146. FUEL LINE TO SKID 2 (FUEL LOADER) IN FUEL ...
146. FUEL LINE TO SKID 2 (FUEL LOADER) IN FUEL CONTROL ROOM (215), LSB (BLDG. 751). LIQUID NITROGEN/HELIUM HEAT EXCHANGER ON RIGHT. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
NASA Technical Reports Server (NTRS)
1971-01-01
The results of a solid polymer electrolyte fuel cell development program are summarized. A base line design was defined, and materials and components of the base line configuration were fabricated and tested. Concepts representing base line capability extensions in the areas of life, power, specific weight and volume, versatility of operation, field maintenance, and thermal control were identified and evaluated. Liaison and coordination with space shuttle contractors resulted in the exchange of engineering data.
SunLine Transit Agency Advanced Technology Fuel Cell Bus Evaluation: Fourth Results Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eudy, L.; Chandler, K.
2013-01-01
SunLine Transit Agency, which provides public transit services to the Coachella Valley area of California, has demonstrated hydrogen and fuel cell bus technologies for more than 10 years. In May 2010, SunLine began demonstrating the advanced technology (AT) fuel cell bus with a hybrid electric propulsion system, fuel cell power system, and lithium-based hybrid batteries. This report describes operations at SunLine for the AT fuel cell bus and five compressed natural gas buses. The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) is working with SunLine to evaluate the bus in real-world service to document the results and helpmore » determine the progress toward technology readiness. NREL has previously published three reports documenting the operation of the fuel cell bus in service. This report provides a summary of the results with a focus on the bus operation from February 2012 through November 2012.« less
On-line detection of key radionuclides for fuel-rod failure in a pressurized water reactor.
Qin, Guoxiu; Chen, Xilin; Guo, Xiaoqing; Ni, Ning
2016-08-01
For early on-line detection of fuel rod failure, the key radionuclides useful in monitoring must leak easily from failing rods. Yield, half-life, and mass share of fission products that enter the primary coolant also need to be considered in on-line analyses. From all the nuclides that enter the primary coolant during fuel-rod failure, (135)Xe and (88)Kr were ultimately chosen as crucial for on-line monitoring of fuel-rod failure. A monitoring system for fuel-rod failure detection for pressurized water reactor (PWR) based on the LaBr3(Ce) detector was assembled and tested. The samples of coolant from the PWR were measured using the system as well as a HPGe γ-ray spectrometer. A comparison showed the method was feasible. Finally, the γ-ray spectra of primary coolant were measured under normal operations and during fuel-rod failure. The two peaks of (135)Xe (249.8keV) and (88)Kr (2392.1keV) were visible, confirming that the method is capable of monitoring fuel-rod failure on-line. Copyright © 2016 Elsevier Ltd. All rights reserved.
Code of Federal Regulations, 2011 CFR
2011-07-01
... and EPA Cold-Weather Fuel Lines for permeation emissions? 1060.515 Section 1060.515 Protection of... Nonroad Fuel Lines and EPA Cold-Weather Fuel Lines for permeation emissions? Measure emission as follows for EPA Nonroad Fuel Lines and EPA Cold-Weather Fuel Lines: (a) Prior to permeation testing, use good...
Code of Federal Regulations, 2013 CFR
2013-07-01
... and EPA Cold-Weather Fuel Lines for permeation emissions? 1060.515 Section 1060.515 Protection of... Nonroad Fuel Lines and EPA Cold-Weather Fuel Lines for permeation emissions? Measure emission as follows for EPA Nonroad Fuel Lines and EPA Cold-Weather Fuel Lines: (a) Prior to permeation testing, use good...
Code of Federal Regulations, 2012 CFR
2012-07-01
... and EPA Cold-Weather Fuel Lines for permeation emissions? 1060.515 Section 1060.515 Protection of... Nonroad Fuel Lines and EPA Cold-Weather Fuel Lines for permeation emissions? Measure emission as follows for EPA Nonroad Fuel Lines and EPA Cold-Weather Fuel Lines: (a) Prior to permeation testing, use good...
Code of Federal Regulations, 2010 CFR
2010-07-01
... and EPA Cold-Weather Fuel Lines for permeation emissions? 1060.515 Section 1060.515 Protection of... Nonroad Fuel Lines and EPA Cold-Weather Fuel Lines for permeation emissions? Measure emission as follows for EPA Nonroad Fuel Lines and EPA Cold-Weather Fuel Lines: (a) Prior to permeation testing, use good...
Code of Federal Regulations, 2014 CFR
2014-07-01
... and EPA Cold-Weather Fuel Lines for permeation emissions? 1060.515 Section 1060.515 Protection of... Nonroad Fuel Lines and EPA Cold-Weather Fuel Lines for permeation emissions? Measure emission as follows for EPA Nonroad Fuel Lines and EPA Cold-Weather Fuel Lines: (a) Prior to permeation testing, use good...
Sequential variable fuel injection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weglarz, M.W.; Vincent, M.T.; Prestel, J.F.
This patent describes a fuel injection system for an engine of an automotive vehicle including cylinders, a spark plug for each of the cylinders, a distributor electrically connected to the spark plug, a throttle body having a throttle valve connected to the engine to allow or prevent air to the cylinders, a fuel source at least one fuel line connected to the fuel source, fuel injectors connected to the fuel line for delivering fuel to the cylinders, a sensor located near the distributor for sensing predetermined states of the distributor, and an electronic control unit (ECU) electrically connected to themore » sensor, distributor and fuel injectors. It comprises calculating a desired total injector on time for current engine conditions; calculating a variable injection time (VIT) and a turn on time based on the VIT; and firing the fuel injectors at the calculated turn on time for the calculated total injector on time.« less
33 CFR 183.538 - Metallic fuel line materials.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Metallic fuel line materials. 183... (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Equipment Standards § 183.538 Metallic fuel line materials. Each metallic fuel line connecting the fuel tank with the fuel inlet connection on...
46 CFR 154.706 - Cargo boil-off as fuel: Fuel lines.
Code of Federal Regulations, 2013 CFR
2013-10-01
... SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Pressure and Temperature Control § 154.706 Cargo boil-off as fuel: Fuel lines. (a) Gas fuel lines must not pass through accommodation, service, or control spaces. Each gas fuel line passing...
46 CFR 154.706 - Cargo boil-off as fuel: Fuel lines.
Code of Federal Regulations, 2012 CFR
2012-10-01
... SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Pressure and Temperature Control § 154.706 Cargo boil-off as fuel: Fuel lines. (a) Gas fuel lines must not pass through accommodation, service, or control spaces. Each gas fuel line passing...
46 CFR 154.706 - Cargo boil-off as fuel: Fuel lines.
Code of Federal Regulations, 2010 CFR
2010-10-01
... SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Pressure and Temperature Control § 154.706 Cargo boil-off as fuel: Fuel lines. (a) Gas fuel lines must not pass through accommodation, service, or control spaces. Each gas fuel line passing...
46 CFR 154.706 - Cargo boil-off as fuel: Fuel lines.
Code of Federal Regulations, 2011 CFR
2011-10-01
... SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Pressure and Temperature Control § 154.706 Cargo boil-off as fuel: Fuel lines. (a) Gas fuel lines must not pass through accommodation, service, or control spaces. Each gas fuel line passing...
46 CFR 154.706 - Cargo boil-off as fuel: Fuel lines.
Code of Federal Regulations, 2014 CFR
2014-10-01
... SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Pressure and Temperature Control § 154.706 Cargo boil-off as fuel: Fuel lines. (a) Gas fuel lines must not pass through accommodation, service, or control spaces. Each gas fuel line passing...
149. SOUTHEAST CORNER OF FUEL CONTROL ROOM (215), LSB (BLDG. ...
149. SOUTHEAST CORNER OF FUEL CONTROL ROOM (215), LSB (BLDG. 751), WITH SKID 2 IN FOREGROUND; FUEL LINE TO LAUNCH VEHICLE ENTERING WALL ON LEFT BEHIND SKID 2 - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
14 CFR 29.993 - Fuel system lines and fittings.
Code of Federal Regulations, 2011 CFR
2011-01-01
... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System Components § 29.993 Fuel system lines and fittings. (a) Each fuel line must be installed and supported to prevent excessive... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel system lines and fittings. 29.993...
14 CFR 25.993 - Fuel system lines and fittings.
Code of Federal Regulations, 2013 CFR
2013-01-01
... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System Components § 25.993 Fuel system lines and fittings. (a) Each fuel line must be installed and supported to prevent excessive... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel system lines and fittings. 25.993...
14 CFR 23.993 - Fuel system lines and fittings.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel system lines and fittings. 23.993... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System Components § 23.993 Fuel system lines and fittings. (a) Each fuel line must be installed...
14 CFR 29.993 - Fuel system lines and fittings.
Code of Federal Regulations, 2014 CFR
2014-01-01
... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System Components § 29.993 Fuel system lines and fittings. (a) Each fuel line must be installed and supported to prevent excessive... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel system lines and fittings. 29.993...
14 CFR 23.993 - Fuel system lines and fittings.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel system lines and fittings. 23.993... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System Components § 23.993 Fuel system lines and fittings. (a) Each fuel line must be installed...
14 CFR 27.993 - Fuel system lines and fittings.
Code of Federal Regulations, 2014 CFR
2014-01-01
... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System Components § 27.993 Fuel system lines and fittings. (a) Each fuel line must be installed and supported to prevent excessive... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel system lines and fittings. 27.993...
14 CFR 25.993 - Fuel system lines and fittings.
Code of Federal Regulations, 2014 CFR
2014-01-01
... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System Components § 25.993 Fuel system lines and fittings. (a) Each fuel line must be installed and supported to prevent excessive... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel system lines and fittings. 25.993...
14 CFR 29.993 - Fuel system lines and fittings.
Code of Federal Regulations, 2010 CFR
2010-01-01
... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System Components § 29.993 Fuel system lines and fittings. (a) Each fuel line must be installed and supported to prevent excessive... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel system lines and fittings. 29.993...
14 CFR 27.993 - Fuel system lines and fittings.
Code of Federal Regulations, 2011 CFR
2011-01-01
... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System Components § 27.993 Fuel system lines and fittings. (a) Each fuel line must be installed and supported to prevent excessive... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel system lines and fittings. 27.993...
14 CFR 23.993 - Fuel system lines and fittings.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel system lines and fittings. 23.993... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System Components § 23.993 Fuel system lines and fittings. (a) Each fuel line must be installed...
14 CFR 27.993 - Fuel system lines and fittings.
Code of Federal Regulations, 2012 CFR
2012-01-01
... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System Components § 27.993 Fuel system lines and fittings. (a) Each fuel line must be installed and supported to prevent excessive... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel system lines and fittings. 27.993...
14 CFR 27.993 - Fuel system lines and fittings.
Code of Federal Regulations, 2010 CFR
2010-01-01
... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System Components § 27.993 Fuel system lines and fittings. (a) Each fuel line must be installed and supported to prevent excessive... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel system lines and fittings. 27.993...
14 CFR 29.993 - Fuel system lines and fittings.
Code of Federal Regulations, 2012 CFR
2012-01-01
... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System Components § 29.993 Fuel system lines and fittings. (a) Each fuel line must be installed and supported to prevent excessive... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel system lines and fittings. 29.993...
14 CFR 25.993 - Fuel system lines and fittings.
Code of Federal Regulations, 2011 CFR
2011-01-01
... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System Components § 25.993 Fuel system lines and fittings. (a) Each fuel line must be installed and supported to prevent excessive... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel system lines and fittings. 25.993...
14 CFR 23.993 - Fuel system lines and fittings.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel system lines and fittings. 23.993... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System Components § 23.993 Fuel system lines and fittings. (a) Each fuel line must be installed...
14 CFR 27.993 - Fuel system lines and fittings.
Code of Federal Regulations, 2013 CFR
2013-01-01
... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System Components § 27.993 Fuel system lines and fittings. (a) Each fuel line must be installed and supported to prevent excessive... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel system lines and fittings. 27.993...
14 CFR 29.993 - Fuel system lines and fittings.
Code of Federal Regulations, 2013 CFR
2013-01-01
... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System Components § 29.993 Fuel system lines and fittings. (a) Each fuel line must be installed and supported to prevent excessive... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel system lines and fittings. 29.993...
14 CFR 25.993 - Fuel system lines and fittings.
Code of Federal Regulations, 2010 CFR
2010-01-01
... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System Components § 25.993 Fuel system lines and fittings. (a) Each fuel line must be installed and supported to prevent excessive... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel system lines and fittings. 25.993...
14 CFR 23.993 - Fuel system lines and fittings.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel system lines and fittings. 23.993... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System Components § 23.993 Fuel system lines and fittings. (a) Each fuel line must be installed...
14 CFR 25.993 - Fuel system lines and fittings.
Code of Federal Regulations, 2012 CFR
2012-01-01
... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System Components § 25.993 Fuel system lines and fittings. (a) Each fuel line must be installed and supported to prevent excessive... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel system lines and fittings. 25.993...
33 CFR 183.562 - Metallic fuel lines.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Metallic fuel lines. 183.562...) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Manufacturer Requirements § 183.562 Metallic fuel lines. (a) Each metallic fuel line that is mounted to the boat structure must be connected to the...
Passive Fuel Tank Inerting Systems for Ground Combat Vehicles
1988-09-01
elastomers and sealants used in currently fielded equipment and redesign of selected hydraulic and gun recoil systems would be necessary to...constraint~s or access problems. "* Fuel Lines.- Fuel lines are routed to use the least amount of line possible. Fuel lines are high-pressure braided ...steel and rubber hose or steel tube construction. "* Fuel Pumps. Fuel pumps are usually mounted internal to the fuel tanks, are of heavy-duty commercial
76 FR 79051 - Airworthiness Directives; Lycoming Engines, Fuel Injected Reciprocating Engines
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-21
... models requiring inspections. We are issuing this AD to prevent failure of the fuel injector fuel lines... to prevent failure of the fuel injector fuel lines that would allow fuel to spray into the engine... injector nozzles, and replace as necessary any fuel injector fuel line and clamp that does not meet all...
Fuel saver based on electromagnetic induction for automotive engine
NASA Astrophysics Data System (ADS)
Siregar, Houtman P.; Sibarani, Maradu
2007-12-01
In the considered research is designed and analyzed the performance of the fuel saver which is based on electromagnetic induction for automotive diesel engine. The fuel saver which is based on permanent magnet has sold in market and its performance has tested. In comparison to the former fuel saver, in the proposed work is produced fuel saver which is based on electromagnetic induction. The considered research is the continuation of my former work. Performance of the produced fuel saver which is installed in the fuel line of internal combustion engine rig is compared to the performance of the standard internal combustion engine rig Speed of the engine, wire diameter of coil, and number of coil which is coiled in the winding of the the fuel saver are chosen as the testing variables. The considered research has succeeded to design the fuel saver which is based on electromagnetic induction for saving the automotive fuel consumption. Results of the research show that the addition of the fuel saver which is based on electromagnetic induction to the flow of the diesel fuel can significantly save the automative fuel consumption. In addition the designed fuel saver can reduce the opacity of the emission gas.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Fuel lines. 56.4501 Section 56.4501 Mineral... Installation/construction/maintenance § 56.4501 Fuel lines. Fuel lines shall be equipped with valves capable of stopping the flow of fuel at the source and shall be located and maintained to minimize fire hazards. This...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Fuel lines. 56.4501 Section 56.4501 Mineral... Installation/construction/maintenance § 56.4501 Fuel lines. Fuel lines shall be equipped with valves capable of stopping the flow of fuel at the source and shall be located and maintained to minimize fire hazards. This...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Fuel lines. 56.4501 Section 56.4501 Mineral... Installation/construction/maintenance § 56.4501 Fuel lines. Fuel lines shall be equipped with valves capable of stopping the flow of fuel at the source and shall be located and maintained to minimize fire hazards. This...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Fuel lines. 57.4501 Section 57.4501 Mineral... Installation/construction/maintenance § 57.4501 Fuel lines. Fuel lines shall be equipped with valves capable of stopping the flow of fuel at the source and shall be located and maintained to minimize fire hazards. This...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Fuel lines. 56.4501 Section 56.4501 Mineral... Installation/construction/maintenance § 56.4501 Fuel lines. Fuel lines shall be equipped with valves capable of stopping the flow of fuel at the source and shall be located and maintained to minimize fire hazards. This...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Fuel lines. 57.4501 Section 57.4501 Mineral... Installation/construction/maintenance § 57.4501 Fuel lines. Fuel lines shall be equipped with valves capable of stopping the flow of fuel at the source and shall be located and maintained to minimize fire hazards. This...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Fuel lines. 57.4501 Section 57.4501 Mineral... Installation/construction/maintenance § 57.4501 Fuel lines. Fuel lines shall be equipped with valves capable of stopping the flow of fuel at the source and shall be located and maintained to minimize fire hazards. This...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Fuel lines. 57.4501 Section 57.4501 Mineral... Installation/construction/maintenance § 57.4501 Fuel lines. Fuel lines shall be equipped with valves capable of stopping the flow of fuel at the source and shall be located and maintained to minimize fire hazards. This...
Fuel Cell Demonstration Project at a Sunline Transit Agency
NASA Astrophysics Data System (ADS)
Hsiung, S.
2001-09-01
This is the final report summarizing the Fuel Cell Demonstration Project activities of the XCELLSIS Zebus (zero emissions bus) performance at the SunLine Transit Agency in Thousand Palms, California. Under this demonstration project, SunLine participated with XCELLSIS in the fueling, training, operating, and testing of this prototype fuel cell bus. The report presents a summary of project activities, including the results of the 13-month test of the XCELLSIS Zebus performance at SunLine Transit. This final report includes data relating to Zebus performance, along with the successes achieved beyond the technical realm. The study concludes that the project was very useful in establishing operating parameters and environmental testing in extreme heat conditions and in transferring technology to a transit agency. At the end of the 13-month test period, the Zebus ran flawlessly in the Michelin Challenge Bibendum from Los Angeles to Las Vegas, a 275-mile trek. SunLine refueled the Zebus in transit to Baker, California, 150 miles from its home base. Everyone who encountered or rode the Zebus was impressed with its smoothness, low engine noise, and absence of emissions. The study states that the future for the Zebus looks very bright. Fuel cell projects are anticipated to continue in California and Europe with the introduction new buses equipped with Ballard P5 and other fuel cell engines as early as the first half of 2003.
Hydrogen Fuel Cell: Research Progress and Near-Term Opportunities
2009-04-27
deployment) from $5.00 to $3.00 per gallon gasoline equivalent ( gge )* – a 40% reduction.[2] Christy Cooper US Department of Energy Hydrogen Program...renewable-based technologies (assuming widespread deployment) from $5.15 to $4.80 per gge (e.g., electroly- sis and distributed reforming† of bio...to gaso- line. The amount of fuel with the energy content of one gallon of gaso- line is referred to as a gallon gasoline equivalent, or gge
Wasley, Jane; Mooney, Thomas J; King, Catherine K
2016-04-01
A number of fuel spills, of both recent and historic origins, have occurred on World Heritage-listed subantarctic Macquarie Island. Sites contaminated by mainly diesel fuels are undergoing remediation by the Australian Antarctic Division. The risks posed by these sites are being managed using a "weight of evidence" approach, for which this study provides a preliminary line of evidence for the ecological assessment component of this site management decision framework. This knowledge is pertinent, given the absence of environmental guidelines for fuel contaminants in subantarctic ecosystems. We provide a field-based, site-specific ecological risk assessment for soil invertebrate communities across the fuel spill sites, before the commencement of in situ remediation activities. Springtails (Collembola) were the most abundant taxa. Springtail community patterns showed only limited correlations with the level of fuel contamination at the soil surface, even when elevated levels occurred in the substratum layers. Of the environmental variables measured, community patterns were most strongly correlated with vegetation cover. We identify a suite of 6 species that contribute most to the community dynamics across these sites. A subset of these we propose as useful candidates for future development of single-species toxicity tests: Folsomotoma punctata, Cryptopygus caecus, Cryptopygus antarcticus and Parisotoma insularis. Findings from this study advance our understanding of soil invertebrate community dynamics within these contaminated sites, directly contributing to the improved management and restoration of the sites. Not only does this study provide an important line of evidence for the island's ecological risk assessment for fuel contaminants, it also enhances our understanding of the potential impact of fuels at other subantarctic islands. © 2015 SETAC.
Aircraft Geared Architecture Reduces Fuel Cost and Noise
NASA Technical Reports Server (NTRS)
2015-01-01
In an effort to increase fuel efficiency and reduce noise in commercial airplanes, NASA aeronautics teamed up with East Hartford, Connecticut-based Pratt & Whitney through a Space Act Agreement to help the company increase the efficiency of its turbofan engine. The company's new PurePower line of engines is 15 percent more fuel-efficient and up to 75 percent quieter than its competitors.
40 CFR 1060.102 - What permeation emission control requirements apply for fuel lines?
Code of Federal Regulations, 2011 CFR
2011-07-01
... assemblies as aggregated systems that include multiple sections of fuel line with connectors and fittings. For example, you may certify fuel lines for portable marine fuel tanks as assemblies of fuel hose, primer bulbs, and self-sealing end connections. The length of such an assembly must not be longer than a...
40 CFR 1060.102 - What permeation emission control requirements apply for fuel lines?
Code of Federal Regulations, 2010 CFR
2010-07-01
... assemblies as aggregated systems that include multiple sections of fuel line with connectors and fittings. For example, you may certify fuel lines for portable marine fuel tanks as assemblies of fuel hose, primer bulbs, and self-sealing end connections. The length of such an assembly must not be longer than a...
Code of Federal Regulations, 2010 CFR
2010-10-01
... the fuel supply line in the engine compartment. Strainers must be leak free. Strainers must be of the... as to close against the fuel flow, must be fitted in the fuel supply lines, one at the tank... copper tubing or a short length of flexible hose must be installed in the fuel supply line at or near the...
Fuel Line Based Acoustic Flame-Out Detection System
NASA Technical Reports Server (NTRS)
Puster, Richard L. (Inventor); Franke, John M. (Inventor)
1997-01-01
An acoustic flame-out detection system that renders a large high pressure combustor safe in the event of a flame-out and possible explosive reignition. A dynamic pressure transducer is placed in the fuel and detects the stabilizing fuel pressure oscillations, caused by the combustion process. An electric circuit converts the signal from the combustion vortices, and transmitted to the fuel flow to a series of pulses. A missing pulse detector counts the pulses and continuously resets itself. If three consecutive pulses are missing, the circuit closes the fuel valve. With fuel denied the combustor is shut down or restarted under controlled conditions.
Exploratory Development of New and Improved Self-Sealing Materials for Fuel Lines
1974-10-01
identify hy block number) New and improved self-sealing fuel line composites were developed under this program. Fabric reinforced plastic and nonflowering...integrated aluminum foil, fabric reinforced laminated fuel line composites employing compressed natural rubber foam as the sealant were fabricated which...successfully sealed wounds inflicted by .30 and .50 caliber projectiles. The weight of these new self-sealing fuel line composites ranged from 0.83
Code of Federal Regulations, 2010 CFR
2010-10-01
... flow, must be fitted in the fuel supply lines, one at the tank connection and one at the engine end of... flexible hose must be installed in the fuel supply line at or near the engines. The flexible hose must meet... of the engine manufacturer, must be fitted in the fuel supply line in the engine compartment...
77 FR 2658 - Airworthiness Directives; Bombardier, Inc. Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-19
... high pressure fuel lines due to improper installation of an expandable pin on the lower cowl assembly... chafing of the high pressure fuel lines, which if not corrected, could cause fuel leakage in a fire zone... on a high pressure (HP) fuel line. The source of chafing was related to the improper installation of...
2010-06-01
data such as the NSMB B-series, or be based on hydrodynamic (lifting line) predict ions. The power including still air drag and any margin that is...Provide Fuel Function 3.6 Fuel Oil System Component REQ.1.4 Fuel Efficiency Requirement 1.1 Generate Mechanical En... Function 1.1 Prime Mover Component...3.3 Provide Lubrication Function 3.7 Lube Oil System Component 3.4 Provide Cooling Water Function 3.3 Cooling System Component 3.5 Provide Combust ion
Driving R&D for the Next Generation Work Truck; NREL (National Renewable Energy Laboratory)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melendez, M.
2015-03-04
Improvements in medium- and heavy-duty work truck energy efficiency can dramatically reduce the use of petroleum-based fuels and the emissions of greenhouse gases. The National Renewable Energy Laboratory (NREL) is working with industry partners to develop fuel-saving, high-performance vehicle technologies, while examining fleet operational practices that can simulateneously improve fuel economy, decrease emissions, and support bottom-line goals.
40 CFR 1054.110 - What evaporative emission standards must my handheld equipment meet?
Code of Federal Regulations, 2014 CFR
2014-07-01
... must meet the permeation requirements for EPA Nonroad Fuel Lines or EPA Cold-Weather Fuel Lines as... that are not used in cold-weather equipment. For fuel lines used in cold-weather equipment, you may...
Wagner, Richard William; Burkhard, James Frank; Dauer, Kenneth John
1999-11-16
A dual tank fuel system has primary and secondary fuel tanks, with the primary tank including a filler pipe to receive fuel and a discharge line to deliver fuel to an engine, and with a balance pipe interconnecting the primary tank and the secondary tank. The balance pipe opens close to the bottom of each tank to direct fuel from the primary tank to the secondary tank as the primary tank is filled, and to direct fuel from the secondary tank to the primary tank as fuel is discharged from the primary tank through the discharge line. A vent line has branches connected to each tank to direct fuel vapor from the tanks as the tanks are filled, and to admit air to the tanks as fuel is delivered to the engine.
40 CFR 1060.510 - How do I test EPA Low-Emission Fuel Lines for permeation emissions?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 33 2011-07-01 2011-07-01 false How do I test EPA Low-Emission Fuel... NONROAD AND STATIONARY EQUIPMENT Test Procedures § 1060.510 How do I test EPA Low-Emission Fuel Lines for permeation emissions? For EPA Low-Emission Fuel Lines, measure emissions according to SAE J2260, which is...
40 CFR 1060.510 - How do I test EPA Low-Emission Fuel Lines for permeation emissions?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 34 2012-07-01 2012-07-01 false How do I test EPA Low-Emission Fuel... NONROAD AND STATIONARY EQUIPMENT Test Procedures § 1060.510 How do I test EPA Low-Emission Fuel Lines for permeation emissions? For EPA Low-Emission Fuel Lines, measure emissions according to SAE J2260, which is...
40 CFR 1060.510 - How do I test EPA Low-Emission Fuel Lines for permeation emissions?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 34 2013-07-01 2013-07-01 false How do I test EPA Low-Emission Fuel... NONROAD AND STATIONARY EQUIPMENT Test Procedures § 1060.510 How do I test EPA Low-Emission Fuel Lines for permeation emissions? For EPA Low-Emission Fuel Lines, measure emissions according to SAE J2260, which is...
40 CFR 1060.510 - How do I test EPA Low-Emission Fuel Lines for permeation emissions?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 33 2014-07-01 2014-07-01 false How do I test EPA Low-Emission Fuel... NONROAD AND STATIONARY EQUIPMENT Test Procedures § 1060.510 How do I test EPA Low-Emission Fuel Lines for permeation emissions? For EPA Low-Emission Fuel Lines, measure emissions according to SAE J2260, which is...
40 CFR 1060.510 - How do I test EPA Low-Emission Fuel Lines for permeation emissions?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 32 2010-07-01 2010-07-01 false How do I test EPA Low-Emission Fuel... NONROAD AND STATIONARY EQUIPMENT Test Procedures § 1060.510 How do I test EPA Low-Emission Fuel Lines for permeation emissions? For EPA Low-Emission Fuel Lines, measure emissions according to SAE J2260, which is...
77 FR 70114 - Airworthiness Directives; Cessna Aircraft Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-23
... assemblies, which were caused by the fuel return line assembly rubbing against the right steering tube assembly during full rudder pedal actuation. This AD requires you to inspect the fuel return line assembly... the fuel return line assembly and both the right steering tube assembly and the airplane structure...
30 CFR 36.27 - Fuel-supply system.
Code of Federal Regulations, 2014 CFR
2014-07-01
... tank by a chain or other fastening to prevent loss. (2) The fuel tank shall have a definite position in the equipment assembly, and no provision shall be made for attachment of separate or auxiliary fuel... continuously at full load for approximately four hours. (b) Fuel lines. All fuel lines shall be installed to...
30 CFR 36.27 - Fuel-supply system.
Code of Federal Regulations, 2012 CFR
2012-07-01
... tank by a chain or other fastening to prevent loss. (2) The fuel tank shall have a definite position in the equipment assembly, and no provision shall be made for attachment of separate or auxiliary fuel... continuously at full load for approximately four hours. (b) Fuel lines. All fuel lines shall be installed to...
30 CFR 36.27 - Fuel-supply system.
Code of Federal Regulations, 2011 CFR
2011-07-01
... tank by a chain or other fastening to prevent loss. (2) The fuel tank shall have a definite position in the equipment assembly, and no provision shall be made for attachment of separate or auxiliary fuel... continuously at full load for approximately four hours. (b) Fuel lines. All fuel lines shall be installed to...
30 CFR 36.27 - Fuel-supply system.
Code of Federal Regulations, 2013 CFR
2013-07-01
... tank by a chain or other fastening to prevent loss. (2) The fuel tank shall have a definite position in the equipment assembly, and no provision shall be made for attachment of separate or auxiliary fuel... continuously at full load for approximately four hours. (b) Fuel lines. All fuel lines shall be installed to...
30 CFR 36.27 - Fuel-supply system.
Code of Federal Regulations, 2010 CFR
2010-07-01
... tank by a chain or other fastening to prevent loss. (2) The fuel tank shall have a definite position in the equipment assembly, and no provision shall be made for attachment of separate or auxiliary fuel... continuously at full load for approximately four hours. (b) Fuel lines. All fuel lines shall be installed to...
Repair Types, Procedures - Part 2
2010-05-01
completely severed or severely damaged fuel lines, cut away the damaged section and use a piece of fuel- resistant rubber hose with an inner diameter...equal to the existing fuel line outer diameter to replace the damaged section. Ensure the repair hose extends far enough on each side of the damage to...accommodate two hose clamps, oriented 180° from one another. Flare the ends of the existing fuel line to improve the seal and prevent leakage
Fuel combustion exhibiting low NO{sub x} and CO levels
Keller, J.O.; Bramlette, T.T.; Barr, P.K.
1996-07-30
Method and apparatus are disclosed for safely combusting a fuel in such a manner that very low levels of NO{sub x} and CO are produced. The apparatus comprises an inlet line containing a fuel and an inlet line containing an oxidant. Coupled to the fuel line and to the oxidant line is a mixing means for thoroughly mixing the fuel and the oxidant without combusting them. Coupled to the mixing means is a means for injecting the mixed fuel and oxidant, in the form of a large-scale fluid dynamic structure, into a combustion region. Coupled to the combustion region is a means for producing a periodic flow field within the combustion region to mix the fuel and the oxidant with ambient gases in order to lower the temperature of combustion. The means for producing a periodic flow field can be a pulse combustor, a rotating band, or a rotating cylinder within an acoustic chamber positioned upstream or downstream of the region of combustion. The mixing means can be a one-way flapper valve; a rotating cylinder; a rotating band having slots that expose open ends of said fuel inlet line and said oxidant inlet line simultaneously; or a set of coaxial fuel annuli and oxidizer annuli. The means for producing a periodic flow field may or may not be in communication with an acoustic resonance. When employed, the acoustic resonance may be upstream or downstream of the region of combustion. 14 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vuckovich, M.; Burkett, J. P.; Sallustio, J.
1984-12-11
Fuel assemblies of a nuclear reactor are transferred during fueling or refueling or the like by a crane. The work-engaging fixture of the crane picks up an assembly, removes it from this slot, transfers it to the deposit site and deposits it in its slot at the deposit site. The control for the crane includes a strain gauge connected to the crane line which raises and lowers the load. The strain gauge senses the load on the crane. The signal from the strain gauge is compared with setpoints; a high-level setpoint, a low-level setpoint and a slack-line setpoint. If themore » strain gauge signal exceeds the high-level setpoint, the line drive is disabled. This event may occur during raising of a fuel assembly which encounters resistance. The high-level setpoint may be overridden under proper precautions. The line drive is also disabled if the strain gauge signal is less than the low-level setpoint. This event occurs when a fuel assembly being deposited contacts the bottom of its slot or an obstruction in, or at the entry to the slot. To preclude lateral movement and possible damage to a fuel assembly suspended from the crane line, the traverse drive of the crane is disabled once the strain-gauge exceets the lov-level setpoint. The traverse drive can only be enabled after the strain-gauge signal is less than the slack-line set-point. This occurs when the lines has been set in slack-line setting. When the line is tensioned after slack-li ne setting, the traverse drive remains enabled only if the line has been disconnected from the fuel assembly.« less
NASA Technical Reports Server (NTRS)
1972-01-01
A program to advance the technology for a cost-effective hydrogen/oxygen fuel cell system for future manned spacecraft is discussed. The evaluation of base line design concepts and the development of product improvements in the areas of life, power, specific weight and volume, versatility of operation, field maintenance and thermal control were conducted from the material and component level through the fabrication and test of an engineering model of the fuel cell system. The program was to be accomplished in a 13 month period.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McVea, G.G.; Power, A.J.
1995-04-01
USA Military Specification MIL-D-22612 provides a procedure for measurement of particulate levels in Naval aviation gas turbine engine JP5 fuel (F44; RAN AVCAT) using the contaminated fuel detector (CFD). Evaluation of this procedure within the specification has revealed significant shortcomings in the application of the theoretical principles upon which the method is based. CFD measurements have been compared to gravimetric results from ASTM D2276, which provides accurate determination of concentrations of particulate matter in JP5. Inaccuracies evident in the CFD readings have been found to relate to the high sensitivity of the CFD to variations in fuel particulate extinction coefficientsmore » (ECs) (relating to fuel sediment colour) and to an error in the application of light transmittance theory in the recommended method. This report demonstrates that accurate CFD determination of JP5 particulate concentrations depends on spectrophotometric measurement of a narrow range of ECs of particulate matter. A range of fuel sediments derived from Australian naval ship and shore fuel storages was studied. It was observed that the CFD plot, which is in light transmittance mode, in theory provides a curved line graph against the gravimetric test results, whereas MIL-D-22612 describes a straight line graph. It was concluded that this must be an approximation. However, conversion of light transmittance data derived from the CFD into the reciprocal logarithm to give light absorbance data was shown to give a straight line graph which corresponded well with the gravimetric results. This relationship depended on construction of the graph on the basis of a narrow range of known particulate ECs. The conversion to absorbance gave improved correlation for JP5 particulate measurements with gravimetric procedures, using the CFD.« less
33 CFR 183.532 - Clips, straps, and hose clamps.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Equipment Standards § 183.532 Clips... under § 183.590, a hose clamp installed on a fuel line system requiring metallic fuel lines or “USCG...
40 CFR 1060.102 - What permeation emission control requirements apply for fuel lines?
Code of Federal Regulations, 2014 CFR
2014-07-01
... handheld Small SI engines installed in cold-weather equipment must meet the standards for EPA Cold-Weather... when measured according to the test procedure described in § 1060.515. (3) EPA Cold-Weather Fuel Lines... described in § 1060.515: Table 1 to § 1060.102—Permeation Standards for EPA Cold-Weather Fuel Lines Model...
SunLine Transit Agency Advanced Technology Fuel Cell Bus Evaluation: Fourth Results Report
DOT National Transportation Integrated Search
2013-01-01
SunLine Transit Agency provides public transit services to the Coachella Valley area of California. SunLine has demonstrated hydrogen and fuel cell bus technologies for more than 10 years. In May 2010, SunLine began demonstrating the advanced technol...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carmack, Jon; Hayes, Steven; Walters, L. C.
This document explores startup fuel options for a proposed test/demonstration fast reactor. The fuel options considered are the metallic fuels U-Zr and U-Pu-Zr and the ceramic fuels UO 2 and UO 2-PuO 2 (MOX). Attributes of the candidate fuel choices considered were feedstock availability, fabrication feasibility, rough order of magnitude cost and schedule, and the existing irradiation performance database. The reactor-grade plutonium bearing fuels (U-Pu-Zr and MOX) were eliminated from consideration as the initial startup fuels because the availability and isotopics of domestic plutonium feedstock is uncertain. There are international sources of reactor grade plutonium feedstock but isotopics and availabilitymore » are also uncertain. Weapons grade plutonium is the only possible source of Pu feedstock in sufficient quantities needed to fuel a startup core. Currently, the available U.S. source of (excess) weapons-grade plutonium is designated for irradiation in commercial light water reactors (LWR) to a level that would preclude diversion. Weapons-grade plutonium also contains a significant concentration of gallium. Gallium presents a potential issue for both the fabrication of MOX fuel as well as possible performance issues for metallic fuel. Also, the construction of a fuel fabrication line for plutonium fuels, with or without a line to remove gallium, is expected to be considerably more expensive than for uranium fuels. In the case of U-Pu-Zr, a relatively small number of fuel pins have been irradiated to high burnup, and in no case has a full assembly been irradiated to high burnup without disassembly and re-constitution. For MOX fuel, the irradiation database from the Fast Flux Test Facility (FFTF) is extensive. If a significant source of either weapons-grade or reactor-grade Pu became available (i.e., from an international source), a startup core based on Pu could be reconsidered.« less
Imminent: Irradiation Testing of (Th,Pu)O{sub 2} Fuel - 13560
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelly, Julian F.; Franceschini, Fausto
2013-07-01
Commercial-prototype thorium-plutonium oxide (Th-MOX) fuel pellets have been loaded into the material test reactor in Halden, Norway. The fuel is being operated at full power - with instrumentation - in simulated LWR / PHWR conditions and its behaviour is measured 'on-line' as it operates to high burn-up. This is a vital test on the commercialization pathway for this robust new thoria-based fuel. The performance data that is collected will support a fuel modeling effort to support its safety qualification. Several different samples of Th-MOX fuel will be tested, thereby collecting information on ceramic behaviours and their microstructure dependency. The fuel-cyclemore » reasoning underpinning the test campaign is that commercial Th- MOX fuels are an achievable intermediate / near-term SNF management strategy that integrates well with a fast reactor future. (authors)« less
NASA Astrophysics Data System (ADS)
Rekos, N. F., Jr.; Parsons, E. L., Jr.
1989-09-01
For the past decade, the Department of Energy (DOE) has sponsored projects to develop diesel and gas turbine engines capable of operating on low-cost, coal-based fuels. Much of the current work addresses the use of coal-water fuel (CWF) in diesel and turbines, although there is some work with dry coal feed and other coal fuels. Both the diesel and gas turbine portions of the program include proof-of-concept and support projects. Specific highlights of the program include: engine tests and economic analyses have shown that CWF can replace 70 percent of the diesel oil used in the duty cycle of a typical main-line locomotive; A. D. Little and Cooper-Bessemer completed a system and economic study of coal-fueled diesel engines for modular power and industrial cogeneration markets. The coal-fueled diesel was found to be competitive at fuel oil prices of $5.50 per million British thermal units (MBtu); Over 200 hours of testing have been completed using CWF in full-scale, single-cylinder diesel engines. Combustion efficiencies have exceeded 99 percent; Both CWF and dry coal fuel forms can be burned in short residence time in-line combustors and in off-base combustors with a combustion efficiency of over 99 percent; Rich/lean combustion systems employed by the three major DOE contractors have demonstrated low NO(sub x) emissions levels; Contractors have also achieved promising results for controlling sulfur oxide (SO(sub x)) emissions using calcium-based sorbents; Slagging combustors have achieved between 65 and 95 percent slag capture, which will limit particulate loading on pre-turbine cleanup devices. For many of the gas turbine and diesel applications emission standards do not exist. Our goal is to develop coal-fueled diesels and gas turbines that not only meet all applicable emission standards that do exist, but also are capable of meeting possible future standards.
SunLine Transit Agency Advanced Technology Fuel Cell Bus Evaluation : Third Results Report
DOT National Transportation Integrated Search
2012-05-01
SunLine Transit Agency provides public transit services to the Coachella Valley area of California. SunLine has demonstrated hydrogen and fuel cell bus technologies for more than 10 years. This report describes operations at SunLine for a prototype f...
Fuel combustion exhibiting low NO.sub.x and CO levels
Keller, Jay O.; Bramlette, T. Tazwell; Barr, Pamela K.
1996-01-01
Method and apparatus for safely combusting a fuel in such manner that very low levels of NO.sub.x and CO are produced. The apparatus comprises an inlet line (12) containing a fuel and an inlet line (18) containing an oxidant. Coupled to the fuel line (12) and to the oxidant line (18) is a mixing means (11,29,33,40) for thoroughly mixing the fuel and the oxidant without combusting them. Coupled to the mixing means (11,29,33,40) is a means for injecting the mixed fuel and oxidant, in the form of a large-scale fluid dynamic structure (8), into a combustion region (2). Coupled to the combustion region (2) is a means (1,29,33) for producing a periodic flow field within the combustion region (2) to mix the fuel and the oxidant with ambient gases in order to lower the temperature of combustion. The means for producing a periodic flow field can be a pulse combustor (1), a rotating band (29), or a rotating cylinder (33) within an acoustic chamber (32) positioned upstream or downstream of the region (2) of combustion. The mixing means can be a one-way flapper valve (11); a rotating cylinder (33); a rotating band (29) having slots (31) that expose open ends (20,21) of said fuel inlet line (12) and said oxidant inlet line (18) simultaneously; or a set of coaxial fuel annuli (43) and oxidizer annuli (42,44). The means for producing a periodic flow field (1, 29, 33) may or may not be in communication with an acoustic resonance. When employed, the acoustic resonance may be upstream or downstream of the region of combustion (2).
Warthog: A MOOSE-Based Application for the Direct Code Coupling of BISON and PROTEUS
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCaskey, Alexander J.; Slattery, Stuart; Billings, Jay Jay
The Nuclear Energy Advanced Modeling and Simulation (NEAMS) program from the Department of Energy's Office of Nuclear Energy provides a robust toolkit for the modeling and simulation of current and future advanced nuclear reactor designs. This toolkit provides these technologies organized across product lines: two divisions targeted at fuels and end-to-end reactor modeling, and a third for integration, coupling, and high-level workflow management. The Fuels Product Line and the Reactor Product line provide advanced computational technologies that serve each respective field well, however, their current lack of integration presents a major impediment to future improvements of simulation solution fidelity. Theremore » is a desire for the capability to mix and match tools across Product Lines in an effort to utilize the best from both to improve NEAMS modeling and simulation technologies. This report details a new effort to provide this Product Line interoperability through the development of a new application called Warthog. This application couples the BISON Fuel Performance application from the Fuels Product Line and the PROTEUS Core Neutronics application from the Reactors Product Line in an effort to utilize the best from all parts of the NEAMS toolkit and improve overall solution fidelity of nuclear fuel simulations. To achieve this, Warthog leverages as much prior work from the NEAMS program as possible, and in doing so, enables interoperability between the disparate MOOSE and SHARP frameworks, and the libMesh and MOAB mesh data formats. This report describes this work in full. We begin with a detailed look at the individual NEAMS framework technologies used and developed in the various Product Lines, and the current status of their interoperability. We then introduce the Warthog application: its overall architecture and the ways it leverages the best existing tools from across the NEAMS toolkit to enable BISON-PROTEUS integration. Furthermore, we show how Warthog leverages a tool known as DataTransferKit to seamlessly enable the transfer for solution data between disparate frameworks and mesh formats. To end, we demonstrate tests for the direct software coupling of BISON and PROTEUS using Warthog, and discuss current impediments and solutions to the construction of physically realistic input models for this coupled BISON-PROTEUS system.« less
NASA Astrophysics Data System (ADS)
Aufiero, M.; Cammi, A.; Fiorina, C.; Leppänen, J.; Luzzi, L.; Ricotti, M. E.
2013-10-01
In this work, the Monte Carlo burn-up code SERPENT-2 has been extended and employed to study the material isotopic evolution of the Molten Salt Fast Reactor (MSFR). This promising GEN-IV nuclear reactor concept features peculiar characteristics such as the on-line fuel reprocessing, which prevents the use of commonly available burn-up codes. Besides, the presence of circulating nuclear fuel and radioactive streams from the core to the reprocessing plant requires a precise knowledge of the fuel isotopic composition during the plant operation. The developed extension of SERPENT-2 directly takes into account the effects of on-line fuel reprocessing on burn-up calculations and features a reactivity control algorithm. It is here assessed against a dedicated version of the deterministic ERANOS-based EQL3D procedure (PSI-Switzerland) and adopted to analyze the MSFR fuel salt isotopic evolution. Particular attention is devoted to study the effects of reprocessing time constants and efficiencies on the conversion ratio and the molar concentration of elements relevant for solubility issues (e.g., trivalent actinides and lanthanides). Quantities of interest for fuel handling and safety issues are investigated, including decay heat and activities of hazardous isotopes (neutron and high energy gamma emitters) in the core and in the reprocessing stream. The radiotoxicity generation is also analyzed for the MSFR nominal conditions. The production of helium and the depletion in tungsten content due to nuclear reactions are calculated for the nickel-based alloy selected as reactor structural material of the MSFR. These preliminary evaluations can be helpful in studying the radiation damage of both the primary salt container and the axial reflectors.
Method and device for feeding fuel in a fuel system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williamson, E.
1988-07-26
This patent describes a device for feeding fuel in a fuel system for a liquid fuel engine, with the fuel system having a fuel tank, fuel lines, multiple microscreen fuel filters, a fuel pump, and engine fuel injectors, with the fuel tank having a fill opening having a perimeter, comprising, in combination: a ball having a size for overfitting and abutting with the perimeter of the fill opening of differing sizes, shapes, and constructions; and means for introducing air pressure greater than atmospheric through the ball and through the fill opening and into the fuel tank, with the ball havingmore » a solid cross section and being generally impermeable to air passage, with the ball being deformable to conform to the perimeter of the fill opening for sealingly engaging the perimeter of the fill opening and having a firmness for transmitting a force applied to the ball in the direction of the fill opening into a sealing force applied by the ball to the fill opening to balance opposing forces created by the introduction of air pressure into the fuel tank and for increasing the air pressure in the fuel tank acting on the fuel to increase the rate of fuel flow from the fuel tank into the fuel line for assisting the fuel pump in moving the fuel from the fuel tank through the fuel lines and through the microscreen filters to the engine fuel injectors while allowing an excessive air pressure to escape from the fill opening around the ball.« less
Combustor oscillation attenuation via the control of fuel-supply line dynamics
Richards, George A.; Gemmen, Randall S.
1998-01-01
Combustion oscillation control in combustion systems using hydrocarbon fuels is provided by acoustically tuning a fuel-delivery line to a desired phase of the combustion oscillations for providing a pulse of a fuel-rich region at the oscillating flame front at each time when the oscillation produced pressure in the combustion chamber is in a low pressure phase. The additional heat release produced by burning such fuel-rich regions during low combustion chamber pressure effectively attenuates the combustion oscillations to a selected value.
Studies on exhaust emissions of mahua oil operated compression ignition engine.
Kapilan, N; Reddy, R P
2009-07-01
The world is confronted with fossil fuel depletion and environmental degradation. The energy demand and pollution problems lead to research for an alternative renewable energy sources. Vegetable oils and biodiesel present a very promising alternative fuel to diesel. In this work, an experimental work was carried out to study the feasibility of using raw mahua oil (MO) as a substitute for diesel in dual fuel engine. A single cylinder diesel engine was modified to work in dual fuel mode and liquefied petroleum gas (LPG) was used as primary fuel and mahua oil was used as pilot fuel. The results show that the performance of the dual fuel engine at the injector opening pressure of 220 bar and the advanced injection timing of 30 degrees bTDC results in performance close to diesel base line (DBL) operation and lower smoke and oxides of nitrogen emission.
Hsu, Paul S; Gragston, Mark; Wu, Yue; Zhang, Zhili; Patnaik, Anil K; Kiefer, Johannes; Roy, Sukesh; Gord, James R
2016-10-01
Nanosecond laser-induced breakdown spectroscopy (ns-LIBS) is employed for quantitative local fuel-air (F/A) ratio (i.e., ratio of actual fuel-to-oxidizer mass over ratio of fuel-to-oxidizer mass at stoichiometry, measurements in well-characterized methane-air flames at pressures of 1-11 bar). We selected nitrogen and hydrogen atomic-emission lines at 568 nm and 656 nm, respectively, to establish a correlation between the line intensities and the F/A ratio. We have investigated the effects of laser-pulse energy, camera gate delay, and pressure on the sensitivity, stability, and precision of the quantitative ns-LIBS F/A ratio measurements. We determined the optimal laser energy and camera gate delay for each pressure condition and found that measurement stability and precision are degraded with an increase in pressure. We have identified primary limitations of the F/A ratio measurement employing ns-LIBS at elevated pressures as instabilities caused by the higher density laser-induced plasma and the presence of the higher level of soot. Potential improvements are suggested.
Computed tomography measurement of gaseous fuel concentration by infrared laser light absorption
NASA Astrophysics Data System (ADS)
Kawazoe, Hiromitsu; Inagaki, Kazuhisa; Emi, Y.; Yoshino, Fumio
1997-11-01
A system to measure gaseous hydrocarbon distributions was devised, which is based on IR light absorption by C-H stretch mode of vibration and computed tomography method. It is called IR-CT method in the paper. Affection of laser light power fluctuation was diminished by monitoring source light intensity by the second IR light detector. Calibration test for methane fuel was carried out to convert spatial data of line absorption coefficient into quantitative methane concentration. This system was applied to three flow fields. The first is methane flow with lifted flame which is generated by a gourd-shaped fuel nozzle. Feasibility of the IR-CT method was confirmed through the measurement. The second application is combustion field with diffusion flame. Calibration to determine absorptivity was undertaken, and measured line absorption coefficient was converted spatial fuel concentration using corresponding temperature data. The last case is modeled in cylinder gas flow of internal combustion engine, where gaseous methane was led to the intake valve in steady flow state. The fuel gas flow simulates behavior of gaseous gasoline which is evaporated at intake valve tulip. Computed tomography measurement of inner flow is essentially difficult because of existence of surrounding wall. In this experiment, IR laser beam was led to planed portion by IR light fiber. It is found that fuel convection by airflow takes great part in air-fuel mixture formation and the developed IR-CT system to measure fuel concentration is useful to analyze air-fuel mixture formation process and to develop new combustors.
MASSAHAKE whole tree harvesting method for pulp raw-material and fuel -- R&D in 1993--1998
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asplund, D.A.; Ahonen, M.A.
1993-12-31
In Finland biofuels and hydropower are the only indigenous fuels available. Peat, wood and wood derived fuels form about 18% of total primary energy requirement. The largest wood and wood fuel user in Finland is wood processing industry, paper, pulp, sawmills. Due to silvicultural activities the growth of forests has developed an instant need for first thinnings. This need is about 12% of total stem wood growth. With conventional harvesting methods this would produce about 8 mill. m{sup 3} pulp raw material and 2 mill. m{sup 3} wood fuel. By using integrated harvesting methods about 12 mill. m{sup 3} pulpmore » raw material and 8 mill. m{sup 3} (about 1, 3 mill. toe) fuel could be produced. At the moment, there is no economically profitable method for harvesting first thinning trees for industrial use or energy production. Hence, there are a few ongoing research projects aiming at solving the question of integrated harvesting. MASSAHAKE chip purification method has been under R&D since 1987. Research with continuous experimental line (capacity 5--10 loose-m{sup 3}) has been done in 1991 and 1992. The research has concentrated on pine whole tree chip treatment, but preliminary tests with birch whole tree chips has been done. The experiment line will be modified for birth whole tree chips during 1993. Based on the research results more than 60% of the whole tree chips can be separated to pulp raw material with < 1% bark content. This amount is 1.5--2 times more than with present technology. The yield of fuel fraction is 2--4 times higher compared to present methods. Fuel fraction is homogeneous and could be used in most furnaces for energy production. By replacing fossil fuels with wood fuel in energy production it is possible to reduce CO{sub 2}-emissions significantly. This paper presents the wood fuel research areas in Finland and technical potential of MASSAHAKE-method including the plant for building a demonstration plant based on this technology.« less
Nondestrucive analysis of fuel pins
Stepan, I.E.; Allard, N.P.; Suter, C.R.
1972-11-03
Disclosure is made of a method and a correspondingly adapted facility for the nondestructive analysis of the concentation of fuel and poison in a nuclear reactor fuel pin. The concentrations of fuel and poison in successive sections along the entire length of the fuel pin are determined by measuring the reactivity of a thermal reactor as each successive small section of the fuel pin is exposed to the neutron flux of the reactor core and comparing the measured reactivity with the reactivities measured for standard fuel pins having various known concentrations. Only a small section of the length of the fuel pin is exposed to the neutron flux at any one time while the remainder of the fuel pin is shielded from the neutron flux. In order to expose only a small section at any one time, a boron-10-lined dry traverse tube is passed through the test region within the core of a low-power thermal nuclear reactor which has a very high fuel sensitivity. A narrow window in the boron-10 lining is positioned at the core center line. The fuel pins are then systematically traversed through the tube past the narrow window such that successive small sections along the length of the fuel pin are exposed to the neutron flux which passes through the narrow window.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kraybill, R.L.; Smart, G.R.; Bopp, F.
1985-09-04
A Problem Confirmation Study was performed at seven sites on Otis Air National Guard Base: the Current and Former Training Areas, the Base Landfill, the Nondestructive Inspection Laboratory, the Fuel Test Dump Site, the Railyard Fuel Pumping Station, and the Petrol Fuel Storage Area. The field investigation was conducted in two stages, in November 1983 through January 1984, and in October through December 1984. Resampling was performed at selected locations in April and July 1985. A total of 11 monitor wells were installed and sampled and test-pit investigations were conducted at six sites. In addition, the contents of a sumpmore » tank, and two header pipes for fuel-transmission lines were sampled. Analytes included TOC, TOX, cyanide, phenols, Safe Drinking Water metals, pesticides and herbicides, and in the second round, priority-pollutant volatile organic compounds and a GC fingerprint scan for fuel products. On the basis of the field-work findings, it is concluded that, to date, water-quality impacts on ground water from past activities have been minimal.« less
Fuel-injection control of S.I. engines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, S.B.; Won, M.; Hedrick, J.K.
1994-12-31
It is known that about 50% of air pollutants comes from automotive engine exhaust, and mostly in a transient state operation. However, the wide operating range, the inherent nonlinearities of the induction process and the large modeling uncertainties make the design of the fuel-injection controller very difficult. Also, the unavoidable large time-delay between control action and measurement causes the problem of chattering. In this paper, an observer-based control algorithm based on sliding mode control technique is suggested for fast response and small amplitude chattering of the air-to-fuel ratio. A direct adaptive control using Gaussian networks is applied to the compensationmore » of transient fueling dynamics. The proposed controller is simple enough for on-line computation and is implemented on an automotive engine using a PC-386. The simulation and the experimental results show that this algorithm reduces the chattering magnitude considerably and is robust to modeling errors.« less
On-Line Measurement of Heat of Combustion of Gaseous Hydrocarbon Fuel Mixtures
NASA Technical Reports Server (NTRS)
Sprinkle, Danny R.; Chaturvedi, Sushil K.; Kheireddine, Ali
1996-01-01
A method for the on-line measurement of the heat of combustion of gaseous hydrocarbon fuel mixtures has been developed and tested. The method involves combustion of a test gas with a measured quantity of air to achieve a preset concentration of oxygen in the combustion products. This method involves using a controller which maintains the fuel (gas) volumetric flow rate at a level consistent with the desired oxygen concentration in the combustion products. The heat of combustion is determined form a known correlation with the fuel flow rate. An on-line computer accesses the fuel flow data and displays the heat of combustion measurement at desired time intervals. This technique appears to be especially applicable for measuring heats of combustion of hydrocarbon mixtures of unknown composition such as natural gas.
Combustor oscillation attenuation via the control of fuel-supply line dynamics
Richards, G.A.; Gemmen, R.S.
1998-09-22
Combustion oscillation control in combustion systems using hydrocarbon fuels is provided by acoustically tuning a fuel-delivery line to a desired phase of the combustion oscillations for providing a pulse of a fuel-rich region at the oscillating flame front at each time when the oscillation produced pressure in the combustion chamber is in a low pressure phase. The additional heat release produced by burning such fuel-rich regions during low combustion chamber pressure effectively attenuates the combustion oscillations to a selected value. 9 figs.
2014-09-30
resulted in the identification of metabolite patterns indicative of flight line exposure when compared to non -flight line control subjects...virtually non -invasive sample collection, minimal sample processing, robust and stable analytical platform, with excellent analytical and biological...identification of metabolite patterns indicative of flight line exposure when compared to non -flight line control subjects. Regardless of fuel (JP-4 or
30 CFR 75.1905-1 - Diesel fuel piping systems.
Code of Federal Regulations, 2013 CFR
2013-07-01
... entry as electric cables or power lines. Where it is necessary for piping systems to cross electric cables or power lines, guarding must be provided to prevent severed electrical cables or power lines near... storage facility. (h) The diesel fuel piping system must not be located in a borehole with electric power...
30 CFR 75.1905-1 - Diesel fuel piping systems.
Code of Federal Regulations, 2014 CFR
2014-07-01
... entry as electric cables or power lines. Where it is necessary for piping systems to cross electric cables or power lines, guarding must be provided to prevent severed electrical cables or power lines near... storage facility. (h) The diesel fuel piping system must not be located in a borehole with electric power...
Transmutation Scoping Studies for a Chloride Molten Salt Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heidet, Florent; Feng, Bo; Kim, Taek
2016-01-01
Over the past few years, there has been strong renewed interest from private industry, mostly from start-up enterprises, in molten salt reactor (MSR) technologies because of the unique properties of this class of reactors. These are reactors in which the fuel is homogeneously mixed with the coolant in the form of liquid salts and is circulated continuously into and out of the active core region with on-line fuel management, salt treatment, and salt processing. In response to such wide-spread interest, Argonne National Laboratory is expanding its well-established reactor modelling and simulation expertise and infrastructure to enable detailed analysis and designmore » of MSRs. The tools being developed are able to simulate the continuous fuel flow, the complex on-line fuel management and elemental removal processes (e.g., fission product removal) using depletion steps representative of a real MSR system. Leveraging these capabilities, a parametric study on the transmutation performance of a simplified actinide-burning MSR concept that uses a chloride-based salt was performed. This type of salt has attracted attention over the more commonly discussed fluoride-based salts since no tritium is produced as a result of irradiation and it is compatible with a fast neutron spectrum. The studies discussed in this paper examine the performance of a burner MSR design with a fixed core size and power density over a range of possible fuel salt molar ratios with NaCl-MgCl2 as the carrier salt. The intent is to quantify the impact on the required transuranics content of the make-up fuel, the actinide transmutation rates, and other performance characteristics for typical burner MSR designs.« less
Environmental Assessment: Building 3001 Tinker Air Force Base, Oklahoma
2008-09-01
developing a Memorandum of Agreement (MOA) with the SHPO and the Oklahoma Archaeological Survey regarding the potential effects the Proposed Action...3.3.5.4 Electrical System Tinker AFB receives its electrical power from Oklahoma Gas and Electric, which delivers power through a looped 138... gas , with diesel fuel used as the backup supply. The steam line system is primarily underground, with a limited number of lines extending
1981-02-01
wholesalin2 and distribution of fruit and vegetable produce. These cities also serve as major storage and distribution centers for various petroleum products...the Island End River waterfront. Petroleum products including gasoline, fuel oil, and asphalt are transferred by pipe- line to and from bulk storage...availability and cost of petroleum -based fuels. Due to the demand for marina facilities in the Boston area, the size of the projected fleet was determined by
NASA Astrophysics Data System (ADS)
Insulander Björk, Klara; Kekkonen, Laura
2015-12-01
Thorium-plutonium Mixed OXide (Th-MOX) fuel is considered for use in light water reactors fuel due to some inherent benefits over conventional fuel types in terms of neutronic properties. The good material properties of ThO2 also suggest benefits in terms of thermal-mechanical fuel performance, but the use of Th-MOX fuel for commercial power production demands that its thermal-mechanical behavior can be accurately predicted using a well validated fuel performance code. Given the scant operational experience with Th-MOX fuel, no such code is available today. This article describes the first phase of the development of such a code, based on the well-established code FRAPCON 3.4, and in particular the correlations reviewed and chosen for the fuel material properties. The results of fuel temperature calculations with the code in its current state of development are shown and compared with data from a Th-MOX test irradiation campaign which is underway in the Halden research reactor. The results are good for fresh fuel, whereas experimental complications make it difficult to judge the adequacy of the code for simulations of irradiated fuel.
Gamma-ray mirror technology for NDA of spent fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Descalle, M. A.; Ruz-Armendariz, J.; Decker, T.
Direct measurements of gamma rays emitted by fissile material have been proposed as an alternative to measurements of the gamma rays from fission products. From a safeguards applications perspective, direct detection of uranium (U) and plutonium (Pu) K-shell fluorescence emission lines and specific lines from some of their isotopes could lead to improved shipper-receiver difference or input accountability at the start of Pu reprocessing. However, these measurements are difficult to implement when the spent fuel is in the line-of-sight of the detector, as the detector is exposed to high rates dominated by fission product emissions. To overcome the combination ofmore » high rates and high background, grazing incidence multilayer mirrors have been proposed as a solution to selectively reflect U and Pu hard X-ray and soft gamma rays in the 90 to 420 keV energy into a high-purity germanium (HPGe) detector shielded from the direct line-of-sight of spent fuel. Several groups demonstrated that K-shell fluorescence lines of U and Pu in spent fuel could be detected with Ge detectors. In the field of hard X-ray optics the performance of reflective multilayer coated reflective optics was demonstrated up to 645 keV at the European Synchrotron Radiation Facility. Initial measurements conducted at Oak Ridge National Laboratory with sealed sources and scoping experiments conducted at the ORNL Irradiated Fuels Examination Laboratory (IFEL) with spent nuclear fuel further demonstrated the pass-band properties of multilayer mirrors for reflecting specific emission lines into 1D and 2D HPGe detectors, respectively.« less
On-line implementation of nonlinear parameter estimation for the Space Shuttle main engine
NASA Technical Reports Server (NTRS)
Buckland, Julia H.; Musgrave, Jeffrey L.; Walker, Bruce K.
1992-01-01
We investigate the performance of a nonlinear estimation scheme applied to the estimation of several parameters in a performance model of the Space Shuttle Main Engine. The nonlinear estimator is based upon the extended Kalman filter which has been augmented to provide estimates of several key performance variables. The estimated parameters are directly related to the efficiency of both the low pressure and high pressure fuel turbopumps. Decreases in the parameter estimates may be interpreted as degradations in turbine and/or pump efficiencies which can be useful measures for an online health monitoring algorithm. This paper extends previous work which has focused on off-line parameter estimation by investigating the filter's on-line potential from a computational standpoint. ln addition, we examine the robustness of the algorithm to unmodeled dynamics. The filter uses a reduced-order model of the engine that includes only fuel-side dynamics. The on-line results produced during this study are comparable to off-line results generated previously. The results show that the parameter estimates are sensitive to dynamics not included in the filter model. Off-line results using an extended Kalman filter with a full order engine model to address the robustness problems of the reduced-order model are also presented.
A tank-to-wheel analysis tool for energy and emissions studies in road vehicles.
Silva, C M; Gonçalves, G A; Farias, T L; Mendes-Lopes, J M C
2006-08-15
Currently, oil based fuels are the primary energy source of road transport. The growing need for oil independence and CO(2) mitigation has lead to the increasing importance of alternative fuel usage. CO(2) is produced not only as the fuel is used in the vehicle (tank-to-wheel contribution), but also upstream, from the fuel extraction to the refueling station (well-to-tank contribution), and the life cycle of the fuel production (well-to-wheel contribution) must be considered in order to analyse the global impact of the fuel utilization. A road vehicle tank-to-wheel analysis tool that may be integrated with well-to-tank models was developed in the present study. The integration in a demonstration case study allowed to perform a life cycle assessment concerning the utilization of diesel and natural gas fuels in a specific network line of a bus transit company operating in the city of Porto, Portugal.
Anand, Ashok Kumar; Nagarjuna Reddy, Thirumala Reddy; Shaffer, Jason Brian; York, William David
2014-05-13
A power plant is provided and includes a gas turbine engine having a combustor in which compressed gas and fuel are mixed and combusted, first and second supply lines respectively coupled to the combustor and respectively configured to supply the compressed gas and the fuel to the combustor and an exhaust gas recirculation (EGR) system to re-circulate exhaust gas produced by the gas turbine engine toward the combustor. The EGR system is coupled to the first and second supply lines and configured to combine first and second portions of the re-circulated exhaust gas with the compressed gas and the fuel at the first and second supply lines, respectively.
Antimisting Kerosene: Base Fuel Effects; Blending and Quality Control Techniques.
1984-01-01
Jet A in a single short period of mixing followed by a 20-minute development. Judging from the filter -. , ratio, the products are as good or better...assumes no liability Eor the contents or use thereof. The United States Government does not endorse products or manufacturers. Trade or manufacturer’s names...LINE BLENDING: EFFECTS OF ADDING THE SECOND MIXING STAGE -------------------------------------- 36 Table 13. IN-LINE BLENDING: RESISTANCE TO MECHANICAL
NASA Astrophysics Data System (ADS)
Liu, Guannan; Liu, Dong
2018-06-01
An improved inverse reconstruction model with consideration of self-absorption effect for the temperature distribution and concentration fields of soot and metal-oxide nanoparticles in nanofluid fuel flames was proposed based on the flame emission spectrometry. The effects of self-absorption on the temperature profile and concentration fields were investigated for various measurement errors, flame optical thicknesses and detecting lines numbers. The model neglecting the self-absorption caused serious reconstruction errors especially in the nanofluid fuel flames with large optical thicknesses, while the improved model was used to successfully recover the temperature distribution and concentration fields of soot and metal-oxide nanoparticles for the flames regardless of the optical thickness. Through increasing detecting lines number, the reconstruction accuracy can be greatly improved due to more flame emission information received by the spectrometer. With the adequate detecting lines number, the estimations for the temperature distribution and concentration fields of soot and metal-oxide nanoparticles in flames with large optical thicknesses were still satisfying even from the noisy radiation intensities with signal to noise ratio (SNR) as low as 46 dB. The results showed that the improved reconstruction model was effective and robust to concurrently retrieve the temperature distribution and volume fraction fields of soot and metal-oxide nanoparticles for the exact and noisy data in nanofluid fuel sooting flames with different optical thicknesses.
SPECTROSCOPIC ONLINE MONITORING FOR PROCESS CONTROL AND SAFEGUARDING OF RADIOCHEMICAL STREAMS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bryan, Samuel A.; Levitskaia, Tatiana G.
2013-09-29
There is a renewed interest worldwide to promote the use of nuclear power and close the nuclear fuel cycle. The long term successful use of nuclear power is critically dependent upon adequate and safe processing and disposition of the used nuclear fuel. Liquid-liquid extraction is a separation technique commonly employed for the processing of the dissolved used nuclear fuel. The instrumentation used to monitor these processes must be robust, require little or no maintenance, and be able to withstand harsh environments such as high radiation fields and aggressive chemical matrices. This paper summarizes application of the absorption and vibrational spectroscopicmore » techniques supplemented by physicochemical measurements for radiochemical process monitoring. In this context, our team experimentally assessed the potential of Raman and spectrophotometric techniques for online real-time monitoring of the U(VI)/nitrate ion/nitric acid and Pu(IV)/Np(V)/Nd(III), respectively, in solutions relevant to spent fuel reprocessing. These techniques demonstrate robust performance in the repetitive batch measurements of each analyte in a wide concentration range using simulant and commercial dissolved spent fuel solutions. Spectroscopic measurements served as training sets for the multivariate data analysis to obtain partial least squares predictive models, which were validated using on-line centrifugal contactor extraction tests. Satisfactory prediction of the analytes concentrations in these preliminary experiments warrants further development of the spectroscopy-based methods for radiochemical process control and safeguarding. Additionally, the ability to identify material intentionally diverted from a liquid-liquid extraction contactor system was successfully tested using on-line process monitoring as a means to detect the amount of material diverted. A chemical diversion and detection from a liquid-liquid extraction scheme was demonstrated using a centrifugal contactor system operating with the simulant PUREX extraction system of Nd(NO3)3/nitric acid aqueous phase and TBP/n-dodecane organic phase. During a continuous extraction experiment, a portion of the feed from a counter-current extraction system was diverted while the spectroscopic on-line process monitoring system was simultaneously measuring the feed, raffinate and organic products streams. The amount observed to be diverted by on-line spectroscopic process monitoring was in excellent agreement with values based from the known mass of sample directly taken (diverted) from system feed solution.« less
Fueling the Front Lines: Army Pipeline Units - Part 2
2008-03-01
head of all engineering activities in Thailand. The base camp, built at the outskirts of the inland city of Korat , was named Camp USARTHAI—short for...tanks at the Royal Thai Air Force Base (Camp Friendship) at Korat . It was a job for the entire company and the first of a series of assignments to
7. Credit PSR. Detail view looks east at Building 4306 ...
7. Credit PSR. Detail view looks east at Building 4306 (Boiler House) and at the south facade of Building 4305. Ground disturbance in foreground was a pit lined with plastic film for placement of a temporary fuel tank. - Edwards Air Force Base, North Base, Unicon Portable Hangar, First & C Streets, Boron, Kern County, CA
33 CFR 183.528 - Fuel stop valves.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Fuel stop valves. 183.528 Section...) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Equipment Standards § 183.528 Fuel stop valves. (a) Each electrically operated fuel stop valve in a fuel line between the fuel tank and the engine...
SunLine Test Drives Hydrogen Bus
DOT National Transportation Integrated Search
2003-08-01
SunLine collaborated with the U.S. Department of Energys (DOE) Hydrogen, Fuel Cells & Infrastructure Technologies (HFC&IT) Program on the evaluation of the 30-foot hybrid fuel cell bus that was developed by ThunderPower LLC, a joint venture by Tho...
33 CFR 183.570 - Fuel filters and strainers: Installation.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Fuel filters and strainers... § 183.570 Fuel filters and strainers: Installation. Each fuel filter and strainer must be supported on the engine or boat structure independent from its fuel line connections, unless the fuel filter or...
33 CFR 183.570 - Fuel filters and strainers: Installation.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Fuel filters and strainers... § 183.570 Fuel filters and strainers: Installation. Each fuel filter and strainer must be supported on the engine or boat structure independent from its fuel line connections, unless the fuel filter or...
33 CFR 183.570 - Fuel filters and strainers: Installation.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Fuel filters and strainers... § 183.570 Fuel filters and strainers: Installation. Each fuel filter and strainer must be supported on the engine or boat structure independent from its fuel line connections, unless the fuel filter or...
33 CFR 183.570 - Fuel filters and strainers: Installation.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Fuel filters and strainers... § 183.570 Fuel filters and strainers: Installation. Each fuel filter and strainer must be supported on the engine or boat structure independent from its fuel line connections, unless the fuel filter or...
33 CFR 183.570 - Fuel filters and strainers: Installation.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Fuel filters and strainers... § 183.570 Fuel filters and strainers: Installation. Each fuel filter and strainer must be supported on the engine or boat structure independent from its fuel line connections, unless the fuel filter or...
40 CFR 86.402-78 - Definitions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... atmosphere from any opening downstream from the exhaust port of a motor vehicle engine. Fuel system means the combination of fuel tank, fuel pump, fuel lines, oil injection metering system, and carburetor or fuel injection components, and includes all fuel system vents. Loaded vehicle mass means curb mass plus 80 kg...
40 CFR 86.402-78 - Definitions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... atmosphere from any opening downstream from the exhaust port of a motor vehicle engine. Fuel system means the combination of fuel tank, fuel pump, fuel lines, oil injection metering system, and carburetor or fuel injection components, and includes all fuel system vents. Loaded vehicle mass means curb mass plus 80 kg...
40 CFR 86.402-78 - Definitions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... atmosphere from any opening downstream from the exhaust port of a motor vehicle engine. Fuel system means the combination of fuel tank, fuel pump, fuel lines, oil injection metering system, and carburetor or fuel injection components, and includes all fuel system vents. Loaded vehicle mass means curb mass plus 80 kg...
40 CFR 86.402-78 - Definitions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... atmosphere from any opening downstream from the exhaust port of a motor vehicle engine. Fuel system means the combination of fuel tank, fuel pump, fuel lines, oil injection metering system, and carburetor or fuel injection components, and includes all fuel system vents. Loaded vehicle mass means curb mass plus 80 kg...
40 CFR 86.402-78 - Definitions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... atmosphere from any opening downstream from the exhaust port of a motor vehicle engine. Fuel system means the combination of fuel tank, fuel pump, fuel lines, oil injection metering system, and carburetor or fuel injection components, and includes all fuel system vents. Loaded vehicle mass means curb mass plus 80 kg...
NASA Technical Reports Server (NTRS)
Thoms, K. R.
1975-01-01
Fuel irradiation experiments were designed, built, and operated to test uranium mononitride (UN) fuel clad in tungsten-lined T-111 and uranium dioxide fuel clad in both tungsten-lined T-111 and tungsten-lined Nb-1% Zr. A total of nine fuel pins was irradiated at average cladding temperatures ranging from 931 to 1015 C. The UN experiments, capsules UN-4 and -5, operated for 10,480 and 10,037 hr, respectively, at an average linear heat generation rate of 10 kW/ft. The UO2 experiment, capsule UN-6, operated for 8333 hr at an average linear heat generation rate of approximately 5 kW/ft. Following irradiation, the nine fuel pins were removed from their capsules, externally examined, and sent to the NASA Plum Brook Facility for more detailed postirradiation examination. During visual examination, it was discovered that the cladding of the fuel pin containing dense UN in each of capsules UN-4 and -5 had failed, exposing the UN fuel to the NaK in which the pins were submerged and permitting the release of fission gas from the failed pins. A rough analysis of the fission gas seen in samples of the gas in the fuel pin region indicated fission gas release-to-birth rates from these fuel pins in the range of .00001.
Code of Federal Regulations, 2014 CFR
2014-07-01
... cargo tanks; or (2) Within or on the boundaries of fuel tanks; or (3) To pipe lines, heating coils, pumps, fittings, or other appurtenances connected to such cargo or fuel tanks. (c) Such inspections... cargo tanks; or (2) Within or on the boundaries of fuel tanks; or (3) To pipe lines, heating coils...
Code of Federal Regulations, 2011 CFR
2011-07-01
... cargo tanks; or (2) Within or on the boundaries of fuel tanks; or (3) To pipe lines, heating coils, pumps, fittings, or other appurtenances connected to such cargo or fuel tanks. (c) Such inspections... cargo tanks; or (2) Within or on the boundaries of fuel tanks; or (3) To pipe lines, heating coils...
Code of Federal Regulations, 2012 CFR
2012-07-01
... cargo tanks; or (2) Within or on the boundaries of fuel tanks; or (3) To pipe lines, heating coils, pumps, fittings, or other appurtenances connected to such cargo or fuel tanks. (c) Such inspections... cargo tanks; or (2) Within or on the boundaries of fuel tanks; or (3) To pipe lines, heating coils...
Code of Federal Regulations, 2013 CFR
2013-07-01
... cargo tanks; or (2) Within or on the boundaries of fuel tanks; or (3) To pipe lines, heating coils, pumps, fittings, or other appurtenances connected to such cargo or fuel tanks. (c) Such inspections... cargo tanks; or (2) Within or on the boundaries of fuel tanks; or (3) To pipe lines, heating coils...
Code of Federal Regulations, 2010 CFR
2010-07-01
... cargo tanks; or (2) Within or on the boundaries of fuel tanks; or (3) To pipe lines, heating coils, pumps, fittings, or other appurtenances connected to such cargo or fuel tanks. (c) Such inspections... cargo tanks; or (2) Within or on the boundaries of fuel tanks; or (3) To pipe lines, heating coils...
Code of Federal Regulations, 2012 CFR
2012-10-01
... or use of fuel injection), and catalyst usage. Limited product line light truck means a light truck..., DEPARTMENT OF TRANSPORTATION LIGHT TRUCK FUEL ECONOMY STANDARDS § 533.4 Definitions. (a) Statutory terms. (1) The terms average fuel economy, average fuel economy standard, fuel economy, import, manufacture...
Code of Federal Regulations, 2014 CFR
2014-10-01
... or use of fuel injection), and catalyst usage. Limited product line light truck means a light truck..., DEPARTMENT OF TRANSPORTATION LIGHT TRUCK FUEL ECONOMY STANDARDS § 533.4 Definitions. (a) Statutory terms. (1) The terms average fuel economy, average fuel economy standard, fuel economy, import, manufacture...
V.C.3 Technology Validation : Fuel Cell Bus Evaluations
DOT National Transportation Integrated Search
2005-01-06
Based on the results of this analysis and the response from the project partners, the SunLine demonstration was deemed to be a success. Although it was a prototype (or pre-commercial) vehicle, the ThunderPower bus operated in revenue service at a rel...
Femtoelectron-Based Terahertz Imaging of Hydration State in a Proton Exchange Membrane Fuel Cell
NASA Astrophysics Data System (ADS)
Buaphad, P.; Thamboon, P.; Kangrang, N.; Rhodes, M. W.; Thongbai, C.
2015-08-01
Imbalanced water management in a proton exchange membrane (PEM) fuel cell significantly reduces the cell performance and durability. Visualization of water distribution and transport can provide greater comprehension toward optimization of the PEM fuel cell. In this work, we are interested in water flooding issues that occurred in flow channels on cathode side of the PEM fuel cell. The sample cell was fabricated with addition of a transparent acrylic window allowing light access and observed the process of flooding formation (in situ) via a CCD camera. We then explore potential use of terahertz (THz) imaging, consisting of femtoelectron-based THz source and off-angle reflective-mode imaging, to identify water presence in the sample cell. We present simulations of two hydration states (water and nonwater area), which are in agreement with the THz image results. A line-scan plot is utilized for quantitative analysis and for defining spatial resolution of the image. Implementing metal mesh filtering can improve spatial resolution of our THz imaging system.
NASA Astrophysics Data System (ADS)
Hua, Jianfeng; Lin, Xinfan; Xu, Liangfei; Li, Jianqiu; Ouyang, Minggao
With the worldwide deterioration of the natural environment and the fossil fuel crisis, the possible commercialization of fuel cell vehicles has become a hot topic. In July 2008, Beijing started a clean public transportation plan for the 29th Olympic games. Three fuel cell city buses and 497 other low-emission vehicles are now serving the Olympic core area and Beijing urban areas. The fuel cell buses will operate along a fixed bus line for 1 year as a public demonstration of green energy vehicles. Due to the specialized nature of fuel cell engines and electrified power-train systems, measurement, monitoring and calibration devices are indispensable. Based on the latest Bluetooth wireless technology, a novel Bluetooth universal data interface was developed for the control system of the fuel cell city bus. On this platform, a series of wireless portable control auxiliary systems have been implemented, including wireless calibration, a monitoring system and an in-system programming platform, all of which are ensuring normal operation of the fuel cell buses used in the demonstration.
Fuel Cell Transit Buses : ThunderPower Bus Evaluation at SunLine Transit Agency
DOT National Transportation Integrated Search
2003-11-01
This report provides an overview of the ThunderPower fuel cell bus demonstration at SunLine Transit Agency in Thousand Palms, California. Under contract with the U.S. Department of Energy (DOE), the National Renewable Energy Laboratory (NREL) evaluat...
76 FR 8661 - Airworthiness Directives; Lycoming Engines, Fuel Injected Reciprocating Engines
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-15
... engine models requiring inspections. We are proposing this AD to prevent failure of the fuel injector... repetitive inspection compliance time. We issued that AD to prevent failure of the fuel injector fuel lines... engine models requiring inspection. We are issuing this AD to prevent failure of the fuel injector fuel...
Digital image processing techniques for the analysis of fuel sprays global pattern
NASA Astrophysics Data System (ADS)
Zakaria, Rami; Bryanston-Cross, Peter; Timmerman, Brenda
2017-12-01
We studied the fuel atomization process of two fuel injectors to be fitted in a new small rotary engine design. The aim was to improve the efficiency of the engine by optimizing the fuel injection system. Fuel sprays were visualised by an optical diagnostic system. Images of fuel sprays were produced under various testing conditions, by changing the line pressure, nozzle size, injection frequency, etc. The atomisers were a high-frequency microfluidic dispensing system and a standard low flow-rate fuel injector. A series of image processing procedures were developed in order to acquire information from the laser-scattering images. This paper presents the macroscopic characterisation of Jet fuel (JP8) sprays. We observed the droplet density distribution, tip velocity, and spray-cone angle against line-pressure and nozzle-size. The analysis was performed for low line-pressure (up to 10 bar) and short injection period (1-2 ms). Local velocity components were measured by applying particle image velocimetry (PIV) on double-exposure images. The discharge velocity was lower in the micro dispensing nozzle sprays and the tip penetration slowed down at higher rates compared to the gasoline injector. The PIV test confirmed that the gasoline injector produced sprays with higher velocity elements at the centre and the tip regions.
46 CFR 182.458 - Portable fuel systems.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 7 2013-10-01 2013-10-01 false Portable fuel systems. 182.458 Section 182.458 Shipping...) MACHINERY INSTALLATION Specific Machinery Requirements § 182.458 Portable fuel systems. (a) Portable fuel systems, including portable tanks and related fuel lines and accessories, are prohibited except where used...
46 CFR 182.458 - Portable fuel systems.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 7 2010-10-01 2010-10-01 false Portable fuel systems. 182.458 Section 182.458 Shipping...) MACHINERY INSTALLATION Specific Machinery Requirements § 182.458 Portable fuel systems. (a) Portable fuel systems, including portable tanks and related fuel lines and accessories, are prohibited except where used...
46 CFR 182.458 - Portable fuel systems.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 7 2011-10-01 2011-10-01 false Portable fuel systems. 182.458 Section 182.458 Shipping...) MACHINERY INSTALLATION Specific Machinery Requirements § 182.458 Portable fuel systems. (a) Portable fuel systems, including portable tanks and related fuel lines and accessories, are prohibited except where used...
Huang, Wei-Dong; Zhang, Y-H Percival
2011-01-01
Energy efficiency analysis for different biomass-utilization scenarios would help make more informed decisions for developing future biomass-based transportation systems. Diverse biofuels produced from biomass include cellulosic ethanol, butanol, fatty acid ethyl esters, methane, hydrogen, methanol, dimethyether, Fischer-Tropsch diesel, and bioelectricity; the respective powertrain systems include internal combustion engine (ICE) vehicles, hybrid electric vehicles based on gasoline or diesel ICEs, hydrogen fuel cell vehicles, sugar fuel cell vehicles (SFCV), and battery electric vehicles (BEV). We conducted a simple, straightforward, and transparent biomass-to-wheel (BTW) analysis including three separate conversion elements--biomass-to-fuel conversion, fuel transport and distribution, and respective powertrain systems. BTW efficiency is a ratio of the kinetic energy of an automobile's wheels to the chemical energy of delivered biomass just before entering biorefineries. Up to 13 scenarios were analyzed and compared to a base line case--corn ethanol/ICE. This analysis suggests that BEV, whose electricity is generated from stationary fuel cells, and SFCV, based on a hydrogen fuel cell vehicle with an on-board sugar-to-hydrogen bioreformer, would have the highest BTW efficiencies, nearly four times that of ethanol-ICE. In the long term, a small fraction of the annual US biomass (e.g., 7.1%, or 700 million tons of biomass) would be sufficient to meet 100% of light-duty passenger vehicle fuel needs (i.e., 150 billion gallons of gasoline/ethanol per year), through up to four-fold enhanced BTW efficiencies by using SFCV or BEV. SFCV would have several advantages over BEV: much higher energy storage densities, faster refilling rates, better safety, and less environmental burdens.
Huang, Wei-Dong; Zhang, Y-H Percival
2011-01-01
Background Energy efficiency analysis for different biomass-utilization scenarios would help make more informed decisions for developing future biomass-based transportation systems. Diverse biofuels produced from biomass include cellulosic ethanol, butanol, fatty acid ethyl esters, methane, hydrogen, methanol, dimethyether, Fischer-Tropsch diesel, and bioelectricity; the respective powertrain systems include internal combustion engine (ICE) vehicles, hybrid electric vehicles based on gasoline or diesel ICEs, hydrogen fuel cell vehicles, sugar fuel cell vehicles (SFCV), and battery electric vehicles (BEV). Methodology/Principal Findings We conducted a simple, straightforward, and transparent biomass-to-wheel (BTW) analysis including three separate conversion elements -- biomass-to-fuel conversion, fuel transport and distribution, and respective powertrain systems. BTW efficiency is a ratio of the kinetic energy of an automobile's wheels to the chemical energy of delivered biomass just before entering biorefineries. Up to 13 scenarios were analyzed and compared to a base line case – corn ethanol/ICE. This analysis suggests that BEV, whose electricity is generated from stationary fuel cells, and SFCV, based on a hydrogen fuel cell vehicle with an on-board sugar-to-hydrogen bioreformer, would have the highest BTW efficiencies, nearly four times that of ethanol-ICE. Significance In the long term, a small fraction of the annual US biomass (e.g., 7.1%, or 700 million tons of biomass) would be sufficient to meet 100% of light-duty passenger vehicle fuel needs (i.e., 150 billion gallons of gasoline/ethanol per year), through up to four-fold enhanced BTW efficiencies by using SFCV or BEV. SFCV would have several advantages over BEV: much higher energy storage densities, faster refilling rates, better safety, and less environmental burdens. PMID:21765941
33 CFR 183.410 - Ignition protection.
Code of Federal Regulations, 2010 CFR
2010-07-01
... both vertically and horizontally the distance of the open space between the fuel source and the... sources, such as engines, and valves, connections, or other fittings in vent lines, fill lines... component is isolated from a gasoline fuel source if: (1) A bulkhead that meets the requirements of...
46 CFR 119.458 - Portable fuel systems.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Portable fuel systems. 119.458 Section 119.458 Shipping... Machinery Requirements § 119.458 Portable fuel systems. (a) Portable fuel systems, including portable tanks and related fuel lines and accessories, are prohibited except where used for portable dewatering pumps...
46 CFR 119.458 - Portable fuel systems.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Portable fuel systems. 119.458 Section 119.458 Shipping... Machinery Requirements § 119.458 Portable fuel systems. (a) Portable fuel systems, including portable tanks and related fuel lines and accessories, are prohibited except where used for portable dewatering pumps...
Mountain Plains Learning Experience Guide: Automotive Repair. Course: Automotive Fuel Systems.
ERIC Educational Resources Information Center
Osland, Walt
One of twelve individualized courses included in an automotive repair curriculum, this course covers the theory, operation, and repair of the carburetor, fuel pump, and other related fuel system components and parts. The course is comprised of six units: (1) Fundamentals of Fuel Systems, (2) Fuel Pumps, (3) Fuel Lines and Filters, (4) Carburetors,…
40 CFR 86.237-08 - Dynamometer test run, gaseous emissions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... temperature recorder, the vehicle cooling fan, and the heated THC analysis recorder (diesel-cycle only). (The heat exchanger of the constant volume sampler, if used, petroleum-fueled diesel-cycle THC analyzer continuous sample line and filter, methanol-fueled vehicle THC, methanol and formaldehyde sample lines, if...
40 CFR 86.237-08 - Dynamometer test run, gaseous emissions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... temperature recorder, the vehicle cooling fan, and the heated THC analysis recorder (diesel-cycle only). (The heat exchanger of the constant volume sampler, if used, petroleum-fueled diesel-cycle THC analyzer continuous sample line and filter, methanol-fueled vehicle THC, methanol and formaldehyde sample lines, if...
77 FR 50054 - Airworthiness Directives; Cessna Aircraft Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-20
... rubbing against the right steering tube assembly during full rudder pedal actuation. This proposed AD would require you to inspect the fuel return line assembly for chafing; replace the fuel return line... right steering tube assembly and the airplane structure; and adjustment as necessary. We are proposing...
77 FR 72250 - Airworthiness Directives; Cessna Aircraft Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-05
... rubbing against the right steering tube assembly during rudder pedal actuation. This proposed AD would require you to install the forward and aft fuel return line support clamps and brackets; inspect for a minimum clearance between the fuel return line assembly and the steering tube assembly and clearance...
Checkerboard seed-blanket thorium fuel core concepts for heavy water moderated reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bromley, B.P.; Hyland, B.
2013-07-01
New reactor concepts to implement thorium-based fuel cycles have been explored to achieve maximum resource utilization. Pressure tube heavy water reactors (PT-HWR) are highly advantageous for implementing the use of thorium-based fuels because of their high neutron economy and on-line re-fuelling capability. The use of heterogeneous seed-blanket core concepts in a PT-HWR where higher-fissile-content seed fuel bundles are physically separate from lower-fissile-content blanket bundles allows more flexibility and control in fuel management to maximize the fissile utilization and conversion of fertile fuel. The lattice concept chosen was a 35-element bundle made with a homogeneous mixture of reactor grade Pu (aboutmore » 67 wt% fissile) and Th, and with a central zirconia rod to help reduce coolant void reactivity. Several checkerboard heterogeneous seed-blanket core concepts with plutonium-thorium-based fuels in a 700-MWe-class PT-HWR were analyzed, using a once-through thorium (OTT) cycle. Different combinations of seed and blanket fuel were tested to determine the impact on core-average burnup, fissile utilization, power distributions, and other performance parameters. It was found that various checkerboard core concepts can achieve a fissile utilization that is up to 26% higher than that achieved in a PT-HWR using more conventional natural uranium fuel bundles. Up to 60% of the Pu is consumed; up to 43% of the energy is produced from thorium, and up to 303 kg/year of Pa-233/U-233/U-235 are produced. Checkerboard cores with about 50% of low-power blanket bundles may require power de-rating (65% to 74%) to avoid exceeding maximum limits for channel and bundle powers and linear element ratings. (authors)« less
Annular seed-blanket thorium fuel core concepts for heavy water moderated reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bromley, B.P.; Hyland, B.
2013-07-01
New reactor concepts to implement thorium-based fuel cycles have been explored to achieve maximum resource utilization. Pressure tube heavy water reactors (PT-HWR) are highly advantageous for implementing the use of thorium-based fuels because of their high neutron economy and on-line re-fuelling capability. The use of heterogeneous seed-blanket core concepts in a PT-HWR where higher-fissile-content seed fuel bundles are physically separate from lower-fissile-content blanket bundles allows more flexibility and control in fuel management to maximize the fissile utilization and conversion of fertile fuel. The lattice concept chosen is a 35-element bundle made with a homogeneous mixture of reactor grade Pu andmore » Th, and with a central zirconia rod to help reduce coolant void reactivity. Several annular heterogeneous seed-blanket core concepts with plutonium-thorium-based fuels in a 700-MWe-class PT-HWR were analyzed, using a once-through thorium (OTT) cycle. Different combinations of seed and blanket fuel were tested to determine the impact on core-average burnup, fissile utilization, power distributions, and other performance parameters. It was found that the various core concepts can achieve a fissile utilization that is up to 30% higher than is currently achieved in a PT-HWR using conventional natural uranium fuel bundles. Up to 67% of the Pu is consumed; up to 43% of the energy is produced from thorium, and up to 363 kg/year of U-233 is produced. Seed-blanket cores with ∼50% content of low-power blanket bundles may require power de-rating (∼58% to 65%) to avoid exceeding maximum limits for peak channel power, bundle power and linear element ratings. (authors)« less
46 CFR 56.50-70 - Gasoline fuel systems.
Code of Federal Regulations, 2011 CFR
2011-10-01
.... (1) Fuel supply piping to the engines shall be of seamless drawn annealed copper pipe or tubing... sharp edges. Where passing through steel decks or bulkheads, fuel lines shall be protected by close...
46 CFR 56.50-70 - Gasoline fuel systems.
Code of Federal Regulations, 2014 CFR
2014-10-01
.... (1) Fuel supply piping to the engines shall be of seamless drawn annealed copper pipe or tubing... sharp edges. Where passing through steel decks or bulkheads, fuel lines shall be protected by close...
46 CFR 56.50-70 - Gasoline fuel systems.
Code of Federal Regulations, 2012 CFR
2012-10-01
.... (1) Fuel supply piping to the engines shall be of seamless drawn annealed copper pipe or tubing... sharp edges. Where passing through steel decks or bulkheads, fuel lines shall be protected by close...
46 CFR 56.50-70 - Gasoline fuel systems.
Code of Federal Regulations, 2013 CFR
2013-10-01
.... (1) Fuel supply piping to the engines shall be of seamless drawn annealed copper pipe or tubing... sharp edges. Where passing through steel decks or bulkheads, fuel lines shall be protected by close...
46 CFR 56.50-70 - Gasoline fuel systems.
Code of Federal Regulations, 2010 CFR
2010-10-01
.... (1) Fuel supply piping to the engines shall be of seamless drawn annealed copper pipe or tubing... sharp edges. Where passing through steel decks or bulkheads, fuel lines shall be protected by close...
Low-temperature fuel cell systems for commercial airplane auxiliary power.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curgus, Dita Brigitte; Pratt, Joseph William; Akhil, Abbas Ali
2010-11-01
This presentation briefly describes the ongoing study of fuel cell systems on-board a commercial airplane. Sandia's current project is focused on Proton Exchange Membrane (PEM) fuel cells applied to specific on-board electrical power needs. They are trying to understand how having a fuel cell on an airplane would affect overall performance. The fuel required to accomplish a mission is used to quantify the performance. Our analysis shows the differences between the base airplane and the airplane with the fuel cell. There are many ways of designing a system, depending on what you do with the waste heat. A system thatmore » requires ram air cooling has a large mass penalty due to increased drag. The bottom-line impact can be expressed as additional fuel required to complete the mission. Early results suggest PEM fuel cells can be used on airplanes with manageable performance impact if heat is rejected properly. For PEMs on aircraft, we are continuing to perform: (1) thermodynamic analysis (investigate configurations); (2) integrated electrical design (with dynamic modeling of the micro grid); (3) hardware assessment (performance, weight, and volume); and (4) galley and peaker application.« less
30. Launch Area, Generator Building, interior view showing diesel fuel ...
30. Launch Area, Generator Building, interior view showing diesel fuel tank, fuel pump (foreground) and fuel lines leading to power-generating units (removed) VIEW NORTHWEST - NIKE Missile Battery PR-79, Launch Area, East Windsor Road south of State Route 101, Foster, Providence County, RI
Fuels planning: science synthesis and integration; fact sheet: The Fuels Synthesis Project overview
Rocky Mountain Research Station USDA Forest Service
2004-01-01
The geographic focus of the "Fuels Planning: Science Synthesis and Integration" project #known as the Fuels Synthesis Project# is on the dry forests of the Western United States. Target audiences include fuels management specialists, resource specialists, National Environmental Policy Act #NEPA# planning team leaders, line officers in the USDA Forest Service...
Production of biosolid fuels from municipal sewage sludge: Technical and economic optimisation.
Wzorek, Małgorzata; Tańczuk, Mariusz
2015-08-01
The article presents the technical and economic analysis of the production of fuels from municipal sewage sludge. The analysis involved the production of two types of fuel compositions: sewage sludge with sawdust (PBT fuel) and sewage sludge with meat and bone meal (PBM fuel). The technology of the production line of these sewage fuels was proposed and analysed. The main objective of the study is to find the optimal production capacity. The optimisation analysis was performed for the adopted technical and economic parameters under Polish conditions. The objective function was set as a maximum of the net present value index and the optimisation procedure was carried out for the fuel production line input capacity from 0.5 to 3 t h(-1), using the search step 0.5 t h(-1). On the basis of technical and economic assumptions, economic efficiency indexes of the investment were determined for the case of optimal line productivity. The results of the optimisation analysis show that under appropriate conditions, such as prices of components and prices of produced fuels, the production of fuels from sewage sludge can be profitable. In the case of PBT fuel, calculated economic indexes show the best profitability for the capacity of a plant over 1.5 t h(-1) output, while production of PBM fuel is beneficial for a plant with the maximum of searched capacities: 3.0 t h(-1). Sensitivity analyses carried out during the investigation show that influence of both technical and economic assessments on the location of maximum of objective function (net present value) is significant. © The Author(s) 2015.
Antimisting kerosene: Base fuel effects, blending and quality control techniques
NASA Technical Reports Server (NTRS)
Yavrouian, A. H.; Ernest, J.; Sarohia, V.
1984-01-01
The problems associated with blending of the AMK additive with Jet A, and the base fuel effects on AMK properties are addressed. The results from the evaluation of some of the quality control techniques for AMK are presented. The principal conclusions of this investigation are: significant compositional differences for base fuel (Jet A) within the ASTM specification DI655; higher aromatic content of the base fuel was found to be beneficial for the polymer dissolution at ambient (20 C) temperature; using static mixer technology, the antimisting additive (FM-9) is in-line blended with Jet A, producing AMK which has adequate fire-protection properties 15 to 20 minutes after blending; degradability of freshly blended and equilibrated AMK indicated that maximum degradability is reached after adequate fire protection is obtained; the results of AMK degradability as measured by filter ratio, confirmed previous RAE data that power requirements to decade freshly blended AMK are significantly higher than equilibrated AMK; blending of the additive by using FM-9 concentrate in Jet A produces equilibrated AMK almost instantly; nephelometry offers a simple continuous monitoring capability and is used as a real time quality control device for AMK; and trajectory (jet thurst) and pressure drop tests are useful laboratory techniques for evaluating AMK quality.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dean, R.S.; Foley, W.J.; Hennick, A.
1989-05-01
Documentation is provided in this report for the closeout of IE Bulletin 83-06 regarding nonconformities of certain materials which were obtained directly or indirectly from the Tube-Line Corporation (T-L) for use in safety-related systems. Closeout is based on the implementation and verification of four (4) required actions by licensees and holders of construction permits of nuclear power reactor and nuclear fuel facilities. From evaluation of responses and NRC/Region inspection reports, it is concluded that the concerns of the bulletin have been resolved. The bulletin is closed for all of the 120 power reactor facilities and for both of the twomore » nuclear fuel facilities to which it was issued for action. Background information is supplied in the Introduction and Appendix A. 3 refs., 5 tabs.« less
Thorium-based mixed oxide fuel in a pressurized water reactor: A feasibility analysis with MCNP
NASA Astrophysics Data System (ADS)
Tucker, Lucas Powelson
This dissertation investigates techniques for spent fuel monitoring, and assesses the feasibility of using a thorium-based mixed oxide fuel in a conventional pressurized water reactor for plutonium disposition. Both non-paralyzing and paralyzing dead-time calculations were performed for the Portable Spectroscopic Fast Neutron Probe (N-Probe), which can be used for spent fuel interrogation. Also, a Canberra 3He neutron detector's dead-time was estimated using a combination of subcritical assembly measurements and MCNP simulations. Next, a multitude of fission products were identified as candidates for burnup and spent fuel analysis of irradiated mixed oxide fuel. The best isotopes for these applications were identified by investigating half-life, photon energy, fission yield, branching ratios, production modes, thermal neutron absorption cross section and fuel matrix diffusivity. 132I and 97Nb were identified as good candidates for MOX fuel on-line burnup analysis. In the second, and most important, part of this work, the feasibility of utilizing ThMOX fuel in a pressurized water reactor (PWR) was first examined under steady-state, beginning of life conditions. Using a three-dimensional MCNP model of a Westinghouse-type 17x17 PWR, several fuel compositions and configurations of a one-third ThMOX core were compared to a 100% UO2 core. A blanket-type arrangement of 5.5 wt% PuO2 was determined to be the best candidate for further analysis. Next, the safety of the ThMOX configuration was evaluated through three cycles of burnup at several using the following metrics: axial and radial nuclear hot channel factors, moderator and fuel temperature coefficients, delayed neutron fraction, and shutdown margin. Additionally, the performance of the ThMOX configuration was assessed by tracking cycle length, plutonium destroyed, and fission product poison concentration.
14 CFR 31.46 - Pressurized fuel systems.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Pressurized fuel systems. 31.46 Section 31... AIRWORTHINESS STANDARDS: MANNED FREE BALLOONS Design Construction § 31.46 Pressurized fuel systems. For pressurized fuel systems, each element and its connecting fittings and lines must be tested to an ultimate...
14 CFR 23.995 - Fuel valves and controls.
Code of Federal Regulations, 2010 CFR
2010-01-01
... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System... valve rapidly after it has been closed. (c) Each valve and fuel system control must be supported so that... lines connected to the valve. (d) Each valve and fuel system control must be installed so that gravity...
14 CFR 23.995 - Fuel valves and controls.
Code of Federal Regulations, 2012 CFR
2012-01-01
... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System... valve rapidly after it has been closed. (c) Each valve and fuel system control must be supported so that... lines connected to the valve. (d) Each valve and fuel system control must be installed so that gravity...
14 CFR 23.995 - Fuel valves and controls.
Code of Federal Regulations, 2014 CFR
2014-01-01
... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System... valve rapidly after it has been closed. (c) Each valve and fuel system control must be supported so that... lines connected to the valve. (d) Each valve and fuel system control must be installed so that gravity...
14 CFR 31.46 - Pressurized fuel systems.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Pressurized fuel systems. 31.46 Section 31... AIRWORTHINESS STANDARDS: MANNED FREE BALLOONS Design Construction § 31.46 Pressurized fuel systems. For pressurized fuel systems, each element and its connecting fittings and lines must be tested to an ultimate...
14 CFR 23.995 - Fuel valves and controls.
Code of Federal Regulations, 2013 CFR
2013-01-01
... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System... valve rapidly after it has been closed. (c) Each valve and fuel system control must be supported so that... lines connected to the valve. (d) Each valve and fuel system control must be installed so that gravity...
14 CFR 31.46 - Pressurized fuel systems.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Pressurized fuel systems. 31.46 Section 31... AIRWORTHINESS STANDARDS: MANNED FREE BALLOONS Design Construction § 31.46 Pressurized fuel systems. For pressurized fuel systems, each element and its connecting fittings and lines must be tested to an ultimate...
14 CFR 23.995 - Fuel valves and controls.
Code of Federal Regulations, 2011 CFR
2011-01-01
... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System... valve rapidly after it has been closed. (c) Each valve and fuel system control must be supported so that... lines connected to the valve. (d) Each valve and fuel system control must be installed so that gravity...
Code of Federal Regulations, 2012 CFR
2012-01-01
... emergency operation. (d) The burner system (including the burner unit, controls, fuel lines, fuel cells...) Five hours at the maximum fuel pressure for which approval is sought, with a burn time for each one... intermediate fuel pressure, with a burn time for each one minute cycle of three to ten seconds. An intermediate...
Code of Federal Regulations, 2013 CFR
2013-01-01
... emergency operation. (d) The burner system (including the burner unit, controls, fuel lines, fuel cells...) Five hours at the maximum fuel pressure for which approval is sought, with a burn time for each one... intermediate fuel pressure, with a burn time for each one minute cycle of three to ten seconds. An intermediate...
Code of Federal Regulations, 2010 CFR
2010-01-01
... emergency operation. (d) The burner system (including the burner unit, controls, fuel lines, fuel cells...) Five hours at the maximum fuel pressure for which approval is sought, with a burn time for each one... intermediate fuel pressure, with a burn time for each one minute cycle of three to ten seconds. An intermediate...
Code of Federal Regulations, 2011 CFR
2011-01-01
... emergency operation. (d) The burner system (including the burner unit, controls, fuel lines, fuel cells...) Five hours at the maximum fuel pressure for which approval is sought, with a burn time for each one... intermediate fuel pressure, with a burn time for each one minute cycle of three to ten seconds. An intermediate...
Code of Federal Regulations, 2014 CFR
2014-01-01
... emergency operation. (d) The burner system (including the burner unit, controls, fuel lines, fuel cells...) Five hours at the maximum fuel pressure for which approval is sought, with a burn time for each one... intermediate fuel pressure, with a burn time for each one minute cycle of three to ten seconds. An intermediate...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-22
... ``Confidential Business Information'' (``CBI''). If a person making comments wants EPA to base its decision on a... special arrangements should be made for deliveries of boxed information. On-Line Instructions for... http://www.regulations.gov , including any personal information provided, unless the comment includes...
Management self assessment plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Debban, B.L.
Duke Engineering and Services Hanford Inc., Spent Nuclear Fuel Project is responsible for the operation of fuel storage facilities. The SNF project mission includes the safe removal, processing and transportation of Spent Nuclear Fuel from 100 K Area fuel storage basins to a new Storage facility in the Hanford 200 East Area. Its mission is the modification of the 100 K area fuel storage facilities and the construction of two new facilities: the 100 K Area Cold Vacuum Drying Facility, and the 200 East Area Canister Storage Building. The management self assessment plan described in this document is scheduled tomore » begin in April of 1999 and be complete in May of 1999. The management self assessment plan describes line management preparations for declaring that line management is ready to commence operations.« less
American Fuel Cell Bus Project Evaluation. Second Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eudy, Leslie; Post, Matthew
2015-09-01
This report presents results of the American Fuel Cell Bus (AFCB) Project, a demonstration of fuel cell electric buses operating in the Coachella Valley area of California. The prototype AFCB was developed as part of the Federal Transit Administration's (FTA's) National Fuel Cell Bus Program. Through the non-profit consortia CALSTART, a team led by SunLine Transit Agency and BAE Systems developed a new fuel cell electric bus for demonstration. SunLine added two more AFCBs to its fleet in 2014 and another in 2015. FTA and the AFCB project team are collaborating with the U.S. Department of Energy (DOE) and DOE'smore » National Renewable Energy Laboratory to evaluate the buses in revenue service. This report summarizes the performance results for the buses through June 2015.« less
Technical background of the FireLine Assessment MEthod (FLAME)
Jim Bishop
2007-01-01
The FireLine Assessment MEthod (FLAME) provides a fireline-practical tool for predicting significant changes in fire rate-of-spread (ROS). FLAME addresses the dominant drivers of large, short-term change: effective windspeed, fuel type, and fine-fuel moisture. Primary output is the ROS-ratio, expressing the degree of change in ROS. The application process guides and...
NEUTRONIC REACTOR FUEL ELEMENT
Horning, W.A.; Lanning, D.D.; Donahue, D.J.
1959-10-01
A fuel slug for a reactor which acts as a safety device is described. The fuel slug is an aluminum tube with a foil lining the inside surface of the tube, the foil being fabricated of uranium in a lead matrix.
Installation Restoration Program Records Search for Langley Air Force Base, Virginia
1982-06-01
Septic Tanks at Langley Air Force Base 12 Location of Oil /Water Separators at Langley Air Force Base 13 Location Map of Possible Contaminated Area at...No. J.) and old vehicle dumping area (Site No. 15). A-17 Location of old underground fuel lines--possible oil -saturated area. vi FIGURES--Continued A...18 Location of old wastewater treatment plant at the Main Base Area (Site No. 2). A-19 Location of old underground oil storage tanks-possible oil
Distributed renewable power from biomass and other waste fuels
NASA Astrophysics Data System (ADS)
Lyons, Chris
2012-03-01
The world population is continually growing and putting a burden on our fossil fuels. These fossil fuels such as coal, oil and natural gas are used for a variety of critical needs such as power production and transportation. While significant environmental improvements have been made, the uses of these fuels are still causing significant ecological impacts. Coal power production efficiency has not improved over the past thirty years and with relatively cheap petroleum cost, transportation mileage has not improved significantly either. With the demand for these fossil fuels increasing, ultimately price will also have to increase. This presentation will evaluate alternative power production methods using localized distributed generation from biomass, municipal solid waste and other waste sources of organic materials. The presentation will review various gasification processes that produce a synthetic gas that can be utilized as a fuel source in combustion turbines for clean and efficient combined heat and power. This fuel source can produce base load renewable power. In addition tail gases from the production of bio-diesel and methanol fuels can be used to produce renewable power. Being localized can reduce the need for long and costly transmission lines making the production of fuels and power from waste a viable alternative energy source for the future.
Monitoring arrangement for vented nuclear fuel elements
Campana, Robert J.
1981-01-01
In a nuclear fuel reactor core, fuel elements are arranged in a closely packed hexagonal configuration, each fuel element having diametrically opposed vents permitting 180.degree. rotation of the fuel elements to counteract bowing. A grid plate engages the fuel elements and forms passages for communicating sets of three, four or six individual vents with respective monitor lines in order to communicate vented radioactive gases from the fuel elements to suitable monitor means in a manner readily permitting detection of leakage in individual fuel elements.
NASA Astrophysics Data System (ADS)
Polverino, Pierpaolo; Esposito, Angelo; Pianese, Cesare; Ludwig, Bastian; Iwanschitz, Boris; Mai, Andreas
2016-02-01
In the current energetic scenario, Solid Oxide Fuel Cells (SOFCs) exhibit appealing features which make them suitable for environmental-friendly power production, especially for stationary applications. An example is represented by micro-combined heat and power (μ-CHP) generation units based on SOFC stacks, which are able to produce electric and thermal power with high efficiency and low pollutant and greenhouse gases emissions. However, the main limitations to their diffusion into the mass market consist in high maintenance and production costs and short lifetime. To improve these aspects, the current research activity focuses on the development of robust and generalizable diagnostic techniques, aimed at detecting and isolating faults within the entire system (i.e. SOFC stack and balance of plant). Coupled with appropriate recovery strategies, diagnosis can prevent undesired system shutdowns during faulty conditions, with consequent lifetime increase and maintenance costs reduction. This paper deals with the on-line experimental validation of a model-based diagnostic algorithm applied to a pre-commercial SOFC system. The proposed algorithm exploits a Fault Signature Matrix based on a Fault Tree Analysis and improved through fault simulations. The algorithm is characterized on the considered system and it is validated by means of experimental induction of faulty states in controlled conditions.
Efficiency Assessment of Support Mechanisms for Wood-Fired Cogeneration Development in Estonia
NASA Astrophysics Data System (ADS)
Volkova, Anna; Siirde, Andres
2010-01-01
There are various support mechanisms for wood-fired cogeneration plants, which include both support for cogeneration development and stimulation for increasing consumption of renewable energy sources. The efficiency of these mechanisms is analysed in the paper. Overview of cogeneration development in Estonia is given with the focus on wood-fired cogeneration. Legislation acts and amendments, related to cogeneration support schemes, were described. For evaluating the efficiency of support mechanisms an indicator - fuel cost factor was defined. This indicator includes the costs related to the chosen fuel influence on the final electricity generation costs without any support mechanisms. The wood fuel cost factors were compared with the fuel cost factors for peat and oil shale. For calculating the fuel cost factors, various data sources were used. The fuel prices data were based on the average cost of fuels in Estonia for the period from 2000 till 2008. The data about operating and maintenance costs, related to the fuel type in the case of comparing wood fuel and oil shale fuel were taken from the CHP Balti and Eesti reports. The data about operating and maintenance costs used for peat and wood fuel comparison were taken from the Tallinn Elektrijaam reports. As a result, the diagrams were built for comparing wood and its competitive fuels. The decision boundary lines were constructed on the diagram for the situation, when no support was provided for wood fuels and for the situations, when various support mechanisms were provided during the last 12 years.
Tractor Mechanics: Maintaining and Servicing the Fuel System. Learning Activity Packages 20-33.
ERIC Educational Resources Information Center
Clemson Univ., SC. Vocational Education Media Center.
Learning activity packages are presented for instruction in tractor mechanics. The packages deal with the duties involved in maintaining the fuel system. The following fourteen learning activity packages are included: servicing fuel and air filters, servicing fuel tanks and lines, adjusting a carburetor, servicing a carburetor, servicing the…
NASA Astrophysics Data System (ADS)
Kosoi, A. S.; Popel', O. S.; Beschastnykh, V. N.; Zeigarnik, Yu. A.; Sinkevich, M. V.
2017-10-01
Small power units (<1 MW) see increasing application due to enhanced growth of the distributed power generation and smart power supply systems. They are usually used for feeding facilities whose connection to centralized networks involves certain problems of engineering or economical nature. Small power generation is based on a wide range of processes and primary sources, including renewable and local ones, such as nonconventional hydrocarbon fuel comprising associated gas, biogas, coalmine methane, etc. Characteristics of small gas-turbine units (GTU) that are most widely available on the world market are reviewed. The most promising lines for the development of the new generation of small GTUs are examined. Special emphasis is placed on the three lines selected for improving the efficiency of small GTUs: increasing the fuel efficiency, cutting down the maintenance cost, and integration with local or renewable power sources. It is demonstrated that, as to the specific fuel consumption, small GTUs of the new generation can have an efficiency 20-25% higher than those of the previous generation, require no maintenance between overhauls, and can be capable of efficient integration into intelligent electrical networks with power facilities operating on renewable or local power sources.
Design and Performance of LPG Fuel Mixer for Dual Fuel Diesel Engine
NASA Astrophysics Data System (ADS)
Desrial; Saputro, W.; Garcia, P. P.
2018-05-01
Small horizontal diesel engines are commonly used for agricultural machinery, however, availability of diesel fuel become one of big problems especially in remote area. Conversely, in line with government policy for conversion of kerosene into LPG for cooking, then LPG become more popular and available even in remote area. Therefore, LPG is potential fuel to replace the shortage of diesel fuel for operating diesel engine in remote area. The purpose of this study was to design mixing device for using dual fuel i.e. LPG and diesel fuel and evaluate its performance accordingly. Simulation by using CFD was done in order to analyze mixture characteristics of LPG in air intake manifold. The performance test was done by varying the amount of LPG injected in intake air at 20%, 25%, 30%, 35%, until 40%, respectively. Result of CFD contour simulation showed the best combination when mixing 30% LPG into the intake air. Performance test of this research revealed that mixing LPG in air intake can reduce the diesel fuel consumption about 0.7 l/hour (without load) and 1.14 l/hour (with load). Diesel engine revolution increases almost 300 rpm faster than when using diesel fuel only. Based on economic analysis, using the fuel combination (diesel fuel – LPG) is not recommended in the area near SPBU where the price of diesel fuel is standard. However, using the fuel combination LPG-diesel fuel is highly recommended in the remote areas in Indonesia where price of diesel fuel is comparatively expensive which will provide cheaper total fuel cost for diesel engine operation.
NASA Technical Reports Server (NTRS)
Watson, G. K.
1974-01-01
Simulated nuclear fuel element specimens, consisting of uranium mononitride (UN) fuel cylinders clad with tungsten-lined T-111, were exposed for up to 7500 hr at 1040 C (1900 F) in a pumped-lithium loop. The lithium flow velocity was 1.5 m/sec (5 ft/sec) in the specimen test section. No evidence of any compatibility problems between the specimens and the flowing lithium was found based on appearance, weight change, chemistry, and metallography. Direct exposure of the UN to the lithium through a simulated cladding crack resulted in some erosion of the UN in the area of the defect. The T-111 cladding was ductile after lithium exposure, but it was sensitive to hydrogen embrittlement during post-test handling.
Prototype Stilbene Neutron Collar
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prasad, M. K.; Shumaker, D.; Snyderman, N.
2016-10-26
A neutron collar using stilbene organic scintillator cells for fast neutron counting is described for the assay of fresh low enriched uranium (LEU) fuel assemblies. The prototype stilbene collar has a form factor similar to standard He-3 based collars and uses an AmLi interrogation neutron source. This report describes the simulation of list mode neutron correlation data on various fuel assemblies including some with neutron absorbers (burnable Gd poisons). Calibration curves (doubles vs 235U linear mass density) are presented for both thermal and fast (with Cd lining) modes of operation. It is shown that the stilbene collar meets or exceedsmore » the current capabilities of He-3 based neutron collars. A self-consistent assay methodology, uniquely suited to the stilbene collar, using triples is described which complements traditional assay based on doubles calibration curves.« less
Trench fast reactor design using the microcomputer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rohach, A.F.; Sankoorikal, J.T.; Schmidt, R.R.
1987-01-01
This project is a study of alternative liquid-metal-cooled fast power reactor system concepts. Specifically, an unconventional primary system is being conceptually designed and evaluated. The project design is based primarily on microcomputer analysis through the use of computational modules. The reactor system concept is a long, narrow pool with a long, narrow reactor called a trench-type pool reactor in it. The reactor consists of five core-blanket modules in a line. Specific power is to be modest, permitting long fuel residence time. Two fuel cycles are currently being considered. The reactor design philosophy is that of the inherently safe concept. Thismore » requires transient analysis dependent on reactivity coefficients: prompt fuel, including Doppler and expansion, fuel expansion, sodium temperature and void, and core expansion. Conceptual reactor design is done on a microcomputer. A part of the trench reactor project is to develop a microcomputer-based system that can be used by the user for scoping studies and design. Current development includes the neutronics and fuel management aspects of the design. Thermal-hydraulic analysis and economics are currently being incorporated into the microcomputer system. The system is menu-driven including preparation of program input data and of output data for displays in graphics form.« less
Design of Refractory Linings for Balanced Energy Efficiency, Uptime, and Capacity in Lime Kilns
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gorog, John Peter; Hemrick, James Gordon; Walker, Harold
2014-01-01
The rotary kilns used by the pulp and paper industry to regenerate lime in the Kraft process are very energy intensive. Throughout the 90 s, in response to increasing fuel prices, the industry used back up insulation in conjunction with the high alumina brick used to line the burning zones of their kilns. While this improved energy efficiency, the practice of installing insulating brick behind the working lining increased the inner wall temperatures. In the worst case, due to the increased temperatures, rapid brick failures occurred causing unscheduled outages and expensive repairs. Despite these issues, for the most part, themore » industry continued to use insulating refractory linings in that the energy savings were large enough to offset any increase in the cost of maintaining the refractory lining. Due to the dramatic decline in the price of natural gas in some areas combined with mounting pressures to increasing production of existing assets, over the last decade, many mills are focusing more on increasing the uptime of their kilns as opposed to energy savings. To this end, a growing number of mills are using basic (magnesia based) brick instead of high alumina brick to line the burning zone of the kiln since the lime mud does not react with these bricks at the operating temperatures of the burning zone of the kiln. In the extreme case, a few mills have chosen to install basic brick in the front end of the kiln running a length equivalent to 10 diameters. While the use of basic brick can increase the uptime of the kiln and reduce the cost to maintain the refractory lining, it does dramatically increase the heat losses resulting from the increased operating temperatures of the shell. Also, over long periods of time operating at these high temperatures, damage can occur in the shell. There are tradeoffs between energy efficiency, capacity and uptime. When fuel prices are very high, it makes sense to insulate the lining. When fuel prices are lower, trading some thermal efficiency for increased uptime and capacity seems reasonable. This paper considers a number of refractory linings in an effort to develop optimized operating strategies that balance these factors. In addition to considering a range of refractory materials, the paper examines other factors such as the chain area, discharge dams and other operating variables that impact the service life of the refractory lining. The paper provides recommendations that will help mill personnel develop a strategy to select a refractory lining that is optimized for their specific situation.« less
Customization of Discriminant Function Analysis for Prediction of Solar Flares
2005-03-01
lives such as telecommunication, commercial airlines, electrical power , wireless services, and terrestrial weather tracking and forecasting...the 1800’s can wreak havoc on today’s power , fuel, and telecommunication lines and finds its origin in solar activity. Enormous amounts of solar...inducing potential differences across large areas of the surface. Earth-bound power , fuel, and telecommunication lines grounded to the Earth provide an
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-01
...: Final rule. SUMMARY: We are adopting a new airworthiness directive (AD) for the products listed above. This AD requires installing new in-line fuses for the fuel level float switch and new in-line fuses for... left and right wing forward spars, center wing forward spar, forward auxiliary fuel tank, and aft...
78 FR 72877 - Combined Notice of Filings
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-04
....m. ET 12/4/13. Docket Numbers: RP14-203-000. Applicants: Chandeleur Pipe Line Company. Description: Chandeleur Pipe Line Company's Fuel and Line Loss Allowance Calculation for 2013. Filed Date: 11/22/13...
Single-Cylinder Diesel Engine Tests with Unstabilized Water-in-Fuel Emulsions
DOT National Transportation Integrated Search
1978-08-01
A single-cylinder, four-stroke cycle diesel engine was operated on unstabilized water-in-fuel emulsions. Two prototype devices were used to produce the emulsions on-line with the engine. More than 350 test points were run with baseline diesel fuel an...
Evaluation of Laminaria-based microbial fuel cells (LbMs) for electricity production.
Gadhamshetty, Venkataramana; Belanger, Derek; Gardiner, Carly-Jeanne; Cummings, Anasha; Hynes, Anne
2013-01-01
Marine algae represents a sustainable feedstock in microbial fuel cells (MFCs) due to its low water and energy requirements for cultivation, higher capacity to sequester carbondioxide, and high carbohydrate content. Two-compartment MFCs were evaluated under batch-fed mode using Laminaria saccharina as the model for algae-based electron donor, and mixed microbial consortia as the biocatalyst, in the anode compartment. The Laminaria-based MFCs (LBMs) were studied with three different pretreatment conditions for the L. saccharina: (i) autoclaving (Auto), (ii) microwave irradiation (Micro), and (iii) as received treatment (No-Treat). A control was setup to establish base line performance for two-compartment MFCs using glucose as the electron donor in the anode. The performance of LBMs (250 mW/m(2) and 900 mA/m(2)) was on par with glucose-based MFCs. AC impedance analysis revealed that the charge transfer resistance was at least 50-fold higher than the corresponding ohmic losses in both LBMs and glucose-based MFCs. Copyright © 2012 Elsevier Ltd. All rights reserved.
New Generation Energy Efficient Refractory Application in Soaking Pits of Bhilai Steel Plant, Sail
NASA Astrophysics Data System (ADS)
Roy, Indranil; Chintaiah, Perumetla; Bhattacharya, Ajoy Kr.; Garai, Swapan Kr.; Ray Choudhury, Pankaj Kr.; Tiwari, Laksman
In Bhilai Steel Plant (BSP), soaking pits are used for heating ingots for successive rolling into blooms. Pits are operated at a temperature of around 1350°C. Mixed gas (Mixture of Blast Furnace gas & Coke Oven gas) of calorific value around 2040 kcal/Nm3 is used as fuel. The walls of soaking pits were lined with traditional 38% Al2O3 firebricks and top 500mm was cast with 70% Al2O3 low cement castable (LCC). This type of lining results in frequent damages due to hitting by ingots while being lifted from pit by overhead cranes thus affecting the availability of pit. Life of pits was 2 to 2.5 years in BSP with 3-4 cold repairs and 3-4 hot repairs. Energy loss through the wall is also quite high in this type of lining. To triumph over the limitations of the conventional lining, a lining design was developed for the walls which consist of special 70% Al2O3 LCC having high hot strength (HMOR) in combination with specially design flexible SS-304 anchors. Ceramic fiber blanket and insulation bricks were provided between castable and the metallic shell of the pit to minimize the heat loss. A heating schedule was developed and introduced based on available infrastructure at BSP for proper curing of modified LCC based lining. After introduction of modified lining, pit no. 14/2 is running for more than 2.5 years without any repair. To capitalize the success, two more pits i.e. 12/1 and 9/2 were converted to modified lining. These pits are also running satisfactorily for more than 1.5 years. The modification has resulted in higher availability with substantial increase in production. Shell temperature of the modified pits reduced to 90° - 140°C from 120° - 200°C of conventional pits. This shows reduction in heat loss through walls, resulting less fuel consumption and energy saving of about 18%.
Fast Neutron Emission Tomography of Used Nuclear Fuel Assemblies
NASA Astrophysics Data System (ADS)
Hausladen, Paul; Iyengar, Anagha; Fabris, Lorenzo; Yang, Jinan; Hu, Jianwei; Blackston, Matthew
2017-09-01
Oak Ridge National Laboratory is developing a new capability to perform passive fast neutron emission tomography of spent nuclear fuel assemblies for the purpose of verifying their integrity for international safeguards applications. Most of the world's plutonium is contained in spent nuclear fuel, so it is desirable to detect the diversion of irradiated fuel rods from an assembly prior to its transfer to ``difficult to access'' storage, such as a dry cask or permanent repository, where re-verification is practically impossible. Nuclear fuel assemblies typically consist of an array of fuel rods that, depending on exposure in the reactor and consequent ingrowth of 244Cm, are spontaneous sources of as many as 109 neutrons s-1. Neutron emission tomography uses collimation to isolate neutron activity along ``lines of response'' through the assembly and, by combining many collimated views through the object, mathematically extracts the neutron emission from each fuel rod. This technique, by combining the use of fast neutrons -which can penetrate the entire fuel assembly -and computed tomography, is capable of detecting vacancies or substitutions of individual fuel rods. This paper will report on the physics design and component testing of the imaging system. This material is based upon work supported by the U.S. Department of Energy, Office of Defense Nuclear Nonproliferation Research and Development within the National Nuclear Security Administration, under Contract Number DE-AC05-00OR22725.
40 CFR 1060.801 - What definitions apply to this part?
Code of Federal Regulations, 2010 CFR
2010-07-01
... § 1045.801, which generally includes all nonroad equipment used as a means of transportation on water... line that is used or intended to be used to supply fuel to a marine engine during operation. This also.... Portable marine fuel tank means a portable fuel tank that is used or intended to be used to supply fuel to...
FUEL RICH SULFUR CAPTURE IN A COMBUSTION ENVIRONMENT
A refractory-lined, natural gas furnace was used to study fuel rich sulfur capture reactions of calcium sorbents under typical combustion conditions. The fuel rich sulfur species H2S and COS were monitored in a near-continuous fashion using a gas chromatograph equipped with a fl...
A simple physical model for forest fire spread
E. Koo; P. Pagni; J. Woycheese; S. Stephens; D. Weise; J. Huff
2005-01-01
Based on energy conservation and detailed heat transfer mechanisms, a simple physical model for fire spread is presented for the limit of one-dimensional steady-state contiguous spread of a line fire in a thermally-thin uniform porous fuel bed. The solution for the fire spread rate is found as an eigenvalue from this model with appropriate boundary conditions through a...
Kotzagianni, Maria; Kakkava, Eirini; Couris, Stelios
2016-04-01
Laser-induced breakdown spectroscopy (LIBS) is used for the mapping of local structures (i.e., reactants and products zones) and for the determination of fuel distribution by means of the local equivalence ratio ϕ in laminar, premixed air-hydrocarbon flames. The determination of laser threshold energy to induce breakdown in the different zones of flames is employed for the identification and demarcation of the local structures of a premixed laminar flame, while complementary results about fuel concentration were obtained from measurements of the cyanogen (CN) band Β(2)Σ(+)--Χ(2)Σ(+), (Δυ = 0) at 388.3 nm and the ratio of the atomic lines of hydrogen (Hα) and oxygen (O(I)), Hα/O. The combination of these LIBS-based methods provides a relatively simple to use, rapid, and accurate tool for online and in situ combustion diagnostics, providing valuable information about the fuel distribution and the spatial variations of the local structures of a flame. © The Author(s) 2016.
AGR-2: The first irradiation of French HTR fuel in Advanced Test Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
T. Lambert; B. Grover; P. Guillermier
AGR-2, the second irradiation of the US program for qualification of the NGNP fuel, is open to international participation within the scope of the Generation IV International Forum. In this frame, it includes in its multi-capsule irradiation rig an irradiation of French HTR fuel manufactured in the CAPRI line (GAIA facility at CEA/Cadarache and AREVA/CERCA compacting line at Romans). The AGR-2 irradiation is designed to place our first fabrications of HTR particles under operating conditions that are representative of ANTARES project while keeping close to the test range of the German fuel as much as possible, which is the referencemore » in terms of irradiation behavior. A few batches of particles and 12 fuel compacts were produced and characterized in 2009 by CEA and CERCA. The fuel main characteristics are in conformity with our specifications and in compliance with INL requirements. The AGR-2 experiment is based on the design and devices used in the first experiment of the AGR program. The design makes it possible to monitor the irradiation conditions and in particular, the temperature, the power and the fission products released from fuel particles. The in pile equipment consists of a multi-capsule device designed to simultaneously irradiate six independent capsules with temperature control. The out-of-core part consists of the equipment for actively controlling temperature and measuring the fission products release on-line. The target conditions for the irradiation experiment were defined with the aim of comparing the results obtained under irradiation with German particles along with the objectives of reaching burn-up and fluence targets to validate the behavior of our fuel in a significant range (15% FIMA – 5 × 1025 n/m2 at 600 EFPD with centerline fuel temperature about 1100 degrees C). These conditions have to be representative of ANTARES project characteristics. These target conditions were compared with final results from neutron and thermal design studies performed by INL team, and preliminary thermal mechanical ATLAS calculations were carried out by CEA from this pre-design. Despite the mean burn-up achieved in approximately 600 EFPD being a little high (16.3% FIMA max. associated with a low fluence up to 2.85 × 1025 n/m2), this irradiation will nevertheless encompass the range of irradiation effects covered in our experimental objectives (maximum stress peak at start of irradiation then sign inversion of the stress in the SiC layer). In addition, the fluence and burn-up acceleration factors are very similar to those of the German reference experiments. This experimental irradiation began in July 2010 in the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL) and first results have been acquired.« less
MARMOT update for oxide fuel modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yongfeng; Schwen, Daniel; Chakraborty, Pritam
This report summarizes the lower-length-scale research and development progresses in FY16 at Idaho National Laboratory in developing mechanistic materials models for oxide fuels, in parallel to the development of the MARMOT code which will be summarized in a separate report. This effort is a critical component of the microstructure based fuel performance modeling approach, supported by the Fuels Product Line in the Nuclear Energy Advanced Modeling and Simulation (NEAMS) program. The progresses can be classified into three categories: 1) development of materials models to be used in engineering scale fuel performance modeling regarding the effect of lattice defects on thermal conductivity, 2) development of modeling capabilities for mesoscale fuel behaviors including stage-3 gas release, grain growth, high burn-up structure, fracture and creep, and 3) improved understanding in material science by calculating the anisotropic grain boundary energies in UOmore » $$_2$$ and obtaining thermodynamic data for solid fission products. Many of these topics are still under active development. They are updated in the report with proper amount of details. For some topics, separate reports are generated in parallel and so stated in the text. The accomplishments have led to better understanding of fuel behaviors and enhance capability of the MOOSE-BISON-MARMOT toolkit.« less
Biosensoric potential of microbial fuel cells.
Schneider, György; Kovács, Tamás; Rákhely, Gábor; Czeller, Miklós
2016-08-01
Recent progress in microbial fuel cell (MFC) technology has highlighted the potential of these devices to be used as biosensors. The advantages of MFC-based biosensors are that they are phenotypic and can function in either assay- or flow-through formats. These features make them appropriate for contiguous on-line monitoring in laboratories and for in-field applications. The selectivity of an MFC biosensor depends on the applied microorganisms in the anodic compartment where electron transfer (ET) between the artificial surface (anode) and bacterium occurs. This process strongly determines the internal resistance of the sensoric system and thus influences signal outcome and response time. Despite their beneficial characteristics, the number of MFC-based biosensoric applications has been limited until now. The aim of this mini-review is to turn attention to the biosensoric potential of MFCs by summarizing ET mechanisms on which recently established and future sensoric devices are based.
77 FR 33332 - Airworthiness Directives; Fokker Services B.V. Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-06
... AD currently requires removing the actuator from the fuel-balance transfer-valve (FBTV) and... the position indicator of the FBTV is in the closed position and deactivating the fuel-balance... Mark 0100 (Fokker 100) aeroplanes were delivered from the production line with a Fuel-Balance Transfer...
77 FR 59726 - Airworthiness Directives; Fokker Services B.V. Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-01
... existing AD currently requires removing the actuator from the fuel-balance transfer-valve (FBTV) and... the position indicator of the FBTV is in the closed position and deactivating the fuel-balance... production line with a Fuel-Balance Transfer-System (FBTS) installed. Other Fokker 100 aeroplanes were...
14 CFR 23.1553 - Fuel quantity indicator.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel quantity indicator. 23.1553 Section 23.1553 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... Information Markings and Placards § 23.1553 Fuel quantity indicator. A red radial line must be marked on each...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-01
... fuel pump pressure switches. This AD results from fuel system reviews conducted by the manufacturer. We.... Unsafe Condition (e) This AD results from fuel system reviews conducted by the manufacturer. The Federal... installing an in-line fuse in certain float level switches and sleeving the wires between the fuel tank and...
NASA Technical Reports Server (NTRS)
Barnes, Marvin W.; Tucker, Dennis S.; Benensky, Kelsa M.
2018-01-01
Nuclear thermal propulsion (NTP) has the potential to expand the limits of human space exploration by enabling crewed missions to Mars and beyond. The viability of NTP hinges on the development of a robust nuclear fuel material that can perform in the harsh operating environment (> or = 2500K, reactive hydrogen) of a nuclear thermal rocket (NTR) engine. Efforts are ongoing to develop fuel material and to assemble fuel elements that will be stable during the service life of an NTR. Ceramic-metal (cermet) fuels are being actively pursued by NASA Marshall Space Flight Center (MSFC) due to their demonstrated high-temperature stability and hydrogen compatibility. Building on past cermet fuel development research, experiments were conducted to investigate a modern fabrication approach for cermet fuel elements. The experiments used consolidated tungsten (W)-60vol%zirconia (ZrO2) compacts that were formed via spark plasma sintering (SPS). The consolidated compacts were stacked and diffusion bonded to assess the integrity of the bond lines and internal cooling channel cladding. The assessment included hot hydrogen testing of the manufactured surrogate fuel and pure W for 45 minutes at 2500 K in the compact fuel element environmental test (CFEET) system. Performance of bonded W-ZrO2 rods was compared to bonded pure W rods to access bond line integrity and composite stability. Bonded surrogate fuels retained structural integrity throughout testing and incurred minimal mass loss.
NASA Astrophysics Data System (ADS)
Aleksandrova, I. V.; Koresheva, E. R.; Koshelev, I. E.; Krokhin, O. N.; Nikitenko, A. I.; Osipov, I. E.
2017-12-01
A central element of a power plant based on inertial confinement fusion (ICF) is a target with cryogenic hydrogen fuel that should be delivered to the center of a reactor chamber with a high accuracy and repetition rate. Therefore, a cryogenic target factory (CTF) is an integral part of any ICF reactor. A promising way to solve this problem consists in the FST layering method developed at the Lebedev Physical Institute (LPI). This method (rapid fuel layering inside moving free-standing targets) is unique, having no analogs in the world. The further development of FST-layering technologies is implemented in the scope of the LPI program for the creation of a modular CTF and commercialization of the obtained results. In this report, we discuss our concept of CTF (CTF-LPI) that exhibits the following distinctive features: using a FST-layering technology for the elaboration of an in-line production of cryogenic targets, using an effect of quantum levitation of high-temperature superconductors (HTSCs) in magnetic field for noncontacting manipulation, transport, and positioning of the free-standing cryogenic targets, as well as in using a Fourier holography technique for an on-line characterization and tracking of the targets flying into the reactor chamber. The results of original experimental and theoretical investigations performed at LPI indicate that the existing and developing target fabrication capabilities and technologies can be applied to ICF target production. The unique scientific, engineering, and technological base developed in Russia at LPI allows one to make a CTFLPI prototype for mass production of targets and delivery thereof at the required velocity into the ICF reactor chamber.
Launchbaugh, Karen; Brammer, Bob; Brooks, Matthew L.; Bunting, Stephen C.; Clark, Patrick; Davison, Jay; Fleming, Mark; Kay, Ron; Pellant, Mike; Pyke, David A.
2008-01-01
A series of wildland fires were ignited by lightning in sagebrush and grassland communities near the Idaho-Nevada border southwest of Twin Falls, Idaho in July 2007. The fires burned for over two weeks and encompassed more than 650,000 acres. A team of scientists, habitat specialists, and land managers was called together by Tom Dyer, Idaho BLM State Director, to examine initial information from the Murphy Wildland Fire Complex in relation to plant communities and patterns of livestock grazing. Three approaches were used to examine this topic: (1) identify potential for livestock grazing to modify fuel loads and affect fire behavior using fire models applied to various vegetation types, fuel loads, and fire conditions; (2) compare levels of fuel consumed within and among major vegetation types; and (3) examine several observed lines of difference and discontinuity in fuel consumed to determine what factors created these contrasts. The team found that much of the Murphy Wildland Fire Complex burned under extreme fuel and weather conditions that likely overshadowed livestock grazing as a factor influencing fire extent and fuel consumption in many areas where these fires burned. Differences and abrupt contrast lines in the level of fuels consumed were affected mostly by the plant communities that existed on a site before fire. A few abrupt contrasts in burn severity coincided with apparent differences in grazing patterns of livestock, observed as fence-line contrasts. Fire modeling revealed that grazing in grassland vegetation can reduce surface rate of spread and fire-line intensity to a greater extent than in shrubland types. Under extreme fire conditions (low fuel moisture, high temperatures, and gusty winds), grazing applied at moderate utilization levels has limited or negligible effects on fire behavior. However, when weather and fuel-moisture conditions are less extreme, grazing may reduce the rate of spread and intensity of fires allowing for patchy burns with low levels of fuel consumption. The team suggested that targeted grazing to accomplish fuel objectives holds promise but requires detailed planning that includes clearly defined goals for fuel modification and appropriate monitoring to assess effectiveness. It was recommended that a pilot plan be devised to strategically place grazed blocks across a landscape to create fuel-reduction bands capable of influencing fire behavior. Also suggested was the development of a general technical report that highlights information and examples of how livestock grazing influences fire extent, severity, and intensity. Finally, the team encouraged continued research and monitoring of the effects of the Murphy Wildland Fire Complex. Much more can be learned from the effects of this extensive fire complex that may offer insight for future management decisions.
CO-FIRING COAL: FEEDLOT AND LITTER BIOMASS FUELS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dr. Kalyan Annamalai; Dr. John Sweeten; Dr. Sayeed Mukhtar
2000-10-24
The following are proposed activities for quarter 1 (6/15/00-9/14/00): (1) Finalize the allocation of funds within TAMU to co-principal investigators and the final task lists; (2) Acquire 3 D computer code for coal combustion and modify for cofiring Coal:Feedlot biomass and Coal:Litter biomass fuels; (3) Develop a simple one dimensional model for fixed bed gasifier cofired with coal:biomass fuels; and (4) Prepare the boiler burner for reburn tests with feedlot biomass fuels. The following were achieved During Quarter 5 (6/15/00-9/14/00): (1) Funds are being allocated to co-principal investigators; task list from Prof. Mukhtar has been received (Appendix A); (2) Ordermore » has been placed to acquire Pulverized Coal gasification and Combustion 3 D (PCGC-3) computer code for coal combustion and modify for cofiring Coal: Feedlot biomass and Coal: Litter biomass fuels. Reason for selecting this code is the availability of source code for modification to include biomass fuels; (3) A simplified one-dimensional model has been developed; however convergence had not yet been achieved; and (4) The length of the boiler burner has been increased to increase the residence time. A premixed propane burner has been installed to simulate coal combustion gases. First coal, as a reburn fuel will be used to generate base line data followed by methane, feedlot and litter biomass fuels.« less
NASA Technical Reports Server (NTRS)
1976-01-01
'Flamarest' coating developed by Avco Corporation for NASA to protect fuel lines and tanks is sprayed on the interior of polyester boat hull in commercial application. About 30 mils of the coating prevented structural damage to hull during test in which a 13 minute interior gasoline fire was started. An unprotected hull would begin to burn in 30 seconds. Same material applied as tape to wrap fuel lines effectively insulates hose when charred while also reducing spread of flame.
CALANDRIA TYPE SODIUM GRAPHITE REACTOR
Peterson, R.M.; Mahlmeister, J.E.; Vaughn, N.E.; Sanders, W.J.; Williams, A.C.
1964-02-11
A sodium graphite power reactor in which the unclad graphite moderator and fuel elements are contained within a core tank is described. The core tank is submersed in sodium within the reactor vessel. Extending longitudinally through the core thnk are process tubes with fuel elements positioned therein. A bellows sealing means allows axial expansion and construction of the tubes. Within the core tank, a leakage plenum is located below the graphite, and above the graphite is a gas space. A vent line regulates the gas pressure in the space, and another line removes sodium from the plenum. The sodium coolant flows from the lower reactor vessel through the annular space between the fuel elements and process tubes and out into the reactor vessel space above the core tank. From there, the heated coolant is drawn off through an outlet line and sent to the heat exchange. (AEC)
NASA Astrophysics Data System (ADS)
Hill, F. K.; Vonbriesen, R.
1980-12-01
The feasibility of space heating and cooling 200 multifamily on-base housing units using nonreversible heat pumps and ground water from 1000 ft. depth was studied. The 200 housing units are a part of the 1452 main base multifamily housing complex which is heated from a high temperature and pressure water line. The main system will be converted from natural gas to coal in 1984. Relative cost, amortization periods, and fossil fuel projections are compared.
46 CFR 154.708 - Cargo boil-off as fuel: Valves.
Code of Federal Regulations, 2012 CFR
2012-10-01
... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Pressure and Temperature Control § 154.708 Cargo boil-off as fuel: Valves. (a) Gas fuel lines to the gas consuming equipment must have two fail-closed automatic valves in series. A third valve, designed to fail...
46 CFR 154.708 - Cargo boil-off as fuel: Valves.
Code of Federal Regulations, 2010 CFR
2010-10-01
... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Pressure and Temperature Control § 154.708 Cargo boil-off as fuel: Valves. (a) Gas fuel lines to the gas consuming equipment must have two fail-closed automatic valves in series. A third valve, designed to fail...
46 CFR 154.708 - Cargo boil-off as fuel: Valves.
Code of Federal Regulations, 2013 CFR
2013-10-01
... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Pressure and Temperature Control § 154.708 Cargo boil-off as fuel: Valves. (a) Gas fuel lines to the gas consuming equipment must have two fail-closed automatic valves in series. A third valve, designed to fail...
46 CFR 154.708 - Cargo boil-off as fuel: Valves.
Code of Federal Regulations, 2014 CFR
2014-10-01
... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Pressure and Temperature Control § 154.708 Cargo boil-off as fuel: Valves. (a) Gas fuel lines to the gas consuming equipment must have two fail-closed automatic valves in series. A third valve, designed to fail...
46 CFR 154.708 - Cargo boil-off as fuel: Valves.
Code of Federal Regulations, 2011 CFR
2011-10-01
... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Pressure and Temperature Control § 154.708 Cargo boil-off as fuel: Valves. (a) Gas fuel lines to the gas consuming equipment must have two fail-closed automatic valves in series. A third valve, designed to fail...
Investigation of the fuel feed line failures on the Space Shuttle main engine
NASA Technical Reports Server (NTRS)
Larson, E. W.
1980-01-01
The Space Shuttle Main Engine (SSME) development program experienced two similar appearing fuel feed line failures during the shutdown portion of two engine tests. Failure investigations into each incident showed that a few cycles of high-amplitude transient strain occurring during the start and cutoff portions of each test could have either accumulated damage and led to a fatigue failure after 46 tests, or caused rupture in a low-strength weld joint. The cause of the high strain was traced to a period of unsteady flow separation during the start and cutoff of each test coincident with the oblique shock approaching the nozzle exit. Since elimination of the flow separation was impractical, the steps taken to allow engine development and flight preparations to continue were: (1) establish the safe operating life of the nozzle, (2) reinforce all low-strength welds, and (3) eliminate the use of thin-wall fuel feed lines. In parallel, the feed line was redesigned and fabrication was initiated on units to be incorporated into the development program.
Zigan, Lars; Trost, Johannes; Leipertz, Alfred
2016-02-20
This paper reports for the first time, to the best of our knowledge, on the simultaneous imaging of the gas-phase temperature and fuel vapor mass fraction distribution in a direct-injection spark-ignition (DISI) spray under engine-relevant conditions using tracer planar laser-induced fluorescence (TPLIF). For measurements in the spray, the fluorescence tracer 3-pentanone is added to the nonfluorescent surrogate fuel iso-octane, which is excited quasi-simultaneously by two different excimer lasers for two-line excitation LIF. The gas-phase temperature of the mixture of fuel vapor and surrounding gas and the fuel vapor mass fraction can be calculated from the two LIF signals. The measurements are conducted in a high-temperature, high-pressure injection chamber. The fluorescence calibration of the tracer was executed in a flow cell and extended significantly compared to the existing database. A detailed error analysis for both calibration and measurement is provided. Simultaneous single-shot gas-phase temperature and fuel vapor mass fraction fields are processed for the assessment of cyclic spray fluctuations.
Lightweight cryogenic-compatible pressure vessels for vehicular fuel storage
Aceves, Salvador; Berry, Gene; Weisberg, Andrew H.
2004-03-23
A lightweight, cryogenic-compatible pressure vessel for flexibly storing cryogenic liquid fuels or compressed gas fuels at cryogenic or ambient temperatures. The pressure vessel has an inner pressure container enclosing a fuel storage volume, an outer container surrounding the inner pressure container to form an evacuated space therebetween, and a thermal insulator surrounding the inner pressure container in the evacuated space to inhibit heat transfer. Additionally, vacuum loss from fuel permeation is substantially inhibited in the evacuated space by, for example, lining the container liner with a layer of fuel-impermeable material, capturing the permeated fuel in the evacuated space, or purging the permeated fuel from the evacuated space.
Michigan transportation facts & figures : finance
DOT National Transportation Integrated Search
2002-08-16
This on-line document is part of a series, Transportation Facts & Figures, by the Michigan Department of Transportation (MDOT). The Finance section of Transportation Facts & Figures cover such topics as Michigan Transportation Fund, fuel taxes, fuel ...
40 CFR 86.079-31 - Separate certification.
Code of Federal Regulations, 2010 CFR
2010-07-01
...-Duty Engines, and for 1985 and Later Model Year New Gasoline Fueled, Natural Gas-Fueled, Liquefied... certification of part of his product line. The selection of test vehicles (or test engines) and the computation...
40 CFR 86.079-31 - Separate certification.
Code of Federal Regulations, 2011 CFR
2011-07-01
...-Duty Engines, and for 1985 and Later Model Year New Gasoline Fueled, Natural Gas-Fueled, Liquefied... certification of part of his product line. The selection of test vehicles (or test engines) and the computation...
An non-uniformity voltage model for proton exchange membrane fuel cell
NASA Astrophysics Data System (ADS)
Li, Kelei; Li, Yankun; Liu, Jiawei; Guo, Ai
2017-01-01
The fuel cell used in transportation has environmental protection, high efficiency and no line traction power system which can greatly reduce line construction investment. That makes it a huge potential. The voltage uniformity is one of the most important factors affecting the operation life of proton exchange membrane fuel cell (PEMFC). On the basis of principle and classical model of the PEMFC, single cell voltage is calculated and the location coefficients are introduced so as to establish a non-uniformity voltage model. These coefficients are estimated with the experimental datum at stack current 50 A. The model is validated respectively with datum at 60 A and 100 A. The results show that the model reflects the basic characteristics of voltage non-uniformity and provides the beneficial reference for fuel cell control and single cell voltage detection.
Xiangyang Zhou; Shankar Mahalingam; David Weise
2007-01-01
This paper presents a combined study of laboratory scale fire spread experiments and a three-dimensional large eddy simulation (LES) to analyze the effect of terrain slope on marginal burning behavior in live chaparral shrub fuel beds. Line fire was initiated in single species fuel beds of four common chaparral plants under various fuel bed configurations and ambient...
SunLine Transit Agency Hydrogen-Powered Transit Buses : Evaluation Results Update
DOT National Transportation Integrated Search
2007-10-01
In early 2007, the National Renewable Energy Laboratory (NREL) published a preliminary evaluation results report (January 2006 through November 2006) on hydrogen- and CNG-fueled buses operating at SunLine Transit Agency (SunLine) in Thousand Palms, C...
1986-05-01
integral fuel tanks, the various conductors in the fuel systems (e.g. pipes, fuel gauge wiring etc.) can be a fuel explosion risk of very high currents...without sparking. The energy contained in the sparking is most certainly a grave fuel explosion risk . Similar hazards must be avoided with any wiring or...conductors parallel to the cable, transmission lines can be formed. This mehod can only be used for shielded cables. The shield must be accessible somewhere
Optimization of fuel-cell tram operation based on two dimension dynamic programming
NASA Astrophysics Data System (ADS)
Zhang, Wenbin; Lu, Xuecheng; Zhao, Jingsong; Li, Jianqiu
2018-02-01
This paper proposes an optimal control strategy based on the two-dimension dynamic programming (2DDP) algorithm targeting at minimizing operation energy consumption for a fuel-cell tram. The energy consumption model with the tram dynamics is firstly deduced. Optimal control problem are analyzed and the 2DDP strategy is applied to solve the problem. The optimal tram speed profiles are obtained for each interstation which consist of three stages: accelerate to the set speed with the maximum traction power, dynamically adjust to maintain a uniform speed and decelerate to zero speed with the maximum braking power at a suitable timing. The optimal control curves of all the interstations are connected with the parking time to form the optimal control method of the whole line. The optimized speed profiles are also simplified for drivers to follow.
Drawing The Red Line: Cost Benefit Analysis on Large Life Rafts
2013-06-13
Patterson Air Force Base, Ohio DISTRIBUTION STATEMENT A . APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED. The...Anderson, BS, MS Major, USAF June 2013 DISTRIBUTION STATEMENT A . APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. AFIT-ENS-GRP-13-J-1...AMC has set up a Fuel-Efficiency Office (FEO) in order to analyze costs and make decisions that will save money on operational expenses related to
View east northeast at Test Stand 'A' complex from road, ...
View east northeast at Test Stand 'A' complex from road, showing Test Stand 'C' test tower in left background (Building 4217/E-18). Curved I-beam labeled '3-ton' is for small traveling hoist. Fuel tanks, propellant lines, and control panels have been removed from tower. - Jet Propulsion Laboratory Edwards Facility, Test Stand A, Edwards Air Force Base, Boron, Kern County, CA
Computation of incompressible viscous flows through turbopump components
NASA Technical Reports Server (NTRS)
Kiris, Cetin; Chang, Leon
1993-01-01
Flow through pump components, such as an inducer and an impeller, is efficiently simulated by solving the incompressible Navier-Stokes equations. The solution method is based on the pseudocompressibility approach and uses an implicit-upwind differencing scheme together with the Gauss-Seidel line relaxation method. the equations are solved in steadily rotating reference frames and the centrifugal force and the Coriolis force are added to the equation of motion. Current computations use a one-equation Baldwin-Barth turbulence model which is derived from a simplified form of the standard k-epsilon model equations. The resulting computer code is applied to the flow analysis inside a generic rocket engine pump inducer, a fuel pump impeller, and SSME high pressure fuel turbopump impeller. Numerical results of inducer flow are compared with experimental measurements. In the fuel pump impeller, the effect of downstream boundary conditions is investigated. Flow analyses at 80 percent, 100 percent, and 120 percent of design conditions are presented.
Summary of OEM Idling Recommendations from Vehicle Owner's Manuals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keel-Blackmon, Kristy; Curran, Scott; Lapsa, Melissa Voss
The project upon which this report is based was conceived in 2012 during discussions between the East Tennessee Clean Fuels Coalition (ETCleanFuels) and Oak Ridge National Laboratory (ORNL) who both noted that a detailed summary of idling recommendations for a wide variety of engines and vehicles were not available in the literature. The two organizations agreed that ETCleanFuels would develop a first-of-its-kind collection of idling recommendations from the owner’s manuals of modern production vehicles. Vehicle engine idling, a subject that has long been debated, is largely shrouded in misinformation. The justifications for idling seem to be many: driver comfort, waitingmore » in lines, and talking on cell phones to name a few. Assuredly, a great number of people idle because of the myths and misinformation surrounding this issue. This report addresses these myths by turning to statements taken directly from the automobile and engine manufacturers themselves.« less
1984-05-01
chemicals used by the U.S. Air Force. Snyder-Theilen Feline Sarcoma Virus (ST-FeSV), quantitatively transforms human skin fibroblasts following second...Objective 1 The cell line used for this aspect of this program was Detroit 550, a human diploid skin fibroblast line from the American Type Culture...Branch of the National Cancer Institute. The results are presented herein. Materials and Methods 1. Cells. Detroit 550 human skin fibroblast (HSF) cells
Fire Protection Informational Exchange
2016-07-01
0.95 L/min concurrent spray & 274x521 mm pool (66°C) i. Persistent fuels; turbine fuel in spray/pool; lubricant, hydraulic fluid in spray ii...conjugate image plane La Vision sCMOS + Kl long- distance microscope with CF4 objective wire .. " " " " ... in-line hologram image plane La...distance microscope with CF4 objective wire I phase disrurbanc.e (f= 2000 nun) .. " " " " ... in-line hologram image plane La Vision sCNlOS
Anlysis capabilities for plutonium-238 programs
NASA Astrophysics Data System (ADS)
Wong, A. S.; Rinehart, G. H.; Reimus, M. H.; Pansoy-Hjelvik, M. E.; Moniz, P. F.; Brock, J. C.; Ferrara, S. E.; Ramsey, S. S.
2000-07-01
In this presentation, an overview of analysis capabilities that support 238Pu programs will be discussed. These capabilities include neutron emission rate and calorimetric measurements, metallography/ceramography, ultrasonic examination, particle size determination, and chemical analyses. The data obtained from these measurements provide baseline parameters for fuel clad impact testing, fuel processing, product certifications, and waste disposal. Also several in-line analyses capabilities will be utilized for process control in the full-scale 238Pu Aqueous Scrap Recovery line in FY01.
Properties of solid polymer electrolyte fluorocarbon film. [used in hydrogen/oxygen fuel cells
NASA Technical Reports Server (NTRS)
Alston, W. B.
1973-01-01
The ionic fluorocarbon film used as the solid polymer electrolyte in hydrogen/oxygen fuel cells was found to exhibit delamination failures. Polarized light microscopy of as-received film showed a lined region at the center of the film thickness. It is shown that these lines were not caused by incomplete saponification but probably resulted from the film extrusion process. The film lines could be removed by an annealing process. Chemical, physical, and tensile tests showed that annealing improved or sustained the water contents, spectral properties, thermo-oxidative stability, and tensile properties of the film. The resistivity of the film was significantly decreased by the annealing process.
Code of Federal Regulations, 2011 CFR
2011-10-01
... paragraph (e)(1) and (e)(2) of this section, each fuel line must be seamless and must be of steel, annealed... reinforced with wire braid. (iv) Be fitted with suitable, corrosion resistant, compression fittings; and (v...
40 CFR Appendix III to Part 600 - Sample Fuel Economy Label Calculation
Code of Federal Regulations, 2011 CFR
2011-07-01
... miles per gallon. Note that the car line of the test vehicle using a given engine makes no difference... engine. These four car lines are: Ajax Boredom III Dodo Castor (Station Wagon) A. A car line is defined... different car line than the normal Castor car line made up of sedans, coupes, etc. B. The engine considered...
40 CFR Appendix III to Part 600 - Sample Fuel Economy Label Calculation
Code of Federal Regulations, 2014 CFR
2014-07-01
... miles per gallon. Note that the car line of the test vehicle using a given engine makes no difference... engine. These four car lines are: Ajax Boredom III Dodo Castor (Station Wagon) A. A car line is defined... different car line than the normal Castor car line made up of sedans, coupes, etc. B. The engine considered...
40 CFR Appendix III to Part 600 - Sample Fuel Economy Label Calculation
Code of Federal Regulations, 2013 CFR
2013-07-01
... miles per gallon. Note that the car line of the test vehicle using a given engine makes no difference... engine. These four car lines are: Ajax Boredom III Dodo Castor (Station Wagon) A. A car line is defined... different car line than the normal Castor car line made up of sedans, coupes, etc. B. The engine considered...
40 CFR Appendix III to Part 600 - Sample Fuel Economy Label Calculation
Code of Federal Regulations, 2012 CFR
2012-07-01
... miles per gallon. Note that the car line of the test vehicle using a given engine makes no difference... engine. These four car lines are: Ajax Boredom III Dodo Castor (Station Wagon) A. A car line is defined... different car line than the normal Castor car line made up of sedans, coupes, etc. B. The engine considered...
78 FR 70240 - Airworthiness Directives; Lycoming Engines, Fuel Injected Reciprocating Engines
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-25
... procedures found in 14 CFR 39.19 to make your request. (g) Related Information (1) For more information about... mounted fuel injector fuel lines. Since we issued AD 2011-26-04, we received revised service information... between 9 a.m. and 5 p.m., Monday through Friday, except Federal holidays. For service information...
14 CFR 23.1553 - Fuel quantity indicator.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel quantity indicator. 23.1553 Section 23... Information Markings and Placards § 23.1553 Fuel quantity indicator. A red radial line must be marked on each indicator at the calibrated zero reading, as specified in § 23.1337(b)(1). [Doc. No. 27807, 61 FR 5193, Feb...
14 CFR 23.1553 - Fuel quantity indicator.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel quantity indicator. 23.1553 Section 23... Information Markings and Placards § 23.1553 Fuel quantity indicator. A red radial line must be marked on each indicator at the calibrated zero reading, as specified in § 23.1337(b)(1). [Doc. No. 27807, 61 FR 5193, Feb...
Pirjola, Liisa; Dittrich, Aleš; Niemi, Jarkko V; Saarikoski, Sanna; Timonen, Hilkka; Kuuluvainen, Heino; Järvinen, Anssi; Kousa, Anu; Rönkkö, Topi; Hillamo, Risto
2016-01-05
Exhaust emissions of 23 individual city buses at Euro III, Euro IV and EEV (Enhanced Environmentally Friendly Vehicle) emission levels were measured by the chasing method under real-world conditions at a depot area and on the normal route of bus line 24 in Helsinki. The buses represented different technologies from the viewpoint of engines, exhaust after-treatment systems (ATS) and fuels. Some of the EEV buses were fueled by diesel, diesel-electric, ethanol (RED95) and compressed natural gas (CNG). At the depot area the emission factors were in the range of 0.3-21 × 10(14) # (kg fuel)(-1), 6-40 g (kg fuel)(-1), 0.004-0.88 g (kg fuel)(-1), 0.004-0.56 g (kg fuel)(-1), 0.01-1.2 g (kg fuel)(-1), for particle number (EFN), nitrogen oxides (EFNOx), black carbon (EFBC), organics (EFOrg), and particle mass (EFPM1), respectively. The highest particulate emissions were observed from the Euro III and Euro IV buses and the lowest from the ethanol and CNG-fueled buses, which emitted BC only during acceleration. The organics emitted from the CNG-fueled buses were clearly less oxidized compared to the other bus types. The bus line experiments showed that lowest emissions were obtained from the ethanol-fueled buses whereas large variation existed between individual buses of the same type indicating that the operating conditions by drivers had large effect on the emissions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Casella, Amanda J.; Hylden, Laura R.; Campbell, Emily L.
Knowledge of real-time solution properties and composition is a necessity for any spent nuclear fuel reprocessing method. Metal-ligand speciation in aqueous solutions derived from the dissolved commercial spent fuel is highly dependent upon the acid concentration/pH, which influences extraction efficiency and the resulting speciation in the organic phase. Spectroscopic process monitoring capabilities, incorporated in a counter current centrifugal contactor bank, provide a pathway for on-line real-time measurement of solution pH. The spectroscopic techniques are process-friendly and can be easily configured for on-line applications, while classic potentiometric pH measurements require frequent calibration/maintenance and have poor long-term stability in aggressive chemical andmore » radiation environments. Our research is focused on developing a general method for on-line determination of pH of aqueous solutions through chemometric analysis of Raman spectra. Interpretive quantitative models have been developed and validated under the range of chemical composition and pH using a lactic acid/lactate buffer system. The developed model was applied to spectra obtained on-line during solvent extractions performed in a centrifugal contactor bank. The model predicted the pH within 11% for pH > 2, thus demonstrating that this technique could provide the capability of monitoring pH on-line in applications such as nuclear fuel reprocessing.« less
Alternative Practices to Improve Surface Fleet Fuel Efficiency
2014-09-01
GTGs . These GTGs are used onboard Ticonderoga-class cruisers (from Bennett 2014). Approximately 95-120 GPH less fuel is burned when operating one... GTG vice two. ..........................22 Figure 9. This shows the optimum speed to minimize fuel consumption for USS Chosin (CG 65). The TFP line...FITREP fitness report FY fiscal year GPH gallons per hour GTG gas turbine generator hr hour JP5 jet propulsion fuel, type 5 kts knots kW kilowatt
Optimal short-range trajectories for helicopters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slater, G.L.; Erzberger, H.
1982-12-01
An optimal flight path algorithm using a simplified altitude state model and a priori climb cruise descent flight profile was developed and applied to determine minimum fuel and minimum cost trajectories for a helicopter flying a fixed range trajectory. In addition, a method was developed for obtaining a performance model in simplified form which is based on standard flight manual data and which is applicable to the computation of optimal trajectories. The entire performance optimization algorithm is simple enough that on line trajectory optimization is feasible with a relatively small computer. The helicopter model used is the Silorsky S-61N. Themore » results show that for this vehicle the optimal flight path and optimal cruise altitude can represent a 10% fuel saving on a minimum fuel trajectory. The optimal trajectories show considerable variability because of helicopter weight, ambient winds, and the relative cost trade off between time and fuel. In general, reasonable variations from the optimal velocities and cruise altitudes do not significantly degrade the optimal cost. For fuel optimal trajectories, the optimum cruise altitude varies from the maximum (12,000 ft) to the minimum (0 ft) depending on helicopter weight.« less
NASA Numerical and Experimental Evaluation of UTRC Low Emissions Injector
NASA Technical Reports Server (NTRS)
Hicks, Yolanda R.; Tedder, Sarah A.; Anderson, Robert C.; Iannetti, Anthony C.; Smith, Lance L.; Dai, Zhongtao
2014-01-01
Computational and experimental analyses of a PICS-Pilot-In-Can-Swirler technology injector, developed by United Technologies Research Center (UTRC) are presented. NASA has defined technology targets for near term (called "N+1", circa 2015), midterm ("N+2", circa 2020) and far term ("N+3", circa 2030) that specify realistic emissions and fuel efficiency goals for commercial aircraft. This injector has potential for application in an engine to meet the Pratt & Whitney N+3 supersonic cycle goals, or the subsonic N+2 engine cycle goals. Experimental methods were employed to investigate supersonic cruise points as well as select points of the subsonic cycle engine; cruise, approach, and idle with a slightly elevated inlet pressure. Experiments at NASA employed gas analysis and a suite of laser-based measurement techniques to characterize the combustor flow downstream from the PICS dump plane. Optical diagnostics employed for this work included Planar Laser-Induced Fluorescence of fuel for injector spray pattern and Spontaneous Raman Spectroscopy for relative species concentration of fuel and CO2. The work reported here used unheated (liquid) Jet-A fuel for all fuel circuits and cycle conditions. The initial tests performed by UTRC used vaporized Jet-A to simulate the expected supersonic cruise condition, which anticipated using fuel as a heat sink. Using the National Combustion Code a PICS-based combustor was modeled with liquid fuel at the supersonic cruise condition. All CFD models used a cubic non-linear k-epsilon turbulence wall functions model, and a semi-detailed Jet-A kinetic mechanism based on a surrogate fuel mixture. Two initial spray droplet size distribution and spray cone conditions were used: 1) an initial condition (Lefebvre) with an assumed Rosin-Rammler distribution, and 7 degree Solid Spray Cone; and 2) the Boundary Layer Stripping (BLS) primary atomization model giving the spray size distribution and directional properties. Contour and line plots are shown in comparison with experimental data (where this data is available) for flow velocities, fuel, and temperature distribution. The CFD results are consistent with experimental observations for fuel distribution and vaporization. Analysis of gas sample results, using a previously-developed NASA NOx correlation, indicates that for sea-level takeoff, the PICS configuration is predicted to deliver an EINOx value of about 3 for the targeted supersonic aircraft. Emissions results at supersonic cruise conditions show potential for meeting the NASA goals with liquid fuel.
NASA Numerical and Experimental Evaluation of UTRC Low Emissions Injector
NASA Technical Reports Server (NTRS)
Hicks, Yolanda R.; Tedder, Sarah A.; Anderson, Robert C.; Iannetti, Anthony C.; Smith, Lance L.; Dai, Zhongtao
2014-01-01
Computational and experimental analyses of a PICS-Pilot-In-Can-Swirler technology injector, developed by United Technologies Research Center (UTRC) are presented. NASA has defined technology targets for near term (called "N+1", circa 2015), midterm ("N+2", circa 2020) and far term ("N+3", circa 2030) that specify realistic emissions and fuel efficiency goals for commercial aircraft. This injector has potential for application in an engine to meet the Pratt & Whitney N+3 supersonic cycle goals, or the subsonic N+2 engine cycle goals. Experimental methods were employed to investigate supersonic cruise points as well as select points of the subsonic cycle engine; cruise, approach, and idle with a slightly elevated inlet pressure. Experiments at NASA employed gas analysis and a suite of laser-based measurement techniques to characterize the combustor flow downstream from the PICS dump plane. Optical diagnostics employed for this work included Planar Laser-Induced Fluorescence of fuel for injector spray pattern and Spontaneous Raman Spectroscopy for relative species concentration of fuel and CO2. The work reported here used unheated (liquid) Jet-A fuel for all fuel circuits and cycle conditions. The initial tests performed by UTRC used vaporized Jet-A to simulate the expected supersonic cruise condition, which anticipated using fuel as a heat sink. Using the National Combustion Code a PICS-based combustor was modeled with liquid fuel at the supersonic cruise condition. All CFD models used a cubic non-linear k-epsilon turbulence wall functions model, and a semi-detailed Jet-A kinetic mechanism based on a surrogate fuel mixture. Two initial spray droplet size distribution and spray cone conditions were used: (1) an initial condition (Lefebvre) with an assumed Rosin-Rammler distribution, and 7 degree Solid Spray Cone; and (2) the Boundary Layer Stripping (BLS) primary atomization model giving the spray size distribution and directional properties. Contour and line plots are shown in comparison with experimental data (where this data is available) for flow velocities, fuel, and temperature distribution. The CFD results are consistent with experimental observations for fuel distribution and vaporization. Analysis of gas sample results, using a previously-developed NASA NOx correlation, indicates that for sea-level takeoff, the PICS configuration is predicted to deliver an EINOx value of about three for the targeted supersonic aircraft. Emissions results at supersonic cruise conditions show potential for meeting the NASA goals with liquid fuel.
Fuel property effects on Navy aircraft fuel systems
NASA Technical Reports Server (NTRS)
Moses, C. A.
1984-01-01
Problems of ensuring compatibility of Navy aircraft with fuels that may be different than the fuels for which the equipment was designed and qualified are discussed. To avoid expensive requalification of all the engines and airframe fuel systems, methodologies to qualify future fuels by using bench-scale and component testing are being sought. Fuel blends with increasing JP5-type aromatic concentration were seen to produce less volume swell than an equivalent aromatic concentration in the reference fuel. Futhermore, blends with naphthenes, decalin, tetralin, and naphthalenes do not deviate significantly from the correlation line of aromatic blends, Similar results are found with tensile strenth and elongation. Other elastomers, sealants, and adhesives are also being tested.
Minimum-fuel turning climbout and descent guidance of transport jets
NASA Technical Reports Server (NTRS)
Neuman, F.; Kreindler, E.
1983-01-01
The complete flightpath optimization problem for minimum fuel consumption from takeoff to landing including the initial and final turns from and to the runway heading is solved. However, only the initial and final segments which contain the turns are treated, since the straight-line climbout, cruise, and descent problems have already been solved. The paths are derived by generating fields of extremals, using the necessary conditions of optimal control together with singular arcs and state constraints. Results show that the speed profiles for straight flight and turning flight are essentially identical except for the final horizontal accelerating or decelerating turns. The optimal turns require no abrupt maneuvers, and an approximation of the optimal turns could be easily integrated with present straight-line climb-cruise-descent fuel-optimization algorithms. Climbout at the optimal IAS rather than the 250-knot terminal-area speed limit would save 36 lb of fuel for the 727-100 aircraft.
NASA Technical Reports Server (NTRS)
Russell, S. S.; Lansing, M. D.
1997-01-01
The goal of this research effort was the development of methods for shearographic and thermographic inspection of coatings, bonds, or laminates inside rocket fuel or oxidizer tanks, fuel lines, and other closed structures. The endoscopic methods allow imaging and inspection inside cavities that are traditionally inaccessible with shearography or thermography cameras. The techniques are demonstrated and suggestions for practical application are made in this report. Drawings of the experimental setups, detailed procedures, and experimental data are included.
1981-10-01
Function of depressed immunologic reactivity during carcinogenesis, 3. Nati. Cancer Inst., 31, 791, 1963. 13. Tarr, M.3., Olsen, R.G., Hoover, E.A...cell line, RDII4/RD. This cell line was obtained from the biological carcinogenesis program of Frederick Cancer Research Center. After discussion with...Sandra West of the Frederick Cancer Research Center, a procedure was developed and is now routinely used to produce and isolate the RD14 virus. The RD14
NASA Technical Reports Server (NTRS)
Lansing, Matthew D.; Bullock, Michael W.
1996-01-01
The goal of this research effort was the development of methods for shearography and thermography inspection of coatings, bonds, or laminates inside rocket fuel or oxidizer tanks, fuel lines, and other closed structures. The endoscopic methods allow imaging and inspection inside cavities which are traditionally inaccessible with shearography or thermography cameras. The techniques are demonstrated and suggestions for practical application are made in this report. Drawings of the experimental setups, detailed procedures, and experimental data are included.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-27
... lawfulness of the rates charged by the Respondent for transportation of jet or aviation turbine fuel on its..., Inc., Continental Airlines, Inc., JetBlue Airways Corporation, United Air Lines, Inc., US Airways, Inc... Airlines, Inc., JetBlue Airways Corporation, United Air Lines, Inc., and US Airways, Inc. (collectively...
2016-11-28
infrastructure typically include energy, water, wastewater, electricity, natural gas , liquid fuel distribution systems, communication lines (e.g...with state off-road regulations would further reduce air quality and greenhouse gas emissions. Cultural Resources. The waste footprint as well as...maintenance of the prescriptive final cover and erosion control, landfill gas monitoring and well maintenance, groundwater monitoring and well maintenance
Sensitivity Analysis and Optimization of the Nuclear Fuel Cycle: A Systematic Approach
NASA Astrophysics Data System (ADS)
Passerini, Stefano
For decades, nuclear energy development was based on the expectation that recycling of the fissionable materials in the used fuel from today's light water reactors into advanced (fast) reactors would be implemented as soon as technically feasible in order to extend the nuclear fuel resources. More recently, arguments have been made for deployment of fast reactors in order to reduce the amount of higher actinides, hence the longevity of radioactivity, in the materials destined to a geologic repository. The cost of the fast reactors, together with concerns about the proliferation of the technology of extraction of plutonium from used LWR fuel as well as the large investments in construction of reprocessing facilities have been the basis for arguments to defer the introduction of recycling technologies in many countries including the US. In this thesis, the impacts of alternative reactor technologies on the fuel cycle are assessed. Additionally, metrics to characterize the fuel cycles and systematic approaches to using them to optimize the fuel cycle are presented. The fuel cycle options of the 2010 MIT fuel cycle study are re-examined in light of the expected slower rate of growth in nuclear energy today, using the CAFCA (Code for Advanced Fuel Cycle Analysis). The Once Through Cycle (OTC) is considered as the base-line case, while advanced technologies with fuel recycling characterize the alternative fuel cycle options available in the future. The options include limited recycling in L WRs and full recycling in fast reactors and in high conversion LWRs. Fast reactor technologies studied include both oxide and metal fueled reactors. Additional fuel cycle scenarios presented for the first time in this work assume the deployment of innovative recycling reactor technologies such as the Reduced Moderation Boiling Water Reactors and Uranium-235 initiated Fast Reactors. A sensitivity study focused on system and technology parameters of interest has been conducted to test the robustness of the conclusions presented in the MIT Fuel Cycle Study. These conclusions are found to still hold, even when considering alternative technologies and different sets of simulation assumptions. Additionally, a first of a kind optimization scheme for the nuclear fuel cycle analysis is proposed and the applications of such an optimization are discussed. Optimization metrics of interest for different stakeholders in the fuel cycle (economics, fuel resource utilization, high level waste, transuranics/proliferation management, and environmental impact) are utilized for two different optimization techniques: a linear one and a stochastic one. Stakeholder elicitation provided sets of relative weights for the identified metrics appropriate to each stakeholder group, which were then successfully used to arrive at optimum fuel cycle configurations for recycling technologies. The stochastic optimization tool, based on a genetic algorithm, was used to identify non-inferior solutions according to Pareto's dominance approach to optimization. The main tradeoff for fuel cycle optimization was found to be between economics and most of the other identified metrics. (Copies available exclusively from MIT Libraries, libraries.mit.edu/docs - docs mit.edu)
Advanced Diesel Oil Fuel Processor Development
1986-06-01
water exit 29 sample quencher: gas sample line inlet 30 sample quencher: gas sample line exit 31 sample quencher: cooling water inlet 32 desulfuriser ...exit line 33, 34 desulfurimer 35 heat exchanger: process gas exit (to desulfuriser ) 38 shift reactor inlet (top) 37 shift reactor: cooling air exit
The Rail Alignment Environmental Impact Statement: An Update
DOE Office of Scientific and Technical Information (OSTI.GOV)
R. Sweeney
2005-01-20
On July 23,2002, the President of the United States signed into law a joint resolution of the United States Congress designating the Yucca Mountain site in Nye County, Nevada, for development as a geologic repository for the disposal of spent nuclear fuel and high-level radioactive waste. If the US. Nuclear Regulatory Commission authorizes construction of the repository and receipt and possession of spent nuclear fuel and high-level radioactive at Yucca Mountain, the U.S. Department of Energy (DOE) would be responsible for transporting these materials to the Yucca Mountain repository as part of its obligation under the Nuclear Waste Policy Act.more » Part of the site recommendation decision included the analysis of a nation-wide shipping campaign to the proposed repository site. The ''Final Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada'' (February 2002) (Repository EIS) evaluated the potential impacts of the transportation of 70,000 Metric Tons of Heavy Metal spent nuclear fuel and high-level radioactive waste from 77 locations around the nation to the potential repository in Nevada over a 24 year shipping campaign. In the Repository EIS, DOE identified mostly rail as its preferred mode of transportation, both nationally and in the State of Nevada. In December 2003, based on public comments and the environmental analyses in the Repository EIS, DOE identified a preference for the Caliente rail corridor in Nevada. On April 8, 2004, DOE issued a Record of Decision (ROD) on the Mode of Transportation and Nevada Rail Corridor for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada. In this ROD, the DOE announced that it had decided to select the mostly rail scenario analyzed in the Repository EIS as the transportation mode both on a national basis and in the State of Nevada. Under the mostly rail scenario, the DOE would rely on a combination of rail, truck and possibly barge to transport to the repository site at Yucca Mountain up to 70,000 MTHM of spent nuclear fuel and high-level radioactive waste, with most of the spent nuclear fuel and high-level radioactive waste being transported by rail. This will ultimately require construction of a rail line in Nevada to the repository. In addition, the DOE has decided to select the Caliente rail corridor in which to examine potential alignments within which to construct that rail line. A corridor is a strip of land, approximately 400 meters (0.25 miles) wide, that encompasses one of several possible routes through which DOE could build a rail line. An alignment is the specific location of a rail line in a corridor, and would likely be 60 meters [200 feet] or less in width. Also on April 8, 2004, DOE issued a Notice of Intent to Prepare an Environmental Impact Statement for the Alignment, Construction, and Operation of a Rail Line to a Geologic Repository at Yucca Mountain, Nye County, NV. In the Notice of Intent, the Department announced its intent to prepare a Rail Alignment EIS to assist in selecting a possible alignment for construction of a rail line that would connect the repository at Yucca Mountain to an existing main rail line in Nevada. The Rail Alignment EIS also would consider the potential construction and operation of a rail-to-truck intermodal transfer facility, proposed to be located at the confluence of an existing mainline railroad and a highway, to support legal-weight truck transportation until the rail system is fully operational. This corridor is approximately 513 kilometers (319 miles) long and would cost an estimated $880 million (2001 dollars). Should DOE decide to build the Caliente corridor, it may be the longest rail line built in the United States since the Transcontinental Railroad was constructed in 1869. Some of the challenges in building this rail corridor are steep grades (the corridor crosses over 7 mountain ranges), isolated terrain, possible tunnels, and stakeholder acceptance.« less
Laser-Induced Fluorescence and Synthetic Jet Fuel Analysis in the Ultra Compact Combustor
2009-12-01
In the primary zone, high- temperature, high-pressure air enters from the compressor and flows around fuel injectors spraying atomized liquid -droplet...chemical reaction in which synthesis gas , a mixture of carbon monoxide and hydrogen, is converted into liquid hydrocarbons of various forms. The most...the fuel lines needed to be rebuilt due to a recent COAL lab renovation. The liquid fuel system had not been used for nearly two years so some
Incorporating landscape fuel treatment modeling into the Forest Vegetation Simulator
Robert C. Seli; Alan A. Ager; Nicholas L. Crookston; Mark A. Finney; Berni Bahro; James K. Agee; Charles W. McHugh
2008-01-01
A simulation system was developed to explore how fuel treatments placed in random and optimal spatial patterns affect the growth and behavior of large fires when implemented at different rates over the course of five decades. The system consists of several command line programs linked together: (1) FVS with the Parallel Processor (PPE) and Fire and Fuels (FFE)...
Code of Federal Regulations, 2011 CFR
2011-07-01
... concentration and total flow over the test period. (2) Vehicle tailpipe to CVS Duct. For methanol-fueled... proportional samples for the bag sample, and for methanol-fueled vehicles, the methanol sample (Figure B94-2... methanol-fueled vehicles, the sample lines for the methanol and formaldehyde samples are heated to prevent...
NASA Astrophysics Data System (ADS)
Liu, You; Yuan, Zhi-Guo; Fan, Li-Yun; Tian, Bin-Qi
2010-12-01
The electronic in-line pump (EIP) is a complex system consisting of mechanical, hydraulic, and electromagnetic parts. Experimental study showed that the fuel pressure of the plunger and the fuel drainage of the pressure system after fuel injection could result in fuel pressure fluctuation in the low pressure system. Such fluctuation exhibited pulsating cycle fluctuation as the amplitude rose with the increase of the injection pulse width. The time domain analysis found that the pressure time history curve and injection cylinders corresponded with a one-to-one relationship. By frequency domain analysis, the result was that with the increase of the working cylinder number, the high frequency amplitude gradually increased and the basic frequency amplitude gradually decreased. The conclusion was that through wavelet transformation, the low pressure signal simultaneously moved towards low frequency as the high frequency of the wavelet transformation signal with the working cylinder number increased. Lastly, by using the numerical model, the study investigated the simulation research concerning the relationship of the fluctuation dynamic characteristic in the low pressure system and the fuel injection characteristic of the high pressure system, completing the conclusions obtained by the experimental study.
Phase 1 results from the Stirling-powered vehicle project
NASA Technical Reports Server (NTRS)
Shaltens, Richard K.
1988-01-01
The NASA Technology Utilization (TU) Office is sponsoring a multiyear, multiphase demonstration program to assess the technology developed under the DOE/NASA automotive Stirling engine (ASE) program with engines installed in various Air Force vehicles while being evaluated by independent third parties under realistic conditions. This paper reviews the operational history of Phase 1 with a Mod 1 Stirling engine installed in an Air Force multistop van in a variety of missions. Ten months of operation were with Air Force personnel at Langley Air Force Base, Virginia, where over 1100 hr and 4000 mi were logged on the Langley flight line. The Stirling-powered van operated on unleaded gasoline, JP-4 aircraft fuel, and diesel fuel at Langley Air Force Base. Two months of operation were completed with Deere and Company personnel in the Moline, Illinois area where over 175 hr and 2650 mi were logged on a Deere mail delivery route.
NASA Astrophysics Data System (ADS)
Azizi, Mohammad Ali; Brouwer, Jacob
2017-10-01
A better understanding of turbulent unsteady flows in gas turbine systems is necessary to design and control compressors for hybrid fuel cell-gas turbine systems. Compressor stall/surge analysis for a 4 MW hybrid solid oxide fuel cell-gas turbine system for locomotive applications is performed based upon a 1.7 MW multi-stage air compressor. Control strategies are applied to prevent operation of the hybrid SOFC-GT beyond the stall/surge lines of the compressor. Computational fluid dynamics tools are used to simulate the flow distribution and instabilities near the stall/surge line. The results show that a 1.7 MW system compressor like that of a Kawasaki gas turbine is an appropriate choice among the industrial compressors to be used in a 4 MW locomotive SOFC-GT with topping cycle design. The multi-stage radial design of the compressor enhances the ability of the compressor to maintain air flow rate during transient step-load changes. These transient step-load changes are exhibited in many potential applications for SOFC/GT systems. The compressor provides sustained air flow rate during the mild stall/surge event that occurs due to the transient step-load change that is applied, indicating that this type of compressor is well-suited for this hybrid application.
Dynamics of water droplets detached from porous surfaces of relevance to PEM fuel cells.
Theodorakakos, A; Ous, T; Gavaises, M; Nouri, J M; Nikolopoulos, N; Yanagihara, H
2006-08-15
The detachment of liquid droplets from porous material surfaces used with proton exchange membrane (PEM) fuel cells under the influence of a cross-flowing air is investigated computationally and experimentally. CCD images taken on a purpose-built transparent fuel cell have revealed that the water produced within the PEM is forming droplets on the surface of the gas-diffusion layer. These droplets are swept away if the velocity of the flowing air is above a critical value for a given droplet size. Static and dynamic contact angle measurements for three different carbon gas-diffusion layer materials obtained inside a transparent air-channel test model have been used as input to the numerical model; the latter is based on a Navier-Stokes equations flow solver incorporating the volume of fluid (VOF) two-phase flow methodology. Variable contact angle values around the gas-liquid-solid contact-line as well as their dynamic change during the droplet shape deformation process, have allowed estimation of the adhesion force between the liquid droplet and the solid surface and successful prediction of the separation line at which droplets loose their contact from the solid surface under the influence of the air stream flowing around them. Parametric studies highlight the relevant importance of various factors affecting the detachment of the liquid droplets from the solid surface.
Microbial fuel cell-based biosensor for toxic carbon monoxide monitoring.
Zhou, Shaofeng; Huang, Shaobin; Li, Yi; Zhao, Nannan; Li, Han; Angelidaki, Irini; Zhang, Yifeng
2018-08-15
This study presents an innovative microbial fuel cell-based biosensor for carbon monoxide (CO) monitoring. The hypothesis for the function of the biosensor is that CO inhibits bacterial activity in the anode and thereby reduces electricity production. A mature electrochemically active biofilm on the anode was exposed to CO gas at varied concentrations. A proportional linear relationship (R 2 = 0.987) between CO concentration and voltage drop (0.8 to 24 mV) in the range of 10% and 70% of CO concentration was observed. Notably, no further decrease of voltage output was observed by with further increasing CO concentration over 70%. Besides, the response time of the biosensor was 1 h. The compact design and simple operation of the biosensor makes it easy to be integrated in existing CO-based industrial facilities either as a forewarning sensor for CO toxicity or even as an individual on-line monitoring device. Copyright © 2018 Elsevier B.V. All rights reserved.
2003-03-04
Aerovironment technicians carefully line up attachments as a fuel cell electrical system is installed on the Helios Prototype solar powered flying wing. The fuel cell system will power the aircraft at night during NASA-sponsored long-endurance demonstration flight in the summer of 2003.
Ranieri, Ezio; Ionescu, Gabriela; Fedele, Arcangela; Palmieri, Eleonora; Ranieri, Ada Cristina; Campanaro, Vincenzo
2017-08-01
This article presents the classification of solid recovered fuel from the Massafra municipal solid waste treatment plant in Southern Italy in compliancy with the EN 15359 standard. In order to ensure the reproducibility of this study, the characterisation methods of waste input and output flow, the mechanical biological treatment line scheme and its main parameters for each stage of the processing chain are presented in details, together with the research results in terms of mass balance and derived fuel properties. Under this study, only 31% of refused municipal solid waste input stream from mechanical biological line was recovered as solid recovered fuel with a net heating value (NC=HV) average of 15.77 MJ kg -1 ; chlorine content average of 0.06% on a dry basis; median of mercury <0.0064 mg MJ -1 and 80th percentile <0.0068 mg MJ -1 . The solid recovered fuel produced meets the European Union standard requirements and can be classified with the class code: Net heating value (3); chlorine (1); mercury (1).
New acoustic techniques for leak detection in fossil fuel plant components
NASA Astrophysics Data System (ADS)
Parini, G.; Possa, G.
Two on-line acoustic monitoring techniques for leak detection in feedwater preheaters and boilers of fossil fuel power plants are presented. The leak detection is based on the acoustic noise produced by the turbulent leak outflow. The primary sensors are piezoelectric pressure transducers, installed near the feedwater preheater inlets, in direct contact with the water, or mounted on boiler observation windows. The frequency band of the auscultation ranges from a few kHz, to 10 to 15 kHz. The signals are characterized by their rms value, continuously recorded by means of potentiometric strip chart recorders. The leak occurrence is signalled by the signal rms overcoming predetermined threshold levels. Sensitivity, reliability, acceptance in plant control practice, and costs-benefits balance are satisfactory.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-12
...We are adopting a new airworthiness directive (AD) for the products listed above. This AD requires installing fuel level float and pressure switch in-line fuses on the wing forward spars and forward and aft auxiliary fuel tanks, depending on the airplane configuration. This AD was prompted by fuel system reviews conducted by the manufacturer. We are issuing this AD to prevent the potential of ignition sources inside fuel tanks, which, in combination with flammable fuel vapors, could result in fuel tank explosions and consequent loss of the airplane.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
In 1990, the California Energy Commission, the South Coast Air Quality Management District, and the Southern California Gas Company joined together to sponsor the development and demonstration of compressed natural gas engines for Class 8 heavy-duty line-haul trucking applications. This program became part of an overall Alternative-Fueled Truck Demonstration Program, with the goal of advancing the technological development of alternative-fueled engines. The demonstration showed natural gas to be a technically viable fuel for Class 8 truck engines.
NASA Astrophysics Data System (ADS)
Ravi, M. U.; Reddy, C. P.; Ravindranath, K.
2013-04-01
In view of fast depletion of fossil fuels and the rapid rate at which the fuel consumption is taking place all over the world, scientists are searching for alternate fuels for maintaining the growth industrially and economically. Hence search for alternate fuel(s) has become imminent. Out of the limited options for internal combustion engines, the bio diesel fuel appears to be the best. Many advanced countries are implementing several biodiesel initiatives and developmental programmes in order to become self sufficient and reduce the import bills. Biodiesel is biodegradable and renewable fuel with the potential to enhance the performance and reduce engine exhaust emissions. This is due to ready usage of existing diesel engines, fuel distribution pattern, reduced emission profiles, and eco-friendly properties of biodiesel. Simarouba biodiesel (SBD), the methyl ester of Simarouba oil is one such alternative fuel which can be used as substitute to conventional petro-diesel. The present work involves experimental investigation on the use of SBD blends as fuel in conventional diesel engine and semi-adiabatic diesel engine. The oil was triple filtered to eliminate particulate matter and then transesterified to obtain biodiesel. The project envisaged aims at conducting analysis of diesel with SBD blends (10, 20, 30 and 40 %) in conventional engine and semi-adiabatic engine. Also it was decided to vary the injection pressure (180, 190 and 200 bar) and observe its effect on performance and also suggest better value of injection pressure. The engine was made semi adiabatic by coating the piston crown with partially stabilized zirconia (PSZ). Kirloskar AV I make (3.67 kW) vertical, single cylinder, water cooled diesel engine coupled to an eddy current dynamometer with suitable measuring instrumentation/accessories used for the study. Experiments were initially carried out using pure diesel fuel to provide base line data. The test results were compared based on the performance parameters including power output, fuel consumption, brake thermal efficiency, brake specific fuel consumption etc. Exhaust emissions were also measured. The results obtained confirmed that the blends of SBD with petro-diesel can be successfully employed as an alternate fuel in diesel engines. Also engine with coated piston crown gave better break thermal efficiency for blends of Simarouba and diesel compared with diesel fuel. Significant improvements in engine performance characteristics were observed for a blend containing 20 % SBD. The emissions for 20 % biodiesel blend for the standard engine were less when compared with diesel fuel emissions. Contrary to expectations the injection pressure of 180 bar proved to be better than 190 and 200 bar.
NASA Technical Reports Server (NTRS)
Kojima, Jun; Nguyen, Quang-Viet
2003-01-01
Rotational vibrational spontaneous Raman spectra (SRS) of H2, N2, and H2O have been measured in H2-air flames at pressures up to 30 atm as a first stem towards establishing a comprehensive Raman spectral database for temperatures and species in high-pressure combustion. A newly developed high-pressure burner facility provides steady, reproducible flames with a high degree of flow precision. We have obtained an initial set of measurements that indicate the spectra are of sufficient quality in terms of spectral resolution, wavelength coverage, and signal-to-noise ratio for use in future reference standards. The fully resolved Stokes and anti-Stokes shifted SRS spectra were collected in the visible wavelength range (400-700 nm) using pulse-stretched 532 nm excitation and a non-intensified CCD spectrograph with a high-speed shutter. Reasonable temperatures were determined via the intensity distribution of rotational H2 lines at stoichiometry and fuel-rich conditions. Theoretical Raman spectra of H2 were computed using a semi-classical harmonic-oscillator model with recent pressure broadening data and were compared with experimental results. The data and simulation indicated that high-J rotational lines of H2 might interfere with the N2 vibrational Q-branch lines, and this could lead to errors in N2-Raman thermometry based on the line-fitting method. From a comparison of N2 Q-branch spectra in lean H2 low-pressure (1.2 atm) and high-pressure (30 atm) flames, we found no significant line-narrowing or -broadening effects at the current spectrometer resolution of 0.04 nm.
Super low NO.sub.x, high efficiency, compact firetube boiler
Chojnacki, Dennis A.; Rabovitser, Iosif K.; Knight, Richard A.; Cygan, David F.; Korenberg, Jacob
2005-12-06
A firetube boiler furnace having two combustion sections and an in-line intermediate tubular heat transfer section between the two combustion sections and integral to the pressure vessel. This design provides a staged oxidant combustion apparatus with separate in-line combustion chambers for fuel-rich primary combustion and fuel-lean secondary combustion and sufficient cooling of the combustion products from the primary combustion such that when the secondary combustion oxidant is added in the secondary combustion stage, the NO.sub.x formation is less than 5 ppmv at 3% O.sub.2.
Commercial truck platooning - level 2 automation : project summary.
DOT National Transportation Integrated Search
2016-08-31
Besides driver compensation, the largest : operating expense for a line-haul truck is the : cost of fuel. At 65 mph, each truck expends about : 65 percent of its fuel consumption to overcome : the effects of aerodynamic drag. Many of the : large and ...
77 FR 61644 - Sunshine Federal Register Notice
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-10
... NUCLEAR REGULATORY COMMISSION [NRC-2012-0002] Sunshine Federal Register Notice AGENCY HOLDING THE MEETINGS: Nuclear Regulatory Commission. DATE: Weeks of October 8, 15, 22, 29, November 5, 12, 2012. PLACE... Spent Fuel Storage and Transportation and Fuel Facilities Business Lines (Public Meeting); (Contact...
77 FR 64835 - Sunshine Act Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-23
... NUCLEAR REGULATORY COMMISSION Sunshine Act Meeting AGENCY HOLDING THE MEETINGS: Nuclear Regulatory... webcast live at the Web address--www.nrc.gov. 9:30 a.m. Strategic Programmatic Overview of the Spent Fuel Storage and Transportation and Fuel Facilities Business Lines (Public Meeting) (Contact: Kevin Mattern...
2011-07-01
drainageway for the flightline have been lined with concrete for a fuel-spill retention system . One unnamed tributary, which flows into Lake Totten on... potential , and erodibility all determine the ability of the ground to support man-made structures and facilities, to provide a landscaped environment...following effects : • Potential for increased likelihood of a release of hazardous materials (e.g., asbestos or lead from building demolition activities
2011-12-01
archaeological deposits discovered during construction activities would be managed in accordance with the compliance procedures in the Tinker AFB...missions, located in the southeast Oklahoma City area, directly south of the suburb of Midwest Environmental Assessment Chapter 1 Repair by...the incorporated city limits of Oklahoma City, Oklahoma. Centered ten miles southeast of downtown, Tinker AFB is generally bordered to the north by
Core Fueling of DEMO by Direct Line Injection of High-Speed Pellets From the HFS
Frattolillo, Antonio; Baylor, Larry R.; Bombarda, Francesca; ...
2018-04-17
Pellet injection represents to date the most realistic candidate technology for core fueling of a demonstration fusion power reactor tokamak fusion reactor. Modeling of both pellet penetration and fuel deposition profiles, for different injection locations, indicates that effective core fuelling can be achieved launching pellets from the inboard high field side at speeds not less than ~ 1 km/s. Inboard pellet fueling is commonly achieved in present tokamaks, using curved guide tubes; however, this technology might be hampered at velocities ≥ 1 km/s. An innovative approach, aimed at identifying suitable inboard "direct line'' paths, to inject high-speed pellets (in themore » 3 to 4 km/s range), has recently been proposed as a potential complementary solution. The fuel deposition profiles achievable by this approach have been explored using the HPI2 simulation code. The results presented here show that there are possible geometrical schemes providing good fueling performance. The problem of neutron flux in a direct line-of-sight injection path is being investigated, though preliminary analyses indicate that, perhaps, this is not a serious problem. The identification and integration of straight injection paths suitably tilted may be a rather difficult task due to the many constraints and to interference with existing structures. The suitability of straight guide tubes to reduce the scatter cone of high-speed pellets is, therefore, of main interest. A preliminary investigation, aimed at addressing these technological issues, has recently been started. As a result, a possible implementation plan, using an existing Italian National Agency for New Technologies, Energy and Sustainable Economic Development-Oak Ridge National Laboratory facility is shortly outlined.« less
Core Fueling of DEMO by Direct Line Injection of High-Speed Pellets From the HFS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frattolillo, Antonio; Baylor, Larry R.; Bombarda, Francesca
Pellet injection represents to date the most realistic candidate technology for core fueling of a demonstration fusion power reactor tokamak fusion reactor. Modeling of both pellet penetration and fuel deposition profiles, for different injection locations, indicates that effective core fuelling can be achieved launching pellets from the inboard high field side at speeds not less than ~ 1 km/s. Inboard pellet fueling is commonly achieved in present tokamaks, using curved guide tubes; however, this technology might be hampered at velocities ≥ 1 km/s. An innovative approach, aimed at identifying suitable inboard "direct line'' paths, to inject high-speed pellets (in themore » 3 to 4 km/s range), has recently been proposed as a potential complementary solution. The fuel deposition profiles achievable by this approach have been explored using the HPI2 simulation code. The results presented here show that there are possible geometrical schemes providing good fueling performance. The problem of neutron flux in a direct line-of-sight injection path is being investigated, though preliminary analyses indicate that, perhaps, this is not a serious problem. The identification and integration of straight injection paths suitably tilted may be a rather difficult task due to the many constraints and to interference with existing structures. The suitability of straight guide tubes to reduce the scatter cone of high-speed pellets is, therefore, of main interest. A preliminary investigation, aimed at addressing these technological issues, has recently been started. As a result, a possible implementation plan, using an existing Italian National Agency for New Technologies, Energy and Sustainable Economic Development-Oak Ridge National Laboratory facility is shortly outlined.« less
Critical flow rate of anode fuel exhaust in a PEM fuel cell system
NASA Astrophysics Data System (ADS)
Zhu, Wenhua H.; Payne, Robert U.; Tatarchuk, Bruce J.
A manual purge line was added into the exterior fuel exhaust stream of a Ballard PEM stack in a Nexa™ power module. With the addition of manual exhaust purge, high levels of inert gases were intentionally added to the anode feed without changing normal operational procedures. A new method of determining the critical minimum flow rate in the anode exhaust stream was given by an anode mass balance. This type of operation makes dual use of membranes in the MEAs as both gas purifiers and as solid electrolytes. The PEM stack was successfully operated with up to ca. 7% nitrogen or carbon dioxide in the absence of a palladium-based hydrogen separator at ca. 200 W power level. Nitrogen in the anode stream was concentrated from 7.5% to 91.6%. The system maintained a fuel efficiency of 99% at a manual purge rate of 2.22 ml s -1 and no auto purge. The fuel cell stack efficiency was 64% and the stack output efficiency was 75%. The overall system efficiency was 39%. After troublesome CO and H 2S poisons were removed, a hydrocarbon reformate containing high levels of CO 2 and H 2O was further used in the Nexa™ stack. The size and complexity of the fuel processing system may be reduced at a specified power level by using this operational method.
Structure of Laminar Permanently Blue, Opposed-Jet Ethylene-Fueled Diffusion Flames
NASA Technical Reports Server (NTRS)
Lin, K.-C.; Faeth, G. M.; Urban, D. L. (Technical Monitor)
2000-01-01
The structure and state relationships of laminar soot-free (permanently blue) ethylene-fueled diffusion flames at various strain rates were studied both experimentally and computationally using an opposed-jet configuration. Measurements of gas velocities, temperatures, and compositions were carried out along the stagnation stream line. Corresponding predictions of flame structure were obtained, based on numerical simulations using several contemporary reaction mechanisms for methane oxidation. Flame conditions studied included ethylene-fueled opposed-jet diffusion flames having stoichiometric mixture fractions of 0.7 with measurements involving strain rates of 60-240/s and predictions involving strain rates of 0-1140/s at normal temperature and pressure. It was found that measured major gas species concentrations and temperature distributions were in reasonably good agreement with predictions using mechanisms due to GRI-Mech and Peters and that effects of preferential diffusion significantly influence flame structure even when reactant mass diffusivities are similar. Oxygen leakage to fuel-rich conditions and carbon monoxide leakage to fuel-lean conditions both increased as strain rates increased. Furthermore, increased strain rates caused increased fuel concentrations near the flame sheet, decreased peak gas temperatures, and decreased concentrations of carbon dioxide and water vapor throughout the flames. State relationships for major gas species and gas temperatures were found to exist over a broad range of strain rates, providing potential for significant computational simplifications for modeling purposes in some instances.
Structure of Laminar Permanently Blue, Opposed-Jet Ethylene-Fueled Diffusion Flames. Appendix E
NASA Technical Reports Server (NTRS)
Lin, K.-C.; Faeth, G. M.; Urban, D. L. (Technical Monitor)
2000-01-01
The structure and state relationships of laminar soot-free (permanently blue) ethylene-fueled diffusion flames at various strain rates were studied both experimentally and computationally using an opposed-jet configuration. Measurements of gas velocities, temperatures, and compositions were carried out along the stagnation stream line. Corresponding predictions of flame structure were obtained, based on numerical simulations using several contemporary reaction mechanisms for methane oxidation. Flame conditions studied included ethylene-fueled opposed-jet diffusion flames having stoichiometric mixture fractions of 0.7 with measurements involving strain rates of 60-240/s and predictions involving strain rates of 0-1140/s at normal temperature and pressure. It was found that measured major gas species concentrations and temperature distributions were in reasonably good agreement with predictions using mechanisms due to GRI-Mech and Peters and that effects of preferential diffusion significantly influence flame structure even when reactant mass diffusivities are similar. Oxygen leakage to fuel-rich conditions and carbon monoxide leakage to fuel-lean conditions both increased as strain rates increased. Furthermore, increased strain rates caused increased fuel concentrations near the flame sheet, decreased peak gas temperatures, and decreased concentrations of carbon dioxide and water vapor throughout the flames. State relationships for major gas species and gas temperatures were found to exist over a broad range of strain rates, providing potential for significant computational simplifications for modeling purposes in some instances.
Diagnosis of high-temperature implosions using low- and high-opacity Krypton lines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yaakobi, B.; Epstein, R.; Hooper, C.F. Jr.
1996-04-01
High-temperature laser target implosions can be achieved by using relatively thin-shell targets, and they can be. diagnosed by doping the fuel with krypton and measuring K-shell and L-shell lines. Electron temperatures of up to 5 keV at modest compressed densities ({approximately}1-5g/cm{sup 3}) are predicted for such experiments, with ion temperatures peaking above 10 keV at the center. It is found that the profiles of low-opacity (optically thin) lines in the expected density range are dominated by the Doppler broadening and can provide a measurement of the ion temperature if spectrometers of spectral resolution {Delta}{lambda}/{lambda} {ge} 1000 are used. For high-opacitymore » lines, obtained with a higher krypton fill pressure, the measurement of the escape factor can yield the {rho}R of the compressed fuel. At higher densities, Stark broadening of low-opacity lines becomes important and can provide a density measurement, whereas lines of higher opacity can be used to estimate the extent of mixing.« less
Field testing the Raman gas composition sensor for gas turbine operation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buric, M.; Chorpening, B.; Mullem, J.
2012-01-01
A gas composition sensor based on Raman spectroscopy using reflective metal lined capillary waveguides is tested under field conditions for feed-forward applications in gas turbine control. The capillary waveguide enables effective use of low powered lasers and rapid composition determination, for computation of required parameters to pre-adjust burner control based on incoming fuel. Tests on high pressure fuel streams show sub-second time response and better than one percent accuracy on natural gas fuel mixtures. Fuel composition and Wobbe constant values are provided at one second intervals or faster. The sensor, designed and constructed at NETL, is packaged for Class Imore » Division 2 operations typical of gas turbine environments, and samples gas at up to 800 psig. Simultaneous determination of the hydrocarbons methane, ethane, and propane plus CO, CO2, H2O, H2, N2, and O2 are realized. The capillary waveguide permits use of miniature spectrometers and laser power of less than 100 mW. The capillary dimensions of 1 m length and 300 μm ID also enable a full sample exchange in 0.4 s or less at 5 psig pressure differential, which allows a fast response to changes in sample composition. Sensor operation under field operation conditions will be reported.« less
Study on Improving Partial Load by Connecting Geo-thermal Heat Pump System to Fuel Cell Network
NASA Astrophysics Data System (ADS)
Obara, Shinya; Kudo, Kazuhiko
Hydrogen piping, the electric power line, and exhaust heat recovery piping of the distributed fuel cells are connected with network, and operational planning is carried out. Reduction of the efficiency in partial load is improved by operation of the geo-thermal heat pump linked to the fuel cell network. The energy demand pattern of the individual houses in Sapporo was introduced. And the analysis method aiming at minimization of the fuel rate by the genetic algorithm was described. The fuel cell network system of an analysis example assumed connecting the fuel cell co-generation of five houses. When geo-thermal heat pump was introduced into fuel cell network system stated in this paper, fuel consumption was reduced 6% rather than the conventional method
Effect of Light Truck Design Variables on Top Speed, Performance, and Fuel Economy, 1981
DOT National Transportation Integrated Search
1981-11-01
The effect of vehicle weight, rolling resistance, aerodynamic drag, and drive-line configuration on fuel economy and performance for light duty trucks is examined. The effect of lockup and extended gear ratio range is also investigated. The assessmen...
The effect of fuel processes on heavy duty automotive diesel engine emissions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reynolds, E.G.
1995-12-31
The effect of fuel quality on exhaust emissions from 2 heavy duty diesel engines has been measured over the ECE R49 test cycle. The engines were selected to represent technologies used to meet Euro 1 and 2 emission standards (1992/93 and 1995/96); engines 1 and 2 respectively. The test fuels were prepared by a combination of processing, blending and additive treatment. When comparing the emissions from engines 1 and 2, using base line data generated on the CEC reference fuel RF73-T-90, engine technology had the major effect on emission levels. Engine 2 reduced both particulate matter (PM) and carbon monoxidemore » levels by approximately 50%, with total hydrocarbon (THC) being approximately 75% lower. Oxides of nitrogen levels were similar for both engines. The variations in test fuel quality had marginal effects on emissions, with the two engines giving directionally opposite responses in some cases. For instance, there was an effect on CO and NOx but where one engine showed a reduction the other gave an increase. There were no significant changes in THC emissions from either engine when operating on any of the test fuels. When the reference fuel was hydrotreated, engine 1 showed a trend towards reduced particulate and NOx but with CO increasing. Engine 2 also showed a trend for reduced particulate levels, with an increase in NOx and no change in CO. Processing to reduce the final boiling point of the reference fuel showed a trend towards reduced particulate emissions with CO increasing on engine 1 but decreasing on engine 2.« less
NASA Astrophysics Data System (ADS)
LaFleur, Adrienne M.; Charlton, William S.; Menlove, Howard O.; Swinhoe, Martyn T.
2012-07-01
A new non-destructive assay technique called Self-Interrogation Neutron Resonance Densitometry (SINRD) is currently being developed at Los Alamos National Laboratory (LANL) to improve existing nuclear safeguards measurements for Light Water Reactor (LWR) fuel assemblies. SINRD consists of four 235U fission chambers (FCs): bare FC, boron carbide shielded FC, Gd covered FC, and Cd covered FC. Ratios of different FCs are used to determine the amount of resonance absorption from 235U in the fuel assembly. The sensitivity of this technique is based on using the same fissile materials in the FCs as are present in the fuel because the effect of resonance absorption lines in the transmitted flux is amplified by the corresponding (n,f) reaction peaks in the fission chamber. In this work, experimental measurements were performed in air with SINRD using a reference Pressurized Water Reactor (PWR) 15×15 low enriched uranium (LEU) fresh fuel assembly at LANL. The purpose of this experiment was to assess the following capabilities of SINRD: (1) ability to measure the effective 235U enrichment of the PWR fresh LEU fuel assembly and (2) sensitivity and penetrability to the removal of fuel pins from an assembly. These measurements were compared to Monte Carlo N-Particle eXtended transport code (MCNPX) simulations to verify the accuracy of the MCNPX model of SINRD. The reproducibility of experimental measurements via MCNPX simulations is essential to validating the results and conclusions obtained from the simulations of SINRD for LWR spent fuel assemblies.
Study of fuel systems for LH2-fueled subsonic transport aircraft, volume 1
NASA Technical Reports Server (NTRS)
Brewer, G. D.; Morris, R. E.; Davis, G. W.; Versaw, E. F.; Cunnington, G. R., Jr.; Riple, J. C.; Baerst, C. F.; Garmong, G.
1978-01-01
Several engine concepts examined to determine a preferred design which most effectively exploits the characteristics of hydrogen fuel in aircraft tanks received major emphasis. Many candidate designs of tank structure and cryogenic insulation systems were evaluated. Designs of all major elements of the aircraft fuel system including pumps, lines, valves, regulators, and heat exchangers received attention. Selected designs of boost pumps to be mounted in the LH2 tanks, and of a high pressure pump to be mounted on the engine were defined. A final design of LH2-fueled transport aircraft was established which incorporates a preferred design of fuel system. That aircraft was then compared with a conventionally fueled counterpart designed to equivalent technology standards.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singer, Brett C.; Apte, Michael G.; Black, Douglas R.
2009-12-01
The effect of liquefied natural gas on pollutant emissions was evaluated experimentally with used and new appliances in the laboratory and with appliances installed in residences, targeting information gaps from previous studies. Burner selection targeted available technologies that are projected to comprise the majority of installed appliances over the next decade. Experiments were conducted on 13 cooktop sets, 12 ovens, 5 broiler burners, 5 storage water heaters, 4 forced air furnaces, 1 wall furnace, and 6 tankless water heaters. Air-free concentrations and fuel-based emission factors were determined for carbon monoxide, nitrogen oxides, nitrogen dioxide, and the number of (predominantly ultrafine)more » particles over complete burns?including transient effects (device warm-up and intermittent firing of burners) following ignition--and during more stable end-of-burn conditions. Formaldehyde was measured over multi-burn cycles. The baseline fuel was Northern California line gas with Wobbe number (a measure of fuel energy delivery rate) of 1320-1340; test fuels had Wobbe numbers of roughly 1390 and 1420, and in some cases 1360. No ignition or operational problems were observed during test fuel use. Baseline emissions varied widely across and within burner groups and with burner operational mode. Statistically significant emissions changes were observed for some pollutants on some burners.« less
Analysis of simulated high burnup nuclear fuel by laser induced breakdown spectroscopy
NASA Astrophysics Data System (ADS)
Singh, Manjeet; Sarkar, Arnab; Banerjee, Joydipta; Bhagat, R. K.
2017-06-01
Advanced Heavy Water Reactor (AHWR) grade (Th-U)O2 fuel sample and Simulated High Burn-Up Nuclear Fuels (SIMFUEL) samples mimicking the 28 and 43 GWd/Te irradiated burn-up fuel were studied using laser-induced breakdown spectroscopy (LIBS) setup in a simulated hot-cell environment from a distance of > 1.5 m. Resolution of < 38 pm has been used to record the complex spectra of the SIMFUEL samples. By using spectrum comparison and database matching > 60 emission lines of fission products was identified. Among them only a few emission lines were found to generate calibration curves. The study demonstrates the possibility to investigate impurities at concentrations around hundreds of ppm, rapidly at atmospheric pressure without any sample preparation. The results of Ba and Mo showed the advantage of LIBS analysis over traditional methods involving sample dissolution, which introduces possible elemental loss. Limits of detections (LOD) under Ar atmosphere shows significant improvement, which is shown to be due to the formation of stable plasma.
Kim, TaeJoo; Sim, CheulMuu; Kim, MooHwan
2008-05-01
An investigation into the water discharge characteristics of proton exchange membrane (PEM) fuel cells is carried out by using a feasibility test apparatus and the Neutron Radiography Facility (NRF) at HANARO. The feasibility test apparatus was composed of a distilled water supply line, a compressed air supply line, heating systems, and single PEM fuel cells, which were a 1-parallel serpentine type with a 100 cm(2) active area. Three kinds of methods were used: compressed air supply-only; heating-only; and a combination of the methods of a compressed air supply and heating, respectively. The resultant water discharge characteristics are different according to the applied methods. The compressed air supply only is suitable for removing the water at a flow field and a heating only is suitable for water at the MEA. Therefore, in order to remove all the water at PEM fuel cells, the combination method is needed at the moment.
NASA Astrophysics Data System (ADS)
Trump, Jonathan R.; Hsu, Alexander D.; Fang, Jerome J.; Faber, S. M.; Koo, David C.; Kocevski, Dale D.
2013-02-01
We present the first quantified, statistical map of broad-line active galactic nucleus (AGN) frequency with host galaxy color and stellar mass in nearby (0.01 < z < 0.11) galaxies. Aperture photometry and z-band concentration measurements from the Sloan Digital Sky Survey are used to disentangle AGN and galaxy emission, resulting in estimates of uncontaminated galaxy rest-frame color, luminosity, and stellar mass. Broad-line AGNs are distributed throughout the blue cloud and green valley at a given stellar mass, and are much rarer in quiescent (red sequence) galaxies. This is in contrast to the published host galaxy properties of weaker narrow-line AGNs, indicating that broad-line AGNs occur during a different phase in galaxy evolution. More luminous broad-line AGNs have bluer host galaxies, even at fixed mass, suggesting that the same processes that fuel nuclear activity also efficiently form stars. The data favor processes that simultaneously fuel both star formation activity and rapid supermassive black hole accretion. If AGNs cause feedback on their host galaxies in the nearby universe, the evidence of galaxy-wide quenching must be delayed until after the broad-line AGN phase.
Influence of bio-fuels on passenger car vehicle emissions
NASA Astrophysics Data System (ADS)
Petrea, M.; Kapernaum, M.; Wahl, C.
2009-04-01
In order to reduce the emissions of air pollutants, vehicles design and fuel formulation have changed. Ultra clean vehicle technologies started to be used in increased number. As a result, the emissions composition is expected to change as well. The use of new technologies and new fuels require new emissions tests especially for non-regulated compounds. The interest in using bio fuels as alternative fuels for petroleum-based ones has increased constantly in the last years. The advantages of the bio fuels usage is given by their similar proprieties, characteristics of renew ability, biodegradability and potential beneficial effects on the exhaust emission. The study involved measurements on a roller test facility of a reference passenger car representing new technologies (emission standards, injection system). The vehicle operated by use of reference gasoline and reference gasoline blended (10 and 20%) with bio-ethanol (EtOH). The measurements used different driving cycles: ARTEMIS cycle, real world driving cycle, NEDC cycle, the standard European driving cycle and additionally, a driving cycle consisting in Idle, 30, 50, 90 km/h. The sampling positions were before and after the catalyst and in the exhaust pipe. The detailed speciation of NMVOC' (non methane volatile organic compounds) was completed by use of active carbon tubes, DNPH (2,4-dinitrophenylhydrazine) tubes and cold traps. The particles were monitored by use of an on-line EEPS (Engine Exhaust Particle Sizer). CO2, NO, NO2 and NOX (NO +NO2) were continuously monitored by use of an on- line FTIR (Fourier transform infrared spectroscopy)- MEXA system. The investigations reveal that among the carbonylic compounds 15 oxygenated species were found in engine out exhaust and only 3 in tailpipe emissions, namely formaldehyde, acetaldehyde and acroleine. These are of great interest due to their impacts on human health. The hydrocarbons emissions decrease by increased of EtOH content. New compounds were observed. The nitro-compounds found in the after engine position by increased EtOH were no more found in the exhaust gas. The results show that total particle concentration, mass and diameter decreased substantially after catalyst and filter by increased ethanol blend.
NASA Astrophysics Data System (ADS)
Chu, Huaqiang; Gu, Mingyan; Consalvi, Jean-Louis; Liu, Fengshan; Zhou, Huaichun
2016-03-01
The effects of total pressure on gas radiation heat transfer are investigated in 1D parallel plate geometry containing isothermal and homogeneous media and an inhomogeneous and non-isothermal CO2-H2O mixture under conditions relevant to oxy-fuel combustion using the line-by-line (LBL), statistical narrow-band (SNB), statistical narrow-band correlated-k (SNBCK), weighted-sum-of-grey-gases (WSGG), and full-spectrum correlated-k (FSCK) models. The LBL calculations were conducted using the HITEMP2010 and CDSD-1000 databases and the LBL results serve as the benchmark solution to evaluate the accuracy of the other models. Calculations of the SNB, SNBCK, and FSCK were conducted using both the 1997 EM2C SNB parameters and their recently updated 2012 parameters to investigate how the SNB model parameters affect the results under oxy-fuel combustion conditions at high pressures. The WSGG model considered is the recently developed one by Bordbar et al. [19] for oxy-fuel combustion based on LBL calculations using HITEMP2010. The total pressure considered ranges from 1 up to 30 atm. The total pressure significantly affects gas radiation transfer primarily through the increase in molecule number density and only slightly through spectral line broadening. Using the 1997 EM2C SNB model parameters the accuracy of SNB and SNBCK is very good and remains essentially independent of the total pressure. When using the 2012 EM2C SNB model parameters the SNB and SNBCK results are less accurate and their error increases with increasing the total pressure. The WSGG model has the lowest accuracy and the best computational efficiency among the models investigated. The errors of both WSGG and FSCK using the 2012 EM2C SNB model parameters increase when the total pressure is increased from 1 to 10 atm, but remain nearly independent of the total pressure beyond 10 atm. When using the 1997 EM2C SNB model parameters the accuracy of FSCK only slightly decreases with increasing the total pressure.
Combined Power Generation and Carbon Sequestration Using Direct FuelCell
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hossein Ghezel-Ayagh
2006-03-01
The unique chemistry of carbonate fuel cell offers an innovative approach for separation of carbon dioxide from greenhouse gases (GHG). The carbonate fuel cell system also produces electric power at high efficiency. The simultaneous generation of power and sequestration of greenhouse gases offer an attractive scenario for re-powering the existing coal-fueled power plants, in which the carbonate fuel cell would separate the carbon dioxide from the flue gas and would generate additional pollutant-free electric power. Development of this system is concurrent with emergence of Direct FuelCell{reg_sign} (DFC{reg_sign}) technology for generation of electric power from fossil fuels. DFC is based onmore » carbonate fuel cell featuring internal reforming. This technology has been deployed in MW-scale power plants and is readily available as a manufactured product. This final report describes the results of the conceptualization study conducted to assess the DFC-based system concept for separation of CO2 from GHG. Design and development studies were focused on integration of the DFC systems with coal-based power plants, which emit large amounts of GHG. In parallel to the system design and simulation activities, operation of laboratory scale DFC verified the technical concept and provided input to the design activity. The system was studied to determine its effectiveness in capturing more than ninety percent of CO2 from the flue gases. Cost analysis was performed to estimate the change in cost of electricity for a 200 MW pulverized coal boiler steam cycle plant retrofitted with the DFC-based CO2 separation system producing an additional 127 MW of electric power. The cost increments as percentage of levelized cost of electricity were estimated for a range of separation plant installations per year and a range of natural gas cost. The parametric envelope meeting the goal (<20% increase in COE) was identified. Results of this feasibility study indicated that DFC-based separation systems have the potential for capturing at least 90% of the emissions from the greenhouse gases generated by power plants and other industrial exhaust streams, and yet entail in less than 20% increase in the cost of energy services for long-term deployment (beyond 2012). The anticipated cost of energy increase is in line with DOE's goal for post-combustion systems as outlined in the ''Carbon Capture and Sequestration Systems Analysis Guidelines'', published by NETL, April 2005. During the course of this study certain enabling technologies were identified and the needs for further research and development were discussed.« less
Dual x-ray fluorescence spectrometer and method for fluid analysis
Wilson, Bary W.; Shepard, Chester L.
2005-02-22
Disclosed are an X-ray fluorescence (SRF) spectrometer and method for on-site and in-line determination of contaminant elements in lubricating oils and in fuel oils on board a marine vessel. An XRF source block 13 contains two radionuclide sources 16, 17 (e.g. Cd 109 and Fe 55), each oriented 180 degrees from the other to excite separate targets. The Cd 109 source 16 excites sample lube oil flowing through a low molecular weight sample line 18. The Fe 55 source 17 excites fuel oil manually presented to the source beam inside a low molecular weight vial 26 or other container. Two separate detectors A and B are arranged to detect the fluorescent x-rays from the targets, photons from the analyte atoms in the lube oil for example, and sulfur identifying x-rays from bunker fuel oil for example. The system allows both automated in-line and manual on-site analysis using one set of signal processing and multi-channel analyzer electronics 34, 37 as well as one computer 39 and user interface 43.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Fire Prevention and Control... stopping the flow of fuel at the source and shall be located and maintained to minimize fire hazards. This...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Fire Prevention and Control... stopping the flow of fuel at the source and shall be located and maintained to minimize fire hazards. This...
Off-Highway Transportation-Related Fuel Use
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, S.C.
2004-05-08
The transportation sector includes many subcategories--for example, on-highway, off-highway, and non-highway. Use of fuel for off-highway purposes is not well documented, nor is the number of off-highway vehicles. The number of and fuel usage for on-highway and aviation, marine, and rail categories are much better documented than for off-highway land-based use. Several sources document off-highway fuel use under specific conditions--such as use by application (e.g., recreation) or by fuel type (e.g., gasoline). There is, however, no single source that documents the total fuel used off-highway and the number of vehicles that use the fuel. This report estimates the fuel usagemore » and number of vehicles/equipment for the off-highway category. No new data have been collected nor new models developed to estimate the off-highway data--this study is limited in scope to using data that already exist. In this report, unless they are being quoted from a source that uses different terminology, the terms are used as listed below. (1) ''On-highway/on-road'' includes land-based transport used on the highway system or other paved roadways. (2) ''Off-highway/off-road'' includes land-based transport not using the highway system or other paved roadways. (3) ''Non-highway/non-road'' includes other modes not traveling on highways such as aviation, marine, and rail. It should be noted that the term ''transportation'' as used in this study is not typical. Generally, ''transportation'' is understood to mean the movement of people or goods from one point to another. Some of the off-highway equipment included in this study doesn't transport either people or goods, but it has utility in movement (e.g., a forklift or a lawn mower). Along these lines, a chain saw also has utility in movement, but it cannot transport itself (i.e., it must be carried) because it does not have wheels. Therefore, to estimate the transportation-related fuel used off-highway, transportation equipment is defined to include all devices that have wheels, can move or be moved from one point to another, and use fuel. An attempt has been made to exclude off-highway engines that do not meet all three of these criteria (e.g., chain saws and generators). The following approach was used to determine the current off-highway fuel use. First, a literature review was conducted to ensure that all sources with appropriate information would be considered. Secondly, the fuel use data available from each source were compiled and compared in so far as possible. Comparable data sets (i.e., same fuel type; same application) were evaluated. Finally, appropriate data sets were combined to provide a final tally.« less
Dissolution of used nuclear fuel using recycled nitric acid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Almond, Philip M.; Daniel, Jr., William E.; Rudisill, Tracy S.
An evaluation was performed on the feasibility of using HB-Line anion exchange column waste streams from Alternate Feedstock 2 (AFS-2) processing for the dissolver solution for used nuclear fuel (UNF) processing. The targeted UNF for dissolution using recycled solution are fuels similar to the University of Missouri Research Reactor (MURR) fuel. Furthermore, the objectives of this experimental program were to validate the feasibility of using impure dissolver solutions with the MURR dissolution flowsheet to verify they would not significantly affect dissolution of the UNF in a detrimental manner.
Dissolution of used nuclear fuel using recycled nitric acid
Almond, Philip M.; Daniel, Jr., William E.; Rudisill, Tracy S.
2017-03-20
An evaluation was performed on the feasibility of using HB-Line anion exchange column waste streams from Alternate Feedstock 2 (AFS-2) processing for the dissolver solution for used nuclear fuel (UNF) processing. The targeted UNF for dissolution using recycled solution are fuels similar to the University of Missouri Research Reactor (MURR) fuel. Furthermore, the objectives of this experimental program were to validate the feasibility of using impure dissolver solutions with the MURR dissolution flowsheet to verify they would not significantly affect dissolution of the UNF in a detrimental manner.
Submarine Construction (Unterseebootsbau)
1972-08-01
PIPE FOR THE SNORKEL EXHAUST MAST 11 AIR EXIT (GENERALLY TO MAIN AIR INDUCTION LINE) 12 EXHAUST GAS INLET FROM EXHAUST GAS LINE SIDE VIEW (MAST...Electric Engine 76 Diesel Engines 79 Air Intake and Gas Exhaust Systems for the Diesel Engines 79 Diesel Fuel and Pressurized Water System 82...Lines of a Submarine ■. 31 Figure 6 - Lines of a Submersible 31 Figure 7 - Twin- Screw Stern Configurations 34 Figure 8 - Single- Screw Stern
Huang, Li-Fen; Lin, Ji-Yu; Pan, Kui-You; Huang, Chun-Kai; Chu, Ying-Kai
2015-01-01
Ferredoxins (FDX) are final electron carrier proteins in the plant photosynthetic pathway, and function as major electron donors in diverse redox-driven metabolic pathways. We previously showed that overexpression of a major constitutively expressed ferredoxin gene PETF in Chlamydomonas decreased the reactive oxygen species (ROS) level and enhanced tolerance to heat stress. In addition to PETF, an endogenous anaerobic induced FDX5 was overexpressed in transgenic Chlamydomonas lines here to address the possible functions of FDX5. All the independent FDX transgenic lines showed decreased cellular ROS levels and enhanced tolerance to heat and salt stresses. The transgenic Chlamydomonas lines accumulated more starch than the wild-type line and this effect increased almost three-fold in conditions of nitrogen depletion. Furthermore, the lipid content was higher in the transgenic lines than in the wild-type line, both with and without nitrogen depletion. Two FDX-overexpressing Chlamydomonas lines were assessed in a photo microbial fuel cell (PMFC); power density production by the transgenic lines was higher than that of the wild-type cells. These findings suggest that overexpression of either PETF or FDX5 can confer tolerance against heat and salt stresses, increase starch and oil production, and raise electric power density in a PMFC. PMID:26287179
NASA Technical Reports Server (NTRS)
1980-01-01
Bull Nose livestock trailer, manufactured by American Trailer, Inc. is one of a line of highway transport vehicles manufactured by American Trailers, Inc. The slant side front end is a streamlining feature based on a NASA Research Program which investigated the aerodynamic characteristics of trailer/tractor combinations and suggested ways of reducing air resistance. Application of NASA's aerodynamic research technology to the bull nose design resulted in a 10 percent reduction in air drag, which translates into annual fuel savings of several hundred dollars.
5. Credit USAF, ca. 1944. Original housed in the Muroc ...
5. Credit USAF, ca. 1944. Original housed in the Muroc Flight Test Base, Unit History, 1 September 1942 - 30 June 1945. Alfred F. Simpson Historical Research Agency. United States Air Force. Maxwell AFB, Alabama. Interior view of hangar, looking north northwest. Note exposed wooden construction. Two jet engines lie partially concealed by tarpaulins in the background, along with a combustion chamber assembly (horizontal cylinders in a circular array). On the workbench in the foreground lie an engine rotor hub and what appears to be an engine fuel line assembly. - Edwards Air Force Base, North Base, Hangar No. 1, First & B Streets, Boron, Kern County, CA
NASA Technical Reports Server (NTRS)
Otugen, M. Volkan
1997-01-01
Non-intrusive techniques for the dynamic measurement of gas flow properties such as density, temperature and velocity, are needed in the research leading to the development of new generation high-speed aircraft. Accurate velocity, temperature and density data obtained in ground testing and in-flight measurements can help understand the flow physics leading to transition and turbulence in supersonic, high-altitude flight. Such non-intrusive measurement techniques can also be used to study combustion processes of hydrocarbon fuels in aircraft engines. Reliable, time and space resolved temperature measurements in various combustor configurations can lead to a better understanding of high temperature chemical reaction dynamics thus leading to improved modeling and better prediction of such flows. In view of this, a research program was initiated at Polytechnic University's Aerodynamics Laboratory with support from NASA Lewis Research Center through grants NAG3-1301 and NAG3-1690. The overall objective of this program has been to develop laser-based, non-contact, space- and time-resolved temperature and velocity measurement techniques. In the initial phase of the program a ND:YAG laser-based dual-line Rayleigh scattering technique was developed and tested for the accurate measurement of gas temperature in the presence of background laser glare. Effort was next directed towards the development of a filtered, spectrally-resolved Rayleigh/Mie scattering technique with the objective of developing an interferometric method for time-frozen velocity measurements in high-speed flows utilizing the uv line of an ND:YAG laser and an appropriate molecular absorption filter. This effort included both a search for an appropriate filter material for the 266 nm laser line and the development and testing of several image processing techniques for the fast processing of Fabry-Perot images for velocity and temperature information. Finally, work was also carried out for the development of a new laser-based strain-rate and vorticity technique for the time-resolved measurement of vorticity and strain-rates in turbulent flows.
Subtask 3.9 - Direct Coal Liquefaction Process Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aulich, Ted; Sharma, Ramesh
The Energy and Environmental Research Center (EERC), in partnership with the U.S. Department of Energy (DOE) and Accelergy Corporation, an advanced fuels developer with technologies exclusively licensed from ExxonMobil, undertook Subtask 3.9 to design, build, and preliminarily operate a bench-scale direct coal liquefaction (DCL) system capable of converting 45 pounds/hour of pulverized, dried coal to a liquid suitable for upgrading to fuels and/or chemicals. Fabrication and installation of the DCL system and an accompanying distillation system for off-line fractionation of raw coal liquids into 1) a naphtha middle distillate stream for upgrading and 2) a recycle stream was completed inmore » May 2012. Shakedown of the system was initiated in July 2012. In addition to completing fabrication of the DCL system, the project also produced a 500-milliliter sample of jet fuel derived in part from direct liquefaction of Illinois No. 6 coal, and submitted the sample to the Air Force Research Laboratory (AFRL) at Wright Patterson Air Force Base, Dayton, Ohio, for evaluation. The sample was confirmed by AFRL to be in compliance with all U.S. Air Force-prescribed alternative aviation fuel initial screening criteria.« less
NASA Technical Reports Server (NTRS)
2002-01-01
Stirling Technology Company (STC) developed the RG-350 convertor using components from separate Goddard Space Center and U.S. Army Natick SBIR contracts. Based on the RG-350, STC commercialized a product line of Stirling cycle generator sets, known as RemoteGen(TM), with power levels ranging from 10We to 3kWe. Under SBIR agreements with Glenn Research Center, the company refined and extended the capabilities of the RemoteGen convertors. They can provide power in remote locations by efficiently producing electricity from multiple-fuel sources, such as propane, alcohol, gasoline, diesel, coal, solar energy, or wood pellets. Utilizing any fuel source that can create heat, RemoteGen enables the choice of the most appropriate fuel source available. The engines operate without friction, wear, or maintenance. These abilities pave the way for self-powered appliances, such as refrigerators and furnaces. Numerous applications for RemoteGen include quiet, pollution-free generators for RVs and yachts, power for cell phone towers remote from the grid, and off-grid residential power variously using propane, ethanol, and solid biomass fuels. One utility and the National Renewable Energy Laboratory are evaluating a solar dish concentrator version with excellent potential for powering remote irrigation pumps.
A novel design for scintillator-based neutron and gamma imaging in inertial confinement fusion
NASA Astrophysics Data System (ADS)
Geppert-Kleinrath, Verena; Cutler, Theresa; Danly, Chris; Madden, Amanda; Merrill, Frank; Tybo, Josh; Volegov, Petr; Wilde, Carl
2017-10-01
The LANL Advanced Imaging team has been providing reliable 2D neutron imaging of the burning fusion fuel at NIF for years, revealing possible multi-dimensional asymmetries in the fuel shape, and therefore calling for additional views. Adding a passive imaging system using image plate techniques along a new polar line of sight has recently demonstrated the merit of 3D neutron image reconstruction. Now, the team is in the process of designing a new active neutron imaging system for an additional equatorial view. The design will include a gamma imaging system as well, to allow for the imaging of carbon in the ablator of the NIF fuel capsules, constraining the burning fuel shape even further. The selection of ideal scintillator materials for a position-sensitive detector system is the key component for the new design. A comprehensive study of advanced scintillators has been carried out at the Los Alamos Neutron Science Center and the OMEGA Laser Facility in Rochester, NY. Neutron radiography using a fast-gated CCD camera system delivers measurements of resolution, light output and noise characteristics. The measured performance parameters inform the novel design, for which we conclude the feasibility of monolithic scintillators over pixelated counterparts.
Effect of Fuel Temperature Profile on Eigenvalue Calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greifenkamp, Tom E; Clarno, Kevin T; Gehin, Jess C
2008-01-01
Use of an average fuel temperature is a current practice when modeling fuel for eigenvalue (k-inf) calculations. This is an approximation, as it is known from Heat-transfer methods that a fuel pin having linear power q', will have a temperature that varies radially and has a maximum temperature at the center line [1]. This paper describes an investigation into the effects on k-inf and isotopic concentrations of modeling a fuel pin using a single average temperature versus a radially varying fuel temperature profile. The axial variation is not discussed in this paper. A single fuel pin was modeled having 1,more » 3, 5, 8, or 10 regions of equal volumes (areas). Fig. 1 shows a model of a 10-ring fuel pin surrounded by a gap and then cladding.« less
NREL Evaluates Performance of Fast-Charge Electric Buses
DOE Office of Scientific and Technical Information (OSTI.GOV)
2016-09-16
This real-world performance evaluation is designed to enhance understanding of the overall usage and effectiveness of electric buses in transit operation and to provide unbiased technical information to other agencies interested in adding such vehicles to their fleets. Initial results indicate that the electric buses under study offer significant fuel and emissions savings. The final results will help Foothill Transit optimize the energy-saving potential of its transit fleet. NREL's performance evaluations help vehicle manufacturers fine-tune their designs and help fleet managers select fuel-efficient, low-emission vehicles that meet their bottom line and operational goals. help Foothill Transit optimize the energy-saving potentialmore » of its transit fleet. NREL's performance evaluations help vehicle manufacturers fine-tune their designs and help fleet managers select fuel-efficient, low-emission vehicles that meet their bottom line and operational goals.« less
More Fight-Less Fuel: Reducing Fuel Burn through Ground Process Improvement
2013-06-01
These joint government and commercial air operations management suites are fast, accurate, and offer many of 33 same tools as SPADE. However, the U.S...passing hour of the day. Simulating the operations at an airfield is similar to a host of related operations management problems including restaurant...flight line may yield significant fuel and cost reductions. Focusing on the efficient use of ground resources through air operations management in a
Fuel, environmental, and transmission pricing considerations in a deregulated environment
NASA Astrophysics Data System (ADS)
Obessis, Emmanouil Vlassios
The 1992 National Energy Policy Act drastically changed the traditional structure of the vertically integrated utility. To facilitate increased competition in the power utility sector, all markets related to power generation have been opened to free competition and trading. To survive in the new competitive environment, power producers need to reduce costs and increase efficiency. Fuel marketing strategies are thus, getting more aggressive and fuel markets are becoming more competitive, offering more options regarding fuel supplies and contracts. At the same time, the 1990 Clean Air Act Amendments are taking effect. Although tightening the emission standards, this legislation offers utilities a wider flexibility in choosing compliance strategies. It also set maximum annual allowable levels replacing the traditional uniform maximum emission rates. The bill also introduced the concept of marketable emission allowances and provided for the establishment of nationwide markets where allowances may be traded, sold, or purchased. Several fuel- and emission-constrained algorithms have been historically presented, but those two classes of constraints, in general, were handled independently. The multiobjective optimization model developed in this research work, concurrently satisfies sets of detailed fuel and emission limits, modeling in a more accurate way the fuel supply and environmental limitations and their complexities in the new deregulated operational environment. Development of the implementation software is an integral part of this research project. This software may be useful for both daily scheduling activities and short-term operational planning. A Lagrangian multipliers-based variant is used to solve the problem. Single line searches are used to update the multipliers, thus offering attractive execution times. This work also investigates the applicability of cooperative games to the problem of transmission cost allocation. Interest in game theory as a powerful tool to solve common property allocation problems has been renewed. A simple allocation framework is developed using capacity based costing rules. Different solution concepts are applied to solve small scale transmission pricing problems. Game models may render themselves useful in investigating "what if" scenarios.
The report documents the technical approach and results achieved while developing a grab sampling method and an automated, on-line gas chromatography method suitable to characterize nitrous oxide (N2O) emissions from fossil fuel combustion sources. The two methods developed have...
46 CFR 167.30-10 - Special operating requirements.
Code of Federal Regulations, 2011 CFR
2011-10-01
..., (3) Within or on the boundaries of fuel tanks; or, (4) To pipe lines, heating coils, pumps, fittings, or other appurtenances connected to such cargo or fuel tanks. (c) Such inspections shall be made and... SCHOOL SHIPS Repairs or Alterations § 167.30-10 Special operating requirements. Inspection and testing...
46 CFR 167.30-10 - Special operating requirements.
Code of Federal Regulations, 2014 CFR
2014-10-01
..., (3) Within or on the boundaries of fuel tanks; or, (4) To pipe lines, heating coils, pumps, fittings, or other appurtenances connected to such cargo or fuel tanks. (c) Such inspections shall be made and... SCHOOL SHIPS Repairs or Alterations § 167.30-10 Special operating requirements. Inspection and testing...
46 CFR 167.30-10 - Special operating requirements.
Code of Federal Regulations, 2012 CFR
2012-10-01
..., (3) Within or on the boundaries of fuel tanks; or, (4) To pipe lines, heating coils, pumps, fittings, or other appurtenances connected to such cargo or fuel tanks. (c) Such inspections shall be made and... SCHOOL SHIPS Repairs or Alterations § 167.30-10 Special operating requirements. Inspection and testing...
46 CFR 167.30-10 - Special operating requirements.
Code of Federal Regulations, 2013 CFR
2013-10-01
..., (3) Within or on the boundaries of fuel tanks; or, (4) To pipe lines, heating coils, pumps, fittings, or other appurtenances connected to such cargo or fuel tanks. (c) Such inspections shall be made and... SCHOOL SHIPS Repairs or Alterations § 167.30-10 Special operating requirements. Inspection and testing...
49 CFR 538.7 - Petitions for reduction of minimum driving range.
Code of Federal Regulations, 2014 CFR
2014-10-01
... type treated as an electric dual fueled automobile. (3) Be written in the English language. (4) State... range is sought. (iii) A description of the model type, including car line designation, engine displacement and type, electric storage capacity, transmission type, and average fuel economy when operating on...
49 CFR 538.7 - Petitions for reduction of minimum driving range.
Code of Federal Regulations, 2012 CFR
2012-10-01
... type treated as an electric dual fueled automobile. (3) Be written in the English language. (4) State... range is sought. (iii) A description of the model type, including car line designation, engine displacement and type, electric storage capacity, transmission type, and average fuel economy when operating on...
40 CFR Appendix Vi to Part 86 - Vehicle and Engine Components
Code of Federal Regulations, 2010 CFR
2010-07-01
... exhaust valves. (2) Drive belts. (3) Manifold and cylinder head bolts. (4) Engine oil and filter. (5...) Carburetor-idle RPM, mixture ratio. (3) Choke mechanism. (4) Fuel system filter and fuel system lines and... filter breather cap. (4) Manifold inlet (carburetor spacer, etc.). V. External Exhaust Emission Control...
40 CFR Appendix Vi to Part 86 - Vehicle and Engine Components
Code of Federal Regulations, 2012 CFR
2012-07-01
... exhaust valves. (2) Drive belts. (3) Manifold and cylinder head bolts. (4) Engine oil and filter. (5...) Carburetor-idle RPM, mixture ratio. (3) Choke mechanism. (4) Fuel system filter and fuel system lines and... filter breather cap. (4) Manifold inlet (carburetor spacer, etc.). V. External Exhaust Emission Control...
40 CFR Appendix Vi to Part 86 - Vehicle and Engine Components
Code of Federal Regulations, 2014 CFR
2014-07-01
.... (2) Drive belts. (3) Manifold and cylinder head bolts. (4) Engine oil and filter. (5) Engine coolant...) Carburetor-idle RPM, mixture ratio. (3) Choke mechanism. (4) Fuel system filter and fuel system lines and... filter breather cap. (4) Manifold inlet (carburetor spacer, etc.). V. External Exhaust Emission Control...
40 CFR Appendix Vi to Part 86 - Vehicle and Engine Components
Code of Federal Regulations, 2013 CFR
2013-07-01
... exhaust valves. (2) Drive belts. (3) Manifold and cylinder head bolts. (4) Engine oil and filter. (5...) Carburetor-idle RPM, mixture ratio. (3) Choke mechanism. (4) Fuel system filter and fuel system lines and... filter breather cap. (4) Manifold inlet (carburetor spacer, etc.). V. External Exhaust Emission Control...
40 CFR Appendix Vi to Part 86 - Vehicle and Engine Components
Code of Federal Regulations, 2011 CFR
2011-07-01
... exhaust valves. (2) Drive belts. (3) Manifold and cylinder head bolts. (4) Engine oil and filter. (5...) Carburetor-idle RPM, mixture ratio. (3) Choke mechanism. (4) Fuel system filter and fuel system lines and... filter breather cap. (4) Manifold inlet (carburetor spacer, etc.). V. External Exhaust Emission Control...
Code of Federal Regulations, 2012 CFR
2012-10-01
... flexible tubing or hose is permitted in the fuel supply line at or near the engine to prevent damage by vibration. If nonmetallic flexible hose is used it must: (1) Not exceed the minimum length needed to allow... with wire braid; (4) Be fitted with suitable, corrosion resistant, compression fittings; and (5) Be...
Code of Federal Regulations, 2014 CFR
2014-10-01
... flexible tubing or hose is permitted in the fuel supply line at or near the engine to prevent damage by vibration. If nonmetallic flexible hose is used it must: (1) Not exceed the minimum length needed to allow... with wire braid; (4) Be fitted with suitable, corrosion resistant, compression fittings; and (5) Be...
Code of Federal Regulations, 2013 CFR
2013-10-01
... flexible tubing or hose is permitted in the fuel supply line at or near the engine to prevent damage by vibration. If nonmetallic flexible hose is used it must: (1) Not exceed the minimum length needed to allow... with wire braid; (4) Be fitted with suitable, corrosion resistant, compression fittings; and (5) Be...
Code of Federal Regulations, 2010 CFR
2010-10-01
... flexible tubing or hose is permitted in the fuel supply line at or near the engine to prevent damage by vibration. If nonmetallic flexible hose is used it must: (1) Not exceed the minimum length needed to allow... with wire braid; (4) Be fitted with suitable, corrosion resistant, compression fittings; and (5) Be...
Diesel Fuel Systems. Teacher Edition (Revised).
ERIC Educational Resources Information Center
Clark, Elton; Huston, Jane, Ed.
This module is one of a series of teaching guides that cover diesel mechanics. The module contains six instructional units that cover the following topics: (1) introduction to fuel injection systems and components; (2) injection nozzles; (3) distributor type injection pumps; (4) unit injectors; (5) in-line injection pumps; and (6) pressure timed…
49 CFR 538.7 - Petitions for reduction of minimum driving range.
Code of Federal Regulations, 2011 CFR
2011-10-01
... type treated as an electric dual fueled automobile. (3) Be written in the English language. (4) State... range is sought. (iii) A description of the model type, including car line designation, engine displacement and type, electric storage capacity, transmission type, and average fuel economy when operating on...
78 FR 9796 - Airworthiness Directives; Cessna Aircraft Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-12
... against the right steering tube assembly during rudder pedal actuation. This AD requires you to install... between the fuel return line assembly and the steering tube assembly and clearance between the fuel return...://www.cessnasupport.com . You may review copies of the referenced service information at the FAA, Small...
77 FR 29214 - Airworthiness Directives; Hawker Beechcraft Corporation Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-17
...), DOT. ACTION: Final rule. SUMMARY: We are adopting a new airworthiness directive (AD) for certain... oversized clamps on fuel vapor return and/ or fuel vent lines in the outboard sections of the left and right...-140, 1200 New Jersey Avenue SE., Washington, DC 20590. FOR FURTHER INFORMATION CONTACT: Thomas Teplik...
NASA Astrophysics Data System (ADS)
Setyan, A.; Kuo, Y. Y.; Brem, B.; Durdina, L.; Gerecke, A. C.; Heeb, N. V.; Haag, R.; Wang, J.
2017-12-01
Aircraft emissions received increased attention recently because of the steady growth of aviation transport in the last decades. Aircraft engines substantially contribute to emissions of particulate matter and gaseous pollutants in the upper and lower troposphere. Among all the pollutants emitted by aircrafts, volatile organic compounds (VOCs) are particularly important because they are mainly emitted at ground level, posing a serious health risk for people living or working near airports. A series of measurements was performed at the aircraft engine testing facility of SR Technics (Zürich airport, Switzerland). Exhausts from an in-service turbofan engine were sampled at the engine exit plane by a multi-point sampling probe. A wide range of instruments was connected to the common sampling line to determine physico-chemical characteristics of non-volatile particulate matter and gaseous pollutants. Conventional Jet A-1 fuel was used as the base fuel, and measurements were performed with the base fuel doped with two different mixtures of aromatic compounds (Solvesso 150 and naphthalene-depleted Solvesso 150) and an alternative fuel (hydro-processed esters and fatty acids [HEFA] jet fuel). During this presentation, we will show results obtained for VOCs. These compounds were sampled with 3 different adsorbing cartridges, and analyzed by thermal desorption gas chromatography/mass spectrometry (TD-GC/MS, for Tenax TA and Carboxen 569) and by ultra-performance liquid chromatography/ mass spectrometry (UPLC/MS, for DNPH). The total VOC concentration was also measured with a flame ionization detector (FID). In addition, fuel samples were also analyzed by GC/MS, and their chemical compositions were compared to the VOCs emitted via engine exhaust. Total VOCs concentrations were highest at ground idle (>200 ppm C at 4-7% thrust), and substantially lower at high thrust (<3 ppm C during take-off, 100% thrust). Fuel samples were dominated by alkanes, whereas VOCs emitted by the aircraft engine were mainly constituted of alkanes, oxygenated compounds, and aromatics. More than 50 % of the compounds identified in the exhaust were not present in the fuel, and thus were formed during combustion. The impact of the fuel doping with aromatics and the alternative fuel on VOCs emitted by the engine will also be discussed.
HEAVY WATER MODERATED NEUTRONIC REACTOR
Szilard, L.
1958-04-29
A nuclear reactor of the type which utilizes uranium fuel elements and a liquid coolant is described. The fuel elements are in the form of elongated tubes and are disposed within outer tubes extending through a tank containing heavy water, which acts as a moderator. The ends of the fuel tubes are connected by inlet and discharge headers, and liquid bismuth is circulated between the headers and through the fuel tubes for cooling. Helium is circulated through the annular space between the outer tubes in the tank and the fuel tubes to cool the water moderator to prevent boiling. The fuel tubes are covered with a steel lining, and suitable control means, heat exchange means, and pumping means for the coolants are provided to complete the reactor assembly.
Flow Range of Centrifugal Compressor Being Extended
NASA Technical Reports Server (NTRS)
Skoch, Gary J.
2001-01-01
General Aviation will benefit from turbine engines that are both fuel-efficient and reliable. Current engines fall short of their potential to achieve these attributes. The reason is compressor surge, which is a flow stability problem that develops when the compressor is subjected to conditions that are outside of its operating range. Compressor surge can occur when fuel flow to the engine is increased, temporarily back pressuring the compressor and pushing it past its stability limit, or when the compressor is subjected to inlet flow-field distortions that may occur during takeoff and landing. Compressor surge can result in the loss of an aircraft. As a result, engine designers include a margin of safety between the operating line of the engine and the stability limit line of the compressor. Unfortunately, the most efficient operating line for the compressor is usually closer to its stability limit line than it is to the line that provides an adequate margin of safety. A wider stable flow range will permit operation along the most efficient operating line of the compressor, improving the specific fuel consumption of the engine and reducing emissions. The NASA Glenn Research Center is working to extend the stable flow range of the compressor. Significant extension has been achieved in axial compressors by injecting air upstream of the compressor blade rows. Recently, the technique was successfully applied to a 4:1 pressure ratio centrifugal compressor by injecting streams of air into the diffuser. Both steady and controlled unsteady injection were used to inject air through the diffuser shroud surface and extend the range. Future work will evaluate the effect of air injection through the diffuser hub surface and diffuser vanes with the goal of maximizing the range extension while minimizing the amount of injected air that is required.
2005-11-01
fuel gauge malfunctions, fuel line and filter plugging, and corrosion. As a result, there is considerable interest in identifying microbial growth ...corrosion. As a result, there is considerable interest in identifying microbial growth and finding strategies to mitigate it. Previous research to... Rhodotorula sp. Yes Yes Trichosporium sp. Yes Trichoderma sp. (viride + others) Yes Yes 4 Table 2. Culturability Determined as a Percentage of
Two-Dimensional Imaging of OH in a Lean Burning High Pressure Combustor
NASA Technical Reports Server (NTRS)
Locke, R. J.; Hicks, Y. R.; Anderson, R. C.; Ockunzzi, K. A.; North, G. L.
1995-01-01
Planar laser-induced fluorescence (PLIF) images of OH have been obtained from an optically accessible, lean burning high pressure combustor burning Jet-A fuel. These images were obtained using various laser excitation lines of the OH A (reverse arrow) X (1,0) band for several fuel injector configurations with pressures ranging from 1013 kPa (10 atm) to 1419 kPa (14 atm). Non-uniformities in the combusting flow, attributed to differences in fuel injector configuration, are revealed by these images. Contributions attributable to fluorescent aromatic hydrocarbons and complex fuel chemistries are also not evident.
Robots Would Couple And Uncouple Fluid And Electrical Lines
NASA Technical Reports Server (NTRS)
Del Castillo, Eduardo Lopez; Davis, Virgil; Ferguson, Bob; Reichle, Garland
1992-01-01
Robots make and break connections between umbilical plates and mating connectors on rockets about to be launched. Sensing and control systems include vision, force, and torque subsystems. Enhances safety by making it possible to couple and uncouple umbilical plates quickly, without exposing human technicians to hazards of leaking fuels and oxidizers. Significantly reduces time spent to manually connect umbilicals. Robots based on similar principles used in refueling of National AeroSpace Plane (NASP) and satellites and orbital transfer vehicles in space.
Alternative Fuels Data Center: State Alternative Fuel and Advanced Vehicle
2017, the number of new state-level legislative, executive, private, and utility activities related to 2016 (54 total), but in line with previous years. The analysis below provides detail on trends in new (PEVs). Also consistent with recent prior years, new utility and private incentives primarily addressed
77 FR 73456 - Update to the TR-12 Fuel Related Rate Adjustment Policy (SDDC Fuel Surcharge Policy)
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-10
... Time Only (OTO) personal property movements, regardless of mode. SDDC will not pay a FRA for any type... less-than-truckload (LTL) and Personal Property (PP) shipments. The percentage of line-haul increment... property movements within the United States. This policy provides the transportation industry, including...
40 CFR 86.127-96 - Test procedures; overview.
Code of Federal Regulations, 2012 CFR
2012-07-01
... or all of the following emissions: (1) Gaseous exhaust THC, CO, NOX. CO2 (for petroleum-fueled and... gaseous-fueled vehicles). (b) The Otto-cycle exhaust emission test is designed to determine gaseous THC... analyzed for THC using a heated sample line and analyzer; the other gaseous emissions (CH4, CO, CO2, and...
40 CFR 86.127-96 - Test procedures; overview.
Code of Federal Regulations, 2010 CFR
2010-07-01
... or all of the following emissions: (1) Gaseous exhaust THC, CO, NOX. CO2 (for petroleum-fueled and... gaseous-fueled vehicles). (b) The Otto-cycle exhaust emission test is designed to determine gaseous THC... analyzed for THC using a heated sample line and analyzer; the other gaseous emissions (CH4, CO, CO2, and...
40 CFR 86.127-96 - Test procedures; overview.
Code of Federal Regulations, 2013 CFR
2013-07-01
... or all of the following emissions: (1) Gaseous exhaust THC, CO, NOX. CO2 (for petroleum-fueled and... gaseous-fueled vehicles). (b) The Otto-cycle exhaust emission test is designed to determine gaseous THC... analyzed for THC using a heated sample line and analyzer; the other gaseous emissions (CH4, CO, CO2, and...
40 CFR 86.127-96 - Test procedures; overview.
Code of Federal Regulations, 2011 CFR
2011-07-01
... or all of the following emissions: (1) Gaseous exhaust THC, CO, NOX. CO2 (for petroleum-fueled and... gaseous-fueled vehicles). (b) The Otto-cycle exhaust emission test is designed to determine gaseous THC... analyzed for THC using a heated sample line and analyzer; the other gaseous emissions (CH4, CO, CO2, and...
46 CFR 69.121 - Engine room deduction.
Code of Federal Regulations, 2010 CFR
2010-10-01
... considered a propelling machinery space. (vi) Spaces containing fuel oil settling tanks used solely for the... spaces for fuel tanks, spaces exempt from gross tonnage under § 69.117, and spaces not used or not... bottom frames, floors, or tank top of a double bottom up to the line of the crown. A breadth is measured...
77 FR 12757 - Airworthiness Directives; Hawker Beechcraft Corporation Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-02
... rulemaking (NPRM). SUMMARY: We propose to adopt a new airworthiness directive (AD) for certain Hawker... oversized clamps on fuel vapor return and/or fuel vent lines in the outboard sections of the left and right... Floor, Room W12-140, 1200 New Jersey Avenue SE., Washington, DC 20590. Hand Delivery: Deliver to Mail...
1981-07-01
security measures to in- crease the survivability of these assets. However, sabotage, terrorism and vandalism continue to be serious threats to DCS and its...Closed circuit television. e. Comunication cables. f. Fuel storage. g. Fuel lines. h. Air conditioning. The primary benefits of security measures
Solid oxide fuel cell having compound cross flow gas patterns
Fraioli, A.V.
1983-10-12
A core construction for a fuel cell is disclosed having both parallel and cross flow passageways for the fuel and the oxidant gases. Each core passageway is defined by electrolyte and interconnect walls. Each electrolyte wall consists of cathode and anode materials sandwiching an electrolyte material. Each interconnect wall is formed as a sheet of inert support material having therein spaced small plugs of interconnect material, where cathode and anode materials are formed as layers on opposite sides of each sheet and are electrically connected together by the interconnect material plugs. Each interconnect wall in a wavy shape is connected along spaced generally parallel line-like contact areas between corresponding spaced pairs of generally parallel electrolyte walls, operable to define one tier of generally parallel flow passageways for the fuel and oxidant gases. Alternate tiers are arranged to have the passageways disposed normal to one another. Solid mechanical connection of the interconnect walls of adjacent tiers to the opposite sides of the common electrolyte wall therebetween is only at spaced point-like contact areas, 90 where the previously mentioned line-like contact areas cross one another.
Solid oxide fuel cell having compound cross flow gas patterns
Fraioli, Anthony V.
1985-01-01
A core construction for a fuel cell is disclosed having both parallel and cross flow passageways for the fuel and the oxidant gases. Each core passageway is defined by electrolyte and interconnect walls. Each electrolyte wall consists of cathode and anode materials sandwiching an electrolyte material. Each interconnect wall is formed as a sheet of inert support material having therein spaced small plugs of interconnect material, where cathode and anode materials are formed as layers on opposite sides of each sheet and are electrically connected together by the interconnect material plugs. Each interconnect wall in a wavy shape is connected along spaced generally parallel line-like contact areas between corresponding spaced pairs of generally parallel electrolyte walls, operable to define one tier of generally parallel flow passageways for the fuel and oxidant gases. Alternate tiers are arranged to have the passageways disposed normal to one another. Solid mechanical connection of the interconnect walls of adjacent tiers to the opposite sides of the common electrolyte wall therebetween is only at spaced point-like contact areas, 90 where the previously mentioned line-like contact areas cross one another.
Apportionment of urban aerosol sources in Cork (Ireland) by synergistic measurement techniques.
Dall'Osto, Manuel; Hellebust, Stig; Healy, Robert M; O'Connor, Ian P; Kourtchev, Ivan; Sodeau, John R; Ovadnevaite, Jurgita; Ceburnis, Darius; O'Dowd, Colin D; Wenger, John C
2014-09-15
The sources of ambient fine particulate matter (PM2.5) during wintertime at a background urban location in Cork city (Ireland) have been determined. Aerosol chemical analyses were performed by multiple techniques including on-line high resolution aerosol time-of-flight mass spectrometry (Aerodyne HR-ToF-AMS), on-line single particle aerosol time-of-flight mass spectrometry (TSI ATOFMS), on-line elemental carbon-organic carbon analysis (Sunset_EC-OC), and off-line gas chromatography/mass spectrometry and ion chromatography analysis of filter samples collected at 6-h resolution. Positive matrix factorization (PMF) has been carried out to better elucidate aerosol sources not clearly identified when analyzing results from individual aerosol techniques on their own. Two datasets have been considered: on-line measurements averaged over 2-h periods, and both on-line and off-line measurements averaged over 6-h periods. Five aerosol sources were identified by PMF in both datasets, with excellent agreement between the two solutions: (1) regional domestic solid fuel burning--"DSF_Regional," 24-27%; (2) local urban domestic solid fuel burning--"DSF_Urban," 22-23%; (3) road vehicle emissions--"Traffic," 15-20%; (4) secondary aerosols from regional anthropogenic sources--"SA_Regional" 9-13%; and (5) secondary aged/processed aerosols related to urban anthropogenic sources--"SA_Urban," 21-26%. The results indicate that, despite regulations for restricting the use of smoky fuels, solid fuel burning is the major source (46-50%) of PM2.5 in wintertime in Cork, and also likely other areas of Ireland. Whilst wood combustion is strongly associated with OC and EC, it was found that peat and coal combustion is linked mainly with OC and the aerosol from these latter sources appears to be more volatile than that produced by wood combustion. Ship emissions from the nearby port were found to be mixed with the SA_Regional factor. The PMF analysis allowed us to link the AMS cooking organic aerosol factor (AMS_PMF_COA) to oxidized organic aerosol, chloride and locally produced nitrate, indicating that AMS_PMF_COA cannot be attributed to primary cooking emissions only. Overall, there are clear benefits from factor analysis applied to results obtained from multiple techniques, which allows better association of aerosols with sources and atmospheric processes. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Povarov, V. P.; Tereshchenko, A. B.; Kravchenko, Yu. N.; Pozychanyuk, I. V.; Gorobtsov, L. I.; Golubev, E. I.; Bykov, V. I.; Likhanskii, V. V.; Evdokimov, I. A.; Zborovskii, V. G.; Sorokin, A. A.; Kanyukova, V. D.; Aliev, T. N.
2014-02-01
The results of developing and implementing the modernized fuel leakage monitoring methods at the shut-down and running reactor of the Novovoronezh nuclear power plant (NPP) are presented. An automated computerized expert system integrated with an in-core monitoring system (ICMS) and installed at the Novovoronezh NPP unit no. 5 is described. If leaky fuel elements appear in the core, the system allows one to perform on-line assessment of the parameters of leaky fuel assemblies (FAs). The computer expert system units designed for optimizing the operating regimes and enhancing the fuel usage efficiency at the Novovoronezh NPP unit no. 5 are now being developed.
NASA Technical Reports Server (NTRS)
Kojima, Jun; Nguyen, Quang-Viet
2004-01-01
We present a theoretical study of the spectral interferences in the spontaneous Raman scattering spectra of major combustion products in 30-atm fuel-rich hydrogen-air flames. An effective methodology is introduced to choose an appropriate line-shape model for simulating Raman spectra in high-pressure combustion environments. The Voigt profile with the additive approximation assumption was found to provide a reasonable model of the spectral line shape for the present analysis. The rotational/vibrational Raman spectra of H2, N2, and H2O were calculated using an anharmonic-oscillator model using the latest collisional broadening coefficients. The calculated spectra were validated with data obtained in a 10-atm fuel-rich H2-air flame and showed excellent agreement. Our quantitative spectral analysis for equivalence ratios ranging from 1.5 to 5.0 revealed substantial amounts of spectral cross-talk between the rotational H2 lines and the N2 O-/Q-branch; and between the vibrational H2O(0,3) line and the vibrational H2O spectrum. We also address the temperature dependence of the spectral cross-talk and extend our analysis to include a cross-talk compensation technique that removes the nterference arising from the H2 Raman spectra onto the N2, or H2O spectra.
1998-01-01
Engineers at Marshall Space Flight Center (MSFC) in Huntsville, Alabama, are working with industry partners to develop a new generation of more cost-efficient space vehicles. Lightweight fuel tanks and components under development will be the critical elements in tomorrow's reusable launch vehicles and will tremendously curb the costs of getting to space. In this photo, Tom DeLay, a materials processes engineer for MSFC, uses a new graphite epoxy technology to create lightweight cryogenic fuel lines for futuristic reusable launch vehicles. He is wrapping a water-soluble mandrel, or mold, with a graphite fabric coated with an epoxy resin. Once wrapped, the pipe will be vacuum-bagged and autoclave-cured. The disposable mold will be removed to reveal a thin-walled fuel line. In addition to being much lighter and stronger than metal, this material won't expand or contract as much in the extreme temperatures encountered by launch vehicles.
Effect of Wind Velocity on Flame Spread in Microgravity
NASA Technical Reports Server (NTRS)
Prasad, Kuldeep; Olson, Sandra L.; Nakamura, Yuji; Fujita, Osamu; Nishizawa, Katsuhiro; Ito, Kenichi; Kashiwagi, Takashi; Simons, Stephen N. (Technical Monitor)
2002-01-01
A three-dimensional, time-dependent model is developed describing ignition and subsequent transition to flame spread over a thermally thin cellulosic sheet heated by external radiation in a microgravity environment. A low Mach number approximation to the Navier Stokes equations with global reaction rate equations describing combustion in the gas phase and the condensed phase is numerically solved. The effects of a slow external wind (1-20 cm/s) on flame transition are studied in an atmosphere of 35% oxygen concentration. The ignition is initiated at the center part of the sample by generating a line-shape flame along the width of the sample. The calculated results are compared with data obtained in the 10s drop tower. Numerical results exhibit flame quenching at a wind speed of 1.0 cm/s, two localized flames propagating upstream along the sample edges at 1.5 cm/s, a single line-shape flame front at 5.0 cm/s, three flames structure observed at 10.0 cm/s (consisting of a single line-shape flame propagating upstream and two localized flames propagating downstream along sample edges) and followed by two line-shape flames (one propagating upstream and another propagating downstream) at 20.0 cm/s. These observations qualitatively compare with experimental data. Three-dimensional visualization of the observed flame complex, fuel concentration contours, oxygen and reaction rate isosurfaces, convective and diffusive mass flux are used to obtain a detailed understanding of the controlling mechanism, Physical arguments based on lateral diffusive flux of oxygen, fuel depletion, oxygen shadow of the flame and heat release rate are constructed to explain the various observed flame shapes.
Synchrotron characterization of nanograined UO 2 grain growth
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mo, Kun; Miao, Yinbin; Yun, Di
2015-09-30
This activity is supported by the US Nuclear Energy Advanced Modeling and Simulation (NEAMS) Fuels Product Line (FPL) and aims at providing experimental data for the validation of the mesoscale simulation code MARMOT. MARMOT is a mesoscale multiphysics code that predicts the coevolution of microstructure and properties within reactor fuel during its lifetime in the reactor. It is an important component of the Moose-Bison-Marmot (MBM) code suite that has been developed by Idaho National Laboratory (INL) to enable next generation fuel performance modeling capability as part of the NEAMS Program FPL. In order to ensure the accuracy of the microstructuremore » based materials models being developed within the MARMOT code, extensive validation efforts must be carried out. In this report, we summarize our preliminary synchrotron radiation experiments at APS to determine the grain size of nanograin UO 2. The methodology and experimental setup developed in this experiment can directly apply to the proposed in-situ grain growth measurements. The investigation of the grain growth kinetics was conducted based on isothermal annealing and grain growth characterization as functions of duration and temperature. The kinetic parameters such as activation energy for grain growth for UO 2 with different stoichiometry are obtained and compared with molecular dynamics (MD) simulations.« less
Supplying materials needed for grain growth characterizations of nano-grained UO 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mo, Kun; Miao, Yinbin; Yun, Di
2015-09-30
This activity is supported by the US Nuclear Energy Advanced Modeling and Simulation (NEAMS) Fuels Product Line (FPL) and aims at providing experimental data for the validation of the mesoscale simulation code MARMOT. MARMOT is a mesoscale multiphysics code that predicts the coevolution of microstructure and properties within reactor fuel during its lifetime in the reactor. It is an important component of the Moose-Bison-Marmot (MBM) code suite that has been developed by Idaho National Laboratory (INL) to enable next generation fuel performance modeling capability as part of the NEAMS Program FPL. In order to ensure the accuracy of the microstructuremore » based materials models being developed within the MARMOT code, extensive validation efforts must be carried out. In this report, we summarize our preliminary synchrotron radiation experiments at APS to determine the grain size of nanograin UO 2. The methodology and experimental setup developed in this experiment can directly apply to the proposed in-situ grain growth measurements. The investigation of the grain growth kinetics was conducted based on isothermal annealing and grain growth characterization as functions of duration and temperature. The kinetic parameters such as activation energy for grain growth for UO 2 with different stoichiometry are obtained and compared with molecular dynamics (MD) simulations.« less
Methane Hydrates: More Than a Viable Aviation Fuel Feedstock Option
NASA Technical Reports Server (NTRS)
Hendricks, Robert C.
2007-01-01
Demand for hydrocarbon fuels is steadily increasing, and greenhouse gas emissions continue to rise unabated with the energy demand. Alternate fuels will be coming on line to meet that demand. This report examines the recovering of methane from methane hydrates for fuel to meet this demand rather than permitting its natural release into the environment, which will be detrimental to the planet. Some background on the nature, vast sizes, and stability of sedimentary and permafrost formations of hydrates are discussed. A few examples of the severe problems associated with methane recovery from these hydrates are presented along with the potential impact on the environment and coastal waters. Future availability of methane from hydrates may become an attractive option for aviation fueling, and so future aircraft design associated with methane fueling is considered.
Investigation of methods to produce a uniform cloud of fuel particles in a flame tube
NASA Technical Reports Server (NTRS)
Siegert, Clifford E.; Pla, Frederic G.; Rubinstein, Robert; Niezgoda, Thomas F.; Burns, Robert J.; Johnson, Jerome A.
1990-01-01
The combustion of a uniform, quiescent cloud of 30-micron fuel particles in a flame tube was proposed as a space-based, low-gravity experiment. The subject is the normal- and low-gravity testing of several methods to produce such a cloud, including telescoping propeller fans, air pumps, axial and quadrature acoustical speakers, and combinations of these devices. When operated in steady state, none of the methods produced an acceptably uniform cloud (+ or - 5 percent of the mean concentration), and voids in the cloud were clearly visible. In some cases, severe particle agglomeration was observed; however, these clusters could be broken apart by a short acoustic burst from an axially in-line speaker. Analyses and experiments reported elsewhere suggest that transient, acoustic mixing methods can enhance cloud uniformity while minimizing particle agglomeration.
NASA Technical Reports Server (NTRS)
Szatkowski, G. P.
1983-01-01
A computer simulation system has been developed for the Space Shuttle's advanced Centaur liquid fuel booster rocket, in order to conduct systems safety verification and flight operations training. This simulation utility is designed to analyze functional system behavior by integrating control avionics with mechanical and fluid elements, and is able to emulate any system operation, from simple relay logic to complex VLSI components, with wire-by-wire detail. A novel graphics data entry system offers a pseudo-wire wrap data base that can be easily updated. Visual subsystem operations can be selected and displayed in color on a six-monitor graphics processor. System timing and fault verification analyses are conducted by injecting component fault modes and min/max timing delays, and then observing system operation through a red line monitor.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-08
... switch and new in-line fuses for the pressure switch, as applicable; and change the wiring; on the left...). SUMMARY: We propose to adopt a new airworthiness directive (AD) for the products listed above. This proposed AD would require installing new in-line fuses for the fuel level float switch and new in-line...
Amat-Bronnert, Agnès; Castegnaro, Marcel; Pfohl-Leszkowicz, Annie
2007-01-01
On 12 December 1999, the tanker Erika broke in two parts at about 60km from the Brittany French coasts (Point of Penmarc'h, Sud Finistère, France). About 10,000tonnes of heavy oil fuel were released in the sea. DNA adduct have been detected in fish liver and mussels digestive gland exposed to the Erika oil spill. In order to investigate the mechanism by which Erika fuel extract exhibits genotoxic effects the induction of DNA adducts by an Erika fuel extract have been analysed on two cell lines, human epithelial bronchial cells (WI) and human hepatoma cells. DNA adducts, reflected by a diagonal radioactive zone and individual adducts are detected only in hepatoma cells indicating biotransformation via CYP 1A2 and CYP 1B1. In addition, Erika fuel extract induces some metabolizing enzymes such CYP 1A2, COX2 and 5-LOX, the two later are involved in cancer processes. Formation of leucotrienes B4 (LTB(4)), a mediator playing a role in inflammation, is induced in epithelial bronchial cells. Since inhalation is one of the ways of contamination for human, the above results are important for human health and prevention. Copyright © 2006 Elsevier B.V. All rights reserved.
Hydrocarbon-Fueled Rocket Engine Plume Diagnostics: Analytical Developments and Experimental Results
NASA Technical Reports Server (NTRS)
Tejwani, Gopal D.; McVay, Gregory P.; Langford, Lester A.; St. Cyr, William W.
2006-01-01
A viewgraph presentation describing experimental results and analytical developments about plume diagnostics for hydrocarbon-fueled rocket engines is shown. The topics include: 1) SSC Plume Diagnostics Background; 2) Engine Health Monitoring Approach; 3) Rocket Plume Spectroscopy Simulation Code; 4) Spectral Simulation for 10 Atomic Species and for 11 Diatomic Molecular Electronic Bands; 5) "Best" Lines for Plume Diagnostics for Hydrocarbon-Fueled Rocket Engines; 6) Experimental Set Up for the Methane Thruster Test Program and Experimental Results; and 7) Summary and Recommendations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Judge, Elizabeth J.; Berg, John M.; Le, Loan A.
2012-06-18
Laser-induced breakdown spectroscopy (LIBS) was used to analyze a mixed actinide fuel pellet containing 75% UO{sub 2}/20% PuO{sub 2}/3% AmO{sub 2}/2% NpO{sub 2}. The preliminary data shown here is the first report of LIBS analysis of a mixed actinide fuel pellet, to the authors knowledge. The LIBS spectral data was acquired in a plutonium facility at Los Alamos National Laboratory where the sample was contained within a glove box. The initial installation of the glove box was not intended for complete ultraviolet (UV), visible (VIS) and near infrared (NIR) transmission, therefore the LIBS spectrum is truncated in the UV andmore » NIR regions due to the optical transmission of the window port and filters that were installed. The optical collection of the emission from the LIBS plasma will be optimized in the future. However, the preliminary LIBS data acquired is worth reporting due to the uniqueness of the sample and spectral data. The analysis of several actinides in the presence of each other is an important feature of this analysis since traditional methods must chemically separate uranium, plutonium, neptunium, and americium prior to analysis. Due to the historic nature of the sample fuel pellet analyzed, the provided sample composition of 75% UO{sub 2}/20% PuO{sub 2}/3% AmO{sub 2}/2% NpO{sub 2} cannot be confirm without further analytical processing. Uranium, plutonium, and americium emission lines were abundant and easily assigned while neptunium was more difficult to identify. There may be several reasons for this observation, other than knowing the exact sample composition of the fuel pellet. First, the atomic emission wavelength resources for neptunium are limited and such techniques as hollow cathode discharge lamp have different dynamics than the plasma used in LIBS which results in different emission spectra. Secondly, due to the complex sample of four actinide elements, which all have very dense electronic energy levels, there may be reactions and interactions occurring within the plasma, such as collisional energy transfer, that might be a factor in the reduction in neptunium emission lines. Neptunium has to be analyzed alone using LIBS to further understand the dynamics that may be occurring in the plasma of the mixed actinide fuel pellet sample. The LIBS data suggests that the emission spectrum for the mixed actinide fuel pellet is not simply the sum of the emission spectra of the pure samples but is dependent on the species present in the plasma and the interactions and reactions that occur within the plasma. Finally, many of the neptunium lines are in the near infrared region which is drastically reduced in intensity by the current optical setup and possibly the sensitivity of the emission detector in the spectral region. Once the optics are replaced and the optical collection system is modified and optimized, the probability of observing emission lines for neptunium might be increased significantly. The mixed actinide fuel pellet was analyzed under the experimental conditions listed in Table 1. The LIBS spectra of the fuel pellet are shown in Figures 1-49. The spectra are labeled with the observed wavelength and atomic species (both neutral (I) and ionic (II)). Table 2 is a complete list of the observed and literature based emission wavelengths. The literature wavelengths have references including NIST Atomic Spectra Database (NIST), B.A. Palmer et al. 'An Atlas of Uranium Emission Intensities in a Hollow Cathode Discharge' taken at the Kitt Peak National Observatory (KPNO), R.L. Kurucz 1995 Atomic Line Data from the Smithsonian Astrophysical Observatory (SAO), J. Blaise et al. 'The Atomic Spectrum of Plutonium' from Argonne National Laboratory (BFG), and M. Fred and F.S. Tomkins, 'Preliminary Term Analysis of Am I and Am II Spectra' (FT). The dash (-) shown under Ionic State indicates that the ionic state of the transition was not available. In the spectra, the dash (-) is replaced with a question mark (?). Peaks that are not assigned are most likely real features and not noise but cannot be confidently assigned to a transition without further investigation. Several peaks have multiple assignments due to limited resolution of the spectrometer used (20,000, {lambda}/{Delta}{lambda}) and without the availability, at this point in time, of pure PuO{sub 2}, AmO{sub 2}, and NpO{sub 2} to confirm the identity of the peaks. A different spectrometer was used in the plutonium facility to collect the mixed actinide fuel pellet data (Echelle 3000) than the DUO{sub 2}, ThO{sub 2} and uranium ore previously reported [6-8] (Echelle 4000) which accounts for the slight shift in the observed wavelength of the uranium emission lines.« less
NASA Astrophysics Data System (ADS)
Niemöller, Arvid; Jakes, Peter; Kayser, Steffen; Lin, Yu; Lehnert, Werner; Granwehr, Josef
2016-08-01
Electrochemical cells contain electrically conductive components, which causes various problems if such a cell is analyzed during operation in an EPR resonator. The optimum cell design strongly depends on the application and it is necessary to make certain compromises that need to be individually arranged. Rapid prototyping presents a straightforward option to implement a variable cell design that can be easily adapted to changing requirements. In this communication, it is demonstrated that sample containers produced by 3D printing are suitable for EPR applications, with a particular emphasis on electrochemical applications. The housing of a high temperature polymer electrolyte fuel cell (HT-PEFC) with a phosphoric acid doped polybenzimidazole membrane was prepared from polycarbonate by 3D printing. Using a custom glass Dewar, this fuel cell could be operated at temperatures up to 140 °C in a standard EPR cavity. The carbon-based gas diffusion layer showed an EPR signal with a characteristic Dysonian line shape, whose evolution could be monitored in-operando in a non-invasive manner.
Niemöller, Arvid; Jakes, Peter; Kayser, Steffen; Lin, Yu; Lehnert, Werner; Granwehr, Josef
2016-08-01
Electrochemical cells contain electrically conductive components, which causes various problems if such a cell is analyzed during operation in an EPR resonator. The optimum cell design strongly depends on the application and it is necessary to make certain compromises that need to be individually arranged. Rapid prototyping presents a straightforward option to implement a variable cell design that can be easily adapted to changing requirements. In this communication, it is demonstrated that sample containers produced by 3D printing are suitable for EPR applications, with a particular emphasis on electrochemical applications. The housing of a high temperature polymer electrolyte fuel cell (HT-PEFC) with a phosphoric acid doped polybenzimidazole membrane was prepared from polycarbonate by 3D printing. Using a custom glass Dewar, this fuel cell could be operated at temperatures up to 140°C in a standard EPR cavity. The carbon-based gas diffusion layer showed an EPR signal with a characteristic Dysonian line shape, whose evolution could be monitored in-operando in a non-invasive manner. Copyright © 2016. Published by Elsevier Inc.
40 CFR 600.307-08 - Fuel economy label format requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
....210-08(c), located directly above the arrow. (iv) The statement “This Vehicle” directly above the... “This Vehicle” statement, and centered above the bar, in two lines, if needed. (C) For dedicated natural... alternate fuel, in a size and format specified in Appendix V of this part. (c) The city mpg number shall be...
40 CFR 600.307-08 - Fuel economy label format requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
....210-08(c), located directly above the arrow. (iv) The statement “This Vehicle” directly above the... “This Vehicle” statement, and centered above the bar, in two lines, if needed. (C) For dedicated natural... alternate fuel, in a size and format specified in appendix V of this part. (c) The city mpg number shall be...
40 CFR 52.1170 - Identification of plan.
Code of Federal Regulations, 2014 CFR
2014-07-01
... compounds form existing automobile, truck, and business machine plastic part coating lines 4/27/93 9/7/94... Continuous emission monitoring, fossil fuel-fired steam generators 3/19/02 6/1/06, 71 FR 31093 R 336.2102... 336.2175 Data reduction procedures for fossil fuel-fired steam generators 11/15/04 6/1/06, 71 FR 31093...
40 CFR 52.1170 - Identification of plan.
Code of Federal Regulations, 2011 CFR
2011-07-01
... compounds form existing automobile, truck, and business machine plastic part coating lines 4/27/93 9/7/94... Continuous emission monitoring, fossil fuel-fired steam generators 3/19/02 6/1/06, 71 FR 31093 R 336.2102... 336.2175 Data reduction procedures for fossil fuel-fired steam generators 11/15/04 6/1/06, 71 FR 31093...
40 CFR 52.1170 - Identification of plan.
Code of Federal Regulations, 2012 CFR
2012-07-01
... compounds form existing automobile, truck, and business machine plastic part coating lines 4/27/93 9/7/94... Continuous emission monitoring, fossil fuel-fired steam generators 3/19/02 6/1/06, 71 FR 31093 R 336.2102... 336.2175 Data reduction procedures for fossil fuel-fired steam generators 11/15/04 6/1/06, 71 FR 31093...
40 CFR 52.1170 - Identification of plan.
Code of Federal Regulations, 2010 CFR
2010-07-01
... compounds form existing automobile, truck, and business machine plastic part coating lines 4/27/93 9/7/94... Continuous emission monitoring, fossil fuel-fired steam generators 3/19/02 6/1/06, 71 FR 31093 R 336.2102... 336.2175 Data reduction procedures for fossil fuel-fired steam generators 11/15/04 6/1/06, 71 FR 31093...
40 CFR 52.1170 - Identification of plan.
Code of Federal Regulations, 2013 CFR
2013-07-01
... compounds form existing automobile, truck, and business machine plastic part coating lines 4/27/93 9/7/94... Continuous emission monitoring, fossil fuel-fired steam generators 3/19/02 6/1/06, 71 FR 31093 R 336.2102... 336.2175 Data reduction procedures for fossil fuel-fired steam generators 11/15/04 6/1/06, 71 FR 31093...
78 FR 14644 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-07
... within the ECS bay, which in combination with flammable fuel vapors, could result in a center wing fuel... ECS bay, but allows installation of clamp P/N TA0930034-11 at the same clamp position. Delta Air Lines (Delta) requested that we ensure that paragraph (h) of the NPRM, only applies to those airplanes subject...
Remote sensing fire and fuels in southern California
Philip Riggan; Lynn Wolden; Bob Tissell; David Weise; J. Coen
2011-01-01
Airborne remote sensing at infrared wavelengths has the potential to quantify large-fire properties related to energy release or intensity, residence time, fuel-consumption rate, rate of spread, and soil heating. Remote sensing at a high temporal rate can track fire-line outbreaks and acceleration and spotting ahead of a fire front. Yet infrared imagers and imaging...
NASA Astrophysics Data System (ADS)
Feddema, Rick
Feddema, Rick T. M.S.M.E., Purdue University, December 2013. Effect of Aviation Fuel Type and Fuel Injection Conditions on the Spray Characteristics of Pressure Swirl and Hybrid Air Blast Fuel Injectors. Major Professor: Dr. Paul E. Sojka, School of Mechanical Engineering Spray performance of pressure swirl and hybrid air blast fuel injectors are central to combustion stability, combustor heat management, and pollutant formation in aviation gas turbine engines. Next generation aviation gas turbine engines will optimize spray atomization characteristics of the fuel injector in order to achieve engine efficiency and emissions requirements. Fuel injector spray atomization performance is affected by the type of fuel injector, fuel liquid properties, fuel injection pressure, fuel injection temperature, and ambient pressure. Performance of pressure swirl atomizer and hybrid air blast nozzle type fuel injectors are compared in this study. Aviation jet fuels, JP-8, Jet A, JP-5, and JP-10 and their effect on fuel injector performance is investigated. Fuel injector set conditions involving fuel injector pressure, fuel temperature and ambient pressure are varied in order to compare each fuel type. One objective of this thesis is to contribute spray patternation measurements to the body of existing drop size data in the literature. Fuel droplet size tends to increase with decreasing fuel injection pressure, decreasing fuel injection temperature and increasing ambient injection pressure. The differences between fuel types at particular set conditions occur due to differences in liquid properties between fuels. Liquid viscosity and surface tension are identified to be fuel-specific properties that affect the drop size of the fuel. An open aspect of current research that this paper addresses is how much the type of aviation jet fuel affects spray atomization characteristics. Conventional aviation fuel specifications are becoming more important with new interest in alternative fuels. Optical patternation data and line of sight laser diffraction data show that there is significant difference between jet fuels. Particularly at low fuel injection pressures (0.345 MPa) and cold temperatures (-40 C), the patternation data shows that the total surface area in the spray at 38.1 mm from the pressure swirl injector for the JP-10 fuel type is one-sixth the amount of the JP-8. Finally, this study compares the atomizer performance of a pressure swirl nozzle to a hybrid air blast nozzle. The total surface area for both the hybrid air blast nozzle and the pressure swirl nozzle show a similar decline in atomization performance at low fuel injection pressures and cold temperatures. However, the optical patternator radial profile data and the line of sight laser diffraction data show that the droplet size and spray distribution data are less affected by injection conditions and fuel type in the hybrid air blast nozzle, than they are in the pressure swirl nozzle. One explanation is that the aerodynamic forces associated with the swirler on the hybrid air blast nozzle control the distribution droplets in the spray. This is in contrast to the pressure swirl nozzle droplet distribution that is controlled by internal geometry and droplet ballistics.
Materials technology for an advanced space power nuclear reactor concept: Program summary
NASA Technical Reports Server (NTRS)
Gluyas, R. E.; Watson, G. K.
1975-01-01
The results of a materials technology program for a long-life (50,000 hr), high-temperature (950 C coolant outlet), lithium-cooled, nuclear space power reactor concept are reviewed and discussed. Fabrication methods and compatibility and property data were developed for candidate materials for fuel pins and, to a lesser extent, for potential control systems, reflectors, reactor vessel and piping, and other reactor structural materials. The effects of selected materials variables on fuel pin irradiation performance were determined. The most promising materials for fuel pins were found to be 85 percent dense uranium mononitride (UN) fuel clad with tungsten-lined T-111 (Ta-8W-2Hf).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lobban, Lance
The goal of this project is the development of novel catalysts and knowledge of reaction pathways and mechanisms for conversion of biomass-based compounds to fuels that are compatible with oil-based fuels and with acceptable or superior fuel properties. The research scope included both catalysts to convert lignocellulosic biomass-based molecules (from pyrolysis) and vegetable oil-based molecules (i.e., triglycerides and fatty acid methyl esters). This project comprised five technical tasks. Each task is briefly introduced below, and major technical accomplishments summarized. Technical accomplishments were described in greater detail in the quarterly progress reports, and in even more detail in the >50 publicationsmore » acknowledging this DoE project funding (list of publications and presentations included at the end of this report). The results of this research added greatly to the knowledge base necessary for upgrading of pyrolysis oil to hydrocarbon fuels and chemicals, and for conversion of vegetable oils to fungible diesel fuel. Numerous new catalysts and catalytic reaction systems were developed for upgrading particular compounds or compound families found in the biomass-based pyrolysis oils and vegetable oils. Methods to mitigate catalyst deactivation were investigated, including novel reaction/separation systems. Performance and emission characteristics of biofuels in flames and engines were measured. Importantly, the knowledge developed from this project became the basis for a subsequent collaborative proposal led by our research group, involving researchers from the University of Wisconsin, the University of Pittsburg, and the Idaho National Lab, for the DoE Carbon, Hydrogen and Separations Efficiency (CHASE) program, which was subsequently funded (one of only four projects awarded in the CHASE program). The CHASE project examined novel catalytic processes for lignocellulosic biomass conversion as well as technoeconomic analyses for process options for maximum carbon capture and hydrogen efficiency. Our research approach combined catalyst synthesis, measurements of catalyst activity and selectivity in different reactor systems and conditions, and detailed catalyst characterization to develop fundamental understanding of reaction pathways and the capability to predict product distributions. Nearly all of the candidate catalysts were prepared in-house via standard techniques such as impregnation, co-impregnation, or chemical vapor deposition. Supports were usually purchased, but in some cases coprecipitation was used to simultaneously create the support and active component, which can be advantageous for strong active component-support interactions and for achieving high active component dispersion. In-house synthesis also allowed for studies of the effects on catalyst activity and selectivity of such factors as support porosity, calcination temperature, and reduction/activation conditions. Depending on the physical characteristics of the molecule, catalyst activity measurements were carried out in tubular flow reactors (for vapor phase reactions) or stirred tank reactors (for liquid phase reactions) over a wide range of pressures and temperatures. Reactant and product concentrations were measured using gas chromatography (both on-line and off-line, with TCD, FID, and/or mass spectrometric detection). For promising catalysts, detailed physicochemical characterization was carried out using FTIR, Raman, XPS, and XRD spectroscopies (all available in our laboratories) and TEM spectroscopy (available at OU). Additional methods included temperature programmed techniques (TPD, TPO) and surface area measurements by nitrogen adsorption techniques.« less
André, V; Barraud, C; Capron, D; Preterre, D; Keravec, V; Vendeville, C; Cazier, F; Pottier, D; Morin, J P; Sichel, F
2015-01-01
Diesel exhausts are partly responsible for the deleterious effects on human health associated with urban pollution, including cardiovascular diseases, asthma, COPD, and possibly lung cancer. Particulate fraction has been incriminated and thus largely investigated for its genotoxic properties, based on exposure conditions that are, however, not relevant for human risk assessment. In this paper, original and more realistic protocols were used to investigate the hazards induced by exhausts emitted by the combustion of standard (DF0) vs. bio-diesel fuels (DF7 and DF30) and to assess the impact of exhaust treatment devices (DOC and DPF). Mutagenicity and genotoxicity were evaluated for (1) resuspended particles ("off line" exposure that takes into account the bioavailability of adsorbed chemicals) and for (2) the whole aerosols (particles+gas phase components) under continuous flow exposure ("on line" exposure). Native particles displayed mutagenic properties associated with nitroaromatic profiles (YG1041), whereas PAHs did not seem to be involved. After DOC treatment, the mutagenicity of particles was fully abolished. In contrast, the level of particle deposition was low under continuous flow exposure, and the observed mutagenicity in TA98 and TA102 was thus attributable to the gas phase. A bactericidal effect was also observed in TA102 after DOC treatment, and a weak but significant mutagenicity persisted after DPF treatment for bio-diesel fuels. No formation of bulky DNA-adducts was observed on A549 cells exposed to diesel exhaust, even in very drastic conditions (organic extracts corresponding to 500 μg equivalent particule/mL, 48 h exposure). Taken together, these data indicate that the exhausts issued from the bio-diesel fuels supplemented with rapseed methyl ester (RME), and generated by current diesel engines equipped with after treatment devices are less mutagenic than older ones. The residual mutagenicity is linked to the gas phase and could be due to pro-oxydants, mainly for RME-supplemented fuels. Copyright © 2014 Elsevier B.V. All rights reserved.
PWR and BWR spent fuel assembly gamma spectra measurements
NASA Astrophysics Data System (ADS)
Vaccaro, S.; Tobin, S. J.; Favalli, A.; Grogan, B.; Jansson, P.; Liljenfeldt, H.; Mozin, V.; Hu, J.; Schwalbach, P.; Sjöland, A.; Trellue, H.; Vo, D.
2016-10-01
A project to research the application of nondestructive assay (NDA) to spent fuel assemblies is underway. The research team comprises the European Atomic Energy Community (EURATOM), embodied by the European Commission, DG Energy, Directorate EURATOM Safeguards; the Swedish Nuclear Fuel and Waste Management Company (SKB); two universities; and several United States national laboratories. The Next Generation of Safeguards Initiative-Spent Fuel project team is working to achieve the following technical goals more easily and efficiently than in the past using nondestructive assay measurements of spent fuel assemblies: (1) verify the initial enrichment, burnup, and cooling time of facility declaration; (2) detect the diversion or replacement of pins, (3) estimate the plutonium mass, (4) estimate the decay heat, and (5) determine the reactivity of spent fuel assemblies. This study focuses on spectrally resolved gamma-ray measurements performed on a diverse set of 50 assemblies [25 pressurized water reactor (PWR) assemblies and 25 boiling water reactor (BWR) assemblies]; these same 50 assemblies will be measured with neutron-based NDA instruments and a full-length calorimeter. Given that encapsulation/repository and dry storage safeguards are the primarily intended applications, the analysis focused on the dominant gamma-ray lines of 137Cs, 154Eu, and 134Cs because these isotopes will be the primary gamma-ray emitters during the time frames of interest to these applications. This study addresses the impact on the measured passive gamma-ray signals due to the following factors: burnup, initial enrichment, cooling time, assembly type (eight different PWR and six different BWR fuel designs), presence of gadolinium rods, and anomalies in operating history. To compare the measured results with theory, a limited number of ORIGEN-ARP simulations were performed.
PWR and BWR spent fuel assembly gamma spectra measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vaccaro, S.; Tobin, Stephen J.; Favalli, Andrea
A project to research the application of nondestructive assay (NDA) to spent fuel assemblies is underway. The research team comprises the European Atomic Energy Community (EURATOM), embodied by the European Commission, DG Energy, Directorate EURATOM Safeguards; the Swedish Nuclear Fuel and Waste Management Company (SKB); two universities; and several United States national laboratories. The Next Generation of Safeguards Initiative–Spent Fuel project team is working to achieve the following technical goals more easily and efficiently than in the past using nondestructive assay measurements of spent fuel assemblies: (1) verify the initial enrichment, burnup, and cooling time of facility declaration; (2) detectmore » the diversion or replacement of pins, (3) estimate the plutonium mass, (4) estimate the decay heat, and (5) determine the reactivity of spent fuel assemblies. This study focuses on spectrally resolved gamma-ray measurements performed on a diverse set of 50 assemblies [25 pressurized water reactor (PWR) assemblies and 25 boiling water reactor (BWR) assemblies]; these same 50 assemblies will be measured with neutron-based NDA instruments and a full-length calorimeter. Given that encapsulation/repository and dry storage safeguards are the primarily intended applications, the analysis focused on the dominant gamma-ray lines of 137Cs, 154Eu, and 134Cs because these isotopes will be the primary gamma-ray emitters during the time frames of interest to these applications. This study addresses the impact on the measured passive gamma-ray signals due to the following factors: burnup, initial enrichment, cooling time, assembly type (eight different PWR and six different BWR fuel designs), presence of gadolinium rods, and anomalies in operating history. As a result, to compare the measured results with theory, a limited number of ORIGEN-ARP simulations were performed.« less
PWR and BWR spent fuel assembly gamma spectra measurements
Vaccaro, S.; Tobin, Stephen J.; Favalli, Andrea; ...
2016-07-17
A project to research the application of nondestructive assay (NDA) to spent fuel assemblies is underway. The research team comprises the European Atomic Energy Community (EURATOM), embodied by the European Commission, DG Energy, Directorate EURATOM Safeguards; the Swedish Nuclear Fuel and Waste Management Company (SKB); two universities; and several United States national laboratories. The Next Generation of Safeguards Initiative–Spent Fuel project team is working to achieve the following technical goals more easily and efficiently than in the past using nondestructive assay measurements of spent fuel assemblies: (1) verify the initial enrichment, burnup, and cooling time of facility declaration; (2) detectmore » the diversion or replacement of pins, (3) estimate the plutonium mass, (4) estimate the decay heat, and (5) determine the reactivity of spent fuel assemblies. This study focuses on spectrally resolved gamma-ray measurements performed on a diverse set of 50 assemblies [25 pressurized water reactor (PWR) assemblies and 25 boiling water reactor (BWR) assemblies]; these same 50 assemblies will be measured with neutron-based NDA instruments and a full-length calorimeter. Given that encapsulation/repository and dry storage safeguards are the primarily intended applications, the analysis focused on the dominant gamma-ray lines of 137Cs, 154Eu, and 134Cs because these isotopes will be the primary gamma-ray emitters during the time frames of interest to these applications. This study addresses the impact on the measured passive gamma-ray signals due to the following factors: burnup, initial enrichment, cooling time, assembly type (eight different PWR and six different BWR fuel designs), presence of gadolinium rods, and anomalies in operating history. As a result, to compare the measured results with theory, a limited number of ORIGEN-ARP simulations were performed.« less
Research on energy efficiency design index for sea-going LNG carriers
NASA Astrophysics Data System (ADS)
Lin, Yan; Yu, Yanyun; Guan, Guan
2014-12-01
This paper describes the characteristics of liquefied natural gas (LNG) carriers briefly. The LNG carrier includes power plant selection, vapor treatment, liquid cargo tank type, etc. Two parameters—fuel substitution rate and recovery of boil of gas (BOG) volume to energy efficiency design index (EEDI) formula are added, and EEDI formula of LNG carriers is established based on ship EEDI formula. Then, based on steam turbine propulsion device of LNG carriers, mathematical models of LNG carriers' reference line value are established in this paper. By verification, the EEDI formula of LNG carriers described in this paper can provide a reference for LNG carrier EEDI calculation and green shipbuilding.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akagi, Sheryl; Burling, Ian R.; Mendoza, Albert
We report trace-gas emission factors from three pine-understory prescribed fires in South Carolina, U.S. measured during the fall of 2011. The fires were an attempt to simulate high-intensity burns and the fuels included mature pine stands not frequently subjected to prescribed fire that were lit following a sustained period of drought. In this work we focus on the emission factor measurements made using a fixed open-path gas analyzer Fourier transform infrared (FTIR) system. We compare these emission factors with those measured using a roving, point sampling, land-based FTIR and an airborne FTIR that were deployed on the same fires. Wemore » also compare to emission factors measured by a similar open-path FTIR system deployed on savanna fires in Africa. The data suggest that the method in which the smoke is sampled can strongly influence the relative abundance of the emissions that are observed. The airborne FTIR probed the bulk of the emissions, which were lofted in the convection column and the downwind chemistry while the roving ground-based point sampling FTIR measured the contribution of individual residual smoldering combustion fuel elements scattered throughout the burn site. The open-path FTIR provided a fixed path-integrated sample of emissions produced directly upwind mixed with emissions that were redirected by wind gusts, or right after ignition and before the adjacent plume achieved significant vertical development. It typically probed two distinct combustion regimes, “flaming-like” (immediately after adjacent ignition) and “smoldering-like”, denoted “early” and “late”, respectively. The calculated emission factors from open-path measurements were closer to the airborne than to the point measurements, but this could vary depending on the calculation method or from fire to fire given the changing MCE and dynamics over the duration of a typical burn. The emission factors for species whose emissions are not highly fuel dependent (e.g. CH4 and CH3OH) from all three systems can be plotted versus modified combustion efficiency and fit to a single consistent trend suggesting that differences between the systems for these species may be mainly due to the unique mix of flaming and smoldering that each system sampled. For other more fuel dependent species, the different fuels sampled also likely contributed to platform differences in emission factors. The path-integrated sample of the ground-level smoke layer adjacent to the fire provided by the open-path measurements is important for estimating fire-line exposure to smoke for wildland fire personnel. We provide a table of estimated fire-line exposures for numerous known air toxics based on synthesizing results from several studies. Our data suggest that peak exposures are more likely to challenge permissible exposure limits for wildland fire personnel than shift-average exposures.« less
Lean direct wall fuel injection method and devices
NASA Technical Reports Server (NTRS)
Choi, Kyung J. (Inventor); Tacina, Robert (Inventor)
2000-01-01
A fuel combustion chamber, and a method of and a nozzle for mixing liquid fuel and air in the fuel combustion chamber in lean direct injection combustion for advanced gas turbine engines, including aircraft engines. Liquid fuel in a form of jet is injected directly into a cylindrical combustion chamber from the combustion chamber wall surface in a direction opposite to the direction of the swirling air at an angle of from about 50.degree. to about 60.degree. with respect to a tangential line of the cylindrical combustion chamber and at a fuel-lean condition, with a liquid droplet momentum to air momentum ratio in the range of from about 0.05 to about 0.12. Advanced gas turbines benefit from lean direct wall injection combustion. The lean direct wall injection technique of the present invention provides fast, uniform, well-stirred mixing of fuel and air. In addition, in order to further improve combustion, the fuel can be injected at a venturi located in the combustion chamber at a point adjacent the air swirler.
NASA Astrophysics Data System (ADS)
Azmi, Abdul Luky Shofi'ul; Prabandari, Dyah Lusiana; Hakim, Muhammad Lintang Islami
2017-03-01
Even though conversion of oil based fuel (Bahan Bakar Minyak) into gas fuel (Bahan Bakar Gas) for transportation (both land and sea) is one of the priority programs of the government of Indonesia, rules that have been established merely basic rules of gas fuel usage license for transportation, without discussing position of gas fuel related to oil based fuel in detail. This paper focus on possible strategic behavior of the key players in the oil-gas fuel conversion game, who will be impacted by the position of gas fuel as complement or substitution of oil based fuel. These players include industry of oil based fuel, industry of gas fuel, and the government. Modeling is made based on two different conditions: government plays a passive role and government plays an active role in legislating additional rules that may benefit industry of gas fuel. Results obtained under a passive government is that industry of oil based fuel need to accommodate the presence of industry of gas fuel, and industry of gas fuel does not kill/ eliminate the oil based fuel, or gas fuel serves as a complement. While in an active government, the industry of oil based fuel need to increase its negotiation spending in the first phase so that the additional rule that benefitting industry of gas fuel would not be legislated, while industry of gas fuel chooses to indifferent; however, in the last stage, gas fuel turned to be competitive or choose its role to be substitution.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-12
... Company LP, Worsham-Steed Gas Storage, L.P., Energy Transfer Fuel, LP, Mid Continent Market Center, L.L.C... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. PR10-44-000; Docket No. PR10... the protest or intervention to the Federal Energy Regulatory Commission, 888 First Street, NE...
Diesel fuel burner for diesel emissions control system
Webb, Cynthia C.; Mathis, Jeffrey A.
2006-04-25
A burner for use in the emissions system of a lean burn internal combustion engine. The burner has a special burner head that enhances atomization of the burner fuel. Its combustion chamber is designed to be submersed in the engine exhaust line so that engine exhaust flows over the outer surface of the combustion chamber, thereby providing efficient heat transfer.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-24
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. PF10-1-000] National Fuel Gas Supply Corporation; Notice of Intent To Prepare an Environmental Assessment for the Planned Line N Projects, Notice of Public Scoping Meeting, and Request for Comments on Environmental Issues February 18, 2010. The staff of the Federal Energy...
Influence of absorption by environmental water vapor on radiation transfer in wildland fires
D. Frankman; B. W. Webb; B. W. Butler
2008-01-01
The attenuation of radiation transfer from wildland flames to fuel by environmental water vapor is investigated. Emission is tracked from points on an idealized flame to locations along the fuel bed while accounting for absorption by environmental water vapor in the intervening medium. The Spectral Line Weighted-sum-of-gray-gases approach was employed for treating the...
NASA Technical Reports Server (NTRS)
1979-01-01
The relative attractiveness of various hybrid/electric power train configurations and electrical and mechanical drive-line components was studied. The initial screening was concerned primarily with total vehicle weight and economic factors and identified the hybrid power train combinations which warranted detailed evaluation over various driving cycles. This was done using a second-by-second vehicle simulation program which permitted the calculations of fuel economy, electricity usage, and emissions as a function of distance traveled in urban and highway driving. Power train arrangement possibilities were examined in terms of their effect on vehicle handling, safety, serviceability, and passenger comfort. A dc electric drive system utilizing a separately excited motor with field control and battery switching was selected for the near term hybrid vehicle. Hybrid vehicle simulations showed that for the first 30 mi (the electric range of the vehicle) in urban driving, the fuel economy was 80 mpg using a gasoline engine and 100 mpg using a diesel engine. In urban driving the hybrid would save about 75% of the fuel used by the conventional vehicle and in combined urban/highway driving the fuel saving is about 50%.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-06
... and potable water pipelines, a transmission line, a natural gas supply pipeline, a CO 2 pipeline... line. HECA would also construct an approximately 8-mile natural gas supply pipeline extending southeast... produce synthesis gas (syngas), which would then be processed and purified to produce a hydrogen-rich fuel...
46 CFR 44.05-35 - Form of load line certificate.
Code of Federal Regulations, 2010 CFR
2010-10-01
...) Below (S). *Allowance for fresh water for all freeboards (except on the Great Lakes) *Where seagoing steamers navigate a river or inland water, deeper loading is permitted corresponding to the weight of fuel... Regulations, the disk or diamond and the lines must be permanently marked by center punch marks or cutting. (2...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-26
... Definition To Address Advanced Fuel Designs,'' Using the Consolidated Line Item Improvement Process AGENCY...-specific adoption using the Consolidated Line Item Improvement Process (CLIIP). Additionally, the NRC staff..., which may be more reactive at shutdown temperatures above 68[emsp14][deg]F. This STS improvement is part...
Freight Calculation Model: A Case Study of Coal Distribution
NASA Astrophysics Data System (ADS)
Yunianto, I. T.; Lazuardi, S. D.; Hadi, F.
2018-03-01
Coal has been known as one of energy alternatives that has been used as energy source for several power plants in Indonesia. During its transportation from coal sites to power plant locations is required the eligible shipping line services that are able to provide the best freight rate. Therefore, this study aims to obtain the standardized formulations for determining the ocean freight especially for coal distribution based on the theoretical concept. The freight calculation model considers three alternative transport modes commonly used in coal distribution: tug-barge, vessel and self-propelled barge. The result shows there are two cost components very dominant in determining the value of freight with the proportion reaching 90% or even more, namely: time charter hire and fuel cost. Moreover, there are three main factors that have significant impacts on the freight calculation, which are waiting time at ports, time charter rate and fuel oil price.
Energy & Climate: Getting Quantitative
NASA Astrophysics Data System (ADS)
Wolfson, Richard
2011-11-01
A noted environmentalist claims that buying an SUV instead of a regular car is energetically equivalent to leaving your refrigerator door open for seven years. A fossil-fuel apologist argues that solar energy is a pie-in-the-sky dream promulgated by na"ive environmentalists, because there's nowhere near enough solar energy to meet humankind's energy demand. A group advocating shutdown of the Vermont Yankee nuclear plant claims that 70% of its electrical energy is lost in transmission lines. Around the world, thousands agitate for climate action, under the numerical banner ``350.'' Neither the environmentalist, the fossil-fuel apologist, the antinuclear activists, nor most of those marching under the ``350'' banner can back up their assertions with quantitative arguments. Yet questions about energy and its environmental impacts almost always require quantitative answers. Physics can help! This poster gives some cogent examples, based on the newly published 2^nd edition of the author's textbook Energy, Environment, and Climate.
POGO analysis based on N-II/H-I vehicle flight data
NASA Astrophysics Data System (ADS)
Mori, Hidehiko
Three types of longitudinal oscillations Pre-MECO POGO 1, Pre-MECO POGO 2, and MECO POGO have been observed in the launches of N-II/H-I vehicles. A Nyquist plot of a mathematical POGO model is used to examine stability properties of these oscillations. Pre-MECO POGO 1 and MECO POGO are generated in the LOX feed system installed with a accumulator. Flow fluctuation due to the LOX pump vibration is the main exciting factor for the former, the fluctuation of LOX tank bottom pressure for the latter. Pre-MECO POGO 2, excited in the vicinity of open-pipe resonant frequency of fuel suction line, is affected by fuel flow fluctuation. Frequency, longitudinal structural mode shape, and generalized mass related to each POGO are determined from flight data. The POGO model with these parameters is shown to represent the whole POGO features of N-II/H-I along flight time.
Sustainability of biofuels and renewable chemicals production from biomass.
Kircher, Manfred
2015-12-01
In the sectors of biofuel and renewable chemicals the big feedstock demand asks, first, to expand the spectrum of carbon sources beyond primary biomass, second, to establish circular processing chains and, third, to prioritize product sectors exclusively depending on carbon: chemicals and heavy-duty fuels. Large-volume production lines will reduce greenhouse gas (GHG) emission significantly but also low-volume chemicals are indispensable in building 'low-carbon' industries. The foreseeable feedstock change initiates innovation, securing societal wealth in the industrialized world and creating employment in regions producing biomass. When raising the investments in rerouting to sustainable biofuel and chemicals today competitiveness with fossil-based fuel and chemicals is a strong issue. Many countries adopted comprehensive bioeconomy strategies to tackle this challenge. These public actions are mostly biased to biofuel but should give well-balanced attention to renewable chemicals as well. Copyright © 2015 Elsevier Ltd. All rights reserved.
Microstructural characteristics of HIP-bonded monolithic nuclear fuels with a diffusion barrier
NASA Astrophysics Data System (ADS)
Jue, Jan-Fong; Keiser, Dennis D.; Breckenridge, Cynthia R.; Moore, Glenn A.; Meyer, Mitchell K.
2014-05-01
Due to the limitation of maximum uranium load achievable by dispersion fuel type, the Global Threat Reduction Initiative is developing an advanced monolithic fuel to convert US high-performance research reactors to low-enriched uranium. Hot-isostatic-press (HIP) bonding was the single process down-selected to bond monolithic U-Mo fuel meat to aluminum alloy cladding. A diffusion barrier was applied to the U-Mo fuel meat by roll-bonding process to prevent extensive interaction between fuel meat and aluminum-alloy cladding. Microstructural characterization was performed on fresh fuel plates fabricated at Idaho National Laboratory. Interfaces between the fuel meat, the cladding, and the diffusion barrier, as well as between the U-10Mo fuel meat and the Al-6061 cladding, were characterized by scanning electron microscopy. Preliminary results indicate that the interfaces contain many different phases while decomposition, second phases, and chemical banding were also observed in the fuel meat. The important attributes of the HIP-bonded monolithic fuel are:
Microstructural Characteristics of HIP-bonded Monolithic Nuclear Fuels with a Diffusion Barrier
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jan-Fong Jue; Dennis D. Keiser, Jr.; Cynthia R. Breckenridge
Due to the limitation of maximum uranium load achievable by dispersion fuel type, the Global Threat Reduction Initiative (GTRI) is developing an advanced monolithic fuel to convert US high performance research reactors to low-enriched uranium. Hot-isostatic-press bonding was the single process down-selected to bond monolithic U-Mo fuel meat to aluminum alloy cladding. A diffusion barrier was applied to the U–Mo fuel meat by roll-bonding process to prevent extensive interaction between fuel meat and aluminum-alloy cladding. Microstructural characterization was performed on fresh fuel plates fabricated at Idaho National Laboratory. Interfaces between fuel meat, cladding, and diffusion barrier, as well as U–10Momore » fuel meat and Al–6061 cladding were characterized by scanning electron microscopy. Preliminary results indicate that the interfaces contain many different phases while decomposition, second phases, and chemical banding were also observed in the fuel meat. The important attributes of the HIP-bonded monolithic fuel are • A typical Zr diffusion barrier of thickness 25 µm • Transverse cross section that exhibits relatively equiaxed grains with an average grain diameter of 10 µm • Chemical banding, in some areas more than 100 µm in length, that is very pronounced in longitudinal (i.e., rolling) direction with Mo concentration varying from 7–13 wt% • Decomposed areas containing plate-shaped low-Mo phase • A typical Zr/cladding interaction layer of thickness 1-2 µm • A visible UZr2 bearing layer of thickness 1-2 µm • Mo-rich precipitates (mainly Mo2Zr, forming a layer in some areas) followed by a Mo-depleted sub-layer between the visible UZr2-bearing layer and the U–Mo matrix • No excessive interaction between cladding and the uncoated fuel edge • Cladding-to-cladding bonding that exhibits no cracks or porosity with second phases high in Mg, Si, and O decorating the bond line. • Some of these attributes might be critical to the irradiation performance of monolithic U-10Mo nuclear fuel. There are several issues or concerns that warrant more detailed study, such as precipitation along cladding-to-cladding bond line, chemical banding, uncovered fuel-zone edge, and interaction layer between U–Mo fuel meat and zirconium. Future post-irradiation examination results will focus, among other things, on identifying in-reactor failure mechanisms and, eventually, directing further fresh fuel characterization efforts.« less
Waste to Watts and Water: Enabling Self-Contained Facilities Using Microbial Fuel Cells
2008-05-01
suitable growing medium. LOC - Line of communications . Used in a military sense to indicate a main supply route. It includes transportation by ships...fresh water. Self-Contained Facilities - Facilities that do not rely on outside infrastructure or lines of communication for utilities such as water...require in future facilities is the ability to operate cleanly and efficiently apart from the infrastructure network and line of communications (LOCs) both
Cryogenic Fluid Management Facility
NASA Technical Reports Server (NTRS)
Eberhardt, R. N.; Bailey, W. J.
1985-01-01
The Cryogenic Fluid Management Facility is a reusable test bed which is designed to be carried within the Shuttle cargo bay to investigate the systems and technologies associated with the efficient management of cryogens in space. Cryogenic fluid management consists of the systems and technologies for: (1) liquid storage and supply, including capillary acquisition/expulsion systems which provide single-phase liquid to the user system, (2) both passive and active thermal control systems, and (3) fluid transfer/resupply systems, including transfer lines and receiver tanks. The facility contains a storage and supply tank, a transfer line and a receiver tank, configured to provide low-g verification of fluid and thermal models of cryogenic storage and transfer processes. The facility will provide design data and criteria for future subcritical cryogenic storage and transfer system applications, such as Space Station life support, attitude control, power and fuel depot supply, resupply tankers, external tank (ET) propellant scavenging, and ground-based and space-based orbit transfer vehicles (OTV).
Metrology for Fuel Cell Manufacturing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stocker, Michael; Stanfield, Eric
2015-02-04
The project was divided into three subprojects. The first subproject is Fuel Cell Manufacturing Variability and Its Impact on Performance. The objective was to determine if flow field channel dimensional variability has an impact on fuel cell performance. The second subproject is Non-contact Sensor Evaluation for Bipolar Plate Manufacturing Process Control and Smart Assembly of Fuel Cell Stacks. The objective was to enable cost reduction in the manufacture of fuel cell plates by providing a rapid non-contact measurement system for in-line process control. The third subproject is Optical Scatterfield Metrology for Online Catalyst Coating Inspection of PEM Soft Goods. Themore » objective was to evaluate the suitability of Optical Scatterfield Microscopy as a viable measurement tool for in situ process control of catalyst coatings.« less
NASA Astrophysics Data System (ADS)
Tang, N. W.; Kirchstetter, T.; Martien, P. T.; Apte, J.
2015-12-01
Black carbon (BC) emission factors were measured for a California commuter rail line fleet of diesel-electric passenger locomotives (Caltrain). The emission factors are based on BC and carbon dioxide (CO2) concentrations in the exhaust plumes of passing locomotives, which were measured from pedestrian overpasses using portable analyzers. Each of the 29 locomotives in the fleet was sampled on 4-20 separate occasions at different locations to characterize different driving modes. The average emission factor expressed as g BC emitted per kg diesel consumed was 0.87 ± 0.66 g kg-1 (±1 standard deviation, n = 362 samples). BC emission factors tended to be higher for accelerating locomotives traveling at higher speeds with engines in higher notch settings. Higher fuel-based BC emission factors (g kg-1) were measured for locomotives equipped with separate "head-end" power generators (SEP-HEPs), which power the passenger cars, while higher time-based emission factors (g h-1) were measured for locomotives without SEP-HEPs, whose engines are continuously operated at high speeds to provide both head-end and propulsion power. PM10 emission factors, estimated assuming a BC/PM10 emission ratio of 0.6 and a typical power output-to-fuel consumption ratio, were generally in line with the Environmental Protection Agency's locomotive exhaust emission standards. Per passenger mile, diesel-electric locomotives in this study emit only 20% of the CO2 emitted by typical gasoline-powered light-duty vehicles (i.e., cars). However, the reduction in carbon footprint (expressed in terms of CO2 equivalents) due to CO2 emissions avoidance from a passenger commuting by train rather than car is appreciably offset by the locomotive's higher BC emissions.
NASA Astrophysics Data System (ADS)
Tang, Nicholas W.; Apte, Joshua S.; Martien, Philip T.; Kirchstetter, Thomas W.
2015-08-01
Black carbon (BC) emission factors were measured for a California commuter rail line fleet of diesel-electric passenger locomotives (Caltrain). The emission factors are based on BC and carbon dioxide (CO2) concentrations in the exhaust plumes of passing locomotives, which were measured from pedestrian overpasses using portable analyzers. Each of the 29 locomotives in the fleet was sampled on 4-20 separate occasions at different locations to characterize different driving modes. The average emission factor expressed as g BC emitted per kg diesel consumed was 0.87 ± 0.66 g kg-1 (±1 standard deviation, n = 362 samples). BC emission factors tended to be higher for accelerating locomotives traveling at higher speeds with engines in higher notch settings. Higher fuel-based BC emission factors (g kg-1) were measured for locomotives equipped with separate ;head-end; power generators (SEP-HEPs), which power the passenger cars, while higher time-based emission factors (g h-1) were measured for locomotives without SEP-HEPs, whose engines are continuously operated at high speeds to provide both head-end and propulsion power. PM10 emission factors, estimated assuming a BC/PM10 emission ratio of 0.6 and a typical power output-to-fuel consumption ratio, were generally in line with the Environmental Protection Agency's locomotive exhaust emission standards. Per passenger mile, diesel-electric locomotives in this study emit only 20% of the CO2 emitted by typical gasoline-powered light-duty vehicles (i.e., cars). However, the reduction in carbon footprint (expressed in terms of CO2 equivalents) due to CO2 emissions avoidance from a passenger commuting by train rather than car is appreciably offset by the locomotive's higher BC emissions.
NASA Technical Reports Server (NTRS)
Dalling, D. K.; Pugmire, R. J.
1982-01-01
Preliminary results of a nuclear magnetic resonance (NMR) spectroscopy study of alternative jet fuels are presented. A referee broadened-specification (ERBS) aviation turbine fuel, a mixture of 65 percent traditional kerosene with 35 percent hydrotreated catalytic gas oil (HCGO) containing 12.8 percent hydrogen, and fuels of lower hydrogen content created by blending the latter with a mixture of HCGO and xylene bottoms were studied. The various samples were examined by carbon-13 and proton NMR at high field strength, and the resulting spectra are shown. In the proton spectrum of the 12.8 percent hydrogen fuel, no prominent single species is seen while for the blending stock, many individual lines are apparent. The ERBS fuels were fractionated by high-performance liquid chromatography and the resulting fractions analyzed by NMR. The species found are identified.
Russell, Harold C.
1979-01-01
This disclosure describes a device for repeatably scribing a V-shaped scratch having sharply defined dimensions on the interior surface of a nuclear reactor fuel rod tube. A cutting tool having a V-shaped cutting tip is supported within the fuel rod tube so that the V-shaped cutting tip can be pivoted about an axis and scribe a scratch on the interior surface of the fuel rod tube. Lengthwise the scratch runs parallel to a line drawn through the axis of the fuel rod tube and is in the shape of an arc, and widthwise the scratch is V-shaped. This shape is used because the dimensions of the scratch can be plugged into appropriate formulas to calculate stress intensity of cracks in fuel rod tubes. Since the fuel rod tubes which are to be scribed may be radioactive, the scratching assembly is designed for use in a fixture which allows it to be operated in a cave by remote control handling devices.
NASA Technical Reports Server (NTRS)
2008-01-01
Topics covered inclde: Deployable Wireless Camera Penetrators; Hand-Held Units for Short-Range Wireless Biotelemetry; Wearable Wireless Telemetry System for Implantable BioMEMS Sensors; Electronic Escape Trails for Firefighters; Architecture for a High-to-Medium-Voltage Power Converter; 24-Way Radial Power Combiner/Divider for 31 to 36 GHz; Three-Stage InP Submillimeter-Wave MMIC Amplifier; Fast Electromechanical Switches Based on Carbon Nanotubes; Solid-State High-Temperature Power Cells; Fast Offset Laser Phase-Locking System; Fabricating High-Resolution X-Ray Collimators; Embossed Teflon AF Laminate Membrane Microfluidic Diaphragm Valves; Flipperons for Improved Aerodynamic Performance; System Estimates Radius of Curvature of a Segmented Mirror; Refractory Ceramic Foams for Novel Applications; Self-Deploying Trusses Containing Shape-Memory Polymers; Fuel-Cell Electrolytes Based on Organosilica Hybrid Proton Conductors; Molecules for Fluorescence Detection of Specific Chemicals; Cell-Detection Technique for Automated Patch Clamping; Redesigned Human Metabolic Simulator; Compact, Highly Stable Ion Atomic Clock; LiGa(OTf)(sub 4) as an Electrolyte Salt for Li-Ion Cells; Compact Dielectric-Rod White-Light Delay Lines; Single-Mode WGM Resonators Fabricated by Diamond Turning; Mitigating Photon Jitter in Optical PPM Communication; MACOS Version 3.31; Fiber-Optic Determination of N2, O2, and Fuel Vapor in the Ullage of Liquid-Fuel Tanks; Spiking Neurons for Analysis of Patterns; Symmetric Phase-Only Filtering in Particle-Image Velocimetry; Efficient Coupler for a Bessel Beam Dispersive Element; and Attitude and Translation Control of a Solar Sail Vehicle.
NASA Astrophysics Data System (ADS)
Hartmann, C.; Totemeier, A.; Holcombe, S.; Liverud, J.; Limi, M.; Hansen, J. E.; Navestad, E. AB(; )
2018-01-01
Lightbridge Corporation has developed a new Uranium-Zirconium based metallic fuel. The fuel rods aremanufactured via a co-extrusion process, and are characterized by their multi-lobed (cruciform-shaped) cross section. The fuel rods are also helically-twisted in the axial direction. Two experimental fuel assemblies, each containing four Lightbridge fuel rods, are scheduled to be irradiated in the Halden Boiling Water Reactor (HBWR) starting in 2018. In addition to on-line monitoring of fuel rod elongation and critical assembly conditions (e.g. power, flow rates, coolant temperatures, etc.) during the irradiation, several key parameters of the fuel will be measured out-of-core during interim inspections. An inspection measurement station for use in the irradiated fuel handling compartment at the HBWR has therefore been developed for this purpose. The multi-lobed cladding cross section combined with the spiral shape of the Lightbridge metallic fuel rods requires a high-precision guiding system to ensure good position repeatability combined with low-friction guiding. The measurement station is equipped with a combination of instruments and equipment supplied from third-party vendors and instruments and equipment developed at Institute for Energy Technology (IFE). Two sets of floating linear voltage differential transformer (LVDT) pairs are used to measure swelling and diameter changes between the lobes and the valleys over the length of the fuel rods. Eddy current probes are used to measure the thickness of oxide layers in the valleys and on the lobe tips and also to detect possible surface cracks/pores. The measurement station also accommodates gamma scans. Additionally, an eddy-current probe has been developed at IFE specifically to detect potential gaps or discontinuities in the bonding layer between the metallic fuel and the Zirconium alloy cladding. Potential gaps in the bonding layer will be hidden behind a 0.5-1.0 mm thick cladding wall. It has therefore been necessary to perform a careful design study of the probe geometry. For this, finite element analysis (FEA) has been performed in combination with practical validation tests on representative fuel dummies with machined flaws to find the probe geometry that best detects a hidden flaw. Tests performed thus far show that gaps down to 25 μm thickness can be detected with good repeatability and good discrimination from lift-off signals.
1982-06-01
20) From VC-D to VC-E a. 8" Avgas Line - Coated Steel (21) From FC -E to Victor Dock #1 a. 12" Avgas Line - Coated Steel (22) From Air Force Scraper...14. Bldg. S776 3" Ballast Line to VC-2 - 775 3" Ballast Line to Loading Rack - 775 15. 6" Water Line, 10’ N of Bldg. S776 - 745 6" AFFF Line, N of...S776 3" Ballast line to VC-2 - 740 - 775 35 3" Ballast line to Loading Rack - 740 - 775 35 15. 6" Water line 10’ N of Bldg. S776 - 710 - 745 35 6" AFFF
David Frankman; Brent W. Webb; Bret W. Butler
2007-01-01
Thermal radiation emission from a simulated black flame surface to a fuel bed is analyzed by a ray-tracing technique, tracking emission from points along the flame to locations along the fuel bed while accounting for absorption by environmental water vapor in the intervening medium. The Spectral Line Weighted-sum-of-gray-gases approach was adopted for treating the...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tonks, Michael R; Zhang, Yongfeng; Bai, Xianming
2014-06-01
This report summarizes development work funded by the Nuclear Energy Advanced Modeling Simulation program's Fuels Product Line (FPL) to develop a mechanistic model for the average grain size in UO₂ fuel. The model is developed using a multiscale modeling and simulation approach involving atomistic simulations, as well as mesoscale simulations using INL's MARMOT code.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davenport, Michael; Petti, D. A.; Palmer, Joe
2016-11-01
The United States Department of Energy’s Advanced Reactor Technologies (ART) Advanced Gas Reactor (AGR) Fuel Development and Qualification Program is irradiating up to seven low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States. The experiments will be irradiated over the next several years to demonstrate and qualify new TRISO coated particle fuel for use in high temperature gas reactors. The goals of the experimentsmore » are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of several independent capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also have on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The first experiment (designated AGR-1) started irradiation in December 2006 and was completed in November 2009. The second experiment (AGR-2) started irradiation in June 2010 and completed in October 2013. The third and fourth experiments have been combined into a single experiment designated (AGR-3/4), which started its irradiation in December 2011 and completed in April 2014. Since the purpose of this experiment was to provide data on fission product migration and retention in the NGNP reactor, the design of this experiment was significantly different from the first two experiments, though the control and monitoring systems are very similar. The final experiment, AGR-5/6/7, is scheduled to begin irradiation in early summer 2017.« less
AI mass spectrometers for space shuttle health monitoring
NASA Technical Reports Server (NTRS)
Adams, F. W.
1991-01-01
The facility Hazardous Gas Detection System (HGDS) at Kennedy Space Center (KSC) is a mass spectrometer based gas analyzer. Two instruments make up the HGDS, which is installed in a prime/backup arrangement, with the option of using both analyzers on the same sample line, or on two different lines simultaneously. It is used for monitoring the Shuttle during fuel loading, countdown, and drainback, if necessary. The use of complex instruments, operated over many shifts, has caused problems in tracking the status of the ground support equipment (GSE) and the vehicle. A requirement for overall system reliability has been a major force in the development of Shuttle GSE, and is the ultimate driver in the choice to pursue artificial intelligence (AI) techniques for Shuttle and Advanced Launch System (ALS) mass spectrometer systems. Shuttle applications of AI are detailed.
NASA Technical Reports Server (NTRS)
Griffin, T. P.; Naylor, G. R.; Haskell, W. D.; Breznik, G. S.; Mizell, C. A.; Steinrock, Todd (Technical Monitor)
2001-01-01
This paper presents an on-line mass spectrometer designed to monitor for cryogenic leaks on the Space Shuttle. The topics include: 1) Hazardous Gas Detection Lab; 2) LASRE Test Support; 3) Background; 4) Location of Systems; 5) Sample Lines for Gas Detection; 6) Problems with Current Systems; 7) Requirements for New System (Nitrogen and Helium Background); and 8) HGDS 2000. This paper is in viewgraph form.
Cold weather effects on Dresden Unit 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anagnostopoulos, H.
1995-03-01
Dresden Unit 1 is in the final stages of a decommissioning effort directed at preparing the unit to enter a SAFSTOR status. Following an extended sub-zero cold wave, about 55,000 gallons of water were discovered in the lowest elevation of the spherical reactor enclosure. Cold weather had caused the freezing and breaking of several service water lines that had not been completely isolated. Two days later, at a regularly scheduled decommissioning meeting, the event was communicated to the decommissioning team, who quickly recognized the potential for freezing of a 42 inches diameter Fuel Transfer Tube that connects the sphere tomore » the Spent Fuel Pool. The team directed that the pool gates between the adjacent Spent Fuel Pool and the Fuel Transfer Pool be installed, and a portable source of heat was installed on the Fuel Transfer Tube. It was later determined that, with the fuel pool gates removed, and with a worst case freeze break at the 502 elevation on the Fuel Transfer Tube (in the Sphere), the fuel in the Spent Fuel Pool could be uncovered to a level 3 below the top of active fuel.« less
NASA Astrophysics Data System (ADS)
Ortega Clavero, Valentin; Javahiraly, Nicolas; Weber, Andreas; Schröder, Werner; Curticapean, Dan; Meyrueis, Patrick P.
2014-09-01
In order to reduce some of the toxic emissions produced by internal combustion engines, the fossil-based fuels have been combined with less harmful materials in recent years. However, the fuels used in the automotive industry generally contain different additives, such as toluene, as anti-shock agents and as octane number enhancers. These materials can cause certain negative impact, besides the high volatility implied, on public health or environment due to its chemical composition. Toluene, among several other chemical compounds, is an additive widely used in the commercially-available gasoline-ethanol blends. Despite the negative aspects in terms of toxicity that this material might have, the Raman spectral information of toluene can be used to achieve certain level of frequency calibration without using any additional chemical marker in the sample or any other external device. Moreover, the characteristic and well-defined Raman line of this chemical compound at 1003 cm-1 (even at low v/v content) can be used to quantitatively determine certain aspects of the gasoline-ethanol blend under observation. By using an own-designed Fourier-Transform Raman spectrometer (FT-Raman), we have collected and analyzed different commercially-available and laboratory-prepared gasoline-ethanol blends. By carefully observing the main Raman peaks of toluene in these fuel blends, we have determined the frequency accuracy of the Raman spectra obtained. The spectral information has been obtained in the range of 0 cm-1 to 3500 cm-1 with a spectral resolution of 1.66 cm-1. The Raman spectra obtained presented only reduced frequency deviations in comparison to the standard Raman spectrum of toluene provided by the American Society for Testing and Materials (ASTM).
Regan, S. P.; Epstein, R.; Hammel, B. A.; ...
2012-03-30
Ignition of an inertial confinement fusion (ICF) target depends on the formation of a central hot spot with sufficient temperature and areal density. Radiative and conductive losses from the hot spot can be enhanced by hydrodynamic instabilities. The concentric spherical layers of current National Ignition Facility (NIF) ignition targets consist of a plastic ablator surrounding 2 a thin shell of cryogenic thermonuclear fuel (i.e., hydrogen isotopes), with fuel vapor filling the interior volume. The Rev. 5 ablator is doped with Ge to minimize preheat of the ablator closest to the DT ice caused by Au M-band emission from the hohlraummore » x-ray drive. Richtmyer–Meshkov and Rayleigh–Taylor hydrodynamic instabilities seeded by high-mode (50 < t < 200) ablator-surface perturbations can cause Ge-doped ablator to mix into the interior of the shell at the end of the acceleration phase. As the shell decelerates, it compresses the fuel vapor, forming a hot spot. K-shell line emission from the ionized Ge that has penetrated into the hot spot provides an experimental signature of hot-spot mix. The Ge emission from tritium–hydrogen–deuterium (THD) and DT cryogenic targets and gas-filled plastic shell capsules, which replace the THD layer with a massequivalent CH layer, was examined. The inferred amount of hot-spot mix mass, estimated from the Ge K-shell line brightness using a detailed atomic physics code, is typically below the 75 ng allowance for hot-spot mix. Furthermore, predictions of a simple mix model, based on linear growth of the measured surface-mass modulations, are consistent with the experimental results.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Regan, S. P.; Epstein, R.; Hammel, B. A.
Ignition of an inertial confinement fusion (ICF) target depends on the formation of a central hot spot with sufficient temperature and areal density. Radiative and conductive losses from the hot spot can be enhanced by hydrodynamic instabilities. The concentric spherical layers of current National Ignition Facility (NIF) ignition targets consist of a plastic ablator surrounding 2 a thin shell of cryogenic thermonuclear fuel (i.e., hydrogen isotopes), with fuel vapor filling the interior volume. The Rev. 5 ablator is doped with Ge to minimize preheat of the ablator closest to the DT ice caused by Au M-band emission from the hohlraummore » x-ray drive. Richtmyer–Meshkov and Rayleigh–Taylor hydrodynamic instabilities seeded by high-mode (50 < t < 200) ablator-surface perturbations can cause Ge-doped ablator to mix into the interior of the shell at the end of the acceleration phase. As the shell decelerates, it compresses the fuel vapor, forming a hot spot. K-shell line emission from the ionized Ge that has penetrated into the hot spot provides an experimental signature of hot-spot mix. The Ge emission from tritium–hydrogen–deuterium (THD) and DT cryogenic targets and gas-filled plastic shell capsules, which replace the THD layer with a massequivalent CH layer, was examined. The inferred amount of hot-spot mix mass, estimated from the Ge K-shell line brightness using a detailed atomic physics code, is typically below the 75 ng allowance for hot-spot mix. Furthermore, predictions of a simple mix model, based on linear growth of the measured surface-mass modulations, are consistent with the experimental results.« less
Using SPL (Spent Pot-Lining) as an Alternative Fuel in Metallurgical Furnaces
NASA Astrophysics Data System (ADS)
Gao, Lei; Mostaghel, Sina; Ray, Shamik; Chattopadyay, Kinnor
2016-09-01
Replacing coke (coal) in a metallurgical furnace with other alternative fuels is beneficial for process economics and environmental friendliness. Coal injection is a common practice in blast furnace ironmaking, and spent pot-lining (SPL) was conceptualized as an alternative to coal. SPL is a resourceful waste from primary Aluminum production, with high carbon value. Equilibrium thermodynamics was used to calculate the energy content of SPL, and the compositional changes during SPL combustion. In order to capture the kinetics and mass transfer aspects, a blast furnace tuyere region CFD model was developed. The results of SPL combustion were compared with standard PCI coals, which are commonly used in blast furnaces. The CFD model was validated with experimental results for standard high volatile coals.
2009-03-11
CAPE CANAVERAL, Fla. – A closeup of the 7-inch quick disconnect that will be replaced on the hydrogen vent line to the Ground Umbilical Carrier Plate of space shuttle Discovery's external fuel tank. The replacement will be made on Launch Pad 39A at NASA's Kennedy Space Center in Florida. A leak of hydrogen at the site during fueling caused the STS-119 mission to be scrubbed at 2:36 p.m. March 11. The vent line is at the intertank and is the overboard vent to the pad and the flare stack where the vented hydrogen is burned off. Mission management teams believe they have sufficient understanding of the repair plan to continue toward a March 15 launch at 7:43 p.m. EDT. Photo courtesy of United Space Alliance
AP1000{sup R} nuclear power plant safety overview for spent fuel cooling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gorgemans, J.; Mulhollem, L.; Glavin, J.
2012-07-01
The AP1000{sup R} plant is an 1100-MWe class pressurized water reactor with passive safety features and extensive plant simplifications that enhance construction, operation, maintenance, safety and costs. The AP1000 design uses passive features to mitigate design basis accidents. The passive safety systems are designed to function without safety-grade support systems such as AC power, component cooling water, service water or HVAC. Furthermore, these passive features 'fail safe' during a non-LOCA event such that DC power and instrumentation are not required. The AP1000 also has simple, active, defense-in-depth systems to support normal plant operations. These active systems provide the first levelmore » of defense against more probable events and they provide investment protection, reduce the demands on the passive features and support the probabilistic risk assessment. The AP1000 passive safety approach allows the plant to achieve and maintain safe shutdown in case of an accident for 72 hours without operator action, meeting the expectations provided in the U.S. Utility Requirement Document and the European Utility Requirements for passive plants. Limited operator actions are required to maintain safe conditions in the spent fuel pool via passive means. In line with the AP1000 approach to safety described above, the AP1000 plant design features multiple, diverse lines of defense to ensure spent fuel cooling can be maintained for design-basis events and beyond design-basis accidents. During normal and abnormal conditions, defense-in-depth and other systems provide highly reliable spent fuel pool cooling. They rely on off-site AC power or the on-site standby diesel generators. For unlikely design basis events with an extended loss of AC power (i.e., station blackout) or loss of heat sink or both, spent fuel cooling can still be provided indefinitely: - Passive systems, requiring minimal or no operator actions, are sufficient for at least 72 hours under all possible pool heat load conditions. - After 3 days, several different means are provided to continue spent fuel cooling using installed plant equipment as well as off-site equipment with built-in connections. Even for beyond design basis accidents with postulated pool damage and multiple failures in the passive safety-related systems and in the defense-in-depth active systems, the AP1000 multiple spent fuel pool spray and fill systems provide additional lines of defense to prevent spent fuel damage. (authors)« less
Studies of industrial emissions by accelerator-based techniques: A review of applications at CEDAD
NASA Astrophysics Data System (ADS)
Calcagnile, L.; Quarta, G.
2012-04-01
Different research activities are in progress at the Centre for Dating and Diagnostics (CEDAD), University of Salento, in the field of environmental monitoring by exploiting the potentialities given by the different experimental beam lines implemented on the 3 MV Tande-tron accelerator and dedicated to AMS (Accelerator Mass Spectrome-try) radiocarbon dating and IB A (Ion Beam Analysis). An overview of these activities is presented by showing how accelerator-based analytical techniques can be a powerful tool for monitoring the anthropogenic carbon dioxide emissions from industrial sources and for the assessment of the biogenic content in SRF (Solid Recovered Fuel) burned in WTE (Waste to Energy) plants.
NASA Technical Reports Server (NTRS)
Wilson, Edward; Lages, Chris; Mah, Robert; Clancy, Daniel (Technical Monitor)
2002-01-01
Spacecraft control, state estimation, and fault-detection-and-isolation systems are affected by unknown v aerations in the vehicle mass properties. It is often difficult to accurately measure inertia terms on the ground, and mass properties can change on-orbit as fuel is expended, the configuration changes, or payloads are added or removed. Recursive least squares -based algorithms that use gyro signals to identify the center of mass and inverse inertia matrix are presented. They are applied in simulation to 3 thruster-controlled vehicles: the X-38 and Mini-AERCam under development at NASA-JSC, and the SAM, an air-bearing spacecraft simulator at the NASA-Ames Smart Systems Research Lab (SSRL).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galeone, C.; Pelucchi, C.; La Vecchia, C.
In some areas of China, indoor air pollution (IAP) originating principally from the combustion of solid fuels has a relevant role in lung cancer. Most previous studies focused on the female population and only a few on both the sexes. We analyzed the relationship between IAP from solid fuel use and selected chronic lung diseases and lung cancer risk in Harbin, Northeast China, an area with a very high base line risk of lung cancer for both the sexes. We used data from a case-control study conducted between 1987 and 1990, including 218 patients with incident, histologically confirmed lung cancermore » and 436 controls admitted to the same hospitals as cases. We calculated an index of IAP from solid fuel use exposure using data on heating type, cooking fuel used, and house measurements. Cases reported more frequently than controls on exposure to coal fuel for house heating and/or cooking, and the odds ratio (OR) for ever versus never exposed was 2.19 (95% confidence interval (CI): 1.08-4.46). The ORs of lung cancer according to subsequent tertiles of IAP exposure index were 1.82 (95% CI: 1.14-2.89) and 1.99 (95% CI: 1.26-3.15) as compared with the lowest tertile. The ORs of lung cancer for participants with a history of chronic bronchitis and tuberculosis were 3.79 (95% CI: 2.38-6.02) and 3.82 (95% CI: 1.97-7.41), respectively. This study gives further support and quantification of the positive association between IAP, history of selected nonmalignant lung diseases, and lung cancer risk for both the sexes.« less
Thermal expansion method for lining tantalum alloy tubing with tungsten
NASA Technical Reports Server (NTRS)
Watson, G. K.; Whittenberger, J. D.; Mattson, W. F.
1973-01-01
A differential-thermal expansion method was developed to line T-111 (tantalum - 8 percent tungsten - 2 percent hafnium) tubing with a tungsten diffusion barrier as part of a fuel element fabrication study for a space power nuclear reactor concept. This method uses a steel mandrel, which has a larger thermal expansion than T-111, to force the tungsten against the inside of the T-111 tube. Variables investigated include lining temperature, initial assembly gas size, and tube length. Linear integrity increased with increasing lining temperature and decreasing gap size. The method should have more general applicability where cylinders must be lined with a thin layer of a second material.
Will CNG threaten your future loads
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
A campaign to promote the use of natural gas as a fleet fuel is described and as a result, CNG conversions are beginning to take hold in some market segments. Only a few months after Ford Motor Co. announced production plans for an LPG-powered line of Granada/Cougar models, it unveiled an alternative-fuels concept car - a short-ranged metro sportscar - that could be ordered by the customer with any of four fuel systems (CNG, propane, ethanol, or methanol) offered on a dedicated or single-fuel basis. By including CNG in its alternative-fuels concept, Ford not only gave a boost to effortsmore » to build a motor fuel load for natural gas, but also indicated that CNG, as well as propane, is a viable alternative to gasoline in some applications. Recent reports of advances in CNG technology that enhance its potential as a motor fuel - together with other reports of at least one US firm launching production of a CNG motor fuel system and of several companies already marketing them - might be cause for the LPG industry to take another look at CNG's competitive potential.« less
The influence of hydrocarbon composition and exposure conditions on jet fuel-induced immunotoxicity.
Hilgaertner, Jianhua W; He, Xianghui; Camacho, Daniel; Badowski, Michael; Witten, Mark; Harris, David T
2011-11-01
Chronic jet fuel exposure could be detrimental to the health and well-being of exposed personnel, adversely affect their work performance and predispose these individuals to increased incidences of infectious disease, cancer and autoimmune disorders. Short-term (7 day) JP-8 jet fuel exposure has been shown to cause lung injury and immune dysfunction. Physiological alterations can be influenced not only by jet fuel exposure concentration (absolute amount), but also are dependent on the type of exposure (aerosol versus vapor) and the composition of the jet fuel (hydrocarbon composition). In the current study, these variables were examined with relation to effects of jet fuel exposure on immune function. It was discovered that real-time, in-line monitoring of jet fuel exposure resulted in aerosol exposure concentrations that were approximately one-eighth the concentration of previously reported exposure systems. Further, the effects of a synthetic jet fuel designed to eliminate polycyclic aromatic hydrocarbons were also examined. Both of these changes in exposure reduced but did not eliminate the deleterious effects on the immune system of exposed mice.
Posttest examination of Sodium Loop Safety Facility experiments. [LMFBR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holland, J.W.
In-reactor, safety experiments performed in the Sodium Loop Safety Facility (SLSF) rely on comprehensive posttest examinations (PTE) to characterize the postirradiation condition of the cladding, fuel, and other test-subassembly components. PTE information and on-line instrumentation data, are analyzed to identify the sequence of events and the severity of the accident for each experiment. Following in-reactor experimentation, the SLSF loop and test assembly are transported to the Hot Fuel Examination Facility (HFEF) for initial disassembly. Goals of the HFEF-phase of the PTE are to retrieve the fuel bundle by dismantling the loop and withdrawing the test assembly, to assess the macro-conditionmore » of the fuel bundle by nondestructive examination techniques, and to prepare the fuel bundle for shipment to the Alpha-Gamma Hot Cell Facility (AGHCF) at Argonne National Laboratory.« less
NASA Technical Reports Server (NTRS)
Heath, Christopher M.; Anderson, Robert C.; Hicks, Yolanda R.
2011-01-01
Planar laser-induced fluorescence (PLIF) excitation/detection methods have been applied to obtain spatial distributions of the hydroxyl [OH] reacting intermediary and hydrocarbon [HC] primary species in laminar and turbulent combustion reactions. In this report, broadband and narrowband excitation/filtering techniques are explored to identify an optimal experimental configuration yielding significant fluorescent signal with low absorption losses. The combustion environments analyzed include 1) a laminar non-premixed methane/air flame and 2) a turbulent, non-premixed Jet-A/air fueled flame within a lean flame tube combustor. Hydrocarbon-based fuel and OH were excited via the R1 (1), R1(10) and R2(7) transitions of the A(sup 2)Epsilon(+) X(sup 2)pi(1,0) band using a broadband Nd:YAG pumped optical parametric oscillator (OPO) and narrowband Nd:YAG/dye laser with ultraviolet frequency extension (UVX) package. Variables tested for influence on fluorescent signal and absorption characteristics were excitation line, laser energy, exciting linewidth, combustion reactants, and test flow conditions. Results are intended to guide the transition from a dye/UVX laser to an OPO system for performing advanced diagnostics of low-emission combustion concepts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yun, Di; Mo, Kun; Ye, Bei
2015-09-30
This activity is supported by the US Nuclear Energy Advanced Modeling and Simulation (NEAMS) Fuels Product Line (FPL). Two major accomplishments in FY 15 are summarized in this report: (1) implementation of the FASTGRASS module in the BISON code; and (2) a Xe implantation experiment for large-grained UO 2. Both BISON AND MARMOT codes have been developed by Idaho National Laboratory (INL) to enable next generation fuel performance modeling capability as part of the NEAMS Program FPL. To contribute to the development of the Moose-Bison-Marmot (MBM) code suite, we have implemented the FASTGRASS fission gas model as a module inmore » the BISON code. Based on rate theory formulations, the coupled FASTGRASS module in BISON is capable of modeling LWR oxide fuel fission gas behavior and fission gas release. In addition, we conducted a Xe implantation experiment at the Argonne Tandem Linac Accelerator System (ATLAS) in order to produce the needed UO 2 samples with desired bubble morphology. With these samples, further experiments to study the fission gas diffusivity are planned to provide validation data for the Fission Gas Release Model in MARMOT codes.« less
Monson, H.O.
1961-01-24
A radiator-type fuel block assembly is described. It has a hexagonal body of neutron fissionable material having a plurality of longitudinal equal- spaced coolant channels therein aligned in rows parallel to each face of the hexagonal body. Each of these coolant channels is hexagonally shaped with the corners rounded and enlarged and the assembly has a maximum temperature isothermal line around each channel which is approximately straight and equidistant between adjacent channels.
Time cycle analysis and simulation of material flow in MOX process layout
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakraborty, S.; Saraswat, A.; Danny, K.M.
The (U,Pu)O{sub 2} MOX fuel is the driver fuel for the upcoming PFBR (Prototype Fast Breeder Reactor). The fuel has around 30% PuO{sub 2}. The presence of high percentages of reprocessed PuO{sub 2} necessitates the design of optimized fuel fabrication process line which will address both production need as well as meet regulatory norms regarding radiological safety criteria. The powder pellet route has highly unbalanced time cycle. This difficulty can be overcome by optimizing process layout in terms of equipment redundancy and scheduling of input powder batches. Different schemes are tested before implementing in the process line with the helpmore » of a software. This software simulates the material movement through the optimized process layout. The different material processing schemes have been devised and validity of the schemes are tested with the software. Schemes in which production batches are meeting at any glove box location are considered invalid. A valid scheme ensures adequate spacing between the production batches and at the same time it meets the production target. This software can be further improved by accurately calculating material movement time through glove box train. One important factor is considering material handling time with automation systems in place.« less
Stimulated Raman diagnostics in diesel droplets
NASA Astrophysics Data System (ADS)
Golombok, Michael
1991-09-01
Stimulated Raman spectroscopy (SRS) can simultaneously measure droplet sizes and the associated component concentrations in a fuel injection. As spray evaporation is crucial in determining the performance parameters of a diesel engine, such as cold start and particulate emission formation, the new application of the method for spatially and temporally resolved measurements is a useful new diagnostic, extending our understanding of spray processes. Droplet sizes can be obtained from single shot SRS spectra by measuring the separation between morphology-dependent resonances (MDR) that correspond to standing wave modes confined near the droplet circumference. Power spectrum analysis allows the measurement of more than one droplet from a spectrum using a pumped laser sheet in the fuel spray. The MDRs are responsible for the simultaneous stimulation of multiple Raman spectral lines over and above those seen in bulk liquids. The SRS method for concentration measurement is effectively self-calibrating in that the relative intensity of two adjacent lines is used to measure concentration. Any particular fuel has a unique ratio of SRS antisymmetric to symmetric C-H stretch intensity. If individual components in a fuel blend are characterized beforehand, one can monitor the evolution of the spray during injection by measuring signal intensity ratios which yield the volume fraction of the component of interest. The SRS technique is being used to examine a number of spray dynamics phenomena such as fuel atomization, droplet evolution and front-end volatility effects, which are of current interest in diesel development studies.
Simulations of Flow Through the SSME LH2 Feed Line and LPFP Inducer
NASA Technical Reports Server (NTRS)
Dorney, Daniel J.; Rothermel, Jeffry
2003-01-01
During a post-flight inspection of the liquid hydrogen feed lines leading the Space Shuttle main engines cracks were discover in slots on a flow liner just upstream of the low pressure fuel pump inducer. Numerical simulations have been performed for the feed line, the flow liner (including the slots and backing cavity) and the inducer. The predicted results have been compared with experimental data taken during hot-fire tests at NASA Stennis Space Center.
Monitoring biodegradation of diesel fuel in bioventing processes using in situ respiration rate.
Lee, T H; Byun, I G; Kim, Y O; Hwang, I S; Park, T J
2006-01-01
An in situ measuring system of respiration rate was applied for monitoring biodegradation of diesel fuel in a bioventing process for bioremediation of diesel contaminated soil. Two laboratory-scale soil columns were packed with 5 kg of soil that was artificially contaminated by diesel fuel as final TPH (total petroleum hydrocarbon) concentration of 8,000 mg/kg soil. Nutrient was added to make a relative concentration of C:N:P = 100:10:1. One soil column was operated with continuous venting mode, and the other one with intermittent (6 h venting/6 h rest) venting mode. On-line O2 and CO2 gas measuring system was applied to measure O2 utilisation and CO2 production during biodegradation of diesel for 5 months. Biodegradation rate of TPH was calculated from respiration rate measured by the on-line gas measuring system. There were no apparent differences between calculated biodegradation rates from two columns with different venting modes. The variation of biodegradation rates corresponded well with trend of the remaining TPH concentrations comparing other biodegradation indicators, such as C17/pristane and C18/phytane ratio, dehydrogenase activity, and the ratio of hydrocarbon utilising bacteria to total heterotrophic bacteria. These results suggested that the on-line measuring system of respiration rate would be applied to monitoring biodegradation rate and to determine the potential applicability of bioventing process for bioremediation of oil contaminated soil.
Taschek, Marco; Egermann, Jan; Schwarz, Sabrina; Leipertz, Alfred
2005-11-01
Optimum fuel preparation and mixture formation are core issues in the development of modern direct-injection (DI) Diesel engines, as these are crucial for defining the border conditions for the subsequent combustion and pollutant formation process. The local fuel/air ratio can be seen as one of the key parameters for this optimization process, as it allows the characterization and comparison of the mixture formation quality. For what is the first time to the best of our knowledge, linear Raman spectroscopy is used to detect the fuel/air ratio and its change along a line of a few millimeters directly and nonintrusively inside the combustion bowl of a DI Diesel engine. By a careful optimization of the measurement setup, the weak Raman signals could be separated successfully from disturbing interferences. A simultaneous measurement of the densities of air and fuel was possible along a line of about 10 mm length, allowing a time- and space-resolved measurement of the local fuel/air ratio. This could be performed in a nonreacting atmosphere as well as during fired operating conditions. The positioning of the measurement volume next to the interaction point of one of the spray jets with the wall of the combustion bowl allowed a near-wall analysis of the mixture formation process for a six-hole nozzle under varying injection and engine conditions. The results clearly show the influence of the nozzle geometry and preinjection on the mixing process. In contrast, modulation of the intake air temperature merely led to minor changes of the fuel concentration in the measurement volume.
NASA Astrophysics Data System (ADS)
Taschek, Marco; Egermann, Jan; Schwarz, Sabrina; Leipertz, Alfred
2005-11-01
Optimum fuel preparation and mixture formation are core issues in the development of modern direct-injection (DI) Diesel engines, as these are crucial for defining the border conditions for the subsequent combustion and pollutant formation process. The local fuel/air ratio can be seen as one of the key parameters for this optimization process, as it allows the characterization and comparison of the mixture formation quality. For what is the first time to the best of our knowledge, linear Raman spectroscopy is used to detect the fuel/air ratio and its change along a line of a few millimeters directly and nonintrusively inside the combustion bowl of a DI Diesel engine. By a careful optimization of the measurement setup, the weak Raman signals could be separated successfully from disturbing interferences. A simultaneous measurement of the densities of air and fuel was possible along a line of about 10 mm length, allowing a time- and space-resolved measurement of the local fuel/air ratio. This could be performed in a nonreacting atmosphere as well as during fired operating conditions. The positioning of the measurement volume next to the interaction point of one of the spray jets with the wall of the combustion bowl allowed a near-wall analysis of the mixture formation process for a six-hole nozzle under varying injection and engine conditions. The results clearly show the influence of the nozzle geometry and preinjection on the mixing process. In contrast, modulation of the intake air temperature merely led to minor changes of the fuel concentration in the measurement volume.
Time-resolved fuel injector flow characterisation based on 3D laser Doppler vibrometry
NASA Astrophysics Data System (ADS)
Crua, Cyril; Heikal, Morgan R.
2014-12-01
Hydrodynamic turbulence and cavitation are known to play a significant role in high-pressure atomizers, but the small geometries and extreme operating conditions hinder the understanding of the flow’s characteristics. Diesel internal flow experiments are generally conducted using x-ray techniques or on transparent, and often enlarged, nozzles with different orifice geometries and surface roughness to those found in production injectors. In order to enable investigations of the fuel flow inside unmodified injectors, we have developed a new experimental approach to measure time-resolved vibration spectra of diesel nozzles using a 3D laser vibrometer. The technique we propose is based on the triangulation of the vibrometer and fuel pressure transducer signals, and enables the quantitative characterisation of quasi-cyclic internal flows without requiring modifications to the injector, the working fluid, or limiting the fuel injection pressure. The vibrometer, which uses the Doppler effect to measure the velocity of a vibrating object, was used to scan injector nozzle tips during the injection event. The data were processed using a discrete Fourier transform to provide time-resolved spectra for valve-closed-orifice, minisac and microsac nozzle geometries, and injection pressures ranging from 60 to 160 MPa, hence offering unprecedented insight into cyclic cavitation and internal mechanical dynamic processes. A peak was consistently found in the spectrograms between 6 and 7.5 kHz for all nozzles and injection pressures. Further evidence of a similar spectral peak was obtained from the fuel pressure transducer and a needle lift sensor mounted into the injector body. Evidence of propagation of the nozzle oscillations to the liquid sprays was obtained by recording high-speed videos of the near-nozzle diesel jet, and computing the fast Fourier transform for a number of pixel locations at the interface of the jets. This 6-7.5 kHz frequency peak is proposed to be the natural frequency for the injector’s main internal fuel line. Other spectral peaks were found between 35 and 45 kHz for certain nozzle geometries, suggesting that these particular frequencies may be linked to nozzle dependent cavitation phenomena.
Credit PSR. This view shows the east and north facades ...
Credit PSR. This view shows the east and north facades of the storage facility as seen when looking south southwest. This fireproof all-metal structure was rated for a maximum of 50,000 pounds (22,730 Kg) of class 1.4 materials and four personnel. The concrete catch basin at left was designed to retain any spilled chemicals, preventing them from contaminating the soil. Spills were collected from the building and apron via a concrete lined gutter - Jet Propulsion Laboratory Edwards Facility, Solid Fuel Storage Building, Edwards Air Force Base, Boron, Kern County, CA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, C. S.; Zhang, Hongbin
Uncertainty quantification and sensitivity analysis are important for nuclear reactor safety design and analysis. A 2x2 fuel assembly core design was developed and simulated by the Virtual Environment for Reactor Applications, Core Simulator (VERA-CS) coupled neutronics and thermal-hydraulics code under development by the Consortium for Advanced Simulation of Light Water Reactors (CASL). An approach to uncertainty quantification and sensitivity analysis with VERA-CS was developed and a new toolkit was created to perform uncertainty quantification and sensitivity analysis with fourteen uncertain input parameters. Furthermore, the minimum departure from nucleate boiling ratio (MDNBR), maximum fuel center-line temperature, and maximum outer clad surfacemore » temperature were chosen as the selected figures of merit. Pearson, Spearman, and partial correlation coefficients were considered for all of the figures of merit in sensitivity analysis and coolant inlet temperature was consistently the most influential parameter. We used parameters as inputs to the critical heat flux calculation with the W-3 correlation were shown to be the most influential on the MDNBR, maximum fuel center-line temperature, and maximum outer clad surface temperature.« less
An investigation of the performance of an electronic in-line pump system for diesel engines
NASA Astrophysics Data System (ADS)
Fan, Li-Yun; Zhu, Yuan-Xian; Long, Wu-Qiang; Ma, Xiu-Zhen; Xue, Ying-Ying
2008-12-01
WIT Electronic Fuel System Co., Ltd. has developed a new fuel injector, the Electronic In-line Pump (EIP) system, designed to meet China’s diesel engine emission and fuel economy regulations. It can be used on marine diesel engines and commercial vehicle engines through different EIP systems. A numerical model of the EIP system was built in the AMESim environment for the purpose of creating a design tool for engine application and system optimization. The model was used to predict key injection characteristics under different operating conditions, such as injection pressure, injection rate, and injection duration. To validate these predictions, experimental tests were conducted under the conditions that were modeled. The results were quite encouraging and in agreement with model predictions. Additional experiments were conducted to study the injection characteristics of the EIP system. These results show that injection pressure and injection quantity are insensitive to injection timing variations, this is due to the design of the constant velocity cam profile. Finally, injection quantity and pressure vs. pulse width at different cam speeds are presented, an important injection characteristic for EIP system calibration.
Uncertainty quantification and sensitivity analysis with CASL Core Simulator VERA-CS
Brown, C. S.; Zhang, Hongbin
2016-05-24
Uncertainty quantification and sensitivity analysis are important for nuclear reactor safety design and analysis. A 2x2 fuel assembly core design was developed and simulated by the Virtual Environment for Reactor Applications, Core Simulator (VERA-CS) coupled neutronics and thermal-hydraulics code under development by the Consortium for Advanced Simulation of Light Water Reactors (CASL). An approach to uncertainty quantification and sensitivity analysis with VERA-CS was developed and a new toolkit was created to perform uncertainty quantification and sensitivity analysis with fourteen uncertain input parameters. Furthermore, the minimum departure from nucleate boiling ratio (MDNBR), maximum fuel center-line temperature, and maximum outer clad surfacemore » temperature were chosen as the selected figures of merit. Pearson, Spearman, and partial correlation coefficients were considered for all of the figures of merit in sensitivity analysis and coolant inlet temperature was consistently the most influential parameter. We used parameters as inputs to the critical heat flux calculation with the W-3 correlation were shown to be the most influential on the MDNBR, maximum fuel center-line temperature, and maximum outer clad surface temperature.« less
Solid oxide fuel cell power plant with an anode recycle loop turbocharger
Saito, Kazuo; Skiba, Tommy; Patel, Kirtikumar H.
2015-07-14
An anode exhaust recycle turbocharger (100) has a turbocharger turbine (102) secured in fluid communication with a compressed oxidant stream within an oxidant inlet line (218) downstream from a compressed oxidant supply (104), and the anode exhaust recycle turbocharger (100) also includes a turbocharger compressor (106) mechanically linked to the turbocharger turbine (102) and secured in fluid communication with a flow of anode exhaust passing through an anode exhaust recycle loop (238) of the solid oxide fuel cell power plant (200). All or a portion of compressed oxidant within an oxidant inlet line (218) drives the turbocharger turbine (102) to thereby compress the anode exhaust stream in the recycle loop (238). A high-temperature, automotive-type turbocharger (100) replaces a recycle loop blower-compressor (52).
Solid oxide fuel cell power plant with an anode recycle loop turbocharger
Saito, Kazuo; Skiba, Tommy; Patel, Kirtikumar H.
2016-09-27
An anode exhaust recycle turbocharger (100) has a turbocharger turbine (102) secured in fluid communication with a compressed oxidant stream within an oxidant inlet line (218) downstream from a compressed oxidant supply (104), and the anode exhaust recycle turbocharger (100) also includes a turbocharger compressor (106) mechanically linked to the turbocharger turbine (102) and secured in fluid communication with a flow of anode exhaust passing through an anode exhaust recycle loop (238) of the solid oxide fuel cell power plant (200). All or a portion of compressed oxidant within an oxidant inlet line (218) drives the turbocharger turbine (102) to thereby compress the anode exhaust stream in the recycle loop (238). A high-temperature, automotive-type turbocharger (100) replaces a recycle loop blower-compressor (52).
Method for monitoring irradiated fuel using Cerenkov radiation
Dowdy, E.J.; Nicholson, N.; Caldwell, J.T.
1980-05-21
A method is provided for monitoring irradiated nuclear fuel inventories located in a water-filled storage pond wherein the intensity of the Cerenkov radiation emitted from the water in the vicinity of the nuclear fuel is measured. This intensity is then compared with the expected intensity for nuclear fuel having a corresponding degree of irradiation exposure and time period after removal from a reactor core. Where the nuclear fuel inventory is located in an assembly having fuel pins or rods with intervening voids, the Cerenkov light intensity measurement is taken at selected bright sports corresponding to the water-filled interstices of the assembly in the water storage, the water-filled interstices acting as Cerenkov light channels so as to reduce cross-talk. On-line digital analysis of an analog video signal is possible, or video tapes may be used for later measurement using a video editor and an electrometer. Direct measurement of the Cerenkov radiation intensity also is possible using spot photometers pointed at the assembly.
Design and development of the Waukesha Custom Engine Control Air/Fuel Module
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moss, D.W.
1996-12-31
The Waukesha Custom Engine Control Air/Fuel Module (AFM) is designed to control the air-fuel ratio for all Waukesha carbureted, gaseous fueled, industrial engine. The AFM is programmed with a personal computer to run in one of four control modes: catalyst, best power, best economy, or lean-burn. One system can control naturally aspirated, turbocharged, in-line or vee engines. The basic system consists of an oxygen sensing system, intake manifold pressure transducer, electronic control module, actuator and exhaust thermocouple. The system permits correct operation of Waukesha engines in spite of changes in fuel pressure or temperature, engine load or speed, and fuelmore » composition. The system utilizes closed loop control and is centered about oxygen sensing technology. An innovative approach to applying oxygen sensors to industrial engines provides very good performance, greatly prolongs sensor life, and maintains sensor accuracy. Design considerations and operating results are given for application of the system to stationary, industrial engines operating on fuel gases of greatly varying composition.« less
Neutron Characterization of Encapsulated ATF-1/LANL-1 Mockup Fuel Capsules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vogel, Sven C.; Borges, Nicholas Paul; Losko, Adrian Simon
Twenty pellets of mock-up accident tolerant fuels UN-U3Si5 were produced at LANL and loaded in two rodlet/capsule assemblies. Tomographic imaging and diffraction measurements were performed to characterize these samples at the Flight-Path 5 and HIPPO beam lines at LANSCE/LANL between November 2016 and January 2017 as well as in August 2017. The entire ~10 cm long, ~1 cm diameter fuel volume could be characterized, however due to time constraints only 2 mm slices in 4mm increments were characterized with neutron diffraction and a 28mm subset of the entire sample was characterized with energy-resolved neutron imaging. The double encapsulation of themore » fuel into two steel containers does not pose a problem for the neutron analysis and the methods could be applied to enriched as well irradiated fuels.« less
Brem, Benjamin T; Durdina, Lukas; Siegerist, Frithjof; Beyerle, Peter; Bruderer, Kevin; Rindlisbacher, Theo; Rocci-Denis, Sara; Andac, M Gurhan; Zelina, Joseph; Penanhoat, Olivier; Wang, Jing
2015-11-17
Aircraft engines emit particulate matter (PM) that affects the air quality in the vicinity of airports and contributes to climate change. Nonvolatile PM (nvPM) emissions from aircraft turbine engines depend on fuel aromatic content, which varies globally by several percent. It is uncertain how this variability will affect future nvPM emission regulations and emission inventories. Here, we present black carbon (BC) mass and nvPM number emission indices (EIs) as a function of fuel aromatic content and thrust for an in-production aircraft gas turbine engine. The aromatics content was varied from 17.8% (v/v) in the neat fuel (Jet A-1) to up to 23.6% (v/v) by injecting two aromatic solvents into the engine fuel supply line. Fuel normalized BC mass and nvPM number EIs increased by up to 60% with increasing fuel aromatics content and decreasing engine thrust. The EIs also increased when fuel naphthalenes were changed from 0.78% (v/v) to 1.18% (v/v) while keeping the total aromatics constant. The EIs correlated best with fuel hydrogen mass content, leading to a simple model that could be used for correcting fuel effects in emission inventories and in future aircraft engine nvPM emission standards.
East Europe Report, Scientific Affairs, Number 784
1983-07-18
exchange of information. Among these, we emphasize the redirection of telephone calls from busy to free lines, the transmission of conference talks...spatial distribution of fuel waste: maximum of 30 emitters, 30 fuel frac- tions, 1 emission period BPP 256 16 Calculation of heat loss from...and in a situation, where we must protect what we have attained, at any cost. Several years we were among the leaders in this field among the CEMA
Force Projection Technology Overview
2011-08-12
Technologies • Fuel Efficient Powertrain Lubricant • Nanotechnology for Fuels and Lubes • Water from Air • Water Reuse • In-line Water Monitoring...purification systems with new pretreatment, desalination and post treatment technologies. Payoff: • Reduces the logistical footprint associated with water...FY11 FY12 FY13 FY14 FY15 FY16 FY17 •Water From Air •Water Quality Monitoring •Water Reuse •Pre and Post Treatment • Desalination 6 5 5
1984-12-01
investigated four - alcohol -containing fuels: pure methanol , pure ethanol, methanol in unleaded gaso- line, and ethanol in unleaded gasoline (gasohol...testing indicated that pure alcohol fuels reduced the buildup of engine .. deposits. Also neat methanol greatly increased engine wear rates at engine...results from reactions between methanol combustion products and the cast-iron cylinder liner, where the presence of liquid methanol in the combustion
Conclusions and Recommendations Regarding the Deep Sea Hybrid Power Systems Initial Study
2010-06-01
proton-exchange membrane fuel cells ( PEMFC ) powered with hydrogen and oxygen, similar to that used on proven subsurface vessels; (2) fuel-cells...AND STORAGE OPTIONS CONSIDERED FOR INITIAL STUDY NO. NOMENCLATURE DESCRIPTION 1 PWR Nuclear Reactor + Battery 2 FC1 PEMFC + Line for surface O2...Wellhead Gas + Reformer + Battery 3 FC2 PEMFC + Stored O2 + Wellhead Gas + Reformer + Battery 4 SV1 PEMFC + Submersible Vehicle for O2 Transport
MEMS-based fuel cells with integrated catalytic fuel processor and method thereof
Jankowski, Alan F [Livermore, CA; Morse, Jeffrey D [Martinez, CA; Upadhye, Ravindra S [Pleasanton, CA; Havstad, Mark A [Davis, CA
2011-08-09
Described herein is a means to incorporate catalytic materials into the fuel flow field structures of MEMS-based fuel cells, which enable catalytic reforming of a hydrocarbon based fuel, such as methane, methanol, or butane. Methods of fabrication are also disclosed.
Fuel control for gas turbine with continuous pilot flame
Swick, Robert M.
1983-01-01
An improved fuel control for a gas turbine engine having a continuous pilot flame and a fuel distribution system including a pump drawing fuel from a source and supplying a line to the main fuel nozzle of the engine, the improvement being a control loop between the pump outlet and the pump inlet to bypass fuel, an electronically controlled throttle valve to restrict flow in the control loop when main nozzle demand exists and to permit substantially unrestricted flow without main nozzle demand, a minimum flow valve in the control loop downstream of the throttle valve to maintain a minimum pressure in the loop ahead of the flow valve, a branch tube from the pilot flame nozzle to the control loop between the throttle valve and the minimum flow valve, an orifice in the branch tube, and a feedback tube from the branch tube downstream of the orifice to the minimum flow valve, the minimum flow valve being operative to maintain a substantially constant pressure differential across the orifice to maintain constant fuel flow to the pilot flame nozzle.
Campbell, Keri R.; Judge, Elizabeth J.; Barefield, James E.; ...
2017-04-22
We show the analysis of light water reactor simulated used nuclear fuel using laser-induced breakdown spectroscopy (LIBS) is explored using a simplified version of the main oxide phase. The main oxide phase consists of the actinides, lanthanides, and zirconium. The purpose of this study is to develop a rapid, quantitative technique for measuring zirconium in a uranium dioxide matrix without the need to dissolve the material. A second set of materials including cerium oxide is also analyzed to determine precision and limit of detection (LOD) using LIBS in a complex matrix. Two types of samples are used in this study:more » binary and ternary oxide pellets. The ternary oxide, (U,Zr,Ce)O 2 pellets used in this study are a simplified version the main oxide phase of used nuclear fuel. The binary oxides, (U,Ce)O 2 and (U,Zr)O 2 are also examined to determine spectral emission lines for Ce and Zr, potential spectral interferences with uranium and baseline LOD values for Ce and Zr in a UO 2 matrix. In the spectral range of 200 to 800 nm, 33 cerium lines and 25 zirconium lines were identified and shown to have linear correlation values (R 2) > 0.97 for both the binary and ternary oxides. The cerium LOD in the (U,Ce)O 2 matrix ranged from 0.34 to 1.08 wt% and 0.94 to 1.22 wt% in (U,Ce,Zr)O 2 for 33 of Ce emission lines. The zirconium limit of detection in the (U,Zr)O 2 matrix ranged from 0.84 to 1.15 wt% and 0.99 to 1.10 wt% in (U,Ce,Zr)O 2 for 25 Zr lines. Finally, the effect of multiple elements in the plasma and the impact on the LOD is discussed.« less
KMOS3D Reveals Low-level Star Formation Activity in Massive Quiescent Galaxies at 0.7 < z < 2.7
NASA Astrophysics Data System (ADS)
Belli, Sirio; Genzel, Reinhard; Förster Schreiber, Natascha M.; Wisnioski, Emily; Wilman, David J.; Wuyts, Stijn; Mendel, J. Trevor; Beifiori, Alessandra; Bender, Ralf; Brammer, Gabriel B.; Burkert, Andreas; Chan, Jeffrey; Davies, Rebecca L.; Davies, Ric; Fabricius, Maximilian; Fossati, Matteo; Galametz, Audrey; Lang, Philipp; Lutz, Dieter; Momcheva, Ivelina G.; Nelson, Erica J.; Saglia, Roberto P.; Tacconi, Linda J.; Tadaki, Ken-ichi; Übler, Hannah; van Dokkum, Pieter
2017-05-01
We explore the Hα emission in the massive quiescent galaxies observed by the KMOS3D survey at 0.7 < z < 2.7. The Hα line is robustly detected in 20 out of 120 UVJ-selected quiescent galaxies, and we classify the emission mechanism using the Hα line width and the [N II]/Hα line ratio. We find that AGNs are likely to be responsible for the line emission in more than half of the cases. We also find robust evidence for star formation activity in nine quiescent galaxies, which we explore in detail. The Hα kinematics reveal rotating disks in five of the nine galaxies. The dust-corrected Hα star formation rates are low (0.2-7 M ⊙ yr-1), and place these systems significantly below the main sequence. The 24 μm-based, infrared luminosities, instead, overestimate the star formation rates. These galaxies present a lower gas-phase metallicity compared to star-forming objects with similar stellar mass, and many of them have close companions. We therefore conclude that the low-level star formation activity in these nine quiescent galaxies is likely to be fueled by inflowing gas or minor mergers, and could be a sign of rejuvenation events. Based on observations collected at the European Southern Observatory under programs 092.A-0091, 093.A-0079, 094.A-0217, 095.A-0047, 096.A-0025, and 097.A-0028.
Plutonium Finishing Plant (PFP) Final Safety Analysis Report (FSAR) [SEC 1 THRU 11
DOE Office of Scientific and Technical Information (OSTI.GOV)
ULLAH, M K
2001-02-26
The Plutonium Finishing Plant (PFP) is located on the US Department of Energy (DOE) Hanford Site in south central Washington State. The DOE Richland Operations (DOE-RL) Project Hanford Management Contract (PHMC) is with Fluor Hanford Inc. (FH). Westinghouse Safety Management Systems (WSMS) provides management support to the PFP facility. Since 1991, the mission of the PFP has changed from plutonium material processing to preparation for decontamination and decommissioning (D and D). The PFP is in transition between its previous mission and the proposed D and D mission. The objective of the transition is to place the facility into a stablemore » state for long-term storage of plutonium materials before final disposition of the facility. Accordingly, this update of the Final Safety Analysis Report (FSAR) reflects the current status of the buildings, equipment, and operations during this transition. The primary product of the PFP was plutonium metal in the form of 2.2-kg, cylindrical ingots called buttoms. Plutonium nitrate was one of several chemical compounds containing plutonium that were produced as an intermediate processing product. Plutonium recovery was performed at the Plutonium Reclamation Facility (PRF) and plutonium conversion (from a nitrate form to a metal form) was performed at the Remote Mechanical C (RMC) Line as the primary processes. Plutonium oxide was also produced at the Remote Mechanical A (RMA) Line. Plutonium processed at the PFP contained both weapons-grade and fuels-grade plutonium materials. The capability existed to process both weapons-grade and fuels-grade material through the PRF and only weapons-grade material through the RMC Line although fuels-grade material was processed through the line before 1984. Amounts of these materials exist in storage throughout the facility in various residual forms left from previous years of operations.« less
Code of Federal Regulations, 2013 CFR
2013-07-01
... fuel economy values from the tests performed using gasoline or diesel test fuel. (ii) Calculate the city, highway, and combined fuel economy values from the tests performed using alcohol or natural gas test fuel. (b) If only one equivalent petroleum-based fuel economy value exists for an electric...
Code of Federal Regulations, 2011 CFR
2011-07-01
..., highway, and combined fuel economy values from the tests performed using gasoline or diesel test fuel. (ii) Calculate the city, highway, and combined fuel economy values from the tests performed using alcohol or natural gas test fuel. (b) If only one equivalent petroleum-based fuel economy value exists for an...
Code of Federal Regulations, 2012 CFR
2012-07-01
... fuel economy values from the tests performed using gasoline or diesel test fuel. (ii) Calculate the city, highway, and combined fuel economy values from the tests performed using alcohol or natural gas test fuel. (b) If only one equivalent petroleum-based fuel economy value exists for an electric...
SHAPED FISSIONABLE METAL BODIES
Wigner, E.P.; Williamson, R.R.; Young, G.J.
1958-10-14
A technique is presented for grooving the surface of fissionable fuel elements so that expansion can take place without damage to the interior structure of the fuel element. The fissionable body tends to develop internal stressing when it is heated internally by the operation of the nuclear reactor and at the same time is subjected to surface cooling by the circulating coolant. By producing a grooved or waffle-like surface texture, the annular lines of tension stress are disrupted at equally spaced intervals by the grooves, thereby relieving the tension stresses in the outer portions of the body while also facilitating the removal of accumulated heat from the interior portion of the fuel element.
Frank, Andrew A.
1984-01-01
A control system and method for a power delivery system, such as in an automotive vehicle, having an engine coupled to a continuously variable ratio transmission (CVT). Totally independent control of engine and transmission enable the engine to precisely follow a desired operating characteristic, such as the ideal operating line for minimum fuel consumption. CVT ratio is controlled as a function of commanded power or torque and measured load, while engine fuel requirements (e.g., throttle position) are strictly a function of measured engine speed. Fuel requirements are therefore precisely adjusted in accordance with the ideal characteristic for any load placed on the engine.
Electrical contact structures for solid oxide electrolyte fuel cell
Isenberg, Arnold O.
1984-01-01
An improved electrical output connection means is provided for a high temperature solid oxide electrolyte type fuel cell generator. The electrical connection of the fuel cell electrodes to the electrical output bus, which is brought through the generator housing to be connected to an electrical load line maintains a highly uniform temperature distribution. The electrical connection means includes an electrode bus which is spaced parallel to the output bus with a plurality of symmetrically spaced transversely extending conductors extending between the electrode bus and the output bus, with thermal insulation means provided about the transverse conductors between the spaced apart buses. Single or plural stages of the insulated transversely extending conductors can be provided within the high temperatures regions of the fuel cell generator to provide highly homogeneous temperature distribution over the contacting surfaces.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, G. C.; Tennery, V. J.
1978-02-01
Industrial conversion in the U.S. to alternate fuels from natural gas is presently under way and will accelerate rapidly as a result of gas curtailments and National policy considerations. Currently the prime alternate fuels are distillate and residual oils and coal. Conversion to residual oils or coal for high-temperature process heat applications is anticipated to result in accelerated refractory and insulation corrosion and degradation due to reactions between fuel impurities and the ceramic linings of high-temperature equipment. Understanding the nature of such reactions and identification of means for preventing or retarding them will be of considerable assistance to both refractorymore » manufacturers and users as well as a significant contribution to energy conservation.« less
Hydrogen, CNG, and HCNG Dispenser System – Prototype Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
James Francfort
2005-02-01
The U.S. Department of Energy’s Advanced Vehicle Testing Activity is currently testing a prototype gaseous fuel dispenser developed by the Electric Transportation Engineering Corporation (ETEC). The dispenser (Figure 1) delivers three types of fuels: 100% hydrogen, 100% compressed natural gas (CNG), and blends of hydrogen and CNG (HCNG) using two independent single nozzles (Figure 2). The nozzle for the 100% hydrogen dispensing is rated at 5,000 psig and used solely for 100% hydrogen fuel. The second nozzle is rated at 3,600 psig and is used for both CNG and HCNG fuels. This nozzle connects to both a CNG supply linemore » and a hydrogen supply line and blends the hydrogen and CNG to supply HCNG levels of 15, 20, 30, and 50% (by volume).« less
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-09
... structure in the potential line of trajectory of a failed screw cap/end cap for each accumulator has been..., potentially resulting in fuel spillage, uncommanded flap movement, or loss of aileron control [and consequent... and structure in the potential line of trajectory of a failed screw cap/end cap for each accumulator...
Chromate dermatitis from a boiler lining.
Rycroft, R J; Calnan, C D
1977-08-01
Chromate dermatitis is described in a mechanical fitter working inside boiler combustion chambers. A source of hexavalent chromate is traced to the action of the heat and alkaline fuel ash on trivalent chrome ore in parts of the refractory lining. Removal of the patient from this contact has resulted in almost complete clearing of his dermatitis, without any relapse, during a 9-month follow-up period.
Novel fabrication of silicon carbide based ceramics for nuclear applications
NASA Astrophysics Data System (ADS)
Singh, Abhishek Kumar
Advances in nuclear reactor technology and the use of gas-cooled fast reactors require the development of new materials that can operate at the higher temperatures expected in these systems. These materials include refractory alloys based on Nb, Zr, Ta, Mo, W, and Re; ceramics and composites such as SiC--SiCf; carbon--carbon composites; and advanced coatings. Besides the ability to handle higher expected temperatures, effective heat transfer between reactor components is necessary for improved efficiency. Improving thermal conductivity of the fuel can lower the center-line temperature and, thereby, enhance power production capabilities and reduce the risk of premature fuel pellet failure. Crystalline silicon carbide has superior characteristics as a structural material from the viewpoint of its thermal and mechanical properties, thermal shock resistance, chemical stability, and low radioactivation. Therefore, there have been many efforts to develop SiC based composites in various forms for use in advanced energy systems. In recent years, with the development of high yield preceramic precursors, the polymer infiltration and pyrolysis (PIP) method has aroused interest for the fabrication of ceramic based materials, for various applications ranging from disc brakes to nuclear reactor fuels. The pyrolysis of preceramic polymers allow new types of ceramic materials to be processed at relatively low temperatures. The raw materials are element-organic polymers whose composition and architecture can be tailored and varied. The primary focus of this study is to use a pyrolysis based process to fabricate a host of novel silicon carbide-metal carbide or oxide composites, and to synthesize new materials based on mixed-metal silicocarbides that cannot be processed using conventional techniques. Allylhydridopolycarbosilane (AHPCS), which is an organometal polymer, was used as the precursor for silicon carbide. Inert gas pyrolysis of AHPCS produces near-stoichiometric amorphous silicon carbide (a-SiC) at 900--1150 °C. Results indicated that this processing technique can be effectively used to fabricate various silicon carbide composites with UC or UO2 as the nuclear component.
High-Performance Monopropellants and Catalysts Evaluated
NASA Technical Reports Server (NTRS)
Reed, Brian D.
2004-01-01
The NASA Glenn Research Center is sponsoring efforts to develop advanced monopropellant technology. The focus has been on monopropellant formulations composed of an aqueous solution of hydroxylammonium nitrate (HAN) and a fuel component. HAN-based monopropellants do not have a toxic vapor and do not need the extraordinary procedures for storage, handling, and disposal required of hydrazine (N2H4). Generically, HAN-based monopropellants are denser and have lower freezing points than N2H4. The performance of HAN-based monopropellants depends on the selection of fuel, the HAN-to-fuel ratio, and the amount of water in the formulation. HAN-based monopropellants are not seen as a replacement for N2H4 per se, but rather as a propulsion option in their own right. For example, HAN-based monopropellants would prove beneficial to the orbit insertion of small, power-limited satellites because of this propellant's high performance (reduced system mass), high density (reduced system volume), and low freezing point (elimination of tank and line heaters). Under a Glenn-contracted effort, Aerojet Redmond Rocket Center conducted testing to provide the foundation for the development of monopropellant thrusters with an I(sub sp) goal of 250 sec. A modular, workhorse reactor (representative of a 1-lbf thruster) was used to evaluate HAN formulations with catalyst materials. Stoichiometric, oxygen-rich, and fuelrich formulations of HAN-methanol and HAN-tris(aminoethyl)amine trinitrate were tested to investigate the effects of stoichiometry on combustion behavior. Aerojet found that fuelrich formulations degrade the catalyst and reactor faster than oxygen-rich and stoichiometric formulations do. A HAN-methanol formulation with a theoretical Isp of 269 sec (designated HAN269MEO) was selected as the baseline. With a combustion efficiency of at least 93 percent demonstrated for HAN-based monopropellants, HAN269MEO will meet the I(sub sp) 250 sec goal.
Fuel Cell Buses in U.S. Transit Fleets: Current Status 2016
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eudy, Leslie; Post, Matthew; Jeffers, Matthew
This report, published annually, summarizes the progress of fuel cell electric bus development in the United States and discusses the achievements and challenges of introducing fuel cell propulsion in transit. The report provides a summary of results from evaluations performed by the National Renewable Energy Laboratory. Funding for this effort is provided by the U.S. Department of Energy's Fuel Cell Technologies Office within the Office of Energy Efficiency and Renewable Energy and by the U.S. Department of Transportation's Federal Transit Administration. The 2016 summary results primarily focus on the most recent year for each demonstration, from August 2015 through Julymore » 2016. The results for these buses account for more than 550,000 miles traveled and 59,500 hours of fuel cell power system operation. The primary results presented in the report are from three demonstrations of two different fuel-cell-dominant bus designs: Zero Emission Bay Area Demonstration Group led by Alameda-Contra Costa Transit District (AC Transit) in California; American Fuel Cell Bus Project at SunLine Transit Agency in California; and American Fuel Cell Bus Project at the University of California at Irvine.« less
NASA Astrophysics Data System (ADS)
Wang, Hong; Lee, Sung-Min; Wang, James L.; Lin, Hua-Tay
2014-12-01
Testing of large prototype lead zirconate titanate (PZT) stacks presents substantial technical challenges to electronic testing systems, so an alternative approach that uses subunits extracted from prototypes has been pursued. Extracted 10-layer and 20-layer plate specimens were subjected to an electric cycle test under an electric field of 3.0/0.0 kV/mm, 100 Hz to 108 cycles. The effects of measurement field level and stack size (number of PZT layers) on the fatigue responses of piezoelectric and dielectric coefficients were observed. On-line monitoring permitted examination of the fatigue response of the PZT stacks. The fatigue rate (based on on-line monitoring) and the fatigue index (based on the conductance spectrum from impedance measurement or small signal measurement) were developed to quantify the fatigue status of the PZT stacks. The controlling fatigue mechanism was analyzed against the fatigue observations. The data presented can serve as input to design optimization of PZT stacks and to operation optimization in critical applications, such as piezoelectric fuel injectors in heavy-duty diesel engines.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hong; Lee, Sung Min; Wang, James L.
Testing of large prototype lead zirconate titanate (PZT) stacks presents substantial technical challenges to electronic testing systems, so an alternative approach that uses subunits extracted from prototypes has been pursued. Extracted 10-layer and 20-layer plate specimens were subjected to an electric cycle test under an electric field of 3.0/0.0 kV/mm, 100 Hz to 10^8 cycles. The effects of measurement field level and stack size (number of PZT layers) on the fatigue responses of piezoelectric and dielectric coefficients were observed. On-line monitoring permitted examination of the fatigue response of the PZT stacks. The fatigue rate (based on on-line monitoring) and themore » fatigue index (based on the conductance spectrum from impedance measurement or small signal measurement) were developed to quantify the fatigue status of the PZT stacks. The controlling fatigue mechanism was analyzed against the fatigue observations. The data presented can serve as input to design optimization of PZT stacks and to operation optimization in critical applications such as piezoelectric fuel injectors in heavy-duty diesel engines.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hong, E-mail: wangh@ornl.gov; Lee, Sung-Min; Wang, James L.
Testing of large prototype lead zirconate titanate (PZT) stacks presents substantial technical challenges to electronic testing systems, so an alternative approach that uses subunits extracted from prototypes has been pursued. Extracted 10-layer and 20-layer plate specimens were subjected to an electric cycle test under an electric field of 3.0/0.0 kV/mm, 100 Hz to 10{sup 8} cycles. The effects of measurement field level and stack size (number of PZT layers) on the fatigue responses of piezoelectric and dielectric coefficients were observed. On-line monitoring permitted examination of the fatigue response of the PZT stacks. The fatigue rate (based on on-line monitoring) and the fatiguemore » index (based on the conductance spectrum from impedance measurement or small signal measurement) were developed to quantify the fatigue status of the PZT stacks. The controlling fatigue mechanism was analyzed against the fatigue observations. The data presented can serve as input to design optimization of PZT stacks and to operation optimization in critical applications, such as piezoelectric fuel injectors in heavy-duty diesel engines.« less
Wang, Hong; Lee, Sung Min; Wang, James L.; ...
2014-12-19
Testing of large prototype lead zirconate titanate (PZT) stacks presents substantial technical challenges to electronic testing systems, so an alternative approach that uses subunits extracted from prototypes has been pursued. Extracted 10-layer and 20-layer plate specimens were subjected to an electric cycle test under an electric field of 3.0/0.0 kV/mm, 100 Hz to 10^8 cycles. The effects of measurement field level and stack size (number of PZT layers) on the fatigue responses of piezoelectric and dielectric coefficients were observed. On-line monitoring permitted examination of the fatigue response of the PZT stacks. The fatigue rate (based on on-line monitoring) and themore » fatigue index (based on the conductance spectrum from impedance measurement or small signal measurement) were developed to quantify the fatigue status of the PZT stacks. The controlling fatigue mechanism was analyzed against the fatigue observations. The data presented can serve as input to design optimization of PZT stacks and to operation optimization in critical applications such as piezoelectric fuel injectors in heavy-duty diesel engines.« less
Optical and laser spectroscopic diagnostics for energy applications
NASA Astrophysics Data System (ADS)
Tripathi, Markandey Mani
The continuing need for greater energy security and energy independence has motivated researchers to develop new energy technologies for better energy resource management and efficient energy usage. The focus of this dissertation is the development of optical (spectroscopic) sensing methodologies for various fuels, and energy applications. A fiber-optic NIR sensing methodology was developed for predicting water content in bio-oil. The feasibility of using the designed near infrared (NIR) system for estimating water content in bio-oil was tested by applying multivariate analysis to NIR spectral data. The calibration results demonstrated that the spectral information can successfully predict the bio-oil water content (from 16% to 36%). The effect of ultraviolet (UV) light on the chemical stability of bio-oil was studied by employing laser-induced fluorescence (LIF) spectroscopy. To simulate the UV light exposure, a laser in the UV region (325 nm) was employed for bio-oil excitation. The LIF, as a signature of chemical change, was recorded from bio-oil. From this study, it was concluded that phenols present in the bio-oil show chemical instability, when exposed to UV light. A laser-induced breakdown spectroscopy (LIBS)-based optical sensor was designed, developed, and tested for detection of four important trace impurities in rocket fuel (hydrogen). The sensor can simultaneously measure the concentrations of nitrogen, argon, oxygen, and helium in hydrogen from storage tanks and supply lines. The sensor had estimated lower detection limits of 80 ppm for nitrogen, 97 ppm for argon, 10 ppm for oxygen, and 25 ppm for helium. A chemiluminescence-based spectroscopic diagnostics were performed to measure equivalence ratios in methane-air premixed flames. A partial least-squares regression (PLS-R)-based multivariate sensing methodology was investigated. It was found that the equivalence ratios predicted with the PLS-R-based multivariate calibration model matched with the experimentally measured equivalence ratios within 7 %. A comparative study was performed for equivalence ratios measurement in atmospheric premixed methane-air flames with ungated LIBS and chemiluminescence spectroscopy. It was reported that LIBS-based calibration, which carries spectroscopic information from a "point-like-volume," provides better predictions of equivalence ratios compared to chemiluminescence-based calibration, which is essentially a "line-of-sight" measurement.
A Comparison of Trajectory Optimization Methods for the Impulsive Minimum Fuel Rendezvous Problem
NASA Technical Reports Server (NTRS)
Hughes, Steven P.; Mailhe, Laurie M.; Guzman, Jose J.
2003-01-01
In this paper we present, a comparison of trajectory optimization approaches for the minimum fuel rendezvous problem. Both indirect and direct methods are compared for a variety of test cases. The indirect approach is based on primer vector theory. The direct approaches are implemented numerically and include Sequential Quadratic Programming (SQP). Quasi- Newton and Nelder-Meade Simplex. Several cost function parameterizations are considered for the direct approach. We choose one direct approach that appears to be the most flexible. Both the direct and indirect methods are applied to a variety of test cases which are chosen to demonstrate the performance of each method in different flight regimes. The first test case is a simple circular-to-circular coplanar rendezvous. The second test case is an elliptic-to-elliptic line of apsides rotation. The final test case is an orbit phasing maneuver sequence in a highly elliptic orbit. For each test case we present a comparison of the performance of all methods we consider in this paper.
[Development of a low-cost single chamber microbial fuel cell type BOD sensor].
Wu, Feng; Liu, Zhi; Zhou, Ben; Zhou, Shun-gui; Rao, Li-qun; Wang, Yue-qiang
2010-07-01
The principle of the detector is based on the effect of microbial toxicity of water sample on the electricity generation in microbial fuel cell (MFC). The performance of the MFC-type biotoxicity detector was evaluated with the synthetic water containing heavy metals of Cd2+ and Cu2+. The experimental results demonstrated that: (1) relative to the conventional methods, the MFC-type detector is easy to operate, and suitable for on-line measurements with high sensitivity; (2) it only requires 4 h to complete measurements, and can get ready for next measurement within 4 h; (3) there is a significant linear correlation between the concentration of toxic metal(s) and inhibition ratios in Coulombic yields of MFC. As the IC20 (concentration causing 20% inhibition) of Cd2+, Cu2+ and mixed metals (Cd2+ and Cu2+) were 0.6, 0.8 and 0.25 mg/L, the regression coefficients were shown to be 0.9960, 0.9744 and 0.9907.
Lightning protection guidelines and test data for adhesively bonded aircraft structures
NASA Technical Reports Server (NTRS)
Pryzby, J. E.; Plumer, J. A.
1984-01-01
The highly competitive marketplace and increasing cost of energy has motivated manufacturers of general aviation aircraft to utilize composite materials and metal-to-metal bonding in place of conventional fasteners and rivets to reduce weight, obtain smoother outside surfaces and reduce drag. The purpose of this program is protection of these new structures from hazardous lightning effects. The program began with a survey of advance-technology materials and fabrication methods under consideration for future designs. Sub-element specimens were subjected to simulated lightning voltages and currents. Measurements of bond line voltages, electrical sparking, and mechanical strength degradation were made to comprise a data base of electrical properties for new technology materials and basic structural configurations. The second hase of the program involved tests on full scale wing structures which contained integral fuel tanks and which were representative of examples of new technology structures and fuel systems. The purpose of these tests was to provide a comparison between full scale structural measurements and those obtained from the sub-element specimens.
NASA Technical Reports Server (NTRS)
1982-01-01
Shuttle's propellant measurement system is produced by Simmonds Precision. Company has extensive experience in fuel management systems and other equipment for military and commercial aircraft. A separate corporate entity, Industrial Controls Division was formed due to a number of non-aerospace spinoffs. One example is a "custody transfer" system for measuring and monitoring liquefied natural gas (LNG). LNG is transported aboard large tankers at minus 260 degrees Fahrenheit. Value of a single shipload may reach $15 million. Precision's LNG measurement and monitoring system aids accurate financial accounting and enhances crew safety. Custody transfer systems have been provided for 10 LNG tankers, built by Owing Shipbuilding. Simmonds also provided measurement systems for several liquefied petroleum gas (LPG) production and storage installations. Another spinoff developed by Simmonds Precision is an advanced ignition system for industrial boilers that offers savings of millions of gallons of fuel, and a computer based monitoring and control system for improving safety and reliability in electrical utility applications. Simmonds produces a line of safety systems for nuclear and non-nuclear electrical power plants.
Sundvor, Ingrid; López-Aparicio, Susana
2014-10-15
This study shows the results obtained from emission and air dispersion modelling of acetaldehyde in the city of Oslo and associated with the circulation of bioethanol vehicles. Two scenarios of bioethanol implementation, both realistic and hypothetical, have been considered under winter conditions; 1) realistic baseline scenario, which corresponds to the current situation in Oslo where one bus line is running with bioethanol (E95; 95% ethanol-5% petrol) among petrol and diesel vehicles; and 2) a hypothetical scenario characterized by a full implementation of high-blend bioethanol (i.e. E85) as fuel for transportation, and thus an entire bioethanol fleet. The results indicate that a full implementation of bioethanol will have a certain impact on urban air quality due to direct emissions of acetaldehyde. Acetaldehyde emissions are estimated to increase by 233% and concentration levels increase up to 650% with regard to the baseline. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nilles, Michael J.
A shipping container containing an unirradiated nuclear fuel assembly is lifted off the ground by operating a crane to raise a lifting tool comprising a winch. The lifting tool is connected with the shipping container by a rigging line connecting with the shipping container at a lifting point located on the shipping container between the top and bottom of the shipping container, and by winch cabling connecting with the shipping container at the top of the shipping container. The shipping container is reoriented by operating the winch to adjust the length of the winch cabling so as to rotate themore » shipping container about the lifting point. Shortening the winch cabling rotates the shipping container about the lifting point from a horizontal orientation to a vertical orientation, while lengthening the winch cabling rotates the shipping container about the lifting point from the vertical orientation to the horizontal orientation.« less