the short dephasing times and rapid internal conversion rates are major obstacles. However, adiabatic fast passage techniques and the ability to generate combs of phase-coherent femtosecond pulses provide tools for the generation and utilization of maximal quantum coherence in large molecules and biopolymers. We call this technique FAST CARS (femtosecond adaptive spectroscopic techniques for coherent anti-Stokes Raman spectroscopy), and the present article proposes and analyses ways in which it could be used to rapidly identify preselected molecules in real time. PMID:12177405

  18. Bolt-loosening identification of bolt connections by vision image-based technique

    NASA Astrophysics Data System (ADS)

    Nguyen, Tuan-Cuong; Huynh, Thanh-Canh; Ryu, Joo-Young; Park, Jae-Hyung; Kim, Jeong-Tae

    2016-04-01

    In this study, an algorithm using image processing techniques is proposed to identify bolt-loosening in bolted connections of steel structures. Its basic concept is to identify rotation angles of nuts from a pictured image, and is mainly consisted of the following 3 steps: (1) taking a picture for a bolt joint, (2) segmenting the images for each nut by image processing techniques, and (3) identifying rotation angle of each nut and detecting bolt-loosening. By using the concept, an algorithm is designed for continuous monitoring and inspection of the bolt connections. As a key imageprocessing technique, Hough transform is used to identify rotation angles of nuts, and then bolt-loosening is detected by comparing the angles before and after bolt-loosening. Then the applicability of the proposed algorithm is evaluated by experimental tests for two lab-scaled models. A bolted joint model which consists of a splice plate and 8 sets of bolts and nuts with 2×4 array is used to simulate inspection of bridge connections, and a model which is consisted of a ring flange and 32 sets of bolt and nut is used to simulate continuous monitoring of bolted connections in wind turbine towers.

  19. A Waveform Library Technique for Multi-Site Identification with the MAJORANA DEMONSTRATOR

    NASA Astrophysics Data System (ADS)

    Buuck, Micah; MAJORANA Collaboration

    2017-01-01

    The MAJORANA DEMONSTRATOR is a low-background array of 44.8 kg of germanium detectors searching for neutrinoless double-beta (0 νββ) decay in germanium-76, deployed 4,850 feet underground at the Sanford Underground Research Facility in Lead, South Dakota, USA. We aim to demonstrate background levels low enough to justify construction of a ton-scale experiment which will be able to fully probe the inverted-hierarchy region of the 0 νββ decay phase-space. In addition to reducing background through materials selection and experimental design, we are developing a range of analysis-based background-suppression techniques. One example is a waveform-library-based technique to reject background multi-site interactions. Here we present an overview of the technique and its current status. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, the Particle Astrophysics and Nuclear Physics Programs of the National Science Foundation, and the Sanford Underground Research Facility.

  20. Determination and identification of synthetic cannabinoids and their metabolites in different matrices by modern analytical techniques - a review.

    PubMed

    Znaleziona, Joanna; Ginterová, Pavlína; Petr, Jan; Ondra, Peter; Válka, Ivo; Ševčík, Juraj; Chrastina, Jan; Maier, Vítězslav

    2015-05-18

    Synthetic cannabinoids have gained popularity due to their easy accessibility and psychoactive effects. Furthermore, they cannot be detected in urine by routine drug monitoring. The wide range of active ingredients in analyzed matrices hinders the development of a standard analytical method for their determination. Moreover, their possible side effects are not well known which increases the danger. This review is focused on the sample preparation and the determination of synthetic cannabinoids in different matrices (serum, urine, herbal blends, oral fluid, hair) published since 2004. The review includes separation and identification techniques, such as thin layer chromatography, gas and liquid chromatography and capillary electrophoresis, mostly coupled with mass spectrometry. The review also includes results by spectral methods like infrared spectroscopy, nuclear magnetic resonance or direct-injection mass spectrometry.

  1. Simultaneous virus identification and characterization of severe unexplained pneumonia cases using a metagenomics sequencing technique.

    PubMed

    Zou, Xiaohui; Tang, Guangpeng; Zhao, Xiang; Huang, Yan; Chen, Tao; Lei, Mingyu; Chen, Wenbing; Yang, Lei; Zhu, Wenfei; Zhuang, Li; Yang, Jing; Feng, Zhaomin; Wang, Dayan; Wang, Dingming; Shu, Yuelong

    2017-03-01

    Many viruses can cause respiratory diseases in humans. Although great advances have been achieved in methods of diagnosis, it remains challenging to identify pathogens in unexplained pneumonia (UP) cases. In this study, we applied next-generation sequencing (NGS) technology and a metagenomic approach to detect and characterize respiratory viruses in UP cases from Guizhou Province, China. A total of 33 oropharyngeal swabs were obtained from hospitalized UP patients and subjected to NGS. An unbiased metagenomic analysis pipeline identified 13 virus species in 16 samples. Human rhinovirus C was the virus most frequently detected and was identified in seven samples. Human measles virus, adenovirus B 55 and coxsackievirus A10 were also identified. Metagenomic sequencing also provided virus genomic sequences, which enabled genotype characterization and phylogenetic analysis. For cases of multiple infection, metagenomic sequencing afforded information regarding the quantity of each virus in the sample, which could be used to evaluate each viruses' role in the disease. Our study highlights the potential of metagenomic sequencing for pathogen identification in UP cases.

  2. Identification of immunoglobulins using Chou's pseudo amino acid composition with feature selection technique.

    PubMed

    Tang, Hua; Chen, Wei; Lin, Hao

    2016-04-01

    Immunoglobulins, also called antibodies, are a group of cell surface proteins which are produced by the immune system in response to the presence of a foreign substance (called antigen). They play key roles in many medical, diagnostic and biotechnological applications. Correct identification of immunoglobulins is crucial to the comprehension of humoral immune function. With the avalanche of protein sequences identified in postgenomic age, it is highly desirable to develop computational methods to timely identify immunoglobulins. In view of this, we designed a predictor called "IGPred" by formulating protein sequences with the pseudo amino acid composition into which nine physiochemical properties of amino acids were incorporated. Jackknife cross-validated results showed that 96.3% of immunoglobulins and 97.5% of non-immunoglobulins can be correctly predicted, indicating that IGPred holds very high potential to become a useful tool for antibody analysis. For the convenience of most experimental scientists, a web-server for IGPred was established at http://lin.uestc.edu.cn/server/IGPred. We believe that the web-server will become a powerful tool to study immunoglobulins and to guide related experimental validations.

  3. Identification of active root zone by data assimilation techniques: monitoring and modelling of irrigation experiments

    NASA Astrophysics Data System (ADS)

    Busato, Laura; Vanella, Daniela; Boaga, Jacopo; Manoli, Gabriele; Marani, Marco; Putti, Mario; Consoli, Simona; Binley, Andrew M.; Cassiani, Giorgio

    2015-04-01

    The identification of active root distribution and the quantification of relevant water fluxes (root water uptake-RWU) are key elements in understanding the exchanges of mass and energy in soil-plant-atmosphere systems. In this contribution we present the assimilation of 3D time-lapse Electrical Resistivity Tomography (ERT) data, acquired around an orange tree during irrigation experiments, in a soil-plant model that accounts for soil moisture dynamics and root water uptake (RWU), whole plant transpiration, and leaf-level photosynthesis. The model is based on a numerical solution to the 3D Richards equation modified to account for a 3D RWU, trunk xylem, and stomatal conductances. The data assimilation procedure, assisted also by independent information concerning the soil properties, aims specifically at identifying the distribution and strength of active roots modelled as sinks in the unsaturated flow model. In addition the flow model is enhanced by a forward electrical current model in order to predict the electrical response measured by ERT in dependence of the soil water content distribution. Strengths and weaknesses of the proposed approach are discussed.

  4. Species identification of mixed algal bloom in the Northern Arabian Sea using remote sensing techniques.

    PubMed

    Dwivedi, R; Rafeeq, M; Smitha, B R; Padmakumar, K B; Thomas, Lathika Cicily; Sanjeevan, V N; Prakash, Prince; Raman, Mini

    2015-02-01

    Oceanic waters of the Northern Arabian Sea experience massive algal blooms during winter-spring (mid Feb-end Mar), which prevail for at least for 3 months covering the entire northern half of the basin from east to west. Ship cruises were conducted during winter-spring of 2001-2012 covering different stages of the bloom to study the biogeochemistry of the region. Phytoplankton analysis indicated the presence of green tides of dinoflagellate, Noctiluca scintillans (=N. miliaris), in the oceanic waters. Our observations indicated that diatoms are coupled and often co-exist with N. scintillans, making it a mixed-species ecosystem. In this paper, we describe an approach for detection of bloom-forming algae N. scintillans and its discrimination from diatoms using Moderate Resolution Imaging Spectroradiometer (MODIS)-Aqua data in a mixed-species environment. In situ remote sensing reflectance spectra were generated using Satlantic™ hyperspectral radiometer for the bloom and non-bloom waters. Spectral shapes of the reflectance spectra for different water types were distinct, and the same were used for species identification. Scatter of points representing different phytoplankton classes on a derivative plot revealed four diverse clusters, viz. N. scintillans, diatoms, non-bloom oceanic, and non-bloom coastal waters. The criteria developed for species discrimination were implemented on MODIS data and validated using inputs from a recent ship cruise conducted in March 2013.

  5. Fuel flexible fuel injector

    DOEpatents

    Tuthill, Richard S; Davis, Dustin W; Dai, Zhongtao

    2015-02-03

    A disclosed fuel injector provides mixing of fuel with airflow by surrounding a swirled fuel flow with first and second swirled airflows that ensures mixing prior to or upon entering the combustion chamber. Fuel tubes produce a central fuel flow along with a central airflow through a plurality of openings to generate the high velocity fuel/air mixture along the axis of the fuel injector in addition to the swirled fuel/air mixture.

  6. Identification of metal elements by time-resolved LIBS technique in sediments lake the “Cisne”

    NASA Astrophysics Data System (ADS)

    Pacheco, P.; Arregui, E.; Álvarez, J.; Rangel, N.; Sarmiento, R.

    2017-01-01

    Laser induced breakdown spectroscopy (LIBS), is a kind of spectral method of atomic emission that uses pulses of radiation high energy laser as excitation source. One of the advantages of technical LIBS lies in the possibility of analyse the substances in any State of aggregation, already is solid, liquid or gaseous, even in colloids as aerosols, gels and others. Another advantage over other conventional techniques is the simultaneous analysis of elements present in a sample of multielement. This work is made in the use of this technique for the identification of metal pollutants in the Swan Lake sediment samples, collected by drilling cores. Plasmas were generated by focusing the radiation of Nd: YAG laser with an energy per pulse 13mJ and 4ns duration, wavelength of 532nm. The spectra of radiation from the plasmas of sediment were recorded with an Echelle spectrograph type coupled to an ICCD camera. The delay times were between 0.5μs and 7μs, while the gate width was of 2μs. To ensure the homogeneity of the plasmas, the sediment sample was placed in a positioning system of linear and rotary adjustment of smooth step synchronized with the trigger of the laser pulse. The registration of the spectra of the sediment to different times of delay, allowed to identify the lines prominent of the different elements present in the sample. The analysis of the Spectra allowed the identification of some elements in the sample as if, Ca, Na, Mg, and Al through the measurement of wavelengths of the prominent peaks.

  7. Hyperspectral Imaging Techniques for Rapid Identification of Arabidopsis Mutants with Altered Leaf Pigment Status

    PubMed Central

    Matsuda, Osamu; Tanaka, Ayako; Fujita, Takao; Iba, Koh

    2012-01-01

    The spectral reflectance signature of living organisms provides information that closely reflects their physiological status. Because of its high potential for the estimation of geomorphic biological parameters, particularly of gross photosynthesis of plants, two-dimensional spectroscopy, via the use of hyperspectral instruments, has been widely used in remote sensing applications. In genetics research, in contrast, the reflectance phenotype has rarely been the subject of quantitative analysis; its potential for illuminating the pathway leading from the gene to phenotype remains largely unexplored. In this study, we employed hyperspectral imaging techniques to identify Arabidopsis mutants with altered leaf pigment status. The techniques are comprised of two modes; the first is referred to as the ‘targeted mode’ and the second as the ‘non-targeted mode’. The ‘targeted’ mode is aimed at visualizing individual concentrations and compositional parameters of leaf pigments based on reflectance indices (RIs) developed for Chls a and b, carotenoids and anthocyanins. The ‘non-targeted’ mode highlights differences in reflectance spectra of leaf samples relative to reference spectra from the wild-type leaves. Through the latter approach, three mutant lines with weak irregular reflectance phenotypes, that are hardly identifiable by simple observation, were isolated. Analysis of these and other mutants revealed that the RI-based targeted pigment estimation was robust at least against changes in trichome density, but was confounded by genetic defects in chloroplast photorelocation movement. Notwithstanding such a limitation, the techniques presented here provide rapid and high-sensitive means to identify genetic mechanisms that coordinate leaf pigment status with developmental stages and/or environmental stress conditions. PMID:22470059

  8. Rapid identification of multiple supernumerary ring chromosomes with a new FISH technique.

    PubMed Central

    Mackie-Ogilvie, C; Waddle, K; Mandeville, J; Seller, M J; Docherty, Z

    1997-01-01

    Multiple supernumerary ring chromosomes are a rare cytogenetic finding which is poorly understood. With the introduction of FISH techniques, their chromosomal origin can now be defined clearly. The techniques described previously are complicated and time consuming. We report a new rapid technique which has been used to investigate two new cases. Multiple probes were hybridised to a single slide by means of marking the underside with a diamond pen to form a grid of squares, pipetting fixed cell suspension into the centre of each square, forming a rubber solution grid on the denatured, dehydrated slide following the lines on the underside, adding a mixture of probes into each square, and sealing the slide with a silicone rubber rim and a covering slide. The type of probe and the size, dimensions, and number of squares in the grid can be tailored to individual cases. The two new cases examined here are mosaic for three (case 1) and four (case 2) supernumerary ring chromosomes derived from different chromosomes. Normal cell lines were also present. The karyotypes were established as 47,XY,+r(4)/47,XY,+r(17)/.../48,XY,+r(17),+r(20)/ 49,XY,+r(4),+r(17),+r(20)/46,XY for case 1 and 47,XX,+r(4)/47,XX,+r(8)/47,XX,+r (10)/48,XX,+r(X),+r(4)/... /49,XX,+r(X),+r (8),+r(10)/46,XX for case 2. Our findings suggest that the ring chromosomes were formed during meiosis, perhaps involving complex rearrangements, resulting in a germ cell containing all markers, with subsequent loss of markers during cell division. Our second case also shows that the outcome is not invariably mental or physical handicap. Images PMID:9391885

  9. Sensing and identification of carbon monoxide using carbon films fabricated by methane arc discharge decomposition technique

    PubMed Central

    2014-01-01

    Carbonaceous materials have recently received attention in electronic applications and measurement systems. In this work, we demonstrate the electrical behavior of carbon films fabricated by methane arc discharge decomposition technique. The current-voltage (I-V) characteristics of carbon films are investigated in the presence and absence of gas. The experiment reveals that the current passing through the carbon films increases when the concentration of CO2 gas is increased from 200 to 800 ppm. This phenomenon which is a result of conductance changes can be employed in sensing applications such as gas sensors. PMID:25177219

  10. Identification of Plant Growth-Promoting Bacteria Using Titanium Dioxide Photocatalysis-Assisted Photoacoustic Technique

    NASA Astrophysics Data System (ADS)

    Gordillo-Delgado, F.; Marín, E.; Calderón, A.

    2013-09-01

    The effect of titanium dioxide photocatalysis against bacteria that are dangerous for human health has been investigated in the past, suggesting the possibility of using a specific behavior for each microorganism during this process for its discrimination. In this study, the behavior of some plants’ growth promoting bacteria ( Burkholderia unamae (Strain MTI 641), Acetobacter diazotrophicus (Strain PAl 5T), A. diazotrophicus (Strain CFN-Cf 52), and B. unamae (Strain TATl-371)) interacting with light and bactericidal titanium dioxide films have been analyzed using the photoacoustic technique. The monitoring of these interactions shows particular characteristics that could serve for identifying these species.

  11. Novelty detection technique with SLV for identification of core properties in honeycombs and cellular solids

    NASA Astrophysics Data System (ADS)

    Scarpa, Fabrizio; Manson, Graeme; Ruzzene, M.

    2003-08-01

    This paper presents a Novelty-based detection technique to identify core material properties of honeycombs and cellular structures. A numerical model (FE) representing full scale and/or reduced size of the cellular solid is used to generate transmissibilities between topological points at cells in different locations, with a statistical Gaussian distribution of the core material property target variable. The numerical set of transmissibilities is then used in a Novelty detection framework to find Euclidean and Mahalanobis distances from analogous data from a point excitation experimental test carried out with SLV.

  12. A newly-developed effective direct current assisted sintering technique for electrolyte film densification of anode-supported solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Liu, Yajie; Hao, Xiaoming; Wang, Zhenhua; Wang, Jiawei; Qiao, Jinshuo; Yan, Yiming; Sun, Kening

    2012-10-01

    In order to lower the sintering temperature and shorten firing time, a novel, effective and facile technique has been developed for sintering Yttria-stabilized zirconia (YSZ) electrolyte thin film. Herein this technique, which employs a weak direct current (DC), is used for the first time in the manufacture of the anode-supported solid oxide fuel cell (SOFC). A single cell is directly assembled using a pre-sintered anode/electrolyte and screen printed cathode and subsequently sintered under electric assistance from room temperature to 800 °C at a heating rate of 5 °C min-1. A fully dense YSZ electrolyte film can be observed by scanning electron microscopy (SEM) and the open circuit voltages (OCVs) are in accordance with theoretical values, confirming that the cell possesses a dense YSZ film. Using hydrogen fuel, the maximum power density of this cell was 0.8, 1.1 and 1.4 W cm-2 at 650, 700 and 750 °C, respectively. We believe this DC assisted sintering technique (DC-AST) may not only reduce the cost, but also maintain the anode nanostructure, thus offering a potentially useful manufacturing technique for SOFCs.

  13. A Combination of Receptor-Based Pharmacophore Modeling & QM Techniques for Identification of Human Chymase Inhibitors

    PubMed Central

    Arooj, Mahreen; Sakkiah, Sugunadevi; Kim, Songmi; Arulalapperumal, Venkatesh; Lee, Keun Woo

    2013-01-01

    Inhibition of chymase is likely to divulge therapeutic ways for the treatment of cardiovascular diseases, and fibrotic disorders. To find novel and potent chymase inhibitors and to provide a new idea for drug design, we used both ligand-based and structure-based methods to perform the virtual screening(VS) of commercially available databases. Different pharmacophore models generated from various crystal structures of enzyme may depict diverse inhibitor binding modes. Therefore, multiple pharmacophore-based approach is applied in this study. X-ray crystallographic data of chymase in complex with different inhibitors were used to generate four structure–based pharmacophore models. One ligand–based pharmacophore model was also developed from experimentally known inhibitors. After successful validation, all pharmacophore models were employed in database screening to retrieve hits with novel chemical scaffolds. Drug-like hit compounds were subjected to molecular docking using GOLD and AutoDock. Finally four structurally diverse compounds with high GOLD score and binding affinity for several crystal structures of chymase were selected as final hits. Identification of final hits by three different pharmacophore models necessitates the use of multiple pharmacophore-based approach in VS process. Quantum mechanical calculation is also conducted for analysis of electrostatic characteristics of compounds which illustrates their significant role in driving the inhibitor to adopt a suitable bioactive conformation oriented in the active site of enzyme. In general, this study is used as example to illustrate how multiple pharmacophore approach can be useful in identifying structurally diverse hits which may bind to all possible bioactive conformations available in the active site of enzyme. The strategy used in the current study could be appropriate to design drugs for other enzymes as well. PMID:23658661

  14. An empirical comparison of stock identification techniques applied to striped bass

    USGS Publications Warehouse

    Waldman, John R.; Richards, R. Anne; Schill, W. Bane; Wirgin, Isaac; Fabrizio, Mary C.

    1997-01-01

    Managers of migratory striped bass stocks that mix along the Atlantic coast of the USA require periodic estimates of the relative contributions of the individual stocks to coastal mixed- stock fisheries; however, to date, a standard approach has not been adopted. We compared the performances of alternative stock identification approaches, using samples taken from the same sets of fish. Reference (known) samples were collected from three Atlantic coast spawning systems: the Hudson River, Chesapeake Bay, and the Roanoke River. Striped bass of mixed-stock origin were collected from eastern Long Island, New York, and were used as test (unknown) samples. The approaches applied were discriminant analysis of morphometric data and of meristic data, logistic regression analysis of combined meristic and morphometric data, discriminant analysis of scale-shape features, discriminant analysis of immunoassay data, and mixed-stock analysis of mitochondrial DNA (mtDNA) data. Overall correct classification rates of reference samples ranged from 94% to 66% when just the Hudson and Chesapeake stocks were considered and were comparable when the Chesapeake and Roanoke stocks were grouped as the ''southern'' stock. When all three stocks were treated independently, correct classification rates ranged from 82% to 49%. Despite the moderate range in correct classification rates, bias due to misallocation was relatively low for all methods, suggesting that resulting stock composition estimates should be fairly accurate. However, relative contribution estimates for the mixed-stock sample varied widely (e.g., from 81% to 47% for the Hudson River stock, when only the Hudson River and Chesapeake Bay stocks were considered). Discrepancies may be related to the reliance by all of these approaches (except mtDNA) on phenotypic features. Our results support future use of either a morphometrics-based approach (among the phenotypic methods) or a genotypic approach based on mtDNA analysis. We further

  15. Rapid differentiation of refined fuels using negative electrospray ionization/mass spectrometry

    USGS Publications Warehouse

    Rostad, C.E.; Hostettler, F.D.

    2005-01-01

    An application of electrospray ionization/mass spectrometry for identification of various commercially refined fuels using the unique signature of polar components, was investigated. The samples were analyzed by mass spectrometry using negative electrospray on an Agilent Series 1100 liquid chromatograph/mass spectrometer. These analysis were applied to hydrocarbon samples from a large, long-term fuel spill which were taken from the subsurface and different extent of biodegradation or weathering. The technique provided rapid identification of hydrocarbons released into the environment because these polar compounds are unique in different fuels.

  16. Identification of novel antibacterial peptides isolated from a commercially available casein hydrolysate by autofocusing technique.

    PubMed

    Elbarbary, Hend A; Abdou, Adham M; Nakamura, Yasushi; Park, Eun Young; Mohamed, Hamdi A; Sato, Kenji

    2012-01-01

    Autofocusing, as a simple and safe technique, was used to fractionate casein hydrolysate based on the amphoteric nature of its peptides. The antibacterial activity of casein hydrolysate and its autofocusing fractions (A1-10) was examined against Escherichia coli and Bacillus subtilis. The basic fraction A9 exhibited the highest activity with minimum inhibitory concentration (MIC) of 150 μg/mL, whereas casein hydrolysate showed MIC values ranging from 2000 to 8000 μg/mL. The antibacterial peptides in A9 were purified by using a series of size exclusion and reversed phase chromatographies. Three peptides exhibited the most potent antibacterial activity with MIC values ranging from 12.5 to 100 μg/mL. These peptides were generated from α(s2)-casein, α(s1)-casein, and κ-casein and identified as K165 KISQRYQKFALPQYLKTVYQHQK188, I6KHQGLPQEV15, and T136EAVESTVATL146, respectively. Therefore, the results revealed that casein hydrolysate had potent antibacterial peptides that could be isolated by autofocusing technique.

  17. Comparative analysis of system identification techniques for nonlinear modeling of the neuron-microelectrode junction.

    PubMed

    Khan, Saad Ahmad; Thakore, Vaibhav; Behal, Aman; Bölöni, Ladislau; Hickman, James J

    2013-03-01

    Applications of non-invasive neuroelectronic interfacing in the fields of whole-cell biosensing, biological computation and neural prosthetic devices depend critically on an efficient decoding and processing of information retrieved from a neuron-electrode junction. This necessitates development of mathematical models of the neuron-electrode interface that realistically represent the extracellular signals recorded at the neuroelectronic junction without being computationally expensive. Extracellular signals recorded using planar microelectrode or field effect transistor arrays have, until now, primarily been represented using linear equivalent circuit models that fail to reproduce the correct amplitude and shape of the signals recorded at the neuron-microelectrode interface. In this paper, to explore viable alternatives for a computationally inexpensive and efficient modeling of the neuron-electrode junction, input-output data from the neuron-electrode junction is modeled using a parametric Wiener model and a Nonlinear Auto-Regressive network with eXogenous input trained using a dynamic Neural Network model (NARX-NN model). Results corresponding to a validation dataset from these models are then employed to compare and contrast the computational complexity and efficiency of the aforementioned modeling techniques with the Lee-Schetzen technique of cross-correlation for estimating a nonlinear dynamic model of the neuroelectronic junction.

  18. Statistical signal processing technique for identification of different infected sites of the diseased lungs.

    PubMed

    Abbas, Ali

    2012-06-01

    Accurate Diagnosis of lung disease depends on understanding the sounds emanating from lung and its location. Lung sounds are of significance as they supply precise and important information on the health of the respiratory system. In addition, correct interpretation of breath sounds depends on a systematic approach to auscultation; it also requires the ability to describe the location of abnormal finding in relation to bony structures and anatomic landmark lines. Lungs consist of number of lobes; each lung lobe is further subdivided into smaller segments. These segments are attached to each other. Knowledge of the position of the lung segments is useful and important during the auscultation and diagnosis of the lung diseases. Usually the medical doctors give the location of the infection a segmental position reference. Breath sounds are auscultated over the anterior chest wall surface, the lateral chest wall surfaces, and posterior chest wall surface. Adventitious sounds from different location can be detected. It is common to seek confirmation of the sound detection and its location using invasive and potentially harmful imaging diagnosis techniques like x-rays. To overcome this limitation and for fast, reliable, accurate, and inexpensive diagnose a technique is developed in this research for identifying the location of infection through a computerized auscultation system.

  19. Comparative analysis of system identification techniques for nonlinear modeling of the neuron-microelectrode junction

    PubMed Central

    Khan, Saad Ahmad; Thakore, Vaibhav; Behal, Aman; Bölöni, Ladislau; Hickman, James J.

    2016-01-01

    Applications of non-invasive neuroelectronic interfacing in the fields of whole-cell biosensing, biological computation and neural prosthetic devices depend critically on an efficient decoding and processing of information retrieved from a neuron-electrode junction. This necessitates development of mathematical models of the neuron-electrode interface that realistically represent the extracellular signals recorded at the neuroelectronic junction without being computationally expensive. Extracellular signals recorded using planar microelectrode or field effect transistor arrays have, until now, primarily been represented using linear equivalent circuit models that fail to reproduce the correct amplitude and shape of the signals recorded at the neuron-microelectrode interface. In this paper, to explore viable alternatives for a computationally inexpensive and efficient modeling of the neuron-electrode junction, input-output data from the neuron-electrode junction is modeled using a parametric Wiener model and a Nonlinear Auto-Regressive network with eXogenous input trained using a dynamic Neural Network model (NARX-NN model). Results corresponding to a validation dataset from these models are then employed to compare and contrast the computational complexity and efficiency of the aforementioned modeling techniques with the Lee-Schetzen technique of cross-correlation for estimating a nonlinear dynamic model of the neuroelectronic junction.

  20. Rapid screening and species identification of E. coli, Listeria, and Salmonella by SERS technique

    NASA Astrophysics Data System (ADS)

    Liu, Yongliang; Chao, Kuanglin; Kim, Moon S.; Nou, Xiangwu

    2008-04-01

    Techniques for routine and rapid screening of the presence of foodborne bacteria are needed, and this study reports the feasibility of citrate-reduced silver colloidal SERS for identifying E. coli, Listeria, and Salmonella. Relative standard deviation (RSD) of SERS spectra from silver colloidal suspensions and ratios of P-O SERS peaks from small molecule (K3PO4) were used to assess the reproducibility, stability, and binding effectiveness of citrate-reduced silver colloids over batch and storage process. The results suggested the reproducibility of silver colloids over batch process and also stability and consistent binding effectiveness over 60-day storage period. Notably, although silver colloidal nanoparticles were stable for at least 90 days, their binding effectiveness began to decrease slightly after 60-day storage, with a binding reduction of about 12% at 90th day. Colloidal silver SERS, as demonstrated here, could be an important alternative technique in the rapid and simultaneous screening of the presence of three most outbreak bacteria due to the exclusive biomarkers, label-free and easy sampling attribute.

  1. An interlaboratory comparison of nanosilver characterisation and hazard identification: Harmonising techniques for high quality data.

    PubMed

    Jemec, Anita; Kahru, Anne; Potthoff, Annegret; Drobne, Damjana; Heinlaan, Margit; Böhme, Steffi; Geppert, Mark; Novak, Sara; Schirmer, Kristin; Rekulapally, Rohit; Singh, Shashi; Aruoja, Villem; Sihtmäe, Mariliis; Juganson, Katre; Käkinen, Aleksandr; Kühnel, Dana

    2016-02-01

    metal ions species in each toxicity test medium at a range of concentrations, and (ii) including soluble metal salt control both in toxicity testing as well as in Ag(+)-species measurements. The present study is among the first nanomaterial interlaboratory comparison studies with the aim to improve the hazard identification testing protocols.

  2. A noise source identification technique using an inverse Helmholtz integral equation method

    NASA Technical Reports Server (NTRS)

    Gardner, B. K.; Bernhard, R. J.

    1988-01-01

    A technique is developed which utilizes numerical models and field pressure information to characterize acoustic fields and identify acoustic sources. The numerical models are based on boundary element numerical procedures. Either pressure, velocity, or passive boundary conditions, in the form of impedance boundary conditions, may be imposed on the numerical model. Alternatively, if no boundary information is known, a boundary condition can be left unspecified. Field pressure data may be specified to overdetermine the numerical problem. The problem is solved numerically for the complete sound field from which the acoustic sources may be determined. The model can then be used to idenfify acoustic intensity paths in the field. The solution can be modified and the model used to evaluate design alternatives. In this investigation the method is tested analytically and verified. In addition, the sensitivity of the method to random and bias error in the input data is demonstrated.

  3. Identification techniques for highly boosted W bosons that decay into hadrons

    SciTech Connect

    Khachatryan, Vardan

    2014-12-02

    In searches for new physics in the energy regime of the LHC, it is becoming increasingly important to distinguish single-jet objects that originate from the merging of the decay products of W bosons produced with high transverse momenta from jets initiated by single partons. Algorithms are defined to identify such W jets for different signals of interest, using techniques that are also applicable to other decays of bosons to hadrons that result in a single jet, such as those from highly boosted Z and Higgs bosons. The efficiency for tagging W jets is measured in data collected with the CMS detector at a center-of-mass energy of 8 TeV, corresponding to an integrated luminosity of 19.7 fb-1. The performance of W tagging in data is compared with predictions from several Monte Carlo simulators.

  4. Identification techniques for highly boosted W bosons that decay into hadrons

    DOE PAGES

    Khachatryan, Vardan

    2014-12-02

    In searches for new physics in the energy regime of the LHC, it is becoming increasingly important to distinguish single-jet objects that originate from the merging of the decay products of W bosons produced with high transverse momenta from jets initiated by single partons. Algorithms are defined to identify such W jets for different signals of interest, using techniques that are also applicable to other decays of bosons to hadrons that result in a single jet, such as those from highly boosted Z and Higgs bosons. The efficiency for tagging W jets is measured in data collected with the CMSmore » detector at a center-of-mass energy of 8 TeV, corresponding to an integrated luminosity of 19.7 fb-1. The performance of W tagging in data is compared with predictions from several Monte Carlo simulators.« less

  5. TL and ESR based identification of gamma-irradiated frozen fish using different hydrolysis techniques

    NASA Astrophysics Data System (ADS)

    Ahn, Jae-Jun; Akram, Kashif; Shahbaz, Hafiz Muhammad; Kwon, Joong-Ho

    2014-12-01

    Frozen fish fillets (walleye Pollack and Japanese Spanish mackerel) were selected as samples for irradiation (0-10 kGy) detection trials using different hydrolysis methods. Photostimulated luminescence (PSL)-based screening analysis for gamma-irradiated frozen fillets showed low sensitivity due to limited silicate mineral contents on the samples. Same limitations were found in the thermoluminescence (TL) analysis on mineral samples isolated by density separation method. However, acid (HCl) and alkali (KOH) hydrolysis methods were effective in getting enough minerals to carry out TL analysis, which was reconfirmed through the normalization step by calculating the TL ratios (TL1/TL2). For improved electron spin resonance (ESR) analysis, alkali and enzyme (alcalase) hydrolysis methods were compared in separating minute-bone fractions. The enzymatic method provided more clear radiation-specific hydroxyapatite radicals than that of the alkaline method. Different hydrolysis methods could extend the application of TL and ESR techniques in identifying the irradiation history of frozen fish fillets.

  6. The value of the Lugol's iodine staining technique for the identification of vaginal epithelial cells.

    PubMed

    Hausmann, R; Pregler, C; Schellmann, B

    1994-01-01

    This paper reports on the specificity of the Lugol's iodine staining technique for the detection of vaginal epithelial cells on penile swabs. Air-dried swabs taken from the glans of the penis of 153 hospital patients and from 50 healthy volunteers, whose last sexual intercourse had taken place at least 5 days previously, were stained with Lugol's solution. Glycogenated cells were found in more than 50% of the cases studied, even in healthy volunteers without urethritis. In almost all of these cases the smear contained at least a few polygonal nucleated epithelial cells showing an unequivocal positive Lugol reaction. These cells cannot be distinguished from superficial or intermediate vaginal cells, by cytomorphology or staining. Urinary tract infections had no influence on the glycogen content of male squamous epithelial cells. On the basis of these results the Lugol's method can no longer be assumed to prove the presence of vaginal cells in penile swabs.

  7. Identification criteria of the rare multi-flagellate Lophomonas blattarum: comparison of different staining techniques.

    PubMed

    Alam-Eldin, Yosra Hussein; Abdulaziz, Amany Mamdouh

    2015-09-01

    Bronchopulmonary lophomoniasis (BPL) is an emerging disease of potential importance. BPL is presented by non-specific clinical picture and is usually accompanied by immunosuppression. Culture of Lophomonas blattarum is difficult and its molecular diagnosis has not yet been developed. Therefore, microscopic examination of respiratory samples, e.g., bronchoalveolar lavage (BAL) or sputum, is the mainstay of BPL diagnosis. Creola bodies and ciliocytophthoria are two forms of bronchial cells which occur in chest diseases with non-specific clinical picture like that of BPL. Both forms could be misrecognized as multi-flagellates because of their motile cilia in the wet mounts and due to shape variability of L. blattarum in stained smears. The aim of the study is to compare different staining techniques for visualizing L. blattarum to improve the recognition and diagnosis of BPL, to distinguish respiratory epithelial cells from L. blattarum and to decide which stain is recommended in suspected cases of BPL. BAL samples from patients which contain L. blattarum, creola bodies, and ciliocytophthoria were collected then wet mounts were examined. The BAL samples were also stained by Papanicolaou (PAP), Giemsa, hematoxylin and eosin (H & E), trichrome, Gram, and Diff-Quik (DQ) stains. The different staining techniques were compared regarding the stain quality. In wet mounts, the ciliary movement was coordinate and synchronous while the flagellar movement was wavy and leaded to active swimming of L. blattarum. In stained slides, bronchial cells were characterized by the presence of basal nucleus and the terminal bar from which the cilia arise. Trichrome was the best stain in demonstration of cellular details of L. blattarum. H & E, PAP, and Giemsa stains showed good quality of stains. Gram and DQ stains showed only pale hues of L. blattarum. We recommended adding Wheatley's trichrome staining to the differential diagnosis workup of cases of non-specific chest infections

  8. Analysis of culture-dependent versus culture-independent techniques for identification of bacteria in clinically obtained bronchoalveolar lavage fluid.

    PubMed

    Dickson, Robert P; Erb-Downward, John R; Prescott, Hallie C; Martinez, Fernando J; Curtis, Jeffrey L; Lama, Vibha N; Huffnagle, Gary B

    2014-10-01

    The diagnosis and management of pneumonia are limited by the use of culture-based techniques of microbial identification, which may fail to identify unculturable, fastidious, and metabolically active viable but unculturable bacteria. Novel high-throughput culture-independent techniques hold promise but have not been systematically compared to conventional culture. We analyzed 46 clinically obtained bronchoalveolar lavage (BAL) fluid specimens from symptomatic and asymptomatic lung transplant recipients both by culture (using a clinical microbiology laboratory protocol) and by bacterial 16S rRNA gene pyrosequencing. Bacteria were identified in 44 of 46 (95.7%) BAL fluid specimens by culture-independent sequencing, significantly more than the number of specimens in which bacteria were detected (37 of 46, 80.4%, P ≤ 0.05) or "pathogen" species reported (18 of 46, 39.1%, P ≤ 0.0001) via culture. Identification of bacteria by culture was positively associated with culture-independent indices of infection (total bacterial DNA burden and low bacterial community diversity) (P ≤ 0.01). In BAL fluid specimens with no culture growth, the amount of bacterial DNA was greater than that in reagent and rinse controls, and communities were markedly dominated by select Gammaproteobacteria, notably Escherichia species and Pseudomonas fluorescens. Culture growth above the threshold of 10(4) CFU/ml was correlated with increased bacterial DNA burden (P < 0.01), decreased community diversity (P < 0.05), and increased relative abundance of Pseudomonas aeruginosa (P < 0.001). We present two case studies in which culture-independent techniques identified a respiratory pathogen missed by culture and clarified whether a cultured "oral flora" species represented a state of acute infection. In summary, we found that bacterial culture of BAL fluid is largely effective in discriminating acute infection from its absence and identified some specific limitations of BAL fluid culture in the

  9. Ring-oven based preconcentration technique for microanalysis: simultaneous determination of Na, Fe, and Cu in fuel ethanol by laser induced breakdown spectroscopy.

    PubMed

    Cortez, Juliana; Pasquini, Celio

    2013-02-05

    The ring-oven technique, originally applied for classical qualitative analysis in the years 1950s to 1970s, is revisited to be used in a simple though highly efficient and green procedure for analyte preconcentration prior to its determination by the microanalytical techniques presently available. The proposed preconcentration technique is based on the dropwise delivery of a small volume of sample to a filter paper substrate, assisted by a flow-injection-like system. The filter paper is maintained in a small circular heated oven (the ring oven). Drops of the sample solution diffuse by capillarity from the center to a circular area of the paper substrate. After the total sample volume has been delivered, a ring with a sharp (c.a. 350 μm) circular contour, of about 2.0 cm diameter, is formed on the paper to contain most of the analytes originally present in the sample volume. Preconcentration coefficients of the analyte can reach 250-fold (on a m/m basis) for a sample volume as small as 600 μL. The proposed system and procedure have been evaluated to concentrate Na, Fe, and Cu in fuel ethanol, followed by simultaneous direct determination of these species in the ring contour, employing the microanalytical technique of laser induced breakdown spectroscopy (LIBS). Detection limits of 0.7, 0.4, and 0.3 μg mL(-1) and mean recoveries of (109 ± 13)%, (92 ± 18)%, and (98 ± 12)%, for Na, Fe, and Cu, respectively, were obtained in fuel ethanol. It is possible to anticipate the application of the technique, coupled to modern microanalytical and multianalyte techniques, to several analytical problems requiring analyte preconcentration and/or sample stabilization.

  10. Feature extraction techniques using multivariate analysis for identification of lung cancer volatile organic compounds

    NASA Astrophysics Data System (ADS)

    Thriumani, Reena; Zakaria, Ammar; Hashim, Yumi Zuhanis Has-Yun; Helmy, Khaled Mohamed; Omar, Mohammad Iqbal; Jeffree, Amanina; Adom, Abdul Hamid; Shakaff, Ali Yeon Md; Kamarudin, Latifah Munirah

    2017-03-01

    In this experiment, three different cell cultures (A549, WI38VA13 and MCF7) and blank medium (without cells) as a control were used. The electronic nose (E-Nose) was used to sniff the headspace of cultured cells and the data were recorded. After data pre-processing, two different features were extracted by taking into consideration of both steady state and the transient information. The extracted data are then being processed by multivariate analysis, Linear Discriminant Analysis (LDA) to provide visualization of the clustering vector information in multi-sensor space. The Probabilistic Neural Network (PNN) classifier was used to test the performance of the E-Nose on determining the volatile organic compounds (VOCs) of lung cancer cell line. The LDA data projection was able to differentiate between the lung cancer cell samples and other samples (breast cancer, normal cell and blank medium) effectively. The features extracted from the steady state response reached 100% of classification rate while the transient response with the aid of LDA dimension reduction methods produced 100% classification performance using PNN classifier with a spread value of 0.1. The results also show that E-Nose application is a promising technique to be applied to real patients in further work and the aid of Multivariate Analysis; it is able to be the alternative to the current lung cancer diagnostic methods.

  11. A model identification technique to characterize the low frequency behaviour of surrogate explosive materials

    NASA Astrophysics Data System (ADS)

    Paripovic, Jelena; Davies, Patricia

    2016-09-01

    The mechanical response of energetic materials, especially those used in improvised explosive devices, is of great interest to improve understanding of how mechanical excitations may lead to improved detection or detonation. The materials are comprised of crystals embedded into a binder. Microstructural modelling can give insight into the interactions between the binder and the crystals and thus the mechanisms that may lead to material heating and but there needs to be validation of these models and they also require estimates of constituent material properties. Addressing these issues, nonlinear viscoelastic models of the low frequency behavior of a surrogate material-mass system undergoing base excitation have been constructed, and experimental data have been collected and used to estimate the order of components in the system model and the parameters in the model. The estimation technique is described and examples of its application to both simulated and experimental data are given. From the estimated system model the material properties are extracted. Material properties are estimated for a variety of materials and the effect of aging on the estimated material properties is shown.

  12. Simple and rapid molecular techniques for identification of amylose levels in rice varieties.

    PubMed

    Cheng, Acga; Ismail, Ismanizan; Osman, Mohamad; Hashim, Habibuddin

    2012-01-01

    The polymorphisms of Waxy (Wx) microsatellite and G-T single-nucleotide polymorphism (SNP) in the Wx gene region were analyzed using simplified techniques in fifteen rice varieties. A rapid and reliable electrophoresis method, MetaPhor agarose gel electrophoresis (MAGE), was effectively employed as an alternative to polyacrylamide gel electrophoresis (PAGE) for separating Wx microsatellite alleles. The amplified products containing the Wx microsatellite ranged from 100 to 130 bp in length. Five Wx microsatellite alleles, namely (CT)(10), (CT)(11), (CT)(16), (CT)(17), and (CT)(18) were identified. Of these, (CT)(11) and (CT)(17) were the predominant classes among the tested varieties. All varieties with an apparent amylose content higher than 24% were associated with the shorter repeat alleles; (CT)(10) and (CT)(11), while varieties with 24% or less amylose were associated with the longer repeat alleles. All varieties with intermediate and high amylose content had the sequence AGGTATA at the 5'-leader intron splice site, while varieties with low amylose content had the sequence AGTTATA. The G-T polymorphism was further verified by the PCR-AccI cleaved amplified polymorphic sequence (CAPS) method, in which only genotypes containing the AGGTATA sequence were cleaved by AccI. Hence, varieties with desirable amylose levels can be developed rapidly using the Wx microsatellite and G-T SNP, along with MAGE.

  13. Identification of Tools and Techniques to Enhance Interdisciplinary Collaboration During Design and Construction Projects.

    PubMed

    Keys, Yolanda; Silverman, Susan R; Evans, Jennie

    2016-01-01

    The purpose of this study was to collect the perceptions of design professionals and clinicians regarding design process success strategies and elements of interprofessional engagement and communication during healthcare design and construction projects. Additional objectives were to gather best practices to maximize clinician engagement and provide tools and techniques to improve interdisciplinary collaboration for future projects. Strategies are needed to enhance the design and construction process and create interactions that benefit not only the project but the individuals working to see its completion. Meaningful interprofessional collaboration is essential to any healthcare design project and making sure the various players communicate is a critical element. This was a qualitative study conducted via an online survey. Respondents included architects, construction managers, interior designers, and healthcare personnel who had recently been involved in a building renovation or new construction project for a healthcare facility. Responses to open-ended questions were analyzed for themes, and descriptive statistics were used to provide insight into participant demographics. Information on the impressions, perceptions, and opportunities related to clinician involvement in design projects was collected from nurses, architects, interior designers, and construction managers. Qualitative analysis revealed themes of clinician input, organizational dynamics, and a variety of communication strategies to be the most frequently mentioned elements of successful interprofessional collaboration. This study validates the need to include clinician input in the design process, to consider the importance of organizational dynamics on design team functioning, and to incorporate effective communication strategies during design and construction projects.

  14. Identification of Tengfu Jiangya Tablet Target Biomarkers with Quantitative Proteomic Technique

    PubMed Central

    Xu, Jingwen; Zhang, Shijun; Jiang, Haiqiang; Wang, Nan; Lin, Haiqing

    2017-01-01

    Tengfu Jiangya Tablet (TJT) is a well accepted antihypertension drug in China and its major active components were Uncaria total alkaloids and Semen Raphani soluble alkaloid. To further explore treatment effects mechanism of TJT on essential hypertension, a serum proteomic study was performed. Potential biomarkers were quantified in serum of hypertension individuals before and after taking TJT with isobaric tags for relative and absolute quantitation (iTRAQ) coupled two-dimensional liquid chromatography followed electrospray ionization-tandem mass spectrometry (2D LC-MS/MS) proteomics technique. Among 391 identified proteins with high confidence, 70 proteins were differentially expressed (fold variation criteria, >1.2 or <0.83) between two groups (39 upregulated and 31 downregulated). Combining with Gene Ontology annotation, KEGG pathway analysis, and literature retrieval, 5 proteins were chosen as key target biomarkers during TJT therapeutic process. And the alteration profiles of these 5 proteins were verified by ELISA and Western Blot. Proteins Kininogen 1 and Keratin 1 are members of Kallikrein system, while Myeloperoxidase, Serum Amyloid protein A, and Retinol binding protein 4 had been reported closely related to vascular endothelial injury. Our study discovered 5 target biomarkers of the compound Chinese medicine TJT. Secondly, this research initially revealed the antihypertension therapeutic mechanism of this drug from a brand-new aspect.

  15. Modeling the tagged-neutron UXO identification technique using the Geant4 toolkit

    SciTech Connect

    Zhou Y.; Mitra S.; Zhu X.; Wang Y.

    2011-10-16

    It is proposed to use 14 MeV neutrons tagged by the associated particle neutron time-of-flight technique (APnTOF) to identify the fillers of unexploded ordnances (UXO) by characterizing their carbon, nitrogen and oxygen contents. To facilitate the design and construction of a prototype system, a preliminary simulation model was developed, using the Geant4 toolkit. This work established the toolkit environment for (a) generating tagged neutrons, (b) their transport and interactions within a sample to induce emission and detection of characteristic gamma-rays, and (c) 2D and 3D-image reconstruction of the interrogated object using the neutron and gamma-ray time-of-flight information. Using the modeling, this article demonstrates the novelty of the tagged-neutron approach for extracting useful signals with high signal-to-background discrimination of an object-of-interest from that of its environment. Simulations indicated that an UXO filled with the RDX explosive, hexogen (C{sub 3}H{sub 6}O{sub 6}N{sub 6}), can be identified to a depth of 20 cm when buried in soil.

  16. Fault identification using multidisciplinary techniques at the Mars/Uranus Station antenna sites

    NASA Technical Reports Server (NTRS)

    Santo, D. S.; Schluter, M. B.; Shlemon, R. J.

    1992-01-01

    A fault investigation was performed at the Mars and Uranus antenna sites at the Goldstone Deep Space Communications Complex in the Mojave desert. The Mars/Uranus Station consists of two large-diameter reflector antennas used for communication and control of deep-space probes and other missions. The investigation included interpretation of Landsat thematic mapper scenes, side-looking airborne radar transparencies, and both color-infrared and black-and-white aerial photography. Four photolineaments suggestive of previously undocumented faults were identified. Three generally discrete morphostratigraphic alluvial-fan deposits were also recognized and dated using geomorphic and soil stratigraphic techniques. Fourteen trenches were excavated across the four lineaments; the trenches show that three of the photolineaments coincide with faults. The last displacement of two of the faults occurred between about 12,000 and 35,000 years ago. The third fault was judged to be older than 12,000 years before present (ybp), although uncertainty remains. None of the surface traces of the three faults crosses under existing antennas or structures; however, their potential activity necessitates appropriate seismic retrofit designs and loss-prevention measures to mitigate potential earthquake damage to facilities and structures.

  17. Development of advanced techniques for identification of flow stress and friction parameters for metal forming analysis

    NASA Astrophysics Data System (ADS)

    Cho, Hyunjoong

    The accuracy of process simulation in metal forming by finite element method depends on the accuracy of flow stress data and friction value that are input to FEM programs. Therefore, it is essential that these input values are determined using reliable tests and evaluation methods. This study presents the development of inverse analysis methodology and its application to determine flow stress data of bulk and sheet materials at room and elevated temperatures. The inverse problem is defined as the minimization of the differences between the experimental measurements and the corresponding FEM predictions. Rigid-viscoplastic FEM is used to analyze the metal flow while a numerical optimization algorithm adjusts the material parameters used in the simulation until the calculated response matches the measured data within a specified tolerance. The use of the developed inverse analysis methodology has been demonstrated by applying it to the selected reference rheological tests; cylinder compression test, ring compression test, instrumented indentation test, modified limiting dome height test, and sheet hydraulic bulge test. Furthermore, using the determined material property data, full 3-D finite element simulation models, as examples of industrial applications for orbital forming and thermoforming processes have been developed for reliable process simulation. As results of this study, it was shown that the developed inverse analysis methodology could identify both the material parameters and friction factors from one set of tests, simultaneously. Therefore, this technique can offer a systematic and cost effective way for determining material property data for simulation of metal forming processes.

  18. Identification of nuclear proteins in soybean under flooding stress using proteomic technique.

    PubMed

    Oh, Myeong Won; Nanjo, Yohei; Komatsu, Setsuko

    2014-05-01

    Flooding stress restricts soybean growth, it results in decrease the production. In this report, to understand how nuclear proteins in soybean affected by flooding, abundance changes of those proteins was analyzed. Nuclear proteins were extracted from the root tips of soybean treated with or without flooding stress. The extracted proteins were analyzed using a label-free quantitative proteomic technique. Of a total of 94 nuclear proteins that were found to be responsive to flooding, the 19 and 75 proteins were increased and decreased, respectively. The identified flooding-responsive proteins were functionally classified, revealing that 8 increased proteins changed in protein synthesis, posttranslational modification, and protein degradation, while 34 decreased proteins were involved in transcription, RNA processing, DNA synthesis, and chromatin structure maintenance. Among these proteins, those whose levels changed more than 10 fold included two poly ADP-ribose polymerases and a novel G-domain-containing protein that might be involved in RNA binding. The mRNA expression levels of these three proteins indicated a similar tendency to their protein abundance changes. These results suggest that acceleration of protein poly-ADP-ribosylation and suppression of RNA metabolism may be involved in root tip of soybean under flooding stress.

  19. Direct Measurement of Initial Enrichment and Burn-up of Spent Fuel Assembly with a Differential Die-Away Technique Based Instrument

    SciTech Connect

    Henzl, Vladimir; Swinhoe, Martyn T.; Tobin, Stephen J.

    2012-07-16

    A key objective of the Next Generation Safeguards Initiative (NGSI) is to utilize non-destructive assay (NDA) techniques to determine the elemental plutonium (Pu) content in a commercial-grade nuclear spent fuel assembly (SFA). In the third year of the NGSI Spent Fuel NDA project, the research focus is on the integration of a few NDA techniques. One of the reoccurring challenges to the accurate determination of Pu content has been the explicit dependence of the measured signal on the presence of neutron absorbers which build up in the assembly in accordance with its operating and irradiation history. The history of any SFA is often summarized by the parameters of burn-up (BU), initial enrichment (IE) and cooling time (CT). While such parameters can typically be provided by the operator, the ability to directly measure and verify them would significantly enhance the autonomy of the IAEA inspectorate. Within this paper, we demonstrate that an instrument based on a Differential Die-Away technique is in principle capable of direct measurement of IE and, should the CT be known, also the BU.

  20. Salivary bacterial fingerprints of established oral disease revealed by the Human Oral Microbe Identification using Next Generation Sequencing (HOMINGS) technique

    PubMed Central

    Belstrøm, Daniel; Paster, Bruce J.; Fiehn, Nils-Erik; Bardow, Allan; Holmstrup, Palle

    2016-01-01

    Background and objective The composition of the salivary microbiota, as determined using various molecular methods, has been reported to differentiate oral health from diseases. Thus, the purpose of this study was to utilize the newly developed molecular technique HOMINGS (Human Oral Microbe Identification using Next Generation Sequencing) for comparison of the salivary microbiota in patients with periodontitis, patients with dental caries, and orally healthy individuals. The hypothesis was that this method could add on to the existing knowledge on salivary bacterial profiles in oral health and disease. Design Stimulated saliva samples (n=30) were collected from 10 patients with untreated periodontitis, 10 patients with untreated dental caries, and 10 orally healthy individuals. Salivary microbiota was analyzed using HOMINGS and statistical analysis was performed using Kruskal–Wallis test with Benjamini–Hochberg's correction. Results From a total of 30 saliva samples, a mean number of probe targets of 205 (range 120–353) were identified, and a statistically significant higher mean number of targets was registered in samples from patients with periodontitis (mean 220, range 143–306) and dental caries (mean 221, range 165–353) as compared to orally healthy individuals (mean 174, range 120–260) (p=0.04 and p=0.04). Nine probe targets were identified with a different relative abundance between groups (p<0.05). Conclusions Cross-sectional comparison of salivary bacterial profiles by means of HOMINGS analysis showed that different salivary bacterial profiles were associated with oral health and disease. Future large-scale prospective studies are needed to evaluate if saliva-based screening for disease-associated oral bacterial profiles may be used for identification of patients at risk of acquiring periodontitis and dental caries. PMID:26782357

  1. Technique of laser calibration for wavelength-modulation spectroscopy with application to proton exchange membrane fuel cell measurements.

    PubMed

    Sur, Ritobrata; Boucher, Thomas J; Renfro, Michael W; Cetegen, Baki M

    2010-01-01

    A diode laser sensor was developed for partial pressure and temperature measurements using a single water vapor transition. The Lorentzian half-width and line intensity of the transition were calibrated for conditions relevant to proton exchange membrane (PEM) fuel cell operation. Comparison of measured and simulated harmonics from wavelength-modulation spectroscopy is shown to yield accuracy of +/-2.5% in water vapor partial pressure and +/-3 degrees C in temperature despite the use of a single transition over a narrow range of temperatures. Collisional half-widths in air or hydrogen are measured so that calibrations can be applied to both anode and cathode channels of a PEM fuel cell. An in situ calibration of the nonlinear impact of modulation on laser wavelength is presented and used to improve the accuracy of the numerical simulation of the signal.

  2. Techniques for improving the performance of a simplified electronic fuel controller with incremental actuation for small gas turbine engines

    NASA Astrophysics Data System (ADS)

    Georgantas, Antanios Ioannou

    1990-04-01

    Concepts are introduced which improve the performance of an inexpensive electronic fuel control unit for small gas turbine engines suitable for use in small aircraft and helicopters. A conventional hydromechanical fuel control unit is modified and adapted for digital electronic control. The conversion involves the replacement of the pneumatic computing and actuating mechanism with digital computation and incremental electronic actuation of a flow metering valve. A mathematical model of the unit is developed, implemented, and validated. The model is used for simulation and study of the system dynamics. Some new methods are applied in the design and development of a digital controller. An optimization scheme for tuning the controller is formulated and implemented experimentally. As a next step toward improvement of the simple electronic fuel controller, a concept of two electronic actuators, one operating the metering valve and the other a bypass valve, is introduced and investigated. Higher flexibility and faster transient response, as compared to the conventional system and the single actuator unit, are demonstrated. The possibility of a backup scheme in case of failure of one of two actuating mechanisms is also discussed.

  3. Hazard identification of exhausts from gasoline-ethanol fuel blends using a multi-cellular human lung model.

    PubMed

    Bisig, Christoph; Roth, Michèle; Müller, Loretta; Comte, Pierre; Heeb, Norbert; Mayer, Andreas; Czerwinski, Jan; Petri-Fink, Alke; Rothen-Rutishauser, Barbara

    2016-11-01

    Ethanol can be produced from biomass and as such is renewable, unlike petroleum-based fuel. Almost all gasoline cars can drive with fuel containing 10% ethanol (E10), flex-fuel cars can even use 85% ethanol (E85). Brazil and the USA already include 10-27% ethanol in their standard fuel by law. Most health effect studies on car emissions are however performed with diesel exhausts, and only few data exists for other fuels. In this work we investigated possible toxic effects of exhaust aerosols from ethanol-gasoline blends using a multi-cellular model of the human lung. A flex-fuel passenger car was driven on a chassis dynamometer and fueled with E10, E85, or pure gasoline (E0). Exhausts obtained from a steady state cycle were directly applied for 6h at a dilution of 1:10 onto a multi-cellular human lung model mimicking the bronchial compartment composed of human bronchial cells (16HBE14o-), supplemented with human monocyte-derived dendritic cells and monocyte-derived macrophages, cultured at the air-liquid interface. Biological endpoints were assessed after 6h post incubation and included cytotoxicity, pro-inflammation, oxidative stress, and DNA damage. Filtered air was applied to control cells in parallel to the different exhausts; for comparison an exposure to diesel exhaust was also included in the study. No differences were measured for the volatile compounds, i.e. CO, NOx, and T.HC for the different ethanol supplemented exhausts. Average particle number were 6×10(2) #/cm(3) (E0), 1×10(5) #/cm(3) (E10), 3×10(3) #/cm(3) (E85), and 2.8×10(6) #/cm(3) (diesel). In ethanol-gasoline exposure conditions no cytotoxicity and no morphological changes were observed in the lung cell cultures, in addition no oxidative stress - as analyzed with the glutathione assay - was measured. Gene expression analysis also shows no induction in any of the tested genes, including mRNA levels of genes related to oxidative stress and pro-inflammation, as well as indoleamine 2

  4. In situ measurement technique for simultaneous detection of K, KCl, and KOH vapors released during combustion of solid biomass fuel in a single particle reactor.

    PubMed

    Sorvajärvi, Tapio; DeMartini, Nikolai; Rossi, Jussi; Toivonen, Juha

    2014-01-01

    A quantitative and simultaneous measurement of K, KCl, and KOH vapors from a burning fuel sample combusted in a single particle reactor was performed using collinear photofragmentation and atomic absorption spectroscopy (CPFAAS) with a time resolution of 0.2 s. The previously presented CPFAAS technique was extended in this work to cover two consecutive fragmentation pulses for the photofragmentation of KCl and KOH. The spectral overlapping of the fragmentation spectra of KCl and KOH is discussed, and a linear equation system for the correction of the spectral interference is introduced. The detection limits for KCl, KOH, and K with the presented measurement arrangement and with 1 cm sample length were 0.5, 0.1, and 0.001 parts per million, respectively. The experimental setup was applied to analyze K, KCl, and KOH release from 10 mg spruce bark samples combusted at the temperatures of 850, 950, and 1050 °C with 10% of O2. The combustion experiments provided data on the form of K vapors and their release during different combustion phases and at different temperatures. The measured release histories agreed with earlier studies of K release. The simultaneous direct measurement of atomic K, KCl, and KOH will help in the impact of both the form of K in the biomass and fuel variables, such as particle size, on the release of K from biomass fuels.

  5. Neutron analysis of spent fuel storage installation using parallel computing and advance discrete ordinates and Monte Carlo techniques.

    PubMed

    Shedlock, Daniel; Haghighat, Alireza

    2005-01-01

    In the United States, the Nuclear Waste Policy Act of 1982 mandated centralised storage of spent nuclear fuel by 1988. However, the Yucca Mountain project is currently scheduled to start accepting spent nuclear fuel in 2010. Since many nuclear power plants were only designed for -10 y of spent fuel pool storage, > 35 plants have been forced into alternate means of spent fuel storage. In order to continue operation and make room in spent fuel pools, nuclear generators are turning towards independent spent fuel storage installations (ISFSIs). Typical vertical concrete ISFSIs are -6.1 m high and 3.3 m in diameter. The inherently large system, and the presence of thick concrete shields result in difficulties for both Monte Carlo (MC) and discrete ordinates (SN) calculations. MC calculations require significant variance reduction and multiple runs to obtain a detailed dose distribution. SN models need a large number of spatial meshes to accurately model the geometry and high quadrature orders to reduce ray effects, therefore, requiring significant amounts of computer memory and time. The use of various differencing schemes is needed to account for radial heterogeneity in material cross sections and densities. Two P3, S12, discrete ordinate, PENTRAN (parallel environment neutral-particle TRANsport) models were analysed and different MC models compared. A multigroup MCNP model was developed for direct comparison to the SN models. The biased A3MCNP (automated adjoint accelerated MCNP) and unbiased (MCNP) continuous energy MC models were developed to assess the adequacy of the CASK multigroup (22 neutron, 18 gamma) cross sections. The PENTRAN SN results are in close agreement (5%) with the multigroup MC results; however, they differ by -20-30% from the continuous-energy MC predictions. This large difference can be attributed to the expected difference between multigroup and continuous energy cross sections, and the fact that the CASK library is based on the old ENDF

  6. Application of adaptive neuro-fuzzy inference system techniques and artificial neural networks to predict solid oxide fuel cell performance in residential microgeneration installation

    NASA Astrophysics Data System (ADS)

    Entchev, Evgueniy; Yang, Libing

    This study applies adaptive neuro-fuzzy inference system (ANFIS) techniques and artificial neural network (ANN) to predict solid oxide fuel cell (SOFC) performance while supplying both heat and power to a residence. A microgeneration 5 kW el SOFC system was installed at the Canadian Centre for Housing Technology (CCHT), integrated with existing mechanical systems and connected in parallel to the grid. SOFC performance data were collected during the winter heating season and used for training of both ANN and ANFIS models. The ANN model was built on back propagation algorithm as for ANFIS model a combination of least squares method and back propagation gradient decent method were developed and applied. Both models were trained with experimental data and used to predict selective SOFC performance parameters such as fuel cell stack current, stack voltage, etc. The study revealed that both ANN and ANFIS models' predictions agreed well with variety of experimental data sets representing steady-state, start-up and shut-down operations of the SOFC system. The initial data set was subjected to detailed sensitivity analysis and statistically insignificant parameters were excluded from the training set. As a result, significant reduction of computational time was achieved without affecting models' accuracy. The study showed that adaptive models can be applied with confidence during the design process and for performance optimization of existing and newly developed solid oxide fuel cell systems. It demonstrated that by using ANN and ANFIS techniques SOFC microgeneration system's performance could be modelled with minimum time demand and with a high degree of accuracy.

  7. Semi-automatic 10/20 Identification Method for MRI-Free Probe Placement in Transcranial Brain Mapping Techniques.

    PubMed

    Xiao, Xiang; Zhu, Hao; Liu, Wei-Jie; Yu, Xiao-Ting; Duan, Lian; Li, Zheng; Zhu, Chao-Zhe

    2017-01-01

    The International 10/20 system is an important head-surface-based positioning system for transcranial brain mapping techniques, e.g., fNIRS and TMS. As guidance for probe placement, the 10/20 system permits both proper ROI coverage and spatial consistency among multiple subjects and experiments in a MRI-free context. However, the traditional manual approach to the identification of 10/20 landmarks faces problems in reliability and time cost. In this study, we propose a semi-automatic method to address these problems. First, a novel head surface reconstruction algorithm reconstructs head geometry from a set of points uniformly and sparsely sampled on the subject's head. Second, virtual 10/20 landmarks are determined on the reconstructed head surface in computational space. Finally, a visually-guided real-time navigation system guides the experimenter to each of the identified 10/20 landmarks on the physical head of the subject. Compared with the traditional manual approach, our proposed method provides a significant improvement both in reliability and time cost and thus could contribute to improving both the effectiveness and efficiency of 10/20-guided MRI-free probe placement.

  8. Assessment of Multi-Joint Coordination and Adaptation in Standing Balance: A Novel Device and System Identification Technique.

    PubMed

    Engelhart, Denise; Schouten, Alfred C; Aarts, Ronald G K M; van der Kooij, Herman

    2015-11-01

    The ankles and hips play an important role in maintaining standing balance and the coordination between joints adapts with task and conditions, like the disturbance magnitude and type, and changes with age. Assessment of multi-joint coordination requires the application of multiple continuous and independent disturbances and closed loop system identification techniques (CLSIT). This paper presents a novel device, the double inverted pendulum perturbator (DIPP), which can apply disturbing forces at the hip level and between the shoulder blades. In addition to the disturbances, the device can provide force fields to study adaptation of multi-joint coordination. The performance of the DIPP and a novel CLSIT was assessed by identifying a system with known mechanical properties and model simulations. A double inverted pendulum was successfully identified, while force fields were able to keep the pendulum upright. The estimated dynamics were similar as the theoretical derived dynamics. The DIPP has a sufficient bandwidth of 7 Hz to identify multi-joint coordination dynamics. An experiment with human subjects where a stabilizing force field was rendered at the hip (1500 N/m), showed that subjects adapt by lowering their control actions around the ankles. The stiffness from upper and lower segment motion to ankle torque dropped with 30% and 48%, respectively. Our methods allow to study (pathological) changes in multi-joint coordination as well as adaptive capacity to maintain standing balance.

  9. Optimal placement of sensors for structural system identification and health monitoring using a hybrid swarm intelligence technique

    NASA Astrophysics Data System (ADS)

    Rama Mohan Rao, A.; Anandakumar, Ganesh

    2007-12-01

    Setting up a health monitoring system for large-scale civil engineering structures requires a large number of sensors and the placement of these sensors is of great significance for such spatially separated large structures. In this paper, we present an optimal sensor placement (OSP) algorithm by treating OSP as a combinatorial optimization problem which is solved using a swarm intelligence technique called particle swarm optimization (PSO). We propose a new hybrid PSO algorithm by combining a self-configurable PSO with the Nelder-Mead algorithm to solve this rather difficult combinatorial problem of OSP. The proposed algorithm aims precisely to achieve the best identification of modal frequencies and mode shapes. Numerical experiments have been carried out by considering civil engineering structures to evaluate the performance of the proposed swarm-intelligence-based OSP algorithm. Numerical studies indicate that the proposed hybrid PSO algorithm generates sensor configurations superior to the conventional iterative information-based approaches which have been popularly used for large structures. Further, the proposed hybrid PSO algorithm exhibits superior convergence characteristics when compared to other PSO counterparts.

  10. Semi-automatic 10/20 Identification Method for MRI-Free Probe Placement in Transcranial Brain Mapping Techniques

    PubMed Central

    Xiao, Xiang; Zhu, Hao; Liu, Wei-Jie; Yu, Xiao-Ting; Duan, Lian; Li, Zheng; Zhu, Chao-Zhe

    2017-01-01

    The International 10/20 system is an important head-surface-based positioning system for transcranial brain mapping techniques, e.g., fNIRS and TMS. As guidance for probe placement, the 10/20 system permits both proper ROI coverage and spatial consistency among multiple subjects and experiments in a MRI-free context. However, the traditional manual approach to the identification of 10/20 landmarks faces problems in reliability and time cost. In this study, we propose a semi-automatic method to address these problems. First, a novel head surface reconstruction algorithm reconstructs head geometry from a set of points uniformly and sparsely sampled on the subject's head. Second, virtual 10/20 landmarks are determined on the reconstructed head surface in computational space. Finally, a visually-guided real-time navigation system guides the experimenter to each of the identified 10/20 landmarks on the physical head of the subject. Compared with the traditional manual approach, our proposed method provides a significant improvement both in reliability and time cost and thus could contribute to improving both the effectiveness and efficiency of 10/20-guided MRI-free probe placement. PMID:28190997

  11. Identification of acetic acid bacteria in traditionally produced vinegar and mother of vinegar by using different molecular techniques.

    PubMed

    Yetiman, Ahmet E; Kesmen, Zülal

    2015-07-02

    Culture-dependent and culture-independent methods were combined for the investigation of acetic acid bacteria (AAB) populations in traditionally produced vinegars and mother of vinegar samples obtained from apple and grape. The culture-independent denaturing gradient gel electrophoresis (DGGE) analysis, which targeted the V7-V8 regions of the 16S rRNA gene, showed that Komagataeibacter hansenii and Komagataeibacter europaeus/Komagataeibacter xylinus were the most dominant species in almost all of the samples analyzed directly. The culture-independent GTG5-rep PCR fingerprinting was used in the preliminary characterization of AAB isolates and species-level identification was carried out by sequencing of the 16S rRNA gene, 16S-23S rDNA internally transcribed to the spacer (ITS) region and tuf gene. Acetobacter okinawensis was frequently isolated from samples obtained from apple while K. europaeus was identified as the dominant species, followed by Acetobacter indonesiensis in the samples originating from grape. In addition to common molecular techniques, real-time PCR intercalating dye assays, including DNA melting temperature (Tm) and high resolution melting analysis (HRM), were applied to acetic acid bacterial isolates for the first time. The target sequence of ITS region generated species-specific HRM profiles and Tm values allowed discrimination at species level.

  12. Thermoluminescence of Antarctic meteorites: A rapid screening technique for terrestrial age estimation, pairing studies and identification of specimens with unusual prefall histories

    NASA Technical Reports Server (NTRS)

    Sutton, S. R.; Walker, R. M.

    1986-01-01

    Thermoluminescence (TL) is a promising technique for rapid screening of the large numbers of Antarctic meteorites, permitting identification of interesting specimens that can then be studied in detail by other, more definite techniques. Specifically, TL permits determination of rough terrestrial age, identification of potential paired groups and location of specimens with unusual pre-fall histories. Meteorites with long terrestrial ages are particularly valuable for studying transport and weathering mechanisms. Pairing studies are possible because TL variations among meteorites are large compared to variations within individual objects, especially for natural TL. Available TL data for several L3 fragments, three of which were paired by other techniques, are presented as an example of the use of TL parameters in pairing studies. Additional TL measurements, specifically a blind test, are recommended to satisfactorily establish the reliability of this pairing property. The TL measurements also identify fragments with unusual pre-fall histories, such an near-Sun orbits.

  13. Fuel-rich catalytic combustion: A soot-free technique for in situ hydrogen-like enrichment

    NASA Technical Reports Server (NTRS)

    Brabbs, T. A.; Olson, S. L.

    1985-01-01

    An experimental program on the catalytic oxidation of iso-octane demonstrated the feasibility of the two-stage combustion system for reducing particulate emissions. With a fuel-rich (phi = 4.8 to 7.8) catalytic combustion preburner as the first stage the combustion process was soot free at reactor outlet temperatures of 1200 K or less. Although soot was not measured directly, its absence was indicated. Reaction products collected at two positions downstream of the catalyst bed were analyzed on a gas chromatograph. Comparison of these products indicated that pyrolysis of the larger molecules continued along the drift tube and that benzene formation was a gas-phase reaction. The effective hydrogen-carbon ratio calculated from the reaction products increased by 20 to 68 percent over the range of equivalence ratios tested. The catalytic partial oxidation process also yielded a large number of smaller-containing molecules. The fraction of fuel carbon in compounds having two or fewer carbon atoms ranged from 30 percent at 1100 K to 80 percent at 1200 K.

  14. An indirect sensing technique for diesel fuel quantity control. Technical progress report, July 1--September 30, 1998

    SciTech Connect

    MacCarley, C.A.

    1998-10-22

    The project has focused on a retrofit product suitable for installation on existing mechanically-governed diesel engines. Included in this potential market are almost all diesel-powered passenger cars and light trucks manufactured prior to the introduction of the most recent clean diesel engines equipped with particulate traps and electronic controls. Also included are heavy-duty trucks, transit vehicles, school buses, and agricultural equipment. This system is intended to prevent existing diesel engines from overfueling to the point of visible particulate emissions (smoke), while allowing maximum smoke-limited torque under all operating conditions. The system employs a microcontroller and a specialized exhaust particulate emission sensor to continuously generate and update an adaptive throttle-limit map. This map specifies a maximum allowable throttle position as a function of engine speed and coolant temperature. For mechanically regulated fuel injection systems, the throttle position limit is mechanized via a linear position actuator attached to the fuel injection pump. For electronically regulated injection systems, this limit is mechanized by interception and modification of the electronic throttle input to the system.

  15. Comments on Frequency Swept Rotating Input Perturbation Techniques and Identification of the Fluid Force Models in Rotor/bearing/seal Systems and Fluid Handling Machines

    NASA Technical Reports Server (NTRS)

    Muszynska, Agnes; Bently, Donald E.

    1991-01-01

    Perturbation techniques used for identification of rotating system dynamic characteristics are described. A comparison between two periodic frequency-swept perturbation methods applied in identification of fluid forces of rotating machines is presented. The description of the fluid force model identified by inputting circular periodic frequency-swept force is given. This model is based on the existence and strength of the circumferential flow, most often generated by the shaft rotation. The application of the fluid force model in rotor dynamic analysis is presented. It is shown that the rotor stability is an entire rotating system property. Some areas for further research are discussed.

  16. A novel star identification technique robust to high presence of false objects: The Multi-Poles Algorithm

    NASA Astrophysics Data System (ADS)

    Schiattarella, Vincenzo; Spiller, Dario; Curti, Fabio

    2017-04-01

    This work proposes a novel technique for the star pattern recognition for the Lost in Space, named Multi-Poles Algorithm. This technique is especially designed to ensure a reliable identification of stars when there is a large number of false objects in the image, such as Single Event Upsets, hot pixels or other celestial bodies. The algorithm identifies the stars using three phases: the acceptance phase, the verification phase and the confirmation phase. The acceptance phase uses a polar technique to yield a set of accepted stars. The verification phase performs a cross-check between two sets of accepted stars providing a new set of verified stars. Finally, the confirmation phase introduces an additional check to discard or to keep a verified star. As a result, this procedure guarantees a high robustness to false objects in the acquired images. A reliable simulator is developed to test the algorithm to obtain accurate numerical results. The star tracker is simulated as a 1024 × 1024 Active Pixel Sensor with a 20° Field of View. The sensor noises are added using suitable distribution models. The stars are simulated using the Hipparcos catalog with corrected magnitudes accordingly to the instrumental response of the sensor. The Single Event Upsets are modeled based on typical shapes detected from some missions. The tests are conducted through a Monte Carlo analysis covering the entire celestial sphere. The numerical results are obtained for both a fixed and a variable attitude configuration. In the first case, the angular velocity is zero and the simulations give a success rate of 100% considering a number of false objects up to six times the number of the cataloged stars in the image. The success rate decreases at 66% when the number of false objects is increased to fifteen times the number of cataloged stars. For moderate angular velocities, preliminary results are given for constant rate and direction. By increasing the angular rate, the performances of the

  17. Comparison of Commercial Aircraft Fuel Requirements in Regards to FAR, Flight Profile Simulation, and Flight Operational Techniques

    NASA Astrophysics Data System (ADS)

    Heitzman, Nicholas

    There are significant fuel consumption consequences for non-optimal flight operations. This study is intended to analyze and highlight areas of interest that affect fuel consumption in typical flight operations. By gathering information from actual flight operators (pilots, dispatch, performance engineers, and air traffic controllers), real performance issues can be addressed and analyzed. A series of interviews were performed with various individuals in the industry and organizations. The wide range of insight directed this study to focus on FAA regulations, airline policy, the ATC system, weather, and flight planning. The goal is to highlight where operational performance differs from design intent in order to better connect optimization with actual flight operations. After further investigation and consensus from the experienced participants, the FAA regulations do not need any serious attention until newer technologies and capabilities are implemented. The ATC system is severely out of date and is one of the largest limiting factors in current flight operations. Although participants are pessimistic about its timely implementation, the FAA's NextGen program for a future National Airspace System should help improve the efficiency of flight operations. This includes situational awareness, weather monitoring, communication, information management, optimized routing, and cleaner flight profiles like Required Navigation Performance (RNP) and Continuous Descent Approach (CDA). Working off the interview results, trade-studies were performed using an in-house flight profile simulation of a Boeing 737-300, integrating NASA legacy codes EDET and NPSS with a custom written mission performance and point-performance "Skymap" calculator. From these trade-studies, it was found that certain flight conditions affect flight operations more than others. With weather, traffic, and unforeseeable risks, flight planning is still limited by its high level of precaution. From this

  18. Determination of wood burning and fossil fuel contribution of black carbon at Delhi, India using aerosol light absorption technique.

    PubMed

    Tiwari, S; Pipal, A S; Srivastava, A K; Bisht, D S; Pandithurai, G

    2015-02-01

    A comprehensive measurement program of effective black carbon (eBC), fine particle (PM2.5), and carbon monoxide (CO) was undertaken during 1 December 2011 to 31 March 2012 (winter period) in Delhi, India. The mean mass concentrations of eBC, PM2.5, and CO were recorded as 12.1 ± 8.7 μg/m(3), 182.75 ± 114.5 μg/m(3), and 3.41 ± 1.6 ppm, respectively, during the study period. Also, the absorption Angstrom exponent (AAE) was estimated from eBC and varied from 0.38 to 1.29 with a mean value of 1.09 ± 0.11. The frequency of occurrence of AAE was ~17 % less than unity whereas ~83 % greater than unity was observed during the winter period in Delhi. The mass concentrations of eBC were found to be higher by ~34 % of the average value of eBC (12.1 μg/m(3)) during the study period. Sources of eBC were estimated, and they were ~94 % from fossil fuel (eBCff) combustion whereas only 6 % was from wood burning (eBCwb). The ratio between eBCff and eBCwb was 15, which indicates a higher impact from fossil fuels compared to biomass burning. When comparing eBCff during day and night, a factor of three higher concentrations was observed in nighttime than daytime, and it is due to combustion of fossil fuel (diesel vehicle emission) and shallow boundary layer conditions. The contribution of eBCwb in eBC was higher between 1800 and 2100 hours due to burning of wood/biomass. A significant correlation between eBC and PM2.5 (r = 0.78) and eBC and CO (r = 0.46) indicates the similarity in location sources. The mass concentration of eBC was highest (23.4 μg/m(3)) during the month of December when the mean visibility (VIS) was lowest (1.31 km). Regression analysis among wind speed (WS), VIS, soot particles, and CO was studied, and significant negative relationships were seen between VIS and eBC (-0.65), eBCff (-0.66), eBCwb (-0.34), and CO (-0.65); however, between WS and eBC (-0.68), eBCff (-0.67), eBCwb (-0.28), and CO (-0.53). The regression analysis indicated

  19. A noninvasive technique for the evaluation of diversion cross flow at the inlet of a simulated fuel rod bundle

    SciTech Connect

    Sedaghat, A.; Castellana, F.S.; Hsu, R.H.; Macduff, R.B.

    1988-03-01

    Diversion cross flow was characterized from a two-subchannel simulation of a nuclear fuel assembly using a gamma camera. The gamma camera alllowed external monitoring over the length of the test assembly, thereby eliminating experimental problems associated with flow partitioning and an isokinetic withdrawal system, allowing the possibility of noninvasive measurement. The experiment was performed by providing fixed but different flow rates to each subchannel. The higher mass flow rate stream was traced with a gamma-emitting radionuclide, /sup 99m/Tc pertechnetate. Activity in each subchannel was measured by the camera. Diversion length was found to be relatively small and strongly dependent on gap spacing. Effective lateral velocity through the gap was also evaluated. With some exceptions, the results were in good agreement with the predictions of the subchannel analysis computer code COBRA IIIC. At a high inlet axial mass velocity ratio of 4, however, the agreement with the prediction was poor.

  20. Development of a Raman spectroscopy technique to detect alternate transportation fuel hydrocarbon intermediates in complex combustion environments.

    SciTech Connect

    Ekoto, Isaac W.; Barlow, Robert S.

    2012-12-01

    Spontaneous Raman spectra for important hydrocarbon fuels and combustion intermediates were recorded over a range of low-to-moderate flame temperatures using the multiscalar measurement facility located at Sandia/CA. Recorded spectra were extrapolated to higher flame temperatures and then converted into empirical spectral libraries that can readily be incorporated into existing post-processing analysis models that account for crosstalk from overlapping hydrocarbon channel signal. Performance testing of the developed libraries and reduction methods was conducted through an examination of results from well-characterized laminar reference flames, and was found to provide good agreement. The diagnostic development allows for temporally and spatially resolved flame measurements of speciated hydrocarbon concentrations whose parent is more chemically complex than methane. Such data are needed to validate increasingly complex flame simulations.

  1. Evaluation of Aqueous and Powder Processing Techniques for Production of Pu-238-Fueled General Purpose Heat Sources

    SciTech Connect

    Not Available

    2008-06-01

    This report evaluates alternative processes that could be used to produce Pu-238 fueled General Purpose Heat Sources (GPHS) for radioisotope thermoelectric generators (RTG). Fabricating GPHSs with the current process has remained essentially unchanged since its development in the 1970s. Meanwhile, 30 years of technological advancements have been made in the fields of chemistry, manufacturing, ceramics, and control systems. At the Department of Energy’s request, alternate manufacturing methods were compared to current methods to determine if alternative fabrication processes could reduce the hazards, especially the production of respirable fines, while producing an equivalent GPHS product. An expert committee performed the evaluation with input from four national laboratories experienced in Pu-238 handling.

  2. Morphological analysis of zirconium nuclear fuel retaining rods braided with SiC: Quality assurance and defect identification

    NASA Astrophysics Data System (ADS)

    Glazoff, Michael V.; Hiromoto, Robert; Tokuhiro, Akira

    2014-08-01

    In the after-Fukushima world, the stability of materials under extreme conditions is an important issue for the safety of nuclear reactors. Among the methods explored currently to improve zircaloys’ thermal stability in off-normal conditions, using a protective coat of the SiC filaments is considered because silicon carbide is well known for its remarkable chemical inertness at high temperatures. A typical SiC fiber contains ∼50,000 individual filaments of 5-10 μm in diameter. In this paper, an effort was made to develop and apply mathematical morphology to the process of automatic defect identification in Zircaloy-4 rods braided with the protective layer of the silicon carbide filament. However, the issues of the braiding quality have to be addressed to ensure its full protective potential. We present the original mathematical morphology algorithms that allow solving this problem of quality assurance successfully. In nuclear industry, such algorithms are used for the first time, and could be easily generalized to the case of automated continuous monitoring for defect identification in the future.

  3. Transportation fuels from wood

    SciTech Connect

    Baker, E.G.; Elliott, D.C.; Stevens, D.J.

    1980-01-01

    The various methods of producing transportation fuels from wood are evaluated in this paper. These methods include direct liquefaction schemes such as hydrolysis/fermentation, pyrolysis, and thermochemical liquefaction. Indirect liquefaction techniques involve gasification followed by liquid fuels synthesis such as methanol synthesis or the Fischer-Tropsch synthesis. The cost of transportation fuels produced by the various methods are compared. In addition, three ongoing programs at Pacific Northwest Laboratory dealing with liquid fuels from wood are described.

  4. Occurrence and identification of microorganisms in compacted clay-based buffer material designed for use in a nuclear fuel waste disposal vault.

    PubMed

    Stroes-Gascoyne, S; Pedersen, K; Haveman, S A; Dekeyser, K; Arlinger, J; Daumas, S; Ekendahl, S; Hallbeck, L; Hamon, C J; Jahromi, N; Delaney, T L

    1997-12-01

    A full-scale nuclear fuel waste disposal container experiment was carried out 240 m below ground in an underground granitic rock research laboratory in Canada. An electric heater was surrounded by buffer material composed of sand and bentonite clay and provided heat equivalent to what is anticipated in a Canadian nuclear fuel waste repository. During the experiment, the heat caused a mass transport of water and moisture content gradients developed in the buffer ranging from 13% closest to the heater to 23% at the rock wall of the deposition hole. Upon decommissioning after 2.5 years, microorganisms could be cultured from all samples having a moisture content above 15% but not from samples with a moisture content below 15%. Heterotrophic aerobic and anaerobic bacteria were found in numbers ranging from 10(1) to 10(6) cells/g dry weight buffer. Approximately 10(2), or less, sulphate-reducing bacteria and methanogens per gram of dry weight buffer were also found. Identification of buffer population members was performed using Analytical Profile Index (API) strips for isolated bacteria and 16S rRNA gene sequencing for in situ samples. A total of 79 isolates from five buffer layers were identified with API strips as representing the beta, gamma and delta groups of Proteobacteria and Gram-positive bacteria. Sixty-seven 16S rRNA clones that were obtained from three buffer layers were classified into 21 clone groups representing alpha and gamma groups of Proteobacteria, Gram-positive bacteria, and a yeast. Approximately 20% of the population comprised Gram-positive bacteria. Members of the genera Amycolatopsis, Bacillus, and Nocardia predominated. Among Gram-negative bacteria, the genera Acinetobacter and Pseudomonas predominated. Analysis of lipid biomarker signatures and in situ leucine uptake demonstrated that the buffer population was viable. The results suggest that a nuclear fuel waste buffer will be populated by active microorganisms only if the moisture content is

  5. Performance degradation studies on an poly 2,5-benzimidazole high-temperature proton exchange membrane fuel cell using an accelerated degradation technique

    NASA Astrophysics Data System (ADS)

    Jung, Guo-Bin; Chen, Hsin-Hung; Yan, Wei-Mon

    2014-02-01

    In this work, the performance degradation of a poly 2,5-benzimidazole (ABPBI) based high-temperature proton exchange membrane fuel cell (HT-PEMFC) was examined using an accelerated degradation technique (ADT). Experiments using an ADT with 30 min intervals were performed by applying 1.5 V to a membrane electrode assembly (MEA) with hydrogen and nitrogen feeding to the anode and cathode, respectively, to simulate the high voltage generated during fuel cell shutdown and restart. The characterization of the MEAs was performed using in-situ and ex-situ electrochemical methods, such as polarization curves, AC impedance, and cyclic voltammetry (CV), and TEM imaging before and after the ADT experiments. The measured results demonstrated that the ADT testing could be used to dramatically reduce the duration of the degradation. The current output at 0.4 V decreased by 48% after performing ADT testing for 30 min. From the AC impedance, CV and RTGA measurements, the decline in cell performance was found to be primarily due to corrosion and thinning of the catalyst layer (or carbon support) during the first 30 min, leading to the dissolution and agglomeration of the platinum catalyst.

  6. Enhanced performance of polybenzimidazole-based high temperature proton exchange membrane fuel cell with gas diffusion electrodes prepared by automatic catalyst spraying under irradiation technique

    NASA Astrophysics Data System (ADS)

    Su, Huaneng; Pasupathi, Sivakumar; Bladergroen, Bernard Jan; Linkov, Vladimir; Pollet, Bruno G.

    2013-11-01

    Gas diffusion electrodes (GDEs) prepared by a novel automatic catalyst spraying under irradiation (ACSUI) technique are investigated for improving the performance of phosphoric acid (PA)-doped polybenzimidazole (PBI) high temperature proton exchange membrane fuel cell (PEMFC). The physical properties of the GDEs are characterized by pore size distribution and scanning electron microscopy (SEM). The electrochemical properties of the membrane electrode assembly (MEA) with the GDEs are evaluated and analyzed by polarization curve, cyclic voltammetry (CV) and electrochemistry impedance spectroscopy (EIS). Effects of PTFE binder content, PA impregnation and heat treatment on the GDEs are investigated to determine the optimum performance of the single cell. At ambient pressure and 160 °C, the maximum power density can reach 0.61 W cm-2, and the current density at 0.6 V is up to 0.38 A cm-2, with H2/air and a platinum loading of 0.5 mg cm-2 on both electrodes. The MEA with the GDEs shows good stability for fuel cell operating in a short term durability test.

  7. Sobol's sensitivity analysis for a fuel cell stack assembly model with the aid of structure-selection techniques

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Cho, Chongdu; Piao, Changhao; Choi, Hojoon

    2016-01-01

    This paper presents a novel method for identifying the main parameters affecting the stress distribution of the components used in assembly modeling of proton exchange membrane fuel cell (PEMFC) stack. This method is a combination of an approximation model and Sobol's method, which allows a fast global sensitivity analysis for a set of uncertain parameters using only a limited number of calculations. Seven major parameters, i.e., Young's modulus of the end plate and the membrane electrode assembly (MEA), the contact stiffness between the MEA and bipolar plate (BPP), the X and Y positions of the bolts, the pressure of each bolt, and the thickness of the end plate, are investigated regarding their effect on four metrics, i.e., the maximum stresses of the MEA, BPP, and end plate, and the stress distribution percentage of the MEA. The analysis reveals the individual effects of each parameter and its interactions with the other parameters. The results show that the X position of a bolt has a major influence on the maximum stresses of the BPP and end plate, whereas the thickness of the end plate has the strongest effect on both the maximum stress and the stress distribution percentage of the MEA.

  8. A review on durability issues and restoration techniques in long-term operations of direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Mehmood, Asad; Scibioh, M. Aulice; Prabhuram, Joghee; An, Myung-Gi; Ha, Heung Yong

    2015-11-01

    Direct methanol fuel cells (DMFCs) remain attractive among advanced energy conversion technologies due to their high energy density and simple system configuration. Although they made an early market entry but failed to attain a large-scale commercialization mainly because of their inferior performance sustainment in lifetime operations and high production costs. There have been lots of R&D efforts made to upgrade the long-term durability of DMFCs to a commercially acceptable standard. These rigorous efforts have been useful in gaining insights about various degradation mechanisms and their origins. This review first briefly describes the recent progress in lifetime enhancement of DMFC technology reported by various groups in academia and industry. Then, it is followed by comprehensive discussions on the major performance degradation routes and associated physico-chemical origins, and influence of operational parameters, together with the methods which have been employed to alleviate and restore the performance losses. Finally, a brief summary of the presented literature survey is provided in conjunction with some possible future research directions.

  9. Which Microbial Communities Are Present? Using Fluorescence In Situ Hybridisation (FISH): Microscopic Techniques for Enumeration of Troublesome Microorganisms in Oil and Fuel Samples

    NASA Astrophysics Data System (ADS)

    Holmkvist, Lars; Østergaard, Jette Johanne; Skovhus, Torben Lund

    Enumeration of microbes involved in souring of oil fields and microbiologically influenced corrosion (MIC) with culture-based methods, usually yield inadequate and contradictory results. Any cultivation step will almost certainly alter the population structure of the sample and thus the results of cultivation analysis are not a good basis for mitigation decisions. The need for methods that are cultivation independent has over the past 10 years facilitated the development of several analytical methods for determination of bacterial identity, quantity, and to some extent function, applied directly to samples of the native population. In this chapter, we demonstrate the features and benefits of applying microscopic techniques to a situation often encountered in the oil and petroleum industry: Control of microbial growth in fuel storage tanks. The methods described in this chapter will focus on direct counts of specific groups of microorganisms with microscopy and these are based on the detection of genetic material and not on culturing.

  10. Use of fission track analysis technique for the determination of MicroBequerel level of 239Pu in urine samples from radiation workers handling MOX fuel.

    PubMed

    Yadav, J R; Rao, D D; Kumar, Ranjeet; Aggarwal, S K

    2011-07-01

    Fission track analysis (FTA) technique for the determination of (239)Pu excreted through urine has been standardized using blank samples, tracer and (239)Pu spikes. Double stage anion exchange separation protocol has been applied and an average radiochemical recovery of (239)Pu of 18% was obtained. An average track registration efficiency of 11 tracks per μBq of (239)Pu, irradiated to 0.35×10(17) neutron fluence was established. Reagent blank urine samples from 11 controlled subjects were analyzed by FTA and an average of 149±14 tracks was obtained. Minimum detectable activity of 34μBqL(-1) of urine sample was obtained and will be useful for monitoring chronic exposure cases handling MOX fuel.

  11. Precise material identification method based on a photon counting technique with correction of the beam hardening effect in X-ray spectra.

    PubMed

    Kimoto, Natsumi; Hayashi, Hiroaki; Asahara, Takashi; Mihara, Yoshiki; Kanazawa, Yuki; Yamakawa, Tsutomu; Yamamoto, Shuichiro; Yamasaki, Masashi; Okada, Masahiro

    2017-03-09

    The aim of our study is to develop a novel material identification method based on a photon counting technique, in which the incident and penetrating X-ray spectra are analyzed. Dividing a 40 kV X-ray spectra into two energy regions, the corresponding linear attenuation coefficients are derived. We can identify the materials precisely using the relationship between atomic number and linear attenuation coefficient through the correction of the beam hardening effect of the X-ray spectra.

  12. Improvement of the technique of identification of electrons and positrons with use of electromagnetic calorimeter of the CLAS detector

    SciTech Connect

    Gevorgyan, N. E.; Dashyan, N. B.; Paremuzyan, R. G.; Stepanyan, S. G.

    2010-01-01

    We study the dependence of the sensitivity of response of the electromagnetic calorimeter of CLAS plant on the momenta of electrons and positrons. We made calculation of this dependence and elaborated a method for its employment in identification of e- and e+. We have shown that the new method of selection of e- and e+ improves the quality of identification by about 10%. We used the experimental data obtained with the plant CLAS of linear accelerator at Jefferson laboratory (USA).

  13. An indirect sensing technique for diesel fuel quantity control. Technical progress report, October 1--December 31, 1998

    SciTech Connect

    MacCarley, C.A.

    1999-01-26

    Work has proceeded intensely with the objective of completing the commercial prototype system prior to the end of the contract period. At the time of this report, testing and refinement of the commercial version of the system has not been completed. During this reporting period, several major milestones were reached and many significant lessons were learned. These are described. The experimental retrofit system has achieved all performance objectives in engine dynamometer tests. The prototype commercial version of the system will begin demonstration service on the first of several Santa Maria Area Transit (SMAT) transit buses on February 1, 1999. The commercial system has been redesignated the Electronic Diesel Smoke Reduction System (EDSRS) replacing the original internal pseudonym ADSC. The focus has been narrowed to a retrofit product suitable for installation on existing mechanically-governed diesel engines. Included in this potential market are almost all diesel-powered passenger cars and light trucks manufactured prior to the introduction of the most recent clean diesel engines equipped with particulate traps and electronic controls. Also included are heavy-duty trucks, transit vehicles, school buses, and agricultural equipment. This system is intended to prevent existing diesel engines from overfueling to the point of visible particulate emissions (smoke), while allowing maximum smoke-limited torque under all operating conditions. The system employs a microcontroller and a specialized exhaust particulate emission sensor to regulate the maximum allowable fuel quantity via an adaptive throttle-limit map. This map specifies a maximum allowable throttle position as a function of engine speed, turbocharger boost pressure and engine coolant temperature. The throttle position limit is mechanized via a servo actuator inserted in the throttle cable leading to the injection pump.

  14. Identification of cytoskeletal elements enclosing the ATP pools that fuel human red blood cell membrane cation pumps.

    PubMed

    Chu, Haiyan; Puchulu-Campanella, Estela; Galan, Jacob A; Tao, W Andy; Low, Philip S; Hoffman, Joseph F

    2012-07-31

    The type of metabolic compartmentalization that occurs in red blood cells differs from the types that exist in most eukaryotic cells, such as intracellular organelles. In red blood cells (ghosts), ATP is sequestered within the cytoskeletal-membrane complex. These pools of ATP are known to directly fuel both the Na(+)/K(+) and Ca(2+) pumps. ATP can be entrapped within these pools either by incubation with bulk ATP or by operation of the phosphoglycerate kinase and pyruvate kinase reactions to enzymatically generate ATP. When the pool is filled with nascent ATP, metabolic labeling of the Na(+)/K(+) or Ca(2+) pump phosphoproteins (E(Na)-P and E(Ca)-P, respectively) from bulk [γ-(32)P]-ATP is prevented until the pool is emptied by various means. Importantly, the pool also can be filled with the fluorescent ATP analog trinitrophenol ATP, as well as with a photoactivatable ATP analog, 8-azido-ATP (N(3)-ATP). Using the fluorescent ATP, we show that ATP accumulates and then disappears from the membrane as the ATP pools are filled and subsequently emptied, respectively. By loading N(3)-ATP into the membrane pool, we demonstrate that membrane proteins that contribute to the pool's architecture can be photolabeled. With the aid of an antibody to N(3)-ATP, we identify these labeled proteins by immunoblotting and characterize their derived peptides by mass spectrometry. These analyses show that the specific peptides that corral the entrapped ATP derive from sequences within β-spectrin, ankyrin, band 3, and GAPDH.

  15. Non-conventional measurement techniques for the determination of some long-lived radionuclides produced ion nuclear fuel: Literature survey

    NASA Astrophysics Data System (ADS)

    Rosenberg, R. J.

    1992-04-01

    The results of a literature survey of nonradiometric analytical techniques for the determination of long lived radionuclides are described. The methods which were considered are accelerator mass spectrometry, inductively coupled plasma mass spectrometry, thermal ionization mass spectrometry, resonance ionization spectrometry, resonance ionization mass spectrometry, and neutron activation analysis. Neutron activation analysis was commonly used for the determination of I-129 and Np-237 in environmental samples. Inductively coupled mass spectrometry seems likely to become the method of choice for the determination of Tc-99, Np-237, and Pu isotopes. The methods are discussed and the chemical separation methods are described.

  16. A Dual-Line Detection Rayleigh Scattering Diagnostic Technique for the Combustion of Hydrocarbon Fuels and Filtered UV Rayleigh Scattering for Gas Velocity Measurements

    NASA Technical Reports Server (NTRS)

    Otugen, M. Volkan

    1997-01-01

    Non-intrusive techniques for the dynamic measurement of gas flow properties such as density, temperature and velocity, are needed in the research leading to the development of new generation high-speed aircraft. Accurate velocity, temperature and density data obtained in ground testing and in-flight measurements can help understand the flow physics leading to transition and turbulence in supersonic, high-altitude flight. Such non-intrusive measurement techniques can also be used to study combustion processes of hydrocarbon fuels in aircraft engines. Reliable, time and space resolved temperature measurements in various combustor configurations can lead to a better understanding of high temperature chemical reaction dynamics thus leading to improved modeling and better prediction of such flows. In view of this, a research program was initiated at Polytechnic University's Aerodynamics Laboratory with support from NASA Lewis Research Center through grants NAG3-1301 and NAG3-1690. The overall objective of this program has been to develop laser-based, non-contact, space- and time-resolved temperature and velocity measurement techniques. In the initial phase of the program a ND:YAG laser-based dual-line Rayleigh scattering technique was developed and tested for the accurate measurement of gas temperature in the presence of background laser glare. Effort was next directed towards the development of a filtered, spectrally-resolved Rayleigh/Mie scattering technique with the objective of developing an interferometric method for time-frozen velocity measurements in high-speed flows utilizing the uv line of an ND:YAG laser and an appropriate molecular absorption filter. This effort included both a search for an appropriate filter material for the 266 nm laser line and the development and testing of several image processing techniques for the fast processing of Fabry-Perot images for velocity and temperature information. Finally, work was also carried out for the development of

  17. The National Fuel End-Use Efficiency Field Test: Energy Savings and Performance of an Improved Energy Conservation Measure Selection Technique

    SciTech Connect

    Ternes, M.P.

    1991-01-01

    -weatherization water-heating energy consumption and 17% of predicted). The overall BCR for the ECMs was 1.24 using the same assumptions followed in the selection technique: no administration cost, residential fuel costs, real discount rate of 0.05, and no fuel escalation. A weatherization program would be cost effective at an administration cost less than $335/house. On average, the indoor temperature increased in the audit houses by 0.5 F following weatherization and decreased in the control houses by 0.1 F. The following conclusions regarding the measure selection technique were drawn from the study: (1) a significant cost-effective level of energy savings resulted, (2) space-heating energy savings and total installation costs were predicted with reasonable accuracy, indicating that the technique's recommendations are justified, (3) effectiveness improved from earlier versions and can continue to be improved, and (4) a wider variety of ECMs were installed compared to most weatherization programs. An additional conclusion of the study was that a significant indoor temperature take-back effect had not occurred.

  18. MALDI-TOF MS identification of anaerobic bacteria: assessment of pre-analytical variables and specimen preparation techniques.

    PubMed

    Hsu, Yen-Michael S; Burnham, Carey-Ann D

    2014-06-01

    Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has emerged as a tool for identifying clinically relevant anaerobes. We evaluated the analytical performance characteristics of the Bruker Microflex with Biotyper 3.0 software system for identification of anaerobes and examined the impact of direct formic acid (FA) treatment and other pre-analytical factors on MALDI-TOF MS performance. A collection of 101 anaerobic bacteria were evaluated, including Clostridium spp., Propionibacterium spp., Fusobacterium spp., Bacteroides spp., and other anaerobic bacterial of clinical relevance. The results of our study indicate that an on-target extraction with 100% FA improves the rate of accurate identification without introducing misidentification (P<0.05). In addition, we modify the reporting cutoffs for the Biotyper "score" yielding acceptable identification. We found that a score of ≥1.700 can maximize the rate of identification. Of interest, MALDI-TOF MS can correctly identify anaerobes grown in suboptimal conditions, such as on selective culture media and following oxygen exposure. In conclusion, we report on a number of simple and cost-effective pre- and post-analytical modifications could enhance MALDI-TOF MS identification for anaerobic bacteria.

  19. Microscale Fuel Cells

    SciTech Connect

    Holladay, Jamie D.; Viswanathan, Vish V.

    2005-11-03

    Perhaprs some of the most innovative work on fuel cells has been the research dedicated to applying silicon fabrication techniques to fuel cells technology creating low power microscale fuel cells applicable to microelectro mechanical systems (MEMS), microsensors, cell phones, PDA’s, and other low power (0.001 to 5 We) applications. In this small power range, fuel cells offer the decoupling of the energy converter from the energy storage which may enable longer operating times and instant or near instant charging. To date, most of the microscale fuel cells being developed have been based on proton exchange membrane fuel cell technology (PEMFC) or direct methanol fuel cell (DMFC) technology. This section will discuss requirements and considerations that need to be addressed in the development of microscale fuel cells, as well as some proposed designs and fabrication strategies.

  20. DNA barcoding, species-specific PCR and real-time PCR techniques for the identification of six Tribolium pests of stored products.

    PubMed

    Zhang, Tao; Wang, Yi-Jiao; Guo, Wei; Luo, Dan; Wu, Yi; Kučerová, Zuzana; Stejskal, Václav; Opit, George; Cao, Yang; Li, Fu-Jun; Li, Zhi-Hong

    2016-06-29

    Flour beetles of the genus Tribolium Macleay (Coleoptera: Tenebrionidae) are important stored product pests in China and worldwide. They are often found or are intercepted in grain depots, flour mills, and entry-exit ports, etc. Traditionally, Tribolium species are identified according to the morphological characteristics of the adult. However, it is almost impossible to rapidly identify adult fragments and non-adult stages based on external morphological characteristics. Molecular techniques for the rapid and accurate identification of Tribolium species are required, particularly for pest monitoring and the quarantine of stored products pests. Here, we establish DNA barcoding, species-specific PCR, and real-time PCR techniques for the identification of six stored-product pest Tribolium species including T. castaneum, T. confusum, T. destructor, T. madens, T. freemani and T. brevicornis. We detected the mitochondrial DNA cytochrome oxidase subunit I (COI) barcodes for Tribolium from 18 geographic populations and 101 individuals, built a Tribolium DNA barcode library, and designed species-specific primers and TaqMan probes for the above six Tribolium species. The three techniques were applied to identify Tribolium collected from stored samples and samples captured from quarantine ports. The results demonstrated that three techniques were all able to identify the six species of Tribolium both rapidly and accurately.

  1. DNA barcoding, species-specific PCR and real-time PCR techniques for the identification of six Tribolium pests of stored products

    PubMed Central

    Zhang, Tao; Wang, Yi-Jiao; Guo, Wei; Luo, Dan; Wu, Yi; Kučerová, Zuzana; Stejskal, Václav; Opit, George; Cao, Yang; Li, Fu-Jun; Li, Zhi-Hong

    2016-01-01

    Flour beetles of the genus Tribolium Macleay (Coleoptera: Tenebrionidae) are important stored product pests in China and worldwide. They are often found or are intercepted in grain depots, flour mills, and entry-exit ports, etc. Traditionally, Tribolium species are identified according to the morphological characteristics of the adult. However, it is almost impossible to rapidly identify adult fragments and non-adult stages based on external morphological characteristics. Molecular techniques for the rapid and accurate identification of Tribolium species are required, particularly for pest monitoring and the quarantine of stored products pests. Here, we establish DNA barcoding, species-specific PCR, and real-time PCR techniques for the identification of six stored-product pest Tribolium species including T. castaneum, T. confusum, T. destructor, T. madens, T. freemani and T. brevicornis. We detected the mitochondrial DNA cytochrome oxidase subunit I (COI) barcodes for Tribolium from 18 geographic populations and 101 individuals, built a Tribolium DNA barcode library, and designed species-specific primers and TaqMan probes for the above six Tribolium species. The three techniques were applied to identify Tribolium collected from stored samples and samples captured from quarantine ports. The results demonstrated that three techniques were all able to identify the six species of Tribolium both rapidly and accurately. PMID:27352804

  2. [application of the analytical transmission electron microscopy techniques for detection, identification and visualization of localization of nanoparticles of titanium and cerium oxides in mammalian cells].

    PubMed

    Shebanova, A S; Bogdanov, A G; Ismagulova, T T; Feofanov, A V; Semenyuk, P I; Muronets, V I; Erokhina, M V; Onishchenko, G E; Kirpichnikov, M P; Shaitan, K V

    2014-01-01

    This work represents the results of the study on applicability of the modern methods of analytical transmission electron microscopy for detection, identification and visualization of localization of nanoparticles of titanium and cerium oxides in A549 cell, human lung adenocarcinoma cell line. A comparative analysis of images of the nanoparticles in the cells obtained in the bright field mode of transmission electron microscopy, under dark-field scanning transmission electron microscopy and high-angle annular dark field scanning transmission electron was performed. For identification of nanoparticles in the cells the analytical techniques, energy-dispersive X-ray spectroscopy and electron energy loss spectroscopy, were compared when used in the mode of obtaining energy spectrum from different particles and element mapping. It was shown that the method for electron tomography is applicable to confirm that nanoparticles are localized in the sample but not coated by contamination. The possibilities and fields of utilizing different techniques for analytical transmission electron microscopy for detection, visualization and identification of nanoparticles in the biological samples are discussed.

  3. Techniques for determining pressure in the hydrothermal diamond- anvil cell: behavior and identification of ice polymorphs (I, III, V, VI)

    USGS Publications Warehouse

    Haselton, H.T.; I-Ming, Chou; Shen, A.H.; Bassett, William A.

    1995-01-01

    For H2O densities > 1.0 g/cm3, a determination of the ice melting temperature provides the density information required to calculate the P-T path that the sample in a hydrothermal diamond-anvil cell follows when the sample is heated isochorically. The principal difficulty is the identification of the polymorph because of metastable behavior of ices in the H2O system. Usually, an accurate identification of the liquidus ice phase can be made without analytical instrumentation and requires only careful observations. -Authors

  4. Prediction model of earthquake with the identification of earthquake source polarity mechanism through the focal classification using ANFIS and PCA technique

    NASA Astrophysics Data System (ADS)

    Setyonegoro, W.

    2016-05-01

    Incidence of earthquake disaster has caused casualties and material in considerable amounts. This research has purposes to predictability the return period of earthquake with the identification of the mechanism of earthquake which in case study area in Sumatra. To predict earthquakes which training data of the historical earthquake is using ANFIS technique. In this technique the historical data set compiled into intervals of earthquake occurrence daily average in a year. Output to be obtained is a model return period earthquake events daily average in a year. Return period earthquake occurrence models that have been learning by ANFIS, then performed the polarity recognition through image recognition techniques on the focal sphere using principal component analysis PCA method. The results, model predicted a return period earthquake events for the average monthly return period showed a correlation coefficient 0.014562.

  5. Radio Frequency Identification (RFID) in medical environment: Gaussian Derivative Frequency Modulation (GDFM) as a novel modulation technique with minimal interference properties.

    PubMed

    Rieche, Marie; Komenský, Tomás; Husar, Peter

    2011-01-01

    Radio Frequency Identification (RFID) systems in healthcare facilitate the possibility of contact-free identification and tracking of patients, medical equipment and medication. Thereby, patient safety will be improved and costs as well as medication errors will be reduced considerably. However, the application of RFID and other wireless communication systems has the potential to cause harmful electromagnetic disturbances on sensitive medical devices. This risk mainly depends on the transmission power and the method of data communication. In this contribution we point out the reasons for such incidents and give proposals to overcome these problems. Therefore a novel modulation and transmission technique called Gaussian Derivative Frequency Modulation (GDFM) is developed. Moreover, we carry out measurements to show the inteference properties of different modulation schemes in comparison to our GDFM.

  6. ION COMPOSITION ELUCIDATION (ICE): A HIGH RESOLUTION MASS SPECTROMETRIC TECHNIQUE FOR CHARACTERIZATION AND IDENTIFICATION OF ORGANIC COMPOUNDS

    EPA Science Inventory

    Identifying compounds found in the environment without knowledge of their origin is a very difficult analytical problem. Comparison of the low resolution mass spectrum of a compound with those in the NIST or Wiley mass spectral libraries can provide a tentative identification whe...

  7. Application of multivariate analysis techniques for the identification of sulphates from Raman spectra - Implication for ExoMars

    NASA Astrophysics Data System (ADS)

    Lopez-Reyes, G.; Sobron, P.; Lafuente, B.; Rull, F.

    2012-09-01

    We present results of the application of Principal Component Analysis (PCA), Partial Least-Squares Regression (PLSR) and Artificial Neural Networks (ANN) for the identification of sulphates in pure and mixed samples. The studied samples include Fe-, Mg-, Ca-, and Na sulphates.

  8. 40 CFR Table 6 to Subpart IIIii of... - Examples of Techniques for Equipment Problem Identification, Leak Detection and Mercury Vapor

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Problem Identification, Leak Detection and Mercury Vapor 6 Table 6 to Subpart IIIII of Part 63 Protection... Hazardous Air Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali Plants Pt. 63, Subpt. IIIII..., Leak Detection and Mercury Vapor As stated in Tables 1 and 2 of Subpart IIIII, examples of...

  9. 40 CFR Table 6 to Subpart IIIii of... - Examples of Techniques for Equipment Problem Identification, Leak Detection and Mercury Vapor

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Problem Identification, Leak Detection and Mercury Vapor 6 Table 6 to Subpart IIIII of Part 63 Protection... Hazardous Air Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali Plants Pt. 63, Subpt. IIIII..., Leak Detection and Mercury Vapor As stated in Tables 1 and 2 of Subpart IIIII, examples of...

  10. Three-dimensional electron diffraction as a complementary technique to powder X-ray diffraction for phase identification and structure solution of powders.

    PubMed

    Yun, Yifeng; Zou, Xiaodong; Hovmöller, Sven; Wan, Wei

    2015-03-01

    Phase identification and structure determination are important and widely used techniques in chemistry, physics and materials science. Recently, two methods for automated three-dimensional electron diffraction (ED) data collection, namely automated diffraction tomography (ADT) and rotation electron diffraction (RED), have been developed. Compared with X-ray diffraction (XRD) and two-dimensional zonal ED, three-dimensional ED methods have many advantages in identifying phases and determining unknown structures. Almost complete three-dimensional ED data can be collected using the ADT and RED methods. Since each ED pattern is usually measured off the zone axes by three-dimensional ED methods, dynamic effects are much reduced compared with zonal ED patterns. Data collection is easy and fast, and can start at any arbitrary orientation of the crystal, which facilitates automation. Three-dimensional ED is a powerful technique for structure identification and structure solution from individual nano- or micron-sized particles, while powder X-ray diffraction (PXRD) provides information from all phases present in a sample. ED suffers from dynamic scattering, while PXRD data are kinematic. Three-dimensional ED methods and PXRD are complementary and their combinations are promising for studying multiphase samples and complicated crystal structures. Here, two three-dimensional ED methods, ADT and RED, are described. Examples are given of combinations of three-dimensional ED methods and PXRD for phase identification and structure determination over a large number of different materials, from Ni-Se-O-Cl crystals, zeolites, germanates, metal-organic frameworks and organic compounds to intermetallics with modulated structures. It is shown that three-dimensional ED is now as feasible as X-ray diffraction for phase identification and structure solution, but still needs further development in order to be as accurate as X-ray diffraction. It is expected that three-dimensional ED methods

  11. Three-dimensional electron diffraction as a complementary technique to powder X-ray diffraction for phase identification and structure solution of powders

    PubMed Central

    Yun, Yifeng; Zou, Xiaodong; Hovmöller, Sven; Wan, Wei

    2015-01-01

    Phase identification and structure determination are important and widely used techniques in chemistry, physics and materials science. Recently, two methods for automated three-dimensional electron diffraction (ED) data collection, namely automated diffraction tomography (ADT) and rotation electron diffraction (RED), have been developed. Compared with X-ray diffraction (XRD) and two-dimensional zonal ED, three-dimensional ED methods have many advantages in identifying phases and determining unknown structures. Almost complete three-dimensional ED data can be collected using the ADT and RED methods. Since each ED pattern is usually measured off the zone axes by three-dimensional ED methods, dynamic effects are much reduced compared with zonal ED patterns. Data collection is easy and fast, and can start at any arbitrary orientation of the crystal, which facilitates automation. Three-dimensional ED is a powerful technique for structure identification and structure solution from individual nano- or micron-sized particles, while powder X-ray diffraction (PXRD) provides information from all phases present in a sample. ED suffers from dynamic scattering, while PXRD data are kinematic. Three-dimensional ED methods and PXRD are complementary and their combinations are promising for studying multiphase samples and complicated crystal structures. Here, two three-dimensional ED methods, ADT and RED, are described. Examples are given of combinations of three-dimensional ED methods and PXRD for phase identification and structure determination over a large number of different materials, from Ni–Se–O–Cl crystals, zeolites, germanates, metal–organic frameworks and organic compounds to intermetallics with modulated structures. It is shown that three-dimensional ED is now as feasible as X-ray diffraction for phase identification and structure solution, but still needs further development in order to be as accurate as X-ray diffraction. It is expected that three-dimensional ED

  12. Evaluation of methods for rapid determination of freezing point of aviation fuels

    NASA Technical Reports Server (NTRS)

    Mathiprakasam, B.

    1982-01-01

    Methods for identification of the more promising concepts for the development of a portable instrument to rapidly determine the freezing point of aviation fuels are described. The evaluation process consisted of: (1) collection of information on techniques previously used for the determination of the freezing point, (2) screening and selection of these techniques for further evaluation of their suitability in a portable unit for rapid measurement, and (3) an extensive experimental evaluation of the selected techniques and a final selection of the most promising technique. Test apparatuses employing differential thermal analysis and the change in optical transparency during phase change were evaluated and tested. A technique similar to differential thermal analysis using no reference fuel was investigated. In this method, the freezing point was obtained by digitizing the data and locating the point of inflection. Results obtained using this technique compare well with those obtained elsewhere using different techniques. A conceptual design of a portable instrument incorporating this technique is presented.

  13. User's manual for a parameter identification technique. [with options for model simulation for fixed input forcing functions and identification from wind tunnel and flight measurements

    NASA Technical Reports Server (NTRS)

    Kanning, G.

    1975-01-01

    A digital computer program written in FORTRAN is presented that implements the system identification theory for deterministic systems using input-output measurements. The user supplies programs simulating the mathematical model of the physical plant whose parameters are to be identified. The user may choose any one of three options. The first option allows for a complete model simulation for fixed input forcing functions. The second option identifies up to 36 parameters of the model from wind tunnel or flight measurements. The third option performs a sensitivity analysis for up to 36 parameters. The use of each option is illustrated with an example using input-output measurements for a helicopter rotor tested in a wind tunnel.

  14. Full-fledged proteomic analysis of bioactive wheat amylase inhibitors by a 3-D analytical technique: Identification of new heterodimeric aggregation states.

    PubMed

    Zoccatelli, Gianni; Dalla Pellegrina, Chiara; Mosconi, Silvia; Consolini, Marica; Veneri, Gianluca; Chignola, Roberto; Peruffo, Angelo; Rizzi, Corrado

    2007-02-01

    Wheat proteinaceous alpha-amylase inhibitors (alpha-AIs) are increasingly investigated for their agronomical role as natural defence molecules of plants against the attack of insects and pests, but also for their effects on human health. The wheat genomes code for several bioactive alpha-AIs that share sequence homology, but differ in their specificity against alpha-amylases from different species and for their aggregation states. Wheat alpha-AIs are traditionally classified as belonging to the three classes of tetrameric, homodimeric and monomeric forms, each class being constituted by a number of polypeptides that display different electrophoretic mobilities. Here we describe a proteomic approach for the identification of bioactive alpha-AIs from wheat and, in particular, a 3-D technique that allows to best identify and characterize the dimeric fraction. The technique takes advantage of the thermal resistance of alpha-AIs (resistant to T > 70 degrees C) and consists in the separation of protein mixtures by 2-D polyacrylamide/starch electrophoresis under nondissociating PAGE (ND-PAGE, first dimension) and dissociating (urea-PAGE or U-PAGE second dimension) conditions, followed by in-gel spontaneous reaggregation of protein complexes and identification of the alpha-amylase inhibitory activity (antizymogram, third dimension) using enzymes from human salivary glands and from the larvae of Tenebrio molitor coleopter (yellow mealworm). Dimeric alpha-AIs from Triticum aestivum (bread wheat) were observed to exist as heterodimers. The formation of heterodimeric complexes was also confirmed by in vitro reaggregation assays carried out on RP-HPLC purified wheat dimeric alpha-AIs, and their bioactivity assayed by antizymogram analysis. The present 3-D analytical technique can be exploited for fast, full-fledged identification and characterization of wheat alpha-AIs.

  15. Trialling a novel peat fuel extraction and reclamation technique: Vegetation recovery and peatland-atmosphere carbon fluxes

    NASA Astrophysics Data System (ADS)

    Morris, Paul J.; Wihelm, Lana P.; Solondz, Danielle M.; Waddington, J. Mike

    2013-04-01

    Most existing methods for peat extraction are highly environmentally damaging and commonly convert extracted peatlands from slow but persistent sinks of atmospheric carbon to strong sources. Furthermore, the removal of the live moss surface during peat extraction greatly reduces these ecosystems' resilience and often prevents the successful re-establishment of peatland plants. We describe an experimental trial of a new extraction method, called the peat-block reclamation (PBR) method (also known as wet harvesting, the floating-block method, and the acrotelm-transplant method) that is designed to be less environmentally damaging. The PBR method involves removing the upper 0.3 to 0.5 m of peat, including the live vegetation mat, and setting it aside. Peat is then extracted from below this depth and removed for processing. The conserved surficial peat blocks and the live vegetation are then immediately transplanted back into the extraction pit. We performed a small (12 × 12 m) experimental trial of PBR at a poor fen in northern Ontario, Canada. Usually the extraction pit is drained or pumped of soil water; instead we left the pit inundated so that the transplanted blocks float low in a shallow pool. We wished to investigate whether this alteration to the method would promote the post-extraction maintenance of a healthy moss layer and the re-establishment of vascular plants. We also monitored peatland-atmosphere carbon gas fluxes from the plot and compared them to a nearby unaltered reference plot. Our measurements over two summers indicate mixed results. The wet conditions in the extraction pit appear to have suppressed CO2 fluxes from the experimental plot (average net ecosystem exchange of 1.4 g CO2 m-2 d-1), which were intermediate between those from hummocks (-1.5 g CO2 m-2 d-1) and hollows (2.8 g CO2 m-2 d-1) in the reference plot. The low CO2 fluxes represent a major potential advantage for PBR over existing techniques, which commonly cause large increases in

  16. Reverse Sample Genome Probing, a New Technique for Identification of Bacteria in Environmental Samples by DNA Hybridization, and Its Application to the Identification of Sulfate-Reducing Bacteria in Oil Field Samples

    PubMed Central

    Voordouw, Gerrit; Voordouw, Johanna K.; Karkhoff-Schweizer, Roxann R.; Fedorak, Phillip M.; Westlake, Donald W. S.

    1991-01-01

    A novel method for the identification of bacteria in environmental samples by DNA hybridization is presented. It is based on the fact that, even within a genus, the genomes of different bacteria may have little overall sequence homology. This allows the use of the labeled genomic DNA of a given bacterium (referred to as a “standard”) to probe for its presence and that of bacteria with highly homologous genomes in total DNA obtained from an environmental sample. Alternatively, total DNA extracted from the sample can be labeled and used to probe filters on which denatured chromosomal DNA from relevant bacterial standards has been spotted. The latter technique is referred to as reverse sample genome probing, since it is the reverse of the usual practice of deriving probes from reference bacteria for analyzing a DNA sample. Reverse sample genome probing allows identification of bacteria in a sample in a single step once a master filter with suitable standards has been developed. Application of reverse sample genome probing to the identification of sulfate-reducing bacteria in 31 samples obtained primarily from oil fields in the province of Alberta has indicated that there are at least 20 genotypically different sulfate-reducing bacteria in these samples. Images PMID:16348574

  17. Fossil fuels -- future fuels

    SciTech Connect

    1998-03-01

    Fossil fuels -- coal, oil, and natural gas -- built America`s historic economic strength. Today, coal supplies more than 55% of the electricity, oil more than 97% of the transportation needs, and natural gas 24% of the primary energy used in the US. Even taking into account increased use of renewable fuels and vastly improved powerplant efficiencies, 90% of national energy needs will still be met by fossil fuels in 2020. If advanced technologies that boost efficiency and environmental performance can be successfully developed and deployed, the US can continue to depend upon its rich resources of fossil fuels.

  18. Molybdenum-base cermet fuel development

    NASA Astrophysics Data System (ADS)

    Pilger, James P.; Gurwell, William E.; Moss, Ronald W.; White, George D.; Seifert, David A.

    Development of a multimegawatt (MMW) space nuclear power system requires identification and resolution of several technical feasibility issues before selecting one or more promising system concepts. Demonstration of reactor fuel fabrication technology is required for cermet-fueled reactor concepts. The MMW reactor fuel development activity at Pacific Northwest Laboratory (PNL) is focused on producing a molybdenum-matrix uranium-nitride (UN) fueled cermte. This cermet is to have a high matrix density (greater than or equal to 95 percent) for high strength and high thermal conductance coupled with a high particle (UN) porosity (approximately 25 percent) for retention of released fission gas at high burnup. Fabrication process development involves the use of porous TiN microspheres as surrogate fuel material until porous Un microspheres become available. Process development was conducted in the areas of microsphere synthesis, particle sealing/coating, and high-energy-rate forming (HERF) and the vacuum hot press consolidation techniques. This paper summarizes the status of these activities.

  19. Advanced combined application of micro-X-ray diffraction/micro-X-ray fluorescence with conventional techniques for the identification of pictorial materials from Baroque Andalusia paintings.

    PubMed

    Herrera, L K; Montalbani, S; Chiavari, G; Cotte, M; Solé, V A; Bueno, J; Duran, A; Justo, A; Perez-Rodriguez, J L

    2009-11-15

    The process of investigating paintings includes the identification of materials to solve technical and historical art questions, to aid in the deduction of the original appearance, and in the establishment of the chemical and physical conditions for adequate restoration and conservation. In particular, we have focused on the identification of several samples taken from six famous canvases painted by Pedro Atanasio Bocanegra, who created a very special collection depicting the life of San Ignacio, which is located in the church of San Justo y Pastor of Granada, Spain. The characterization of the inorganic and organic compounds of the textiles, preparation layers, and pictorial layers have been carried out using an XRD diffractometer, SEM observations, EDX spectrometry, FT-IR spectrometry (both in reflection and transmission mode), pyrolysis/gas chromatography/mass spectrometry and synchrotron-based micro-X-ray techniques. In this work, the advantages over conventional X-ray diffraction of using combined synchrotron-based micro-X-ray diffraction and micro-X-ray fluorescence in the identification of multi-layer paintings is demonstrated.

  20. Inspection procedures for experimental fuel production

    NASA Astrophysics Data System (ADS)

    Campsie, I. C.; Rattray, H. D.

    1988-04-01

    This paper describes the inspection procedures used in the development and manufacture of experimental fuel elements and their components. The examples quoted mainly apply to the PFR experimental fuel programme, although for well over a quarter of a century the procedures and techniques have been progressively developed and applied to the Magnox, SGHW, AGR, HTR, PFR and PWR fuel development programmes undertaken at the UKAEA's Springfields and Windscale Nuclear Power Development Laboratories. In contrast to production runs involving large numbers of standard components, experimental fuel is often assembled from components which, while they may look alike, may have design and material variations. Thus in addition to normal batching and bonding operations, great emphasis has to be placed on dimensional inspection, material testing and the individual identification of all items, thus maintaining traceability throughout all operations. The quality and performance of experimental items are often evaluated comparing pre- and post-test dimensional or NDT measurements. In the case of irradiation tests, several years can elapse between the measurements, therefore it is essential to ensure the reproducibility and compatibility of pre- and post-test measuring techniques and the traceability of all measured data and standards.

  1. Protein identification and quantification from riverbank grape, Vitis riparia: Comparing SDS-PAGE and FASP-GPF techniques for shotgun proteomic analysis.

    PubMed

    George, Iniga S; Fennell, Anne Y; Haynes, Paul A

    2015-09-01

    Protein sample preparation optimisation is critical for establishing reproducible high throughput proteomic analysis. In this study, two different fractionation sample preparation techniques (in-gel digestion and in-solution digestion) for shotgun proteomics were used to quantitatively compare proteins identified in Vitis riparia leaf samples. The total number of proteins and peptides identified were compared between filter aided sample preparation (FASP) coupled with gas phase fractionation (GPF) and SDS-PAGE methods. There was a 24% increase in the total number of reproducibly identified proteins when FASP-GPF was used. FASP-GPF is more reproducible, less expensive and a better method than SDS-PAGE for shotgun proteomics of grapevine samples as it significantly increases protein identification across biological replicates. Total peptide and protein information from the two fractionation techniques is available in PRIDE with the identifier PXD001399 (http://proteomecentral.proteomexchange.org/dataset/PXD001399).

  2. Selected Bioinformatic Tools and MS (MALDI-TOF, PMF) Techniques Used in the Strategy for the Identification of Oat Proteins After 2-DE.

    PubMed

    Szerszunowicz, Iwona; Nałęcz, Dorota; Dziuba, Marta

    2017-01-01

    Computer analysis of protein maps obtained from the separation of proteins with two-dimensional polyacrylamide gel electrophoresis (2-DE), in combination with mass spectrometry (MS) analysis and selected bioinformatic tools is used in the strategy for the identification of oat proteins. In proteomic research the most often used MS technique is the combination of ion sources: matrix-assisted laser desorption/ionization (MALDI) and the analyzer of the time of flight (TOF), i.e., MALDI-TOF MS.This chapter describes the possibilities of the use of selected bioinformatic tools (UniProtKB database, ProtParam, Compute pI/MW programs) for initial identification of separated oat proteins (especially prolamin fractions) with the 2-DE technique. Also the procedure of preparation of samples obtained from cut out protein spots for analysis with the MALDI-TOF MS and peptide mass fingerprinting (PMF) technique is presented.Among oat prolamins separated with the 2-DE technique (see Chapter 17 ), 13 protein spots are considered to be the most characteristic (range of MW 27.0-34.6 kDa, pI 5.7-7.6) for this fraction of proteins. Among them there are four protein spots (MW 27.0-28.0 kDa) and two spots (MW 31.4-32.1 kDa) which can correspond to avenins (Accession numbers (AC) in UniProtKB: L0L5I0, I4EP88, I4EP64, L0L4I8 and F2Q9W5, L0L6J0, respectively).

  3. Improving the sterile sperm identification method for its implementation in the Area-wide Sterile Insect Technique Program against Ceratitis capitata (Diptera: Tephritidae) in Spain.

    PubMed

    Juan-Blasco, M; Urbaneja, A; San Andrés, V; Castañera, P; Sabater-Muñoz, B

    2013-12-01

    The success of sterile males in area-wide sterile insect technique (aw-SIT) programs against Ceratitis capitata (Wiedemann) is currently measured by using indirect methods as the wild:sterile male ratio captured in monitoring traps. In the past decade, molecular techniques have been used to improve these methods. The development of a polymerase chain reaction-restriction fragment-length polymorphism-based method to identify the transfer of sterile sperm to wild females, the target of SIT, was considered a significant step in this direction. This method relies on identification of sperm by detecting the presence of Y chromosomes in spermathecae DNA extract complemented by the identification of the genetic origin of this sperm: Vienna-8 males or wild haplotype. However, the application of this protocol to aw-SIT programs is limited by handling time and personnel cost. The objective of this work was to obtain a high-throughput protocol to facilitate the routine measurement in a pest population of sterile sperm presence in wild females. The polymerase chain reaction-restriction fragment-length polymorphism markers previously developed were validated in Mediterranean fruit fly samples collected from various locations worldwide. A laboratory protocol previously published was modified to allow for the analysis of more samples at the same time. Preservation methods and preservation times commonly used for Mediterranean fruit fly female samples were assessed for their influence on the correct molecular detection of sterile sperm. This high-throughput methodology, as well as the results of sample management presented here, provide a robust, efficient, fast, and economical sterile sperm identification method ready to be used in all Mediterranean fruit fly SIT programs.

  4. Assessment of some problematic factors in facial image identification using a 2D/3D superimposition technique.

    PubMed

    Atsuchi, Masaru; Tsuji, Akiko; Usumoto, Yosuke; Yoshino, Mineo; Ikeda, Noriaki

    2013-09-01

    The number of criminal cases requiring facial image identification of a suspect has been increasing because a surveillance camera is installed everywhere in the city and furthermore, the intercom with the recording function is installed in the home. In this study, we aimed to analyze the usefulness of a 2D/3D facial image superimposition system for image identification when facial aging, facial expression, and twins are under consideration. As a result, the mean values of the average distances calculated from the 16 anatomical landmarks between the 3D facial images of the 50s groups and the 2D facial images of the 20s, 30s, and 40s groups were 2.6, 2.3, and 2.2mm, respectively (facial aging). The mean values of the average distances calculated from 12 anatomical landmarks between the 3D normal facial images and four emotional expressions were 4.9 (laughter), 2.9 (anger), 2.9 (sadness), and 3.6mm (surprised), respectively (facial expressions). The average distance obtained from 11 anatomical landmarks between the same person in twins was 1.1mm, while the average distance between different person in twins was 2.0mm (twins). Facial image identification using the 2D/3D facial image superimposition system demonstrated adequate statistical power and identified an individual with high accuracy, suggesting its usefulness. However, computer technology concerning video image processing and superimpose progress, there is a need to keep familiar with the morphology and anatomy as its base.

  5. GC/MS technique and AMDIS software application in identification of hydrophobic compounds of grasshoppers' abdominal secretion (Chorthippus spp.).

    PubMed

    Buszewska-Forajta, Magdalena; Bujak, Renata; Yumba-Mpanga, Arlette; Siluk, Danuta; Kaliszan, Roman

    2015-01-01

    The automated mass spectral deconvolution and identification system (AMDIS) is a modern analytical tool, mostly used as a data processing method in environmental studies. The most attractive feature of that software is a fast, automatic data processing, which includes removal of interferences from the overlapping peaks and purification of the obtained mass spectra. The identification of analytes is based on their retention time and retention index and on comparison of the spectra obtained in GC/MS analysis with the spectra from the library of the National Institute of Standards and Technology (NIST). The main aim of the study reported was to elaborate and test a new data processing method with the use of AMDIS software for identification of lipidomic compounds present in the grasshopper's abdominal secretion. For the first time to the best of our knowledge, we have demonstrated the usage of AMDIS in a lipidomic study concerning a complex insect matrix. The samples processed with AMDIS software were analyzed with the use of GC/MS in order to determine the main fatty components of grasshoppers' abdominal secretion. The purification, concentration and fractionation of compounds present in a complex insect matrix were investigated with the use of liquid-liquid extraction as a pretreatment procedure. Moreover, a double-step derivatization process was carried out in order to obtain more volatile and stable derivatives of polar, non-volatile components of insects' secretion. This process, necessary for GC/MS analysis, was performed with the use of methoxyamine hydrochloride dissolved in pyridine and a mixture of bis-N-O-trimethylsilyl trifluoroacetamide (BSTFA) and chlorotrimethylsilane (TMCS). As a result, we obtained a fast, automatic method based on the use of AMDIS software, which enabled identification of 28 analytes, mainly fatty compounds. Moreover, 10 compounds out of 28 were determined to appear with 100% frequency in the tested samples, namely: seven fatty acids

  6. Reliability of clinical diagnosis and laboratory testing techniques currently used for identification of canine parvovirus enteritis in clinical settings.

    PubMed

    Faz, Mirna; Martínez, José Simón; Quijano-Hernández, Israel; Fajardo, Raúl

    2017-01-24

    Canine parvovirus type 2 (CPV-2) is the main etiological agent of viral enteritis in dogs. Actually in literature, CPV-2 has been reported with clinical signs that vary from the classical disease, and immunochromatography test and PCR technique have been introduced to veterinary hospitals to confirm CPV-2 diagnosis and other infections. However, the reliability of these techniques has been poorly analyzed. In this study, we evaluated the sensitivity and specificity of veterinary clinical diagnosis, immunochromatography test and PCR technique. Our data indicate that variations in the clinical signs of CPV-2 complicate the gathering of an appropriate diagnosis; and immunochromatography test and PCR technique do not have adequate sensitivity to diagnose positive cases.

  7. Reliability of clinical diagnosis and laboratory testing techniques currently used for identification of canine parvovirus enteritis in clinical settings

    PubMed Central

    FAZ, Mirna; MARTÍNEZ, José Simón; QUIJANO-HERNÁNDEZ, Israel; FAJARDO, Raúl

    2016-01-01

    Canine parvovirus type 2 (CPV-2) is the main etiological agent of viral enteritis in dogs. Actually in literature, CPV-2 has been reported with clinical signs that vary from the classical disease, and immunochromatography test and PCR technique have been introduced to veterinary hospitals to confirm CPV-2 diagnosis and other infections. However, the reliability of these techniques has been poorly analyzed. In this study, we evaluated the sensitivity and specificity of veterinary clinical diagnosis, immunochromatography test and PCR technique. Our data indicate that variations in the clinical signs of CPV-2 complicate the gathering of an appropriate diagnosis; and immunochromatography test and PCR technique do not have adequate sensitivity to diagnose positive cases. PMID:27818461

  8. 49 CFR 172.336 - Identification numbers; special provisions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... fuels together with a gasoline and alcohol fuel blend containing more than ten percent ethanol, the... gasoline and alcohol fuel blend containing more than ten percent ethanol, the identification number...

  9. Nonparametric identification experiment

    NASA Technical Reports Server (NTRS)

    Yam, Yeung

    1988-01-01

    The following constitutes a summary of this paper: on-orbit identification methodology starts with nonparametric techniques for a priori system identification; development of the nonparametric identification and model determination experiment software has been completed; the validation experiments to be performed on the JPL Control and Identification Technology Validation Laboratory have been designed.

  10. Comparison of molecular techniques with other methods for identification and enumeration of probiotics in fermented milk products.

    PubMed

    Bagheripoor-Fallah, Niloofar; Mortazavian, Amir; Hosseini, Hedayat; Khoshgozaran-Abras, Sadegh; Rad, Aziz Homayouni

    2015-01-01

    Nowadays, an increasing attention is being given to fermented milk products including yogurt, kefir, buttermilk, and acidophilus milk. Fermented milks, especially the ones containing probiotics, are claimed to be useful for health of host (such as intestinal- and immune-associated diseases). Their healthful effects could be significantly enhanced by incorporating probiotic microorganisms; those have healthful advantages for host when consumed in an appropriate viable number in food products. Probiotic dairy products have stepped to the market and are being commercially produced under various brand names. In addition, these products are legislatively obliged to be labeled for the microorganisms contained. Therefore, identification and enumeration of their microorganisms are a cause of concern. Several culture-dependent methods have been introduced and used to identify the microorganisms, in which the researchers have experienced multiple difficulties. Thereby, molecular approaches were present as an alternative, offering advantages such as accuracy, sensitivity, specificity, and speed. This article reviews the molecular approaches employed for identification and enumeration of probiotics in fermented milk products.

  11. Experimental analysis of vehicle-bridge interaction using a wireless monitoring system and a two-stage system identification technique

    NASA Astrophysics Data System (ADS)

    Kim, Junhee; Lynch, Jerome P.

    2012-04-01

    Deterioration of bridges under repeated traffic loading has called attention to the need for improvements in the understanding of vehicle-bridge interaction. While analytical and numerical models have been previously explored to describe the interaction that exists between a sprung mass (i.e., a moving vehicle) and an elastic beam (i.e., bridge), comparatively less research has been focused on the experimental observation of vehicle-bridge interaction. A wireless monitoring system with wireless sensors installed on both the bridge and moving vehicle is proposed to record the dynamic interaction between the bridge and vehicle. Time-synchronized vehicle-bridge response data is used within a two-stage system identification methodology. In the first stage, the free-vibration response of the bridge is used to identify the dynamic characteristics of the bridge. In the second stage, the vehicle-bridge response data is used to identify the time varying load imposed on the bridge from the vehicle. To test the proposed monitoring and system identification strategy, the 180 m long Yeondae Bridge (Icheon, Korea) was selected. A dense network of wireless sensors was installed on the bridge while wireless sensors were installed on a multi-axle truck. The truck was driven across the bridge at constant velocity with bridge and vehicle responses measured. Excellent agreement between the measured Yeondae Bridge response and that predicted by an estimated vehicle-bridge interaction model validates the proposed strategy.

  12. Flight validated high-order models of UAV helicopter dynamics in hover and forward flight using analytical and parameter identification techniques

    NASA Astrophysics Data System (ADS)

    Bhandari, Subodh

    There has been a significant growth in the use of UAV helicopters for a multitude of military and civilian applications over the last few years. Due to these numerous applications, from crop dusting to remote sensing, UAV helicopters are now a major topic of interest within the aerospace community. The main research focus is on the development of automatic flight control systems (AFCS). The design of AFCS for these vehicles requires a mathematical model representing the dynamics of the vehicle. The mathematical model is developed either from first-principles, using the equations of motion of the vehicle, or from the flight data, using parameter identification techniques. The traditional six-degrees-of-freedom (6-DoF) dynamics model is not suitable for high-bandwidth control system design. Such models are valid only within the low- to mid-frequency range. The agility and high maneuverability of small-scale helicopters require a high-bandwidth control system for full authority autonomous performance. The design of a high-bandwidth control system in turn requires a high-fidelity simulation model that is able to capture the key dynamics of the helicopter. These dynamics include the rotor dynamics. This dissertation presents the development of a 14-degrees-of-freedom (14-DoF) state-space linear model for the KU Thunder Tiger Raptor 50 UAV helicopter from first-principles and from flight test data using a parameter identification technique for the hovering and forward flight conditions. The model includes rigid body, rotor regressive, rotor inflow, stabilizer bar, and rotor coning dynamics. The model is implemented within The MathWork's MATLAB/Simulink environment. The simulation results show that the high-order model is able to predict the helicopter's dynamics up to the frequency of 30 rad/sec. The main contributions of this dissertation are the development of a high-order simulation model for a small UAV helicopter from first-principles and the identification of a

  13. Identification and temporal behavior of radical intermediates formed during the combustion and pyrolysis of gaseous fuels: kinetic pathways to soot formation. Progress report, September 1, 1979-August 31, 1980

    SciTech Connect

    Kern, R.D.; Niki, T.; Clinton, L.M.; Winkeler, P.

    1980-04-01

    A shock tube coupled to a time-of-flight mass spectrometer has been employed to sample mixtures of various fuels (methane, acetylene, propane, cyclohexane, benzene, and toluene) with or without oxygen in order to determine the major kinetic pathways to soot formation. One significant observation has been the product distribution from toluene pyrolysis which consists primarily of compounds and radical intermediates having masses less than that of the parent fuel and containing relatively low amounts of species having masses greater than toluene. The experiment was performed at temperatures and fuel densities where previous laser extinction work reported soot conversion yields of 80 to 90%. Supporting work for our findings is found from Knudsen cell experiments over the temperature range of interest in which the product distribution was recorded mass spectrometrically and from single pulse shock tube experiments which included the analysis of gas after shock heating. These results are important since they question the absolute amounts of soot yield reported by several research groups using the laser extinction technique. However, the relative yields of soot conversion determined by the laser technique from a wide variety of fuels may be correct. Even more important is our result that acetylene is the major product of toluene pyrolysis which argues against the commonly held view that ring condensation steps dominate fragmentation reaction channels.

  14. An Indirect System Identification Technique for Stable Estimation of Continuous-Time Parameters of the Vestibulo-Ocular Reflex (VOR)

    NASA Technical Reports Server (NTRS)

    Kukreja, Sunil L.; Wallin, Ragnar; Boyle, Richard D.

    2013-01-01

    The vestibulo-ocular reflex (VOR) is a well-known dual mode bifurcating system that consists of slow and fast modes associated with nystagmus and saccade, respectively. Estimation of continuous-time parameters of nystagmus and saccade models are known to be sensitive to estimation methodology, noise and sampling rate. The stable and accurate estimation of these parameters are critical for accurate disease modelling, clinical diagnosis, robotic control strategies, mission planning for space exploration and pilot safety, etc. This paper presents a novel indirect system identification method for the estimation of continuous-time parameters of VOR employing standardised least-squares with dual sampling rates in a sparse structure. This approach permits the stable and simultaneous estimation of both nystagmus and saccade data. The efficacy of this approach is demonstrated via simulation of a continuous-time model of VOR with typical parameters found in clinical studies and in the presence of output additive noise.

  15. [The identification of clinical strains Pseudomonas fulva using techniques of MALDI-TOF mass spectrometry and common analysis].

    PubMed

    Sivolodskiĭ, E P; Zueva, E B; Kunilova, E S; Bogumil'chik, E A; Domakova, T V

    2015-01-01

    The technique MALDI-TOF mass spectrometry was applied using device Microflex with database MALDI Biotyper (Bruckeer Daltonics Inc.) to identify with high level of reliability 8 strains P. fulva from collection of pseudo monads isolated from clinical material in St. Petersburg. When analyzing the same strains applying technique MALDI TOF mass spectrometry using device Vitek MS (bioMerieux) these starins were wrongly identifies as P. putida. The complex of tests of common analysis was approved and proposed for control differentiation of P. fulva and P. putida. The medical significance of P. fulva was approved.

  16. Identification of the elementary bodies of Chlamydia trachomatis in the electron microscope by an indirect immunoferritin technique.

    PubMed Central

    Ashley, C R; Richmond, S J; Caul, E O

    1975-01-01

    An indirect immunoferritin (IIF) technique is described for recognizing the elementary bodies (EB) of Chlamydia trachomatis in unsectioned preparations. Both the EB of a genital strain of C. trachomatis grown in irradiated McCoy cells and EB in clinical specimens obtained from patients attending a venereal disease clinic were identified by the IIF test in the electron microscope. Cell culture-grown EB were detected by ferritin staining for up to 4 weeks after the organisms had lost their infectivity for tissue cultures. The IIF test was of comparable sensitivity to isolation methods in detecting chlamydiae in clinical specimens. Other possible applications of the IIF technique are discussed. Images PMID:1102559

  17. Fuel Pathway Integration Technical Team Roadmap

    SciTech Connect

    2013-06-01

    The Fuel Pathway Integration Technical Team (FPITT) supports the U.S. DRIVE Partnership (the Partnership) in the identification and evaluation of implementation scenarios for fuel cell technology pathways, including hydrogen and fuel cell electric vehicles in the transportation sector, both during a transition period and in the long term.

  18. Rapid Detection and Identification of Streptococcus Iniae Using a Monoclonal Antibody-Based Indirect Fluorescent Antibody Technique

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Streptococcus iniae is among the major pathogens of a large number of fish species cultured in fresh and marine recirculating and net pen production systems . The traditional plate culture technique to detect and identify S. iniae is time consuming and may be problematic due to phenotypic variations...

  19. Spatial and functional characterization, identification and assessment of isolated wetlands in Alachua County, Florida, USA - GIS and remote sensing techniques

    EPA Science Inventory

    In this study, Geographic Information Systems (GIS) and remote sensing mapping techniques were developed to identify the locations of isolated wetlands in Alachua County, FL, a 2510 sq km area in north-central Florida with diverse geology and numerous isolated wetlands. The resul...

  20. Comparison of system identification techniques in the analysis of a phantom for studying shaken-baby syndrome.

    PubMed

    Lintern, Thomas O; Finch, Mark C; Taberner, Andrew J; Nielsen, Poul M F; Nash, Martyn P

    2011-01-01

    This article compares two techniques for estimating the parameters describing the motion of a phantom designed to investigate shaking baby syndrome. Parameters of a simple computational model and an impulse response function for a linear second order system were both fitted using kinematic measurements of the motion of an inverted jointed pendulum. From the two methods respectively, the rotational stiffness of the joint was calculated to be 1.396 kgm(2) s(-2) and 1.355 kgm(2) s(-2) and the damping coefficient was calculated to be 0.0142 kgm(2) s(-1) and 0.0133 kgm(2) s(-1). The parameter estimates were similar demonstrating that the two techniques were comparable. Identifying accurate parameters will allow more complex phantoms to be modeled, and will provide insight into the relationship between the shaking of the torso and the resultant head motion during shaken baby syndrome.

  1. Rapid identification of ophiopogonins and ophiopogonones in Ophiopogon japonicus extract with a practical technique of mass defect filtering based on high resolution mass spectrometry.

    PubMed

    Xie, Tong; Liang, Yan; Hao, Haiping; A, Jiye; Xie, Lin; Gong, Ping; Dai, Chen; Liu, Linsheng; Kang, An; Zheng, Xiao; Wang, Guangji

    2012-03-02

    This study was to develop and evaluate a practical approach of mass defect filtering (MDF), a post-acquisition data processing technique, for the rapid classification of complicated peaks into well-known chemical families based on the exact mass acquired by high resolution mass spectrometry. The full-scan LC-MS/MS data of the Ophiopogon japonicus extract was acquired using high performance liquid chromatography coupled with hybrid quadrupole-time of flight (LCMS-Q-TOF) system which features high resolution, mass accuracy, and sensitivity. To remove the interferences of the complex matrix, MDF approach was developed and employed to rapidly pick out the peaks of ophiopogonins and ophiopogonones from full-scan mass chromatograms. The accuracy of MDF was evaluated in reference to the result of structural identification. After the MDF based classification, both target and non-target components in Ophiopogon japonicus extract were characterized based on the detailed fragment ions analysis in the hybrid ion trap and time-of-flight mass spectrometry (LCMS-IT-TOF). By this approach, more than 50 ophiopogonins and 27 ophiopogonones were structurally characterized. The present results of rapid detection and identification of ophiopogonins and ophiopogonones suggest that the proposed MDF approach based on the high-resolution mass spectrometry data would be expected adaptable to the analysis of other herbal components.

  2. Non-invasive identification of traditional red lake pigments in fourteenth to sixteenth centuries paintings through the use of hyperspectral imaging technique

    NASA Astrophysics Data System (ADS)

    Vitorino, T.; Casini, A.; Cucci, C.; Melo, M. J.; Picollo, M.; Stefani, L.

    2015-11-01

    The present paper, which focuses on the identification of red lake pigments, in particular madder, brazilwood, and cochineal, addresses the advantages and drawbacks of using reflectance hyperspectral imaging in the visible and near-infrared ranges as a non-invasive method of discrimination between different red organic pigments in cultural heritage objects. Based on reconstructions of paints used in the period extending from the fourteenth to the sixteenth century, prepared with as far as possible historical accuracy, the analyses by means of visible/near-infrared reflectance hyperspectral imaging were carried out with the objective of understanding the most significant differences between these vegetal- and animal-based red lake pigments. The paper discusses the results that were obtained on four original Italian and North European paintings and compared with those from the paint reconstructions, in order to demonstrate how the hyperspectral imaging technique can be usefully and effectively applied to the identification and mapping of red lake pigments in painted surfaces of interest in the conservation field.

  3. Alternative Fuels

    EPA Pesticide Factsheets

    Alternative fuels include gaseous fuels such as hydrogen, natural gas, and propane; alcohols such as ethanol, methanol, and butanol; vegetable and waste-derived oils; and electricity. Overview of alternative fuels is here.

  4. Identification of vibration excitations from acoustic measurements using near field acoustic holography and the force analysis technique

    NASA Astrophysics Data System (ADS)

    Pézerat, C.; Leclère, Q.; Totaro, N.; Pachebat, M.

    2009-10-01

    This study presents a method of using acoustic holography and the force analysis technique to identify vibration sources from radiated noise measurements. The structure studied is a plate excited by a shaker on which three measurements were performed: the first is a reference measurement of plate velocity obtained by scanning laser vibrometry, the second is based on sound pressure measurements in the near field of the structure, and the third is the measurement of normal acoustic velocities by using a p-U probe recently developed by Microflown Technologies. This was followed by the application of classical NAH, known as pressure-to-velocity holography and velocity-to-velocity holography to predict the plate velocity field from acoustic measurements at distances of 1 and 5 cm. Afterwards, the force analysis technique, also known as the RIFF technique, is applied with these five data sets. The principle is to inject the displacement field of the structure into its equation of motion and extract the resulting force distribution. This technique requires regularization done by a low-pass filter in the wavenumber domain. Apart from pressure-to-velocity holography at 5 cm, the reconstructed force distribution allows localizing the excitation point in the measurement area. FAT regularization is also shown to improve results as its cutoff wavenumber is optimized with the natural wavenumber of the plate. Lastly, quantitative force values are extracted from force distributions at all frequencies of the band 0-4 kHz studied and compared with the force spectrum measured directly by a piezoelectric sensor.

  5. Oil species identification technique developed by Gabor wavelet analysis and support vector machine based on concentration-synchronous-matrix-fluorescence spectroscopy.

    PubMed

    Wang, Chunyan; Shi, Xiaofeng; Li, Wendong; Wang, Lin; Zhang, Jinliang; Yang, Chun; Wang, Zhendi

    2016-03-15

    Concentration-synchronous-matrix-fluorescence (CSMF) spectroscopy was applied to discriminate the oil species by characterizing the concentration dependent fluorescence properties of petroleum related samples. Seven days weathering experiment of 3 crude oil samples from the Bohai Sea platforms of China was carried out under controlled laboratory conditions and showed that weathering had no significant effect on the CSMF spectra. While different feature extraction methods, such as PCA, PLS and Gabor wavelet analysis, were applied to extract discriminative patterns from CSMF spectra, classifications were made via SVM to compare their respective performance of oil species recognition. Ideal correct rates of oil species recognition of 100% for the different types of oil spill samples and 92% for the closely-related source oil samples were achieved by combining Gabor wavelet with SVM, which indicated its advantages to be developed to a rapid, cost-effective, and accurate forensic oil spill identification technique.

  6. Isolation and identification of Salmonella spp. in drinking water, streams, and swine wastewater by molecular techniques in Taiwan

    NASA Astrophysics Data System (ADS)

    Kuo, C.; Hsu, B.; Shen, T.; Tseng, S.; Tsai, J.; Huang, K.; Kao, P.; Chen, J.

    2013-12-01

    Salmonella spp. is a common water-borne pathogens and its genus comprises more than 2,500 serotypes. Major pathogenic genotypes which cause typhoid fever, enteritis and other intestinal-type diseases are S. Typhimurium, S. Enteritidis, S. Stanley, S. Agona, S.Albany, S. Schwarzengrund, S. Newport, S. Choleraesuis, and S. Derby. Hence, the identification of the serotypes of Salmonella spp. is important. In the present study, the analytical procedures include direct concentration method, non-selective pre-enrichment method and selective enrichment method of Salmonella spp.. Both selective enrichment method and cultured bacteria were detected with specific primers of Salmonella spp. by polymerase chain reaction (PCR). At last, the serotypes of Salmonella were confirmed by using MLST (multilocus sequence typing) with aroC, dnaN, hemD, hisD, purE, sucA, thrA housekeeping genes to identify the strains of positive samples. This study contains 121 samples from three different types of water sources including the drinking water (51), streams (45), and swine wastewater (25). Thirteen samples with positive invA gene are separated from culture method. The strains of these positive samples which identified from MLST method are S. Albany, S. Typhimurium, S. Newport, S. Bareilly, and S. Derby. Some of the serotypes, S. Albany, S. Typhimurium and S. Newport, are highly pathogenic which correlated to human diarrhea. In our results, MLST is a useful method to identify the strains of Salmonella spp.. Keywords: Salmonella, PCR, MLST.

  7. Fuel pin

    DOEpatents

    Christiansen, David W.; Karnesky, Richard A.; Leggett, Robert D.; Baker, Ronald B.

    1989-01-01

    A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

  8. Fuel pin

    DOEpatents

    Christiansen, D.W.; Karnesky, R.A.; Leggett, R.D.; Baker, R.B.

    1987-11-24

    A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

  9. Fuel pin

    DOEpatents

    Christiansen, David W.; Karnesky, Richard A.; Leggett, Robert D.; Baker, Ronald B.

    1989-10-03

    A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

  10. Precise identification of <1 0 0> directions on Si{0 0 1} wafer using a novel self-aligning pre-etched technique

    NASA Astrophysics Data System (ADS)

    Singh, S. S.; Veerla, S.; Sharma, V.; Pandey, A. K.; Pal, P.

    2016-02-01

    Micromirrors with a tilt angle of 45° are widely used in optical switching and interconnect applications which require 90° out of plane reflection. Silicon wet bulk micromachining based on surfactant added TMAH is usually employed to fabricate 45° slanted walls at the < 1 0 0> direction on Si≤ft\\{0 0 1\\right\\} wafers. These slanted walls are used as 45° micromirrors. However, the appearance of a precise 45° ≤ft\\{0 1 1\\right\\} wall is subject to the accurate identification of the < 1 0 0> direction. In this paper, we present a simple technique based on pre-etched patterns for the identification of < 1 0 0> directions on the Si≤ft\\{0 0 1\\right\\} surface. The proposed pre-etched pattern self-aligns itself at the < 1 0 0> direction while becoming misaligned at other directions. The < 1 0 0> direction is determined by a simple visual inspection of pre-etched patterns and does not need any kind of measurement. To test the accuracy of the proposed method, we fabricated a 32 mm long rectangular opening with its sides aligned along the < 1 0 0> direction, which is determined using the proposed technique. Due to the finite etch rate of the ≤ft\\{1 1 0\\right\\} plane, undercutting occurred, which was measured at 12 different locations along the longer edge of the rectangular strip. The mean of these undercutting lengths, measured perpendicular to the mask edge, is found to be 13.41 μm with a sub-micron standard deviation of 0.38 μm. This level of uniform undercutting indicates that our method of identifying the < 1 0 0> direction is precise and accurate. The developed method will be extremely useful in fabricating arrays of 45° micromirrors.

  11. Acoustic puncture assist device™ versus conventional loss of resistance technique for thoracic paravertebral space identification: Clinical and ultrasound evaluation

    PubMed Central

    Ali, Monaz Abdulrahman; Abdellatif, Ashraf Abualhasan

    2017-01-01

    Background: Acoustic puncture assist device (APAD™) is a pressure measurement combined with a related acoustic signal that has been successfully used to facilitate epidural punctures. The principal of loss of resistance (LOR) is similar when performing paravertebral block (PVB). We investigated the usefulness of APAD™ by comparing it with the conventional LOR techniques for identifying paravertebral space (PVS). Subjects and Methods: A total of 100 women who were scheduled for elective breast surgery under general anesthesia with PVB were randomized into two equal groups. The first group (APAD group) was scheduled for PVB using APAD™. The second group (C group) was scheduled for PVB using conventional LOR technique. We recorded the success rate assessed by clinical and ultrasound findings, the time required to identify the PVS, the depth of the PVS and the number of attempts. The attending anesthesiologist was also questioned about the usefulness of the acoustic signal for detection of the PVS. Results: The incidence of successful PVB was (49) in APAD group compared to (42) in C group P < 0.05. The time required to do PVB was significantly shorter in APAD group than in C group (3.5 ± 1.35 vs. 4.1 ± 1.42) minutes. Two patients in APAD group needed two or more attempts compared to four patients in C group. The attending anesthesiologist found the acoustic signal valuable in all patients in APAD group. Conclusion: Using APAD™ compared to the conventional LOR technique showed a lower failure rate and a shorter time to identify the PVS. PMID:28217050

  12. Identification of Host Micro RNAs That Differentiate HIV-1 and HIV-2 Infection Using Genome Expression Profiling Techniques

    PubMed Central

    Devadas, Krishnakumar; Biswas, Santanu; Haleyurgirisetty, Mohan; Ragupathy, Viswanath; Wang, Xue; Lee, Sherwin; Hewlett, Indira

    2016-01-01

    While human immunodeficiency virus type 1 and 2 (HIV-1 and HIV-2) share many similar traits, major differences in pathogenesis and clinical outcomes exist between the two viruses. The differential expression of host factors like microRNAs (miRNAs) in response to HIV-1 and HIV-2 infections are thought to influence the clinical outcomes presented by the two viruses. MicroRNAs are small non-coding RNA molecules which function in transcriptional and post-transcriptional regulation of gene expression. MiRNAs play a critical role in many key biological processes and could serve as putative biomarker(s) for infection. Identification of miRNAs that modulate viral life cycle, disease progression, and cellular responses to infection with HIV-1 and HIV-2 could reveal important insights into viral pathogenesis and provide new tools that could serve as prognostic markers and targets for therapeutic intervention. The aim of this study was to elucidate the differential expression profiles of host miRNAs in cells infected with HIV-1 and HIV-2 in order to identify potential differences in virus-host interactions between HIV-1 and HIV-2. Differential expression of host miRNA expression profiles was analyzed using the miRNA profiling polymerase chain reaction (PCR) arrays. Differentially expressed miRNAs were identified and their putative functional targets identified. The results indicate that hsa-miR 541-3p, hsa-miR 518f-3p, and hsa-miR 195-3p were consistently up-regulated only in HIV-1 infected cells. The expression of hsa-miR 1225-5p, hsa-miR 18a* and hsa-miR 335 were down modulated in HIV-1 and HIV-2 infected cells. Putative functional targets of these miRNAs include genes involved in signal transduction, metabolism, development and cell death. PMID:27144577

  13. Identification of Host Micro RNAs That Differentiate HIV-1 and HIV-2 Infection Using Genome Expression Profiling Techniques.

    PubMed

    Devadas, Krishnakumar; Biswas, Santanu; Haleyurgirisetty, Mohan; Ragupathy, Viswanath; Wang, Xue; Lee, Sherwin; Hewlett, Indira

    2016-05-02

    While human immunodeficiency virus type 1 and 2 (HIV-1 and HIV-2) share many similar traits, major differences in pathogenesis and clinical outcomes exist between the two viruses. The differential expression of host factors like microRNAs (miRNAs) in response to HIV-1 and HIV-2 infections are thought to influence the clinical outcomes presented by the two viruses. MicroRNAs are small non-coding RNA molecules which function in transcriptional and post-transcriptional regulation of gene expression. MiRNAs play a critical role in many key biological processes and could serve as putative biomarker(s) for infection. Identification of miRNAs that modulate viral life cycle, disease progression, and cellular responses to infection with HIV-1 and HIV-2 could reveal important insights into viral pathogenesis and provide new tools that could serve as prognostic markers and targets for therapeutic intervention. The aim of this study was to elucidate the differential expression profiles of host miRNAs in cells infected with HIV-1 and HIV-2 in order to identify potential differences in virus-host interactions between HIV-1 and HIV-2. Differential expression of host miRNA expression profiles was analyzed using the miRNA profiling polymerase chain reaction (PCR) arrays. Differentially expressed miRNAs were identified and their putative functional targets identified. The results indicate that hsa-miR 541-3p, hsa-miR 518f-3p, and hsa-miR 195-3p were consistently up-regulated only in HIV-1 infected cells. The expression of hsa-miR 1225-5p, hsa-miR 18a* and hsa-miR 335 were down modulated in HIV-1 and HIV-2 infected cells. Putative functional targets of these miRNAs include genes involved in signal transduction, metabolism, development and cell death.

  14. Identification and comparison of electrical tapes using instrumental and statistical techniques: I. Microscopic surface texture and elemental composition.

    PubMed

    Goodpaster, John V; Sturdevant, Amanda B; Andrews, Kristen L; Brun-Conti, Leanora

    2007-05-01

    Comparisons of polyvinyl chloride electrical tape typically rely upon evaluating class characteristics such as physical dimensions, surface texture, and chemical composition. Given the various techniques that are available for this purpose, a comprehensive study has been undertaken to establish an optimal analytical scheme for electrical tape comparisons. Of equal importance is the development of a quantitative means for sample discrimination. In this study, 67 rolls of black electrical tape representing 34 different nominal brands were analyzed via scanning electron microscopy and energy dispersive spectroscopy. Differences in surface roughness, calendering marks, and filler particle size were readily apparent, including between some rolls of the same nominal brand. The relative amounts of magnesium, aluminum, silicon, sulfur, lead, chlorine, antimony, calcium, titanium, and zinc varied greatly between brands and, in some cases, could be linked to the year of manufacture. For the first time, quantitative differentiation of electrical tapes was achieved through multivariate statistical techniques, with 36 classes identified within the sample population. A single-blind study was also completed where questioned tape samples were correctly associated with known exemplars. Finally, two case studies are presented where tape recovered from an improvised explosive device is compared with tape recovered from a suspect.

  15. Fuel pump

    SciTech Connect

    Bellis, P.D.; Nesselrode, F.

    1991-04-16

    This patent describes a fuel pump. It includes: a fuel reservoir member, the fuel reservoir member being formed with fuel chambers, the chambers comprising an inlet chamber and an outlet chamber, means to supply fuel to the inlet chamber, means to deliver fuel from the outlet chamber to a point of use, the fuel reservoir member chambers also including a bypass chamber, means interconnecting the bypass chamber with the outlet chamber; the fuel pump also comprising pump means interconnecting the inlet chamber and the outlet chamber and adapted to suck fuel from the fuel supply means into the inlet chamber, through the pump means, out the outlet chamber, and to the fuel delivery means; the bypass chamber and the pump means providing two substantially separate paths of fuel flow in the fuel reservoir member, bypass plunger means normally closing off the flow of fuel through the bypass chamber one of the substantially separate paths including the fuel supply means and the fuel delivery means when the bypass plunger means is closed, the second of the substantially separate paths including the bypass chamber when the bypass plunger means is open, and all of the chambers and the interconnecting means therebetween being configured so as to create turbulence in the flow of any fuel supplied to the outlet chamber by the pump means and bypassed through the bypass chamber and the interconnecting means.

  16. Development of An Improved Technique For Identification of the Damping Properties of Orthogonally Reinforced Composites in Shear

    NASA Astrophysics Data System (ADS)

    Paimushin, V. N.; Firsov, V. A.; Gyunal, I.; Shishkin, V. M.

    2016-05-01

    A technique for identifying the amplitude dependences of the logarithmic decrement of vibrations of orthogonally reinforced composites in shear by using a refined model of deformation that takes into account the effect of the transverse strain in tension-compression of a layer package with a ± 45° lay-up relative to the longitudinal axis of the test specimen. The unknown dependences are represented by power functions with two unknown parameters, which are determined by minimizing the quadratic residual between the calculated and experimental internal damping parameters of test specimens. A comparison between the results of the shear damping properties of a CFRP, reinforced with a Porcher 3692 fabric, obtained with and without account of the transverse deformation of test specimens with the lay-up mentioned, is carried out.

  17. First identification of excited states in 117Ba using the recoil-β -delayed proton tagging technique

    NASA Astrophysics Data System (ADS)

    Ding, B.; Liu, Z.; Seweryniak, D.; Woods, P. J.; Wang, H. L.; Yang, J.; Liu, H. L.; Davids, C. N.; Carpenter, M. P.; Davinson, T.; Janssens, R. V. F.; Page, R. D.; Robinson, A. P.; Shergur, J.; Sinha, S.; Zhu, S.; Tang, X. D.; Wang, J. G.; Huang, T. H.; Zhang, W. Q.; Sun, M. D.; Liu, X. Y.; Lu, H. Y.

    2017-02-01

    Excited states have been observed for the first time in the neutron-deficient nucleus 117Ba using the recoil-decay tagging technique following the heavy-ion fusion-evaporation reaction 64Zn(58Ni, 2p3n)117Ba. Prompt γ rays have been assigned to 117Ba through correlations with β -delayed protons following the decay of A =117 recoils. Through the analysis of the γ -γ coincidence relationships, a high-spin level scheme consisting of two bands has been established in 117Ba. Based on the systematics of the level spacings in the neighboring barium isotopes, the two bands are proposed to have ν h11 /2[532 ] 5 /2- and ν d5 /2[413 ] 5 /2+ configurations, respectively. The observed band-crossing properties are interpreted in the framework of cranked shell model.

  18. Identification of Milankovitch Signals in Middle Triassic Platform carbonate cycles using a super-resolution spectral technique

    SciTech Connect

    Hinnov, L.; Goldhammer, R.K.

    1988-01-01

    The Middle Triassic Latemar carbonate buildup of the Dolomites (northern Italy) contains 500 meter-scale cycles (average 0.65 m/cycle) each composed of subtidal deposits overlain by a thin vadose diagenetic cap. The cycles record depositional and early diagenetic responses to glacio-eustatic sea level oscillations with superimposed -- 20,000 year and -- 100,000 year periodicities. Previously, documentation of these Milankovitch periodicities was limited to autocorrelation analyses of truncated sequences (i.e. less than or equal to 45 consecutive cycles) of cycle thicknesses and modeling sedimentation dynamics. To improve the resolution and statistical measure of nonrandom variability in cycle thicknesses, the authors approach Latemar cyclicity using a spectral technique that produces super-resolution spectra of discrete time series. The technique differs from other spectrum estimation procedures in that the time series is ''multitapered'' as a consequence of expanding its Fourier transform by an ordered set of spheroidal functions. The resulting high-resolution spectrum estimates have a greatly enhanced statistical stability that permits the detection of extremely narrow-band signals in noisy data sets that are likely to be missed by traditional spectral analysis. The application of this multitapering algorithm on 140 consecutive Latemar cycles reveals nine statistically significant harmonies controlling cycle development, all with periodicities corresponding to those of Berger's modeled series for the Earth's orbital eccentricity and axial tilt. The authors believe this to be the first report of evidence for multiple, superimposed high-resolution Milankovitch spectra in the pre-Pleisocene shallow marine, platform carbonate record.

  19. High freezing point fuels used for aviation turbine engines

    NASA Technical Reports Server (NTRS)

    Friedman, R.

    1979-01-01

    Broadened-specification aviation fuels could be produced from a greater fraction of crude source material with improvements in fuel supply and price. These fuels, particularly those with increased final boiling temperatures, would have higher freezing temperatures than current aviation turbine fuels. For the small but significant fraction of commercial flights where low fuel temperatures make higher freezing-point fuel use unacceptable, adaptations to the fuel or fuel system may be made to accommodate this fuel. Several techniques are discussed. Fuel heating is the most promising concept. One simple design uses existing heat rejection from the fuel-lubricating oil cooler, another uses an engine-driven generator for electrical heating.

  20. A New Primer for Sex Identification of Ducks and a Minimally Invasive Technique for Sampling of Allantoic Fluid to Detect Sex during Bird Embryo Development.

    PubMed

    Li, Huifang; Hu, Yan; Song, Chi; Ji, Gaige; Liu, Hongxiang; Xu, Wenjuan; Ding, Jing

    2015-01-01

    During the early incubation period of the duck, from embryonic day 1 to 13, a precise identification of the sex may be difficult. In a preliminary test, we found a defect in the use of the classical P2/P8, 1237L/1272H, and 2550F/2718R primers for chromo-helicase-DNA-binding 1 gene (CHD1) as a PCR-based test to identify sex in ducks. Therefore, universal PCR primers HPF/HPR for sexing ducks were designed. The PCR product was cloned, sequenced, and analyzed using GenBank. The effectiveness of the primers was compared using samples of blood and feathers from adult birds and chorioallantoic membranes and allantoic fluid (AF) of embryos as a source of DNA. The 495-bp CHD1-Z and the 351-bp CHD1-W PCR amplicons could be easily distinguished on a 3% agarose gel, and females (ZW) displayed 2 visible bands whereas only a single band was found in males (ZZ). The results indicated that HPF/HPR primers were highly efficient and more reliable than the classical primers used for sexing ducks. During the design of the new primers, an AF sampling technique was established to collect a very small amount of AF from free-living birds. This technique, which was minimally invasive, had no adverse effects on either embryos or the post-hatching survival of young ducks and could be used in developmental biology research in birds.

  1. Application of the angle measure technique as image texture analysis method for the identification of uranium ore concentrate samples: New perspective in nuclear forensics.

    PubMed

    Fongaro, Lorenzo; Ho, Doris Mer Lin; Kvaal, Knut; Mayer, Klaus; Rondinella, Vincenzo V

    2016-05-15

    The identification of interdicted nuclear or radioactive materials requires the application of dedicated techniques. In this work, a new approach for characterizing powder of uranium ore concentrates (UOCs) is presented. It is based on image texture analysis and multivariate data modelling. 26 different UOCs samples were evaluated applying the Angle Measure Technique (AMT) algorithm to extract textural features on samples images acquired at 250× and 1000× magnification by Scanning Electron Microscope (SEM). At both magnifications, this method proved effective to classify the different types of UOC powder based on the surface characteristics that depend on particle size, homogeneity, and graininess and are related to the composition and processes used in the production facilities. Using the outcome data from the application of the AMT algorithm, the total explained variance was higher than 90% with Principal Component Analysis (PCA), while partial least square discriminant analysis (PLS-DA) applied only on the 14 black colour UOCs powder samples, allowed their classification only on the basis of their surface texture features (sensitivity>0.6; specificity>0.6). This preliminary study shows that this method was able to distinguish samples with similar composition, but obtained from different facilities. The mean angle spectral data obtained by the image texture analysis using the AMT algorithm can be considered as a specific fingerprint or signature of UOCs and could be used for nuclear forensic investigation.

  2. Identification and measurement of combustion noise from a turbofan engine using correlation and coherence techniques. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Karchmer, A. M.

    1977-01-01

    Fluctuating pressure measurements within the combustor and tailpipe of a turbofan engine are made simultaneously with far field acoustic measurements. The pressure measurements within the engine are accomplished with cooled semi-infinite waveguide probes utilizing conventional condenser microphones as the transducers. The measurements are taken over a broad range of engine operating conditions and for 16 far field microphone positions between 10 deg and 160 deg relative to the engine inlet axis. Correlation and coherence techniques are used to determine the relative phase and amplitude relationships between the internal pressures and far field acoustic pressures. The results indicate that the combustor is a low frequency source region for acoustic propagation through the tailpipe and out to the far field. Specifically, it is found that the relation between source pressure and the resulting sound pressure involves a 180 deg phase shift. The latter result is obtained by Fourier transforming the cross correlation function between the source pressure and acoustic pressure after removing the propagation delay time. Further, it is found that the transfer function between the source pressure and acoustic pressure has a magnitude approximately proportional to frequency squared. These results are shown to be consistent with a model using a modified source term in Lighthill's turbulence stress tensor, wherein the fluctuating Reynolds stresses are replaced with the pressure fluctuations due to fluctuating entropy.

  3. Application of Identification Techniques to Determine Effect of Carbon Content in Steels on Rheological Parameters During Hot Deformation

    NASA Astrophysics Data System (ADS)

    Madej, L.; Hodgson, P. D.; Pietrzyk, M.

    2004-06-01

    The objective of the present work is searching for the correlation between the carbon content in steels and the parameters of the rheological models, which are used to describe the materials behavior during hot plastic deformation. This correlation can be expected in the internal variable models, which are based on physical phenomena occurring in the material. Such a model, based on the dislocation density as the internal variable, is investigated in this work. The experiments including hot torsion tests are used for the analysis. The procedure is composed of three parts. Plastometric tests were performed for steels with various carbon content. Optimization techniques were applied next to determine the coefficients in the internal variable rheological model for these steels. Two versions of the model are considered. One is based on the average dislocation density and the second accounts for the distribution of dislocation densities. Evaluation of correlation between carbon content and such coefficients in the models as activation energy for self diffusion, activation energy for recrystallization, grain boundary mobility, recovery coefficient etc. was the main objective of the work. In consequence, the model which may be used for simulation of hot forming processes for steels with various chemical compositions, is proposed.

  4. Identification of health risks of hand, foot and mouth disease in China using the geographical detector technique.

    PubMed

    Huang, Jixia; Wang, Jinfeng; Bo, Yanchen; Xu, Chengdong; Hu, Maogui; Huang, Dacang

    2014-03-21

    Hand, foot and mouth disease (HFMD) is a common infectious disease, causing thousands of deaths among children in China over the past two decades. Environmental risk factors such as meteorological factors, population factors and economic factors may affect the incidence of HFMD. In the current paper, we used a novel model-geographical detector technique to analyze the effect of these factors on the incidence of HFMD in China. We collected HFMD cases from 2,309 counties during May 2008 in China. The monthly cumulative incidence of HFMD was calculated for children aged 0-9 years. Potential risk factors included meteorological factors, economic factors, and population density factors. Four geographical detectors (risk detector, factor detector, ecological detector, and interaction detector) were used to analyze the effects of some potential risk factors on the incidence of HFMD in China. We found that tertiary industry and children exert more influence than first industry and middle school students on the incidence of HFMD. The interactive effect of any two risk factors increases the hazard for HFMD transmission.

  5. Microstructural changes in NiFe2O4 ceramics prepared with powders derived from different fuels in sol-gel auto-combustion technique

    NASA Astrophysics Data System (ADS)

    Chauhan, Lalita; Bokolia, Renuka; Sreenivas, K.

    2016-05-01

    Structural properties of Nickel ferrite (NiFe2O4) ceramics prepared from powders derived from sol gel auto-combustion method using different fuels (citric acid, glycine and Dl-alanine) are compared. Changes in the structural properties at different sintering temperatures are investigated. X-ray diffraction (XRD) confirms the formation of single phase material with cubic structure. Ceramics prepared using the different powders obtained from different fuels show that that there are no significant changes in lattice parameters. However increasing sintering temperatures show significant improvement in density and grain size. The DL-alanine fuel is found to be the most effective fuel for producing NIFe2O4 powders by the sol-gel auto combustion method and yields highly crystalline powders in the as-burnt stage itself at a low temperature (80 °C). Subsequent use of the powders in ceramic manufacturing produces dense NiFe2O4 ceramics with a uniform microstructure and a large grain size.

  6. Hydrogen Fuel Quality

    SciTech Connect

    Rockward, Tommy

    2012-07-16

    For the past 6 years, open discussions and/or meetings have been held and are still on-going with OEM, Hydrogen Suppliers, other test facilities from the North America Team and International collaborators regarding experimental results, fuel clean-up cost, modeling, and analytical techniques to help determine levels of constituents for the development of an international standard for hydrogen fuel quality (ISO TC197 WG-12). Significant progress has been made. The process for the fuel standard is entering final stages as a result of the technical accomplishments. The objectives are to: (1) Determine the allowable levels of hydrogen fuel contaminants in support of the development of science-based international standards for hydrogen fuel quality (ISO TC197 WG-12); and (2) Validate the ASTM test method for determining low levels of non-hydrogen constituents.

  7. Identification of Catalysts and Materials for a High-Energy Density Biochemical Fuel Cell: Cooperative Research and Development Final Report, CRADA Number CRD-09-345

    SciTech Connect

    Ghirardi, M.; Svedruzic, D.

    2013-07-01

    The proposed research attempted to identify novel biochemical catalysts, catalyst support materials, high-efficiency electron transfer agents between catalyst active sites and electrodes, and solid-phase electrolytes in order to maximize the current density of biochemical fuel cells that utilize various alcohols as substrates.

  8. A Markov chain Monte Carlo technique for identification of combinations of allelic variants underlying complex diseases in humans.

    PubMed

    Favorov, Alexander V; Andreewski, Timophey V; Sudomoina, Marina A; Favorova, Olga O; Parmigiani, Giovanni; Ochs, Michael F

    2005-12-01

    In recent years, the number of studies focusing on the genetic basis of common disorders with a complex mode of inheritance, in which multiple genes of small effect are involved, has been steadily increasing. An improved methodology to identify the cumulative contribution of several polymorphous genes would accelerate our understanding of their importance in disease susceptibility and our ability to develop new treatments. A critical bottleneck is the inability of standard statistical approaches, developed for relatively modest predictor sets, to achieve power in the face of the enormous growth in our knowledge of genomics. The inability is due to the combinatorial complexity arising in searches for multiple interacting genes. Similar "curse of dimensionality" problems have arisen in other fields, and Bayesian statistical approaches coupled to Markov chain Monte Carlo (MCMC) techniques have led to significant improvements in understanding. We present here an algorithm, APSampler, for the exploration of potential combinations of allelic variations positively or negatively associated with a disease or with a phenotype. The algorithm relies on the rank comparison of phenotype for individuals with and without specific patterns (i.e., combinations of allelic variants) isolated in genetic backgrounds matched for the remaining significant patterns. It constructs a Markov chain to sample only potentially significant variants, minimizing the potential of large data sets to overwhelm the search. We tested APSampler on a simulated data set and on a case-control MS (multiple sclerosis) study for ethnic Russians. For the simulated data, the algorithm identified all the phenotype-associated allele combinations coded into the data and, for the MS data, it replicated the previously known findings.

  9. Identification of weak transitions using moving-window two-dimensional correlation analysis: treatment with scaling techniques.

    PubMed

    Zhou, Tao; Liu, Yongcheng; Peng, Leilei; Zhan, Yanhui; Liu, Feiwei; Zhang, Aiming; Li, Lin

    2014-07-01

    In the present study, the theory of the data treatment with scaling techniques for moving-window two-dimensional (scaling-MW2D) correlation analysis was first proposed. This new analytical method of spectroscopy can significantly enhance the resolving capacity of the moving-window two-dimensional (MW2D) correlation infrared spectroscopy in the direction of the perturbation variable. So, it strengthened the ability of MW2D to highlight the weak transitions. The in situ infrared spectra of four common polymers, including polyamide 66 (PA66), polystyrene-block-polybutadiene-block-polystyrene block copolymer (SBS), isotactic polypropylene (iPP), and polyoxymethylene (POM), were employed to illustrate the advantages of scaling-MW2D. In the applications of the present study, the conventional autocorrelation MW2D can only distinguish the melting point of PA66, the maximum crystallization temperature of POM, and the primary oxidation of SBS. However, the autocorrelation scaling-MW2D not only can more easily determine the above transitions, but also can identify PA66 brill transition, the dissociation of adsorbed water in PA66, POM secondary crystallization, the glass transition of hard blocks in SBS, and the generation of the aldehyde and hydroxyl groups during SBS oxidation. Our further study found that the selection of the scaling factor α was very important. The golden point α = 0.618 was the best value, and satisfactory application results can be achieved. The slice scaling-MW2D was also investigated. The scaling-MW2D method of spectroscopy can be used elsewhere. The application of this analytical method should not be limited to the infrared spectra, and it also should not be limited to transitions in polymers. This method can be easily extended and applied to other materials and spectra.

  10. SU-E-I-74: Image-Matching Technique of Computed Tomography Images for Personal Identification: A Preliminary Study Using Anthropomorphic Chest Phantoms

    SciTech Connect

    Matsunobu, Y; Shiotsuki, K; Morishita, J

    2015-06-15

    Purpose: Fingerprints, dental impressions, and DNA are used to identify unidentified bodies in forensic medicine. Cranial Computed tomography (CT) images and/or dental radiographs are also used for identification. Radiological identification is important, particularly in the absence of comparative fingerprints, dental impressions, and DNA samples. The development of an automated radiological identification system for unidentified bodies is desirable. We investigated the potential usefulness of bone structure for matching chest CT images. Methods: CT images of three anthropomorphic chest phantoms were obtained on different days in various settings. One of the phantoms was assumed to be an unidentified body. The bone image and the bone image with soft tissue (BST image) were extracted from the CT images. To examine the usefulness of the bone image and/or the BST image, the similarities between the two-dimensional (2D) or threedimensional (3D) images of the same and different phantoms were evaluated in terms of the normalized cross-correlation value (NCC). Results: For the 2D and 3D BST images, the NCCs obtained from the same phantom assumed to be an unidentified body (2D, 0.99; 3D, 0.93) were higher than those for the different phantoms (2D, 0.95 and 0.91; 3D, 0.89 and 0.80). The NCCs for the same phantom (2D, 0.95; 3D, 0.88) were greater compared to those of the different phantoms (2D, 0.61 and 0.25; 3D, 0.23 and 0.10) for the bone image. The difference in the NCCs between the same and different phantoms tended to be larger for the bone images than for the BST images. These findings suggest that the image-matching technique is more useful when utilizing the bone image than when utilizing the BST image to identify different people. Conclusion: This preliminary study indicated that evaluating the similarity of bone structure in 2D and 3D images is potentially useful for identifying of an unidentified body.

  11. Spent-fuel-storage alternatives

    SciTech Connect

    Not Available

    1980-01-01

    The Spent Fuel Storage Alternatives meeting was a technical forum in which 37 experts from 12 states discussed storage alternatives that are available or are under development. The subject matter was divided into the following five areas: techniques for increasing fuel storage density; dry storage of spent fuel; fuel characterization and conditioning; fuel storage operating experience; and storage and transport economics. Nineteen of the 21 papers which were presented at this meeting are included in this Proceedings. These have been abstracted and indexed. (ATT)

  12. Determination of Combustion Product Radicals in a Hydrocarbon Fueled Rocket Exhaust Plume

    NASA Technical Reports Server (NTRS)

    Langford, Lester A.; Allgood, Daniel C.; Junell, Justin C.

    2007-01-01

    The identification of metallic effluent materials in a rocket engine exhaust plume indicates the health of the engine. Since 1989, emission spectroscopy of the plume of the Space Shuttle Main Engine (SSME) has been used for ground testing at NASA's Stennis Space Center (SSC). This technique allows the identification and quantification of alloys from the metallic elements observed in the plume. With the prospect of hydrocarbon-fueled rocket engines, such as Rocket Propellant 1 (RP-1) or methane (CH4) fueled engines being considered for use in future space flight systems, the contributions of intermediate or final combustion products resulting from the hydrocarbon fuels are of great interest. The effect of several diatomic molecular radicals, such as Carbon Dioxide , Carbon Monoxide, Molecular Carbon, Methylene Radical, Cyanide or Cyano Radical, and Nitric Oxide, needs to be identified and the effects of their band systems on the spectral region from 300 nm to 850 nm determined. Hydrocarbon-fueled rocket engines will play a prominent role in future space exploration programs. Although hydrogen fuel provides for higher engine performance, hydrocarbon fuels are denser, safer to handle, and less costly. For hydrocarbon-fueled engines using RP-1 or CH4 , the plume is different from a hydrogen fueled engine due to the presence of several other species, such as CO2, C2, CO, CH, CN, and NO, in the exhaust plume, in addition to the standard H2O and OH. These species occur as intermediate or final combustion products or as a result of mixing of the hot plume with the atmosphere. Exhaust plume emission spectroscopy has emerged as a comprehensive non-intrusive sensing technology which can be applied to a wide variety of engine performance conditions with a high degree of sensitivity and specificity. Stennis Space Center researchers have been in the forefront of advancing experimental techniques and developing theoretical approaches in order to bring this technology to a more

  13. Toward production of jet fuel functionality in oilseeds: identification of FatB acyl-acyl carrier protein thioesterases and evaluation of combinatorial expression strategies in Camelina seeds.

    PubMed

    Kim, Hae Jin; Silva, Jillian E; Vu, Hieu Sy; Mockaitis, Keithanne; Nam, Jeong-Won; Cahoon, Edgar B

    2015-07-01

    Seeds of members of the genus Cuphea accumulate medium-chain fatty acids (MCFAs; 8:0-14:0). MCFA- and palmitic acid- (16:0) rich vegetable oils have received attention for jet fuel production, given their similarity in chain length to Jet A fuel hydrocarbons. Studies were conducted to test genes, including those from Cuphea, for their ability to confer jet fuel-type fatty acid accumulation in seed oil of the emerging biofuel crop Camelina sativa. Transcriptomes from Cuphea viscosissima and Cuphea pulcherrima developing seeds that accumulate >90% of C8 and C10 fatty acids revealed three FatB cDNAs (CpuFatB3, CvFatB1, and CpuFatB4) expressed predominantly in seeds and structurally divergent from typical FatB thioesterases that release 16:0 from acyl carrier protein (ACP). Expression of CpuFatB3 and CvFatB1 resulted in Camelina oil with capric acid (10:0), and CpuFatB4 expression conferred myristic acid (14:0) production and increased 16:0. Co-expression of combinations of previously characterized Cuphea and California bay FatBs produced Camelina oils with mixtures of C8-C16 fatty acids, but amounts of each fatty acid were less than obtained by expression of individual FatB cDNAs. Increases in lauric acid (12:0) and 14:0, but not 10:0, in Camelina oil and at the sn-2 position of triacylglycerols resulted from inclusion of a coconut lysophosphatidic acid acyltransferase specialized for MCFAs. RNA interference (RNAi) suppression of Camelina β-ketoacyl-ACP synthase II, however, reduced 12:0 in seeds expressing a 12:0-ACP-specific FatB. Camelina lines presented here provide platforms for additional metabolic engineering targeting fatty acid synthase and specialized acyltransferases for achieving oils with high levels of jet fuel-type fatty acids.

  14. Synthetic Fuel

    ScienceCinema

    Idaho National Laboratory - Steve Herring, Jim O'Brien, Carl Stoots

    2016-07-12

    Two global energy priorities today are finding environmentally friendly alternatives to fossil fuels, and reducing greenhouse gass Two global energy priorities today are finding environmentally friendly alternatives to fossil fuels, and reducing greenhous

  15. Synthetic Fuel

    SciTech Connect

    Idaho National Laboratory - Steve Herring, Jim O'Brien, Carl Stoots

    2008-03-26

    Two global energy priorities today are finding environmentally friendly alternatives to fossil fuels, and reducing greenhouse gass Two global energy priorities today are finding environmentally friendly alternatives to fossil fuels, and reducing greenhous

  16. Fuel cells

    NASA Astrophysics Data System (ADS)

    1984-12-01

    The US Department of Energy (DOE), Office of Fossil Energy, has supported and managed a fuel cell research and development (R and D) program since 1976. Responsibility for implementing DOE's fuel cell program, which includes activities related to both fuel cells and fuel cell systems, has been assigned to the Morgantown Energy Technology Center (METC) in Morgantown, West Virginia. The total United States effort of the private and public sectors in developing fuel cell technology is referred to as the National Fuel Cell Program (NFCP). The goal of the NFCP is to develop fuel cell power plants for base-load and dispersed electric utility systems, industrial cogeneration, and on-site applications. To achieve this goal, the fuel cell developers, electric and gas utilities, research institutes, and Government agencies are working together. Four organized groups are coordinating the diversified activities of the NFCP. The status of the overall program is reviewed in detail.

  17. Future Fuels

    DTIC Science & Technology

    2005-10-04

    tactical ground mobility and increasing operational reach • Identify, review, and assess – Technologies for reducing fuel consumption, including...T I O N S A C T I O N S TOR Focus - Tactical ground mobility - Operational reach - Not A/C, Ships, or troops Hybrid Electric Vehicle Fuel Management...Fuel Management During Combat Operations Energy Fundamentals • Energy Density • Tactical Mobility • Petroleum Use • Fuel Usage (TWV) • TWV OP TEMPO TOR

  18. A new technique for identification of minerals in hyperspectral images. Application to robust characterization of phyllosilicate deposits at Mawrth Vallis using CRISM images.

    NASA Astrophysics Data System (ADS)

    Parente, M.; Bishop, J. L.

    2008-12-01

    Mapping of Mars by MRO has revealed the presence of numerous small phyllosilicate outcrops. These are typically identified in CRISM images using "summary products" (Pelkey, 2007) that consist of band ratios, depths and spectral slopes around diagnostic wavelengths. The summary products are designed to capture spectral features related to both surface mineralogy and atmospheric gases and aerosols. Such products, as an analysis tool to characterize composition as well as a targeting tool to identify areas of mineralogical interest, have been successful in capturing the known diversity of the Martian surface, and in highlighting locations with strong spectral signatures. Here we present alternative mineral mapping technique that 1) aims to increase the robustness of mineral detections with respect to the specific CRISM artifacts, 2) takes advantage of the spatial context of each pixel and 3) develops new parameters for the discrimination of species in the phyllosilicates family. We include spatial context by evaluating spectral shapes, band depths and spectral slopes for the current pixel based on its spatial neighbors within the same geological unit. Furthermore, the parameters are based on estimates that are more robust to CRISM speckling noise that might alter the parameters and potentially the mineral interpretation. As an effort to distinguish between phyllosilicates species, we are augmenting the suite of existent parameters with a set of mineral parameters that involve the position, number and shapes of diagnostic phyllosilicate absorptions. We are comparing the effectiveness of this new approach to the summary product procedure. The study shows that homogeneous mineral maps and diagnostic spectral identifications are possible as a result of the application of such new parameters. We applied the technique to the discrimination of kaolinite in Mawrth Vallis. The experiments show several small kaolinite outcrops dispersed within the more extensive Al

  19. Fossil Fuels.

    ERIC Educational Resources Information Center

    Crank, Ron

    This instructional unit is one of 10 developed by students on various energy-related areas that deals specifically with fossil fuels. Some topics covered are historic facts, development of fuels, history of oil production, current and future trends of the oil industry, refining fossil fuels, and environmental problems. Material in each unit may…

  20. Source Identification and Location Techniques

    NASA Technical Reports Server (NTRS)

    Weir, Donald; Bridges, James; Agboola, Femi; Dougherty, Robert

    2001-01-01

    Mr. Weir presented source location results obtained from an engine test as part of the Engine Validation of Noise Reduction Concepts program. Two types of microphone arrays were used in this program to determine the jet noise source distribution for the exhaust from a 4.3 bypass ratio turbofan engine. One was a linear array of 16 microphones located on a 25 ft. sideline and the other was a 103 microphone 3-D "cage" array in the near field of the jet. Data were obtained from a baseline nozzle and from numerous nozzle configuration using chevrons and/or tabs to reduce the jet noise. Mr. Weir presented data from two configurations: the baseline nozzle and a nozzle configuration with chevrons on both the core and bypass nozzles. This chevron configuration had achieved a jet noise reduction of 4 EPNdB in small scale tests conducted at the Glenn Research Center. IR imaging showed that the chevrons produced significant improvements in mixing and greatly reduced the length of the jet potential core. Comparison of source location data from the 1-D phased array showed a shift of the noise sources towards the nozzle and clear reductions of the sources due to the noise reduction devices. Data from the 3-D array showed a single source at a frequency of 125 Hz. located several diameters downstream from the nozzle exit. At 250 and 400 Hz., multiple sources, periodically spaced, appeared to exist downstream of the nozzle. The trend of source location moving toward the nozzle exit with increasing frequency was also observed. The 3-D array data also showed a reduction in source strength with the addition of chevrons. The overall trend of source location with frequency was compared for the two arrays and with classical experience. Similar trends were observed. Although overall trends with frequency and addition of suppression devices were consistent between the data from the 1-D and the 3-D arrays, a comparison of the details of the inferred source locations did show differences. A flight test is planned to determine if the hardware tested statically will achieve similar reductions in flight.

  1. Aspects of High-Resolution Gas Chromatography as Applied to the Analysis of Hydrocarbon Fuels and Other Complex Organic Mixtures. Volume 2. Survey of Sample Insertion Techniques.

    DTIC Science & Technology

    1985-06-01

    AD-A158 772 ASPECTS OF HIGH-RESOL.UTION GAS CHROMATOGRAPHY S 1ll APPLIED0 TO THE ANALYSIS 0..(U)1 DAYTON UNIV ON RESEARCH INST W A RUSEY ET AL. JUN...RESOLUTION GAS CHROMATOGRAPHY AS APPLIED TO THE ANALYSIS OF HYDROCARBON FUELS AND OTHER COMPLEX ORGANIC MIXTURES Volume II - Survey of Sample Insertion...NO. NO. 45433-6563 62203F 3048 05 91 11. TITLE (Include Security Classification) (cont’ d on reverse) ASPECTS OF HIGH-RESOLUTION GAS CHROMATOGRAPHY T

  2. Toward production of jet fuel functionality in oilseeds: Identification of FatB acyl-acyl carrier protein thioesterases and evaluation of combinatorial expression strategies in Camelina seeds

    DOE PAGES

    Kim, Hae Jin; Silva, Jillian E.; Vu, Hieu Sy; ...

    2015-05-11

    Seeds of members of the genus Cuphea accumulate medium-chain fatty acids (MCFAs; 8:0–14:0). MCFA- and palmitic acid- (16:0) rich vegetable oils have received attention for jet fuel production, given their similarity in chain length to Jet A fuel hydrocarbons. Studies were conducted to test genes, including those from Cuphea, for their ability to confer jet fuel-type fatty acid accumulation in seed oil of the emerging biofuel crop Camelina sativa. Transcriptomes from Cuphea viscosissima and Cuphea pulcherrima developing seeds that accumulate >90% of C8 and C10 fatty acids revealed three FatB cDNAs (CpuFatB3, CvFatB1, and CpuFatB4) expressed predominantly in seeds andmore » structurally divergent from typical FatB thioesterases that release 16:0 from acyl carrier protein (ACP). Expression of CpuFatB3 and CvFatB1 resulted in Camelina oil with capric acid (10:0), and CpuFatB4 expression conferred myristic acid (14:0) production and increased 16:0. Co-expression of combinations of previously characterized Cuphea and California bay FatBs produced Camelina oils with mixtures of C8–C16 fatty acids, but amounts of each fatty acid were less than obtained by expression of individual FatB cDNAs. Increases in lauric acid (12:0) and 14:0, but not 10:0, in Camelina oil and at the sn-2 position of triacylglycerols resulted from inclusion of a coconut lysophosphatidic acid acyltransferase specialized for MCFAs. RNA interference (RNAi) suppression of Camelina β-ketoacyl-ACP synthase II, however, reduced 12:0 in seeds expressing a 12:0-ACP-specific FatB. Here, Camelina lines presented here provide platforms for additional metabolic engineering targeting fatty acid synthase and specialized acyltransferases for achieving oils with high levels of jet fuel-type fatty acids.« less

  3. Toward production of jet fuel functionality in oilseeds: identification of FatB acyl-acyl carrier protein thioesterases and evaluation of combinatorial expression strategies in Camelina seeds

    PubMed Central

    Kim, Hae Jin; Silva, Jillian E.; Vu, Hieu Sy; Mockaitis, Keithanne; Nam, Jeong-Won; Cahoon, Edgar B.

    2015-01-01

    Seeds of members of the genus Cuphea accumulate medium-chain fatty acids (MCFAs; 8:0–14:0). MCFA- and palmitic acid- (16:0) rich vegetable oils have received attention for jet fuel production, given their similarity in chain length to Jet A fuel hydrocarbons. Studies were conducted to test genes, including those from Cuphea, for their ability to confer jet fuel-type fatty acid accumulation in seed oil of the emerging biofuel crop Camelina sativa. Transcriptomes from Cuphea viscosissima and Cuphea pulcherrima developing seeds that accumulate >90% of C8 and C10 fatty acids revealed three FatB cDNAs (CpuFatB3, CvFatB1, and CpuFatB4) expressed predominantly in seeds and structurally divergent from typical FatB thioesterases that release 16:0 from acyl carrier protein (ACP). Expression of CpuFatB3 and CvFatB1 resulted in Camelina oil with capric acid (10:0), and CpuFatB4 expression conferred myristic acid (14:0) production and increased 16:0. Co-expression of combinations of previously characterized Cuphea and California bay FatBs produced Camelina oils with mixtures of C8–C16 fatty acids, but amounts of each fatty acid were less than obtained by expression of individual FatB cDNAs. Increases in lauric acid (12:0) and 14:0, but not 10:0, in Camelina oil and at the sn-2 position of triacylglycerols resulted from inclusion of a coconut lysophosphatidic acid acyltransferase specialized for MCFAs. RNA interference (RNAi) suppression of Camelina β-ketoacyl-ACP synthase II, however, reduced 12:0 in seeds expressing a 12:0-ACP-specific FatB. Camelina lines presented here provide platforms for additional metabolic engineering targeting fatty acid synthase and specialized acyltransferases for achieving oils with high levels of jet fuel-type fatty acids. PMID:25969557

  4. Alternative fuels

    NASA Technical Reports Server (NTRS)

    Grobman, J. S.; Butze, H. F.; Friedman, R.; Antoine, A. C.; Reynolds, T. W.

    1977-01-01

    Potential problems related to the use of alternative aviation turbine fuels are discussed and both ongoing and required research into these fuels is described. This discussion is limited to aviation turbine fuels composed of liquid hydrocarbons. The advantages and disadvantages of the various solutions to the problems are summarized. The first solution is to continue to develop the necessary technology at the refinery to produce specification jet fuels regardless of the crude source. The second solution is to minimize energy consumption at the refinery and keep fuel costs down by relaxing specifications.

  5. Molecular identification of human tuberculosis in recent and historic bone tissue samples: The role of molecular techniques for the study of historic tuberculosis.

    PubMed

    Zink, Albert R; Grabner, Waltraud; Nerlich, Andreas G

    2005-01-01

    We describe the molecular identification of the M. tuberculosis complex DNA in bone tissue samples from recent and historic populations. In a first set, archival paraffin material from vertebral bodies of 12 recent cases with clinically/microbiologically proven tuberculosis was compared to 12 further cases without tuberculosis. While eight TB cases revealed a specific mycobacterial amplification product, none of the controls was positive. Interestingly, one case with tuberculous sepsis (Landouzy sepsis), five cases with tuberculous spread beyond the primarily affected organ (i.e., lymph node or miliar involvement), and also two of six cases with restricted pulmonary tuberculosis reacted positively in the vertebral specimens. This indicates that a molecular analysis can detect mycobacteria even in unremarkable bone tissue, proving that organ tuberculosis is present. In addition, the extent of spread is of high significance for the frequency of positive reactions. In addition, we investigated a series of vertebral samples coming from an Egyptian population of the necropolis of Thebes-West dating to approximately 1450-500 BC. In this group of 36 cases, three of five cases with typical macromorphological signs for tuberculous spondylitis, 2 of 12 cases with nonspecific alterations, and 2 of 19 cases without macroscopic pathology revealed a specific amplicon of the M. tuberculosis complex. This suggests a significant frequency of infected people in that ancient population. Finally, a fourth group of 51 long bone samples with pathological alterations coming form a southern German ossuary (between AD 1400-1800) was investigated, and 10 cases were positive for the M. tuberculosis complex. These studies of historic material clearly support the notion that tuberculous infections can be unequivocally identified by molecular techniques. The relatively high frequency of ancient bacterial DNA amplifications in unremarkable bone is well-explained by our analysis of the recent

  6. Combining local wavelength information and ensemble learning to enhance the specificity of class modeling techniques: Identification of food geographical origins and adulteration.

    PubMed

    Xu, Lu; Ye, Zi-Hong; Yan, Si-Min; Shi, Peng-Tao; Cui, Hai-Feng; Fu, Xian-Shu; Yu, Xiao-Ping

    2012-11-19

    Class modeling techniques are required to tackle various one-class problems. Because the training of class models is based on the target class and the origins of future test objects usually cannot be exactly predefined, the criteria for feature selection of class models are not very straightforward. Although feature reduction can be expected to improve class models performance, more features retained can provide a sufficient description of the sought-for class. This paper suggests a strategy to balance class description and model specificity by ensemble learning of sub-models based on separate local wavelength intervals. The acceptance or rejection of a future object can be explicitly determined by examining its acceptance frequency by sub-models. Considering the lack of information about sub-model independence, we propose to use a data-driven method to control the sensitivity of the ensemble model by cross validation. In this way, all the wavelength intervals are used for class description and the local wavelength intervals are highlighted to enhance the ability to detect out-of-class objects. The proposed strategy was performed on one-class partial least squares (OCPLS) and soft independent modeling of class analogy (SIMCA). By analysis of two infrared spectral data sets, one for geographical origin identification of white tea and the other for discrimination of adulterations in pure sesame oil, the proposed ensemble class modeling method was demonstrated to have similar sensitivity and better specificity compared with total-spectrum SIMCA and OCPLS models. The results indicate local spectral information can be extracted to enhance class model specificity.

  7. Application of toxicity-based fractionation techniques and structure-activity relationship models for the identification of phototoxic polycyclic aromatic hydrocarbons in sediment pore water

    SciTech Connect

    Kosian, P.A.; Makynen, E.A.; Monson, P.D.; Mount, D.R.; Ankley, G.T.; Spacie, A.; Mekenyan, O.G.

    1998-06-01

    Recent studies conducted at their laboratory have shown that sediments contaminated with complex mixtures of polycyclic aromatic hydrocarbons (PAHs) can exhibit enhanced toxicity (lethality) to a variety of aquatic species when the samples are tested under ultraviolet (UV) light designed to mimic the wavelengths present in sunlight. However, because these contaminated sediments can contain literally thousands of chemicals, it is difficult to use conventional analytical techniques to identify those compounds responsible for photo-induced toxicity. The purpose of this study was to adapt existing toxicity identification evaluation methods to attempt to identify those compounds contributing to the phototoxicity observed in their sediment samples. Pore water obtained from sediments collected near an oil refinery discharge was toxic to Lumbriculus variegatus following exposure to UV light, while organisms exposed to the same pore water, but without subsequent UV treatment, showed no toxic effect. Solid-phase extraction disks and high-performance liquid chromatography were used, in conjunction with toxicity tests with L. variegatus, to extract and fractionate phototoxic chemicals from the pore water. Phototoxic fractions analyzed by gas chromatography-mass spectrometry revealed the presence of a number of aliphatic hydrocarbons, substituted PAHs, and PAHs containing heteroatoms. Chemicals were screened for their phototoxic potential based on empirical data and predictive models. A refined list of PAHs was then evaluated on the basis of their phototoxic potency as defined by a recently developed quantitative structure-activity relationship model and estimates of their bioaccumulation potential. Based on the model predictions of potency and bioaccumulation, nine likely phototoxic chemicals were identified.

  8. Parametric Identification of Systems Via Linear Operators.

    DTIC Science & Technology

    1978-09-01

    A general parametric identification /approximation model is developed for the black box identification of linear time invariant systems in terms of... parametric identification techniques derive from the general model as special cases associated with a particular linear operator. Some possible

  9. Treatment of seafood processing wastewater using upflow microbial fuel cell for power generation and identification of bacterial community in anodic biofilm.

    PubMed

    Jayashree, C; Tamilarasan, K; Rajkumar, M; Arulazhagan, P; Yogalakshmi, K N; Srikanth, M; Banu, J Rajesh

    2016-09-15

    Tubular upflow microbial fuel cell (MFC) utilizing sea food processing wastewater was evaluated for wastewater treatment efficiency and power generation. At an organic loading rate (OLR) of 0.6 g d(-1), the MFC accomplished total and soluble chemical oxygen demand (COD) removal of 83 and 95%, respectively. A maximum power density of 105 mW m(-2) (2.21 W m(-3)) was achieved at an OLR of 2.57 g d(-1). The predominant bacterial communities of anode biofilm were identified as RB1A (LC035455), RB1B (LC035456), RB1C (LC035457) and RB1E (LC035458). All the four strains belonged to genera Stenotrophomonas. The results of the study reaffirms that the seafood processing wastewater can be treated in an upflow MFC for simultaneous power generation and wastewater treatment.

  10. Active Interrogation for Spent Fuel

    SciTech Connect

    Swinhoe, Martyn Thomas; Dougan, Arden

    2015-11-05

    The DDA instrument for nuclear safeguards is a fast, non-destructive assay, active neutron interrogation technique using an external 14 MeV DT neutron generator for characterization and verification of spent nuclear fuel assemblies.

  11. Analysis of fission and activation radionuclides produced by a uranium-fueled nuclear detonation and identification of the top dose-producing radionuclides.

    PubMed

    Kraus, Terry; Foster, Kevin

    2014-08-01

    The radiological assessment of the nuclear fallout (i.e., fission and neutron-activation radionuclides) from a nuclear detonation is complicated by the large number of fallout radionuclides. This paper provides the initial isotopic source term inventory of the fallout from a uranium-fueled nuclear detonation and identifies the significant and insignificant radiological dose producing radionuclides over 11 dose integration time periods (time phases) of interest. A primary goal of this work is to produce a set of consistent, time phase-dependent lists of the top dose-producing radionuclides that can be used to prepare radiological assessment calculations and data products (e.g., maps of areas that exceed protective action guidelines) in support of public and worker protection decisions. The ranked lists of top dose-producing radionuclides enable assessors to perform atmospheric dispersion modeling and radiological dose assessment modeling more quickly by using relatively short lists of radionuclides without significantly compromising the accuracy of the modeling and the dose projections. This paper also provides a superset-list of the top dose-producing fallout radionuclides from a uranium-fueled nuclear detonation that can be used to perform radiological assessments over any desired time phase. Furthermore, this paper provides information that may be useful to monitoring and sampling and laboratory analysis personnel to help understand which radionuclides are of primary concern. Finally, this paper may be useful to public protection decision makers because it shows the importance of quickly initiating public protection actions to minimize the radiological dose from fallout.

  12. 49 CFR 172.336 - Identification numbers; special provisions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... together with a gasoline and alcohol fuel blend containing more than ten percent ethanol, the... gasoline and alcohol fuel blend containing more than ten percent ethanol, the identification number...

  13. 49 CFR 172.336 - Identification numbers; special provisions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... together with a gasoline and alcohol fuel blend containing more than ten percent ethanol, the... gasoline and alcohol fuel blend containing more than ten percent ethanol, the identification number...

  14. Measurements in liquid fuel sprays

    NASA Technical Reports Server (NTRS)

    Chigier, N.

    1984-01-01

    Techniques for studying the events directly preceding combustion in the liquid fuel sprays are being used to provide information as a function of space and time on droplet size, shape, number density, position, angle of flight and velocity. Spray chambers were designed and constructed for: (1) air-assist liquid fuel research sprays; (2) high pressure and temperature chamber for pulsed diesel fuel sprays; and (3) coal-water slurry sprays. Recent results utilizing photography, cinematography, and calibration of the Malvern particle sizer are reported. Systems for simultaneous measurement of velocity and particle size distributions using laser Doppler anemometry interferometry and the application of holography in liquid fuel sprays are being calibrated.

  15. Fuel compositions

    SciTech Connect

    Zaweski, E.F.; Niebylski, L.M.

    1986-08-05

    This patent describes distillate fuel for indirect injection compression ignition engines containing, in an amount sufficient to minimize coking, especially throttling nozzle coking in the prechambers or swirl chambers of indirect injection compression ignition engines operated on such fuel, at least the combination of (i) organic nitrate ignition accelerator and (ii) an esterified cycle dehydration product of sorbitol which, when added to the fuel in combination with the organic nitrate ignition accelerator minimizes the coking.

  16. Metal hydride fuel storage and method thereof

    DOEpatents

    Morse, Jeffrey D.; Jankowski, Alan F.; Yu, Conrad

    2006-10-17

    Disclosed herein is a metal hydride fuel storage cartridge having integrated resistive heaters that can be used in conjunction with fuel cells such as MEMS-based fuel cells. The cartridge is fabricated using micromachining methods and thin/thick film materials synthesis techniques.

  17. Metal hydride fuel storage and method thereof

    DOEpatents

    Morse, Jeffrey D [Martinez, CA; Jankowski, Alan F [Livermore, CA; Yu, Conrad [Antioch, CA

    2009-05-05

    Disclosed herein is a metal hydride fuel storage cartridge having integrated resistive heaters that can be used in conjunction with fuel cells such as MEMS-based fuel cells. The cartridge is fabricated using micromachining methods and thin/thick film materials synthesis techniques.

  18. Fuel cells 101

    SciTech Connect

    Hirschenhofer, J.H.

    1999-07-01

    This paper discusses the various types of fuel cells, the importance of cell voltage, fuel processing for natural gas, cell stacking, fuel cell plant description, advantages and disadvantages of the types of fuel cells, and applications. The types covered include: polymer electrolyte fuel cell, alkaline fuel cell, phosphoric acid fuel cell; molten carbonate fuel cell, and solid oxide fuel cell.

  19. Fuel dehazers

    SciTech Connect

    Lyons, W.R.

    1986-03-01

    Hazy fuels can be caused by the emulsification of water into the fuel during refining, blending, or transportation operations. Detergent additive packages used in gasoline tend to emulsify water into the fuel. Fuels containing water haze can cause corrosion and contamination, and support microbiological growth. This results in problems. As the result of these problems, refiners, marketers, and product pipeline companies customarily have haze specifications. The haze specification may be a specific maximum water content or simply ''bright and clear'' at a specified temperature.

  20. Motor fuel

    SciTech Connect

    Burns, L.D.

    1982-07-13

    Liquid hydrocarbon fuel compositions are provided containing antiknock quantities of ashless antiknock agents comprising selected furyl compounds including furfuryl alcohol, furfuryl amine, furfuryl esters, and alkyl furoates.