Sample records for fuel materials progress

  1. Gas-Cooled Reactor Programs annual progress report for period ending December 31, 1973. [HTGR fuel reprocessing, fuel fabrication, fuel irradiation, core materials, and fission product distribution; GCFR fuel irradiation and steam generator modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kasten, P.R.; Coobs, J.H.; Lotts, A.L.

    1976-04-01

    Progress is summarized in studies relating to HTGR fuel reprocessing, refabrication, and recycle; HTGR fuel materials development and performance testing; HTGR PCRV development; HTGR materials investigations; HTGR fuel chemistry; HTGR safety studies; and GCFR irradiation experiments and steam generator modeling.

  2. HTGR fuels and core development program. Quarterly progress report for the period ending August 31, 1975

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1975-09-30

    Studies of reactions between core materials and coolant impurities, basic fission product transport mechanisms, core graphite development and testing, the development and testing of recyclable fuel systems, and physics and fuel management studies are described. Materials studies include irradiation capsule tests of both fuel and graphite. Experimental procedures and results are discussed and, where appropriate, the data are presented in tables, graphs, and photographs. (auth)

  3. LCRE and SNAP 50-DR-1 programs. Engineering progress report, January 1, 1963--March 31, 1963

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Declassified 5 Sep 1973. Information is presented concerning LCRE specifications, primary coolant circuit, aaxiliary systems, fuel elements, instrumentation, materials development, and fabrication; and SNAP-50DR-1 specifications, fuel elements, pumps, steam generator, and materials development. (DCC)

  4. Metals and Ceramics Division annual progress report, October 1, 1978-June 30, 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, S.

    Research is reported concerning: (1) engineering materials including materials compatibility, mechanical properties, nondestructive testing, pressure vessel technology, and welding and brazing; (2) fuels and processes consisting of ceramic technology, fuel cycle technology, fuels evaluation, fuels fabrication and metals processing; and (3) materials science which includes, ceramic studies, physical metallurgy and properties, radiation effects and microstructural analysis, metastable and superconducting materials, structure and properties of surfaces, theoretical research, and x-ray research and applications. Highlights of the work of the metallographic group and the current status of the High-Temperature Materials Laboratory (HTML) and the Materials and Structures Technology Management Center (MSTMC) aremore » presented. (FS)« less

  5. LCRE and SNAP 50-DR-1 programs. Engineering and progress report, April 1, 1963--June 30, 1963

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    BS>Declassified 6 Sep 1973. Information is presented concerning the LCRE kinetics, auxiliary systems, fuel, primary cooling system components, instrumentation, secondary cooling system, materials development, and fabrication; and SNAP-50/SPUR kinetics, fuel, primary system pump, steam generator, and materials development. (DCC)

  6. Gas-turbine critical research and advanced technology support project

    NASA Technical Reports Server (NTRS)

    Clark, J. S.; Lowell, C. E.; Niedzwiecki, R. W.; Nainiger, J. J.

    1979-01-01

    The technical progress made during the first 15 months of a planned 40-month project to provide a critical-technology data base for utility gas-turbine systems capable of burning coal-derived fuels is summarized. Tasks were included in the following areas: (1) combustion, to study the combustion of coal-derived fuels and conversion of fuel-bound nitrogen to NOx; (2) materials, to understand and prevent hot corrosion; and (3) system studies, to integrate and guide the other technologies. Significant progress was made.

  7. Advanced catalyst supports for PEM fuel cell cathodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Lei; Shao, Yuyan; Sun, Junming

    2016-11-01

    Electrocatalyst support materials are key components for polymer exchange membrane (PEM) fuel cells, which play a critical role in determining electrocatalyst durability and activity, mass transfer and water management. The commonly-used supports, e.g. porous carbon black, cannot meet all the requirements under the harsh operation condition of PEM fuel cells. Great efforts have been made in the last few years in developing alternative support materials. In this paper, we selectively review recent progress on three types of important support materials: carbon, non-carbon and hybrid carbon-oxides nanocomposites. A perspective on future R&D of electrocatalyst support materials is also provided.

  8. MARMOT update for oxide fuel modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yongfeng; Schwen, Daniel; Chakraborty, Pritam

    This report summarizes the lower-length-scale research and development progresses in FY16 at Idaho National Laboratory in developing mechanistic materials models for oxide fuels, in parallel to the development of the MARMOT code which will be summarized in a separate report. This effort is a critical component of the microstructure based fuel performance modeling approach, supported by the Fuels Product Line in the Nuclear Energy Advanced Modeling and Simulation (NEAMS) program. The progresses can be classified into three categories: 1) development of materials models to be used in engineering scale fuel performance modeling regarding the effect of lattice defects on thermal conductivity, 2) development of modeling capabilities for mesoscale fuel behaviors including stage-3 gas release, grain growth, high burn-up structure, fracture and creep, and 3) improved understanding in material science by calculating the anisotropic grain boundary energies in UOmore » $$_2$$ and obtaining thermodynamic data for solid fission products. Many of these topics are still under active development. They are updated in the report with proper amount of details. For some topics, separate reports are generated in parallel and so stated in the text. The accomplishments have led to better understanding of fuel behaviors and enhance capability of the MOOSE-BISON-MARMOT toolkit.« less

  9. Early Fuel Cell Market Demonstrations | Hydrogen and Fuel Cells | NREL

    Science.gov Websites

    Handling Equipment Data Collection and Analysis: 2015 Report, DOE Hydrogen and Fuel Cells Program Annual Progress Report (December 2015) Material Handling Equipment Data Collection and Analysis: 2015 Review, DOE Technical Report (March 2015) 2014 Forklift and Backup Power Data Collection and Analysis: 2014 Report, DOE

  10. Thin-Film Solid Oxide Fuel Cells

    NASA Technical Reports Server (NTRS)

    Chen, Xin; Wu, Nai-Juan; Ignatiev, Alex

    2009-01-01

    The development of thin-film solid oxide fuel cells (TFSOFCs) and a method of fabricating them have progressed to the prototype stage. This can result in the reduction of mass, volume, and the cost of materials for a given power level.

  11. Recapturing Graphite-Based Fuel Element Technology for Nuclear Thermal Propulsion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trammell, Michael P; Jolly, Brian C; Miller, James Henry

    ORNL is currently recapturing graphite based fuel forms for Nuclear Thermal Propulsion (NTP). This effort involves research and development on materials selection, extrusion, and coating processes to produce fuel elements representative of historical ROVER and NERVA fuel. Initially, lab scale specimens were fabricated using surrogate oxides to develop processing parameters that could be applied to full length NTP fuel elements. Progress toward understanding the effect of these processing parameters on surrogate fuel microstructure is presented.

  12. Facile and gram-scale synthesis of metal-free catalysts: toward realistic applications for fuel cells.

    PubMed

    Kim, Ok-Hee; Cho, Yong-Hun; Chung, Dong Young; Kim, Min Jeong; Yoo, Ji Mun; Park, Ji Eun; Choe, Heeman; Sung, Yung-Eun

    2015-03-02

    Although numerous reports on nonprecious metal catalysts for replacing expensive Pt-based catalysts have been published, few of these studies have demonstrated their practical application in fuel cells. In this work, we report graphitic carbon nitride and carbon nanofiber hybrid materials synthesized by a facile and gram-scale method via liquid-based reactions, without the use of toxic materials or a high pressure-high temperature reactor, for use as fuel cell cathodes. The resulting materials exhibited remarkable methanol tolerance, selectivity, and stability even without a metal dopant. Furthermore, these completely metal-free catalysts exhibited outstanding performance as cathode materials in an actual fuel cell device: a membrane electrode assembly with both acidic and alkaline polymer electrolytes. The fabrication method and remarkable performance of the single cell produced in this study represent progressive steps toward the realistic application of metal-free cathode electrocatalysts in fuel cells.

  13. Facile and Gram-scale Synthesis of Metal-free Catalysts: Toward Realistic Applications for Fuel Cells

    PubMed Central

    Kim, Ok-Hee; Cho, Yong-Hun; Chung, Dong Young; Kim, Min Jeong; Yoo, Ji Mun; Park, Ji Eun; Choe, Heeman; Sung, Yung-Eun

    2015-01-01

    Although numerous reports on nonprecious metal catalysts for replacing expensive Pt-based catalysts have been published, few of these studies have demonstrated their practical application in fuel cells. In this work, we report graphitic carbon nitride and carbon nanofiber hybrid materials synthesized by a facile and gram-scale method via liquid-based reactions, without the use of toxic materials or a high pressure-high temperature reactor, for use as fuel cell cathodes. The resulting materials exhibited remarkable methanol tolerance, selectivity, and stability even without a metal dopant. Furthermore, these completely metal-free catalysts exhibited outstanding performance as cathode materials in an actual fuel cell device: a membrane electrode assembly with both acidic and alkaline polymer electrolytes. The fabrication method and remarkable performance of the single cell produced in this study represent progressive steps toward the realistic application of metal-free cathode electrocatalysts in fuel cells. PMID:25728910

  14. Progress toward development of a platform for studying burn in the presence of mix on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Murphy, T. J.; Kyrala, G. A.; Bradley, P. A.; Krasheninnikova, N. S.; Cobble, J. A.; Tregillis, I. L.; Obrey, K. A. D.; Hsu, S. C.; Shah, R. C.; Hakel, P.; Kline, J. L.; Grim, G. P.; Baumgaertel, J. A.; Schmitt, M. J.; Kanzleiter, R. J.; Batha, S. H.

    2013-10-01

    Mix of shell material into ICF capsule fuel can degrade implosion performance through a number of mechanisms. One way is by dilution of the fusion fuel, which affects performance by an amount that is dependent on the degree of mix at the atomic level. Experiments are underway to quantify the mix of shell material into fuel using directly driven capsules on the National Ignition Facility. Deuterated plastic shells will be utilized with tritium fill so that the production of DT neutrons is indicative of mix at the atomic level. Neutron imaging will locate the burn region and spectroscopic imaging of the doped layers will reveal the location, temperature, and density of the shell material. Correlation of the two will be used to determine the degree of atomic mixing of the shell into the fuel and will be compared to models. This talk will review progress toward the development of an experimental platform to measure burn in the presence of measured mix. This work is supported by US DOE/NNSA, performed at LANL, operated by LANS LLC under contract DE-AC52-06NA25396.

  15. Recent progress on biomass co-pyrolysis conversion into high-quality bio-oil.

    PubMed

    Hassan, H; Lim, J K; Hameed, B H

    2016-12-01

    Co-pyrolysis of biomass with abundantly available materials could be an economical method for production of bio-fuels. However, elimination of oxygenated compounds poses a considerable challenge. Catalytic co-pyrolysis is another potential technique for upgrading bio-oils for application as liquid fuels in standard engines. This technique promotes the production of high-quality bio-oil through acid catalyzed reduction of oxygenated compounds and mutagenic polyaromatic hydrocarbons. This work aims to review and summarize research progress on co-pyrolysis and catalytic co-pyrolysis, as well as their benefits on enhancement of bio-oils derived from biomass. This review focuses on the potential of plastic wastes and coal materials as co-feed in co-pyrolysis to produce valuable liquid fuel. This paper also proposes future directions for using this technique to obtain high yields of bio-oils. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. A review into the use of ceramics in microbial fuel cells.

    PubMed

    Winfield, Jonathan; Gajda, Iwona; Greenman, John; Ieropoulos, Ioannis

    2016-09-01

    Microbial fuel cells (MFCs) offer great promise as a technology that can produce electricity whilst at the same time treat wastewater. Although significant progress has been made in recent years, the requirement for cheaper materials has prevented the technology from wider, out-of-the-lab, implementation. Recently, researchers have started using ceramics with encouraging results, suggesting that this inexpensive material might be the solution for propelling MFC technology towards real world applications. Studies have demonstrated that ceramics can provide stability, improve power and treatment efficiencies, create a better environment for the electro-active bacteria and contribute towards resource recovery. This review discusses progress to date using ceramics as (i) the structural material, (ii) the medium for ion exchange and (iii) the electrode for MFCs. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Fabrication and Testing of CERMET Fuel Materials for Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Hickman, Robert; Broadway, Jeramie; Mireles, Omar

    2012-01-01

    A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on Nuclear Thermal Propulsion (NTP) is currently being developed for Advanced Space Exploration Systems. The overall goal of the project is to address critical NTP technology challenges and programmatic issues to establish confidence in the affordability and viability of NTP systems. The current technology roadmap for NTP identifies the development of a robust fuel form as a critical near term need. The lack of a qualified nuclear fuel is a significant technical risk that will require a considerable fraction of program resources to mitigate. Due to these risks and the cost for qualification, the development and selection of a primary fuel must begin prior to Authority to Proceed (ATP) for a specific mission. The fuel development is a progressive approach to incrementally reduce risk, converge the fuel materials, and mature the design and fabrication process of the fuel element. A key objective of the current project is to advance the maturity of CERMET fuels. The work includes fuel processing development and characterization, fuel specimen hot hydrogen screening, and prototypic fuel element testing. Early fuel materials development is critical to help validate requirements and fuel performance. The purpose of this paper is to provide an overview and status of the work at Marshall Space Flight Center (MSFC).

  18. MATERIAL AND PROCESS DEVELOPMENT LEADING TO ECONOMICAL HIGH-PERFORMANCE THIN-FILM SOLID OXIDE FUEL CELLS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jie Guan; Atul Verma; Nguyen Minh

    2003-04-01

    This document summarizes the technical progress from September 2002 to March 2003 for the program, Material and Process Development Leading to Economical High-Performance Thin-Film Solid Oxide Fuel Cells, contract number DE-AC26-00NT40711. The causes have been identified for the unstable open circuit voltage (OCV) and low performance exhibited by the anode-supported lanthanum gallate based cells from the earlier development. Promising results have been obtained in the area of synthesis of electrolyte and cathode powders, which showed excellent sintering and densification at low temperatures. The fabrication of cells using tapecalendering process for anode-supported thin lanthanum gallate electrolyte cells and their performance optimizationmore » is in progress.« less

  19. Overview of lower length scale model development for accident tolerant fuels regarding U3Si2 fuel and FeCrAl cladding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yongfeng

    2016-09-01

    U3Si2 and FeCrAl have been proposed as fuel and cladding concepts, respectively, for accident tolerance fuels with higher tolerance to accident scenarios compared to UO2. However, a lot of key physics and material properties regarding their in-pile performance are yet to be explored. To accelerate the understanding and reduce the cost of experimental studies, multiscale modeling and simulation are used to develop physics-based materials models to assist engineering scale fuel performance modeling. In this report, the lower-length-scale efforts in method and material model development supported by the Accident Tolerance Fuel (ATF) high-impact-problem (HIP) under the NEAMS program are summarized. Significantmore » progresses have been made regarding interatomic potential, phase field models for phase decomposition and gas bubble formation, and thermal conductivity for U3Si2 fuel, and precipitation in FeCrAl cladding. The accomplishments are very useful by providing atomistic and mesoscale tools, improving the current understanding, and delivering engineering scale models for these two ATF concepts.« less

  20. Gas turbine critical research and advanced technology (CRT) support project

    NASA Technical Reports Server (NTRS)

    Furman, E. R.; Anderson, D. N.; Gedwill, M. A.; Lowell, C. E.; Schultz, D. F.

    1982-01-01

    The technical progress to provide a critical technology base for utility gas turbine systems capable of burning coal-derived fuels is summarized. Project tasks include the following: (1) combustion - to investigate the combustion of coal-derived fuels and the conversion of fuel-bound nitrogen to NOx; (2) materials - to understand and prevent the hot corrosion of turbine hot section materials; and (3) system studies - to integrate and guide the technological efforts. Technical accomplishments include: an extension of flame tube combustion testing of propane - Toluene Fuel Mixtures to vary H2 content from 9 to 18 percent by weight and the comparison of results with that predicted from a NASA Lewis General Chemical Kinetics Computer Code; the design and fabrication of combustor sector test section to test current and advanced combustor concepts; Testing of Catalytic combustors with residual and coal-derived liquid fuels; testing of high strength super alloys to evaluate their resistance to potential fuel impurities using doped clean fuels and coal-derived liquids; and the testing and evaluation of thermal barrier coatings and bond coatings on conventional turbine materials.

  1. LCRE and SNAP 50-DR-1 programs. Engineering progress report, October 1, 1962--December 31, 1962

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Declassified 5 Sep 1973. Information is presented concerning LCRE specifications, reactor kinetics, fuel elements, primary coolant circuit, secondary coolant circuit, materials development, and fabrication; and SNAP50-DR- 1 specifications, primary pump, and materials development. (DCC)

  2. Final Progress Report, Renewable and Logistics Fuels for Fuel Cells at the Colorado School of Mines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sullivan, Neal P.

    The objective of this program is to advance the current state of technology of solid-oxide fuel cells (SOFCs) to improve performance when operating on renewable and logistics hydrocarbon fuel streams. Outcomes will include: 1.) new SOFC materials and architectures that address the technical challenges associated with carbon-deposit formation and sulfur poisoning; 2.) new integration strategies for combining fuel reformers with SOFCs; 3.) advanced modeling tools that bridge the scales of fundamental charge-transfer chemistry to system operation and control; and 4.) outreach through creation of the Distinguished Lecturer Series to promote nationwide collaboration with fuel-cell researchers and scientists.

  3. Key challenges and recent progress in batteries, fuel cells, and hydrogen storage for clean energy systems

    NASA Astrophysics Data System (ADS)

    Chalk, Steven G.; Miller, James F.

    Reducing or eliminating the dependency on petroleum of transportation systems is a major element of US energy research activities. Batteries are a key enabling technology for the development of clean, fuel-efficient vehicles and are key to making today's hybrid electric vehicles a success. Fuel cells are the key enabling technology for a future hydrogen economy and have the potential to revolutionize the way we power our nations, offering cleaner, more efficient alternatives to today's technology. Additionally fuel cells are significantly more energy efficient than combustion-based power generation technologies. Fuel cells are projected to have energy efficiency twice that of internal combustion engines. However before fuel cells can realize their potential, significant challenges remain. The two most important are cost and durability for both automotive and stationary applications. Recent electrocatalyst developments have shown that Pt alloy catalysts have increased activity and greater durability than Pt catalysts. The durability of conventional fluorocarbon membranes is improving, and hydrocarbon-based membranes have also shown promise of equaling the performance of fluorocarbon membranes at lower cost. Recent announcements have also provided indications that fuel cells can start from freezing conditions without significant deterioration. Hydrogen storage systems for vehicles are inadequate to meet customer driving range expectations (>300 miles or 500 km) without intrusion into vehicle cargo or passenger space. The United States Department of Energy has established three centers of Excellence for hydrogen storage materials development. The centers are focused on complex metal hydrides that can be regenerated onboard a vehicle, chemical hydrides that require off-board reprocessing, and carbon-based storage materials. Recent developments have shown progress toward the 2010 DOE targets. In addition DOE has established an independent storage material testing center to verify storage capacity of promising materials. These developments point to a viable path to achieving the DOE/FreedomCAR cost and performance goals. The transition to hydrogen-powered fuel cell vehicles will occur over the next 10-15 years. In the interim, fossil fuel consumption will be reduced by increased penetration of battery/gasoline hybrid cars.

  4. FY2016 Propulsion Materials Annual Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    The Propulsion Materials Program actively supports the energy security and reduction of greenhouse emissions goals of VTO by investigating and identifying the materials properties that are most essential for continued development of cost-effective, highly efficient, and environmentally friendly next-generation heavy and light-duty powertrains. The technical approaches available to enhance propulsion systems focus on improvements in both vehicle efficiency and fuel substitution, both of which must overcome the performance limitations of the materials currently in use. Propulsion Materials Program activities work with national laboratories, industry experts, and VTO powertrain systems (e.g., Advanced Combustion Engines and Fuels) teams to develop strategies thatmore » overcome materials limitations in future powertrain performance. The technical maturity of the portfolio of funded projects ranges from basic science to subsystem prototype validation. Projects within a Propulsion Materials Program activity address materials concerns that directly impact critical technology barriers within each of the above programs, including barriers that impact fuel efficiency, thermal management, emissions reduction, improved reliability, and reduced manufacturing costs. The program engages only the barriers that result from material property limitations and represent fundamental, high-risk materials issues.« less

  5. A PROGRAM OF RESEARCH ON MECHANICAL METALLURGY AS RELATED TO FUEL-ELEMENT FABRICATION. Summary Report, January 1-September 30, 1961

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trozera, T.A.; White, J.L.; Chambers, R.H.

    Research progress on mechanical metallurgy of reactor materials is reported in three sections: deformation characteristics of reactor materials, stored energy of cold work, and microplastic propenties and mechanical relaxation spectra of very pure refractory bcc metals. (M.C.G.)

  6. Nuclear Safety. Technical progress journal, April--June 1996: Volume 37, No. 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muhlheim, M D

    1996-01-01

    This journal covers significant issues in the field of nuclear safety. Its primary scope is safety in the design, construction, operation, and decommissioning of nuclear power reactors worldwide and the research and analysis activities that promote this goal, but it also encompasses the safety aspects of the entire nuclear fuel cycle, including fuel fabrication, spent-fuel processing and handling, nuclear waste disposal, the handling of fissionable materials and radioisotopes, and the environmental effects of all these activities.

  7. Nuclear Safety. Technical progress journal, January--March 1994: Volume 35, No. 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silver, E G

    1994-01-01

    This is a journal that covers significant issues in the field of nuclear safety. Its primary scope is safety in the design, construction, operation, and decommissioning of nuclear power reactors worldwide and the research and analysis activities that promote this goal, but it also encompasses the safety aspects of the entire nuclear fuel cycle, including fuel fabrication, spent-fuel processing and handling, and nuclear waste disposal, the handling of fissionable materials and radioisotopes, and the environmental effects of all these activities.

  8. Development of OTM Syngas Process and Testing of Syngas Derived Ultra-clean Fuels in Diesel Engines and Fuel Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    E.T.; James P. Meagher; Prasad Apte

    2002-12-31

    This topical report summarizes work accomplished for the Program from November 1, 2001 to December 31, 2002 in the following task areas: Task 1: Materials Development; Task 2: Composite Development; Task 4: Reactor Design and Process Optimization; Task 8: Fuels and Engine Testing; 8.1 International Diesel Engine Program; 8.2 Nuvera Fuel Cell Program; and Task 10: Program Management. Major progress has been made towards developing high temperature, high performance, robust, oxygen transport elements. In addition, a novel reactor design has been proposed that co-produces hydrogen, lowers cost and improves system operability. Fuel and engine testing is progressing well, but wasmore » delayed somewhat due to the hiatus in program funding in 2002. The Nuvera fuel cell portion of the program was completed on schedule and delivered promising results regarding low emission fuels for transportation fuel cells. The evaluation of ultra-clean diesel fuels continues in single cylinder (SCTE) and multiple cylinder (MCTE) test rigs at International Truck and Engine. FT diesel and a BP oxygenate showed significant emissions reductions in comparison to baseline petroleum diesel fuels. Overall through the end of 2002 the program remains under budget, but behind schedule in some areas.« less

  9. Engineering microbial fuels cells: recent patents and new directions.

    PubMed

    Biffinger, Justin C; Ringeisen, Bradley R

    2008-01-01

    Fundamental research into how microbes generate electricity within microbial fuel cells (MFCs) has far outweighed the practical application and large scale development of microbial energy harvesting devices. MFCs are considered alternatives to standard commercial polymer electrolyte membrane (PEM) fuel cell technology because the fuel supply does not need to be purified, ambient operating temperatures are maintained with biologically compatible materials, and the biological catalyst is self-regenerating. The generation of electricity during wastewater treatment using MFCs may profoundly affect the approach to anaerobic treatment technologies used in wastewater treatment as a result of developing this energy harvesting technology. However, the materials and engineering designs for MFCs were identical to commercial fuel cells until 2003. Compared to commercial fuel cells, MFCs will remain underdeveloped as long as low power densities are generated from the best systems. The variety of designs for MFCs has expanded rapidly in the last five years in the literature, but the patent protection has lagged behind. This review will cover recent and important patents relating to MFC designs and progress.

  10. An Innovative Carbonate Fuel Cell Matrix, Abstract #188

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hilmi, Abdelkader; Surendranath, Arun; Yuh, Chao-Yi

    2015-05-28

    The electrolyte matrix in direct carbonate fuel cell (DFC) is a microporous ceramic structure sandwiched between the electrodes to isolate the fuel from the oxidant, store electrolyte and facilitate ionic transport. FCE has advanced DFC electrolyte matrix over the years and demonstrated that the matrix meets the requirements for greater than 5 year life based on accelerated tests and field stack operations. However, development of advanced designs and materials that can further increase the performance and extend cell life will enable accelerated MCFC deployment. This paper will report the progress on the development of an unique and innovative matrix designmore » that offers numerous benefits to the carbonate fuel cell performance and durability. In addition, this paper will also review parameters that affect matrix material stability and approaches to extend cell life.« less

  11. FY2014 Propulsion Materials R&D Annual Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The Propulsion Materials Program actively supports the energy security and reduction of greenhouse emissions goals of VTO by investigating and identifying the materials properties that are most essential for continued development of cost-effective, highly efficient, and environmentally friendly next-generation heavy and light-duty powertrains. The technical approaches available to enhance propulsion systems focus on improvements in both vehicle efficiency and fuel substitution, both of which must overcome the performance limitations of the materials currently in use. Propulsion Materials Program activities work with national laboratories, industry experts, and VTO powertrain systems (e.g., Advanced Combustion Engines [ACE], Advanced Power Electronics and Electrical Machinesmore » [APEEM], and fuels) teams to develop strategies that overcome materials limitations in future powertrain performance. The technical maturity of the portfolio of funded projects ranges from basic science to subsystem prototype validation. Projects within a Propulsion Materials Program activity address materials concerns that directly impact critical technology barriers within each of the above programs, including barriers that impact fuel efficiency, thermal management, emissions reduction, improved reliability, and reduced manufacturing costs. The program engages only the barriers that result from material property limitations and represent fundamental, high-risk materials issues.« less

  12. Highly efficient and robust cathode materials for low-temperature solid oxide fuel cells: PrBa0.5Sr0.5Co2−xFexO5+δ

    PubMed Central

    Choi, Sihyuk; Yoo, Seonyoung; Kim, Jiyoun; Park, Seonhye; Jun, Areum; Sengodan, Sivaprakash; Kim, Junyoung; Shin, Jeeyoung; Jeong, Hu Young; Choi, YongMan; Kim, Guntae; Liu, Meilin

    2013-01-01

    Solid oxide fuel cells (SOFC) are the cleanest, most efficient, and cost-effective option for direct conversion to electricity of a wide variety of fuels. While significant progress has been made in anode materials with enhanced tolerance to coking and contaminant poisoning, cathodic polarization still contributes considerably to energy loss, more so at lower operating temperatures. Here we report a synergistic effect of co-doping in a cation-ordered double-perovskite material, PrBa0.5Sr0.5Co2−xFexO5+δ, which has created pore channels that dramatically enhance oxygen ion diffusion and surface oxygen exchange while maintaining excellent compatibility and stability under operating conditions. Test cells based on these cathode materials demonstrate peak power densities ~2.2 W cm−2 at 600°C, representing an important step toward commercially viable SOFC technologies. PMID:23945630

  13. Highly efficient and robust cathode materials for low-temperature solid oxide fuel cells: PrBa0.5Sr0.5Co(2-x)Fe(x)O(5+δ).

    PubMed

    Choi, Sihyuk; Yoo, Seonyoung; Kim, Jiyoun; Park, Seonhye; Jun, Areum; Sengodan, Sivaprakash; Kim, Junyoung; Shin, Jeeyoung; Jeong, Hu Young; Choi, YongMan; Kim, Guntae; Liu, Meilin

    2013-01-01

    Solid oxide fuel cells (SOFC) are the cleanest, most efficient, and cost-effective option for direct conversion to electricity of a wide variety of fuels. While significant progress has been made in anode materials with enhanced tolerance to coking and contaminant poisoning, cathodic polarization still contributes considerably to energy loss, more so at lower operating temperatures. Here we report a synergistic effect of co-doping in a cation-ordered double-perovskite material, PrBa0.5Sr0.5Co(2-x)Fe(x)O(5+δ), which has created pore channels that dramatically enhance oxygen ion diffusion and surface oxygen exchange while maintaining excellent compatibility and stability under operating conditions. Test cells based on these cathode materials demonstrate peak power densities ~2.2 W cm(-2) at 600°C, representing an important step toward commercially viable SOFC technologies.

  14. Metals and Ceramics Division progress report for period ending December 31, 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Craig, D.F.; Weir, J.R. Jr.

    1993-04-01

    This report provides a brief overview of the activities and accomplishments of the division, whose purpose is to provide technical support, primarily in the area of high-temperature materials, for the various technologies being developed by US DOE. Activities range from basic research to industrial research and technology transfer. The division (and the report) is divided into the following: Engineering materials, high-temperature materials, materials science, ceramics, nuclear fuel materials, program activities, collaborative research facilities and technology transfer, and educational programs.

  15. Brennstoffzellen

    NASA Astrophysics Data System (ADS)

    Vielstich, W.; Iwasita, T.

    1982-08-01

    Direct conversion of chemical energy into electrical energy is a problem which has received increasing attention during the last years. Fuel-cell power plants on the basis of natural gas are in the course of demonstration, hydrogen/air cells are discussed in the electric vehicle application. Future developments will depend on the progress in electrocatalysis (e.g. the direct anodic oxidation of methanol) and in material technology as in the case of molten-carbonate fuel cells for power generation.

  16. Successes, shortcomings in using production wastes as raw material

    NASA Astrophysics Data System (ADS)

    Glushenkova, L.

    1983-10-01

    The economical and rational use of all forms of resources under modern conditions is a task of nationwide significance. Its urgency is caused by factors such as the progressively growing need for raw material, fuel, energy, and supplies, the limited and non-renewable nature of many minerals, and the difficult conditions of mining them and transporting them to where they are needed.

  17. FY-16 Technology Gap Study Technical Report: Analysis of Undissolved Anode Materials of Mark-IV Electrorefiner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, Tae-Sic; Vaden, DeeEarl; Westphal, Brian Robert

    2016-01-01

    The Experimental Breeder Reactor II (EBR-II) is a sodium cooled fast reactor developed at Argonne National Laboratory (ANL). The used fuels from the EBR-II are currently being treated in the Fuel Conditioning Facility (FCF) at the Idaho National Laboratory (INL). The Mark IV (Mk-IV) electrorefiner (ER) is a unit process in the FCF, which is primarily assigned to treating the used driver fuels. The stainless steel anode baskets hold the chopped spent driver fuel segments. During electrorefining, the anode baskets are immersed into the electrolyte and the used fuel is dissolved electrochemically. Perforated sides and bottoms allow the flow ofmore » the electrolyte into and out of the anode baskets. The steel cathode is also immersed into the electrolyte and collects the reduced products. The active metal contents in the used fuel (e.g., Cs, Sr, lanthanides, Pu, etc.) reacts with uranium cations in the electrolyte and progressively reports to the electrolyte. Noble metals are mostly retained in the cladding hulls. Varying quantities of zirconium are retained in the cladding hulls depending on the operational conditions of the Mk-IV ER. The undissolved anode materials are removed from the anode baskets and stored for subsequent metal waste form processing. These undissolved materials typically include undissolved fuels, stainless steel cladding, and adhering electrolyte. A couple of hulls are retrieved for chemical analysis and used for estimating the composition of the entire undissolved anode materials. The mass balance attempt based on this practice of estimating the undissolved anode materials has been a challenge due to inherently high sampling errors associated with heterogeneous undissolved material compositions. Responding to the prescribed challenge, this report investigates chemical analysis data as a whole and finds noticeable trends in the compositions of undissolved anode material samples with respect to the mass of the whole undissolved anode materials. Based upon this discovery, an empirical model is proposed.« less

  18. The U.S. RERTR program status and progress.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Travelli, A.

    1998-01-21

    The progress of the Reduced Enrichment Research and Test Reactor (RERTR) Program since its inception in 1978 is described. A brief summary of the results which the RERTR Program had achieved by the end of 1996 in collaboration with its many international partners is followed by a detailed review of the major events, findings, and activities of 1997. Significant progress has been made during the past year. In the area of U.S. acceptance of spent fuel from foreign research reactors, several shipments have taken place and additional are being planned. Intense fuel development activities are in progress, including procurement ofmore » equipment, screening of candidate materials, and production of microplates. Irradiation of the first series of microplates began in August 1997 in the Advanced Test Reactor, in Idaho. Progress has been made in the Russian RERTR program, which aims to develop and demonstrate within five years the technical means needed to convert Russian-supplied research reactors to LEU fuels. The study of an alternative LEU core for the FRM-II design has been extended to address, with favorable results, controversial performance issues which were raised at last year's meeting. Progress was also made on several aspects of producing molybdenum-99 from fission targets utilizing LEU instead of HEU. Various types of targets and processes are being pursued, with FDA approval of an LEU process projected to occur within two years. The feasibility of LEU Fuel conversion for three important DOE research reactors (BMRR, HFBR, and HFIR) has been evaluated by the RERTR program. In spite of the many momentous events which have occurred during the intervening years, and the excellent progress achieved, the most important challenges that the RERTR program faces today are not very different in type from those that were faced during the first RERTR meeting. Now, as then, the most important task is to develop new LEU fuels satisfying requirements which cannot be satisfied by any existing fuel. These new advanced fuels will enable conversion of the reactors which cannot be converted today, ensure better efficiency and performance for all research reactors, and allow the design of more powerful new advanced LEU reactors. As in the past, the success of the RERTR program will depend on free exchange of ideas and information, and on the international friendship and cooperation that have been a trademark of the RERTR program since its inception.« less

  19. Recent Progress in Using Advanced Characterization and Modeling Approaches to Study Radiation Effects in Oxide Ceramics

    DOE PAGES

    Bai, Xian-Ming

    2014-10-23

    I serve as a Guest Editor for the Nuclear Materials Committee of the TMS Structural Materials Division, and coordinated the topic ‘‘Radiation Effects in Oxide Ceramics and Novel LWR Fuels" for JOM in the December 2014 issue. I selected five articles related this topic. These articles talk about some recent progress of using advanced experimental and modeling tools to study radiation effects in oxide ceramics at atomistic scale and mesoscale. In this guest editor commentary article, I summarize the novel aspects of these papers and also provide some suggestions for future research directions.

  20. Deciphering the physics and chemistry of perovskites with transmission electron microscopy.

    PubMed

    Polking, Mark J

    2016-03-28

    Perovskite oxides exhibit rich structural complexity and a broad range of functional properties, including ferroelectricity, ferromagnetism, and superconductivity. The development of aberration correction for the transmission electron microscope and concurrent progress in electron spectroscopy, electron holography, and other techniques has fueled rapid progress in the understanding of the physics and chemistry of these materials. New techniques based on the transmission electron microscope are first surveyed, and the applications of these techniques for the study of the structure, chemistry, electrostatics, and dynamics of perovskite oxides are then explored in detail, with a particular focus on ferroelectric materials.

  1. Advanced biotechnology: metabolically engineered cells for the bio-based production of chemicals and fuels, materials, and health-care products.

    PubMed

    Becker, Judith; Wittmann, Christoph

    2015-03-09

    Corynebacterium glutamicum, Escherichia coli, and Saccharomyces cerevisiae in particular, have become established as important industrial workhorses in biotechnology. Recent years have seen tremendous progress in their advance into tailor-made producers, driven by the upcoming demand for sustainable processes and renewable raw materials. Here, the diversity and complexity of nature is simultaneously a challenge and a benefit. Harnessing biodiversity in the right manner through synergistic progress in systems metabolic engineering and chemical synthesis promises a future innovative bio-economy. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Transport phenomena in alkaline direct ethanol fuel cells for sustainable energy production

    NASA Astrophysics Data System (ADS)

    An, L.; Zhao, T. S.

    2017-02-01

    Alkaline direct ethanol fuel cells (DEFC), which convert the chemical energy stored in ethanol directly into electricity, are one of the most promising energy-conversion devices for portable, mobile and stationary power applications, primarily because this type of fuel cell runs on a carbon-neutral, sustainable fuel and the electrocatalytic and membrane materials that constitute the cell are relatively inexpensive. As a result, the alkaline DEFC technology has undergone a rapid progress over the last decade. This article provides a comprehensive review of transport phenomena of various species in this fuel cell system. The past investigations into how the design and structural parameters of membrane electrode assemblies and the operating parameters affect the fuel cell performance are discussed. In addition, future perspectives and challenges with regard to transport phenomena in this fuel cell system are also highlighted.

  3. Progress in hydrogen energy; Proceedings of the National Workshop on Hydrogen Energy, New Delhi, India, July 4-6, 1985

    NASA Astrophysics Data System (ADS)

    Dahiya, R. P.

    1987-06-01

    The present conference on the development status of hydrogen energy technologies considers electrolytic hydrogen production, photoelectrolytic hydrogen production, microorganic hydrogen production, OTEC hydrogen production, solid-state materials for hydrogen storage, and a thin-film hydrogen storage system. Also discussed are the cryogenic storage of hydrogen; liquid hydrogen fuel for ground, air, and naval vehicles; hydrogen-fuel internal combustion engines; the use of hydrogen for domestic, commercial, and industrial applications; hydrogen fuel-cell development; enzyme electrodes for the use of hydrogen-rich fuels in biochemical fuel cells; an analysis of H2-O2 MHD generators; and hydrogen energy technology characterization and evaluation on the basis of an input-output structure.

  4. Progress Towards Environmentally Friendlier Automobiles

    NASA Astrophysics Data System (ADS)

    Culver, Robert

    2002-03-01

    The United States Council for Automotive Research (USCAR), the umbrella organization of DaimlerChrysler, Ford, and General Motors, has been conducting pre-competitive research in the areas of improving fuel efficiency and reducing tailpipe emissions. One of the major collaborations is with the U.S. Government in the Partnership for a New Generation of Vehicles (PNGV). The USCAR/PNGV technology portfolio includes lightweight materials, improved conventional internal combustion engine systems, electric traction and hybridization, and fuel cells. Significant progress has been made in developing these technologies and marketing them through today’s vehicles. New product announcements of hybrids demonstrate the commitment of the industry to bring the new technologies to market. Yet, breakthroughs and innovations will be required before many of the technologies can fully realize their promise. In addition, government policies and programs will be required to promote market acceptance and ensure an infrastructure to provide new fuels.

  5. Pebble bed modular reactor safeguards: developing new approaches and implementing safeguards by design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beyer, Brian David; Beddingfield, David H; Durst, Philip

    2010-01-01

    The design of the Pebble Bed Modular Reactor (PBMR) does not fit or seem appropriate to the IAEA safeguards approach under the categories of light water reactor (LWR), on-load refueled reactor (OLR, i.e. CANDU), or Other (prismatic HTGR) because the fuel is in a bulk form, rather than discrete items. Because the nuclear fuel is a collection of nuclear material inserted in tennis-ball sized spheres containing structural and moderating material and a PBMR core will contain a bulk load on the order of 500,000 spheres, it could be classified as a 'Bulk-Fuel Reactor.' Hence, the IAEA should develop unique safeguardsmore » criteria. In a multi-lab DOE study, it was found that an optimized blend of: (i) developing techniques to verify the plutonium content in spent fuel pebbles, (ii) improving burn-up computer codes for PBMR spent fuel to provide better understanding of the core and spent fuel makeup, and (iii) utilizing bulk verification techniques for PBMR spent fuel storage bins should be combined with the historic IAEA and South African approaches of containment and surveillance to verify and maintain continuity of knowledge of PBMR fuel. For all of these techniques to work the design of the reactor will need to accommodate safeguards and material accountancy measures to a far greater extent than has thus far been the case. The implementation of Safeguards-by-Design as the PBMR design progresses provides an approach to meets these safeguards and accountancy needs.« less

  6. FY2017 Materials Annual Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Felix; Gibbs, Jerry; Kleinbaum, Sarah

    The Materials Technology subprogram supports the Vehicle Technology Office’s mission to help consumers and businesses reduce their transportation energy costs while meeting or exceeding vehicle performance expectations. The Propulsion Materials research portfolio seeks to develop higher performance materials that can withstand increasingly extreme environments and address the future properties needs of a variety of high efficiency powertrain types, sizes, fueling concepts, and combustion modes. Advanced Lightweight Materials research enables improvements in fuel economy by providing properties that are equal to or better than traditional materials at a lower weight. Because it takes less energy to accelerate a lighter object, replacingmore » cast iron and traditional steel components with lightweight materials such as high-strength steel, magnesium (Mg), aluminum (Al), and polymer composites can directly reduce a vehicle’s fuel consumption. Materials technology activities focus on the following cost and performance targets: (1) enable a 25 percent weight reduction for light-duty vehicles including body, chassis, and interior as compared to a 2012 baseline at no more than a $5/lb-saved increase in cost; and (2) validate a 25 percent improvement in high temperature (300°C) component strength relative to components made with 2010 baseline cast Al alloys (A319 or A356) for improved efficiency light-duty engines.« less

  7. Progress In Developing Laser Based Post Irradiation Examination Infrastructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, James A.; Scott, Clark L.; Benefiel, Brad C.

    To be able to understand the performance of reactor fuels and materials, irradiated materials must be characterized effectively and efficiently in a high rad environment. The characterization work must be performed remotely and in an environment hostile to instrumentation. Laser based characterization techniques provide the ability to be remote and robust in a hot-cell environment. Laser based instrumentation also can provide high spatial resolution suitable for scanning and imaging large areas. The INL is currently developing three laser based Post Irradiation Examination (PIE) stations for the Hot Fuel Examination Facility at the INL. These laser based systems will characterize irradiatedmore » materials and fuels. The characterization systems are the following: Laser Shock Laser based ultrasonic C-scan system Gas Assay, Sample, and Recharge system (GASR, up-grade to an existing system). The laser shock technique will characterize material properties and failure loads/mechanisms in various materials such as LWR fuel, plate fuel, and next generation fuel forms, for PIE in high radiation areas. The laser shock-technique induces large amplitude shock waves to mechanically characterize interfaces such as the fuel-clad bond. The shock wave travels as a compression wave through the material to the free (unconfined) back surface and reflects back through the material under test as a rarefaction (tensile) wave. This rarefaction wave is the physical mechanism that produces internal de-lamination failure. As part of the laser shock system, a laser-based ultrasonic C-scan system will be used to detect and characterize debonding caused by the laser shock technique. The laser ultrasonic system will be fully capable of performing classical non-destructive evaluation testing and imaging functions such as microstructure characterization, flaw detection and dimensional metrology in complex components. The purpose of the GASR is to measure the pressure/volume of the plenum of an irradiated fuel element and obtain fission gas samples for analysis. The study of pressure and volume in the plenum of an irradiated fuel element and the analysis of fission gases released from the fuel is important to understanding the performance of reactor fuels and materials. This system may also be used to measure the pressure/volume of other components (such as control blades) and obtain gas samples from these components for analysis. The main function of the laser in this application is to puncture the fuel element to allow the fission gas to escape and if necessary to weld the spot close. The GASR station will have the inherent capability to perform cutting welding and joining functions within a hot-cell.« less

  8. Global threat reduction initiative Russian nuclear material removal progress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cummins, Kelly; Bolshinsky, Igor

    2008-07-15

    In December 1999 representatives from the United States, the Russian Federation, and the International Atomic Energy Agency (IAEA) started discussing a program to return to Russia Soviet- or Russian-supplied highly enriched uranium (HEU) fuel stored at the Russian-designed research reactors outside Russia. Trilateral discussions among the United States, Russian Federation, and the International Atomic Energy Agency (IAEA) have identified more than 20 research reactors in 17 countries that have Soviet- or Russian-supplied HEU fuel. The Global Threat Reduction Initiative's Russian Research Reactor Fuel Return Program is an important aspect of the U.S. Government's commitment to cooperate with the other nationsmore » to prevent the proliferation of nuclear weapons and weapons-usable proliferation-attractive nuclear materials. To date, 496 kilograms of Russian-origin HEU have been shipped to Russia from Serbia, Latvia, Libya, Uzbekistan, Romania, Bulgaria, Poland, Germany, and the Czech Republic. The pilot spent fuel shipment from Uzbekistan to Russia was completed in April 2006. (author)« less

  9. Current Challenges for HTCMC Aero-Propulsion Components

    NASA Technical Reports Server (NTRS)

    DiCarlo, James A.; Bansal, Narottam P.

    2007-01-01

    In comparison to the best metallic materials, HTCMC aero-propulsion engine components offer the opportunity of reduced weight and higher temperature operation, with corresponding improvements in engine cooling requirements, emissions, thrust, and specific fuel consumption. Although much progress has been made in the development of advanced HTCMC constituent materials and processes, major challenges still remain for their implementation into these components. The objectives of this presentation are to briefly review (1) potential HTCMC aero-propulsion components and their generic material performance requirements, (2) recent progress at NASA and elsewhere concerning advanced constituents and processes for meeting these requirements, (3) key HTCMC component implementation challenges that are currently being encountered, and (4) on-going activities within the new NASA Fundamental Aeronautics Program that are addressing these challenges.

  10. Current status of Westinghouse tubular solid oxide fuel cell program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, W.G.

    1996-04-01

    In the last ten years the solid oxide fuel cell (SOFC) development program at Westinghouse has evolved from a focus on basic material science to the engineering of fully integrated electric power systems. Our endurance for this cell is 5 to 10 years. To date we have successfully operated at power for over six years. For power plants it is our goal to have operated before the end of this decade a MW class power plant. Progress toward these goals is described.

  11. Alkaline polymer electrolyte membranes for fuel cell applications.

    PubMed

    Wang, Yan-Jie; Qiao, Jinli; Baker, Ryan; Zhang, Jiujun

    2013-07-07

    In this review, we examine the most recent progress and research trends in the area of alkaline polymer electrolyte membrane (PEM) development in terms of material selection, synthesis, characterization, and theoretical approach, as well as their fabrication into alkaline PEM-based membrane electrode assemblies (MEAs) and the corresponding performance/durability in alkaline polymer electrolyte membrane fuel cells (PEMFCs). Respective advantages and challenges are also reviewed. To overcome challenges hindering alkaline PEM technology advancement and commercialization, several research directions are then proposed.

  12. Recent advances in nanostructured Nb-based oxides for electrochemical energy storage

    NASA Astrophysics Data System (ADS)

    Yan, Litao; Rui, Xianhong; Chen, Gen; Xu, Weichuan; Zou, Guifu; Luo, Hongmei

    2016-04-01

    For the past five years, nanostructured niobium-based oxides have emerged as one of the most prominent materials for batteries, supercapacitors, and fuel cell technologies, for instance, TiNb2O7 as an anode for lithium-ion batteries (LIBs), Nb2O5 as an electrode for supercapacitors (SCs), and niobium-based oxides as chemically stable electrochemical supports for fuel cells. Their high potential window can prevent the formation of lithium dendrites, and their rich redox chemistry (Nb5+/Nb4+, Nb4+/Nb3+) makes them very promising electrode materials. Their unique chemical stability under acid conditions is favorable for practical fuel-cell operation. In this review, we summarized recent progress made concerning the use of niobium-based oxides as electrodes for batteries (LIBs, sodium-ion batteries (SIBs), and vanadium redox flow batteries (VRBs)), SCs, and fuel cell applications. Moreover, crystal structures, charge storage mechanisms in different crystal structures, and electrochemical performances in terms of the specific capacitance/capacity, rate capability, and cycling stability of niobium-based oxides are discussed. Insights into the future research and development of niobium-based oxide compounds for next-generation electrochemical devices are also presented. We believe that this review will be beneficial for research scientists and graduate students who are searching for promising electrode materials for batteries, SCs, and fuel cells.

  13. Recent advances in nanostructured Nb-based oxides for electrochemical energy storage.

    PubMed

    Yan, Litao; Rui, Xianhong; Chen, Gen; Xu, Weichuan; Zou, Guifu; Luo, Hongmei

    2016-04-28

    For the past five years, nanostructured niobium-based oxides have emerged as one of the most prominent materials for batteries, supercapacitors, and fuel cell technologies, for instance, TiNb2O7 as an anode for lithium-ion batteries (LIBs), Nb2O5 as an electrode for supercapacitors (SCs), and niobium-based oxides as chemically stable electrochemical supports for fuel cells. Their high potential window can prevent the formation of lithium dendrites, and their rich redox chemistry (Nb(5+)/Nb(4+), Nb(4+)/Nb(3+)) makes them very promising electrode materials. Their unique chemical stability under acid conditions is favorable for practical fuel-cell operation. In this review, we summarized recent progress made concerning the use of niobium-based oxides as electrodes for batteries (LIBs, sodium-ion batteries (SIBs), and vanadium redox flow batteries (VRBs)), SCs, and fuel cell applications. Moreover, crystal structures, charge storage mechanisms in different crystal structures, and electrochemical performances in terms of the specific capacitance/capacity, rate capability, and cycling stability of niobium-based oxides are discussed. Insights into the future research and development of niobium-based oxide compounds for next-generation electrochemical devices are also presented. We believe that this review will be beneficial for research scientists and graduate students who are searching for promising electrode materials for batteries, SCs, and fuel cells.

  14. Conversion of cellulosic wastes to liquid hydrocarbon fuels. Progress report, January-February 1981

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuester, J.L.

    1981-01-01

    The following materials were processed thru gasification: sugarcane bagasse, smooth sumac, coralberry, wild bergamot, pokeweed, cornstarch, Portugese oak cork and hog fuel. A data summary is given. The high H/sub 2//CO ratio at low temperature for pokeweed is of significance (>T, >H/sub 2/). Also the high olefin content of Portugese oak cork (commercial cork) is of major interest. The most promising feedstock to date with regard to synthesis gas composition has been guayule cork. A comparison of data for the two cork materials is given. A detailed breakdown for corn starch is given revealing an exceptionally high methane content (35.50more » mole %). (MHR)« less

  15. Industrial energy-efficiency improvement program

    NASA Astrophysics Data System (ADS)

    1980-12-01

    The industrial energy efficiency improvement program to accelerate market penetration of new and emerging industrial technologies is described. Practices which will improve energy efficiency, encourage substitution of more plentiful domestic fuels, and enhance recovery of energy and materials from industrial waste streams are enumerated. Specific reports from the chemicals and allied products; primary metals; petroleum and coal products; stone, clay, and glass, paper and allied products; food and kindred products; fabricated metals; transportation equipment; machinery (except electrical); textile mill products; rubber and miscellaneous plastics; electrical and electronic equipment; lumber and wood; and tobacco products are discussed. A summary on progress in the utilization of recovered materials, and an analysis of industrial fuel mix is presented.

  16. History of Resistance Welding Oxide Dispersion Strengthened Cladding and other High Temperature Materials at Center for Advanced Energy Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larry Zirker; Nathan Jerred; Dr. Indrajit Charit

    2012-03-01

    Research proposal 08-1079, 'A Comparative Study of Welded ODS Cladding Materials for AFCI/GNEP,' was funded in 2008 under an Advanced Fuel Cycle Initiative (AFCI) Research and Development Funding Opportunity, number DE-PS07-08ID14906. Th proposal sought to conduct research on joining oxide dispersion strengthen (ODS) tubing material to a solid end plug. This document summarizes the scientific and technical progress achieved during the project, which ran from 2008 to 2011.

  17. Microbial fuel cells: recent developments in design and materials

    NASA Astrophysics Data System (ADS)

    Bhargavi, G.; Venu, V.; Renganathan, S.

    2018-03-01

    Microbial Fuel Cells (MFCs) are the promising devices which can produce electricity by anaerobic fermentation of organic / inorganic matter from easily metabolized biomass to complex wastewater using microbes as biocatalysts. MFC technology has been found as a potential technology for electricity generation and concomitant wastewater treatment. However, the high cost of the components and low efficiency are barricading the commercialization of MFC when compared with other energy generating systems. The performance of an MFC is largely relying on the reactor design and electrode materials. On the way to improve the efficiency of an MFC, tremendous exercises have been carried out to explore new electrode materials and reactor designs in recent decades. The current review is excogitated to amass the progress in design and electrode materials, which could bolster further investigations on MFCs to improve their performance, mitigate the cost and successful implementation of technology in field applications as well.

  18. Development of Nano-crystalline Doped-Ceramic Enabled Fiber Sensors for High Temperature In-Situ Monitoring of Fossil Fuel Gases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Hai; Dong, Junhang; Lin, Jerry

    2012-03-01

    This is a final technical report for the first project year from July 1, 2005 to Jan 31, 2012 for DoE/NETL funded project DE-FC26-05NT42439: Development of Nanocrystalline Doped-Ceramic Enabled Fiber Sensors for High Temperature In-Situ Monitoring of Fossil Fuel Gases. This report summarizes the technical progresses and achievements towards the development of novel nanocrystalline doped ceramic material-enabled optical fiber sensors for in situ and real time monitoring the gas composition of flue or hot gas streams involved in fossil-fuel based power generation and hydrogen production.

  19. Solid electrolyte fuel cells

    NASA Astrophysics Data System (ADS)

    Isaacs, H. S.

    Progress in the development of functioning solid electrolyte fuel cells is summarized. The solid electrolyte cells perform at 1000 C, a temperature elevated enough to indicate high efficiencies are available, especially if the cell is combined with a steam generator/turbine system. The system is noted to be sulfur tolerant, so coal containing significant amounts of sulfur is expected to yield satisfactory performances with low parasitic losses for gasification and purification. Solid oxide systems are electrically reversible, and are usable in both fuel cell and electrolysis modes. Employing zirconium and yttrium in the electrolyte provides component stability with time, a feature not present with other fuel cells. The chemical reactions producing the cell current are reviewed, along with materials choices for the cathodes, anodes, and interconnections.

  20. Development of Advanced Ods Ferritic Steels for Fast Reactor Fuel Cladding

    NASA Astrophysics Data System (ADS)

    Ukai, S.; Oono, N.; Ohtsuka, S.; Kaito, T.

    Recent progress of the 9CrODS steel development is presented focusing on their microstructure control to improve sufficient high-temperature strength as well as cladding manufacturing capability. The martensitic 9CrODS steel is primarily candidate cladding materials for the Generation IV fast reactor fuel. They are the attractive composite-like materials consisting of the hard residual ferrite and soft tempered martensite, which are able to be easily controlled by α-γ phase transformation. The residual ferrite containing extremely nanosized oxide particles leads to significantly improved creep rupture strength in 9CrODS cladding. The creep strength stability at extended time of 60,000 h at 700 ºC is ascribed to the stable nanosized oxide particles. It was also reviewed that 9CrODS steel has well irradiation stability and fuel pin irradiation test was conducted up to 12 at% burnup and 51 dpa at the cladding temperature of 700ºC.

  1. Highlights of Recent Progress in Plant Lipid Research

    USDA-ARS?s Scientific Manuscript database

    Raw fossil material reserves are not inexhaustible and as prices continue to raise it is necessary to find new sources of alternative and renewable energy. Oils from oleaginous field crops (sunflower and rape) with properties close to those of fossil fuel could constitute an alternative source of en...

  2. Energy Conversion and Storage Program

    NASA Astrophysics Data System (ADS)

    Cairns, E. J.

    1993-06-01

    This report is the 1992 annual progress report for the Energy Conversion and Storage Program, a part of the Energy and Environment Division of the Lawrence Berkeley Laboratory. Work described falls into three broad areas: electrochemistry; chemical applications; and materials applications. The Energy Conversion and Storage Program applies principles of chemistry and materials science to solve problems in several areas: (1) production of new synthetic fuels, (2) development of high-performance rechargeable batteries and fuel cells, (3) development of advanced thermochemical processes for energy conversion, (4) characterization of complex chemical processes and chemical species, and (5) study and application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis. Electrochemistry research aims to develop advanced power systems for electric vehicle and stationary energy storage applications. Chemical applications research includes topics such as separations, catalysis, fuels, and chemical analyses. Included in this program area are projects to develop improved, energy-efficient methods for processing product and waste streams from synfuel plants, coal gasifiers, and biomass conversion processes. Materials applications research includes evaluation of the properties of advanced materials, as well as development of novel preparation techniques. For example, techniques such as sputtering, laser ablation, and poised laser deposition are being used to produce high-temperature superconducting films.

  3. Annual progress report on the NSRR experiments, (21)

    NASA Astrophysics Data System (ADS)

    1992-05-01

    Fuel behavior studies under simulated reactivity-initiated accident (RIA) conditions have been performed in the Nuclear Safety Research Reactor (NSRR) since 1975. This report gives the results of experiments performed from April, 1989 through March, 1990 and discussions of them. A total of 41 tests were carried out during this period. The tests are distinguished into pre-irradiated fuel tests and fresh fuel tests; the former includes 2 JMTR pre-irradiated fuel tests, 2 PWR pre-irradiated fuel tests, and 2 BWR pre-irradiated fuel tests, and the latter includes 6 standard fuel tests (6 SP(center dot)CP scoping tests), 7 power and cooling condition parameter tests (4 flow shrouded fuel tests, 1 bundle simulation test, 1 fully water-filled vessel test, 1 high pressure/high temperature loop test), 12 special fuel tests (3 stainless steel clad fuel tests, 3 improved PWR fuel tests, 6 improved BWR fuel tests), 3 severe fuel damage tests (1 high temperature flooding test, 1 flooding behavior observation test, 1 debris coolability test), 3 fast breeder reactor fuel tests (2 moderator material characteristic measurement tests, 1 fuel behavior observation test), and 2 miscellaneous tests (2 preliminary tests for pre-irradiated fuel tests).

  4. NASA/DOE automotive Stirling engine project: Overview 1986

    NASA Technical Reports Server (NTRS)

    Beremand, D. G.; Shaltens, R. K.

    1986-01-01

    The DOE/NASA Automotive Stirling Engine Project is reviewed and its technical progress and status are presented. Key technologies in materials, seals, and piston rings are progressing well. Seven first-generation engines, and modifications thereto, have accumulated over 15,000 hr of test time, including 1100hr of in-vehicle testing. Results indicate good progress toward the program goals. The first second-generation engine is now undergoing initial testing. It is expected that the program goal of a 30-percent improvement in fuel economy will be achieved in tests of a second-generation engine in a Celebrity vehicle.

  5. DOE/NASA automotive Stirling engine project - Overview 86

    NASA Technical Reports Server (NTRS)

    Beremand, D. G.; Shaltens, R. K.

    1986-01-01

    The DOE/NASA Automotive Stirling Engine Project is reviewed and its technical progress and status are presented. Key technologies in materials, seals, and piston rings are progressing well. Seven first-generation engines, and modifications thereto, have accumulated over 15,000 hr of test time, including 1100 hr of in-vehicle testing. Results indicate good progress toward the program goals. The first second-generation engine is now undergoing initial testing. It is expected that the program goal of a 30-percent improvement in fuel economy will be achieved in tests of a second-generation engine in a Celebrity vehicle.

  6. Progress in the Development of Oxygen Reduction Reaction Catalysts for Low-Temperature Fuel Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Dongguo; Lv, Haifeng; Kang, Yijin

    2016-04-06

    In this paper, we present a brief summary on the most recent progress in the design of catalysts for electrochemical reduction of oxygen. The main challenge in the wide spread of fuel cell technology is to lower the content of, or even eliminate, Pt and other precious metals in catalysts without sacrificing their performance. Pt-based nanosized catalysts with novel and refined architectures continue to dominate in catalytic performance, and formation of Pt-skin-like surfaces is key to achieving the highest values in activity. Moreover, durability has also been improved in Pt-based systems with addition of Au, which plays an important rolemore » in stabilizing the Pt topmost layers against dissolution. However, various carbon-based materials without precious metal have shown improvement in activity and durability and have been explored to serve as catalyst supports. Finally, understanding how the doped elements interact with each other and/or carbon is challenging and necessary in the design of robust fuel cell catalysts.« less

  7. JHR Project: a future Material Testing Reactor working as an International user Facility: The key-role of instrumentation in support to the development of modern experimental capacity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bignan, G.; Gonnier, C.; Lyoussi, A.

    2015-07-01

    Research and development on fuel and material behaviour under irradiation is a key issue for sustainable nuclear energy in order to meet specific needs by keeping the best level of safety. These needs mainly deal with a constant improvement of performances and safety in order to optimize the fuel cycle and hence to reach nuclear energy sustainable objectives. A sustainable nuclear energy requires a high level of performances in order to meet specific needs such as: - Pursuing improvement of the performances and safety of present and coming water cooled reactor technologies. This will require a continuous R and Dmore » support following a long-term trend driven by the plant life management, safety demonstration, flexibility and economics improvement. Experimental irradiations of structure materials are necessary to anticipate these material behaviours and will contribute to their optimisation. - Upgrading continuously nuclear fuel technology in present and future nuclear power plants to achieve better performances and to optimise the fuel cycle keeping the best level of safety. Fuel evolution for generation II, III and III+ is a key stake requiring developments, qualification tests and safety experiments to ensure the competitiveness and safety: experimental tests exploring the full range of fuel behaviour determine fuel stability limits and safety margins, as a major input for the fuel reliability analysis. To perform such accurate and innovative progress and developments, specific and ad hoc instrumentation, irradiation devices, measurement methods are necessary to be set up inside or beside the material testing reactor (MTR) core. These experiments require beforehand in situ and on line sophisticated measurements to accurately determine different key parameters such as thermal and fast neutron fluxes and nuclear heating in order to precisely monitor and control the conducted assays. The new Material Testing Reactor JHR (Jules Horowitz Reactor) currently under construction at CEA Cadarache research centre in the south of France will represent a major Research Infrastructure for scientific studies regarding material and fuel behavior under irradiation. It will also be devoted to medical isotopes production. Hence JHR will offer a real opportunity to perform R and D programs regarding needs above and hence will crucially contribute to the selection, optimization and qualification of these innovative materials and fuels. The JHR reactor objectives, principles and main characteristics associated to specific experimental devices associated to measurement techniques and methodology, their performances, their limitations and field of applications will be presented and discussed. (authors)« less

  8. Fossil energy program

    NASA Astrophysics Data System (ADS)

    McNeese, L. E.

    1981-12-01

    The progress made during the period from July 1 through September 30 for the Oak Ridge National Laboratory research and development projects in support of the increased utilization of coal and other fossil fuels as sources of clean energy is reported. The following topics are discussed: coal conversion development, chemical research and development, materials technology, fossil energy materials program, liquefaction projects, component development, process analysis, environmental control technology, atmospheric fluidized bed combustion, underground coal gasification, coal preparation and waste utilization.

  9. Draft report: Results of stainless steel canister corrosion studies and environmental sample investigations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryan, Charles R.; Enos, David

    2014-09-01

    This progress report describes work being done at Sandia National Laboratories (SNL) to assess the localized corrosion performance of container/cask materials used in the interim storage of used nuclear fuel. The work involves both characterization of the potential physical and chemical environment on the surface of the storage canisters and how it might evolve through time, and testing to evaluate performance of the canister materials under anticipated storage conditions.

  10. Recent progress in solution plasma-synthesized-carbon-supported catalysts for energy conversion systems

    NASA Astrophysics Data System (ADS)

    Lun Li, Oi; Lee, Hoonseung; Ishizaki, Takahiro

    2018-01-01

    Carbon-based materials have been widely utilized as the electrode materials in energy conversion and storage technologies, such as fuel cells and metal-air batteries. In these systems, the oxygen reduction reaction is an important step that determines the overall performance. A novel synthesis route, named the solution plasma process, has been recently utilized to synthesize various types of metal-based and heteroatom-doped carbon catalysts. In this review, we summarize cutting-edge technologies involving the synthesis and modeling of carbon-supported catalysts synthesized via solution plasma process, followed by current progress on the electrocatalytic performance of these catalysts. This review provides the fundamental and state-of-the-art performance of solution-plasma-synthesized electrode materials, as well as the remaining scientific and technological challenges for this process.

  11. Planning and supervision of reactor defueling using discrete event techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia, H.E.; Imel, G.R.; Houshyar, A.

    1995-12-31

    New fuel handling and conditioning activities for the defueling of the Experimental Breeder Reactor II are being performed at Argonne National Laboratory. Research is being conducted to investigate the use of discrete event simulation, analysis, and optimization techniques to plan, supervise, and perform these activities in such a way that productivity can be improved. The central idea is to characterize this defueling operation as a collection of interconnected serving cells, and then apply operational research techniques to identify appropriate planning schedules for given scenarios. In addition, a supervisory system is being developed to provide personnel with on-line information on themore » progress of fueling tasks and to suggest courses of action to accommodate changing operational conditions. This paper provides an introduction to the research in progress at ANL. In particular, it briefly describes the fuel handling configuration for reactor defueling at ANL, presenting the flow of material from the reactor grid to the interim storage location, and the expected contributions of this work. As an example of the studies being conducted for planning and supervision of fuel handling activities at ANL, an application of discrete event simulation techniques to evaluate different fuel cask transfer strategies is given at the end of the paper.« less

  12. Functional mesoporous materials for energy applications: solar cells, fuel cells, and batteries

    NASA Astrophysics Data System (ADS)

    Ye, Youngjin; Jo, Changshin; Jeong, Inyoung; Lee, Jinwoo

    2013-05-01

    This feature article presents recent progress made in the synthesis of functional ordered mesoporous materials and their application as high performance electrodes in dye-sensitized solar cells (DSCs) and quantum dot-sensitized solar cells (QDSCs), fuel cells, and Li-ion batteries. Ordered mesoporous materials have been mainly synthesized using two representative synthetic methods: the soft template and hard template methods. To overcome the limitations of these two methods, a new method called CASH was suggested. The CASH method combines the advantages of the soft and hard template methods by employing a diblock copolymer, PI-b-PEO, which contains a hydrophilic block and an sp2-hybridized-carbon-containing hydrophobic block as a structure-directing agent. After discussing general techniques used in the synthesis of mesoporous materials, this article presents recent applications of mesoporous materials as electrodes in DSCs and QDSCs, fuel cells, and Li-ion batteries. The role of material properties and mesostructures in device performance is discussed in each case. The developed soft and hard template methods, along with the CASH method, allow control of the pore size, wall composition, and pore structure, providing insight into material design and optimization for better electrode performances in these types of energy conversion devices. This paper concludes with an outlook on future research directions to enable breakthroughs and overcome current limitations in this field.

  13. Functional mesoporous materials for energy applications: solar cells, fuel cells, and batteries.

    PubMed

    Ye, Youngjin; Jo, Changshin; Jeong, Inyoung; Lee, Jinwoo

    2013-06-07

    This feature article presents recent progress made in the synthesis of functional ordered mesoporous materials and their application as high performance electrodes in dye-sensitized solar cells (DSCs) and quantum dot-sensitized solar cells (QDSCs), fuel cells, and Li-ion batteries. Ordered mesoporous materials have been mainly synthesized using two representative synthetic methods: the soft template and hard template methods. To overcome the limitations of these two methods, a new method called CASH was suggested. The CASH method combines the advantages of the soft and hard template methods by employing a diblock copolymer, PI-b-PEO, which contains a hydrophilic block and an sp(2)-hybridized-carbon-containing hydrophobic block as a structure-directing agent. After discussing general techniques used in the synthesis of mesoporous materials, this article presents recent applications of mesoporous materials as electrodes in DSCs and QDSCs, fuel cells, and Li-ion batteries. The role of material properties and mesostructures in device performance is discussed in each case. The developed soft and hard template methods, along with the CASH method, allow control of the pore size, wall composition, and pore structure, providing insight into material design and optimization for better electrode performances in these types of energy conversion devices. This paper concludes with an outlook on future research directions to enable breakthroughs and overcome current limitations in this field.

  14. Advanced Fuels Campaign 2016 Accomplishments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richardson, Kate M.

    AFC management and integration activities in FY-16 included continued support for international collaborations, primarily with France, Japan, the European Union, Republic of Korea, and China, as well as various working group and expert group activities in the Organization for Economic Cooperation and Development Nuclear Energy Agency (OECD-NEA) and the International Atomic Energy Agency (IAEA). Three industry-led Funding Opportunity Announcements (FOAs) and two university-led Integrated Research Projects (IRPs) funded in 2013, made significant progress in fuels and materials development. All are closely integrated with AFC and accident-tolerant fuels (ATF) research. Accomplishments made during FY-16 are highlighted in this report, which focusesmore » on completed work and results.« less

  15. Graphene-based materials for energy conversion.

    PubMed

    Sahoo, Nanda Gopal; Pan, Yongzheng; Li, Lin; Chan, Siew Hwa

    2012-08-08

    With the depletion of conventional energy sources, the demand for renewable energy and energy-efficient devices continues to grow. As a novel 2D nanomaterial, graphene attracts considerable research interest due to its unique properties and is a promising material for applications in energy conversion and storage devices. Recently, the fabrication of fuel cells and solar cells using graphene for various functional parts has been studied extensively. This research news summarizes and compares the advancements that have been made and are in progress in the utilization of graphene-based materials for energy conversion.

  16. Development of a Microchannel High Temperature Recuperator for Fuel Cell Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lukas, Michael

    This report summarizes the progress made in development of microchannel recuperators for high temperature fuel cell/turbine hybrid systems for generation of clean power at very high efficiencies. Both Solid Oxide Fuel Cell/Turbine (SOFC/T) and Direct FuelCell/Turbine (DFC/T) systems employ an indirectly heated Turbine Generator to supplement fuel cell generated power. The concept extends the high efficiency of the fuel cell by utilizing the fuel cell’s byproduct heat in a Brayton cycle. Features of the SOFC/T and DFC/T systems include: electrical efficiencies of up to 65% on natural gas, minimal emissions, reduced carbon dioxide release to the environment, simplicity in design,more » and potential cost competitiveness with existing combined cycle power plants. Project work consisted of candidate material selection from FuelCell Energy (FCE) and Pacific Northwest National Laboratory (PNNL) institutional databases as well as from industrial and academic literature. Candidate materials were then downselected and actual samples were tested under representative environmental conditions resulting in further downselection. A microchannel thermal-mechanical model was developed to calculate overall device cost to be later used in developing a final Tier 1 material candidate list. Specifications and operating conditions were developed for both SOFC/T and DFC/T systems. This development included system conceptualization and progression to process flow diagrams (PFD’s) including all major equipment. Material and energy balances were then developed for the two types of systems which were then used for extensive sensitivity studies that used high temperature recuperator (HTR) design parameters (e.g., operating temperature) as inputs and calculated overall system parameters (e.g., system efficiency). The results of the sensitivity studies determined the final HTR design temperatures, pressure drops, and gas compositions. The results also established operating conditions and specifications for all equipment in the SOFC/T and DFC/T systems. Capital cost and Cost of Electricity (COE) sensitivity analyses have been completed for MW-scale SOFC/T and DFC/T systems. Environmental testing consisted of 1000-hour and 2000-hour dry air oxidation testing on leading candidate materials, used to rank order and, in part, develop a final Tier 1 material candidate list. A thermal-mechanical model was subsequently used to provide material and manufacturing cost estimations for microchannel HTR’s to further refine the Tier 1 candidates. A capital cost and 20-year levelized cost of electricity (COE) was developed for a MW-scale version of the SOFC/T system concept as well as for a MW-scale version of the DFC/T system concept. Test frameworks were established for subsequent long-term materials stability testing, including oxidation resistance and mechanical strength. Mechanical strength testing was then carried out by a third-party test laboratory. Technology demonstration vehicles (TDV’s) were designed and fabricated. Several iterations of TDV’s were fabricated, each improved over the previous build as far as fabrication techniques. Two of three fabricated TDV’s were integrated with the TDV Test Facility for hot-testing at simulated operating conditions. The second of these two was successfully hot-tested for over 1000 hours at simulated temperature and pressure. Post-test leakdown assessment showed negligible leakage at benchtop conditions of 30 psig, a considerable improvement over the previous TDV’s.« less

  17. Webinar May 17: Fuel Cell Electric Bus Progress Toward Meeting Technical

    Science.gov Websites

    Targets | News | NREL Webinar May 17: Fuel Cell Electric Bus Progress toward Meeting Technical Targets Webinar May 17: Fuel Cell Electric Bus Progress toward Meeting Technical Targets May 14, 2018 The U.S. Department of Energy's (DOE's) Fuel Cell Technologies Office will present a live webinar titled

  18. Report On Design And Preliminary Data Of Halden In-Pile Creep Rig

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terrani, Kurt A; Karlsen, T. M.; Yamamoto, Yukinori

    2015-09-01

    A set of in-pile creep tests is ongoing in the Halden reactor on ORNL’s candidate accident tolerant fuel cladding materials. These tests are meant to provide essential material property information that is needed for an informed analysis of these fuel concepts under normal operating conditions. These tests provide detailed information regarding swelling, thermal creep, and irradiation creep rates of these materials. The results to date have been compared with the limited set of information available in literature that is form irradiation tests in other reactors or out-of-pile tests. Most of the results are in good agreement with prior literature, exceptmore » for irradiation creep rate of SiC. To elucidate the difference between the HFIR and Halden test results continued testing is necessary. The tests describe in this progress report are ongoing and will continue for at least another year.« less

  19. The Development of Boiler Pipes Used for 700°C A-USC-PP in China

    NASA Astrophysics Data System (ADS)

    Liu, Zhengdong; Bao, Hansheng; Xu, Songqian; Wang, Qijiang; Yang, Yujun; Zhang, Peng; Lei, Bingwang

    This paper introduces the progress of boiler pipes used for the manufacturing of 700°C advanced ultra-super-critical (A-USC) fossil fuel power plants (PP) in China, with the emphasis on the detailed advancements of G115 and CN617 pipes, including technical exploration, industrial production and microstructure-property investigation. G115 is a novel ferritic heat resistant steels developed by CISRI, which is an impressive candidate material to make pipes for the temperature up to 650°C. CN617 is a recent modification of Inconel617B and the CN617 pipe with the dimension of Φ 460 × 80 mm was successfully manufactured in China. Some newly available data associated with above materials will be released. G115 and CN617 are imposing candidate materials for the manufacturing of 700°C advanced ultra-super-critical (A-USC) fossil fuel power plants (PP) in China.

  20. Fundamental and progress of Bi2Te3-based thermoelectric materials

    NASA Astrophysics Data System (ADS)

    Hong, Min; Chen, Zhi-Gang; Zou, Jin

    2018-04-01

    Thermoelectric materials, enabling the directing conversion between heat and electricity, are one of the promising candidates for overcoming environmental pollution and the upcoming energy shortage caused by the over-consumption of fossil fuels. Bi2Te3-based alloys are the classical thermoelectric materials working near room temperature. Due to the intensive theoretical investigations and experimental demonstrations, significant progress has been achieved to enhance the thermoelectric performance of Bi2Te3-based thermoelectric materials. In this review, we first explored the fundamentals of thermoelectric effect and derived the equations for thermoelectric properties. On this basis, we studied the effect of material parameters on thermoelectric properties. Then, we analyzed the features of Bi2Te3-based thermoelectric materials, including the lattice defects, anisotropic behavior and the strong bipolar conduction at relatively high temperature. Then we accordingly summarized the strategies for enhancing the thermoelectric performance, including point defect engineering, texture alignment, and band gap enlargement. Moreover, we highlighted the progress in decreasing thermal conductivity using nanostructures fabricated by solution grown method, ball milling, and melt spinning. Lastly, we employed modeling analysis to uncover the principles of anisotropy behavior and the achieved enhancement in Bi2Te3, which will enlighten the enhancement of thermoelectric performance in broader materials.

  1. FY2013 Progress Report for Fuel & Lubricant Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    2014-02-01

    Annual progress report for Fuel & Lubricant Technologies. The Fuel & Lubricant Technologies Program supports fuels and lubricants research and development (R&D) to provide vehicle manufacturers and users with cost-competitive options that enable high fuel economy with low emissions, and contribute to petroleum displacement.

  2. FY2014 Fuel & Lubricant Technologies Annual Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stork, Kevin

    2016-02-01

    Annual progress report for Fuel & Lubricant Technologies. The Fuel & Lubricant Technologies Program supports fuels and lubricants research and development (R&D) to provide vehicle manufacturers and users with cost-competitive options that enable high fuel economy with low emissions, and contribute to petroleum displacement.

  3. Large-eddy simulation, fuel rod vibration and grid-to-rod fretting in pressurized water reactors

    DOE PAGES

    Christon, Mark A.; Lu, Roger; Bakosi, Jozsef; ...

    2016-10-01

    Grid-to-rod fretting (GTRF) in pressurized water reactors is a flow-induced vibration phenomenon that results in wear and fretting of the cladding material on fuel rods. GTRF is responsible for over 70% of the fuel failures in pressurized water reactors in the United States. Predicting the GTRF wear and concomitant interval between failures is important because of the large costs associated with reactor shutdown and replacement of fuel rod assemblies. The GTRF-induced wear process involves turbulent flow, mechanical vibration, tribology, and time-varying irradiated material properties in complex fuel assembly geometries. This paper presents a new approach for predicting GTRF induced fuelmore » rod wear that uses high-resolution implicit large-eddy simulation to drive nonlinear transient dynamics computations. The GTRF fluid–structure problem is separated into the simulation of the turbulent flow field in the complex-geometry fuel-rod bundles using implicit large-eddy simulation, the calculation of statistics of the resulting fluctuating structural forces, and the nonlinear transient dynamics analysis of the fuel rod. Ultimately, the methods developed here, can be used, in conjunction with operational management, to improve reactor core designs in which fuel rod failures are minimized or potentially eliminated. Furthermore, robustness of the behavior of both the structural forces computed from the turbulent flow simulations and the results from the transient dynamics analyses highlight the progress made towards achieving a predictive simulation capability for the GTRF problem.« less

  4. Large-eddy simulation, fuel rod vibration and grid-to-rod fretting in pressurized water reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christon, Mark A.; Lu, Roger; Bakosi, Jozsef

    Grid-to-rod fretting (GTRF) in pressurized water reactors is a flow-induced vibration phenomenon that results in wear and fretting of the cladding material on fuel rods. GTRF is responsible for over 70% of the fuel failures in pressurized water reactors in the United States. Predicting the GTRF wear and concomitant interval between failures is important because of the large costs associated with reactor shutdown and replacement of fuel rod assemblies. The GTRF-induced wear process involves turbulent flow, mechanical vibration, tribology, and time-varying irradiated material properties in complex fuel assembly geometries. This paper presents a new approach for predicting GTRF induced fuelmore » rod wear that uses high-resolution implicit large-eddy simulation to drive nonlinear transient dynamics computations. The GTRF fluid–structure problem is separated into the simulation of the turbulent flow field in the complex-geometry fuel-rod bundles using implicit large-eddy simulation, the calculation of statistics of the resulting fluctuating structural forces, and the nonlinear transient dynamics analysis of the fuel rod. Ultimately, the methods developed here, can be used, in conjunction with operational management, to improve reactor core designs in which fuel rod failures are minimized or potentially eliminated. Furthermore, robustness of the behavior of both the structural forces computed from the turbulent flow simulations and the results from the transient dynamics analyses highlight the progress made towards achieving a predictive simulation capability for the GTRF problem.« less

  5. Plasma-wall interaction studies within the EUROfusion consortium: progress on plasma-facing components development and qualification

    NASA Astrophysics Data System (ADS)

    Brezinsek, S.; Coenen, J. W.; Schwarz-Selinger, T.; Schmid, K.; Kirschner, A.; Hakola, A.; Tabares, F. L.; van der Meiden, H. J.; Mayoral, M.-L.; Reinhart, M.; Tsitrone, E.; Ahlgren, T.; Aints, M.; Airila, M.; Almaviva, S.; Alves, E.; Angot, T.; Anita, V.; Arredondo Parra, R.; Aumayr, F.; Balden, M.; Bauer, J.; Ben Yaala, M.; Berger, B. M.; Bisson, R.; Björkas, C.; Bogdanovic Radovic, I.; Borodin, D.; Bucalossi, J.; Butikova, J.; Butoi, B.; Čadež, I.; Caniello, R.; Caneve, L.; Cartry, G.; Catarino, N.; Čekada, M.; Ciraolo, G.; Ciupinski, L.; Colao, F.; Corre, Y.; Costin, C.; Craciunescu, T.; Cremona, A.; De Angeli, M.; de Castro, A.; Dejarnac, R.; Dellasega, D.; Dinca, P.; Dittmar, T.; Dobrea, C.; Hansen, P.; Drenik, A.; Eich, T.; Elgeti, S.; Falie, D.; Fedorczak, N.; Ferro, Y.; Fornal, T.; Fortuna-Zalesna, E.; Gao, L.; Gasior, P.; Gherendi, M.; Ghezzi, F.; Gosar, Ž.; Greuner, H.; Grigore, E.; Grisolia, C.; Groth, M.; Gruca, M.; Grzonka, J.; Gunn, J. P.; Hassouni, K.; Heinola, K.; Höschen, T.; Huber, S.; Jacob, W.; Jepu, I.; Jiang, X.; Jogi, I.; Kaiser, A.; Karhunen, J.; Kelemen, M.; Köppen, M.; Koslowski, H. R.; Kreter, A.; Kubkowska, M.; Laan, M.; Laguardia, L.; Lahtinen, A.; Lasa, A.; Lazic, V.; Lemahieu, N.; Likonen, J.; Linke, J.; Litnovsky, A.; Linsmeier, Ch.; Loewenhoff, T.; Lungu, C.; Lungu, M.; Maddaluno, G.; Maier, H.; Makkonen, T.; Manhard, A.; Marandet, Y.; Markelj, S.; Marot, L.; Martin, C.; Martin-Rojo, A. B.; Martynova, Y.; Mateus, R.; Matveev, D.; Mayer, M.; Meisl, G.; Mellet, N.; Michau, A.; Miettunen, J.; Möller, S.; Morgan, T. W.; Mougenot, J.; Mozetič, M.; Nemanič, V.; Neu, R.; Nordlund, K.; Oberkofler, M.; Oyarzabal, E.; Panjan, M.; Pardanaud, C.; Paris, P.; Passoni, M.; Pegourie, B.; Pelicon, P.; Petersson, P.; Piip, K.; Pintsuk, G.; Pompilian, G. O.; Popa, G.; Porosnicu, C.; Primc, G.; Probst, M.; Räisänen, J.; Rasinski, M.; Ratynskaia, S.; Reiser, D.; Ricci, D.; Richou, M.; Riesch, J.; Riva, G.; Rosinski, M.; Roubin, P.; Rubel, M.; Ruset, C.; Safi, E.; Sergienko, G.; Siketic, Z.; Sima, A.; Spilker, B.; Stadlmayr, R.; Steudel, I.; Ström, P.; Tadic, T.; Tafalla, D.; Tale, I.; Terentyev, D.; Terra, A.; Tiron, V.; Tiseanu, I.; Tolias, P.; Tskhakaya, D.; Uccello, A.; Unterberg, B.; Uytdenhoven, I.; Vassallo, E.; Vavpetič, P.; Veis, P.; Velicu, I. L.; Vernimmen, J. W. M.; Voitkans, A.; von Toussaint, U.; Weckmann, A.; Wirtz, M.; Založnik, A.; Zaplotnik, R.; PFC contributors, WP

    2017-11-01

    The provision of a particle and power exhaust solution which is compatible with first-wall components and edge-plasma conditions is a key area of present-day fusion research and mandatory for a successful operation of ITER and DEMO. The work package plasma-facing components (WP PFC) within the European fusion programme complements with laboratory experiments, i.e. in linear plasma devices, electron and ion beam loading facilities, the studies performed in toroidally confined magnetic devices, such as JET, ASDEX Upgrade, WEST etc. The connection of both groups is done via common physics and engineering studies, including the qualification and specification of plasma-facing components, and by modelling codes that simulate edge-plasma conditions and the plasma-material interaction as well as the study of fundamental processes. WP PFC addresses these critical points in order to ensure reliable and efficient use of conventional, solid PFCs in ITER (Be and W) and DEMO (W and steel) with respect to heat-load capabilities (transient and steady-state heat and particle loads), lifetime estimates (erosion, material mixing and surface morphology), and safety aspects (fuel retention, fuel removal, material migration and dust formation) particularly for quasi-steady-state conditions. Alternative scenarios and concepts (liquid Sn or Li as PFCs) for DEMO are developed and tested in the event that the conventional solution turns out to not be functional. Here, we present an overview of the activities with an emphasis on a few key results: (i) the observed synergistic effects in particle and heat loading of ITER-grade W with the available set of exposition devices on material properties such as roughness, ductility and microstructure; (ii) the progress in understanding of fuel retention, diffusion and outgassing in different W-based materials, including the impact of damage and impurities like N; and (iii), the preferential sputtering of Fe in EUROFER steel providing an in situ W surface and a potential first-wall solution for DEMO.

  6. Plasma–wall interaction studies within the EUROfusion consortium: progress on plasma-facing components development and qualification

    DOE PAGES

    Brezinsek, S.; Coenen, J. W.; Schwarz-Selinger, T.; ...

    2017-06-14

    The provision of a particle and power exhaust solution which is compatible with first-wall components and edge-plasma conditions is a key area of present-day fusion research and mandatory for a successful operation of ITER and DEMO. The work package plasma-facing components (WP PFC) within the European fusion programme complements with laboratory experiments, i.e. in linear plasma devices, electron and ion beam loading facilities, the studies performed in toroidally confined magnetic devices, such as JET, ASDEX Upgrade, WEST etc. The connection of both groups is done via common physics and engineering studies, including the qualification and specification of plasma-facing components, andmore » by modelling codes that simulate edge-plasma conditions and the plasma–material interaction as well as the study of fundamental processes. WP PFC addresses these critical points in order to ensure reliable and efficient use of conventional, solid PFCs in ITER (Be and W) and DEMO (W and steel) with respect to heat-load capabilities (transient and steady-state heat and particle loads), lifetime estimates (erosion, material mixing and surface morphology), and safety aspects (fuel retention, fuel removal, material migration and dust formation) particularly for quasi-steady-state conditions. Alternative scenarios and concepts (liquid Sn or Li as PFCs) for DEMO are developed and tested in the event that the conventional solution turns out to not be functional. Here, we present an overview of the activities with an emphasis on a few key results: (i) the observed synergistic effects in particle and heat loading of ITER-grade W with the available set of exposition devices on material properties such as roughness, ductility and microstructure; (ii) the progress in understanding of fuel retention, diffusion and outgassing in different W-based materials, including the impact of damage and impurities like N; and (iii), the preferential sputtering of Fe in EUROFER steel providing an in situ W surface and a potential first-wall solution for DEMO.« less

  7. Plasma–wall interaction studies within the EUROfusion consortium: progress on plasma-facing components development and qualification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brezinsek, S.; Coenen, J. W.; Schwarz-Selinger, T.

    The provision of a particle and power exhaust solution which is compatible with first-wall components and edge-plasma conditions is a key area of present-day fusion research and mandatory for a successful operation of ITER and DEMO. The work package plasma-facing components (WP PFC) within the European fusion programme complements with laboratory experiments, i.e. in linear plasma devices, electron and ion beam loading facilities, the studies performed in toroidally confined magnetic devices, such as JET, ASDEX Upgrade, WEST etc. The connection of both groups is done via common physics and engineering studies, including the qualification and specification of plasma-facing components, andmore » by modelling codes that simulate edge-plasma conditions and the plasma–material interaction as well as the study of fundamental processes. WP PFC addresses these critical points in order to ensure reliable and efficient use of conventional, solid PFCs in ITER (Be and W) and DEMO (W and steel) with respect to heat-load capabilities (transient and steady-state heat and particle loads), lifetime estimates (erosion, material mixing and surface morphology), and safety aspects (fuel retention, fuel removal, material migration and dust formation) particularly for quasi-steady-state conditions. Alternative scenarios and concepts (liquid Sn or Li as PFCs) for DEMO are developed and tested in the event that the conventional solution turns out to not be functional. Here, we present an overview of the activities with an emphasis on a few key results: (i) the observed synergistic effects in particle and heat loading of ITER-grade W with the available set of exposition devices on material properties such as roughness, ductility and microstructure; (ii) the progress in understanding of fuel retention, diffusion and outgassing in different W-based materials, including the impact of damage and impurities like N; and (iii), the preferential sputtering of Fe in EUROFER steel providing an in situ W surface and a potential first-wall solution for DEMO.« less

  8. A Progress Report on X-Ray Diffraction Measurements on New Low-Thermal Conductivity Thermoelectric Materials

    DTIC Science & Technology

    1999-04-01

    as the only moving parts and no environmentally unfriendly gases . Thermoelectric generators can also improve fuel efficiency by using the heat lost...Facolta di Chimica Industriale di Bologna, 24[4] (1966) 113-132. 11 — i at £ 73 U « ■ 2-Theta (deg) Figure 1. Calibration plot for SRM1976

  9. Nanostructured Electrocatalysts for PEM Fuel Cells and Redox Flow Batteries: A Selected Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shao, Yuyan; Cheng, Yingwen; Duan, Wentao

    2015-12-04

    PEM fuel cells and redox flow batteries are two very similar technologies which share common component materials and device design. Electrocatalysts are the key components in these two devices. In this Review, we discuss recent progress of electrocatalytic materials for these two technologies with a focus on our research activities at Pacific Northwest National Laboratory (PNNL) in the past years. This includes (1) nondestructive functionalization of graphitic carbon as Pt support to improve its electrocatalytic performance, (2) triple-junction of metal–carbon–metal oxides to promote Pt performance, (3) nitrogen-doped carbon and metal-doped carbon (i.e., metal oxides) to improve redox reactions in flowmore » batteries. A perspective on future research and the synergy between the two technologies are also discussed.« less

  10. Characterizing automotive fuel cell materials by soft x-ray scanning transmission x-ray microscopy

    NASA Astrophysics Data System (ADS)

    Hitchcock, A. P.; Lee, V.; Wu, J.; West, M. M.; Cooper, G.; Berejnov, V.; Soboleva, T.; Susac, D.; Stumper, J.

    2016-01-01

    Proton-Exchange Membrane Fuel Cell (PEM-FC) based engines are being developed rapidly for near-term implementation in hydrogen fueled, mass production, personal automobiles. Research is focused on understanding and controlling various degradation processes (carbon corrosion, Pt migration, cold start), and reducing cost by reducing or eliminating Pt catalyst. We are using soft X-ray scanning transmission X-ray microscopy (STXM) at the S 2p, C 1s, O 1s and F 1s edges to study a variety of issues related to optimization of PEM-FC materials for automotive applications. A method to efficiently and accurately measure perfluorosulfonic acid distributions was developed and is being used to better understand how different loadings and preparation methods affect the ionomer distribution in the cathode. Progress towards an environmental cell capable of controlling the temperature and humidity of a PEM-FC sample in the STXM is described. Methods for studying the 3D chemical structure of PEM-FC are outlined.

  11. Characterizing automotive fuel cell materials by soft x-ray scanning transmission x-ray microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hitchcock, A. P., E-mail: aph@mcmaster.ca; Lee, V.; Wu, J.

    Proton-Exchange Membrane Fuel Cell (PEM-FC) based engines are being developed rapidly for near-term implementation in hydrogen fueled, mass production, personal automobiles. Research is focused on understanding and controlling various degradation processes (carbon corrosion, Pt migration, cold start), and reducing cost by reducing or eliminating Pt catalyst. We are using soft X-ray scanning transmission X-ray microscopy (STXM) at the S 2p, C 1s, O 1s and F 1s edges to study a variety of issues related to optimization of PEM-FC materials for automotive applications. A method to efficiently and accurately measure perfluorosulfonic acid distributions was developed and is being used tomore » better understand how different loadings and preparation methods affect the ionomer distribution in the cathode. Progress towards an environmental cell capable of controlling the temperature and humidity of a PEM-FC sample in the STXM is described. Methods for studying the 3D chemical structure of PEM-FC are outlined.« less

  12. Energy Policy Act of 1992 : limited progress in acquiring alternative fuel vehicles and reaching fuel goals

    DOT National Transportation Integrated Search

    2000-02-01

    Since the passage of the Energy Policy Act of 1992, some, albeit limited, progress has been made in acquiring alternative fuel vehicles and reducing the consumption of petroleum fuels in transportation. DOE estimates about 1 million alternative fuel ...

  13. High-temperature gas-cooled reactor technology development program. Annual progress report for period ending December 31, 1982

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kasten, P.R.; Rittenhouse, P.L.; Bartine, D.E.

    1983-06-01

    During 1982 the High-Temperature Gas-Cooled Reactor (HTGR) Technology Program at Oak Ridge National Laboratory (ORNL) continued to develop experimental data required for the design and licensing of cogeneration HTGRs. The program involves fuels and materials development (including metals, graphite, ceramic, and concrete materials), HTGR chemistry studies, structural component development and testing, reactor physics and shielding studies, performance testing of the reactor core support structure, and HTGR application and evaluation studies.

  14. The Priority and Challenge of High-Power Performance of Low-Platinum Proton-Exchange Membrane Fuel Cells.

    PubMed

    Kongkanand, Anusorn; Mathias, Mark F

    2016-04-07

    Substantial progress has been made in reducing proton-exchange membrane fuel cell (PEMFC) cathode platinum loadings from 0.4-0.8 mgPt/cm(2) to about 0.1 mgPt/cm(2). However, at this level of cathode Pt loading, large performance loss is observed at high-current density (>1 A/cm(2)), preventing a reduction in the overall stack cost. This next developmental step is being limited by the presence of a resistance term exhibited at these lower Pt loadings and apparently due to a phenomenon at or near the catalyst surface. This issue can be addressed through the design of catalysts with high and stable Pt dispersion as well as through development and implementation of ionomers designed to interact with Pt in a way that does not constrain oxygen reduction reaction rates. Extrapolating from progress made in past decades, we are optimistic that the concerted efforts of materials and electrode designers can resolve this issue, thus enabling a large step toward fuel cell vehicles that are affordable for the mass market.

  15. Rheological behavior of FM-9 solutions and correlation with flammability test results and interpretations. [fuel thickening additive

    NASA Technical Reports Server (NTRS)

    Peng, S. T. J.; Landel, R. F.

    1983-01-01

    The rheological behavior of progressively shear thickening FM-9 solutions, a time-dependent shear thickening material with characteristics of threshold behavior, is investigated as part of a study of the rheological properties of antimisting jet fuel. Flammability test results and test configurations from various sources are evaluated. A correlation is obtained between the rheological behavior and the flammability tests such that, for a given system, such as a fixed solvent system and the FM-9 polymer system, the flammability criterion can be applied to a wide range of concentrations and temperatures.

  16. Lead Slowing-Down Spectrometry Time Spectral Analysis for Spent Fuel Assay: FY11 Status Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulisek, Jonathan A.; Anderson, Kevin K.; Bowyer, Sonya M.

    2011-09-30

    Developing a method for the accurate, direct, and independent assay of the fissile isotopes in bulk materials (such as used fuel) from next-generation domestic nuclear fuel cycles is a goal of the Office of Nuclear Energy, Fuel Cycle R&D, Material Protection and Control Technology (MPACT) Campaign. To meet this goal, MPACT supports a multi-institutional collaboration, of which PNNL is a part, to study the feasibility of Lead Slowing Down Spectroscopy (LSDS). This technique is an active nondestructive assay method that has the potential to provide independent, direct measurement of Pu and U isotopic masses in used fuel with an uncertaintymore » considerably lower than the approximately 10% typical of today's confirmatory assay methods. This document is a progress report for FY2011 PNNL analysis and algorithm development. Progress made by PNNL in FY2011 continues to indicate the promise of LSDS analysis and algorithms applied to used fuel. PNNL developed an empirical model based on calibration of the LSDS to responses generated from well-characterized used fuel. The empirical model, which accounts for self-shielding effects using empirical basis vectors calculated from the singular value decomposition (SVD) of a matrix containing the true self-shielding functions of the used fuel assembly models. The potential for the direct and independent assay of the sum of the masses of 239Pu and 241Pu to within approximately 3% over a wide used fuel parameter space was demonstrated. Also, in FY2011, PNNL continued to develop an analytical model. Such efforts included the addition of six more non-fissile absorbers in the analytical shielding function and the non-uniformity of the neutron flux across the LSDS assay chamber. A hybrid analytical-empirical approach was developed to determine the mass of total Pu (sum of the masses of 239Pu, 240Pu, and 241Pu), which is an important quantity in safeguards. Results using this hybrid method were of approximately the same accuracy as the pure empirical approach. In addition, total Pu with much better accuracy with the hybrid approach than the pure analytical approach. In FY2012, PNNL will continue efforts to optimize its empirical model and minimize its reliance on calibration data. In addition, PNNL will continue to develop an analytical model, considering effects such as neutron-scattering in the fuel and cladding, as well as neutrons streaming through gaps between fuel pins in the fuel assembly.« less

  17. Plasma-Assisted Synthesis and Surface Modification of Electrode Materials for Renewable Energy.

    PubMed

    Dou, Shuo; Tao, Li; Wang, Ruilun; El Hankari, Samir; Chen, Ru; Wang, Shuangyin

    2018-05-01

    Renewable energy technology has been considered as a "MUST" option to lower the use of fossil fuels for industry and daily life. Designing critical and sophisticated materials is of great importance in order to realize high-performance energy technology. Typically, efficient synthesis and soft surface modification of nanomaterials are important for energy technology. Therefore, there are increasing demands on the rational design of efficient electrocatalysts or electrode materials, which are the key for scalable and practical electrochemical energy devices. Nevertheless, the development of versatile and cheap strategies is one of the main challenges to achieve the aforementioned goals. Accordingly, plasma technology has recently appeared as an extremely promising alternative for the synthesis and surface modification of nanomaterials for electrochemical devices. Here, the recent progress on the development of nonthermal plasma technology is highlighted for the synthesis and surface modification of advanced electrode materials for renewable energy technology including electrocatalysts for fuel cells, water splitting, metal-air batteries, and electrode materials for batteries and supercapacitors, etc. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. SCALE UP OF CERAMIC WASTE FORMS FOR THE EBR-II SPENT FUEL TREATMENT PROCESS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthew C. Morrison; Kenneth J. Bateman; Michael F. Simpson

    2010-11-01

    ABSTRACT SCALE UP OF CERAMIC WASTE FORMS FOR THE EBR-II SPENT FUEL TREATMENT PROCESS Matthew C. Morrison, Kenneth J. Bateman, Michael F. Simpson Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415 The ceramic waste process is the intended method for disposing of waste salt electrolyte, which contains fission products from the fuel-processing electrorefiners (ER) at the INL. When mixed and processed with other materials, the waste salt can be stored in a durable ceramic waste form (CWF). The development of the CWF has recently progressed from small-scale testing and characterization to full-scale implementation and experimentation using surrogate materialsmore » in lieu of the ER electrolyte. Two full-scale (378 kg and 383 kg) CWF test runs have been successfully completed with final densities of 2.2 g/cm3 and 2.1 g/cm3, respectively. The purpose of the first CWF was to establish material preparation parameters. The emphasis of the second pre-qualification test run was to evaluate a preliminary multi-section CWF container design. Other considerations were to finalize material preparation parameters, measure the material height as it consolidates in the furnace, and identify when cracking occurs during the CWF cooldown process.« less

  19. Heavy vehicle propulsion system materials program: Semiannual progress report, April 1996--September 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, D.R.

    1997-04-01

    The purpose of the Heavy Vehicle Propulsion System Materials Program is the development of materials: ceramics, intermetallics, metal alloys, and metal and ceramic coatings, to support the dieselization of class 1-3 trucks to realize a 35% fuel-economy improvement over current gasoline-fueled trucks and to support commercialization of fuel-flexible LE-55 low-emissions, high-efficiency diesel engines for class 7-8 trucks. The Office of Transportation Technologies, Office of Heavy Vehicle Technologies (OTT OHVT) has an active program to develop the technology for advanced LE-55 diesel engines with 55% efficiency and low emissions levels of 2.0 g/bhp-h NO{sub x} and 0.05 g/bhp-h particulates. The goalmore » is also for the LE-55 engine to run on natural gas with efficiency approaching that of diesel fuel. The LE-55 program is being completed in FY 1997 and, after approximately 10 years of effort, has largely met the program goals of 55% efficiency and low emissions. However, the commercialization of the LE-55 technology requires more durable materials than those that have been used to demonstrate the goals. Heavy Vehicle Propulsion System Materials will, in concert with the heavy duty diesel engine companies, develop the durable materials required to commercialize the LE-55 technologies. OTT OHVT also recognizes a significant opportunity for reduction in petroleum consumption by dieselization of pickup trucks, vans, and sport utility vehicles. Application of the diesel engine to class 1, 2, and 3 trucks is expected to yield a 35% increase in fuel economy per vehicle. The foremost barrier to diesel use in this market is emission control. Once an engine is made certifiable, subsequent challenges will be in cost; noise, vibration, and harshness (NVH); and performance. Separate abstracts have been submitted to the database for contributions to this report.« less

  20. Benchmarking the expected stack manufacturing cost of next generation, intermediate-temperature protonic ceramic fuel cells with solid oxide fuel cell technology

    NASA Astrophysics Data System (ADS)

    Dubois, Alexis; Ricote, Sandrine; Braun, Robert J.

    2017-11-01

    Recent progress in the performance of intermediate temperature (500-600 °C) protonic ceramic fuel cells (PCFCs) has demonstrated both fuel flexibility and increasing power density that approach commercial application requirements. These developments may eventually position the technology as a viable alternative to solid oxide fuel cells (SOFCs) and molten carbonate fuel cells (MCFCs). The PCFCs investigated in this work are based on a BaZr0.8Y0.2O3-δ (BZY20) thin electrolyte supported by BZY20/Ni porous anodes, and a triple conducting cathode material comprised of BaCo0.4Fe0.4Zr0.1Y0.1O3-δ (BCFZY0.1). These cells are prepared using a low-cost solid-state reactive sintering (SSRS) process, and are capable of power densities of 0.156 W cm-2 at 500 °C operating directly from methane fuel. We develop a manufacturing cost model to estimate the Nth generation production costs of PCFC stack technology using high volume manufacturing processes and compare them to the state-of-the-art in SOFC technology. The low-cost cell manufacturing enabled by the SSRS technique compensates for the lower PCFC power density and the trade-off between operating temperature and efficiency enables the use of lower-cost stainless steel materials. PCFC stack production cost estimates are found to be as much as 27-37% lower at 550 °C than SOFCs operating at 800 °C.

  1. Lead Slowing-Down Spectrometry for Spent Fuel Assay: FY11 Status Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warren, Glen A.; Casella, Andrew M.; Haight, R. C.

    2011-08-01

    Executive Summary Developing a method for the accurate, direct, and independent assay of the fissile isotopes in bulk materials (such as used fuel) from next-generation domestic nuclear fuel cycles is a goal of the Office of Nuclear Energy, Fuel Cycle R&D, Material Protection and Control Technology (MPACT) Campaign. To meet this goal, MPACT supports a multi-institutional collaboration to study the feasibility of Lead Slowing Down Spectroscopy (LSDS). This technique is an active nondestructive assay method that has the potential to provide independent, direct measurement of Pu and U isotopic masses in used fuel with an uncertainty considerably lower than themore » approximately 10% typical of today’s confirmatory assay methods. This document is a progress report for FY2011 collaboration activities. Progress made by the collaboration in FY2011 continues to indicate the promise of LSDS techniques applied to used fuel. PNNL developed an empirical model based on calibration of the LSDS to responses generated from well-characterized used fuel. The empirical model demonstrated the potential for the direct and independent assay of the sum of the masses of 239Pu and 241Pu to within approximately 3% over a wide used fuel parameter space. Similar results were obtained using a perturbation approach developed by LANL. Benchmark measurements have been successfully conducted at LANL and at RPI using their respective LSDS instruments. The ISU and UNLV collaborative effort is focused on the fabrication and testing of prototype fission chambers lined with ultra-depleted 238U and 232Th, and uranium deposition on a stainless steel disc using spiked U3O8 from room temperature ionic liquid was successful, with improving thickness obtained. In FY2012, the collaboration plans a broad array of activities. PNNL will focus on optimizing its empirical model and minimizing its reliance on calibration data, as well continuing efforts on developing an analytical model. Additional measurements are planned at LANL and RPI. LANL measurements will include a Pu sample, which is expected to provide more counts at longer slowing-down times to help identify discrepancies between experimental data and MCNPX simulations. RPI measurements will include the assay of an entire fresh fuel assembly for the study of self-shielding effects as well as the ability to detect diversion by detecting a missing fuel pin in the fuel assembly. The development of threshold neutron sensors will continue, and UNLV will calibrate existing ultra-depleted uranium deposits at ISU.« less

  2. The Center for Material Science of Nuclear Fuel (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    ScienceCinema

    Allen, Todd (Director, Center for Material Science of Nuclear Fuel); CMSNF Staff

    2017-12-09

    'The Center for Material Science of Nuclear Fuel (CMSNF)' was submitted by the CMSNF to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CMSNF, an EFRC directed by Todd Allen at the Idaho National Laboratory is a partnership of scientists from six institutions: INL (lead), Colorado School of Mines, University of Florida, Florida State University, Oak Ridge National Laboratory, and the University of Wisconsin at Madison. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Materials Science of Nuclear Fuels is 'to achieve a first-principles based understanding of the effect of irradiation-induced defects and microstructures on thermal transport in oxide nuclear fuels.' Research topics are: phonons, thermal conductivity, nuclear, extreme environment, radiation effects, defects, and matter by design.

  3. Progress on Establishing the Feasibility of Lead Slowing Down Spectroscopy for Direct Measurement of Plutonium in Used Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulisek, Jonathan A.; Anderson, Kevin K.; Bowyer, Sonya M.

    2012-07-19

    Developing a method for the accurate, direct, and independent assay of the fissile isotopes in bulk materials (such as used fuel) of next-generation domestic nuclear fuel cycles is a goal of the Office of Nuclear Energy, Fuel Cycle R&D, Material Protection and Control Technology (MPACT) Campaign. To meet this goal, MPACT continues to support a multi-institutional collaboration to address the feasibility of Lead Slowing Down Spectroscopy (LSDS) as an active nondestructive assay method that has the potential to provide independent, direct measurement of Pu and U isotopic masses in used fuel with an uncertainty considerably lower than the approximately 10%more » typical of today’s confirmatory assay methods. An LSDS is comprised of a stack of lead (typically 1-6 m3) in which materials to be measured are placed in the lead and a pulse of neutrons is injected. The neutrons in this pulse lose energy due to inelastic and (subsequently) elastic scattering and the average energy of the neutrons decreases as the time increases by a well-defined relationship. In the interrogation energy region (~0.1-1000 eV) the neutrons have little energy spread (~30%) about the average neutron energy. Due to this characteristic, the energy of the (assay) neutrons can then be determined by measuring the time elapsed since the neutron pulse. By measuring the induced fission neutrons emitted from the used fuel, it is possible to determine isotopic-mass content by unfolding the unique structure of isotopic resonances across the interrogation energy region. This paper will present efforts on the development of time-spectral analysis algorithms, fast neutron detector advances, and validation and testing measurements.« less

  4. U.S. DOE Progress Towards Developing Low-Cost, High Performance, Durable Polymer Electrolyte Membranes for Fuel Cell Applications.

    PubMed

    Houchins, Cassidy; Kleen, Greg J; Spendelow, Jacob S; Kopasz, John; Peterson, David; Garland, Nancy L; Ho, Donna Lee; Marcinkoski, Jason; Martin, Kathi Epping; Tyler, Reginald; Papageorgopoulos, Dimitrios C

    2012-12-18

    Low cost, durable, and selective membranes with high ionic conductivity are a priority need for wide-spread adoption of polymer electrolyte membrane fuel cells (PEMFCs) and direct methanol fuel cells (DMFCs). Electrolyte membranes are a major cost component of PEMFC stacks at low production volumes. PEMFC membranes also impose limitations on fuel cell system operating conditions that add system complexity and cost. Reactant gas and fuel permeation through the membrane leads to decreased fuel cell performance, loss of efficiency, and reduced durability in both PEMFCs and DMFCs. To address these challenges, the U.S. Department of Energy (DOE) Fuel Cell Technologies Program, in the Office of Energy Efficiency and Renewable Energy, supports research and development aimed at improving ion exchange membranes for fuel cells. For PEMFCs, efforts are primarily focused on developing materials for higher temperature operation (up to 120 °C) in automotive applications. For DMFCs, efforts are focused on developing membranes with reduced methanol permeability. In this paper, the recently revised DOE membrane targets, strategies, and highlights of DOE-funded projects to develop new, inexpensive membranes that have good performance in hot and dry conditions (PEMFC) and that reduce methanol crossover (DMFC) will be discussed.

  5. Recent Progress in the Design of Advanced Cathode Materials and Battery Models for High-Performance Lithium-X (X = O2 , S, Se, Te, I2 , Br2 ) Batteries.

    PubMed

    Xu, Jiantie; Ma, Jianmin; Fan, Qinghua; Guo, Shaojun; Dou, Shixue

    2017-07-01

    Recent advances and achievements in emerging Li-X (X = O 2 , S, Se, Te, I 2 , Br 2 ) batteries with promising cathode materials open up new opportunities for the development of high-performance lithium-ion battery alternatives. In this review, we focus on an overview of recent important progress in the design of advanced cathode materials and battery models for developing high-performance Li-X (X = O 2 , S, Se, Te, I 2 , Br 2 ) batteries. We start with a brief introduction to explain why Li-X batteries are important for future renewable energy devices. Then, we summarize the existing drawbacks, major progress and emerging challenges in the development of cathode materials for Li-O 2 (S) batteries. In terms of the emerging Li-X (Se, Te, I 2 , Br 2 ) batteries, we systematically summarize their advantages/disadvantages and recent progress. Specifically, we review the electrochemical performance of Li-Se (Te) batteries using carbonate-/ether-based electrolytes, made with different electrode fabrication techniques, and of Li-I 2 (Br 2 ) batteries with various cell designs (e.g., dual electrolyte, all-organic electrolyte, with/without cathode-flow mode, and fuel cell/solar cell integration). Finally, the perspective on and challenges for the development of cathode materials for the promising Li-X (X = O 2 , S, Se, Te, I 2 , Br 2 ) batteries is presented. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Metallic bionanocatalysts: potential applications as green catalysts and energy materials.

    PubMed

    Macaskie, Lynne E; Mikheenko, Iryna P; Omajai, Jacob B; Stephen, Alan J; Wood, Joseph

    2017-09-01

    Microbially generated or supported nanocatalysts have potential applications in green chemistry and environmental application. However, precious (and base) metals biorefined from wastes may be useful for making cheap, low-grade catalysts for clean energy production. The concept of bionanomaterials for energy applications is reviewed with respect to potential fuel cell applications, bio-catalytic upgrading of oils and manufacturing 'drop-in fuel' precursors. Cheap, effective biomaterials would facilitate progress towards dual development goals of sustainable consumption and production patterns and help to ensure access to affordable, reliable, sustainable and modern energy. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  7. Research progress of perovskite materials in photocatalysis- and photovoltaics-related energy conversion and environmental treatment.

    PubMed

    Wang, Wei; Tadé, Moses O; Shao, Zongping

    2015-08-07

    Meeting the growing global energy demand is one of the important challenges of the 21st century. Currently over 80% of the world's energy requirements are supplied by the combustion of fossil fuels, which promotes global warming and has deleterious effects on our environment. Moreover, fossil fuels are non-renewable energy and will eventually be exhausted due to the high consumption rate. A new type of alternative energy that is clean, renewable and inexpensive is urgently needed. Several candidates are currently available such as hydraulic power, wind force and nuclear power. Solar energy is particularly attractive because it is essentially clean and inexhaustible. A year's worth of sunlight would provide more than 100 times the energy of the world's entire known fossil fuel reserves. Photocatalysis and photovoltaics are two of the most important routes for the utilization of solar energy. However, environmental protection is also critical to realize a sustainable future, and water pollution is a serious problem of current society. Photocatalysis is also an essential route for the degradation of organic dyes in wastewater. A type of compound with the defined structure of perovskite (ABX3) was observed to play important roles in photocatalysis and photovoltaics. These materials can be used as photocatalysts for water splitting reaction for hydrogen production and photo-degradation of organic dyes in wastewater as well as for photoanodes in dye-sensitized solar cells and light absorbers in perovskite-based solar cells for electricity generation. In this review paper, the recent progress of perovskites for applications in these fields is comprehensively summarized. A description of the basic principles of the water splitting reaction, photo-degradation of organic dyes and solar cells as well as the requirements for efficient photocatalysts is first provided. Then, emphasis is placed on the designation and strategies for perovskite catalysts to improve their photocatalytic activity and/or light adsorption capability. Comments on current and future challenges are also provided. The main purpose of this review paper is to provide a current summary of recent progress in perovskite materials for use in these important areas and to provide some useful guidelines for future development in these hot research areas.

  8. CONSTRUCTION PROGRESS PHOTO SHOWING WEST STORAGE BASIN AT FUEL STORAGE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CONSTRUCTION PROGRESS PHOTO SHOWING WEST STORAGE BASIN AT FUEL STORAGE BUILDING (CPP-603). INL PHOTO NUMBER NRTS-51-689. Unknown Photographer, 1950 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  9. Anion exchange membrane fuel cells: Current status and remaining challenges

    NASA Astrophysics Data System (ADS)

    Gottesfeld, Shimshon; Dekel, Dario R.; Page, Miles; Bae, Chulsung; Yan, Yushan; Zelenay, Piotr; Kim, Yu Seung

    2018-01-01

    The anion exchange membrane fuel cell (AEMFC) is an attractive alternative to acidic proton exchange membrane fuel cells, which to date have required platinum-based catalysts, as well as acid-tolerant stack hardware. The AEMFC could use non-platinum-group metal catalysts and less expensive metal hardware thanks to the high pH of the electrolyte. Over the last decade, substantial progress has been made in improving the performance and durability of the AEMFC through the development of new materials and the optimization of system design and operation conditions. In this perspective article, we describe the current status of AEMFCs as having reached beginning of life performance very close to that of PEMFCs when using ultra-low loadings of Pt, while advancing towards operation on non-platinum-group metal catalysts alone. In the latter sections, we identify the remaining technical challenges, which require further research and development, focusing on the materials and operational factors that critically impact AEMFC performance and/or durability. These perspectives may provide useful insights for the development of next-generation of AEMFCs.

  10. Anion exchange membrane fuel cells: Current status and remaining challenges

    DOE PAGES

    Gottesfeld, Shimshon; Dekel, Dario R.; Page, Miles; ...

    2017-09-01

    The anion exchange membrane fuel cell (AEMFC) is an attractive alternative to acidic proton exchange membrane fuel cells, which to date have required platinum-based catalysts, as well as acid-tolerant stack hardware. The AEMFC could use non-platinum-group metal catalysts and less expensive metal hardware thanks to the high pH of the electrolyte. Over the last decade, substantial progress has been made in improving the performance and durability of the AEMFC through the development of new materials and the optimization of system design and operation conditions. Here in this perspective article, we describe the current status of AEMFCs as having reached beginningmore » of life performance very close to that of PEMFCs when using ultra-low loadings of Pt, while advancing towards operation on non-platinum-group metal catalysts alone. In the latter sections, we identify the remaining technical challenges, which require further research and development, focusing on the materials and operational factors that critically impact AEMFC performance and/or durability. Finally, these perspectives may provide useful insights for the development of next-generation of AEMFCs.« less

  11. Characterization of Catalyst Materials for Production of Aerospace Fuels

    NASA Technical Reports Server (NTRS)

    Best, Lauren M.; De La Ree, Ana B.; Hepp, Aloysius F.

    2012-01-01

    Due to environmental, economic, and security issues, there is a greater need for cleaner alternative fuels. There will undoubtedly be a shift from crude oil to non-petroleum sources as a feedstock for aviation (and other transportation) fuels. Additionally, efforts are concentrated on reducing costs coupled with fuel production from non-conventional sources. One solution to this issue is Fischer-Tropsch gas-to-liquid technology. Fischer-Tropsch processing of synthesis gas (CO/H2) produces a complex product stream of paraffins, olefins, and oxygenated compounds such as alcohols and aldehydes. The Fisher-Tropsch process can produce a cleaner diesel oil fraction with a high cetane number (typically above 70) without any sulfur or aromatic compounds. This process is most commonly catalyzed by heterogeneous (in this case, silver and platinum) catalysts composed of cobalt supported on alumina or unsupported alloyed iron powders. Physisorption, chemisorptions, scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS) are described to better understand the potential performance of Fischer-Tropsch cobalt on alumina catalysts promoted with silver and platinum. The overall goal is to preferentially produce C8 to C18 paraffin compounds for use as aerospace fuels. Progress towards this goal will eventually be updated and achieved by a more thorough understanding of the characterization of catalyst materials. This work was supported by NASA s Subsonic Fixed Wing and In-situ Resource Utilization projects.

  12. Characterization of Catalyst Materials for Production of Aerospace Fuels

    NASA Technical Reports Server (NTRS)

    DeLaRee, Ana B.; Hepp, Aloysius F.

    2011-01-01

    Due to environmental, economic, and security issues, there is a greater need for cleaner alternative fuels. There will undoubtedly be a shift from crude oil to non-petroleum sources as a feedstock for aviation (and other transportation) fuels. Additionally, efforts are concentrated on reducing costs coupled with fuel production from non-conventional sources. One solution to this issue is Fischer-Tropsch gas-to-liquid technology. Fischer-Tropsch processing of synthesis gas (CO/H2) produces a complex product stream of paraffins, olefins, and oxygenated compounds such as alcohols and aldehydes. The Fisher-Tropsch process can produce a cleaner diesel oil fraction with a high cetane number (typically above 70) without any sulfur or aromatic compounds. This process is most commonly catalyzed by heterogeneous (in this case, silver and platinum) catalysts composed of cobalt supported on alumina or unsupported alloyed iron powders. Physisorption, chemisorptions, scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS) are described to better understand the potential performance of Fischer-Tropsch cobalt on alumina catalysts promoted with silver and platinum. The overall goal is to preferentially produce C8 to C18 paraffin compounds for use as aerospace fuels. Progress towards this goal will eventually be updated and achieved by a more thorough understanding of the characterization of catalyst materials. This work was supported by NASA s Subsonic Fixed Wing and In-situ Resource Utilization projects.

  13. Progress of the RERTR program in 2001.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Travelli, A.

    2002-03-07

    This paper describes the 2001 progress achieved by the Reduced Enrichment for Research and Test Reactors (RERTR) Program in collaboration with its many international partners. Postirradiation examinations of microplates have continued to reveal excellent irradiation behavior of U-Mo dispersion fuels in a variety of compositions and irradiating conditions. Irradiation of two new batches of miniplates of greater sizes was completed in the ATR to investigate the swelling behavior of these fuels under prototypic conditions. These materials hold the promise of achieving the program goal of developing LEU research reactor fuels with uranium densities in the 8-9 g/cm{sup 3} range. Qualificationmore » of the U-Mo dispersion fuels has been delayed by a patent issue involving KAERI. Test fuel elements with uranium density of 6 g/cm{sup 3} are being fabricated by BWXT and are expected to begin undergoing irradiation in the HFR-Petten reactor around March 2003, with a goal of qualifying this fuel by mid-2005. U-Mo fuel with uranium density of 8-9 g/cm{sup 3} is expected to be qualified by mid-2007. Final irradiation tests of LEU {sup 99}Mo targets in the RAS-GAS reactor at BATAN, in Indonesia, had to be postponed because of the 9/11 attacks, but the results collected to date indicate that these targets will soon be ready for commercial production. Excellent cooperation is also in progress with the CNEA in Argentina, MDSN/AECL in Canada, and ANSTO in Australia. Irradiation testing of five WWR-M2 tube-type fuel assemblies fabricated by the NZChK and containing LEU UO{sub 2} dispersion fuel was successfully completed within the Russian RERTR program. A new LEU U-Mo pin-type fuel that could be used to convert most Russian-designed research reactors has been developed by VNIINM and is ready for testing. Four additional shipments containing 822 spent fuel assemblies from foreign research reactors were accepted by the U.S. by September 30, 2001. Altogether, 4,562 spent fuel assemblies from foreign research reactors had been received by that date by the U.S. under the FRR SNF acceptance policy. The RERTR program is aggressively pursuing qualification of high-density LEU U-Mo dispersion fuels, with the dual goal of enabling further conversions and of developing a substitute for LEU silicide fuels that can be more easily disposed of after expiration of the U.S. FRR SNF Acceptance Program. As in the past, the success of the RERTR program will depend on the international friendship and cooperation that has always been its trademark.« less

  14. Science to Support DOE Site Cleanup: The Pacific Northwest National Laboratory Environmental Management Science Program Awards-Fiscal Year 1999 Mid-Year Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peurrung, L.M.

    1999-06-30

    Pacific Northwest National Laboratory was awarded ten Environmental Management Science Program (EMSP) research grants in fiscal year 1996, six in fiscal year 1997, and eight in fiscal year 1998. This section summarizes how each grant addresses significant U.S. Department of Energy (DOE) cleanup issues, including those at the Hanford Site. The technical progress made to date in each of these research projects is addressed in more detail in the individual progress reports contained in this document. This research is focused primarily in five areas: Tank Waste Remediation, Decontamination and Decommissioning, Spent Nuclear Fuel and Nuclear Materials, Soil and Groundwater Cleanmore » Up, and Health Effects.« less

  15. CONSTRUCTION PROGRESS PHOTO SHOWING FUEL STORAGE BUILDING (CPP603) LOOKING NORTHWEST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CONSTRUCTION PROGRESS PHOTO SHOWING FUEL STORAGE BUILDING (CPP-603) LOOKING NORTHWEST. INL PHOTO NUMBER NRTS-50-895. Unknown Photographer, 10/30/1950 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  16. Processing and thermodynamics research. Volume II. Monthly progress report, October 1984

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1984-11-15

    A detailed list of materials was prepared, data and information that will be gathered for analysis in the study (Project BPT1) that relates feedstock to product slate. A meeting of the sponsors Steering Committee gave broad support to the research direction presented. Discussions were held with Professor Lloyd Lee at the University of Oklahoma on possible future cooperation of this work with his correlation and model studies. Mass spectrometry efforts (Project BPT2) centered on establishing the performance characteristics of the MS-50 as pertains to quantitative ultra-high dynamic resolution low voltage EI analysis with this system. A complete review of allmore » chemical separations done to date on Wilmington and Mayan crudes revealed a few inconsistencies, and a few repeat experiments are in progress to resolve them (Project OPT2). Preparations are being made for thiophene separations from the 425/sup 0/ to 550/sup 0/C Cerro Negro neutrals (Project OPT2). A review of the progress on the chemistry of contaminated fuels project (Project OPT4) was held with DOD personnel. The acid fractions of the various distillates from contaminated diesel fuel have been shown to be corrosive in copper strip testing. Biological activity was also established as one source of corrosion problems. Stability test technique development focused on the type of filter materials that will withstand the accelerated aging conditions (65/sup 0/C) for several weeks. Thermodynamic studies on hetero-atom compounds continued with experimental work in progress on 2,5-dimethylpyridine, 2,5-dimethylpyrrole, 2,3-benzofuran, and 3-methylpyrrolidine (Project BPT3A and BPT3B). Vapor liquid-equilibria measurements continue on hydrogen and a 450/sup 0/ to 950/sup 0/F cut from the Wilsonville, AL coal liquefaction plant (Project OPT3).« less

  17. Technology development for phosphoric acid fuel cell powerplant, phase 2

    NASA Technical Reports Server (NTRS)

    Christner, L.

    1981-01-01

    The development of materials, cell components, and reformers for on site integrated energy systems is described. Progress includes: (1) heat-treatment of 25 sq cm, 350 sq cm and 1200 sq cm cell test hardware was accomplished. Performance of fuel cells is improved by using this material; (2) electrochemical and chemical corrosion rates of heat-treated and as-molded graphite/phenolic resin composites in phosphoric acid were determined; (3) three cell, 5 in. x 15 in. stacks operated for up to 10,000 hours and 12 in. x 17 in. five cell stacks were tested for 5,000 hours; (4) a three cell 5 in. x 15 in. stack with 0.12 mg Pt/sq cm anodes and 0.25 mg Pt/sq cm cathodes was operated for 4,500 hours; and (5) an ERC proprietary high bubble pressure matrix, MAT-1, was tested for up to 10,000 hours.

  18. CONSTRUCTION PROGRESS PHOTO SHOWING EMPLACEMENT STEEL BEAMS FUEL STORAGE BUILDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CONSTRUCTION PROGRESS PHOTO SHOWING EMPLACEMENT STEEL BEAMS FUEL STORAGE BUILDING (CPP-603) LOOKING EAST. INL PHOTO NUMBER NRTS-51-1371. Unknown Photographer, 1/31/1951 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  19. Heavy Vehicle Propulsion System Materials Program Semiannual Progress Report for April 2000 Through September 2000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, DR

    2000-12-11

    The purpose of the Heavy Vehicle Propulsion System Materials Program is the development of materials: ceramics, intermetallics, metal alloys, and metal and ceramic coatings, to support the dieselization of class 1-3 trucks to realize a 35% fuel-economy improvement over current gasoline-fueled trucks and to support commercialization of fuel-flexible LE-55 low-emissions, high-efficiency diesel engines for class 7-8 trucks. The Office of Transportation Technologies, Office of Heavy Vehicle Technologies (OTT OHVT) has an active program to develop the technology for advantages LE-55 diesel engines with 55% efficiency and low emissions levels of 2.0 g/bhp-h NOx and 0.05 g/bhp-h particulates. The goal ismore » also for the LE-55 engine to run on natural gas with efficiency approaching that of diesel fuel. The LE-55 program is being completed in FY 1997 and, after approximately 10 years of effort, has largely met the program goals of 55% efficiency and low emissions. However, the commercialization of the LE-55 technology requires more durable materials than those that have been used to demonstrate the goals. Heavy Vehicle Propulsion System Materials will, in concert with the heavy duty diesel engine companies, develop the durable materials required to commercialize the LE-55 technologies. OTT OHVT also recognizes a significant opportunity for reduction in petroleum consumption by dieselization of pickup trucks, vans, and sport utility vehicles. Application of the diesel engine to class 1, 2, and 3 trucks is expected to yield a 35% increase in fuel economy per vehicle. The foremost barrier to diesel use in this market is emission control. Once an engine is made certifiable, subsequent challenges will be in cost; noise, vibration, and harshness (NVH); and performance. The design of advanced components for high-efficiency diesel engines has, in some cases, pushed the performance envelope for materials of construction past the point of reliable operation. Higher mechanical and tribological stresses and higher temperatures of advanced designs limit the engine designer; advanced materials allow the design of components that may operate reliably at higher stresses and temperatures, thus enabling more efficient engine designs. Advanced materials also offer the opportunity to improve the emissions, NVH, and performance of diesel engines for pickup trucks, vans, and sport utility vehicles.« less

  20. The Center for Material Science of Nuclear Fuel (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adam, David

    "The Center for Materials Science of Nuclear Fuels (CMSNF)" was submitted by the CMSNF to the "Life at the Frontiers of Energy Research" video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CMSNF, an EFRC directed by Todd Allen at the Idaho National Laboratory is a partnership of scientists from five institutions: INL (lead), University of Florida, Oak Ridge National Laboratory, Purdue University and the University of Wisconsin at Madison. The Office of Basic Energy Sciences in themore » U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Materials Science of Nuclear Fuels (CMSNF) is 'to achieve a first-principles based understanding of the effect of irradiation-induced defects and microstructures on thermal transport in oxide nuclear fuels.' Research topics are: phonons, thermal conductivity, nuclear, extreme environment, radiation effects, defects, and matter by design.« less

  1. Vibro-acoustic Imaging at the Breazeale Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, James Arthur; Jewell, James Keith; Lee, James Edwin

    2016-09-01

    The INL is developing Vibro-acoustic imaging technology to characterize microstructure in fuels and materials in spent fuel pools and within reactor vessels. A vibro-acoustic development laboratory has been established at the INL. The progress in developing the vibro-acoustic technology at the INL is the focus of this report. A successful technology demonstration was performed in a working TRIGA research reactor. Vibro-acoustic imaging was performed in the reactor pool of the Breazeale reactor in late September of 2015. A confocal transducer driven at a nominal 3 MHz was used to collect the 60 kHz differential beat frequency induced in a spentmore » TRIGA fuel rod and empty gamma tube located in the main reactor water pool. Data was collected and analyzed with the INLDAS data acquisition software using a short time Fourier transform.« less

  2. 3 CFR - Improving Energy Security, American Competitiveness and Job Creation, and Environmental...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... source of fossil fuel consumption and greenhouse gas pollution. I therefore request that the... annual progress in reducing transportation sector emissions and fossil fuel consumption consistent with... substantial annual progress in reducing transportation sector greenhouse gas emissions and fossil fuel...

  3. Recent Progress in Metal‐Organic Frameworks for Applications in Electrocatalytic and Photocatalytic Water Splitting

    PubMed Central

    Wang, Wei; Xu, Xiaomin; Zhou, Wei

    2017-01-01

    The development of clean and renewable energy materials as alternatives to fossil fuels is foreseen as a potential solution to the crucial problems of environmental pollution and energy shortages. Hydrogen is an ideal energy material for the future, and water splitting using solar/electrical energy is one way to generate hydrogen. Metal‐organic frameworks (MOFs) are a class of porous materials with unique properties that have received rapidly growing attention in recent years for applications in water splitting due to their remarkable design flexibility, ultra‐large surface‐to‐volume ratios and tunable pore channels. This review focuses on recent progress in the application of MOFs in electrocatalytic and photocatalytic water splitting for hydrogen generation, including both oxygen and hydrogen evolution. It starts with the fundamentals of electrocatalytic and photocatalytic water splitting and the related factors to determine the catalytic activity. The recent progress in the exploitation of MOFs for water splitting is then summarized, and strategies for designing MOF‐based catalysts for electrocatalytic and photocatalytic water splitting are presented. Finally, major challenges in the field of water splitting are highlighted, and some perspectives of MOF‐based catalysts for water splitting are proposed. PMID:28435777

  4. RECOVERY OF VALUABLE MATERIAL FROM GRAPHITE BODIES

    DOEpatents

    Fromm, L.W. Jr.

    1959-09-01

    An electrolytic process for recovering uranium from a graphite fuel element is described. The uraniumcontaining graphite body is disposed as the anode of a cell containing a nitric acid electrolyte and a 5 amp/cm/sup 2/ current passed to induce a progressive disintegration of the graphite body. The dissolved uranium is quickly and easily separated from the resulting graphite particles by simple mechanical means, such as centrifugation, filtration, and decontamination.

  5. Extraction of volatiles and metals from extraterrestrial materials

    NASA Technical Reports Server (NTRS)

    Lewis, J. S.

    1992-01-01

    Recent progress in defining the physical, orbital, and chemical properties of the Earth-crossing asteroid and comet population was integrated into an elaborate Monte Carlo model of the fluxes of bodies in the inner Solar System. This model is of use in projecting flight opportunities to as-yet undiscovered near-Earth objects and in assessing the impact hazard to life on Earth and the evolutionary consequences of impacts on the other terrestrial planets. Further progress was made in defining desirable transportation system architectures for the use of non-terrestrial volatiles and metals, including the delivery of propellants to near-Earth space for fueling of space exploration initiative (SEI) type expeditions, the construction and resupply of Solar Power Satellite constellations in various Earth orbits (including geosynchronous earth orbit (GEO) and Highly Eccentric Earth Orbit (HEEO)), and retrieval of He-3 for use as a clean fusion fuel on Earth. These studies suggest a greater future role for SERC in the exploration of space energy sources to meet Earth's 21st-century energy requirements. Laboratory studies of volatilization and deposition of ferrous metal alloys demonstrated deposition of strong iron films from carbonyl chemical vapor deposition (CVD), showing the crucial role of additive gases in governing the CVD process, and pointing the way to specific experiments on extraction and deposition of ferrous metals from nonterrestrial materials.

  6. U.S. DOE Progress Towards Developing Low-Cost, High Performance, Durable Polymer Electrolyte Membranes for Fuel Cell Applications

    PubMed Central

    Houchins, Cassidy; Kleen, Greg J.; Spendelow, Jacob S.; Kopasz, John; Peterson, David; Garland, Nancy L.; Ho, Donna Lee; Marcinkoski, Jason; Martin, Kathi Epping; Tyler, Reginald; Papageorgopoulos, Dimitrios C.

    2012-01-01

    Low cost, durable, and selective membranes with high ionic conductivity are a priority need for wide-spread adoption of polymer electrolyte membrane fuel cells (PEMFCs) and direct methanol fuel cells (DMFCs). Electrolyte membranes are a major cost component of PEMFC stacks at low production volumes. PEMFC membranes also impose limitations on fuel cell system operating conditions that add system complexity and cost. Reactant gas and fuel permeation through the membrane leads to decreased fuel cell performance, loss of efficiency, and reduced durability in both PEMFCs and DMFCs. To address these challenges, the U.S. Department of Energy (DOE) Fuel Cell Technologies Program, in the Office of Energy Efficiency and Renewable Energy, supports research and development aimed at improving ion exchange membranes for fuel cells. For PEMFCs, efforts are primarily focused on developing materials for higher temperature operation (up to 120 °C) in automotive applications. For DMFCs, efforts are focused on developing membranes with reduced methanol permeability. In this paper, the recently revised DOE membrane targets, strategies, and highlights of DOE-funded projects to develop new, inexpensive membranes that have good performance in hot and dry conditions (PEMFC) and that reduce methanol crossover (DMFC) will be discussed. PMID:24958432

  7. Exploring actinide materials through synchrotron radiation techniques.

    PubMed

    Shi, Wei-Qun; Yuan, Li-Yong; Wang, Cong-Zhi; Wang, Lin; Mei, Lei; Xiao, Cheng-Liang; Zhang, Li; Li, Zi-Jie; Zhao, Yu-Liang; Chai, Zhi-Fang

    2014-12-10

    Synchrotron radiation (SR) based techniques have been utilized with increasing frequency in the past decade to explore the brilliant and challenging sciences of actinide-based materials. This trend is partially driven by the basic needs for multi-scale actinide speciation and bonding information and also the realistic needs for nuclear energy research. In this review, recent research progresses on actinide related materials by means of various SR techniques were selectively highlighted and summarized, with the emphasis on X-ray absorption spectroscopy, X-ray diffraction and scattering spectroscopy, which are powerful tools to characterize actinide materials. In addition, advanced SR techniques for exploring future advanced nuclear fuel cycles dealing with actinides are illustrated as well. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Advanced Fuels Campaign FY 2014 Accomplishments Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braase, Lori; May, W. Edgar

    The mission of the Advanced Fuels Campaign (AFC) is to perform Research, Development, and Demonstration (RD&D) activities for advanced fuel forms (including cladding) to enhance the performance and safety of the nation’s current and future reactors; enhance proliferation resistance of nuclear fuel; effectively utilize nuclear energy resources; and address the longer-term waste management challenges. This includes development of a state-of-the art Research and Development (R&D) infrastructure to support the use of a “goal-oriented science-based approach.” In support of the Fuel Cycle Research and Development (FCRD) program, AFC is responsible for developing advanced fuels technologies to support the various fuel cyclemore » options defined in the Department of Energy (DOE) Nuclear Energy Research and Development Roadmap, Report to Congress, April 2010. AFC uses a “goal-oriented, science-based approach” aimed at a fundamental understanding of fuel and cladding fabrication methods and performance under irradiation, enabling the pursuit of multiple fuel forms for future fuel cycle options. This approach includes fundamental experiments, theory, and advanced modeling and simulation. The modeling and simulation activities for fuel performance are carried out under the Nuclear Energy Advanced Modeling and Simulation (NEAMS) program, which is closely coordinated with AFC. In this report, the word “fuel” is used generically to include fuels, targets, and their associated cladding materials. R&D of light water reactor (LWR) fuels with enhanced accident tolerance is also conducted by AFC. These fuel systems are designed to achieve significantly higher fuel and plant performance to allow operation to significantly higher burnup, and to provide enhanced safety during design basis and beyond design basis accident conditions. The overarching goal is to develop advanced nuclear fuels and materials that are robust, have high performance capability, and are more tolerant to accident conditions than traditional fuel systems. AFC management and integration activities included continued support for international collaborations, primarily with France, Japan, the European Union, Republic of Korea, and China, as well as various working group and expert group activities in the Organization for Economic Cooperation and Development Nuclear Energy Agency (OECD-NEA) and the International Atomic Energy Agency (IAEA). Three industry-led Funding Opportunity Announcements (FOAs) and two university-led Integrated Research Projects (IRPs), funded in 2013, made significant progress in fuels and materials development. All are closely integrated with AFC and Accident Tolerant Fuels (ATF) research. Accomplishments made during fiscal year (FY) 2014 are highlighted in this report, which focuses on completed work and results. The process details leading up to the results are not included; however, the lead technical contact is provided for each section.« less

  9. Carbon nanomaterials for advanced energy conversion and storage.

    PubMed

    Dai, Liming; Chang, Dong Wook; Baek, Jong-Beom; Lu, Wen

    2012-04-23

    It is estimated that the world will need to double its energy supply by 2050. Nanotechnology has opened up new frontiers in materials science and engineering to meet this challenge by creating new materials, particularly carbon nanomaterials, for efficient energy conversion and storage. Comparing to conventional energy materials, carbon nanomaterials possess unique size-/surface-dependent (e.g., morphological, electrical, optical, and mechanical) properties useful for enhancing the energy-conversion and storage performances. During the past 25 years or so, therefore, considerable efforts have been made to utilize the unique properties of carbon nanomaterials, including fullerenes, carbon nanotubes, and graphene, as energy materials, and tremendous progress has been achieved in developing high-performance energy conversion (e.g., solar cells and fuel cells) and storage (e.g., supercapacitors and batteries) devices. This article reviews progress in the research and development of carbon nanomaterials during the past twenty years or so for advanced energy conversion and storage, along with some discussions on challenges and perspectives in this exciting field. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. BISON Fuel Performance Analysis of FeCrAl cladding with updated properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sweet, Ryan; George, Nathan M.; Terrani, Kurt A.

    2016-08-30

    In order to improve the accident tolerance of light water reactor (LWR) fuel, alternative cladding materials have been proposed to replace zirconium (Zr)-based alloys. Of these materials, there is a particular focus on iron-chromium-aluminum (FeCrAl) alloys due to much slower oxidation kinetics in high-temperature steam than Zr-alloys. This should decrease the energy release due to oxidation and allow the cladding to remain integral longer in the presence of high temperature steam, making accident mitigation more likely. As a continuation of the development for these alloys, suitability for normal operation must also be demonstrated. This research is focused on modeling themore » integral thermo-mechanical performance of FeCrAl-cladded fuel during normal reactor operation. Preliminary analysis has been performed to assess FeCrAl alloys (namely Alkrothal 720 and APMT) as a suitable fuel cladding replacement for Zr-alloys, using the MOOSE-based, finite-element fuel performance code BISON and the best available thermal-mechanical and irradiation-induced constitutive properties. These simulations identify the effects of the mechanical-stress and irradiation response of FeCrAl, and provide a comparison with Zr-alloys. In comparing these clad materials, fuel rods have been simulated for normal reactor operation and simple steady-state operation. Normal reactor operating conditions target the cladding performance over the rod lifetime (~4 cycles) for the highest-power rod in the highest-power fuel assembly under reactor power maneuvering. The power histories and axial temperature profiles input into BISON were generated from a neutronics study on full-core reactivity equivalence for FeCrAl using the 3D full core simulator NESTLE. Evolution of the FeCrAl cladding behavior over time is evaluated by using steady-state operating conditions such as a simple axial power profile, a constant cladding surface temperature, and a constant fuel power history. The fuel rod designs and operating conditions used are based off the Peach Bottom BWR and design consideration was given to minimize the neutronic penalty of the FeCrAl cladding by changing fuel enrichment and cladding thickness. As this study progressed, systematic parametric analysis of the fuel and cladding creep responses were also performed.« less

  11. Point Defects in Oxides: Tailoring Materials Through Defect Engineering

    NASA Astrophysics Data System (ADS)

    Tuller, Harry L.; Bishop, Sean R.

    2011-08-01

    Optimization of electrical, optical, mechanical, and other properties of many advanced, functional materials today relies on precise control of point defects. This article illustrates the progress that has been made in elucidating the often complex equilibria exhibited by many materials by examining two recently well-characterized model systems, TlBr for radiation detection and PrxCe1-xO2-δ, of potential interest in solid-oxide fuel cells. The interplay between material composition, electrical conductivity, and mechanical properties (electrochemomechanics) is discussed, and implications in these relations, for example, enhancing electrical properties through large mechanical strains, are described. The impact of space charge and strain fields at interfaces, particularly important in nanostructure materials, is also emphasized. Key experimental techniques useful in characterizing bulk and surface defects are summarized and reviewed.

  12. USHPRR FUEL FABRICATION PILLAR: FABRICATION STATUS, PROCESS OPTIMIZATIONS, AND FUTURE PLANS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wight, Jared M.; Joshi, Vineet V.; Lavender, Curt A.

    The Fuel Fabrication (FF) Pillar, a project within the U.S. High Performance Research Reactor Conversion program of the National Nuclear Security Administration’s Office of Material Management and Minimization, is tasked with the scale-up and commercialization of high-density monolithic U-Mo fuel for the conversion of appropriate research reactors to use of low-enriched fuel. The FF Pillar has made significant steps to demonstrate and optimize the baseline co-rolling process using commercial-scale equipment at both the Y-12 National Security Complex (Y-12) and BWX Technologies (BWXT). These demonstrations include the fabrication of the next irradiation experiment, Mini-Plate 1 (MP-1), and casting optimizations at Y-12.more » The FF Pillar uses a detailed process flow diagram to identify potential gaps in processing knowledge or demonstration, which helps direct the strategic research agenda of the FF Pillar. This paper describes the significant progress made toward understanding the fuel characteristics, and models developed to make informed decisions, increase process yield, and decrease lifecycle waste and costs.« less

  13. Safety Testing of Ammonium Nitrate Based Mixtures

    NASA Astrophysics Data System (ADS)

    Phillips, Jason; Lappo, Karmen; Phelan, James; Peterson, Nathan; Gilbert, Don

    2013-06-01

    Ammonium nitrate (AN)/ammonium nitrate based explosives have a lengthy documented history of use by adversaries in acts of terror. While historical research has been conducted on AN-based explosive mixtures, it has primarily focused on detonation performance while varying the oxygen balance between the oxidizer and fuel components. Similarly, historical safety data on these materials is often lacking in pertinent details such as specific fuel type, particle size parameters, oxidizer form, etc. A variety of AN-based fuel-oxidizer mixtures were tested for small-scale sensitivity in preparation for large-scale testing. Current efforts focus on maintaining a zero oxygen-balance (a stoichiometric ratio for active chemical participants) while varying factors such as charge geometry, oxidizer form, particle size, and inert diluent ratios. Small-scale safety testing was conducted on various mixtures and fuels. It was found that ESD sensitivity is significantly affected by particle size, while this is less so for impact and friction. Thermal testing is in progress to evaluate hazards that may be experienced during large-scale testing.

  14. Status and progress of the RERTR program in the year 2000.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Travelli, A.

    2000-09-28

    This paper describes the progress achieved by the Reduced Enrichment for Research and Test Reactors (RERTR) Program in collaboration with its many international partners during the year 2000 and discusses the main activities planned for the year 2001. The past year was characterized by important accomplishments and events for the RERTR program. Four additional shipments containing 503 spent fuel assemblies from foreign research reactors were accepted by the U.S. Altogether, 3,740 spent fuel assemblies from foreign research reactors have been received by the U.S. under the acceptance policy. Postirradiation examinations of three batches of microplates have continued to reveal excellentmore » irradiation behavior of U-MO dispersion fuels in a variety of compositions and irradiating conditions. h-radiation of two new batches of miniplates of greater sizes is in progress in the ATR to investigate me swelling behavior of these fuels under prototypic conditions. These materials hold the promise of achieving the program goal of developing LEU research reactor fuels with uranium densities in the 8-9 g /cm{sup 3} range. Qualification of the U-MO dispersion fuels is proceeding on schedule. Test fuel elements with 6 gU/cm{sup 3} are being fabricated by BWXT and are scheduled to begin undergoing irradiation in the HFR-Petten in the spring of 2001, with a goal of qualifying this fuel by the end of 2003. U-Mo with 8-9 gU/cm{sup 3} is planned to be qualified by the end of 2005. Joint LEU conversion feasibility studies were completed for HFR-Petten and for SAFARI-1. Significant improvements were made in the design of LEU metal-foil annular targets that would allow efficient production of fission {sup 99}Mo. Irradiations in the RAS-GAS reactor showed that these targets can formed from aluminum tubes, and that the yield and purity of their product from the acidic process were at least as good as those from the HEU Cintichem targets. Progress was made on irradiation testing of LEU UO{sub 2} dispersion fuel and on LEU conversion feasibility studies in the Russian RERTR program. Conversion of the BER-11reactor in Berlin, Germany, was completed and conversion of the La Reins reactor in Santiago, Chile, began. These are exciting times for the program. In the fuel development area, the RERTR program is aggressively pursuing qualification of high-density LEU U-Mo dispersion fuels, with the dual goal of enabling fi.uther conversions and of developing a substitute for LEU silicide fuels that can be more easily disposed of after expiration of the FRR SNF Acceptance Program. The {sup 99}Mo effort has reached the point where it appears feasible for all the {sup 99}Mo producers of the world to agree jointly to a common course of action leading to the elimination of HEU use in their processes. As in the past, the success of the RERTR program will depend on the international friendship and cooperation that has always been its trademark.« less

  15. Progress in electrochemical storage for battery systems

    NASA Technical Reports Server (NTRS)

    Ford, F. E.; Hennigan, T. J.; Palandati, C. F.; Cohn, E.

    1972-01-01

    Efforts to improve electrochemical systems for space use relate to: (1) improvement of conventional systems; (2) development of fuel cells to practical power systems; and (3) a search for new systems that provide gains in energy density but offer comparable life and performance as conventional systems. Improvements in sealed conventional systems resulted in the areas of materials, charge control methods, cell operations and battery control, and specific process controls required during cell manufacture. Fuel-cell systems have been developed for spacecraft but the use of these power plants is limited. For present and planned flights, nickel-cadmium, silver-zinc, and silver-cadmium systems will be used. Improvements in nickel-cadmium batteries have been applied in medical and commercial areas.

  16. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caroline E. Burgess Clifford; Andre Boehman; Chunshan Song

    2006-05-17

    This report summarizes the accomplishments toward project goals during the first six months of the third year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. Characterization of the gasolinemore » fuel indicates a dominance of single ring alkylcycloalkanes that have a low octane rating; however, blends containing these compounds do not have a negative effect upon gasoline when blended in refinery gasoline streams. Characterization of the diesel fuel indicates a dominance of 3-ring aromatics that have a low cetane value; however, these compounds do not have a negative effect upon diesel when blended in refinery diesel streams. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Combustion and characterization of fuel oil indicates that the fuel is somewhere in between a No. 4 and a No. 6 fuel oil. Emission testing indicates the fuel burns similarly to these two fuels, but trace metals for the coal-based material are different than petroleum-based fuel oils. Co-coking studies using cleaned coal are highly reproducible in the pilot-scale delayed coker. Evaluation of the coke by Alcoa, Inc. indicated that while the coke produced is of very good quality, the metals content of the carbon is still high in iron and silica. Coke is being evaluated for other possible uses. Methods to reduce metal content are being evaluated.« less

  17. The RERTR Program : a status report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Travelli, A.

    1998-10-19

    This paper describes the progress achieved by the Reduced Enrichment for Research and Test Reactors (RERTR) Program in collaboration with its many international partners since its inception in 1978. A brief summary of the results that the program had attained by the end of 1997 is followed by a detailed review of the major events, findings, and activities that took place in 1998. The past year was characterized by exceptionally important accomplishments and events for the RERTR program. Four additional shipments of spent fuel from foreign research reactors were accepted by the U.S. Altogether, 2,231 spent fuel assemblies from foreignmore » research reactors have been received by the U.S. under the acceptance policy. Fuel development activities began to yield solid results. Irradiations of the first two batches of microplates were completed. Preliminary postirradiation examinations of these microplates indicate excellent irradiation behavior of some of the fuel materials that were tested. These materials hold the promise of achieving the pro am goal of developing LEU research reactor fuels with uranium density in the 8-9 g /cm{sup 3} range. Progress was made in the Russian RERTR program, which aims to develop and demonstrate the technical means needed to convert Russian-supplied research reactors to LEU fuels. Feasibility studies for converting to LEU fuel four Russian-designed research reactors (IR-8 in Russia, Budapest research reactor in Hungary, MARIA in Poland, and WWR-SM in Uzbekistan) were completed. A new program activity began to study the feasibility of converting three Russian plutonium production reactors to the use of low-enriched U0{sub 2}-Al dispersion fuel, so that they can continue to produce heat and electricity without producing significant amounts of plutonium. The study of an alternative LEU core for the FRM-II design has been extended to address, with favorable results, the transient performance of the core under hypothetical accident conditions. A major milestone was accomplished in the development of a process to produce molybdenum-99 from fission targets utilizing LEU instead of HEU. Targets containing LEU metal foils were irradiated in the RAS-GAS reactor at BATAN, Indonesia, and molybdenum-99 was successfully extracted through the ensuing process. These are exciting times for the program and for all those involved in it, and last year's successes augur well for the future. However, as in the past, the success of the RERTR program will depend on the international friendship and cooperation that have always been its trademark.« less

  18. 2015 Annual Progress Report: DOE Hydrogen and Fuel Cells Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    The 2015 Annual Progress Report summarizes fiscal year 2015 activities and accomplishments by projects funded by the DOE Hydrogen and Fuel Cells Program. It covers the program areas of hydrogen production; hydrogen delivery; hydrogen storage; fuel cells; manufacturing R&D; technology validation; safety, codes and standards; systems analysis; and market transformation.

  19. Asymmetric Semiconductor Nanorod/Oxide Nanoparticle Hybrid Materials: Model Nanomaterials for Light-Activated Formation of Fuels from Sunlight. Formal Progress Report -- Award DE-FG02-05ER15753

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armstrong, Neal R.

    Executive Summary on Project Accomplishments: We focused our efforts for this project on the synthesis and characterization of semiconductor nanomaterials composed of semiconductor nanorods (NRs - e.g., CdSe, CdSe@CdS, CdS) with metal (Au, Pt, Co) or metal oxide (CoxOy) nanoparticle (NP) “tips.” These systems are attractive model systems where control of spatial, energetic and compositional features of both NRs and NP tips potentially enhances the efficiency of photogeneration and directional transport of charges, and photoelectrochemical conversion of sunlight to fuels. Synthetic methods to control material dimensions (20-200 nm in length), topology (one vs. two NP tips) and NR/NP tip compositionsmore » have been developed in the current project period (Pyun). We also achieved, for the first time in heterostructured nanorod materials, estimates of both valence band energies (E VB) and conduction band energies (E CB), using unique combinations of in vacuuo ultraviolet photoelectron spectroscopy (UPS, Armstrong), and waveguide spectroelectrochemistry (Saavedra), respectively. The spectroelectrochemical measurements in particular provide a unique path to estimation of E CB, and the distribution in E CB brought about by modification of NR composition. The combination of both approaches promises to be universally applicable to the characterization of energetics in nanomaterials of interest both for photovoltaic and sunlight-to-fuel photoelectrochemical assemblies.« less

  20. 2016 Annual Progress Report: DOE Hydrogen and Fuel Cells Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    The 2016 Annual Progress Report summarizes fiscal year 2016 activities and accomplishments by projects funded by the DOE Hydrogen and Fuel Cells Program. It covers the program areas of hydrogen production; hydrogen delivery; hydrogen storage; fuel cells; manufacturing R&D; technology validation; safety, codes and standards; systems analysis; market transformation; and Small Business Innovation Research projects.

  1. On the Nonlinear Behavior of a Glass-Ceramic Seal and its Application in Planar SOFC Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Ba Nghiep; Koeppel, Brian J.; Vetrano, John S.

    2006-06-01

    This paper studies the nonlinear behavior of a glass-ceramic seal used in planar solid oxide fuel cells (SOFCs). To this end, a viscoelastic damage model has been developed that can capture the nonlinear material response due to both progressive damage in the glass-ceramic material and viscous flow of the residual glass in this material. The model has been implemented in the MSC MARC finite element code, and its validation has been carried out using the experimental relaxation test data obtained for this material at 700oC, 750oC, and 800oC. Finally, it has been applied to the simulation of a SOFC stackmore » under thermal cycling conditions. The areas of potential damage have been predicted.« less

  2. Metals and Ceramics Division progress report for period ending December 31, 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Craig, D.F.; Bradley, R.A.; Weir, J.R. Jr.

    1994-07-01

    This report provides an overview of activities and accomplishsments of the division from October 1992 through December 1993; the division is organized to provide technical support, mainly in the area of high-temperature materials, for technologies being developed by DOE. Activities span the range from basic research to industrial interactions (cooperative research and technology transfer). Sections 1-5 describe the different functional groups (engineering materials, high-temperature materials, materials science, ceramics, nuclear fuel materials). Sect. 6 provides an alternative view of the division in terms of the major programs, most of which cross group lines. Sect. 7 summarizes external interactions including cooperative Rmore » and D programs and technology transfer functions. Finally, Sect. 8 briefly describes the division`s involvement in educational activities. Several organizational changes were effected during this period.« less

  3. FUEL-BREEDER FUEL ELEMENT FOR NUCLEAR REACTOR

    DOEpatents

    Abbott, W.E.; Balent, R.

    1958-09-16

    A fuel element design to facilitate breeding reactor fuel is described. The fuel element is comprised of a coatainer, a central core of fertile material in the container, a first bonding material surrounding the core, a sheet of fissionable material immediately surrounding the first bonding material, and a second bonding material surrounding the fissionable material and being in coniact with said container.

  4. Co-Optimization of Fuels & Engines (Co-Optima) Initiative: Recent Progress on Light-Duty Boosted Spark-Ignition Fuels/Engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farrell, John

    This presentation reports recent progress on light-duty boosted spark-ignition fuels/engines being developed under the Co-Optimization of Fuels and Engines initiative (Co-Optima). Co-Optima is focused on identifying fuel properties that optimize engine performance, independent of composition, allowing the market to define the best means to blend and provide these fuels. However, in support of this, we are pursuing a systematic study of blendstocks to identify a broad range of feasible options, with the objective of identifying blendstocks that can provide target ranges of key fuel properties, identifying trade-offs on consistent and comprehensive basis, and sharing information with stakeholders.

  5. Recent Progress in Nanostructured Electrocatalysts for PEM Fuel Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Sheng; Shao, Yuyan; Yin, Geping

    2013-03-30

    Polymer electrolyte membrane (PEM) fuel cells are attracting much attention as promising clean power sources and an alternative to conventional internal combustion engines, secondary batteries, and other power sources. Much effort from government laboratories, industry, and academia has been devoted to developing PEM fuel cells, and great advances have been achieved. Although prototype cars powered by fuel cells have been delivered, successful commercialization requires fuel cell electrocatalysts, which are crucial components at the heart of fuel cells, meet exacting performance targets. In this review, we present a brief overview of the recent progress in fuel cell electrocatalysts, which involves catalystmore » supports, Pt and Pt-based electrocatalysts, and non-Pt electrocatalysts.« less

  6. Reactivity Initiated Accident Simulation to Inform Transient Testing of Candidate Advanced Cladding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Nicholas R; Wysocki, Aaron J; Terrani, Kurt A

    2016-01-01

    Abstract. Advanced cladding materials with potentially enhanced accident tolerance will yield different light water reactor performance and safety characteristics than the present zirconium-based cladding alloys. These differences are due to different cladding material properties and responses to the transient, and to some extent, reactor physics, thermal, and hydraulic characteristics. Some of the differences in reactors physics characteristics will be driven by the fundamental properties (e.g., absorption in iron for an iron-based cladding) and others will be driven by design modifications necessitated by the candidate cladding materials (e.g., a larger fuel pellet to compensate for parasitic absorption). Potential changes in thermalmore » hydraulic limits after transition from the current zirconium-based cladding to the advanced materials will also affect the transient response of the integral fuel. This paper leverages three-dimensional reactor core simulation capabilities to inform on appropriate experimental test conditions for candidate advanced cladding materials in a control rod ejection event. These test conditions are using three-dimensional nodal kinetics simulations of a reactivity initiated accident (RIA) in a representative state-of-the-art pressurized water reactor with both nuclear-grade iron-chromium-aluminum (FeCrAl) and silicon carbide based (SiC-SiC) cladding materials. The effort yields boundary conditions for experimental mechanical tests, specifically peak cladding strain during the power pulse following the rod ejection. The impact of candidate cladding materials on the reactor kinetics behavior of RIA progression versus reference zirconium cladding is predominantly due to differences in: (1) fuel mass/volume/specific power density, (2) spectral effects due to parasitic neutron absorption, (3) control rod worth due to hardened (or softened) spectrum, and (4) initial conditions due to power peaking and neutron transport cross sections in the equilibrium cycle cores due to hardened (or softened) spectrum. This study shows minimal impact of SiC-based cladding configurations on the transient response versus reference zirconium-based cladding. However, the FeCrAl cladding response indicates similar energy deposition, but with significantly shorter pulses of higher magnitude. Therefore the FeCrAl-based cases have a more rapid fuel thermal expansion rate and the resultant pellet-cladding interaction occurs more rapidly.« less

  7. FY 2005 Annual Progress Report for the DOE Hydrogen Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    In cooperation with industry, academia, national laboratories, and other government agencies, the Department of Energy's Hydrogen Program is advancing the state of hydrogen and fuel cell technologies in support of the President's Hydrogen Fuel Initiative. The initiative seeks to develop hydrogen, fuel cell, and infrastructure technologies needed to make it practical and cost-effective for Americans to choose to use fuel cell vehicles by 2020. Significant progress was made in fiscal year 2005 toward that goal.

  8. Conductive polymer layers to limit transfer of fuel reactants to catalysts of fuel cells to reduce reactant crossover

    DOEpatents

    Stanis, Ronald J.; Lambert, Timothy N.

    2016-12-06

    An apparatus of an aspect includes a fuel cell catalyst layer. The fuel cell catalyst layer is operable to catalyze a reaction involving a fuel reactant. A fuel cell gas diffusion layer is coupled with the fuel cell catalyst layer. The fuel cell gas diffusion layer includes a porous electrically conductive material. The porous electrically conductive material is operable to allow the fuel reactant to transfer through the fuel cell gas diffusion layer to reach the fuel cell catalyst layer. The porous electrically conductive material is also operable to conduct electrons associated with the reaction through the fuel cell gas diffusion layer. An electrically conductive polymer material is coupled with the fuel cell gas diffusion layer. The electrically conductive polymer material is operable to limit transfer of the fuel reactant to the fuel cell catalyst layer.

  9. Next-Generation Electrochemical Energy Materials for Intermediate Temperature Molten Oxide Fuel Cells and Ion Transport Molten Oxide Membranes.

    PubMed

    Belousov, Valery V

    2017-02-21

    High temperature electrochemical devices such as solid oxide fuel cells (SOFCs) and oxygen separators based on ceramic materials are used for efficient energy conversion. These devices generally operate in the temperature range of 800-1000 °C. The high operating temperatures lead to accelerated degradation of the SOFC and oxygen separator materials. To solve this problem, the operating temperatures of these electrochemical devices must be lowered. However, lowering the temperature is accompanied by decreasing the ionic conductivity of fuel cell electrolyte and oxygen separator membrane. Therefore, there is a need to search for alternative electrolyte and membrane materials that have high ionic conductivity at lower temperatures. A great many opportunities exist for molten oxides as electrochemical energy materials. Because of their unique electrochemical properties, the molten oxide innovations can offer significant benefits for improving energy efficiency. In particular, the newly developed electrochemical molten oxide materials show high ionic conductivities at intermediate temperatures (600-800 °C) and could be used in molten oxide fuel cells (MOFCs) and molten oxide membranes (MOMs). The molten oxide materials containing both solid grains and liquid channels at the grain boundaries have advantages compared to the ceramic materials. For example, the molten oxide materials are ductile, which solves a problem of thermal incompatibility (difference in coefficient of thermal expansion, CTE). Besides, the outstanding oxygen selectivity of MOM materials allows us to separate ultrahigh purity oxygen from air. For their part, the MOFC electrolytes show the highest ionic conductivity at intermediate temperatures. To evaluate the potential of molten oxide materials for technological applications, the relationship between the microstructure of these materials and their transport and mechanical properties must be revealed. This Account summarizes the latest results on oxygen ion transport in potential MOM materials and MOFC electrolytes. In addition, we consider the rapid oxygen transport in a molten oxide scale formed on a metal surface during catastrophic oxidation and show that the same transport could be used beneficially in MOMs and MOFCs. A polymer model explaining the oxygen transport in molten oxides is also considered. Understanding the oxygen transport mechanisms in oxide melts is important for the development of new generation energy materials, which will contribute to more efficient operation of electrochemical devices at intermediate temperatures. Here we highlight the progress made in developing this understanding. We also show the latest advances made in search of alternative molten oxide materials having high mixed ion electronic and ionic conductivities for use in MOMs and MOFCs, respectively. Prospects for further research are presented.

  10. Supramolecular gel-assisted synthesis of double shelled Co@CoO@N-C/C nanoparticles with synergistic electrocatalytic activity for the oxygen reduction reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Zexing; Wang, Jie; Han, Lili

    2016-01-19

    Investigating active, stable, and low-cost materials for the oxygen reduction reaction is one of the key challenges in fuel-cell research. In this work, we describe the formation of N-doped carbon shell coated Co@CoO nanoparticles supported on Vulcan XC-72 carbon materials (Co@CoO@N–C/C) based on a simple supramolecular gel-assisted method. The double-shelled Co@CoO@N–C/C core–shell nanoparticles exhibit superior electrocatalytic activities for the oxygen reduction reaction compared to N-doped carbon and cobalt oxides, demonstrating the synergistic effect of the hybrid nanomaterials. Notably, the Co@CoO@N–C/C nanoparticles give rise to a comparable four-electron selectivity, long-term stability, and high methanol tolerance; all show a multi-fold improvement overmore » the commercial Pt/C catalyst. As a result, the progress is of great importance in exploring advanced non-precious metal-based electrocatalysts for fuel cell applications.« less

  11. Towards the next generation of solid oxide fuel cells operating below 600 °c with chemically stable proton-conducting electrolytes.

    PubMed

    Fabbri, Emiliana; Bi, Lei; Pergolesi, Daniele; Traversa, Enrico

    2012-01-10

    The need for reducing the solid oxide fuel cell (SOFC) operating temperature below 600 °C is imposed by cost reduction, which is essential for widespread SOFC use, but might also disclose new applications. To this aim, high-temperature proton-conducting (HTPC) oxides have gained widespread interest as electrolyte materials alternative to oxygen-ion conductors. This Progress Report describes recent developments in electrolyte, anode, and cathode materials for protonic SOFCs, addressing the issue of chemical stability, processability, and good power performance below 600 °C. Different fabrication methods are reported for anode-supported SOFCs, obtained using state-of-the-art, chemically stable proton-conducting electrolyte films. Recent findings show significant improvements in the power density output of cells based on doped barium zirconate electrolytes, pointing out towards the feasibility of the next generation of protonic SOFCs, including a good potential for the development of miniaturized SOFCs as portable power supplies. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gottesfeld, Shimshon; Dekel, Dario R.; Page, Miles

    The anion exchange membrane fuel cell (AEMFC) is an attractive alternative to acidic proton exchange membrane fuel cells, which to date have required platinum-based catalysts, as well as acid-tolerant stack hardware. The AEMFC could use non-platinum-group metal catalysts and less expensive metal hardware thanks to the high pH of the electrolyte. Over the last decade, substantial progress has been made in improving the performance and durability of the AEMFC through the development of new materials and the optimization of system design and operation conditions. Here in this perspective article, we describe the current status of AEMFCs as having reached beginningmore » of life performance very close to that of PEMFCs when using ultra-low loadings of Pt, while advancing towards operation on non-platinum-group metal catalysts alone. In the latter sections, we identify the remaining technical challenges, which require further research and development, focusing on the materials and operational factors that critically impact AEMFC performance and/or durability. Finally, these perspectives may provide useful insights for the development of next-generation of AEMFCs.« less

  13. High energy density aluminum-oxygen cell

    NASA Technical Reports Server (NTRS)

    Rudd, E. J.; Gibbons, D. W.

    1993-01-01

    An alternative to a secondary battery as the power source for vehicle propulsion is a fuel cell. An example of this is the metal-air fuel cell using metals such as aluminum, zinc, or iron. Aluminum is a particularly attractive candidate, having high energy and power densities, being environmentally acceptable, and having a large, established industrial base for production and distribution. An aluminum-oxygen system is currently under development for a UUV test vehicle, and recent work has focussed upon low corrosion aluminum alloys and an electrolyte management system for processing the by-products of the energy-producing reactions. This paper summarizes the progress made in both areas. Anode materials capable of providing high utilization factors over current densities ranging from S to 150 mA/sq cm have been identified. These materials are essential to realizing an acceptable mission life for the UUV. With respect to the electrolyte management system, a filter/precipitator unit has been successfully operated for over 250 hours in a large scale, half-cell system.

  14. 33 CFR 183.538 - Metallic fuel line materials.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Metallic fuel line materials. 183... (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Equipment Standards § 183.538 Metallic fuel line materials. Each metallic fuel line connecting the fuel tank with the fuel inlet connection on...

  15. Fuel pin

    DOEpatents

    Christiansen, D.W.; Karnesky, R.A.; Leggett, R.D.; Baker, R.B.

    1987-11-24

    A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

  16. Fuel pin

    DOEpatents

    Christiansen, David W.; Karnesky, Richard A.; Leggett, Robert D.; Baker, Ronald B.

    1989-10-03

    A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

  17. Fuel pin

    DOEpatents

    Christiansen, David W.; Karnesky, Richard A.; Leggett, Robert D.; Baker, Ronald B.

    1989-01-01

    A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

  18. Recovering tubewise power from three-dimensional nodal kinetics calculation during material relocation in an HWR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalimullah; Morris, E.E.; Yang, W.S.

    1994-12-31

    To analyze severe accidents in some special-purpose heavy-water reactors made of assemblies consisting of a number of coaxial tubes of aluminum-clad U-Al fuel and aluminum-clad neutron-capturing material, a mechanistic model, MARTINS, for tube beatup, melting, and molten material relocation has been developed and integrated with the DIF3D nodal hexagonal-z reactor kinetics and other phenomenological modules. The DIF3D kinetics homogenizes all materials located and computes the total power produced in an axial segment of a fuel assembly. This paper presents an approximate method, used in MARTINS, to calculate the distribution of this total nodal power into the intact fuel and capturingmore » material tubes and the meat-cladding mixtures relocating during tube disruption. The method accounts for the change in intraassembly radial power profile due to assembly geometry change with the progress of segment-by-segment disruption of different tubes. Earlier methods to recover pinwise power from nodal calculation for liquid-metal-cooled reactors and light water reactors (X-Y and hexagonal unit cells) are not practical for a disrupting assembly having material relocation. Figure 1 shows the assembly`s end view, divided into rings for modeling and analysis. A ring is a coolant subchannel plus the outer surrounding tube. The present method for distributing the nodal power consists of two parts: (a) calculation of the relative values of ring-by-ring power per unit uranium mass and power per unit mass of neutron-capturing material in a given assembly segment, and (b) normalization of these relative values such that the total power of all rings (intact tubes and U-Al-Cp meat-cladding mixtures, where Cp implies the neutron-capturing material) equals the DIF3D-calculated nodal power for the assembly axial segment.« less

  19. Progress in the development of the MARBLE platform for studying thermonuclear burn in the presence of heterogeneous mix on OMEGA and the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Murphy, T. J.; Douglas, M. R.; Fincke, J. R.; Olson, R. E.; Cobble, J. A.; Haines, B. M.; Hamilton, C. E.; Lee, M. N.; Oertel, J. A.; Parra-Vasquez, N. A. G.; Randolph, R. B.; Schmidt, D. W.; Shah, R. C.; Smidt, J. M.; Tregillis, I. L.

    2016-05-01

    Mix of ablator material into fuel of an ICF capsule adds non-burning material, diluting the fuel and reducing burn. The amount of the reduction is dependent in part on the morphology of the mix. A probability distribution function (PDF) burn model has been developed [6] that utilizes the average concentration of mixed materials as well as the variance in this quantity across cells provided by the BHR turbulent transport model [3] and its revisions [4] to describe the mix in terms of a PDF of concentrations of fuel and ablator material, and provides the burn rate in mixed material. Work is underway to develop the MARBLE ICF platform for use on the National Ignition Facility in experiments to quantify the influence of heterogeneous mix on fusion burn. This platform consists of a plastic (CH) capsule filled with a deuterated plastic foam (CD) with a density of a few tens of milligrams per cubic centimeter, with tritium gas filling the voids in the foam. This capsule will be driven using x-ray drive on NIF, and the resulting shocks will induce turbulent mix that will result in the mixing of deuterium from the foam with the tritium gas. In order to affect the morphology of the mix, engineered foams with voids of diameter up to 100 microns will be utilized. The degree of mix will be determined from the ratio of DT to DD neutron yield. As the mix increases, the yield from reactions between the deuterium of the CD foam with tritium from the gas will increase. The ratio of DT to DD neutrons will be compared to a variation of the PDF burn model that quantifies reactions from initially separated reactants.

  20. Power sources for portable electronics and hybrid cars: lithium batteries and fuel cells.

    PubMed

    Scrosati, Bruno

    2005-01-01

    The activities in progress in our laboratory for the development of batteries and fuel cells for portable electronics and hybrid car applications are reviewed and discussed. In the case of lithium batteries, the research has been mainly focused on the characterization of new electrode and electrolyte materials. Results related to disordered carbon anodes and improved, solvent-free, as well as gel-type, polymer electrolytes are particularly stressed. It is shown that the use of proper gel electrolytes, in combination with suitable electrode couples, allows the development of new types of safe, reliable, and low-cost lithium ion batteries which appear to be very promising power sources for hybrid vehicles. Some of the technologies proven to be successful in the lithium battery area are readapted for use in fuel cells. In particular, this approach has been followed for the preparation of low-cost and stable protonic membranes to be proposed as an alternative to the expensive, perfluorosulfonic membranes presently used in polymer electrolyte membrane fuel cells (PEMFCs). Copyright 2005 The Japan Chemical Journal Forum and Wiley Periodicals, Inc

  1. Status and progress of the RERTR program in the year 2003.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Travelli, A.; Nuclear Engineering Division

    2003-01-01

    One of the most important events affecting the RERTR program during the past year was the decision by the U.S. Department of Energy to request the U.S. Congress to significantly increase RERTR program funding. This decision was prompted, at least in part, by the terrible events of September 11, 2001, and by a high-level U.S./Russian Joint Expert Group recommendation to immediately accelerate RERTR program activities in both countries, with the goal of converting all the world's research reactors to low-enriched fuel at the earliest possible time, and including both Soviet-designed and United States-designed research reactors. The U.S. Congress is expectedmore » to approve this request very soon, and the RERTR program has prepared itself well for the intense activities that the 'Accelerated RERTR Program' will require. Promising results have been obtained in the development of a fabrication process for monolithic LEU U-Mo fuel. Most existing and future research reactors could be converted to LEU with this fuel, which has a uranium density between 15.4 and 16.4 g/cm{sup 3} and yielded promising irradiation results in 2002. The most promising method hinges on producing the monolithic meat by cold-rolling a thin ingot produced by casting. The aluminum clad and the meat are bonded by friction stir welding and the cladding surface is finished by a light cold roll. This method can be applied to the production of miniplates and appears to be extendable to the production of full-size plates, possibly with intermediate anneals. Other methods planned for investigation include high temperature bonding and hot isostatic pressing. The progress achieved within the Russian RERTR program, both for the traditional tube-type elements and for the new 'universal' LEU U-Mo pin-type elements, promises to enable soon the conversion of many Russian-designed research and test reactors. Irradiation testing of both fuel types with LEU U-Mo dispersion fuels has begun. Detailed studies are in progress to define the feasibility of converting each Russian-designed research and test reactor to either fuel type. The plan for the Accelerated RERTR Program is structured to achieve LEU conversion of all HEU research reactors supplied by the United States and Russia during the next nine years. This effort will address, in addition to the fuel development and qualification, the analyses and performance/economic/safety evaluations needed to implement the conversions. In combination with this over-arching goal, the RERTR program plans to achieve at the earliest possible date qualification of LEU U-Mo dispersion fuels with uranium densities of 6 g/cm{sup 3} and 7 g/cm{sup 3}. Reactors currently using or planning to use LEU silicide fuel will rely on this fuel after termination of the FRRSNFA program, because it is acceptable to COGEMA for reprocessing. Qualification of LEU U-Mo dispersion fuels has suffered some unavoidable delays but, to accelerate it as much as possible, the RERTR program, the French CEA, and the Australian ANSTO have agreed to jointly pursue a two-element qualification test of LEU U-Mo dispersion fuel with uranium density of 7.0 g/cm{sup 3} to be performed in the Osiris reactor during 2004. The RERTR program also intends to eliminate all obstacles to the utilization of LEU in targets for isotope production, so that this important function can be performed without the need for weapons-grade materials. All of us, working together as we have for many years, can ensure that all these goals will be achieved. By promoting the efficiency and safety of research reactors while eliminating the traffic in weapons-grade uranium, we can prevent the possibility that some of this material might fall in the wrong hands. Few causes can be more deserving of our joint efforts.« less

  2. Direct methanol feed fuel cell and system

    NASA Technical Reports Server (NTRS)

    Surampudi, Subbarao (Inventor); Kindler, Andrew (Inventor); Halpert, Gerald (Inventor); Frank, Harvey A. (Inventor); Narayanan, Sekharipuram R. (Inventor); Chun, William (Inventor); Jeffries-Nakamura, Barbara (Inventor)

    2009-01-01

    Improvements to non acid methanol fuel cells include new formulations for materials. The platinum and ruthenium are more exactly mixed together. Different materials are substituted for these materials. The backing material for the fuel cell electrode is specially treated to improve its characteristics. A special sputtered electrode is formed which is extremely porous. The fuel cell system also comprises a fuel supplying part including a meter which meters an amount of fuel which is used by the fuel cell, and controls the supply of fuel based on said metering.

  3. Synthesis and characterization of BaGa2O4 and Ba3Co2O6(CO3)0.6 compounds in the search of alternative materials for Proton Ceramic Fuel Cell (PCFC)

    NASA Astrophysics Data System (ADS)

    Acuña, Wilder; Tellez, Jhoan F.; Macías, Mario A.; Roussel, Pascal; Ricote, Sandrine; Gauthier, Gilles H.

    2017-09-01

    BaGa2O4 and Ba3Co2O6(CO3)0.6 compounds were studied as electrolyte and cathode materials for Proton Ceramic Fuel Cells (PCFC), respectively. Not only BaGa2O4 rapidly reacts with atmospheric H2O and CO2 and leads to a progressive material decomposition, but it does not present real hydration properties in normal conditions of pressure. On the other hand, the basic cobalt oxocarbonate Ba3Co2O6(CO3)0.6 exhibits an interesting tendency for weight uptake and formation of hydrogencarbonate groups in moist heating/cooling conditions. This material was therefore considered for complementary studies in order to confirm its potential use as mixed proton-electron conductor, taking into account the ordered intergrowth of carbonates and face sharing Co-octahedra columns forming a pseudo-one-dimensional structure. Some preliminary results concerning electrochemical properties of the barium cobalt oxocarbonate as a PCFC cathode are also described and show at the moment modest performance, possibly related to a hydrated/carbonated surface layer contribution and/or the lack of electron percolation within the electrode layer.

  4. Materials-Related Aspects of Thermochemical Water and Carbon Dioxide Splitting: A Review

    PubMed Central

    Roeb, Martin; Neises, Martina; Monnerie, Nathalie; Call, Friedemann; Simon, Heike; Sattler, Christian; Schmücker, Martin; Pitz-Paal, Robert

    2012-01-01

    Thermochemical multistep water- and CO2-splitting processes are promising options to face future energy problems. Particularly, the possible incorporation of solar power makes these processes sustainable and environmentally attractive since only water, CO2 and solar power are used; the concentrated solar energy is converted into storable and transportable fuels. One of the major barriers to technological success is the identification of suitable active materials like catalysts and redox materials exhibiting satisfactory durability, reactivity and efficiencies. Moreover, materials play an important role in the construction of key components and for the implementation in commercial solar plants. The most promising thermochemical water- and CO2-splitting processes are being described and discussed with respect to further development and future potential. The main materials-related challenges of those processes are being analyzed. Technical approaches and development progress in terms of solving them are addressed and assessed in this review.

  5. Computational materials design of crystalline solids.

    PubMed

    Butler, Keith T; Frost, Jarvist M; Skelton, Jonathan M; Svane, Katrine L; Walsh, Aron

    2016-11-07

    The modelling of materials properties and processes from first principles is becoming sufficiently accurate as to facilitate the design and testing of new systems in silico. Computational materials science is both valuable and increasingly necessary for developing novel functional materials and composites that meet the requirements of next-generation technology. A range of simulation techniques are being developed and applied to problems related to materials for energy generation, storage and conversion including solar cells, nuclear reactors, batteries, fuel cells, and catalytic systems. Such techniques may combine crystal-structure prediction (global optimisation), data mining (materials informatics) and high-throughput screening with elements of machine learning. We explore the development process associated with computational materials design, from setting the requirements and descriptors to the development and testing of new materials. As a case study, we critically review progress in the fields of thermoelectrics and photovoltaics, including the simulation of lattice thermal conductivity and the search for Pb-free hybrid halide perovskites. Finally, a number of universal chemical-design principles are advanced.

  6. Fuel efficiency through new airframe technology

    NASA Technical Reports Server (NTRS)

    Leonard, R. W.

    1982-01-01

    In its Aircraft Energy Efficiency Program, NASA has expended approximately 200 million dollars toward development and application of advanced airframe technologies to United States's commercial transports. United States manufacturers have already been given a significant boost toward early application of advanced composite materials to control surface and empennage structures and toward selected applications of active controls and advanced aerodynamic concepts. In addition, significant progress in definition and development of innovative, but realistic systems for laminar flow control over the wings of future transports has already been made.

  7. Proliferation dangers associated with nuclear medicine: getting weapons-grade uranium out of radiopharmaceutical production.

    PubMed

    Williams, Bill; Ruff, Tilman A

    2007-01-01

    Abolishing the threat of nuclear war requires the outlawing of nuclear weapons and dismantling current nuclear weapon stockpiles, but also depends on eliminating access to fissile material (nuclear weapon fuel). The near-universal use of weapons-grade, highly enriched uranium (HEU) to produce radiopharmaceuticals is a significant proliferation hazard. Health professionals have a strategic opportunity and obligation to progress the elimination of medically-related commerce in HEU, closing one of the most vulnerable pathways to the much-feared 'terrorist bomb'.

  8. VISION User Guide - VISION (Verifiable Fuel Cycle Simulation) Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacob J. Jacobson; Robert F. Jeffers; Gretchen E. Matthern

    2009-08-01

    The purpose of this document is to provide a guide for using the current version of the Verifiable Fuel Cycle Simulation (VISION) model. This is a complex model with many parameters; the user is strongly encouraged to read this user guide before attempting to run the model. This model is an R&D work in progress and may contain errors and omissions. It is based upon numerous assumptions. This model is intended to assist in evaluating “what if” scenarios and in comparing fuel, reactor, and fuel processing alternatives at a systems level for U.S. nuclear power. The model is not intendedmore » as a tool for process flow and design modeling of specific facilities nor for tracking individual units of fuel or other material through the system. The model is intended to examine the interactions among the components of a fuel system as a function of time varying system parameters; this model represents a dynamic rather than steady-state approximation of the nuclear fuel system. VISION models the nuclear cycle at the system level, not individual facilities, e.g., “reactor types” not individual reactors and “separation types” not individual separation plants. Natural uranium can be enriched, which produces enriched uranium, which goes into fuel fabrication, and depleted uranium (DU), which goes into storage. Fuel is transformed (transmuted) in reactors and then goes into a storage buffer. Used fuel can be pulled from storage into either separation of disposal. If sent to separations, fuel is transformed (partitioned) into fuel products, recovered uranium, and various categories of waste. Recycled material is stored until used by its assigned reactor type. Note that recovered uranium is itself often partitioned: some RU flows with recycled transuranic elements, some flows with wastes, and the rest is designated RU. RU comes out of storage if needed to correct the U/TRU ratio in new recycled fuel. Neither RU nor DU are designated as wastes. VISION is comprised of several Microsoft Excel input files, a Powersim Studio core, and several Microsoft Excel output files. All must be co-located in the same folder on a PC to function. We use Microsoft Excel 2003 and have not tested VISION with Microsoft Excel 2007. The VISION team uses both Powersim Studio 2005 and 2009 and it should work with either.« less

  9. Materials and characterization techniques for high-temperature polymer electrolyte membrane fuel cells.

    PubMed

    Zeis, Roswitha

    2015-01-01

    The performance of high-temperature polymer electrolyte membrane fuel cells (HT-PEMFC) is critically dependent on the selection of materials and optimization of individual components. A conventional high-temperature membrane electrode assembly (HT-MEA) primarily consists of a polybenzimidazole (PBI)-type membrane containing phosphoric acid and two gas diffusion electrodes (GDE), the anode and the cathode, attached to the two surfaces of the membrane. This review article provides a survey on the materials implemented in state-of-the-art HT-MEAs. These materials must meet extremely demanding requirements because of the severe operating conditions of HT-PEMFCs. They need to be electrochemically and thermally stable in highly acidic environment. The polymer membranes should exhibit high proton conductivity in low-hydration and even anhydrous states. Of special concern for phosphoric-acid-doped PBI-type membranes is the acid loss and management during operation. The slow oxygen reduction reaction in HT-PEMFCs remains a challenge. Phosphoric acid tends to adsorb onto the surface of the platinum catalyst and therefore hampers the reaction kinetics. Additionally, the binder material plays a key role in regulating the hydrophobicity and hydrophilicity of the catalyst layer. Subsequently, the binder controls the electrode-membrane interface that establishes the triple phase boundary between proton conductive electrolyte, electron conductive catalyst, and reactant gases. Moreover, the elevated operating temperatures promote carbon corrosion and therefore degrade the integrity of the catalyst support. These are only some examples how materials properties affect the stability and performance of HT-PEMFCs. For this reason, materials characterization techniques for HT-PEMFCs, either in situ or ex situ, are highly beneficial. Significant progress has recently been made in this field, which enables us to gain a better understanding of underlying processes occurring during fuel cell operation. Various novel tools for characterizing and diagnosing HT-PEMFCs and key components are presented in this review, including FTIR and Raman spectroscopy, confocal Raman microscopy, synchrotron X-ray imaging, X-ray microtomography, and atomic force microscopy.

  10. Materials and characterization techniques for high-temperature polymer electrolyte membrane fuel cells

    PubMed Central

    2015-01-01

    Summary The performance of high-temperature polymer electrolyte membrane fuel cells (HT-PEMFC) is critically dependent on the selection of materials and optimization of individual components. A conventional high-temperature membrane electrode assembly (HT-MEA) primarily consists of a polybenzimidazole (PBI)-type membrane containing phosphoric acid and two gas diffusion electrodes (GDE), the anode and the cathode, attached to the two surfaces of the membrane. This review article provides a survey on the materials implemented in state-of-the-art HT-MEAs. These materials must meet extremely demanding requirements because of the severe operating conditions of HT-PEMFCs. They need to be electrochemically and thermally stable in highly acidic environment. The polymer membranes should exhibit high proton conductivity in low-hydration and even anhydrous states. Of special concern for phosphoric-acid-doped PBI-type membranes is the acid loss and management during operation. The slow oxygen reduction reaction in HT-PEMFCs remains a challenge. Phosphoric acid tends to adsorb onto the surface of the platinum catalyst and therefore hampers the reaction kinetics. Additionally, the binder material plays a key role in regulating the hydrophobicity and hydrophilicity of the catalyst layer. Subsequently, the binder controls the electrode–membrane interface that establishes the triple phase boundary between proton conductive electrolyte, electron conductive catalyst, and reactant gases. Moreover, the elevated operating temperatures promote carbon corrosion and therefore degrade the integrity of the catalyst support. These are only some examples how materials properties affect the stability and performance of HT-PEMFCs. For this reason, materials characterization techniques for HT-PEMFCs, either in situ or ex situ, are highly beneficial. Significant progress has recently been made in this field, which enables us to gain a better understanding of underlying processes occurring during fuel cell operation. Various novel tools for characterizing and diagnosing HT-PEMFCs and key components are presented in this review, including FTIR and Raman spectroscopy, confocal Raman microscopy, synchrotron X-ray imaging, X-ray microtomography, and atomic force microscopy. PMID:25671153

  11. Progress In Developing An In-Pile Acoustically Telemetered Sensor Infrastructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, James A.; Garrett, Steven L.; Heibel, Michael D.

    2016-09-01

    A salient grand challenge for a number of Department of Energy programs such as Fuels Cycle Research and Development ( includes Accident Tolerant Fuel research and the Transient Reactor Test Facility Restart experiments), Light Water Sustainability, and Advanced Reactor Technologies is to enhance our fundamental understanding of fuel and materials behavior under irradiation. Robust and accurate in-pile measurements will be instrumental to develop and validate a computationally predictive multi-scale understanding of nuclear fuel and materials. This sensing technology will enable the linking of fundamental micro-structural evolution mechanisms to the macroscopic degradation of fuels and materials. The in situ sensors andmore » measurement systems will monitor local environmental parameters as well as characterize microstructure evolution during irradiation. One of the major road blocks in developing practical robust, and cost effective in-pile sensor systems, are instrument leads. If a wireless telemetry infrastructure can be developed for in-pile use, in-core measurements would become more attractive and effective. Thus to be successful in accomplishing effective in-pile sensing and microstructure characterization an interdisciplinary measurement infrastructure needs to be developed in parallel with key sensing technology. For the discussion in this research, infrastructure is defined as systems, technology, techniques, and algorithms that may be necessary in the delivery of beneficial and robust data from in-pile devices. The architecture of a system’s infrastructure determines how well it operates and how flexible it is to meet future requirements. The limiting path for the effective deployment of the salient sensing technology will not be the sensors themselves but the infrastructure that is necessary to communicate data from in-pile to the outside world in a non-intrusive and reliable manner. This article gives a high level overview of a promising telemetry infrastructure based on acoustic wireless transmission of data that is being developed and tested by the INL, Penn State and Westinghouse.« less

  12. [Progress and prospect of bio-jet fuels industry in domestic and overseas].

    PubMed

    Qiao, Kai; Fu, Jie; Zhou, Feng; Ma, Huixia

    2016-10-25

    We reviewed the progress of the bio-jet fuels industry in recent years and systematically analyzed the technical routes that have been approved or in the pipeline for approval by ASTM D7566. In addition, we highlighted a novel pathway to produce drop-in fuel by near-critical hydrolysis of waste cooking oils or algal oils followed by catalytic decarboxylation. Also, we introduced the source of oils and fats feedstock and the domestic bio-jet fuel industry status during the 12th Five-Year-Plan period. Based on our own research, we discussed the prospect of the bio-jet fuel industry and future research needs.

  13. NUCLEAR FUEL MATERIAL

    DOEpatents

    Goeddel, W.V.

    1962-06-26

    An improved method is given for making the carbides of nuclear fuel material. The metal of the fuel material, which may be a fissile and/or fertile material, is transformed into a silicide, after which the silicide is comminuted to the desired particle size. This silicide is then carburized at an elevated temperature, either above or below the melting point of the silicide, to produce an intimate mixture of the carbide of the fuel material and the carbide of silicon. This mixture of the fuel material carbide and the silicon carbide is relatively stable in the presence of moisture and does not exhibit the highly reactive surface condition which is observed with fuel material carbides made by most other known methods. (AEC)

  14. Fungal Enzymes for Bio-Products from Sustainable and Waste Biomass.

    PubMed

    Gupta, Vijai K; Kubicek, Christian P; Berrin, Jean-Guy; Wilson, David W; Couturier, Marie; Berlin, Alex; Filho, Edivaldo X F; Ezeji, Thaddeus

    2016-07-01

    Lignocellulose, the most abundant renewable carbon source on earth, is the logical candidate to replace fossil carbon as the major biofuel raw material. Nevertheless, the technologies needed to convert lignocellulose into soluble products that can then be utilized by the chemical or fuel industries face several challenges. Enzymatic hydrolysis is of major importance, and we review the progress made in fungal enzyme technology over the past few years with major emphasis on (i) the enzymes needed for the conversion of polysaccharides (cellulose and hemicellulose) into soluble products, (ii) the potential uses of lignin degradation products, and (iii) current progress and bottlenecks for the use of the soluble lignocellulose derivatives in emerging biorefineries. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Search for the ANSER (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wasielewski, Michael R.; ANSER Staff

    2011-05-01

    'Search for the ANSER' was submitted by the Argonne-Northwestern Solar Energy Research Center (ANSER) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. ANSER, an EFRC directed by Michael Wasielewski at Argonne National Laboratory is a partnership of scientists from five institutions: Argonne National Laboratory, Northwestern University, University of Chicago, University of Illinois at Urbana-Champaign, and Yale. The Office of Basic Energy Sciences in the U.S. Department of Energy'smore » Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. At ANSER, the mission is 'to revolutionize our understanding of molecules, materials and methods necessary to create dramatically more efficient technologies for solar fuels and electricity production.' Research topics are: catalysis (water), electrocatalysis, photocatalysis, photoelectrocatalysis, solar photovoltaic, solar fuels, solar electrodes, photosynthesis, transportation fuels, bio-inspired, spin dynamics, hydrogen (fuel), ultrafast physics, interfacial characterization, matter by design, novel materials synthesis, charge transport, and self-assembly.« less

  16. Search for the ANSER (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum

    ScienceCinema

    Wasielewski, Michael R. (Director, Argonne-Northwestern Solar Energy Research Center); ANSER Staff

    2017-12-09

    'Search for the ANSER' was submitted by the Argonne-Northwestern Solar Energy Research Center (ANSER) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. ANSER, an EFRC directed by Michael Wasielewski at Argonne National Laboratory is a partnership of scientists from five institutions: Argonne National Laboratory, Northwestern University, University of Chicago, University of Illinois at Urbana-Champaign, and Yale. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. At ANSER, the mission is 'to revolutionize our understanding of molecules, materials and methods necessary to create dramatically more efficient technologies for solar fuels and electricity production.' Research topics are: catalysis (water), electrocatalysis, photocatalysis, photoelectrocatalysis, solar photovoltaic, solar fuels, solar electrodes, photosynthesis, transportation fuels, bio-inspired, spin dynamics, hydrogen (fuel), ultrafast physics, interfacial characterization, matter by design, novel materials synthesis, charge transport, and self-assembly.

  17. A review of recent progress in coatings, surface modifications and alloy developments for solid oxide fuel cell ferritic stainless steel interconnects

    NASA Astrophysics Data System (ADS)

    Shaigan, Nima; Qu, Wei; Ivey, Douglas G.; Chen, Weixing

    Ferritic stainless steels have become the standard material for solid oxide fuel cell (SOFC) interconnect applications. The use of commercially available ferritic stainless steels, not specifically designed for interconnect application, however, presents serious issues leading to premature degradation of the fuel cell stack, particularly on the cathode side. These problems include rapidly increasing contact resistance and volatilization of Cr from the oxide scales, resulting in cathode chromium poisoning and cell malfunction. To overcome these issues, a variety of conductive/protective coatings, surface treatments and modifications as well as alloy development have been suggested and studied over the past several years. This paper critically reviews the attempts performed thus far to mitigate the issues associated with the use of ferritic stainless steels on the cathode side. Different approaches are categorized and summarized and examples for each case are provided. Finally, directions and recommendations for the future studies are presented.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, M.L.

    This paper very briefly summarizes progress in the demonstration of a small (up to 6 MWe), environmentally acceptable electric generating system fueled by indigenous fuels and waste materials to serve power distribution systems typical of Alaskan Native communities. Two detailed appendices supplement the report. The project is focused on two primary technologies: (1) atmospheric fluidized bed combustion (AFBC), and (2) coalbed methane and coal-fired diesel technologies. Two sites have been selected as possible locations for an AFBC demonstration, and bid proposals are under review. The transfer of a coal-fired diesel clean coal demonstration project from Maryland to Fairbanks, Alaska wasmore » approved, and the environmental assessment has been initiated. Federal support for a fuel cell using coalbed methane is also being pursued. The appendices included in the report provide: (1) the status of the conceptual design study for a 600-kWe coal-fired cogeneration plant in McGrath, Alaska; and (2) a global market assessment of coalbed methane, fluidized-bed combustion, and coal-fired diesel technologies in remote applications.« less

  19. Progress on Developing Sonic Infrared Imaging for Defect Detection in Composite Structures

    NASA Astrophysics Data System (ADS)

    Han, Xiaoyan; He, Qi; Li, Wei; Newaz, Golam; Favro, Lawrence D.; Thomas, Robert L.

    2010-02-01

    At last year's QNDE conference, we presented our development of Sonic IR imaging technology in metal structures, with results from both experimental studies and theoretical computing. In the latest aircraft designs, such as the B787 from Boeing, composites have become the major materials in structures such as the fuselage and wings. This is in contrast to composites' use only in auxiliary components such as flaps and spoilers in the past. With today's advanced technology of fabrication, it is expected the new materials can be put in use in even more aircraft structures due to its light weight and high strength (high strength-to-weight ratio), high specific stiffness, tailorability of properties, design flexibility etc. Especially, with increases in fuel cost, reducing the aircraft's body weight becomes more and more appealing. In this presentation, we describe the progress on our development of Sonic IR imaging for aircraft composite structures. In particular, we describe the some unexpected results discovered while modeling delaminations. These results were later experimentally verified with an engineered delamination.

  20. Recent progress in the development of solid catalysts for biomass conversion into high value-added chemicals

    PubMed Central

    Hara, Michikazu; Nakajima, Kiyotaka; Kamata, Keigo

    2015-01-01

    In recent decades, the substitution of non-renewable fossil resources by renewable biomass as a sustainable feedstock has been extensively investigated for the manufacture of high value-added products such as biofuels, commodity chemicals, and new bio-based materials such as bioplastics. Numerous solid catalyst systems for the effective conversion of biomass feedstocks into value-added chemicals and fuels have been developed. Solid catalysts are classified into four main groups with respect to their structures and substrate activation properties: (a) micro- and mesoporous materials, (b) metal oxides, (c) supported metal catalysts, and (d) sulfonated polymers. This review article focuses on the activation of substrates and/or reagents on the basis of groups (a)–(d), and the corresponding reaction mechanisms. In addition, recent progress in chemocatalytic processes for the production of five industrially important products (5-hydroxymethylfurfural, lactic acid, glyceraldehyde, 1,3-dihydroxyacetone, and furan-2,5-dicarboxylic acid) as bio-based plastic monomers and their intermediates is comprehensively summarized. PMID:27877800

  1. Recent progress in the development of solid catalysts for biomass conversion into high value-added chemicals.

    PubMed

    Hara, Michikazu; Nakajima, Kiyotaka; Kamata, Keigo

    2015-06-01

    In recent decades, the substitution of non-renewable fossil resources by renewable biomass as a sustainable feedstock has been extensively investigated for the manufacture of high value-added products such as biofuels, commodity chemicals, and new bio-based materials such as bioplastics. Numerous solid catalyst systems for the effective conversion of biomass feedstocks into value-added chemicals and fuels have been developed. Solid catalysts are classified into four main groups with respect to their structures and substrate activation properties: (a) micro- and mesoporous materials, (b) metal oxides, (c) supported metal catalysts, and (d) sulfonated polymers. This review article focuses on the activation of substrates and/or reagents on the basis of groups (a)-(d), and the corresponding reaction mechanisms. In addition, recent progress in chemocatalytic processes for the production of five industrially important products (5-hydroxymethylfurfural, lactic acid, glyceraldehyde, 1,3-dihydroxyacetone, and furan-2,5-dicarboxylic acid) as bio-based plastic monomers and their intermediates is comprehensively summarized.

  2. Recent progress in the development of solid catalysts for biomass conversion into high value-added chemicals

    NASA Astrophysics Data System (ADS)

    Hara, Michikazu; Nakajima, Kiyotaka; Kamata, Keigo

    2015-06-01

    In recent decades, the substitution of non-renewable fossil resources by renewable biomass as a sustainable feedstock has been extensively investigated for the manufacture of high value-added products such as biofuels, commodity chemicals, and new bio-based materials such as bioplastics. Numerous solid catalyst systems for the effective conversion of biomass feedstocks into value-added chemicals and fuels have been developed. Solid catalysts are classified into four main groups with respect to their structures and substrate activation properties: (a) micro- and mesoporous materials, (b) metal oxides, (c) supported metal catalysts, and (d) sulfonated polymers. This review article focuses on the activation of substrates and/or reagents on the basis of groups (a)-(d), and the corresponding reaction mechanisms. In addition, recent progress in chemocatalytic processes for the production of five industrially important products (5-hydroxymethylfurfural, lactic acid, glyceraldehyde, 1,3-dihydroxyacetone, and furan-2,5-dicarboxylic acid) as bio-based plastic monomers and their intermediates is comprehensively summarized.

  3. Flammability of Heterogeneously Combusting Metals

    NASA Technical Reports Server (NTRS)

    Jones, Peter D.

    1998-01-01

    Most engineering materials, including some metals, most notably aluminum, burn in homogeneous combustion. 'Homogeneous' refers to both the fuel and the oxidizer being in the same phase, which is usually gaseous. The fuel and oxidizer are well mixed in the combustion reaction zone, and heat is released according to some relation like q(sub c) = delta H(sub c)c[((rho/rho(sub 0))]exp a)(exp -E(sub c)/RT), Eq. (1) where the pressure exponent a is usually close to unity. As long as there is enough heat released, combustion is sustained. It is useful to conceive of a threshold pressure beyond which there is sufficient heat to keep the temperature high enough to sustain combustion, and beneath which the heat is so low that temperature drains away and the combustion is extinguished. Some materials burn in heterogeneous combustion, in which the fuel and oxidizer are in different phases. These include iron and nickel based alloys, which burn in the liquid phase with gaseous oxygen. Heterogeneous combustion takes place on the surface of the material (fuel). Products of combustion may appear as a solid slag (oxide) which progressively covers the fuel. Propagation of the combustion melts and exposes fresh fuel. Heterogeneous combustion heat release also follows the general form of Eq.(1), except that the pressure exponent a tends to be much less than 1. Therefore, the increase in heat release with increasing pressure is not as dramatic as it is in homogeneous combustion. Although the concept of a threshold pressure still holds in heterogeneous combustion, the threshold is more difficult to identify experimentally, and pressure itself becomes less important relative to the heat transfer paths extant in any specific application. However, the constants C, a, and E(sub c) may still be identified by suitable data reduction from heterogeneous combustion experiments, and may be applied in a heat transfer model to judge the flammability of a material in any particular actual-use situation. In order to support the above assertions, two investigations are undertaken: 1) PCT data are examined in detail to discover the pressure dependence of heterogeneous combustion experiment results; and 2) heterogeneous combustion in a PCT situation is described by a heat transfer model, which is solved first in simplified form for a simple actual-use situation, and then extended to apply to PCT data reduction (combustion constant identification).

  4. User Guide for VISION 3.4.7 (Verifiable Fuel Cycle Simulation) Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacob J. Jacobson; Robert F. Jeffers; Gretchen E. Matthern

    2011-07-01

    The purpose of this document is to provide a guide for using the current version of the Verifiable Fuel Cycle Simulation (VISION) model. This is a complex model with many parameters and options; the user is strongly encouraged to read this user guide before attempting to run the model. This model is an R&D work in progress and may contain errors and omissions. It is based upon numerous assumptions. This model is intended to assist in evaluating 'what if' scenarios and in comparing fuel, reactor, and fuel processing alternatives at a systems level. The model is not intended as amore » tool for process flow and design modeling of specific facilities nor for tracking individual units of fuel or other material through the system. The model is intended to examine the interactions among the components of a fuel system as a function of time varying system parameters; this model represents a dynamic rather than steady-state approximation of the nuclear fuel system. VISION models the nuclear cycle at the system level, not individual facilities, e.g., 'reactor types' not individual reactors and 'separation types' not individual separation plants. Natural uranium can be enriched, which produces enriched uranium, which goes into fuel fabrication, and depleted uranium (DU), which goes into storage. Fuel is transformed (transmuted) in reactors and then goes into a storage buffer. Used fuel can be pulled from storage into either separation or disposal. If sent to separations, fuel is transformed (partitioned) into fuel products, recovered uranium, and various categories of waste. Recycled material is stored until used by its assigned reactor type. VISION is comprised of several Microsoft Excel input files, a Powersim Studio core, and several Microsoft Excel output files. All must be co-located in the same folder on a PC to function. You must use Powersim Studio 8 or better. We have tested VISION with the Studio 8 Expert, Executive, and Education versions. The Expert and Education versions work with the number of reactor types of 3 or less. For more reactor types, the Executive version is currently required. The input files are Excel2003 format (xls). The output files are macro-enabled Excel2007 format (xlsm). VISION 3.4 was designed with more flexibility than previous versions, which were structured for only three reactor types - LWRs that can use only uranium oxide (UOX) fuel, LWRs that can use multiple fuel types (LWR MF), and fast reactors. One could not have, for example, two types of fast reactors concurrently. The new version allows 10 reactor types and any user-defined uranium-plutonium fuel is allowed. (Thorium-based fuels can be input but several features of the model would not work.) The user identifies (by year) the primary fuel to be used for each reactor type. The user can identify for each primary fuel a contingent fuel to use if the primary fuel is not available, e.g., a reactor designated as using mixed oxide fuel (MOX) would have UOX as the contingent fuel. Another example is that a fast reactor using recycled transuranic (TRU) material can be designated as either having or not having appropriately enriched uranium oxide as a contingent fuel. Because of the need to study evolution in recycling and separation strategies, the user can now select the recycling strategy and separation technology, by year.« less

  5. 49 CFR 173.230 - Fuel cell cartridges containing hazardous material.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Fuel cell cartridges containing hazardous material... Than Class 1 and Class 7 § 173.230 Fuel cell cartridges containing hazardous material. (a) Requirements for Fuel Cell Cartridges. Fuel cell cartridges, including when contained in or packed with equipment...

  6. ALD coating of nuclear fuel actinides materials

    DOEpatents

    Yacout, A. M.; Pellin, Michael J.; Yun, Di; Billone, Mike

    2017-09-05

    The invention provides a method of forming a nuclear fuel pellet of a uranium containing fuel alternative to UO.sub.2, with the steps of obtaining a fuel form in a powdered state; coating the fuel form in a powdered state with at least one layer of a material; and sintering the powdered fuel form into a fuel pellet. Also provided is a sintered nuclear fuel pellet of a uranium containing fuel alternative to UO.sub.2, wherein the pellet is made from particles of fuel, wherein the particles of fuel are particles of a uranium containing moiety, and wherein the fuel particles are coated with at least one layer between about 1 nm to about 4 nm thick of a material using atomic layer deposition, and wherein the at least one layer of the material substantially surrounds each interfacial grain barrier after the powdered fuel form has been sintered.

  7. MOX fuel assembly design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reese, A.P.; Crowther, R.L. Jr.

    1992-02-18

    This patent describes improvement in a boiling water reactor core having a plurality of vertically upstanding fuel bundles; each fuel bundle containing longitudinally extending sealed rods with fissile material therein; the improvement comprises the fissile material including a mixture of uranium and recovered plutonium in rods of the fuel bundle at locations other than the corners of the fuel bundle; and, neutron absorbing material being located in rods of the fuel bundle at rod locations adjacent the corners of the fuel bundles whereby the neutron absorbing material has decreased shielding from the plutonium and maximum exposure to thermal neutrons formore » shaping the cold reactivity shutdown zone in the fuel bundle.« less

  8. Engineered Materials for Cesium and Strontium Storage Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sean M. McDeavitt

    2010-04-14

    Closing the nuclear fuel cycle requires reprocessing spent fuel to recover the long-lived components that still have useful energy content while immobilizing the remnant waste fission products in stable forms. At the genesis of this project, next generation spent fuel reprocessing methods were being developed as part of the U.S. Department of Energy's Advanced Fuel Cycle Initiative. One of these processes was focused on solvent extraction schemes to isolate cesium (Cs) and strontium (Sr) from spent nuclear fuel. Isolating these isotopes for short-term decay storage eases the design requirements for long-term repository disposal; a significant amount of the radiation andmore » decay heat in fission product waste comes from Cs-137 and Sr-90. For the purposes of this project, the Fission Product Extraction (FPEX) process is being considered to be the baseline extraction method. The objective of this project was to evaluate the nature and behavior of candidate materials for cesium and strontium immobilization; this will include assessments with minor additions of yttrium, barium, and rubidium in these materials. More specifically, the proposed research achieved the following objectives (as stated in the original proposal): (1) Synthesize simulated storage ceramics for Cs and Sr using an existing labscale steam reformer at Purdue University. The simulated storage materials will include aluminosilicates, zirconates and other stable ceramics with the potential for high Cs and Sr loading. (2) Characterize the immobilization performance, phase structure, thermal properties and stability of the simulated storage ceramics. The ceramic products will be stable oxide powders and will be characterized to quantify their leach resistance, phase structure, and thermophysical properties. The research progressed in two stages. First, a steam reforming process was used to generate candidate Cs/Sr storage materials for characterization. This portion of the research was carried out at Purdue University and is detailed in Appendix A. Steam reforming proved to be too rigorous for efficient The second stage of this project was carried out at Texas A&M University and is Detailed in Appendix B. In this stage, a gentler ceramic synthesis process using Cs and Sr loaded kaolinite and bentonite clays was developed in collaboration with Dr. M. Kaminski at Argonne National Laboratory.« less

  9. UNC EFRC: Fuels from Sunlight (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyer, Thomas J.

    "Fuels from Sunlight" was submitted by the University of North Carolina (UNC) EFRC: Center for Solar Fuels, to the "Life at the Frontiers of Energy Research" video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. The Center for Solar Fuels (UNC) EFRC directed by Thomas J. Meyer is a partnership of scientists from four institutions: UNC (lead), Brookhaven National Laboratory, Georgia Institute of Technology and University of Texas at San Antonio. The Office of Basic Energy Sciences inmore » the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of Center for Solar Fuels (UNC) is 'to combine the best features of academic and translational research to study light/matter interactions and chemical processes for the efficient collection, transfer, and conversion of solar energy into chemical fuels and electricity.' Research topics are: catalysis (CO2, hydrocarbons, water), electrocatalysis, photocatalysis, photoelectrocatalysis, solar photovoltaic, solar fuels, photonic, solar electrodes, photosynthesis, fuel cells, CO2 (convert), greenhosue gas, hydrogen (fuel), interfacial characterization, novel materials synthesis, charge transport, and self-assembly.« less

  10. 49 CFR 392.51 - Reserve fuel; materials of trade.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 5 2012-10-01 2012-10-01 false Reserve fuel; materials of trade. 392.51 Section... COMMERCIAL MOTOR VEHICLES Fueling Precautions § 392.51 Reserve fuel; materials of trade. Small amounts of...) may be designated as materials of trade (see 49 CFR 171.8). (a) The aggregate gross weight of all...

  11. 75 FR 26025 - Regulation of Fuels and Fuel Additives: Modifications to Renewable Fuel Standard Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-10

    ... information whose disclosure is restricted by statute. Certain other material, such as copyrighted material, will be publicly available only in hard copy. Publicly available docket materials are available either... materials, as provided in 40 CFR part 2. IV. Renewable Fuel Standard (RFS2) Program Amendments EPA is taking...

  12. 46 CFR 58.50-15 - Alternate material for construction of independent fuel tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Alternate material for construction of independent fuel...) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Independent Fuel Tanks § 58.50-15 Alternate material for construction of independent fuel tanks. (a) Materials other than those specifically...

  13. Mass, energy and material balances of SRF production process. Part 3: solid recovered fuel produced from municipal solid waste.

    PubMed

    Nasrullah, Muhammad; Vainikka, Pasi; Hannula, Janne; Hurme, Markku; Kärki, Janne

    2015-02-01

    This is the third and final part of the three-part article written to describe the mass, energy and material balances of the solid recovered fuel production process produced from various types of waste streams through mechanical treatment. This article focused the production of solid recovered fuel from municipal solid waste. The stream of municipal solid waste used here as an input waste material to produce solid recovered fuel is energy waste collected from households of municipality. This article presents the mass, energy and material balances of the solid recovered fuel production process. These balances are based on the proximate as well as the ultimate analysis and the composition determination of various streams of material produced in a solid recovered fuel production plant. All the process streams are sampled and treated according to CEN standard methods for solid recovered fuel. The results of the mass balance of the solid recovered fuel production process showed that 72% of the input waste material was recovered in the form of solid recovered fuel; 2.6% as ferrous metal, 0.4% as non-ferrous metal, 11% was sorted as rejects material, 12% as fine faction and 2% as heavy fraction. The energy balance of the solid recovered fuel production process showed that 86% of the total input energy content of input waste material was recovered in the form of solid recovered fuel. The remaining percentage (14%) of the input energy was split into the streams of reject material, fine fraction and heavy fraction. The material balances of this process showed that mass fraction of paper and cardboard, plastic (soft) and wood recovered in the solid recovered fuel stream was 88%, 85% and 90%, respectively, of their input mass. A high mass fraction of rubber material, plastic (PVC-plastic) and inert (stone/rock and glass particles) was found in the reject material stream. © The Author(s) 2014.

  14. 2014 Annual Progress Report: DOE Hydrogen and Fuel Cells Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    2014-11-01

    The 2014 Annual Progress Report summarizes fiscal year 2014 activities and accomplishments by projects funded by the DOE Hydrogen Program. It covers the program areas of hydrogen production and delivery; hydrogen storage; fuel cells; manufacturing; technology validation; safety, codes and standards; market transformation; and systems analysis.

  15. Hot Hydrogen Testing of Tungsten-Uranium Dioxide (W-UO2) CERMET Fuel Materials for Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Hickman, Robert; Broadway, Jeramie

    2014-01-01

    CERMET fuel materials are being developed at the NASA Marshall Space Flight Center for a Nuclear Cryogenic Propulsion Stage. Recent work has resulted in the development and demonstration of a Compact Fuel Element Environmental Test (CFEET) System that is capable of subjecting depleted uranium fuel material samples to hot hydrogen. A critical obstacle to the development of an NCPS engine is the high-cost and safety concerns associated with developmental testing in nuclear environments. The purpose of this testing capability is to enable low-cost screening of candidate materials, fabrication processes, and further validation of concepts. The CERMET samples consist of depleted uranium dioxide (UO2) fuel particles in a tungsten metal matrix, which has been demonstrated on previous programs to provide improved performance and retention of fission products1. Numerous past programs have utilized hot hydrogen furnace testing to develop and evaluate fuel materials. The testing provides a reasonable simulation of temperature and thermal stress effects in a flowing hydrogen environment. Though no information is gained about radiation damage, the furnace testing is extremely valuable for development and verification of fuel element materials and processes. The current work includes testing of subscale W-UO2 slugs to evaluate fuel loss and stability. The materials are then fabricated into samples with seven cooling channels to test a more representative section of a fuel element. Several iterations of testing are being performed to evaluate fuel mass loss impacts from density, microstructure, fuel particle size and shape, chemistry, claddings, particle coatings, and stabilizers. The fuel materials and forms being evaluated on this effort have all been demonstrated to control fuel migration and loss. The objective is to verify performance improvements of the various materials and process options prior to expensive full scale fabrication and testing. Post test analysis will include weight percent fuel loss, microscopy, dimensional tolerance, and fuel stability.

  16. Complex metal borohydrides: multifunctional materials for energy storage and conversion

    NASA Astrophysics Data System (ADS)

    Mohtadi, Rana; Remhof, Arndt; Jena, Puru

    2016-09-01

    With the limited supply of fossil fuels and their adverse effect on the climate and the environment, it has become a global priority to seek alternate sources of energy that are clean, abundant, and sustainable. While sources such as solar, wind, and hydrogen can meet the world’s energy demand, considerable challenges remain to find materials that can store and/or convert energy efficiently. This topical review focuses on one such class of materials, namely, multi-functional complex metal borohydrides that not only have the ability to store sufficient amount of hydrogen to meet the needs of the transportation industry, but also can be used for a new generation of metal ion batteries and solar cells. We discuss the material challenges in all these areas and review the progress that has been made to address them, the issues that still need to be resolved and the outlook for the future.

  17. Complex metal borohydrides: multifunctional materials for energy storage and conversion.

    PubMed

    Mohtadi, Rana; Remhof, Arndt; Jena, Puru

    2016-09-07

    With the limited supply of fossil fuels and their adverse effect on the climate and the environment, it has become a global priority to seek alternate sources of energy that are clean, abundant, and sustainable. While sources such as solar, wind, and hydrogen can meet the world's energy demand, considerable challenges remain to find materials that can store and/or convert energy efficiently. This topical review focuses on one such class of materials, namely, multi-functional complex metal borohydrides that not only have the ability to store sufficient amount of hydrogen to meet the needs of the transportation industry, but also can be used for a new generation of metal ion batteries and solar cells. We discuss the material challenges in all these areas and review the progress that has been made to address them, the issues that still need to be resolved and the outlook for the future.

  18. Engineered glass seals for solid-oxide fuel cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Surdoval, Wayne; Lara-Curzio, Edgar; Stevenson, Jeffry

    2017-02-07

    A seal for a solid oxide fuel cell includes a glass matrix having glass percolation therethrough and having a glass transition temperature below 650.degree. C. A deformable second phase material is dispersed in the glass matrix. The second phase material can be a compliant material. The second phase material can be a crushable material. A solid oxide fuel cell, a precursor for forming a seal for a solid oxide fuel cell, and a method of making a seal for a solid oxide fuel cell are also disclosed.

  19. Grout Isolation and Stabilization of Structures and Materials within Nuclear Facilities at the U.S. Department of Energy, Hanford Site, Summary - 12309

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, S.J.; Phillips, M.; Etheridge, D.

    2012-07-01

    Per regulatory agreement and facility closure design, U.S. Department of Energy Hanford Site nuclear fuel cycle structures and materials require in situ isolation in perpetuity and/or interim physicochemical stabilization as a part of final disposal or interim waste removal, respectively. To this end, grout materials are being used to encase facilities structures or are being incorporated within structures containing hazardous and radioactive contaminants. Facilities where grout materials have been recently used for isolation and stabilization include: (1) spent fuel separations, (2) uranium trioxide calcining, (3) reactor fuel storage basin, (4) reactor fuel cooling basin transport rail tanker cars and casks,more » (5) cold vacuum drying and reactor fuel load-out, and (6) plutonium fuel metal finishing. Grout components primarily include: (1) portland cement, (2) fly ash, (3) aggregate, and (4) chemical admixtures. Mix designs for these typically include aggregate and non aggregate slurries and bulk powders. Placement equipment includes: (1) concrete piston line pump or boom pump truck for grout slurry, (2) progressive cavity and shearing vortex pump systems, and (3) extendable boom fork lift for bulk powder dry grout mix. Grout slurries placed within the interior of facilities were typically conveyed utilizing large diameter slick line and the equivalent diameter flexible high pressure concrete conveyance hose. Other facilities requirements dictated use of much smaller diameter flexible grout conveyance hose. Placement required direct operator location within facilities structures in most cases, whereas due to radiological dose concerns, placement has also been completed remotely with significant standoff distances. Grout performance during placement and subsequent to placement often required unique design. For example, grout placed in fuel basin structures to serve as interim stabilization materials required sufficient bearing i.e., unconfined compressive strength, to sustain heavy equipment yet, low breakout force to permit efficient removal by track hoe bucket or equivalent construction equipment. Further, flow of slurries through small orifice geometries of moderate head pressures was another typical design requirement. Phase separation of less than 1 percent was a typical design requirement for slurries. On the order of 30,000 cubic meters of cementitious grout have recently been placed in the above noted U.S. Department of Energy Hanford Site facilities or structures. Each has presented a unique challenge in mix design, equipment, grout injection or placement, and ultimate facility or structure performance. Unconfined compressive and shear strength, flow, density, mass attenuation coefficient, phase separation, air content, wash-out, parameters and others, unique to each facility or structure, dictate the grout mix design for each. Each mix design was tested under laboratory and scaled field conditions as a precursor to field deployment. Further, after injection or placement of each grout formulation, the material was field inspected either by standard laboratory testing protocols, direct physical evaluation, or both. (authors)« less

  20. FUEL ELEMENT FOR NUCLEAR REACTORS

    DOEpatents

    Bassett, C.H.

    1961-05-01

    A nuclear reactor fuel element comprising high density ceramic fissionable material enclosed in a tubular cladding of corrosion-resistant material is described. The fissionable material is in the form of segments of a tube which have cooperating tapered interfaces which produce outward radial displacement when the segments are urged axially together. A resilient means is provided within the tubular housing to constantly urge the fuel segments axially. This design maintains the fuel material in tight contacting engagement against the inner surface of the outer cladding tube to eliminate any gap therebetween which may be caused by differential thermal expansion between the fuel material and the material of the tube.

  1. AN EVALUATION OF POTENTIAL LINER MATERIALS FOR ELIMINATING FCCI IN IRRADIATED METALLIC NUCLEAR FUEL ELEMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D. D. Keiser; J. I. Cole

    2007-09-01

    Metallic nuclear fuels are being looked at as part of the Global Nuclear Energy Program for transmuting longlive transuranic actinide isotopes contained in spent nuclear fuel into shorter-lived fission products. In order to optimize the performance of these fuels, the concept of using liners to eliminate the fuel/cladding chemical interactions that can occur during irradiation of a fuel element has been investigated. The potential liner materials Zr and V have been tested using solid-solid diffusion couples, consisting of liner materials butted against fuel alloys and against cladding materials. The couples were annealed at the relatively high temperature of 700°C. Thismore » temperature would be the absolute maximum temperature present at the fuel/cladding interface for a fuel element in-reactor. Analysis was performed using a scanning electron microscope equipped with energy-dispersive and wavelengthdispersive spectrometers (SEM/EDS/WDS) to evaluate any developed diffusion structures. At 700°C, minimal interaction was observed between the metallic fuels and either Zr or V. Similarly, limited interaction was observed between the Zr and V and the cladding materials. The best performing liner material appeared to be the V, based on amounts of interaction.« less

  2. Electrolytes for solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Fergus, Jeffrey W.

    The high operating temperature of solid oxide fuel cells (SOFCs), as compared to polymer electrolyte membrane fuel cells (PEMFCs), improves tolerance to impurities in the fuel, but also creates challenges in the development of suitable materials for the various fuel cell components. In response to these challenges, intermediate temperature solid oxide fuel cells (IT-SOFCs) are being developed to reduce high-temperature material requirements, which will extend useful lifetime, improve durability and reduce cost, while maintaining good fuel flexibility. A major challenge in reducing the operating temperature of SOFCs is the development of solid electrolyte materials with sufficient conductivity to maintain acceptably low ohmic losses during operation. In this paper, solid electrolytes being developed for solid oxide fuel cells, including zirconia-, ceria- and lanthanum gallate-based materials, are reviewed and compared. The focus is on the conductivity, but other issues, such as compatibility with electrode materials, are also discussed.

  3. Compatibility Studies of Hydrogen Peroxide and a New Hypergolic Fuel Blend

    NASA Technical Reports Server (NTRS)

    Baldridge, Jennifer; Villegas, Yvonne

    2002-01-01

    Several preliminary materials compatibility studies have been conducted to determine the practicality of a new hypergolic fuel system. Hypergolic fuel ignites spontaneously as the oxidizer decomposes and releases energy in the presence of the fuel. The bipropellant system tested consists of high-test hydrogen peroxide (HTP) and a liquid fuel blend consisting of a hydrocarbon fuel, an ignition enhancer and a transition metal catalyst. In order for further testing of the new fuel blend to take place, some basic materials compatibility and HTP decomposition studies must be accomplished. The thermal decomposition rate of HTP was tested using gas evolution and isothermal microcalorimetry (IMC). Materials were analyzed for compatibility with hydrogen peroxide including a study of the affect welding has on stainless steel elemental composition and its relation to HTP decomposition. Compatibility studies of valve materials in the fuel blend were performed to determine the corrosion resistance of the materials.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Progress is reported on fundamental research in: crystal physics, reactions at metal surfaces, spectroscopy of ionic media, structure of metals, theory of alloying, physical properties, sintering, deformation of crystalline solids, x ray diffraction, metallurgy of superconducting materials, and electron microscope studies. Long-randge applied research studies were conducted for: zirconium metallurgy, materials compatibility, solid reactions, fuel element development, mechanical properties, non-destructive testing, and high-temperature materials. Reactor development support work was carried out for: gas-cooled reactor program, molten-salt reactor, high-flux isotope reactor, space-power program, thorium-utilization program, advanced-test reactor, Army Package Power Reactor, Enrico Fermi fast-breeder reactor, and water desalination program. Other programmore » activities, for which research was conducted, included: thermonuclear project, transuraniunn program, and post-irradiation examination laboratory. Separate abstracts were prepared for 30 sections of the report. (B.O.G.)« less

  5. UNC EFRC: Fuels from Sunlight (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    ScienceCinema

    Meyer, Thomas J. (Director, UNC EFRC: Solar Fuels and Next Generation Photovoltaics); UNC EFRC Staff

    2017-12-09

    'Fuels from Sunlight' was submitted by the University of North Carolina (UNC) EFRC: Solar Fuels and Next Generation Photovoltaics to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. The UNC EFRC directed by Thomas J. Meyer is a partnership of scientists from six institutions: UNC (lead), Duke University, University of Florida, North Caroline Central University, North Carolina State University, and the Research Triangle Institute. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of Solar Fuels and Next Generation Photovoltaics is 'to combine the best features of academic and translational research to study light/matter interactions and chemical processes for the efficient collection, transfer, and conversion of solar energy into chemical fuels and electricity.' Research topics are: catalysis (CO{sub 2}, hydrocarbons, water), electrocatalysis, photocatalysis, photoelectrocatalysis, solar photovoltaic, solar fuels, photonic, solar electrodes, photosynthesis, fuel cells, CO{sub 2} (convert), greenhosue gas, hydrogen (fuel), interfacial characterization, novel materials synthesis, charge transport, and self-assembly.

  6. Photoelectrochemical devices for solar water splitting - materials and challenges.

    PubMed

    Jiang, Chaoran; Moniz, Savio J A; Wang, Aiqin; Zhang, Tao; Tang, Junwang

    2017-07-31

    It is widely accepted within the community that to achieve a sustainable society with an energy mix primarily based on solar energy we need an efficient strategy to convert and store sunlight into chemical fuels. A photoelectrochemical (PEC) device would therefore play a key role in offering the possibility of carbon-neutral solar fuel production through artificial photosynthesis. The past five years have seen a surge in the development of promising semiconductor materials. In addition, low-cost earth-abundant co-catalysts are ubiquitous in their employment in water splitting cells due to the sluggish kinetics of the oxygen evolution reaction (OER). This review commences with a fundamental understanding of semiconductor properties and charge transfer processes in a PEC device. We then describe various configurations of PEC devices, including single light-absorber cells and multi light-absorber devices (PEC, PV-PEC and PV/electrolyser tandem cell). Recent progress on both photoelectrode materials (light absorbers) and electrocatalysts is summarized, and important factors which dominate photoelectrode performance, including light absorption, charge separation and transport, surface chemical reaction rate and the stability of the photoanode, are discussed. Controlling semiconductor properties is the primary concern in developing materials for solar water splitting. Accordingly, strategies to address the challenges for materials development in this area, such as the adoption of smart architectures, innovative device configuration design, co-catalyst loading, and surface protection layer deposition, are outlined throughout the text, to deliver a highly efficient and stable PEC device for water splitting.

  7. Findings and Recommendations from the NIST Workshop on Alternative Fuels and Materials: Biocorrosion

    PubMed Central

    Mansfield, Elisabeth; Sowards, Jeffrey W.; Crookes-Goodson, Wendy J.

    2015-01-01

    In 2013, the Applied Chemicals and Materials Division of the National Institute of Standards and Technology (NIST) hosted a workshop to identify and prioritize research needs in the area of biocorrosion. Materials used to store and distribute alternative fuels have experienced an increase in corrosion due to the unique conditions caused by the presence of microbes and the chemistry of biofuels and biofuel precursors. Participants in this workshop, including experts from the microbiological, fuel, and materials communities, delved into the unique materials and chemical challenges that occur with production, transport, and storage of alternative fuels. Discussions focused on specific problems including: a) the changing composition of “drop-in” fuels and the impact of that composition on materials; b) the influence of microbial populations on corrosion and fuel quality; and c) state-of-the-art measurement technologies for monitoring material degradation and biofilm formation. PMID:26958436

  8. Findings and Recommendations from the NIST Workshop on Alternative Fuels and Materials: Biocorrosion.

    PubMed

    Mansfield, Elisabeth; Sowards, Jeffrey W; Crookes-Goodson, Wendy J

    2015-01-01

    In 2013, the Applied Chemicals and Materials Division of the National Institute of Standards and Technology (NIST) hosted a workshop to identify and prioritize research needs in the area of biocorrosion. Materials used to store and distribute alternative fuels have experienced an increase in corrosion due to the unique conditions caused by the presence of microbes and the chemistry of biofuels and biofuel precursors. Participants in this workshop, including experts from the microbiological, fuel, and materials communities, delved into the unique materials and chemical challenges that occur with production, transport, and storage of alternative fuels. Discussions focused on specific problems including: a) the changing composition of "drop-in" fuels and the impact of that composition on materials; b) the influence of microbial populations on corrosion and fuel quality; and c) state-of-the-art measurement technologies for monitoring material degradation and biofilm formation.

  9. NUCLEAR REACTOR FUEL-BREEDER FUEL ELEMENT

    DOEpatents

    Currier, E.L. Jr.; Nicklas, J.H.

    1962-08-14

    A fuel-breeder fuel element was developed for a nuclear reactor wherein discrete particles of fissionable material are dispersed in a matrix of fertile breeder material. The fuel element combines the advantages of a dispersion type and a breeder-type. (AEC)

  10. Solid recovered fuels in the cement industry with special respect to hazardous waste.

    PubMed

    Thomanetz, Erwin

    2012-04-01

    Cements with good technical properties have been produced in Europe since the nineteenth century and are now worldwide standardized high-quality mass products with enormous production numbers. The basic component for cement is the so-called clinker which is produced mainly from raw meal (limestone plus clay plus sands) in a rotary kiln with preheater and progressively with integrated calciner, at temperatures up to 1450 °C. This process requires large amounts of fossil fuels and is CO₂-intensive. But most CO₂ is released by lime decomposition during the burning process. In the 1980s the use of alternative fuels began--firstly in the form of used oil and waste tyres and then increasingly by pre-conditioned materials from commercial waste and from high calorific industrial waste (i.e. solid recovered fuel (SRF))--as well as organic hazardous waste materials such as solvents, pre-conditioned with sawdust. Therefore the cement industry is more and more a competitor in the waste-to-energy market--be it for municipal waste or for hazardous waste, especially concerning waste incineration, but also for other co-incineration plants. There are still no binding EU rules identifying which types of SRF or hazardous waste could be incinerated in cement kilns, but there are some well-made country-specific 'positive lists', for example in Switzerland and Austria. Thus, for proper planning in the cement industry as well as in the waste management field, waste disposal routes should be considered properly, in order to avoid surplus capacities on one side and shortage on the other.

  11. Coal Technology Program progress report, March 1976

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Shakedown tests of the bench-scale hydrocarbonization system were successfully completed. Wyodak coal was fed to the reactor at a rate of 9.9 lb/hr where it was hydrocarbonized at 1050/sup 0/F under 20-atm hydrogen pressure. Laboratory results including settling tests, bench-scale settling tests, and sample ageing tests were continued. Two of ten compounds tested with the laboratory-scale apparatus were effective in increasing settling rates of solids in Solvent Refined Coal unfiltered oil, but bench-scale tests failed to show any improvements in the settling rate over the untreated SRC-UFO. Analytical chemistry efforts involved the removal and concentration of organic components in by-productmore » waters from fossil fuel conversion processes. A sephadex gel is being used to achieve hydrophilic-lipophilic separations in organic mixtures as a step in the analysis of fossil fuel related materials. Engineering Evaluations of the Synthiol and Hydrocarbonization Processes continued with the Synthiol process flow diagrams, heat and material balances, and utilities requirements being completed. Inspection techniques were developed for wear- and process-resistant coatings. Orders were placed for the Incoloy 800 tubing and a smaller quantity of Inconel 600 tubing for the tube matrix in the coal-fueled MIUS fluidized bed. An engineering feasibility review of General Atomic's proposal to ERDA for a bench-scale test program on thermochemical water splitting for hydrogen production was completed. (auth)« less

  12. Nuclear fuel element with axially aligned fuel pellets and fuel microspheres therein

    DOEpatents

    Sease, J.D.; Harrington, F.E.

    1973-12-11

    Elongated single- and multi-region fuel elements are prepared by replacing within a cladding container a coarse fraction of fuel material which includes plutonium and uranium in the appropriate regions of the fuel element and then infiltrating with vibration a fine-sized fraction of uranium-containing microspheres throughout all interstices in the coarse material in a single loading. The fine, rigid material defines a thin annular layer between the coarse fraction and the cladding to reduce adverse mechanical and chemical interactions. (Official Gazette)

  13. 33 CFR 183.512 - Fuel tanks: Prohibited materials.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Fuel tanks: Prohibited materials... tanks: Prohibited materials. (a) A fuel tank must not be constructed from terneplate. (b) Unless it has an inorganic sacrificial galvanic coating on the inside and outside of the tank, a fuel tank must not...

  14. NREL and Fraunhofer ISE to Collaborate on Hydrogen and Fuel Cell Research |

    Science.gov Websites

    (R&D) activities to accelerate progress in these fields. NREL's long-term research and accelerate progress toward shared R&D goals and to ensure sustainable use of hydrogen and fuel cell Fraunhofer ISE in the following areas: Electrolysis, including cell, stack, and system R&D and

  15. A PSFI-based analysis on the energy efficiency potential of China’s domestic passenger vehicles

    NASA Astrophysics Data System (ADS)

    Chen, Chuan; Ren, Huanhuan; Zhao, Dongchang

    2017-01-01

    In this article, China’s domestic passenger vehicles (excluding new energy vehicles) are categorized into two groups: local brand vehicles and vehicles manufactured by joint ventures. Performance-Size-Fuel economy Index (PSFI) will be applied to analyse the speed of technical progress and the future trends of these vehicles. In addition, a forecast on energy efficiency potential of domestic passenger vehicles from 2016 to 2020 will be made based on different Emphasis on Reducing Fuel Consumption (ERFC) scenarios. According to the study, if the process of technical progress continues at its current speed, domestic ICE passenger vehicles will hardly meet Phase IV requirements by 2020 even though companies contribute as much technical progress to fuel consumption reduction as possible.

  16. Progress in the development of the MARBLE platform for studying thermonuclear burn in the presence of heterogeneous mix on OMEGA and the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphy, T. J.; Douglas, M. R.; Fincke, J. R.

    Mix of ablator material into fuel of an ICF capsule adds non-burning material, diluting the fuel and reducing burn. The amount of the reduction is dependent in part on the morphology of the mix. A probability distribution function (PDF) burn model has been developed [6] that utilizes the average concentration of mixed materials as well as the variance in this quantity across cells provided by the BHR turbulent transport model [3] and its revisions [4] to describe the mix in terms of a PDF of concentrations of fuel and ablator material, and provides the burn rate in mixed material. Workmore » is underway to develop the MARBLE ICF platform for use on the National Ignition Facility in experiments to quantify the influence of heterogeneous mix on fusion burn. This platform consists of a plastic (CH) capsule filled with a deuterated plastic foam (CD) with a density of a few tens of milligrams per cubic centimeter, with tritium gas filling the voids in the foam. This capsule will be driven using x-ray drive on NIF, and the resulting shocks will induce turbulent mix that will result in the mixing of deuterium from the foam with the tritium gas. In order to affect the morphology of the mix, engineered foams with voids of diameter up to 100 microns will be utilized. The degree of mix will be determined from the ratio of DT to DD neutron yield. As the mix increases, the yield from reactions between the deuterium of the CD foam with tritium from the gas will increase. Lastly, the ratio of DT to DD neutrons will be compared to a variation of the PDF burn model that quantifies reactions from initially separated reactants.« less

  17. Progress in the development of the MARBLE platform for studying thermonuclear burn in the presence of heterogeneous mix on OMEGA and the National Ignition Facility

    DOE PAGES

    Murphy, T. J.; Douglas, M. R.; Fincke, J. R.; ...

    2016-05-26

    Mix of ablator material into fuel of an ICF capsule adds non-burning material, diluting the fuel and reducing burn. The amount of the reduction is dependent in part on the morphology of the mix. A probability distribution function (PDF) burn model has been developed [6] that utilizes the average concentration of mixed materials as well as the variance in this quantity across cells provided by the BHR turbulent transport model [3] and its revisions [4] to describe the mix in terms of a PDF of concentrations of fuel and ablator material, and provides the burn rate in mixed material. Workmore » is underway to develop the MARBLE ICF platform for use on the National Ignition Facility in experiments to quantify the influence of heterogeneous mix on fusion burn. This platform consists of a plastic (CH) capsule filled with a deuterated plastic foam (CD) with a density of a few tens of milligrams per cubic centimeter, with tritium gas filling the voids in the foam. This capsule will be driven using x-ray drive on NIF, and the resulting shocks will induce turbulent mix that will result in the mixing of deuterium from the foam with the tritium gas. In order to affect the morphology of the mix, engineered foams with voids of diameter up to 100 microns will be utilized. The degree of mix will be determined from the ratio of DT to DD neutron yield. As the mix increases, the yield from reactions between the deuterium of the CD foam with tritium from the gas will increase. Lastly, the ratio of DT to DD neutrons will be compared to a variation of the PDF burn model that quantifies reactions from initially separated reactants.« less

  18. Nuclear reactor fuel element having improved heat transfer

    DOEpatents

    Garnier, J.E.; Begej, S.; Williford, R.E.; Christensen, J.A.

    1982-03-03

    A nuclear reactor fuel element having improved heat transfer between fuel material and cladding is described. The element consists of an outer cladding tube divided into an upper fuel section containing a central core of fissionable or mixed fissionable and fertile fuel material, slightly smaller in diameter than the inner surface of the cladding tube and a small lower accumulator section, the cladding tube being which is filled with a low molecular weight gas to transfer heat from fuel material to cladding during irradiation. A plurality of essentially vertical grooves in the fuel section extend downward and communicate with the accumulator section. The radial depth of the grooves is sufficient to provide a thermal gradient between the hot fuel surface and the relatively cooler cladding surface to allow thermal segregation to take place between the low molecular weight heat transfer gas and high molecular weight fission product gases produced by the fuel material during irradiation.

  19. Laser ablation based fuel ignition

    DOEpatents

    Early, J.W.; Lester, C.S.

    1998-06-23

    There is provided a method of fuel/oxidizer ignition comprising: (a) application of laser light to a material surface which is absorptive to the laser radiation; (b) heating of the material surface with the laser light to produce a high temperature ablation plume which emanates from the heated surface as an intensely hot cloud of vaporized surface material; and (c) contacting the fuel/oxidizer mixture with the hot ablation cloud at or near the surface of the material in order to heat the fuel to a temperature sufficient to initiate fuel ignition. 3 figs.

  20. Laser ablation based fuel ignition

    DOEpatents

    Early, James W.; Lester, Charles S.

    1998-01-01

    There is provided a method of fuel/oxidizer ignition comprising: (a) application of laser light to a material surface which is absorptive to the laser radiation; (b) heating of the material surface with the laser light to produce a high temperature ablation plume which emanates from the heated surface as an intensely hot cloud of vaporized surface material; and (c) contacting the fuel/oxidizer mixture with the hot ablation cloud at or near the surface of the material in order to heat the fuel to a temperature sufficient to initiate fuel ignition.

  1. Materials and Methods for Streamlined Laboratory Analysis of Environmental Samples, FY 2016 Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Addleman, Raymond S.; Naes, Benjamin E.; McNamara, Bruce K.

    The International Atomic Energy Agency (IAEA) relies upon laboratory analysis of environmental samples (typically referred to as “swipes”) collected during on-site inspections of safeguarded facilities to support the detection and deterrence of undeclared activities. Unfortunately, chemical processing and assay of the samples is slow and expensive. A rapid, effective, and simple extraction process and analysis method is needed to provide certified results with improved timeliness at reduced costs (principally in the form of reduced labor), while maintaining or improving sensitivity and efficacy. To address these safeguard needs the Pacific Northwest National Laboratory (PNNL) explored and demonstrated improved methods for environmentalmore » sample (ES) analysis. Improvements for both bulk and particle analysis were explored. To facilitate continuity and adoption, the new sampling materials and processing methods will be compatible with existing IAEA protocols for ES analysis. PNNL collaborated with Oak Ridge National Laboratory (ORNL), which performed independent validation of the new bulk analysis methods and compared performance to traditional IAEA’s Network of Analytical Laboratories (NWAL) protocol. ORNL efforts are reported separately. This report describes PNNL’s FY 2016 progress, which was focused on analytical application supporting environmental monitoring of uranium enrichment plants and nuclear fuel processing. In the future the technology could be applied to other safeguard applications and analytes related to fuel manufacturing, reprocessing, etc. PNNL’s FY 2016 efforts were broken into two tasks and a summary of progress, accomplishments and highlights are provided below. Principal progress and accomplishments on Task 1, Optimize Materials and Methods for ICP-MS Environmental Sample Analysis, are listed below. • Completed initial procedure for rapid uranium extraction from ES swipes based upon carbonate-peroxide chemistry (delivered to ORNL for evaluation). • Explored improvements to carbonate-peroxide rapid uranium extraction chemistry. • Evaluated new sampling materials and methods (in collaboration with ORNL). • Demonstrated successful ES extractions from standard and novel swipes for a wide range uranium compounds of interest including UO 2F 2 and UO 2(NO 3) 2, U 3O 8 and uranium ore concentrate. • Completed initial discussions with commercial suppliers of PTFE swipe materials. • Submitted one manuscript for publication. Two additional drafts are being prepared. Principal progress and accomplishments on Task 2, Optimize Materials and Methods for Direct SIMS Environmental Sample Analysis, are listed below. • Designed a SIMS swipe sample holder that retrofits into existing equipment and provides simple, effective, and rapid mounting of ES samples for direct assay while enabling automation and laboratory integration. • Identified preferred conductive sampling materials with better performance characteristics. • Ran samples on the new PNNL NWAL equivalent Cameca 1280 SIMS system. • Obtained excellent agreement between isotopic ratios for certified materials and direct SIMS assay of very low levels of LEU and HEU UO 2F 2 particles on carbon fiber sampling material. Sample activities range from 1 to 500 CPM (uranium mass on sample is dependent upon specific isotope ratio but is frequently in the subnanogram range). • Found that the presence of the UF molecular ions, as measured by SIMS, provides chemical information about the particle that is separate from the uranium isotopics and strongly suggests that those particles originated from an UF6 enrichment activity. • Submitted one manuscript for publication. Another manuscript is in preparation.« less

  2. Progress in fuel systems to meet new fuel economy and emissions standards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-12-31

    This publication includes information describing the latest developments within the automotive industry on fuel system hardware and control strategies. Contents include: Slow heating process of a heated pintle-type gasoline fuel injector; Mixture preparation measurements; Study of fuel flow rate change in injector for methanol fueled S.I. engine; Flow and structural analysis for fuel pressure regulator performance; A new method to analyze fuel behavior in a spark ignition engine; Throttle body at engine idle -- tolerance effect on flow rate; and more.

  3. Fuel Cell Buses in U.S. Transit Fleets : Current Status 2014

    DOT National Transportation Integrated Search

    2014-12-03

    This report, published annually, summarizes the progress of fuel cell electric bus (FCEB) development in the United States and discusses the achievements and challenges of introducing fuel cell propulsion in transit. Various stakeholders, including d...

  4. Open-source FCPEM-Performance & Durability Model Consideration of Membrane Properties on Cathode Degradation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knights, Shanna; Harvey, David

    The durability of PEM fuel cells is a primary requirement for large scale commercialization of these power systems in transportation and stationary market applications which target operational lifetimes of 5,000 hours and 60,000 hours by 2020, respectively. Key degradation modes contributing to fuel cell lifetime limitations have been largely associated with the platinum-based cathode catalyst layer. Furthermore, as fuel cells are driven to low cost materials and lower catalyst loadings in order to meet the cost targets for commercialization, the catalyst durability has become even more important. While over the past few years significant progress has been made in identifyingmore » the underlying causes of fuel cell degradation and key parameters that greatly influence the degradation rates, many gaps with respect to knowledge of the driving mechanisms still exist; in particular, the acceleration of the mechanisms due to different membrane compositions remains an area not well understood. The focus of this project extension was to enhance the predictive capability of the PEM Fuel Cell Performance & Durability Model called FC-APOLLO (Application Package for Open-source Long Life Operation) by including interaction effects of membrane transport properties such as water transport, changes in proton conductivity, and overall water uptake/adsorption and the state of the catalyst layer local conditions to further understand the driving forces for platinum dissolution.« less

  5. Light-water-reactor safety research program. Quarterly progress report, July--September 1975

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1975-01-01

    Progress is summarized in the following research and development areas: (1) loss-of-coolant accident research; heat transfer and fluid dynamics; (2) transient fuel response and fission-product release; and (3) mechanical properties of Zircaloy containing oxygen. Also included is an appendix on Kinetics of Fission Gas and Volatile Fission-product Behavior under Transient Conditions in LWR Fuel.

  6. 5. CONSTRUCTION PROGRESS VIEW OF ASSEMBLY USED TO RAISE AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. CONSTRUCTION PROGRESS VIEW OF ASSEMBLY USED TO RAISE AND LOWER FUEL ELEMENTS. TAKEN FROM TOP OF SHIELDING TANK WITH CAMERA POINTING TOWARDS BOTTOM OF TANK. SHOWS LADDER, SQUARE LIFTING FRAME, FUEL ELEMENT HOLDERS, AND CABLE CYLINDERS. INEL PHOTO NUMBER 65-5434, TAKEN OCTOBER 20, 1965. - Idaho National Engineering Laboratory, Advanced Reentry Vehicle Fusing System, Scoville, Butte County, ID

  7. Progress Report Phase I: Use, access, and fire/fuels management attitudes and preferences of user groups concerning the Valles Caldera National Preserve (VCNP) and adjacent areas

    Treesearch

    Kurt F. Anschuetz; Carol B. Raish

    2010-01-01

    This document represents a progress report of activities completed during Phase I of the study titled, Use, Access, and Fire/Fuels Management Attitudes and Preferences of User Groups Concerning the Valles Caldera National Preserve (VCNP) and Adjacent Areas, and the preliminary findings of this work.

  8. M4SF-17LL010301071: Thermodynamic Database Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zavarin, M.; Wolery, T. J.

    2017-09-05

    This progress report (Level 4 Milestone Number M4SF-17LL010301071) summarizes research conducted at Lawrence Livermore National Laboratory (LLNL) within the Argillite Disposal R&D Work Package Number M4SF-17LL01030107. The DR Argillite Disposal R&D control account is focused on the evaluation of important processes in the analysis of disposal design concepts and related materials for nuclear fuel disposal in clay-bearing repository media. The objectives of this work package are to develop model tools for evaluating impacts of THMC process on long-term disposal of spent fuel in argillite rocks, and to establish the scientific basis for high thermal limits. This work is contributing tomore » the GDSA model activities to identify gaps, develop process models, provide parameter feeds and support requirements providing the capability for a robust repository performance assessment model by 2020.« less

  9. Water Oxidation Mechanisms of Metal Oxide Catalysts by Vibrational Spectroscopy of Transient Intermediates.

    PubMed

    Zhang, Miao; Frei, Heinz

    2017-05-05

    Water oxidation is an essential reaction of an artificial photosystem for solar fuel generation because it provides electrons needed to reduce carbon dioxide or protons to a fuel. Earth-abundant metal oxides are among the most attractive catalytic materials for this reaction because of their robustness and scalability, but their efficiency poses a challenge. Knowledge of catalytic surface intermediates gained by vibrational spectroscopy under reaction conditions plays a key role in uncovering kinetic bottlenecks and provides a basis for catalyst design improvements. Recent dynamic infrared and Raman studies reveal the molecular identity of transient surface intermediates of water oxidation on metal oxides. Combined with ultrafast infrared observations of how charges are delivered to active sites of the metal oxide catalyst and drive the multielectron reaction, spectroscopic advances are poised to play a key role in accelerating progress toward improved catalysts for artificial photosynthesis.

  10. Lead (Pb) Hohlraum: Target for Inertial Fusion Energy

    PubMed Central

    Ross, J. S.; Amendt, P.; Atherton, L. J.; Dunne, M.; Glenzer, S. H.; Lindl, J. D.; Meeker, D.; Moses, E. I.; Nikroo, A.; Wallace, R.

    2013-01-01

    Recent progress towards demonstrating inertial confinement fusion (ICF) ignition at the National Ignition Facility (NIF) has sparked wide interest in Laser Inertial Fusion Energy (LIFE) for carbon-free large-scale power generation. A LIFE-based fleet of power plants promises clean energy generation with no greenhouse gas emissions and a virtually limitless, widely available thermonuclear fuel source. For the LIFE concept to be viable, target costs must be minimized while the target material efficiency or x-ray albedo is optimized. Current ICF targets on the NIF utilize a gold or depleted uranium cylindrical radiation cavity (hohlraum) with a plastic capsule at the center that contains the deuterium and tritium fuel. Here we show a direct comparison of gold and lead hohlraums in efficiently ablating deuterium-filled plastic capsules with soft x rays. We report on lead hohlraum performance that is indistinguishable from gold, yet costing only a small fraction. PMID:23486285

  11. Lead (Pb) hohlraum: target for inertial fusion energy.

    PubMed

    Ross, J S; Amendt, P; Atherton, L J; Dunne, M; Glenzer, S H; Lindl, J D; Meeker, D; Moses, E I; Nikroo, A; Wallace, R

    2013-01-01

    Recent progress towards demonstrating inertial confinement fusion (ICF) ignition at the National Ignition Facility (NIF) has sparked wide interest in Laser Inertial Fusion Energy (LIFE) for carbon-free large-scale power generation. A LIFE-based fleet of power plants promises clean energy generation with no greenhouse gas emissions and a virtually limitless, widely available thermonuclear fuel source. For the LIFE concept to be viable, target costs must be minimized while the target material efficiency or x-ray albedo is optimized. Current ICF targets on the NIF utilize a gold or depleted uranium cylindrical radiation cavity (hohlraum) with a plastic capsule at the center that contains the deuterium and tritium fuel. Here we show a direct comparison of gold and lead hohlraums in efficiently ablating deuterium-filled plastic capsules with soft x rays. We report on lead hohlraum performance that is indistinguishable from gold, yet costing only a small fraction.

  12. Fuel cell electrode interconnect contact material encapsulation and method

    DOEpatents

    Derose, Anthony J.; Haltiner, Jr., Karl J.; Gudyka, Russell A.; Bonadies, Joseph V.; Silvis, Thomas W.

    2016-05-31

    A fuel cell stack includes a plurality of fuel cell cassettes each including a fuel cell with an anode and a cathode. Each fuel cell cassette also includes an electrode interconnect adjacent to the anode or the cathode for providing electrical communication between an adjacent fuel cell cassette and the anode or the cathode. The interconnect includes a plurality of electrode interconnect protrusions defining a flow passage along the anode or the cathode for communicating oxidant or fuel to the anode or the cathode. An electrically conductive material is disposed between at least one of the electrode interconnect protrusions and the anode or the cathode in order to provide a stable electrical contact between the electrode interconnect and the anode or cathode. An encapsulating arrangement segregates the electrically conductive material from the flow passage thereby, preventing volatilization of the electrically conductive material in use of the fuel cell stack.

  13. PATHFINDER ATOMIC POWER PLANT TECHNICAL PROGRESS REPORT FOR JULY 1, 1959- SEPTEMBER 30, 1959

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1960-10-31

    ABS>Fuel Element Research and Development. Dynamic and static corrosion tests on 8001 Al were completed. Annealmmmg of 1100 cladding on 5083 and M400 cladding on X2219 were tested at 500 deg C, and investigation continued on producing X8101 Al alloy cladding in tube plates by extrusion. Boiler fuel element capsule irradiation tests and subassembly tests are described Heat transfer loop studies and fuel fabrication for the critical facility are reported. Boiler fuel element mechanical design and testing progress is desc ribed. and the superheater fuel element temperature evaluating routine is discussed. Low- enrichment superheater fuel element development included design studiesmore » and stainless steel powder and UO/sub 2/ powder fabrication studies Reactor Mechanical Studies. Research is reported on vessel and structure design, fabrication, and testing, recirculation system design, steam separator tests, and control rod studies. Nuclear Analysis. Reactor physics studies are reported on nuclear constants, baffle plate analysis, comparison of core representations, delayed neutron fraction. and shielding analysis of the reactor building. Reactor and system dynamics and critical experiments were also studied. Chemistry. Progress is reported on recombiner. radioactive gas removal and storage, ion exchanger and radiochemical processing. (For preceding period see ACNP-5915.) (T.R.H.)« less

  14. Direct methanol feed fuel cell and system

    NASA Technical Reports Server (NTRS)

    Kindler, Andrew (Inventor); Halpert, Gerald (Inventor); Frank, Harvey A. (Inventor); Chun, William (Inventor); Jeffries-Nakamura, Barbara (Inventor); Surampudi, Subbarao (Inventor); Narayanan, Sekharipuram R. (Inventor)

    2008-01-01

    Improvements to non acid methanol fuel cells include new formulations for materials. The platinum and ruthenium are more exactly mixed together. Different materials are substituted for these materials. The backing material for the fuel cell electrode is specially treated to improve its characteristics. A special sputtered electrode is formed which is extremely porous.

  15. Direct methanol feed fuel cell and system

    NASA Technical Reports Server (NTRS)

    Frank, Harvey A. (Inventor); Narayanan, Sekharipuram R. (Inventor); Chun, William (Inventor); Jeffries-Nakamura, Barbara (Inventor); Halpert, Gerald (Inventor); Surampudi, Subbarao (Inventor); Kindler, Andrew (Inventor)

    2004-01-01

    Improvements to non acid methanol fuel cells include new formulations for materials. The platinum and ruthenium are more exactly mixed together. Different materials are substituted for these materials. The backing material for the fuel cell electrode is specially treated to improve its characteristics. A special sputtered electrode is formed which is extremely porous.

  16. Direct methanol feed fuel cell and system

    NASA Technical Reports Server (NTRS)

    Frank, Harvey A. (Inventor); Narayanan, Sekharipuram R. (Inventor); Chun, William (Inventor); Jeffries-Nakamura, Barbara (Inventor); Halpert, Gerald (Inventor); Surampudi, Subbarao (Inventor); Kindler, Andrew (Inventor)

    2000-01-01

    Improvements to non-acid methanol fuel cells include new formulations for materials. The platinum and ruthenium are more exactly mixed together. Different materials are substituted for these materials. The backing material for the fuel cell electrode is specially treated to improve its characteristics. A special sputtered electrode is formed which is extremely porous.

  17. Direct methanol feed fuel cell and system

    NASA Technical Reports Server (NTRS)

    Surampudi, Subbarao (Inventor); Frank, Harvey A. (Inventor); Narayanan, Sekharipuram R. (Inventor); Chun, William (Inventor); Halpert, Gerald (Inventor); Jeffries-Nakamura, Barbara (Inventor); Kindler, Andrew (Inventor)

    2001-01-01

    Improvements to non acid methanol fuel cells include new formulations for materials. The platinum and ruthenium are more exactly mixed together. Different materials are substituted for these materials. The backing material for the fuel cell electrode is specially treated to improve its characteristics. A special sputtered electrode is formed which is extremely porous.

  18. 78 FR 67223 - Proposed Guidance for Fuel Cycle Facility; Material Control and Accounting Plans and Completing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-08

    ..., 72, et al. Proposed Guidance for Fuel Cycle Facility; Material Control and Accounting Plans and Completing NRC Form 327 and Amendments to Material Control and Accounting Regulations; Proposed Rules #0;#0... Guidance for Fuel Cycle Facility; Material Control and Accounting Plans and Completing NRC Form 327 AGENCY...

  19. Alloys compatibility in molten salt fluorides: Kurchatov Institute related experience

    NASA Astrophysics Data System (ADS)

    Ignatiev, Victor; Surenkov, Alexandr

    2013-10-01

    In the last several years, there has been an increased interest in the use of high-temperature molten salt fluorides in nuclear power systems. For all molten salt reactor designs, materials selection is a very important issue. This paper summarizes results, which led to selection of materials for molten salt reactors in Russia. Operating experience with corrosion thermal convection loops has demonstrated good capability of the “nickel-molybdenum alloys + fluoride salt fueled by UF4 and PuF3 + cover gas” system up to 750 °C. A brief description is given of the container material work in progress. Tellurium corrosion of Ni-based alloys in stressed and unloaded conditions studies was also tested in different molten salt mixtures at temperatures up to 700-750 °C, also with measurement of the redox potential. HN80MTY alloy with 1% added Al is the most resistant to tellurium intergranular cracking of Ni-base alloys under study.

  20. Recent progress and perspectives in the photocatalytic CO2 reduction of Ti-oxide-based nanomaterials

    NASA Astrophysics Data System (ADS)

    Sohn, Youngku; Huang, Weixin; Taghipour, Fariborz

    2017-02-01

    The conversion of CO2 with H2O to valuable chemicals and fuels is a new solution to current environmental and energy problems, and the high energy barrier of these reactions can be overcome by the input of solar and electrical energy. However, the reduction efficiencies and selectivities of these reactions are insufficient for practical use, and significant effort and strategy are required to overcome the many obstacles preventing the large-scale application of photocatalytic CO2 reduction. This article reviews recent progress in CO2 reduction using titanium oxide-based materials and various strategic factors for increasing photocatalytic efficiency. This article also highlights non-titanium-oxide catalysts, the photoelectrocatalytic reduction of CO2, and other recent review articles concerning the recycling of CO2 to value-added carbon compounds.

  1. Summary report on transportation of nuclear fuel materials in Japan : transportation infrastructure, threats identified in open literature, and physical protection regulations.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cochran, John Russell; Ouchi, Yuichiro; Furaus, James Phillip

    2008-03-01

    This report summarizes the results of three detailed studies of the physical protection systems for the protection of nuclear materials transport in Japan, with an emphasis on the transportation of mixed oxide fuel materials1. The Japanese infrastructure for transporting nuclear fuel materials is addressed in the first section. The second section of this report presents a summary of baseline data from the open literature on the threats of sabotage and theft during the transport of nuclear fuel materials in Japan. The third section summarizes a review of current International Atomic Energy Agency, Japanese and United States guidelines and regulations concerningmore » the physical protection for the transportation of nuclear fuel materials.« less

  2. Radiolytic and thermal process relevant to dry storage of spent nuclear fuels. 1998 annual progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marschman, S.C.; Cowin, J.P.; Orlando, T.M.

    1998-06-01

    'This project involves basic research in chemistry and physics aimed at providing information pertinent to the safe long-term dry storage of spent nuclear fuel (SNF), thousands of tons of which remain in water storage across the DOE complex. The Hanford Site K-Basins alone hold 2,300 tons of spent fuel, much of it severely corroded, and similar situations exist at Savannah River and Idaho National Engineering and Environmental Laboratory. The DOE plans to remove this fuel and seal it in overpack canisters for dry interim storage for up to 75 years while awaiting permanent disposition. Chemically-bound water will remain in thismore » fuel even following proposed drying steps, leading to possible long-term corrosion of the containers and/or fuel rods themselves, generation of H{sub 2} and O{sub 2} gas via radiolysis (which could lead to deflagration or detonation), and reactions of pyrophoric uranium hydrides. No thoroughly tested model is currently available to predict fuel behavior during pre-processing, processing, or storage. In a collaboration between Rutgers University, Pacific Northwest National Laboratory, and Brookhaven National Laboratory, the authors are studying the radiolytic reaction, drying processes, and corrosion behavior of actual SNF materials, and of pure and mixed-phase samples. The authors propose to determine what is omitted from current models: radiolysis of water adsorbed on or in hydrates or hydroxides, thermodynamics of interfacial phases, and kinetics of drying. A model will be developed and tested against actual fuel rod behavior to insure validity and applicability to the problems associated with developing dry storage strategies for DOE-owned SNF. This report summarizes work after eight months of a three-year project.'« less

  3. Fuel Cell Buses in U.S. Transit Fleets: Current Status 2017

    DOT National Transportation Integrated Search

    2017-11-01

    This report, published annually, summarizes the progress of fuel cell electric bus (FCEB) development in the United States and discusses the achievements and challenges of introducing fuel cell propulsion in transit. The report provides a summary of ...

  4. Fuel Cell Buses in U.S. Transit Fleets: Current Status 2016

    DOT National Transportation Integrated Search

    2016-11-01

    This report, published annually, summarizes the progress of fuel cell electric bus (FCEB) development in the United States and discusses the achievements and challenges of introducing fuel cell propulsion in transit. The report provides a summary of ...

  5. Fuel Cell Buses in U.S. Transit Fleets : Current Status 2015

    DOT National Transportation Integrated Search

    2015-12-01

    This report, published annually, summarizes the progress of fuel cell electric bus (FCEB) development in the United States and discusses the achievements and challenges of introducing fuel cell propulsion in transit. The report provides a summary of ...

  6. Fuel gas production from animal and agricultural residues and biomass. Quarterly coordination meeting, March 15-16, 1979, Tampa, Florida. Third quarterly progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wise, D L; Ashare, E; Wentworth, R L

    1979-04-24

    The eleventh quarterly coordination meeting of the methane production group of the Fuels From Biomass Systems Branch, US Department of Energy was held at Tampa, Florida, March 15-16, 1979. Progress reports were presented by the contractors and a site visit was made to Kaplan Industries, Bartow, Florida to see the Hamilton Standard demonstration facility for digestion of environmental feedlot residue to methane. A meeting agenda, a list of attendees, and progress reports are presented.

  7. Analysis on fuel breeding capability of FBR core region based on minor actinide recycling doping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Permana, Sidik; Novitrian,; Waris, Abdul

    Nuclear fuel breeding based on the capability of fuel conversion capability can be achieved by conversion ratio of some fertile materials into fissile materials during nuclear reaction processes such as main fissile materials of U-233, U-235, Pu-239 and Pu-241 and for fertile materials of Th-232, U-238, and Pu-240 as well as Pu-238. Minor actinide (MA) loading option which consists of neptunium, americium and curium will gives some additional contribution from converted MA into plutonium such as conversion Np-237 into Pu-238 and it's produced Pu-238 converts to Pu-239 via neutron capture. Increasing composition of Pu-238 can be used to produce fissilemore » material of Pu-239 as additional contribution. Trans-uranium (TRU) fuel (Mixed fuel loading of MOX (U-Pu) and MA composition) and mixed oxide (MOX) fuel compositions are analyzed for comparative analysis in order to show the effect of MA to the plutonium productions in core in term of reactor criticality condition and fuel breeding capability. In the present study, neptunium (Np) nuclide is used as a representative of MAin trans-uranium (TRU) fuel composition as Np-MOX fuel type. It was loaded into the core region gives significant contribution to reduce the excess reactivity in comparing to mixed oxide (MOX) fuel and in the same time it contributes to increase nuclear fuel breeding capability of the reactor. Neptunium fuel loading scheme in FBR core region gives significant production of Pu-238 as fertile material to absorp neutrons for reducing excess reactivity and additional contribution for fuel breeding.« less

  8. Revolutionary opportunities for materials and structures study

    NASA Technical Reports Server (NTRS)

    Schweiger, F. A.

    1987-01-01

    The revolutionary opportunities for materials and structures study was performed to provide Government and Industry focus for advanced materials technology. Both subsonic and supersonic engine studies and aircraft fuel burn and DOC evaluation are examined. Year 2010 goal materials were used in the advanced engine studies. These goal materials and improved component aero yielded subsonic fuel burn and DOC improvements of 13.4 percent and 5 percent, respectively and supersonic fuel burn and DOC improvements of 21.5 percent and 18 percent, respectively. Conclusions are that the supersonic study engine yielded fuel burn and DOC improvements well beyond the program goals; therefore, it is appropriate that advanced material programs be considered.

  9. Materials technology for an advanced space power nuclear reactor concept: Program summary

    NASA Technical Reports Server (NTRS)

    Gluyas, R. E.; Watson, G. K.

    1975-01-01

    The results of a materials technology program for a long-life (50,000 hr), high-temperature (950 C coolant outlet), lithium-cooled, nuclear space power reactor concept are reviewed and discussed. Fabrication methods and compatibility and property data were developed for candidate materials for fuel pins and, to a lesser extent, for potential control systems, reflectors, reactor vessel and piping, and other reactor structural materials. The effects of selected materials variables on fuel pin irradiation performance were determined. The most promising materials for fuel pins were found to be 85 percent dense uranium mononitride (UN) fuel clad with tungsten-lined T-111 (Ta-8W-2Hf).

  10. FUEL ELEMENT CONSTRUCTION

    DOEpatents

    Zumwalt, L.R.

    1961-08-01

    Fuel elements having a solid core of fissionable material encased in a cladding material are described. A conversion material is provided within the cladding to react with the fission products to form stable, relatively non- volatile compounds thereby minimizing the migration of the fission products into the coolant. The conversion material is preferably a metallic fluoride, such as lead difluoride, and may be in the form of a coating on the fuel core or interior of the cladding, or dispersed within the fuel core. (AEC)

  11. Nuclear fuel elements made from nanophase materials

    DOEpatents

    Heubeck, Norman B.

    1998-01-01

    A nuclear reactor core fuel element is composed of nanophase high temperature materials. An array of the fuel elements in rod form are joined in an open geometry fuel cell that preferably also uses such nanophase materials for the cell structures. The particular high temperature nanophase fuel element material must have the appropriate mechanical characteristics to avoid strain related failure even at high temperatures, in the order of about 3000.degree. F. Preferably, the reactor type is a pressurized or boiling water reactor and the nanophase material is a high temperature ceramic or ceramic composite. Nanophase metals, or nanophase metals with nanophase ceramics in a composite mixture, also have desirable characteristics, although their temperature capability is not as great as with all-ceramic nanophase material. Combinations of conventional or nanophase metals and conventional or nanophase ceramics can be employed as long as there is at least one nanophase material in the composite. The nuclear reactor so constructed has a number of high strength fuel particles, a nanophase structural material for supporting a fuel rod at high temperature, a configuration to allow passive cooling in the event of a primary cooling system failure, an ability to retain a coolable geometry even at high temperatures, an ability to resist generation of hydrogen gas, and a configuration having good nuclear, corrosion, and mechanical characteristics.

  12. Nuclear fuel elements made from nanophase materials

    DOEpatents

    Heubeck, N.B.

    1998-09-08

    A nuclear reactor core fuel element is composed of nanophase high temperature materials. An array of the fuel elements in rod form are joined in an open geometry fuel cell that preferably also uses such nanophase materials for the cell structures. The particular high temperature nanophase fuel element material must have the appropriate mechanical characteristics to avoid strain related failure even at high temperatures, in the order of about 3000 F. Preferably, the reactor type is a pressurized or boiling water reactor and the nanophase material is a high temperature ceramic or ceramic composite. Nanophase metals, or nanophase metals with nanophase ceramics in a composite mixture, also have desirable characteristics, although their temperature capability is not as great as with all-ceramic nanophase material. Combinations of conventional or nanophase metals and conventional or nanophase ceramics can be employed as long as there is at least one nanophase material in the composite. The nuclear reactor so constructed has a number of high strength fuel particles, a nanophase structural material for supporting a fuel rod at high temperature, a configuration to allow passive cooling in the event of a primary cooling system failure, an ability to retain a coolable geometry even at high temperatures, an ability to resist generation of hydrogen gas, and a configuration having good nuclear, corrosion, and mechanical characteristics. 5 figs.

  13. A Comparison of Materials Issues for Cermet and Graphite-Based NTP Fuels

    NASA Technical Reports Server (NTRS)

    Stewart, Mark E.; Schnitzler, Bruce G.

    2013-01-01

    This paper compares material issues for cermet and graphite fuel elements. In particular, two issues in NTP fuel element performance are considered here: ductile to brittle transition in relation to crack propagation, and orificing individual coolant channels in fuel elements. Their relevance to fuel element performance is supported by considering material properties, experimental data, and results from multidisciplinary fluid/thermal/structural simulations. Ductile to brittle transition results in a fuel element region prone to brittle fracture under stress, while outside this region, stresses lead to deformation and resilience under stress. Poor coolant distribution between fuel element channels can increase stresses in certain channels. NERVA fuel element experimental results are consistent with this interpretation. An understanding of these mechanisms will help interpret fuel element testing results.

  14. Status of liquid metal fast breeder reactor fuel development in Japan

    NASA Astrophysics Data System (ADS)

    Katsuragawa, M.; Kashihara, H.; Akebi, M.

    1993-09-01

    The mixed-oxide fuel technology for a liquid metal fast breeder reactor (LMFBR) in Japan is progressing toward commercial deployment of LMFBR. Based on accumulated experience in Joyo and Monju fuel development, efforts for large scale LMFBR fuel development are devoted to improved irradiation performance, reliability and economy. This paper summarizes accomplishments, current activities and future plans for LMFBR fuel development in Japan.

  15. Recycling

    NASA Astrophysics Data System (ADS)

    Goto, Junya; Santorelli, Michael

    Recycling systems are classified into those employing typically three methods, and the progress of each method is described. In mechanical recycling, powders of phenolic materials are recovered via a mechanical process and reused as fillers or additives in virgin materials. The effects to flowability, curability, and mechanical properties of the materials are explained. In feedstock recycling, monomers, oligomers, or oils are recovered via chemical processes and reused as feedstock. Pyrolysis, solvolysis or hydrolysis, and supercritical or subcritical fluid technology will also be introduced. When using a subcritical fluid of phenol, the recycled material maintains excellent properties similar to the virgin material, and a demonstration plant has been constructed to carry out mass production development. In energy recovery, wastes of phenolic materials are used as an alternative solid fuel to coal because they are combustible and have good calorific value. Industrial wastes of these have been in practical use in a cement plant. Finally, it is suggested that the best recycling method should be selected according to the purpose or situation, because every recycling method has both strengths and weaknesses. Therefore, quantitative and objective evaluation methods in recycling are desirable and should be established.

  16. Materials towards carbon-free, emission-free and oil-free mobility: hydrogen fuel-cell vehicles--now and in the future.

    PubMed

    Hirose, Katsuhiko

    2010-07-28

    In the past, material innovation has changed society through new material-induced technologies, adding a new value to society. In the present world, engineers and scientists are expected to invent new materials to solve the global problem of climate change. For the transport sector, the challenge for material engineers is to change the oil-based world into a sustainable world. After witnessing the recent high oil price and its adverse impact on the global economy, it is time to accelerate our efforts towards this change. Industries are tackling global energy issues such as oil and CO2, as well as local environmental problems, such as NO(x) and particulate matter. Hydrogen is the most promising candidate to provide carbon-free, emission-free and oil-free mobility. As such, engineers are working very hard to bring this technology into the real society. This paper describes recent progress of vehicle technologies, as well as hydrogen-storage technologies to extend the cruise range and ensure the easiness of refuelling and requesting material scientists to collaborate with industry to fight against global warming.

  17. U.S. Department of Energy-Funded Performance Validation of Fuel Cell Material Handling Equipment (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurtz, J.; Sprik, S.; Ramsden, T.

    2013-11-01

    This webinar presentation to the UK Hydrogen and Fuel Cell Association summarizes how the U.S. Department of Energy is enabling early fuel cell markets; describes objectives of the National Fuel Cell Technology Evaluation Center; and presents performance status of fuel cell material handling equipment.

  18. Materials and Fuels Complex Tour

    ScienceCinema

    Miley, Don

    2017-12-11

    The Materials and Fuels Complex at Idaho National Laboratory is home to several facilities used for the research and development of nuclear fuels. Stops include the Fuel Conditioning Facility, the Hot Fuel Examination Facility (post-irradiation examination), and the Space and Security Power System Facility, where radioisotope thermoelectric generators (RTGs) are assembled for deep space missions.

  19. JOYO-1 Irradiation Test Campaign Technical Close-out, For Information

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    G. Borges

    2006-01-31

    The JOYO-1 irradiation testing was designed to screen the irradiation performance of candidate cladding, structural and reflector materials in support of space reactor development. The JOYO-1 designation refers to the first of four planned irradiation tests in the JOYO reactor. Limited irradiated material performance data for the candidate materials exists for the expected Prometheus-1 duration, fluences and temperatures. Materials of interest include fuel element cladding and core materials (refractory metal alloys and silicon carbide (Sic)), vessel and plant structural materials (refractory metal alloys and nickel-base superalloys), and control and reflector materials (BeO). Key issues to be evaluated were long termmore » microstructure and material property stability. The JOYO-1 test campaign was initiated to irradiate a matrix of specimens at prototypical temperatures and fluences anticipated for the Prometheus-1 reactor [Reference (1)]. Enclosures 1 through 9 describe the specimen and temperature monitors/dosimetry fabrication efforts, capsule design, disposition of structural material irradiation rigs, and plans for post-irradiation examination. These enclosures provide a detailed overview of Naval Reactors Prime Contractor Team (NRPCT) progress in specific areas; however, efforts were in various states of completion at the termination of NRPCT involvement with and restructuring of Project Prometheus.« less

  20. Development of a high-performance coal-fired power generating system with pyrolysis gas and char-fired high temperature furnace (HITAF). Quarterly progress report No. 6, April--June 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-08-01

    A concept for an advanced coal-fired combined-cycle power generating system is currently being developed. The first phase of this three-phase program consists of conducting the necessary research and development to define the system, evaluating the economic and technical feasibility of the concept, and preparing an R&D plan to develop the concept further. The system proposed to meet these goals is a combined-cycle system where air for a gas turbine is indirectly heated to approximately 1800{degree}F in furnaces fired with coal-derived fuels and then directly heated in a natural-gas-fired combustor to about 2400{degree}F. The system is based on a pyrolyzing processmore » that converts the coal into a low-Btu fuel gas and char. The fuel gas is relatively clean, and it is fired to heat tube surfaces that are susceptible to corrosion and problems from ash deposition. In particular, the high-temperature air heater tubes, which will need to be a ceramic material, will be located in a separate furnace or region of a furnace that is exposed to combustion products from the low-Btu fuel gas only.« less

  1. METHOD AND APPARATUS FOR IMPROVING PERFORMANCE OF A FAST REACTOR

    DOEpatents

    Koch, L.J.

    1959-01-20

    A specific arrangement of the fertile material and fissionable material in the active portion of a fast reactor to achieve improvement in performance and to effectively lower the operating temperatures in the center of the reactor is described. According to this invention a group of fuel elements containing fissionable material are assembled to form a hollow fuel core. Elements containing a fertile material, such as depleted uranium, are inserted into the interior of the fuel core to form a central blanket. Additional elemenis of fertile material are arranged about the fuel core to form outer blankets which in tunn are surrounded by a reflector. This arrangement of fuel core and blankets results in substantial flattening of the flux pattern.

  2. Space Exploration Initiative Fuels, Materials and Related Nuclear Propulsion Technologies Panel

    NASA Technical Reports Server (NTRS)

    Bhattacharyya, S. K.; Olsen, C.; Cooper, R.; Matthews, R. B.; Walter, C.; Titran, R. J.

    1993-01-01

    This report was prepared by members of the Fuels, Materials and Related Technologies Panel, with assistance from a number of industry observers as well as laboratory colleagues of the panel members. It represents a consensus view of the panel members. This report was not subjected to a thorough review by DOE, NASA or DoD, and the opinions expressed should not be construed to represent the official position of these organizations, individually or jointly. Topics addressed include: requirement for fuels and materials development for nuclear thermal propulsion (NTP) and nuclear electric propulsion (NEP); overview of proposed concepts; fuels technology development plan; materials technology development plan; other reactor technology development; and fuels and materials requirements for advanced propulsion concepts.

  3. 40 CFR 60.41 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Fossil-Fuel-Fired Steam Generators for..., matrix material, clay, and other organic and inorganic material. Fossil fuel means natural gas, petroleum, coal, and any form of solid, liquid, or gaseous fuel derived from such materials for the purpose of...

  4. 40 CFR 60.41 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Fossil-Fuel-Fired Steam Generators for..., matrix material, clay, and other organic and inorganic material. Fossil fuel means natural gas, petroleum, coal, and any form of solid, liquid, or gaseous fuel derived from such materials for the purpose of...

  5. Functional and Biomimetic Materials for Engineering of the Three-Dimensional Cell Microenvironment.

    PubMed

    Huang, Guoyou; Li, Fei; Zhao, Xin; Ma, Yufei; Li, Yuhui; Lin, Min; Jin, Guorui; Lu, Tian Jian; Genin, Guy M; Xu, Feng

    2017-10-25

    The cell microenvironment has emerged as a key determinant of cell behavior and function in development, physiology, and pathophysiology. The extracellular matrix (ECM) within the cell microenvironment serves not only as a structural foundation for cells but also as a source of three-dimensional (3D) biochemical and biophysical cues that trigger and regulate cell behaviors. Increasing evidence suggests that the 3D character of the microenvironment is required for development of many critical cell responses observed in vivo, fueling a surge in the development of functional and biomimetic materials for engineering the 3D cell microenvironment. Progress in the design of such materials has improved control of cell behaviors in 3D and advanced the fields of tissue regeneration, in vitro tissue models, large-scale cell differentiation, immunotherapy, and gene therapy. However, the field is still in its infancy, and discoveries about the nature of cell-microenvironment interactions continue to overturn much early progress in the field. Key challenges continue to be dissecting the roles of chemistry, structure, mechanics, and electrophysiology in the cell microenvironment, and understanding and harnessing the roles of periodicity and drift in these factors. This review encapsulates where recent advances appear to leave the ever-shifting state of the art, and it highlights areas in which substantial potential and uncertainty remain.

  6. Controlling cation segregation in perovskite-based electrodes for high electro-catalytic activity and durability.

    PubMed

    Li, Yifeng; Zhang, Wenqiang; Zheng, Yun; Chen, Jing; Yu, Bo; Chen, Yan; Liu, Meilin

    2017-10-16

    Solid oxide cell (SOC) based energy conversion systems have the potential to become the cleanest and most efficient systems for reversible conversion between electricity and chemical fuels due to their high efficiency, low emission, and excellent fuel flexibility. Broad implementation of this technology is however hindered by the lack of high-performance electrode materials. While many perovskite-based materials have shown remarkable promise as electrodes for SOCs, cation enrichment or segregation near the surface or interfaces is often observed, which greatly impacts not only electrode kinetics but also their durability and operational lifespan. Since the chemical and structural variations associated with surface enrichment or segregation are typically confined to the nanoscale, advanced experimental and computational tools are required to probe the detailed composition, structure, and nanostructure of these near-surface regions in real time with high spatial and temporal resolutions. In this review article, an overview of the recent progress made in this area is presented, highlighting the thermodynamic driving forces, kinetics, and various configurations of surface enrichment and segregation in several widely studied perovskite-based material systems. A profound understanding of the correlation between the surface nanostructure and the electro-catalytic activity and stability of the electrodes is then emphasized, which is vital to achieving the rational design of more efficient SOC electrode materials with excellent durability. Furthermore, the methodology and mechanistic understanding of the surface processes are applicable to other materials systems in a wide range of applications, including thermo-chemical photo-assisted splitting of H 2 O/CO 2 and metal-air batteries.

  7. PROCESS DEVELOPMENT QUARTERLY REPORT. II. PILOT PLANT WORK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuhlman, N. ed.

    1957-05-01

    Progress is reported on the gross solubility of U in digestions of Mallinokrodt feed materials, studies of variables affecting U purity in a TBP hexane extraction cycle, low-acid flowsheet for TBP--hexane extraction process based on a 440 g U/liter in lM HNO/sub 3/ digest liquor, hacking studies in the pilot plant pumperdecanter system, recovery of U from residues from the dingot process, lowering the H level in dingot metal, forging of dingot bar stock, dingot extrusion, fubrication of UO/sub 2/ fuel elements, and the determination of H content of derby and ingot metal. (W.L.H.)

  8. Graphene based 2D-materials for supercapacitors

    NASA Astrophysics Data System (ADS)

    Palaniselvam, Thangavelu; Baek, Jong-Beom

    2015-09-01

    Ever-increasing energy demands and the depletion of fossil fuels are compelling humanity toward the development of suitable electrochemical energy conversion and storage devices to attain a more sustainable society with adequate renewable energy and zero environmental pollution. In this regard, supercapacitors are being contemplated as potential energy storage devices to afford cleaner, environmentally friendly energy. Recently, a great deal of attention has been paid to two-dimensional (2D) nanomaterials, including 2D graphene and its inorganic analogues (transition metal double layer hydroxides, chalcogenides, etc), as potential electrodes for the development of supercapacitors with high electrochemical performance. This review provides an overview of the recent progress in using these graphene-based 2D materials as potential electrodes for supercapacitors. In addition, future research trends including notable challenges and opportunities are also discussed.

  9. 2011 Annual Progress Report: DOE Hydrogen and Fuel Cells Program (Book)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    In the past year, the DOE Hydrogen and Fuel Cells Program (the Program) made substantial progress toward its goals and objectives. The Program has conducted comprehensive and focused efforts to enable the widespread commercialization of hydrogen and fuel cell technologies in diverse sectors of the economy. With emphasis on applications that will effectively strengthen our nation's energy security and improve our stewardship of the environment, the Program engages in research, development, and demonstration of critical improvements in the technologies. Highlights of the Program's accomplishments can be found in the sub-program chapters of this report.

  10. Screening of advanced cladding materials and UN-U3Si5 fuel

    NASA Astrophysics Data System (ADS)

    Brown, Nicholas R.; Todosow, Michael; Cuadra, Arantxa

    2015-07-01

    In the aftermath of Fukushima, a focus of the DOE-NE Advanced Fuels Campaign has been the development of advanced nuclear fuel and cladding options with the potential for improved performance in an accident. Uranium dioxide (UO2) fuels with various advanced cladding materials were analyzed to provide a reference for cladding performance impacts. For advanced cladding options with UO2 fuel, most of the cladding materials have some reactivity and discharge burn-up penalty (in GWd/t). Silicon carbide is one exception in that the reactor physics performance is predicted to be very similar to zirconium alloy cladding. Most candidate claddings performed similar to UO2-Zr fuel-cladding in terms of safety coefficients. The clear exception is that Mo-based materials were identified as potentially challenging from a reactor physics perspective due to high resonance absorption. This paper also includes evaluation of UN-U3Si5 fuels with Kanthal AF or APMT cladding. The objective of the U3Si5 phase in the UN-U3Si5 fuel concept is to shield the nitride phase from water. It was shown that UN-U3Si5 fuels with Kanthal AF or APMT cladding have similar reactor physics and fuel management performance over a wide parameter space of phase fractions when compared to UO2-Zr fuel-cladding. There will be a marginal penalty in discharge burn-up (in GWd/t) and the sensitivity to 14N content in UN ceramic composites is high. Analysis of the rim effect due to self-shielding in the fuel shows that the UN-based ceramic fuels are not expected to have significantly different relative burn-up distributions at discharge relative to the UO2 reference fuel. However, the overall harder spectrum in the UN ceramic composite fuels increases transuranic build-up, which will increase long-term activity in a once-thru fuel cycle but is expected to be a significant advantage in a fuel cycle with continuous recycling of transuranic material. It is recognized that the fuel and cladding properties assumed in these assessments are preliminary, and that additional data are necessary for these materials, most significantly under irradiation.

  11. Research Progress in Carbon Dioxide Storage and Enhanced Oil Recovery

    NASA Astrophysics Data System (ADS)

    Wang, Keliang; Wang, Gang; Lu, Chunjing

    2018-02-01

    With the rapid development of global economy, human beings have become highly dependent upon fossil fuel such as coal and petroleum. Much fossil fuel is consumed in industrial production and human life. As a result, carbon dioxide emissions have been increasing, and the greenhouse effects thereby generated are posing serious threats to environment of the earth. These years, increasing average global temperature, frequent extreme weather events and climatic changes cause material disasters to the world. After scientists’ long-term research, ample evidences have proven that emissions of greenhouse gas like carbon dioxide have brought about tremendous changes to global climate. To really reduce carbon dioxide emissions, governments of different countries and international organizations have invested much money and human resources in performing research related to carbon dioxide emissions. Manual underground carbon dioxide storage and carbon dioxide-enhanced oil recovery are schemes with great potential and prospect for reducing carbon dioxide emissions. Compared with other schemes for reducing carbon dioxide emissions, aforementioned two schemes exhibit high storage capacity and yield considerable economic benefits, so they have become research focuses for reducing carbon dioxide emissions. This paper introduces the research progress in underground carbon dioxide storage and enhanced oil recovery, pointing out the significance and necessity of carbon dioxide-driven enhanced oil recovery.

  12. Dynamic, Hot Surface Ignition of Aircraft Fuels and Hydraulic Fluids

    DTIC Science & Technology

    1980-10-01

    fuels on a heated stainless steel surface. Higher local surface air speeds necessitated higher surface temperatures for ignition of an applied fluid._-7...Aircraft Fuels ( stainless steel surface) 8. Air Speed and Surface Material Effects on Hot Surface 21 Ignition Temperature of Aircraft Fuels (Titanium...Material Effects on Hot Surface 26 Ignition Temperature of Aircraft Hydraulic Fluids ( Stainless steel surface) 11. Air Speed and Surface Material

  13. Mechanistic materials modeling for nuclear fuel performance

    DOE PAGES

    Tonks, Michael R.; Andersson, David; Phillpot, Simon R.; ...

    2017-03-15

    Fuel performance codes are critical tools for the design, certification, and safety analysis of nuclear reactors. However, their ability to predict fuel behavior under abnormal conditions is severely limited by their considerable reliance on empirical materials models correlated to burn-up (a measure of the number of fission events that have occurred, but not a unique measure of the history of the material). In this paper, we propose a different paradigm for fuel performance codes to employ mechanistic materials models that are based on the current state of the evolving microstructure rather than burn-up. In this approach, a series of statemore » variables are stored at material points and define the current state of the microstructure. The evolution of these state variables is defined by mechanistic models that are functions of fuel conditions and other state variables. The material properties of the fuel and cladding are determined from microstructure/property relationships that are functions of the state variables and the current fuel conditions. Multiscale modeling and simulation is being used in conjunction with experimental data to inform the development of these models. Finally, this mechanistic, microstructure-based approach has the potential to provide a more predictive fuel performance capability, but will require a team of researchers to complete the required development and to validate the approach.« less

  14. Fuel Cell Buses in U.S. Transit Fleets: Current Status 2011

    DOT National Transportation Integrated Search

    2011-11-11

    his report is the fifth in a series of annual status reports that summarize the progress resulting from fuel cell transit bus demonstrations in the United States and provide a discussion of the achievements and challenges of fuel cell propulsion in t...

  15. Fuel Cell Buses in U.S. Transit Fleets : Current Status 2012

    DOT National Transportation Integrated Search

    2012-11-12

    This report is the sixth in an annual series of reports that summarize the progress of fuel cell electric bus (FCEB) development in the United States and discuss the achievements and challenges of introducing fuel cell propulsion in transit. The repo...

  16. Fuel Cell Buses in U.S. Transit Fleets : Current Status 2013

    DOT National Transportation Integrated Search

    2013-12-01

    This report is the seventh in an annual series of reports that summarize the progress of fuel cell electric bus (FCEB) development in the United States and discuss the achievements and challenges of introducing fuel cell propulsion in transit. This r...

  17. Impedance-Based Structural Health Monitoring for Composite Laminates at Cryogenic Environments

    NASA Technical Reports Server (NTRS)

    Tseng, Kevin

    2003-01-01

    One of the important ways of increasing the payload in a reusable launch vehicle (RLV) is to replace heavy metallic materials by lightweight composite laminates. Among various parts and systems of the RLV, this project focuses on tanks containing cryogenic fuel. Historically, aluminum alloys have been used as the materials to construct fuel tanks for launch vehicles. To replace aluminum alloys with composite laminates or honeycomb materials, engineers have to make sure that the composites are free of defects before, during, and after launch. In addition to robust design and manufacturing procedures, the performance of the composite structures needs to be monitored constantly.In recent years, the impedance-based health monitoring technique has shown its promise in many applications. This technique makes use of the special properties of smart piezoelectric materials to identify the change of material properties due to the nucleation and progression of damage. The piezoceramic patch serves as a sensor and an actuator simultaneously. The piezoelectric patch is bonded onto an existing structure or embedded into a new structure and electrically excited at high frequencies. The signature (impedance or admittance) is extracted as a function of the exciting frequency and is compared with the baseline signature of the healthy state. The damage is quantified using root mean square deviation (RMSD) in the impedance signatures with respect to the baseline signature. A major advantage of this technique is that the procedure is nondestructive in nature and does not perturb the properties and performance of the materials and structures. This project aims at applying the impedance-based nondestructive testing technique to the damage identification of composite laminates at cryogenic temperature.

  18. Small Engine Component Technology (SECT) studies

    NASA Technical Reports Server (NTRS)

    Meyer, P. K.; Harbour, L.

    1986-01-01

    A study was conducted to identify component technology requirements for small, expendable gas turbine engines that would result in substantial improvements in performance and cost by the year 2000. A subsonic, 2600 nautical mile (4815 km) strategic cruise missile mission was selected for study. A baseline (state-of-the-art) engine and missile configuration were defined to evaluate the advanced technology engines. Two advanced technology engines were configured and evaluated using advanced component efficiencies and ceramic composite materials; a 22:1 overall pressure ratio, 3.85 bypass ratio twin-spool turbofan; and an 8:1 overall pressure, 3.66 bypass ratio, single-spool recuperated turbofan with 0.85 recuperator effectiveness. Results of mission analysis indicated a reduction in fuel burn of 38 and 47 percent compared to the baseline engine when using the advanced turbofan and recuperated turbofan, respectively. While use of either advanced engine resulted in approximately a 25 percent reduction in missile size, the unit life cycle (LCC) cost reduction of 56 percent for the advanced turbofan relative to the baseline engine gave it a decisive advantage over the recuperated turbofan with 47 percent LCC reduction. An additional range improvement of 10 percent results when using a 56 percent loaded carbon slurry fuel with either engine. These results can be realized only if significant progress is attained in the fields of solid lubricated bearings, small aerodynamic component performance, composite ceramic materials and integration of slurry fuels. A technology plan outlining prospective programs in these fields is presented.

  19. Fuel gas production from animal and agricultural residues and biomass. Quarterly coordination meeting, December 11-12, 1978, Denver, Colorado. Second Quarterly progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wise, D L; Ashare, E; Wentworth, R L

    1979-01-05

    The tenth quarterly coordination meeting of the methane production group of the Fuels from Biomass Systems Branch, US Department of Energy was held at Denver, Colorado, December 11-12, 1978. Progress reports were presented by the contractors and a site visit was made to the Solar Energy Research Institute, Golden, Colorado. A meeting agenda, a list of attendees, and progress are presented. Report titles are: pipeline fuel gas from an environmental feedlot; operation of a 50,000 gallon anaerobic digester at the Monroe State Dairy Farm near Monroe, Washington; anaerobic fermentation of livestock and crop residues; anaerobic fermentation of agricultural residues -more » potential for improvement and implementation; heat treatment of organics for increasing anaerobic biodegradability; and biological conversion of biomass to methane. (DC)« less

  20. Target fuel quality standards performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hublin, M.; Renault, S.A.

    Concerned by a large number of in-service incident due to insufficient quality of market fuels that happened in the 1980s in France and Europe, the two major French car manufacturers-PSA Peugeot Citroen and Renault-decided to define new technical requirements for these fuels. By publishing the fuel charter in July 1989, a whole fuel quality monitoring system was established. Forthcoming fuel refiners and distributors were invited to produce and sell fuels of higher quality. Major French distributors joined the charter, and soon, an improvement on French market fuels was observed. Undoubtedly, the two oil crises, in 1973 and 1979, have boostedmore » technological progress of combustion engines, improving specific power, operating noise, exhaust emissions and fuel consumption. That technological progress was achieved by defining and carrying out research that contributed to a better understanding of combustion engines. Continuous and gradual evolution in the design of engines was achieved in areas such as: combustion, internal air motion, multi-valve technology, fuel injection, engine management systems, friction reduction and after-treatment devices. As long as national fuel specifications define fuel characteristics in a rough and insufficient way, there will be the need for quality fuel certification. Different countries, bearing different cultures, will probably produce slightly different variations, but will continue to exist and increase in number. Fuel quality is a key issue for the future to guarantee trouble-free and comfortable vehicle operation and also to maintain its original emissions characteristics.« less

  1. Deep desulfurization of hydrocarbon fuels

    DOEpatents

    Song, Chunshan [State College, PA; Ma, Xiaoliang [State College, PA; Sprague, Michael J [Calgary, CA; Subramani, Velu [State College, PA

    2012-04-17

    The invention relates to processes for reducing the sulfur content in hydrocarbon fuels such as gasoline, diesel fuel and jet fuel. The invention provides a method and materials for producing ultra low sulfur content transportation fuels for motor vehicles as well as for applications such as fuel cells. The materials and method of the invention may be used at ambient or elevated temperatures and at ambient or elevated pressures without the need for hydrogen.

  2. Development of an extended-burnup Mark B design. First semi-annual progress report, July-December 1978. Report BAW-1532-1. [PWR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1979-10-01

    The primary objective of this program is to develop and demonstrate an improved PWR fuel assembly design capable of batch average burnups of 45,000-50,000 MWd/mtU. To accomplish this, a number of technical areas must be investigated to verify acceptable extended-burnup fuel performance. This report is the first semi-annual progress report for the program, and it describes work performed during the July-December 1978 time period. Efforts during this period included the definition of a preliminary design for a high-burnup fuel rod, physics analyses of extended-burnup fuel cycles, studies of the physics characteristics of changes in fuel assembly metal-to-water ratios, and developmentmore » of a design concept for post-irradiation examination equipment to be utilized in examining high-burnup lead-test assemblies.« less

  3. ADDING REALISM TO NUCLEAR MATERIAL DISSOLVING ANALYSIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williamson, B.

    2011-08-15

    Two new criticality modeling approaches have greatly increased the efficiency of dissolver operations in H-Canyon. The first new approach takes credit for the linear, physical distribution of the mass throughout the entire length of the fuel assembly. This distribution of mass is referred to as the linear density. Crediting the linear density of the fuel bundles results in using lower fissile concentrations, which allows higher masses to be charged to the dissolver. Also, this approach takes credit for the fact that only part of the fissile mass is wetted at a time. There are multiple assemblies stacked on top ofmore » each other in a bundle. On average, only 50-75% of the mass (the bottom two or three assemblies) is wetted at a time. This means that only 50-75% (depending on operating level) of the mass is moderated and is contributing to the reactivity of the system. The second new approach takes credit for the progression of the dissolving process. Previously, dissolving analysis looked at a snapshot in time where the same fissile material existed both in the wells and in the bulk solution at the same time. The second new approach models multiple consecutive phases that simulate the fissile material moving from a high concentration in the wells to a low concentration in the bulk solution. This approach is more realistic and allows higher fissile masses to be charged to the dissolver.« less

  4. The history, genotoxicity and carcinogenicity of carbon-based fuels and their emissions: part 4 - alternative fuels.

    PubMed

    Claxton, Larry D

    2015-01-01

    Much progress has been made in reducing the pollutants emitted from various combustors (including diesel engines and power plants) by the use of alternative fuels; however, much more progress is needed. Not only must researchers improve fuels and combustors, but also there is a need to improve the toxicology testing and analytical chemistry methods associated with these complex mixtures. Emissions from many alternative carbonaceous fuels are mutagenic and carcinogenic. Depending on their source and derivation, alternative carbonaceous fuels before combustion may or may not be genotoxic; however, in order to know their genotoxicity, appropriate chemical analysis and/or bioassay must be performed. Newly developed fuels and combustors must be tested to determine if they provide a public health advantage over existing technologies - including what tradeoffs can be expected (e.g., decreasing levels of PAHs versus increasing levels of NOx and possibly nitroarenes in ambient air). Another need is to improve exposure estimations which presently are a weak link in doing risk analyses. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Ford/BASF/UM Activities in Support of the Hydrogen Storage Engineering Center of Excellence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veenstra, Mike; Purewal, Justin; Xu, Chunchuan

    Widespread adoption of hydrogen as a vehicular fuel depends critically on the development of low-cost, on-board hydrogen storage technologies capable of achieving high energy densities and fast kinetics for hydrogen uptake and release. As present-day technologies -- which rely on physical storage methods such as compressed hydrogen -- are incapable of attaining established Department of Energy (DOE) targets, development of materials-based approaches for storing hydrogen have garnered increasing attention. Material-based storage technologies have potential to store hydrogen beyond twice the density of liquid hydrogen. To hasten development of these ‘hydride’ materials, the DOE previously established three centers of excellence formore » materials storage R&D associated with the key classes of materials: metal hydrides, chemical hydrogen, and adsorbents. While these centers made progress in identifying new storage materials, the challenges associated with the engineering of the system around a candidate storage material are in need of further advancement. In 2009 the DOE established the Hydrogen Storage Engineering Center of Excellence with the objective of developing innovative engineering concepts for materials-based hydrogen storage systems. As a partner in the Hydrogen Storage Engineering Center of Excellence, the Ford-UM-BASF team conducted a multi-faceted research program that addresses key engineering challenges associated with the development of materials-based hydrogen storage systems. First, we developed a novel framework that allowed for a material-based hydrogen storage system to be modeled and operated within a virtual fuel cell vehicle. This effort resulted in the ability to assess dynamic operating parameters and interactions between the storage system and fuel cell power plant, including the evaluation of performance throughout various drive cycles. Second, we engaged in cost modeling of various incarnations of the storage systems. This analysis revealed cost gaps and opportunities that identified a storage system that was lower cost than a 700 bar compressed system. Finally, we led the HSECoE efforts devoted to characterizing and enhancing metal organic framework (MOF) storage materials. This report serves as a final documentation of the Ford-UM-BASF project contributions to the HSECoE during the 6-year timeframe of the Center. The activities of the HSECoE have impacted the broader goals of the DOE-EERE and USDRIVE, leading to improved understanding in the engineering of materials-based hydrogen storage systems. This knowledge is a prerequisite to the development of a commercially-viable hydrogen storage system.« less

  6. Initial Operation of the Nuclear Thermal Rocket Element Environmental Simulator

    NASA Technical Reports Server (NTRS)

    Emrich, William J., Jr.; Pearson, J. Boise; Schoenfeld, Michael P.

    2015-01-01

    The Nuclear Thermal Rocket Element Environmental Simulator (NTREES) facility is designed to perform realistic non-nuclear testing of nuclear thermal rocket (NTR) fuel elements and fuel materials. Although the NTREES facility cannot mimic the neutron and gamma environment of an operating NTR, it can simulate the thermal hydraulic environment within an NTR fuel element to provide critical information on material performance and compatibility. The NTREES facility has recently been upgraded such that the power capabilities of the facility have been increased significantly. At its present 1.2 MW power level, more prototypical fuel element temperatures nay now be reached. The new 1.2 MW induction heater consists of three physical units consisting of a transformer, rectifier, and inverter. This multiunit arrangement facilitated increasing the flexibility of the induction heater by more easily allowing variable frequency operation. Frequency ranges between 20 and 60 kHz can accommodated in the new induction heater allowing more representative power distributions to be generated within the test elements. The water cooling system was also upgraded to so as to be capable of removing 100% of the heat generated during testing In this new higher power configuration, NTREES will be capable of testing fuel elements and fuel materials at near-prototypic power densities. As checkout testing progressed and as higher power levels were achieved, several design deficiencies were discovered and fixed. Most of these design deficiencies were related to stray RF energy causing various components to encounter unexpected heating. Copper shielding around these components largely eliminated these problems. Other problems encountered involved unexpected movement in the coil due to electromagnetic forces and electrical arcing between the coil and a dummy test article. The coil movement and arcing which were encountered during the checkout testing effectively destroyed the induction coil in use at the time and resulted in NTREES being out of commission for a couple of months while a new stronger coil was procured. The new coil includes several additional pieces of support structure to prevent coil movement in the future. In addition, new insulating test article support components have been fabricated to prevent unexpected arcing to the test articles. Additional activities are also now underway to address ways in which the radial temperature profiles across test articles may be controlled such that they are more prototypical of what they would encounter in an operating nuclear engine. The causes of the temperature distribution problem are twofold. First, the fuel element test article is isolated in NTREES as opposed to being in the midst of many other mostly identical fuel elements in a nuclear engine. As a result, the fuel element heat flux boundary conditions in NTREES are far from adiabatic as would normally be the case in a reactor. Second, induction heating skews the power distribution such that power is preferentially deposited near the outside of the fuel element. Nuclear heating, conversely, deposits its power much more uniformly throughout the fuel element. Current studies are now looking at various schemes to adjust the amount of thermal radiation emitted from the fuel element surface so as to essentially vary the thermal boundary conditions on the test article. It is hoped that by properly adjusting the thermal boundary conditions on the fuel element test article, it may be possible to substantially correct for the inappropriate radial power distributions resulting from the induction heating so as to yield a more nearly correct temperature distribution throughout the fuel element.

  7. New Materials for Biological Fuel Cells

    DTIC Science & Technology

    2012-04-01

    polymer electrolyte membrane ( PEM ), to the membrane-less biological fuel cell (center figure) where the two electrodes are submerged in the same... PEM . MT15_4p166_173.indd 171 4/10/2012 3:46:31 PM REVIEW New materials for biological fuel cells APRIL 2012 | VOLUME 15 | NUMBER 4172 These...ISSN:1369 7021 © Elsevier Ltd 2012APRIL 2012 | VOLUME 15 | NUMBER 4166 New materials for biological fuel cells Over the last decade, there has

  8. Progress Toward Ignition on the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kauffman, R L

    2011-10-17

    The principal approach to ignition on the National Ignition Facility (NIF) is indirect drive. A schematic of an ignition target is shown in Figure 1. The laser beams are focused through laser entrance holes at each end of a high-Z cylindrical case, or hohlraum. The lasers irradiate the hohlraum walls producing x-rays that ablate and compress the fuel capsule in the center of the hohlraum. The hohlraum is made of Au, U, or other high-Z material. For ignition targets, the hohlraum is {approx}0.5 cm diameter by {approx}1 cm in length. The hohlraum absorbs the incident laser energy producing x-rays formore » symmetrically imploding the capsule. The fuel capsule is a {approx}2-mm-diameter spherical shell of CH, Be, or C filled with DT fuel. The DT fuel is in the form of a cryogenic layer on the inside of the capsule. X-rays ablate the outside of the capsule, producing a spherical implosion. The imploding shell stagnates in the center, igniting the DT fuel. NIC has overseen installation of all of the hardware for performing ignition experiments, including commissioning of approximately 50 diagnostic systems in NIF. The diagnostics measure scattered optical light, x-rays from the hohlraum over the energy range from 100 eV to 500 keV, and x-rays, neutrons, and charged particles from the implosion. An example of a diagnostic is the Magnetic Recoil Spectrometer (MRS) built by a collaboration of scientists from MIT, UR-LLE, and LLNL shown in Figure 2. MRS measures the neutron spectrum from the implosion, providing information on the neutron yield and areal density that are metrics of the quality of the implosion. Experiments on NIF extend ICF research to unexplored regimes in target physics. NIF can produce more than 50 times the laser energy and more than 20 times the power of any previous ICF facility. Ignition scale hohlraum targets are three to four times larger than targets used at smaller facilities, and the ignition drive pulses are two to five times longer. The larger targets and longer pulse lengths produce unique plasma conditions for laser-plasma instabilities that could reduce hohlraum coupling efficiency. Initial experiments have demonstrated efficient coupling of laser energy to x-rays. X-ray drive greater than 300 eV has been measured in gas-filled ignition hohlraum and shows the expected scaling with laser energy and hohlraum scale size. Experiments are now optimizing capsule implosions for ignition. Ignition conditions require assembling the fuel with sufficient density and temperature for thermonuclear burn. X-rays ablate the outside of the capsule, accelerating and spherically compressing the capsule for assembling the fuel. The implosion stagnates, heating the central core and producing a hot spot that ignites and burns the surrounding fuel. The four main characteristics of the implosion are shell velocity, central hot spot shape, fuel adiabat, and mix. Experiments studying these four characteristics of implosions are used to optimize the implosion. Integrated experiments using cryogenic fuel layer experiments demonstrate the quality of the implosion as the optimization experiments progress. The final compressed fuel conditions are diagnosed by measuring the x-ray emission from the hot core and the neutrons and charged particles produced in the fusion reactions. Metrics of the quality of the implosion are the neutron yield and the shell areal density, as well as the size and shape of the core. The yield depends on the amount of fuel in the hot core and its temperature and is a gauge of the energy coupling to the fuel. The areal density, the density of the fuel times its thickness, diagnoses the fuel assembly, which is measured using the fraction of neutrons that are down scattered passing through the dense shell. The yield and fraction of down scattered neutrons, or shell rho-r, from the cryogenic layered implosions are shown in Figure 3. The different sets of data represent results after a series of implosion optimization experiments. Both yield and areal density show significant increases as a result of the optimization. The experimental Ignition Threshold Factor (ITFX) is a measure of the progress toward ignition. ITFX is analogous to the Lawson Criterion in Magnetic Fusion. Implosions have improved by over a factor of 50 since the first cryogenic layered experiments were done in September 2010. This increase is a measure of the progress made toward the ignition goal in the past year. Optimization experiments are planned in the coming year for continued improvement in implosion performance to achieve the ignition goal. In summary, NIF has made significant progress toward ignition in the 30 months since project completion. Diagnostics and all of the supporting equipment are in place for ignition experiments. The Ignition Campaign is under way as a national collaborative effort of all the National Nuclear Security Administration (NNSA) science laboratories as well as international partners.« less

  9. Nanocrystalline cerium oxide materials for solid fuel cell systems

    DOEpatents

    Brinkman, Kyle S

    2015-05-05

    Disclosed are solid fuel cells, including solid oxide fuel cells and PEM fuel cells that include nanocrystalline cerium oxide materials as a component of the fuel cells. A solid oxide fuel cell can include nanocrystalline cerium oxide as a cathode component and microcrystalline cerium oxide as an electrolyte component, which can prevent mechanical failure and interdiffusion common in other fuel cells. A solid oxide fuel cell can also include nanocrystalline cerium oxide in the anode. A PEM fuel cell can include cerium oxide as a catalyst support in the cathode and optionally also in the anode.

  10. Hydrocarbon-fuel/combustion-chamber-liner materials compatibility

    NASA Technical Reports Server (NTRS)

    Gage, Mark L.

    1990-01-01

    Results of material compatibility experiments using hydrocarbon fuels in contact with copper-based combustion chamber liner materials are presented. Mil-Spec RP-1, n- dodecane, propane, and methane fuels were tested in contact with OFHC, NASA-Z, and ZrCu coppers. Two distinct test methods were employed. Static tests, in which copper coupons were exposed to fuel for long durations at constant temperature and pressure, provided compatibility data in a precisely controlled environment. Dynamic tests, using the Aerojet Carbothermal Test Facility, provided fuel and copper compatibility data under realistic booster engine service conditions. Tests were conducted using very pure grades of each fuel and fuels to which a contaminant, e.g., ethylene or methyl mercaptan, was added to define the role played by fuel impurities. Conclusions are reached as to degradation mechanisms and effects, methods for the elimination of these mechanisms, selection of copper alloy combustion chamber liners, and hydrocarbon fuel purchase specifications.

  11. 75 FR 44817 - Notice of Availability of Uranium Enrichment Fuel Cycle Facility Inspection Reports Regarding...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-29

    ... Uranium Enrichment Fuel Cycle Facility Inspection Reports Regarding Louisiana Energy Services, National... Enrichment Branch, Division of Fuel Cycle Safety and Safeguards, Office of Nuclear Material Safety and... Enrichment Branch, Division of Fuel Cycle Safety and Safeguards, Office of Nuclear Material Safety and...

  12. Cleaner cooking solutions to achieve health, climate, and economic cobenefits.

    PubMed

    Anenberg, Susan C; Balakrishnan, Kalpana; Jetter, James; Masera, Omar; Mehta, Sumi; Moss, Jacob; Ramanathan, Veerabhadran

    2013-05-07

    Nearly half the world's population must rely on solid fuels such as biomass (wood, charcoal, agricultural residues, and animal dung) and coal for household energy, burning them in inefficient open fires and stoves with inadequate ventilation. Household solid fuel combustion is associated with four million premature deaths annually; contributes to forest degradation, loss of habitat and biodiversity, and climate change; and hinders social and economic progress as women and children spend hours every day collecting fuel. Several recent studies, as well as key emerging national and international efforts, are making progress toward enabling wide-scale household adoption of cleaner and more efficient stoves and fuels. While significant challenges remain, these efforts offer considerable promise to save lives, improve forest sustainability, slow climate change, and empower women around the world.

  13. SOLID SOLUTION CARBIDES ARE THE KEY FUELS FOR FUTURE NUCLEAR THERMAL PROPULSION

    NASA Technical Reports Server (NTRS)

    Panda, Binayak; Hickman, Robert R.; Shah, Sandeep

    2005-01-01

    Nuclear thermal propulsion uses nuclear energy to directly heat a propellant (such as liquid hydrogen) to generate thrust for space transportation. In the 1960 s, the early Rover/Nuclear Engine for Rocket Propulsion Application (NERVA) program showed very encouraging test results for space nuclear propulsion but, in recent years, fuel research has been dismal. With NASA s renewed interest in long-term space exploration, fuel researchers are now revisiting the RoverMERVA findings, which indicated several problems with such fuels (such as erosion, chemical reaction of the fuel with propellant, fuel cracking, and cladding issues) that must be addressed. It is also well known that the higher the temperature reached by a propellant, the larger the thrust generated from the same weight of propellant. Better use of fuel and propellant requires development of fuels capable of reaching very high temperatures. Carbides have the highest melting points of any known material. Efforts are underway to develop carbide mixtures and solid solutions that contain uranium carbide, in order to achieve very high fuel temperatures. Binary solid solution carbides (U, Zr)C have proven to be very effective in this regard. Ternary carbides such as (U, Zr, X) carbides (where X represents Nb, Ta, W, and Hf) also hold great promise as fuel material, since the carbide mixtures in solid solution generate a very hard and tough compact material. This paper highlights past experience with early fuel materials and bi-carbides, technical problems associated with consolidation of the ingredients, and current techniques being developed to consolidate ternary carbides as fuel materials.

  14. Research Progress in MnO2 -Carbon Based Supercapacitor Electrode Materials.

    PubMed

    Zhang, Qun-Zheng; Zhang, Dian; Miao, Zong-Cheng; Zhang, Xun-Li; Chou, Shu-Lei

    2018-04-30

    With the serious impact of fossil fuels on the environment and the rapid development of the global economy, the development of clean and usable energy storage devices has become one of the most important themes of sustainable development in the world today. Supercapacitors are a new type of green energy storage device, with high power density, long cycle life, wide temperature range, and both economic and environmental advantages. In many industries, they have enormous application prospects. Electrode materials are an important factor affecting the performance of supercapacitors. MnO 2 -based materials are widely investigated for supercapacitors because of their high theoretical capacitance, good chemical stability, low cost, and environmental friendliness. To achieve high specific capacitance and high rate capability, the current best solution is to use MnO 2 and carbon composite materials. Herein, MnO 2 -carbon composite as supercapacitor electrode materials is reviewed including the synthesis method and research status in recent years. Finally, the challenges and future development directions of an MnO 2 -carbon based supercapacitor are summarized. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Method and device for fabricating dispersion fuel comprising fission product collection spaces

    DOEpatents

    Shaber, Eric L; Fielding, Randall S

    2015-05-05

    A method of fabricating a nuclear fuel comprising a fissile material, one or more hollow microballoons, a phenolic resin, and metal matrix. The fissile material, phenolic resin and the one or more hollow microballoons are combined. The combined fissile material, phenolic resin and the hollow microballoons are heated sufficiently to form at least some fissile material carbides creating a nuclear fuel particle. The resulting nuclear fuel particle comprises one or more fission product collection spaces. In a preferred embodiment, the fissile material, phenolic resin and the one or more hollow microballoons are combined by forming the fissile material into microspheres. The fissile material microspheres are then overcoated with the phenolic resin and microballoon. In another preferred embodiment, the fissile material, phenolic resin and the one or more hollow microballoons are combined by overcoating the microballoon with the fissile material, and phenolic resin.

  16. Pristine Metal-Organic Frameworks and their Composites for Energy Storage and Conversion.

    PubMed

    Liang, Zibin; Qu, Chong; Guo, Wenhan; Zou, Ruqiang; Xu, Qiang

    2017-11-22

    Metal-organic frameworks (MOFs), a new class of crystalline porous organic-inorganic hybrid materials, have recently attracted increasing interest in the field of energy storage and conversion. Herein, recent progress of MOFs and MOF composites for energy storage and conversion applications, including photochemical and electrochemical fuel production (hydrogen production and CO 2 reduction), water oxidation, supercapacitors, and Li-based batteries (Li-ion, Li-S, and Li-O 2 batteries), is summarized. Typical development strategies (e.g., incorporation of active components, design of smart morphologies, and judicious selection of organic linkers and metal nodes) of MOFs and MOF composites for particular energy storage and conversion applications are highlighted. A broad overview of recent progress is provided, which will hopefully promote the future development of MOFs and MOF composites for advanced energy storage and conversion applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Multidimensional Fuel Performance Code: BISON

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BISON is a finite element based nuclear fuel performance code applicable to a variety of fuel forms including light water reactor fuel rods, TRISO fuel particles, and metallic rod and plate fuel (Refs. [a, b, c]). It solves the fully-coupled equations of thermomechanics and species diffusion and includes important fuel physics such as fission gas release and material property degradation with burnup. BISON is based on the MOOSE framework (Ref. [d]) and can therefore efficiently solve problems on 1-, 2- or 3-D meshes using standard workstations or large high performance computers. BISON is also coupled to a MOOSE-based mesoscale phasemore » field material property simulation capability (Refs. [e, f]). As described here, BISON includes the code library named FOX, which was developed concurrent with BISON. FOX contains material and behavioral models that are specific to oxide fuels.« less

  18. Affordable Development and Optimization of CERMET Fuels for NTP Ground Testing

    NASA Technical Reports Server (NTRS)

    Hickman, Robert R.; Broadway, Jeramie W.; Mireles, Omar R.

    2014-01-01

    CERMET fuel materials for Nuclear Thermal Propulsion (NTP) are currently being developed at NASA's Marshall Space Flight Center. The work is part of NASA's Advanced Space Exploration Systems Nuclear Cryogenic Propulsion Stage (NCPS) Project. The goal of the FY12-14 project is to address critical NTP technology challenges and programmatic issues to establish confidence in the affordability and viability of an NTP system. A key enabling technology for an NCPS system is the fabrication of a stable high temperature nuclear fuel form. Although much of the technology was demonstrated during previous programs, there are currently no qualified fuel materials or processes. The work at MSFC is focused on developing critical materials and process technologies for manufacturing robust, full-scale CERMET fuels. Prototypical samples are being fabricated and tested in flowing hot hydrogen to understand processing and performance relationships. As part of this initial demonstration task, a final full scale element test will be performed to validate robust designs. The next phase of the project will focus on continued development and optimization of the fuel materials to enable future ground testing. The purpose of this paper is to provide a detailed overview of the CERMET fuel materials development plan. The overall CERMET fuel development path is shown in Figure 2. The activities begin prior to ATP for a ground reactor or engine system test and include materials and process optimization, hot hydrogen screening, material property testing, and irradiation testing. The goal of the development is to increase the maturity of the fuel form and reduce risk. One of the main accomplishmens of the current AES FY12-14 project was to develop dedicated laboratories at MSFC for the fabrication and testing of full length fuel elements. This capability will enable affordable, near term development and optimization of the CERMET fuels for future ground testing. Figure 2 provides a timeline of the development and optimization tasks for the AES FY15-17 follow on program.

  19. FY2017 Advanced Combustion Systems and Fuels Annual Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    The Advanced Combustion Systems and Fuels Program supports VTO’s goal and focuses early-stage research and development (R&D) to improve understanding of the combustion processes, fuel properties, and emission control technologies while generating knowledge and insight necessary for industry to develop the next generation of engines.

  20. System for determining biofuel concentration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huff, Shean P.; Janke, Christopher James; Kass, Michael D.

    2016-09-13

    A measurement device or system configured to measure the content of biofuels within a fuel blend. By measuring a state of a responsive material within a fuel blend, a biofuel content of the fuel blend may be measured. For example, the solubility of a responsive material to biofuel content within a fuel blend, may affect a property of the responsive material, such as shape, dimensional size, or electrical impedance, which may be measured and used as a basis for determining biofuel content.

  1. Stuck fuel rod capping sleeve

    DOEpatents

    Gorscak, Donald A.; Maringo, John J.; Nilsen, Roy J.

    1988-01-01

    A stuck fuel rod capping sleeve to be used during derodding of spent fuel assemblies if a fuel rod becomes stuck in a partially withdrawn position and, thus, has to be severed. The capping sleeve has an inner sleeve made of a lower work hardening highly ductile material (e.g., Inconel 600) and an outer sleeve made of a moderately ductile material (e.g., 304 stainless steel). The inner sleeve may be made of an epoxy filler. The capping sleeve is placed on a fuel rod which is then severed by using a bolt cutter device. Upon cutting, the capping sleeve deforms in such a manner as to prevent the gross release of radioactive fuel material

  2. PEM fuel cell bipolar plate material requirements for transportation applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borup, R.L.; Stroh, K.R.; Vanderborgh, N.E.

    1996-04-01

    Cost effective bipolar plates are currently under development to help make proton exchange membrane (PEM) fuel cells commercially viable. Bipolar plates separate individual cells of the fuel cell stack, and thus must supply strength, be electrically conductive, provide for thermal control of the fuel stack, be a non-porous materials separating hydrogen and oxygen feed streams, be corrosion resistant, provide gas distribution for the feed streams and meet fuel stack cost targets. Candidate materials include conductive polymers and metal plates with corrosion resistant coatings. Possible metals include aluminium, titanium, iron/stainless steel and nickel.

  3. Renewable synthetic diesel fuel from triglycerides and organic waste materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hillard, J.C.; Strassburger, R.S.

    1986-03-01

    A renewable, synthetic diesel fuel has been developed that employs ethanol and organic waste materials. These organic materials, such as soybean oil or animal fats, are hydrolized to yield a mixture of solid soap like materials and glycerol. These soaps, now soluble in ethanol, are blended with ethanol; the glycerol is nitrated and added as well as castor oil when necessary. The synthetic fuel is tailored to match petroleum diesel fuel in viscosity, lubricity and cetane quality and, therefore, does not require any engine modifications. Testing in a laboratory engine and in a production Oldsmobile Cutlass has revealed that thismore » synthetic fuel is superior to petroleum diesel fuel in vehicle efficiency, cetane quality, combustion noise, cold start characteristics, exhaust odor and emissions. Performance characteristics are indistinguishable from those of petroleum diesel fuel. These soaps are added to improve the calorific value, lubricity and cetane quality of the ethanol. The glycerol from the hydrolysis process is nitrated and added to the ethanol as an additional cetane quality improver. Caster oil is added to the fuel when necessary to match the viscosity and lubricity of petroleum diesel fuel as well as to act as a corrosion inhibitor, thereby, precluding any engine modifications. The cetane quality of the synthetic fuel is better than that of petroleum diesel as the fuel carries its own oxygen. The synthetic fuel is also completely miscible with petroleum diesel.« less

  4. Molten carbonate fuel cell separator

    DOEpatents

    Nickols, Richard C.

    1986-09-02

    In a stacked array of molten carbonate fuel cells, a fuel cell separator is positioned between adjacent fuel cells to provide isolation as well as a conductive path therebetween. The center portion of the fuel cell separator includes a generally rectangular, flat, electrical conductor. Around the periphery of the flat portion of the separator are positioned a plurality of elongated resilient flanges which form a gas-tight seal around the edges of the fuel cell. With one elongated flange resiliently engaging a respective edge of the center portion of the separator, the sealing flanges, which are preferably comprised of a noncorrosive material such as an alloy of yttrium, iron, aluminum or chromium, form a tight-fitting wet seal for confining the corrosive elements of the fuel cell therein. This arrangement permits a good conductive material which may be highly subject to corrosion and dissolution to be used in combination with a corrosion-resistant material in the fuel cell separator of a molten carbonate fuel cell for improved fuel cell conductivity and a gas-tight wet seal.

  5. Molten carbonate fuel cell separator

    DOEpatents

    Nickols, R.C.

    1984-10-17

    In a stacked array of molten carbonate fuel cells, a fuel cell separator is positioned between adjacent fuel cells to provide isolation as well as a conductive path therebetween. The center portion of the fuel cell separator includes a generally rectangular, flat, electrical conductor. Around the periphery of the flat portion of the separator are positioned a plurality of elongated resilient flanges which form a gas-tight seal around the edges of the fuel cell. With one elongated flange resiliently engaging a respective edge of the center portion of the separator, the sealing flanges, which are preferably comprised of a noncorrosive material such as an alloy of yttrium, iron, aluminum or chromium, form a tight-fitting wet seal for confining the corrosive elements of the fuel cell therein. This arrangement permits a good conductive material which may be highly subject to corrosion and dissolution to be used in combination with a corrosion-resistant material in the fuel cell separator of a molten carbonate fuel cell for improved fuel cell conductivity and a gas-tight wet seal.

  6. Hydrogen storage and integrated fuel cell assembly

    DOEpatents

    Gross, Karl J.

    2010-08-24

    Hydrogen is stored in materials that absorb and desorb hydrogen with temperature dependent rates. A housing is provided that allows for the storage of one or more types of hydrogen-storage materials in close thermal proximity to a fuel cell stack. This arrangement, which includes alternating fuel cell stack and hydrogen-storage units, allows for close thermal matching of the hydrogen storage material and the fuel cell stack. Also, the present invention allows for tailoring of the hydrogen delivery by mixing different materials in one unit. Thermal insulation alternatively allows for a highly efficient unit. Individual power modules including one fuel cell stack surrounded by a pair of hydrogen-storage units allows for distribution of power throughout a vehicle or other electric power consuming devices.

  7. Automotive Thermoelectric Waste Heat Recovery

    NASA Astrophysics Data System (ADS)

    Meisner, Gregory P.

    2015-03-01

    Considerable fuel energy, as much as 70%, is not converted to useful work by internal combustion engines but is instead rejected as waste heat, and more than half of the waste heat, nearly 40% of fuel energy, is contained in vehicle exhaust gas. This provides an opportunity to recover some of the wasted fuel energy and convert it from heat into useful work, subject to the laws of thermodynamics, and thereby improve vehicle energy efficiency. Thermoelectric (TE) materials have been extensively researched and TE devices are now being developed for operation at high temperatures corresponding to automotive exhaust gases for direct solid-state conversion of heat into electricity. This has stimulated substantial progress in the development of practical TE generator (TEG) systems for large-scale commercialization. A significant enabler of this progress has been the US Department of Energy's Vehicle Technologies Program through funding for low cost solutions for automotive TE waste heat recovery to improve fuel economy. Our current project at General Motors has culminated in the identification of the potential supply chain for all components and assembly of an automotive TEG. A significant focus has been to develop integrated and iterative modeling tools for a fully optimized TEG design that includes all components and subsystems (TE modules, heat exchangers, thermal interfaces, electrical interconnects, power conditioning, and vehicle integration for maximal use of TEG power). We have built and tested a new, low-cost Initial TEG prototype based on state-of-the-art production-scale skutterudite TE modules, novel heat exchanger designs, and practical solutions to the many technical challenges for optimum TEG performance. We will use the results for our Initial TEG prototype to refine our modeling and design tools for a Final automotive TEG system prototype. Our recent results will be presented. Thanks to: J.R. Salvador, E.R. Gundlach, D. Thompson, N.K. Bucknor, M.G. Reynolds, K. Rober, F.R. Stabler; Marlow, JPL, Dana, Delphi E&S, Eberspaecher, Molycorp, University of Washington, Purdue University, Michigan State University, ORNL, BNL. Supported by US DOE.

  8. Early Rockets

    NASA Image and Video Library

    1940-03-21

    Goddard rocket in launching tower at Roswell, New Mexico, March 21, 1940. Fuel was injected by pumps from the fueling platform at left. From 1930 to 1941, Dr. Goddard made substantial progress in the development of progressively larger rockets, which attained altitudes of 2400 meters, and refined his equipment for guidance and control, his techniques of welding, and his insulation, pumps, and other associated equipment. In many respects, Dr. Goddard laid the essential foundations of practical rocket technology

  9. Validation of a New Elastoplastic Constitutive Model Dedicated to the Cyclic Behaviour of Brittle Rock Materials

    NASA Astrophysics Data System (ADS)

    Cerfontaine, B.; Charlier, R.; Collin, F.; Taiebat, M.

    2017-10-01

    Old mines or caverns may be used as reservoirs for fuel/gas storage or in the context of large-scale energy storage. In the first case, oil or gas is stored on annual basis. In the second case pressure due to water or compressed air varies on a daily basis or even faster. In both cases a cyclic loading on the cavern's/mine's walls must be considered for the design. The complexity of rockwork geometries or coupling with water flow requires finite element modelling and then a suitable constitutive law for the rock behaviour modelling. This paper presents and validates the formulation of a new constitutive law able to represent the inherently cyclic behaviour of rocks at low confinement. The main features of the behaviour evidenced by experiments in the literature depict a progressive degradation and strain of the material with the number of cycles. A constitutive law based on a boundary surface concept is developed. It represents the brittle failure of the material as well as its progressive degradation. Kinematic hardening of the yield surface allows the modelling of cycles. Isotropic softening on the cohesion variable leads to the progressive degradation of the rock strength. A limit surface is introduced and has a lower opening than the bounding surface. This surface describes the peak strength of the material and allows the modelling of a brittle behaviour. In addition a fatigue limit is introduced such that no cohesion degradation occurs if the stress state lies inside this surface. The model is validated against three different rock materials and types of experiments. Parameters of the constitutive laws are calibrated against uniaxial tests on Lorano marble, triaxial test on a sandstone and damage-controlled test on Lac du Bonnet granite. The model is shown to reproduce correctly experimental results, especially the evolution of strain with number of cycles.

  10. Nuclear reactor fuel element

    DOEpatents

    Johnson, Carl E.; Crouthamel, Carl E.

    1980-01-01

    A nuclear reactor fuel element is described which has an outer cladding, a central core of fissionable or mixed fissionable and fertile fuel material and a layer of oxygen gettering material on the inner surface of the cladding. The gettering material reacts with oxygen released by the fissionable material during irradiation of the core thereby preventing the oxygen from reacting with and corroding the cladding. Also described is an improved method for coating the inner surface of the cladding with a layer of gettering material.

  11. An analysis of international nuclear fuel supply options

    NASA Astrophysics Data System (ADS)

    Taylor, J'tia Patrice

    As the global demand for energy grows, many nations are considering developing or increasing nuclear capacity as a viable, long-term power source. To assess the possible expansion of nuclear power and the intricate relationships---which cover the range of economics, security, and material supply and demand---between established and aspirant nuclear generating entities requires models and system analysis tools that integrate all aspects of the nuclear enterprise. Computational tools and methods now exist across diverse research areas, such as operations research and nuclear engineering, to develop such a tool. This dissertation aims to develop methodologies and employ and expand on existing sources to develop a multipurpose tool to analyze international nuclear fuel supply options. The dissertation is comprised of two distinct components: the development of the Material, Economics, and Proliferation Assessment Tool (MEPAT), and analysis of fuel cycle scenarios using the tool. Development of MEPAT is aimed for unrestricted distribution and therefore uses publicly available and open-source codes in its development when possible. MEPAT is built using the Powersim Studio platform that is widely used in systems analysis. MEPAT development is divided into three modules focusing on: material movement; nonproliferation; and economics. The material movement module tracks material quantity in each process of the fuel cycle and in each nuclear program with respect to ownership, location and composition. The material movement module builds on techniques employed by fuel cycle models such as the Verifiable Fuel Cycle Simulation (VISION) code developed at the Idaho National Laboratory under the Advanced Fuel Cycle Initiative (AFCI) for the analysis of domestic fuel cycle. Material movement parameters such as lending and reactor preference, as well as fuel cycle parameters such as process times and material factors are user-specified through a Microsoft Excel(c) data spreadsheet. The material movement module is the largest of the three, and the two other modules that assess nonproliferation and economics of the options are dependent on its output. Proliferation resistance measures from literature are modified and incorporated in MEPAT. The module to assess the nonproliferation of the supply options allows the user to specify defining attributes for the fuel cycle processes, and determines significant quantities of materials as well as measures of proliferation resistance. The measure is dependent on user-input and material information. The economics module allows the user to specify costs associated with different processes and other aspects of the fuel cycle. The simulation tool then calculates economic measures that relate the cost of the fuel cycle to electricity production. The second part of this dissertation consists of an examination of four scenarios of fuel supply option using MEPAT. The first is a simple scenario illustrating the modules and basic functions of MEPAT. The second scenario recreates a fuel supply study reported earlier in literature, and compares MEPAT results with those reported earlier for validation. The third, and a rather realistic, scenario includes four nuclear programs with one program entering the nuclear energy market. The fourth scenario assesses the reactor options available to the Hashemite Kingdom of Jordan, which is currently assessing available options to introduce nuclear power in the country. The methodology developed and implemented in MEPAT to analyze the material, proliferation and economics of nuclear fuel supply options is expected to help simplify and assess different reactor and fuel options available to utilities, government agencies and international organizations.

  12. High performance, high durability non-precious metal fuel cell catalysts

    DOEpatents

    Wood, Thomas E.; Atanasoski, Radoslav; Schmoeckel, Alison K.

    2016-03-15

    This invention relates to non-precious metal fuel cell cathode catalysts, fuel cells that contain these catalysts, and methods of making the same. The fuel cell cathode catalysts are highly nitrogenated carbon materials that can contain a transition metal. The highly nitrogenated carbon materials can be supported on a nanoparticle substrate.

  13. Nuclear fuel elements and method of making same

    DOEpatents

    Schweitzer, Donald G.

    1992-01-01

    A nuclear fuel element for a high temperature gas nuclear reactor that has an average operating temperature in excess of 2000.degree. C., and a method of making such a fuel element. The fuel element is characterized by having fissionable fuel material localized and stabilized within pores of a carbon or graphite member by melting the fissionable material to cause it to chemically react with the carbon walls of the pores. The fissionable fuel material is further stabilized and localized within the pores of the graphite member by providing one or more coatings of pyrolytic carbon or diamond surrounding the porous graphite member so that each layer defines a successive barrier against migration of the fissionable fuel from the pores, and so that the outermost layer of pyrolytic carbon or diamond forms a barrier between the fissionable material and the moderating gases used in an associated high temperature gas reactor. The method of the invention provides for making such new elements either as generally spherically elements, or as flexible filaments, or as other relatively small-sized fuel elements that are particularly suited for use in high temperature gas reactors.

  14. Fuel Processor Development for a Soldier-Portable Fuel Cell System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palo, Daniel R.; Holladay, Jamie D.; Rozmiarek, Robert T.

    2002-01-01

    Battelle is currently developing a soldier-portable power system for the U.S. Army that will continuously provide 15 W (25 W peak) of base load electric power for weeks or months using a micro technology-based fuel processor. The fuel processing train consists of a combustor, two vaporizers, and a steam-reforming reactor. This paper describes the concept and experimental progress to date.

  15. 78 FR 71532 - Amendments to Material Control and Accounting Regulations and Proposed Guidance for Fuel Cycle...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-29

    ... Accounting Regulations and Proposed Guidance for Fuel Cycle Facility Material Control and Accounting Plans... material control and accounting (MC&A) of special nuclear material (SNM) and the proposed guidance...

  16. Corrosion of graphite composites in phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    Christner, L. G.; Dhar, H. P.; Farooque, M.; Kush, A. K.

    1986-01-01

    Polymers, polymer-graphite composites and different carbon materials are being considered for many of the fuel cell stack components. Exposure to concentrated phosphoric acid in the fuel cell environment and to high anodic potential results in corrosion. Relative corrosion rates of these materials, failure modes, plausible mechanisms of corrosion and methods for improvement of these materials are investigated.

  17. 40 CFR 241.3 - Standards and procedures for identification of non-hazardous secondary materials that are solid...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... identification of non-hazardous secondary materials that are solid wastes when used as fuels or ingredients in...) SOLID WASTES SOLID WASTES USED AS FUELS OR INGREDIENTS IN COMBUSTION UNITS Identification of Non-Hazardous Secondary Materials That Are Solid Wastes When Used as Fuels or Ingredients in Combustion Units...

  18. Advanced Fuels for LWRs: Fully-Ceramic Microencapsulated and Related Concepts FY 2012 Interim Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R. Sonat Sen; Brian Boer; John D. Bess

    2012-03-01

    This report summarizes the progress in the Deep Burn project at Idaho National Laboratory during the first half of fiscal year 2012 (FY2012). The current focus of this work is on Fully-Ceramic Microencapsulated (FCM) fuel containing low-enriched uranium (LEU) uranium nitride (UN) fuel kernels. UO2 fuel kernels have not been ruled out, and will be examined as later work in FY2012. Reactor physics calculations confirmed that the FCM fuel containing 500 mm diameter kernels of UN fuel has positive MTC with a conventional fuel pellet radius of 4.1 mm. The methodology was put into place and validated against MCNP tomore » perform whole-core calculations using DONJON, which can interpolate cross sections from a library generated using DRAGON. Comparisons to MCNP were performed on the whole core to confirm the accuracy of the DRAGON/DONJON schemes. A thermal fluid coupling scheme was also developed and implemented with DONJON. This is currently able to iterate between diffusion calculations and thermal fluid calculations in order to update fuel temperatures and cross sections in whole-core calculations. Now that the DRAGON/DONJON calculation capability is in place and has been validated against MCNP results, and a thermal-hydraulic capability has been implemented in the DONJON methodology, the work will proceed to more realistic reactor calculations. MTC calculations at the lattice level without the correct burnable poison are inadequate to guarantee zero or negative values in a realistic mode of operation. Using the DONJON calculation methodology described in this report, a startup core with enrichment zoning and burnable poisons will be designed. Larger fuel pins will be evaluated for their ability to (1) alleviate the problem of positive MTC and (2) increase reactivity-limited burnup. Once the critical boron concentration of the startup core is determined, MTC will be calculated to verify a non-positive value. If the value is positive, the design will be changed to require less soluble boron by, for example, increasing the reactivity hold-down by burnable poisons. Then, the whole core analysis will be repeated until an acceptable design is found. Calculations of departure from nucleate boiling ratio (DNBR) will be included in the safety evaluation as well. Once a startup core is shown to be viable, subsequent reloads will be simulated by shuffling fuel and introducing fresh fuel. The PASTA code has been updated with material properties of UN fuel from literature and a model for the diffusion and release of volatile fission products from the SiC matrix material . Preliminary simulations have been performed for both normal conditions and elevated temperatures. These results indicated that the fuel performs well and that the SiC matrix has a good retention of the fission products. The path forward for fuel performance work includes improvement of metallic fission product release from the kernel. Results should be considered preliminary and further validation is required.« less

  19. Fuels from Biomass: Integration with Food and Materials Systems

    ERIC Educational Resources Information Center

    Lipinsky, E. S.

    1978-01-01

    The development of fuels from biomass can lead naturally to dispersed facilities that incorporate food or materials production (or both) with fuel production. The author analyzes possible systems based on sugarcane, corn, and guayule. (Author/MA)

  20. Fuel cell generator with fuel electrodes that control on-cell fuel reformation

    DOEpatents

    Ruka, Roswell J [Pittsburgh, PA; Basel, Richard A [Pittsburgh, PA; Zhang, Gong [Murrysville, PA

    2011-10-25

    A fuel cell for a fuel cell generator including a housing including a gas flow path for receiving a fuel from a fuel source and directing the fuel across the fuel cell. The fuel cell includes an elongate member including opposing first and second ends and defining an interior cathode portion and an exterior anode portion. The interior cathode portion includes an electrode in contact with an oxidant flow path. The exterior anode portion includes an electrode in contact with the fuel in the gas flow path. The anode portion includes a catalyst material for effecting fuel reformation along the fuel cell between the opposing ends. A fuel reformation control layer is applied over the catalyst material for reducing a rate of fuel reformation on the fuel cell. The control layer effects a variable reformation rate along the length of the fuel cell.

  1. Permeation of gasoline, diesel, bioethanol (E85), and biodiesel (B20) fuels through six glove materials.

    PubMed

    Chin, Jo-Yu; Batterman, Stuart A

    2010-07-01

    Biofuels and conventional fuels differ in terms of their evaporation rates, permeation rates, and exhaust emissions, which can alter exposures of workers, especially those in the fuel refining and distribution industries. This study investigated the permeation of biofuels (bioethanol 85%, biodiesel 20%) and conventional petroleum fuels (gasoline and diesel) through gloves used in occupational settings (neoprene, nitrile, and Viton) and laboratories (latex, nitrile, and vinyl), as well as a standard reference material (neoprene sheet). Permeation rates and breakthrough times were measured using the American Society for Testing and Materials F739-99 protocol, and fuel and permeant compositions were measured by gas chromatography/mass spectrometry. In addition, we estimated exposures for three occupational scenarios and recommend chemical protective clothing suitable for use with motor fuels. Permeation rates and breakthrough times depended on the fuel-glove combination. Gasoline had the highest permeation rate among the four fuels. Bioethanol (85%) had breakthrough times that were two to three times longer than gasoline through neoprene, nitrile Sol-Vex, and the standard reference materials. Breakthrough times for biodiesel (20%) were slightly shorter than for diesel for the latex, vinyl, nitrile examination, and the standard neoprene materials. The composition of permeants differed from neat fuels, e.g., permeants were significantly enriched in the lighter aromatics including benzene. Viton was the best choice among the tested materials for the four fuels tested. Among the scenarios, fuel truck drivers had the highest uptake via inhalation based on the personal measurements available in the literature, and gasoline station attendants had highest uptake via dermal exposure if gloves were not worn. Appropriate selection and use of gloves can protect workers from dermal exposures; however, current recommendations from the National Institute for Occupational Safety and Health should be revised to account for contemporary fuel formulations that routinely contain ethanol.

  2. Current conducting end plate of fuel cell assembly

    DOEpatents

    Walsh, Michael M.

    1999-01-01

    A fuel cell assembly has a current conducting end plate with a conductive body formed integrally with isolating material. The conductive body has a first surface, a second surface opposite the first surface, and an electrical connector. The first surface has an exposed portion for conducting current between a working section of the fuel cell assembly and the electrical connector. The isolating material is positioned on at least a portion of the second surface. The conductive body can have support passage(s) extending therethrough for receiving structural member(s) of the fuel cell assembly. Isolating material can electrically isolate the conductive body from the structural member(s). The conductive body can have service passage(s) extending therethrough for servicing one or more fluids for the fuel cell assembly. Isolating material can chemically isolate the one or more fluids from the conductive body. The isolating material can also electrically isolate the conductive body from the one or more fluids.

  3. Partial replacement of non renewable fossil fuels energy by the use of waste materials as alternative fuels

    NASA Astrophysics Data System (ADS)

    Indrawati, V.; Manaf, A.; Purwadi, G.

    2009-09-01

    This paper reports recent investigations on the use of biomass like rice husk, palm kernel shell, saw dust and municipal waste to reduce the use of fossil fuels energy in the cement production. Such waste materials have heat values in the range approximately from 2,000 to 4,000 kcal/kg. These are comparable to the average value of 5800 kcal/kg from fossil materials like coals which are widely applied in many industrial processing. Hence, such waste materials could be used as alternative fuels replacing the fossil one. It is shown that replacement of coals with such waste materials has a significant impact on cost effectiveness as well as sustainable development. Variation in moisture content of the waste materials, however should be taken into account because this is one of the parameter that could not be controlled. During fuel combustion, some amount of the total energy is used to evaporate the water content and thus the net effective heat value is less.

  4. An assessment of the attractiveness of material associated with thorium/uranium and uranium closed fuel cycles from a safeguards perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bathke, Charles Gary; Wallace, Richard K; Hase, Kevin R

    2010-01-01

    This paper reports the continued evaluation of the attractiveness of materials mixtures containing special nuclear materials (SNM) associated with various proposed nuclear fuel cycles. Specifically, this paper examines two closed fuel cycles. The first fuel cycle examined is a thorium fuel cycle in which a pressurized heavy water reactor (PHWR) is fueled with mixtures of plutonium/thorium and {sup 233}U/thorium. The used fuel is then reprocessed using the THOREX process and the actinides are recycled. The second fuel cycle examined consists of conventional light water reactors (LWR) whose fuel is reprocessed for actinides that are then fed to and recycled untilmore » consumed in fast-spectrum reactors: fast reactors and accelerator driven systems (ADS). As reprocessing of LWR fuel has already been examined, this paper will focus on the reprocessing of the scheme's fast-spectrum reactors' fuel. This study will indicate what is required to render these materials as having low utility for use in nuclear weapons. Nevertheless, the results of this paper suggest that all reprocessing products evaluated so far need to be rigorously safeguarded and provided high levels of physical protection. These studies were performed at the request of the United States Department of Energy (DOE). The methodology and key findings will be presented.« less

  5. A Rapid Survey of the Compatibility of Selected Seal Materials with Conventional and Semi-Synthetic JP-8

    NASA Technical Reports Server (NTRS)

    Graham, John L.; Striebich, Richard C.; Minus, Donald K.; Harrison, William E., III

    2007-01-01

    Since the synthesis of a liquid hydrocarbon fuel from coal by Franz Fischer and Hans Tropsch in 1923, there has been cyclic interest in developing this fuel for military and commercial applications. In recent years the U.S. Department of Defense has taken interest in producing a unified battlespace fuel using the Fischer Tropsch (FT) process for a variety of reasons including cost, quality, and logistics. In the past year there has been a particular emphasis on moving quickly to demonstrate that an FT fuel can be used in the form of a blend with conventional petroleum-derived jet fuel. The initial objective is to employ this semi-synthetic fuel with blend ratios as high as 50 percent FT with longer range goals to use even high blend ratios and ultimately a fully synthetic jet fuel. A significant concern associated with the use of a semi-synthetic jet fuel with high FT blend ratios is the effect these low aromatic fuels will have on fuel-wetted polymeric materials, most notably seals and sealants. These materials typically swell and soften to some degree when exposed to jet fuel and the aromatic content of these fuels contribute to this effect. Semi-synthetic jet fuels with very low aromatic contents may cause seals and sealants to shrink and harden leading to acute or chronic failure. Unfortunately, most of the material qualification tests are more concerned with excessive swelling than shrinkage and there is little guidance offered as to an acceptable level of shrinkage or other changes in physical properties related to low aromatic content. Given the pressing need for guidance data, a program was developed to rapidly survey the volume swell of selected fuel-wetted materials in a range of conventional and semi-synthetic jet fuels and through a statistical analysis to make a determination as to whether there was a basis to be concerned about using fuels with FT blend ratios as high as 50 percent. Concurrent with this analysis data was obtained as to the composition of the fuel absorbed in fuel-wetted materials through the use of GC-MS analysis of swollen samples as well as other supporting data. In this presentation the authors will present a summary of the results of the volume swell and fuel absorbed by selected O-rings and sealants as well as a description of the measurement protocols developed for this program.

  6. 40 CFR 86.099-17 - Emission control diagnostic system for 1999 and later light-duty vehicles and light-duty trucks.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Model Year New Gasoline Fueled, Natural Gas-Fueled, Liquefied Petroleum Gas-Fueled and Methanol-Fueled..._locations.html. (1) SAE material. Copies of these materials may be obtained from the Society of Automotive... may be obtained from the International Organization for Standardization, Case Postale 56, CH-1211...

  7. Fuel Cell Buses in U.S. Transit Fleets: Current Status 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eudy, Leslie; Post, Matthew; Gikakis, Christina

    This report, published annually, summarizes the progress of fuel cell electric bus (FCEB) development in the United States and discusses the achievements and challenges of introducing fuel cell propulsion in transit. Various stakeholders, including FCEB developers, transit agencies, and system integrators, have expressed the value of this annual status report, which provides a summary of results from evaluations performed by the National Renewable Energy Laboratory. The annual status report tracks the progress of the FCEB industry toward meeting technical targets, documents the lessons learned, and discusses the path forward for commercial viability of fuel cell technology for transit buses. Themore » 2015 summary results primarily focus on the most recent year for each demonstration, from August 2014 through July 2015. The results for these buses account for more than 1,045,000 miles traveled and 83,000 hours of fuel cell power system operation. The primary results presented in the report are from two demonstrations of fuel-cell-dominant bus designs: the Zero Emission Bay Area Demonstration Group led by Alameda-Contra Costa Transit District (AC Transit) in California and the American Fuel Cell Bus Project at SunLine Transit Agency in California.« less

  8. Evaluating the progress of the UK's Material Recycling Facilities: a mini review.

    PubMed

    Ali, Muhammad; Courtenay, Peter

    2014-12-01

    Over the last 15 years, the UK has made great strides in reducing the amount of waste being sent to landfill while also increasing the amount of waste being recycled. The key drivers for this change are the European Union Landfill Directive (1999/31/EC) and the UK Landfill Tax. However, also playing their part are the growing numbers of Material Recycling Facilities (MRFs), which process recyclables. This mini review evaluates the current state of MRFs in the UK, through extensive secondary research, and detailed primary data analysis focussing on MRFs located in South-East England, UK. This study also explores technologies that aim to generate energy from waste, including Waste-to-Energy (WtE) and Refuse-derived Fuel (RDF) facilities. These facilities can have a huge appetite for waste, which can be detrimental to recycling efforts as some of the waste being sent there should be recycled. It was found that the waste sent to a typical UK MRF would recycle around 92% of materials while 6% was sent to energy recovery and the remaining 2% ended up in landfill. Therefore, the total estimated rejected or non-compliance materials from MRFs are around 8%. A key recommendation from this study is to adopt a strategy to combine MRFs with a form of energy generation, such as WtE or RDF. This integrated approach would ensure any residual waste arising from the recycling process can be used as a sustainable fuel, while also increasing the recycling rates. © The Author(s) 2014.

  9. Dr. Robert H. Goddard and His Rocket

    NASA Technical Reports Server (NTRS)

    1940-01-01

    Goddard rocket in launching tower at Roswell, New Mexico, March 21, 1940. Fuel was injected by pumps from the fueling platform at left. From 1930 to 1941, Dr. Goddard made substantial progress in the development of progressively larger rockets, which attained altitudes of 2400 meters, and refined his equipment for guidance and control, his techniques of welding, and his insulation, pumps, and other associated equipment. In many respects, Dr. Goddard laid the essential foundations of practical rocket technology

  10. Ceramic applications in turbine engines. [for improved component performance and reduced fuel usage

    NASA Technical Reports Server (NTRS)

    Hudson, M. S.; Janovicz, M. A.; Rockwood, F. A.

    1980-01-01

    Ceramic material characterization and testing of ceramic nozzle vanes, turbine tip shrouds, and regenerators disks at 36 C above the baseline engine TIT and the design, analysis, fabrication and development activities are described. The design of ceramic components for the next generation engine to be operated at 2070 F was completed. Coupons simulating the critical 2070 F rotor blade was hot spin tested for failure with sufficient margin to quality sintered silicon nitride and sintered silicon carbide, validating both the attachment design and finite element strength. Progress made in increasing strength, minimizing variability, and developing nondestructive evaluation techniques is reported.

  11. Recent Progress in Photocatalysis Mediated by Colloidal II-VI Nanocrystals

    PubMed Central

    Wilker, Molly B; Schnitzenbaumer, Kyle J; Dukovic, Gordana

    2012-01-01

    The use of photoexcited electrons and holes in semiconductor nanocrystals as reduction and oxidation reagents is an intriguing way of harvesting photon energy to drive chemical reactions. This review focuses on recent research efforts to understand and control the photocatalytic processes mediated by colloidal II-VI nanocrystalline materials, such as cadmium and zinc chalcogenides. First, we highlight how nanocrystal properties govern the rates and efficiencies of charge-transfer processes relevant to photocatalysis. We then describe the use of nanocrystal catalyst heterostructures for fuel-forming reactions, most commonly H2 generation. Finally, we review the use of nanocrystal photocatalysis as a synthetic tool for metal–semiconductor nano-heterostructures. PMID:24115781

  12. FUEL ELEMENT

    DOEpatents

    Fortescue, P.; Zumwalt, L.R.

    1961-11-28

    A fuel element was developed for a gas cooled nuclear reactor. The element is constructed in the form of a compacted fuel slug including carbides of fissionable material in some cases with a breeder material carbide and a moderator which slug is disposed in a canning jacket of relatively impermeable moderator material. Such canned fuel slugs are disposed in an elongated shell of moderator having greater gas permeability than the canning material wherefore application of reduced pressure to the space therebetween causes gas diffusing through the exterior shell to sweep fission products from the system. Integral fission product traps and/or exterior traps as well as a fission product monitoring system may be employed therewith. (AEC)

  13. Solid recovered fuels in the steel industry.

    PubMed

    Kepplinger, Werner L; Tappeiner, Tamara

    2012-04-01

    By using waste materials as alternative fuels in metallurgical plants it is possible to minimize the traditionally used reducing agents, such as coke, coal, oil or natural gas. Moreover, by using waste materials in the metallurgical industry it is feasible to recover these materials as far as possible. This also represents another step towards environmental protection because carbon dioxide emissions can be reduced, if the H(2) content of the waste material is greater in comparison with that of the substituted fuel and the effects of global warming can therefore be reduced. In the present article various solid recovered fuels and their applications in the metallurgical industry are detailed.

  14. NEUTRONIC REACTOR COUNTER METHOD AND SYSTEM

    DOEpatents

    Graham, C.B.; Spiewak, I.

    1960-05-31

    An improved method is given for controlling the rate of fission in circulating-fuel neutronic reactors in which the fuel is a homogeneous liquid containing fissionable material and a neutron moderator. A change in the rate of flssion is effected by preferentially retaining apart from the circulating fuel a variable amount of either fissionable material or moderator, thereby varying the concentration of fissionable material in the fuel. In the case of an aqueous fuel solution a portion of the water may be continuously vaporized from the circulating solution and the amount of condensate, or condensate plus make-up water, returned to the solution is varied to control the fission rate.

  15. Injector nozzle for molten salt destruction of energetic waste materials

    DOEpatents

    Brummond, William A.; Upadhye, Ravindra S.

    1996-01-01

    An injector nozzle has been designed for safely injecting energetic waste materials, such as high explosives, propellants, and rocket fuels, into a molten salt reactor in a molten salt destruction process without premature detonation or back burn in the injection system. The energetic waste material is typically diluted to form a fluid fuel mixture that is injected rapidly into the reactor. A carrier gas used in the nozzle serves as a carrier for the fuel mixture, and further dilutes the energetic material and increases its injection velocity into the reactor. The injector nozzle is cooled to keep the fuel mixture below the decomposition temperature to prevent spontaneous detonation of the explosive materials before contact with the high-temperature molten salt bath.

  16. Injector nozzle for molten salt destruction of energetic waste materials

    DOEpatents

    Brummond, W.A.; Upadhye, R.S.

    1996-02-13

    An injector nozzle has been designed for safely injecting energetic waste materials, such as high explosives, propellants, and rocket fuels, into a molten salt reactor in a molten salt destruction process without premature detonation or back burn in the injection system. The energetic waste material is typically diluted to form a fluid fuel mixture that is injected rapidly into the reactor. A carrier gas used in the nozzle serves as a carrier for the fuel mixture, and further dilutes the energetic material and increases its injection velocity into the reactor. The injector nozzle is cooled to keep the fuel mixture below the decomposition temperature to prevent spontaneous detonation of the explosive materials before contact with the high-temperature molten salt bath. 2 figs.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Long, Jeffrey R.

    The design and characterization of new materials for hydrogen storage is an important area of research, as the ability to store hydrogen at lower pressures and higher temperatures than currently feasible would lower operating costs for small hydrogen fuel cell vehicles. In particular, metal-organic frameworks (MOFs) represent promising materials for use in storing hydrogen in this capacity. MOFs are highly porous, three-dimensional crystalline solids that are formed via linkages between metal ions (e.g., iron, nickel, and zinc) and organic molecules. MOFs can store hydrogen via strong adsorptive interactions between the gas molecules and the pores of the framework, providing amore » high surface area for gas adsorption and thus the opportunity to store hydrogen at significantly lower pressures than with current technologies. By lowering the energy required for hydrogen storage, these materials hold promise in rendering hydrogen a more viable fuel for motor vehicles, which is a highly desirable outcome given the clean nature of hydrogen fuel cells (water is the only byproduct of combustion) and the current state of global climate change resulting from the combustion of fossil fuels. The work presented in this report is the result of collaborative efforts between researchers at Lawrence Berkeley National Lab (LBNL), the National Institute of Standards and Technology (NIST), and General Motors Corporation (GM) to discover novel MOFs promising for H 2 storage and characterize their properties. Described herein are several new framework systems with improved gravimetric and volumetric capacity to strongly bind H 2 at temperatures relevant for vehicle storage. These materials were rigorously characterized using neutron diffraction, to determine the precise binding locations of hydrogen within the frameworks, and high-pressure H 2 adsorption measurements, to provide a comprehensive picture of H 2 adsorption at all relevant pressures. A rigorous understanding of experimental findings was further achieved via first-principles electronic structure calculations, which also supported synthetic efforts through predictions of additional novel frameworks with promising properties for vehicular H 2 storage. The results of the computational efforts also helped to elucidate the fundamental principles governing the interaction of H 2 with the frameworks, and in particular with exposed metal sites in the pores of these materials. Significant accomplishments from this project include the discovery of a metal-organic framework with a high H 2 binding enthalpy and volumetric capacity at 25 °C and 100 bar, which surpasses the metrics of any other known metal-organic framework. Additionally this material was designed to be extremely cost effective compared to most comparable adsorbents, which is imperative for eventual real-world applications. Progress toward synthesizing new frameworks containing multiple open coordination sites is also discussed, and appears to be the most promising future direction for hydrogen storage in these porous materials.« less

  18. Field Demonstration of Light Obscuration Particle Counting Technologies to Detect Fuel Contaminates

    DTIC Science & Technology

    2016-12-01

    to detect fuel contamiation including particulates and free water 15. SUBJECT TERMS fuel, JP-8, aviation fuel, contamination, free water ...undissolved water , F24 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT none 18. NUMBER OF PAGES 12 19a. NAME OF RESPONSIBLE PERSON Joel...technical, interim, memorandum, master’s thesis, progress, quarterly, research , special, group study, etc. 3. DATES COVERED. Indicate the time during

  19. Progress on Cleaning Up the Only Commercial Nuclear Fuel Reprocessing Facility to Operate in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, T. J.; MacVean, S. A.; Szlis, K. A.

    2002-02-26

    This paper describes the progress on cleanup of the West Valley Demonstration Project (WVDP), an environmental management project located south of Buffalo, NY. The WVDP was the site of the only commercial nuclear fuel reprocessing facility to have operated in the United States (1966 to 1972). Former fuel reprocessing operations generated approximately 600,000 gallons of liquid high-level radioactive waste stored in underground tanks. The U.S. Congress passed the WVDP Act in 1980 (WVDP Act) to authorize cleanup of the 220-acre facility. The facility is unique in that it sits on the 3,345-acre Western New York Nuclear Service Center (WNYNSC), whichmore » is owned by New York State through the New York State Energy Research and Development Authority (NYSERDA). The U.S. Department of Energy (DOE) has overall responsibility for the cleanup that is authorized by the WVDP Act, paying 90 percent of the WVDP costs; NYSERDA pays 10 percent. West Valley Nuclear Services Company (WVNSCO) is the management contractor at the WVDP. This paper will provide a description of the many accomplishments at the WVDP, including the pretreatment and near completion of vitrification of all the site's liquid high-level radioactive waste, a demonstration of technologies to characterize the remaining material in the high-level waste tanks, the commencement of decontamination and decommissioning (D&D) activities to place the site in a safe configuration for long-term site management options, and achievement of several technological firsts. It will also include a discussion of the complexities involved in completing the WVDP due to the various agency interests that require integration for future cleanup decisions.« less

  20. Aircraft Wing Fuel Tank Environmental Simulator Tests for Evaluation of Antimisting Fuels.

    DTIC Science & Technology

    1984-10-01

    C.*: % _ _ _.__ _ o During boost pump operation, strands of a gel-like, semi-transparent material were observed on the free surface of the fuel and...Boeing Materials Technology (BMT) laboratory to measure the water content of the fuel samples is described in appendix C. 2.5.3 Water Ingestion Results...Jet A pump at 8 gpm 32 .. . . ... . . . . . . . -%tr. go*7 .*.**.*.*..* -*.... * . . recuroed for each fueling increment. From these data a height

  1. Delivery of Fuel and Construction Materials to South Pole Station

    DTIC Science & Technology

    1993-07-01

    AID-A270 431 Delivery of Fuel and Construction Materials to South Pole Station Stephen L. DenHartog and George L. Blaisdell July 993 DTIC ELECT S OCT...South Pole Station, ideally with minimal impact on the current science and operational program. The new station will require the delivery of massive...amounts of construction materials to this remote site. The existing means of delivering material and fuel to the South Pole include the use of specialized

  2. High-freezing-point fuel studies

    NASA Technical Reports Server (NTRS)

    Tolle, F. F.

    1980-01-01

    Considerable progress in developing the experimental and analytical techniques needed to design airplanes to accommodate fuels with less stringent low temperature specifications is reported. A computer technique for calculating fuel temperature profiles in full tanks was developed. The computer program is being extended to include the case of partially empty tanks. Ultimately, the completed package is to be incorporated into an aircraft fuel tank thermal analyser code to permit the designer to fly various thermal exposure patterns, study fuel temperatures versus time, and determine holdup.

  3. Three dimensional graphene based materials: Synthesis and applications from energy storage and conversion to electrochemical sensor and environmental remediation.

    PubMed

    Wang, Hou; Yuan, Xingzhong; Zeng, Guangming; Wu, Yan; Liu, Yang; Jiang, Qian; Gu, Shansi

    2015-07-01

    With superior electrical/thermal conductivities and mechanical properties, two dimensional (2D) graphene has become one of the most intensively explored carbon allotropes in materials science. To exploit the inherent properties fully, 2D graphene sheets are often fabricated or assembled into functional architectures (e.g. hydrogels, aerogels) with desired three dimensional (3D) interconnected porous microstructures. The 3D graphene based materials show many excellent characteristics including increased active material per projected area, accessible mass transport or storage, electro/thermo conductivity, chemical/electrochemical stability and flexibility. It has paved the way for practical requirements in electronics, adsorption as well as catalysis related system. This review shows an extensive overview of the main principles and the recent synthetic technologies about fabricating various innovative 3D graphene based materials. Subsequently, recent progresses in electrochemical energy devices (lithium/lithium ion batteries, supercapacitors, fuel cells and solar cells) and hydrogen energy generation/storage are explicitly discussed. The up to date advances for pollutants detection and environmental remediation are also reviewed. Finally, challenges and outlooks in materials development for energy and environment are suggested. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Fiber-modified polyurethane foam for ballistic protection

    NASA Technical Reports Server (NTRS)

    Fish, R. H.; Parker, J. A.; Rosser, R. W.

    1975-01-01

    Closed-cell, semirigid, fiber-loaded, self-extinguishing polyurethane foam material fills voids around fuel cells in aircraft. Material prevents leakage of fuel and spreading of fire in case of ballistic incendiary impact. It also protects fuel cell in case of exterior fire.

  5. FY2017 Technology Integration Annual Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The 2017 Technology Integration Annual Progress Report covers 27 multi-year projects funded by the Vehicle Technologies Office. The report includes information on 20 competitively awarded projects, ranging from training on alternative fuels and vehicles for first responders, to safety training and design for maintenance facilities housing gaseous fuel vehicles, to electric vehicle community partner programs. It also includes seven projects conducted by several of VTO’s national laboratory partners, Argonne National Laboratory, Oak Ridge National Laboratory and the National Renewable Energy Laboratory. These projects range from a Technical Assistance project for business, industry, government and individuals, to the EcoCar 3 Studentmore » Competition, and the Fuel Economy Information Project.« less

  6. NUCLEAR MATERIAL ATTRACTIVENESS: AN ASSESSMENT OF MATERIAL FROM PHWR'S IN A CLOSED THORIUM FUEL CYCLE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sleaford, B W; Collins, B A; Ebbinghaus, B B

    2010-04-26

    This paper examines the attractiveness of material mixtures containing special nuclear materials (SNM) associated with reprocessing and the thorium-based LWR fuel cycle. This paper expands upon the results from earlier studies that examined the attractiveness of SNM associated with the reprocessing of spent light water reactor (LWR) fuel by various reprocessing schemes and the recycle of plutonium as a mixed oxide (MOX) fuel in LWR. This study shows that {sup 233}U that is produced in thorium-based fuel cycles is very attractive for weapons use. Consistent with other studies, these results also show that all fuel cycles examined to date needmore » to be rigorously safeguarded and provided moderate to high levels of physical protection. These studies were performed at the request of the United States Department of Energy (DOE), and are based on the calculation of 'attractiveness levels' that has been couched in terms chosen for consistency with those normally used for nuclear materials in DOE nuclear facilities. The methodology and key findings will be presented.« less

  7. Nuclear Material Attractiveness: An Assessment of Material from PHWR's in a Closed Thorium Fuel Cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sleaford, Brad W.; Ebbinghaus, B. B.; Bradley, Keith S.

    2010-06-11

    This paper examines the attractiveness of material mixtures containing special nuclear materials (SNM) associated with reprocessing and the thorium-based LWR fuel cycle. This paper expands upon the results from earlier studies [ , ] that examined the attractiveness of SNM associated with the reprocessing of spent light water reactor (LWR) fuel by various reprocessing schemes and the recycle of plutonium as a mixed oxide (MOX) fuel in LWR. This study shows that 233U that is produced in thorium-based fuel cycles is very attractive for weapons use. Consistent with other studies, these results also show that all fuel cycles examined tomore » date need to be rigorously safeguarded and provided moderate to high levels of physical protection. These studies were performed at the request of the United States Department of Energy (DOE), and are based on the calculation of "attractiveness levels" that has been couched in terms chosen for consistency with those normally used for nuclear materials in DOE nuclear facilities [ ]. The methodology and key findings will be presented.« less

  8. Medium-chain-length poly-3-hydroxyalkanoates-carbon nanotubes composite anode enhances the performance of microbial fuel cell.

    PubMed

    Hindatu, Y; Annuar, M S M; Subramaniam, R; Gumel, A M

    2017-06-01

    Insufficient power generation from a microbial fuel cell (MFC) hampers its progress towards utility-scale development. Electrode modification with biopolymeric materials could potentially address this issue. In this study, medium-chain-length poly-3-hydroxyalkanoates (PHA)/carbon nanotubes (C) composite (CPHA) was successfully applied to modify the surface of carbon cloth (CC) anode in MFC. Characterization of the functional groups on the anodic surface and its morphology was carried out. The CC-CPHA composite anode recorded maximum power density of 254 mW/m 2 , which was 15-53% higher than the MFC operated with CC-C (214 mW/m 2 ) and pristine CC (119 mW/m 2 ) as the anode in a double-chambered MFC operated with Escherichia coli as the biocatalyst. Electrochemical impedance spectroscopy and cyclic voltammetry showed that power enhancement was attributed to better electron transfer capability by the bacteria for the MFC setup with CC-CPHA anode.

  9. Physics overview of AVLIS

    NASA Astrophysics Data System (ADS)

    Solarz, R. W.

    1985-02-01

    Atomic vapor laster isotope separation (AVLIS) represents the largest-scale potential application of tunable lasers that has received serious attention. The underlying physical principles were identified and optimized, the major technology components were developed, and the integrated enrichment performance of the process was tested. The central physical processes are outlined, progress to date on the technology elements is reviewed, and scaling laws are fomulated. Two primary applications are the production of light-water reactor fuel and the conversion of fuel-grade plutonium to weapons-grade material. A variety of applications exist that all potentially use a common base of AVLIS technology. These include missions such as the enrichment of mercury isotopes to improve fluorescent lamp efficiency, the enrichment of iodine isotopes for medical isotope use, and the cleanup of strontium from defense waste for recovering strontium isotopes for radiothermal mechanical generators. The ability to radidly assess the economic and technical feasibility of each mission is derived from the general applicability of AVLIS physics and AVLIS technology.

  10. Harvest and utilization of chemical energy in wastes by microbial fuel cells.

    PubMed

    Sun, Min; Zhai, Lin-Feng; Li, Wen-Wei; Yu, Han-Qing

    2016-05-21

    Organic wastes are now increasingly viewed as a resource of energy that can be harvested by suitable biotechnologies. One promising technology is microbial fuel cells (MFC), which can generate electricity from the degradation of organic pollutants. While the environmental benefits of MFC in waste treatment have been recognized, their potential as an energy producer is not fully understood. Although progresses in material and engineering have greatly improved the power output from MFC, how to efficiently utilize the MFC's energy in real-world scenario remains a challenge. In this review, fundamental understandings on the energy-generating capacity of MFC from real waste treatment are provided and the challenges and opportunities are discussed. The limiting factors restricting the energy output and impairing the long-term reliability of MFC are also analyzed. Several energy storage and in situ utilization strategies for the management of MFC's energy are proposed, and future research needs for real-world application of this approach are explored.

  11. PRESSURIZED WATER REACTOR PROGRAM TECHNICAL PROGRESS REPORT FOR THE PERIOD MAY 5, 1955 TO JUNE 16, 1955

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The current PWR plant and core parameters are listed. Resign requirements are briefly summarized for a radiation monitoring system, a fuel handling water system, a coolant purification system, an electrical power distribution system, and component shielding. Results of studies on thermal bowing and stressing of UO/sub 2/ are reported. A graph is presented of reactor power vs. reactor flow for various hot channel conditions. Development of U-- Mo and U-Nb alloys has been stopped because of the recent selection of UO/sub 2/ fuel material for the PWR core and blanket. The fabrication characteristics of UO/sub 2/ powders are being studied.more » Seamless Zircaloy-2 tubing has been tested to determine elastic limits, bursting pressures, and corrosion resistance. Fabrication techniques and tests for corrosion and defects in Zircaloy-clad U-Mo and UO/sub 2/ fuel rods are described. The preparation of UO/sub 2/ by various methods is being studied to determine which method produces a material most suitable for PWR fuel elements. The stability of UO/sub 2/ compacts in high temperature water and steam is being determined. Surface area and density measurements have been performed on samples of UO/sub 2/ powder prepared by various methods. Revelopment work on U-- Mo and U--Nb alloys has included studies of the effect on corrosion behavior of additions to the test water, additions to the alloys, homogenization of the alloys, annealing times, cladding, and fabrication techniques. Data are presented on relaxation in spring materials after exposure to a corrosive environment. Results are reported from loop and autoclave tests on fission product and crud deposition. Results of irradiation and corrosion testing of clad and unclad U--Mo and U-Nh alloys are described. The UO/sub 2/ irradiation program has included studies of dimensional changes, release of fission gases, and activity in the water surrounding the samples. A review of the methods of calculating reactor physics parameters has been completed, and the established procedures have been applied to determination of PWR reference design parameters. Critical experiments and primary loop shielding analyses are described. (D.E.B.)« less

  12. Optimizing Neutron Thermal Scattering Effects in very High Temperature Reactors. Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hawari, Ayman; Ougouag, Abderrafi

    2014-07-08

    This project aims to develop a holistic understanding of the phenomenon of neutron thermalization in the VHTR. Neutron thermalization is dependent on the type and structure of the moderating material. The fact that the moderator (and reflector) in the VHTR is a solid material will introduce new and interesting considerations that do not apply in other (e.g. light water) reactors. The moderator structure is expected to undergo radiation induced changes as the irradiation (or burnup) history progresses. In this case, the induced changes in structure will have a direct impact on many properties including the neutronic behavior. This can bemore » easily anticipated if one recognizes the dependence of neutron thermalization on the scattering law of the moderator. For the pebble bed reactor, it is anticipated that the moderating behavior can be tailored, e.g. using moderators that consist of composite materials, which could allow improved optimization of the moderator-to-fuel ratio.« less

  13. Coproduction of acetic acid and electricity by application of microbial fuel cell technology to vinegar fermentation.

    PubMed

    Tanino, Takanori; Nara, Youhei; Tsujiguchi, Takuya; Ohshima, Takayuki

    2013-08-01

    The coproduction of a useful material and electricity via a novel application of microbial fuel cell (MFC) technology to oxidative fermentation was investigated. We focused on vinegar production, i.e., acetic acid fermentation, as an initial and model useful material that can be produced by oxidative fermentation in combination with MFC technology. The coproduction of acetic acid and electricity by applying MFC technology was successfully demonstrated by the simultaneous progress of acetic acid fermentation and electricity generation through a series of repeated batch fermentations. Although the production rate of acetic acid was very small, it increased with the number of repeated batch fermentations that were conducted. We obtained nearly identical (73.1%) or larger (89.9%) acetic acid yields than that typically achieved by aerated fermentation (75.8%). The open-cycle voltages measured before and after fermentation increased with the total fermentation time and reached a maximum value of 0.521 V prior to the third batch fermentation. The maximum current and power densities measured in this study (19.1 μA/cm² and 2.47 μW/cm², respectively) were obtained after the second batch fermentation. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  14. Principles of Fuel and Fuel Systems, 8-4. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Army Ordnance Center and School, Aberdeen Proving Ground, MD.

    This volume of student materials for a secondary/postsecondary level course in principles of fuel and fuel systems is one of a number of military-developed curriculum packages selected for adaptation to vocational instruction and curriculum development in a civilian setting. The purpose of the individualized, self-paced course is to provide the…

  15. Advanced ceramic materials for next-generation nuclear applications

    NASA Astrophysics Data System (ADS)

    Marra, John

    2011-10-01

    The nuclear industry is at the eye of a 'perfect storm' with fuel oil and natural gas prices near record highs, worldwide energy demands increasing at an alarming rate, and increased concerns about greenhouse gas (GHG) emissions that have caused many to look negatively at long-term use of fossil fuels. This convergence of factors has led to a growing interest in revitalization of the nuclear power industry within the United States and across the globe. Many are surprised to learn that nuclear power provides approximately 20% of the electrical power in the US and approximately 16% of the world-wide electric power. With the above factors in mind, world-wide over 130 new reactor projects are being considered with approximately 25 new permit applications in the US. Materials have long played a very important role in the nuclear industry with applications throughout the entire fuel cycle; from fuel fabrication to waste stabilization. As the international community begins to look at advanced reactor systems and fuel cycles that minimize waste and increase proliferation resistance, materials will play an even larger role. Many of the advanced reactor concepts being evaluated operate at high-temperature requiring the use of durable, heat-resistant materials. Advanced metallic and ceramic fuels are being investigated for a variety of Generation IV reactor concepts. These include the traditional TRISO-coated particles, advanced alloy fuels for 'deep-burn' applications, as well as advanced inert-matrix fuels. In order to minimize wastes and legacy materials, a number of fuel reprocessing operations are being investigated. Advanced materials continue to provide a vital contribution in 'closing the fuel cycle' by stabilization of associated low-level and high-level wastes in highly durable cements, ceramics, and glasses. Beyond this fission energy application, fusion energy will demand advanced materials capable of withstanding the extreme environments of high-temperature plasma systems. Fusion reactors will likely depend on lithium-based ceramics to produce tritium that fuels the fusion plasma, while high-temperature alloys or ceramics will contain and control the hot plasma. All the while, alloys, ceramics, and ceramic-related processes continue to find applications in the management of wastes and byproducts produced by these processes.

  16. Solid oxide fuel cell with single material for electrodes and interconnect

    DOEpatents

    McPheeters, Charles C.; Nelson, Paul A.; Dees, Dennis W.

    1994-01-01

    A solid oxide fuel cell having a plurality of individual cells. A solid oxide fuel cell has an anode and a cathode with electrolyte disposed therebetween, and the anode, cathode and interconnect elements are comprised of substantially one material.

  17. Status and Outlook for the U.S. Non-Automotive Fuel Cell Industry: Impacts of Government Policies and Assessment of Future Opportunities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greene, David L; Duleep, K. G.; Upreti, Girish

    Fuel cells (FCs) are considered essential future energy technologies by developed and developing economies alike. Several countries, including the United States, Japan, Germany, and South Korea have established publicly funded R&D and market transformation programs to develop viable domestic FC industries for both automotive and non-automotive applications. Important non-automotive applications include large scale and small scale distributed combined heat and electrical power, backup and uninterruptible power, material handling and auxiliary power units. The U.S. FC industry is in the early stages of development, and is working to establish sustainable markets in all these areas. To be successful, manufacturers must reducemore » costs, improve performance, and overcome market barriers to new technologies. U.S. policies are assisting via research and development, tax credits and government-only and government-assisted procurements. Over the past three years, the industry has made remarkable progress, bringing both stack and system costs down by more than a factor of two while improving durability and efficiency, thanks in part to government support. Today, FCs are still not yet able to compete in these markets without continued policy support. However, continuation or enhancement of current policies, such as the investment tax credit and government procurements, together with continued progress by the industry, appears likely to establish a viable domestic industry within the next decade.« less

  18. Method and apparatus for close packing of nuclear fuel assemblies

    DOEpatents

    Newman, Darrell F.

    1993-01-01

    The apparatus of the present invention is a plate of neutron absorbing material. The plate may have a releasable locking feature permitting the plate to be secured within a nuclear fuel assembly between nuclear fuel rods during storage or transportation then removed for further use or destruction. The method of the present invention has the step of placing a plate of neutron absorbing material between nuclear fuel rods within a nuclear fuel assembly, preferably between the two outermost columns of nuclear fuel rods. Additionally, the plate may be releasably locked in place.

  19. Method and apparatus for close packing of nuclear fuel assemblies

    DOEpatents

    Newman, D.F.

    1993-03-30

    The apparatus of the present invention is a plate of neutron absorbing material. The plate may have a releasable locking feature permitting the plate to be secured within a nuclear fuel assembly between nuclear fuel rods during storage or transportation then removed for further use or destruction. The method of the present invention has the step of placing a plate of neutron absorbing material between nuclear fuel rods within a nuclear fuel assembly, preferably between the two outermost columns of nuclear fuel rods. Additionally, the plate may be releasably locked in place.

  20. Fuel containment and damage tolerance for large composite primary aircraft structures. Phase 1: Testing

    NASA Technical Reports Server (NTRS)

    Sandifer, J. P.

    1983-01-01

    Technical problems associated with fuel containment and damage tolerance of composite material wings for transport aircraft were identified. The major tasks are the following: (1) the preliminary design of damage tolerant wing surface using composite materials; (2) the evaluation of fuel sealing and lightning protection methods for a composite material wing; and (3) an experimental investigation of the damage tolerant characteristics of toughened resin graphite/epoxy materials. The test results, the test techniques, and the test data are presented.

  1. The Role of Ceramics in a Resurgent Nuclear Industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marra, J

    2006-02-28

    With fuel oil and natural gas prices near record highs and worldwide energy demands increasing at an alarming rate, there is growing interest in revitalization of the nuclear power industry within the United States and across the globe. Ceramic materials have long played a very important part in the commercial nuclear industry with applications throughout the entire fuel cycle; from fuel fabrication to waste stabilization. As the international community begins to look at advanced fuel cycles that minimize waste and increase proliferation resistance, ceramic materials will play an even larger role. Many of the advanced reactor concepts being evaluated operatemore » at high-temperature requiring the use of durable, heat-resistant materials. Ceramic fuels are being investigated for a variety of Generation IV reactor concepts. These include the traditional TRISO-coated particles as well as advanced inert-matrix fuels. In order to minimize wastes and legacy materials, ceramic processes are also being applied to fuel reprocessing operations. Ceramic materials continue to provide a vital contribution in ''closing the fuel cycle'' by stabilization of associated low-level and high-level wastes in highly durable grout, ceramics, and glass. In the next five years, programs that are currently in the conceptual phase will begin laboratory- and engineering-scale demonstrations. This will require production-scale demonstrations of several ceramic technologies from fuel form development to advanced stabilization methods. Within the next five to ten years, these demonstrations will move to even larger scales and will also include radioactive demonstrations of these advanced technologies. These radioactive demonstrations are critical to program success and will require advances in ceramic materials associated with nuclear energy applications.« less

  2. Coal liquefaction process wherein jet fuel, diesel fuel and/or ASTM No. 2 fuel oil is recovered

    DOEpatents

    Bauman, Richard F.; Ryan, Daniel F.

    1982-01-01

    An improved process for the liquefaction of coal and similar solid carbonaceous materials wherein a hydrogen donor solvent or diluent derived from the solid carbonaceous material is used to form a slurry of the solid carbonaceous material and wherein the naphthenic components from the solvent or diluent fraction are separated and used as jet fuel components. The extraction increases the relative concentration of hydroaromatic (hydrogen donor) components and as a result reduces the gas yield during liquefaction and decreases hydrogen consumption during said liquefaction. The hydrogenation severity can be controlled to increase the yield of naphthenic components and hence the yield of jet fuel and in a preferred embodiment jet fuel yield is maximized while at the same time maintaining solvent balance.

  3. Fuel Performance Calculations for FeCrAl Cladding in BWRs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George, Nathan; Sweet, Ryan; Maldonado, G. Ivan

    2015-01-01

    This study expands upon previous neutronics analyses of the reactivity impact of alternate cladding concepts in boiling water reactor (BWR) cores and directs focus toward contrasting fuel performance characteristics of FeCrAl cladding against those of traditional Zircaloy. Using neutronics results from a modern version of the 3D nodal simulator NESTLE, linear power histories were generated and supplied to the BISON-CASL code for fuel performance evaluations. BISON-CASL (formerly Peregrine) expands on material libraries implemented in the BISON fuel performance code and the MOOSE framework by providing proprietary material data. By creating material libraries for Zircaloy and FeCrAl cladding, the thermomechanical behaviormore » of the fuel rod (e.g., strains, centerline fuel temperature, and time to gap closure) were investigated and contrasted.« less

  4. Nuclear fuels for very high temperature applications

    NASA Astrophysics Data System (ADS)

    Lundberg, L. B.; Hobbins, R. R.

    The success of the development of nuclear thermal propulsion devices and thermionic space nuclear power generation systems depends on the successful utilization of nuclear fuel materials at temperatures in the range 2000 to 3500 K. Problems associated with the utilization of uranium bearing fuel materials at these very high temperatures while maintaining them in the solid state for the required operating times are addressed. The critical issues addressed include evaporation, melting, reactor neutron spectrum, high temperature chemical stability, fabrication, fission induced swelling, fission product release, high temperature creep, thermal shock resistance, and fuel density, both mass and fissile atom. Candidate fuel materials for this temperature range are based on UO2 or uranium carbides. Evaporation suppression, such as a sealed cladding, is required for either fuel base. Nuclear performance data needed for design are sparse for all candidate fuel forms in this temperature range, especially at the higher temperatures.

  5. THE ARMOUR DUST FUELED REACTOR (ADFR). Quarterly Progress Report No. 2 For the Period May 21, 1958 to August 21, 1958

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loewe, W.E.; Krucoff, D.

    1958-10-31

    Study of the ADFR concept included experimental work on fuel dust suspension stability and redispersibility, erosion, and dust deposition using the fuel dust circulation loop. Some theoretical work was done in the areas of reactor safety and breeding. (For preceding period -see AECU-3827.) (auth)

  6. Degradation mechanisms and accelerated testing in PEM fuel cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borup, Rodney L; Mukundan, Rangachary

    2010-01-01

    The durability of PEM fuel cells is a major barrier to the commercialization of these systems for stationary and transportation power applications. Although there has been recent progress in improving durability, further improvements are needed to meet the commercialization targets. Past improvements have largely been made possible because of the fundamental understanding of the underlying degradation mechanisms. By investigating component and cell degradation modes; defining the fundamental degradation mechanisms of components and component interactions new materials can be designed to improve durability. Various factors have been shown to affect the useful life of PEM fuel cells. Other issues arise frommore » component optimization. Operational conditions (such as impurities in either the fuel and oxidant stream), cell environment, temperature (including subfreezing exposure), pressure, current, voltage, etc.; or transient versus continuous operation, including start-up and shutdown procedures, represent other factors that can affect cell performance and durability. The need for Accelerated Stress Tests (ASTs) can be quickly understood given the target lives for fuel cell systems: 5000 hours ({approx} 7 months) for automotive, and 40,000 hrs ({approx} 4.6 years) for stationary systems. Thus testing methods that enable more rapid screening of individual components to determine their durability characteristics, such as off-line environmental testing, are needed for evaluating new component durability in a reasonable turn-around time. This allows proposed improvements in a component to be evaluated rapidly and independently, subsequently allowing rapid advancement in PEM fuel cell durability. These tests are also crucial to developers in order to make sure that they do not sacrifice durability while making improvements in costs (e.g. lower platinum group metal [PGM] loading) and performance (e.g. thinner membrane or a GDL with better water management properties). To achieve a deeper understanding and improve PEM fuel cell durability LANL is conducting research to better define fuel cell component degradation mechanisms and correlate AST measurements to component in 'real-world' situations.« less

  7. Fundamentals of lateral and vertical heterojunctions of atomically thin materials.

    PubMed

    Pant, Anupum; Mutlu, Zafer; Wickramaratne, Darshana; Cai, Hui; Lake, Roger K; Ozkan, Cengiz; Tongay, Sefaattin

    2016-02-21

    At the turn of this century, Herbert Kroemer, the 2000 Nobel Prize winner in Physics, famously commented that "the interface is the device". This statement has since opened up unparalleled opportunities at the interface of conventional three-dimensional (3D) materials (H. Kroemer, Quasi-Electric and Quasi-Magnetic Fields in Non-Uniform Semiconductors, RCA Rev., 1957, 18, 332-342). More than a decade later, Sir Andre Geim and Irina Grigorieva presented their views on 2D heterojunctions which further cultivated broad interests in the 2D materials field. Currently, advances in two-dimensional (2D) materials enable us to deposit layered materials that are only one or few unit-cells in thickness to construct sharp in-plane and out-of-plane interfaces between dissimilar materials, and to be able to fabricate novel devices using these cutting-edge techniques. The interface alone, which traditionally dominated overall device performance, thus has now become the device itself. Fueled by recent progress in atomically thin materials, we are now at the ultimate limit of interface physics, which brings to us new and exciting opportunities, with equally demanding challenges. This paper endeavors to provide stalwarts and newcomers a perspective on recent advances in synthesis, fundamentals, applications, and future prospects of a large variety of heterojunctions of atomically thin materials.

  8. The Behavior of Hydrogen Under Extreme Conditions on Ultrafast Timescales (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    ScienceCinema

    Mao, Ho-kwang (Director, Center for Energy Frontier Research in Extreme Environments); EFree Staff

    2017-12-09

    'The Behavior of Hydrogen Under Extreme Conditions on Ultrafast Timescales ' was submitted by the Center for Energy Frontier Research in Extreme Environments (EFree) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. EFree is directed by Ho-kwang Mao at the Carnegie Institute of Washington and is a partnership of scientists from thirteen institutions.The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of Energy Frontier Research in Extreme Environments is 'to accelerate the discovery and creation of energy-relevant materials using extreme pressures and temperatures.' Research topics are: catalysis (CO{sub 2}, water), photocatalysis, solid state lighting, optics, thermelectric, phonons, thermal conductivity, solar electrodes, fuel cells, superconductivity, extreme environment, radiation effects, defects, spin dynamics, CO{sub 2} (capture, convert, store), greenhouse gas, hydrogen (fuel, storage), ultrafast physics, novel materials synthesis, and defect tolerant materials.

  9. Engineering and Physics Optimization of Breed and Burn Fast Reactor Systems; NUCLEAR ENERGY RESEARCH INITIATIVE (NERI) QUARTERLY PROGRESS REPORT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pavel Hejzlar, Peter Yarsky, Mike Driscoll, Dan Wachs, Kevan Weaver, Ken Czerwinski, Mike Pope, James Parry, Theron D. Marshall, Cliff B. Davis, Dustin Crawford, Thomas Hartmann, Pradip Saha; Hejzlar, Pavel; Yarsky, Peter

    2005-01-31

    This project is organized under four major tasks (each of which has two or more subtasks) with contributions among the three collaborating organizations (MIT, INEEL and ANL-West): Task A: Core Physics and Fuel Cycle; Task B: Core Thermal Hydraulics; Task C: Plant Design; Task D: Fuel Design The lead PI, Michael J. Driscoll, has consolidated and summarized the technical progress submissions provided by the contributing investigators from all sites, under the above principal task headings.

  10. Fueling dreams of grandeur: Fuel cell research and development and the pursuit of the technological panacea, 1940--2005

    NASA Astrophysics Data System (ADS)

    Eisler, Matthew Nicholas

    The record of fuel cell research and development is one of the great enigmas in the history of science and technology. For years, this electrochemical power source, which combines hydrogen and oxygen to produce electricity and waste water, excited the imaginations of researchers in many countries. Because fuel cells directly convert chemical into electrical energy, people have long believed them exempt from the so-called Carnot cycle limitation on heat engines, which dictates that such devices must operate at less than 100 per cent efficiency owing to the randomization of energy as heat. Fuel cells have thus struck some scientists and engineers as the "magic bullet" of energy technologies. This dissertation explores why people have not been able to develop a cheap, durable commercial fuel cell despite more than 50 years of concerted effort since the end of Second World War. I argue this is so mainly because expectations have always been higher than the knowledge base. I investigate fuel cell research and development communities as central nodes of expectation generation. They have functioned as a nexus where the physical realities of fuel cell technology meet external factors, those political, economic and cultural pressures that create a "need" for a "miracle" power source. The unique economic exigencies of these communities have shaped distinct material practices that have done much to inform popular ideas of the capabilities of fuel cell technology. After the Second World War, the fuel cell was relatively unknown in industrial and governmental science and technology circles. Researchers in most leading industrialized countries, above all the United States, sought to raise the technology's profile through dramatic demonstrations in reductive circumstances, employing notional fuel cells using pure hydrogen and oxygen. Researchers paid less attention to cost and durability, concentrating on increasing power output, a criterion that could be met relatively easily in controlled conditions. While such demonstrations typically led to short-term investments in further research, they also generated expectations for long-lived and affordable fuel cells using hydrocarbons. However, developing commercial fuel cell technology was an expensive and arduous process, one that few sponsors were willing to support for long in the absence of rapid progress. Despite this mixed record, the fuel cell has become a powerful symbol of technological perfection that continues to inspire further research and dreams of energy plenitude.

  11. 10 CFR 32.2 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Definitions. 32.2 Section 32.2 Energy NUCLEAR REGULATORY COMMISSION SPECIFIC DOMESTIC LICENSES TO MANUFACTURE OR TRANSFER CERTAIN ITEMS CONTAINING BYPRODUCT MATERIAL... disposal, or nuclear material contained in any fuel assembly, subassembly, fuel rod, or fuel pellet...

  12. 10 CFR 32.2 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Definitions. 32.2 Section 32.2 Energy NUCLEAR REGULATORY COMMISSION SPECIFIC DOMESTIC LICENSES TO MANUFACTURE OR TRANSFER CERTAIN ITEMS CONTAINING BYPRODUCT MATERIAL... disposal, or nuclear material contained in any fuel assembly, subassembly, fuel rod, or fuel pellet...

  13. Three approaches to fuels from fatty compounds

    USDA-ARS?s Scientific Manuscript database

    Biodiesel, the alkyl esters, usually methyl esters, of vegetable oils, animal fats, or other triacylglycerol-containing materials, are the most common approach to producing a fuel from the mentioned materials. This fuel is obtained by transesterifying the oil or fat with an alcohol, usually methanol...

  14. State of the States: Fuel Cells in America 2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curtin, Sandra; Gangi, Jennifer

    2013-10-31

    This October 2013 report, written by Fuel Cells 2000 and partially funded by the U.S. Department of Energy's Fuel Cell Technologies Office, continues to build on the April 2010 State of the States report that provided a snapshot of fuel cell and hydrogen activity in the 50 states and District of Columbia. This update report provides more details on the progress and activities that happened since the third report, issued in August 2012.

  15. A document review to characterize Atomic International SNAP fuels shipped to INEL 1966--1973

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wahnschaffe, S.D.; Lords, R.E.; Kneff, D.W.

    1995-09-01

    This report provides the results of a document search and review study to obtain information on the spent fuels for the following six Nuclear Auxiliary Power (SNAP) reactor cores now stored at the Idaho National Engineering Laboratory (INEL): SNAP-2 Experimental Reactor, SNAP-2 Development Reactor, SNAP-10A Ground Test Reactor, SNAP-8 Experimental Reactor, SNAP-8 Development Reactor, and Shield Test Reactor. The report also covers documentation on SNAP fuel materials from four in-pile materials tests: NAA-82-1, NAA-115-2, NAA-117-1, and NAA-121. Pieces of these fuel materials are also stored at INEL as part of the SNAP fuel shipments.

  16. Designed porosity materials in nuclear reactor components

    DOEpatents

    Yacout, A. M.; Pellin, Michael J.; Stan, Marius

    2016-09-06

    A nuclear fuel pellet with a porous substrate, such as a carbon or tungsten aerogel, on which at least one layer of a fuel containing material is deposited via atomic layer deposition, and wherein the layer deposition is controlled to prevent agglomeration of defects. Further, a method of fabricating a nuclear fuel pellet, wherein the method features the steps of selecting a porous substrate, depositing at least one layer of a fuel containing material, and terminating the deposition when the desired porosity is achieved. Also provided is a nuclear reactor fuel cladding made of a porous substrate, such as silicon carbide aerogel or silicon carbide cloth, upon which layers of silicon carbide are deposited.

  17. Temperature characteristics for PTC material heating diesel fuel

    NASA Astrophysics Data System (ADS)

    Gu, Lefeng; Li, Xiaolu; Wang, Jun; Li, Ying; Li, Ming

    2010-08-01

    This paper gives a way which utilizes the PTC (Positive Temperature Coefficient) material to preheat diesel fuel in the injector in order to improve the cold starting and emissions of engine. A new injector is also designed. In order to understand the preheating process in this new injector, a dynamic temperature testing system combined with the MSP430F149 data acquisition system is developed for PTC material heating diesel fuel. Especially, the corresponding software and hardware circuits are explained. The temperature of diesel fuel preheating by PTC ceramics is measured under different voltages and distances, which Curie point is 75 °C. Diesel fuel is heated by self-defined temperature around the Curie point of PTC ceramics. The diesel fuel temperature rises rapidly in 2 minutes of the beginning, then can reach 60 °C within 5 minutes as its distance is 5mm away from the surface of PTC ceramics. However, there are a lot of fundamental studies and technology to be resolved in order to apply PTC material in the injector successfully.

  18. Nuclear fuel elements having a composite cladding

    DOEpatents

    Gordon, Gerald M.; Cowan, II, Robert L.; Davies, John H.

    1983-09-20

    An improved nuclear fuel element is disclosed for use in the core of nuclear reactors. The improved nuclear fuel element has a composite cladding of an outer portion forming a substrate having on the inside surface a metal layer selected from the group consisting of copper, nickel, iron and alloys of the foregoing with a gap between the composite cladding and the core of nuclear fuel. The nuclear fuel element comprises a container of the elongated composite cladding, a central core of a body of nuclear fuel material disposed in and partially filling the container and forming an internal cavity in the container, an enclosure integrally secured and sealed at each end of said container and a nuclear fuel material retaining means positioned in the cavity. The metal layer of the composite cladding prevents perforations or failures in the cladding substrate from stress corrosion cracking or from fuel pellet-cladding interaction or both. The substrate of the composite cladding is selected from conventional cladding materials and preferably is a zirconium alloy.

  19. FUEL ELEMENT FOR NUCLEAR REACTORS

    DOEpatents

    Bassett, C.H.

    1961-11-21

    A fuel element is designed which is particularly adapted for reactors of high power density used to generate steam for the production of electricity. The fuel element consists of inner and outer concentric tubes forming an annular chamber within which is contained fissionable fuel pellet segments, wedge members interposed between the fuel segments, and a spring which, acting with wedge members, urges said fuel pellets radially into contact against the inner surface of the outer tube. The wedge members may be a fertile material convertible into fissionable fuel material by absorbing neutrons emitted from the fissionable fuel pellet segments. The costly grinding of cylindrical fuel pellets to close tolerances for snug engagement is reduced because the need to finish the exact size is eliminated. (AEC)

  20. LIFE Materials: Overview of Fuels and Structural Materials Issues Volume 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farmer, J

    2008-09-08

    The National Ignition Facility (NIF) project, a laser-based Inertial Confinement Fusion (ICF) experiment designed to achieve thermonuclear fusion ignition and burn in the laboratory, is under construction at the Lawrence Livermore National Laboratory (LLNL) and will be completed in April of 2009. Experiments designed to accomplish the NIF's goal will commence in late FY2010 utilizing laser energies of 1 to 1.3 MJ. Fusion yields of the order of 10 to 20 MJ are expected soon thereafter. Laser initiated fusion-fission (LIFE) engines have now been designed to produce nuclear power from natural or depleted uranium without isotopic enrichment, and from spentmore » nuclear fuel from light water reactors without chemical separation into weapons-attractive actinide streams. A point-source of high-energy neutrons produced by laser-generated, thermonuclear fusion within a target is used to achieve ultra-deep burn-up of the fertile or fissile fuel in a sub-critical fission blanket. Fertile fuels including depleted uranium (DU), natural uranium (NatU), spent nuclear fuel (SNF), and thorium (Th) can be used. Fissile fuels such as low-enrichment uranium (LEU), excess weapons plutonium (WG-Pu), and excess highly-enriched uranium (HEU) may be used as well. Based upon preliminary analyses, it is believed that LIFE could help meet worldwide electricity needs in a safe and sustainable manner, while drastically shrinking the nation's and world's stockpile of spent nuclear fuel and excess weapons materials. LIFE takes advantage of the significant advances in laser-based inertial confinement fusion that are taking place at the NIF at LLNL where it is expected that thermonuclear ignition will be achieved in the 2010-2011 timeframe. Starting from as little as 300 to 500 MW of fusion power, a single LIFE engine will be able to generate 2000 to 3000 MWt in steady state for periods of years to decades, depending on the nuclear fuel and engine configuration. Because the fission blanket in a fusion-fission hybrid system is subcritical, a LIFE engine can burn any fertile or fissile nuclear material, including un-enriched natural or depleted U and SNF, and can extract a very high percentage of the energy content of its fuel resulting in greatly enhanced energy generation per metric ton of nuclear fuel, as well as nuclear waste forms with vastly reduced concentrations of long-lived actinides. LIFE engines could thus provide the ability to generate vast amounts of electricity while greatly reducing the actinide content of any existing or future nuclear waste and extending the availability of low cost nuclear fuels for several thousand years. LIFE also provides an attractive pathway for burning excess weapons Pu to over 99% FIMA (fission of initial metal atoms) without the need for fabricating or reprocessing mixed oxide fuels (MOX). Because of all of these advantages, LIFE engines offer a pathway toward sustainable and safe nuclear power that significantly mitigates nuclear proliferation concerns and minimizes nuclear waste. An important aspect of a LIFE engine is the fact that there is no need to extract the fission fuel from the fission blanket before it is burned to the desired final level. Except for fuel inspection and maintenance process times, the nuclear fuel is always within the core of the reactor and no weapons-attractive materials are available outside at any point in time. However, an important consideration when discussing proliferation concerns associated with any nuclear fuel cycle is the ease with which reactor fuel can be converted to weapons usable materials, not just when it is extracted as waste, but at any point in the fuel cycle. Although the nuclear fuel remains in the core of the engine until ultra deep actinide burn up is achieved, soon after start up of the engine, once the system breeds up to full power, several tons of fissile material is present in the fission blanket. However, this fissile material is widely dispersed in millions of fuel pebbles, which can be tagged as individual accountable items, and thus made difficult to divert in large quantities. Several topical reports are being prepared on the materials and processes required for the LIFE engine. Specific materials of interest include: (1) Baseline TRISO Fuel (TRISO); (2) Inert Matrix Fuel (IMF) & Other Alternative Solid Fuels; (3) Beryllium (Be) & Molten Lead Blankets (Pb/PbLi); (4) Molten Salt Coolants (FLIBE/FLiNaBe/FLiNaK); (5) Molten Salt Fuels (UF4 + FLIBE/FLiNaBe); (6) Cladding Materials for Fuel & Beryllium; (7) ODS FM Steel (ODS); (8) Solid First Wall (SFW); and (9) Solid-State Tritium Storage (Hydrides).« less

  1. Zirconia-magnesia inert matrix fuel and waste form: Synthesis, characterization and chemical performance in an advanced fuel cycle

    NASA Astrophysics Data System (ADS)

    Holliday, Kiel Steven

    There is a significant buildup in plutonium stockpiles throughout the world, because of spent nuclear fuel and the dismantling of weapons. The radiotoxicity of this material and proliferation risk has led to a desire for destroying excess plutonium. To do this effectively, it must be fissioned in a reactor as part of a uranium free fuel to eliminate the generation of more plutonium. This requires an inert matrix to volumetrically dilute the fissile plutonium. Zirconia-magnesia dual phase ceramic has been demonstrated to be a favorable material for this task. It is neutron transparent, zirconia is chemically robust, magnesia has good thermal conductivity and the ceramic has been calculated to conform to current economic and safety standards. This dissertation contributes to the knowledge of zirconia-magnesia as an inert matrix fuel to establish behavior of the material containing a fissile component. First, the zirconia-magnesia inert matrix is synthesized in a dual phase ceramic containing a fissile component and a burnable poison. The chemical constitution of the ceramic is then determined. Next, the material performance is assessed under conditions relevant to an advanced fuel cycle. Reactor conditions were assessed with high temperature, high pressure water. Various acid solutions were used in an effort to dissolve the material for reprocessing. The ceramic was also tested as a waste form under environmental conditions, should it go directly to a repository as a spent fuel. The applicability of zirconia-magnesia as an inert matrix fuel and waste form was tested and found to be a promising material for such applications.

  2. Permeability of Impacted Coated Composite Laminates

    NASA Technical Reports Server (NTRS)

    Johnson, W. S.; Findley, Benjamin

    2002-01-01

    Composite materials are being considered for use on future generations of Reusable Launch Vehicles (RLVs) for both fuel tanks and fuel feedlines. Through the use of composite materials NASA can reduce the overall weight of the vehicle dramatically. This weight savings can then be translated into an increase in the weight of payload sent into orbit, reducing the cost per pound of payload. It is estimated that by switching to composite materials for fuel tanks the weight of the tanks can be reduced by 40 percent, which translates to a total vehicle weight savings of 14 percent. In this research, carbon/epoxy composites were studied for fuel feedline applications. There are concerns about using composite materials for feedlines and fuel tanks because these materials are extremely vulnerable to impact in the form of inadvertent bumping or dropped tools both during installation and maintenance. Additionally, it has been found that some of the sample feedlines constructed have had leaks, and thus there may be a need to seal preexisting leaks in the composite prior to usage.

  3. Advanced thermally stable jet fuels: Technical progress report, October 1994--December 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schobert, H.H.; Eser, S.; Song, C.

    There are five tasks within this project on thermally stable coal-based jet fuels. Progress on each of the tasks is described. Task 1, Investigation of the quantitative degradation chemistry of fuels, has 5 subtasks which are described: Literature review on thermal stability of jet fuels; Pyrolytic and catalytic reactions of potential endothermic fuels: cis- and trans-decalin; Use of site specific {sup 13}C-labeling to examine the thermal stressing of 1-phenylhexane: A case study for the determination of reaction kinetics in complex fuel mixtures versus model compound studies; Estimation of critical temperatures of jet fuels; and Surface effects on deposit formation inmore » a flow reactor system. Under Task 2, Investigation of incipient deposition, the subtask reported is Uncertainty analysis on growth and deposition of particles during heating of coal-derived aviation gas turbine fuels; under Task 3, Characterization of solid gums, sediments, and carbonaceous deposits, is subtask, Studies of surface chemistry of PX-21 activated carbon during thermal degradation of jet A-1 fuel and n-dodecane; under Task 4, Coal-based fuel stabilization studies, is subtask, Exploratory screening and development potential of jet fuel thermal stabilizers over 400 C; and under Task 5, Exploratory studies on the direct conversion of coal to high quality jet fuels, are 4 subtasks: Novel approaches to low-severity coal liquefaction and coal/resid co-processing using water and dispersed catalysts; Shape-selective naphthalene hydrogenation for production of thermally stable jet fuels; Design of a batch mode and a continuous mode three-phase reactor system for the liquefaction of coal and upgrading of coal liquids; and Exploratory studies on coal liquids upgrading using mesopores molecular sieve catalysts. 136 refs., 69 figs., 24 tabs.« less

  4. An overview—Functional nanomaterials for lithium rechargeable batteries, supercapacitors, hydrogen storage, and fuel cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Hua Kun, E-mail: hua@uow.edu.au

    2013-12-15

    Graphical abstract: Nanomaterials play important role in lithium ion batteries, supercapacitors, hydrogen storage and fuel cells. - Highlights: • Nanomaterials play important role for lithium rechargeable batteries. • Nanostructured materials increase the capacitance of supercapacitors. • Nanostructure improves the hydrogenation/dehydrogenation of hydrogen storage materials. • Nanomaterials enhance the electrocatalytic activity of the catalysts in fuel cells. - Abstract: There is tremendous worldwide interest in functional nanostructured materials, which are the advanced nanotechnology materials with internal or external dimensions on the order of nanometers. Their extremely small dimensions make these materials unique and promising for clean energy applications such as lithiummore » ion batteries, supercapacitors, hydrogen storage, fuel cells, and other applications. This paper will highlight the development of new approaches to study the relationships between the structure and the physical, chemical, and electrochemical properties of functional nanostructured materials. The Energy Materials Research Programme at the Institute for Superconducting and Electronic Materials, the University of Wollongong, has been focused on the synthesis, characterization, and applications of functional nanomaterials, including nanoparticles, nanotubes, nanowires, nanoporous materials, and nanocomposites. The emphases are placed on advanced nanotechnology, design, and control of the composition, morphology, nanostructure, and functionality of the nanomaterials, and on the subsequent applications of these materials to areas including lithium ion batteries, supercapacitors, hydrogen storage, and fuel cells.« less

  5. Investigation of 14.5mm API Self-Sealing/Crashworthy Fuel Tank Material

    DTIC Science & Technology

    1974-09-01

    describes the results of a f-rogram for a crashworthy, 14.5mm API tolerant fuel cell construction developed and subjected co qualification testing. The...Paragraphs 4.6.6.4 and 4.6.6.5), which were not required by contract. Two fuel tanks were built of a construction designated by The Goodyear Tire & Rubber...TABLES 3 INTRODUCTION 4 FUEL TANK MATERIAL DESIGN STUDY (TASK I) 4 QUALIFIC/.TION OF CONSTRUCTION (TASK 11) ........ 5 FUEL TANK GUNFIRE 12

  6. Accumulative charge separation for solar fuels production: coupling light-induced single electron transfer to multielectron catalysis.

    PubMed

    Hammarström, Leif

    2015-03-17

    The conversion and storage of solar energy into a fuel holds promise to provide a significant part of the future renewable energy demand of our societies. Solar energy technologies today generate heat or electricity, while the large majority of our energy is used in the form of fuels. Direct conversion of solar energy to a fuel would satisfy our needs for storable energy on a large scale. Solar fuels can be generated by absorbing light and converting its energy to chemical energy by electron transfer leading to separation of electrons and holes. The electrons are used in the catalytic reduction of a cheap substrate with low energy content into a high-energy fuel. The holes are filled by oxidation of water, which is the only electron source available for large scale solar fuel production. Absorption of a single photon typically leads to separation of a single electron-hole pair. In contrast, fuel production and water oxidation are multielectron, multiproton reactions. Therefore, a system for direct solar fuel production must be able to accumulate the electrons and holes provided by the sequential absorption of several photons in order to complete the catalytic reactions. In this Account, the process is termed accumulative charge separation. This is considerably more complicated than charge separation on a single electron level and needs particular attention. Semiconductor materials and molecular dyes have for a long time been optimized for use in photovoltaic devices. Efforts are made to develop new systems for light harvesting and charge separation that are better optimized for solar fuel production than those used in the early devices presented so far. Significant progress has recently been made in the discovery and design of better homogeneous and heterogeneous catalysts for solar fuels and water oxidation. While the heterogeneous ones perform better today, molecular catalysts based on transition metal complexes offer much greater tunability of electronic and structural properties, they are typically more amenable to mechanistic analysis, and they are small and therefore require less material. Therefore, they have arguably greater potential as future efficient catalysts but must be efficiently coupled to accumulative charge separation. This Account discusses accumulative charge separation with focus on molecular and molecule-semiconductor hybrid systems. The coupling between charge separation and catalysis involves many challenges that are often overlooked, and they are not always apparent when studying water oxidation and fuel formation as separate half-reactions with sacrificial agents. Transition metal catalysts, as well as other multielectron donors and acceptors, cycle through many different states that may quench the excited sensitizer by nonproductive pathways. Examples where this has been shown, often with ultrafast rates, are reviewed. Strategies to avoid these competing energy-loss reactions and still obtain efficient coupling of charge separation to catalysis are discussed. This includes recent examples of dye-sensitized semiconductor devices with molecular catalysts and dyes that realize complete water splitting, albeit with limited efficiency.

  7. Solar Energy for Transportation Fuel (LBNL Science at the Theater)

    ScienceCinema

    Lewis, Nate

    2018-05-25

    Nate Lewis' talk looks at the challenge of capturing solar energy and storing it as an affordable transportation fuel - all on a scale necessary to reduce global warming. Overcoming this challenge will require developing new materials that can use abundant and inexpensive elements rather than costly and rare materials. He discusses the promise of new materials in the development of carbon-free alternatives to fossil fuel.

  8. LMFBR fuel assembly design for HCDA fuel dispersal

    DOEpatents

    Lacko, Robert E.; Tilbrook, Roger W.

    1984-01-01

    A fuel assembly for a liquid metal fast breeder reactor having an upper axial blanket region disposed in a plurality of zones within the fuel assembly. The characterization of a zone is dependent on the height of the axial blanket region with respect to the active fuel region. The net effect of having a plurality of zones is to establish a dispersal flow path for the molten materials resulting during a core meltdown accident. Upward flowing molten material can escape from the core region and/or fuel assembly without solidifying on the surface of fuel rods due to the heat sink represented by blanket region pellets.

  9. Year One Summary of X-energy Pebble Fuel Development at ORNL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Helmreich, Grant W.; Hunn, John D.; McMurray, Jake W.

    2017-06-01

    The Advanced Reactor Concepts X-energy (ARC-Xe) Pebble Fuel Development project at Oak Ridge National Laboratory (ORNL) has successfully completed its first year, having made excellent progress in accomplishing programmatic objectives. The primary focus of research at ORNL in support of X-energy has been the training of X-energy fuel fabrication engineers and the establishment of US pebble fuel production capabilities able to supply the Xe-100 pebble-bed reactor. These efforts have been strongly supported by particle fuel fabrication and characterization expertise present at ORNL from the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program.

  10. Solid oxide fuel cell with single material for electrodes and interconnect

    DOEpatents

    McPheeters, C.C.; Nelson, P.A.; Dees, D.W.

    1994-07-19

    A solid oxide fuel cell is described having a plurality of individual cells. A solid oxide fuel cell has an anode and a cathode with electrolyte disposed there between, and the anode, cathode and interconnect elements are comprised of substantially one material. 9 figs.

  11. Studies of Scale Formation and Kinetics of Crofer 22 APU and Haynes 230 in Carbon Oxide-Containing Environment for SOFC Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ziomek-Moroz, M.; Covino, B.S., Jr.; Holcomb, G.R.

    2006-01-01

    Significant progress in reducing the operating temperature of SOFCs below 800oC may allow the use of chromia-forming metallic interconnects at a substantial cost savings. Hydrogen is the main fuel for all types of fuel cells except direct methanol fuel cells. Hydrogen can be generated from fossil fuels, including coal, natural gas, diesel, gasoline, other hydrocarbons, and oxygenates (e.g., methanol, ethanol, butanol, etc.). Carbon oxides present in the hydrogen fuel can cause significant performance problems due to carbon formation (coking). Also, literature data indicate that in CO/CO2 gaseous environments, metallic materials that gain their corrosion resistance due to formation of Cr2O3,more » could form stable chromium carbides. The chromium carbide formation causes depletion of chromium in these alloys. If the carbides oxidize, they form non-protective scales. Considering a potential detrimental effect of carbon oxides on iron- and nickel-base alloy stability, determining corrosion performance of metallic interconnect candidates in carbon oxide-containing environments at SOFC operating temperatures is a must. In this research, the corrosion behavior of Crofer 22 APU and Haynes 230 was studied in a CO-rich atmosphere at 750°C. Chemical composition of the gaseous environment at the outlet was determined using gas chromatography (GC). After 800 h of exposure to the gaseous environment the surfaces of the corroded samples were studied by scanning electron microscopy (SEM) equipped with microanalytical capabilities. X-ray diffraction (XRD) analysis was also used in this study.« less

  12. Multi-stage fuel cell system method and apparatus

    DOEpatents

    George, Thomas J.; Smith, William C.

    2000-01-01

    A high efficiency, multi-stage fuel cell system method and apparatus is provided. The fuel cell system is comprised of multiple fuel cell stages, whereby the temperatures of the fuel and oxidant gas streams and the percentage of fuel consumed in each stage are controlled to optimize fuel cell system efficiency. The stages are connected in a serial, flow-through arrangement such that the oxidant gas and fuel gas flowing through an upstream stage is conducted directly into the next adjacent downstream stage. The fuel cell stages are further arranged such that unspent fuel and oxidant laden gases too hot to continue within an upstream stage because of material constraints are conducted into a subsequent downstream stage which comprises a similar cell configuration, however, which is constructed from materials having a higher heat tolerance and designed to meet higher thermal demands. In addition, fuel is underutilized in each stage, resulting in a higher overall fuel cell system efficiency.

  13. The TMI regenerable solid oxide fuel cell

    NASA Technical Reports Server (NTRS)

    Cable, Thomas L.

    1995-01-01

    Energy storage and production in space requires rugged, reliable hardware which minimizes weight, volume, and maintenance while maximizing power output and usable energy storage. These systems generally consist of photovoltaic solar arrays which operate during sunlight cycles to provide system power and regenerate fuel (hydrogen) via water electrolysis; during dark cycles, hydrogen is converted by the fuel cell into system. The currently preferred configuration uses two separate systems (fuel cell and electrolyzer) in conjunction with photovoltaic cells. Fuel cell/electrolyzer system simplicity, reliability, and power-to-weight and power-to-volume ratios could be greatly improved if both power production (fuel cell) and power storage (electrolysis) functions can be integrated into a single unit. The Technology Management, Inc. (TMI), solid oxide fuel cell-based system offers the opportunity to both integrate fuel cell and electrolyzer functions into one unit and potentially simplify system requirements. Based an the TMI solid oxide fuel cell (SOPC) technology, the TMI integrated fuel cell/electrolyzer utilizes innovative gas storage and operational concepts and operates like a rechargeable 'hydrogen-oxygen battery'. Preliminary research has been completed on improved H2/H2O electrode (SOFC anode/electrolyzer cathode) materials for solid oxide, regenerative fuel cells. Improved H2/H2O electrode materials showed improved cell performance in both fuel cell and electrolysis modes in reversible cell tests. ln reversible fuel cell/electrolyzer mode, regenerative fuel cell efficiencies (ratio of power out (fuel cell mode) to power in (electrolyzer model)) improved from 50 percent (using conventional electrode materials) to over 80 percent. The new materials will allow the TMI SOFC system to operate as both the electrolyzer and fuel cell in a single unit. Preliminary system designs have also been developed which indicate the technical feasibility of using the TMI SOFC technology for space applications with high energy storage efficiencies and high specific energy. Development of small space systems would also have potential dual-use, terrestrial applications.

  14. The TMI regenerable solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Cable, Thomas L.

    1995-04-01

    Energy storage and production in space requires rugged, reliable hardware which minimizes weight, volume, and maintenance while maximizing power output and usable energy storage. These systems generally consist of photovoltaic solar arrays which operate during sunlight cycles to provide system power and regenerate fuel (hydrogen) via water electrolysis; during dark cycles, hydrogen is converted by the fuel cell into system. The currently preferred configuration uses two separate systems (fuel cell and electrolyzer) in conjunction with photovoltaic cells. Fuel cell/electrolyzer system simplicity, reliability, and power-to-weight and power-to-volume ratios could be greatly improved if both power production (fuel cell) and power storage (electrolysis) functions can be integrated into a single unit. The Technology Management, Inc. (TMI), solid oxide fuel cell-based system offers the opportunity to both integrate fuel cell and electrolyzer functions into one unit and potentially simplify system requirements. Based an the TMI solid oxide fuel cell (SOPC) technology, the TMI integrated fuel cell/electrolyzer utilizes innovative gas storage and operational concepts and operates like a rechargeable 'hydrogen-oxygen battery'. Preliminary research has been completed on improved H2/H2O electrode (SOFC anode/electrolyzer cathode) materials for solid oxide, regenerative fuel cells. Improved H2/H2O electrode materials showed improved cell performance in both fuel cell and electrolysis modes in reversible cell tests. ln reversible fuel cell/electrolyzer mode, regenerative fuel cell efficiencies (ratio of power out (fuel cell mode) to power in (electrolyzer model)) improved from 50 percent (using conventional electrode materials) to over 80 percent. The new materials will allow the TMI SOFC system to operate as both the electrolyzer and fuel cell in a single unit. Preliminary system designs have also been developed which indicate the technical feasibility of using the TMI SOFC technology for space applications with high energy storage efficiencies and high specific energy. Development of small space systems would also have potential dual-use, terrestrial applications.

  15. Hydrogen System Component Validation | Hydrogen and Fuel Cells | NREL

    Science.gov Websites

    Meeting (June 2017) Hydrogen Component Validation: 2016 Annual Progress Report, Danny Terlip, Excerpt from the 2016 DOE Annual Progress Report (February 2017) Hydrogen Component Validation: 2016 Annual Merit Transportation Decisions, NREL Fact Sheet (June 2016) Hydrogen Component Validation: 2015 Annual Progress Report

  16. 78 FR 79328 - Amendments to Material Control and Accounting Regulations and Proposed Guidance for Fuel Cycle...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-30

    ... Accounting Regulations and Proposed Guidance for Fuel Cycle Facility Material Control and Accounting Plans... accounting (MC&A) of special nuclear material (SNM). The public meeting has been rescheduled for January 9...

  17. Aircraft Engine Technology for Green Aviation to Reduce Fuel Burn

    NASA Technical Reports Server (NTRS)

    Hughes, Christopher E.; VanZante, Dale E.; Heidmann, James D.

    2013-01-01

    The NASA Fundamental Aeronautics Program Subsonic Fixed Wing Project and Integrated Systems Research Program Environmentally Responsible Aviation Project in the Aeronautics Research Mission Directorate are conducting research on advanced aircraft technology to address the environmental goals of reducing fuel burn, noise and NOx emissions for aircraft in 2020 and beyond. Both Projects, in collaborative partnerships with U.S. Industry, Academia, and other Government Agencies, have made significant progress toward reaching the N+2 (2020) and N+3 (beyond 2025) installed fuel burn goals by fundamental aircraft engine technology development, subscale component experimental investigations, full scale integrated systems validation testing, and development validation of state of the art computation design and analysis codes. Specific areas of propulsion technology research are discussed and progress to date.

  18. Conversion of methanol-fueled 16-valve, 4-cylinder engine to operation on gaseous 2H2/CO fuel

    NASA Astrophysics Data System (ADS)

    Schaefer, Ronald M.; Hamady, Fakhart J.; Martin, James C.

    1992-09-01

    The report describes progress to date on a project to convert a Nissan CA18DE engine previously modified for operation on M100 neat methanol to operation on dissociated methanol (2H2/CO) gaseous fuel. This engine was operated on both M100 and simulated dissociated methanol (67 percent hydrocarbon and 33 percent carbon monoxide) fuels. This report describes recent modifications made to the engine and fuel delivery system and summarizes the results from recent testing.

  19. 49 CFR 392.51 - Reserve fuel; materials of trade.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 5 2010-10-01 2010-10-01 false Reserve fuel; materials of trade. 392.51 Section 392.51 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL MOTOR CARRIER SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION FEDERAL MOTOR CARRIER SAFETY REGULATIONS DRIVING OF COMMERCIAL MOTOR VEHICLES Fueling Precautions...

  20. 49 CFR 392.51 - Reserve fuel; materials of trade.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 5 2013-10-01 2013-10-01 false Reserve fuel; materials of trade. 392.51 Section 392.51 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL MOTOR CARRIER SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION FEDERAL MOTOR CARRIER SAFETY REGULATIONS DRIVING OF COMMERCIAL MOTOR VEHICLES Fueling Precautions...

  1. 49 CFR 392.51 - Reserve fuel; materials of trade.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 5 2014-10-01 2014-10-01 false Reserve fuel; materials of trade. 392.51 Section 392.51 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL MOTOR CARRIER SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION FEDERAL MOTOR CARRIER SAFETY REGULATIONS DRIVING OF COMMERCIAL MOTOR VEHICLES Fueling Precautions...

  2. 49 CFR 392.51 - Reserve fuel; materials of trade.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 5 2011-10-01 2011-10-01 false Reserve fuel; materials of trade. 392.51 Section 392.51 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL MOTOR CARRIER SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION FEDERAL MOTOR CARRIER SAFETY REGULATIONS DRIVING OF COMMERCIAL MOTOR VEHICLES Fueling Precautions...

  3. PRELIMINARY EVALUATION OF FeCrAl CLADDING AND U-Si FUEL FOR ACCIDENT TOLERANT FUEL CONCEPTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hales, J. D.; Gamble, K. A.

    2015-09-01

    Since the accident at the Fukushima Daiichi Nuclear Power Station, enhancing the accident tolerance of light water reactors (LWRs) has become an important research topic. In particular, the community is actively developing enhanced fuels and cladding for LWRs to improve safety in the event of accidents in the reactor or spent fuel pools. Fuels with enhanced accident tolerance are those that, in comparison with the standard UO2-zirconium alloy system, can tolerate loss of active cooling in the reactor core for a considerably longer time period during design-basis and beyond design-basis events while maintaining or improving the fuel performance during normalmore » operations and operational transients. This paper presents early work in developing thermal and mechanical models for two materials that may have promise: U-Si for fuel, and FeCrAl for cladding. These materials would not necessarily be used together in the same fuel system, but individually have promising characteristics. BISON, the finite element-based fuel performance code in development at Idaho National Laboratory, was used to compare results from normal operation conditions with Zr-4/UO2 behavior. In addition, sensitivity studies are presented for evaluating the relative importance of material parameters such as ductility and thermal conductivity in FeCrAl and U-Si in order to provide guidance on future experiments for these materials.« less

  4. Fuel Cell Buses in U.S. Transit Fleets: Current Status 2017

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eudy, Leslie; Post, Matthew B

    This report, published annually, summarizes the progress of fuel cell electric bus (FCEB) development in the United States and discusses the achievements and challenges of introducing fuel cell propulsion in transit. The report provides a summary of results from evaluations performed by the National Renewable Energy Laboratory. This annual status report combines results from all FCEB demonstrations, tracks the progress of the FCEB industry toward meeting technical targets, documents the lessons learned, and discusses the path forward for commercial viability of fuel cell technology for transit buses. These data and analyses help provide needed information to guide future early-stage researchmore » and development. The 2017 summary results primarily focus on the most recent year for each demonstration, from August 2016 through July 2017. The primary results presented in the report are from five demonstrations of two different fuel-cell-dominant bus designs: Zero Emission Bay Area Demonstration Group led by Alameda-Contra Costa Transit District (AC Transit) in California; American Fuel Cell Bus (AFCB) Project at SunLine Transit Agency in California; AFCB Project at the University of California at Irvine; AFCB Project at Orange County Transportation Authority; and AFCB Project at Massachusetts Bay Transportation Authority.« less

  5. Materials challenges for nuclear systems

    DOE PAGES

    Allen, Todd; Busby, Jeremy; Meyer, Mitch; ...

    2010-11-26

    The safe and economical operation of any nuclear power system relies to a great extent, on the success of the fuel and the materials of construction. During the lifetime of a nuclear power system which currently can be as long as 60 years, the materials are subject to high temperature, a corrosive environment, and damage from high-energy particles released during fission. The fuel which provides the power for the reactor has a much shorter life but is subject to the same types of harsh environments. This article reviews the environments in which fuels and materials from current and proposed nuclearmore » systems operate and then describes how the creation of the Advanced Test Reactor National Scientific User Facility is allowing researchers from across the U.S. to test their ideas for improved fuels and materials.« less

  6. Technical Assistance to Developers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rockward, Tommy; Borup, Rodney L.; Garzon, Fernando H.

    2012-07-17

    This task supports the allowance of technical assistance to fuel-cell component and system developers as directed by the DOE. This task includes testing of novel materials and participation in the further development and validation of single cell test protocols. This task also covers technical assistance to DOE Working Groups, the U.S. Council for Automotive Research (USCAR) and the USCAR/DOE Driving Research and Innovation for Vehicle efficiency and Energy sustainability (U.S. Drive) Fuel Cell Technology Team. Assistance includes technical validation of new fuel cell materials and methods, single cell fuel cell testing to support the development of targets and test protocols,more » and regular advisory participation in other working groups and reviews. This assistance is made available to PEM fuel cell developers by request and DOE Approval. The objectives are to: (1) Support technically, as directed by DOE, fuel cell component and system developers; (2) Assess fuel cell materials and components and give feedback to developers; (3) Assist the DOE Durability Working Group with the development of various new material durability Testing protocols; and (4) Provide support to the U.S. Council for Automotive Research (USCAR) and the USCAR/DOE Fuel Cell Technology Team. FY2012 specific technical objectives are: (1) Evaluate novel MPL materials; (2) Develop of startup/ shutdown protocol; (3) Test the impact of hydrophobic treatment on graphite bi-polar plates; (4) Perform complete diagnostics on metal bi-polar plates for corrosion; and (5) Participate and lead efforts in the DOE Working Groups.« less

  7. FISSILE MATERIAL AND FUEL ELEMENTS FOR NEUTRONIC REACTORS

    DOEpatents

    Shaner, B.E.

    1961-08-15

    The fissile material consists of about 64 to 70% (weight) zirconium dioxide, 15 to 19% uranium dioxide, and 8 to 17% calcium oxide. The fissile material is formed into sintered composites which are disposed in a compartmented fuel element, comprising essentially a flat filler plate having a plurality of compartments therein, enclosed in cladding plates of the same material as the filler plate. The resultant fuel has good resistance to corrosion in high temperature pressurized water, good dimensional stability to elevated temperatures, and good resistance to thermal shock. (AEC)

  8. Strategies for Carbon and Sulfur Tolerant Solid Oxide Fuel Cell Materials, Incorporating Lessons from Heterogeneous Catalysis.

    PubMed

    Boldrin, Paul; Ruiz-Trejo, Enrique; Mermelstein, Joshua; Bermúdez Menéndez, José Miguel; Ramı Rez Reina, Tomás; Brandon, Nigel P

    2016-11-23

    Solid oxide fuel cells (SOFCs) are a rapidly emerging energy technology for a low carbon world, providing high efficiency, potential to use carbonaceous fuels, and compatibility with carbon capture and storage. However, current state-of-the-art materials have low tolerance to sulfur, a common contaminant of many fuels, and are vulnerable to deactivation due to carbon deposition when using carbon-containing compounds. In this review, we first study the theoretical basis behind carbon and sulfur poisoning, before examining the strategies toward carbon and sulfur tolerance used so far in the SOFC literature. We then study the more extensive relevant heterogeneous catalysis literature for strategies and materials which could be incorporated into carbon and sulfur tolerant fuel cells.

  9. Tests of several bearing materials lubricated by gasoline

    NASA Technical Reports Server (NTRS)

    Joachin, W F; Case, Harold W

    1926-01-01

    This investigation on the relative wear of several bearing materials lubricated by gasoline was conducted at the Langley Memorial Aeronautical Laboratory, as part of a general research on fuel injection engines for aircraft. The specific purpose of the work was to find a durable bearing material for gear pumps to be used for the delivery of gasoline and diesel engine fuel oil at moderate pressures to the high pressure pumps of fuel injection engines.

  10. Combustible structural composites and methods of forming combustible structural composites

    DOEpatents

    Daniels, Michael A [Idaho Falls, ID; Heaps, Ronald J [Idaho Falls, ID; Steffler, Eric D [Idaho Falls, ID; Swank, William D [Idaho Falls, ID

    2011-08-30

    Combustible structural composites and methods of forming same are disclosed. In an embodiment, a combustible structural composite includes combustible material comprising a fuel metal and a metal oxide. The fuel metal is present in the combustible material at a weight ratio from 1:9 to 1:1 of the fuel metal to the metal oxide. The fuel metal and the metal oxide are capable of exothermically reacting upon application of energy at or above a threshold value to support self-sustaining combustion of the combustible material within the combustible structural composite. Structural-reinforcing fibers are present in the composite at a weight ratio from 1:20 to 10:1 of the structural-reinforcing fibers to the combustible material. Other embodiments and aspects are disclosed.

  11. Combustible structural composites and methods of forming combustible structural composites

    DOEpatents

    Daniels, Michael A.; Heaps, Ronald J.; Steffler, Eric D.; Swank, W. David

    2013-04-02

    Combustible structural composites and methods of forming same are disclosed. In an embodiment, a combustible structural composite includes combustible material comprising a fuel metal and a metal oxide. The fuel metal is present in the combustible material at a weight ratio from 1:9 to 1:1 of the fuel metal to the metal oxide. The fuel metal and the metal oxide are capable of exothermically reacting upon application of energy at or above a threshold value to support self-sustaining combustion of the combustible material within the combustible structural composite. Structural-reinforcing fibers are present in the composite at a weight ratio from 1:20 to 10:1 of the structural-reinforcing fibers to the combustible material. Other embodiments and aspects are disclosed.

  12. Methods and apparatuses for the development of microstructured nuclear fuels

    DOEpatents

    Jarvinen, Gordon D [Los Alamos, NM; Carroll, David W [Los Alamos, NM; Devlin, David J [Santa Fe, NM

    2009-04-21

    Microstructured nuclear fuel adapted for nuclear power system use includes fissile material structures of micrometer-scale dimension dispersed in a matrix material. In one method of production, fissile material particles are processed in a chemical vapor deposition (CVD) fluidized-bed reactor including a gas inlet for providing controlled gas flow into a particle coating chamber, a lower bed hot zone region to contain powder, and an upper bed region to enable powder expansion. At least one pneumatic or electric vibrator is operationally coupled to the particle coating chamber for causing vibration of the particle coater to promote uniform powder coating within the particle coater during fuel processing. An exhaust associated with the particle coating chamber and can provide a port for placement and removal of particles and powder. During use of the fuel in a nuclear power reactor, fission products escape from the fissile material structures and come to rest in the matrix material. After a period of use in a nuclear power reactor and subsequent cooling, separation of the fissile material from the matrix containing the embedded fission products will provide an efficient partitioning of the bulk of the fissile material from the fission products. The fissile material can be reused by incorporating it into new microstructured fuel. The fission products and matrix material can be incorporated into a waste form for disposal or processed to separate valuable components from the fission products mixture.

  13. A spray flamelet/progress variable approach combined with a transported joint PDF model for turbulent spray flames

    NASA Astrophysics Data System (ADS)

    Hu, Yong; Olguin, Hernan; Gutheil, Eva

    2017-05-01

    A spray flamelet/progress variable approach is developed for use in spray combustion with partly pre-vaporised liquid fuel, where a laminar spray flamelet library accounts for evaporation within the laminar flame structures. For this purpose, the standard spray flamelet formulation for pure evaporating liquid fuel and oxidiser is extended by a chemical reaction progress variable in both the turbulent spray flame model and the laminar spray flame structures, in order to account for the effect of pre-vaporised liquid fuel for instance through use of a pilot flame. This new approach is combined with a transported joint probability density function (PDF) method for the simulation of a turbulent piloted ethanol/air spray flame, and the extension requires the formulation of a joint three-variate PDF depending on the gas phase mixture fraction, the chemical reaction progress variable, and gas enthalpy. The molecular mixing is modelled with the extended interaction-by-exchange-with-the-mean (IEM) model, where source terms account for spray evaporation and heat exchange due to evaporation as well as the chemical reaction rate for the chemical reaction progress variable. This is the first formulation using a spray flamelet model considering both evaporation and partly pre-vaporised liquid fuel within the laminar spray flamelets. Results with this new formulation show good agreement with the experimental data provided by A.R. Masri, Sydney, Australia. The analysis of the Lagrangian statistics of the gas temperature and the OH mass fraction indicates that partially premixed combustion prevails near the nozzle exit of the spray, whereas further downstream, the non-premixed flame is promoted towards the inner rich-side of the spray jet since the pilot flame heats up the premixed inner spray zone. In summary, the simulation with the new formulation considering the reaction progress variable shows good performance, greatly improving the standard formulation, and it provides new insight into the local structure of this complex spray flame.

  14. Pre- and post-irradiation characterization and properties measurements of ZrC coated surrogate TRISO particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vasudevamurthy, Gokul; Katoh, Yutai; Hunn, John D

    2010-09-01

    Zirconium carbide is a candidate to either replace or supplement silicon carbide as a coating material in TRISO fuel particles for high temperature gas-cooled reactor fuels. Six sets of ZrC coated surrogate microsphere samples, fabricated by the Japan Atomic Energy Agency using the fluidized bed chemical vapor deposition method, were irradiated in the High Flux Isotope Reactor at the Oak Ridge National Laboratory. These developmental samples available for the irradiation experiment were in conditions of either as-fabricated coated particles or particles that had been heat-treated to simulate the fuel compacting process. Five sets of samples were composed of nominally stoichiometricmore » compositions, with the sixth being richer in carbon (C/Zr = 1.4). The samples were irradiated at 800 and 1250 C with fast neutron fluences of 2 and 6 dpa. Post-irradiation, the samples were retrieved from the irradiation capsules followed by microstructural examination performed at the Oak Ridge National Laboratory's Low Activation Materials Development and Analysis Laboratory. This work was supported by the US Department of Energy Office of Nuclear Energy's Advanced Gas Reactor program as part of International Nuclear Energy Research Initiative collaboration with Japan. This report includes progress from that INERI collaboration, as well as results of some follow-up examination of the irradiated specimens. Post-irradiation examination items included microstructural characterization, and nanoindentation hardness/modulus measurements. The examinations revealed grain size enhancement and softening as the primary effects of both heat-treatment and irradiation in stoichiometric ZrC with a non-layered, homogeneous grain structure, raising serious concerns on the mechanical suitability of these particular developmental coatings as a replacement for SiC in TRISO fuel. Samples with either free carbon or carbon-rich layers dispersed in the ZrC coatings experienced negligible grain size enhancement during both heat treatment and irradiation. However, these samples experienced irradiation induced softening similar to stoichiometric ZrC samples.« less

  15. Advanced Gas Turbine (AGT)

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The development and progress of the Advanced Gas Turbine engine program is examined. An analysis of the role of ceramics in the design and major engine components is included. Projected fuel economy, emissions and performance standards, and versatility in fuel use are also discussed.

  16. THE ATTRACTIVENESS OF MATERIAS ASSOCIATED WITH THORIUM-BASED NUCLEAR FUEL CYCLES FOR PHWRS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prichard, Andrew W.; Niehus, Mark T.; Collins, Brian A.

    2011-07-17

    This paper reports the continued evaluation of the attractiveness of materials mixtures containing special nuclear materials (SNM) associated with thorium based nuclear fuel cycles. Specifically, this paper examines a thorium fuel cycle in which a pressurized heavy water reactor (PHWR) is fueled with mixtures of natural uranium/233U/thorium. This paper uses a PHWR fueled with natural uranium as a base fuel cycle, and then compares material attractiveness of fuel cycles that use 233U/thorium salted with natural uranium. The results include the material attractiveness of fuel at beginning of life (BoL), end of life (EoL), and the number of fuel assemblies requiredmore » to collect a bare critical mass of plutonium or uranium. This study indicates what is required to render the uranium as having low utility for use in nuclear weapons; in addition, this study estimates the increased number of assemblies required to accumulate a bare critical mass of plutonium that has a higher utility for use in nuclear weapons. This approach identifies that some fuel cycles may be easier to implement the International Atomic Energy Agency (IAEA) safeguards approach and have a more effective safeguards by design outcome. For this study, approximately one year of fuel is required to be reprocessed to obtain one bare critical mass of plutonium. Nevertheless, the result of this paper suggests that all spent fuel needs to be rigorously safeguarded and provided with high levels of physical protection. This study was performed at the request of the United States Department of Energy /National Nuclear Security Administration (DOE/NNSA). The methodology and key findings will be presented.« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carmack, William Jonathan; Braase, Lori Ann

    Fuel recovery from severe accidents requires careful planning and execution. The Idaho National Laboratory played a key role in the Three Mile Island (TMI) fuel and core recovery. This involved technology development to locate and handle the damaged fuel; characterization of fuel and debris; analysis of fuel interaction with structural components and materials; development of fuel drying technology for long-term storage. However, one of the critical activities from the TMI project was the extensive effort document all the activities and archive the reports and photos. A historical review of the TMI project at the INL leads to the identification ofmore » current applications and considerations for facility designs, fuel handling, robotic applications, material characterization, etc.« less

  18. 78 FR 79019 - Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Materials...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-27

    ... Subcommittee on Materials, Metallurgy & Reactor Fuels; Notice of Meeting The ACRS Subcommittee on Materials, Metallurgy & Reactor Fuels will hold a meeting on January 14, 2014, Room T-2B1, 11545 Rockville Pike... NRC's research activities in materials and metallurgy. The Subcommittee will hear presentations by and...

  19. 40 CFR 86.005-17 - On-board diagnostics.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Petroleum Gas-Fueled and Methanol-Fueled Heavy-Duty Vehicles § 86.005-17 On-board diagnostics. (a) General...: (1) SAE material. Copies of these materials may be obtained from the Society of Automotive Engineers..., J1939-71, J1939-73, J1939-81). (2) ISO materials. Copies of these materials may be obtained from the...

  20. 40 CFR 86.005-17 - On-board diagnostics.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Petroleum Gas-Fueled and Methanol-Fueled Heavy-Duty Vehicles § 86.005-17 On-board diagnostics. (a) General...: (1) SAE material. Copies of these materials may be obtained from the Society of Automotive Engineers..., J1939-71, J1939-73, J1939-81). (2) ISO materials. Copies of these materials may be obtained from the...

  1. Stability of Materials in High Temperature Water Vapor: SOFC Applications

    NASA Technical Reports Server (NTRS)

    Opila, E. J.; Jacobson, N. S.

    2010-01-01

    Solid oxide fuel cell material systems require long term stability in environments containing high-temperature water vapor. Many materials in fuel cell systems react with high-temperature water vapor to form volatile hydroxides which can degrade cell performance. In this paper, experimental methods to characterize these volatility reactions including the transpiration technique, thermogravimetric analysis, and high pressure mass spectrometry are reviewed. Experimentally determined data for chromia, silica, and alumina volatility are presented. In addition, data from the literature for the stability of other materials important in fuel cell systems are reviewed. Finally, methods for predicting material recession due to volatilization reactions are described.

  2. Estimating Fuel Bed Loadings in Masticated Areas

    Treesearch

    Sharon Hood; Ros Wu

    2006-01-01

    Masticated fuel treatments that chop small trees, shrubs, and dead woody material into smaller pieces to reduce fuel bed depth are used increasingly as a mechanical means to treat fuels. Fuel loading information is important to monitor changes in fuels. The commonly used planar intercept method however, may not correctly estimate fuel loadings because masticated fuels...

  3. An early glimpse at long-term subsonic commercial turbofan technology requirements. [fuel conservation

    NASA Technical Reports Server (NTRS)

    Gray, D. E.; Dugan, J. F.

    1975-01-01

    This paper reports on the exploratory investigation and initial findings of the study of future turbofan concepts to conserve fuel. To date, these studies have indicated a potential reduction in cruise thrust specific fuel consumption in 1990 turbofans of approximately 15% relative to present day new engines through advances in internal aerodynamics, structure-mechanics, and materials. Advanced materials also offer the potential for fuel savings through engine weight reduction. Further studies are required to balance fuel consumption reduction with sound airlines operational economics.

  4. Life cycle assessment of molten carbonate fuel cells: State of the art and strategies for the future

    NASA Astrophysics Data System (ADS)

    Mehmeti, Andi; Santoni, Francesca; Della Pietra, Massimiliano; McPhail, Stephen J.

    2016-03-01

    This study aims to review and provide an up to date international life cycle thinking literature with particular emphasis on life cycle assessment (LCA), applied to Molten Carbonate Fuel Cells (MCFCs), a technology forcefully entering the field of decentralized heat and power generation. Critical environmental issues, comparison of results between studies and improvement strategies are analyzed and highlighted. The findings stress that MCFC environmental performance is heavily influenced by the current use of non-renewable energy and high material demand of rare minerals which generate high environmental burdens in the manufacturing stage, thereby confirming the prominent role of these processes in a comprehensive LCA study. The comparison of operational phases highlights that MCFCs are robust and able to compete with other mature technologies contributing substantially to airborne emissions reduction and promoting a switch to renewable fuels, however, further progress and market competitiveness urges adoption of an eco-efficiency philosophy to forge the link between environmental and economic concerns. Adopting a well-organized systematic research driven by life cycle models and eco-efficiency principles stakeholders will glean valuable information to make well balanced decisions for improving performance towards the concept 'producing more quality with less resources' and accelerate market penetration of the technology.

  5. Capabilities Development for Transient Testing of Advanced Nuclear Fuels at TREAT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woolstenhulme, N. E.; Baker, C. C.; Bess, J. D.

    2016-09-01

    The TREAT facility is a unique capability at the Idaho National Laboratory currently being prepared for resumption of nuclear transient testing. Accordingly, designs for several transient irradiation tests are being pursued to enable development of advanced nuclear fuels and materials. In addition to the reactor itself, the foundation for TREAT’s capabilities also include a suite of irradiation vehicles and supporting infrastructure to provide the desired specimen boundary conditions while supporting a variety of instrumentation needs. The challenge of creating these vehicles, especially since many of the modern data needs were not historically addressed in TREAT experiment vehicles, has necessitated amore » sizeable engineering effort. This effort is currently underway and maturing rapidly. This paper summarizes the status, future plans, and rationale for TREAT experiment vehicle capabilities. Much of the current progress is focused around understanding and demonstrating the behavior of fuel design with enhanced accident tolerance in water-cooled reactors. Additionally, several related efforts are underway to facilitate transient testing in liquid sodium, inert gas, and steam environments. This paper discusses why such a variety of capabilities are needed, outlines plans to accomplish them, and describes the relationship between transient data needs and the irradiation hardware that will support the gathering of this information.« less

  6. Fuel reduction and coarse woody debris dynamics with early season and late season prescribed fires in a Sierra Nevada mixed conifer forest

    Treesearch

    Eric E. Knapp; Jon E. Keeley; Elizabeth A. Ballenger; Teresa J. Brennan

    2005-01-01

    Fire exclusion has led to an unnatural accumulation and greater spatial continuity of organic material on the ground in many forests. This material serves both as potential fuel for forest fires and habitat for a large array of forest species. Managers must balance fuel reduction to reduce wildfire hazard with fuel retention targets to maintain other forest functions....

  7. Processing fissile material mixtures containing zirconium and/or carbon

    DOEpatents

    Johnson, Michael Ernest; Maloney, Martin David

    2013-07-02

    A method of processing spent TRIZO-coated nuclear fuel may include adding fluoride to complex zirconium present in a dissolved TRIZO-coated fuel. Complexing the zirconium with fluoride may reduce or eliminate the potential for zirconium to interfere with the extraction of uranium and/or transuranics from fission materials in the spent nuclear fuel.

  8. 40 CFR 60.2875 - What definitions must I know?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... burn liquid wastes material and gas (Liquid/gas),” “Energy recovery unit designed to burn solid..., liquid fuel or gaseous fuels. Energy recovery unit designed to burn liquid waste material and gas (Liquid/gas) means an energy recovery unit that burns a liquid waste with liquid or gaseous fuels not combined...

  9. 40 CFR 60.2875 - What definitions must I know?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... burn liquid wastes material and gas (Liquid/gas),” “Energy recovery unit designed to burn solid..., liquid fuel or gaseous fuels. Energy recovery unit designed to burn liquid waste material and gas (Liquid/gas) means an energy recovery unit that burns a liquid waste with liquid or gaseous fuels not combined...

  10. Global Spent Fuel Logistics Systems Study (GSFLS). Volume 2A. GSFLS visit findings (appendix). Interim report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1978-01-31

    This appendix is a part of the interim report documentation for the Global Spent Fuel Logistics System (GSFLS) study. This appendix provides the legal/regulatory reference material, supportive of Volume 2 - GSFLS Visit Finding and Evaluations; and certain background material on British Nuclear Fuel Limited (BNFL).

  11. Pre-conceptual Development and characterization of an extruded graphite composite fuel for the TREAT Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luther, Erik; Rooyen, Isabella van; Leckie, Rafael

    2015-03-01

    In an effort to explore fuel systems that are more robust under accident scenarios, the DOE-NE has identified the need to resume transient testing. The Transient Reactor Test (TREAT) facility has been identified as the preferred option for the resumption of transient testing of nuclear fuel in the United States. In parallel, NNSA’s Global Threat Reduction Initiative (GTRI) Convert program is exploring the needs to replace the existing highly enriched uranium (HEU) core with low enriched uranium (LEU) core. In order to construct a new LEU core, materials and fabrication processes similar to those used in the initial core fabricationmore » must be identified, developed and characterized. In this research, graphite matrix fuel blocks were extruded and materials properties of were measured. Initially the extrusion process followed the historic route; however, the project was expanded to explore methods to increase the graphite content of the fuel blocks and explore modern resins. Materials properties relevant to fuel performance including density, heat capacity and thermal diffusivity were measured. The relationship between process defects and materials properties will be discussed.« less

  12. Parametric scramjet analysis

    NASA Astrophysics Data System (ADS)

    Choi, Jongseong

    The performance of a hypersonic flight vehicle will depend on existing materials and fuels; this work presents the performance of the ideal scramjet engine for three different combustion chamber materials and three different candidate fuels. Engine performance is explored by parametric cycle analysis for the ideal scramjet as a function of material maximum service temperature and the lower heating value of jet engine fuels. The thermodynamic analysis is based on the Brayton cycle as similarly employed in describing the performance of the ramjet, turbojet, and fanjet ideal engines. The objective of this work is to explore material operating temperatures and fuel possibilities for the combustion chamber of a scramjet propulsion system to show how they relate to scramjet performance and the seven scramjet engine parameters: specific thrust, fuel-to-air ratio, thrust-specific fuel consumption, thermal efficiency, propulsive efficiency, overall efficiency, and thrust flux. The information presented in this work has not been done by others in the scientific literature. This work yields simple algebraic equations for scramjet performance which are similar to that of the ideal ramjet, ideal turbojet and ideal turbofan engines.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Young-Ho; Byun, Thak Sang

    Accident-tolerant fuels are expected to have considerably longer coping time to respond to the loss of active cooling under severe accidents and, at the same time, have comparable or improved fuel performance during normal operation. The wear resistance of accident tolerant fuels, therefore, needs to be examined to determine the applicability of these cladding candidates to the current operating PWRs because the most common failure of nuclear fuel claddings is still caused by grid-to-rod fretting during normal operations. In this study, reciprocating sliding wear tests on three kinds of cladding candidates for accident-tolerant fuels have been performed to investigate themore » tribological compatibilities of selfmated cladding candidates and to determine the direct applicability of conventional Zirconium-based alloys as supporting structural materials. The friction coefficients of the cladding candidates are strongly influenced by the test environments and coupled materials. The wear test results under water lubrication conditions indicate that the supporting structural materials for the cladding candidates of accident-tolerant fuels need to be replaced with the same cladding materials instead of using conventional Zirconium-based alloys.« less

  14. Fuel Cell Seminar, 1992: Program and abstracts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-12-31

    This year`s theme, ``Fuel Cells: Realizing the Potential,`` focuses on progress being made toward commercial manufacture and use of fuel cell products. Fuel cell power plants are competing for market share in some applications and demonstrations of market entry power plants are proceeding for additional applications. Development activity on fuel cells for transportation is also increasing; fuel cell products have potential in energy and transportation industries, with very favorable environmental impacts. This Seminar has the purpose of fostering communication by providing a forum for the international community interested in development, application, and business opportunities related fuel cells. Over 190 technicalmore » papers are included, the majority being processed for the data base.« less

  15. Issues relating to spent nuclear fuel storage on the Oak Ridge Reservation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klein, J.A.; Turner, D.W.

    1994-12-31

    Currently, about 2,800 metric tons of spent nuclear fuel (SNF) is stored in the US, 1,000 kg of SNF (or about 0.03% of the nation`s total) are stored at the US Department of Energy (DOE) complex in Oak Ridge, Tennessee. However small the total quantity of material stored at Oak Ridge, some of the material is quite singular in character and, thus, poses unique management concerns. The various types of SNF stored at Oak Ridge will be discussed including: (1) High-Flux Isotope Reactor (HFIR) and future Advanced Neutron Source (ANS) fuels; (2) Material Testing Reactor (MTR) fuels, including Bulk Shieldingmore » Reactor (BSR) and Oak Ridge Research Reactor (ORR) fuels; (3) Molten Salt Reactor Experiment (MSRE) fuel; (4) Homogeneous Reactor Experiment (HRE) fuel; (5) Miscellaneous SNF stored in Oak Ridge National Laboratory`s (ORNL`s) Solid Waste Storage Areas (SWSAs); (6) SNF stored in the Y-12 Plant 9720-5 Warehouse including Health. Physics Reactor (HPRR), Space Nuclear Auxiliary Power (SNAP-) 10A, and DOE Demonstration Reactor fuels.« less

  16. Solid oxide MEMS-based fuel cells

    DOEpatents

    Jankowksi, Alan F.; Morse, Jeffrey D.

    2007-03-13

    A micro-electro-mechanical systems (MEMS) based thin-film fuel cells for electrical power applications. The MEMS-based fuel cell may be of a solid oxide type (SOFC), a solid polymer type (SPFC), or a proton exchange membrane type (PEMFC), and each fuel cell basically consists of an anode and a cathode separated by an electrolyte layer. The electrolyte layer can consist of either a solid oxide or solid polymer material, or proton exchange membrane electrolyte materials may be used. Additionally catalyst layers can also separate the electrodes (cathode and anode) from the electrolyte. Gas manifolds are utilized to transport the fuel and oxidant to each cell and provide a path for exhaust gases. The electrical current generated from each cell is drawn away with an interconnect and support structure integrated with the gas manifold. The fuel cells utilize integrated resistive heaters for efficient heating of the materials. By combining MEMS technology with thin-film deposition technology, thin-film fuel cells having microflow channels and full-integrated circuitry can be produced that will lower the operating temperature an will yield an order of magnitude greater power density than the currently known fuel cells.

  17. Solid polymer MEMS-based fuel cells

    DOEpatents

    Jankowski, Alan F [Livermore, CA; Morse, Jeffrey D [Pleasant Hill, CA

    2008-04-22

    A micro-electro-mechanical systems (MEMS) based thin-film fuel cells for electrical power applications. The MEMS-based fuel cell may be of a solid oxide type (SOFC), a solid polymer type (SPFC), or a proton exchange membrane type (PEMFC), and each fuel cell basically consists of an anode and a cathode separated by an electrolyte layer. The electrolyte layer can consist of either a solid oxide or solid polymer material, or proton exchange membrane electrolyte materials may be used. Additionally catalyst layers can also separate the electrodes (cathode and anode) from the electrolyte. Gas manifolds are utilized to transport the fuel and oxidant to each cell and provide a path for exhaust gases. The electrical current generated from each cell is drawn away with an interconnect and support structure integrated with the gas manifold. The fuel cells utilize integrated resistive heaters for efficient heating of the materials. By combining MEMS technology with thin-film deposition technology, thin-film fuel cells having microflow channels and full-integrated circuitry can be produced that will lower the operating temperature an will yield an order of magnitude greater power density than the currently known fuel cells.

  18. Limiting nuclear proliferation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gordon, L.; Cecelski, L.

    1978-01-01

    As a result of the 1977 experience, it is shown that the U.S. no longer dominates the world nuclear market and must change its approach from coercion to persuasion. President Carter, implementing his campaign promises on nuclear nonproliferation, has used direct pressure, negotiated with nuclear suppliers, and asked for legislation to impose rigid criteria for the export of nuclear materials. Unilateral actions included the deferment of facilities for fuel reprocessing and breeder reactors, but were followed by efforts for international cooperation as the year progressed. While global non-proliferation policies reinforced with international technical cooperation are seen as admirable goals, themore » response to U.S. initiatives is not seen to be encouraging.« less

  19. Nanomaterials for renewable energy production and storage.

    PubMed

    Chen, Xiaobo; Li, Can; Grätzel, Michaël; Kostecki, Robert; Mao, Samuel S

    2012-12-07

    Over the past decades, there have been many projections on the future depletion of the fossil fuel reserves on earth as well as the rapid increase in green-house gas emissions. There is clearly an urgent need for the development of renewable energy technologies. On a different frontier, growth and manipulation of materials on the nanometer scale have progressed at a fast pace. Selected recent and significant advances in the development of nanomaterials for renewable energy applications are reviewed here, and special emphases are given to the studies of solar-driven photocatalytic hydrogen production, electricity generation with dye-sensitized solar cells, solid-state hydrogen storage, and electric energy storage with lithium ion rechargeable batteries.

  20. Nanomaterial-Based Plasmon-Enhanced Infrared Spectroscopy.

    PubMed

    Yang, Xiaoxia; Sun, Zhipei; Low, Tony; Hu, Hai; Guo, Xiangdong; García de Abajo, F Javier; Avouris, Phaedon; Dai, Qing

    2018-05-01

    Surface-enhanced infrared absorption (SEIRA) has attracted increasing attention due to the potential of infrared spectroscopy in applications such as molecular trace sensing of solids, polymers, and proteins, specifically fueled by recent substantial developments in infrared plasmonic materials and engineered nanostructures. Here, the significant progress achieved in the past decades is reviewed, along with the current state of the art of SEIRA. In particular, the plasmonic properties of a variety of nanomaterials are discussed (e.g., metals, semiconductors, and graphene) along with their use in the design of efficient SEIRA configurations. To conclude, perspectives on potential applications, including single-molecule detection and in vivo bioassays, are presented. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Porous polymers: enabling solutions for energy applications.

    PubMed

    Thomas, Arne; Kuhn, Pierre; Weber, Jens; Titirici, Maria-Magdalena; Antonietti, Markus

    2009-02-18

    A new generation of porous polymers was made for various energy-related applications, e.g., as fuel cell membranes, as electrode materials for batteries, for gas storage, partly from renewable resources. This review intends to catch this emerging field by reporting on a variety of different approaches to make high performing polymers porous. This includes template techniques, polymers with inherent microporosity, polymer frameworks by ionothermal polymerization, and the polymerization of carbon from appropriate precursors and by hydrothermal polymerization. In this process, we try to not only identify the current status of the field, but also point to open question and tasks to identify the potentially relevant progress. Copyright © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. 2016 Annual Progress Report: DOE Hydrogen and Fuel Cells Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Satyapal, Sunita

    In the past year, the DOE Hydrogen Program (the Program) made substantial progress toward its goals and objectives. The Program has conducted comprehensive and focused efforts to enable the widespread commercialization of hydrogen and fuel cell technologies in diverse sectors of the economy. With emphasis on applications that will effectively strengthen our nation's energy security and improve our stewardship of the environment, the Program engages in research, development, and demonstration of critical improvements in the technologies. Highlights of the Program's accomplishments can be found in the sub-program chapters of this report.

  3. Progress of air-breathing cathode in microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Wang, Zejie; Mahadevan, Gurumurthy Dummi; Wu, Yicheng; Zhao, Feng

    2017-07-01

    Microbial fuel cell (MFC) is an emerging technology to produce green energy and vanquish the effects of environmental contaminants. Cathodic reactions are vital for high electrical power density generated from MFCs. Recently tremendous attentions were paid towards developing high performance air-breathing cathodes. A typical air-breathing cathode comprises of electrode substrate, catalyst layer, and air-diffusion layer. Prior researches demonstrated that each component influenced the performance of air-breathing cathode MFCs. This review summarized the progress in development of the individual component and elaborated main factors to the performance of air-breathing cathode.

  4. 2015 Annual Progress Report: DOE Hydrogen and Fuel Cells Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popovich, Neil

    In the past year, the DOE Hydrogen Program (the Program) made substantial progress toward its goals and objectives. The Program has conducted comprehensive and focused efforts to enable the widespread commercialization of hydrogen and fuel cell technologies in diverse sectors of the economy. With emphasis on applications that will effectively strengthen our nation's energy security and improve our stewardship of the environment, the Program engages in research, development, and demonstration of critical improvements in the technologies. Highlights of the Program's accomplishments can be found in the sub-program chapters of this report.

  5. 2012 Annual Progress Report: DOE Hydrogen and Fuel Cells Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    In the past year, the DOE Hydrogen Program (the Program) made substantial progress toward its goals and objectives. The Program has conducted comprehensive and focused efforts to enable the widespread commercialization of hydrogen and fuel cell technologies in diverse sectors of the economy. With emphasis on applications that will effectively strengthen our nation's energy security and improve our stewardship of the environment, the Program engages in research, development, and demonstration of critical improvements in the technologies. Highlights of the Program's accomplishments can be found in the sub-program chapters of this report.

  6. Installation of Ohio's First Electrolysis-Based Hydrogen Fueling Station

    NASA Technical Reports Server (NTRS)

    Scheidegger, Brianne T.; Lively, Michael L.

    2012-01-01

    This paper describes progress made towards the installation of a hydrogen fueling station in Northeast Ohio. In collaboration with several entities in the Northeast Ohio area, the NASA Glenn Research Center is installing a hydrogen fueling station that uses electrolysis to generate hydrogen on-site. The installation of this station is scheduled for the spring of 2012 at the Greater Cleveland Regional Transit Authority s Hayden bus garage in East Cleveland. This will be the first electrolysis-based hydrogen fueling station in Ohio.

  7. Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stottler, Gary

    General Motors, LLC and energy partner Shell Hydrogen, LLC, deployed a system of hydrogen fuel cell electric vehicles integrated with a hydrogen fueling station infrastructure to operate under real world conditions as part of the U.S. Department of Energy's Controlled Hydrogen Fleet and Infrastructure Validation and Demonstration Project. This technical report documents the performance and describes the learnings from progressive generations of vehicle fuel cell system technology and multiple approaches to hydrogen generation and delivery for vehicle fueling.

  8. Solid Polymer Electrolyte (SPE) fuel cell technology program

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The overall objectives of the Phase IV Solid Polymer Electrolyte Fuel Cell Technology Program were to: (1) establish fuel cell life and performance at temperatures, pressures and current densities significantly higher than those previously demonstrated; (2) provide the ground work for a space energy storage system based on the solid polymer electrolyte technology (i.e., regenerative H2/O2 fuel cell); (3) design, fabricate and test evaluate a full-scale single cell unit. During this phase, significant progress was made toward the accomplishment of these objectives.

  9. Advanced Gas Turbine (AGT) Technology Development Project

    NASA Technical Reports Server (NTRS)

    1987-01-01

    This report is the eleventh in the series of Technical Summary reports for the Advanced Gas Turbine (AGT) Technology Development Project, authorized under NASA Contract DEN3-167, and sponsored by the Department of Energy (DOE). This report was prepared by Garrett Turbine Engine Company, A Division of the Garrett Corporation, and includes information provided by Ford Motor Company, the Standard Oil Company, and AiResearch Casting Company. This report covers plans and progress for the period July 1, 1985 through June 30, 1986. Technical progress during the reported period was highlighted by the 85-hour endurance run of an all-ceramic engine operating in the 2000 to 2250 F temperature regime. Component development continued in the areas of the combustion/fuel injection system, regenerator and seals system, and ceramic turbine rotor attachment design. Component rig testing saw further refinements. Ceramic materials showed continued improvements in required properties for gas turbine applications; however, continued development is needed before performance and reliability goals can be set.

  10. Potential radiological impact of tornadoes on the safety of Nuclear Fuel Services' West Valley Fuel Reprocessing Plant. 2. Reentrainment and discharge of radioactive materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, W Jr

    1981-07-01

    This report describes results of a parametric study of quantities of radioactive materials that might be discharged by a tornado-generated depressurization on contaminated process cells within the presently inoperative Nuclear Fuel Services' (NFS) fuel reprocessing facility near West Valley, New York. The study involved the following tasks: determining approximate quantities of radioactive materials in the cells and characterizing particle-size distribution; estimating the degree of mass reentrainment from particle-size distribution and from air speed data presented in Part 1; and estimating the quantities of radioactive material (source term) released from the cells to the atmosphere. The study has shown that improperlymore » sealed manipulator ports in the Process Mechanical Cell (PMC) present the most likely pathway for release of substantial quantities of radioactive material in the atmosphere under tornado accident conditions at the facility.« less

  11. Serially connected solid oxide fuel cells having monolithic cores

    DOEpatents

    Herceg, Joseph E.

    1987-01-01

    A solid oxide fuel cell for electrochemically combining fuel and oxidant for generating galvanic output, wherein the cell core has an array of cell segments electrically serially connected in the flow direction, each segment consisting of electrolyte walls and interconnect that are substantially devoid of any composite inert materials for support. Instead, the core is monolithic, where each electrolyte wall consists of thin layers of cathode and anode materials sandwiching a thin layer of electrolyte material therebetween. Means direct the fuel to the anode-exposed core passageways and means direct the oxidant to the cathode-exposed core passageways; and means also direct the galvanic output to an exterior circuit. Each layer of the electrolyte composite materials is of the order of 0.002-0.01 cm thick; and each layer of the cathode and anode materials is of the order of 0.002-0.05 cm thick. Between 2 and 50 cell segments may be connected in series.

  12. Solid oxide fuel cell having monolithic cross flow core and manifolding

    DOEpatents

    Poeppel, Roger B.; Dusek, Joseph T.

    1984-01-01

    This invention discloses a monolithic core construction having the flow passageways for the fuel and for the oxidant gases extended transverse to one another, whereby full face core manifolding can be achieved for these gases and their reaction products. The core construction provides that only anode material surround each fuel passageway and only cathode material surround each oxidant passageway, each anode and each cathode further sandwiching at spaced opposing sides electrolyte and interconnect materials to define electrolyte and interconnect walls. Webs of the cathode and anode material hold the electrolyte and interconnect walls spaced apart to define the flow passages. The composite anode and cathode wall structures are further alternately stacked on one another (with the separating electrolyte or interconnect material typically being a single common layer) whereby the fuel passageway and the oxidant passageways are disposed transverse to one another.

  13. Solid oxide fuel cell having monolithic cross flow core and manifolding

    DOEpatents

    Poeppel, R.B.; Dusek, J.T.

    1983-10-12

    This invention discloses a monolithic core construction having the flow passageways for the fuel and for the oxidant gases extended transverse to one another, whereby full face core manifolding can be achieved for these gases and their reaction products. The core construction provides that only anode material surround each fuel passageway and only cathode material surround each oxidant passageway, each anode and each cathode further sandwiching at spaced opposing sides electrolyte and interconnect materials to define electrolyte and interconnect walls. Webs of the cathode and anode material hold the electrolyte and interconnect walls spaced apart to define the flow passages. The composite anode and cathode wall structures are further alternately stacked on one another (with the separating electrolyte or interconnect material typically being a single common layer) whereby the fuel passageways and the oxidant passageways are disposed transverse to one another.

  14. ISS Progress 68 Docking Coverage

    NASA Image and Video Library

    2017-10-16

    The unpiloted Russian ISS Progress 68 cargo craft arrived at the International Space Station Oct. 16 on a resupply mission following a two day journey following its launch from the Baikonur Cosmodrome in Kazakhstan. The Progress delivered almost three tons of food, fuel and supplies for the Expedition 53 crew. The Progress automatically linked up to the Pirs Docking Compartment, where it will remain until next March.

  15. Method and apparatus for conversion of carbonaceous materials to liquid fuel

    DOEpatents

    Lux, Kenneth W.; Namazian, Mehdi; Kelly, John T.

    2015-12-01

    Embodiments of the invention relates to conversion of hydrocarbon material including but not limited to coal and biomass to a synthetic liquid transportation fuel. The invention includes the integration of a non-catalytic first reaction scheme, which converts carbonaceous materials into a solid product that includes char and ash and a gaseous product; a non-catalytic second reaction scheme, which converts a portion of the gaseous product from the first reaction scheme to light olefins and liquid byproducts; a traditional gas-cleanup operations; and the third reaction scheme to combine the olefins from the second reaction scheme to produce a targeted fuel like liquid transportation fuels.

  16. Fuel from Tobacco and Arundo Donax: Synthetic Crop for Direct Drop-in Biofuel Production through Re-routing the Photorespiration Intermediates and Engineering Terpenoid Pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    PETRO Project: Biofuels offer renewable alternatives to petroleum-based fuels that reduce net greenhouse gas emissions to nearly zero. However, traditional biofuels production is limited not only by the small amount of solar energy that plants convert through photosynthesis into biological materials, but also by inefficient processes for converting these biological materials into fuels. Farm-ready, non-food crops are needed that produce fuels or fuel-like precursors at significantly lower costs with significantly higher productivity. To make biofuels cost-competitive with petroleum-based fuels, biofuels production costs must be cut in half.

  17. Calculation of Distribution Dynamics of Inhomogeneous Temperature Field in Range of Fuel Elements by Using FreeFem++

    NASA Astrophysics Data System (ADS)

    Amosova, E. V.; Shishkin, A. V.

    2017-11-01

    This article introduces the result of studying the heat exchange in the fuel element of the nuclear reactor fuel magazine. Fuel assemblies are completed as a bundle of cylindrical fuel elements located at the tops of a regular triangle. Uneven distribution of fuel rods in a nuclear reactor’s core forms the inhomogeneity of temperature fields. This article describes the developed method for heat exchange calculation with the account for impact of an inhomogeneous temperature field on the thermal-physical properties of materials and unsteady effects. The acquired calculation results are used for evaluating the tolerable temperature levels in protective case materials.

  18. Thickness and Fuel Preheating Effects on Material Flammability in Microgravity from the BASS Experiment

    NASA Technical Reports Server (NTRS)

    Ferkul, Paul V.; Olson, Sandra L.; Takahashi, Fumiaki; Endo, Makoto; Johnson, Michael C.; T'ien, James S.

    2013-01-01

    The Burning and Suppression of Solids (BASS) experiment was performed on the International Space Station. Microgravity combustion tests burning thin and thick flat samples, acrylic spheres, and candles were conducted. The samples were mounted inside a small wind tunnel which could impose air flow speeds up to 40 cms. The wind tunnel was installed in the Microgravity Science Glovebox which supplied power, imaging, and a level of containment. The effects of air flow speed, fuel thickness, fuel preheating, and nitrogen dilution on flame appearance, flame growth, and spread rates were determined in both the opposed and concurrent flow configuration. In some cases, a jet of nitrogen was introduced to attempt to extinguish the flame. Microgravity flames were found to be especially sensitive to air flow speed in the range 0 to 5 cms. The gas phase response is much faster compared to the solid and so as the flow speed is changed, the flame responds with almost no delay. At the lowest speeds examined (less than 1 cms) all the flames tended to become dim blue and very stable. However, heat loss at these very low convective rates is small so the flames can burn for a long time. At moderate flow speeds (between about 1 and 5 cms) the flame continually heats the solid fuel resulting in an increasing fuel temperature, higher rate of fuel vaporization, and a stronger, more luminous flame as time progresses. Only the smallest flames burning acrylic slabs appeared to be adversely influenced by solid conductive heat loss, but even these burned for over 5 minutes before self-extinguishing. This has implications for spacecraft fire safety since a tiny flame might be undetected for a long time. While the small flame is not particularly hazardous if it remains small, the danger is that it might flare up if the air convection is suddenly increased or if the flame spreads into another fuel source.

  19. TEMperature Pressure ESTimation of a homogeneous boiling fuel-steel mixture in an LMFBR core. [TEMPEST code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pyun, J.J.; Majumdar, D.

    The paper describes TEMPEST, a simple computer program for the temperature and pressure estimation of a boiling fuel-steel pool in an LMFBR core. The time scale of interest of this program is large, of the order of ten seconds. Further, the vigorous boiling in the pool will generate a large contact, and hence a large heat transfer between fuel and steel. The pool is assumed to be a uniform mixture of fuel and steel, and consequently vapor production is also assumed to be uniform throughout the pool. The pool is allowed to expand in volume if there is steel meltingmore » at the walls. In this program, the total mass of liquid and vapor fuel is always kept constant, but the total steel mass in the pool may change by steel wall melting. Because of a lack of clear understanding of the physical phenomena associated with the progression of a fuel-steel mixture at high temperature, various input options have been built-in to enable one to perform parametric studies. For example, the heat transfer from the pool to the surrounding steel structure may be controlled by input values for the heat transfer coefficients, or, the heat transfer may be calculated by a correlation obtained from the literature. Similarly, condensation of vapor on the top wall can be specified by input values of the condensation coefficient; the program can otherwise calculate condensation according to the non-equilibrium model predictions. Meltthrough rates of the surrounding steel walls can be specified by a fixed melt-rate or can be determined by a fraction of the heat loss that goes to steel-melting. The melted steel is raised to the pool temperature before it is joined with the pool material. Several applications of this program to various fuel-steel pools in the FFTF and the CRBR cores are discussed.« less

  20. Fuel Cell Buses in U.S. Transit Fleets: Current Status 2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eudy, Leslie; Gikakis, Christina

    2013-12-01

    This report is the seventh in an annual series of reports that summarize the progress of fuel cell electric bus (FCEB) development in the United States and discuss the achievements and challenges of introducing fuel cell propulsion in transit. The report also provides a snapshot of current FCEB performance results from August 2012 through July 2013 for five FCEB demonstrations at four transit agencies.

  1. Development of planar solid oxide fuel cells for power generation applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minh, N.Q.

    1996-04-01

    Planar solid oxide fuel cells (SOFCs) are presently being developed for a variety of electric power generation application. The planar design offers simple cell geometry, high power density, and multiple fabrication and gas manifolding options. Planar SOFC technology has received much attention recently, and significant progress has been made in this area. Recent effort at AlliedSignal has focused on the development of high-performance, lightweight planar SOFCs, having thin-electrolyte films, that can be operated efficiently at reduced temperatures (< 1000{degrees}C). The advantages of reduced-temperature operation include wider material choice (including use of metallic interconnects), expected longer cell life, reduced thermal stress,more » improved reliability, and reduced fuel cell cost. The key aspect in the development of thin-film SIFCs is to incorporate the thin electrolyte layer into the desired structure of cells in a manner that yields the required characteristics. AlliedSignal has developed a simple and cost-effective method based on tape calendering for the fabrication of thin-electrolyte SOFCs. Thin-electrolyte cells made by tape calendering have shown extraordinary performance, e.g., producing more than 500mW/cm{sup 2} at 700{degrees}C and 800mW/cm{sup 2} at 800{degrees}C with hydrogen as fuel and air is oxidant. thin-electrolyte single cells have been incorporated into a compliant metallic stack structure and operated at reduced and operated at reduced-temperature conditions.« less

  2. Fuel Cell Buses in U.S. Transit Fleets : Summary of Experiences and Current Status

    DOT National Transportation Integrated Search

    2007-09-01

    This report reviews past and present fuel cell bus technology development and implementation, specifically focusing on experiences and progress in the United States. This review encompasses results from the U.S. Department of Energy (DOE)/National Re...

  3. Global progress and backsliding on gasoline taxes and subsidies

    NASA Astrophysics Data System (ADS)

    Ross, Michael L.; Hazlett, Chad; Mahdavi, Paasha

    2017-01-01

    To reduce greenhouse gas emissions in the coming decades, many governments will have to reform their energy policies. These policies are difficult to measure with any precision. As a result, it is unclear whether progress has been made towards important energy policy reforms, such as reducing fossil fuel subsidies. We use new data to measure net taxes and subsidies for gasoline in almost all countries at the monthly level and find evidence of both progress and backsliding. From 2003 to 2015, gasoline taxes rose in 83 states but fell in 46 states. During the same period, the global mean gasoline tax fell by 13.3% due to faster consumption growth in countries with lower taxes. Our results suggest that global progress towards fossil fuel price reform has been mixed, and that many governments are failing to exploit one of the most cost-effective policy tools for limiting greenhouse gas emissions.

  4. Solid oxide fuel cell having monolithic core

    DOEpatents

    Ackerman, John P.; Young, John E.

    1984-01-01

    A solid oxide fuel cell for electrochemically combining fuel and oxidant for generating galvanic output, wherein the cell core has an array of electrolyte and interconnect walls that are substantially devoid of any composite inert materials for support. Instead, the core is monolithic, where each electrolyte wall consists of thin layers of cathode and anode materials sandwiching a thin layer of electrolyte material therebetween, and each interconnect wall consists of thin layers of the cathode and anode materials sandwiching a thin layer of interconnect material therebetween. The electrolyte walls are arranged and backfolded between adjacent interconnect walls operable to define a plurality of core passageways alternately arranged where the inside faces thereof have only the anode material or only the cathode material exposed. Means direct the fuel to the anode-exposed core passageways and means direct the oxidant to the cathode-exposed core passageway; and means also direct the galvanic output to an exterior circuit. Each layer of the electrolyte and interconnect materials is of the order of 0.002-0.01 cm thick; and each layer of the cathode and anode materials is of the order of 0.002-0.05 cm thick.

  5. Solar energy for electricity and fuels.

    PubMed

    Inganäs, Olle; Sundström, Villy

    2016-01-01

    Solar energy conversion into electricity by photovoltaic modules is now a mature technology. We discuss the need for materials and device developments using conventional silicon and other materials, pointing to the need to use scalable materials and to reduce the energy payback time. Storage of solar energy can be achieved using the energy of light to produce a fuel. We discuss how this can be achieved in a direct process mimicking the photosynthetic processes, using synthetic organic, inorganic, or hybrid materials for light collection and catalysis. We also briefly discuss challenges and needs for large-scale implementation of direct solar fuel technologies.

  6. Materials Requirements for Advanced Energy Systems - New Fuels. Volume 3: Materials Research Needs in Advanced Energy Systems Using New Fuels

    DTIC Science & Technology

    1974-07-01

    elec- Materials se: trode materials and associ- operational ated conductors. 2.5.1 General. H" (02) Materials resources Technoeconomic analysis - None...Advanced Energy Systems Using New Fnels VIII Correlation and Analysis of Materials Requirements IX Research Recommendations and Priorities The authois...of government and industrial organizal ions who gave us the benefit of their knowledge and experience. iv VIII CORRELATION ANU ANALYSIS OF MATERIALS

  7. Air-Cooled Stack Freeze Tolerance Freeze Failure Modes and Freeze Tolerance Strategies for GenDriveTM Material Handling Application Systems and Stacks Final Scientific Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hancock, David, W.

    2012-02-14

    Air-cooled stack technology offers the potential for a simpler system architecture (versus liquid-cooled) for applications below 4 kilowatts. The combined cooling and cathode air allows for a reduction in part count and hence a lower cost solution. However, efficient heat rejection challenges escalate as power and ambient temperature increase. For applications in ambient temperatures below freezing, the air-cooled approach has additional challenges associated with not overcooling the fuel cell stack. The focus of this project was freeze tolerance while maintaining all other stack and system requirements. Through this project, Plug Power advanced the state of the art in technology formore » air-cooled PEM fuel cell stacks and related GenDrive material handling application fuel cell systems. This was accomplished through a collaborative work plan to improve freeze tolerance and mitigate freeze-thaw effect failure modes within innovative material handling equipment fuel cell systems designed for use in freezer forklift applications. Freeze tolerance remains an area where additional research and understanding can help fuel cells to become commercially viable. This project evaluated both stack level and system level solutions to improve fuel cell stack freeze tolerance. At this time, the most cost effective solutions are at the system level. The freeze mitigation strategies developed over the course of this project could be used to drive fuel cell commercialization. The fuel cell system studied in this project was Plug Power's commercially available GenDrive platform providing battery replacement for equipment in the material handling industry. The fuel cell stacks were Ballard's commercially available FCvelocity 9SSL (9SSL) liquid-cooled PEM fuel cell stack and FCvelocity 1020ACS (Mk1020) air-cooled PEM fuel cell stack.« less

  8. The Manufacture of W-UO2 Fuel Elements for NTP Using the Hot Isostatic Pressing Consolidation Process

    NASA Technical Reports Server (NTRS)

    Broadway, Jeramie; Hickman, Robert; Mireles, Omar

    2012-01-01

    NTP is attractive for space exploration because: (1) Higher Isp than traditional chemical rockets (2)Shorter trip times (3) Reduced propellant mass (4) Increased payload. Lack of qualified fuel material is a key risk (cost, schedule, and performance). Development of stable fuel form is a critical path, long lead activity. Goals of this project are: Mature CERMET and Graphite based fuel materials and Develop and demonstrate critical technologies and capabilities.

  9. Progress on coal-derived fuels for aviation systems

    NASA Technical Reports Server (NTRS)

    Witcofski, R. D.

    1978-01-01

    The results of engineering studies of coal-derived aviation fuels and their potential application to the air transportation system are presented. Synthetic aviation kerosene (SYN. JET-A), liquid methane (LCH4) and liquid hydrogen (LH2) appear to be the most promising coal-derived fuels. Aircraft configurations fueled with LH2, their fuel systems, and their ground requirements at the airport are identified. Energy efficiency, transportation hazards, and costs are among the factors considered. It is indicated that LCH4 is the most energy efficient to produce, and provides the most efficient utilization of coal resources and the least expensive ticket as well.

  10. Unique Proton Transportation Pathway in a Robust Inorganic Coordination Polymer Leading to Intrinsically High and Sustainable Anhydrous Proton Conductivity.

    PubMed

    Gui, Daxiang; Dai, Xing; Tao, Zetian; Zheng, Tao; Wang, Xiangxiang; Silver, Mark A; Shu, Jie; Chen, Lanhua; Wang, Yanlong; Zhang, Tiantian; Xie, Jian; Zou, Lin; Xia, Yuanhua; Zhang, Jujia; Zhang, Jin; Zhao, Ling; Diwu, Juan; Zhou, Ruhong; Chai, Zhifang; Wang, Shuao

    2018-05-16

    Although comprehensive progress has been made in the area of coordination polymer (CP)/metal-organic framework (MOF)-based proton-conducting materials over the past decade, searching for a CP/MOF with stable, intrinsic, high anhydrous proton conductivity that can be directly used as a practical electrolyte in an intermediate-temperature proton-exchange membrane fuel cell assembly for durable power generation remains a substantial challenge. Here, we introduce a new proton-conducting CP, (NH 4 ) 3 [Zr(H 2/3 PO 4 ) 3 ] (ZrP), which consists of one-dimensional zirconium phosphate anionic chains and fully ordered charge-balancing NH 4 + cations. X-ray crystallography, neutron powder diffraction, and variable-temperature solid-state NMR spectroscopy suggest that protons are disordered within an inherent hydrogen-bonded infinite chain of acid-base pairs (N-H···O-P), leading to a stable anhydrous proton conductivity of 1.45 × 10 -3 S·cm -1 at 180 °C, one of the highest values among reported intermediate-temperature proton-conducting materials. First-principles and quantum molecular dynamics simulations were used to directly visualize the unique proton transport pathway involving very efficient proton exchange between NH 4 + and phosphate pairs, which is distinct from the common guest encapsulation/dehydration/superprotonic transition mechanisms. ZrP as the electrolyte was further assembled into a H 2 /O 2 fuel cell, which showed a record-high electrical power density of 12 mW·cm -2 at 180 °C among reported cells assembled from crystalline solid electrolytes, as well as a direct methanol fuel cell for the first time to demonstrate real applications. These cells were tested for over 15 h without notable power loss.

  11. Study and program plan for improved heavy duty gas turbine engine ceramic component development

    NASA Technical Reports Server (NTRS)

    Helms, H. E.

    1977-01-01

    Fuel economy in a commercially viable gas turbine engine was demonstrated through use of ceramic materials. Study results show that increased turbine inlet and generator inlet temperatures, through the use of ceramic materials, contribute the greatest amount to achieving fuel economy goals. Improved component efficiencies show significant additional gains in fuel economy.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, D.R.

    The purpose of the Heavy Vehicle Propulsion System Materials Program is the development of materials: ceramics, intermetallics, metal alloys, and metal and ceramic coatings, to support the dieselization of class 1-3 trucks to realize a 35% fuel-economy improvement over current gasoline-fueled trucks and to support commercialization of fuel-flexible LE-55 low-emissions, high-efficiency diesel engines for class 7-8 trucks.

  13. Solid oxide fuel cell having monolithic core

    DOEpatents

    Ackerman, J.P.; Young, J.E.

    1983-10-12

    A solid oxide fuel cell is described for electrochemically combining fuel and oxidant for generating galvanic output, wherein the cell core has an array of electrolyte and interconnect walls that are substantially devoid of any composite inert materials for support. Instead, the core is monolithic, where each electrolyte wall consists of thin layers of cathode and anode materials sandwiching a thin layer of electrolyte material therebetween. The electrolyte walls are arranged and backfolded between adjacent interconnect walls operable to define a plurality of core passageways alternately arranged where the inside faces thereof have only the anode material or only the cathode material exposed. Means direct the fuel to the anode-exposed core passageways and means direct the oxidant to the anode-exposed core passageways and means direct the oxidant to the cathode-exposed core passageway; and means also direct the galvanic output to an exterior circuit. Each layer of the electrolyte and interconnect materials is of the order of 0.002 to 0.01 cm thick; and each layer of the cathode and anode materials is of the order of 0.002 to 0.05 cm thick.

  14. 46 CFR 182.720 - Nonmetallic piping materials.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... braid; (iv) Flexible hose used for alcohol-gasoline blend fuels must meet the permeability requirements...) and (d) of this section. (b) Flexible nonmetallic materials (hose) may be used in vital and non-vital... gasoline or diesel fuel systems. Flexible nonmetallic materials (hose) may be used where permitted by...

  15. 46 CFR 182.720 - Nonmetallic piping materials.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... braid; (iv) Flexible hose used for alcohol-gasoline blend fuels must meet the permeability requirements...) and (d) of this section. (b) Flexible nonmetallic materials (hose) may be used in vital and non-vital... gasoline or diesel fuel systems. Flexible nonmetallic materials (hose) may be used where permitted by...

  16. 46 CFR 182.720 - Nonmetallic piping materials.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... braid; (iv) Flexible hose used for alcohol-gasoline blend fuels must meet the permeability requirements...) and (d) of this section. (b) Flexible nonmetallic materials (hose) may be used in vital and non-vital... gasoline or diesel fuel systems. Flexible nonmetallic materials (hose) may be used where permitted by...

  17. 46 CFR 182.720 - Nonmetallic piping materials.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... braid; (iv) Flexible hose used for alcohol-gasoline blend fuels must meet the permeability requirements...) and (d) of this section. (b) Flexible nonmetallic materials (hose) may be used in vital and non-vital... gasoline or diesel fuel systems. Flexible nonmetallic materials (hose) may be used where permitted by...

  18. 46 CFR 182.720 - Nonmetallic piping materials.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... braid; (iv) Flexible hose used for alcohol-gasoline blend fuels must meet the permeability requirements...) and (d) of this section. (b) Flexible nonmetallic materials (hose) may be used in vital and non-vital... gasoline or diesel fuel systems. Flexible nonmetallic materials (hose) may be used where permitted by...

  19. Liquid fossil-fuel technology. Quarterly technical progress report, April-June 1982

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linville, B.

    This report primarily covers in-house oil, gas, and synfuel research and lists the contracted research. The report is broken into the following areas: liquid fossil fuel cycle, extraction, processing, utilization, and project integration and technology transfer. BETC publications are listed. (DLC)

  20. Parametric Thermal Models of the Transient Reactor Test Facility (TREAT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradley K. Heath

    2014-03-01

    This work supports the restart of transient testing in the United States using the Department of Energy’s Transient Reactor Test Facility at the Idaho National Laboratory. It also supports the Global Threat Reduction Initiative by reducing proliferation risk of high enriched uranium fuel. The work involves the creation of a nuclear fuel assembly model using the fuel performance code known as BISON. The model simulates the thermal behavior of a nuclear fuel assembly during steady state and transient operational modes. Additional models of the same geometry but differing material properties are created to perform parametric studies. The results show thatmore » fuel and cladding thermal conductivity have the greatest effect on fuel temperature under the steady state operational mode. Fuel density and fuel specific heat have the greatest effect for transient operational model. When considering a new fuel type it is recommended to use materials that decrease the specific heat of the fuel and the thermal conductivity of the fuel’s cladding in order to deal with higher density fuels that accompany the LEU conversion process. Data on the latest operating conditions of TREAT need to be attained in order to validate BISON’s results. BISON’s models for TREAT (material models, boundary convection models) are modest and need additional work to ensure accuracy and confidence in results.« less

  1. Synthetic biology for CO2 fixation.

    PubMed

    Gong, Fuyu; Cai, Zhen; Li, Yin

    2016-11-01

    Recycling of carbon dioxide (CO 2 ) into fuels and chemicals is a potential approach to reduce CO 2 emission and fossil-fuel consumption. Autotrophic microbes can utilize energy from light, hydrogen, or sulfur to assimilate atmospheric CO 2 into organic compounds at ambient temperature and pressure. This provides a feasible way for biological production of fuels and chemicals from CO 2 under normal conditions. Recently great progress has been made in this research area, and dozens of CO 2 -derived fuels and chemicals have been reported to be synthesized by autotrophic microbes. This is accompanied by investigations into natural CO 2 -fixation pathways and the rapid development of new technologies in synthetic biology. This review first summarizes the six natural CO 2 -fixation pathways reported to date, followed by an overview of recent progress in the design and engineering of CO 2 -fixation pathways as well as energy supply patterns using the concept and tools of synthetic biology. Finally, we will discuss future prospects in biological fixation of CO 2 .

  2. CONSTRUCTION PROGRESS PHOTO OF REMOTE ANALYTICAL FACILITY (CPP627). INL PHOTO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CONSTRUCTION PROGRESS PHOTO OF REMOTE ANALYTICAL FACILITY (CPP-627). INL PHOTO NUMBER NRTS-54-12124. Unknown Photographer, 9/21/1954 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  3. Next generation fuel irradiation capability in the High Flux Reactor Petten

    NASA Astrophysics Data System (ADS)

    Fütterer, Michael A.; D'Agata, Elio; Laurie, Mathias; Marmier, Alain; Scaffidi-Argentina, Francesco; Raison, Philippe; Bakker, Klaas; de Groot, Sander; Klaassen, Frodo

    2009-07-01

    This paper describes selected equipment and expertise on fuel irradiation testing at the High Flux Reactor (HFR) in Petten, The Netherlands. The reactor went critical in 1961 and holds an operating license up to at least 2015. While HFR has initially focused on Light Water Reactor fuel and materials, it also played a decisive role since the 1970s in the German High Temperature Reactor (HTR) development program. A variety of tests related to fast reactor development in Europe were carried out for next generation fuel and materials, in particular for Very High Temperature Reactor (V/HTR) fuel, fuel for closed fuel cycles (U-Pu and Th-U fuel cycle) and transmutation, as well as for other innovative fuel types. The HFR constitutes a significant European infrastructure tool for the development of next generation reactors. Experimental facilities addressed include V/HTR fuel tests, a coated particle irradiation rig, and tests on fast reactor, transmutation and thorium fuel. The rationales for these tests are given, results are provided and further work is outlined.

  4. The TMI Regenerative Solid Oxide Fuel Cell

    NASA Technical Reports Server (NTRS)

    Cable, Thomas L.; Ruhl, Robert C.; Petrik, Michael

    1996-01-01

    Energy storage and production in space requires rugged, reliable hardware which minimizes weight, volume, and maintenance while maximizing power output and usable energy storage. Systems generally consist of photovoltaic solar arrays which operate (during sunlight cycles) to provide system power and regenerate fuel (hydrogen) via water electrolysis and (during dark cycles) fuel cells convert hydrogen into electricity. Common configurations use two separate systems (fuel cell and electrolyzer) in conjunction with photovoltaic cells. Reliability, power to weight and power to volume ratios could be greatly improved if both power production (fuel cells) and power storage (electrolysis) functions can be integrated into a single unit. The solid oxide fuel cell (SOFC) based design integrates fuel cell and electrolyzer functions and potentially simplifies system requirements. The integrated fuel cell/electrolyzer design also utilizes innovative gas storage concepts and operates like a rechargeable 'hydrogen-oxygen battery'. Preliminary research has been completed on improved H2/H20 electrode (SOFC anode/electrolyzer cathode) materials for regenerative fuel cells. Tests have shown improved cell performance in both fuel and electrolysis modes in reversible fuel cell tests. Regenerative fuel cell efficiencies, ratio of power out (fuel cell mode) to power in (electrolyzer mode), improved from 50 percent using conventional electrode materials to over 80 percent. The new materials will allow a single SOFC system to operate as both the electolyzer and fuel cell. Preliminary system designs have also been developed to show the technical feasibility of using the design for space applications requiring high energy storage efficiencies and high specific energy. Small space systems also have potential for dual-use, terrestrial applications.

  5. Using graphitic foam as the bonding material in metal fuel pins for sodium fast reactors

    NASA Astrophysics Data System (ADS)

    Karahan, Aydın; Kazimi, Mujid S.

    2013-10-01

    The study evaluates the possible use of graphite foam as the bonding material between U-Pu-Zr metallic fuel and steel clad for sodium fast reactor applications using FEAST-METAL fuel performance code. Furthermore, the applicability of FEAST-METAL to the advanced fuel designs is demonstrated. Replacing the sodium bond with a chemically stable foam material would eliminate fuel clad metallurgical interactions, and allow for fuel swelling under low external stress. Hence, a significant improvement is expected for the steady state and transient performance. FEAST-METAL was used to assess the thermo-mechanical behavior of the new fuel form and a reference metallic fuel pin. Nearly unity conversion ratio, 75% smear density U-15Pu-6Zr metallic fuel pin with sodium bond, and T91 cladding was selected as a reference case. It was found that operating the reference case at high clad temperatures (600-660 °C) results in (1) excessive clad wastage formation/clad thinning due to lanthanide migration and formation of brittle phases at clad inner surface, and (2) excessive clad hoop strain at the upper axial section due mainly to the occurrence of thermal creep. The combination of these two factors may lead to cladding breach. The work concludes that replacing the sodium bond with 80% porous graphite foam and reducing the fuel smear density to 70%, it is likely that the fuel clad metallurgical interaction would be eliminated while the fuel swelling is allowed without excessive fuel clad mechanical interaction. The suggested design appears as an alternative for a high performance metallic fuel design for sodium fast reactors.

  6. The Behavior of Hydrogen Under Extreme Conditions on Ultrafast Timescales (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    "The Behavior of Hydrogen Under Extreme Conditions on Ultrafast Timescales" was submitted by the Center for Energy Frontier Research in Extreme Environments (EFree) to the "Life at the Frontiers of Energy Research" video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. EFree is directed by Ho-kwang Mao at the Carnegie Institute of Science in Washington, DC and is a partnership of scientists from thirteen institutions.The Office of Basic Energy Sciences in the U.S. Department of Energy's Office ofmore » Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of Energy Frontier Research in Extreme Environments is 'to accelerate the discovery and creation of energy-relevant materials using extreme pressures and temperatures.' Research topics are: catalysis (CO2, water), photocatalysis, solid state lighting, optics, thermelectric, phonons, thermal conductivity, solar electrodes, fuel cells, superconductivity, extreme environment, radiation effects, defects, spin dynamics, CO2 (capture, convert, store), greenhouse gas, hydrogen (fuel, storage), ultrafast physics, novel materials synthesis, and defect tolerant materials.« less

  7. Status of the US RERTR Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Travelli, A.

    1995-02-01

    The progress of the Reduced Enrichment Research and Test Reactor (RERTR) Program is described. The major events, findings, and activities of 1994 are reviewed after a brief summary of the results which the RERTR Program had achieved by the end of 1993 in collaboration with its many international partners. The RERTR Program has moved aggressively to support President Clinton`s nonproliferation policy and his goal {open_quotes}to minimize the use of highly-enriched uranium in civil nuclear programs{close_quotes}. An Environmental Assessment which addresses the urgent-relief acceptance of 409 spent fuel elements was completed, and the first shipment of spent fuel elements is scheduledmore » for this month. An Environmental Impact Statement addressing the acceptance of spent research reactor fuel containing enriched uranium of U.S. origin is scheduled for completion by the end of June 1995. The U.S. administration has decided to resume development of high-density LEU research reactor fuels. DOE funding and guidance are expected to begin soon. A preliminary plan for the resumption of fuel development has been prepared and is ready for implementation. The scope and main technical activities of a plan to develop and demonstrate within the next five years the technical means needed to convert Russian-supplied research reactors to LEU fuels was agreed upon by the RERTR Program and four Russian institutes lead by RDIPE. Both Secretary O`Leary and Minister Michailov have expressed strong support for this initiative. Joint studies have made significant progress, especially in assessing the technical and economic feasibility of using reduced enrichment fuels in the SAFARI-I reactor in South Africa and in the Advanced Neutron Source reactor under design at ORNL. Significant progress was achieved on several aspects of producing {sup 99}Mo from fission targets utilizing LEU instead of HEU to the achievement of the common goal.« less

  8. Advanced Compatibility Characterization Of AF-M315E With Spacecraft Propulsion System Materials Project

    NASA Technical Reports Server (NTRS)

    McClure, Mark B.; Greene, Benjamin

    2014-01-01

    All spacecraft require propulsion systems for thrust and maneuvering. Propulsion systems can be chemical, nuclear, electrical, cold gas or combinations thereof. Chemical propulsion has proven to be the most reliable technology since the deployment of launch vehicles. Performance, storability, and handling are three important aspects of liquid chemical propulsion. Bipropellant systems require a fuel and an oxidizer for propulsion, but monopropellants only require a fuel and a catalyst for propulsion and are therefore simpler and lighter. Hydrazine is the state of the art propellant for monopropellant systems, but has drawbacks because it is highly hazardous to human health, which requires extensive care in handling, complex ground ops due to safety and environmental considerations, and lengthy turnaround times for reusable spacecraft. All users of hydrazine monopropellant must contend with these issues and their associated costs. The development of a new monopropellant, intended to replace hydrazine, has been in progress for years. This project will apply advanced techniques to characterize the engineering properties of materials used in AF-M315E propulsion systems after propellant exposure. AF-M315E monopropellant has been selected HQ's Green Propellant Infusion Mission (GPIM) to replace toxic hydrazine for improved performance and reduce safety and health issues that will shorten reusable spacecraft turn-around time. In addition, this project will fundamentally strengthen JSC's core competency to evaluate, use and infuse liquid propellant systems.

  9. Alternative Fuels Data Center: Natural Gas Fuel Basics

    Science.gov Websites

    -derived natural gas, renewable natural gas-which is produced from decaying organic materials-must be on organic materials. Alternatively, renewable natural gas (RNG), also known as biomethane, is produced from organic materials-such as waste from landfills and livestock-through anaerobic digestion. RNG

  10. Assessment of future natural gas vehicle concepts

    NASA Astrophysics Data System (ADS)

    Groten, B.; Arrigotti, S.

    1992-10-01

    The development of Natural Gas Vehicles is progressing rapidly under the stimulus of recent vehicle emission regulations. The development is following what can be viewed as a three step progression. In the first step, contemporary gasoline or diesel fueled automobiles are retrofitted with equipment enabling the vehicle to operate on either natural gas or standard liquid fuels. The second step is the development of vehicles which utilize traditional internal combustion engines that have been modified to operate exclusively on natural gas. These dedicated natural gas vehicles operate more efficiently and have lower emissions than the dual fueled vehicles. The third step is the redesigning, from the ground up, of a vehicle aimed at exploiting the advantages of natural gas as an automotive fuel while minimizing its disadvantages. The current report is aimed at identifying the R&D needs in various fuel storage and engine combinations which have potential for providing increased efficiency, reduced emissions, and reductions in vehicle weight and size. Fuel suppliers, automobile and engine manufacturers, many segments of the natural gas and other industries, and regulatory authorities will influence or be affected by the development of such a third generation vehicle, and it is recommended that GRI act to bring these groups together in the near future to begin, developing the focus on a 'designed-for-natural-gas' vehicle.

  11. Laser-fusion targets for reactors

    DOEpatents

    Nuckolls, John H.; Thiessen, Albert R.

    1987-01-01

    A laser target comprising a thermonuclear fuel capsule composed of a centrally located quantity of fuel surrounded by at least one or more layers or shells of material for forming an atmosphere around the capsule by a low energy laser prepulse. The fuel may be formed as a solid core or hollow shell, and, under certain applications, a pusher-layer or shell is located intermediate the fuel and the atmosphere forming material. The fuel is ignited by symmetrical implosion via energy produced by a laser, or other energy sources such as an electron beam machine or ion beam machine, whereby thermonuclear burn of the fuel capsule creates energy for applications such as generation of electricity via a laser fusion reactor.

  12. Molten salt destruction of energetic waste materials

    DOEpatents

    Brummond, W.A.; Upadhye, R.S.; Pruneda, C.O.

    1995-07-18

    A molten salt destruction process is used to treat and destroy energetic waste materials such as high explosives, propellants, and rocket fuels. The energetic material is pre-blended with a solid or fluid diluent in safe proportions to form a fluid fuel mixture. The fuel mixture is rapidly introduced into a high temperature molten salt bath. A stream of molten salt is removed from the vessel and may be recycled as diluent. Additionally, the molten salt stream may be pumped from the reactor, circulated outside the reactor for further processing, and delivered back into the reactor or cooled and circulated to the feed delivery system to further dilute the fuel mixture entering the reactor. 4 figs.

  13. Molten salt destruction of energetic waste materials

    DOEpatents

    Brummond, William A.; Upadhye, Ravindra S.; Pruneda, Cesar O.

    1995-01-01

    A molten salt destruction process is used to treat and destroy energetic waste materials such as high explosives, propellants, and rocket fuels. The energetic material is pre-blended with a solid or fluid diluent in safe proportions to form a fluid fuel mixture. The fuel mixture is rapidly introduced into a high temperature molten salt bath. A stream of molten salt is removed from the vessel and may be recycled as diluent. Additionally, the molten salt stream may be pumped from the reactor, circulated outside the reactor for further processing, and delivered back into the reactor or cooled and circulated to the feed delivery system to further dilute the fuel mixture entering the reactor.

  14. Ru-decorated Pt surfaces as model fuel cell electrocatalysts for CO electrooxidation.

    PubMed

    Maillard, F; Lu, G-Q; Wieckowski, A; Stimming, U

    2005-09-01

    This feature article concerns Pt surfaces modified (decorated) by ruthenium as model fuel cell electrocatalysts for electrooxidation processes. This work reveals the role of ruthenium promoters in enhancing electrocatalytic activity toward organic fuels for fuel cells, and it particularly concerns the methanol decomposition product, surface CO. A special focus is on surface mobility of the CO as it is catalytically oxidized to CO(2). Different methods used to prepare Ru-decorated Pt single crystal surfaces as well as Ru-decorated Pt nanoparticles are reviewed, and the methods of characterization and testing of their activity are discussed. The focus is on the origin of peak splitting involved in the voltammetric electrooxidation of CO on Ru-decorated Pt surfaces, and on the interpretative consequences of the splitting for single crystal and nanoparticle Pt/Ru bimetallic surfaces. Apparently, screening through the literature allows formulating several models of the CO stripping reaction, and the validity of these models is discussed. Major efforts are made in this article to compare the results reported by the Urbana-Champaign group and the Munich group, but also by other groups. As electrocatalysis is progressively more and more driven by theory, our review of the experimental findings may serve to summarize the state of the art and clarify the roads ahead. Future studies will deal with highly dispersed and reactive nanoscale surfaces and other more advanced catalytic materials for fuel cell catalysis and related energy applications. It is expected that the metal/metal and metal/substrate interactions will be increasingly investigated on atomic and electronic levels, with likewise increasing participation of theory, and the structure and reactivity of various monolayer catalytic systems involving more than two metals (that is ternary and quaternary systems) will be interrogated.

  15. Partial replacement of fossil fuel in a cement plant: risk assessment for the population living in the neighborhood.

    PubMed

    Rovira, Joaquim; Mari, Montse; Nadal, Martí; Schuhmacher, Marta; Domingo, José L

    2010-10-15

    In cement plants, the substitution of traditional fossil fuels not only allows a reduction of CO(2), but it also means to check-out residual materials, such as sewage sludge or municipal solid wastes (MSW), which should otherwise be disposed somehow/somewhere. In recent months, a cement plant placed in Alcanar (Catalonia, Spain) has been conducting tests to replace fossil fuel by refuse-derived fuel (RDF) from MSW. In July 2009, an operational test was progressively initiated by reaching a maximum of partial substitution of 20% of the required energy. In order to study the influence of the new process, environmental monitoring surveys were performed before and after the RDF implementation. Metals and polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) were analyzed in soil, herbage, and air samples collected around the facility. In soils, significant decreases of PCDD/F levels, as well as in some metal concentrations were found, while no significant increases in the concentrations of these pollutants were observed. In turn, PM(10) levels remained constant, with a value of 16μgm(-3). In both surveys, the carcinogenic and non-carcinogenic risks derived from exposure to metals and PCDD/Fs for the population living in the vicinity of the facility were within the ranges considered as acceptable according to national and international standards. This means that RDF may be a successful choice in front of classical fossil fuels, being in accordance with the new EU environmental policies, which entail the reduction of CO(2) emissions and the energetic valorization of MSW. However, further long-term environmental studies are necessary to corroborate the harmlessness of RDF, in terms of human health risks. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. 3D Stagnation instabilities in MagLIF loads on the Z Generator

    NASA Astrophysics Data System (ADS)

    Jennings, Christopher

    2017-10-01

    Experiments with Magnetized Liner Inertial Fusion (MagLIF) loads have successfully demonstrated the premise of magnetized fusion. While these experiments are increasingly well diagnosed, many of the measurements (particularly during stagnation) are time integrated, limited in spatial resolution or require additional assumptions to interpret in the context of a structured, rapidly evolving system. As such, there is some ambiguity over what may be limiting performance. Poor laser coupling in preheating the fuel prior to implosion has been suggested as a mechanism. Mix of high Z contaminants that cool the fuel is also a significant concern. In addition, time integrated crystal imaging has shown significant structure in the final fuel assembly indicating potential disruption from instabilities. Understanding the balance between these degradation mechanisms is vital to progress with MagLif. We compare several sets of experimental data with synthetically generated data from systematically varied 3D resistive-MHD simulations to gain insight into the relative contributions of different degradation mechanisms. We demonstrate how some measurements strongly indicate disruption from liner material penetrating into the fuel at stagnation, and discuss the implications this has for how MagLif targets work and scale to larger drive currents. We then explore the extent to which different combinations of instability development, current delivery, high-Z mix into the fuel and initial laser deposition can be differentiated in our existing measurements. Better determining the dominant degradation mechanisms can directly influence the direction we take to improve performance, or our confidence in scaling these targets to higher currents. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. DoE's NNSA under contract DE-NA0003525.

  17. Selection of Nuclear Fuel for TREAT: UO 2 vs U 3O 8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glazoff, Michael Vasily; Van Rooyen, Isabella Johanna; Coryell, Benjamin David

    The Transient Reactor Test (TREAT) that resides at the Materials and Fuels Complex (MFC) at Idaho National Laboratory (INL), first achieved criticality in 1959, and successfully performed many transient tests on nuclear fuel until 1994 when its operations were suspended. Resumption of operations at TREAT was approved in February 2014 to meet the U.S. Department of Energy (DOE) Office of Nuclear Energy’s objectives in transient testing of nuclear fuels. The National Nuclear Security Administration’s is converting TREAT from its existing highly enriched uranium (HEU) core to a new core containing low enriched uranium (LEU) (i.e., U-235< 20% by weight). Themore » TREAT Conversion project is currently progressing with conceptual design phase activities. Dimensional stability of the fuel element assemblies, predictable fuel can oxidation and sufficient heat conductivity by the fuel blocks are some of the critical performance requirements of the new LEU fuel. Furthermore, to enable the design team to design fuel block and can specifications, it is amongst the objectives to evaluate TREAT LEU fuel and cladding material’s chemical interaction. This information is important to understand the viability of Zr-based alloys and fuel characteristics for the fabrication of the TREAT LEU fuel and cladding. Also, it is very important to make the right decision on what type of nuclear fuel will be used at TREAT. In particular, one has to consider different oxides of uranium, and most importantly, UO 2 vs U 3O 8. In this report, the results are documented pertaining to the choice mentioned above (UO 2 vs U 3O 8). The conclusion in favor of using UO 2 was made based on the analysis of historical data, up-to-date literature, and self-consistent calculations of phase equilibria and thermodynamic properties in the U-O and U-O-C systems. The report is organized as follows. First, the criteria that were used to make the choice are analyzed. Secondly, existing historical data and current literature were reviewed. This analysis was supplemented by the construction and examination of the U-O and U-O-C phase diagrams at pressure close to negligent, thereby mimicking the conditions in which nuclear fuel is supposed to function inside the zirconium-based cladding in the reactor. Finally, our conclusion in favor of the UO 2 down selection was summarized and explained in the last Section of this document.« less

  18. Technology readiness levels for advanced nuclear fuels and materials development

    DOE PAGES

    Carmack, W. J.; Braase, L. A.; Wigeland, R. A.; ...

    2016-12-23

    The Technology Readiness Level (TRL) process is used to quantitatively assess the maturity of a given technology. It was pioneered by the National Aeronautics and Space Administration (NASA) in the 1980s to develop and deploy new systems for space applications. The process was subsequently adopted by the Department of Defense (DoD) to develop and deploy new technology and systems for defense applications as well as the Department of Energy (DOE) to evaluate the maturity of new technologies in major construction projects. Advanced nuclear fuels and materials development is a critical technology needed for improving the performance and safety of currentmore » and advanced reactors, and ultimately closing the nuclear fuel cycle. Because deployment of new nuclear fuel forms requires a lengthy and expensive research, development, and demonstration program, applying the TRL concept to the advanced fuel development program is very useful as a management, communication and tracking tool. Furthermore, this article provides examples regarding the methods by which TRLs are currently used to assess the maturity of nuclear fuels and materials under development in the DOE Fuel Cycle Research and Development (FCRD) Program within the Advanced Fuels Campaign (AFC).« less

  19. Technology readiness levels for advanced nuclear fuels and materials development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carmack, W. J.; Braase, L. A.; Wigeland, R. A.

    The Technology Readiness Level (TRL) process is used to quantitatively assess the maturity of a given technology. It was pioneered by the National Aeronautics and Space Administration (NASA) in the 1980s to develop and deploy new systems for space applications. The process was subsequently adopted by the Department of Defense (DoD) to develop and deploy new technology and systems for defense applications as well as the Department of Energy (DOE) to evaluate the maturity of new technologies in major construction projects. Advanced nuclear fuels and materials development is a critical technology needed for improving the performance and safety of currentmore » and advanced reactors, and ultimately closing the nuclear fuel cycle. Because deployment of new nuclear fuel forms requires a lengthy and expensive research, development, and demonstration program, applying the TRL concept to the advanced fuel development program is very useful as a management, communication and tracking tool. Furthermore, this article provides examples regarding the methods by which TRLs are currently used to assess the maturity of nuclear fuels and materials under development in the DOE Fuel Cycle Research and Development (FCRD) Program within the Advanced Fuels Campaign (AFC).« less

  20. 2009 Annual Progress Report: DOE Hydrogen Program, November 2009 (Book)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2009-11-01

    This report summarizes the hydrogen and fuel cell R&D activities and accomplishments of the DOE Hydrogen Program for FY2009. It covers the program areas of hydrogen production and delivery; fuel cells; manufacturing; technology validation; safety, codes and standards; education; and systems analysis.

Top