Sample records for fuel interim storage

  1. Analysis of Transportation Options for Commercial Spent Fuel in the U.S.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalinina, Elena; Busch, Ingrid Karin

    The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S.more » Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage and associated transportation of spent nuclear fuel (SNF) highand associated transportation of spent nuclear fuel (SNF) and high and associated transportation of spent nuclear fuel (SNF) highand associated transportation of spent nuclear fuel (SNF) and high and associated transportation of spent nuclear fuel (SNF) highand associated transportation of spent nuclear fuel (SNF) and highand associated transportation of spent nuclear fuel (SNF) and high and associated transportation of spent nuclear fuel (SNF) high and associated transportation of spent nuclear fuel (SNF) high and associated transportation of spent nuclear fuel (SNF) high and associated transportation of spent nuclear fuel (SNF) high and associated transportation of spent nuclear fuel (SNF) high and associated transportation of spent nuclear fuel (SNF) high and associated transportation of spent nuclear fuel (SNF) highand associated transportation of spent nuclear fuel (SNF) and high and associated transportation of spent nuclear fuel (SNF) high and associated transportation of spent nuclear fuel (SNF) highand associated transportation of spent nuclear fuel (SNF)...« less

  2. 78 FR 40199 - Draft Spent Fuel Storage and Transportation Interim Staff Guidance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-03

    ... NUCLEAR REGULATORY COMMISSION [NRC-2013-0140] Draft Spent Fuel Storage and Transportation Interim... Spent Fuel Storage and Transportation Interim Staff Guidance No. 24 (SFST-ISG-24), Revision 0, ``The Use of a Demonstration Program as Confirmation of Integrity for Continued Storage of High Burnup Fuel...

  3. Integrated waste management system costs in a MPC system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Supko, E.M.

    1995-12-01

    The impact on system costs of including a centralized interim storage facility as part of an integrated waste management system based on multi-purpose canister (MPC) technology was assessed in analyses by Energy Resources International, Inc. A system cost savings of $1 to $2 billion occurs if the Department of Energy begins spent fuel acceptance in 1998 at a centralized interim storage facility. That is, the savings associated with decreased utility spent fuel management costs will be greater than the cost of constructing and operating a centralized interim storage facility.

  4. Developing a concept for a national used fuel interim storage facility in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, Donald Wayne

    2013-07-01

    In the United States (U.S.) the nuclear waste issue has plagued the nuclear industry for decades. Originally, spent fuel was to be reprocessed but with the threat of nuclear proliferation, spent fuel reprocessing has been eliminated, at least for now. In 1983, the Nuclear Waste Policy Act of 1982 [1] was established, authorizing development of one or more spent fuel and high-level nuclear waste geological repositories and a consolidated national storage facility, called a 'Monitored Retrievable Storage' facility, that could store the spent nuclear fuel until it could be placed into the geological repository. Plans were under way to buildmore » a geological repository, Yucca Mountain, but with the decision by President Obama to terminate the development of Yucca Mountain, a consolidated national storage facility that can store spent fuel for an interim period until a new repository is established has become very important. Since reactor sites have not been able to wait for the government to come up with a storage or disposal location, spent fuel remains in wet or dry storage at each nuclear plant. The purpose of this paper is to present a concept developed to address the DOE's goals stated above. This concept was developed over the past few months by collaboration between the DOE and industry experts that have experience in designing spent nuclear fuel facilities. The paper examines the current spent fuel storage conditions at shutdown reactor sites, operating reactor sites, and the type of storage systems (transportable versus non-transportable, welded or bolted). The concept lays out the basis for a pilot storage facility to house spent fuel from shutdown reactor sites and then how the pilot facility can be enlarged to a larger full scale consolidated interim storage facility. (authors)« less

  5. An allowable cladding peak temperature for spent nuclear fuels in interim dry storage

    NASA Astrophysics Data System (ADS)

    Cha, Hyun-Jin; Jang, Ki-Nam; Kim, Kyu-Tae

    2018-01-01

    Allowable cladding peak temperatures for spent fuel cladding integrity in interim dry storage were investigated, considering hydride reorientation and mechanical property degradation behaviors of unirradiated and neutron irradiated Zr-Nb cladding tubes. Cladding tube specimens were heated up to various temperatures and then cooled down under tensile hoop stresses. Cool-down specimens indicate that higher heat-up temperature and larger tensile hoop stress generated larger radial hydride precipitation and smaller tensile strength and plastic hoop strain. Unirradiated specimens generated relatively larger radial hydride precipitation and plastic strain than did neutron irradiated specimens. Assuming a minimum plastic strain requirement of 5% for cladding integrity maintenance in interim dry storage, it is proposed that a cladding peak temperature during the interim dry storage is to keep below 250 °C if cladding tubes are cooled down to room temperature.

  6. Characterization of the radiation environment for a large-area interim spent-nuclear-fuel storage facility

    NASA Astrophysics Data System (ADS)

    Fortkamp, Jonathan C.

    Current needs in the nuclear industry and movements in the political arena indicate that authorization may soon be given for development of a federal interim storage facility for spent nuclear fuel. The initial stages of the design work have already begun within the Department of Energy and are being reviewed by the Nuclear Regulatory Commission. This dissertation addresses the radiation environment around an interim spent nuclear fuel storage facility. Specifically the dissertation characterizes the radiation dose rates around the facility based on a design basis source term, evaluates the changes in dose due to varying cask spacing configurations, and uses these results to define some applicable health physics principles for the storage facility. Results indicate that dose rates from the facility are due primarily from photons from the spent fuel and Co-60 activation in the fuel assemblies. In the modeled cask system, skyshine was a significant contribution to dose rates at distances from the cask array, but this contribution can be reduced with an alternate cask venting system. With the application of appropriate health physics principles, occupation doses can be easily maintained far below regulatory limits and maintained ALARA.

  7. Cost Sensitivity Analysis for Consolidated Interim Storage of Spent Fuel: Evaluating the Effect of Economic Environment Parameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cumberland, Riley M.; Williams, Kent Alan; Jarrell, Joshua J.

    This report evaluates how the economic environment (i.e., discount rate, inflation rate, escalation rate) can impact previously estimated differences in lifecycle costs between an integrated waste management system with an interim storage facility (ISF) and a similar system without an ISF.

  8. Characterization of neutron sources from spent fuel casks. [Skyshine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parks, C.V.; Pace, J.V. III

    1987-01-01

    In the interim period prior to the acceptance of spent fuel for disposal by the USDOE, utilities are beginning to choose dry cask storage as an alternative to pool re-racking, transshipments, or new pool construction. In addition, the current MRS proposal calls for interim dry storage of consolidated spent fuel in concrete casks. As part of the licensing requirements for these cask storage facilities, calculations are typically necessary to determine the yearly radiation dose received at the site boundary. Unlike wet facilities, neutron skyshine can be an important contribution to the total boundary dose from a dry storage facility. Calculationmore » of the neutron skyshine is in turn heavily dependent on the source characteristics and source model selected for the analysis. This paper presents the basic source characteristics of the spent fuel stored in dry casks and discusses factors that must be considered in evaluating and modeling the radiation sources for the subsequent skyshine calculation. 4 refs., 1 tab.« less

  9. 75 FR 53353 - Notice of Availability of Final Interim Staff Guidance Document No. 25 “Pressure and Helium...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-31

    ... Guidance Document No. 25 ``Pressure and Helium Leakage Testing of the Confinement Boundary of Spent Fuel...: The Division of Spent Fuel Storage and Transportation (SFST) of the Office of Nuclear Materials Safety... Helium Leakage Testing of the Confinement Boundary of Spent Fuel Dry Storage Systems.'' This ISG...

  10. BWR Spent Nuclear Fuel Integrity Research and Development Survey for UKABWR Spent Fuel Interim Storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bevard, Bruce Balkcom; Mertyurek, Ugur; Belles, Randy

    The objective of this report is to identify issues and support documentation and identify and detail existing research on spent fuel dry storage; provide information to support potential R&D for the UKABWR (United Kingdom Advanced Boiling Water Reactor) Spent Fuel Interim Storage (SFIS) Pre-Construction Safety Report; and support development of answers to questions developed by the regulator. Where there are gaps or insufficient data, Oak Ridge National Laboratory (ORNL) has summarized the research planned to provide the necessary data along with the schedule for the research, if known. Spent nuclear fuel (SNF) from nuclear power plants has historically been storedmore » on site (wet) in spent fuel pools pending ultimate disposition. Nuclear power users (countries, utilities, vendors) are developing a suite of options and set of supporting analyses that will enable future informed choices about how best to manage these materials. As part of that effort, they are beginning to lay the groundwork for implementing longer-term interim storage of the SNF and the Greater Than Class C (CTCC) waste (dry). Deploying dry storage will require a number of technical issues to be addressed. For the past 4-5 years, ORNL has been supporting the U.S. Department of Energy (DOE) in identifying these key technical issues, managing the collection of data to be used in issue resolution, and identifying gaps in the needed data. During this effort, ORNL subject matter experts (SMEs) have become expert in understanding what information is publicly available and what gaps in data remain. To ensure the safety of the spent fuel under normal and frequent conditions of wet and subsequent dry storage, intact fuel must be shown to: 1.Maintain fuel cladding integrity; 2.Maintain its geometry for cooling, shielding, and subcriticality; 3.Maintain retrievability, and damaged fuel with pinhole or hairline cracks must be shown not to degrade further. Where PWR (pressurized water reactor) information is utilized or referenced, justification has been provided as to why the data can be utilized for BWR fuel.« less

  11. Container materials in environments of corroded spent nuclear fuel

    NASA Astrophysics Data System (ADS)

    Huang, F. H.

    1996-07-01

    Efforts to remove corroded uranium metal fuel from the K Basins wet storage to long-term dry storage are underway. The multi-canister overpack (MCO) is used to load spent nuclear fuel for vacuum drying, staging, and hot conditioning; it will be used for interim dry storage until final disposition options are developed. Drying and conditioning of the corroded fuel will minimize the possibility of gas pressurization and runaway oxidation. During all phases of operations the MCO is subjected to radiation, temperature and pressure excursions, hydrogen, potential pyrophoric hazard, and corrosive environments. Material selection for the MCO applications is clearly vital for safe and efficient long-term interim storage. Austenitic stainless steels (SS) such as 304L SS or 316L SS appear to be suitable for the MCO. Of the two, Type 304L SS is recommended because it possesses good resistance to chemical corrosion, hydrogen embrittlement, and radiation-induced corrosive species. In addition, the material has adequate strength and ductility to withstand pressure and impact loading so that the containment boundary of the container is maintained under accident conditions without releasing radioactive materials.

  12. Spent Nuclear Fuel (SNF) Project Execution Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LEROY, P.G.

    2000-11-03

    The Spent Nuclear Fuel (SNF) Project supports the Hanford Site Mission to cleanup the Site by providing safe, economic, environmentally sound management of Site spent nuclear fuel in a manner that reduces hazards by staging it to interim onsite storage and deactivates the 100 K Area facilities.

  13. LEVERAGING AGING MATERIALS DATA TO SUPPORT EXTENSION OF TRANSPORTATION SHIPPING PACKAGES SERVICE LIFE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunn, K.; Bellamy, S.; Daugherty, W.

    Nuclear material inventories are increasingly being transferred to interim storage locations where they may reside for extended periods of time. Use of a shipping package to store nuclear materials after the transfer has become more common for a variety of reasons. Shipping packages are robust and have a qualified pedigree for performance in normal operation and accident conditions but are only certified over an approved transportation window. The continued use of shipping packages to contain nuclear material during interim storage will result in reduced overall costs and reduced exposure to workers. However, the shipping package materials of construction must maintainmore » integrity as specified by the safety basis of the storage facility throughout the storage period, which is typically well beyond the certified transportation window. In many ways, the certification processes required for interim storage of nuclear materials in shipping packages is similar to life extension programs required for dry cask storage systems for commercial nuclear fuels. The storage of spent nuclear fuel in dry cask storage systems is federally-regulated, and over 1500 individual dry casks have been in successful service up to 20 years in the US. The uncertainty in final disposition will likely require extended storage of this fuel well beyond initial license periods and perhaps multiple re-licenses may be needed. Thus, both the shipping packages and the dry cask storage systems require materials integrity assessments and assurance of continued satisfactory materials performance over times not considered in the original evaluation processes. Test programs for the shipping packages have been established to obtain aging data on materials of construction to demonstrate continued system integrity. The collective data may be coupled with similar data for the dry cask storage systems and used to support extending the service life of shipping packages in both transportation and storage.« less

  14. FRAPCON analysis of cladding performance during dry storage operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richmond, David J.; Geelhood, Kenneth J.

    There is an increasing need in the U.S. and around the world to move used nuclear fuel from wet storage in fuel pools to dry storage in casks stored at independent spent fuel storage installations (ISFSI) or interim storage sites. The NRC limits cladding temperature to 400°C while maintaining cladding hoop stress below 90 MPa in an effort to avoid radial hydride reorientation. An analysis was conducted with FRAPCON-4.0 on three modern fuel designs with three representative used nuclear fuel storage temperature profiles that peaked at 400 °C. Results were representative of the majority of U.S. LWR fuel. They conservativelymore » showed that hoop stress remains below 90 MPa at the licensing temperature limit. Results also show that the limiting case for hoop stress may not be at the highest rod internal pressure in all cases but will be related to the axial temperature and oxidation profiles of the rods at the end of life and in storage.« less

  15. Lessons learned from the Siting Process of an Interim Storage Facility in Spain - 12024

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lamolla, Meritxell Martell

    2012-07-01

    On 29 December 2009, the Spanish government launched a site selection process to host a centralised interim storage facility for spent fuel and high-level radioactive waste. It was an unprecedented call for voluntarism among Spanish municipalities to site a controversial facility. Two nuclear municipalities, amongst a total of thirteen municipalities from five different regions, presented their candidatures to host the facility in their territories. For two years the government did not make a decision. Only in November 30, 2011, the new government elected on 20 November 2011 officially selected a non-nuclear municipality, Villar de Canas, for hosting this facility. Thismore » paper focuses on analysing the factors facilitating and hindering the siting of controversial facilities, in particular the interim storage facility in Spain. It demonstrates that involving all stakeholders in the decision-making process should not be underestimated. In the case of Spain, all regional governments where there were candidate municipalities willing to host the centralised interim storage facility, publicly opposed to the siting of the facility. (author)« less

  16. Used fuel extended storage security and safeguards by design roadmap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durbin, Samuel G.; Lindgren, Eric Richard; Jones, Robert

    2016-05-01

    In the United States, spent nuclear fuel (SNF) is safely and securely stored in spent fuel pools and dry storage casks. The available capacity in spent fuel pools across the nuclear fleet has nearly reached a steady state value. The excess SNF continues to be loaded in dry storage casks. Fuel is expected to remain in dry storage for periods beyond the initial dry cask certification period of 20 years. Recent licensing renewals have approved an additional 40 years. This report identifies the current requirements and evaluation techniques associated with the safeguards and security of SNF dry cask storage. Amore » set of knowledge gaps is identified in the current approaches. Finally, this roadmap identifies known knowledge gaps and provides a research path to deliver the tools and models needed to close the gaps and allow the optimization of the security and safeguards approaches for an interim spent fuel facility over the lifetime of the storage site.« less

  17. Recent developments - US spent fuel disposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    One of a US utility's major risk factors in continuing to operate a nuclear plant is managing discharged spent fuel. The US Department of Energy (DOE) signed contracts with utilities guaranteeing government acceptance of spent fuel by 1988. However, on December 17, 1992, DOE Secretary Watkins wrote to Sen. J. Bennett Johnston (D-LA), Chairman of the Senate Energy Committee, indicating a reassessment of DOE's programs, the results of which will be presented to Congress in January 1993. He indicated the Department may not be able to meet the 1988 date, because of difficulty in finding a site for the Monitoredmore » Retrievable Storage facility. Watkins indicated that DOE has investigated an interim solution and decided to expedite a program to certify a multi-purpose standardized cask system for spent fuel receipt, storage, transport, and disposal. To meet the expectations of US utilities, DOE is considering a plan to use federal sites for interim storage of the casks. Secretary Watkins recommended the waste program be taken off-budget and put in a revolving fund established to ensure that money already collected from utilities will be available to meet the schedule for completion of the repository.« less

  18. Technology, safety and costs of decommissioning reference independent spent fuel storage installations. [Contains glossary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ludwick, J D; Moore, E B

    1984-01-01

    Safety and cost information is developed for the conceptual decommissioning of five different types of reference independent spent fuel storage installations (ISFSIs), each of which is being given consideration for interim storage of spent nuclear fuel in the United States. These include one water basin-type ISFSI (wet) and four dry ISFSIs (drywell, silo, vault, and cask). The reference ISFSIs include all component parts necessary for the receipt, handling and storage of spent fuel in a safe and efficient manner. Three decommissioning alternatives are studied to obtain comparisons between costs (in 1981 dollars), occupational radiation doses, and potential radiation doses tomore » the public. The alternatives considered are: DECON (immediate decontamination), SAFSTOR (safe storage followed by deferred decontamination), and ENTOMB (entombment followed by long-term surveillance).« less

  19. Partial defect verification of spent fuel assemblies by PDET: Principle and field testing in Interim Spent fuel Storage Facility (CLAB) in Sweden

    DOE PAGES

    Ham, Y.; Kerr, P.; Sitaraman, S.; ...

    2016-05-05

    Here, the need for the development of a credible method and instrument for partial defect verification of spent fuel has been emphasized over a few decades in the safeguards communities as the diverted spent fuel pins can be the source of nuclear terrorism or devices. The need is increasingly more important and even urgent as many countries have started to transfer spent fuel to so called "difficult-to-access" areas such as dry storage casks, reprocessing or geological repositories. Partial defect verification is required by IAEA before spent fuel is placed into "difficult-to-access" areas. Earlier, Lawrence Livermore National Laboratory (LLNL) has reportedmore » the successful development of a new, credible partial defect verification method for pressurized water reactor (PWR) spent fuel assemblies without use of operator data, and further reported the validation experiments using commercial spent fuel assemblies with some missing fuel pins. The method was found to be robust as the method is relatively invariant to the characteristic variations of spent fuel assemblies such as initial fuel enrichment, cooling time, and burn-up. Since then, the PDET system has been designed and prototyped for 17×17 PWR spent fuel assemblies, complete with data acquisition software and acquisition electronics. In this paper, a summary description of the PDET development followed by results of the first successful field testing using the integrated PDET system and actual spent fuel assemblies performed in a commercial spent fuel storage site, known as Central Interim Spent fuel Storage Facility (CLAB) in Sweden will be presented. In addition to partial defect detection initial studies have determined that the tool can be used to verify the operator declared average burnup of the assembly as well as intra-assembly bunrup levels.« less

  20. Partial Defect Verification of Spent Fuel Assemblies by PDET: Principle and Field Testing in Interim Spent Fuel Storage Facility (CLAB) in Sweden

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ham, Y.S.; Kerr, P.; Sitaraman, S.

    The need for the development of a credible method and instrument for partial defect verification of spent fuel has been emphasized over a few decades in the safeguards communities as the diverted spent fuel pins can be the source of nuclear terrorism or devices. The need is increasingly more important and even urgent as many countries have started to transfer spent fuel to so called 'difficult-to-access' areas such as dry storage casks, reprocessing or geological repositories. Partial defect verification is required by IAEA before spent fuel is placed into 'difficult-to-access' areas. Earlier, Lawrence Livermore National Laboratory (LLNL) has reported themore » successful development of a new, credible partial defect verification method for pressurized water reactor (PWR) spent fuel assemblies without use of operator data, and further reported the validation experiments using commercial spent fuel assemblies with some missing fuel pins. The method was found to be robust as the method is relatively invariant to the characteristic variations of spent fuel assemblies such as initial fuel enrichment, cooling time, and burn-up. Since then, the PDET system has been designed and prototyped for 17x17 PWR spent fuel assemblies, complete with data acquisition software and acquisition electronics. In this paper, a summary description of the PDET development followed by results of the first successful field testing using the integrated PDET system and actual spent fuel assemblies performed in a commercial spent fuel storage site, known as Central Interim Spent fuel Storage Facility (CLAB) in Sweden will be presented. In addition to partial defect detection initial studies have determined that the tool can be used to verify the operator declared average burnup of the assembly as well as intra-assembly burnup levels. (authors)« less

  1. Partial defect verification of spent fuel assemblies by PDET: Principle and field testing in Interim Spent fuel Storage Facility (CLAB) in Sweden

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ham, Y.; Kerr, P.; Sitaraman, S.

    Here, the need for the development of a credible method and instrument for partial defect verification of spent fuel has been emphasized over a few decades in the safeguards communities as the diverted spent fuel pins can be the source of nuclear terrorism or devices. The need is increasingly more important and even urgent as many countries have started to transfer spent fuel to so called "difficult-to-access" areas such as dry storage casks, reprocessing or geological repositories. Partial defect verification is required by IAEA before spent fuel is placed into "difficult-to-access" areas. Earlier, Lawrence Livermore National Laboratory (LLNL) has reportedmore » the successful development of a new, credible partial defect verification method for pressurized water reactor (PWR) spent fuel assemblies without use of operator data, and further reported the validation experiments using commercial spent fuel assemblies with some missing fuel pins. The method was found to be robust as the method is relatively invariant to the characteristic variations of spent fuel assemblies such as initial fuel enrichment, cooling time, and burn-up. Since then, the PDET system has been designed and prototyped for 17×17 PWR spent fuel assemblies, complete with data acquisition software and acquisition electronics. In this paper, a summary description of the PDET development followed by results of the first successful field testing using the integrated PDET system and actual spent fuel assemblies performed in a commercial spent fuel storage site, known as Central Interim Spent fuel Storage Facility (CLAB) in Sweden will be presented. In addition to partial defect detection initial studies have determined that the tool can be used to verify the operator declared average burnup of the assembly as well as intra-assembly bunrup levels.« less

  2. Preliminary Concept of Operations for the Spent Fuel Management System--WM2017

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cumberland, Riley M; Adeniyi, Abiodun Idowu; Howard, Rob L

    The Nuclear Fuels Storage and Transportation Planning Project (NFST) within the U.S. Department of Energy s Office of Nuclear Energy is tasked with identifying, planning, and conducting activities to lay the groundwork for developing interim storage and transportation capabilities in support of an integrated waste management system. The system will provide interim storage for commercial spent nuclear fuel (SNF) from reactor sites and deliver it to a repository. The system will also include multiple subsystems, potentially including; one or more interim storage facilities (ISF); one or more repositories; facilities to package and/or repackage SNF; and transportation systems. The project teammore » is analyzing options for an integrated waste management system. To support analysis, the project team has developed a Concept of Operations document that describes both the potential integrated system and inter-dependencies between system components. The goal of this work is to aid systems analysts in the development of consistent models across the project, which involves multiple investigators. The Concept of Operations document will be updated periodically as new developments emerge. At a high level, SNF is expected to travel from reactors to a repository. SNF is first unloaded from reactors and placed in spent fuel pools for wet storage at utility sites. After the SNF has cooled enough to satisfy loading limits, it is placed in a container at reactor sites for storage and/or transportation. After transportation requirements are met, the SNF is transported to an ISF to store the SNF until a repository is developed or directly to a repository if available. While the high level operation of the system is straightforward, analysts must evaluate numerous alternative options. Alternative options include the number of ISFs (if any), ISF design, the stage at which SNF repackaging occurs (if any), repackaging technology, the types of containers used, repository design, component sizing, and timing of events. These alternative options arise due to technological, economic, or policy considerations. As new developments regularly emerge, the operational concepts will be periodically updated. This paper gives an overview of the different potential alternatives identified in the Concept of Operations document at a conceptual level.« less

  3. Fail-safe storage rack for irradiated fuel rod assemblies

    DOEpatents

    Lewis, D.R.

    1993-03-23

    A fail-safe storage rack is provided for interim storage of spent but radioactive nuclear fuel rod assemblies. The rack consists of a checkerboard array of substantially square, elongate receiving tubes fully enclosed by a double walled container, the outer wall of which is imperforate for liquid containment and the inner wall of which is provided with perforations for admitting moderator liquid flow to the elongate receiving tubes, the liquid serving to take up waste heat from the stored nuclear assemblies and dissipate same to the ambient liquid reservoir. A perforated cover sealing the rack facilitates cooling liquid entry and dissipation.

  4. Fail-safe storage rack for irradiated fuel rod assemblies

    DOEpatents

    Lewis, Donald R.

    1993-01-01

    A fail-safe storage rack is provided for interim storage of spent but radioactive nuclear fuel rod assemblies. The rack consists of a checkerboard array of substantially square, elongate receiving tubes fully enclosed by a double walled container, the outer wall of which is imperforate for liquid containment and the inner wall of which is provided with perforations for admitting moderator liquid flow to the elongate receiving tubes, the liquid serving to take up waste heat from the stored nuclear assemblies and dissipate same to the ambient liquid reservoir. A perforated cover sealing the rack facilitates cooling liquid entry and dissipation.

  5. Draft report: Results of stainless steel canister corrosion studies and environmental sample investigations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryan, Charles R.; Enos, David

    2014-09-01

    This progress report describes work being done at Sandia National Laboratories (SNL) to assess the localized corrosion performance of container/cask materials used in the interim storage of used nuclear fuel. The work involves both characterization of the potential physical and chemical environment on the surface of the storage canisters and how it might evolve through time, and testing to evaluate performance of the canister materials under anticipated storage conditions.

  6. SNF Interim Storage Canister Corrosion and Surface Environment Investigations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryan, Charles R.; Enos, David G.

    2015-09-01

    This progress report describes work being done at Sandia National Laboratories (SNL) to assess the localized corrosion performance of container/cask materials used in the interim storage of spent nuclear fuel (SNF). Of particular concern is stress corrosion cracking (SCC), by which a through-wall crack could potentially form in a canister outer wall over time intervals that are shorter than possible dry storage times. In order for SCC to occur, three criteria must be met. A corrosive environment must be present on the canister surface, the metal must susceptible to SCC, and sufficient tensile stress to support SCC must be presentmore » through the entire thickness of the canister wall. SNL is currently evaluating the potential for each of these criteria to be met.« less

  7. Final Report: Characterization of Canister Mockup Weld Residual Stresses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Enos, David; Bryan, Charles R.

    2016-12-01

    Stress corrosion cracking (SCC) of interim storage containers has been indicated as a high priority data gap by the Department of Energy (DOE) (Hanson et al., 2012), the Electric Power Research Institute (EPRI, 2011), the Nuclear Waste Technical Review Board (NWTRB, 2010a), and the Nuclear Regulatory Commission (NRC, 2012a, 2012b). Uncertainties exist in terms of the environmental conditions that prevail on the surface of the storage containers, the stress state within the container walls associated both with weldments as well as within the base metal itself, and the electrochemical properties of the storage containers themselves. The goal of the workmore » described in this document is to determine the stress states that exists at various locations within a typical storage canister by evaluating the properties of a full-diameter cylindrical mockup of an interim storage canister. This mockup has been produced using the same manufacturing procedures as the majority of the fielded spent nuclear fuel interim storage canisters. This document describes the design and procurement of the mockup and the characterization of the stress state associated with various portions of the container. It also describes the cutting of the mockup into sections for further analyses, and a discussion of the potential impact of the results from the stress characterization effort.« less

  8. Development of a conditioning system for the dual-purpose transport and storage cask for spent nuclear fuel from decommissioned Russian submarines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dyer, R.S.; Barnes, E.; Snipes, R.L.

    2007-07-01

    Russia, stores large quantities of spent nuclear fuel (SNF) from submarine and ice-breaker nuclear powered naval vessels. This high-level radioactive material presents a significant threat to the Arctic and marine environments. Much of the SNF from decommissioned Russian nuclear submarines is stored either onboard the submarines or in floating storage vessels in Northwest and Far East Russia. Some of the SNF is damaged, stored in an unstable condition, or of a type that cannot currently be reprocessed. In many cases, the existing Russian transport infrastructure and reprocessing facilities cannot meet the requirements for moving and reprocessing all of this fuelmore » from remote locations. Additional transport and storage options are required. Some of the existing storage facilities being used in Russia do not meet health and safety and physical security requirements. The U.S. has assisted Russia in the development of a new dual-purpose metal-concrete transport and storage cask (TUK-108/1) for their military SNF and assisted them in building several new facilities for off-loading submarine SNF and storing these TUK-108/1 casks. These efforts have reduced the technical, ecological, and security challenges for removal, handling, interim storage, and shipment of this submarine fuel. Currently, Russian licensing limits the storage period of the TUK-108/1 casks to no more than two years before the fuel must be shipped for reprocessing. In order to extend this licensed storage period, a system is required to condition the casks by removing residual water and creating an inert storage environment by backfilling the internal canisters with a noble gas such as argon. The U.S. has assisted Russia in the development of a mobile cask conditioning system for the TUK-108/1 cask. This new conditioning system allows the TUK 108/1 casks to be stored for up to five years after which the license may be considered for renewal for an additional five years or the fuel will be shipped to 'Mayak' for reprocessing. The U.S. Environmental Protection Agency (EPA), in cooperation with the U.S. DOD Office of Cooperative Threat Reduction (CTR), and the DOE's ORNL, along with the Norwegian Defense Research Establishment, worked closely with the Ministry of Defense and the Ministry of Atomic Energy of the Russian Federation (RF) to develop an improved integrated management system for interim storage of military SNF in Russia. The initial Project activities included: (1) development of a prototype dual-purpose, metal-concrete 40-ton cask for both the transport and interim storage of RF SNF, and (2) development of the first transshipment/interim storage facility for these casks in Murmansk. The U.S. has continued support to the project by assisting the RF with the development of the first mobile system that provides internal conditioning for the TUK-108/1 casks to allow them to be stored for longer than the current licensing period of two years. Development of the prototype TUK-108/1 cask was completed in December 2000 under the Arctic Military Environmental Cooperation (AMEC) Program. This was the first metal-concrete cask developed, licensed, and produced in the RF for both the transportation and storage of SNF from decommissioned submarines. These casks are currently being serially produced in NW Russia and 108 casks have been produced to date. Russia is using these casks for the transport and interim storage of military SNF from decommissioned nuclear submarines at naval installations in the Arctic and Far East in conformance with the Strategic Arms Reduction Treaty (START II). The design, construction, and commissioning of the first transshipment/interim storage facility in the RF was completed and ready for full operation in September 2003. Because of the RF government reorganization and changing regulations for spent fuel storage facilities, the storage facility at Murmansk was not fully licensed for operation until December 2005. The RF has reported that the facility is now fully operational. The TUK-108/1 SNF transport and storage casks were designed to have a 50-year storage life. Current RF practice is not to condition the submarine SNF or cask during the cask loading. Current RF regulations allow up to 4 mm of residual water (up to 3.2 liters) to remain in the casks. It has been determined that allowing this amount of residual water to remain untreated for a period longer than two years can produce hydrogen gas through hydrolysis which will increase the risk of explosion and could cause some corrosion of internal components. A solution to this problem was to develop and utilize a cask conditioning system to remove the residual water and create an inert storage environment in the cask by back-filling the internal cask cavity with an inert gas, such as helium or argon. This system is compatible with the existing TUK-108/1 design and is mobile for use at multiple submarine dismantlement sites. The RF has required that this cask conditioning system be tested and commissioned at the 'Zvezda' Shipyard in the Far East near Vladivostok, one of the major RF submarine fuel off loading and storage facilities. Currently, the fuel cannot be transferred to 'Mayak' for reprocessing until the completion of the 20 km railroad connector between 'Zvezda' and the main rail line to 'Mayak'. The cask conditioning system will allow extension of the currently-stored casks for an additional three years, at which time the rail connector line should be completed. The current license to store these casks at 'Zvezda' was scheduled to expire on 31 Dec 2006. Without the cask-conditioning system, the license could not be extended, no more fuel could be off-loaded from the decommissioned submarines, and the START objectives could not be met at 'Zvezda'. Completion of this cask conditioning system has removed a significant bottleneck for the completion of the Russian submarine decommissioning program under the START II Agreement. (authors)« less

  9. The Impact of Operating Parameters and Correlated Parameters for Extended BWR Burnup Credit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ade, Brian J.; Marshall, William B. J.; Ilas, Germina

    Applicants for certificates of compliance for spent nuclear fuel (SNF) transportation and dry storage systems perform analyses to demonstrate that these systems are adequately subcritical per the requirements of Title 10 of the Code of Federal Regulations (10 CFR) Parts 71 and 72. For pressurized water reactor (PWR) SNF, these analyses may credit the reduction in assembly reactivity caused by depletion of fissile nuclides and buildup of neutron-absorbing nuclides during power operation. This credit for reactivity reduction during depletion is commonly referred to as burnup credit (BUC). US Nuclear Regulatory Commission (NRC) staff review BUC analyses according to the guidancemore » in the Division of Spent Fuel Storage and Transportation Interim Staff Guidance (ISG) 8, Revision 3, Burnup Credit in the Criticality Safety Analyses of PWR Spent Fuel in Transportation and Storage Casks.« less

  10. Taipower`s radioactive waste management program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, B.C.C.

    1996-09-01

    Nuclear safety and radioactive waste management are the two major concerns of nuclear power in Taiwan. Recognizing that it is an issue imbued with political and social-economic concerns, Taipower has established an integrated nuclear backend management system and its associated financial and mechanism. For LLW, the Orchid Island storage facility will play an important role in bridging the gap between on-site storage and final disposal of LLW. Also, on-site interim storage of spent fuel for 40 years or longer will provide Taipower with ample time and flexibility to adopt the suitable alternative of direct disposal or reprocessing. In other words,more » by so exercising interim storage option, Taipower will be in a comfortable position to safely and permanently dispose of radwaste without unduly forgoing the opportunities of adopting better technologies or alternatives. Furthermore, Taipower will spare no efforts to communicate with the general public and make her nuclear backend management activities accountable to them.« less

  11. 76 FR 9381 - Notice of Availability of Interim Staff Guidance Documents for Spent Fuel Storage Casks

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-17

    .... FOR FURTHER INFORMATION CONTACT: Matthew Gordon, Structural Mechanics and Materials Branch, Division... a fee. Comments and questions on ISG-23 should be directed to Matthew Gordon, Structural Mechanics..., 2011. For the U.S. Nuclear Regulatory Commission. Michele Sampson, Acting Chief, Structural Mechanics...

  12. Dry transfer system for spent fuel: Project report, A system designed to achieve the dry transfer of bare spent fuel between two casks. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dawson, D.M.; Guerra, G.; Neider, T.

    1995-12-01

    This report describes the system developed by EPRI/DOE for the dry transfer of spent fuel assemblies outside the reactor spent fuel pool. The system is designed to allow spent fuel assemblies to be removed from a spent fuel pool in a small cask, transported to the transfer facility, and transferred to a larger cask, either for off-site transportation or on-site storage. With design modifications, this design is capable of transferring single spent fuel assemblies from dry storage casks to transportation casks or visa versa. One incentive for the development of this design is that utilities with limited lifting capacity ormore » other physical or regulatory constraints are limited in their ability to utilize the current, more efficient transportation and storage cask designs. In addition, DOE, in planning to develop and implement the multi-purpose canister (MPC) system for the Civilian Radioactive Waste Management System, included the concept of an on-site dry transfer system to support the implementation of the MPC system at reactors with limitations that preclude the handling of the MPC system transfer casks. This Dry Transfer System can also be used at reactors wi decommissioned spent fuel pools and fuel in dry storage in non-MPC systems to transfer fuel into transportation casks. It can also be used at off-reactor site interim storage facilities for the same purpose.« less

  13. Analysis for Eccentric Multi Canister Overpack (MCO) Drops at the Canister Storage Building (CSB) (CSB-S-0073)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    HOLLENBECK, R.G.

    The Spent Nuclear Fuel (SNF) Canister Storage Building (CSB) is the interim storage facility for the K-Basin SNF at the US. Department of Energy (DOE) Hanford Site. The SNF is packaged in multi-canister overpacks (MCOs). The MCOs are placed inside transport casks, then delivered to the service station inside the CSB. At the service station, the MCO handling machine (MHM) moves the MCO from the cask to a storage tube or one of two sample/weld stations. There are 220 standard storage tubes and six overpack storage tubes in a below grade reinforced concrete vault. Each storage tube can hold twomore » MCOs.« less

  14. Ageing management program for the Spanish low and intermediate level waste disposal and spent fuel and high-level waste centralised storage facilities

    NASA Astrophysics Data System (ADS)

    Zuloaga, P.; Ordoñez, M.; Andrade, C.; Castellote, M.

    2011-04-01

    The generic design of the centralised spent fuel storage facility was approved by the Spanish Safety Authority in 2006. The planned operational life is 60 years, while the design service life is 100 years. Durability studies and surveillance of the behaviour have been considered from the initial design steps, taking into account the accessibility limitations and temperatures involved. The paper presents an overview of the ageing management program set in support of the Performance Assessment and Safety Review of El Cabril low and intermediate level waste (LILW) disposal facility. Based on the experience gained for LILW, ENRESA has developed a preliminary definition of the Ageing Management Plan for the Centralised Interim Storage Facility of spent Fuel and High Level Waste (HLW), which addresses the behaviour of spent fuel, its retrievability, the confinement system and the reinforced concrete structure. It includes tests plans and surveillance design considerations, based on the El Cabril LILW disposal facility.

  15. Radiolytic and Thermal Process Relevant to Dry Storage of Spent Nuclear Fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marschman, Steven C.; Haustein, Peter E.; Madey, Theodore E.

    1999-06-01

    This project involves basic research in chemistry and physics aimed at providing information pertinent to the safe long-term dry storage of spent nuclear fuel (SNF), thousands of tons of which remain in water storage across the DOE complex. The Hanford Site K-Basins alone hold 2300 tons of spent fuel, much of it severely corroded, and similar situations exist at Savannah River and Idaho National Engineering and Environmental Laboratory. DOE plans to remove this fuel and seal it in overpack canisters for ''dry'' interim storage for up to 75 years while awaiting permanent disposition. Chemically bound water will remain in thismore » fuel even after the proposed drying steps, leading to possible long-term corrosion of the containers and/or fuel rods themselves, generation of H2 and O2 gas via radiolysis (which could lead to deflagration or detonation), and reactions of pyrophoric uranium hydrides. No thoroughly tested model is now available to predict fuel behavior during preprocessing, processing, or storage. In a collaborative effort among Rutgers University, Pacific Northwest National Laboratory, and Brookhaven National Laboratory, we are studying the radiolytic reaction, drying processes, and corrosion behavior of actual SNF materials and of pure and mixed-phase samples. We propose to determine what is omitted from current models: radiolysis of water adsorbed on or in hydrates or hydroxides, thermodynamics of interfacial phases, and kinetics of drying. A model will be developed and tested against actual fuel rod behavior to ensure validity and applicability to the problems associated with developing dry storage strategies for DOE-owned SNF.« less

  16. Determining initial enrichment, burnup, and cooling time of pressurized-water reactor spent fuel assemblies by analyzing passive gamma spectra measured at the Clab interim-fuel storage facility in Sweden

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Favalli, Andrea; Vo, D.; Grogan, Brandon R.

    The purpose of the Next Generation Safeguards Initiative (NGSI)–Spent Fuel (SF) project is to strengthen the technical toolkit of safeguards inspectors and/or other interested parties. The NGSI–SF team is working to achieve the following technical goals more easily and efficiently than in the past using nondestructive assay measurements of spent fuel assemblies: (1) verify the initial enrichment, burnup, and cooling time of facility declaration; (2) detect the diversion or replacement of pins; (3) estimate the plutonium mass [which is also a function of the variables in (1)]; (4) estimate the decay heat; and (5) determine the reactivity of spent fuelmore » assemblies. Since August 2013, a set of measurement campaigns has been conducted at the Central Interim Storage Facility for Spent Nuclear Fuel (Clab), in collaboration with Swedish Nuclear Fuel and Waste Management Company (SKB). One purpose of the measurement campaigns was to acquire passive gamma spectra with high-purity germanium and lanthanum bromide scintillation detectors from Pressurized Water Reactor and Boiling Water Reactor spent fuel assemblies. The absolute 137Cs count rate and the 154Eu/ 137Cs, 134Cs/ 137Cs, 106Ru/ 137Cs, and 144Ce/ 137Cs isotopic ratios were extracted; these values were used to construct corresponding model functions (which describe each measured quantity’s behavior over various combinations of burnup, cooling time, and initial enrichment) and then were used to determine those same quantities in each measured spent fuel assembly. Furthermore, the results obtained in comparison with the operator declared values, as well as the methodology developed, are discussed in detail in the paper.« less

  17. Determining initial enrichment, burnup, and cooling time of pressurized-water reactor spent fuel assemblies by analyzing passive gamma spectra measured at the Clab interim-fuel storage facility in Sweden

    DOE PAGES

    Favalli, Andrea; Vo, D.; Grogan, Brandon R.; ...

    2016-02-26

    The purpose of the Next Generation Safeguards Initiative (NGSI)–Spent Fuel (SF) project is to strengthen the technical toolkit of safeguards inspectors and/or other interested parties. The NGSI–SF team is working to achieve the following technical goals more easily and efficiently than in the past using nondestructive assay measurements of spent fuel assemblies: (1) verify the initial enrichment, burnup, and cooling time of facility declaration; (2) detect the diversion or replacement of pins; (3) estimate the plutonium mass [which is also a function of the variables in (1)]; (4) estimate the decay heat; and (5) determine the reactivity of spent fuelmore » assemblies. Since August 2013, a set of measurement campaigns has been conducted at the Central Interim Storage Facility for Spent Nuclear Fuel (Clab), in collaboration with Swedish Nuclear Fuel and Waste Management Company (SKB). One purpose of the measurement campaigns was to acquire passive gamma spectra with high-purity germanium and lanthanum bromide scintillation detectors from Pressurized Water Reactor and Boiling Water Reactor spent fuel assemblies. The absolute 137Cs count rate and the 154Eu/ 137Cs, 134Cs/ 137Cs, 106Ru/ 137Cs, and 144Ce/ 137Cs isotopic ratios were extracted; these values were used to construct corresponding model functions (which describe each measured quantity’s behavior over various combinations of burnup, cooling time, and initial enrichment) and then were used to determine those same quantities in each measured spent fuel assembly. Furthermore, the results obtained in comparison with the operator declared values, as well as the methodology developed, are discussed in detail in the paper.« less

  18. Analysis of the factors that impact the reliability of high level waste canister materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyd, W.K.; Hall, A.M.

    1977-09-19

    The analysis encompassed identification and analysis of potential threats to canister integrity arising in the course of waste solidification, interim storage at the fuels reprocessing plant, wet and dry shipment, and geologic storage. Fabrication techniques and quality assurance requirements necessary to insure optimum canister reliability were considered taking into account such factors as welding procedure, surface preparation, stress relief, remote weld closure, and inspection methods. Alternative canister materials and canister systems were also considered in terms of optimum reliability in the face of threats to the canister's integrity, ease of fabrication, inspection, handling and cost. If interim storage in airmore » is admissible, the sequence suggested comprises producing a glass-type waste product in a continuous ceramic melter, pouring into a carbon steel or low-alloy steel canister of moderately heavy wall thickness, storing in air upright on a pad and surrounded by a concrete radiation shield, and thereafter placing in geologic storage without overpacking. Should the decision be to store in water during the interim period, then use of either a 304 L stainless steel canister overpacked with a solution-annealed and fast-cooled 304 L container, or a single high-alloy canister, is suggested. The high alloy may be Inconel 600, Incoloy Alloy 800, or Incoloy Alloy 825. In either case, it is suggested that the container be overpacked with a moderately heavy wall carbon steel or low-alloy steel cask for geologic storage to ensure ready retrievability. 19 figs., 5 tables.« less

  19. Hanford Spent Nuclear Fuel Project recommended path forward

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fulton, J.C.

    The Spent Nuclear Fuel Project (the Project), in conjunction with the U.S. Department of Energy-commissioned Independent Technical Assessment (ITA) team, has developed engineered alternatives for expedited removal of spent nuclear fuel, including sludge, from the K Basins at Hanford. These alternatives, along with a foreign processing alternative offered by British Nuclear Fuels Limited (BNFL), were extensively reviewed and evaluated. Based on these evaluations, a Westinghouse Hanford Company (WHC) Recommended Path Forward for K Basins spent nuclear fuel has been developed and is presented in Volume I of this document. The recommendation constitutes an aggressive series of projects to construct andmore » operate systems and facilities to safely retrieve, package, transport, process, and store K Basins fuel and sludge. The overall processing and storage scheme is based on the ITA team`s proposed passivation and vault storage process. A dual purpose staging and vault storage facility provides an innovative feature which allows accelerated removal of fuel and sludge from the basins and minimizes programmatic risks beyond any of the originally proposed alternatives. The projects fit within a regulatory and National Environmental Policy Act (NEPA) overlay which mandates a two-phased approach to construction and operation of the needed facilities. The two-phase strategy packages and moves K Basins fuel and sludge to a newly constructed Staging and Storage Facility by the year 2000 where it is staged for processing. When an adjoining facility is constructed, the fuel is cycled through a stabilization process and returned to the Staging and Storage Facility for dry interim (40-year) storage. The estimated total expenditure for this Recommended Path Forward, including necessary new construction, operations, and deactivation of Project facilities through 2012, is approximately $1,150 million (unescalated).« less

  20. Fuel Pond Sludge - Lessons Learned from Initial De-sludging of Sellafield's Pile Fuel Storage Pond - 12066

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlisle, Derek; Adamson, Kate

    2012-07-01

    The Pile Fuel Storage Pond (PFSP) at Sellafield was built and commissioned between the late 1940's and early 1950's as a storage and cooling facility for irradiated fuel and isotopes from the two Windscale Pile reactors. The pond was linked via submerged water ducts to each reactor, where fuel and isotopes were discharged into skips for transfer along the duct to the pond. In the pond the fuel was cooled then de-canned underwater prior to export for reprocessing. The plant operated successfully until it was taken out of operation in 1962 when the First Magnox Fuel Storage Pond took overmore » fuel storage and de-canning operations on the site. The pond was then used for storage of miscellaneous Intermediate Level Waste (ILW) and fuel from the UK's Nuclear Programme for which no defined disposal route was available. By the mid 1970's the import of waste ceased and the plant, with its inventory, was placed into a passive care and maintenance regime. By the mid 1990s, driven by the age of the facility and concern over the potential challenge to dispose of the various wastes and fuels being stored, the plant operator initiated a programme of work to remediate the facility. This programme is split into a number of key phases targeted at sustained reduction in the hazard associated with the pond, these include: - Pond Preparation: Before any remediation work could start the condition of the pond had to be transformed from a passive store to a plant capable of complex retrieval operations. This work included plant and equipment upgrades, removal of redundant structures and the provision of a effluent treatment plant for removing particulate and dissolved activity from the pond water. - Canned Fuel Retrieval: Removal of canned fuel, including oxide and carbide fuels, is the highest priority within the programme. Handling and export equipment required to remove the canned fuel from the pond has been provided and treatment routes developed utilising existing site facilities to allow the fuel to be reprocessed or conditioned for long term storage. - Sludge Retrieval: In excess of 300 m{sup 3} of sludge has accumulated in the pond over many years and is made up of debris arising from fuel and metallic corrosion, wind blown debris and bio-organic materials. The Sludge Retrieval Project has provided the equipment necessary to retrieve the sludge, including skip washer and tipper machines for clearing sludge from the pond skips, equipment for clearing sludge from the pond floor and bays, along with an 'in pond' corral for interim storage of retrieved sludge. Two further projects are providing new plant processing routes, which will initially store and eventually passivate the sludge. - Metal Fuel Retrieval: Metal Fuel from early Windscale Pile operations and various other sources is stored within the pond; the fuel varies considerably in both form and condition. A retrieval project is planned which will provide fuel handling, conditioning, sentencing and export equipment required to remove the metal fuel from the pond for export to on site facilities for interim storage and disposal. - Solid Waste Retrieval: A final retrieval project will provide methods for handling, retrieval, packaging and export of the remaining solid Intermediate Level Waste within the pond. This includes residual metal fuel pieces, fuel cladding (Magnox, aluminium and zircaloy), isotope cartridges, reactor furniture, and miscellaneous activated and contaminated items. Each of the waste streams requires conditioning to allow it to be and disposed of via one of the site treatment plants. - Pond Dewatering and Dismantling: Delivery of the above projects will allow operations to progressively remove the radiological inventory, thereby reducing the hazard/risk posed by the plant. This will then allow subsequent dewatering of the pond and dismantling of the structure. (authors)« less

  1. FY17 Status Report: Research on Stress Corrosion Cracking of SNF Interim Storage Canisters.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schindelholz, Eric John; Bryan, Charles R.; Alexander, Christopher L.

    This progress report describes work done in FY17 at Sandia National Laboratories (SNL) to assess the localized corrosion performance of container/cask materials used in the interim storage of spent nuclear fuel (SNF). Of particular concern is stress corrosion cracking (SCC), by which a through-wall crack could potentially form in a canister outer wall over time intervals that are shorter than possible dry storage times. Work in FY17 refined our understanding of the chemical and physical environment on canister surfaces, and evaluated the relationship between chemical and physical environment and the form and extent of corrosion that occurs. The SNL corrosionmore » work focused predominantly on pitting corrosion, a necessary precursor for SCC, and process of pit-to-crack transition; it has been carried out in collaboration with university partners. SNL is collaborating with several university partners to investigate SCC crack growth experimentally, providing guidance for design and interpretation of experiments.« less

  2. Radiolytic and thermal process relevant to dry storage of spent nuclear fuels. 1998 annual progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marschman, S.C.; Cowin, J.P.; Orlando, T.M.

    1998-06-01

    'This project involves basic research in chemistry and physics aimed at providing information pertinent to the safe long-term dry storage of spent nuclear fuel (SNF), thousands of tons of which remain in water storage across the DOE complex. The Hanford Site K-Basins alone hold 2,300 tons of spent fuel, much of it severely corroded, and similar situations exist at Savannah River and Idaho National Engineering and Environmental Laboratory. The DOE plans to remove this fuel and seal it in overpack canisters for dry interim storage for up to 75 years while awaiting permanent disposition. Chemically-bound water will remain in thismore » fuel even following proposed drying steps, leading to possible long-term corrosion of the containers and/or fuel rods themselves, generation of H{sub 2} and O{sub 2} gas via radiolysis (which could lead to deflagration or detonation), and reactions of pyrophoric uranium hydrides. No thoroughly tested model is currently available to predict fuel behavior during pre-processing, processing, or storage. In a collaboration between Rutgers University, Pacific Northwest National Laboratory, and Brookhaven National Laboratory, the authors are studying the radiolytic reaction, drying processes, and corrosion behavior of actual SNF materials, and of pure and mixed-phase samples. The authors propose to determine what is omitted from current models: radiolysis of water adsorbed on or in hydrates or hydroxides, thermodynamics of interfacial phases, and kinetics of drying. A model will be developed and tested against actual fuel rod behavior to insure validity and applicability to the problems associated with developing dry storage strategies for DOE-owned SNF. This report summarizes work after eight months of a three-year project.'« less

  3. Improvement of operational safety of dual-purpose transport packaging set for naval SNF in storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guskov, Vladimir; Korotkov, Gennady; Barnes, Ella

    2007-07-01

    Available in abstract form only. Full text of publication follows: In recent ten years a new technology of management of irradiated nuclear fuel (SNF) at the final stage of fuel cycle has been intensely developing on a basis of a new type of casks used for interim storage of SNF and subsequent transportation therein to the place of processing, further storage or final disposal. This technology stems from the concept of a protective cask which provides preservation of its content (SNF) and fulfillment of all other safety requirements for storage and transportation of SNF. Radiation protection against emissions and non-distributionmore » of activity outside the cask is ensured by physical barriers, i.e. all-metal or composite body, shells, inner cavities for irradiated fuel assemblies (SFA), lids with sealing systems. Residual heat release of SFA is discharged to the environment by natural way: through emission and convection of surrounding air. By now more than 100 dual purpose packaging sets TUK-108/1 are in operation in the mode of interim storage and transportation of SNF from decommissioned nuclear powered submarines (NPS). In accordance with certificate, spent fuel is stored in TUK-108/1 on the premises of plants involved in NPS dismantlement for 2 years, whereupon it is transported for processing to PO Mayak. At one Far Eastern plant Zvezda involved in NPS dismantlement there arose a complicated situation due to necessity to extend period of storage of SNF in TUK- 108/1. To ensure safety over a longer period of storage of SNF in TUK-108/1 it is essential to modify conditions of storage by removing of residual water and filling the inner cavity of the cask with an inert gas. Within implementation of the international 1.1- 2 project Development of drying technology for the cask TUK-108/1 intended for naval SNF under the Program, there has been developed the technology of preparation of the cask for long-term storage of SNF in TUK-108/1, the design of a mobile TUK-108/1 drying facility; a pilot facility has been manufactured. This report describes key issues of cask drying technology, justification of terms of dry storage of naval SNF in no-108/1, design features of the mobile drying facility, results of tests of the pilot facility at the Far Eastern plant Zvezda. (authors)« less

  4. Used Nuclear Fuel: From Liability to Benefit

    NASA Astrophysics Data System (ADS)

    Orbach, Raymond L.

    2011-03-01

    Nuclear power has proven safe and reliable, with operating efficiencies in the U.S. exceeding 90%. It provides a carbon-free source of electricity (with about a 10% penalty arising from CO2 released from construction and the fuel cycle). However, used fuel from nuclear reactors is highly toxic and presents a challenge for permanent disposal -- both from technical and policy perspectives. The half-life of the ``bad actors'' is relatively short (of the order of decades) while the very long lived isotopes are relatively benign. At present, spent fuel is stored on-site in cooling ponds. Once the used fuel pools are full, the fuel is moved to dry cask storage on-site. Though the local storage is capable of handling used fuel safely and securely for many decades, the law requires DOE to assume responsibility for the used fuel and remove it from reactor sites. The nuclear industry pays a tithe to support sequestration of used fuel (but not research). However, there is currently no national policy in place to deal with the permanent disposal of nuclear fuel. This administration is opposed to underground storage at Yucca Mountain. There is no national policy for interim storage---removal of spent fuel from reactor sites and storage at a central location. And there is no national policy for liberating the energy contained in used fuel through recycling (separating out the fissionable components for subsequent use as nuclear fuel). A ``Blue Ribbon Commission'' has been formed to consider alternatives, but will not report until 2012. This paper will examine alternatives for used fuel disposition, their drawbacks (e.g. proliferation issues arising from recycling), and their benefits. For recycle options to emerge as a viable technology, research is required to develop cost effective methods for treating used nuclear fuel, with attention to policy as well as technical issues.

  5. SLUDGE TREATMENT PROJECT COST COMPARISON BETWEEN HYDRAULIC LOADING AND SMALL CANISTER LOADING CONCEPTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    GEUTHER J; CONRAD EA; RHOADARMER D

    2009-08-24

    The Sludge Treatment Project (STP) is considering two different concepts for the retrieval, loading, transport and interim storage of the K Basin sludge. The two design concepts under consideration are: (1) Hydraulic Loading Concept - In the hydraulic loading concept, the sludge is retrieved from the Engineered Containers directly into the Sludge Transport and Storage Container (STSC) while located in the STS cask in the modified KW Basin Annex. The sludge is loaded via a series of transfer, settle, decant, and filtration return steps until the STSC sludge transportation limits are met. The STSC is then transported to T Plantmore » and placed in storage arrays in the T Plant canyon cells for interim storage. (2) Small Canister Concept - In the small canister concept, the sludge is transferred from the Engineered Containers (ECs) into a settling vessel. After settling and decanting, the sludge is loaded underwater into small canisters. The small canisters are then transferred to the existing Fuel Transport System (FTS) where they are loaded underwater into the FTS Shielded Transfer Cask (STC). The STC is raised from the basin and placed into the Cask Transfer Overpack (CTO), loaded onto the trailer in the KW Basin Annex for transport to T Plant. At T Plant, the CTO is removed from the transport trailer and placed on the canyon deck. The CTO and STC are opened and the small canisters are removed using the canyon crane and placed into an STSC. The STSC is closed, and placed in storage arrays in the T Plant canyon cells for interim storage. The purpose of the cost estimate is to provide a comparison of the two concepts described.« less

  6. Effect of a dual-purpose cask payload increment of spent fuel assemblies from VVER 1000 Bushehr Nuclear Power Plant on basket criticality.

    PubMed

    Rezaeian, M; Kamali, J

    2017-01-01

    Dual-purpose casks can be utilized for dry interim storage and transportation of the highly radioactive spent fuel assemblies (SFAs) of Bushehr Nuclear Power Plant (NPP). Criticality safety analysis was carried out using the MCNP code for the cask containing 12, 18, or 19 SFAs. The basket materials of borated stainless steel and Boral (Al-B 4 C) were investigated, and the minimum required receptacle pitch of the basket was determined. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Analysis of Ignition Testing on K-West Basin Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. Abrefah; F.H. Huang; W.M. Gerry

    Approximately 2100 metric tons of spent nuclear fuel (SNF) discharged from the N-Reactor have been stored underwater at the K-Basins in the 100 Area of the Hanford Site. The spent fuel has been stored in the K-East Basin since 1975 and in the K-West Basin since 1981. Some of the SNF elements in these basins have corroded because of various breaches in the Zircaloy cladding that occurred during fuel discharge operations and/or subsequent handling and storage in the basins. Consequently, radioactive material in the fuel has been released into the basin water, and water has leaked from the K-East Basinmore » into the soil below. To protect the Columbia River, which is only 380 m from the basins, the SNF is scheduled to be removed and transported for interim dry storage in the 200 East Area, in the central portion of the Site. However, before being shipped, the corroded fuel elements will be loaded into Multi-Canister OverPacks and conditioned. The conditioning process will be selected based on the Integrated Process Strategy (IPS) (WHC 1995), which was prepared on the basis of the dry storage concept developed by the Independent Technical Assessment (ITA) team (ITA 1994).« less

  8. Understanding the Risk of Chloride Induced Stress Corrosion Cracking of Interim Storage Containers for the Dry Storage of Spent Nuclear Fuel: Evolution of Brine Chemistry on the Container Surface.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Enos, David; Bryan, Charles R.

    Although the susceptibility of austenitic stainless steels to chloride-induced stress corrosion cracking is well known, uncertainties exist in terms of the environmental conditions that exist on the surface of the storage containers. While a diversity of salts is present in atmospheric aerosols, many of these are not stable when placed onto a heated surface. Given that the surface temperature of any container storing spent nuclear fuel will be well above ambient, it is likely that salts deposited on its surface may decompose or degas. To characterize this effect, relevant single and multi-salt mixtures are being evaluated as a function ofmore » temperature and relative humidity to establish the rates of degassing, as well as the likely final salt and brine chemistries that will remain on the canister surface.« less

  9. Advanced Fuel Cycle Cost Basis – 2017 Edition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dixon, B. W.; Ganda, F.; Williams, K. A.

    This report, commissioned by the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the DOE Nuclear Technology Research and Development (NTRD) Program (previously the Fuel Cycle Research and Development (FCRD) and the Advanced Fuel Cycle Initiative (AFCI)). The report describes the NTRD cost basis development process, reference information on NTRD cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This reportmore » contains reference cost data for numerous fuel cycle cost modules (modules A-O) as well as cost modules for a number of reactor types (R modules). The fuel cycle cost modules were developed in the areas of natural uranium mining and milling, thorium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, managed decay storage, recycled product storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, transuranic, and high-level waste. Since its inception, this report has been periodically updated. The last such internal document was published in August 2015 while the last external edition was published in December of 2009 as INL/EXT-07-12107 and is available on the Web at URL: www.inl.gov/technicalpublications/Documents/4536700.pdf. This current report (Sept 2017) is planned to be reviewed for external release, at which time it will replace the 2009 report as an external publication. This information is used in the ongoing evaluation of nuclear fuel cycles by the NE NTRD program.« less

  10. NDE of copper canisters for long-term storage of spent nuclear fuel from the Swedish nuclear power plants

    NASA Astrophysics Data System (ADS)

    Stepinski, Tadeusz

    2003-07-01

    Sweden has been intensively developing methods for long term storage of spent fuel from the nuclear power plants for twenty-five years. A dedicated research program has been initiated and conducted by the Swedish company SKB (Swedish Nuclear Fuels and Waste Management Co.). After the interim storage SKB plans to encapsulate spent nuclear fuel in copper canisters that will be placed at a deep repository located in bedrock. The canisters filled with fuel rods will be sealed by an electron beam weld. This paper presents three complementary NDE techniques used for assessing the sealing weld in copper canisters, radiography, ultrasound, and eddy current. A powerful X-ray source and a digital detector are used for the radiography. An ultrasonic array system consisting of a phased ultrasonic array and a multi-channel electronics is used for the ultrasonic examination. The array system enables electronic focusing and rapid electronic scanning eliminating the use of a complicated mechanical scanner. A specially designed eddy current probe capable of detecting small voids at the depth up to 4 mm in copper is used for the eddy current inspection. Presently, all the NDE techniques are verified in SKB's Canister Laboratory where full scale canisters are welded and examined.

  11. Development of Neutron Energy Spectral Signatures for Passive Monitoring of Spent Nuclear Fuels in Dry Cask Storage

    NASA Astrophysics Data System (ADS)

    Harkness, Ira; Zhu, Ting; Liang, Yinong; Rauch, Eric; Enqvist, Andreas; Jordan, Kelly A.

    2018-01-01

    Demand for spent nuclear fuel dry casks as an interim storage solution has increased globally and the IAEA has expressed a need for robust safeguards and verification technologies for ensuring the continuity of knowledge and the integrity of radioactive materials inside spent fuel casks. Existing research has been focusing on "fingerprinting" casks based on count rate statistics to represent radiation emission signatures. The current research aims to expand to include neutron energy spectral information as part of the fuel characteristics. First, spent fuel composition data are taken from the Next Generation Safeguards Initiative Spent Fuel Libraries, representative for Westinghouse 17ˣ17 PWR assemblies. The ORIGEN-S code then calculates the spontaneous fission and (α,n) emissions for individual fuel rods, followed by detailed MCNP simulations of neutrons transported through the fuel assemblies. A comprehensive database of neutron energy spectral profiles is to be constructed, with different enrichment, burn-up, and cooling time conditions. The end goal is to utilize the computational spent fuel library, predictive algorithm, and a pressurized 4He scintillator to verify the spent fuel assemblies inside a cask. This work identifies neutron spectral signatures that correlate with the cooling time of spent fuel. Both the total and relative contributions from spontaneous fission and (α,n) change noticeably with respect to cooling time, due to the relatively short half-life (18 years) of the major neutron source 244Cm. Identification of this and other neutron spectral signatures allows the characterization of spent nuclear fuels in dry cask storage.

  12. Refining technology for the recycling of stainless steel radioactive scrap metals, FY 94 bi-annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mizia, R.E.; Atteridge, D.G.; Buckentin, J.

    1994-08-01

    The research addressed under this project is the recycling of metallic nuclear-related by-product materials under the direction of Westinghouse Idaho Nuclear Company (WINCO). The program addresses the recycling of radioactive scrap metals (RSM) for beneficial re-use within the DOE complex; in particular, this program addresses the recycling of stainless steel RSM. It is anticipated that various stainless steel components under WINCO control at the Idaho Falls Engineering Laboratory (INEL), such as fuel pool criticality barriers and fuel storage racks will begin to be recycled in FY94-95. The end product of this recycling effort is expected to be waste and overpackmore » canisters for densified high level waste for the Idaho Waste Immobilization Facility and/or the Universal Canister System for dry (interim) storage of spent fuel. The specific components of this problem area that are presently being, or have been, addressed by CAAMSEC are: (1) the melting/remelting of stainless steel RSM into billet form; (2) the melting/remelting initial research focus will be on the use of radioactive surrogates to study; (3) the cost effectiveness of RSM processing oriented towards privatization of RSM reuse and/or resale. Other components of this problem that may be addressed under program extension are: (4) the melting/remelting of carbon steel; (5) the processing of billet material into product form which shall meet all applicable ASTM requirements; and, (6) the fabrication of an actual prototypical product; the present concept of an end product is a low carbon Type 304/316 stainless steel cylindrical container for densified and/or vitrified high level radioactive waste and/or the Universal Canister System for dry (interim) storage of spent fuel. The specific work reported herein covers the melting/remelting of stainless steel {open_quotes}scrap{close_quotes} metal into billet form and the study of surrogate material removal effectiveness by various remelting techniques.« less

  13. How the University of Texas system responded to the need for interim storage of low-level radioactive waste materials.

    PubMed

    Emery, Robert J

    2012-11-01

    Faced with the prospect of being unable to permanently dispose of low-level radioactive wastes (LLRW) generated from teaching, research, and patient care activities, component institutions of the University of Texas System worked collaboratively to create a dedicated interim storage facility to be used until a permanent disposal facility became available. Located in a remote section of West Texas, the University of Texas System Interim Storage Facility (UTSISF) was licensed and put into operation in 1993, and since then has provided safe and secure interim storage for up to 350 drums of dry solid LLRW at any given time. Interim storage capability provided needed relief to component institutions, whose on-site waste facilities could have possibly become overburdened. Experiences gained from the licensing and operation of the site are described, and as a new permanent LLRW disposal facility emerges in Texas, a potential new role for the storage facility as a surge capacity storage site in times of natural disasters and emergencies is also discussed.

  14. Neutron radiation characteristics of the IVth generation reactor spent fuel

    NASA Astrophysics Data System (ADS)

    Bedenko, Sergey; Shamanin, Igor; Grachev, Victor; Knyshev, Vladimir; Ukrainets, Olesya; Zorkin, Andrey

    2018-03-01

    Exploitation of nuclear power plants as well as construction of new generation reactors lead to great accumulation of spent fuel in interim storage facilities at nuclear power plants, and in spent fuel «wet» and «dry» long-term storages. Consequently, handling the fuel needs more attention. The paper is focused on the creation of an efficient computational model used for developing the procedures and regulations of spent nuclear fuel handling in nuclear fuel cycle of the new generation reactor. A Thorium High-temperature Gas-Cooled Reactor Unit (HGTRU, Russia) was used as an object for numerical research. Fuel isotopic composition of HGTRU was calculated using the verified code of the MCU-5 program. The analysis of alpha emitters and neutron radiation sources was made. The neutron yield resulting from (α,n)-reactions and at spontaneous fission was calculated. In this work it has been shown that contribution of (α,n)-neutrons is insignificant in case of such (Th,Pu)-fuel composition and HGTRU operation mode, and integral neutron yield can be approximated by the Watt spectral function. Spectral and standardized neutron distributions were achieved by approximation of the list of high-precision nuclear data. The distribution functions were prepared in group and continuous form for further use in calculations according to MNCP, MCU, and SCALE.

  15. Public Preferences Related to Radioactive Waste Management in the United States: Methodology and Response Reference Report for the 2016 Energy and Environment Survey.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jenkins-Smith, Hank C.; Silva, Carol L.; Gupta, Kuhika

    This report presents the questions and responses to a nationwide survey taken June 2016 to track preferences of US residents concerning the environment, energy, and radioactive waste management. A focus of the 2016 survey is public perceptions on different options for managing spent nuclear fuel, including on-site storage, interim storage, deep boreholes, general purpose geologic repositories, and geologic repositories for only defense-related waste. Highlights of the survey results include the following: (1) public attention to the 2011 accident and subsequent cleanup at the Fukushima nuclear facility continues to influence the perceived balance of risk and benefit for nuclear energy; (2)more » the incident at the Waste Isolation Pilot Plant in 2014 could influence future public support for nuclear waste management; (3) public knowledge about US nuclear waste management policies has remined higher than seen prior to the Fukushima nuclear accident and submittal of the Yucca Mountain application; (6) support for a mined disposal facility is higher than for deep borehole disposal, building one more interim storage facilities, or continued on-site storage of spent nuclear fuel; (7) support for a repository that comingles commercial and defense related waste is higher than for a repository for only defense related waste; (8) the public’s level of trust accorded to the National Academies, university scientists, and local emergency responders is the highest and the level trust accorded to advocacy organizations, public utilities, and local/national press is the lowest; and (9) the public is willing to serve on citizens panels but, in general, will only modestly engage in issues related to radioactive waste management.« less

  16. Nondestructive Assay Data Integration with the SKB-50 Assemblies - FY16 Update

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tobin, Stephen Joseph; Fugate, Michael Lynn; Trellue, Holly Renee

    2016-10-28

    A project to research the application of non-destructive assay (NDA) techniques for spent fuel assemblies is underway at the Central Interim Storage Facility for Spent Nuclear Fuel (for which the Swedish acronym is Clab) in Oskarshamn, Sweden. The research goals of this project contain both safeguards and non-safeguards interests. These nondestructive assay (NDA) technologies are designed to strengthen the technical toolkit of safeguard inspectors and others to determine the following technical goals more accurately; Verify initial enrichment, burnup, and cooling time of facility declaration for spent fuel assemblies; Detect replaced or missing pins from a given spent fuel assembly tomore » confirm its integrity; and Estimate plutonium mass and related plutonium and uranium fissile mass parameters in spent fuel assemblies. Estimate heat content, and measure reactivity (multiplication).« less

  17. Plutonium storage criteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, D.; Ascanio, X.

    1996-05-01

    The Department of Energy has issued a technical standard for long-term (>50 years) storage and will soon issue a criteria document for interim (<20 years) storage of plutonium materials. The long-term technical standard, {open_quotes}Criteria for Safe Storage of Plutonium Metals and Oxides,{close_quotes} addresses the requirements for storing metals and oxides with greater than 50 wt % plutonium. It calls for a standardized package that meets both off-site transportation requirements, as well as remote handling requirements from future storage facilities. The interim criteria document, {open_quotes}Criteria for Interim Safe Storage of Plutonium-Bearing Solid Materials{close_quotes}, addresses requirements for storing materials with less thanmore » 50 wt% plutonium. The interim criteria document assumes the materials will be stored on existing sites, and existing facilities and equipment will be used for repackaging to improve the margin of safety.« less

  18. Multi Canister Overpack (MCO) Topical Report [SEC 1 THRU 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LORENZ, B.D.

    In February 1995, the US Department of Energy (DOE) approved the Spent Nuclear Fuel (SNF) Project's ''Path Forward'' recommendation for resolution of the safety and environmental concerns associated with the deteriorating SNF stored in the Hanford Site's K Basins (Hansen 1995). The recommendation included an aggressive series of projects to design, construct, and operate systems and facilitates to permit the safe retrieval, packaging, transport, conditions, and interim storage of the K Basins' SNF. The facilities are the Cold VAcuum Drying Facility (CVDF) in the 100 K Area of the Hanford Site and the Canister Storage building (CSB) in the 200more » East Area. The K Basins' SNF is to be cleaned, repackaged in multi-canister overpacks (MCOs), removed from the K Basins, and transported to the CVDF for initial drying. The MCOs would then be moved to the CSB and weld sealed (Loscoe 1996) for interim storage (about 40 years). One of the major tasks associated with the initial Path Forward activities is the development and maintenance of the safety documentation. In addition to meeting the construction needs for new structures, the safety documentation for each must be generated.« less

  19. Conceptual design statement of work for the immobilized low-activity waste interim storage facility project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlson, T.A., Fluor Daniel Hanford

    1997-02-06

    The Immobilized Low-Activity Waste Interim Storage subproject will provide storage capacity for immobilized low-activity waste product sold to the U.S. Department of Energy by the privatization contractor. This statement of work describes the work scope (encompassing definition of new installations and retrofit modifications to four existing grout vaults), to be performed by the Architect-Engineer, in preparation of a conceptual design for the Immobilized Low-Activity Waste Interim Storage Facility.

  20. EURATOM safeguards efforts in the development of spent fuel verification methods by non-destructive assay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matloch, L.; Vaccaro, S.; Couland, M.

    The back end of the nuclear fuel cycle continues to develop. The European Commission, particularly the Nuclear Safeguards Directorate of the Directorate General for Energy, implements Euratom safeguards and needs to adapt to this situation. The verification methods for spent nuclear fuel, which EURATOM inspectors can use, require continuous improvement. Whereas the Euratom on-site laboratories provide accurate verification results for fuel undergoing reprocessing, the situation is different for spent fuel which is destined for final storage. In particular, new needs arise from the increasing number of cask loadings for interim dry storage and the advanced plans for the construction ofmore » encapsulation plants and geological repositories. Various scenarios present verification challenges. In this context, EURATOM Safeguards, often in cooperation with other stakeholders, is committed to further improvement of NDA methods for spent fuel verification. In this effort EURATOM plays various roles, ranging from definition of inspection needs to direct participation in development of measurement systems, including support of research in the framework of international agreements and via the EC Support Program to the IAEA. This paper presents recent progress in selected NDA methods. These methods have been conceived to satisfy different spent fuel verification needs, ranging from attribute testing to pin-level partial defect verification. (authors)« less

  1. Key challenges and recent progress in batteries, fuel cells, and hydrogen storage for clean energy systems

    NASA Astrophysics Data System (ADS)

    Chalk, Steven G.; Miller, James F.

    Reducing or eliminating the dependency on petroleum of transportation systems is a major element of US energy research activities. Batteries are a key enabling technology for the development of clean, fuel-efficient vehicles and are key to making today's hybrid electric vehicles a success. Fuel cells are the key enabling technology for a future hydrogen economy and have the potential to revolutionize the way we power our nations, offering cleaner, more efficient alternatives to today's technology. Additionally fuel cells are significantly more energy efficient than combustion-based power generation technologies. Fuel cells are projected to have energy efficiency twice that of internal combustion engines. However before fuel cells can realize their potential, significant challenges remain. The two most important are cost and durability for both automotive and stationary applications. Recent electrocatalyst developments have shown that Pt alloy catalysts have increased activity and greater durability than Pt catalysts. The durability of conventional fluorocarbon membranes is improving, and hydrocarbon-based membranes have also shown promise of equaling the performance of fluorocarbon membranes at lower cost. Recent announcements have also provided indications that fuel cells can start from freezing conditions without significant deterioration. Hydrogen storage systems for vehicles are inadequate to meet customer driving range expectations (>300 miles or 500 km) without intrusion into vehicle cargo or passenger space. The United States Department of Energy has established three centers of Excellence for hydrogen storage materials development. The centers are focused on complex metal hydrides that can be regenerated onboard a vehicle, chemical hydrides that require off-board reprocessing, and carbon-based storage materials. Recent developments have shown progress toward the 2010 DOE targets. In addition DOE has established an independent storage material testing center to verify storage capacity of promising materials. These developments point to a viable path to achieving the DOE/FreedomCAR cost and performance goals. The transition to hydrogen-powered fuel cell vehicles will occur over the next 10-15 years. In the interim, fossil fuel consumption will be reduced by increased penetration of battery/gasoline hybrid cars.

  2. Developing a structural health monitoring system for nuclear dry cask storage canister

    NASA Astrophysics Data System (ADS)

    Sun, Xiaoyi; Lin, Bin; Bao, Jingjing; Giurgiutiu, Victor; Knight, Travis; Lam, Poh-Sang; Yu, Lingyu

    2015-03-01

    Interim storage of spent nuclear fuel from reactor sites has gained additional importance and urgency for resolving waste-management-related technical issues. In total, there are over 1482 dry cask storage system (DCSS) in use at US plants, storing 57,807 fuel assemblies. Nondestructive material condition monitoring is in urgent need and must be integrated into the fuel cycle to quantify the "state of health", and more importantly, to guarantee the safe operation of radioactive waste storage systems (RWSS) during their extended usage period. A state-of-the-art nuclear structural health monitoring (N-SHM) system based on in-situ sensing technologies that monitor material degradation and aging for nuclear spent fuel DCSS and similar structures is being developed. The N-SHM technology uses permanently installed low-profile piezoelectric wafer sensors to perform long-term health monitoring by strategically using a combined impedance (EMIS), acoustic emission (AE), and guided ultrasonic wave (GUW) approach, called "multimode sensing", which is conducted by the same network of installed sensors activated in a variety of ways. The system will detect AE events resulting from crack (case for study in this project) and evaluate the damage evolution; when significant AE is detected, the sensor network will switch to the GUW mode to perform damage localization, and quantification as well as probe "hot spots" that are prone to damage for material degradation evaluation using EMIS approach. The N-SHM is expected to eventually provide a systematic methodology for assessing and monitoring nuclear waste storage systems without incurring human radiation exposure.

  3. The used nuclear fuel problem - can reprocessing and consolidated storage be complementary?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, C.; Thomas, I.

    2013-07-01

    This paper describes our CISF (Consolidated Interim Storage Facilities) and Reprocessing Facility concepts and show how they can be combined with a geologic repository to provide a comprehensive system for dealing with spent fuels in the USA. The performance of the CISF was logistically analyzed under six operational scenarios. A 3-stage plan has been developed to establish the CISF. Stage 1: the construction at the CISF site of only a rail receipt interface and storage pad large enough for the number of casks that will be received. The construction of the CISF Canister Handling Facility, the Storage Cask Fabrication Facility,more » the Cask Maintenance Facility and supporting infrastructure are performed during stage 2. The construction and placement into operation of a water-filled pool repackaging facility is completed for Stage 3. By using this staged approach, the capital cost of the CISF is spread over a number of years. It also allows more time for a final decision on the geologic repository to be made. A recycling facility will be built, this facility will used the NUEX recycling process that is based on the aqueous-based PUREX solvent extraction process, using a solvent of tri-N-butyl phosphate in a kerosene diluent. It is capable of processing spent fuels at a rate of 5 MT per day, at burn-ups up to 50 GWD per ton of spent fuels and a minimum of 5 years out-of-reactor cooling.« less

  4. 75 FR 45678 - Notice of Availability of Interim Staff Guidance Document for Fuel Cycle Facilities

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-03

    ... Document for Fuel Cycle Facilities AGENCY: Nuclear Regulatory Commission. ACTION: Notice of availability..., Division of Fuel Cycle Safety and Safeguards, Office of Nuclear Material Safety and Safeguards, U.S... Commission (NRC) prepares and issues Interim Staff Guidance (ISG) documents for fuel cycle facilities. These...

  5. Hot conditioning equipment conceptual design report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradshaw, F.W., Westinghouse Hanford

    1996-08-06

    This report documents the conceptual design of the Hot Conditioning System Equipment. The Hot conditioning System will consist of two separate designs: the Hot Conditioning System Equipment; and the Hot Conditioning System Annex. The Hot Conditioning System Equipment Design includes the equipment such as ovens, vacuum pumps, inert gas delivery systems, etc.necessary to condition spent nuclear fuel currently in storage in the K Basins of the Hanford Site. The Hot Conditioning System Annex consists of the facility of house the Hot Conditioning System. The Hot Conditioning System will be housed in an annex to the Canister Storage Building. The Hotmore » Conditioning System will consist of pits in the floor which contain ovens in which the spent nuclear will be conditioned prior to interim storage.« less

  6. Superfund Record of Decision (EPA Region 1): Otis Air National Guard/Camp Edwards, MA. (First remedial action), May 1992. Interim report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-05-20

    The 22,000-acre Otis National Guard/Camp Edwards site is a former military vehicle maintenance facility on Cape Cod, Massachusetts, within the Massachusetts Military Reservation (MMR). The Area of Contamination Chemical Spill Area Number 4 (AOC CS-4) plume extends 11,000 feet and is located 1.1 miles from the southern boundary of MMR. Wastes and equipment handled at AOC CS-4 included oils, solvents, antifreeze, battery electrolytes, paint, and waste fuels. Additionally, the northern portion of AOC CS-4 was used as a storage yard for wastes generated by shops and laboratories operating at MMR. Liquid wastes were stored in containers or underground storage tanksmore » (USTs) in an unbermed area or deposited in USTs designated for motor gasoline. The ROD addresses OU2, the interim action for MMR AOC CS-4 ground water to prevent further down gradient migration of the contaminants. The primary contaminants of concern affecting the ground water are VOCs, including PCE and TCE.« less

  7. Radiation and Thermal Effects on Used Nuclear Fuel and Nuclear Waste Forms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weber, William J.; Zhang, Yanwen

    This is the final report of the NEUP project “Radiation and Thermal Effects on Used Nuclear Fuel and Nuclear Waste Forms.” This project started on July 1, 2012 and was successfully completed on June 30, 2016. This report provides an overview of the main achievements, results and findings through the duration of the project. Additional details can be found in the main body of this report and in the individual Quarterly Reports and associated Deliverables of this project, which have been uploaded in PICS-NE. The objective of this research was to advance understanding and develop validated models on the effectsmore » of self-radiation from beta and alpha decay on the response of used nuclear fuel and nuclear waste forms during high-temperature interim storage and long-term permanent disposition. To achieve this objective, model used-fuel materials and model waste form materials were identified, fabricated, and studied.« less

  8. Basis for Interim Operation for Fuel Supply Shutdown Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BENECKE, M.W.

    2003-02-03

    This document establishes the Basis for Interim Operation (BIO) for the Fuel Supply Shutdown Facility (FSS) as managed by the 300 Area Deactivation Project (300 ADP) organization in accordance with the requirements of the Project Hanford Management Contract procedure (PHMC) HNF-PRO-700, ''Safety Analysis and Technical Safety Requirements''. A hazard classification (Benecke 2003a) has been prepared for the facility in accordance with DOE-STD-1027-92 resulting in the assignment of Hazard Category 3 for FSS Facility buildings that store N Reactor fuel materials (303-B, 3712, and 3716). All others are designated Industrial buildings. It is concluded that the risks associated with the currentmore » and planned operational mode of the FSS Facility (uranium storage, uranium repackaging and shipment, cleanup, and transition activities, etc.) are acceptable. The potential radiological dose and toxicological consequences for a range of credible uranium storage building have been analyzed using Hanford accepted methods. Risk Class designations are summarized for representative events in Table 1.6-1. Mitigation was not considered for any event except the random fire event that exceeds predicted consequences based on existing source and combustible loading because of an inadvertent increase in combustible loading. For that event, a housekeeping program to manage transient combustibles is credited to reduce the probability. An additional administrative control is established to protect assumptions regarding source term by limiting inventories of fuel and combustible materials. Another is established to maintain the criticality safety program. Additional defense-in-depth controls are established to perform fire protection system testing, inspection, and maintenance to ensure predicted availability of those systems, and to maintain the radiological control program. It is also concluded that because an accidental nuclear criticality is not credible based on the low uranium enrichment, the form of the uranium, and the required controls, a Criticality Alarm System (CAS) is not required as allowed by DOE Order 420.1 (DOE 2000).« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ibarra, Luis; Sanders, David; Yang, Haori

    The main goal of this study is to evaluate the long-term seismic performance of freestanding and anchored Dry Storage Casks (DSCs) using experimental tests on a shaking table, as well as comprehensive numerical evaluations that include the cask-pad-soil system. The study focuses on the dynamic performance of vertical DSCs, which can be designed as free-standing structures resting on a reinforced concrete foundation pad, or casks anchored to a foundation pad. The spent nuclear fuel (SNF) at nuclear power plants (NPPs) is initially stored in fuel-storage pools to control the fuel temperature. After several years, the fuel assemblies are transferred tomore » DSCs at sites contiguous to the plant, known as Interim Spent Fuel Storage Installations (ISFSIs). The regulations for these storage systems (10 CFR 72) ensure adequate passive heat removal and radiation shielding during normal operations, off-normal events, and accident scenarios. The integrity of the DSCs is important, even if the overpack does not breach, because eventually the spent fuel-rods need to be shipped either to a reprocessing plant or a repository. DSCs have been considered as a temporary storage solution, and usually are licensed for 20 years, although they can be relicensed for operating periods of up to 60 years. In recent years, DSCs have been reevaluated as a potential mid-term solution, in which the operating period may be extended for up to 300 years. At the same time, recent seismic events have underlined the significant risks DSCs are exposed. The consideration of DCSs for storing spent fuel for hundreds of years has created new challenges. In the case of seismic hazard, longer-term operating periods not only lead to larger horizontal accelerations, but also increase the relative effect of vertical accelerations that usually are disregarded for smaller seismic events. These larger seismic demands could lead to casks sliding and tipping over, impacting the concrete pad or adjacent casks. The casks may also slide and collide with other casks or structural components. Also, the different DSC components may impact each other during these events. This study provides a comprehensive evaluation of DSCs subjected to these extreme demands, including the effect of vertical accelerations, and soilstructure interaction.« less

  10. Global Spent Fuel Logistics Systems Study (GSFLS). Volume 2A. GSFLS visit findings (appendix). Interim report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1978-01-31

    This appendix is a part of the interim report documentation for the Global Spent Fuel Logistics System (GSFLS) study. This appendix provides the legal/regulatory reference material, supportive of Volume 2 - GSFLS Visit Finding and Evaluations; and certain background material on British Nuclear Fuel Limited (BNFL).

  11. In-Field Performance Testing of the Fork Detector for Quantitative Spent Fuel Verification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gauld, Ian C.; Hu, Jianwei; De Baere, P.

    Expanding spent fuel dry storage activities worldwide are increasing demands on safeguards authorities that perform inspections. The European Atomic Energy Community (EURATOM) and the International Atomic Energy Agency (IAEA) require measurements to verify declarations when spent fuel is transferred to difficult-to-access locations, such as dry storage casks and the repositories planned in Finland and Sweden. EURATOM makes routine use of the Fork detector to obtain gross gamma and total neutron measurements during spent fuel inspections. Data analysis is performed by modules in the integrated Review and Analysis Program (iRAP) software, developed jointly by EURATOM and the IAEA. Under the frameworkmore » of the US Department of Energy–EURATOM cooperation agreement, a module for automated Fork detector data analysis has been developed by Oak Ridge National Laboratory (ORNL) using the ORIGEN code from the SCALE code system and implemented in iRAP. EURATOM and ORNL recently performed measurements on 30 spent fuel assemblies at the Swedish Central Interim Storage Facility for Spent Nuclear Fuel (Clab), operated by the Swedish Nuclear Fuel and Waste Management Company (SKB). The measured assemblies represent a broad range of fuel characteristics. Neutron count rates for 15 measured pressurized water reactor assemblies are predicted with an average relative standard deviation of 4.6%, and gamma signals are predicted on average within 2.6% of the measurement. The 15 measured boiling water reactor assemblies exhibit slightly larger deviations of 5.2% for the gamma signals and 5.7% for the neutron count rates, compared to measurements. These findings suggest that with improved analysis of the measurement data, existing instruments can provide increased verification of operator declarations of the spent fuel and thereby also provide greater ability to confirm integrity of an assembly. These results support the application of the Fork detector as a fully quantitative spent fuel verification technique.« less

  12. Spent Fuel Working Group Report. Volume 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O`Toole, T.

    1993-11-01

    The Department of Energy is storing large amounts of spent nuclear fuel and other reactor irradiated nuclear materials (herein referred to as RINM). In the past, the Department reprocessed RINM to recover plutonium, tritium, and other isotopes. However, the Department has ceased or is phasing out reprocessing operations. As a consequence, Department facilities designed, constructed, and operated to store RINM for relatively short periods of time now store RINM, pending decisions on the disposition of these materials. The extended use of the facilities, combined with their known degradation and that of their stored materials, has led to uncertainties about safety.more » To ensure that extended storage is safe (i.e., that protection exists for workers, the public, and the environment), the conditions of these storage facilities had to be assessed. The compelling need for such an assessment led to the Secretary`s initiative on spent fuel, which is the subject of this report. This report comprises three volumes: Volume I; Summary Results of the Spent Fuel Working Group Evaluation; Volume II, Working Group Assessment Team Reports and Protocol; Volume III; Operating Contractor Site Team Reports. This volume presents the overall results of the Working Group`s Evaluation. The group assessed 66 facilities spread across 11 sites. It identified: (1) facilities that should be considered for priority attention. (2) programmatic issues to be considered in decision making about interim storage plans and (3) specific vulnerabilities for some of these facilities.« less

  13. Radioactive Wastes.

    PubMed

    Choudri, B S; Charabi, Yassine; Baawain, Mahad; Ahmed, Mushtaque

    2017-10-01

    Papers reviewed herein present a general overview of radioactive waste related activities around the world in 2016. The current reveiw include studies related to safety assessments, decommission and decontamination of nuclear facilities, fusion facilities, transportation. Further, the review highlights on management solutions for the final disposal of low and high level radioactive wastes (LLW and HLW), interim storage and final disposal options for spent fuel (SF), and tritiated wastes, with a focus on environmental impacts due to the mobility of radionuclides in ecosystem, water and soil alongwith other progress made in the management of radioactive wastes.

  14. The Time Needed to Implement the Blue Ribbon Commission Recommendation on Interim Storage - 13124

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voegele, Michael D.; Vieth, Donald

    2013-07-01

    The report of the Blue Ribbon Commission on America's Nuclear Future [1] makes a number of important recommendations to be considered if Congress elects to redirect U.S. high-level radioactive waste disposal policy. Setting aside for the purposes of this discussion any issues related to political forces leading to stopping progress on the Yucca Mountain project and driving the creation of the Commission, an important recommendation of the Commission was to institute prompt efforts to develop one or more consolidated storage facilities. The Blue Ribbon Commission noted that this recommended strategy for future storage and disposal facilities and operations should bemore » implemented regardless of what happens with Yucca Mountain. It is too easy, however, to focus on interim storage as an alternative to geologic disposal. The Blue Ribbon Commission report does not go far enough in addressing the magnitude of the contentious problems associated with reopening the issues of relative authorities of the states and federal government with which Congress wrestled in crafting the Nuclear Waste Policy Act [2]. The Blue Ribbon Commission recommendation for prompt adoption of an interim storage program does not appear to be fully informed about the actions that must be taken, the relative cost of the effort, or the realistic time line that would be involved. In essence, the recommendation leaves to others the details of the systems engineering analyses needed to understand the nature and details of all the operations required to reach an operational interim storage facility without derailing forever the true end goal of geologic disposal. The material presented identifies a number of impediments that must be overcome before the country could develop a centralized federal interim storage facility. In summary, and in the order presented, they are: 1. Change the law, HJR 87, PL 107-200, designating Yucca Mountain for the development of a repository. 2. Bring new nuclear waste legislation to the floor of the Senate, overcoming existing House support for Yucca Mountain; 3. Change the longstanding focus of Congress from disposal to storage; 4. Change the funding concepts embodied in the Nuclear Waste Policy Act to allow the Nuclear Waste fund to be used to pay for interim storage; 5. Reverse the Congressional policy not to give states or tribes veto or consent authority, and to reserve to Congress the authority to override a state or tribal disapproval; 6. Promulgate interim storage facility siting regulations to reflect the new policies after such changes to policy and law; 7. Complete already underway changes to storage and transportation regulations, possibly incorporating changes to reflect changes to waste disposal law; 8. Promulgate new repository siting regulations if the interim storage facility is to support repository development; 9. Identify volunteer sites, negotiate agreements, and get Congressional approval for negotiated benefits packages; 10. Design, License and develop the interim storage facility. The time required to accomplish these ten items depends on many factors. The estimate developed assumes that certain of the items must be completed before other items are started; given past criticisms of the current program, such an assumption appears appropriate. Estimated times for completion of individual items are based on historical precedent. (authors)« less

  15. Drying results of K-Basin fuel element 1990 (Run 1)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marschman, S.C.; Abrefah, J.; Klinger, G.S.

    1998-06-01

    The water-filled K-Basins in the Hanford 100-Area have been used to store N-Reactor spent nuclear fuel (SNF) since the 1970s. Because some leaks in the basins have been detected and some of the fuel is breached due to handling damage and corrosion, efforts are underway to remove the fuel elements from wet storage. An Integrated Process Strategy (IPS) has been developed to package, dry, transport, and store these metallic uranium fuels in an interim storage facility on the Hanford Site (WHC 1995). Information required to support the development of the drying processes, and the required safety analyses, is being obtainedmore » from characterization tests conducted on fuel elements removed from the K-Basins. A series of whole element drying tests (reported in separate documents, see Section 8.0) have been conducted by Pacific Northwest National Laboratory (PNNL) on several intact and damaged fuel elements recovered from both the K-East and K-West Basins. This report documents the results of the first of those tests (Run 1), which was conducted on an N-Reactor inner fuel element (1990) that had been stored underwater in the K-West Basin (see Section 2.0). This fuel element was subjected to a combination of low- and high-temperature vacuum drying treatments that were intended to mimic, wherever possible, the fuel treatment strategies of the IPS. The testing was conducted in the Whole Element Furnace Testing System, described in Section 3.0, located in the Postirradiation Testing Laboratory (PTL, 327 Building). The test conditions and methodology are given in Section 4.0, and the experimental results provided in Section 5.0. These results are further discussed in Section 6.0.« less

  16. Submittal for 2003 Project of the Year K Basins Fuel Transfer System Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    GERBER, M.S.

    2003-01-29

    Fluor Hanford, Inc. is pleased to submit the K Basins Fuel Transfer System (FTS) for consideration by the Project Management Institute as Project of the Year for 2003. The FTS involved installing a unique, unproven system in an inhospitable and deteriorating radiological and hazardous environment, under very stringent requirements and within an extremely condensed schedule, just 19 months, from authorization to full operations. The FTS, therefore, is an excellent example of effective project management, and the dynamic involvement of an integrated team representing a broad spectrum of personnel, disciplines, and services. The FTS is an integral and critical part ofmore » a larger project at Hanford -the Spent Nuclear Fuel Project (SNF). The mission of the SNF Project is to relocate used, or spent, nuclear fuel to safe interim storage, permanently dispose of radioactive debris in the K-Basins, and deactivate all related facilities and prepare them for demolition. Today, the FTS is being used to remove highly radioactive nuclear fuel from an aging, and potentially unstable storage in underground pools of water--the K-Basins--and safely transport it to a processing area to be cleaned, dried and sent to safe storage. The role the FTS plays in successfully completing the mission of the SNF Project is concrete evidence of the intrinsic value of project management and a testimonial to the innovation, ingenuity, and teamwork of many--from workers to management and subcontractors, and regulators to stakeholders. It's a true success story and one that will have a happy ending, safely eliminating the risk of potentially contaminating one of Washington state's most valuable natural resources, the Columbia River. This nomination is dedicated to that Project Team.« less

  17. Multisource energy system project

    NASA Astrophysics Data System (ADS)

    Dawson, R. W.; Cowan, R. A.

    1987-03-01

    The mission of this project is to investigate methods of providing uninterruptible power to Army communications and navigational facilities, many of which have limited access or are located in rugged terrain. Two alternatives are currently available for deploying terrestrial stand-alone power systems: (1) conventional electric systems powered by diesel fuel, propane, or natural gas, and (2) alternative power systems using renewable energy sources such as solar photovoltaics (PV) or wind turbines (WT). The increased cost of fuels for conventional systems and the high cost of energy storage for single-source renewable energy systems have created interest in the hybrid or multisource energy system. This report will provide a summary of the first and second interim reports, final test results, and a user's guide for software that will assist in applying and designing multi-source energy systems.

  18. 77 FR 50069 - National Oil and Hazardous Substances Pollution Contingency Plan; National Priorities List...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-20

    .... Grace & Co., Inc./Wayne Interim Storage (USDOE) Superfund Site AGENCY: Environmental Protection Agency... issuing a Notice of Intent to Delete the W.R. Grace & Co., Inc./Wayne Interim Storage (USDOE) Superfund..., NY 10007-1866. Hand Delivery: U.S. EPA Superfund Records Center, Region II, 290 Broadway, 18th Floor...

  19. Cost Implications of an Interim Storage Facility in the Waste Management System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jarrell, Joshua J.; Joseph, III, Robert Anthony; Howard, Rob L

    2016-09-01

    This report provides an evaluation of the cost implications of incorporating a consolidated interim storage facility (ISF) into the waste management system (WMS). Specifically, the impacts of the timing of opening an ISF relative to opening a repository were analyzed to understand the potential effects on total system costs.

  20. Interim waste storage for the Integral Fast Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benedict, R.W.; Phipps, R.D.; Condiff, D.W.

    1991-01-01

    The Integral Fast Reactor (IFR), which Argonne National Laboratory is developing, is an innovative liquid metal breeder reactor that uses metallic fuel and has a close coupled fuel recovery process. A pyrochemical process is used to separate the fission products from the actinide elements. These actinides are used to make new fuel for the reactor. As part of the overall IFR development program, Argonne has refurbished an existing Fuel Cycle Facility at ANL-West and is installing new equipment to demonstrate the remote reprocessing and fabrication of fuel for the Experimental Breeder Reactor II (EBR-II). During this demonstration the wastes thatmore » are produced will be treated and packaged to produce waste forms that would be typical of future commercial operations. These future waste forms would, assuming Argonne development goals are fulfilled, be essentially free of long half-life transuranic isotopes. Promising early results indicate that actinide extraction processes can be developed to strip these isotopes from waste stream and return them to the IFR type reactors for fissioning. 1 fig.« less

  1. Used Fuel Cask Identification through Neutron Profile

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rauch, Eric Benton

    2015-11-20

    Currently, most spent fuel is stored near reactors. An interim consolidated fuel storage facility would receive fuel from multiple sites and store it in casks on site for decades. For successful operation of such a facility there is need for a way to restore continuity of knowledge if lost as well as a method that will indicate state of fuel inside the cask. Used nuclear fuel is identifiable by its radiation emission, both gamma and neutron. Neutron emission from fission products, multiplication from remaining fissile material, and the unique distribution of both in each cask produce a unique neutron signature.more » If two signatures taken at different times do not match, either changes within the fuel content or misidentification of a cask occurred. It was found that identification of cask loadings works well through the profile of emitted neutrons in simulated real casks. Even casks with similar overall neutron emission or average counts around the circumference can be distinguished from each other by analyzing the profile. In conclusion, (1) identification of unaltered casks through neutron signature profile is viable; (2) collecting the profile provides insight to the condition and intactness of the fuel stored inside the cask; and (3) the signature profile is stable over time.« less

  2. Application of Framework for Integrating Safety, Security and Safeguards (3Ss) into the Design Of Used Nuclear Fuel Storage Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Badwan, Faris M.; Demuth, Scott F

    Department of Energy’s Office of Nuclear Energy, Fuel Cycle Research and Development develops options to the current commercial fuel cycle management strategy to enable the safe, secure, economic, and sustainable expansion of nuclear energy while minimizing proliferation risks by conducting research and development focused on used nuclear fuel recycling and waste management to meet U.S. needs. Used nuclear fuel is currently stored onsite in either wet pools or in dry storage systems, with disposal envisioned in interim storage facility and, ultimately, in a deep-mined geologic repository. The safe management and disposition of used nuclear fuel and/or nuclear waste is amore » fundamental aspect of any nuclear fuel cycle. Integrating safety, security, and safeguards (3Ss) fully in the early stages of the design process for a new nuclear facility has the potential to effectively minimize safety, proliferation, and security risks. The 3Ss integration framework could become the new national and international norm and the standard process for designing future nuclear facilities. The purpose of this report is to develop a framework for integrating the safety, security and safeguards concept into the design of Used Nuclear Fuel Storage Facility (UNFSF). The primary focus is on integration of safeguards and security into the UNFSF based on the existing Nuclear Regulatory Commission (NRC) approach to addressing the safety/security interface (10 CFR 73.58 and Regulatory Guide 5.73) for nuclear power plants. The methodology used for adaptation of the NRC safety/security interface will be used as the basis for development of the safeguards /security interface and later will be used as the basis for development of safety and safeguards interface. Then this will complete the integration cycle of safety, security, and safeguards. The overall methodology for integration of 3Ss will be proposed, but only the integration of safeguards and security will be applied to the design of the UNFSF. The framework for integration of safeguards and security into the UNFSF will include 1) identification of applicable regulatory requirements, 2) selection of a common system that share dual safeguard and security functions, 3) development of functional design criteria and design requirements for the selected system, 4) identification and integration of the dual safeguards and security design requirements, and 5) assessment of the integration and potential benefit.« less

  3. German Support Program for Retrieval and Safe Storage of Disused Radioactive Sealed Sources in Ukraine - 13194

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pretzsch, Gunter; Salewski, Peter; Sogalla, Martin

    2013-07-01

    The German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU) on behalf of the Government of the Federal Republic of Germany supports the State Nuclear Regulatory Inspectorate of Ukraine (SNRIU) in enhancement of nuclear safety and radiation protection and strengthening of the physical protection. One of the main objectives of the agreement concluded by these parties in 2008 was the retrieval and safe interim storage of disused orphan high radioactive sealed sources in Ukraine. At present, the Ukrainian National Registry does not account all high active radiation sources but only for about 70 - 80 %. GRSmore » in charge of BMU to execute the program since 2008 concluded subcontracts with the waste management and interim storage facilities RADON at different regions in Ukraine as well with the waste management and interim storage facility IZOTOP at Kiev. Below selected examples of removal of high active Co-60 and Cs-137 sources from irradiation facilities at research institutes are described. By end of 2012 removal and safe interim storage of 12.000 disused radioactive sealed sources with a total activity of more than 5,7.10{sup 14} Bq was achieved within the frame of this program. The German support program will be continued up to the end of 2013 with the aim to remove and safely store almost all disused radioactive sealed sources in Ukraine. (authors)« less

  4. 40 CFR Appendix III to Part 265 - EPA Interim Primary Drinking Water Standards

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 26 2014-07-01 2014-07-01 false EPA Interim Primary Drinking Water Standards III Appendix III to Part 265 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Pt....

  5. Analysis of dust samples collected from spent nuclear fuel interim storage containers at Hope Creek, Delaware, and Diablo Canyon, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryan, Charles R.; Enos, David George

    2014-07-01

    Potentially corrosive environments may form on the surface of spent nuclear fuel dry storage canisters by deliquescence of deposited dusts. To assess this, samples of dust were collected from in-service dry storage canisters at two near-marine sites, the Hope Creek and Diablo Canyon storage installations, and have been characterized with respect to mineralogy, chemistry, and texture. At both sites, terrestrially-derived silicate minerals, including quartz, feldspars, micas, and clays, comprise the largest fraction of the dust. Also significant at both sites were particles of iron and iron-chromium metal and oxides generated by the manufacturing process. Soluble salt phases were minor componentmore » of the Hope Creek dusts, and were compositionally similar to inland salt aerosols, rich in calcium, sulfate, and nitrate. At Diablo Canyon, however, sea-salt aerosols, occurring as aggregates of NaCl and Mg-sulfate, were a major component of the dust samples. The seasalt aerosols commonly occurred as hollow spheres, which may have formed by evaporation of suspended aerosol seawater droplets, possibly while rising through the heated annulus between the canister and the overpack. The differences in salt composition and abundance for the two sites are attributed to differences in proximity to the open ocean and wave action. The Diablo Canyon facility is on the shores of the Pacific Ocean, while the Hope Creek facility is on the shores of the Delaware River, several miles from the open ocean.« less

  6. Current Status of The Romanian National Deep Geological Repository Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radu, M.; Nicolae, R.; Nicolae, D.

    2008-07-01

    Construction of a deep geological repository is a very demanding and costly task. By now, countries that have Candu reactors, have not processed the spent fuel passing to the interim storage as a preliminary step of final disposal within the nuclear fuel cycle back-end. Romania, in comparison to other nations, represents a rather small territory, with high population density, wherein the geological formation areas with radioactive waste storage potential are limited and restricted not only from the point of view of the selection criteria due to the rocks natural characteristics, but also from the point of view of their involvementmore » in social and economical activities. In the framework of the national R and D Programs, series of 'Map investigations' have been made regarding the selection and preliminary characterization of the host geological formation for the nation's spent fuel deep geological repository. The fact that Romania has many deposits of natural gas, oil, ore and geothermal water, and intensively utilizes soil and also is very forested, cause some of the apparent acceptable sites to be rejected in the subsequent analysis. Currently, according to the Law on the spent fuel and radioactive waste management, including disposal, The National Agency of Radioactive Waste is responsible and coordinates the national strategy in the field and, subsequently, further actions will be decided. The Romanian National Strategy, approved in 2004, projects the operation of a deep geological repository to begin in 2055. (authors)« less

  7. Long-term storage facility for reactor compartments in Sayda Bay - German support for utilization of nuclear submarines in Russia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolff, Dietmar; Voelzke, Holger; Weber, Wolfgang

    2007-07-01

    The German-Russian project that is part of the G8 initiative on Global Partnership Against the Spread of Weapons and Materials of Mass Destruction focuses on the speedy construction of a land-based interim storage facility for nuclear submarine reactor compartments at Sayda Bay near Murmansk. This project includes the required infrastructure facilities for long-term storage of about 150 reactor compartments for a period of about 70 years. The interim storage facility is a precondition for effective activities of decommissioning and dismantlement of almost all nuclear-powered submarines of the Russian Northern Fleet. The project also includes the establishment of a computer-assisted wastemore » monitoring system. In addition, the project involves clearing Sayda Bay of other shipwrecks of the Russian navy. On the German side the project is carried out by the Energiewerke Nord GmbH (EWN) on behalf of the Federal Ministry of Economics and Labour (BMWi). On the Russian side the Kurchatov Institute holds the project management of the long-term interim storage facility in Sayda Bay, whilst the Nerpa Shipyard, which is about 25 km away from the storage facility, is dismantling the submarines and preparing the reactor compartments for long-term interim storage. The technical monitoring of the German part of this project, being implemented by BMWi, is the responsibility of the Federal Institute for Materials Research and Testing (BAM). This paper gives an overview of the German-Russian project and a brief description of solutions for nuclear submarine disposal in other countries. At Nerpa shipyard, being refurbished with logistic and technical support from Germany, the reactor compartments are sealed by welding, provided with biological shielding, subjected to surface treatment and conservation measures. Using floating docks, a tugboat tows the reactor compartments from Nerpa shipyard to the interim storage facility at Sayda Bay where they will be left on the on-shore concrete storage space to allow the radioactivity to decay. For transport of reactor compartments at the shipyard, at the dock and at the storage facility, hydraulic keel blocks, developed and supplied by German subcontractors, are used. In July 2006 the first stage of the reactor compartment storage facility was commissioned and the first seven reactor compartments have been delivered from Nerpa shipyard. Following transports of reactor compartments to the storage facility are expected in 2007. (authors)« less

  8. Evaluation of Future Fuels in a High Pressure Common Rail System - Part 2. 2011 Ford 6.7L Diesel Engine

    DTIC Science & Technology

    2013-01-01

    An injector needle is shown for each test in Figure 41. UNCLASSIFIED 37 UNCLASSIFIED Full Needle 60°C Ultra Low Sulfur Diesel 60°C...UNCLASSIFIED EVALUATION OF FUTURE FUELS IN A HIGH PRESSURE COMMON RAIL SYSTEM – PART 2 2011 FORD 6.7L DIESEL ENGINE INTERIM REPORT TFLRF...UNCLASSIFIED UNCLASSIFIED EVALUATION OF FUTURE FUELS IN A HIGH PRESSURE COMMON RAIL SYSTEM – PART 2 2011 FORD 6.7L DIESEL ENGINE INTERIM REPORT TFLRF

  9. Advancing the Fork detector for quantitative spent nuclear fuel verification

    DOE PAGES

    Vaccaro, S.; Gauld, I. C.; Hu, J.; ...

    2018-01-31

    The Fork detector is widely used by the safeguards inspectorate of the European Atomic Energy Community (EURATOM) and the International Atomic Energy Agency (IAEA) to verify spent nuclear fuel. Fork measurements are routinely performed for safeguards prior to dry storage cask loading. Additionally, spent fuel verification will be required at the facilities where encapsulation is performed for acceptance in the final repositories planned in Sweden and Finland. The use of the Fork detector as a quantitative instrument has not been prevalent due to the complexity of correlating the measured neutron and gamma ray signals with fuel inventories and operator declarations.more » A spent fuel data analysis module based on the ORIGEN burnup code was recently implemented to provide automated real-time analysis of Fork detector data. This module allows quantitative predictions of expected neutron count rates and gamma units as measured by the Fork detectors using safeguards declarations and available reactor operating data. This study describes field testing of the Fork data analysis module using data acquired from 339 assemblies measured during routine dry cask loading inspection campaigns in Europe. Assemblies include both uranium oxide and mixed-oxide fuel assemblies. More recent measurements of 50 spent fuel assemblies at the Swedish Central Interim Storage Facility for Spent Nuclear Fuel are also analyzed. An evaluation of uncertainties in the Fork measurement data is performed to quantify the ability of the data analysis module to verify operator declarations and to develop quantitative go/no-go criteria for safeguards verification measurements during cask loading or encapsulation operations. The goal of this approach is to provide safeguards inspectors with reliable real-time data analysis tools to rapidly identify discrepancies in operator declarations and to detect potential partial defects in spent fuel assemblies with improved reliability and minimal false positive alarms. Finally, the results are summarized, and sources and magnitudes of uncertainties are identified, and the impact of analysis uncertainties on the ability to confirm operator declarations is quantified.« less

  10. Advancing the Fork detector for quantitative spent nuclear fuel verification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaccaro, S.; Gauld, I. C.; Hu, J.

    The Fork detector is widely used by the safeguards inspectorate of the European Atomic Energy Community (EURATOM) and the International Atomic Energy Agency (IAEA) to verify spent nuclear fuel. Fork measurements are routinely performed for safeguards prior to dry storage cask loading. Additionally, spent fuel verification will be required at the facilities where encapsulation is performed for acceptance in the final repositories planned in Sweden and Finland. The use of the Fork detector as a quantitative instrument has not been prevalent due to the complexity of correlating the measured neutron and gamma ray signals with fuel inventories and operator declarations.more » A spent fuel data analysis module based on the ORIGEN burnup code was recently implemented to provide automated real-time analysis of Fork detector data. This module allows quantitative predictions of expected neutron count rates and gamma units as measured by the Fork detectors using safeguards declarations and available reactor operating data. This study describes field testing of the Fork data analysis module using data acquired from 339 assemblies measured during routine dry cask loading inspection campaigns in Europe. Assemblies include both uranium oxide and mixed-oxide fuel assemblies. More recent measurements of 50 spent fuel assemblies at the Swedish Central Interim Storage Facility for Spent Nuclear Fuel are also analyzed. An evaluation of uncertainties in the Fork measurement data is performed to quantify the ability of the data analysis module to verify operator declarations and to develop quantitative go/no-go criteria for safeguards verification measurements during cask loading or encapsulation operations. The goal of this approach is to provide safeguards inspectors with reliable real-time data analysis tools to rapidly identify discrepancies in operator declarations and to detect potential partial defects in spent fuel assemblies with improved reliability and minimal false positive alarms. Finally, the results are summarized, and sources and magnitudes of uncertainties are identified, and the impact of analysis uncertainties on the ability to confirm operator declarations is quantified.« less

  11. Advancing the Fork detector for quantitative spent nuclear fuel verification

    NASA Astrophysics Data System (ADS)

    Vaccaro, S.; Gauld, I. C.; Hu, J.; De Baere, P.; Peterson, J.; Schwalbach, P.; Smejkal, A.; Tomanin, A.; Sjöland, A.; Tobin, S.; Wiarda, D.

    2018-04-01

    The Fork detector is widely used by the safeguards inspectorate of the European Atomic Energy Community (EURATOM) and the International Atomic Energy Agency (IAEA) to verify spent nuclear fuel. Fork measurements are routinely performed for safeguards prior to dry storage cask loading. Additionally, spent fuel verification will be required at the facilities where encapsulation is performed for acceptance in the final repositories planned in Sweden and Finland. The use of the Fork detector as a quantitative instrument has not been prevalent due to the complexity of correlating the measured neutron and gamma ray signals with fuel inventories and operator declarations. A spent fuel data analysis module based on the ORIGEN burnup code was recently implemented to provide automated real-time analysis of Fork detector data. This module allows quantitative predictions of expected neutron count rates and gamma units as measured by the Fork detectors using safeguards declarations and available reactor operating data. This paper describes field testing of the Fork data analysis module using data acquired from 339 assemblies measured during routine dry cask loading inspection campaigns in Europe. Assemblies include both uranium oxide and mixed-oxide fuel assemblies. More recent measurements of 50 spent fuel assemblies at the Swedish Central Interim Storage Facility for Spent Nuclear Fuel are also analyzed. An evaluation of uncertainties in the Fork measurement data is performed to quantify the ability of the data analysis module to verify operator declarations and to develop quantitative go/no-go criteria for safeguards verification measurements during cask loading or encapsulation operations. The goal of this approach is to provide safeguards inspectors with reliable real-time data analysis tools to rapidly identify discrepancies in operator declarations and to detect potential partial defects in spent fuel assemblies with improved reliability and minimal false positive alarms. The results are summarized, and sources and magnitudes of uncertainties are identified, and the impact of analysis uncertainties on the ability to confirm operator declarations is quantified.

  12. Contribution of postpolymerization conditioning and storage environments to the mechanical properties of three interim restorative materials.

    PubMed

    Thompson, Geoffrey A; Luo, Qing

    2014-09-01

    Because polymer-based interim restorative materials are weak, even well-made restorations sometimes fail before the definitive restoration is ready for insertion. Therefore, knowing which fabrication procedures and service conditions affect mechanical properties is important, particularly over an extended period. The purpose of this study was to evaluate the effect of thermal treatment, surface sealing, thermocycling, storage media, storage temperature, and age on autopolymerizing poly(methylmethacrylate) and bis-acryl interim restorative materials. Outcome measures were flexural strength, Vickers surface microhardness, and impact strength. Flexural strength and microhardness of poly(methylmethacrylate) (Jet Acrylic) and 2 bis-acryl-composite resin (Protemp 3 Garant and Integrity) interim restorative materials were evaluated as affected by storage media, storage temperature, storage time, thermocycling, postpolymerization thermal treatment, or application of a surface sealer. In total, 2880 beam specimens (25×2×2 mm) were fabricated. Mechanical property analyses were made at 10 days, 30 days, 6 months, and 1 year after specimen preparation. Flexural strength was determined by using a 3-point bending test in a universal testing machine with a 1 kN load cell at a crosshead speed of 5.0 mm min(-1). Fracture specimens were recovered and used for determining Vickers microhardness. Measurements were made with a 0.1 N load and 15 second dwell time. Three microhardness measurements were made for each specimen, and the mean was used for reporting Vickers microhardness. Notched impact specimens (64×12.7×6.35 mm) were fabricated from Jet, Protemp 3 Garant, and Integrity interim restorative materials, yielding 288 impact specimens. Impact strengths were assessed at 10 days, 30 days, 6 months, and 1 year with a 2 J pendulum. The effects of the various experimental treatments were determined and rank ordered with analysis of variance, F ratios, and least square means differences Student t tests (α=.05). All experimental treatments investigated had significant effects on flexural strength, with material (P<.001) and thermocycling (P<.001) being dominant. Moreover, all experimental treatments investigated had a significant overall impact on Vickers microhardness with material (P<.001) and Palaseal glaze (P<.001) showing large effects. Material (P<.001) and age (P=.010) had a significant effect on impact strength. Mechanical properties of some interim polymeric materials can be improved by postpolymerization heat treatments or surface glazing. This procedure may extend the useful lifetime of some bis-acryl interim restorations. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  13. 324 Building B-Cell Pressurized Water Reactor Spent Fuel Packaging & Shipment RL Readiness Assessment Final Report [SEC 1 Thru 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    HUMPHREYS, D C

    A parallel readiness assessment (RA) was conducted by independent Fluor Hanford (FH) and U. S. Department of Energy, Richland Operations Office (RL) team to verify that an adequate state of readiness had been achieved for activities associated with the packaging and shipping of pressurized water reactor fuel assemblies from B-Cell in the 324 Building to the interim storage area at the Canister Storage Building in the 200 Area. The RL review was conducted in parallel with the FH review in accordance with the Joint RL/FH Implementation Plan (Appendix B). The RL RA Team members were assigned a FH RA Teammore » counterpart for the review. With this one-on-one approach, the RL RA Team was able to assess the FH Team's performance, competence, and adherence to the implementation plan and evaluate the level of facility readiness. The RL RA Team agrees with the FH determination that startup of the 324 Building B-Cell pressurized water reactor spent nuclear fuel packaging and shipping operations can safely proceed, pending completion of the identified pre-start items in the FH final report (see Appendix A), completion of the manageable list of open items included in the facility's declaration of readiness, and execution of the startup plan to operations.« less

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eric Larsen; Art Watkins; Timothy R. McJunkin

    The U.S. Department of Energy (DOE) created the National Spent Nuclear Fuel Program (NSNFP) to manage DOE’s spent nuclear fuel (SNF). One of the NSNFP’s tasks is to prepare spent nuclear fuel for storage, transportation, and disposal at the national repository. As part of this effort, the NSNFP developed a standardized canister for interim storage and transportation of SNF. These canisters will be built and sealed to American Society of Mechanical Engineers (ASME) Section III, Division 3 requirements. Packaging SNF usually is a three-step process: canister loading, closure welding, and closure weld verification. After loading SNF into the canisters, themore » canisters must be seal welded and the welds verified using a combination of visual, surface eddy current, and ultrasonic inspection or examination techniques. If unacceptable defects in the weld are detected, the defective sections of weld must be removed, re-welded, and re-inspected. Due to the high contamination and/or radiation fields involved with this process, all of these functions must be performed remotely in a hot cell. The prototype apparatus to perform these functions is a floor-mounted carousel that encircles the loaded canister; three stations perform the functions of welding, inspecting, and repairing the seal welds. A welding operator monitors and controls these functions remotely via a workstation located outside the hot cell. The discussion describes the hardware and software that have been developed and the results of testing that has been done to date.« less

  15. Method of preparing nuclear wastes for tansportation and interim storage

    DOEpatents

    Bandyopadhyay, Gautam; Galvin, Thomas M.

    1984-01-01

    Nuclear waste is formed into a substantially water-insoluble solid for temporary storage and transportation by mixing the calcined waste with at least 10 weight percent powdered anhydrous sodium silicate to form a mixture and subjecting the mixture to a high humidity environment for a period of time sufficient to form cementitious bonds by chemical reaction. The method is suitable for preparing an interim waste form from dried high level radioactive wastes.

  16. Computerization of material test data reporting system : interim report.

    DOT National Transportation Integrated Search

    1973-09-01

    This study was initiated to provide an integrated system of reporting, storing, and retrieving of construction and material test data using computerized (storage-retrieval) and quality control techniques. The findings reported in this interim report ...

  17. Experimental validation of the DARWIN2.3 package for fuel cycle applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    San-Felice, L.; Eschbach, R.; Bourdot, P.

    2012-07-01

    The DARWIN package, developed by the CEA and its French partners (AREVA and EDF) provides the required parameters for fuel cycle applications: fuel inventory, decay heat, activity, neutron, {gamma}, {alpha}, {beta} sources and spectrum, radiotoxicity. This paper presents the DARWIN2.3 experimental validation for fuel inventory and decay heat calculations on Pressurized Water Reactor (PWR). In order to validate this code system for spent fuel inventory a large program has been undertaken, based on spent fuel chemical assays. This paper deals with the experimental validation of DARWIN2.3 for the Pressurized Water Reactor (PWR) Uranium Oxide (UOX) and Mixed Oxide (MOX) fuelmore » inventory calculation, focused on the isotopes involved in Burn-Up Credit (BUC) applications and decay heat computations. The calculation - experiment (C/E-1) discrepancies are calculated with the latest European evaluation file JEFF-3.1.1 associated with the SHEM energy mesh. An overview of the tendencies is obtained on a complete range of burn-up from 10 to 85 GWd/t (10 to 60 GWcVt for MOX fuel). The experimental validation of the DARWIN2.3 package for decay heat calculation is performed using calorimetric measurements carried out at the Swedish Interim Spent Fuel Storage Facility for Pressurized Water Reactor (PWR) assemblies, covering a large burn-up (20 to 50 GWd/t) and cooling time range (10 to 30 years). (authors)« less

  18. Storage for greater-than-Class C low-level radioactive waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beitel, G.A.

    1991-12-31

    EG and G Idaho, Inc., at the Idaho National Engineering Laboratory (INEL) is actively pursuing technical storage alternatives for greater-than-Class C low-level radioactive waste (GTCC LLW) until a suitable licensed disposal facility is operating. A recently completed study projects that between 2200 and 6000 m{sup 3} of GTCC LLW will be generated by the year 2035; the base case estimate is 3250 m{sup 3}. The current plan envisions a disposal facility available as early as the year 2010. A long-term dedicated storage facility could be available in 1997. In the meantime, it is anticipated that a limited number of sealedmore » sources that are no longer useful and have GTCC concentrations of radionuclides will require storage. Arrangements are being made to provide this interim storage at an existing DOE waste management facility. All interim stored waste will subsequently be moved to the dedicated storage facility once it is operating. Negotiations are under way to establish a host site for interim storage, which may be operational, at the earliest, by the second quarter of 1993. Two major activities toward developing a long-term dedicated storage facility are ongoing. (a) An engineering study, which explores costs for alternatives to provide environmentally safe storage and satisfy all regulations, is being prepared. Details of some of the findings of that study will be presented. (b) There is also an effort under way to seek the assistance of one or more private companies in providing dedicated storage. Alternatives and options will be discussed.« less

  19. Planning and supervision of reactor defueling using discrete event techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia, H.E.; Imel, G.R.; Houshyar, A.

    1995-12-31

    New fuel handling and conditioning activities for the defueling of the Experimental Breeder Reactor II are being performed at Argonne National Laboratory. Research is being conducted to investigate the use of discrete event simulation, analysis, and optimization techniques to plan, supervise, and perform these activities in such a way that productivity can be improved. The central idea is to characterize this defueling operation as a collection of interconnected serving cells, and then apply operational research techniques to identify appropriate planning schedules for given scenarios. In addition, a supervisory system is being developed to provide personnel with on-line information on themore » progress of fueling tasks and to suggest courses of action to accommodate changing operational conditions. This paper provides an introduction to the research in progress at ANL. In particular, it briefly describes the fuel handling configuration for reactor defueling at ANL, presenting the flow of material from the reactor grid to the interim storage location, and the expected contributions of this work. As an example of the studies being conducted for planning and supervision of fuel handling activities at ANL, an application of discrete event simulation techniques to evaluate different fuel cask transfer strategies is given at the end of the paper.« less

  20. Back-end of the fuel cycle - Indian scenario

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wattal, P.K.

    Nuclear power has a key role in meeting the energy demands of India. This can be sustained by ensuring robust technology for the back end of the fuel cycle. Considering the modest indigenous resources of U and a huge Th reserve, India has adopted a three stage Nuclear Power Programme (NPP) based on 'closed fuel cycle' approach. This option on 'Recovery and Recycle' serves twin objectives of ensuring adequate supply of nuclear fuel and also reducing the long term radio-toxicity of the wastes. Reprocessing of the spent fuel by Purex process is currently employed. High Level Liquid Waste (HLW) generatedmore » during reprocessing is vitrified and undergoes interim storage. Back-end technologies are constantly modified to address waste volume minimization and radio-toxicity reduction. Long-term management of HLW in Indian context would involve partitioning of long lived minor actinides and recovery of valuable fission products specifically cesium. Recovery of minor actinides from HLW and its recycle is highly desirable for the sustained growth of India's NPPs. In this context, programme for developing and deploying partitioning technologies on industrial scale is pursued. The partitioned elements could be either transmuted in Fast Reactors (FRs)/Accelerated Driven Systems (ADS) as an integral part of sustainable Indian NPP. (authors)« less

  1. 40 CFR 86.1810-09 - General standards; increase in emissions; unsafe condition; waivers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... light-duty vehicles and light-duty trucks fueled by gasoline, diesel, methanol, ethanol, natural gas and... applicable to methanol fueled vehicles are also applicable to Tier 2 and interim non-Tier 2 ethanol fueled...

  2. 40 CFR 86.1810-09 - General standards; increase in emissions; unsafe condition; waivers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... light-duty vehicles and light-duty trucks fueled by gasoline, diesel, methanol, ethanol, natural gas and... applicable to methanol fueled vehicles are also applicable to Tier 2 and interim non-Tier 2 ethanol fueled...

  3. Analysis of Samples Collected from the Surface of Interim Storage Canisters at Calvert Cliffs in June 2017: Revision 01.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryan, Charles R.; Schindelholz, Eric John

    In June 2017, dust and salt samples were collected from the surface of Spent Nuclear Fuel (SNF) dry storage canisters at the Calvert Cliffs Nuclear Power Plant. The samples were delivered to Sandia National laboratories for analysis. Two types of samples were collected: filter-backed Scotch-Brite TM pads were used to collect dry dust samples for characterization of salt and dust morphologies and distributions; and Saltsmart TM test strips were used to collect soluble salts for determining salt surface loadings per unit area. After collection, the samples were sealed into plastic sleeves for shipping. Condensation within the sleeves containing the Scotch-Britemore » TM samples remobilized the salts, rendering them ineffective for the intended purpose, and also led to mold growth, further compromising the samples; for these reasons, the samples were not analyzed. The SaltSmart TM samples were unaffected and were analyzed by ion chromatography for major anions and cations. The results of those analyses are presented here.« less

  4. Shielding calculation and criticality safety analysis of spent fuel transportation cask in research reactors.

    PubMed

    Mohammadi, A; Hassanzadeh, M; Gharib, M

    2016-02-01

    In this study, shielding calculation and criticality safety analysis were carried out for general material testing reactor (MTR) research reactors interim storage and relevant transportation cask. During these processes, three major terms were considered: source term, shielding, and criticality calculations. The Monte Carlo transport code MCNP5 was used for shielding calculation and criticality safety analysis and ORIGEN2.1 code for source term calculation. According to the results obtained, a cylindrical cask with body, top, and bottom thicknesses of 18, 13, and 13 cm, respectively, was accepted as the dual-purpose cask. Furthermore, it is shown that the total dose rates are below the normal transport criteria that meet the standards specified. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Approach for validating actinide and fission product compositions for burnup credit criticality safety analyses

    DOE PAGES

    Radulescu, Georgeta; Gauld, Ian C.; Ilas, Germina; ...

    2014-11-01

    This paper describes a depletion code validation approach for criticality safety analysis using burnup credit for actinide and fission product nuclides in spent nuclear fuel (SNF) compositions. The technical basis for determining the uncertainties in the calculated nuclide concentrations is comparison of calculations to available measurements obtained from destructive radiochemical assay of SNF samples. Probability distributions developed for the uncertainties in the calculated nuclide concentrations were applied to the SNF compositions of a criticality safety analysis model by the use of a Monte Carlo uncertainty sampling method to determine bias and bias uncertainty in effective neutron multiplication factor. Application ofmore » the Monte Carlo uncertainty sampling approach is demonstrated for representative criticality safety analysis models of pressurized water reactor spent fuel pool storage racks and transportation packages using burnup-dependent nuclide concentrations calculated with SCALE 6.1 and the ENDF/B-VII nuclear data. Furthermore, the validation approach and results support a recent revision of the U.S. Nuclear Regulatory Commission Interim Staff Guidance 8.« less

  6. 75 FR 42575 - Electronic Signature and Storage of Form I-9, Employment Eligibility Verification

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-22

    ... Electronic Signature and Storage of Form I-9, Employment Eligibility Verification AGENCY: U.S. Immigration... published an interim final rule to permit electronic signature and storage of the Form I-9. 71 FR 34510..., or a combination of paper and electronic systems; Employers may change electronic storage systems as...

  7. The hydrogen issue.

    PubMed

    Armaroli, Nicola; Balzani, Vincenzo

    2011-01-17

    Hydrogen is often proposed as the fuel of the future, but the transformation from the present fossil fuel economy to a hydrogen economy will need the solution of numerous complex scientific and technological issues, which will require several decades to be accomplished. Hydrogen is not an alternative fuel, but an energy carrier that has to be produced by using energy, starting from hydrogen-rich compounds. Production from gasoline or natural gas does not offer any advantage over the direct use of such fuels. Production from coal by gasification techniques with capture and sequestration of CO₂ could be an interim solution. Water splitting by artificial photosynthesis, photobiological methods based on algae, and high temperatures obtained by nuclear or concentrated solar power plants are promising approaches, but still far from practical applications. In the next decades, the development of the hydrogen economy will most likely rely on water electrolysis by using enormous amounts of electric power, which in its turn has to be generated. Producing electricity by burning fossil fuels, of course, cannot be a rational solution. Hydroelectric power can give but a very modest contribution. Therefore, it will be necessary to generate large amounts of electric power by nuclear energy of by renewable energies. A hydrogen economy based on nuclear electricity would imply the construction of thousands of fission reactors, thereby magnifying all the problems related to the use of nuclear energy (e.g., safe disposal of radioactive waste, nuclear proliferation, plant decommissioning, uranium shortage). In principle, wind, photovoltaic, and concentrated solar power have the potential to produce enormous amounts of electric power, but, except for wind, such technologies are too underdeveloped and expensive to tackle such a big task in a short period of time. A full development of a hydrogen economy needs also improvement in hydrogen storage, transportation and distribution. Hydrogen and electricity can be easily interconverted by electrolysis and fuel cells, and which of these two energy carriers will prevail, particularly in the crucial field of road vehicle powering, will depend on the solutions found for their peculiar drawbacks, namely storage for electricity and transportation and distribution for hydrogen. There is little doubt that power production by renewable energies, energy storage by hydrogen, and electric power transportation and distribution by smart electric grids will play an essential role in phasing out fossil fuels. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Fiscal Year (FY) 2017 Activities for the Spent Fuel Nondestructive Assay Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trellue, Holly Renee; Trahan, Alexis Chanel; McMath, Garrett Earl

    The main focus of research in the NA-241 spent fuel nondestructive assay (NDA) project in FY17 has been completing the fabrication and testing of two prototype instruments for upcoming spent fuel measurements at the Clab interim storage facility in Sweden. One is a passive instrument: Differential Die-away Self Interrogation-Passive Neutron Albedo Reactivity (DDSI), and one is an active instrument: Differential Die-Away-Californium Interrogation with Prompt Neutron (DDA). DDSI was fabricated and tested with fresh fuel at Los Alamos National Laboratory in FY15 and FY16, then shipped to Sweden at the beginning of FY17. Research was performed in FY17 to simplify resultsmore » from the data acquisition system, which is complex because signals from 56 different 3He detectors must be processed using list mode data. The DDA instrument was fabricated at the end of FY16. New high count rate electronics better suited for a spent fuel environment (i.e., KM-200 preamplifiers) were built specifically for this instrument in FY17, and new Tygon tubing to house electrical cables was purchased and installed. Fresh fuel tests using the DDA instrument with numerous configurations of fuel rods containing depleted uranium (DU), low enriched uranium (LEU), and LEU with burnable poisons (Gd) were successfully performed and compared to simulations.1 Additionally, members of the spent fuel NDA project team travelled to Sweden for a “spent fuel characterization and decay heat” workshop involving simulations of spent fuel and analysis of uncertainties in decay heat calculations.« less

  9. Global Spent Fuel Logistics Systems Study (GSFLS). Volume 2. GSFLS visit findings and evaluations. Interim report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1978-01-31

    This report is a part of the interim report documentation for the Global Spent Fuel Logistics System (GSFLS) study. This report describes a global framework that evaluates spent fuel disposition requirements, influencing factors and strategies. A broad sampling of foreign governmental officials, electric utility spokesmen and nuclear power industry officials responsible for GSFLS policies, plans and programs were surveyed as to their views with respect to national and international GSFLS related considerations. The results of these GSFLS visit findings are presented herein. These findings were then evaluated in terms of technical, institutional and legal/regulatory implications. The GSFLS evaluations, in conjunctionmore » with perceived US spent fuel objectives, formed the basis for selecting a set of GSFLS strategies which are reported herein.« less

  10. Structural Health Monitoring of Nuclear Spent Fuel Storage Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Lingyu

    Interim storage of spent nuclear fuel from reactor sites has gained additional importance and urgency for resolving waste-management-related technical issues. To ensure that nuclear power remains clean energy, monitoring has been identified by DOE as a high priority cross-cutting need, necessary to determine and predict the degradation state of the systems, structures, and components (SSCs) important to safety (ITS). Therefore, nondestructive structural condition monitoring becomes a need to be installed on existing or to be integrated into future storage system to quantify the state of health or to guarantee the safe operation of nuclear power plants (NPPs) during their extendedmore » life span. In this project, the lead university and the collaborating national laboratory teamed to develop a nuclear structural health monitoring (n-SHM) system based on in-situ piezoelectric sensing technologies that can monitor structural degradation and aging for nuclear spent fuel DCSS and similar structures. We also aimed to identify and quantify possible influences of nuclear spent fuel environment (temperature and radiation) to the piezoelectric sensor system and come up with adequate solutions and guidelines therefore. We have therefore developed analytical model for piezoelectric based n-SHM methods, with considerations of temperature and irradiation influence on the model of sensing and algorithms in acoustic emission (AE), guided ultrasonic waves (GUW), and electromechanical impedance spectroscopy (EMIS). On the other side, experimentally the temperature and irradiation influence on the piezoelectric sensors and sensing capabilities were investigated. Both short-term and long-term irradiation investigation with our collaborating national laboratory were performed. Moreover, we developed multi-modal sensing, validated in laboratory setup, and conducted the testing on the We performed multi-modal sensing development, verification and validation tests on very complex structures including a medium-scale vacuum drying chamber and a small-scale mockup canister available for the desired testing. Our work developed the potential candidate for long term structural health monitoring of spent fuel canister through piezoelectric wafer sensors and provided the sensing methodologies based on AE and GUW methodologies. It overall provides an innovative system and methodology for enhancing the safe operation of nuclear power plant. All major accomplishments planned in the original proposal were successfully achieved.« less

  11. Grout Isolation and Stabilization of Structures and Materials within Nuclear Facilities at the U.S. Department of Energy, Hanford Site, Summary - 12309

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, S.J.; Phillips, M.; Etheridge, D.

    2012-07-01

    Per regulatory agreement and facility closure design, U.S. Department of Energy Hanford Site nuclear fuel cycle structures and materials require in situ isolation in perpetuity and/or interim physicochemical stabilization as a part of final disposal or interim waste removal, respectively. To this end, grout materials are being used to encase facilities structures or are being incorporated within structures containing hazardous and radioactive contaminants. Facilities where grout materials have been recently used for isolation and stabilization include: (1) spent fuel separations, (2) uranium trioxide calcining, (3) reactor fuel storage basin, (4) reactor fuel cooling basin transport rail tanker cars and casks,more » (5) cold vacuum drying and reactor fuel load-out, and (6) plutonium fuel metal finishing. Grout components primarily include: (1) portland cement, (2) fly ash, (3) aggregate, and (4) chemical admixtures. Mix designs for these typically include aggregate and non aggregate slurries and bulk powders. Placement equipment includes: (1) concrete piston line pump or boom pump truck for grout slurry, (2) progressive cavity and shearing vortex pump systems, and (3) extendable boom fork lift for bulk powder dry grout mix. Grout slurries placed within the interior of facilities were typically conveyed utilizing large diameter slick line and the equivalent diameter flexible high pressure concrete conveyance hose. Other facilities requirements dictated use of much smaller diameter flexible grout conveyance hose. Placement required direct operator location within facilities structures in most cases, whereas due to radiological dose concerns, placement has also been completed remotely with significant standoff distances. Grout performance during placement and subsequent to placement often required unique design. For example, grout placed in fuel basin structures to serve as interim stabilization materials required sufficient bearing i.e., unconfined compressive strength, to sustain heavy equipment yet, low breakout force to permit efficient removal by track hoe bucket or equivalent construction equipment. Further, flow of slurries through small orifice geometries of moderate head pressures was another typical design requirement. Phase separation of less than 1 percent was a typical design requirement for slurries. On the order of 30,000 cubic meters of cementitious grout have recently been placed in the above noted U.S. Department of Energy Hanford Site facilities or structures. Each has presented a unique challenge in mix design, equipment, grout injection or placement, and ultimate facility or structure performance. Unconfined compressive and shear strength, flow, density, mass attenuation coefficient, phase separation, air content, wash-out, parameters and others, unique to each facility or structure, dictate the grout mix design for each. Each mix design was tested under laboratory and scaled field conditions as a precursor to field deployment. Further, after injection or placement of each grout formulation, the material was field inspected either by standard laboratory testing protocols, direct physical evaluation, or both. (authors)« less

  12. Progress and future direction for the interim safe storage and disposal of Hanford high-level waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kinzer, J.E.; Wodrich, D.D.; Bacon, R.F.

    This paper describes the progress made at the largest environmental cleanup program in the United States. Substantial advances in methods to start interim safe storage of Hanford Site high-level wastes, waste characterization to support both safety- and disposal-related information needs, and proceeding with cost-effective disposal by the U.S. Department of Energy (DOE) and its Hanford Site contractors, have been realized. Challenges facing the Tank Waste Remediation System (TWRS) Program, which is charged with the dual and parallel missions of interim safe storage and disposal of the high-level tank waste stored at the Hanford Site, are described. In these times ofmore » budget austerity, implementing an ongoing program that combines technical excellence and cost effectiveness is the near-term challenge. The technical initiatives and progress described in this paper are made more cost effective by DOE`s focus on work force productivity improvement, reduction of overhead costs, and reduction, integration and simplification of DOE regulations and operations requirements to more closely model those used in the private sector.« less

  13. Radon exposure at a radioactive waste storage facility.

    PubMed

    Manocchi, F H; Campos, M P; Dellamano, J C; Silva, G M

    2014-06-01

    The Waste Management Department of Nuclear and Energy Research Institute (IPEN) is responsible for the safety management of the waste generated at all internal research centers and that of other waste producers such as industry, medical facilities, and universities in Brazil. These waste materials, after treatment, are placed in an interim storage facility. Among them are (226)Ra needles used in radiotherapy, siliceous cake arising from conversion processes, and several other classes of waste from the nuclear fuel cycle, which contain Ra-226 producing (222)Rn gas daughter.In order to estimate the effective dose for workers due to radon inhalation, the radon concentration at the storage facility has been assessed within this study. Radon measurements have been carried out through the passive method with solid-state nuclear track detectors (CR-39) over a period of nine months, changing detectors every month in order to determine the long-term average levels of indoor radon concentrations. The radon concentration results, covering the period from June 2012 to March 2013, varied from 0.55 ± 0.05 to 5.19 ± 0.45 kBq m(-3). The effective dose due to (222)Rn inhalation was further assessed following ICRP Publication 65.

  14. Classification methodology for tritiated waste requiring interim storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cana, D.; Dall'ava, D.; Decanis, C.

    2015-03-15

    Fusion machines like the ITER experimental research facility will use tritium as fuel. Therefore, most of the solid radioactive waste will result not only from activation by 14 MeV neutrons, but also from contamination by tritium. As a consequence, optimizing the treatment process for waste containing tritium (tritiated waste) is a major challenge. This paper summarizes the studies conducted in France within the framework of the French national plan for the management of radioactive materials and waste. The paper recommends a reference program for managing this waste based on its sorting, treatment and packaging by the producer. It also recommendsmore » setting up a 50-year temporary storage facility to allow for tritium decay and designing future disposal facilities using tritiated radwaste characteristics as input data. This paper first describes this waste program and then details an optimized classification methodology which takes into account tritium decay over a 50-year storage period. The paper also describes a specific application for purely tritiated waste and discusses the set-up expected to be implemented for ITER decommissioning waste (current assumption). Comparison between this optimized approach and other viable detritiation techniques will be drawn. (authors)« less

  15. 40 CFR 600.117 - Interim provisions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... fuel economy values using gasoline test fuel as specified in 40 CFR 86.113-04(a), regardless of any testing with Tier 3 test fuel under paragraph (b) of this section. (b) Manufacturers may demonstrate that... economy measurements using the gasoline test fuel specified in 40 CFR 86.113-04(a), as long as this test...

  16. 76 FR 81477 - National Conference on Weights and Measures 97th Interim Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-28

    ... Regulation Item 237-9, Requirements for Hydrogen, and Item 237-10, Definition for Hydrogen Fuel for Internal... national quality standard for commercial hydrogen fuel and to adopt hydrogen related definitions. Both proposals would apply to hydrogen fuel when it is sold through dispensing equipment for use in fuel cell and...

  17. 40 CFR 264.3 - Relationship to interim status standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Relationship to interim status standards. 264.3 Section 264.3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES General § 264.3 Relationship to...

  18. 40 CFR 52.1120 - Identification of plan.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... a new regulation 310 CMR 7.19 “Interim Sulfur-in-Fuel Limitations for Fossil Fuel Utilization... May 22, 1985, including Method 27, record form, potential leak points, major tank truck leak sources...

  19. 40 CFR 52.1120 - Identification of plan.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... a new regulation 310 CMR 7.19 “Interim Sulfur-in-Fuel Limitations for Fossil Fuel Utilization... May 22, 1985, including Method 27, record form, potential leak points, major tank truck leak sources...

  20. 40 CFR 52.1120 - Identification of plan.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... a new regulation 310 CMR 7.19 “Interim Sulfur-in-Fuel Limitations for Fossil Fuel Utilization... May 22, 1985, including Method 27, record form, potential leak points, major tank truck leak sources...

  1. 40 CFR 52.1120 - Identification of plan.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... a new regulation 310 CMR 7.19 “Interim Sulfur-in-Fuel Limitations for Fossil Fuel Utilization... May 22, 1985, including Method 27, record form, potential leak points, major tank truck leak sources...

  2. 40 CFR 52.1120 - Identification of plan.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... a new regulation 310 CMR 7.19 “Interim Sulfur-in-Fuel Limitations for Fossil Fuel Utilization... May 22, 1985, including Method 27, record form, potential leak points, major tank truck leak sources...

  3. Suitability of Shale Fuels for Army Generator Sets.

    DTIC Science & Technology

    1981-12-01

    J.N., Owens, E.C., Naegeli , D.W., and Stavinoha, L.L., "Mili- tary Fuels Refined From Paraho-II Shale Oil," Interim Report AFLRL No. 131, March 1981...Temperature Jet Fuel", NAPTC-PE-112, Naval Air Propulsion Center, Trenton, NJ, August 1977. 40. Moses, C. A. and Naegeli , D. W., "Fuel Property Effects

  4. Assess How Changes in Fuel Cycle Operation Impact Safeguards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tobin, Stephen Joseph; Adigun, Babatunde John; Fugate, Michael Lynn

    Since the beginning of commercial nuclear power generation in the 1960s, the ability of researchers to understand and control the isotopic content of spent fuel has improved. It is therefore not surprising that both fuel assembly design and fuel assembly irradiation optimization have improved over the past 50+ years. It is anticipated that the burnup and isotopics of the spent fuel should exhibit less variation over the decades as reactor operators irradiate each assembly to the optimum amount. In contrast, older spent fuel is anticipated to vary more in burnup and resulting isotopics for a given initial enrichment. Modern fuelmore » therefore should be more uniform in composition, and thus, measured safeguards results should be easier to interpret than results from older spent fuel. With spent fuel ponds filling up, interim and long-­term storage of spent fuel will need to be addressed. Additionally after long periods of storage, spent fuel is no longer self-­protecting and, as such, the IAEA will categorize it as more attractive; in approximately 20 years many of the assemblies from early commercial cores will no longer be considered self-­protecting. This study will assess how more recent changes in the reactor operation could impact the interpretation of safeguards measurements. The status quo for spent fuel assay in the safeguards context is that the overwhelming majority of spent fuel assemblies are not measured in a quantitative way except for those assemblies about to be loaded into a difficult or impossible to access location (dry storage or, in the future, a repository). In other words, when the assembly is still accessible to a state actor, or an insider, when it is cooling in a pool, the inspectorate does not have a measurement database that could assist them in re-­verifying the integrity of that assembly. The spent fuel safeguards regime would be strengthened if spent fuel assemblies were measured from discharge to loading into a difficult or impossible to access location. The primary driver for suggesting this shift in approach is the change in robotic technology and information technology in general. It should be possible, with minimal impact to the facility, to measure each assembly every time that it is moved in the pool, with the first measurements being made at discharge. The following conclusions were reached: The total neutron count rate can be accurately predicted at any future moment in time based upon the measured count rate at discharge, provided the initial enrichment and burnup of the assembly is known at discharge. It is expected that the total neutron count rate measured at discharge will be indicative of the initial enrichment and burnup of that assembly. If the automated robot were to focus on measuring the assemblies in the rack without moving them, the time available would increase immensely.« less

  5. Walk the Line: The Development of Route Selection Standards for Spent Nuclear Fuel and High-level Radioactive Waste in the United States - 13519

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dilger, Fred; Halstead, Robert J.; Ballard, James D.

    2013-07-01

    Although storage facilities for spent nuclear fuel (SNF) and high-level radioactive waste (HLRW) are widely dispersed throughout the United States, these materials are also relatively concentrated in terms of geographic area. That is, the impacts of storage occur in a very small geographic space. Once shipments begin to a national repository or centralized interim storage facility, the impacts of SNF and HLRW will become more geographically distributed, more publicly visible, and almost certainly more contentious. The selection of shipping routes will likely be a major source of controversy. This paper describes the development of procedures, regulations, and standards for themore » selection of routes used to ship spent nuclear fuel and high-level radioactive waste in the United States. The paper begins by reviewing the circumstances around the development of HM-164 routing guidelines. The paper discusses the significance of New York City versus the Department of Transportation and application of HM-164. The paper describes the methods used to implement those regulations. The paper will also describe the current HM-164 designated routes and will provide a summary data analysis of their characteristics. This analysis will reveal the relatively small spatial scale of the effects of HM 164. The paper will then describe subsequent developments that have affected route selection for these materials. These developments include the use of 'representative routes' found in the Department of Energy (DOE) 2008 Supplemental Environmental Impact Statement for the formerly proposed Yucca Mountain geologic repository. The paper will describe recommendations related to route selection found in the National Academy of Sciences 2006 report Going the Distance, as well as recommendations found in the 2012 Final Report of the Blue Ribbon Commission on America's Nuclear Future. The paper will examine recently promulgated federal regulations (HM-232) for selection of rail routes for hazardous materials transport. The paper concludes that while the HM 164 regime is sufficient for certain applications, it does not provide an adequate basis for a national plan to ship spent nuclear fuel and high-level radioactive waste to centralized storage and disposal facilities over a period of 30 to 50 years. (authors)« less

  6. 40 CFR 1054.145 - Are there interim provisions that apply only for a limited time?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... them to us if we ask for them (see 40 CFR 1068.101(a)(2)). (n) Ethanol-blended test fuel for...) California test fuel. Through model year 2019, you may perform testing with a fuel meeting the requirements... Phase 2 test fuel. Any EPA testing with such an engine family may use either this same certification...

  7. Effects of High Availability Fuels on Combustor Properties

    DTIC Science & Technology

    1978-01-01

    EFFECT OF HIGH AVAILABILITY FUELS ON COMBUSTOR PROPERTIES INTERIM REPORT AFLRL No. 101 by C. A. Moses and D. W. Naegeli prepared by U. S. Army Fuels...C-,0•)a3 D.W. / Naege I i_• //• DAAK 7/,0’ 7 8 - C -,9ak1 9 PERFORMING ORGANIZATION NAME AND ADDRESSES - ,_ _ECT, TASK U.S. Army Fuels & Lubricants

  8. Maywood Interim Storage Site annual environmental report for calendar year 1991, Maywood, New Jersey. [Maywood Interim Storage Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1992-09-01

    This document describes the environmental monitoring program at the Maywood Interim Storage Site (MISS) and surrounding area, implementation of the program, and monitoring results for 1991. Environmental monitoring of MISS began in 1984 when congress added the site to the US Department of Energy's (DOE) Formerly Utilized Sites Remedial Action Program (FUSRAP). FUSRAP is a DOE program to identify and decontaminate or otherwise control sites where residual radioactive materials remain from the early years of the nation's atomic energy program or from commercial operations causing conditions that Congress has authorized DOE to remedy. The environmental monitoring program at MISS includesmore » sampling networks for radon and thoron concentrations in air; external gamma radiation-exposure; and total uranium, radium-226, radium-228, thorium-232, and thorium-230 concentrations in surface water, sediment, and groundwater. Additionally, several nonradiological parameters are measured in surface water, sediment, and groundwater. Monitoring results are compared with applicable Environmental Protection Agency standards, DOE derived concentration guides (DCGs), dose limits, and other requirements in DOE orders. Environmental standards are established to protect public health and the environment.« less

  9. Benchmarking of MCNP for calculating dose rates at an interim storage facility for nuclear waste.

    PubMed

    Heuel-Fabianek, Burkhard; Hille, Ralf

    2005-01-01

    During the operation of research facilities at Research Centre Jülich, Germany, nuclear waste is stored in drums and other vessels in an interim storage building on-site, which has a concrete shielding at the side walls. Owing to the lack of a well-defined source, measured gamma spectra were unfolded to determine the photon flux on the surface of the containers. The dose rate simulation, including the effects of skyshine, using the Monte Carlo transport code MCNP is compared with the measured dosimetric data at some locations in the vicinity of the interim storage building. The MCNP data for direct radiation confirm the data calculated using a point-kernel method. However, a comparison of the modelled dose rates for direct radiation and skyshine with the measured data demonstrate the need for a more precise definition of the source. Both the measured and the modelled dose rates verified the fact that the legal limits (<1 mSv a(-1)) are met in the area outside the perimeter fence of the storage building to which members of the public have access. Using container surface data (gamma spectra) to define the source may be a useful tool for practical calculations and additionally for benchmarking of computer codes if the discussed critical aspects with respect to the source can be addressed adequately.

  10. RCRA, superfund and EPCRA hotline training module. Introduction to: Groundwater monitoring (40 cfr parts 264/265, subpart f) updated July 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-07-01

    The module presents the requirements for groundwater monitoring at interim status and permitted treatment, storage, and disposal facilities (TSDFs) under the Resource Conservation and Recovery Act (RCRA). The goal of the module is to explain the standards and specific requirements for groundwater monitoring programs at interim status and permitted facilities.

  11. 40 CFR 1045.145 - Are there interim provisions that apply only for a limited time?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... You may sell or install fuel tanks that do not meet the specified permeation standards without...: (1) You may earn an evaporative emission allowance from one fuel tank certified to EPA's evaporative... this evaporative emission allowance by selling one fuel tank that does not meet the specified...

  12. 40 CFR 1045.145 - Are there interim provisions that apply only for a limited time?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... You may sell or install fuel tanks that do not meet the specified permeation standards without...: (1) You may earn an evaporative emission allowance from one fuel tank certified to EPA's evaporative... this evaporative emission allowance by selling one fuel tank that does not meet the specified...

  13. 40 CFR 1045.145 - Are there interim provisions that apply only for a limited time?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... You may sell or install fuel tanks that do not meet the specified permeation standards without...: (1) You may earn an evaporative emission allowance from one fuel tank certified to EPA's evaporative... this evaporative emission allowance by selling one fuel tank that does not meet the specified...

  14. Technical and economic assessment of different options for minor actinide transmutation: the French case

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chabert, C.; Coquelet-Pascal, C.; Saturnin, A.

    Studies have been performed to assess the industrial perspectives of partitioning and transmutation of long-lived elements. These studies were carried out in tight connection with GEN-IV systems development. The results include the technical and economic evaluation of fuel cycle scenarios along with different options for optimizing the processes between the minor actinide transmutation in fast neutron reactors, their interim storage and geological disposal of ultimate waste. The results are analysed through several criteria (impacts on waste, on waste repository, on fuel cycle plants, on radiological exposure of workers, on costs and on industrial risks). These scenario evaluations take place inmore » the French context which considers the deployment of the first Sodium-cooled Fast Reactor (SFR) in 2040. 3 management options of minor actinides have been studied: no transmutation, transmutation in SFR and transmutation in an accelerator-driven system (ADS). Concerning economics the study shows that the cost overrun related to the transmutation process could vary between 5 to 9% in SFR and 26 % in the case of ADS.« less

  15. Maywood interim storage site. Annual site environmental report, calendar year 1985

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1986-05-01

    During 1985, the environmental monitoring program was continued at the Maywood Interim Storage Site (MISS), a US Department of Energy (DOE) facility located in the Borough of Maywood and the Township of Rochelle Park, New Jersey. The MISS is presently used for the storage of low-level radioactively contaminated soils. Monitoring results show that the MISS is in compliance with DOE concentration guides and radiation protection standards. Derived Concentration Guides (DCGs) represent the concentrations of radionuclides in air or water that would limit the radiation dose to 100 mrem/yr. The applicable guides have been revised since the 1984 environmental monitoring reportmore » was published. The guides applied in 1984 were based on a radiation protection standard of 500 mrem/yr; the guides applied for 1985 are based on a standard of 100 mrem/yr.« less

  16. Stability of Beriplast P fibrin sealant: storage and reconstitution.

    PubMed

    Eberhard, Ulrich; Broder, Martin; Witzke, Günther

    2006-04-26

    This study was performed to investigate the stability of Beriplast P fibrin sealant (FS) across a range of storage conditions, both pre- and post-reconstitution. Storage stability of the FS was evaluated during long-term refrigeration (24 months) with or without interim storage at elevated temperatures (40 degrees C for 1 week and 25 degrees C for 1 and 3 months). Stability of individual FS components was assessed by measuring: fibrinogen content, Factor XIII activity (FXIII), thrombin activity and aprotinin potency. The package integrity of each component was also checked (sterility testing, moisture content and pH). Storage stability was also evaluated by testing the reconstituted product for adhesion (tearing force testing after mixing the solutions) and sterility. Reconstitution stability was evaluated following 3-months' storage, for up to 50 h post-reconstitution using the same tests as for the storage stability investigations. Pre-defined specifications were met for fibrinogen content, Factor XIII activity, and thrombin activity, demonstrating storage stability. Package integrity and the functionality and sterility of the reconstituted product were confirmed throughout. Reconstitution stability was demonstrated for up to 50 h following reconstitution, in terms of both tearing force and sterility tests. In conclusion, the storage stability of Beriplast P was demonstrated over a range of 24-month storage schedules including interim exposure to elevated temperature, and the reconstituted product was stable for up to 50 h.

  17. Interim Safe Storage of Plutonium Production Reactors at the US DOE Hanford Site - 13438

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schilperoort, Daryl L.; Faulk, Darrin

    2013-07-01

    Nine plutonium production reactors located on DOE's Hanford Site are being placed into an Interim Safe Storage (ISS) period that extends to 2068. The Environmental Impact Statement (EIS) for ISS [1] was completed in 1993 and proposed a 75-year storage period that began when the EIS was finalized. Remote electronic monitoring of the temperature and water level alarms inside the safe storage enclosure (SSE) with visual inspection inside the SSE every 5 years are the only planned operational activities during this ISS period. At the end of the ISS period, the reactor cores will be removed intact and buried inmore » a landfill on the Hanford Site. The ISS period allows for radioactive decay of isotopes, primarily Co-60 and Cs-137, to reduce the dose exposure during disposal of the reactor cores. Six of the nine reactors have been placed into ISS by having an SSE constructed around the reactor core. (authors)« less

  18. Waste Encapsulation and Storage Facility (WESF) Basis for Interim Operation (BIO)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    COVEY, L.I.

    2000-11-28

    The Waste Encapsulation and Storage Facility (WESF) is located in the 200 East Area adjacent to B Plant on the Hanford Site north of Richland, Washington. The current WESF mission is to receive and store the cesium and strontium capsules that were manufactured at WESF in a safe manner and in compliance with all applicable rules and regulations. The scope of WESF operations is currently limited to receipt, inspection, decontamination, storage, and surveillance of capsules in addition to facility maintenance activities. The capsules are expected to be stored at WESF until the year 2017, at which time they will havemore » been transferred for ultimate disposition. The WESF facility was designed and constructed to process, encapsulate, and store the extracted long-lived radionuclides, {sup 90}Sr and {sup 137}Cs, from wastes generated during the chemical processing of defense fuel on the Hanford Site thus ensuring isolation of hazardous radioisotopes from the environment. The construction of WESF started in 1971 and was completed in 1973. Some of the {sup 137}Cs capsules were leased by private irradiators or transferred to other programs. All leased capsules have been returned to WESF. Capsules transferred to other programs will not be returned except for the seven powder and pellet Type W overpacks already stored at WESF.« less

  19. RCRA/UST, superfund, and EPCRA hotline training module. Introduction to: Groundwater monitoring (40 CFR parts 264/265, subpart F) updated as of July 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-11-01

    The module presents the requirements for groundwater monitoring at interim status and permitted treatment, storage, and disposal facilities. It describes the groundwater monitoring criteria for interim status and permitted facilities. It explains monitoring well placement and outlines the three stages of the groundwater monitoring program for permitted facilities.

  20. Leveraging Available Data to Support Extension of Transportation Packages Service Life

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunn, K.; Abramczyk, G.; Bellamy, S.

    Data obtained from testing shipping package materials have been leveraged to support extending the service life of select shipping packages while in nuclear materials transportation. Increasingly, nuclear material inventories are being transferred to an interim storage location where they will reside for extended periods of time. Use of a shipping package to store nuclear materials in an interim storage location has become more attractive for a variety of reasons. Shipping packages are robust and have a qualified pedigree for their performance in normal operation and accident conditions within the approved shipment period and storing nuclear material within a shipping packagemore » results in reduced operations for the storage facility. However, the shipping package materials of construction must maintain a level of integrity as specified by the safety basis of the storage facility through the duration of the storage period, which is typically well beyond the one year transportation window. Test programs have been established to obtain aging data on materials of construction that are the most sensitive/susceptible to aging in certain shipping package designs. The collective data are being used to support extending the service life of shipping packages in both transportation and storage.« less

  1. SLUDGE TREATMENT PROJECT PHASE 1 SLUDGE STORAGE OPTIONS ASSESSMENT OF T PLANT VERSUS ALTERNATE STORAGE FACILITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    RUTHERFORD WW; GEUTHER WJ; STRANKMAN MR

    2009-04-29

    The CH2M HILL Plateau Remediation Company (CHPRC) has recommended to the U.S. Department of Energy (DOE) a two phase approach for removal and storage (Phase 1) and treatment and packaging for offsite shipment (Phase 2) of the sludge currently stored within the 105-K West Basin. This two phased strategy enables early removal of sludge from the 105-K West Basin by 2015, allowing remediation of historical unplanned releases of waste and closure of the 100-K Area. In Phase 1, the sludge currently stored in the Engineered Containers and Settler Tanks within the 105-K West Basin will be transferred into sludge transportmore » and storage containers (STSCs). The STSCs will be transported to an interim storage facility. In Phase 2, sludge will be processed (treated) to meet shipping and disposal requirements and the sludge will be packaged for final disposal at a geologic repository. The purpose of this study is to evaluate two alternatives for interim Phase 1 storage of K Basin sludge. The cost, schedule, and risks for sludge storage at a newly-constructed Alternate Storage Facility (ASF) are compared to those at T Plant, which has been used previously for sludge storage. Based on the results of the assessment, T Plant is recommended for Phase 1 interim storage of sludge. Key elements that support this recommendation are the following: (1) T Plant has a proven process for storing sludge; (2) T Plant storage can be implemented at a lower incremental cost than the ASF; and (3) T Plant storage has a more favorable schedule profile, which provides more float, than the ASF. Underpinning the recommendation of T Plant for sludge storage is the assumption that T Plant has a durable, extended mission independent of the K Basin sludge interim storage mission. If this assumption cannot be validated and the operating costs of T Plant are borne by the Sludge Treatment Project, the conclusions and recommendations of this study would change. The following decision-making strategy, which is dependent on the confidence that DOE has in the long term mission for T Plant, is proposed: (1) If the confidence level in a durable, extended T Plant mission independent of sludge storage is high, then the Sludge Treatment Project (STP) would continue to implement the path forward previously described in the Alternatives Report (HNF-39744). Risks to the sludge project can be minimized through the establishment of an Interface Control Document (ICD) defining agreed upon responsibilities for both the STP and T Plant Operations regarding the transfer and storage of sludge and ensuring that the T Plant upgrade and operational schedule is well integrated with the sludge storage activities. (2) If the confidence level in a durable, extended T Plant mission independent of sludge storage is uncertain, then the ASF conceptual design should be pursued on a parallel path with preparation of T Plant for sludge storage until those uncertainties are resolved. (3) Finally, if the confidence level in a durable, extended T Plant mission independent of sludge storage is low, then the ASF design should be selected to provide independence from the T Plant mission risk.« less

  2. Modeling of molecular and particulate transport in dry spent nuclear fuel canisters

    NASA Astrophysics Data System (ADS)

    Casella, Andrew M.

    2007-09-01

    The transportation and storage of spent nuclear fuel is one of the prominent issues facing the commercial nuclear industry today, as there is still no general consensus regarding the near- and long-term strategy for managing the back-end of the nuclear fuel cycle. The debate continues over whether the fuel cycle should remain open, in which case spent fuel will be stored at on-site reactor facilities, interim facilities, or a geologic repository; or if the fuel cycle should be closed, in which case spent fuel will be recycled. Currently, commercial spent nuclear fuel is stored at on-site reactor facilities either in pools or in dry storage containers. Increasingly, spent fuel is being moved to dry storage containers due to decreased costs relative to pools. As the number of dry spent fuel containers increases and the roles they play in the nuclear fuel cycle increase, more regulations will be enacted to ensure that they function properly. Accordingly, they will have to be carefully analyzed for normal conditions, as well as any off-normal conditions of concern. This thesis addresses the phenomena associated with one such concern; the formation of a microscopic through-wall breach in a dry storage container. Particular emphasis is placed on the depressurization of the canister, release of radioactivity, and plugging of the breach due to deposition of suspended particulates. The depressurization of a dry storage container upon the formation of a breach depends on the temperature and quantity of the fill gas, the pressure differential across the breach, and the size of the breach. The first model constructed in this thesis is capable of determining the depressurization time for a breached container as long as the associated parameters just identified allow for laminar flow through the breach. The parameters can be manipulated to quantitatively determine their effect on depressurization. This model is expanded to account for the presence of suspended particles. If these particles are transported with the fill gas into the breach, they may be deposited, leading to a restriction of flow and eventually to the plugging of the breach. This model uses an analytical solution to the problem of particle deposition in convective-diffusive fully-developed laminar flow through a straight cylindrical tube. Since the cylindrical flow geometry is a requirement for the use of this equation, it is assumed that all deposited particles are distributed uniformly both axially and circumferentially along the breach. The model is capable of monitoring the pressure, temperature, quantity of fill gas, breach radius, particle transmission fraction, and flow velocity through the breach as functions of time. The depressurization time can be significantly affected by the release of fission gases or helium generated from alpha decay if the cladding of a fuel rod within the canister is breached. To better quantify this phenomenon, a Monte Carlo model of molecular transport through nano-scale flow pathways in the spent fuel is developed in this thesis. This model is applied to cylindrical, conical, elliptical, and helical pathways. Finally, in order to remove some of the restrictions of the model of canister depressurization accounting for suspended particles, a Monte Carlo program was written to model the movement of particles through the breach. This program is capable of accounting for any transport mechanism specified but is focused in this work on laminar convective-diffusive flow. Each test particle is tracked as it is carried through the breach and if it impacts the breach wall, the three-dimensional location of the impact is recorded. In this way, the axial and circumferential deposition patterns can be recorded. This program can model any flow geometry as long as a velocity profile can be provided. In this thesis, the program is expanded to account for flow through straight and torroidal cylindrical tubes.

  3. Field Demonstration of Light Obscuration Particle Counting Technologies to Detect Fuel Contaminates

    DTIC Science & Technology

    2016-12-01

    to detect fuel contamiation including particulates and free water 15. SUBJECT TERMS fuel, JP-8, aviation fuel, contamination, free water ...undissolved water , F24 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT none 18. NUMBER OF PAGES 12 19a. NAME OF RESPONSIBLE PERSON Joel...technical, interim, memorandum, master’s thesis, progress, quarterly, research , special, group study, etc. 3. DATES COVERED. Indicate the time during

  4. Diesel Emission Control -- Sulfur Effects (DECSE) Program; Phase I Interim Data Report No. 2: NO{sub x} Adsorber Catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DOE; ORNL; NREL

    1999-10-15

    The Diesel Emission Control-Sulfur Effects (DECSE) is a joint government/industry program to determine the impact of diesel fuel sulfur levels on emission control systems whose use could lower emissions of nitrogen oxides (NOx) and particulate matter (PM) from on-highway trucks in the 2002--2004 model years. Phase 1 of the program was developed with the following objectives in mind: (1) evaluate the effects of varying the level of sulfur content in the fuel on the emission reduction performance of four emission control technologies; and (2) measure and compare the effects of up to 250 hours of aging on selected devices formore » multiple levels of fuel sulfur content. This interim report discusses the results of the DECSE test program that demonstrates the potential of NOx adsorber catalyst technology across the range of diesel engine operation with a fuel economy penalty less than 4%.« less

  5. Uranium Pyrophoricity Phenomena and Prediction (FAI/00-39)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    PLYS, M.G.

    2000-10-10

    The purpose of this report is to provide a topical reference on the phenomena and prediction of uranium pyrophoricity for the Hanford Spent Nuclear Fuel (SNF) Project with specific applications to SNF Project processes and situations. Spent metallic uranium nuclear fuel is currently stored underwater at the K basins in the Hanford 100 area, and planned processing steps include: (1) At the basins, cleaning and placing fuel elements and scrap into stainless steel multi-canister overpacks (MCOs) holding about 6 MT of fuel apiece; (2) At nearby cold vacuum drying (CVD) stations, draining, vacuum drying, and mechanically sealing the MCOs; (3)more » Shipping the MCOs to the Canister Storage Building (CSB) on the 200 Area plateau; and (4) Welding shut and placing the MCOs for interim (40 year) dry storage in closed CSB storage tubes cooled by natural air circulation through the surrounding vault. Damaged fuel elements have exposed and corroded fuel surfaces, which can exothermically react with water vapor and oxygen during normal process steps and in off-normal situations, A key process safety concern is the rate of reaction of damaged fuel and the potential for self-sustaining or runaway reactions, also known as uranium fires or fuel ignition. Uranium metal and one of its corrosion products, uranium hydride, are potentially pyrophoric materials. Dangers of pyrophoricity of uranium and its hydride have long been known in the U.S. Department of Energy (Atomic Energy Commission/DOE) complex and will be discussed more below; it is sufficient here to note that there are numerous documented instances of uranium fires during normal operations. The motivation for this work is to place the safety of the present process in proper perspective given past operational experience. Steps in development of such a perspective are: (1) Description of underlying physical causes for runaway reactions, (2) Modeling physical processes to explain runaway reactions, (3) Validation of the method against experimental data, (4) Application of the method to plausibly explain operational experience, and (5) Application of the method to present process steps to demonstrate process safety and margin. Essentially, the logic above is used to demonstrate that runaway reactions cannot occur during normal SNF Project process steps, and to illustrate the depth of the technical basis for such a conclusion. Some off-normal conditions are identified here that could potentially lead to runaway reactions. However, this document is not intended to provide an exhaustive analysis of such cases. In summary, this report provides a ''toolkit'' of models and approaches for analysis of pyrophoricity safety issues at Hanford, and the technical basis for the recommended approaches. A summary of recommended methods appears in Section 9.0.« less

  6. Hazelwood Interim Storage Site annual environmental report for calendar year 1991, Hazelwood, Missouri. [Hazelwood Interim Storage Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-09-01

    This document describes the environmental monitoring program at the Hazelwood Interim Storage Site (HISS) and surrounding area, implementation of the program, and monitoring results for 1991. Environmental monitoring of HISS began in 1984 when the site was assigned to the US Department of Energy (DOE) as part of the decontamination research and development project authorized by Congress under the 1984 Energy and Water Development Appropriations Act. DOE placed responsibility for HISS under the Formerly Utilized Sites Remedial Action Program (FUSRAP), a DOE program to decontaminate or otherwise control sites where residual radioactive materials remain from the early years of themore » nation's atomic energy program or from commercial operations causing conditions that Congress has authorized DOE to remedy. The environmental monitoring program at HISS includes sampling networks for radon concentrations in air; external gamma radiation exposure; and radium-226, thorium-230, and total uranium concentrations in surface water, sediment, and groundwater. Additionally, several nonradiological parameters are measured in groundwater. Monitoring results are compared with applicable Environmental Protection Agency standards, DOE derived concentration guides (DCGs), dose limits, and other requirements in DOE orders. Environmental standards and DCGs are established to protect public health and the environment.« less

  7. Suggestion on the safety classification of spent fuel dry storage in China’s pressurized water reactor nuclear power plant

    NASA Astrophysics Data System (ADS)

    Liu, Ting; Qu, Yunhuan; Meng, De; Zhang, Qiaoer; Lu, Xinhua

    2018-01-01

    China’s spent fuel storage in the pressurized water reactors(PWR) is stored with wet storage way. With the rapid development of nuclear power industry, China’s NPPs(NPPs) will not be able to meet the problem of the production of spent fuel. Currently the world’s major nuclear power countries use dry storage as a way of spent fuel storage, so in recent years, China study on additional spent fuel dry storage system mainly. Part of the PWR NPP is ready to apply for additional spent fuel dry storage system. It also need to safety classificate to spent fuel dry storage facilities in PWR, but there is no standard for safety classification of spent fuel dry storage facilities in China. Because the storage facilities of the spent fuel dry storage are not part of the NPP, the classification standard of China’s NPPs is not applicable. This paper proposes the safety classification suggestion of the spent fuel dry storage for China’s PWR NPP, through to the study on China’s safety classification principles of PWR NPP in “Classification for the items of pressurized water reactor nuclear power plants (GB/T 17569-2013)”, and safety classification about spent fuel dry storage system in NUREG/CR - 6407 in the United States.

  8. Study of Fuel Economy and Emission Reduction Methods for Marine and Locomotive Diesel Engines

    DOT National Transportation Integrated Search

    1975-09-01

    This interim report presents the results of the first phase of a two-part program to investigate methods of improving fuel consumption and reducing exhaust emissions for in-service diesel engines used as prime movers in locomotives and several classe...

  9. Superfund record of decision (EPA Region 10): Elmendorf Air Force Base, Operable Unit 2, source area ST41, Anchorage, AK. (First remedial action), September 1992. Interim report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-09-01

    The 13,130-acre Elmendorf Air Force Base (AFB) site is located adjacent to the municipality of Anchorage, Alaska. From 1940 to 1991, Elmendorf AFB used a 20-acre portion of the site, referred to as source area ST41, to store the fuel product JP-4 and aviation gasoline in four 1-million gallon underground tanks. As a result of numerous leaks and above-ground spills since the tanks were installed in the 1940s, USAF conducted investigations through its Installation Restoration Program (IRP). These investigations revealed several hundred thousand gallons of fuel in the ground water and soil. The ROD addresses an interim remedy at Elmendorfmore » AFB. The action is needed to reduce further spread of fuel constituents through the recovery of floating product on the ground water surface, and containment of seeps. Future RODs will include a final remedy for ground water and soil at ST41, as OU2, and will address the other six OUs at the site. The primary contaminants of concern affecting the ground water at ST41 are the compounds in JP-4, especially VOCs such as benzene, toluene, and xylenes. The selected interim remedial action for the site are included.« less

  10. Comparative risk assessments for the production and interim storage of glass and ceramic waste forms: Defense waste processing facility

    NASA Astrophysics Data System (ADS)

    Huang, J. C.; Wright, W. V.

    1982-04-01

    The Defense Waste Processing Facility (DWPF) for immobilizing nuclear high level waste (HLW) is scheduled to be built. High level waste is produced when reactor components are subjected to chemical separation operations. Two candidates for immobilizing this HLW are borosilicate glass and crystalline ceramic, either being contained in weld sealed stainless steel canisters. A number of technical analyses are being conducted to support a selection between these two waste forms. The risks associated with the manufacture and interim storage of these two forms in the DWPF are compared. Process information used in the risk analysis was taken primarily from a DWPF processibility analysis. The DWPF environmental analysis provided much of the necessary environmental information.

  11. FACILITY LAYOUT OF FUEL STORAGE BUILDING (CPP603) SHOWING STORAGE BASINS, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FACILITY LAYOUT OF FUEL STORAGE BUILDING (CPP-603) SHOWING STORAGE BASINS, FUEL ELEMENT CUTTING FACILITY, AND DRY GRAPHITE STORAGE FACILITY. INL DRAWING NUMBER 200-0603-00-030-056329. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  12. U-Mo Plate Blister Anneal Interim Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Francine J. Rice; Daniel M. Wachs; Adam B. Robinson

    2010-10-01

    Blister thresholds in fuel elements have been a longstanding performance parameter for fuel elements of all types. This behavior has yet to be fully defined for the RERTR U-Mo fuel types. Blister anneal studies that began in 2007 have been expanded to include plates from more recent RERTR experiments. Preliminary data presented in this report encompasses the early generations of the U-Mo fuel systems and the most recent but still developing fuel system. Included is an overview of relevant dispersion fuel systems for the purposes of comparison.

  13. Effectiveness of Low Temperature Additives for Biodiesel Blends

    DTIC Science & Technology

    2012-06-30

    Westbrook U.S. Army TARDEC Fuels and Lubricants Research Facility Southwest Research Institute® (SwRI®) San Antonio, TX for U.S. Army TARDEC...INTERIM REPORT TFLRF No. 428 by Steven R. Westbrook U.S. Army TARDEC Fuels and Lubricants Research Facility Southwest Research Institute...Director U.S. Army TARDEC Fuels and Lubricants Research Facility (SwRI®) UNCLASSIFIED UNCLASSIFIED REPORT DOCUMENTATION PAGE Form Approved

  14. Investigation of Fire-Vulnerability-Reduction Effectiveness of Fire-Resistant Diesel Fuel in Armored Vehicular Fuel Tanks

    DTIC Science & Technology

    1980-09-30

    Aberdeen Proving Ground, Maryland, September 1976. 2. Weatherford, W.D., Jr., Fodor, G.E., Naegeli , D.W., Owens, E.C., Wright, B.R., and Schaekel, F.W...Weatherford, W.I)., Jr., Fodor, G.E., Naegeli , D.W., Owens, E.C., Wright, B.R., and Schaekel, F.W., "Development of Army Fire-Resistant Diesel Fuel," Interim

  15. Impact investigation of reactor fuel operating parameters on reactivity for use in burnup credit applications

    NASA Astrophysics Data System (ADS)

    Sloma, Tanya Noel

    When representing the behavior of commercial spent nuclear fuel (SNF), credit is sought for the reduced reactivity associated with the net depletion of fissile isotopes and the creation of neutron-absorbing isotopes, a process that begins when a commercial nuclear reactor is first operated at power. Burnup credit accounts for the reduced reactivity potential of a fuel assembly and varies with the fuel burnup, cooling time, and the initial enrichment of fissile material in the fuel. With regard to long-term SNF disposal and transportation, tremendous benefits, such as increased capacity, flexibility of design and system operations, and reduced overall costs, provide an incentive to seek burnup credit for criticality safety evaluations. The Nuclear Regulatory Commission issued Interim Staff Guidance 8, Revision 2 in 2002, endorsing burnup credit of actinide composition changes only; credit due to actinides encompasses approximately 30% of exiting pressurized water reactor SNF inventory and could potentially be increased to 90% if fission product credit were accepted. However, one significant issue for utilizing full burnup credit, compensating for actinide and fission product composition changes, is establishing a set of depletion parameters that produce an adequately conservative representation of the fuel's isotopic inventory. Depletion parameters can have a significant effect on the isotopic inventory of the fuel, and thus the residual reactivity. This research seeks to quantify the reactivity impact on a system from dominant depletion parameters (i.e., fuel temperature, moderator density, burnable poison rod, burnable poison rod history, and soluble boron concentration). Bounding depletion parameters were developed by statistical evaluation of a database containing reactor operating histories. The database was generated from summary reports of commercial reactor criticality data. Through depletion calculations, utilizing the SCALE 6 code package, several light water reactor assembly designs and in-core locations are analyzed in establishing a combination of depletion parameters that conservatively represent the fuel's isotopic inventory as an initiative to take credit for fuel burnup in criticality safety evaluations for transportation and storage of SNF.

  16. Oxygenates for Advanced Petroleum-Based Diesel Fuels

    DTIC Science & Technology

    2001-02-01

    needed. Do not return it to the originator. iii Oxygenates for Advanced Petroleum-Based Diesel Fuels INTERIM REPORT TFLRF No. 351 by David W. Naegeli ...Blends,” 219th American Chemical Society Meeting, San Francisco, CA, March 26-30, 2000. 5. Naegeli , D.W. and Moses, C.A., “Effects of Fuel...Alternative Fuels in an Advanced Automotive Diesel Engine,” SAE Paper 2000- 01-2048. 25. Vertin, K.D., Ohi, J.M., Naegeli , D.W., Childress, K.H

  17. Numerical Estimation of the Spent Fuel Ratio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindgren, Eric R.; Durbin, Samuel; Wilke, Jason

    Sabotage of spent nuclear fuel casks remains a concern nearly forty years after attacks against shipment casks were first analyzed and has a renewed relevance in the post-9/11 environment. A limited number of full-scale tests and supporting efforts using surrogate materials, typically depleted uranium dioxide (DUO 2 ), have been conducted in the interim to more definitively determine the source term from these postulated events. However, the validity of these large- scale results remain in question due to the lack of a defensible spent fuel ratio (SFR), defined as the amount of respirable aerosol generated by an attack on amore » mass of spent fuel compared to that of an otherwise identical surrogate. Previous attempts to define the SFR in the 1980's have resulted in estimates ranging from 0.42 to 12 and include suboptimal experimental techniques and data comparisons. Because of the large uncertainty surrounding the SFR, estimates of releases from security-related events may be unnecessarily conservative. Credible arguments exist that the SFR does not exceed a value of unity. A defensible determination of the SFR in this lower range would greatly reduce the calculated risk associated with the transport and storage of spent nuclear fuel in dry cask systems. In the present work, the shock physics codes CTH and ALE3D were used to simulate spent nuclear fuel (SNF) and DUO 2 targets impacted by a high-velocity jet at an ambient temperature condition. These preliminary results are used to illustrate an approach to estimate the respirable release fraction for each type of material and ultimately, an estimate of the SFR. This page intentionally blank« less

  18. Passive gamma analysis of the boiling-water-reactor assemblies

    NASA Astrophysics Data System (ADS)

    Vo, D.; Favalli, A.; Grogan, B.; Jansson, P.; Liljenfeldt, H.; Mozin, V.; Schwalbach, P.; Sjöland, A.; Tobin, S.; Trellue, H.; Vaccaro, S.

    2016-09-01

    This research focused on the analysis of a set of stationary passive gamma measurements taken on the spent nuclear fuel assemblies from a boiling water reactor (BWR) using pulse height analysis data acquisition. The measurements were performed on 25 different BWR assemblies in 2014 at Sweden's Central Interim Storage Facility for Spent Nuclear Fuel (Clab). This study was performed as part of the Next Generation of Safeguards Initiative-Spent Fuel project to research the application of nondestructive assay (NDA) to spent fuel assemblies. The NGSI-SF team is working to achieve the following technical goals more easily and efficiently than in the past using nondestructive assay (NDA) measurements of spent fuel assemblies: (1) verify the initial enrichment, burnup, and cooling time of facility declaration; (2) detect the diversion or replacement of pins, (3) estimate the plutonium mass, (4) estimate the decay heat, and (5) determine the reactivity of spent fuel assemblies. The final objective of this project is to quantify the capability of several integrated NDA instruments to meet the aforementioned goals using the combined signatures of neutrons, gamma rays, and heat. This report presents a selection of the measured data and summarizes an analysis of the results. Specifically, trends in the count rates measured for spectral lines from the following isotopes were analyzed as a function of the declared burnup and cooling time: 137Cs, 154Eu, 134Cs, and to a lesser extent, 106Ru and 144Ce. From these measured count rates, predictive algorithms were developed to enable the estimation of the burnup and cooling time. Furthermore, these algorithms were benchmarked on a set of assemblies not included in the standard assemblies set used by this research team.

  19. New approaches for MOX multi-recycling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gain, T.; Bouvier, E.; Grosman, R.

    Due to its low fissile content after irradiation, Pu from used MOX fuel is considered by some as not recyclable in LWR (Light Water Reactors). The point of this paper is hence to go back to those statements and provide a new analysis based on AREVA extended experience in the fields of fissile and fertile material management and optimized waste management. This is done using the current US fuel inventory as a case study. MOX Multi-recycling in LWRs is a closed cycle scenario where U and Pu management through reprocessing and recycling leads to a significant reduction of the usedmore » assemblies to be stored. The recycling of Pu in MOX fuel is moreover a way to maintain the self-protection of the Pu-bearing assemblies. With this scenario, Pu content is also reduced repetitively via a multi-recycling of MOX in LWRs. Simultaneously, {sup 238}Pu content decreases. All along this scenario, HLW (High-Level Radioactive Waste) vitrified canisters are produced and planned for deep geological disposal. Contrary to used fuel, HLW vitrified canisters do not contain proliferation materials. Moreover, the reprocessing of used fuel limits the space needed on current interim storage. With MOX multi-recycling in LWR, Pu isotopy needs to be managed carefully all along the scenario. The early introduction of a limited number of SFRs (Sodium Fast Reactors) can therefore be a real asset for the overall system. A few SFRs would be enough to improve the Pu isotopy from used LWR MOX fuel and provide a Pu-isotopy that could be mixed back with multi-recycled Pu from LWRs, hence increasing the Pu multi-recycling potential in LWRs.« less

  20. Passive gamma analysis of the boiling-water-reactor assemblies

    DOE PAGES

    Vo, D.; Favalli, A.; Grogan, B.; ...

    2016-09-01

    This research focused on the analysis of a set of stationary passive gamma measurements taken on the spent nuclear fuel assemblies from a boiling water reactor (BWR) using pulse height analysis data acquisition. The measurements were performed on 25 different BWR assemblies in 2014 at Sweden’s Central Interim Storage Facility for Spent Nuclear Fuel (Clab). This study was performed as part of the Next Generation of Safeguards Initiative–Spent Fuel project to research the application of nondestructive assay (NDA) to spent fuel assemblies. The NGSI–SF team is working to achieve the following technical goals more easily and efficiently than in themore » past using nondestructive assay (NDA) measurements of spent fuel assemblies: (1) verify the initial enrichment, burnup, and cooling time of facility declaration; (2) detect the diversion or replacement of pins, (3) estimate the plutonium mass, (4) estimate the decay heat, and (5) determine the reactivity of spent fuel assemblies. The final objective of this project is to quantify the capability of several integrated NDA instruments to meet the aforementioned goals using the combined signatures of neutrons, gamma rays, and heat. This report presents a selection of the measured data and summarizes an analysis of the results. Specifically, trends in the count rates measured for spectral lines from the following isotopes were analyzed as a function of the declared burnup and cooling time: 137Cs, 154Eu, 134Cs, and to a lesser extent, 106Ru and 144Ce. From these measured count rates, predictive algorithms were developed to enable the estimation of the burnup and cooling time. Furthermore, these algorithms were benchmarked on a set of assemblies not included in the standard assemblies set used by this research team.« less

  1. RH-TRU Waste Shipments from Battelle Columbus Laboratories to the Hanford Nuclear Facility for Interim Storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eide, J.; Baillieul, T. A.; Biedscheid, J.

    2003-02-26

    Battelle Columbus Laboratories (BCL), located in Columbus, Ohio, must complete decontamination and decommissioning (D&D) activities for nuclear research buildings and grounds by 2006, as directed by Congress. Most of the resulting waste (approximately 27 cubic meters [m3]) is remote-handled (RH) transuranic (TRU) waste destined for disposal at the Waste Isolation Pilot Plant (WIPP). The BCL, under a contract to the U.S. Department of Energy (DOE) Ohio Field Office, has initiated a plan to ship the TRU waste to the DOE Hanford Nuclear Facility (Hanford) for interim storage pending the authorization of WIPP for the permanent disposal of RH-TRU waste. Themore » first of the BCL RH-TRU waste shipments was successfully completed on December 18, 2002. This BCL shipment of one fully loaded 10-160B Cask was the first shipment of RH-TRU waste in several years. Its successful completion required a complex effort entailing coordination between different contractors and federal agencies to establish necessary supporting agreements. This paper discusses the agreements and funding mechanisms used in support of the BCL shipments of TRU waste to Hanford for interim storage. In addition, this paper presents a summary of the efforts completed to demonstrate the effectiveness of the 10-160B Cask system. Lessons learned during this process are discussed and may be applicable to other TRU waste site shipment plans.« less

  2. Preparations to ship the TMI-2 damaged reactor core

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmitt, R.C.; Quinn, G.J.

    1985-11-01

    The March 1979 accident at Three Mile Island Unit 2 (TMI-2) resulted in a severely damaged core. Entries into that core using various tools and inspection devices have shown a significant void, large amounts of rubble, partially intact fuel assemblies, and some resolidified molten materials. The removal and disposition of that core has been of considerable public, regulatory, and governmental interest for some time. In a contractual agreement between General Public Utility Nuclear (GPUN) and the US Department of Energy (DOE), DOE has agreed to accept the TMI-2 core for interim storage at the Idaho National Engineering Laboratory (INEL), conductmore » research on fuel and materials of the core, and eventually dispose of the core either by processing or internment at the national repository. GPUN has removed various samples of material from the core and was scheduled to begin extensive defueling operations in September 1985. EG and G Idaho, Inc. (EG and G), acting on behalf of DOE, is responsible for transporting, receiving, examining, and storing the TMI-2 core. This paper addresses the preparations to ship the core to INEL, which is scheduled to commence in March 1986.« less

  3. 75 FR 27463 - List of Approved Spent Fuel Storage Casks: NUHOMS® HD System Revision 1; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-17

    ... Fuel Storage Casks: NUHOMS[supreg] HD System Revision 1; Correction AGENCY: Nuclear Regulatory... fuel storage casks to add revision 1 to the NUHOMS HD spent fuel storage cask system. This action is... Federal Register on May 7, 2010 (75 FR 25120), that proposes to amend the regulations that govern storage...

  4. 40 CFR 86.1810-01 - General standards; increase in emissions; unsafe conditions; waivers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 2 and interim non-Tier 2 ethanol fueled vehicles. (a) Any device, system or element of design... “lean-on-cruise” strategies are incorporated into the vehicle design. A “lean-on-cruise” air-fuel... standard. The Administrator may require the manufacturer to provide comparative test data which clearly...

  5. An Information Storage and Retrieval System for Biological and Geological Data. Interim Report.

    ERIC Educational Resources Information Center

    Squires, Donald F.

    A project is being conducted to test the feasibility of an information storage and retrieval system for museum specimen data, particularly for natural history museums. A pilot data processing system has been developed, with the specimen records from the national collections of birds, marine crustaceans, and rocks used as sample data. The research…

  6. A Demonstration of HEFA SPK/JP-8 Fuel Blend at the Camp Grayling Joint Maneuver Training Center

    DTIC Science & Technology

    2012-10-01

    Interim Report TFLRF No. 400 Evaluation of the Fuel Effects of Synthetic JP-8 Blends on the 6.5L Turbo Diesel V8 from General Engine Products (GEP) Using...on the biofuel did indicate they noticed some differences in comparison to the diesel fuel they normally use. These differences were expected since...the biofuel blend is a drop-in replacement for JP-8 (jet) fuel rather than diesel fuel. Military Impact The U.S. Military will be prepared to

  7. Laser Induced Fluorescence Detection of Gums in Jet Fuels

    DTIC Science & Technology

    1992-05-01

    Classification) Laser Induced Fluorescence Detection of GLus in Jet Fuels 12 PERSONAL AUTHOR(S) David W. Naegeli and Ralph H. Hill 13a. TYPE OF REPORT 13b...degraded jet fuel.( ) 47 REFERENCES 1. Fodor, G.E.; Naegeli , D.W.; Kohl, K.B.; Cuellar, J.P., Jr., Interim Report BFLRF No. 199, AD A163590, Belvoir Fuels...and Lubricants Research Facility, Southwest Research Institute, San Antonio, TX, June 1985. 2. Fodor, G.E.; Naegeli , D.W., Proceedings of the 2nd

  8. Treatment of G1 Baskets at the CEA Marcoule Site - 12027

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fourquet, Line; Boya, Didier

    2012-07-01

    In the dismantling program for the first-generation French reactors in accordance with the nonproliferation treaty, the CEA is in charge of cleanup and dismantling operations for the facilities at Marcoule, including the decladding units. The G1 decladding was built between 1955 and 1957 in order to de-clad spent fuel elements from the G1 plutonium-producing reactor and prepare them for dissolution. The facility was also used for interim storage of G1, G2 and G3 fuel dissolution baskets, which had been used during plant operation for transfer (from the decladding facility to the UP1 plant) and/or dissolution of spent fuel elements. Onemore » of the cleanup projects involves recovery of the baskets, which will be cut up, sorted, and conditioned in metal bins. The bins will be immobilized with cement grout, then transferred to the onsite solid waste conditioning facility (CDS) and to the repository operated by the French National Radioactive Waste Management Agency (ANDRA). The project is now in progress, after special safety permits were issued and measurement stations and dedicated tools were developed to handle all types of baskets (which differed according to their origin and use). The disposal of all the baskets is scheduled to last 2 years and will produce 55 metal waste bins. (authors)« less

  9. 78 FR 32077 - List of Approved Spent Fuel Storage Casks: MAGNASTOR® System

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-29

    ... Fuel Storage Casks: MAGNASTOR[supreg] System AGENCY: Nuclear Regulatory Commission. ACTION: Direct... final rule that would have revised its spent fuel storage regulations to include Amendment No. 3 to... All-purpose Storage (MAGNASTOR[supreg]) System listing within the ``List of Approved Spent Fuel...

  10. Fuel cell energy storage for Space Station enhancement

    NASA Technical Reports Server (NTRS)

    Stedman, J. K.

    1990-01-01

    Viewgraphs on fuel cell energy storage for space station enhancement are presented. Topics covered include: power profile; solar dynamic power system; photovoltaic battery; space station energy demands; orbiter fuel cell power plant; space station energy storage; fuel cell system modularity; energy storage system development; and survival power supply.

  11. PLOT PLAN OF FUEL STORAGE BUILDING (CPP603) SHOWING STORAGE BASINS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PLOT PLAN OF FUEL STORAGE BUILDING (CPP-603) SHOWING STORAGE BASINS AND PROPOSED LOCATION OF FUEL ELEMENT CUTTING FACILITY. INL DRAWING NUMBER 200-0603-00-706-051287. ALTERNATE ID NUMBER CPP-C-1287. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  12. 46 CFR 108.237 - Fuel storage facilities.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Fuel storage facilities. 108.237 Section 108.237... AND EQUIPMENT Construction and Arrangement Helicopter Facilities § 108.237 Fuel storage facilities. (a) Helicopter fuel storage tanks must be installed as far as practicable from— (1) The landing area; and (2...

  13. 46 CFR 108.237 - Fuel storage facilities.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Fuel storage facilities. 108.237 Section 108.237... AND EQUIPMENT Construction and Arrangement Helicopter Facilities § 108.237 Fuel storage facilities. (a) Helicopter fuel storage tanks must be installed as far as practicable from— (1) The landing area; and (2...

  14. 46 CFR 108.237 - Fuel storage facilities.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Fuel storage facilities. 108.237 Section 108.237... AND EQUIPMENT Construction and Arrangement Helicopter Facilities § 108.237 Fuel storage facilities. (a) Helicopter fuel storage tanks must be installed as far as practicable from— (1) The landing area; and (2...

  15. 46 CFR 108.237 - Fuel storage facilities.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Fuel storage facilities. 108.237 Section 108.237... AND EQUIPMENT Construction and Arrangement Helicopter Facilities § 108.237 Fuel storage facilities. (a) Helicopter fuel storage tanks must be installed as far as practicable from— (1) The landing area; and (2...

  16. Results of stainless steel canister corrosion studies and environmental sample investigations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryan, Charles R.; Enos, David

    2014-12-01

    This progress report describes work being done at Sandia National Laboratories (SNL) to assess the localized corrosion performance of container/cask materials used in the interim storage of used nuclear fuel. The work involves both characterization of the potential physical and chemical environment on the surface of the storage canisters and how it might evolve through time, and testing to evaluate performance of the canister materials under anticipated storage conditions. To evaluate the potential environment on the surface of the canisters, SNL is working with the Electric Power Research Institute (EPRI) to collect and analyze dust samples from the surface ofmore » in-service SNF storage canisters. In FY 13, SNL analyzed samples from the Calvert Cliffs Independent Spent Fuel Storage Installation (ISFSI); here, results are presented for samples collected from two additional near-marine ISFSI sites, Hope Creek NJ, and Diablo Canyon CA. The Hope Creek site is located on the shores of the Delaware River within the tidal zone; the water is brackish and wave action is normally minor. The Diablo Canyon site is located on a rocky Pacific Ocean shoreline with breaking waves. Two types of samples were collected: SaltSmart™ samples, which leach the soluble salts from a known surface area of the canister, and dry pad samples, which collected a surface salt and dust using a swipe method with a mildly abrasive ScotchBrite™ pad. The dry samples were used to characterize the mineralogy and texture of the soluble and insoluble components in the dust via microanalytical techniques, including mapping X-ray Fluorescence spectroscopy and Scanning Electron Microscopy. For both Hope Creek and Diablo Canyon canisters, dust loadings were much higher on the flat upper surfaces of the canisters than on the vertical sides. Maximum dust sizes collected at both sites were slightly larger than 20 μm, but Phragmites grass seeds ~1 mm in size, were observed on the tops of the Hope Creek canisters. At both sites, the surface dust could be divided into fractions generated by manufacturing processes and by natural processes. The fraction from manufacturing processes consisted of variably-oxidized angular and spherical particles of stainless steel and iron, generated by machining and welding/cutting processes, respectively. Dust from natural sources consisted largely of detrital quartz and aluminosilicates (feldspars and clays) at both sites. At Hope Creek, soluble salts were dominated by sulfates and nitrates, mostly of calcium. Chloride was a trace component and the only chloride mineral observed by SEM was NaCl. Chloride surface loads measured by the Saltsmart™ sensors were very low, less than 60 mg m –2 on the canister top, and less than 10 mg m –2 on the canister sides. At Diablo Canyon, sea-salt aggregates of NaCl and Mg-SO 4, with minor K and Ca, were abundant in the dust, in some cases dominating the observed dust assemblage. Measured Saltsmart™ chloride surface loads were very low (<5 mg m –2); however, high canister surface temperatures damaged the Saltsmart™ sensors, and, in view of the SEM observations of abundant sea-salts on the package surfaces, the measured surface loads may not be valid. Moreover, the more heavily-loaded canister tops at Diablo Canyon were not sampled with the Saltsmart™ sensors. The observed low surface loads do not preclude chloride-induced stress corrosion cracking (CISCC) at either site, because (1) the measured data may not be valid for the Diablo Canyon canisters; (2) the surface coverage was not complete (for instance, the 45º offset between the outlet and inlet vents means that near-inlet areas, likely to have heavier dust and salt loads, were not sampled); and (3) CISCC has been experimentally been observed at salt loads as low as 5-8 mg/m 2. Experimental efforts at SNL to assess corrosion of interim storage canister materials include three tasks in FY14. First, a full-diameter canister mockup, made using materials and techniques identical to those used to make interim storage canisters, was designed and ordered from Ranor Inc., a cask vendor for Areva/TN. The mockup will be delivered prior to the end of FY14, and will be used for evaluating weld residual stresses and degrees of sensitization for typical interim storage canister welds. Following weld characterization, the mockup will be sectioned and provided to participating organizations for corrosion testing purposes. A test plan is being developed for these efforts. In a second task, experimental work was carried out to evaluate crevice corrosion of 304SS in the presence of limited reactants, as would be present on a dustcovered storage canister. This work tests the theory that limited salt loads will limit corrosion penetration over time, and is a continuation of work carried out in FY13. Laser confocal microscopy was utilized to assess the volume and depth of corrosion pits formed during the crevice corrosion tests. Results indicate that for the duration of the current experiments (100 days), no stifling of corrosion occurred due to limitations in the amount of reactants present at three different salt loadings. Finally, work has been carried out this year perfecting an instrument for depositing sea-salts onto metal surfaces for atmospheric corrosion testing purposes. The system uses an X-Y plotter system with a commercial airbrush, and deposition is monitored with a quartz crystal microbalance. The system is capable of depositing very even salt loadings, even at very low total deposition rates.« less

  17. System-Level Logistics for Dual Purpose Canister Disposal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalinina, Elena A.

    2014-06-03

    The analysis presented in this report investigated how the direct disposal of dual purpose canisters (DPCs) may be affected by the use of standard transportation aging and disposal canisters (STADs), early or late start of the repository, and the repository emplacement thermal power limits. The impacts were evaluated with regard to the availability of the DPCs for emplacement, achievable repository acceptance rates, additional storage required at an interim storage facility (ISF) and additional emplacement time compared to the corresponding repackaging scenarios, and fuel age at emplacement. The result of this analysis demonstrated that the biggest difference in the availability ofmore » UNF for emplacement between the DPC-only loading scenario and the DPCs and STADs loading scenario is for a repository start date of 2036 with a 6 kW thermal power limit. The differences are also seen in the availability of UNF for emplacement between the DPC-only loading scenario and the DPCs and STADs loading scenario for the alternative with a 6 kW thermal limit and a 2048 start date, and for the alternatives with a 10 kW thermal limit and 2036 and 2048 start dates. The alternatives with disposal of UNF in both DPCs and STADs did not require additional storage, regardless of the repository acceptance rate, as compared to the reference repackaging case. In comparison to the reference repackaging case, alternatives with the 18 kW emplacement thermal limit required little to no additional emplacement time, regardless of the repository start time, the fuel loading scenario, or the repository acceptance rate. Alternatives with the 10 kW emplacement thermal limit and the DPCs and STADs fuel loading scenario required some additional emplacement time. The most significant decrease in additional emplacement time occurred in the alternative with the 6 kW thermal limit and the 2036 repository starting date. The average fuel age at emplacement ranges from 46 to 88 years. The maximum fuel age at emplacement ranges from 81 to 146 years. The difference in the average and maximum age of fuel at emplacement between the DPC-only and the DPCs and STADs fuel loading scenarios becomes less significant as the repository thermal limit increases and as the repository start date increases. In general, the role of STADs is to store young (30 year or younger) high burnup (45 GWD/MTU or higher) fuel. Recommendations for future study include detailed evaluation of the feasible alternatives with regard to the costs and factors not considered in this analysis, such as worker dose, dose to members of the public, and economic benefits to host entities. It is also recommended to conduct an additional analysis to evaluate the assumption regarding the transportability and disposability of DPCs for the next iteration of the direct disposal of DPCs study.« less

  18. Proliferation resistance assessment of various methods of spent nuclear fuel storage and disposal

    NASA Astrophysics Data System (ADS)

    Kollar, Lenka

    Many countries are planning to build or already are building new nuclear power plants to match their growing energy needs. Since all nuclear power plants handle nuclear materials that could potentially be converted and used for nuclear weapons, they each present a nuclear proliferation risk. Spent nuclear fuel presents the largest build-up of nuclear material at a power plant. This is a proliferation risk because spent fuel contains plutonium that can be chemically separated and used for a nuclear weapon. The International Atomic Energy Agency (IAEA) safeguards spent fuel in all non-nuclear weapons states that are party to the Non-Proliferation Treaty. Various safeguards methods are in use at nuclear power plants and research is underway to develop safeguards methods for spent fuel in centralized storage or underground storage and disposal. Each method of spent fuel storage presents different proliferation risks due to the nature of the storage method and the safeguards techniques that are utilized. Previous proliferation resistance and proliferation risk assessments have mainly compared nuclear material through the whole fuel cycle and not specifically focused on spent fuel storage. This project evaluates the proliferation resistance of the three main types of spent fuel storage: spent fuel pool, dry cask storage, and geological repository. The proliferation resistance assessment methodology that is used in this project is adopted from previous work and altered to be applicable to spent fuel storage. The assessment methodology utilizes various intrinsic and extrinsic proliferation-resistant attributes for each spent fuel storage type. These attributes are used to calculate a total proliferation resistant (PR) value. The maximum PR value is 1.00 and a greater number means that the facility is more proliferation resistant. Current data for spent fuel storage in the United States and around the world was collected. The PR values obtained from this data are 0.49 for the spent fuel pool, 0.42 for dry cask storage, 0.36 for the operating geological repository, and 0.28 for the closed geological repository. Therefore, the spent fuel pool is currently the most proliferation resistant method for storing spent fuel. The extrinsic attributes, mainly involving safeguards measures, affect the total PR value the most. As a result, several recommendations are made to improve the proliferation resistance of spent fuel. These recommendations include employing more advanced safeguards measures, such as verification techniques and remote monitoring, for dry cask storage and the geological repository. Dry cask storage facilities should also be located at the plant and in a secure building to minimize the proliferation risk. Finally, the cost-benefit analysis of increased safeguards needs to be considered. Taking these recommendations into account, the PR values of dry cask storage and the closed geological would be significantly increased, to 0.57 and 0.51, respectively. As a result, with increased safeguards to the safeguards level of the spent fuel pool, dry cask storage would be the most proliferation resistant method to store spent fuel. Therefore, the IAEA should continue to develop remote monitoring and cask storage verification techniques in order to improve the proliferation resistance of spent fuel.

  19. 40 CFR 1066.985 - Fuel storage system leak test procedure.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Fuel storage system leak test... Refueling Emission Test Procedures for Motor Vehicles § 1066.985 Fuel storage system leak test procedure. (a... conditions. (3) Leak test equipment must have the ability to pressurize fuel storage systems to at least 4.1...

  20. 76 FR 2277 - List of Approved Spent Fuel Storage Casks: NUHOMS® HD System Revision 1

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-13

    ... Fuel Storage Casks: NUHOMS[supreg] HD System Revision 1 AGENCY: Nuclear Regulatory Commission. ACTION... amend its spent fuel storage cask regulations by revising the Transnuclear, Inc. (TN) NUHOMS[supreg] HD System listing within the ``List of Approved Spent Fuel Storage Casks'' to include Amendment No. 1 to...

  1. The Need for Integrating the Back End of the Nuclear Fuel Cycle in the United States of America

    DOE PAGES

    Bonano, Evaristo J.; Kalinina, Elena A.; Swift, Peter N.

    2018-02-26

    Current practice for commercial spent nuclear fuel management in the United States of America (US) includes storage of spent fuel in both pools and dry storage cask systems at nuclear power plants. Most storage pools are filled to their operational capacity, and management of the approximately 2,200 metric tons of spent fuel newly discharged each year requires transferring older and cooler fuel from pools into dry storage. In the absence of a repository that can accept spent fuel for permanent disposal, projections indicate that the US will have approximately 134,000 metric tons of spent fuel in dry storage by mid-centurymore » when the last plants in the current reactor fleet are decommissioned. Current designs for storage systems rely on large dual-purpose (storage and transportation) canisters that are not optimized for disposal. Various options exist in the US for improving integration of management practices across the entire back end of the nuclear fuel cycle.« less

  2. The Need for Integrating the Back End of the Nuclear Fuel Cycle in the United States of America

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonano, Evaristo J.; Kalinina, Elena A.; Swift, Peter N.

    Current practice for commercial spent nuclear fuel management in the United States of America (US) includes storage of spent fuel in both pools and dry storage cask systems at nuclear power plants. Most storage pools are filled to their operational capacity, and management of the approximately 2,200 metric tons of spent fuel newly discharged each year requires transferring older and cooler fuel from pools into dry storage. In the absence of a repository that can accept spent fuel for permanent disposal, projections indicate that the US will have approximately 134,000 metric tons of spent fuel in dry storage by mid-centurymore » when the last plants in the current reactor fleet are decommissioned. Current designs for storage systems rely on large dual-purpose (storage and transportation) canisters that are not optimized for disposal. Various options exist in the US for improving integration of management practices across the entire back end of the nuclear fuel cycle.« less

  3. SOUTH ELEVATION OF IRRADIATED FUEL STORAGE FACILITY LOCATED IN FUEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SOUTH ELEVATION OF IRRADIATED FUEL STORAGE FACILITY LOCATED IN FUEL STORAGE BUILDING (CPP-603). PHOTO TAKEN LOOKING NORTH. INL PHOTO NUMBER HD-54-15-2. Mike Crane, Photographer, 8/2005 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  4. NORTH ELEVATION OF IRRADIATED FUEL STORAGE FACILITY LOCATED IN FUEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    NORTH ELEVATION OF IRRADIATED FUEL STORAGE FACILITY LOCATED IN FUEL STORAGE BUILDING (CPP-603). PHOTO TAKEN LOOKING SOUTH. INL PHOTO NUMBER HD-54-16-1. Mike Crane, Photographer, 8/2005 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  5. Interim Joint Technical Assessment Report: Light-Duty Vehicle Greenhouse Gas Emission Standards and Corporate Average Fuel Economy Standards for Model Years 2017-2025

    EPA Pesticide Factsheets

    EPA and the NHTSA collaborated with CARB on this joint Technical Assessment Report to build on the success of the first phase of the National Program to regulate fuel economy and greenhouse gas (GHG) emissions from U.S. light-duty vehicles.

  6. Functions and requirements document for interim store solidified high-level and transuranic waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith-Fewell, M.A., Westinghouse Hanford

    1996-05-17

    The functions, requirements, interfaces, and architectures contained within the Functions and Requirements (F{ampersand}R) Document are based on the information currently contained within the TWRS Functions and Requirements database. The database also documents the set of technically defensible functions and requirements associated with the solidified waste interim storage mission.The F{ampersand}R Document provides a snapshot in time of the technical baseline for the project. The F{ampersand}R document is the product of functional analysis, requirements allocation and architectural structure definition. The technical baseline described in this document is traceable to the TWRS function 4.2.4.1, Interim Store Solidified Waste, and its related requirements, architecture,more » and interfaces.« less

  7. CONSTRUCTION PROGRESS PHOTO SHOWING WEST STORAGE BASIN AT FUEL STORAGE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CONSTRUCTION PROGRESS PHOTO SHOWING WEST STORAGE BASIN AT FUEL STORAGE BUILDING (CPP-603). INL PHOTO NUMBER NRTS-51-689. Unknown Photographer, 1950 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  8. Dry Storage of Research Reactor Spent Nuclear Fuel - 13321

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, T.M.; Dunsmuir, M.D.; Leduc, D.R.

    2013-07-01

    Spent fuel from domestic and foreign research reactors is received and stored at the Savannah River Site's L Area Material Storage (L Basin) Facility. This DOE-owned fuel consists primarily of highly enriched uranium in metal, oxide or silicide form with aluminum cladding. Upon receipt, the fuel is unloaded and transferred to basin storage awaiting final disposition. Disposition alternatives include processing via the site's H Canyon facility for uranium recovery, or packaging and shipment of the spent fuel to a waste repository. A program has been developed to provide a phased approach for dry storage of the L Basin fuel. Themore » initial phase of the dry storage program will demonstrate loading, drying, and storage of fuel in twelve instrumented canisters to assess fuel performance. After closure, the loaded canisters are transferred to pad-mounted concrete overpacks, similar to those used for dry storage of commercial fuel. Unlike commercial spent fuel, however, the DOE fuel has high enrichment, very low to high burnup, and low decay heat. The aluminum cladding presents unique challenges due to the presence of an oxide layer that forms on the cladding surface, and corrosion degradation resulting from prolonged wet storage. The removal of free and bound water is essential to the prevention of fuel corrosion and radiolytic generation of hydrogen. The demonstration will validate models predicting pressure, temperature, gas generation, and corrosion performance, provide an engineering scale demonstration of fuel handling, drying, leak testing, and canister backfill operations, and establish 'road-ready' storage of fuel that is suitable for offsite repository shipment or retrievable for onsite processing. Implementation of the Phase I demonstration can be completed within three years. Phases II and III, leading to the de-inventory of L Basin, would require an additional 750 canisters and 6-12 years to complete. Transfer of the fuel from basin storage to dry storage requires integration with current facility operations, and selection of equipment that will allow safe operation within the constraints of existing facility conditions. Examples of such constraints that are evaluated and addressed by the dry storage program include limited basin depth, varying fuel lengths up to 4 m, (13 ft), fissile loading limits, canister closure design, post-load drying and closure of the canisters, instrument selection and installation, and movement of the canisters to storage casks. The initial pilot phase restricts the fuels to shorter length fuels that can be loaded to the canister directly underwater; subsequent phases will require use of a shielded transfer system. Removal of the canister from the basin, followed by drying, inerting, closure of the canister, and transfer of the canister to the storage cask are completed with remotely operated equipment and appropriate shielding to reduce personnel radiation exposure. (authors)« less

  9. Uncertainty quantification methodologies development for stress corrosion cracking of canister welds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dingreville, Remi Philippe Michel; Bryan, Charles R.

    2016-09-30

    This letter report presents a probabilistic performance assessment model to evaluate the probability of canister failure (through-wall penetration) by SCC. The model first assesses whether environmental conditions for SCC – the presence of an aqueous film – are present at canister weld locations (where tensile stresses are likely to occur) on the canister surface. Geometry-specific storage system thermal models and weather data sets representative of U.S. spent nuclear fuel (SNF) storage sites are implemented to evaluate location-specific canister surface temperature and relative humidity (RH). As the canister cools and aqueous conditions become possible, the occurrence of corrosion is evaluated. Corrosionmore » is modeled as a two-step process: first, pitting is initiated, and the extent and depth of pitting is a function of the chloride surface load and the environmental conditions (temperature and RH). Second, as corrosion penetration increases, the pit eventually transitions to a SCC crack, with crack initiation becoming more likely with increasing pit depth. Once pits convert to cracks, a crack growth model is implemented. The SCC growth model includes rate dependencies on both temperature and crack tip stress intensity factor, and crack growth only occurs in time steps when aqueous conditions are predicted. The model suggests that SCC is likely to occur over potential SNF interim storage intervals; however, this result is based on many modeling assumptions. Sensitivity analyses provide information on the model assumptions and parameter values that have the greatest impact on predicted storage canister performance, and provide guidance for further research to reduce uncertainties.« less

  10. A security vulnerabilities assessment tool for interim storage facilities of low-level radioactive wastes.

    PubMed

    Bible, J; Emery, R J; Williams, T; Wang, S

    2006-11-01

    Limited permanent low-level radioactive waste (LLRW) disposal capacity and correspondingly high disposal costs have resulted in the creation of numerous interim storage facilities for either decay-in-storage operations or longer term accumulation efforts. These facilities, which may be near the site of waste generation or in distal locations, often were not originally designed for the purpose of LLRW storage, particularly with regard to security. Facility security has become particularly important in light of the domestic terrorist acts of 2001, wherein LLRW, along with many other sources of radioactivity, became recognized commodities to those wishing to create disruption through the purposeful dissemination of radioactive materials. Since some LLRW materials may be in facilities that may exhibit varying degrees of security control sophistication, a security vulnerabilities assessment tool grounded in accepted criminal justice theory and security practice has been developed. The tool, which includes dedicated sections on general security, target hardening, criminalization benefits, and the presence of guardians, can be used by those not formally schooled in the security profession to assess the level of protection afforded to their respective facilities. The tool equips radiation safety practitioners with the ability to methodically and systematically assess the presence or relative status of various facility security aspects, many of which may not be considered by individuals from outside the security profession. For example, radiation safety professionals might not ordinarily consider facility lighting aspects, which is a staple for the security profession since it is widely known that crime disproportionately occurs more frequently at night or in poorly lit circumstances. Likewise, the means and associated time dimensions for detecting inventory discrepancies may not be commonly considered. The tool provides a simple means for radiation safety professionals to assess, and perhaps enhance in a reasonable fashion, the security of their interim storage operations. Aspects of the assessment tool can also be applied to other activities involving the protection of sources of radiation as well.

  11. Nuclear criticality safety evaluation of the passage of decontaminated salt solution from the ITP filters into tank 50H for interim storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hobbs, D.T.; Davis, J.R.

    This report assesses the nuclear criticality safety associated with the decontaminated salt solution after passing through the In-Tank Precipitation (ITP) filters, through the stripper columns and into Tank 50H for interim storage until transfer to the Saltstone facility. The criticality safety basis for the ITP process is documented. Criticality safety in the ITP filtrate has been analyzed under normal and process upset conditions. This report evaluates the potential for criticality due to the precipitation or crystallization of fissionable material from solution and an ITP process filter failure in which insoluble material carryover from salt dissolution is present. It is concludedmore » that no single inadvertent error will cause criticality and that the process will remain subcritical under normal and credible abnormal conditions.« less

  12. PLAN VIEW OF FUEL STORAGE BUILDING (CPP603) SHOWING STORAGE BASINS. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PLAN VIEW OF FUEL STORAGE BUILDING (CPP-603) SHOWING STORAGE BASINS. INL DRAWING NUMBER 200-0603-00-706-051285. ALTERNATE ID NUMBER CPP-D-1285. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  13. Military Fuels Refined from Paraho-II Shale Oil.

    DTIC Science & Technology

    1981-03-01

    FUELS REFINED O FROM PARAHO-II SHALE OIL INTERIM REPORT AFLRL No. 131 4!t by J.N. Bowden E.C. Owens D.W. Naegeli L.L. Stavinoha U.S. Army Fuels and...J.N./Bowden, E.C. /Owens, D.W./ Naegeli / DAAK70-78-C-0001 € L.L. Stavinoha DAAK70-80-C-0001 V 9 PERFORMING ORGANIZATION NAME AND ADDRESSES J0...Combustor Design and Oper- ating Conditions," Combustion Science and Technology, 19, 119, 1979. 16. Moses, C.A., and Naegeli , D.W., "Fuel Property

  14. DEMONSTRATION OF LONG-TERM STORAGE CAPABILITY FOR SPENT NUCLEAR FUEL IN L BASIN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sindelar, R.; Deible, R.

    2011-04-27

    The U.S. Department of Energy decisions for the ultimate disposition of its inventory of used nuclear fuel presently in, and to be received and stored in, the L Basin at the Savannah River Site, and schedule for project execution have not been established. A logical decision timeframe for the DOE is following the review of the overall options for fuel management and disposition by the Blue Ribbon Commission on America's Nuclear Future (BRC). The focus of the BRC review is commercial fuel; however, the BRC has included the DOE fuel inventory in their review. Even though the final report bymore » the BRC to the U.S. Department of Energy is expected in January 2012, no timetable has been established for decisions by the U.S. Department of Energy on alternatives selection. Furthermore, with the imminent lay-up and potential closure of H-canyon, no ready path for fuel disposition would be available, and new technologies and/or facilities would need to be established. The fuel inventory in wet storage in the 3.375 million gallon L Basin is primarily aluminum-clad, aluminum-based fuel of the Materials Test Reactor equivalent design. An inventory of non-aluminum-clad fuel of various designs is also stored in L Basin. Safe storage of fuel in wet storage mandates several high-level 'safety functions' that would be provided by the Structures, Systems, and Components (SSCs) of the storage system. A large inventory of aluminum-clad, aluminum-based spent nuclear fuel, and other nonaluminum fuel owned by the U.S. Department of Energy is in wet storage in L Basin at the Savannah River Site. An evaluation of the present condition of the fuel, and the Structures, Systems, or Components (SSCs) necessary for its wet storage, and the present programs and storage practices for fuel management have been performed. Activities necessary to validate the technical bases for, and verify the condition of the fuel and the SSCs under long-term wet storage have also been identified. The overall conclusion is that the fuel can be stored in L Basin, meeting general safety functions for fuel storage, for an additional 50 years and possibly beyond contingent upon continuation of existing fuel management activities and several augmented program activities. It is concluded that the technical bases and well-founded technologies have been established to store spent nuclear fuel in the L Basin. Methodologies to evaluate the fuel condition and characteristics, and systems to prepare fuel, isolate damaged fuel, and maintain water quality storage conditions have been established. Basin structural analyses have been performed against present NPH criteria. The aluminum fuel storage experience to date, supported by the understanding of the effects of environmental variables on materials performance, demonstrates that storage systems that minimize degradation and provide full retrievability of the fuel up to and greater than 50 additional years will require maintaining the present management programs, and with the recommended augmented/additional activities in this report.« less

  15. Bias estimates used in lieu of validation of fission products and minor actinides in MCNP K eff calculations for PWR burnup credit casks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mueller, Don E.; Marshall, William J.; Wagner, John C.

    The U.S. Nuclear Regulatory Commission (NRC) Division of Spent Fuel Storage and Transportation recently issued Interim Staff Guidance (ISG) 8, Revision 3. This ISG provides guidance for burnup credit (BUC) analyses supporting transport and storage of PWR pressurized water reactor (PWR) fuel in casks. Revision 3 includes guidance for addressing validation of criticality (k eff) calculations crediting the presence of a limited set of fission products and minor actinides (FP&MA). Based on previous work documented in NUREG/CR-7109, recommendation 4 of ISG-8, Rev. 3, includes a recommendation to use 1.5 or 3% of the FP&MA worth to conservatively cover the biasmore » due to the specified FP&MAs. This bias is supplementary to the bias and bias uncertainty resulting from validation of k eff calculations for the major actinides in SNF and does not address extension to actinides and fission products beyond those identified herein. The work described in this report involves comparison of FP&MA worths calculated using SCALE and MCNP with ENDF/B-V, -VI, and -VII based nuclear data and supports use of the 1.5% FP&MA worth bias when either SCALE or MCNP codes are used for criticality calculations, provided the other conditions of the recommendation 4 are met. The method used in this report may also be applied to demonstrate the applicability of the 1.5% FP&MA worth bias to other codes using ENDF/B V, VI or VII based nuclear data. The method involves use of the applicant s computational method to generate FP&MA worths for a reference SNF cask model using specified spent fuel compositions. The applicant s FP&MA worths are then compared to reference values provided in this report. The applicants FP&MA worths should not exceed the reference results by more than 1.5% of the reference FP&MA worths.« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marschman, Steven C.; Warmann, Stephan A.; Rusch, Chris

    The U.S. Department of Energy Office of Nuclear Energy (DOE-NE), Office of Fuel Cycle Technology, has established the Used Fuel Disposition Campaign (UFDC) to conduct the research and development activities related to storage, transportation, and disposal of used nuclear fuel and high-level radioactive waste. The mission of the UFDC is to identify alternatives and conduct scientific research and technology development to enable storage, transportation and disposal of used nuclear fuel (UNF) and wastes generated by existing and future nuclear fuel cycles. The UFDC Storage and Transportation staffs are responsible for addressing issues regarding the extended or long-term storage of UNFmore » and its subsequent transportation. The near-term objectives of the Storage and Transportation task are to use a science-based approach to develop the technical bases to support the continued safe and secure storage of UNF for extended periods, subsequent retrieval, and transportation. While low burnup fuel [that characterized as having a burnup of less than 45 gigawatt days per metric tonne uranium (GWD/MTU)] has been stored for nearly three decades, the storage of high burnup used fuels is more recent. The DOE has funded a demonstration project to confirm the behavior of used high burnup fuel under prototypic conditions. The Electric Power Research Institute (EPRI) is leading a project team to develop and implement the Test Plan to collect this data from a UNF dry storage system containing high burnup fuel. The Draft Test Plan for the demonstration outlines the data to be collected; the high burnup fuel to be included; the technical data gaps the data will address; and the storage system design, procedures, and licensing necessary to implement the Test Plan. To provide data that is most relevant to high burnup fuel in dry storage, the design of the test storage system must closely mimic real conditions high burnup SNF experiences during all stages of dry storage: loading, cask drying, inert gas backfilling, and transfer to an Independent Spent Fuel Storage Installation (ISFSI) for multi-year storage. To document the initial condition of the used fuel prior to emplacement in a storage system, “sister ” fuel rods will be harvested and sent to a national laboratory for characterization and archival purposes. This report supports the demonstration by describing how sister rods will be shipped and received at a national laboratory, and recommending basic nondestructive and destructive analyses to assure the fuel rods are adequately characterized for UFDC work. For this report, a hub-and-spoke model is proposed, with one location serving as the hub for fuel rod receipt and characterization. In this model, fuel and/or clad would be sent to other locations when capabilities at the hub were inadequate or nonexistent. This model has been proposed to reduce DOE-NE’s obligation for waste cleanup and decontamination of equipment.« less

  17. 77 FR 9591 - List of Approved Spent Fuel Storage Casks: HI-STORM 100, Revision 8

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-17

    ... Fuel Storage Casks: HI-STORM 100, Revision 8 AGENCY: Nuclear Regulatory Commission. ACTION: Proposed... spent fuel storage cask regulations by revising the Holtec International HI-STORM 100 dry cask storage... Amendment No. 8 to CoC No. 1014 and does not include other aspects of the HI-STORM 100 dry storage cask...

  18. 75 FR 23821 - Final License Renewal Interim Staff Guidance LR-ISG-2009-01: Aging Management of Spent Fuel Pool...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-04

    ... approach acceptable to the NRC staff for meeting the requirements of 10 CFR part 54. On December 1, 2009... nuclear power plant spent fuel pool neutron-absorbing materials for compliance with part 54... Regulations (10 CFR part 54). The final LR-ISG revises the NRC staff's aging management recommendations...

  19. An evaluation of very large airplanes and alternative fuels: executive summary. Interim report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mikolowsky, W.T.

    1976-12-01

    Candidate applications for very large airplanes include strategic airlifter, tanker, missile launchers, tactical battle platforms, maritime air cruisers, and C3 platforms. This report summarizes AD-A040 532 which explored the military utility of very large airplanes (over 1 million pounds gross weight) and examined several alternative fuels that could be used by such airplanes.

  20. Platelet storage lesion in interim platelet unit concentrates: A comparison with buffy-coat and apheresis concentrates.

    PubMed

    Singh, Sukhi; Shams Hakimi, Caroline; Jeppsson, Anders; Hesse, Camilla

    2017-12-01

    Platelet storage lesion is characterized by morphological changes and impaired platelet function. The collection method and storage medium may influence the magnitude of the storage lesion. The aim of this study was to compare the newly introduced interim platelet unit (IPU) platelet concentrates (PCs) (additive solution SSP+, 40% residual plasma content) with the more established buffy-coat PCs (SSP, 20% residual plasma content) and apheresis PCs (autologous plasma) in terms of platelet storage lesions. Thirty PCs (n=10 for each type) were assessed by measuring metabolic parameters (lactate, glucose, and pH), platelet activation markers, and in vitro platelet aggregability on days 1, 4, and 7 after donation. The expression of platelet activation markers CD62p (P-selectin), CD63 (LAMP-3), and phosphatidylserine was measured using flow cytometry and in vitro aggregability was measured with multiple electrode aggregometry. Higher platelet activation and lower in vitro aggregability was observed in IPU than in buffy-coat PCs on day 1 after donation. In contrast, metabolic parameters, expression of platelet activation markers, and in vitro aggregability were better maintained in IPU than in buffy-coat PCs at the end of the storage period. Compared to apheresis PCs, IPU PCs had higher expression of activation markers and lower in vitro aggregability throughout storage. In conclusion, the results indicate that there are significant differences in platelet storage lesions between IPU, buffy-coat, and apheresis PCs. The quality of IPU PCs appears to be at least comparable to buffy-coat preparations. Further studies are required to distinguish the effect of the preparation methods from storage conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Installation Restoration Program. Remedial Investigation Report. Minnesota Air National Guard Base Duluth International Airport, Duluth, Minnesota. Volume 1

    DTIC Science & Technology

    1990-01-01

    There are three above ground storage tanks for the storage of JP-4 jet fuel with ancillary piping, pumps, loading and unloading facilities, and...time daily basis. Workers are present to transfer jet fuel from delivery tncks to the storage tanks and from the storage tanks to fueling trucks...Ground-water flow and contaminant migration at Site 4, the fuel storage area, is generally toward the drainage ditch located immediately north of the

  2. UFD Storage and Transportation - Transportation Working Group Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maheras, Steven J.; Ross, Steven B.

    2011-08-01

    The Used Fuel Disposition (UFD) Transportation Task commenced in October 2010. As its first task, Pacific Northwest National Laboratory (PNNL) compiled a list of structures, systems, and components (SSCs) of transportation systems and their possible degradation mechanisms during extended storage. The list of SSCs and the associated degradation mechanisms [known as features, events, and processes (FEPs)] were based on the list of used nuclear fuel (UNF) storage system SSCs and degradation mechanisms developed by the UFD Storage Task (Hanson et al. 2011). Other sources of information surveyed to develop the list of SSCs and their degradation mechanisms included references suchmore » as Evaluation of the Technical Basis for Extended Dry Storage and Transportation of Used Nuclear Fuel (NWTRB 2010), Transportation, Aging and Disposal Canister System Performance Specification, Revision 1 (OCRWM 2008), Data Needs for Long-Term Storage of LWR Fuel (EPRI 1998), Technical Bases for Extended Dry Storage of Spent Nuclear Fuel (EPRI 2002), Used Fuel and High-Level Radioactive Waste Extended Storage Collaboration Program (EPRI 2010a), Industry Spent Fuel Storage Handbook (EPRI 2010b), and Transportation of Commercial Spent Nuclear Fuel, Issues Resolution (EPRI 2010c). SSCs include items such as the fuel, cladding, fuel baskets, neutron poisons, metal canisters, etc. Potential degradation mechanisms (FEPs) included mechanical, thermal, radiation and chemical stressors, such as fuel fragmentation, embrittlement of cladding by hydrogen, oxidation of cladding, metal fatigue, corrosion, etc. These degradation mechanisms are discussed in Section 2 of this report. The degradation mechanisms have been evaluated to determine if they would be influenced by extended storage or high burnup, the need for additional data, and their importance to transportation. These categories were used to identify the most significant transportation degradation mechanisms. As expected, for the most part, the transportation importance was mirrored by the importance assigned by the UFD Storage Task. A few of the more significant differences are described in Section 3 of this report« less

  3. VIEW OF SOUTH STORAGE BASIN NUMBER 1 OF FUEL STORAGE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF SOUTH STORAGE BASIN NUMBER 1 OF FUEL STORAGE BUILDING (CPP-603). PHOTO TAKEN LOOKING NORTHEAST. INL PHOTO NUMBER HD-54-18-4. Mike Crane, Photographer, 8/2005 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  4. VIEW OF MIDDLE STORAGE BASIN NUMBER 2 OF FUEL STORAGE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF MIDDLE STORAGE BASIN NUMBER 2 OF FUEL STORAGE BUILDING (CPP-603). PHOTO TAKEN LOOKING NORTHEAST. INL PHOTO NUMBER HD-54-17-3. Mike Crane, Photographer, 8/2005 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  5. Decay heat power of spent nuclear fuel of power reactors with high burnup at long-term storage

    NASA Astrophysics Data System (ADS)

    Ternovykh, Mikhail; Tikhomirov, Georgy; Saldikov, Ivan; Gerasimov, Alexander

    2017-09-01

    Decay heat power of actinides and fission products from spent nuclear fuel of power VVER-1000 type reactors at long-term storage is calculated. Two modes of storage are considered: mode in which single portion of actinides or fission products is loaded in storage facility, and mode in which actinides or fission products from spent fuel of one VVER reactor are added every year in storage facility during 30 years and then accumulated nuclides are stored without addition new nuclides. Two values of fuel burnup 40 and 70 MW·d/kg are considered for the mode of storage of single fuel unloading. For the mode of accumulation of spent fuel with subsequent storage, one value of burnup of 70 MW·d/kg is considered. Very long time of storage 105 years accepted in calculations allows to simulate final geological disposal of radioactive wastes. Heat power of fission products decreases quickly after 50-100 years of storage. The power of actinides decreases very slow. In passing from 40 to 70 MW·d/kg, power of actinides increases due to accumulation of higher fraction of 244Cm. These data are important in the back end of fuel cycle when improved cooling system of the storage facility will be required along with stronger radiation protection during storage, transportation and processing.

  6. 46 CFR 108.237 - Fuel storage facilities.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... AND EQUIPMENT Construction and Arrangement Helicopter Facilities § 108.237 Fuel storage facilities. (a) Helicopter fuel storage tanks must be installed as far as practicable from— (1) The landing area; and (2...

  7. 78 FR 16619 - List of Approved Spent Fuel Storage Casks: MAGNASTOR® System

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-18

    ...-0308] RIN 3150-AJ22 List of Approved Spent Fuel Storage Casks: MAGNASTOR[supreg] System AGENCY: Nuclear... proposing to amend its spent fuel storage regulations by revising the NAC International, Inc., Modular Advanced Generation Nuclear All-purpose Storage (MAGNASTOR[supreg]) Cask System listing within the ``List...

  8. 78 FR 66858 - Waste Confidence-Continued Storage of Spent Nuclear Fuel

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-07

    ...-2012-0246] RIN 3150-AJ20 Waste Confidence--Continued Storage of Spent Nuclear Fuel AGENCY: Nuclear... its generic determination on the environmental impacts of the continued storage of spent nuclear fuel... revising the generic determination of the environmental impacts of the continued storage of spent nuclear...

  9. Hydrogen: A Promising Fuel and Energy Storage Solution - Continuum

    Science.gov Websites

    Magazine | NREL Hydrogen: A Promising Fuel and Energy Storage Solution Fuel cell electric Ainscough, NREL Hydrogen: A Promising Fuel and Energy Storage Solution Electrolysis-generated hydrogen may provide a solution to fluctuations in renewable-sourced energy. As electricity from renewable resources

  10. Hydrogen storage and integrated fuel cell assembly

    DOEpatents

    Gross, Karl J.

    2010-08-24

    Hydrogen is stored in materials that absorb and desorb hydrogen with temperature dependent rates. A housing is provided that allows for the storage of one or more types of hydrogen-storage materials in close thermal proximity to a fuel cell stack. This arrangement, which includes alternating fuel cell stack and hydrogen-storage units, allows for close thermal matching of the hydrogen storage material and the fuel cell stack. Also, the present invention allows for tailoring of the hydrogen delivery by mixing different materials in one unit. Thermal insulation alternatively allows for a highly efficient unit. Individual power modules including one fuel cell stack surrounded by a pair of hydrogen-storage units allows for distribution of power throughout a vehicle or other electric power consuming devices.

  11. A comparison of hydrogen, methanol and gasoline as fuels for fuel cell vehicles: implications for vehicle design and infrastructure development

    NASA Astrophysics Data System (ADS)

    Ogden, Joan M.; Steinbugler, Margaret M.; Kreutz, Thomas G.

    All fuel cells currently being developed for near term use in electric vehicles require hydrogen as a fuel. Hydrogen can be stored directly or produced onboard the vehicle by reforming methanol, or hydrocarbon fuels derived from crude oil (e.g., gasoline, diesel, or middle distillates). The vehicle design is simpler with direct hydrogen storage, but requires developing a more complex refueling infrastructure. In this paper, we present modeling results comparing three leading options for fuel storage onboard fuel cell vehicles: (a) compressed gas hydrogen storage, (b) onboard steam reforming of methanol, (c) onboard partial oxidation (POX) of hydrocarbon fuels derived from crude oil. We have developed a fuel cell vehicle model, including detailed models of onboard fuel processors. This allows us to compare the vehicle performance, fuel economy, weight, and cost for various vehicle parameters, fuel storage choices and driving cycles. The infrastructure requirements are also compared for gaseous hydrogen, methanol and gasoline, including the added costs of fuel production, storage, distribution and refueling stations. The delivered fuel cost, total lifecycle cost of transportation, and capital cost of infrastructure development are estimated for each alternative. Considering both vehicle and infrastructure issues, possible fuel strategies leading to the commercialization of fuel cell vehicles are discussed.

  12. Multi-fuel reformers for fuel cells used in transportation: Assessment of hydrogen storage technologies

    NASA Astrophysics Data System (ADS)

    1994-03-01

    This report documents a portion of the work performed on Multi-fuel Reformers for Fuel Cells Used in Transportation. One objective of this program is to develop advanced fuel processing systems to reform methanol, ethanol, natural gas, and other hydrocarbons into hydrogen for use in transportation fuel cell systems, while a second objective is to develop better systems for on-board hydrogen storage. This report examines techniques and technology available for storage of pure hydrogen on board a vehicle as pure hydrogen of hydrides. The report focuses separately on near and far-term technologies, with particular emphasis on the former. Development of lighter, more compact near-term storage systems is recommended to enhance competitiveness and simplify fuel cell design. The far-term storage technologies require substantial applied research in order to become serious contenders.

  13. Dynamic Impact Analyses and Tests of Concrete Overpacks - 13638

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Sanghoon; Cho, Sang-Soon; Kim, Ki-Young

    Concrete cask is an option for spent nuclear fuel interim storage which is prevailingly used in US. A concrete cask usually consists of metallic canister which confines the spent nuclear fuel and concrete overpack. When the overpack undergoes a severe missile impact which might be caused by a tornado or an aircraft crash, it should sustain acceptable level of structural integrity so that its radiation shielding capability and the retrievability of canister are maintained. Missile impact against a concrete overpack involves two damage modes, local damage and global damage. Local damage of concrete is usually evaluated by empirical formulas whilemore » the global damage is evaluated by finite element analysis. In many cases, those two damage modes are evaluated separately. In this research, a series of numerical simulations are performed using finite element analysis to evaluate the global damage of concrete overpack as well as its local damage under high speed missile impact. We consider two types of concrete overpack, one with steel in-cased concrete without reinforcement and the other with partially-confined reinforced concrete. The numerical simulation results are compared with test results and it is shown that appropriate modeling of material failure is crucial in this analysis and the results are highly dependent on the choice of failure parameters. (authors)« less

  14. Regulatory Supervision of Radiological Protection in the Russian Federation as Applied to Facility Decommissioning and Site Remediation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sneve, M.K.; Shandala, N.K.

    2007-07-01

    The Russian Federation is carrying out major work to manage the legacy of exploitation of nuclear power and use of radioactive materials. This paper describes work on-going to provide enhanced regulatory supervision of these activities as regards radiological protection. The scope includes worker and public protection in routine operation; emergency preparedness and response; radioactive waste management, including treatment, interim storage and transport as well as final disposal; and long term site restoration. Examples examined include waste from facilities in NW Russia, including remediation of previous shore technical bases (STBs) for submarines, spent fuel and radioactive waste management from ice-breakers, andmore » decommissioning of Radio-Thermal-Generators (RTGs) used in navigational devices. Consideration is given to the identification of regulatory responsibilities among different regulators; development of necessary regulatory instruments; and development of regulatory procedures for safety case reviews and compliance monitoring and international cooperation between different regulators. (authors)« less

  15. Cognitive Memory; A Computer Oriented Epistemological Approach to Information Storage and Retrieval. Interim Report, Phase I, 1 September 1967-28 February 1969.

    ERIC Educational Resources Information Center

    Illinois Univ., Urbana. Coordinated Science Lab.

    In contrast to conventional information storage and retrieval systems in which a body of knowledge is thought of as an indexed codex of documents to which access is obtained by an appropriately indexed query, this interdisciplinary study aims at an understanding of what is "knowledge" as distinct from a "data file," how this knowledge is acquired,…

  16. Thermal storage requirements for parabolic dish solar power plants

    NASA Technical Reports Server (NTRS)

    Wen, L.; Steele, H.

    1980-01-01

    The cost effectiveness of a high temperature thermal storage system is investigated for a representative parabolic dish solar power plant. The plant supplies electrical power in accordance with a specific, seasonally varying demand profile. The solar power received by the plant is supplemented by power from fuel combustion. The cost of electricity generated by the solar power plant is calculated, using the cost of mass-producible subsystems (specifically, parabolic dishes, receivers, and power conversion units) now being designed for this type of solar plant. The trade-off between fuel and thermal storage is derived in terms of storage effectiveness, the cost of storage devices, and the cost of fuel. Thermal storage requirements, such as storage capacity, storage effectiveness, and storage cost are established based on the cost of fuel and the overall objective of minimizing the cost of the electricity produced by the system. As the cost of fuel increases at a rate faster than general inflation, thermal storage systems in the $40 to $70/kWthr range could become cost effective in the near future.

  17. 10 CFR 72.214 - List of approved spent fuel storage casks.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General License for Storage of Spent Fuel at Power Reactor Sites § 72.214 List of approved spent...

  18. 10 CFR 72.214 - List of approved spent fuel storage casks.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General License for Storage of Spent Fuel at Power Reactor Sites § 72.214 List of approved spent...

  19. Maywood Interim Storage Site: Annual environmental report for calendar year 1990, Maywood, New Jersey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-09-01

    Environmental monitoring of the US Department of Energy's (DOE) Maywood Interim Storage Site (MISS) and surrounding area began in 1984. MISS is part of the Formerly Utilized Sites Remedial Action Program (FUSRAP), a DOE program to decontaminate or otherwise control sites where residual radioactive materials remain from the early years of the nation's atomic energy program or from commercial operations causing conditions that Congress has authorized DOE to remedy. The MISS Environmental monitoring programs was established to accommodate facility characteristics, applicable regulations, hazard potential, quantities and concentrations of materials released, extent and use of affected land and water, and localmore » public interest or concern. The environmental monitoring program at MISS includes sampling networks for radon concentrations in air; external gamma radiation exposure; and total uranium, radium-226, and thorium-232 concentrations in surface water, sediment, and groundwater. Additionally, several nonradiological parameters are measured in surface water, sediment, and groundwater. Monitoring results are compared with applicable Environmental Protection Agency (EPA) standards; federal, state, and local applicable or relevant and appropriate requirements (ARARs); and/or DOE derived concentration guidelines (DCGs). Environmental standards, ARARs, and DCGs are established to protect public health and the environment. Results from the 1990 environmental monitoring program show that concentrations of the contaminants of concern were all below applicable standards. Because the site is used only for interim storage and produces no processing effluents, all monitoring, except for radon and direct gamma radiation, was done on a quarterly basis. 18 refs., 17 figs., 28 tabs.« less

  20. Preparation of actinide boride materials via solid-state metathesis reactions and actinide dicarbollide precursors

    NASA Astrophysics Data System (ADS)

    Lupinetti, Anthony J.; Fife, Julie; Garcia, Eduardo; Abney, Kent D.

    2000-07-01

    Information gaps exist in the knowledge base needed for choosing among the alternate processes to be used in the safe conversion of fissile materials to optimal forms for safe interim storage, long-term storage, and ultimate disposition. The current baseline storage technology for various wastes uses borosilicate glasses.1 The focus of this paper is the synthesis of actinide-containing ceramic materials at low and moderate temperatures (200 °C-1000 °C) using molecular and polymeric actinide borane and carborane complexes.

  1. 40 CFR 265.110 - Applicability.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Closure... through 265.115 (which concern closure) apply to the owners and operators of all hazardous waste...

  2. 75 FR 27401 - List of Approved Spent Fuel Storage Casks: NUHOMS® HD System Revision 1; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-17

    ... Storage Casks: NUHOMS[reg] HD System Revision 1; Correction AGENCY: Nuclear Regulatory Commission. ACTION... HD spent fuel storage cask system. This action is necessary to correctly specify the effective date... on May 6, 2010 (75 FR 24786), that amends the regulations that govern storage of spent nuclear fuel...

  3. Fuel Storage Tanks at FAA Facilities: Order 1050.15A

    DOT National Transportation Integrated Search

    1997-04-30

    The Federal Aviation Administration (FAA) has over 4,000 fuel storage tanks (FST) in its : inventory. Most of these FSTs are underground storage tanks (UST) that contain fuel for : emergency backup generators providing secondary power to air navigati...

  4. Analysis of Dust Samples Collected from an In-Service Interim Storage System at the Maine Yankee Nuclear Site.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryan, Charles R.; Enos, David

    In July, 2016, the Electric Power Research Institute and industry partners performed a field test at the Maine Yankee Nuclear Site, located near Wiscasset, Maine. The primary goal of the field test was to evaluate the use of robots in surveying the surface of an in-service interim storage canister within an overpack; however, as part of the demonstration, dust and soluble salt samples were collected from horizontal surfaces within the interim storage system. The storage system is a vertical system made by NAC International, consisting of a steel-lined concrete overpack containing a 304 stainless steel (SS) welded storage canister. Themore » canister did not contain spent fuel but rather greater-than-class-C waste, which did not generate significant heat, limiting airflow through the storage system. The surfaces that were sampled for deposits included the top of the shield plug, the side of the canister, and a shelf at the bottom of the overpack, just below the level of the pillar on which the canister sits. The samples were sent to Sandia National Laboratories for analysis. This report summarizes the results of those analyses. Because the primary goal of the field test was to evaluate the use of robots in surveying the surface of the canister within the overpack, collection of dust samples was carried out in a qualitative fashion, using paper filters and sponges as the sampling media. The sampling focused mostly on determining the composition of soluble salts present in the dust. It was anticipated that a wet substrate would more effectively extract soluble salts from the surface that was sampled, so both the sponges and the filter paper were wetted prior to being applied to the surface of the metal. Sampling was accomplished by simply pressing the damp substrate against the metal surface for two minutes, and then removing it. It is unlikely that the sampling method quantitatively collected dust or salts from the metal surface; however, both substrates did extract a significant amount of material. The paper filters collected both particles, trapped within the cellulose fibers of the filter, and salts, while the sponges collected only the soluble salts, with very few particles. Upon delivery to Sandia, both collection media were analyzed using the same methods. The soluble salts were leached from the substrates and analyzed via ion chromatography, and insoluble minerals were analyzed by scanning electron microscopy and energy dispersive X-ray spectroscopy. The insoluble minerals were found to consist largely of terrestrially-derived mineral fragments, dominantly quartz and biotite. Large (mm-sized) aggregates of calcium carbonate, calcium silicate, and calcium aluminum silicate were also present. The aggregates had one flat, smooth surface and one well crystallized surface, and were interpreted to be efflorescence on the inside of the overpack and in the vent, formed by seepage of cement pore fluids through joints in the steel liner of the overpack. Such efflorescence was commonly observed during the boroscope inspection of the storage system at the site. The material may have flaked off and fallen to the point where the dust was collected, or may have brushed off onto the sponges when the robot was retrieved through the inlet vent. Chemical analysis showed that the soluble salts on the shield plug were Ca- and Na-rich, with lesser K and minor Mg; the anionic component was dominated by SO 4 and Cl, with minor amounts of NO 3 . The cation composition of the soluble salts from the overpack shelf and the canister surface was similar to the filter samples, but the anions differed significantly, being dominantly NO 3 with lesser Cl and only trace SO 4 . The salts appear to represent a mixture of sea-salts (probably partially converted to nitrates and sulfates by particle-gas conversion reactions) and continental salt aerosols. Ammonium, a common component in continental aerosols, was not observed and may have been lost by degassing from the canister surface or after collection during sample storage and transportation. The demonstration at Maine Yankee has shown that the robot and sampling method used for the test can successfully be used to collect soluble salts from metal surfaces within an interim storage system overpack. The results were consistent from sample to sample, suggesting that a representative sample of the soluble salts was being collected. However, it is unlikely that the salt samples collected here represent quantitative sampling of the salts on the surfaces evaluated; for that reason, chloride densities per unit area are not presented here. It should also be noted that the relevance to storage systems at the site that contain SNF may be limited, because a heat- generating canister will result in greater airflow through the overpack, affecting dust deposition rates and possibly salt compositions.« less

  5. 40 CFR 92.12 - Interim provisions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... specified in § 92.212(c)(2)(v). (i) Diesel test fuels. Manufacturers and remanufacturers may use LSD or ULSD... determine your cycle-weighted emission rates as specified in subpart B of this part. If you test using LSD...

  6. 40 CFR 92.12 - Interim provisions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... specified in § 92.212(c)(2)(v). (i) Diesel test fuels. Manufacturers and remanufacturers may use LSD or ULSD... determine your cycle-weighted emission rates as specified in subpart B of this part. If you test using LSD...

  7. 40 CFR 92.12 - Interim provisions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... specified in § 92.212(c)(2)(v). (i) Diesel test fuels. Manufacturers and remanufacturers may use LSD or ULSD... determine your cycle-weighted emission rates as specified in subpart B of this part. If you test using LSD...

  8. 40 CFR 92.12 - Interim provisions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... specified in § 92.212(c)(2)(v). (i) Diesel test fuels. Manufacturers and remanufacturers may use LSD or ULSD... determine your cycle-weighted emission rates as specified in subpart B of this part. If you test using LSD...

  9. Thermal Analysis of ZPPR High Pu Content Stored Fuel

    DOE PAGES

    Solbrig, Charles W.; Pope, Chad L.; Andrus, Jason P.

    2014-09-17

    The Zero Power Physics Reactor (ZPPR) operated from April 18, 1969, until 1990. ZPPR operated at low power for testing nuclear reactor designs. This paper examines the temperature of Pu content ZPPR fuel while it is in storage. Heat is generated in the fuel due to Pu and Am decay and is a concern for possible cladding damage. Damage to the cladding could lead to fuel hydriding and oxidizing. A series of computer simulations were made to determine the range of temperatures potentially occuring in the ZPPR fuel. The maximum calculated fuel temperature is 292°C (558°F). Conservative assumptions in themore » model intentionally overestimate temperatures. The stored fuel temperatures are dependent on the distribution of fuel in the surrounding storage compartments, the heat generation rate of the fuel, and the orientation of fuel. Direct fuel temperatures could not be measured but storage bin doors, storage sleeve doors, and storage canister temperatures were measured. Comparison of these three temperatures to the calculations indicates that the temperatures calculated with conservative assumptions are, as expected, higher than the actual temperatures. The maximum calculated fuel temperature with the most conservative assumptions is significantly below the fuel failure criterion of 600°C (1,112°F).« less

  10. Fuel storage tanks at FAA facilities : Order 1050.15A : executive summary.

    DOT National Transportation Integrated Search

    1997-04-30

    The Federal Aviation Administration (FAA) has over 4,000 fuel storage tanks (FST) in its inventory. Most of these FSTs are underground storage tanks (UST) that contain fuel for emergency backup generators providing secondary power to air navigational...

  11. Horizontal modular dry irradiated fuel storage system

    DOEpatents

    Fischer, Larry E.; McInnes, Ian D.; Massey, John V.

    1988-01-01

    A horizontal, modular, dry, irradiated fuel storage system (10) includes a thin-walled canister (12) for containing irradiated fuel assemblies (20), which canister (12) can be positioned in a transfer cask (14) and transported in a horizontal manner from a fuel storage pool (18), to an intermediate-term storage facility. The storage system (10) includes a plurality of dry storage modules (26) which accept the canister (12) from the transfer cask (14) and provide for appropriate shielding about the canister (12). Each module (26) also provides for air cooling of the canister (12) to remove the decay heat of the irradiated fuel assemblies (20). The modules (26) can be interlocked so that each module (26) gains additional shielding from the next adjacent module (26). Hydraulic rams (30) are provided for inserting and removing the canisters (12) from the modules (26).

  12. 10 CFR 51.23 - Temporary storage of spent fuel after cessation of reactor operation-generic determination of no...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Temporary storage of spent fuel after cessation of reactor... Procedures § 51.23 Temporary storage of spent fuel after cessation of reactor operation—generic determination... necessary, spent fuel generated in any reactor can be stored safely and without significant environmental...

  13. 10 CFR 51.23 - Temporary storage of spent fuel after cessation of reactor operation-generic determination of no...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Temporary storage of spent fuel after cessation of reactor... Procedures § 51.23 Temporary storage of spent fuel after cessation of reactor operation—generic determination... necessary, spent fuel generated in any reactor can be stored safely and without significant environmental...

  14. Management of Legacy Spent Nuclear Fuel Wastes at the Chalk River Laboratories: The Challenges and Innovative Solutions Implemented - 13301

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schruder, Kristan; Goodwin, Derek

    2013-07-01

    AECL's Fuel Packaging and Storage (FPS) Project was initiated in 2004 to retrieve, transfer, and stabilize an identified inventory of degraded research reactor fuel that had been emplaced within in-ground 'Tile Hole' structures in Chalk River Laboratories' Waste Management Area in the 1950's and 60's. Ongoing monitoring of the legacy fuel storage conditions had identified that moisture present in the storage structures had contributed to corrosion of both the fuel and the storage containers. This prompted the initiation of the FPS Project which has as its objective to design, construct, and commission equipment and systems that would allow for themore » ongoing safe storage of this fuel until a final long-term management, or disposition, pathway was available. The FPS Project provides systems and technologies to retrieve and transfer the fuel from the Waste Management Area to a new facility that will repackage, dry, safely store and monitor the fuel for a period of 50 years. All equipment and the new storage facility are designed and constructed to meet the requirements for Class 1 Nuclear Facilities in Canada. (authors)« less

  15. Report of Ad Hoc Committee on Energy Efficiency in Transportation to the Interdepartmental Fuel and Energy Committee of the State of New York. Interim Report.

    ERIC Educational Resources Information Center

    New York State Interdepartmental Fuel and Energy Committee, Albany.

    After presenting the background of the availability of fuel for transportation and the increasing per capita energy consumption, the report examines the State's role in energy conservation. Five proposals are outlined: (1) a coordinated education program designed to increase public awareness of the current energy situation; (2) a pilot program of…

  16. Buffalo Metropolitan Area, New York Water Resources Management. Interim Report on Feasibility of Flood Management. Appendices.

    DTIC Science & Technology

    1983-07-01

    storage areas were taken into account during the flood routings. AI.36 The computer program REVPULS, developed for this report, reverse Modified Puls...routed the hydrograph at Batavia through the storage upstream of the LVRR embankment. Subtracting this reverse -routed hydrograph from the combined...segments to form a more accurate reconstitution. The hydrographs upstream of Batavia were derived by reverse -routing and prorating by drainage area. Table

  17. 78 FR 78285 - List of Approved Spent Fuel Storage Casks: HI-STORM 100 Cask System; Amendment No. 9

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-26

    ...-2012-0052] RIN 3150-AJ12 List of Approved Spent Fuel Storage Casks: HI-STORM 100 Cask System; Amendment... document proposed to amend the NRC's spent fuel storage regulations by revising the Holtec International HI...

  18. 40 CFR 265.111 - Closure performance standard.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Section 265.111 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND...) Controls, minimizes or eliminates, to the extent necessary to protect human health and the environment...

  19. 40 CFR 265.111 - Closure performance standard.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Section 265.111 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND...) Controls, minimizes or eliminates, to the extent necessary to protect human health and the environment...

  20. 40 CFR 265.1 - Purpose, scope, and applicability.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ....1 Section 265.1 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND... establish minimum national standards that define the acceptable management of hazardous waste during the...

  1. 40 CFR 265.223 - Containment system.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 265.223 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL..., such as grass, shale, or rock, to minimize wind and water erosion and to preserve their structural...

  2. 40 CFR 265.72 - Manifest discrepancies.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 265.72 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL... waste solvent substituted for waste acid, or toxic constituents not reported on the manifest or shipping...

  3. 40 CFR 265.72 - Manifest discrepancies.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 265.72 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL... waste solvent substituted for waste acid, or toxic constituents not reported on the manifest or shipping...

  4. 40 CFR 265.72 - Manifest discrepancies.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 265.72 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL... waste solvent substituted for waste acid, or toxic constituents not reported on the manifest or shipping...

  5. 40 CFR 265.340 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES... hazardous waste incinerators (as defined in § 260.10 of this chapter), except as § 265.1 provides otherwise...

  6. 40 CFR 265.340 - Applicability.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES... hazardous waste incinerators (as defined in § 260.10 of this chapter), except as § 265.1 provides otherwise...

  7. 40 CFR 265.54 - Amendment of contingency plan.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Section 265.54 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND..., explosions, or releases of hazardous waste or hazardous waste constituents, or changes the response necessary...

  8. 40 CFR 265.228 - Closure and post-closure care.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Section 265.228 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND... or operator must: (1) Remove or decontaminate all waste residues, contaminated containment system...

  9. 40 CFR 265.54 - Amendment of contingency plan.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Section 265.54 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND..., explosions, or releases of hazardous waste or hazardous waste constituents, or changes the response necessary...

  10. Spent nuclear fuel integrity during dry storage - performance tests and demonstrations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKinnon, M.A.; Doherty, A.L.

    1997-06-01

    This report summarizes the results of fuel integrity surveillance determined from gas sampling during and after performance tests and demonstrations conducted from 1983 through 1996 by or in cooperation with the US DOE Office of Commercial Radioactive Waste Management (OCRWM). The cask performance tests were conducted at Idaho National Engineering Laboratory (INEL) between 1984 and 1991 and included visual observation and ultrasonic examination of the condition of the cladding, fuel rods, and fuel assembly hardware before dry storage and consolidation of fuel, and a qualitative determination of the effects of dry storage and fuel consolidation on fission gas release frommore » the spent fuel rods. The performance tests consisted of 6 to 14 runs involving one or two loading, usually three backfill environments (helium, nitrogen, and vacuum backfills), and one or two storage system orientations. The nitrogen and helium backfills were sampled and analyzed to detect leaking spent fuel rods. At the end of each performance test, periodic gas sampling was conducted on each cask. A spent fuel behavior project (i.e., enhanced surveillance, monitoring, and gas sampling activities) was initiated by DOE in 1994 for intact fuel in a CASTOR V/21 cask and for consolidated fuel in a VSC-17 cask. The results of the gas sampling activities are included in this report. Information on spent fuel integrity is of interest in evaluating the impact of long-term dry storage on the behavior of spent fuel rods. Spent fuel used during cask performance tests at INEL offers significant opportunities for confirmation of the benign nature of long-term dry storage. Supporting cask demonstration included licensing and operation of an independent spent fuel storage installation (ISFSI) at the Virginia Power (VP) Surry reactor site. A CASTOR V/21, an MC-10, and a Nuclear Assurance NAC-I28 have been loaded and placed at the VP ISFSI as part of the demonstration program. 13 refs., 14 figs., 9 tabs.« less

  11. Superfund record of decision (EPA Region 3): US Defense General Supply Center, Operable Unit 9, Chesterfield County, VA, September 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-09-01

    The decision document presents the selected interim remedial action for Operable Unit 9 (OU9) at the Defense General Supply Center (DGSC) in Chesterfield County, Virginia near Richmond. OU9 pertains to groundwater beneath Area 50, the Open Storage Area (OSA), and the Naitonal Guard Area (NGA). This operable unit is the third of nine operable units that are currently being addressed at the DGSC. OU9 addresses interim treatment and containment of groundwater in the upper and lower aquifers beneath Area 50, the OSA, and the NGA.

  12. 35. Coal Fuel Elevator (diagonal in center), Fuel Elevator (left), ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    35. Coal Fuel Elevator (diagonal in center), Fuel Elevator (left), Fuel Storage Bins (center), and Power Plant (far center), and Retail Coal Storage Bins (right) Photograph taken by George Harven - Huber Coal Breaker, 101 South Main Street, Ashley, Luzerne County, PA

  13. 34. Coal Fuel Elevator (diagonal in foreground), Fuel Elevator (left), ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    34. Coal Fuel Elevator (diagonal in foreground), Fuel Elevator (left), Fuel Storage Bins (center), and Power Plant (far center), and Retail Coal Storage Bins (right) Photograph taken by George Harven - Huber Coal Breaker, 101 South Main Street, Ashley, Luzerne County, PA

  14. Waste Determination Equivalency - 12172

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freeman, Rebecca D.

    2012-07-01

    The Savannah River Site (SRS) is a Department of Energy (DOE) facility encompassing approximately 800 square kilometers near Aiken, South Carolina which began operations in the 1950's with the mission to produce nuclear materials. The SRS contains fifty-one tanks (2 stabilized, 49 yet to be closed) distributed between two liquid radioactive waste storage facilities at SRS containing carbon steel underground tanks with storage capacities ranging from 2,800,000 to 4,900,000 liters. Treatment of the liquid waste from these tanks is essential both to closing older tanks and to maintaining space needed to treat the waste that is eventually vitrified or disposedmore » of onsite. Section 3116 of the Ronald W. Reagan National Defense Authorization Act of Fiscal Year 2005 (NDAA) provides the Secretary of Energy, in consultation with the Nuclear Regulatory Commission (NRC), a methodology to determine that certain waste resulting from prior reprocessing of spent nuclear fuel are not high-level radioactive waste if it can be demonstrated that the waste meets the criteria set forth in Section 3116(a) of the NDAA. The Secretary of Energy, in consultation with the NRC, signed a determination in January 2006, pursuant to Section 3116(a) of the NDAA, for salt waste disposal at the SRS Saltstone Disposal Facility. This determination is based, in part, on the Basis for Section 3116 Determination for Salt Waste Disposal at the Savannah River Site and supporting references, a document that describes the planned methods of liquid waste treatment and the resulting waste streams. The document provides descriptions of the proposed methods for processing salt waste, dividing them into 'Interim Salt Processing' and later processing through the Salt Waste Processing Facility (SWPF). Interim Salt Processing is separated into Deliquification, Dissolution, and Adjustment (DDA) and Actinide Removal Process/Caustic Side Solvent Extraction Unit (ARP/MCU). The Waste Determination was signed by the Secretary of Energy in January of 2006 based on proposed processing techniques with the expectation that it could be revised as new processing capabilities became viable. Once signed, however, it became evident that any changes would require lengthy review and another determination signed by the Secretary of Energy. With the maturation of additional salt removal technologies and the extension of the SWPF start-up date, it becomes necessary to define 'equivalency' to the processes laid out in the original determination. For the purposes of SRS, any waste not processed through Interim Salt Processing must be processed through SWPF or an equivalent process, and therefore a clear statement of the requirements for a process to be equivalent to SWPF becomes necessary. (authors)« less

  15. Establishing a store baseline during interim storage of waste packages and a review of potential technologies for base-lining

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McTeer, Jennifer; Morris, Jenny; Wickham, Stephen

    Interim storage is an essential component of the waste management lifecycle, providing a safe, secure environment for waste packages awaiting final disposal. In order to be able to monitor and detect change or degradation of the waste packages, storage building or equipment, it is necessary to know the original condition of these components (the 'waste storage system'). This paper presents an approach to establishing the baseline for a waste-storage system, and provides guidance on the selection and implementation of potential base-lining technologies. The approach is made up of two sections; assessment of base-lining needs and definition of base-lining approach. Duringmore » the assessment of base-lining needs a review of available monitoring data and store/package records should be undertaken (if the store is operational). Evolutionary processes (affecting safety functions), and their corresponding indicators, that can be measured to provide a baseline for the waste-storage system should then be identified in order for the most suitable indicators to be selected for base-lining. In defining the approach, identification of opportunities to collect data and constraints is undertaken before selecting the techniques for base-lining and developing a base-lining plan. Base-lining data may be used to establish that the state of the packages is consistent with the waste acceptance criteria for the storage facility and to support the interpretation of monitoring and inspection data collected during store operations. Opportunities and constraints are identified for different store and package types. Technologies that could potentially be used to measure baseline indicators are also reviewed. (authors)« less

  16. Diesel Fuel Alternatives for Engines in Civil Works Prime Movers.

    DTIC Science & Technology

    1984-09-01

    2. h5 -21 _____ 2 1 -2 11114 . MICROCOP RESOLUTION Tl HART * US Army Corpsof Engineers INTERIM REPORT E-200 -September 1981 a-t i r Technology to...on Raw Coal--No. 2 Fuel Oil Slurries 36 14 Comparison on Power Basis of Amount of SOX Compounds in Exhaust of a Single-Cylinder 1360-cc Diesel Engine...Fuel by F0o by o wt t wt. 0. 0 116-F Pitb g Co a Coal Coal Figure 14. Comparison on power basis of amount ot SO compounds in XI exhast f asingle

  17. A Study of Aircraft Post-Crash Fuel Fire Mitigation

    DTIC Science & Technology

    1994-06-01

    AD-A282. 208 A STUDY OF AIRCRAFT POST-CRASH FUEL FIRE MITIGATION INTERIM REPORT BFLRF No. 292 By D.W. Naegeli B.R. Wright Belvoir Fuels and...DAAK7D-S7-C4.004; WD 36 6. AUTHOR(S) DA7-2C0.W Naegeli D"i N. and Wrigl* Bomnd L sed Zabne, David bi (Zalle. Assoiaes) 7. PERFORMING ORGANIZATION NAME...Proceedings, December 3-5, 1991. 6. Weatherford, W.D., Jr. and Naegeli , D,W., "Study of Pool Burning Self-Extinguishment Mechanisms in Aqueous Diesel

  18. A Characteristics-Based Approach to Radioactive Waste Classification in Advanced Nuclear Fuel Cycles

    NASA Astrophysics Data System (ADS)

    Djokic, Denia

    The radioactive waste classification system currently used in the United States primarily relies on a source-based framework. This has lead to numerous issues, such as wastes that are not categorized by their intrinsic risk, or wastes that do not fall under a category within the framework and therefore are without a legal imperative for responsible management. Furthermore, in the possible case that advanced fuel cycles were to be deployed in the United States, the shortcomings of the source-based classification system would be exacerbated: advanced fuel cycles implement processes such as the separation of used nuclear fuel, which introduce new waste streams of varying characteristics. To be able to manage and dispose of these potential new wastes properly, development of a classification system that would assign appropriate level of management to each type of waste based on its physical properties is imperative. This dissertation explores how characteristics from wastes generated from potential future nuclear fuel cycles could be coupled with a characteristics-based classification framework. A static mass flow model developed under the Department of Energy's Fuel Cycle Research & Development program, called the Fuel-cycle Integration and Tradeoffs (FIT) model, was used to calculate the composition of waste streams resulting from different nuclear fuel cycle choices: two modified open fuel cycle cases (recycle in MOX reactor) and two different continuous-recycle fast reactor recycle cases (oxide and metal fuel fast reactors). This analysis focuses on the impact of waste heat load on waste classification practices, although future work could involve coupling waste heat load with metrics of radiotoxicity and longevity. The value of separation of heat-generating fission products and actinides in different fuel cycles and how it could inform long- and short-term disposal management is discussed. It is shown that the benefits of reducing the short-term fission-product heat load of waste destined for geologic disposal are neglected under the current source-based radioactive waste classification system, and that it is useful to classify waste streams based on how favorable the impact of interim storage is on increasing repository capacity. The need for a more diverse set of waste classes is discussed, and it is shown that the characteristics-based IAEA classification guidelines could accommodate wastes created from advanced fuel cycles more comprehensively than the U.S. classification framework.

  19. 10 CFR 72.230 - Procedures for spent fuel storage cask submittals.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Procedures for spent fuel storage cask submittals. 72.230 Section 72.230 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C...

  20. 10 CFR 72.240 - Conditions for spent fuel storage cask reapproval.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Conditions for spent fuel storage cask reapproval. 72.240 Section 72.240 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C...

  1. 78 FR 61401 - Entergy Nuclear Operations, Inc.; Big Rock Point; Independent Spent Fuel Storage Installation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-03

    ... NUCLEAR REGULATORY COMMISSION [Docket Nos. 50-155; 72-43 and NRC-2013-0218] Entergy Nuclear Operations, Inc.; Big Rock Point; Independent Spent Fuel Storage Installation AGENCY: Nuclear Regulatory... the Big Rock Point (BRP) Independent Spent Fuel Storage Installation (ISFSI). ADDRESSES: Please refer...

  2. Management self assessment plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Debban, B.L.

    Duke Engineering and Services Hanford Inc., Spent Nuclear Fuel Project is responsible for the operation of fuel storage facilities. The SNF project mission includes the safe removal, processing and transportation of Spent Nuclear Fuel from 100 K Area fuel storage basins to a new Storage facility in the Hanford 200 East Area. Its mission is the modification of the 100 K area fuel storage facilities and the construction of two new facilities: the 100 K Area Cold Vacuum Drying Facility, and the 200 East Area Canister Storage Building. The management self assessment plan described in this document is scheduled tomore » begin in April of 1999 and be complete in May of 1999. The management self assessment plan describes line management preparations for declaring that line management is ready to commence operations.« less

  3. 40 CFR 265.1 - Purpose, scope, and applicability.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... waste is necessary to protect human health or the environment, that official or specialist may authorize....1 Section 265.1 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND...

  4. 40 CFR 265.1 - Purpose, scope, and applicability.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... waste is necessary to protect human health or the environment, that official or specialist may authorize....1 Section 265.1 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND...

  5. 40 CFR 265.1 - Purpose, scope, and applicability.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... waste is necessary to protect human health or the environment, that official or specialist may authorize....1 Section 265.1 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND...

  6. 40 CFR 265.142 - Cost estimate for closure.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Section 265.142 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND... salvage value that may be realized with the sale of hazardous wastes, or non-hazardous wastes if...

  7. 40 CFR 265.142 - Cost estimate for closure.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Section 265.142 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND... salvage value that may be realized with the sale of hazardous wastes, or non-hazardous wastes if...

  8. 40 CFR 265.142 - Cost estimate for closure.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Section 265.142 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND... salvage value that may be realized with the sale of hazardous wastes, or non-hazardous wastes if...

  9. 40 CFR 265.113 - Closure; time allowed for closure.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... includes an amended waste analysis plan, ground-water monitoring and response program, human exposure....113 Section 265.113 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND...

  10. 40 CFR 265.77 - Additional reports.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ....77 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL... submitting the biennial report and unmanifested waste reports described in §§ 265.75 and 265.76, the owner or...

  11. 40 CFR 265.76 - Unmanifested waste report.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Unmanifested waste report. 265.76 Section 265.76 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND...

  12. 40 CFR 265.1059 - Standards: Delay of repair.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Section 265.1059 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND... technically infeasible without a hazardous waste management unit shutdown. In such a case, repair of this...

  13. 40 CFR 265.13 - General waste analysis.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 27 2013-07-01 2013-07-01 false General waste analysis. 265.13 Section 265.13 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL...

  14. 40 CFR 265.76 - Unmanifested waste report.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Unmanifested waste report. 265.76 Section 265.76 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND...

  15. 40 CFR 265.76 - Unmanifested waste report.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Unmanifested waste report. 265.76 Section 265.76 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND...

  16. 40 CFR 265.13 - General waste analysis.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 26 2011-07-01 2011-07-01 false General waste analysis. 265.13 Section 265.13 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL...

  17. 40 CFR 265.76 - Unmanifested waste report.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Unmanifested waste report. 265.76 Section 265.76 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND...

  18. 40 CFR 265.13 - General waste analysis.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 26 2014-07-01 2014-07-01 false General waste analysis. 265.13 Section 265.13 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL...

  19. 40 CFR 265.76 - Unmanifested waste report.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Unmanifested waste report. 265.76 Section 265.76 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND...

  20. 40 CFR 265.13 - General waste analysis.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 27 2012-07-01 2012-07-01 false General waste analysis. 265.13 Section 265.13 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL...

  1. Residential Energy Consumption Survey (RECS): National interim energy consumption survey, 1978-1979, household monthly energy consumption and expenditures. Shopper's guide

    NASA Astrophysics Data System (ADS)

    Windell, P.

    1981-08-01

    The data from the National Interim Energy Consumption Survey (NIECS) is available to the public on machine readable magnetic tapes. Brief overviews of the Residential Energy Consumption Survey as a whole and of the NIECS in particular is a brief description of each of the files included in this tape, and a list of the variables in the data set are included. A copy of the fuel supplier record form used to collect consumption and expenditure data for each of the sample households is also included.

  2. Air-to-air heat recovery devices for small buildings : interim report

    DOT National Transportation Integrated Search

    1981-01-01

    With the escalation of fuel costs, many people are turning to tighter, better insulated buildings as a means of achieving energy conservation. This is especially true in northern climates, where heating seasons are long and severe. Installing efficie...

  3. High temperature solid oxide regenerative fuel cell for solar photovoltaic energy storage

    NASA Technical Reports Server (NTRS)

    Bents, David J.

    1987-01-01

    A hydrogen-oxygen regenerative fuel cell (RFC) energy storage system based on high temperature solid oxide fuel cell (SOFC) technology is described. The reactants are stored as gases in lightweight insulated pressure vessels. The product water is stored as a liquid in saturated equilibrium with the fuel gas. The system functions as a secondary battery and is applicable to darkside energy storage for solar photovoltaics.

  4. Reinforcement of a PMMA resin for interim fixed prostheses with silica nanoparticles.

    PubMed

    Topouzi, Marianthi; Kontonasaki, Eleana; Bikiaris, Dimitrios; Papadopoulou, Lambrini; Paraskevopoulos, Konstantinos M; Koidis, Petros

    2017-05-01

    Fractures in long span provisional/interim restorations are a common complication. Adequate fracture toughness is necessary to resist occlusal forces and crack propagation, so these restorations should be constructed with materials of improved mechanical properties. The aim of this study was to investigate the possible reinforcement of neat silica nanoparticles and trietoxyvinylsilane-modified silica nanoparticles in a PMMA resin for fixed interim restorations. Composite PMMA-Silica nanoparticles powders were mixed with PMMA liquid and compact bar shaped specimens were fabricated according to the British standard BS EN ISO 127337:2005. The single-edge notched method was used to evaluate fracture toughness (three-point bending test), while the dynamic thermomechanical properties (Storage Modulus, Loss Modulus, tanδ) of a series of nanocomposites with different amounts of nanoparticles (0.25%, 0.50%, 0.75%, 1% w.t.) were evaluated. Statistical analysis was performed and the statistically significant level was set to p<0.05. The fracture toughness of all experimental composites was remarkably higher compared to control. There was a tendency to decrease of fracture toughness, by increasing the concentration of the filler. No statistically significant differences were detected among the modified/unmodified silica nanoparticles. Dynamic mechanical properties were also affected. By increasing the silica nanoparticles content an increase in Storage Modulus was recorded, while Glass Transition Temperature was shifted at higher temperatures. Under the limitations of this in-vitro study, it can be suggested that both neat silica nanoparticles and trietoxyvinylsilane-modified silica nanoparticles, especially at low concentrations, may enhance the overall performance of fixed interim prostheses, as can effectively increase the fracture toughness, the elastic modulus and the Glass Transition Temperature of PMMA resins used in fixed provisional restorations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Fuel economy of hybrid fuel-cell vehicles

    NASA Astrophysics Data System (ADS)

    Ahluwalia, Rajesh K.; Wang, X.; Rousseau, A.

    The potential improvement in fuel economy of a mid-size fuel-cell vehicle by combining it with an energy storage system has been assessed. An energy management strategy is developed and used to operate the direct hydrogen, pressurized fuel-cell system in a load-following mode and the energy storage system in a charge-sustaining mode. The strategy places highest priority on maintaining the energy storage system in a state where it can supply unanticipated boost power when the fuel-cell system alone cannot meet the power demand. It is found that downsizing a fuel-cell system decreases its efficiency on a drive cycle which is compensated by partial regenerative capture of braking energy. On a highway cycle with limited braking energy the increase in fuel economy with hybridization is small but on the stop-and-go urban cycle the fuel economy can improve by 27%. On the combined highway and urban drive cycles the fuel economy of the fuel-cell vehicle is estimated to increase by up to 15% by hybridizing it with an energy storage system.

  6. MERRA/AS: The MERRA Analytic Services Project Interim Report

    NASA Technical Reports Server (NTRS)

    Schnase, John; Duffy, Dan; Tamkin, Glenn; Nadeau, Denis; Thompson, Hoot; Grieg, Cristina; Luczak, Ed; McInerney, Mark

    2013-01-01

    MERRA AS is a cyberinfrastructure resource that will combine iRODS-based Climate Data Server (CDS) capabilities with Coudera MapReduce to serve MERRA analytic products, store the MERRA reanalysis data collection in an HDFS to enable parallel, high-performance, storage-side data reductions, manage storage-side driver, mapper, reducer code sets and realized objects for users, and provide a library of commonly used spatiotemporal operations that can be composed to enable higher-order analyses.

  7. Timely topics on spent fuel storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Selin, I.

    1994-12-31

    The history of spent fuel management in this country has taken several turns, with a final resolution still out of reach. Several repository programs started, stalled ans stopped. The latest effort at Yucca Mountain is progressing but, at best, is years from the early phases of licensing, much less the actual underground disposal of spent fuel. A monitored retrieval storage [MRS] facility was expected to start accepting commercial spent fuel beginning in 1998, but no such facility is clearly on the horizon. All of these recent developments changed the circumstances that we face in spent fuel management. The obvious conclusionmore » is that an increasing number of plants, both operating and permanently shut-down reactors, will have to provide for additional spent fuel storage on-site for a longer period than originally planned, and even after plant decommissioning, prudence requires that provision be made for continual, stand-alone, on-site storage. After pool capacity is reached, most utilities opt for some sort of dry storage. But the dry storage option has triggered an unprecedented amount of local opposition at many sites, further taxing NRC and industry resources.« less

  8. COBRA-SFS thermal-hydraulic analysis code for spent fuel storage and transportation casks: Models and methods

    DOE PAGES

    Michener, Thomas E.; Rector, David R.; Cuta, Judith M.

    2017-09-01

    COBRA-SFS, a thermal-hydraulics code developed for steady-state and transient analysis of multi-assembly spent-fuel storage and transportation systems, has been incorporated into the Used Nuclear Fuel-Storage, Transportation and Disposal Analysis Resource and Data System tool as a module devoted to spent fuel package thermal analysis. This paper summarizes the basic formulation of the equations and models used in the COBRA-SFS code, showing that COBRA-SFS fully captures the important physical behavior governing the thermal performance of spent fuel storage systems, with internal and external natural convection flow patterns, and heat transfer by convection, conduction, and thermal radiation. Of particular significance is themore » capability for detailed thermal radiation modeling within the fuel rod array.« less

  9. COBRA-SFS thermal-hydraulic analysis code for spent fuel storage and transportation casks: Models and methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michener, Thomas E.; Rector, David R.; Cuta, Judith M.

    COBRA-SFS, a thermal-hydraulics code developed for steady-state and transient analysis of multi-assembly spent-fuel storage and transportation systems, has been incorporated into the Used Nuclear Fuel-Storage, Transportation and Disposal Analysis Resource and Data System tool as a module devoted to spent fuel package thermal analysis. This paper summarizes the basic formulation of the equations and models used in the COBRA-SFS code, showing that COBRA-SFS fully captures the important physical behavior governing the thermal performance of spent fuel storage systems, with internal and external natural convection flow patterns, and heat transfer by convection, conduction, and thermal radiation. Of particular significance is themore » capability for detailed thermal radiation modeling within the fuel rod array.« less

  10. 40 CFR 265.254 - Design and operating requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ....254 Section 265.254 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Waste Piles § 265.254 Design and operating requirements. The owner or operator of each...

  11. Unitized regenerative fuel cell system

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth A. (Inventor)

    2008-01-01

    A Unitized Regenerative Fuel Cell system uses heat pipes to convey waste heat from the fuel cell stack to the reactant storage tanks. The storage tanks act as heat sinks/sources and as passive radiators of the waste heat from the fuel cell stack. During charge up, i.e., the electrolytic process, gases are conveyed to the reactant storage tanks by way of tubes that include dryers. Reactant gases moving through the dryers give up energy to the cold tanks, causing water vapor in with the gases to condense and freeze on the internal surfaces of the dryer. During operation in its fuel cell mode, the heat pipes convey waste heat from the fuel cell stack to the respective reactant storage tanks, thereby heating them such that the reactant gases, as they pass though the respective dryers on their way to the fuel cell stacks retrieve the water previously removed.

  12. Recycling of asphalt concrete : Oregon's first hot mix project : interim report.

    DOT National Transportation Integrated Search

    1977-11-01

    The need to reduce fuel consumption and conserve natural resources have been items of ever-increasing importance during recent years. This report discusses a project in which almost 50,000 tons of asphalt concrete placed to carry detour traffic durin...

  13. Oxidation and gum formation in diesel fuels. Interim technical report, May-December 1985

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayo, F.R.

    1985-12-20

    This Report describes experiments on oxidation and gum formation from n-dodecane, tetralin, and several diesel fuels at 43, 60, and 100 C, with and without added initiators, t-butyl peroxide and 2,2'azobis(2-methylpropionitrile) (ABN). Experiments on gum determination and a manuscript for publication, Gum and Deposit Formation from Jet Turbine and Diesel Fuels at 100 C, are included. One objective of work on this Contract is to relate oxidations of diesel fuels at 100 and 130 C, where experiments can be performed in hours or days, to standard tests for fuel stability at ambient temperatures and 43.3 C (110 F), which requiremore » many weeks. A second objective is to devise a fast test for fuel stability.« less

  14. INTERIOR VIEW OF FUEL STORAGE BUILDING (CPP603) LOOKING SOUTHWEST SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW OF FUEL STORAGE BUILDING (CPP-603) LOOKING SOUTHWEST SHOWING STORAGE BASIN IN FOREGROUND, TRANSFER CRANE AND UNLOADER TO LEFT OF NORTH SIDE OF HOT CELL. INL PHOTO NUMBER NRTS-58-157. J. Anderson, Photographer, 1/15/1958 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  15. 10 CFR 72.240 - Conditions for spent fuel storage cask reapproval.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... has been determined by the NRC. The application must be accompanied by a safety analysis report (SAR). The new SAR may reference the SAR originally submitted for the approved spent fuel storage cask design. (c) The design of a spent fuel storage cask will be reapproved if the conditions in § 72.238 are met...

  16. An Operator Perspective from a Facility Evaluation of an RFID-Based UF6 Cylinder Accounting and Tracking System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martyn, Rose; Fitzgerald, Peter; Stehle, Nicholas D

    An operational field test of a Radio-Frequency Identification (RFID) system for tracking and accounting UF6 cylinders was conducted at the Global Nuclear Fuel Americas (GNF) fuel fabrication plant in 2009. The Cylinder Accountability and Tracking System (CATS) was designed and deployed by Oak Ridge National Laboratory (ORNL) and evaluated in cooperation with GNF. The system required that passive RFID be attached to several UF6 30B cylinders as they were received at the site; then the cylinders were tracked as they proceeded to interim storage, to processing in an autoclave, and eventually to disposition from the site. This CATS deployment alsomore » provided a direct integration of scale data from the site accountability scales. The integration of this information into the tracking data provided an attribute for additional safeguards for evaluation. The field test provided insight into the advantages and challenges of using RFID at an operating nuclear facility. The RFID system allowed operators to interact with the technology and demonstrated the survivability of the tags and reader equipment in the process environment. This paper will provide the operator perspective on utilizing RFID technology for locating cylinders within the facility, thereby tracking the cylinders for process and for Material Control & Accounting functions. The paper also will present the operator viewpoint on RFID implemented as an independent safeguards system.« less

  17. The TMI Regenerative Solid Oxide Fuel Cell

    NASA Technical Reports Server (NTRS)

    Cable, Thomas L.; Ruhl, Robert C.; Petrik, Michael

    1996-01-01

    Energy storage and production in space requires rugged, reliable hardware which minimizes weight, volume, and maintenance while maximizing power output and usable energy storage. Systems generally consist of photovoltaic solar arrays which operate (during sunlight cycles) to provide system power and regenerate fuel (hydrogen) via water electrolysis and (during dark cycles) fuel cells convert hydrogen into electricity. Common configurations use two separate systems (fuel cell and electrolyzer) in conjunction with photovoltaic cells. Reliability, power to weight and power to volume ratios could be greatly improved if both power production (fuel cells) and power storage (electrolysis) functions can be integrated into a single unit. The solid oxide fuel cell (SOFC) based design integrates fuel cell and electrolyzer functions and potentially simplifies system requirements. The integrated fuel cell/electrolyzer design also utilizes innovative gas storage concepts and operates like a rechargeable 'hydrogen-oxygen battery'. Preliminary research has been completed on improved H2/H20 electrode (SOFC anode/electrolyzer cathode) materials for regenerative fuel cells. Tests have shown improved cell performance in both fuel and electrolysis modes in reversible fuel cell tests. Regenerative fuel cell efficiencies, ratio of power out (fuel cell mode) to power in (electrolyzer mode), improved from 50 percent using conventional electrode materials to over 80 percent. The new materials will allow a single SOFC system to operate as both the electolyzer and fuel cell. Preliminary system designs have also been developed to show the technical feasibility of using the design for space applications requiring high energy storage efficiencies and high specific energy. Small space systems also have potential for dual-use, terrestrial applications.

  18. Fuel supply and distribution. Fixed base operation

    NASA Technical Reports Server (NTRS)

    Burian, L. C.

    1983-01-01

    Aviation gasoline versus other products, a changing marketplace, the Airline Deregulation Act of 1978, aviation fuel credit card purchases, strategic locations, storage, co-mingling of fuel, and transportation to/from central storage are discussed.

  19. Alkaline regenerative fuel cell systems for energy storage

    NASA Technical Reports Server (NTRS)

    Schubert, F. H.; Reid, M. A.; Martin, R. E.

    1981-01-01

    A description is presented of the results of a preliminary design study of a regenerative fuel cell energy storage system for application to future low-earth orbit space missions. The high energy density storage system is based on state-of-the-art alkaline electrolyte cell technology and incorporates dedicated fuel cell and electrolysis cell modules. In addition to providing energy storage, the system can provide hydrogen and oxygen for attitude control of the satellite and for life support. During the daylight portion of the orbit the electrolysis module uses power provided by the solar array to generate H2 and O2 from the product water produced by the fuel cell module. The fuel cell module supplies electrical power during the dark period of the orbit.

  20. Electrochemical Orbital Energy Storage (ECOES) technology program. [regenerative fuel cell system

    NASA Technical Reports Server (NTRS)

    Mcbryar, H.

    1980-01-01

    The versatility and flexibility of a regenerative fuel cell power and energy storage system is considered. The principal elements of a Regenerative Fuel Cell System combine the fuel cell and electrolysis cell with a photovoltaic solar cell array, along with fluid storage and transfer equipment. The power output of the array (for LEO) must be roughly triple the load requirements of the vehicle since the electrolyzers must receive about double the fuel cell output power in order to regenerate the reactants (2/3 of the array power) while 1/3 of the array power supplies the vehicle base load. The working fluids are essentially recycled indefinitely. Any resupply requirements necessitated by leakage or inefficient reclamation is water - an ideal material to handle and transport. Any variation in energy storage capacity impacts only the fluid storage portion, and the system is insensitive to use of reserve reactant capacity.

  1. Research on Fire-Resistant Diesel Fuel.

    DTIC Science & Technology

    1981-12-01

    1[ >1 1? 1F RESEARCH ON FIRE-RESISTANT DIESEL FUEL INTERIM REPORT AFLRL No. 145 By W.D. Weatherford, Jr. G.E. Fodor M.D. Kanakia D.W. Naegeli B.R...GRANT NUMBER(S) W.D. Weatherford, Jr., G.E. Fodor, DAAK7O-80-C-OOO1 M.D. Kanakia, D.W. Naegeli , B.R. Wright (AFLRL) DAAK7O-82-C-OOO1 andF.W...Filters in Fuel Systems of U.S. Army Vehicles I:I , i , , , =- 111 REFERENCES 1. Weatherford, W.D., Jr. Fodor, G.E., Naegeli , D.W., Owens, E.C., Wright

  2. 78 FR 16601 - List of Approved Spent Fuel Storage Casks: MAGNASTOR® System

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-18

    ... Storage Casks: MAGNASTOR[supreg] System AGENCY: Nuclear Regulatory Commission. ACTION: Direct final rule. SUMMARY: The U.S. Nuclear Regulatory Commission (NRC) is amending its spent fuel storage regulations by revising the NAC International, Inc. (NAC) Modular Advanced Generation Nuclear All-purpose Storage...

  3. Global Spent Fuel Logistics Systems Study (GSFLS). Volume 3A. GSFLS technical analysis (appendix). Interim report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kriger, A.

    1978-01-31

    This report is a part of the interim report documentation for the Global Spent Fuel Logistics System (GSFLS) study. The technical and financial considerations underlying a global spent fuel logistics systems have been studied and are reported. The Pacific Basin is used as a model throughout this report; however the stated methodology and, in many cases, considerations and conclusions are applicable to other global regions. Spent fuel discharge profiles for Pacific Basin Countries were used to determine the technical systems requirements for alternative concepts. Functional analyses and flows were generated to define both system design requirements and logistics parameters. Amore » technology review was made to ascertain the state-of-the-art of relevant GSFLS technical systems. Modular GSFLS facility designs were developed using the information generated from the functional analysis and technology review. The modular facility designs were used as a basis for siting and cost estimates for various GSFLS alternatives. Various GSFLS concepts were analyzed from a financial and economic perspective in order to provide total concepts costs and ascertain financial and economic sensitivities to key GSFLS variations. Results of the study include quantification of GSFLS facility and hardware requirements; drawings of relevant GSFLS facility designs; system cost estimates; financial reports - including user service charges; and comparative analyses of various GSFLS alternatives.« less

  4. INTERIM EPA GUIDANCE FOR GEOSPATIAL-RELATED QUALITY ASSURANCE PROJECT PLANS

    EPA Science Inventory

    This guidance supplements EPA Guidance for Quality,Assurance Project Plans (EPA QA/G-5), in that the focus here is on collection and use of geospatial rather than other environmental data (e.g., strictly chemical or biological data), including unique aspects of data storage, retr...

  5. 24 CFR 55.2 - Terminology.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... or inoperative during flood and storm events (e.g., data storage centers, generating plants...” (§ 55.2(b)(5)). When FEMA provides interim flood hazard data, such as Advisory Base Flood Elevations... data may be used as “best available information” in accordance with Executive Order 11988. However, a...

  6. 40 CFR 265.401 - General operating requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... equipment, the process or equipment must be equipped with a means to stop this inflow (e.g., a waste feed....401 Section 265.401 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND...

  7. High Burnup Dry Storage Cask Research and Development Project, Final Test Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2014-02-27

    EPRI is leading a project team to develop and implement the first five years of a Test Plan to collect data from a SNF dry storage system containing high burnup fuel.12 The Test Plan defined in this document outlines the data to be collected, and the storage system design, procedures, and licensing necessary to implement the Test Plan.13 The main goals of the proposed test are to provide confirmatory data14 for models, future SNF dry storage cask design, and to support license renewals and new licenses for ISFSIs. To provide data that is most relevant to high burnup fuel inmore » dry storage, the design of the test storage system must mimic real conditions that high burnup SNF experiences during all stages of dry storage: loading, cask drying, inert gas backfilling, and transfer to the ISFSI for multi-year storage.15 Along with other optional modeling, SETs, and SSTs, the data collected in this Test Plan can be used to evaluate the integrity of dry storage systems and the high burnup fuel contained therein over many decades. It should be noted that the Test Plan described in this document discusses essential activities that go beyond the first five years of Test Plan implementation.16 The first five years of the Test Plan include activities up through loading the cask, initiating the data collection, and beginning the long-term storage period at the ISFSI. The Test Plan encompasses the overall project that includes activities that may not be completed until 15 or more years from now, including continued data collection, shipment of the Research Project Cask to a Fuel Examination Facility, opening the cask at the Fuel Examination Facility, and examining the high burnup fuel after the initial storage period.« less

  8. Proceedings of the 6. international conference on stability and handling of liquid fuels. Volume 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giles, H.N.

    1998-12-01

    Volume 1 of these proceedings contain 29 papers related to aviation fuels and long term and strategic storage. Studies investigated fuel contamination, separation processes, measurement techniques, thermal stability, compatibility with fuel system materials, oxidation reactions, and degradation during storage.

  9. Risk Assessment of Structural Integrity of Transportation Casks after Extended Storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ibarra, Luis; Medina, Ricardo; Yang, Haori

    This study assessed the risk of loss of structural integrity of transportation casks and fuel cladding after extended storage. Although it is known that fuel rods discharged from NPPs have a small percentage of rod cladding defects, the behavior of fuel cladding and the structural elements of assemblies during transportation after long-term storage is not well understood. If the fuel degrades during extended storage, it could be susceptible to damage from vibration and impact loads during transport operations, releasing fission-product gases into the canister or the cask interior (NWTRB 2010). Degradation of cladding may occur due to mechanisms associated withmore » hydrogen embrittlement, delayed hydride cracking, low temperature creep, and stress corrosion cracking (SCC) that may affect fuel cladding and canister components after extended storage of hundreds of years. Over extended periods at low temperatures, these mechanisms affect the ductility, strength, and fracture toughness of the fuel cladding, which becomes brittle. For transportation purposes, the fuel may be transferred from storage to shipping casks, or dual-purpose casks may be used for storage and transportation. Currently, most of the transportation casks will be the former case. A risk assessment evaluation is conducted based on results from experimental tests and simulations with advanced numerical models. A novel contribution of this study is the evaluation of the combined effect of component aging and vibration/impact loads in transportation scenarios. The expected levels of deterioration will be obtained from previous and current studies on the effect of aging on fuel and cask components. The emphasis of the study is placed on the structural integrity of fuel cladding and canisters.« less

  10. Year-Round Daylight Saving Time Study : Volume 1. Interim Report on the Operation and Effects of Daylight Saving Time

    DOT National Transportation Integrated Search

    1975-06-01

    The analyses of the effects of Year-Round Daylight Saving Time were not conslusive because they could not be reliablyseparated from other changes occuring simultaneously including fuel availability constraints, speed limit reductions, Sunday gasoline...

  11. 40 CFR 1048.145 - Are there interim provisions that apply only for a limited time?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK... to plastic fuel tanks in § 1048.245(e)(1)(i) and § 1048.501(e). [67 FR 68347, Nov. 8, 2002, as...

  12. 40 CFR 1048.145 - Are there interim provisions that apply only for a limited time?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK... to plastic fuel tanks in § 1048.245(e)(1)(i) and § 1048.501(e). [67 FR 68347, Nov. 8, 2002, as...

  13. 40 CFR 1048.145 - Are there interim provisions that apply only for a limited time?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK... to plastic fuel tanks in § 1048.245(e)(1)(i) and § 1048.501(e). [67 FR 68347, Nov. 8, 2002, as...

  14. 40 CFR 1048.145 - Are there interim provisions that apply only for a limited time?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK... to plastic fuel tanks in § 1048.245(e)(1)(i) and § 1048.501(e). [67 FR 68347, Nov. 8, 2002, as...

  15. 40 CFR 1048.145 - Are there interim provisions that apply only for a limited time?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK... to plastic fuel tanks in § 1048.245(e)(1)(i) and § 1048.501(e). [67 FR 68347, Nov. 8, 2002, as...

  16. 78 FR 3853 - Retrievability, Cladding Integrity and Safe Handling of Spent Fuel at an Independent Spent Fuel...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-17

    ... requirement that loaded storage casks also meet transportation requirements. Integration of storage and... transported from the storage location. As part of its evaluation of integration and compatibility between... evaluating compatibility of storage and transportation regulations. As part of its evaluation of integration...

  17. 76 FR 17037 - List of Approved Spent Fuel Storage Casks: HI-STORM Flood/Wind Addition

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-28

    ...-0007] RIN 3150-AI90 List of Approved Spent Fuel Storage Casks: HI-STORM Flood/Wind Addition AGENCY... or the Commission) is proposing to amend its spent fuel storage cask regulations to add the HI-STORM...: June 13, 2011. SAR Submitted by: Holtec International, Inc. SAR Title: Safety Analysis Report on the HI...

  18. Applications of thermal energy storage to process heat storage and recovery in the paper and pulp industry

    NASA Technical Reports Server (NTRS)

    Carr, J. H.; Hurley, P. J.; Martin, P. J.

    1978-01-01

    Applications of Thermal Energy Storage (TES) in a paper and pulp mill power house were studied as one approach to the transfer of steam production from fossil fuel boilers to waste fuel of (hog fuel) boilers. Data from specific mills were analyzed, and various TES concepts evaluated for application in the process steam supply system. Constant pressure and variable pressure steam accumulators were found to be the most attractive storage concepts for this application.

  19. Nuclear Nonproliferation: Concerns With U.S. Delays in Accepting Foreign Research Reactors’ Spent Fuel

    DTIC Science & Technology

    1994-03-01

    transport or storage plans. The return of some of the spent fuel will also depend on the readiness of dry storage . One expert told us that...enriched uranium fuel (HEU), a material that can be used to make nuclear bombs, in civilian nuclear programs worldwide. Research reactors are of...address the environmental impact of transporting the fuel and storing it in both existing and new storage units, possibly by June 1995. Under the

  20. 30 CFR 75.1902 - Underground diesel fuel storage-general requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Underground diesel fuel storage-general... LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Diesel-Powered Equipment § 75.1902 Underground diesel fuel storage—general requirements. (a) All diesel fuel must be stored...

  1. 30 CFR 75.1902 - Underground diesel fuel storage-general requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Underground diesel fuel storage-general... LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Diesel-Powered Equipment § 75.1902 Underground diesel fuel storage—general requirements. (a) All diesel fuel must be stored...

  2. 78 FR 56775 - Waste Confidence-Continued Storage of Spent Nuclear Fuel

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-13

    ... radiological impacts of spent nuclear fuel and high-level waste disposal. DATES: Submit comments on the... determination. The ``Offsite radiological impacts of spent nuclear fuel and high-level waste disposal'' issue.... Geologic Repository--Technical Feasibility and Availability C3. Storage of Spent Nuclear Fuel C3.a...

  3. Regenerative Hydrogen-oxygen Fuel Cell-electrolyzer Systems for Orbital Energy Storage

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.

    1984-01-01

    Fuel cells have found application in space since Gemini. Over the years technology advances have been factored into the mainstream hardware programs. Performance levels and service lives have been gradually improving. More recently, the storage application for fuel cell-electrolyzer combinations are receiving considerable emphasis. The regenerative system application described here is part of a NASA Fuel Cell Program which was developed to advance the fuel cell and electrolyzer technology required to satisfy the identified power generation and energy storage need of the Agency for space transportation and orbital applications to the year 2000.

  4. Interim results of long-term environmental exposures of advanced composites for aircraft applications

    NASA Technical Reports Server (NTRS)

    Pride, R. A.

    1978-01-01

    Interim results from a number of ongoing, long-term environmental effects programs for composite materials are reported. The flight service experience is evaluated for 142 composite aircraft components after more than five years and one million successful component flight hours. Ground-based outdoor exposures of composite material coupons after 3 years of exposure at five sites have reached equilibrium levels of moisture pickup which are predictable. Solar ultraviolet-induced material loss is discussed for these same exposures. No significant degradation has been observed in residual strength for either stressed or unstressed specimens, or for exposures to aviation fuels and fluids.

  5. Management of spent nuclear fuel on the Oak Ridge Reservation, Oak Ridge, Tennessee: Environmental assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-02-01

    On June 1, 1995, DOE issued a Record of Decision [60 Federal Register 28680] for the Department-wide management of spent nuclear fuel (SNF); regionalized storage of SNF by fuel type was selected as the preferred alternative. The proposed action evaluated in this environmental assessment is the management of SNF on the Oak Ridge Reservation (ORR) to implement this preferred alternative of regional storage. SNF would be retrieved from storage, transferred to a hot cell if segregation by fuel type and/or repackaging is required, loaded into casks, and shipped to off-site storage. The proposed action would also include construction and operationmore » of a dry cask SNF storage facility on ORR, in case of inadequate SNF storage. Action is needed to enable DOE to continue operation of the High Flux Isotope Reactor, which generates SNF. This report addresses environmental impacts.« less

  6. Internal combustion engine with compressed air collection system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, P.W.

    1988-08-23

    This patent describes an internal combustion engine comprising cylinders respectively including a pressure port, pistons respectively movable in the cylinders through respective compression strokes, fuel injectors respectively connected to the cylinders and operative to supply, from a fuel source to the respective cylinders, a metered quantity of fuel conveyed by compressed gas in response to fuel injector operation during the compression strokes of the respective cylinders, a storage tank for accumulating and storing compressed gas, means for selectively connecting the pressure ports to the storage tank only during the compression strokes of the respective cylinders, and duct means connecting themore » storage tank to the fuel injectors for supplying the fuel injectors with compressed gas in response to fuel injector operation.« less

  7. 35. FUEL HANDLING BUILDING, INTERIOR LOOKING SOUTHEAST SHOWING TRANSFER CANAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    35. FUEL HANDLING BUILDING, INTERIOR LOOKING SOUTHEAST SHOWING TRANSFER CANAL AREA, DEEP STORAGE AREA, FUEL STORAGE PIT (LOCATION BB) - Shippingport Atomic Power Station, On Ohio River, 25 miles Northwest of Pittsburgh, Shippingport, Beaver County, PA

  8. EAST ELEVATION OF HIGH BAY ADDITION OF FUEL STORAGE BUILDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EAST ELEVATION OF HIGH BAY ADDITION OF FUEL STORAGE BUILDING (CPP-603). INL DRAWING NUMBER 200-0603-00-706-051286. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  9. Nuclear Energy Policy

    DTIC Science & Technology

    2007-07-12

    Nuclear Waste Storage Act of 2007. Requires commercial nuclear power plants to transfer spent fuel from pools to dry storage ...enrichment, spent fuel recycling (also called reprocessing), and other fuel cycle facilities that could be used to produce nuclear weapons materials...that had used the leased fuel , along with supplies of fresh nuclear fuel , according to the GNEP concept; see [http://www.gnep.energy.gov].

  10. 40 CFR 265.221 - Design and operating requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... effective date of a prohibition pursuant to § 268.5 of this chapter, within this 48-month period. [50 FR... (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND... each replacement of an existing surface impoundment unit must install two or more liners, and a...

  11. 40 CFR 265.304 - Monitoring and inspection.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... for two consecutive months, the amount of liquids in the sumps must be recorded at least quarterly. If... sump until the liquid level again stays below the pump operating level for two consecutive months. (c... (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND...

  12. 40 CFR 265.304 - Monitoring and inspection.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... for two consecutive months, the amount of liquids in the sumps must be recorded at least quarterly. If... sump until the liquid level again stays below the pump operating level for two consecutive months. (c... (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND...

  13. 40 CFR 265.304 - Monitoring and inspection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... for two consecutive months, the amount of liquids in the sumps must be recorded at least quarterly. If... sump until the liquid level again stays below the pump operating level for two consecutive months. (c... (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND...

  14. 40 CFR 265.226 - Monitoring and inspection.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... operating level for two consecutive months, the amount of liquids in the sumps must be recorded at least... (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND... period. (2) After the final cover is installed, the amount of liquids removed from each leak detection...

  15. 40 CFR 265.226 - Monitoring and inspection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... operating level for two consecutive months, the amount of liquids in the sumps must be recorded at least... (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND... period. (2) After the final cover is installed, the amount of liquids removed from each leak detection...

  16. 40 CFR 265.221 - Design and operating requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... effective date of a prohibition pursuant to § 268.5 of this chapter, within this 48-month period. [50 FR... (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND... each replacement of an existing surface impoundment unit must install two or more liners, and a...

  17. 40 CFR 265.221 - Design and operating requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... effective date of a prohibition pursuant to § 268.5 of this chapter, within this 48-month period. [50 FR... (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND... each replacement of an existing surface impoundment unit must install two or more liners, and a...

  18. 40 CFR 265.226 - Monitoring and inspection.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... operating level for two consecutive months, the amount of liquids in the sumps must be recorded at least... (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND... period. (2) After the final cover is installed, the amount of liquids removed from each leak detection...

  19. 40 CFR 265.304 - Monitoring and inspection.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... for two consecutive months, the amount of liquids in the sumps must be recorded at least quarterly. If... sump until the liquid level again stays below the pump operating level for two consecutive months. (c... (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND...

  20. 40 CFR 265.221 - Design and operating requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... effective date of a prohibition pursuant to § 268.5 of this chapter, within this 48-month period. [50 FR... (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND... each replacement of an existing surface impoundment unit must install two or more liners, and a...

  1. 40 CFR 265.112 - Closure plan; amendment of plan.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND.... By May 19, 1981, or by six months after the effective date of the rule that first subjects a facility... description of other activities necessary during the partial and final closure periods to ensure that all...

  2. 40 CFR 265.304 - Monitoring and inspection.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... for two consecutive months, the amount of liquids in the sumps must be recorded at least quarterly. If... sump until the liquid level again stays below the pump operating level for two consecutive months. (c... (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND...

  3. 40 CFR 265.226 - Monitoring and inspection.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... operating level for two consecutive months, the amount of liquids in the sumps must be recorded at least... (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND... period. (2) After the final cover is installed, the amount of liquids removed from each leak detection...

  4. 40 CFR 265.221 - Design and operating requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... effective date of a prohibition pursuant to § 268.5 of this chapter, within this 48-month period. [50 FR... (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND... each replacement of an existing surface impoundment unit must install two or more liners, and a...

  5. 40 CFR 265.226 - Monitoring and inspection.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... operating level for two consecutive months, the amount of liquids in the sumps must be recorded at least... (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND... period. (2) After the final cover is installed, the amount of liquids removed from each leak detection...

  6. 34 CFR 74.34 - Equipment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... following standards: (1) For equipment with a current per unit fair market value of $5000 or more, the... the cost of the original project or program to the current fair market value of the equipment. (2) If... the current fair market value of the equipment, plus any reasonable shipping or interim storage costs...

  7. 7 CFR 3019.34 - Equipment.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... or program to the current fair market value of the equipment. If the recipient has no need for the... the current fair market value of the equipment, plus any reasonable shipping or interim storage costs... data, including date of disposal and sales price or the method used to determine current fair market...

  8. Storage, transportation and disposal system for used nuclear fuel assemblies

    DOEpatents

    Scaglione, John M.; Wagner, John C.

    2017-01-10

    An integrated storage, transportation and disposal system for used fuel assemblies is provided. The system includes a plurality of sealed canisters and a cask sized to receive the sealed canisters in side by side relationship. The plurality of sealed canisters include an internal basket structure to receive a plurality of used fuel assemblies. The internal basket structure includes a plurality of radiation-absorbing panels and a plurality of hemispherical ribs generally perpendicular to the canister sidewall. The sealed canisters are received within the cask for storage and transportation and are removed from the cask for disposal at a designated repository. The system of the present invention allows the handling of sealed canisters separately or collectively, while allowing storage and transportation of high burnup fuel and damaged fuel to the designated repository.

  9. Long-term high-level waste technology. Composite report

    NASA Astrophysics Data System (ADS)

    Cornman, W. R.

    1981-12-01

    Research and development studies on the immobilization of high-level wastes from the chemical reprocessing of nuclear reactor fuels are summarized. The reports are grouped under the following tasks: (1) program management and support; (2) waste preparation; (3) waste fixation; and (4) final handling. Some of the highlights are: leaching properties were obtained for titanate and tailored ceramic materials being developed at ICPP to immobilize zirconia calcine; comparative leach tests, hot-cell tests, and process evaluations were conducted of waste form alternatives to borosilicate glass for the immobilization of SRP high-level wastes, experiments were run at ANL to qualify neutron activation analysis and radioactive tracers for measuring leach rates from simulated waste glasses; comparative leach test samples of SYNROC D were prepared, characterized, and tested at LLNL; encapsulation of glass marbles with lead or lead alloys was demonstrated on an engineering scale at PNL; a canister for reference Commercial HLW was designed at PNL; a study of the optimization of salt-crete was completed at SRL; a risk assessment showed that an investment for tornado dampers in the interim storage building of the DWPF is unjustified.

  10. Neutron detection devices with 6LiF converter layers

    NASA Astrophysics Data System (ADS)

    Finocchiaro, Paolo; Cosentino, Luigi; Meo, Sergio Lo; Nolte, Ralf; Radeck, Desiree

    2018-01-01

    The demand for new thermal neutron detectors as an alternative to 3He tubes in research, industrial, safety and homeland security applications, is growing. These needs have triggered research and development activities about new generations of thermal neutron detectors, characterized by reasonable efficiency and gamma rejection comparable to 3He tubes. In this paper we show the state of art of a promising lowcost technique, based on commercial solid state silicon detectors coupled with thin neutron converter layers of 6LiF deposited onto carbon fiber substrates. Several configurations were studied with the GEANT4 simulation code, and then calibrated at the PTB Thermal Neutron Calibration Facility. The results show that the measured detection efficiency is well reproduced by the simulations, therefore validating the simulation tool in view of new designs. These neutron detectors have also been tested at neutron beam facilities like ISIS (Rutherford Appleton Laboratory, UK) and n_TOF (CERN) where a few samples are already in operation for beam flux and 2D profile measurements. Forthcoming applications are foreseen for the online monitoring of spent nuclear fuel casks in interim storage sites.

  11. Yucca Mountain nuclear waste repository prompts heated congressional hearing

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2011-11-01

    Although the final report of the Blue Ribbon Commission on America's Nuclear Future is not expected until January 2012, the tentative conclusions of the commission's draft report were dissected during a recent joint hearing by two subcommittees of the House of Representatives' Committee on Science, Space, and Technology. Among the more heated issues debated at the hearing was the fate of the stalled Yucca Mountain nuclear waste repository in Nevada. The Blue Ribbon Commission's (BRC) draft report includes recommendations for managing nuclear waste and for developing one or more permanent deep geological repositories and interim storage facilities, but the report does not address the future of Yucca Mountain. The BRC charter indicates that the commission is to "conduct a comprehensive review of policies for managing the back end of the nuclear fuel cycle." However, the draft report states that the commission was not asked to consider, and therefore did not address, several key issues. "We have not rendered an opinion on the suitability of the Yucca Mountain site or on the request to withdraw the license application for Yucca Mountain," the draft report states.

  12. 78 FR 73456 - List of Approved Spent Fuel Storage Casks: HI-STORM 100 Cask System; Amendment No. 9

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-06

    ...-2012-0052] RIN 3150-AJ12 List of Approved Spent Fuel Storage Casks: HI-STORM 100 Cask System; Amendment... International HI-STORM 100 Cask System listing within the ``List of Approved Spent Fuel Storage Casks'' to... requirements for the HI-STORM 100U part of the HI-STORM 100 Cask System and updates the thermal model and...

  13. 78 FR 33755 - Project Financing Loans

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-05

    ... illustration, a lender might finance only the wind turbine assets and not take or be able to take a security... statute defined a ``renewable energy source'' as ``an energy conversion system fueled from a solar, wind... this RUS requirement in their interim financing arrangement? Should an operation and maintenance...

  14. 75 FR 49813 - List of Approved Spent Fuel Storage Casks: MAGNASTOR System, Revision 1, Confirmation of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-16

    ... Storage Casks: MAGNASTOR System, Revision 1, Confirmation of Effective Date AGENCY: Nuclear Regulatory... spent fuel storage regulations at 10 CFR 72.214 to revise the MAGNASTOR System listing to include...

  15. 14 CFR 139.321 - Handling and storing of hazardous substances and materials.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...) Public protection. (3) Control of access to storage areas. (4) Fire safety in fuel farm and storage areas. (5) Fire safety in mobile fuelers, fueling pits, and fueling cabinets. (6) Training of fueling personnel in fire safety in accordance with paragraph (e) of this section. Such training at Class III...

  16. 14 CFR 139.321 - Handling and storing of hazardous substances and materials.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...) Public protection. (3) Control of access to storage areas. (4) Fire safety in fuel farm and storage areas. (5) Fire safety in mobile fuelers, fueling pits, and fueling cabinets. (6) Training of fueling personnel in fire safety in accordance with paragraph (e) of this section. Such training at Class III...

  17. 14 CFR 139.321 - Handling and storing of hazardous substances and materials.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) Public protection. (3) Control of access to storage areas. (4) Fire safety in fuel farm and storage areas. (5) Fire safety in mobile fuelers, fueling pits, and fueling cabinets. (6) Training of fueling personnel in fire safety in accordance with paragraph (e) of this section. Such training at Class III...

  18. 14 CFR 139.321 - Handling and storing of hazardous substances and materials.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...) Public protection. (3) Control of access to storage areas. (4) Fire safety in fuel farm and storage areas. (5) Fire safety in mobile fuelers, fueling pits, and fueling cabinets. (6) Training of fueling personnel in fire safety in accordance with paragraph (e) of this section. Such training at Class III...

  19. 14 CFR 139.321 - Handling and storing of hazardous substances and materials.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...) Public protection. (3) Control of access to storage areas. (4) Fire safety in fuel farm and storage areas. (5) Fire safety in mobile fuelers, fueling pits, and fueling cabinets. (6) Training of fueling personnel in fire safety in accordance with paragraph (e) of this section. Such training at Class III...

  20. 10 CFR 171.15 - Annual fees: Reactor licenses and independent spent fuel storage licenses.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Annual fees: Reactor licenses and independent spent fuel... REACTOR LICENSES AND FUEL CYCLE LICENSES AND MATERIALS LICENSES, INCLUDING HOLDERS OF CERTIFICATES OF... NRC § 171.15 Annual fees: Reactor licenses and independent spent fuel storage licenses. (a) Each...

  1. 10 CFR 171.15 - Annual fees: Reactor licenses and independent spent fuel storage licenses.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Annual fees: Reactor licenses and independent spent fuel... REACTOR LICENSES AND FUEL CYCLE LICENSES AND MATERIALS LICENSES, INCLUDING HOLDERS OF CERTIFICATES OF... NRC § 171.15 Annual fees: Reactor licenses and independent spent fuel storage licenses. (a) Each...

  2. Safeguards-by-Design: Guidance for Independent Spent Fuel Dry Storage Installations (ISFSI)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trond Bjornard; Philip C. Durst

    2012-05-01

    This document summarizes the requirements and best practices for implementing international nuclear safeguards at independent spent fuel storage installations (ISFSIs), also known as Away-from- Reactor (AFR) storage facilities. These installations may provide wet or dry storage of spent fuel, although the safeguards guidance herein focuses on dry storage facilities. In principle, the safeguards guidance applies to both wet and dry storage. The reason for focusing on dry independent spent fuel storage installations is that this is one of the fastest growing nuclear installations worldwide. Independent spent fuel storage installations are typically outside of the safeguards nuclear material balance area (MBA)more » of the reactor. They may be located on the reactor site, but are generally considered by the International Atomic Energy Agency (IAEA) and the State Regulator/SSAC to be a separate facility. The need for this guidance is becoming increasingly urgent as more and more nuclear power plants move their spent fuel from resident spent fuel ponds to independent spent fuel storage installations. The safeguards requirements and best practices described herein are also relevant to the design and construction of regional independent spent fuel storage installations that nuclear power plant operators are starting to consider in the absence of a national long-term geological spent fuel repository. The following document has been prepared in support of two of the three foundational pillars for implementing Safeguards-by-Design (SBD). These are: i) defining the relevant safeguards requirements, and ii) defining the best practices for meeting the requirements. This document was prepared with the design of the latest independent dry spent fuel storage installations in mind and was prepared specifically as an aid for designers of commercial nuclear facilities to help them understand the relevant international requirements that follow from a country’s safeguards agreement with the IAEA. If these requirements are understood at the earliest stages of facility design, it will help eliminate the costly retrofit of facilities that has occurred in the past to accommodate nuclear safeguards, and will help the IAEA implement nuclear safeguards worldwide, especially in countries building their first nuclear facilities. It is also hoped that this guidance document will promote discussion between the IAEA, State Regulator/SSAC, Project Design Team, and Facility Owner/Operator at an early stage to ensure that new ISFSIs will be effectively and efficiently safeguarded. This is intended to be a living document, since the international nuclear safeguards requirements may be subject to revision over time. More importantly, the practices by which the requirements are met are continuously modernized by the IAEA and facility operators for greater efficiency and cost effectiveness. As these improvements are made, it is recommended that the subject guidance document be updated and revised accordingly.« less

  3. Renewables cannot be stored economically on a well-run power system

    NASA Astrophysics Data System (ADS)

    Swift-Hook, Donald

    2017-11-01

    Economic storage on a power system must rely on arbitrage, buying electrical power when it is cheap and selling when it is dear. In practice, this means a store must buy power at night and sell it during the day. There is no solar power at night [by definition], so solar power cannot be stored economically on a well-run power system. Also renewables [and nuclear] are installed commercially to save fuel but fuel costs the same at night as it does during the day, so there is no arbitrage on fuel-saving to justify storage. Pumped water storage has always been widely used on power systems and is still the only method that is economic today, although many others have been tried, including fuels cells, compressed air and batteries. Devices for power correction and balancing [e.g. capacitor banks and batteries] may physically involve the storage of energy [just as a mobile phone does] but it is misleading to describe them as methods of power system storage, [just as it would be misleading to call a School bus a fuel transportation system, even though it does transport fuel]. When a power system has different sorts of plant generating - coal, gas, nuclear, wind etc - any power being put into storage is from the plant that would need to be switched off [because less power was needed] if storage ceased [e.g. because the store became full or failed]. On a well-run power system, that always has the highest fuel/running cost, but the wind blows free and has zero fuel/running cost, so wind is never [normally] stored unless there is no other plant on line i.e. wind power is the last to be stored.

  4. 78 FR 78165 - List of Approved Spent Fuel Storage Casks: HI-STORM 100 Cask System; Amendment No. 9

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-26

    ... Spent Fuel Storage Casks: HI-STORM 100 Cask System; Amendment No. 9 AGENCY: Nuclear Regulatory... storage regulations by revising the Holtec International HI-STORM 100 Cask System listing within the...

  5. CONSTRUCTION VIEW FUEL STORAGE BUILDING (CPP603) LOOKING EAST SHOWING ASBESTOS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CONSTRUCTION VIEW FUEL STORAGE BUILDING (CPP-603) LOOKING EAST SHOWING ASBESTOS SIDING. INL PHOTO NUMBER NRTS-51-1543. Unknown Photographer, 2/28/1951 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  6. CONSTRUCTION PROGRESS PHOTO SHOWING FUEL STORAGE BUILDING (CPP603) LOOKING NORTHWEST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CONSTRUCTION PROGRESS PHOTO SHOWING FUEL STORAGE BUILDING (CPP-603) LOOKING NORTHWEST. INL PHOTO NUMBER NRTS-50-895. Unknown Photographer, 10/30/1950 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  7. BUILDING PLANS OF FUEL STORAGE BUILDING (CPP603). INL DRAWING NUMBER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    BUILDING PLANS OF FUEL STORAGE BUILDING (CPP-603). INL DRAWING NUMBER 200-0603-61-299-103029. ALTERNATE ID NUMBER 542-31-B-21. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  8. 30 CFR 75.1903 - Underground diesel fuel storage facilities and areas; construction and safety precautions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... percent of the maximum capacity of the fuel storage system; and (7) Provided with a competent concrete... any buildup pressure before heat is applied. (2) Diesel fuel shall not be allowed to enter pipelines...

  9. 30 CFR 75.1903 - Underground diesel fuel storage facilities and areas; construction and safety precautions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... percent of the maximum capacity of the fuel storage system; and (7) Provided with a competent concrete... any buildup pressure before heat is applied. (2) Diesel fuel shall not be allowed to enter pipelines...

  10. 30 CFR 75.1903 - Underground diesel fuel storage facilities and areas; construction and safety precautions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... percent of the maximum capacity of the fuel storage system; and (7) Provided with a competent concrete... any buildup pressure before heat is applied. (2) Diesel fuel shall not be allowed to enter pipelines...

  11. 30 CFR 75.1903 - Underground diesel fuel storage facilities and areas; construction and safety precautions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... percent of the maximum capacity of the fuel storage system; and (7) Provided with a competent concrete... any buildup pressure before heat is applied. (2) Diesel fuel shall not be allowed to enter pipelines...

  12. Fuel Cell Propulsion Systems for an All-electric Personal Air Vehicle

    NASA Technical Reports Server (NTRS)

    Kohout, Lisa L.; Schmitz, Paul C.

    2003-01-01

    There is a growing interest in the use of fuel cells as a power source for all-electric aircraft propulsion as a means to substantially reduce or eliminate environmentally harmful emissions. Among the technologies under consideration for these concepts are advanced proton exchange membrane and solid oxide fuel cells, alternative fuels and fuel processing, and fuel storage. This paper summarizes the results of a first-order feasibility study for an all-electric personal air vehicle utilizing a fuel cell-powered propulsion system. A representative aircraft with an internal combustion engine was chosen as a baseline to provide key parameters to the study, including engine power and subsystem mass, fuel storage volume and mass, and aircraft range. The engine, fuel tank, and associated ancillaries were then replaced with a fuel cell subsystem. Various configurations were considered including: a proton exchange membrane (PEM) fuel cell with liquid hydrogen storage; a direct methanol PEM fuel cell; and a direct internal reforming solid oxide fuel cell (SOFC)/turbine hybrid system using liquid methane fuel. Each configuration was compared to the baseline case on a mass and range basis.

  13. Fuel Cell Propulsion Systems for an All-Electric Personal Air Vehicle

    NASA Technical Reports Server (NTRS)

    Kohout, Lisa L.

    2003-01-01

    There is a growing interest in the use of fuel cells as a power source for all-electric aircraft propulsion as a means to substantially reduce or eliminate environmentally harmful emissions. Among the technologies under consideration for these concepts are advanced proton exchange membrane and solid oxide fuel cells, alternative fuels and fuel processing, and fuel storage. This paper summarizes the results of a first-order feasibility study for an all-electric personal air vehicle utilizing a fuel cell-powered propulsion system. A representative aircraft with an internal combustion engine was chosen as a baseline to provide key parameters to the study, including engine power and subsystem mass, fuel storage volume and mass, and aircraft range. The engine, fuel tank, and associated ancillaries were then replaced with a fuel cell subsystem. Various configurations were considered including: a proton exchange membrane (PEM) fuel cell with liquid hydrogen storage; a direct methanol PEM fuel cell; and a direct internal reforming solid oxide fuel cell (SOFC)/turbine hybrid system using liquid methane fuel. Each configuration was compared to the baseline case on a mass and range basis.

  14. Feasibility study and preliminary design for fishing (TUNA) vessel fuel storage and distribution. Final report. Export trade information

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-07-01

    The report is divided into the following sections: (1) Introduction; (2) Conclusions and Recommendations; (3) Existing Conditions and Facilities for a Fuel Distribution Center; (4) Pacific Ocean Regional Tuna Fisheries and Resources; (5) Fishing Effort in the FSMEEZ 1992-1994; (6) Current Transshipping Operations in the Western Pacific Ocean; (7) Current and Probale Bunkering Practices of United States, Japanese, Koren, and Taiwanese Offshore-Based Vessels Operating in FSM and Adjacent Waters; (8) Shore-Based Fish-Handling/Processing; (9) Fuels Forecast; (10) Fuel Supply, Storage and Distribution; (11) Cost Estimates; (12) Economic Evaluation of Fuel Supply, Storage and Distribution.

  15. Radiolytic and Thermal Processes Relevant to Dry Storage of Spent Nuclear Fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marschman, Steven C.; Madey,Theodore E.; Haustein, Peter E.

    2000-06-01

    The purpose of this project is to deliver pertinent information that can be used to make rational decisions about the safety and treatment issues associated with dry storage of spent nuclear fuel materials. In particular, we will establish an understanding of: (1) water interactions with failed-fuel rods and metal-oxide materials; (2) the role of thermal processes and radiolysis (solid-state and interfacial) in the generation of potentially explosive mixtures of gaseous H2 and O2; and (3) the potential role of radiation-assisted corrosion during fuel rod storage.

  16. Radiotoxicity and decay heat power of spent nuclear fuel of VVER type reactors at long-term storage.

    PubMed

    Bergelson, B R; Gerasimov, A S; Tikhomirov, G V

    2005-01-01

    Radiotoxicity and decay heat power of the spent nuclear fuel of VVER-1000 type reactors are calculated during storage time up to 300,000 y. Decay heat power of radioactive waste (radwaste) determines parameters of the heat removal system for the safe storage of spent nuclear fuel. Radiotoxicity determines the radiological hazard of radwaste after its leakage and penetration into the environment.

  17. Storage, transportation and disposal system for used nuclear fuel assemblies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scaglione, John M.; Wagner, John C.

    An integrated storage, transportation and disposal system for used fuel assemblies is provided. The system includes a plurality of sealed canisters and a cask sized to receive the sealed canisters in side by side relationship. The plurality of sealed canisters include an internal basket structure to receive a plurality of used fuel assemblies. The internal basket structure includes a plurality of radiation-absorbing panels and a plurality of hemispherical ribs generally perpendicular to the canister sidewall. The sealed canisters are received within the cask for storage and transportation and are removed from the cask for disposal at a designated repository. Themore » system of the present invention allows the handling of sealed canisters separately or collectively, while allowing storage and transportation of high burnup fuel and damaged fuel to the designated repository.« less

  18. The small-scale treatability study sample exemption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coalgate, J.

    1991-01-01

    In 1981, the Environmental Protection Agency (EPA) issued an interim final rule that conditionally exempted waste samples collected solely for the purpose of monitoring or testing to determine their characteristics or composition'' from RCRA Subtitle C hazardous waste regulations. This exemption (40 CFR 261.4(d)) apples to the transportation of samples between the generator and testing laboratory, temporary storage of samples at the laboratory prior to and following testing, and storage at a laboratory for specific purposes such as an enforcement action. However, the exclusion did not include large-scale samples used in treatability studies or other testing at pilot plants ormore » other experimental facilities. As a result of comments received by the EPA subsequent to the issuance of the interim final rule, the EPA reopened the comment period on the interim final rule on September 18, 1987, and specifically requested comments on whether or not the sample exclusion should be expanded to include waste samples used in small-scale treatability studies. Almost all responders commented favorably on such a proposal. As a result, the EPA issued a final rule (53 FR 27290, July 19, 1988) conditionally exempting waste samples used in small-scale treatability studies from full regulation under Subtitle C of RCRA. The question of whether or not to extend the exclusion to larger scale as proposed by the Hazardous Waste Treatment Council was deferred until a later date. This information Brief summarizes the requirements of the small-scale treatability exemption.« less

  19. THE REDUCTIVE TRANSFORMATION OF PERCHLORATE IN A FRESH WATER SEDIMENT: LABORATORY BATCH STUDIES

    EPA Science Inventory

    Perchlorate is widely used as a propellant in solid rocket fuel, and has recently been found in ground, surface, and drinking water, in many cases above the interim action level of 18 ppb. Perchlorate is recalcitrant to chemical reduction, however, studies of perchlorate in pure ...

  20. THE REDUCTIVE TRANSFORMATION OF PERCHLORATE IN A FRESH WATER SEDIMENT: LABORATORY BATCH STUDIES.

    EPA Science Inventory

    Perchlorate is widely used as a propellant in solid rocket fuel, and has recently been found in ground, surface, and drinking water, in many cases above the interim action level of 18 ppb. Perchlorate is recalcitrant to chemical reduction, however, studies of perchlorate in pure ...

  1. The TMI regenerable solid oxide fuel cell

    NASA Technical Reports Server (NTRS)

    Cable, Thomas L.

    1995-01-01

    Energy storage and production in space requires rugged, reliable hardware which minimizes weight, volume, and maintenance while maximizing power output and usable energy storage. These systems generally consist of photovoltaic solar arrays which operate during sunlight cycles to provide system power and regenerate fuel (hydrogen) via water electrolysis; during dark cycles, hydrogen is converted by the fuel cell into system. The currently preferred configuration uses two separate systems (fuel cell and electrolyzer) in conjunction with photovoltaic cells. Fuel cell/electrolyzer system simplicity, reliability, and power-to-weight and power-to-volume ratios could be greatly improved if both power production (fuel cell) and power storage (electrolysis) functions can be integrated into a single unit. The Technology Management, Inc. (TMI), solid oxide fuel cell-based system offers the opportunity to both integrate fuel cell and electrolyzer functions into one unit and potentially simplify system requirements. Based an the TMI solid oxide fuel cell (SOPC) technology, the TMI integrated fuel cell/electrolyzer utilizes innovative gas storage and operational concepts and operates like a rechargeable 'hydrogen-oxygen battery'. Preliminary research has been completed on improved H2/H2O electrode (SOFC anode/electrolyzer cathode) materials for solid oxide, regenerative fuel cells. Improved H2/H2O electrode materials showed improved cell performance in both fuel cell and electrolysis modes in reversible cell tests. ln reversible fuel cell/electrolyzer mode, regenerative fuel cell efficiencies (ratio of power out (fuel cell mode) to power in (electrolyzer model)) improved from 50 percent (using conventional electrode materials) to over 80 percent. The new materials will allow the TMI SOFC system to operate as both the electrolyzer and fuel cell in a single unit. Preliminary system designs have also been developed which indicate the technical feasibility of using the TMI SOFC technology for space applications with high energy storage efficiencies and high specific energy. Development of small space systems would also have potential dual-use, terrestrial applications.

  2. The TMI regenerable solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Cable, Thomas L.

    1995-04-01

    Energy storage and production in space requires rugged, reliable hardware which minimizes weight, volume, and maintenance while maximizing power output and usable energy storage. These systems generally consist of photovoltaic solar arrays which operate during sunlight cycles to provide system power and regenerate fuel (hydrogen) via water electrolysis; during dark cycles, hydrogen is converted by the fuel cell into system. The currently preferred configuration uses two separate systems (fuel cell and electrolyzer) in conjunction with photovoltaic cells. Fuel cell/electrolyzer system simplicity, reliability, and power-to-weight and power-to-volume ratios could be greatly improved if both power production (fuel cell) and power storage (electrolysis) functions can be integrated into a single unit. The Technology Management, Inc. (TMI), solid oxide fuel cell-based system offers the opportunity to both integrate fuel cell and electrolyzer functions into one unit and potentially simplify system requirements. Based an the TMI solid oxide fuel cell (SOPC) technology, the TMI integrated fuel cell/electrolyzer utilizes innovative gas storage and operational concepts and operates like a rechargeable 'hydrogen-oxygen battery'. Preliminary research has been completed on improved H2/H2O electrode (SOFC anode/electrolyzer cathode) materials for solid oxide, regenerative fuel cells. Improved H2/H2O electrode materials showed improved cell performance in both fuel cell and electrolysis modes in reversible cell tests. ln reversible fuel cell/electrolyzer mode, regenerative fuel cell efficiencies (ratio of power out (fuel cell mode) to power in (electrolyzer model)) improved from 50 percent (using conventional electrode materials) to over 80 percent. The new materials will allow the TMI SOFC system to operate as both the electrolyzer and fuel cell in a single unit. Preliminary system designs have also been developed which indicate the technical feasibility of using the TMI SOFC technology for space applications with high energy storage efficiencies and high specific energy. Development of small space systems would also have potential dual-use, terrestrial applications.

  3. MISCELLANEOUS SECTIONS AND DETAILS OF FUEL STORAGE BUILDING (CPP603). INL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MISCELLANEOUS SECTIONS AND DETAILS OF FUEL STORAGE BUILDING (CPP-603). INL DRAWING NUMBER 200-0603-61-299-103032. ALTERNATE ID NUMBER 542-31-B-24. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  4. WEST ELEVATION OF FUEL STORAGE BUILDING (CPP603). PHOTO TAKEN LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    WEST ELEVATION OF FUEL STORAGE BUILDING (CPP-603). PHOTO TAKEN LOOKING NORTHEAST. INL PHOTO NUMBER HD-54-20-1. Mike Crane, Photographer, 8/2005 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  5. WEST ELEVATIONS AND SECTIONS OF FUEL STORAGE BUILDING (CPP603). INL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    WEST ELEVATIONS AND SECTIONS OF FUEL STORAGE BUILDING (CPP-603). INL DRAWING NUMBER 200-063-61-299-103031. ALTERNATE ID NUMBER 542-31-B-23. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  6. CONSTRUCTION PROGRESS PHOTO SHOWING EMPLACEMENT STEEL BEAMS FUEL STORAGE BUILDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CONSTRUCTION PROGRESS PHOTO SHOWING EMPLACEMENT STEEL BEAMS FUEL STORAGE BUILDING (CPP-603) LOOKING EAST. INL PHOTO NUMBER NRTS-51-1371. Unknown Photographer, 1/31/1951 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  7. SIDING AND ROOF DETAILS OF FUEL STORAGE BUILDING (CPP603). INL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SIDING AND ROOF DETAILS OF FUEL STORAGE BUILDING (CPP-603). INL DRAWING NUMBER 200-0603-61-299-103033. ALTERNATE ID NUMBER 542-31-B-25. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  8. INTERIOR VIEW OF FUEL STORAGE BUILDING (CPP603) SHOWING CRANE ASSEMBLY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW OF FUEL STORAGE BUILDING (CPP-603) SHOWING CRANE ASSEMBLY FOR TRANSFER PIT. INL PHOTO NUMBER NRTS-51-2404. Unknown Photographer, 5/31/1951 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  9. WEST ELEVATION OF FUEL STORAGE BUILDING (CPP603). PHOTO TAKEN LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    WEST ELEVATION OF FUEL STORAGE BUILDING (CPP-603). PHOTO TAKEN LOOKING NORTHEAST. INL PHOTO NUMBER HD-54-20-3. Mike Crane, Photographer, 8/2005 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  10. Technology demonstration of dedicated compressed natural gas (CNG) original equipment manufacturer (OEM) vehicles at Ft. Bliss, Texas. Interim report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alvarez, R.A.; Yost, D.M.

    1995-11-01

    A technology demonstration program of dedicated compressed natural gas (CNG) original equipment manufacturer (OEM) vehicles was conducted at FL Bliss, Texas to demonstrate the use of CNG as an alternative fuel. The demonstration program at FL Bliss was the first Army initiative with CNG-fueled vehicles under the legislated Alternative Motor Fuels Act. This Department of Energy (DOE)-supported fleet demonstration consisted of 48 General Services Administration (GSA)-owned, Army-leased 1992 dedicated CNG General Motors (GM) 3/4-ton pickup trucks and four 1993 gasoline-powered Chevrolet 3/4-ton pickup trucks.

  11. Last chance for carbon capture and storage

    NASA Astrophysics Data System (ADS)

    Scott, Vivian; Gilfillan, Stuart; Markusson, Nils; Chalmers, Hannah; Haszeldine, R. Stuart

    2013-02-01

    Anthropogenic energy-related CO2 emissions are higher than ever. With new fossil-fuel power plants, growing energy-intensive industries and new sources of fossil fuels in development, further emissions increase seems inevitable. The rapid application of carbon capture and storage is a much heralded means to tackle emissions from both existing and future sources. However, despite extensive and successful research and development, progress in deploying carbon capture and storage has stalled. No fossil-fuel power plants, the greatest source of CO2 emissions, are using carbon capture and storage, and publicly supported demonstration programmes are struggling to deliver actual projects. Yet, carbon capture and storage remains a core component of national and global emissions-reduction scenarios. Governments have to either increase commitment to carbon capture and storage through much more active market support and emissions regulation, or accept its failure and recognize that continued expansion of power generation from burning fossil fuels is a severe threat to attaining objectives in mitigating climate change.

  12. 40 CFR 80.156 - Liability for violations of the interim detergent program controls and prohibitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... base gasoline component, the detergent component, or the detergent-additized post-refinery component of... component of any post-refinery component or gasoline in the storage tank containing gasoline found to be in... evidence, that the gasoline or detergent carrier caused the violation. (2) Post-refinery component non...

  13. 40 CFR 265.442 - Design and installation of new drip pads.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Design and installation of new drip pads. 265.442 Section 265.442 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Drip Pads §...

  14. 40 CFR 262.212 - Making the hazardous waste determination at an on-site interim status or permitted treatment...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... permitted treatment, storage or disposal facility. (e) If the unwanted material is a hazardous waste, the... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Making the hazardous waste... 262.212 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED...

  15. 40 CFR 262.212 - Making the hazardous waste determination at an on-site interim status or permitted treatment...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... permitted treatment, storage or disposal facility. (e) If the unwanted material is a hazardous waste, the... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Making the hazardous waste... 262.212 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED...

  16. 40 CFR 262.212 - Making the hazardous waste determination at an on-site interim status or permitted treatment...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... permitted treatment, storage or disposal facility. (e) If the unwanted material is a hazardous waste, the... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Making the hazardous waste... 262.212 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED...

  17. 40 CFR 262.212 - Making the hazardous waste determination at an on-site interim status or permitted treatment...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... permitted treatment, storage or disposal facility. (e) If the unwanted material is a hazardous waste, the... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Making the hazardous waste... 262.212 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED...

  18. 40 CFR 262.212 - Making the hazardous waste determination at an on-site interim status or permitted treatment...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... permitted treatment, storage or disposal facility. (e) If the unwanted material is a hazardous waste, the... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Making the hazardous waste... 262.212 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED...

  19. 78 FR 21980 - Aging Management of Internal Surfaces, Service Level III and Other Coatings, Atmospheric Storage...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-12

    ... NUCLEAR REGULATORY COMMISSION [NRC-2013-0068] Aging Management of Internal Surfaces, Service Level... Interim Staff Guidance (LR-ISG), LR-ISG-2012-02, ``Aging Management of Internal Surfaces, Service Level... proposes to revise NRC staff-recommended aging management programs (AMP) and aging management review (AMR...

  20. SOUTH, EAST, NORTH ELEVATIONS AND SECTIONS OF FUEL STORAGE BUILDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SOUTH, EAST, NORTH ELEVATIONS AND SECTIONS OF FUEL STORAGE BUILDING (CPP-603). INL DRAWING NUMBER 200-0603-61-299-103030. ALTERNATE ID NUMBER 542-31-B-22. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  1. INTERIOR OF SECOND FLOOR CONTROL ROOM OF FUEL STORAGE BUILDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR OF SECOND FLOOR CONTROL ROOM OF FUEL STORAGE BUILDING (CPP-603). PHOTO TAKEN LOOKING SOUTHWEST. INL PHOTO NUMBER HD-54-19-2. Mike Crane, Photographer, 8/2005 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  2. NORTHERN PORTION OF WEST ELEVATION OF FUEL STORAGE BUILDING (CPP603). ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    NORTHERN PORTION OF WEST ELEVATION OF FUEL STORAGE BUILDING (CPP-603). PHOTO TAKEN LOOKING NORTHEAST. INL PHOTO NUMBER HD-54-20-4. Mike Crane, Photographer, 8/2005 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  3. OBLIQUE PHOTO OF NORTHWEST CORNER OF FUEL STORAGE BUILDING (CPP603). ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OBLIQUE PHOTO OF NORTHWEST CORNER OF FUEL STORAGE BUILDING (CPP-603). PHOTO TAKEN LOOKING SOUTHEAST. INL PHOTO NUMBER HD-54-14-4. Mike Crane, Photographer, 8/2005 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  4. NORTHERN PORTION OF WEST ELEVATION OF FUEL STORAGE BUILDING (CPP603). ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    NORTHERN PORTION OF WEST ELEVATION OF FUEL STORAGE BUILDING (CPP-603). PHOTO TAKEN LOOKING SOUTHEAST. INL PHOTO NUMBER HD-54-20-2. Mike Crane, Photographer, 8/2005 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  5. VIEW OF FECF HOT CELL OF FUEL STORAGE BUILDING (CPP603). ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF FECF HOT CELL OF FUEL STORAGE BUILDING (CPP-603). PHOTO TAKEN LOOKING NORHTWEST. INL PHOTO NUMBER HD-54-18-3. Mike Crane, Photographer, 8/2005 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  6. VIEW OF TRANSFER BASIN CORRIDOR OF FUEL STORAGE BUILDING (CPP603). ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF TRANSFER BASIN CORRIDOR OF FUEL STORAGE BUILDING (CPP-603). PHOTO TAKEN LOOKING NORTH. INL PHOTO NUMBER HD-54-17-2. Mike Crane, Photographer, 8/2005 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  7. OBLIQUE PHOTO OF NORTH ELEVATION OF FUEL STORAGE BUILDING (CPP603). ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OBLIQUE PHOTO OF NORTH ELEVATION OF FUEL STORAGE BUILDING (CPP-603). PHOTO TAKEN LOOKING SOUTH. INL PHOTO NUMBER HD-54-14-3. Mike Crane, Photographer, 8/2005 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  8. 82. GENERAL VIEW FROM NORTH OF FUEL STORAGE AND TRANSFER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    82. GENERAL VIEW FROM NORTH OF FUEL STORAGE AND TRANSFER CONTROL SKID (SKID 2) ON SOUTH END OF SLC-3W FUEL APRON - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  9. Templated assembly of photoswitches significantly increases the energy-storage capacity of solar thermal fuels.

    PubMed

    Kucharski, Timothy J; Ferralis, Nicola; Kolpak, Alexie M; Zheng, Jennie O; Nocera, Daniel G; Grossman, Jeffrey C

    2014-05-01

    Large-scale utilization of solar-energy resources will require considerable advances in energy-storage technologies to meet ever-increasing global energy demands. Other than liquid fuels, existing energy-storage materials do not provide the requisite combination of high energy density, high stability, easy handling, transportability and low cost. New hybrid solar thermal fuels, composed of photoswitchable molecules on rigid, low-mass nanostructures, transcend the physical limitations of molecular solar thermal fuels by introducing local sterically constrained environments in which interactions between chromophores can be tuned. We demonstrate this principle of a hybrid solar thermal fuel using azobenzene-functionalized carbon nanotubes. We show that, on composite bundling, the amount of energy stored per azobenzene more than doubles from 58 to 120 kJ mol(-1), and the material also maintains robust cyclability and stability. Our results demonstrate that solar thermal fuels composed of molecule-nanostructure hybrids can exhibit significantly enhanced energy-storage capabilities through the generation of template-enforced steric strain.

  10. Optimized efficiency of all-electric ships by dc hybrid power systems

    NASA Astrophysics Data System (ADS)

    Zahedi, Bijan; Norum, Lars E.; Ludvigsen, Kristine B.

    2014-06-01

    Hybrid power systems with dc distribution are being considered for commercial marine vessels to comply with new stringent environmental regulations, and to achieve higher fuel economy. In this paper, detailed efficiency analysis of a shipboard dc hybrid power system is carried out. An optimization algorithm is proposed to minimize fuel consumption under various loading conditions. The studied system includes diesel engines, synchronous generator-rectifier units, a full-bridge bidirectional converter, and a Li-Ion battery bank as energy storage. In order to evaluate potential fuel saving provided by such a system, an online optimization strategy for fuel consumption is implemented. An Offshore Support Vessel (OSV) is simulated over different operating modes using the online control strategy. The resulted consumed fuel in the simulation is compared to that of a conventional ac power system, and also a dc power system without energy storage. The results show that while the dc system without energy storage provides noticeable fuel saving compared to the conventional ac system, optimal utilization of the energy storage in the dc system results in twice as much fuel saving.

  11. Evaluation of Aluminum-Boron Carbide Neutron Absorbing Materials for Interim Storage of Used Nuclear Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Lumin; Wierschke, Jonathan Brett

    2015-04-08

    The objective of this work was to understand the corrosion behavior of Boral® and Bortec® neutron absorbers over long-term deployment in a used nuclear fuel dry cask storage environment. Corrosion effects were accelerated by flowing humidified argon through an autoclave at temperatures up to 570°C. Test results show little corrosion of the aluminum matrix but that boron is leaching out of the samples. Initial tests performed at 400 and 570°C were hampered by reduced flow caused by the rapid build-up of solid deposits in the outlet lines. Analysis of the deposits by XRD shows that the deposits are comprised ofmore » boron trioxide and sassolite (H 3BO 3). The collection of boron- containing compounds in the outlet lines indicated that boron was being released from the samples. Observation of the exposed samples using SEM and optical microscopy show the growth of new phases in the samples. These phases were most prominent in Bortec® samples exposed at 570°C. Samples of Boral® exposed at 570°C showed minimal new phase formation but showed nearly the complete loss of boron carbide particles. Boron carbide loss was also significant in Boral samples at 400°C. However, at 400°C phases similar to those found in Bortec® were observed. The rapid loss of the boron carbide particles in the Boral® is suspected to inhibit the formation of the new secondary phases. However, Material samples in an actual dry cask environment would be exposed to temperatures closer to 300°C and less water than the lowest test. The results from this study conclude that at the temperature and humidity levels present in a dry cask environment, corrosion and boron leaching will have no effect on the performance of Boral® and Bortec® to maintain criticality control.« less

  12. Fuel Aging in Storage and Transportation (FAST): Accelerated Characterization and Performance Assessment of the Used Nuclear Fuel Storage System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDeavitt, Sean

    2016-08-02

    This Integrated Research Project (IRP) was established to characterize key limiting phenomena related to the performance of used nuclear fuel (UNF) storage systems. This was an applied engineering project with a specific application in view (i.e., UNF dry storage). The completed tasks made use of a mixture of basic science and engineering methods. The overall objective was to create, or enable the creation of, predictive tools in the form of observation methods, phenomenological models, and databases that will enable the design, installation, and licensing of dry UNF storage systems that will be capable of containing UNF for extended period ofmore » time.« less

  13. Thermal energy storage for the Stirling engine powered automobile

    NASA Technical Reports Server (NTRS)

    Morgan, D. T. (Editor)

    1979-01-01

    A thermal energy storage (TES) system developed for use with the Stirling engine as an automotive power system has gravimetric and volumetric storage densities which are competitive with electric battery storage systems, meets all operational requirements for a practical vehicle, and can be packaged in compact sized automobiles with minimum impact on passenger and freight volume. The TES/Stirling system is the only storage approach for direct use of combustion heat from fuel sources not suitable for direct transport and use on the vehicle. The particular concept described is also useful for a dual mode TES/liquid fuel system in which the TES (recharged from an external energy source) is used for short duration trips (approximately 10 miles or less) and liquid fuel carried on board the vehicle used for long duration trips. The dual mode approach offers the potential of 50 percent savings in the consumption of premium liquid fuels for automotive propulsion in the United States.

  14. NASA's Planned Fuel Cell Development Activities for 2009 and Beyond in Support of the Exploration Vision

    NASA Technical Reports Server (NTRS)

    Hoberecht, Mark A.

    2010-01-01

    NASA s Energy Storage Project is one of many technology development efforts being implemented as part of the Exploration Technology Development Program (ETDP), under the auspices of the Exploration Systems Mission Directorate (ESMD). The Energy Storage Project is a focused technology development effort to advance lithium-ion battery and proton-exchange-membrane fuel cell (PEMFC) technologies to meet the specific power and energy storage needs of NASA Exploration missions. The fuel cell portion of the project has as its focus the development of both primary fuel cell power systems and regenerative fuel cell (RFC) energy storage systems, and is led by the NASA Glenn Research Center (GRC) in partnership with the Johnson Space Center (JSC), the Jet Propulsion Laboratory (JPL), the Kennedy Space Center (KSC), academia, and industrial partners. The development goals are to improve stack electrical performance, reduce system mass and parasitic power requirements, and increase system life and reliability.

  15. Consolidated fuel reprocessing program

    NASA Astrophysics Data System (ADS)

    1985-04-01

    A survey of electrochemical methods applications in fuel reprocessing was completed. A dummy fuel assembly shroud was cut using the remotely operated laser disassembly equipment. Operations and engineering efforts have continued to correct equipment operating, software, and procedural problems experienced during the previous uranium compaigns. Fuel cycle options were examined for the liquid metal reactor fuel cycle. In high temperature gas cooled reactor spent fuel studies, preconceptual designs were completed for the concrete storage cask and open field drywell storage concept. These and other tasks operating under the consolidated fuel reprocessing program are examined.

  16. 10 CFR 51.61 - Environmental report-independent spent fuel storage installation (ISFSI) or monitored retrievable...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Environmental report-independent spent fuel storage installation (ISFSI) or monitored retrievable storage installation (MRS) license. 51.61 Section 51.61 Energy... amended at 68 FR 58811, Oct. 10, 2003] ...

  17. High temperature solid oxide regenerative fuel cell for solar photovoltaic energy storage

    NASA Technical Reports Server (NTRS)

    Bents, David J.

    1987-01-01

    A hydrogen-oxygen regenerative fuel cell energy storage system based on high temperature solid oxide fuel cell technology is discussed which has application to darkside energy storage for solar photovoltaics. The forward and reverse operating cycles are described, and heat flow, mass, and energy balance data are presented to characterize the system's performance and the variation of performance with changing reactant storage pressure. The present system weighs less than nickel hydrogen battery systems after 0.7 darkside operation, and it maintains a specific weight advantage over radioisotope generators for discharge periods up to 72 hours.

  18. High temperature solid oxide regenerative fuel cell for solar photovoltaic energy storage

    NASA Astrophysics Data System (ADS)

    Bents, David J.

    A hydrogen-oxygen regenerative fuel cell energy storage system based on high temperature solid oxide fuel cell technology is discussed which has application to darkside energy storage for solar photovoltaics. The forward and reverse operating cycles are described, and heat flow, mass, and energy balance data are presented to characterize the system's performance and the variation of performance with changing reactant storage pressure. The present system weighs less than nickel hydrogen battery systems after 0.7 darkside operation, and it maintains a specific weight advantage over radioisotope generators for discharge periods up to 72 hours.

  19. Measurement station for interim inspections of Lightbridge metallic fuel rods at the Halden Boiling Water Reactor

    NASA Astrophysics Data System (ADS)

    Hartmann, C.; Totemeier, A.; Holcombe, S.; Liverud, J.; Limi, M.; Hansen, J. E.; Navestad, E. AB(; )

    2018-01-01

    Lightbridge Corporation has developed a new Uranium-Zirconium based metallic fuel. The fuel rods aremanufactured via a co-extrusion process, and are characterized by their multi-lobed (cruciform-shaped) cross section. The fuel rods are also helically-twisted in the axial direction. Two experimental fuel assemblies, each containing four Lightbridge fuel rods, are scheduled to be irradiated in the Halden Boiling Water Reactor (HBWR) starting in 2018. In addition to on-line monitoring of fuel rod elongation and critical assembly conditions (e.g. power, flow rates, coolant temperatures, etc.) during the irradiation, several key parameters of the fuel will be measured out-of-core during interim inspections. An inspection measurement station for use in the irradiated fuel handling compartment at the HBWR has therefore been developed for this purpose. The multi-lobed cladding cross section combined with the spiral shape of the Lightbridge metallic fuel rods requires a high-precision guiding system to ensure good position repeatability combined with low-friction guiding. The measurement station is equipped with a combination of instruments and equipment supplied from third-party vendors and instruments and equipment developed at Institute for Energy Technology (IFE). Two sets of floating linear voltage differential transformer (LVDT) pairs are used to measure swelling and diameter changes between the lobes and the valleys over the length of the fuel rods. Eddy current probes are used to measure the thickness of oxide layers in the valleys and on the lobe tips and also to detect possible surface cracks/pores. The measurement station also accommodates gamma scans. Additionally, an eddy-current probe has been developed at IFE specifically to detect potential gaps or discontinuities in the bonding layer between the metallic fuel and the Zirconium alloy cladding. Potential gaps in the bonding layer will be hidden behind a 0.5-1.0 mm thick cladding wall. It has therefore been necessary to perform a careful design study of the probe geometry. For this, finite element analysis (FEA) has been performed in combination with practical validation tests on representative fuel dummies with machined flaws to find the probe geometry that best detects a hidden flaw. Tests performed thus far show that gaps down to 25 μm thickness can be detected with good repeatability and good discrimination from lift-off signals.

  20. VIEW OF CRANE LOADING AND UNLOADING AREA OF FUEL STORAGE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF CRANE LOADING AND UNLOADING AREA OF FUEL STORAGE BUILDING (CPP-603). PHOTO TAKEN LOOKING NORTH. INL PHOTO NUMBER HD-54-17-4. Mike Crane, Photographer, 8/2005 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  1. 0BLIQUE PHOTO OF EAST ELEVATION OF FUEL STORAGE BUILDING (CPP603). ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    0BLIQUE PHOTO OF EAST ELEVATION OF FUEL STORAGE BUILDING (CPP-603). PHOTO TAKEN LOOKING WEST. INL PHOTO NUMBER HD-54-15-1. Mike Crane, Photographer, 8/2005 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  2. VIEW OF CRANE LOADING AND UNLOADING AREA OF FUEL STORAGE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF CRANE LOADING AND UNLOADING AREA OF FUEL STORAGE BUILDING (CPP-603). PHOTO TAKEN LOOKING SOUTH. INL PHOTO NUMBER HD-54-17-1. Mike Crane, Photographer, 8/2005 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  3. 81. GENERAL VIEW FROM NORTH OF FUEL STORAGE TANK ON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    81. GENERAL VIEW FROM NORTH OF FUEL STORAGE TANK ON SOUTH END OF SLC-3W FUEL APRON. CORNER OF CONTROL SKID VISIBLE ON LEFT. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  4. Clean Air Program : summary assessment of the safety, health, environmental and system risks of alternative fuel

    DOT National Transportation Integrated Search

    1995-08-01

    This is a handbook of safety, health, and the environmental issues of the production, bulk transport, and bult storage of alternative fuels with emphasis on transport and storage. Fuels included are: 1) compressed natural gas, 2) liquefied natural ga...

  5. Microbial Condition of Water Samples from Foreign Fuel Storage Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berry, C.J.; Fliermans, C.B.; Santo Domingo, J.

    1997-10-30

    In order to assess the microbial condition of foreign nuclear fuel storage facilities, fourteen different water samples were received from facilities outside the United States that have sent spent nuclear fuel to SRS for wet storage. Each water sample was analyzed for microbial content and activity as determined by total bacteria, viable aerobic bacteria, viable anaerobic bacteria, viable sulfate- reducing bacteria, viable acid-producing bacteria and enzyme diversity. The results for each water sample were then compared to other foreign samples and to data from the receiving basin for off- site fuel (RBOF) at SRS.

  6. Electrochemical Energy Storage for an Orbiting Space Station

    NASA Technical Reports Server (NTRS)

    Martin, R. E.

    1981-01-01

    The system weight of a multi hundred kilowatt fuel cell electrolysis cell energy storage system based upon alkaline electrochemical cell technology for use in a future orbiting space station in low Earth orbit (LEO) was studied. Preliminary system conceptual design, fuel cell module performance characteristics, subsystem and system weights, and overall system efficiency are identified. The impact of fuel cell module operating temperature and efficiency upon energy storage system weight is investigated. The weight of an advanced technology system featuring high strength filament wound reactant tanks and a fuel cell module employing lightweight graphite electrolyte reservoir plates is defined.

  7. 30 CFR 57.8520 - Ventilation plan.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... mine openings adjacent to the mine; (9) Locations of permanent underground shops, diesel fuel storage depots, oil fuel storage depots, hoist rooms, compressors, battery charging stations and explosive...

  8. Dry-vault storage of spent fuel at the CASCAD facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baillif, L.; Guay, M.

    A new modular dry storage vault concept using vertical metallic wells cooled by natural convection has been developed by the Commissariat a l'Energie Atomique and Societe Generale pour les Techniques Nouvelles to accommodate special fuels for high-level wastes. Basic specifications and design criteria have been followed to guarantee a double containment system and cooling to maintain the fuel below an acceptable temperature. The double containment is provided by two static barriers: At the reactor, fuels are placed in containers playing the role of the first barrier; the storage wells constitute the second barrier. Spent fuel placed in wells is cooledmore » by natural convection: a boundary layer is created along the outer side of the well. The heated air rises along the well leading to a thermosiphon flow that extracts the heat released. For heat transfer, studies, computations, and experimental tests have been carried out to calculate and determine the temperature of the containers and the fuel rod temperatures in various situations. The CASCAD vault storage can be applied to light water reactor (LWR) fuels without any difficulties if two requirements are satisfied: (1) Spend fuels have to be inserted in tight canisters. (2) Spent fuels have to be received only after a minimum decay time of 5 yr.« less

  9. High Energy Density Regenerative Fuel Cell Systems for Terrestrial Applications

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth A.

    1999-01-01

    Regenerative Fuel Cell System (RFCS) technology for energy storage has been a NASA power system concept for many years. Compared to battery-based energy storage systems, RFCS has received relatively little attention or resources for development because the energy density and electrical efficiency were not sufficiently attractive relative to advanced battery systems. Even today, RFCS remains at a very low technology readiness level (TRL of about 2 indicating feasibility has been demonstrated). Commercial development of the Proton Exchange Membrane (PEM) fuel cells for automobiles and other terrestrial applications and improvements in lightweight pressure vessel design to reduce weight and improve performance make possible a high energy density RFCS energy storage system. The results from this study of a lightweight RFCS energy storage system for a remotely piloted, solar-powered, high altitude aircraft indicate an energy density up to 790 w-h/kg with electrical efficiency of 53.4% is attainable. Such an energy storage system would allow a solar-powered aircraft to carry hundreds of kilograms of payload and remain in flight indefinitely for use in atmospheric research, earth observation, resource mapping. and telecommunications. Future developments in the areas of hydrogen and oxygen storage, pressure vessel design, higher temperature and higher- pressure fuel cell operation, unitized regenerative fuel cells, and commercial development of fuel cell technology will improve both the energy density and electrical efficiency of the RFCS.

  10. An evaluation of very large airplanes and alternative fuels. Interim report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mikolowsky, W.T.; Noggle, L.W.; Hederman, W.F.

    1976-12-01

    Very large airplanes using alternative fuels are examined in the context of existing and possible future Air Force missions. Synthetic jet fuel (JP), liquid methane, liquid hydrogen, and nuclear propulsion are the fuel alternatives selected for detailed analysis. Conceptual designs of airplanes using each of these fuels were developed and estimates were made of their lifecycle cost and life-cycle energy consumption. Mission analyses were performed to determine the effectiveness of the alternative airplanes in strategic airlift specifically and in the station-keeping role in general. Results indicate that for most military applications airplanes with gross weights in excess of one millionmore » pounds promise to be superior to any comtemporary airplanes in terms of cost-effectiveness and energy-hydrocarbon jet fuel, whether manufactured from oil shale, coal or crude oil, remains the most attractive aviation fuel for future Air Force use. Policy recommendations are made pertaining both to alternative fuels and to advanced-technology large airplanes. Future research and developments are also identified.« less

  11. Chemistry and Nanoscience Research | NREL

    Science.gov Websites

    following research areas: Electrical Energy Storage Lithium-ion and radical organic batteries. Hydrogen and Fuel Cells Fuel cells, and hydrogen production and storage. Photovoltaics Organic photovoltaics

  12. 77 FR 26050 - Burnup Credit in the Criticality Safety Analyses of Pressurized Water Reactor Spent Fuel in...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-02

    ... Pressurized Water Reactor Spent Fuel in Transportation and Storage Casks AGENCY: Nuclear Regulatory Commission... of pressurized water reactor spent nuclear fuel (SNF) in transportation packages and storage casks... for the licensing basis, (b) provide recommendations regarding advanced isotopic depletion and...

  13. Fuel Cells Using the Protic Ionic Liquid and Rotator Phase Solid Electrolyte Principles

    DTIC Science & Technology

    2008-02-13

    Talk “High temperature Polymer Electrolyte Membrane Fuel Cells (HT- PEMFCs ) for Portable Power in Large-Scale Energy Storage Devices”, Paper Number 195...Membrane Fuel Cells (HT- PEMFCs ) for Portable Power in Large-Scale Energy Storage Devices”, Paper Number 195, 212th Meeting of the Electrochemical

  14. 77 FR 37937 - License Renewal Application for Prairie Island Nuclear Generating Plant Independent Spent Fuel...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-25

    ... Prairie Island Nuclear Generating Plant Independent Spent Fuel Storage Installation AGENCY: Nuclear... INFORMATION CONTACT: Pamela Longmire, Ph.D., Project Manager, Licensing Branch, Division of Spent Fuel Storage... February 29, 2012 (ADAMS Accession number ML12065A073), by Prairie Island Nuclear Generating Plant (PINGP...

  15. Evaluating Fuel Leak and Aging Infrastructure at Red Hill, Hawaii, the Largest Underground Fuel Storage Facility in the United States

    EPA Pesticide Factsheets

    Learn about how EPA Region 9, Hawaii’s Department of Health, U.S. Navy, and Defense Logistics Agency are working tprotect human health and the environment at the Red Hill Bulk Fuel Storage Facility in Hawaii.

  16. Nuclear Power Plant Security and Vulnerabilities

    DTIC Science & Technology

    2009-03-18

    Commercial Spent Nuclear Fuel Storage , Public Report...systems that prevent hot nuclear fuel from melting even after the chain reaction has stopped, and storage facilities for highly radioactive spent nuclear ... nuclear fuel cycle facilities must defend against to prevent radiological sabotage and theft of strategic special nuclear material. NRC licensees use

  17. Direct hydrogen fuel cell systems for hybrid vehicles

    NASA Astrophysics Data System (ADS)

    Ahluwalia, Rajesh K.; Wang, X.

    Hybridizing a fuel cell system with an energy storage system offers an opportunity to improve the fuel economy of the vehicle through regenerative braking and possibly to increase the specific power and decrease the cost of the combined energy conversion and storage systems. Even in a hybrid configuration it is advantageous to operate the fuel cell system in a load-following mode and use the power from the energy storage system when the fuel cell alone cannot meet the power demand. This paper discusses an approach for designing load-following fuel cell systems for hybrid vehicles and illustrates it by applying it to pressurized, direct hydrogen, polymer-electrolyte fuel cell (PEFC) systems for a mid-size family sedan. The vehicle level requirements relative to traction power, response time, start-up time and energy conversion efficiency are used to select the important parameters for the PEFC stack, air management system, heat rejection system and the water management system.

  18. Bulk Fuel Storage Facility Cape Canaveral Air Force Station, Florida. Environmental Assessment

    DTIC Science & Technology

    2006-11-01

    Potential DESC Fuel Depot Locations............................................2-7 Figure 2-5: Proposed Action Area Soils Map ... Area (FSA) #4, as the location is required to provide secure office space. 4) Maintain fuel operations in compliance with federal, state, and local...at the CCAFS fueling station(s) to Aboveground Storage Tanks (ASTs). Six alternative sites (five locations in the CCAFS Industrial Area and one

  19. 40 CFR 1054.145 - Are there interim provisions that apply only for a limited time?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... scheduled emission-related maintenance falls within 10 hours of a test point, delay the maintenance until the engine reaches the test point. Measure emissions before and after peforming the maintenance. Use... example, for the fuel line permeation standards starting in 2012, equipment manufacturers may order a...

  20. Safety evaluation for packaging transportation of equipment for tank 241-C-106 waste sluicing system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calmus, D.B.

    1994-08-25

    A Waste Sluicing System (WSS) is scheduled for installation in nd waste storage tank 241-C-106 (106-C). The WSS will transfer high rating sludge from single shell tank 106-C to double shell waste tank 241-AY-102 (102-AY). Prior to installation of the WSS, a heel pump and a transfer pump will be removed from tank 106-C and an agitator pump will be removed from tank 102-AY. Special flexible receivers will be used to contain the pumps during removal from the tanks. After equipment removal, the flexible receivers will be placed in separate containers (packagings). The packaging and contents (packages) will be transferredmore » from the Tank Farms to the Central Waste Complex (CWC) for interim storage and then to T Plant for evaluation and processing for final disposition. Two sizes of packagings will be provided for transferring the equipment from the Tank Farms to the interim storage facility. The packagings will be designated as the WSSP-1 and WSSP-2 packagings throughout the remainder of this Safety Evaluation for Packaging (SEP). The WSSP-1 packagings will transport the heel and transfer pumps from 106-C and the WSSP-2 packaging will transport the agitator pump from 102-AY. The WSSP-1 and WSSP-2 packagings are similar except for the length.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This volume contains the interim change notice for physical testing. Covered are: properties of solutions, slurries, and sludges; rheological measurement with cone/plate viscometer; % solids determination; particle size distribution by laser scanning; penetration resistance of radioactive waste; operation of differential scanning calorimeter, thermogravimetric analyzer, and high temperature DTA and DSC; sodium rod for sodium bonded fuel; filling SP-100 fuel capsules; sodium filling of BEATRIX-II type capsules; removal of alkali metals with ammonia; specific gravity of highly radioactive solutions; bulk density of radioactive granular solids; purification of Li by hot gettering/filtration; and Li filling of MOTA capsules.

  2. Coordinating Support of Fuels and Lubricant Research and Development (R&D) 2. Delivery Order 0002: Handbook of Aviation Fuel Properties - 2004 Third Edition

    DTIC Science & Technology

    2004-12-01

    interim, a de Havilland Comet with Ghost engines began service for the British Overseas Airways Corporation (BOAC) in 1952. Both aircraft flew on the... Havilland Comet aircraft. Meanwhile, from 1950 through 1958, most U.S. and British air carriers used piston-powered aircraft such as the Douglas DC-6, DC...and a BOAC de Havilland Comet 4B with Rolls-Royce Avon engines. Both aircraft used kerosine per DERD 2482. As these aircraft did not have extremely

  3. Atomic Processes Relevant to Antimatter Fuel Production and Storage

    DTIC Science & Technology

    1994-05-31

    TO ANTIMATTER FUEL ’ |PRODUCTION AND STORAGE DTIC S nELECTE JUL0 11994 D FINAL REPORT F * 31 MAY 1994 I * Prepared by: J.B.A. Mitchell Dept. of Physics...Atomic Processes Relevant to Antimatter Fuel Production and Storage 12. PERSONAL AUTHOR(S) J.B.A. Mitchell I 3a. TYPE JFRE qT 113b. TIME COVERED 114... antimatter production, this investigation did shed a great deal of light on the recombination process in general and so is worthy of inclusion in this report

  4. Environmental Assessment for Construction and Repair of Fuel Storage and Offloading Facilities at Kirtland Air Force Base

    DTIC Science & Technology

    2005-09-01

    G Ot-T GOO) D. BRENT WILSON, P.E. Base Civil Engineer Kirtland Air Force Base Kirtland AFB Fuel Storage and Ofjloading Facilities Construction...September 2005 A-1 3 77 MSG/CEVQ DEPARTMENT OF THE AIR FORCE 3 77th Civil Engineer Division (AFMC) 2050 Wyoming Blvd SE, Suite 120 Kirtland AFB NM...FINAL FINDING OF NO SIGNIFICANT IMPACT FOR THE FOR CONSTRUCTION AND REP AIR OF FUEL STORAGE AND OFFLOADING FACILITIES AT KIRTLAND AIR FORCE

  5. Progress in hydrogen energy; Proceedings of the National Workshop on Hydrogen Energy, New Delhi, India, July 4-6, 1985

    NASA Astrophysics Data System (ADS)

    Dahiya, R. P.

    1987-06-01

    The present conference on the development status of hydrogen energy technologies considers electrolytic hydrogen production, photoelectrolytic hydrogen production, microorganic hydrogen production, OTEC hydrogen production, solid-state materials for hydrogen storage, and a thin-film hydrogen storage system. Also discussed are the cryogenic storage of hydrogen; liquid hydrogen fuel for ground, air, and naval vehicles; hydrogen-fuel internal combustion engines; the use of hydrogen for domestic, commercial, and industrial applications; hydrogen fuel-cell development; enzyme electrodes for the use of hydrogen-rich fuels in biochemical fuel cells; an analysis of H2-O2 MHD generators; and hydrogen energy technology characterization and evaluation on the basis of an input-output structure.

  6. System and method for determining an ammonia generation rate in a three-way catalyst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Min; Perry, Kevin L; Kim, Chang H

    A system according to the principles of the present disclosure includes a rate determination module, a storage level determination module, and an air/fuel ratio control module. The rate determination module determines an ammonia generation rate in a three-way catalyst based on a reaction efficiency and a reactant level. The storage level determination module determines an ammonia storage level in a selective catalytic reduction (SCR) catalyst positioned downstream from the three-way catalyst based on the ammonia generation rate. The air/fuel ratio control module controls an air/fuel ratio of an engine based on the ammonia storage level.

  7. A Computerized Classroom Language Management and Recording System for Deaf and Hard of Hearing Children.

    ERIC Educational Resources Information Center

    Bornstein, Harry; Casella, Vicki

    This interim report describes the development of a networked computerized classroom language management and recording system to assist teachers of children who are deaf or hard-of-hearing. The system will provide storage and access capability for such information as changes in instruction, language learning progress, modifications in communication…

  8. 75 FR 81031 - Consideration of Environmental Impacts of Temporary Storage of Spent Fuel After Cessation of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-23

    ... Part VI Nuclear Regulatory Commission 10 CFR Part 51 Consideration of Environmental Impacts of... Consideration of Environmental Impacts of Temporary Storage of Spent Fuel After Cessation of Reactor Operation... Commission (NRC or Commission) is revising its generic determination on the environmental impacts of storage...

  9. 86. VIEW OF LIQUID NITROGEN STORAGE FACILITY LOCATED DIRECTLY WEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    86. VIEW OF LIQUID NITROGEN STORAGE FACILITY LOCATED DIRECTLY WEST OF THE SLC-3W FUEL APRON. NOTE HEAT EXCHANGER IN BACKGROUND. CAMERA TOWER LOCATED DIRECTLY IN FRONT OF LIQUID NITROGEN STORAGE TANK. NITROGEN AND HELIUM GAS STORAGE TANKS AT SOUTH END OF FUEL APRON IN LOWER RIGHT CORNER. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  10. SSH2S: Hydrogen storage in complex hydrides for an auxiliary power unit based on high temperature proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Baricco, Marcello; Bang, Mads; Fichtner, Maximilian; Hauback, Bjorn; Linder, Marc; Luetto, Carlo; Moretto, Pietro; Sgroi, Mauro

    2017-02-01

    The main objective of the SSH2S (Fuel Cell Coupled Solid State Hydrogen Storage Tank) project was to develop a solid state hydrogen storage tank based on complex hydrides and to fully integrate it with a High Temperature Proton Exchange Membrane (HT-PEM) fuel cell stack. A mixed lithium amide/magnesium hydride system was used as the main storage material for the tank, due to its high gravimetric storage capacity and relatively low hydrogen desorption temperature. The mixed lithium amide/magnesium hydride system was coupled with a standard intermetallic compound to take advantage of its capability to release hydrogen at ambient temperature and to ensure a fast start-up of the system. The hydrogen storage tank was designed to feed a 1 kW HT-PEM stack for 2 h to be used for an Auxiliary Power Unit (APU). A full thermal integration was possible thanks to the high operation temperature of the fuel cell and to the relative low temperature (170 °C) for hydrogen release from the mixed lithium amide/magnesium hydride system.

  11. Development and Experimental Benchmark of Simulations to Predict Used Nuclear Fuel Cladding Temperatures during Drying and Transfer Operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greiner, Miles

    Radial hydride formation in high-burnup used fuel cladding has the potential to radically reduce its ductility and suitability for long-term storage and eventual transport. To avoid this formation, the maximum post-reactor temperature must remain sufficiently low to limit the cladding hoop stress, and so that hydrogen from the existing circumferential hydrides will not dissolve and become available to re-precipitate into radial hydrides under the slow cooling conditions during drying, transfer and early dry-cask storage. The objective of this research is to develop and experimentallybenchmark computational fluid dynamics simulations of heat transfer in post-pool-storage drying operations, when high-burnup fuel cladding ismore » likely to experience its highest temperature. These benchmarked tools can play a key role in evaluating dry cask storage systems for extended storage of high-burnup fuels and post-storage transportation, including fuel retrievability. The benchmarked tools will be used to aid the design of efficient drying processes, as well as estimate variations of surface temperatures as a means of inferring helium integrity inside the canister or cask. This work will be conducted effectively because the principal investigator has experience developing these types of simulations, and has constructed a test facility that can be used to benchmark them.« less

  12. Benchmarking criticality analysis of TRIGA fuel storage racks.

    PubMed

    Robinson, Matthew Loren; DeBey, Timothy M; Higginbotham, Jack F

    2017-01-01

    A criticality analysis was benchmarked to sub-criticality measurements of the hexagonal fuel storage racks at the United States Geological Survey TRIGA MARK I reactor in Denver. These racks, which hold up to 19 fuel elements each, are arranged at 0.61m (2 feet) spacings around the outer edge of the reactor. A 3-dimensional model was created of the racks using MCNP5, and the model was verified experimentally by comparison to measured subcritical multiplication data collected in an approach to critical loading of two of the racks. The validated model was then used to show that in the extreme condition where the entire circumference of the pool was lined with racks loaded with used fuel the storage array is subcritical with a k value of about 0.71; well below the regulatory limit of 0.8. A model was also constructed of the rectangular 2×10 fuel storage array used in many other TRIGA reactors to validate the technique against the original TRIGA licensing sub-critical analysis performed in 1966. The fuel used in this study was standard 20% enriched (LEU) aluminum or stainless steel clad TRIGA fuel. Copyright © 2016. Published by Elsevier Ltd.

  13. Lightweight cryogenic-compatible pressure vessels for vehicular fuel storage

    DOEpatents

    Aceves, Salvador; Berry, Gene; Weisberg, Andrew H.

    2004-03-23

    A lightweight, cryogenic-compatible pressure vessel for flexibly storing cryogenic liquid fuels or compressed gas fuels at cryogenic or ambient temperatures. The pressure vessel has an inner pressure container enclosing a fuel storage volume, an outer container surrounding the inner pressure container to form an evacuated space therebetween, and a thermal insulator surrounding the inner pressure container in the evacuated space to inhibit heat transfer. Additionally, vacuum loss from fuel permeation is substantially inhibited in the evacuated space by, for example, lining the container liner with a layer of fuel-impermeable material, capturing the permeated fuel in the evacuated space, or purging the permeated fuel from the evacuated space.

  14. Sustainable and Renewable Energy Resources — Alternative Forms of Energy

    NASA Astrophysics Data System (ADS)

    Rao, M. C.

    In order to move towards a sustainable existence in our critically energy dependent society there is a continuing need to adopt environmentally sustainable methods for energy production, storage and conversion. A fuel cell is an energy conversion device that generates electricity and heat by electrochemically combining a gaseous fuel and an oxidant gas through electrodes and across an ion conducting electrolyte. The use of fuel cells in both stationary and mobile power applications can offer significant advantages for the sustainable conversion of energy. Currently the cost of fuel cell systems is greater than that of similar, already available products, mainly because of small scale production and the lack of economies of scale. The best fuel for fuel cells is hydrogen and another barrier is fuel flexibility. Benefits arising from the use of fuel cells include efficiency and reliability, as well as economy, unique operating characteristics and planning flexibility and future development potential. By integrating the application of fuel cells, in series with renewable energy storage and production methods, sustainable energy requirements may be realized. As fuel cell application increases and improved fuel storage methods and handlings are developed, it is expected that the costs associated with fuel cell systems will fall dramatically in the future.

  15. Study on Calculation of Liquid Level And Storage of Tanks for LNG-fueled Vessels

    NASA Astrophysics Data System (ADS)

    Li, Kun; Wang, Guoqing; Liu, Chang

    2018-01-01

    As the ongoing development of the application of LNG as a clean energy in waterborne transport industry, the fleet scale of LNG-fueled vessels enlarged and the safety operation has attracted more attention in the industry. Especially the accurate detection of liquid level of LNG tanks is regarded as an important issue to ensure a safe and stable operation of LNG-fueled ships and a key parameter to keep the proper functioning of marine fuel storage system, supply system and safety control system. At present, detection of LNG tank liquid level mainly adopts differential pressure detection method. Liquid level condition could be found from the liquid level reference tables. However in practice, since LNG-fueled vessels are generally not in a stationary state, liquid state within the LNG tanks will constantly change, the detection of storage of tanks only by reference to the tables will cause deviation to some extent. By analyzing the temperature under different pressure, the effects of temperature change on density and volume integration calculation, a method of calculating the liquid level and storage of LNG tanks is put forward making the calculation of liquid level and actual storage of LNG tanks more accurately and providing a more reliable basis for the calculation of energy consumption level and operation economy for LNG-fueled vessels.

  16. 77 FR 60479 - Burnup Credit in the Criticality Safety Analyses of Pressurized Water Reactor Spent Fuel in...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-03

    ... Pressurized Water Reactor Spent Fuel in Transportation and Storage Casks AGENCY: Nuclear Regulatory Commission... 3, entitled, ``Burnup Credit in the Criticality Safety Analyses of PWR [Pressurized Water Reactor... water reactor spent nuclear fuel (SNF) in transportation packages and storage casks. SFST-ISG-8...

  17. 10 CFR 72.8 - Denial of licensing by Agreement States.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General... the storage of spent fuel and reactor-related GTCC waste in an ISFSI or the storage of spent fuel, high-level radioactive waste, and reactor-related GTCC waste in an MRS. [66 FR 51839, Oct. 11, 2001] ...

  18. 10 CFR 72.22 - Contents of application: General and financial information.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN... of spent fuel, high-level radioactive waste, and/or reactor-related GTCC waste from storage. (f) Each applicant for a license under this part to receive, transfer, and possess power reactor spent fuel, power...

  19. 10 CFR 72.8 - Denial of licensing by Agreement States.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General... the storage of spent fuel and reactor-related GTCC waste in an ISFSI or the storage of spent fuel, high-level radioactive waste, and reactor-related GTCC waste in an MRS. [66 FR 51839, Oct. 11, 2001] ...

  20. 75 FR 47536 - Foreign-Trade Zone 202-Los Angeles, CA; Application for Expansion

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-06

    ... Angeles: Proposed Site 25 (665.5 acres)--to include the jet fuel storage and distribution system located... would be as follows: the Los Angeles International Airport jet-fuel storage tanks and delivery system... LAXFUEL Corporation and will be used to provide jet fuel to airlines serving the Los Angeles International...

  1. Optimization to reduce fuel consumption in charge depleting mode

    DOEpatents

    Roos, Bryan Nathaniel; Martini, Ryan D.

    2014-08-26

    A powertrain includes an internal combustion engine, a motor utilizing electrical energy from an energy storage device, and a plug-in connection. A Method for controlling the powertrain includes monitoring a fuel cut mode, ceasing a fuel flow to the engine based upon the fuel cut mode, and through a period of operation including acceleration of the powertrain, providing an entirety of propelling torque to the powertrain with the electrical energy from the energy storage device based upon the fuel cut mode.

  2. Permeation of Military Fuels Through Nitrile-Coated Fabrics Used for Collapsible Fuel Storage Containers

    DTIC Science & Technology

    2014-03-01

    resistance; while decreasing the amount of acrylonitrile content improves low-temperature flexibility, but increases transport rates of military fuels through...tanks do suffer from an increase in total weight and reduced flexibility, which may influence storage, transportation , and setup of the containers...exterior surfaces. The transport of the fuel can be described by Fick’s first law (11): c J=-P x   (1) Where J is the fuel vapor flux, P is

  3. Composition and Chemical Stability of Motor Fuels,

    DTIC Science & Technology

    Fuels, *Hydrocarbons, Cycloalkanes, Chemical analysis, Gasoline, Diesel fuels, Fuel additives, Chemical reactions, Stability, Jet engine fuels...Aviation gasoline, Aviation fuels, Chemical composition, Aromatic hydrocarbons, Unsaturated hydrocarbons, Storage, USSR, Translations, Fuel systems, Alkanes

  4. ICPSU Install onto Mobile Launcher

    NASA Image and Video Library

    2018-03-16

    A heavy-lift crane slowly lifts the Interim Cryogenic Propulsion Stage Umbilical (ICPSU) high up for installation on the tower of the mobile launcher (ML) at NASA's Kennedy Space Center in Florida. The last of the large umbilicals to be installed, the ICPSU will provide super-cooled hydrogen and liquid oxygen to the Space Launch System (SLS) rocket's interim cryogenic propulsion stage, or upper stage, at T-0 for Exploration Mission-1. The umbilical is located at about the 240-foot-level of the mobile launcher and will supply fuel, oxidizer, gaseous helium, hazardous gas leak detection, electrical commodities and environment control systems to the upper stage of the SLS rocket during launch. Exploration Ground Systems is overseeing installation of the umbilicals on the ML.

  5. ICPSU Install onto Mobile Launcher

    NASA Image and Video Library

    2018-03-16

    A crane and rigging lines are used to install the Interim Cryogenic Propulsion Stage Umbilical (ICPSU) high up on the mobile launcher (ML) at NASA's Kennedy Space Center in Florida. The last of the large umbilicals to be installed, the ICPSU will provide super-cooled hydrogen and liquid oxygen to the Space Launch System (SLS) rocket's interim cryogenic propulsion stage, or upper stage, at T-0 for Exploration Mission-1. The umbilical is located at about the 240-foot-level of the mobile launcher and will supply fuel, oxidizer, gaseous helium, hazardous gas leak detection, electrical commodities and environment control systems to the upper stage of the SLS rocket during launch. Exploration Ground Systems is overseeing installation of the umbilicals on the ML.

  6. ICPSU Install onto Mobile Launcher - Preps for Lift

    NASA Image and Video Library

    2018-03-15

    Construction workers with JP Donovan assist with preparations to lift and install the Interim Cryogenic Propulsion Stage Umbilical on the tower of the mobile launcher at NASA's Kennedy Space Center in Florida. The last of the large umbilicals to be installed, the ICPSU will provide super-cooled hydrogen and liquid oxygen to the Space Launch System (SLS) rocket's interim cryogenic propulsion stage, or upper stage, at T-0 for Exploration Mission-1. The umbilical is located at about the 240-foot-level of the mobile launcher and will supply fuel, oxidizer, gaseous helium, hazardous gas leak detection, electrical commodities and environment control systems to the upper stage of the SLS rocket during launch. Exploration Ground Systems is overseeing installation of the umbilicals on the ML.

  7. ICPSU Install onto Mobile Launcher

    NASA Image and Video Library

    2018-03-16

    Construction workers with JP Donovan install the Interim Cryogenic Propulsion Stage Umbilical (ICPSU) at about the 240-foot-level of the mobile launcher (ML) tower at NASA's Kennedy Space Center in Florida. The last of the large umbilicals to be installed, the ICPSU will provide super-cooled hydrogen and liquid oxygen to the Space Launch System (SLS) rocket's interim cryogenic propulsion stage, or upper stage, at T-0 for Exploration Mission-1. The umbilical is located at about the 240-foot-level of the mobile launcher and will supply fuel, oxidizer, gaseous helium, hazardous gas leak detection, electrical commodities and environment control systems to the upper stage of the SLS rocket during launch. Exploration Ground Systems is overseeing installation of the umbilicals on the ML.

  8. ICPSU Install onto Mobile Launcher

    NASA Image and Video Library

    2018-03-16

    A heavy-lift crane slowly lifts the Interim Cryogenic Propulsion Stage Umbilical (ICPSU) up for installation on the tower of the mobile launcher (ML) at NASA's Kennedy Space Center in Florida. The last of the large umbilicals to be installed, the ICPSU will provide super-cooled hydrogen and liquid oxygen to the Space Launch System (SLS) rocket's interim cryogenic propulsion stage, or upper stage, at T-0 for Exploration Mission-1. The umbilical is located at about the 240-foot-level of the mobile launcher and will supply fuel, oxidizer, gaseous helium, hazardous gas leak detection, electrical commodities and environment control systems to the upper stage of the SLS rocket during launch. Exploration Ground Systems is overseeing installation of the umbilicals on the ML.

  9. ICPSU Install onto Mobile Launcher - Preps for Lift

    NASA Image and Video Library

    2018-03-15

    The mobile launcher (ML) tower is lit up before early morning sunrise at NASA's Kennedy Space Center in Florida. Preparations are underway to lift and install the Interim Cryogenic Propulsion Stage Umbilical (ICPSU) at about the 240-foot-level on the tower. The last of the large umbilicals to be installed, the ICPSU will provide super-cooled hydrogen and liquid oxygen to the Space Launch System (SLS) rocket's interim cryogenic propulsion stage, or upper stage, at T-0 for Exploration Mission-1. The umbilical will supply fuel, oxidizer, gaseous helium, hazardous gas leak detection, electrical commodities and environment control systems to the upper stage of the SLS rocket during launch. Exploration Ground Systems is overseeing installation of the umbilicals on the ML.

  10. 76 FR 17019 - List of Approved Spent Fuel Storage Casks: HI-STORM Flood/Wind Addition

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-28

    ... Storage Casks: HI-STORM Flood/Wind Addition AGENCY: Nuclear Regulatory Commission. ACTION: Direct final... regulations to add the HI-STORM Flood/Wind cask system to the ``List of Approved Spent Fuel Storage Casks... cask designs. Discussion This rule will add the Holtec HI-STORM Flood/Wind (FW) cask system to the list...

  11. Hydrogen as a fuel for today and tomorrow: expectations for advanced hydrogen storage materials/systems research.

    PubMed

    Hirose, Katsuhiko

    2011-01-01

    History shows that the evolution of vehicles is promoted by several environmental restraints very similar to the evolution of life. The latest environmental strain is sustainability. Transport vehicles are now facing again the need to advance to use sustainable fuels such as hydrogen. Hydrogen fuel cell vehicles are being prepared for commercialization in 2015. Despite intensive research by the world's scientists and engineers and recent advances in our understanding of hydrogen behavior in materials, the only engineering phase technology which will be available for 2015 is high pressure storage. Thus industry has decided to implement the high pressure tank storage system. However the necessity of smart hydrogen storage is not decreasing but rather increasing because high market penetration of hydrogen fuel cell vehicles is expected from around 2025 onward. In order to bring more vehicles onto the market, cheaper and more compact hydrogen storage is inevitable. The year 2025 seems a long way away but considering the field tests and large scale preparation required, there is little time available for research. Finding smart materials within the next 5 years is very important to the success of fuel cells towards a low carbon sustainable world.

  12. Unitized Regenerative Fuel Cell System Gas Dryer/Humidifier Analytical Model Development

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth A.; Jakupca, Ian

    2004-01-01

    A lightweight Unitized Regenerative Fuel Cell (URFC) Energy Storage System concept is being developed at the NASA Glenn Research Center (GRC). This Unitized Regenerative Fuel Cell System (URFCS) is unique in that it uses Regenerative Gas Dryers/Humidifiers (RGD/H) that are mounted on the surface of the gas storage tanks that act as the radiators for thermal control of the Unitized Regenerative Fuel Cell System (URFCS). As the gas storage tanks cool down during URFCS charging the RGD/H dry the hydrogen and oxygen gases produced by electrolysis. As the gas storage tanks heat up during URFCS discharging, the RGD/H humidify the hydrogen and oxygen gases used by the fuel cell. An analytical model was developed to simulate the URFCS RGD/H. The model is in the form of a Microsoft (registered trademark of Microsoft Corporation) Excel worksheet that allows the investigation of the RGD/H performance. Finite Element Analysis (FEA) modeling of the RGD/H and the gas storage tank wall was also done to analyze spatial temperature distribution within the RGD/H and the localized tank wall. Test results obtained from the testing of the RGD/H in a thermal vacuum environment were used to corroborate the analyses.

  13. Alternative Fuels Data Center: Propane Vehicles

    Science.gov Websites

    dedicated and bi-fuel vehicles is also comparable. Extra storage tanks can increase range, but the tank size propane or gasoline vehicles have. Likewise, larger storage tanks can increase range, but the additional

  14. U.S. Naval Base, Pearl Harbor, Red Hill Underground Fuel Storage ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    U.S. Naval Base, Pearl Harbor, Red Hill Underground Fuel Storage System, Linear underground system extending from North Road to Icarus Way, Joint Base Pearl Harbor-Hickam, Honolulu, Honolulu County, HI

  15. 10 CFR 72.128 - Criteria for spent fuel, high-level radioactive waste, reactor-related greater than Class C waste...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., reactor-related greater than Class C waste, and other radioactive waste storage and handling. 72.128... STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General Design Criteria § 72.128 Criteria for spent fuel, high-level radioactive waste, reactor...

  16. 10 CFR 72.128 - Criteria for spent fuel, high-level radioactive waste, reactor-related greater than Class C waste...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., reactor-related greater than Class C waste, and other radioactive waste storage and handling. 72.128... STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General Design Criteria § 72.128 Criteria for spent fuel, high-level radioactive waste, reactor...

  17. Sensor system for fuel transport vehicle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Earl, Dennis Duncan; McIntyre, Timothy J.; West, David L.

    An exemplary sensor system for a fuel transport vehicle can comprise a fuel marker sensor positioned between a fuel storage chamber of the vehicle and an access valve for the fuel storage chamber of the vehicle. The fuel marker sensor can be configured to measure one or more characteristics of one or more fuel markers present in the fuel adjacent the sensor, such as when the marked fuel is unloaded at a retail station. The one or more characteristics can comprise concentration and/or identity of the one or more fuel markers in the fuel. Based on the measured characteristics ofmore » the one or more fuel markers, the sensor system can identify the fuel and/or can determine whether the fuel has been adulterated after the marked fuel was last measured, such as when the marked fuel was loaded into the vehicle.« less

  18. 78 FR 73566 - Standard Format and Content for a License Application for an Independent Spent Fuel Storage...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-06

    ...The U.S. Nuclear Regulatory Commission (NRC) is issuing for public comment draft regulatory guide (DG), DG-3042, ``Standard Format and Content for a License Application for an Independent Spent Fuel Storage Installation or a Monitored Retrievable Storage Facility.'' This draft regulatory guide is proposed revision 2 of Regulatory Guide 3.50, which provides a format that the NRC considers acceptable for submitting the information for license applications to store spent nuclear fuel, high-level radioactive waste, and/or reactor-related Greater than Class C waste.

  19. Report on UQ and PCMM Analysis of Vacuum Drying for UFD S&T Gaps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M. Fluss

    2015-08-31

    This report discusses two phenomena that could affect the safety, licensing, transportation, storage, and disposition of the spent fuel storage casks and their contents (radial hydriding during drying and water retention after drying) associated with the drying of canisters for dry spent fuel storage. The report discusses modeling frameworks and evaluations that are, or have been, developed as a means to better understand these phenomena. Where applicable, the report also discusses data needs and procedures for monitoring or evaluating the condition of storage containers during and after drying. A recommendation for the manufacturing of a fully passivated fuel rod, resistantmore » to oxidation and hydriding is outlined.« less

  20. Chemical hydrogen storage material property guidelines for automotive applications

    NASA Astrophysics Data System (ADS)

    Semelsberger, Troy A.; Brooks, Kriston P.

    2015-04-01

    Chemical hydrogen storage is the sought after hydrogen storage media for automotive applications because of the expected low pressure operation (<20 atm), moderate temperature operation (<200 °C), system gravimetric capacities (>0.05 kg H2/kgsystem), and system volumetric capacities (>0.05 kg H2/Lsystem). Currently, the primary shortcomings of chemical hydrogen storage are regeneration efficiency, fuel cost and fuel phase (i.e., solid or slurry phase). Understanding the required material properties to meet the DOE Technical Targets for Onboard Hydrogen Storage Systems is a critical knowledge gap in the hydrogen storage research community. This study presents a set of fluid-phase chemical hydrogen storage material property guidelines for automotive applications meeting the 2017 DOE technical targets. Viable material properties were determined using a boiler-plate automotive system design. The fluid-phase chemical hydrogen storage media considered in this study were neat liquids, solutions, and non-settling homogeneous slurries. Material properties examined include kinetics, heats of reaction, fuel-cell impurities, gravimetric and volumetric hydrogen storage capacities, and regeneration efficiency. The material properties, although not exhaustive, are an essential first step in identifying viable chemical hydrogen storage material properties-and most important, their implications on system mass, system volume and system performance.

  1. Alkaline regenerative fuel cell energy storage system for manned orbital satellites

    NASA Technical Reports Server (NTRS)

    Martin, R. E.; Gitlow, B.; Sheibley, D. W.

    1982-01-01

    It is pointed out that the alkaline regenerative fuel cell system represents a highly efficient, lightweight, reliable approach for providing energy storage in an orbiting satellite. In addition to its energy storage function, the system can supply hydrogen and oxygen for attitude control of the satellite and for life support. A summary is presented of the results to date obtained in connection with the NASA-sponsored fuel cell technology advancement program, giving particular attention to the requirements of the alkaline regenerative fuel cell and the low-earth mission. Attention is given to system design guidelines, weight considerations, gold-platinum cathode cell performance, matrix development, the electrolyte reservoir plate, and the cyclical load profile tests.

  2. Extending Spent Fuel Storage until Transport for Reprocessing or Disposal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlsen, Brett; Chiguer, Mustapha; Grahn, Per

    Spent fuel (SF) must be stored until an end point such as reprocessing or geologic disposal is imple-mented. Selection and implementation of an end point for SF depends upon future funding, legisla-tion, licensing and other factors that cannot be predicted with certainty. Past presumptions related to the availability of an end point have often been wrong and resulted in missed opportunities for properly informing spent fuel management policies and strategies. For example, dry cask storage systems were originally conceived to free up needed space in reactor spent fuel pools and also to provide SFS of up to 20 years untilmore » reprocessing and/or deep geological disposal became available. Hundreds of dry cask storage systems are now employed throughout the world and will be relied upon well beyond the originally envisioned design life. Given present and projected rates for the use of nuclear power coupled with projections for SF repro-cessing and disposal capacities, one concludes that SF storage will be prolonged, potentially for several decades. The US Nuclear Regulatory Commission has recently considered 300 years of storage to be appropriate for the characterization and prediction of ageing effects and ageing management issues associated with extending SF storage and subsequent transport. This paper encourages addressing the uncertainty associated with the duration of SF storage by de-sign – rather than by default. It suggests ways that this uncertainty may be considered in design, li-censing, policy, and strategy decisions and proposes a framework for safely extending spent fuel storage until SF can be transported for reprocessing or disposal – regardless of how long that may be. The paper however is not intended to either encourage or facilitate needlessly extending spent fuel storage durations. Its intent is to ensure a design and safety basis with sufficient margin to accommodate the full range of potential future scenarios. Although the focus is primarily on storage of SF from commercial operation, the principles described are equally applicable to SF from research and production reactors as well as high-level radioactive waste.« less

  3. Strength Measurements of Archive K Basin Sludge Using a Soil Penetrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delegard, Calvin H.; Schmidt, Andrew J.; Chenault, Jeffrey W.

    2011-12-06

    Spent fuel radioactive sludge present in the K East and K West spent nuclear fuel storage basins now resides in the KW Basin in six large underwater engineered containers. The sludge will be dispositioned in two phases under the Sludge Treatment Project: (1) hydraulic retrieval into sludge transport and storage containers (STSCs) and transport to interim storage in Central Plateau and (2) retrieval from the STSCs, treatment, and packaging for shipment to the Waste Isolation Pilot Plant. In the years the STSCs are stored, sludge strength is expected to increase through chemical reaction, intergrowth of sludge crystals, and compaction andmore » dewatering by settling. Increased sludge strength can impact the type and operation of the retrieval equipment needed prior to final sludge treatment and packaging. It is important to determine whether water jetting, planned for sludge retrieval from STSCs, will be effective. Shear strength is a property known to correlate with the effectiveness of water jetting. Accordingly, the unconfined compressive strengths (UCS) of archive K Basin sludge samples and sludge blends were measured using a pocket penetrometer modified for hot cell use. Based on known correlations, UCS values can be converted to shear strengths. Twenty-six sludge samples, stored in hot cells for a number of years since last being disturbed, were identified as potential candidates for UCS measurement and valid UCS measurements were made for twelve, each of which was found as moist or water-immersed solids at least 1/2-inch deep. Ten of the twelve samples were relatively weak, having consistencies described as 'very soft' to 'soft'. Two of the twelve samples, KE Pit and KC-4 P250, were strong with 'very stiff' and 'stiff' consistencies described, respectively, as 'can be indented by a thumb nail' or 'can be indented by thumb'. Both of these sludge samples are composites collected from KE Basin floor and Weasel Pit locations. Despite both strong sludges having relatively high iron concentrations, attribution of their high strengths to this factor could not be made with confidence as other measured sludge samples, also from the KE Basin floor and of high iron concentration, were relatively weak. The observed UCS and shear strengths for the two strong sludges were greater than observed in any prior testing of K Basin sludge except for sludge processed at 185 C under hydrothermal conditions.« less

  4. Method for storing spent nuclear fuel in repositories

    DOEpatents

    Schweitzer, Donald G.; Sastre, Cesar; Winsche, Warren

    1981-01-01

    A method for storing radioactive spent fuel in repositories containing sulfur as the storage medium is disclosed. Sulfur is non-corrosive and not subject to radiation damage. Thus, storage periods of up to 100 years are possible.

  5. Method for storing spent nuclear fuel in repositories

    DOEpatents

    Schweitzer, D.G.; Sastre, C.; Winsche, W.

    A method for storing radioactive spent fuel in repositories containing sulfur as the storage medium is disclosed. Sulfur is non-corrosive and not subject to radiation damage. Thus, storage periods of up to 100 years are possible.

  6. Absolute efficiency calibration of 6LiF-based solid state thermal neutron detectors

    NASA Astrophysics Data System (ADS)

    Finocchiaro, Paolo; Cosentino, Luigi; Lo Meo, Sergio; Nolte, Ralf; Radeck, Desiree

    2018-03-01

    The demand for new thermal neutron detectors as an alternative to 3He tubes in research, industrial, safety and homeland security applications, is growing. These needs have triggered research and development activities about new generations of thermal neutron detectors, characterized by reasonable efficiency and gamma rejection comparable to 3He tubes. In this paper we show the state of the art of a promising low-cost technique, based on commercial solid state silicon detectors coupled with thin neutron converter layers of 6LiF deposited onto carbon fiber substrates. A few configurations were studied with the GEANT4 simulation code, and the intrinsic efficiency of the corresponding detectors was calibrated at the PTB Thermal Neutron Calibration Facility. The results show that the measured intrinsic detection efficiency is well reproduced by the simulations, therefore validating the simulation tool in view of new designs. These neutron detectors have also been tested at neutron beam facilities like ISIS (Rutherford Appleton Laboratory, UK) and n_TOF (CERN) where a few samples are already in operation for beam flux and 2D profile measurements. Forthcoming applications are foreseen for the online monitoring of spent nuclear fuel casks in interim storage sites.

  7. Design tool for estimating chemical hydrogen storage system characteristics for light-duty fuel cell vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brooks, Kriston P.; Sprik, Samuel J.; Tamburello, David A.

    The U.S. Department of Energy (DOE) has developed a vehicle framework model to simulate fuel cell-based light-duty vehicle operation for various hydrogen storage systems. This transient model simulates the performance of the storage system, fuel cell, and vehicle for comparison to DOE’s Technical Targets using four drive cycles/profiles. Chemical hydrogen storage models have been developed for the Framework model for both exothermic and endothermic materials. Despite the utility of such models, they require that material researchers input system design specifications that cannot be easily estimated. To address this challenge, a design tool has been developed that allows researchers to directlymore » enter kinetic and thermodynamic chemical hydrogen storage material properties into a simple sizing module that then estimates the systems parameters required to run the storage system model. Additionally, this design tool can be used as a standalone executable file to estimate the storage system mass and volume outside of the framework model and compare it to the DOE Technical Targets. These models will be explained and exercised with existing hydrogen storage materials.« less

  8. Maywood Interim Storage Site annual environmental report for calendar year 1991, Maywood, New Jersey. Formerly Utilized Sites Remedial Action Program (FUSRAP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-09-01

    This document describes the environmental monitoring program at the Maywood Interim Storage Site (MISS) and surrounding area, implementation of the program, and monitoring results for 1991. Environmental monitoring of MISS began in 1984 when congress added the site to the US Department of Energy`s (DOE) Formerly Utilized Sites Remedial Action Program (FUSRAP). FUSRAP is a DOE program to identify and decontaminate or otherwise control sites where residual radioactive materials remain from the early years of the nation`s atomic energy program or from commercial operations causing conditions that Congress has authorized DOE to remedy. The environmental monitoring program at MISS includesmore » sampling networks for radon and thoron concentrations in air; external gamma radiation-exposure; and total uranium, radium-226, radium-228, thorium-232, and thorium-230 concentrations in surface water, sediment, and groundwater. Additionally, several nonradiological parameters are measured in surface water, sediment, and groundwater. Monitoring results are compared with applicable Environmental Protection Agency standards, DOE derived concentration guides (DCGs), dose limits, and other requirements in DOE orders. Environmental standards are established to protect public health and the environment.« less

  9. Hazelwood Interim Storage Site annual environmental report for calendar year 1991, Hazelwood, Missouri

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-09-01

    This document describes the environmental monitoring program at the Hazelwood Interim Storage Site (HISS) and surrounding area, implementation of the program, and monitoring results for 1991. Environmental monitoring of HISS began in 1984 when the site was assigned to the US Department of Energy (DOE) as part of the decontamination research and development project authorized by Congress under the 1984 Energy and Water Development Appropriations Act. DOE placed responsibility for HISS under the Formerly Utilized Sites Remedial Action Program (FUSRAP), a DOE program to decontaminate or otherwise control sites where residual radioactive materials remain from the early years of themore » nation`s atomic energy program or from commercial operations causing conditions that Congress has authorized DOE to remedy. The environmental monitoring program at HISS includes sampling networks for radon concentrations in air; external gamma radiation exposure; and radium-226, thorium-230, and total uranium concentrations in surface water, sediment, and groundwater. Additionally, several nonradiological parameters are measured in groundwater. Monitoring results are compared with applicable Environmental Protection Agency standards, DOE derived concentration guides (DCGs), dose limits, and other requirements in DOE orders. Environmental standards and DCGs are established to protect public health and the environment.« less

  10. 76 FR 33121 - List of Approved Spent Fuel Storage Casks: HI-STORM Flood/Wind Addition

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-08

    ... Storage Casks: HI-STORM Flood/Wind Addition AGENCY: Nuclear Regulatory Commission. ACTION: Direct final... regulations to add the Holtec HI-STORM Flood/Wind cask system to the ``List of Approved Spent Fuel Storage... Title 10 of the Code of Federal Regulations Section 72.214 to add the Holtec HI- STORM Flood/Wind cask...

  11. 75 FR 11375 - Revision of Fee Schedules; Fee Recovery for FY 2010

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-10

    ... Spent Fuel Storage/Reactor Decommissioning..... 2.7 0.2 0.2 Test and Research Reactors 0.2 0.0 0.0 Fuel... categories of licenses. The FY 2009 fee is also shown for comparative purposes. Table V--Rebaselined Annual...) Spent Fuel Storage/Reactor 122,000 143,000 Decommissioning Test and Research Reactors (Non-power 87,600...

  12. Carbonate fuel cell and components thereof for in-situ delayed addition of carbonate electrolyte

    DOEpatents

    Johnsen, Richard [Waterbury, CT; Yuh, Chao-Yi [New Milford, CT; Farooque, Mohammad [Danbury, CT

    2011-05-10

    An apparatus and method in which a delayed carbonate electrolyte is stored in the storage areas of a non-electrolyte matrix fuel cell component and is of a preselected content so as to obtain a delayed time release of the electrolyte in the storage areas in the operating temperature range of the fuel cell.

  13. 78. GENERAL VIEW OF SLC3W FUEL APRON FROM NORTH. HELIUM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    78. GENERAL VIEW OF SLC-3W FUEL APRON FROM NORTH. HELIUM AND NITROGEN STORAGE TANKS AND CONTROL SKIDS IN LEFT CENTER. FUEL STORAGE TANK AND CONTROL SKID IN RIGHT BACKGROUND. SLC-3E MST IN DISTANT RIGHT BACKGROUND. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  14. 11. The work area of a typical fuel storage and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. The work area of a typical fuel storage and transfer basin. The wooden floor was built over the 20-foot deep water-filled basin. Buckets filled with irradiated fuel of dummy slugs in the floor and were hung on trolleys attached to the monorail tracks suspended from the ceiling. 85-H807 - B Reactor, Richland, Benton County, WA

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Exhaust emission and fuel economy tests (1975 Federal Test Procedure) were performed on a 1972 Plymouth Cricket equipped with a turbocharged four-cylinder stratified charge engine (Texaco Controlled Combustion System) and an exhaust catalyst. The tests were conducted for three different fuels; unleaded gasoline, number 2 diesel fuel, and a wide boiling range distillate fuel supplied by Texaco. Average hydrocarbon, carbon monoxide, and nitrogen oxide emissions (without throttling) obtained with diesel fuel were 0.89, 1.88, and 1.91 g/mi, respectively. Hydrocarbon, carbon monoxide and nitrogen oxide levels of 0.88, 0.97, and 1.61 g/mi, respectively, were obtained with the wide boiling range fuel;more » and emission levels of 1.37, 0.50, and 1.84 g/mi, respectively, were obtained with the unleaded gasoline. Average fuel economies for the diesel fuel, wide boiling range fuel, and unleaded gasoline were 30.8, 29.7, and 28.4 mi/gal., respectively. Thus, the turbocharged catalyst equipped stratified charge engine demonstrated the ability to meet 1975 interim levels on three different fuels with high fuel economy. Compliance with the 1977 hydrocarbon standard of 0.41 g/mi will require additional control devices or basic combustion improvement.« less

  16. SWSA 6 interim corrective measures environmental monitoring: FY 1991 results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clapp, R.B.; Marshall, D.S.

    1992-06-01

    In 1988, interim corrective measures (ICMs) were implemented at Solid Waste Storage Area (SWSA) 6 at Oak Ridge National Laboratory. The SWSA 6 site was regulated under the Resource Conservation and Recovery Act (RCRA). The ICMs consist of eight large high-density polyethylene sheets placed as temporary caps to cover trenches known to contain RCRA-regulated materials. Environmental monitoring for FY 1991 consisted of collecting water levels at 13 groundwater wells outside the capped areas and 44 wells in or near the capped areas in order to identify any significant loss of hydrologic isolation of the wastes. Past annual reports show thatmore » the caps are only partially effective in keeping the waste trenches dry and that many trenches consistently or intermittently contain water.« less

  17. SWSA 6 interim corrective measures environmental monitoring: FY 1991 results. Environmental Restoration Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clapp, R.B.; Marshall, D.S.

    1992-06-01

    In 1988, interim corrective measures (ICMs) were implemented at Solid Waste Storage Area (SWSA) 6 at Oak Ridge National Laboratory. The SWSA 6 site was regulated under the Resource Conservation and Recovery Act (RCRA). The ICMs consist of eight large high-density polyethylene sheets placed as temporary caps to cover trenches known to contain RCRA-regulated materials. Environmental monitoring for FY 1991 consisted of collecting water levels at 13 groundwater wells outside the capped areas and 44 wells in or near the capped areas in order to identify any significant loss of hydrologic isolation of the wastes. Past annual reports show thatmore » the caps are only partially effective in keeping the waste trenches dry and that many trenches consistently or intermittently contain water.« less

  18. METHOD AND APPARATUS FOR HANDLING RADIOACTIVE PRODUCTS

    DOEpatents

    Nicoll, D.

    1959-02-24

    A device is described for handling fuel elements being discharged from a nuclear reactor. The device is adapted to be disposed beneath a reactor within the storage canal for spent fuel elements. The device is comprised essentially of a cylinder pivotally mounted to a base for rotational motion between a vertical position. where the mouth of the cylinder is in the top portion of the container for receiving a fuel element discharged from a reactor into the cylinder, and a horizontal position where the mouth of the cylinder is remote from the top portion of the container and the fuel element is discharged from the cylinder into the storage canal. The device is operated by hydraulic pressure means and is provided with a means to prevent contaminated primary liquid coolant in the reactor system from entering the storage canal with the spent fuel element.

  19. Key metrics for HFIR HEU and LEU models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ilas, Germina; Betzler, Benjamin R.; Chandler, David

    This report compares key metrics for two fuel design models of the High Flux Isotope Reactor (HFIR). The first model represents the highly enriched uranium (HEU) fuel currently in use at HFIR, and the second model considers a low-enriched uranium (LEU) interim design fuel. Except for the fuel region, the two models are consistent, and both include an experiment loading that is representative of HFIR's current operation. The considered key metrics are the neutron flux at the cold source moderator vessel, the mass of 252Cf produced in the flux trap target region as function of cycle time, the fast neutronmore » flux at locations of interest for material irradiation experiments, and the reactor cycle length. These key metrics are a small subset of the overall HFIR performance and safety metrics. They were defined as a means of capturing data essential for HFIR's primary missions, for use in optimization studies assessing the impact of HFIR's conversion from HEU fuel to different types of LEU fuel designs.« less

  20. Fuel transfer system

    DOEpatents

    Townsend, Harold E.; Barbanti, Giancarlo

    1994-01-01

    A nuclear fuel bundle fuel transfer system includes a transfer pool containing water at a level above a reactor core. A fuel transfer machine therein includes a carriage disposed in the transfer pool and under the water for transporting fuel bundles. The carriage is selectively movable through the water in the transfer pool and individual fuel bundles are carried vertically in the carriage. In a preferred embodiment, a first movable bridge is disposed over an upper pool containing the reactor core, and a second movable bridge is disposed over a fuel storage pool, with the transfer pool being disposed therebetween. A fuel bundle may be moved by the first bridge from the reactor core and loaded into the carriage which transports the fuel bundle to the second bridge which picks up the fuel bundle and carries it to the fuel storage pool.

Top