DOE Office of Scientific and Technical Information (OSTI.GOV)
Jason M. Harp; Paul A. Demkowicz
2014-10-01
In the High Temperature Gas-Cooled Reactor (HTGR) the TRISO particle fuel serves as the primary fission product containment. However the large number of TRISO particles present in proposed HTGRs dictates that there will be a small fraction (~10 -4 to 10 -5) of as manufactured and in-pile particle failures that will lead to some fission product release. The matrix material surrounding the TRISO particles in fuel compacts and the structural graphite holding the TRISO particles in place can also serve as sinks for containing any released fission products. However data on the migration of solid fission products through these materialsmore » is lacking. One of the primary goals of the AGR-3/4 experiment is to study fission product migration from failed TRISO particles in prototypic HTGR components such as structural graphite and compact matrix material. In this work, the potential for a Gamma Emission Computed Tomography (GECT) technique to non-destructively examine the fission product distribution in AGR-3/4 components and other irradiation experiments is explored. Specifically, the feasibility of using the Idaho National Laboratory (INL) Hot Fuels Examination Facility (HFEF) Precision Gamma Scanner (PGS) system for this GECT application is considered. To test the feasibility, the response of the PGS system to idealized fission product distributions has been simulated using Monte Carlo radiation transport simulations. Previous work that applied similar techniques during the AGR-1 experiment will also be discussed as well as planned uses for the GECT technique during the post irradiation examination of the AGR-2 experiment. The GECT technique has also been applied to other irradiated nuclear fuel systems that were currently available in the HFEF hot cell including oxide fuel pins, metallic fuel pins, and monolithic plate fuel.« less
Bohn, Mark S.; Anselmo, Mark
2001-01-01
Computer simulation was used in the development of an inward-burning, radial matrix gas burner and heat pipe heat exchanger. The burner and exchanger can be used to heat a Stirling engine on cloudy days when a solar dish, the normal source of heat, cannot be used. Geometrical requirements of the application forced the use of the inward burning approach, which presents difficulty in achieving a good flow distribution and air/fuel mixing. The present invention solved the problem by providing a plenum with just the right properties, which include good flow distribution and good air/fuel mixing with minimum residence time. CFD simulations were also used to help design the primary heat exchanger needed for this application which includes a plurality of pins emanating from the heat pipe. The system uses multiple inlet ports, an extended distance from the fuel inlet to the burner matrix, flow divider vanes, and a ring-shaped, porous grid to obtain a high-temperature uniform-heat radial burner. Ideal applications include dish/Stirling engines, steam reforming of hydrocarbons, glass working, and any process requiring high temperature heating of the outside surface of a cylindrical surface.
Low-Cost Resin Transfer Molding Process Developed for High-Temperature Polyimide Matrix Composites
NASA Technical Reports Server (NTRS)
1996-01-01
The use of high-temperature polymer matrix composites (PMC's) in aircraft engine applications can significantly reduce engine weight and improve performance and fuel efficiency. High-temperature PMC's, such as those based on the PMR-15 polyimide matrix resin developed by the NASA Lewis Research Center, have been used extensively in military applications where performance improvements have justified their use regardless of the cost involved in producing the component. However, in commercial engines cost is a primary driver, and PMC components must be produced at costs comparable to those of the metal components that they will replace.
Neutronic fuel element fabrication
Korton, George
2004-02-24
This disclosure describes a method for metallurgically bonding a complete leak-tight enclosure to a matrix-type fuel element penetrated longitudinally by a multiplicity of coolant channels. Coolant tubes containing solid filler pins are disposed in the coolant channels. A leak-tight metal enclosure is then formed about the entire assembly of fuel matrix, coolant tubes and pins. The completely enclosed and sealed assembly is exposed to a high temperature and pressure gas environment to effect a metallurgical bond between all contacting surfaces therein. The ends of the assembly are then machined away to expose the pin ends which are chemically leached from the coolant tubes to leave the coolant tubes with internal coolant passageways. The invention described herein was made in the course of, or under, a contract with the U.S. Atomic Energy Commission. It relates generally to fuel elements for neutronic reactors and more particularly to a method for providing a leak-tight metal enclosure for a high-performance matrix-type fuel element penetrated longitudinally by a multiplicity of coolant tubes. The planned utilization of nuclear energy in high-performance, compact-propulsion and mobile power-generation systems has necessitated the development of fuel elements capable of operating at high power densities. High power densities in turn require fuel elements having high thermal conductivities and good fuel retention capabilities at high temperatures. A metal clad fuel element containing a ceramic phase of fuel intimately mixed with and bonded to a continuous refractory metal matrix has been found to satisfy the above requirements. Metal coolant tubes penetrate the matrix to afford internal cooling to the fuel element while providing positive fuel retention and containment of fission products generated within the fuel matrix. Metal header plates are bonded to the coolant tubes at each end of the fuel element and a metal cladding or can completes the fuel-matrix enclosure by encompassing the sides of the fuel element between the header plates.
A model to predict thermal conductivity of irradiated U-Mo dispersion fuel
NASA Astrophysics Data System (ADS)
Burkes, Douglas E.; Huber, Tanja K.; Casella, Andrew M.
2016-05-01
Numerous global programs are focused on the continued development of existing and new research and test reactor fuels to achieve maximum attainable uranium loadings to support the conversion of a number of the world's remaining high-enriched uranium fueled reactors to low-enriched uranium fuel. Some of these programs are focused on assisting with the development and qualification of a fuel design that consists of a uranium-molybdenum (U-Mo) alloy dispersed in an aluminum matrix as one option for reactor conversion. Thermal conductivity is an important consideration in determining the operational temperature of the fuel and can be influenced by interaction layer formation between the dispersed phase and matrix and upon the concentration of the dispersed phase within the matrix. This paper extends the use of a simple model developed previously to study the influence of interaction layer formation as well as the size and volume fraction of fuel particles dispersed in the matrix, Si additions to the matrix, and Mo concentration in the fuel particles on the effective thermal conductivity of the U-Mo/Al composite during irradiation. The model has been compared to experimental measurements recently conducted on U-Mo/Al dispersion fuels at two different fission densities with acceptable agreement. Observations of the modeled results indicate that formation of an interaction layer and subsequent consumption of the matrix reveals a rather significant effect on effective thermal conductivity. The modeled interaction layer formation and subsequent consumption of the high thermal conductivity matrix was sensitive to the average dispersed fuel particle size, suggesting this parameter as one of the most effective in minimizing thermal conductivity degradation of the composite, while the influence of Si additions to the matrix in the model was highly dependent upon irradiation conditions.
A model to predict thermal conductivity of irradiated U–Mo dispersion fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burkes, Douglas E.; Huber, Tanja K.; Casella, Andrew M.
The Office of Materials Management and Minimization Reactor Conversion Program continues to develop existing and new research and test reactor fuels to achieve maximum attainable uranium loadings to support the conversion of a number of the world’s remaining high-enriched uranium fueled reactors to low-enriched uranium fuel. The program is focused on assisting with the development and qualification of a fuel design that consists of a uranium-molybdenum (U-Mo) alloy dispersed in an aluminum matrix as one option for reactor conversion. Thermal conductivity is an important consideration in determining the operational temperature of the fuel and can be influenced by interaction layermore » formation between the dispersed phase and matrix and upon the concentration of the dispersed phase within the matrix. This paper extends the use of a simple model developed previously to study the influence of interaction layer formation as well as the size and volume fraction of fuel particles dispersed in the matrix, Si additions to the matrix, and Mo concentration in the fuel particles on the effective thermal conductivity of the U-Mo/Al composite during irradiation. The model has been compared to experimental measurements recently conducted on U-Mo/Al dispersion fuels at two different fission densities with acceptable agreement. Observations of the modeled results indicate that formation of an interaction layer and subsequent consumption of the matrix reveals a rather significant effect on effective thermal conductivity. The modeled interaction layer formation and subsequent consumption of the high thermal conductivity matrix was sensitive to the average dispersed fuel particle size, suggesting this parameter as one of the most effective in minimizing thermal conductivity degradation of the composite, while the influence of Si additions to the matrix in the model was highly dependent upon irradiation conditions.« less
Chemical interaction matrix between reagents in a Purex based process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brahman, R.K.; Hennessy, W.P.; Paviet-Hartmann, P.
2008-07-01
The United States Department of Energy (DOE) is the responsible entity for the disposal of the United States excess weapons grade plutonium. DOE selected a PUREX-based process to convert plutonium to low-enriched mixed oxide fuel for use in commercial nuclear power plants. To initiate this process in the United States, a Mixed Oxide (MOX) Fuel Fabrication Facility (MFFF) is under construction and will be operated by Shaw AREVA MOX Services at the Savannah River Site. This facility will be licensed and regulated by the U.S. Nuclear Regulatory Commission (NRC). A PUREX process, similar to the one used at La Hague,more » France, will purify plutonium feedstock through solvent extraction. MFFF employs two major process operations to manufacture MOX fuel assemblies: (1) the Aqueous Polishing (AP) process to remove gallium and other impurities from plutonium feedstock and (2) the MOX fuel fabrication process (MP), which processes the oxides into pellets and manufactures the MOX fuel assemblies. The AP process consists of three major steps, dissolution, purification, and conversion, and is the center of the primary chemical processing. A study of process hazards controls has been initiated that will provide knowledge and protection against the chemical risks associated from mixing of reagents over the life time of the process. This paper presents a comprehensive chemical interaction matrix evaluation for the reagents used in the PUREX-based process. Chemical interaction matrix supplements the process conditions by providing a checklist of any potential inadvertent chemical reactions that may take place. It also identifies the chemical compatibility/incompatibility of the reagents if mixed by failure of operations or equipment within the process itself or mixed inadvertently by a technician in the laboratories. (aut0010ho.« less
Control of electrolyte fill to fuel cell stack
Pollack, William
1982-01-01
A fuel cell stack which can be operated with cells in a horizontal position so that the fuel cell stack does not have to be taken out of operation when adding an electrolyte such as an acid. Acid is supplied to each matrix in a stack of fuel cells at a uniform, low pressure so that the matrix can either be filled initially or replenished with acid lost in operation of the cell, without exceeding the bubble pressure of the matrix or the flooding pressure of the electrodes on either side of the matrix. Acid control to each cell is achieved by restricting and offsetting the opening of electrolyte fill holes in the matrix relative to openings in the plates which sandwich the matrix and electrodes therebetween.
The effect of fuel chemistry on UO2 dissolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Casella, Amanda; Hanson, Brady; Miller, William
2016-08-01
The dissolution rate of both unirradiated UO2 and used nuclear fuel has been studied by numerous countries as part of the performance assessment of proposed geologic repositories. In the scenario of waste package failure and groundwater infiltration into the fuel, the effects of variables such as temperature, dissolved oxygen, and water and fuel chemistry on the dissolution rates of the fuel are necessary to provide a quantitative estimate of the potential release over geologic time frames. The primary objective of this research was to determine the influence these parameters have on the dissolution rate of unirradiated UO2 under repository conditionsmore » and compare them to the rates predicted by current dissolution models. Both unirradiated UO2 and UO2 doped with varying concentrations of Gd2O3, to simulate used fuel composition after long time periods where radiolysis has minor contributions to dissolution, were examined. In general, a rise in temperature increased the dissolution rate of UO2 and had a larger effect on pure UO2 than on those doped with Gd2O3. Oxygen dependence was observed in the UO2 samples with no dopant and increased as the temperature rose; in the doped fuels less dependence was observed. The addition of gadolinia into the UO2 matrix showed a significant decrease in the dissolution rate. The matrix stabilization effect resulting from the dopant proved even more beneficial in lowering the dissolution rate at higher temperatures and dissolved O2 concentrations in the leachate where the rates would typically be elevated.« less
NASA Astrophysics Data System (ADS)
Keiser, Dennis D.; Jue, Jan-Fong; Miller, Brandon D.; Gan, Jian; Robinson, Adam B.; Medvedev, Pavel G.; Madden, James W.; Moore, Glenn A.
2016-06-01
Low-enriched (U-235 <20 pct) U-Mo dispersion fuel is being developed for use in research and test reactors. In most cases, fuel plates with Al or Al-Si alloy matrices have been tested in the Advanced Test Reactor to support this development. In addition, fuel plates with Mg as the matrix have also been tested. The benefit of using Mg as the matrix is that it potentially will not chemically interact with the U-Mo fuel particles during fabrication or irradiation, whereas with Al and Al-Si alloys such interactions will occur. Fuel plate R9R010 is a Mg matrix fuel plate that was aggressively irradiated in ATR. This fuel plate was irradiated as part of the RERTR-8 experiment at high temperature, high fission rate, and high power, up to high fission density. This paper describes the results of the scanning electron microscopy (SEM) analysis of an irradiated fuel plate using polished samples and those produced with a focused ion beam. A follow-up paper will discuss the results of transmission electron microscopy (TEM) analysis. Using SEM, it was observed that even at very aggressive irradiation conditions, negligible chemical interaction occurred between the irradiated U-7Mo fuel particles and Mg matrix; no interconnection of fission gas bubbles from fuel particle to fuel particle was observed; the interconnected fission gas bubbles that were observed in the irradiated U-7Mo particles resulted in some transport of solid fission products to the U-7Mo/Mg interface; the presence of microstructural pathways in some U-9.1 Mo particles that could allow for transport of fission gases did not result in the apparent presence of large porosity at the U-7Mo/Mg interface; and, the Mg-Al interaction layers that were present at the Mg matrix/Al 6061 cladding interface exhibited good radiation stability, i.e. no large pores.
An Innovative Carbonate Fuel Cell Matrix, Abstract #188
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hilmi, Abdelkader; Surendranath, Arun; Yuh, Chao-Yi
2015-05-28
The electrolyte matrix in direct carbonate fuel cell (DFC) is a microporous ceramic structure sandwiched between the electrodes to isolate the fuel from the oxidant, store electrolyte and facilitate ionic transport. FCE has advanced DFC electrolyte matrix over the years and demonstrated that the matrix meets the requirements for greater than 5 year life based on accelerated tests and field stack operations. However, development of advanced designs and materials that can further increase the performance and extend cell life will enable accelerated MCFC deployment. This paper will report the progress on the development of an unique and innovative matrix designmore » that offers numerous benefits to the carbonate fuel cell performance and durability. In addition, this paper will also review parameters that affect matrix material stability and approaches to extend cell life.« less
New generation nuclear fuel structures: Dense particles in selectively soluble matrix
NASA Astrophysics Data System (ADS)
Devlin, Dave; Jarvinen, Gordon; Patterson, Brian; Pattillo, Steve; Valdez, James; Liu, X.-Y.; Phillips, Jonathan
2009-11-01
We have developed a technology for dispersing sub-millimeter sized fuel particles within a bulk matrix that can be selectively dissolved. This may enable the generation of advanced nuclear fuels with easy separation of actinides and fission products. The large kinetic energy of the fission products results in most of them escaping from the sub-millimeter sized fuel particles and depositing in the matrix during burning of the fuel in the reactor. After the fuel is used and allowed to cool for a period of time, the matrix can be dissolved and the fission products removed for disposal while the fuel particles are collected by filtration for recycle. The success of such an approach would meet a major goal of the GNEP program to provide advanced recycle technology for nuclear energy production. The benefits of such an approach include (1) greatly reduced cost of the actinide/fission product separation process, (2) ease of recycle of the fuel particles, and (3) a radiation barrier to prevent theft or diversion of the recycled fuel particles during the time they are re-fabricated into new fuel. In this study we describe a method to make surrogate nuclear fuels of micrometer scale W (shell)/Mo (core) or HfO 2 particles embedded in an MgO matrix that allows easy separation of the fission products and their embedded particles. In brief, the method consists of physically mixing W-Mo or hafnia particles with an MgO precursor. Heating the mixture, in air or argon, without agitation, to a temperature is required for complete decomposition of the precursor. The resulting material was examined using chemical analysis, scanning electron microscopy, X-ray diffraction and micro X-ray computed tomography and found to consist of evenly dispersed particles in an MgO + matrix. We believe this methodology can be extended to actinides and other matrix materials.
Mars Mission Analysis Trades Based on Legacy and Future Nuclear Propulsion Options
NASA Astrophysics Data System (ADS)
Joyner, Russell; Lentati, Andrea; Cichon, Jaclyn
2007-01-01
The purpose of this paper is to discuss the results of mission-based system trades when using a nuclear thermal propulsion (NTP) system for Solar System exploration. The results are based on comparing reactor designs that use a ceramic-metallic (CERMET), graphite matrix, graphite composite matrix, or carbide matrix fuel element designs. The composite graphite matrix and CERMET designs have been examined for providing power as well as propulsion. Approaches to the design of the NTP to be discussed will include an examination of graphite, composite, carbide, and CERMET core designs and the attributes of each in regards to performance and power generation capability. The focus is on NTP approaches based on tested fuel materials within a prismatic fuel form per the Argonne National Laboratory testing and the ROVER/NERVA program. NTP concepts have been examined for several years at Pratt & Whitney Rocketdyne for use as the primary propulsion for human missions beyond earth. Recently, an approach was taken to examine the design trades between specific NTP concepts; NERVA-based (UC)C-Graphite, (UC,ZrC)C-Composite, (U,Zr)C-Solid Carbide and UO2-W CERMET. Using Pratt & Whitney Rocketdyne's multidisciplinary design analysis capability, a detailed mission and vehicle model has been used to examine how several of these NTP designs impact a human Mars mission. Trends for the propulsion system mass as a function of power level (i.e. thrust size) for the graphite-carbide and CERMET designs were established and correlated against data created over the past forty years. These were used for the mission trade study. The resulting mission trades presented in this paper used a comprehensive modeling approach that captures the mission, vehicle subsystems, and NTP sizing.
Farooque, Mohammad; Yuh, Chao-Yi
1996-01-01
A carbonate fuel cell matrix comprising support particles and crack attenuator particles which are made platelet in shape to increase the resistance of the matrix to through cracking. Also disclosed is a matrix having porous crack attenuator particles and a matrix whose crack attenuator particles have a thermal coefficient of expansion which is significantly different from that of the support particles, and a method of making platelet-shaped crack attenuator particles.
Inert matrix fuel in dispersion type fuel elements
NASA Astrophysics Data System (ADS)
Savchenko, A. M.; Vatulin, A. V.; Morozov, A. V.; Sirotin, V. L.; Dobrikova, I. V.; Kulakov, G. V.; Ershov, S. A.; Kostomarov, V. P.; Stelyuk, Y. I.
2006-06-01
The advantages of using inert matrix fuel (IMF) as a dispersion fuel in an aluminium alloy matrix are considered, in particular, low temperatures in the fuel centre, achievable high burn-ups, serviceability in transients and an environmentally friendly process of fuel rod fabrication. Two main versions of IMF are under development at A.A. Bochvar Institute, i.e. heterogeneous or isolated distribution of plutonium. The out-of-pile results on IMF loaded with uranium dioxide as plutonium simulator are presented. Fuel elements with uranium dioxide composition fabricated at A.A. Bochvar Institute are currently under MIR tests (RIAR, Dimitrovgrad). The fuel elements reached a burn-up of 88 MW d kg-1 (equivalent to the burn up of the standard uranium dioxide pelletized fuel) without loss of leak-tightness of the cladding. The feasibility of fabricating IMF of these particular types with plutonium dioxide is considered with a view to in-pile irradiation.
Fully Ceramic Microencapsulated Fuel Development for LWR Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snead, Lance Lewis; Besmann, Theodore M; Terrani, Kurt A
2012-01-01
The concept, fabrication, and key feasibility issues of a new fuel form based on the microencapsulated (TRISO-type) fuel which has been specifically engineered for LWR application and compacted within a SiC matrix will be presented. This fuel, the so-called fully ceramic microencapsulated fuel is currently undergoing development as an accident tolerant fuel for potential UO2 replacement in commercial LWRs. While the ability of this fuel to facilitate normal LWR cycle performance is an ongoing effort within the program, this will not be a focus of this paper. Rather, key feasibility and performance aspects of the fuel will be presented includingmore » the ability to fabricate a LWR-specific TRISO, the need for and route to a high thermal conductivity and fully dense matrix that contains neutron poisons, and the performance of that matrix under irradiation and the interaction of the fuel with commercial zircaloy clad.« less
Production of LEU Fully Ceramic Microencapsulated Fuel for Irradiation Testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Terrani, Kurt A; Kiggans Jr, James O; McMurray, Jake W
2016-01-01
Fully Ceramic Microencapsulated (FCM) fuel consists of tristructural isotropic (TRISO) fuel particles embedded inside a SiC matrix. This fuel inherently possesses multiple barriers to fission product release, namely the various coating layers in the TRISO fuel particle as well as the dense SiC matrix that hosts these particles. This coupled with the excellent oxidation resistance of the SiC matrix and the SiC coating layer in the TRISO particle designate this concept as an accident tolerant fuel (ATF). The FCM fuel takes advantage of uranium nitride kernels instead of oxide or oxide-carbide kernels used in high temperature gas reactors to enhancemore » heavy metal loading in the highly moderated LWRs. Production of these kernels with appropriate density, coating layer development to produce UN TRISO particles, and consolidation of these particles inside a SiC matrix have been codified thanks to significant R&D supported by US DOE Fuel Cycle R&D program. Also, surrogate FCM pellets (pellets with zirconia instead of uranium-bearing kernels) have been neutron irradiated and the stability of the matrix and coating layer under LWR irradiation conditions have been established. Currently the focus is on production of LEU (7.3% U-235 enrichment) FCM pellets to be utilized for irradiation testing. The irradiation is planned at INL s Advanced Test Reactor (ATR). This is a critical step in development of this fuel concept to establish the ability of this fuel to retain fission products under prototypical irradiation conditions.« less
Farooque, M.; Yuh, C.Y.
1996-12-03
A carbonate fuel cell matrix is described comprising support particles and crack attenuator particles which are made platelet in shape to increase the resistance of the matrix to through cracking. Also disclosed is a matrix having porous crack attenuator particles and a matrix whose crack attenuator particles have a thermal coefficient of expansion which is significantly different from that of the support particles, and a method of making platelet-shaped crack attenuator particles. 8 figs.
Study of fuel cell thermal control systems for advanced missions.
NASA Technical Reports Server (NTRS)
Caputo, R. S.
1972-01-01
This study evaluated many heat rejection and thermal control concepts which could be applied to fuel cells for long term (600 hours) orbital and lunar surface missions. The concepts considered several types of radiators which utilized pumped gas, liquid and two phase working fluids and incorporated solid conduction fins as well as heat pipe (vapor chamber) fins. The comparison of the concepts was based on weight, area and other factors such as standby power, ability to accommodate heat load variation, control complexity, and meteoroid survival capability. A design selection matrix was established and an optimum (primary) and an alternate (secondary) heat rejection concept was chosen. Heat rejection techniques utilizing self-controlled heat pipe radiators dominate the results.
NASA Astrophysics Data System (ADS)
Zhang, Ruiyun; Xu, Shisen; Cheng, Jian; Wang, Hongjian; Ren, Yongqiang
2017-07-01
Low-cost and high-performance matrix materials used in mass production of molten carbonate fuel cell (MCFC) were prepared by automatic casting machine with α-LiAlO2 powder material synthesized by gel-solid method, and distilled water as solvent. The single cell was assembled for generating test, and the good performance of the matrix was verified. The paper analyzed the factors affecting aqueous tape casting matrix preparation, such as solvent content, dispersant content, milling time, blade height and casting machine running speed, providing a solid basis for the mass production of large area environment-friendly matrix used in molten carbonate fuel cell.
76 FR 2243 - List of Approved Spent Fuel Storage Casks: NUHOMS ® HD System Revision 1
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-13
... the requirements of reconstituted fuel assemblies; add requirements to qualify metal matrix composite... requirements to qualify metal matrix composite neutron absorbers with integral aluminum cladding; clarify the... requirements to qualify metal matrix composite neutron absorbers with integral aluminum cladding; clarify the...
Holder, Shima L; Lee, Ching-Hwa; Popuri, Srinivasa R
2017-05-01
Microbial fuel cells (MFCs) are emerging technology for wastewater treatment by chemical oxygen demand (COD) reduction and simultaneous bioelectricity production. Fabrication of an effective proton exchange membrane (PEM) is a vital component for MFC performance. In this work, green chitosan-based (CS) PEMs were fabricated with graphene oxide (GO) as filler material (CS-GO) and cross-linked with phosphoric acid (CS-GO-P(24)) or sulfuric acid (CS-GO-S(24)) to determine their effect on PEM properties. Interrogation of the physicochemical, thermal, and mechanical properties of the cross-linked CS-GO PEMs demonstrated that ionic cross-linking based on the incorporation of PO 4 3- groups in the CS-GO mixed-matrix composites, when compared with sulfuric acid cross-linking commonly used in proton exchange membrane fuel cell (PEMFC) studies, generated additional density of ionic cluster domains, rendered enhanced sorption properties, and augmented the thermal and mechanical stability of the composite structure. Consequently, bioelectricity performance analysis in MFC application showed that CS-GO-P(24) membrane produced 135% higher power density than the CS-GO-S(24) MFC system. Simultaneously, 89.52% COD removal of primary clarifier municipal wastewater was achieved in the MFC operated with the CS-GO-P(24) membrane.
Thermal conductivity of fresh and irradiated U-Mo fuels
NASA Astrophysics Data System (ADS)
Huber, Tanja K.; Breitkreutz, Harald; Burkes, Douglas E.; Casella, Amanda J.; Casella, Andrew M.; Elgeti, Stefan; Reiter, Christian; Robinson, Adam. B.; Smith, Frances. N.; Wachs, Daniel. M.; Petry, Winfried
2018-05-01
The thermal conductivity of fresh and irradiated U-Mo dispersion and monolithic fuel has been investigated experimentally and compared to theoretical models. During in-pile irradiation, thermal conductivity of fresh dispersion fuel at a temperature of 150 °C decreased from 59 W/m·K to 18 W/m·K at a burn-up of 4.9·1021 f/cc and further to 9 W/m·K at a burn-up of 6.1·1021 f/cc. Fresh monolithic fuel has a considerably lower thermal conductivity of 15 W/m·K at a temperature of 150 °C and consequently its decrease during in-pile irradiation is less steep than for dispersion fuel. For a burn-up of 3.5·1021 f/cc of monolithic fuel, a thermal conductivity of 11 W/m·K at a temperature of 150 °C has been measured by Burkes et al. (2015). The difference of decrease for both fuels originates from effects in the matrix that occur during irradiation, like for dispersion fuel the gradual disappearance of the Al matrix with increased burn-up and the subsequent growth of an interaction layer (IDL) between the U-Mo fuel particle and Al matrix and subsequent matrix hardening. The growth of fission gas bubbles and the decomposition of the U-Mo crystal lattice also affect both dispersion and monolithic fuel.
INITIAL ANALYSIS OF TRANSIENT POWER TIME LAG DUE TO HETEROGENEITY WITHIN THE TREAT FUEL MATRIX.
DOE Office of Scientific and Technical Information (OSTI.GOV)
D.M. Wachs; A.X. Zabriskie, W.R. Marcum
2014-06-01
The topic Nuclear Safety encompasses a broad spectrum of focal areas within the nuclear industry; one specific aspect centers on the performance and integrity of nuclear fuel during a reactivity insertion accident (RIA). This specific accident has proven to be fundamentally difficult to theoretically characterize due to the numerous empirically driven characteristics that quantify the fuel and reactor performance. The Transient Reactor Test (TREAT) facility was designed and operated to better understand fuel behavior under extreme (i.e. accident) conditions; it was shutdown in 1994. Recently, efforts have been underway to commission the TREAT facility to continue testing of advanced accidentmore » tolerant fuels (i.e. recently developed fuel concepts). To aid in the restart effort, new simulation tools are being used to investigate the behavior of nuclear fuels during facility’s transient events. This study focuses specifically on the characterizing modeled effects of fuel particles within the fuel matrix of the TREAT. The objective of this study was to (1) identify the impact of modeled heterogeneity within the fuel matrix during a transient event, and (2) demonstrate acceptable modeling processes for the purpose of TREAT safety analyses, specific to fuel matrix and particle size. Hypothetically, a fuel that is dominantly heterogeneous will demonstrate a clearly different temporal heating response to that of a modeled homogeneous fuel. This time difference is a result of the uniqueness of the thermal diffusivity within the fuel particle and fuel matrix. Using MOOSE/BISON to simulate the temperature time-lag effect of fuel particle diameter during a transient event, a comparison of the average graphite moderator temperature surrounding a spherical particle of fuel was made for both types of fuel simulations. This comparison showed that at a given time and with a specific fuel particle diameter, the fuel particle (heterogeneous) simulation and the homogeneous simulation were related by a multiplier relative to the average moderator temperature. As time increases the multiplier is comparable to the factor found in a previous analytical study from literature. The implementation of this multiplier and the method of analysis may be employed to remove assumptions and increase fidelity for future research on the effect of fuel particles during transient events.« less
The accuracy of matrix population model projections for coniferous trees in the Sierra Nevada
van Mantgem, P.J.; Stephenson, N.L.
2005-01-01
No. 2 fuel oil was fed to mallard (Anas platyrhynchos) ducklings in concentrations of 0.5 and 5.0% of the diet from hatching to 18 wk of age to assess the effects of chronic oil ingestion during early development. Five growth parameters (body weight, wing length, ninth primary length, tarsal length, and bill length) were depressed in birds receiving a diet containing 5% fuel oil. There was no oil-related mortality. The 5% fuel oil diet impaired avoidance behavior of 9-d-old mallard ducklings compared with controls or ducklings fed 0.5% oil. Open-field activity was greatly increased in 16-wk-old ducklings fed 5.0% oil. Liver hypertrophy and splenic atrophy were gross evidences of pathological effects in birds on the 5.0% oil diet. More subtle effects included biochemical lesions that resulted in the elevation of plasma alanine aminotransferase and ornithine carbamoyltransferase activity.
Mathematical model of water transport in Bacon and alkaline matrix-type hydrogen-oxygen fuel cells
NASA Technical Reports Server (NTRS)
Prokopius, P. R.; Easter, R. W.
1972-01-01
Based on general mass continuity and diffusive transport equations, a mathematical model was developed that simulates the transport of water in Bacon and alkaline-matrix fuel cells. The derived model was validated by using it to analytically reproduce various Bacon and matrix-cell experimental water transport transients.
NASA Astrophysics Data System (ADS)
Keiser, Dennis D.; Perez, Emmanuel; Wiencek, Tom; Leenaers, Ann; Van den Berghe, Sven
2015-03-01
The United States High Performance Research Reactor Fuel Development program is developing low enriched uranium fuels for application in research and test reactors. One concept utilizes U-7 wt.% Mo (U-7Mo) fuel particles dispersed in Al matrix, where the fuel particles are coated with a 1 μm-thick ZrN coating. The ZrN serves as a diffusion barrier to eliminate a deleterious reaction that can occur between U-7Mo and Al when a dispersion fuel is irradiated under aggressive reactor conditions. To investigate the final microstructure of a physically-vapor-deposited ZrN coating in a dispersion fuel plate after it was fabricated using a rolling process, characterization samples were taken from a fuel plate that was fabricated at 500 °C using ZrN-coated U-7Mo particles, Al matrix and AA6061 cladding. Scanning electron and transmission electron microscopy analysis were performed. Data from these analyses will be used to support future microstructural examinations of irradiated fuel plates, in terms of understanding the effects of irradiation on the ZrN microstructure, and to determine the role of diffusion barrier microstructure in eliminating fuel/matrix interactions during irradiation. The as-fabricated coating was determined to be cubic-ZrN (cF8) phase. It exhibited a columnar microstructure comprised of nanometer-sized grains and a region of relatively high porosity, mainly near the Al matrix. Small impurity-containing phases were observed at the U-7Mo/ZrN interface, and no interaction zone was observed at the ZrN/Al interface. The bonding between the U-7Mo and ZrN appeared to be mechanical in nature. A relatively high level of oxygen was observed in the ZrN coating, extending from the Al matrix in the ZrN coating in decreasing concentration. The above microstructural characteristics are discussed in terms of what may be most optimal for a diffusion barrier in a dispersion fuel plate application.
Thermal conductivity of fresh and irradiated U-Mo fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huber, Tanja K.; Breitkreutz, Harald; Burkes, Douglas E.
The thermal conductivity of fresh and irradiated U-Mo dispersion and monolithic fuel has been investigated experimentally and compared to theoretical models. During in-pile irradiation, the thermal conductivity of fresh dispersion fuel at a temperature of 150°C decreases from 59 W/m ·K down to 18 W/m ·K at a burn-up of 4.9 ·10 21 f/cc and further down to 9 W/m·K at a burn-up of 6.1·10 21 f/cc. Fresh monolithic fuel has a considerably lower thermal conductivity of 15 W/m·K at a temperature of 150 °C and consequently its decrease during in-pile irradiation is less steep as for the dispersion fuel. For a burn-up ofmore » 3.5·10 21 f /cc of monolithic fuel 11 W/m·K at a temperature of 150 °C has been measured by Burkes et al. The difference of the decrease of both fuels originates from effects in the matrix that occur during irradiation, like for dispersion fuel the gradual disappearance of the Al matrix with increasing burn-up and the subsequent growth of an interaction layer (IDL) between the U-Mo fuel particle and Al matrix and subsequent matrix hardening. The growth of fission gas bubbles and the decomposition of the U-Mo crystal lattice affects both dispersion and monolithic fuel.« less
Inert matrix fuel neutronic, thermal-hydraulic, and transient behavior in a light water reactor
NASA Astrophysics Data System (ADS)
Carmack, W. J.; Todosow, M.; Meyer, M. K.; Pasamehmetoglu, K. O.
2006-06-01
Currently, commercial power reactors in the United States operate on a once-through or open cycle, with the spent nuclear fuel eventually destined for long-term storage in a geologic repository. Since the fissile and transuranic (TRU) elements in the spent nuclear fuel present a proliferation risk, limit the repository capacity, and are the major contributors to the long-term toxicity and dose from the repository, methods and systems are needed to reduce the amount of TRU that will eventually require long-term storage. An option to achieve a reduction in the amount, and modify the isotopic composition of TRU requiring geological disposal is 'burning' the TRU in commercial light water reactors (LWRs) and/or fast reactors. Fuel forms under consideration for TRU destruction in light water reactors (LWRs) include mixed-oxide (MOX), advanced mixed-oxide, and inert matrix fuels. Fertile-free inert matrix fuel (IMF) has been proposed for use in many forms and studied by several researchers. IMF offers several advantages relative to MOX, principally it provides a means for reducing the TRU in the fuel cycle by burning the fissile isotopes and transmuting the minor actinides while producing no new TRU elements from fertile isotopes. This paper will present and discuss the results of a four-bundle, neutronic, thermal-hydraulic, and transient analyses of proposed inert matrix materials in comparison with the results of similar analyses for reference UOX fuel bundles. The results of this work are to be used for screening purposes to identify the general feasibility of utilizing specific inert matrix fuel compositions in existing and future light water reactors. Compositions identified as feasible using the results of these analyses still require further detailed neutronic, thermal-hydraulic, and transient analysis study coupled with rigorous experimental testing and qualification.
NASA Astrophysics Data System (ADS)
Holliday, Kiel Steven
There is a significant buildup in plutonium stockpiles throughout the world, because of spent nuclear fuel and the dismantling of weapons. The radiotoxicity of this material and proliferation risk has led to a desire for destroying excess plutonium. To do this effectively, it must be fissioned in a reactor as part of a uranium free fuel to eliminate the generation of more plutonium. This requires an inert matrix to volumetrically dilute the fissile plutonium. Zirconia-magnesia dual phase ceramic has been demonstrated to be a favorable material for this task. It is neutron transparent, zirconia is chemically robust, magnesia has good thermal conductivity and the ceramic has been calculated to conform to current economic and safety standards. This dissertation contributes to the knowledge of zirconia-magnesia as an inert matrix fuel to establish behavior of the material containing a fissile component. First, the zirconia-magnesia inert matrix is synthesized in a dual phase ceramic containing a fissile component and a burnable poison. The chemical constitution of the ceramic is then determined. Next, the material performance is assessed under conditions relevant to an advanced fuel cycle. Reactor conditions were assessed with high temperature, high pressure water. Various acid solutions were used in an effort to dissolve the material for reprocessing. The ceramic was also tested as a waste form under environmental conditions, should it go directly to a repository as a spent fuel. The applicability of zirconia-magnesia as an inert matrix fuel and waste form was tested and found to be a promising material for such applications.
Method of making molten carbonate fuel cell ceramic matrix tape
Maricle, Donald L.; Putnam, Gary C.; Stewart, Jr., Robert C.
1984-10-23
A method of making a thin, flexible, pliable matrix material for a molten carbonate fuel cell is described. The method comprises admixing particles inert in the molten carbonate environment with an organic polymer binder and ceramic particle. The composition is applied to a mold surface and dried, and the formed compliant matrix material removed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burkes, Douglas E.; Senor, David J.; Casella, Andrew M.
Numerous global programs are focused on the continued development of existing and new research and test reactor fuels to achieve maximum attainable uranium loadings to support the conversion of a number of the world’s remaining high-enriched uranium fueled reactors to low-enriched uranium fuel. Some of these programs are focused on development and qualification of a fuel design that consists of a uranium-molybdenum (U-Mo) alloy dispersed in an aluminum matrix as one option for reactor conversion. The current paper extends a failure model originally developed for UO2-stainless steel dispersion fuels and used currently available thermal-mechanical property information for the materials ofmore » interest in the current proposed design. A number of fabrication and irradiation parameters were investigated to understand the conditions at which failure of the matrix, classified as pore formation in the matrix, might occur. The results compared well with experimental observations published as part of the Reduced Enrichment for Research and Test Reactors (RERTR)-6 and -7 mini-plate experiments. Fission rate, a function of the 235U enrichment, appeared to be the most influential parameter in premature failure, mainly as a result of increased interaction layer formation and operational temperature, which coincidentally decreased the yield strength of the matrix and caused more rapid fission gas production and recoil into the surrounding matrix material. Addition of silicon to the matrix appeared effective at reducing the rate of interaction layer formation and can extend the performance of a fuel plate under a certain set of irradiation conditions, primarily moderate heat flux and burnup. Increasing the dispersed fuel particle diameter may also be effective, but only when combined with other parameters, e.g., lower enrichment and increased Si concentration. The model may serve as a valuable tool in initial experimental design.« less
Low-temperature irradiation behavior of uranium-molybdenum alloy dispersion fuel
NASA Astrophysics Data System (ADS)
Meyer, M. K.; Hofman, G. L.; Hayes, S. L.; Clark, C. R.; Wiencek, T. C.; Snelgrove, J. L.; Strain, R. V.; Kim, K.-H.
2002-08-01
Irradiation tests have been conducted to evaluate the performance of a series of high-density uranium-molybdenum (U-Mo) alloy, aluminum matrix dispersion fuels. Fuel plates incorporating alloys with molybdenum content in the range of 4-10 wt% were tested. Two irradiation test vehicles were used to irradiate low-enrichment fuels to approximately 40 and 70 at.% 235U burnup in the advanced test reactor at fuel temperatures of approximately 65 °C. The fuel particles used to fabricate dispersion specimens for most of the test were produced by generating filings from a cast rod. In general, fuels with molybdenum contents of 6 wt% or more showed stable in-reactor fission gas behavior, exhibiting a distribution of small, stable gas bubbles. Fuel particle swelling was moderate and decreased with increasing alloy content. Fuel particles with a molybdenum content of 4 wt% performed poorly, exhibiting extensive fuel-matrix interaction and the growth of relatively large fission gas bubbles. Fuel particles with 4 or 6 wt% molybdenum reacted more rapidly with the aluminum matrix than those with higher-alloy content. Fuel particles produced by an atomization process were also included in the test to determine the effect of fuel particle morphology and microstructure on fuel performance for the U-10Mo composition. Both of the U-10Mo fuel particle types exhibited good irradiation performance, but showed visible differences in fission gas bubble nucleation and growth behavior.
Engineered glass seals for solid-oxide fuel cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Surdoval, Wayne; Lara-Curzio, Edgar; Stevenson, Jeffry
2017-02-07
A seal for a solid oxide fuel cell includes a glass matrix having glass percolation therethrough and having a glass transition temperature below 650.degree. C. A deformable second phase material is dispersed in the glass matrix. The second phase material can be a compliant material. The second phase material can be a crushable material. A solid oxide fuel cell, a precursor for forming a seal for a solid oxide fuel cell, and a method of making a seal for a solid oxide fuel cell are also disclosed.
Fuel cell with electrolyte matrix assembly
Kaufman, Arthur; Pudick, Sheldon; Wang, Chiu L.
1988-01-01
This invention is directed to a fuel cell employing a substantially immobilized electrolyte imbedded therein and having a laminated matrix assembly disposed between the electrodes of the cell for holding and distributing the electrolyte. The matrix assembly comprises a non-conducting fibrous material such as silicon carbide whiskers having a relatively large void-fraction and a layer of material having a relatively small void-fraction.
U-PuO2, U-PuC, U-PuN cermet fuel for fast reactor
NASA Astrophysics Data System (ADS)
Mishra, Sudhir; Kaity, Santu; Banerjee, Joydipta; Nandi, Chiranjeet; Dey, G. K.; Khan, K. B.
2018-02-01
Cermet fuel combines beneficial properties of both ceramic and metal and attracts global interest for research as a candidate fuel for nuclear reactors. In the present study, U matrix PuC/PuN/PuO2 cermet for fast reactor have been fabricated on laboratory scale by the powder metallurgy route. Characterization of the fuel has been carried out using Dilatometer, Differential Thermal analysis (DTA), X-ray diffractometer and Optical microscope. X ray diffraction study of the fuel reveals presence of different phases. The PuN dispersed cermet was observed to have high solidus temperature as compared to PuC and PuO2 dispersed cermet. Swelling was observed in U matrix PuO2 cermet which also showed higher thermal expansion. Among the three cermets studied, U matrix PuC cermet showed maximum thermal conductivity.
Keiser, Jr., Dennis D.; Jue, Jan -Fong; Gan, Jian; ...
2017-02-27
The Material Management and Minimization (M3) Reactor Conversion Program, in the past called the Reduced Enrichment for Research and Test Reactor (RERTR) Program, is developing low-enriched uranium (LEU) fuels for application in research reactors. U–Mo alloy dispersion fuel is one type being developed. Blister testing has been performed on different fuel plate samples to determine the margin to failure for fuel plates irradiated to different fission densities. Microstructural characterization was performed using scanning electron microscopy and transmission electron microscopy on a sample taken from a U-7Mo/AA4043 matrix dispersion fuel plate irradiated in the RERTR-6 experiment that was blister-tested up tomore » a final temperature of 500°C. The results indicated that two types of grain/cell boundaries were observed in the U- 7Mo fuel particles, one with a relatively low Mo content and fission gas bubbles and a second type enriched in Si, due to interdiffusion from the Si-containing matrix, with little evidence of fission gas bubbles. With respect to the behavior of the major fission gas Xe, a significant amount of the Xe was still observed within the U-7Mo fuel particle, along with microns into the AA4043 matrix. For the fuel/matrix interaction layers that form during fabrication and then grow during irradiation, they change from the as-irradiated amorphous structure to one that is crystalline after blister testing. In the AA4043 matrix, the original Si-rich precipitates, which are typically observed in as-irradiated U-Mo dispersion fuel, get consumed due to interdiffusion with the U-7Mo fuel particles during the blister test. Lastly, the fission gas bubbles that were originally around 2 nm in diameter and resided on a fission gas superlattice in the intragranular regions of as-irradiated U-7Mo fuel grew in size (up to ~20 nm diameter) during blister testing.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keiser, Jr., Dennis D.; Jue, Jan -Fong; Gan, Jian
The Material Management and Minimization (M3) Reactor Conversion Program, in the past called the Reduced Enrichment for Research and Test Reactor (RERTR) Program, is developing low-enriched uranium (LEU) fuels for application in research reactors. U–Mo alloy dispersion fuel is one type being developed. Blister testing has been performed on different fuel plate samples to determine the margin to failure for fuel plates irradiated to different fission densities. Microstructural characterization was performed using scanning electron microscopy and transmission electron microscopy on a sample taken from a U-7Mo/AA4043 matrix dispersion fuel plate irradiated in the RERTR-6 experiment that was blister-tested up tomore » a final temperature of 500°C. The results indicated that two types of grain/cell boundaries were observed in the U- 7Mo fuel particles, one with a relatively low Mo content and fission gas bubbles and a second type enriched in Si, due to interdiffusion from the Si-containing matrix, with little evidence of fission gas bubbles. With respect to the behavior of the major fission gas Xe, a significant amount of the Xe was still observed within the U-7Mo fuel particle, along with microns into the AA4043 matrix. For the fuel/matrix interaction layers that form during fabrication and then grow during irradiation, they change from the as-irradiated amorphous structure to one that is crystalline after blister testing. In the AA4043 matrix, the original Si-rich precipitates, which are typically observed in as-irradiated U-Mo dispersion fuel, get consumed due to interdiffusion with the U-7Mo fuel particles during the blister test. Lastly, the fission gas bubbles that were originally around 2 nm in diameter and resided on a fission gas superlattice in the intragranular regions of as-irradiated U-7Mo fuel grew in size (up to ~20 nm diameter) during blister testing.« less
NASA Astrophysics Data System (ADS)
Keiser, Dennis D.; Jue, Jan-Fong; Gan, Jian; Miller, Brandon D.; Robinson, Adam B.; Madden, James W.; Ross Finlay, M.; Moore, Glenn; Medvedev, Pavel; Meyer, Mitch
2017-05-01
The Material Management and Minimization (M3) Reactor Conversion Program, in the past called the Reduced Enrichment for Research and Test Reactor (RERTR) Program, is developing low-enriched uranium (LEU) fuels for application in research and test reactors. U-Mo alloy dispersion fuel is one type being developed. Blister testing has been performed on different fuel plate samples to determine the margin to failure for fuel plates irradiated to different fission densities. Microstructural characterization was performed using scanning electron microscopy and transmission electron microscopy on a sample taken from a U-7Mo/AA4043 matrix dispersion fuel plate irradiated in the RERTR-6 experiment that was blister-tested up to a final temperature of 500 °C. The results indicated that two types of grain/cell boundaries were observed in the U-7Mo fuel particles, one with a relatively low Mo content and fission gas bubbles and a second type enriched in Si, due to interdiffusion from the Si-containing matrix, with little evidence of fission gas bubbles. With respect to the behavior of the major fission gas Xe, a significant amount of the Xe was still observed within the U-7Mo fuel particle, along with microns into the AA4043 matrix. For the fuel/matrix interaction layers that form during fabrication and then grow during irradiation, they change from the as-irradiated amorphous structure to one that is crystalline after blister testing. In the AA4043 matrix, the original Si-rich precipitates, which are typically observed in as-irradiated U-Mo dispersion fuel, get consumed due to interdiffusion with the U-7Mo fuel particles during the blister test. Finally, the fission gas bubbles that were originally around 3 nm in diameter and resided on a fission gas superlattice (FGS) in the intragranular regions of as-irradiated U-7Mo fuel grew in size (up to ∼20 nm diameter) during blister testing and, in many areas, are no longer organized as a superlattice.
Jeong, G. Y.; Kim, Yeon Soo; Jamison, L. M.; ...
2017-02-20
U-Mo/Al dispersion fuel irradiated to high burnup at high power (high fission rate) exhibited microstructural changes such as deformation of the fuel particles, pore growth, and rupture of the Al matrix. The driving force for these microstructural changes was meat swelling caused by a combination of fuel particle swelling and interaction layer growth. Five miniplates with well-recorded fabrication data and irradiation conditions were selected, and their PIE data was analyzed. ABAQUS finite element analysis (FEA) was utilized to simulate the microstructural evolution of the plates. Using the simulation results shear stress, effective stress and hydrostatic stress exerted on both themore » fuel particles and the Al matrix were determined. The effects of fabrication and irradiation variables on stress-induced microstructural evolutions, such as pore growth in the interaction layers and Al matrix rupture, were investigated. The observed microstructural changes were consistent with the calculated stress distribution in the meat.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeong, G. Y.; Kim, Yeon Soo; Jamison, L. M.
U-Mo/Al dispersion fuel irradiated to high burnup at high power (high fission rate) exhibited microstructural changes such as deformation of the fuel particles, pore growth, and rupture of the Al matrix. The driving force for these microstructural changes was meat swelling caused by a combination of fuel particle swelling and interaction layer growth. Five miniplates with well-recorded fabrication data and irradiation conditions were selected, and their PIE data was analyzed. ABAQUS finite element analysis (FEA) was utilized to simulate the microstructural evolution of the plates. Using the simulation results shear stress, effective stress and hydrostatic stress exerted on both themore » fuel particles and the Al matrix were determined. The effects of fabrication and irradiation variables on stress-induced microstructural evolutions, such as pore growth in the interaction layers and Al matrix rupture, were investigated. The observed microstructural changes were consistent with the calculated stress distribution in the meat.« less
Irradiation behavior of the interaction product of U-Mo fuel particle dispersion in an Al matrix
NASA Astrophysics Data System (ADS)
Kim, Yeon Soo; Hofman, G. L.
2012-06-01
Irradiation performance of U-Mo fuel particles dispersed in Al matrix is stable in terms of fuel swelling and is suitable for the conversion of research and test reactors from highly enriched uranium (HEU) to low enriched uranium (LEU). However, tests of the fuel at high temperatures and high burnups revealed obstacles caused by the interaction layers forming between the fuel particle and matrix. In some cases, fission gas filled pores grow and interconnect in the interdiffusion layer resulting in fuel plate failure. Postirradiation observations are made to examine the behavior of the interdiffusion layers. The interdiffusion layers show a fluid-like behavior characteristic of amorphous materials. In the amorphous interdiffusion layers, fission gas diffusivity is high and the material viscosity is low so that the fission gas pores readily form and grow. Based on the observations, a pore formation mechanism is proposed and potential remedies to suppress the pore growth are also introduced.
Apparatus and method for mixing fuel in a gas turbine nozzle
Johnson, Thomas Edward; Ziminsky, Willy Steve; Berry, Jonathan Dwight
2014-08-12
A nozzle includes a fuel plenum and an air plenum downstream of the fuel plenum. A primary fuel channel includes an inlet in fluid communication with the fuel plenum and a primary air port in fluid communication with the air plenum. Secondary fuel channels radially outward of the primary fuel channel include a secondary fuel port in fluid communication with the fuel plenum. A shroud circumferentially surrounds the secondary fuel channels. A method for mixing fuel and air in a nozzle prior to combustion includes flowing fuel to a fuel plenum and flowing air to an air plenum downstream of the fuel plenum. The method further includes injecting fuel from the fuel plenum through a primary fuel passage, injecting fuel from the fuel plenum through secondary fuel passages, and injecting air from the air plenum through the primary fuel passage.
NASA Astrophysics Data System (ADS)
Wachs, D. M.; Robinson, A. B.; Rice, F. J.; Kraft, N. C.; Taylor, S. C.; Lillo, M.; Woolstenhulme, N.; Roth, G. A.
2016-08-01
Extensive fuel-matrix interactions leading to plate pillowing have proven to be a significant impediment to the development of a suitable high density low-enriched uranium molybdenum alloy (U-Mo) based dispersion fuel for high power applications in research reactors. The addition of silicon to the aluminum matrix was previously demonstrated to reduce interaction layer growth in mini-plate experiments. The AFIP-1 project involved the irradiation, in-canal examination, and post-irradiation examination of two fuel plates. The irradiation of two distinct full size, flat fuel plates (one using an Al-2wt%Si matrix and the other an Al-4043 (∼4.8 wt% Si) matrix) was performed in the INL ATR reactor in 2008-2009. The irradiation conditions were: ∼250 W/cm2 peak Beginning Of Life (BOL) power, with a ∼3.5e21 f/cm3 peak burnup. The plates were successfully irradiated and did not show any pillowing at the end of the irradiation. This paper reports the results and interpretation of the in-canal and post-irradiation non-destructive examinations that were performed on these fuel plates. It further compares additional PIE results obtained on fuel plates irradiated in contemporary campaigns in order to allow a complete comparison with all results obtained under similar conditions. Except for a brief indication of accelerated swelling early in the irradiation of the Al-2Si plate, the fuel swelling is shown to evolve linearly with the fission density through the maximum burnup.
Low Cost Nuclear Thermal Rocket Cermet Fuel Element Environment Testing
NASA Technical Reports Server (NTRS)
Bradley, David E.; Mireles, Omar R.; Hickman, Robert R.
2011-01-01
Deep space missions with large payloads require high specific impulse (Isp) and relatively high thrust in order to achieve mission goals in reasonable time frames. Conventional, storable propellants produce average Isp. Nuclear thermal rockets (NTR) capable of high Isp thrust have been proposed. NTR employs heat produced by fission reaction to heat and therefore accelerate hydrogen which is then forced through a rocket nozzle providing thrust. Fuel element temperatures are very high (up to 3000K) and hydrogen is highly reactive with most materials at high temperatures. Data covering the effects of high temperature hydrogen exposure on fuel elements is limited. The primary concern is the mechanical failure of fuel elements which employ high-melting-point metals, ceramics or a combination (cermet) as a structural matrix into which the nuclear fuel is distributed. It is not necessary to include fissile material in test samples intended to explore high temperature hydrogen exposure of the structural support matrices. A small-scale test bed designed to heat fuel element samples via non-contact RF heating and expose samples to hydrogen is being developed to assist in optimal material and manufacturing process selection without employing fissile material. This paper details the test bed design and results of testing conducted to date.
Compact Fuel Element Environment Test
NASA Technical Reports Server (NTRS)
Bradley, D. E.; Mireles, O. R.; Hickman, R. R.; Broadway, J. W.
2012-01-01
Deep space missions with large payloads require high specific impulse (I(sub sp)) and relatively high thrust to achieve mission goals in reasonable time frames. Conventional, storable propellants produce average I(sub sp). Nuclear thermal rockets (NTRs) capable of high I(sub sp) thrust have been proposed. NTR employs heat produced by fission reaction to heat and therefore accelerate hydrogen, which is then forced through a rocket nozzle providing thrust. Fuel element temperatures are very high (up to 3,000 K) and hydrogen is highly reactive with most materials at high temperatures. Data covering the effects of high-temperature hydrogen exposure on fuel elements are limited. The primary concern is the mechanical failure of fuel elements that employ high melting point metals, ceramics, or a combination (cermet) as a structural matrix into which the nuclear fuel is distributed. It is not necessary to include fissile material in test samples intended to explore high-temperature hydrogen exposure of the structural support matrices. A small-scale test bed designed to heat fuel element samples via noncontact radio frequency heating and expose samples to hydrogen for typical mission durations has been developed to assist in optimal material and manufacturing process selection without employing fissile material. This Technical Memorandum details the test bed design and results of testing conducted to date.
Fuel development for gas-cooled fast reactors
NASA Astrophysics Data System (ADS)
Meyer, M. K.; Fielding, R.; Gan, J.
2007-09-01
The Generation IV Gas-cooled Fast Reactor (GFR) concept is proposed to combine the advantages of high-temperature gas-cooled reactors (such as efficient direct conversion with a gas turbine and the potential for application of high-temperature process heat), with the sustainability advantages that are possible with a fast-spectrum reactor. The latter include the ability to fission all transuranics and the potential for breeding. The GFR is part of a consistent set of gas-cooled reactors that includes a medium-term Pebble Bed Modular Reactor (PBMR)-like concept, or concepts based on the Gas Turbine Modular Helium Reactor (GT-MHR), and specialized concepts such as the Very High-Temperature Reactor (VHTR), as well as actinide burning concepts [A Technology Roadmap for Generation IV Nuclear Energy Systems, US DOE Nuclear Energy Research Advisory Committee and the Generation IV International Forum, December 2002]. To achieve the necessary high power density and the ability to retain fission gas at high temperature, the primary fuel concept proposed for testing in the United States is dispersion coated fuel particles in a ceramic matrix. Alternative fuel concepts considered in the US and internationally include coated particle beds, ceramic clad fuel pins, and novel ceramic 'honeycomb' structures. Both mixed carbide and mixed nitride-based solid solutions are considered as fuel phases.
Development of UO2/PuO2 dispersed in uranium matrix CERMET fuel system for fast reactors
NASA Astrophysics Data System (ADS)
Sinha, V. P.; Hegde, P. V.; Prasad, G. J.; Pal, S.; Mishra, G. P.
2012-08-01
CERMET fuel with either PuO2 or enriched UO2 dispersed in uranium metal matrix has a strong potential of becoming a fuel for the liquid metal cooled fast breeder reactors (LMR's). In fact it may act as a bridge between the advantages and disadvantages associated with the two extremes of fuel systems (i.e. ceramic fuel and metallic fuel) for fast reactors. At Bhabha Atomic Research Centre (BARC), R & D efforts are on to develop this CERMET fuel by powder metallurgy route. This paper describes the development of flow sheet for preparation of UO2 dispersed in uranium metal matrix pellets for three different compositions i.e. U-20 wt%UO2, U-25 wt%UO2 and U-30 wt%UO2. It was found that the sintered pellets were having excellent integrity and their linear mass was higher than that of carbide fuel pellets used in Fast Breeder Test Reactor programme (FBTR) in India. The pellets were characterized by X-ray diffraction (XRD) technique for phase analysis and lattice parameter determination. The optical microstructures were developed and reported for all the three different U-UO2 compositions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steele, Robert; Mata, Angelica; Dunzik-Gougar, Mary Lou
2016-06-01
As part of an overall effort to convert US research reactors to low-enriched uranium (LEU) fuel use, a LEU conversion fuel is being designed for the Transient Reactor Test Facility (TREAT) at the Idaho National Laboratory. TREAT fuel compacts are comprised of UO2 fuel particles in a graphitic matrix material. In order to refine heat transfer modeling, as well as determine other physical and nuclear characteristics of the fuel, the amount and type of graphite and non-graphite phases within the fuel matrix must be known. In this study, we performed a series of complementary analyses, designed to allow detailed characterizationmore » of the graphite and phenolic resin based fuel matrix. Methods included Scanning Electron and Transmission Electron Microscopies, Raman spectroscopy, X-ray Diffraction, and Dual-Beam Focused Ion Beam Tomography. Our results indicate that no single characterization technique will yield all of the desired information; however, through the use of statistical and empirical data analysis, such as curve fitting, partial least squares regression, volume extrapolation and spectra peak ratios, a degree of certainty for the quantity of each phase can be obtained.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Folsom, Charles; Xing, Changhu; Jensen, Colby
2015-03-01
Accurate modeling capability of thermal conductivity of tristructural-isotropic (TRISO) fuel compacts is important to fuel performance modeling and safety of Generation IV reactors. To date, the effective thermal conductivity (ETC) of tristructural-isotropic (TRISO) fuel compacts has not been measured directly. The composite fuel is a complicated structure comprised of layered particles in a graphite matrix. In this work, finite element modeling is used to validate an analytic ETC model for application to the composite fuel material for particle-volume fractions up to 40%. The effect of each individual layer of a TRISO particle is analyzed showing that the overall ETC ofmore » the compact is most sensitive to the outer layer constituent. In conjunction with the modeling results, the thermal conductivity of matrix-graphite compacts and the ETC of surrogate TRISO fuel compacts have been successfully measured using a previously developed measurement system. The ETC of the surrogate fuel compacts varies between 50 and 30 W m -1 K -1 over a temperature range of 50-600°C. As a result of the numerical modeling and experimental measurements of the fuel compacts, a new model and approach for analyzing the effect of compact constituent materials on ETC is proposed that can estimate the fuel compact ETC with approximately 15-20% more accuracy than the old method. Using the ETC model with measured thermal conductivity of the graphite matrix-only material indicate that, in the composite form, the matrix material has a much greater thermal conductivity, which is attributed to the high anisotropy of graphite thermal conductivity. Therefore, simpler measurements of individual TRISO compact constituents combined with an analytic ETC model, will not provide accurate predictions of overall ETC of the compacts emphasizing the need for measurements of composite, surrogate compacts.« less
Wagner, Richard William; Burkhard, James Frank; Dauer, Kenneth John
1999-11-16
A dual tank fuel system has primary and secondary fuel tanks, with the primary tank including a filler pipe to receive fuel and a discharge line to deliver fuel to an engine, and with a balance pipe interconnecting the primary tank and the secondary tank. The balance pipe opens close to the bottom of each tank to direct fuel from the primary tank to the secondary tank as the primary tank is filled, and to direct fuel from the secondary tank to the primary tank as fuel is discharged from the primary tank through the discharge line. A vent line has branches connected to each tank to direct fuel vapor from the tanks as the tanks are filled, and to admit air to the tanks as fuel is delivered to the engine.
Fuel cell with electrolyte feed system
Feigenbaum, Haim
1984-01-01
A fuel cell having a pair of electrodes at the sites of electrochemical reactions of hydrogen and oxygen and a phosphoric acid electrolyte provided with an electrolyte supporting structure in the form of a laminated matrix assembly disposed between the electrodes. The matrix assembly is formed of a central layer disposed between two outer layers, each being permeable to the flow of the electrolyte. The central layer is provided with relatively large pores while the outer layers are provided with relatively small pores. An external reservoir supplies electrolyte via a feed means to the central layer to compensate for changes in electrolyte volume in the matrix assembly during the operation of fuel cell.
Effects of irradiation on the microstructure of U-7Mo dispersion fuel with Al-2Si matrix
NASA Astrophysics Data System (ADS)
Keiser, Dennis D.; Jue, Jan-Fong; Robinson, Adam B.; Medvedev, Pavel; Gan, Jian; Miller, Brandon D.; Wachs, Daniel M.; Moore, Glenn A.; Clark, Curtis R.; Meyer, Mitchell K.; Ross Finlay, M.
2012-06-01
The Reduced Enrichment for Research and Test Reactor (RERTR) program is developing low-enriched uranium U-Mo dispersion fuels for application in research and test reactors around the world. As part of this development, fuel plates have been irradiated in the Advanced Test Reactor and then characterized using optical metallography (OM) and scanning electron microscopy (SEM) to determine the as-irradiated microstructure. To demonstrate the irradiation performance of U-7Mo dispersion fuel plates with 2 wt.% Si added to the matrix, fuel plates were tested to moderate burnups at intermediate fission rates as part of the RERTR-6 experiment. Further testing was performed to higher fission rates as part of the RERTR-7A experiment, and very aggressive testing (high temperature, high fission density, and high fission rate) was performed in the RERTR-9A, RERTR-9B, and AFIP-1 experiments. As-irradiated microstructures were compared to those observed after fabrication to determine the effects of irradiation on the microstructure. Based on comparison of the microstructural characterization results for each irradiated sample, some general conclusions can be drawn about how the microstructure evolves during irradiation: there is growth during irradiation of the fuel/matrix interaction (FMI) layer created during fabrication; Si diffuses from the FMI layer to deeper depths in the U-7Mo particles as the irradiation conditions are made more aggressive; lowering of the Si content in the FMI layer results in an increase in the size of the fission gas bubbles; as the FMI layer grows during irradiation, more Si diffuses from the matrix to the FMI layer/matrix interface; and interlinking of fission gas bubbles in the fuel plate microstructure that may indicate breakaway swelling is not observed.
NUCLEAR REACTOR FUEL-BREEDER FUEL ELEMENT
Currier, E.L. Jr.; Nicklas, J.H.
1962-08-14
A fuel-breeder fuel element was developed for a nuclear reactor wherein discrete particles of fissionable material are dispersed in a matrix of fertile breeder material. The fuel element combines the advantages of a dispersion type and a breeder-type. (AEC)
Integral edge seals for phosphoric acid fuel cells
Granata, Jr., Samuel J.; Woodle, Boyd M.; Dunyak, Thomas J.
1992-01-01
A phosphoric acid fuel cell having integral edge seals formed by an elastomer permeating an outer peripheral band contiguous with the outer peripheral edges of the cathode and anode assemblies and the matrix to form an integral edge seal which is reliable, easy to manufacture and has creep characteristics similar to the anode, cathode and matrix assemblies inboard of the seals to assure good electrical contact throughout the life of the fuel cell.
Fractal Model of Fission Product Release in Nuclear Fuel
NASA Astrophysics Data System (ADS)
Stankunas, Gediminas
2012-09-01
A model of fission gas migration in nuclear fuel pellet is proposed. Diffusion process of fission gas in granular structure of nuclear fuel with presence of inter-granular bubbles in the fuel matrix is simulated by fractional diffusion model. The Grunwald-Letnikov derivative parameter characterizes the influence of porous fuel matrix on the diffusion process of fission gas. A finite-difference method for solving fractional diffusion equations is considered. Numerical solution of diffusion equation shows correlation of fission gas release and Grunwald-Letnikov derivative parameter. Calculated profile of fission gas concentration distribution is similar to that obtained in the experimental studies. Diffusion of fission gas is modeled for real RBMK-1500 fuel operation conditions. A functional dependence of Grunwald-Letnikov derivative parameter with fuel burn-up is established.
Composite propellant combustion with low aluminum agglomeration
NASA Astrophysics Data System (ADS)
Mullen, Jessica Christine
Aluminum behavior---accumulation, agglomeration and ignition---is studied in a unique, wide-distribution, ammonium perchlorate/hydroxyl-terminated polybutadiene (AP/HTPB) propellant formulation that results in low Al agglomeration, even at low pressures (1--30 atm). Variations in formulation---such as fine-AP/binder ratio, Al particle size, Al loading, coarse-AP size---are also examined. A fuel-rich, oxygenated binder matrix highly loaded with fine (2-mum) AP (FAP) at 75/25:FAP/binder (by mass) is found to have premixed flame conditions that produce minimal agglomeration (without ignition) of 15-mum Al. Coarse AP (CAP) is added to the system in the form of either particles (200 or 400 mum) or pressed-AP laminates (simulated CAP). In the 2-D laminate system the CAP/oxyfuel-matrix flame structure is seen to be similar to that previously described for non-aluminized laminates with split (diffusion) and merged (partially-premixed) flame regimes, depending on pressure and fuel-matrix thickness. Both laminate and particulate systems show that with CAP present, Al can agglomerate more extensively on CAP via lateral surface migration from fuel matrix to the CAP region. The particulate CAP system also shows that Al can accumulate/agglomerate via settling on CAP from above (in the direction of burning). Both systems, but more clearly the 2-D laminates, show that with CAP present, Al is ignited by the outer CAP/fuel-matrix canopy flames. Thus, a propellant formulation is proposed for reducing overall Al agglomeration through intrinsically reduced agglomeration in the fuel-matrix and a reduced number of CAP-particle agglomerates via higher FAP/CAP ratio.
A simple high-performance matrix-free biomass molten carbonate fuel cell without CO2 recirculation
Lan, Rong; Tao, Shanwen
2016-01-01
In previous reports, flowing CO2 at the cathode is essential for either conventional molten carbonate fuel cells (MCFCs) based on molten carbonate/LiAlO2 electrolytes or matrix-free MCFCs. For the first time, we demonstrate a high-performance matrix-free MCFC without CO2 recirculation. At 800°C, power densities of 430 and 410 mW/cm2 are achieved when biomass—bamboo charcoal and wood, respectively–is used as fuel. At 600°C, a stable performance is observed during the measured 90 hours after the initial degradation. In this MCFC, CO2 is produced at the anode when carbon-containing fuels are used. The produced CO2 then dissolves and diffuses to the cathode to react with oxygen in open air, forming the required CO32− or CO42− ions for continuous operation. The dissolved O2− ions may also take part in the cell reactions. This provides a simple new fuel cell technology to directly convert carbon-containing fuels such as carbon and biomass into electricity with high efficiency. PMID:27540588
A simple high-performance matrix-free biomass molten carbonate fuel cell without CO2 recirculation.
Lan, Rong; Tao, Shanwen
2016-08-01
In previous reports, flowing CO2 at the cathode is essential for either conventional molten carbonate fuel cells (MCFCs) based on molten carbonate/LiAlO2 electrolytes or matrix-free MCFCs. For the first time, we demonstrate a high-performance matrix-free MCFC without CO2 recirculation. At 800°C, power densities of 430 and 410 mW/cm(2) are achieved when biomass-bamboo charcoal and wood, respectively-is used as fuel. At 600°C, a stable performance is observed during the measured 90 hours after the initial degradation. In this MCFC, CO2 is produced at the anode when carbon-containing fuels are used. The produced CO2 then dissolves and diffuses to the cathode to react with oxygen in open air, forming the required [Formula: see text] or [Formula: see text] ions for continuous operation. The dissolved [Formula: see text] ions may also take part in the cell reactions. This provides a simple new fuel cell technology to directly convert carbon-containing fuels such as carbon and biomass into electricity with high efficiency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grabaskas, David; Bucknor, Matthew; Jerden, James
2016-02-01
The development of an accurate and defensible mechanistic source term will be vital for the future licensing efforts of metal fuel, pool-type sodium fast reactors. To assist in the creation of a comprehensive mechanistic source term, the current effort sought to estimate the release fraction of radionuclides from metal fuel pins to the primary sodium coolant during fuel pin failures at a variety of temperature conditions. These release estimates were based on the findings of an extensive literature search, which reviewed past experimentation and reactor fuel damage accidents. Data sources for each radionuclide of interest were reviewed to establish releasemore » fractions, along with possible release dependencies, and the corresponding uncertainty levels. Although the current knowledge base is substantial, and radionuclide release fractions were established for the elements deemed important for the determination of offsite consequences following a reactor accident, gaps were found pertaining to several radionuclides. First, there is uncertainty regarding the transport behavior of several radionuclides (iodine, barium, strontium, tellurium, and europium) during metal fuel irradiation to high burnup levels. The migration of these radionuclides within the fuel matrix and bond sodium region can greatly affect their release during pin failure incidents. Post-irradiation examination of existing high burnup metal fuel can likely resolve this knowledge gap. Second, data regarding the radionuclide release from molten high burnup metal fuel in sodium is sparse, which makes the assessment of radionuclide release from fuel melting accidents at high fuel burnup levels difficult. This gap could be addressed through fuel melting experimentation with samples from the existing high burnup metal fuel inventory.« less
Fuel cell assembly with electrolyte transport
Chi, Chang V.
1983-01-01
A fuel cell assembly wherein electrolyte for filling the fuel cell matrix is carried via a transport system comprising a first passage means for conveying electrolyte through a first plate and communicating with a groove in a second plate at a first point, the first and second plates together sandwiching the matrix, and second passage means acting to carry electrolyte exclusively through the second plate and communicating with the groove at a second point exclusive of the first point.
Nitrous Oxide/Paraffin Hybrid Rocket Engines
NASA Technical Reports Server (NTRS)
Zubrin, Robert; Snyder, Gary
2010-01-01
Nitrous oxide/paraffin (N2OP) hybrid rocket engines have been invented as alternatives to other rocket engines especially those that burn granular, rubbery solid fuels consisting largely of hydroxyl- terminated polybutadiene (HTPB). Originally intended for use in launching spacecraft, these engines would also be suitable for terrestrial use in rocket-assisted takeoff of small airplanes. The main novel features of these engines are (1) the use of reinforced paraffin as the fuel and (2) the use of nitrous oxide as the oxidizer. Hybrid (solid-fuel/fluid-oxidizer) rocket engines offer advantages of safety and simplicity over fluid-bipropellant (fluid-fuel/fluid-oxidizer) rocket en - gines, but the thrusts of HTPB-based hybrid rocket engines are limited by the low regression rates of the fuel grains. Paraffin used as a solid fuel has a regression rate about 4 times that of HTPB, but pure paraffin fuel grains soften when heated; hence, paraffin fuel grains can, potentially, slump during firing. In a hybrid engine of the present type, the paraffin is molded into a 3-volume-percent graphite sponge or similar carbon matrix, which supports the paraffin against slumping during firing. In addition, because the carbon matrix material burns along with the paraffin, engine performance is not appreciably degraded by use of the matrix.
NASA Astrophysics Data System (ADS)
Vettraino, F.; Magnani, G.; La Torretta, T.; Marmo, E.; Coelli, S.; Luzzi, L.; Ossi, P.; Zappa, G.
1999-08-01
The plutonium disposition is presently acknowledged as a most urgent issue at the world level. Inert matrix and thoria fuel concepts for Pu burning in LWRs show good potential in providing effective and ultimate solutions to this issue. In non-fertile (U-free) inert matrix fuel, plutonium oxide is diluted within inert oxides such as stabilised ZrO 2, Al 2O 3, MgO or MgAl 2O 4. Thoria addition, which helps improve neutronic characteristics of inert fuels, appears as a promising variant of U-free fuel. In the context of an R&D activity aimed at assessing the feasibility of the fuel concept above, simulated fuel pellets have been produced both from dry-powder metallurgy and the sol-gel route. Results show that they can be fabricated by matching basic nuclear grade specifications such as the required geometry, density and microstructure. Some characterisation testing dealing with thermo-physical properties, ion irradiation damage and solubility also have been started. Results from thermo-physical measurements at room temperature have been achieved. A main feature stemming from solubility testing outcomes is a very high chemical stability which should render the fuel strongly diversion resistant and suitable for direct final disposal in deep geological repository (once-through solution).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cherkas, Dmytro
2011-10-01
As a result of the nuclear accident at the Chernobyl NPP in 1986, the explosion dispeesed nuclear materials contained in the nuclear fuel of the reactor core over the destroyed facilities at Unit No. 4 and over the territory immediately adjacent to the destroyed unit. The debris was buried under the Cascade Wall. Nuclear materials at the SHELTER can be characterized as spent nuclear fuel, fresh fuel assemblies (including fuel assemblies with damaged geometry and integrity, and individual fuel elements), core fragments of the Chernobyl NPP Unit No. 4, finely-dispersed fuel (powder/dust), uranium and plutonium compounds in water solutions, andmore » lava-like nuclear fuel-containing masses. The new safe confinement (NSC) is a facility designed to enclose the Chernobyl NPP Unit No. 4 destroyed by the accident. Construction of the NSC involves excavating operations, which are continuously monitored including for the level of radiation. The findings of such monitoring at the SHELTER site will allow us to characterize the recovered radioactive waste. When a process material categorized as high activity waste (HAW) is detected the following HLW management operations should be involved: HLW collection; HLW fragmentation (if appropriate); loading HAW into the primary package KT-0.2; loading the primary package filled with HAW into the transportation cask KTZV-0.2; and storing the cask in temporary storage facilities for high-level solid waste. The CDAS system is a system of 3He tubes for neutron coincidence counting, and is designed to measure the percentage ratio of specific nuclear materials in a 200-liter drum containing nuclear material intermixed with a matrix. The CDAS consists of panels with helium counter tubes and a polyethylene moderator. The panels are configured to allow one to position a waste-containing drum and a drum manipulator. The system operates on the ‘add a source’ basis using a small Cf-252 source to identify irregularities in the matrix during an assay. The platform with the source is placed under the measurement chamber. The platform with the source material is moved under the measurement chamber. The design allows one to move the platform with the source in and out, thus moving the drum. The CDAS system and radioactive waste containers have been built. For each drum filled with waste two individual measurements (passive/active) will be made. This paper briefly describes the work carried out to assess qualitatively and quantitatively the nuclear materials contained in high-level waste at the SHELTER facility. These efforts substantially increased nuclear safety and security at the facility.« less
High Temperature Fuel Cladding Chemical Interactions Between TRIGA Fuels and 304 Stainless Steel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perez, Emmanuel; Keiser, Jr., Dennis D.; Forsmann, Bryan
High-temperature fuel-cladding chemical interactions (FCCI) between TRIGA (Training, Research, Isotopes, General Atomics) fuel elements and the 304 stainless steel (304SS) are of interest to develop an understanding of the fuel behavior during transient reactor scenarios. TRIGA fuels are composed of uranium (U) particles dispersed in a zirconium-hydride (Zr-H) matrix. In reactor, the fuel is encased in 304-stainless-steel (304SS) or Incoloy 800 clad tubes. At high temperatures, the fuel can readily interact with the cladding, resulting in FCCI. A number of FCCI can take place in this system. Interactions can be expected between the cladding and the Zr-H matrix, and/or betweenmore » the cladding and the U-particles. Other interactions may be expected between the Zr-H matrix and the U-particles. Furthermore, the fuel contains erbium-oxide (Er-O) additions. Interactions can also be expected between the Er-O, the cladding, the Zr-H and the U-particles. The overall result is that very complex interactions may take place as a result of fuel and cladding exposures to high temperatures. This report discusses the characterization of the baseline fuel microstructure in the as-received state (prior to exposure to high temperature), characterization of the fuel after annealing at 950C for 24 hours and the results from diffusion couple experiments carries out at 1000C for 5 and 24 hours. Characterization was carried out via scanning electron microscopy (SEM) and transmission electron microscopy (TEM) with sample preparation via focused ion beam in situ-liftout-technique.« less
Variable area fuel cell process channels
Kothmann, Richard E.
1981-01-01
A fuel cell arrangement having a non-uniform distribution of fuel and oxidant flow paths, on opposite sides of an electrolyte matrix, sized and positioned to provide approximately uniform fuel and oxidant utilization rates, and cell conditions, across the entire cell.
Reducing Actinide Production Using Inert Matrix Fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deinert, Mark
2017-08-23
The environmental and geopolitical problems that surround nuclear power stem largely from the longlived transuranic isotopes of Am, Cm, Np and Pu that are contained in spent nuclear fuel. New methods for transmuting these elements into more benign forms are needed. Current research efforts focus largely on the development of fast burner reactors, because it has been shown that they could dramatically reduce the accumulation of transuranics. However, despite five decades of effort, fast reactors have yet to achieve industrial viability. A critical limitation to this, and other such strategies, is that they require a type of spent fuel reprocessingmore » that can efficiently separate all of the transuranics from the fission products with which they are mixed. Unfortunately, the technology for doing this on an industrial scale is still in development. In this project, we explore a strategy for transmutation that can be deployed using existing, current generation reactors and reprocessing systems. We show that use of an inert matrix fuel to recycle transuranics in a conventional pressurized water reactor could reduce overall production of these materials by an amount that is similar to what is achievable using proposed fast reactor cycles. Furthermore, we show that these transuranic reductions can be achieved even if the fission products are carried into the inert matrix fuel along with the transuranics, bypassing the critical separations hurdle described above. The implications of these findings are significant, because they imply that inert matrix fuel could be made directly from the material streams produced by the commercially available PUREX process. Zirconium dioxide would be an ideal choice of inert matrix in this context because it is known to form a stable solid solution with both fission products and transuranics.« less
NASA Astrophysics Data System (ADS)
Leenaers, A.; Van den Berghe, S.; Koonen, E.; Kuzminov, V.; Detavernier, C.
2015-03-01
In the framework of the SELENIUM project two full size flat fuel plates were produced with respectively Si and ZrN coated U(Mo) particles and irradiated in the BR2 reactor at SCK•CEN. Non-destructive analysis of the plates showed that the fuel swelling profiles of both SELENIUM plates were very similar to each other and none of the plates showed signs of pillowing or excessive swelling at the end of irradiation at the highest power position (local maximum 70% 235U). The microstructural analysis showed that the Si coated fuel has less interaction phase formation at low burn-up but at the highest burn-ups, defects start to develop on the IL-matrix interface. The ZrN coated fuel, shows a virtual absence of reaction between the U(Mo) and the Al, up to high fission densities after which the interaction layer formation starts and defects develop in the matrix near the U(Mo) particles. It was found and is confirmed by the SELENIUM (Surface Engineering of Low ENrIched Uranium-Molybdenum) experiment that there are two phenomena at play that need to be controlled: the formation of an interaction layer and swelling of the fuel. As the interaction layer formation occurs at the U(Mo)-matrix interface, applying a diffusion barrier (coating) at that interface should prevent the interaction between U(Mo) and the matrix. The U(Mo) swelling, observed to proceed at an accelerating rate with respect to fission density accumulation, is governed by linear solid state swelling and fission gas bubble swelling due to recrystallization of the fuel. The examination of the SELENIUM fuel plates clearly show that for the U(Mo) dispersion fuel to be qualified, the swelling rate at high burn-up needs to be reduced.
Effects of Irradiation on the Microstructure of U-7Mo Dispersion Fuel with Al-2Si Matrix
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dennis D. Keiser, Jr.; Jan-Fong Jue; Adam B. Robinson
2012-06-01
The Reduced Enrichment for Research and Test Reactor program is developing low-enriched uranium U-Mo dispersion fuels for application in research and test reactors around the world. As part of this development, fuel plates have been irradiated in the Advanced Test Reactor and then characterized using optical metallography (OM) and scanning electron microscopy (SEM) to determine the as-irradiated microstructure. To demonstrate the irradiation performance of U-7Mo dispersion fuel plates with 2 wt% Si added to the matrix, fuel plates were tested to medium burnups at intermediate fission rates as part of the RERTR-6 experiment. Further testing was performed to higher fissionmore » rates as part of the RERTR-7A experiment, and very aggressive testing (high temperature, high fission density, high fission rate) was performed in the RERTR-9A, RERTR-9B and AFIP-1 experiments. As-irradiated microstructures were compared to those observed after fabrication to determine the effects of irradiation on the microstructure. Based on comparison of the microstructural characterization results for each irradiated sample, some general conclusions can be drawn about how the microstructure evolves during irradiation: there is growth of the fuel/matrix interaction layer (FMI), which was present in the samples to some degree after fabrication, during irradiation; Si diffuses from the FMI layer to deeper depths in the U-7Mo particles as the irradiation conditions are made more aggressive; lowering of the Si content in the FMI layer results in an increase in the size of the fission gas bubbles; as the FMI layer grows during irradiation more Si diffuses from the matrix to the FMI layer/matrix interface, and interlinking of fission gas bubbles in the fuel plate microstructure that may indicate breakaway swelling is not observed.« less
Selection of optimal sensors for predicting performance of polymer electrolyte membrane fuel cell
NASA Astrophysics Data System (ADS)
Mao, Lei; Jackson, Lisa
2016-10-01
In this paper, sensor selection algorithms are investigated based on a sensitivity analysis, and the capability of optimal sensors in predicting PEM fuel cell performance is also studied using test data. The fuel cell model is developed for generating the sensitivity matrix relating sensor measurements and fuel cell health parameters. From the sensitivity matrix, two sensor selection approaches, including the largest gap method, and exhaustive brute force searching technique, are applied to find the optimal sensors providing reliable predictions. Based on the results, a sensor selection approach considering both sensor sensitivity and noise resistance is proposed to find the optimal sensor set with minimum size. Furthermore, the performance of the optimal sensor set is studied to predict fuel cell performance using test data from a PEM fuel cell system. Results demonstrate that with optimal sensors, the performance of PEM fuel cell can be predicted with good quality.
Superalloy for high-temperature hydrogen environmental applications
NASA Technical Reports Server (NTRS)
McKannan, Eugene C. (Inventor); McPherson, William B. (Inventor); Ahmed, Shaffiq (Inventor); Chandler, Shirley S. (Inventor)
1991-01-01
A nickel-based superalloy is provided which is resistant to deterioration in hydrogen at high operating temperatures and pressures, and which thus can be used in hydrogen-fueled spacecraft such as the Space Shuttle. The superalloy is characterized by a two-phase microstructure and consists of a gamma-prime precipitated phase in a gamma matrix. The gamma matrix phase is a primary solid solution and the gamma precipitated phase will be an intermetallic compound of the type A.sub.3 B, such as nickel aluminide or titanide. Both phases are coherent, ordered, and compatible, and thus will retain most of their strength at elevated temperatures. The alloy consists essentially of (by weight): Ni 50-60%, Cr 10-20%, Al 2-6%, Co 2-5%, Ti 3-8%, W 5-12%, Mo 5-10%, Nb 1-3%, wherein the ratio W/MO is approximately equal to 1, and Ti/Al ranges from about 1 to about 2.
The microbe electric: conversion of organic matter to electricity.
Lovley, Derek R
2008-12-01
Broad application of microbial fuel cells will require substantial increases in current density. A better understanding of the microbiology of these systems may help. Recent studies have greatly expanded the range of microorganisms known to function either as electrode-reducing microorganisms at the anode or as electrode-oxidizing microorganisms at the cathode. Microorganisms that can completely oxidize organic compounds with an electrode serving as the sole electron acceptor are expected to be the primary contributors to power production. Several mechanisms for electron transfer to anodes have been proposed including: direct electron transfer via outer-surface c-type cytochromes, long-range electron transfer via microbial nanowires, electron flow through a conductive biofilm matrix containing cytochromes, and soluble electron shuttles. Which mechanisms are most important depend on the microorganisms and the thickness of the anode biofilm. Emerging systems biology approaches to the study, design, and evolution of microorganisms interacting with electrodes are expected to contribute to improved microbial fuel cells.
DISSOLUTION OF URANIUM FUELS BY MONOOR DIFLUOROPHOSPHORIC ACID
Johnson, R.; Horn, F.L.; Strickland, G.
1963-05-01
A method of dissolving and separating uranium from a uranium matrix fuel element by dissolving the uraniumcontaining matrix in monofluorophosphoric acid and/or difluorophosphoric acid at temperatures ranging from 150 to 275 un. Concent 85% C, thereafter neutralizing the solution to precipitate uranium solids, and converting the solids to uranium hexafluoride by treatment with a halogen trifluoride is presented. (AEC)
Methods and apparatuses for the development of microstructured nuclear fuels
Jarvinen, Gordon D [Los Alamos, NM; Carroll, David W [Los Alamos, NM; Devlin, David J [Santa Fe, NM
2009-04-21
Microstructured nuclear fuel adapted for nuclear power system use includes fissile material structures of micrometer-scale dimension dispersed in a matrix material. In one method of production, fissile material particles are processed in a chemical vapor deposition (CVD) fluidized-bed reactor including a gas inlet for providing controlled gas flow into a particle coating chamber, a lower bed hot zone region to contain powder, and an upper bed region to enable powder expansion. At least one pneumatic or electric vibrator is operationally coupled to the particle coating chamber for causing vibration of the particle coater to promote uniform powder coating within the particle coater during fuel processing. An exhaust associated with the particle coating chamber and can provide a port for placement and removal of particles and powder. During use of the fuel in a nuclear power reactor, fission products escape from the fissile material structures and come to rest in the matrix material. After a period of use in a nuclear power reactor and subsequent cooling, separation of the fissile material from the matrix containing the embedded fission products will provide an efficient partitioning of the bulk of the fissile material from the fission products. The fissile material can be reused by incorporating it into new microstructured fuel. The fission products and matrix material can be incorporated into a waste form for disposal or processed to separate valuable components from the fission products mixture.
Analysis and Development of A Robust Fuel for Gas-Cooled Fast Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knight, Travis W.
2010-01-31
The focus of this effort was on the development of an advanced fuel for gas-cooled fast reactor (GFR) applications. This composite design is based on carbide fuel kernels dispersed in a ZrC matrix. The choice of ZrC is based on its high temperature properties and good thermal conductivity and improved retention of fission products to temperatures beyond that of traditional SiC based coated particle fuels. A key component of this study was the development and understanding of advanced fabrication techniques for GFR fuels that have potential to reduce minor actinide (MA) losses during fabrication owing to their higher vapor pressuresmore » and greater volatility. The major accomplishments of this work were the study of combustion synthesis methods for fabrication of the ZrC matrix, fabrication of high density UC electrodes for use in the rotating electrode process, production of UC particles by rotating electrode method, integration of UC kernels in the ZrC matrix, and the full characterization of each component. Major accomplishments in the near-term have been the greater characterization of the UC kernels produced by the rotating electrode method and their condition following the integration in the composite (ZrC matrix) following the short time but high temperature combustion synthesis process. This work has generated four journal publications, one conference proceeding paper, and one additional journal paper submitted for publication (under review). The greater significance of the work can be understood in that it achieved an objective of the DOE Generation IV (GenIV) roadmap for GFR Fuel—namely the demonstration of a composite carbide fuel with 30% volume fuel. This near-term accomplishment is even more significant given the expected or possible time frame for implementation of the GFR in the years 2030 -2050 or beyond.« less
Amorphization of the interaction products in U-Mo/Al dispersion fuel during irradiation
NASA Astrophysics Data System (ADS)
Ryu, Ho Jin; Kim, Yeon Soo; Hofman, G. L.
2009-04-01
The microstructures of the product resulting from interaction between U-Mo fuel particles and the Al matrix in U-Mo/Al dispersion fuel are discussed. We analyzed the available characterization results for the Al matrix dispersion fuels from both the out-of-pile and in-pile tests and examined the difference between these results. The morphology of pores that form in the interaction products during irradiation is similar to the porosity previously observed in irradiation-induced amorphized uranium compounds. The available diffraction studies for the interaction products formed in both the out-of-pile and in-pile tests are analyzed. We have concluded that the interaction products in the U-Mo/Al dispersion fuel are formed as an amorphous state or become amorphous during irradiation, depending on the irradiation conditions.
NASA Astrophysics Data System (ADS)
Sobolev, V.; Uyttenhove, W.; Thetford, R.; Maschek, W.
2011-07-01
The neutronic and thermomechanical performances of two composite fuel systems: CERCER with (Pu,Np,Am,Cm)O 2-x fuel particles in ceramic MgO matrix and CERMET with metallic Mo matrix, selected for transmutation of minor actinides in the European Facility for Industrial Transmutation (EFIT), were analysed aiming at their optimisation. The ALEPH burnup code system, based on MNCPX and ORIGEN codes and JEFF3.1 nuclear data library, and the modern version of the fuel rod performance code TRAFIC were used for this analysis. Because experimental data on the properties of the mixed minor-actinide oxides are scarce, and the in-reactor behaviour of the T91 steel chosen as cladding, as well as of the corrosion protective layer, is still not well-known, a set of "best estimates" provided the properties used in the code. The obtained results indicate that both fuel candidates, CERCER and CERMET, can satisfy the fuel design and safety criteria of EFIT. The residence time for both types of fuel elements can reach about 5 years with the reactivity swing within ±1000 pcm, and about 22% of the loaded MA is transmuted during this period. However, the fuel centreline temperature in the hottest CERCER fuel rod is close to the temperature above which MgO matrix becomes chemically instable. Moreover, a weak PCMI can appear in about 3 years of operation. The CERMET fuel can provide larger safety margins: the fuel temperature is more than 1000 K below the permitted level of 2380 K and the pellet-cladding gap remains open until the end of operation.
NEUTRONIC REACTOR FUEL ELEMENT
Horning, W.A.; Lanning, D.D.; Donahue, D.J.
1959-10-01
A fuel slug for a reactor which acts as a safety device is described. The fuel slug is an aluminum tube with a foil lining the inside surface of the tube, the foil being fabricated of uranium in a lead matrix.
Molybdenum-base cermet fuel development
NASA Astrophysics Data System (ADS)
Pilger, James P.; Gurwell, William E.; Moss, Ronald W.; White, George D.; Seifert, David A.
Development of a multimegawatt (MMW) space nuclear power system requires identification and resolution of several technical feasibility issues before selecting one or more promising system concepts. Demonstration of reactor fuel fabrication technology is required for cermet-fueled reactor concepts. The MMW reactor fuel development activity at Pacific Northwest Laboratory (PNL) is focused on producing a molybdenum-matrix uranium-nitride (UN) fueled cermte. This cermet is to have a high matrix density (greater than or equal to 95 percent) for high strength and high thermal conductance coupled with a high particle (UN) porosity (approximately 25 percent) for retention of released fission gas at high burnup. Fabrication process development involves the use of porous TiN microspheres as surrogate fuel material until porous Un microspheres become available. Process development was conducted in the areas of microsphere synthesis, particle sealing/coating, and high-energy-rate forming (HERF) and the vacuum hot press consolidation techniques. This paper summarizes the status of these activities.
Post-irradiation examination of uranium 7 wt% molybdenum atomized dispersion fuel
NASA Astrophysics Data System (ADS)
Leenaers, A.; Van den Berghe, S.; Koonen, E.; Jarousse, C.; Huet, F.; Trotabas, M.; Boyard, M.; Guillot, S.; Sannen, L.; Verwerft, M.
2004-10-01
Two low-enriched uranium fuel plates consisting of U-7wt%Mo atomized powder dispersed in an aluminum matrix, have been irradiated in the FUTURE irradiation rig of the BR2 reactor at SCK•CEN. The plates were submitted to a heat flux of maximum 353 W/cm 2 while the surface cladding temperature is kept below 130 °C. After 40 full power days, visual examination and profilometry of the fuel plates revealed an increase of the plate thickness. In view of this observation, the irradiation campaign was prematurely stopped and the fuel plates were retrieved from the reactor, having at their end-of-life a maximum burn-up of 32.8% 235U (6.5% FIMA). The microstructure of one of the fuel plates has been characterized in an extensive post-irradiation campaign. The U(Mo) fuel particles have been found to interact with the Al matrix, resulting in an interaction layer which can be identified as (U,Mo)Al 3 and (U,Mo)Al 4. Based on the composition of the interaction layer it is shown that the observed physical parameters like thickness of the interaction layer between the Al matrix and the U(Mo) fuel particles compare well to the values calculated by the MAIA code, an U(Mo) behavior modeling code developed by the Commissariat à l'énergie atomique (CEA).
Fission matrix-based Monte Carlo criticality analysis of fuel storage pools
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farlotti, M.; Ecole Polytechnique, Palaiseau, F 91128; Larsen, E. W.
2013-07-01
Standard Monte Carlo transport procedures experience difficulties in solving criticality problems in fuel storage pools. Because of the strong neutron absorption between fuel assemblies, source convergence can be very slow, leading to incorrect estimates of the eigenvalue and the eigenfunction. This study examines an alternative fission matrix-based Monte Carlo transport method that takes advantage of the geometry of a storage pool to overcome this difficulty. The method uses Monte Carlo transport to build (essentially) a fission matrix, which is then used to calculate the criticality and the critical flux. This method was tested using a test code on a simplemore » problem containing 8 assemblies in a square pool. The standard Monte Carlo method gave the expected eigenfunction in 5 cases out of 10, while the fission matrix method gave the expected eigenfunction in all 10 cases. In addition, the fission matrix method provides an estimate of the error in the eigenvalue and the eigenfunction, and it allows the user to control this error by running an adequate number of cycles. Because of these advantages, the fission matrix method yields a higher confidence in the results than standard Monte Carlo. We also discuss potential improvements of the method, including the potential for variance reduction techniques. (authors)« less
NASA Astrophysics Data System (ADS)
Sobolev, V.; Lemehov, S.; Messaoudi, N.; Van Uffelen, P.; Aı̈t Abderrahim, H.
2003-06-01
The Belgian Nuclear Research Centre, SCK • CEN, is currently working on the pre-design of the multipurpose accelerator-driven system (ADS) MYRRHA. A demonstration of the possibility of transmutation of minor actinides and long-lived fission products with a realistic design of experimental fuel targets and prognosis of their behaviour under typical ADS conditions is an important task in the MYRRHA project. In the present article, the irradiation behaviour of three different oxide fuel mixtures, containing americium and plutonium - (Am,Pu,U)O 2- x with urania matrix, (Am,Pu,Th)O 2- x with thoria matrix and (Am,Y,Pu,Zr)O 2- x with inert zirconia matrix stabilised by yttria - were simulated with the new fuel performance code MACROS, which is under development and testing at the SCK • CEN. All the fuel rods were considered to be of the same design and sizes: annular fuel pellets, helium bounded with the stainless steel cladding, and a large gas plenum. The liquid lead-bismuth eutectic was used as coolant. Typical irradiation conditions of the hottest fuel assembly of the MYRRHA subcritical core were pre-calculated with the MCNPX code and used in the following calculations as the input data. The results of prediction of the thermo-mechanical behaviour of the designed rods with the considered fuels during three irradiation cycles of 90 EFPD are presented and discussed.
Fabrication of simulated DUPIC fuel
NASA Astrophysics Data System (ADS)
Kang, Kweon Ho; Song, Ki Chan; Park, Hee Sung; Moon, Je Sun; Yang, Myung Seung
2000-12-01
Simulated DUPIC fuel provides a convenient way to investigate the DUPIC fuel properties and behavior such as thermal conductivity, thermal expansion, fission gas release, leaching, and so on without the complications of handling radioactive materials. Several pellets simulating the composition and microstructure of DUPIC fuel are fabricated by resintering the powder, which was treated through OREOX process of simulated spent PWR fuel pellets, which had been prepared from a mixture of UO2 and stable forms of constituent nuclides. The key issues for producing simulated pellets that replicate the phases and microstructure of irradiated fuel are to achieve a submicrometre dispersion during mixing and diffusional homogeneity during sintering. This study describes the powder treatment, OREOX, compaction and sintering to fabricate simulated DUPIC fuel using the simulated spent PWR fuel. The homogeneity of additives in the powder was observed after attrition milling. The microstructure of the simulated spent PWR fuel agrees well with the other studies. The leading structural features observed are as follows: rare earth and other oxides dissolved in the UO2 matrix, small metallic precipitates distributed throughout the matrix, and a perovskite phase finely dispersed on grain boundaries.
NASA Astrophysics Data System (ADS)
Lemehov, S. E.; Sobolev, V. P.; Verwerft, M.
2011-09-01
The European Facility for Industrial Transmutation (EFIT) of the minor actinides (MA), from LWR spent fuel is being developed in the integrated project EUROTRANS within the 6th Framework Program of EURATOM. Two composite uranium-free fuel systems, containing a large fraction of MA, are proposed as the main candidates: a CERCER with magnesia matrix hosting (Pu,MA)O 2-x particles, and a CERMET with metallic molybdenum matrix. The long-term thermal and mechanical behaviour of the fuel under the expected EFIT operating conditions is one of the critical issues in the core design. To make a reliable prediction of long-term thermo-mechanical behaviour of the hottest fuel rods in the lead-cooled version of EFIT with thermal power of 400 MW, different fuel performance codes have been used. This study describes the main results of modelling the thermo-mechanical behaviour of the hottest CERCER fuel rods with the fuel performance code MACROS which indicate that the CERCER fuel residence time can safely reach at least 4-5 effective full power years.
Simulation of irradiation hardening of Zircaloy within plate-type dispersion nuclear fuel elements
NASA Astrophysics Data System (ADS)
Jiang, Yijie; Wang, Qiming; Cui, Yi; Huo, Yongzhong; Ding, Shurong
2011-06-01
Within plate-type dispersion nuclear fuel elements, the metal matrix and cladding attacked continuously by fast neutrons undergo irradiation hardening, which might have remarkable effects upon the mechanical behaviors within fuel elements. In this paper, with the irradiation hardening effect of metal materials mainly considered together with irradiation growth effect of the cladding, the three-dimensional large-deformation constitutive relations for the metal matrix and cladding are developed. The method of virtual temperature increase in the previous studies is further developed to model the irradiation swelling of fuel particles; the method of anisotropic thermal expansion is introduced to model irradiation growth of the cladding; and a method of multi-step-temperature loading is proposed to simulate the coupling features of irradiation-induced swelling of the fuel particles together with irradiation growth of the cladding. Above all, based on the developed relationship between irradiation growth at certain burnup and the loaded virtual temperatures, with considering that certain burnup corresponds to certain fast neutron fluence, the time-dependent constitutive relation due to irradiation hardening effect is replaced by the virtual-temperature-dependent one which is introduced into the commercial software to simulate the irradiation hardening effects of the matrix and cladding. Numerical simulations of the irradiation-induced mechanical behaviors are implemented with the finite element method in consideration of the micro-structure of the fuel meat. The obtained results indicate that when the irradiation hardening effects are introduced into the constitutive relations of the metal matrix and cladding: (1) higher maximum Mises stresses for certain burnup at the matrix exist with the equivalent plastic strains remaining almost the same at lower burnups; (2) the maximum Mises stresses for certain burnup at the cladding are enhanced while the maximum equivalent plastic strains are reduced; and (3) the maximum first principal stresses for certain burnup at the matrix or the cladding are lower than the ones without the hardening effect, and the differences are found to increase with burnup; and the variation rules of the interfacial stresses are similar.
Low temperature chemical processing of graphite-clad nuclear fuels
Pierce, Robert A.
2017-10-17
A reduced-temperature method for treatment of a fuel element is described. The method includes molten salt treatment of a fuel element with a nitrate salt. The nitrate salt can oxidize the outer graphite matrix of a fuel element. The method can also include reduced temperature degradation of the carbide layer of a fuel element and low temperature solubilization of the fuel in a kernel of a fuel element.
Modelling the radiolytic corrosion of α-doped UO2 and spent nuclear fuel
NASA Astrophysics Data System (ADS)
Liu, Nazhen; Qin, Zack; Noël, James J.; Shoesmith, David W.
2017-10-01
A model previously developed to predict the corrosion rate of spent fuel (UO2) inside a failed waste container has been adapted to simulate the rates measured on a wide range of α-doped UO2 and spent fuel specimens. This simulation confirms the validity of the model and demonstrates that the steady-state corrosion rate is controlled by the radiolytic production of H2O2 (which has been shown to be the primary oxidant driving fuel corrosion), irrespective of the reactivity of the UO2 matrix. The model was then used to determine the consequences of corrosion inside a failed container resealed by steel corrosion products. The possible accumulation of O2, produced by H2O2 decomposition, was found to accelerate the corrosion rate in a closed system. However, the simultaneous accumulation of radiolytic H2, which is activated as a reductant on the noble metal (ε) particles in the spent fuel, rapidly overcame this acceleration leading to the eventual suppression of the corrosion rate to insignificant values. Calculations also showed that, while the radiation dose rate, the H2O2 decomposition ratio, and the surface coverage of ε particles all influenced the short term corrosion rate, the influence of the radiolytically produced H2 was the overwhelming influence in reducing the rate to negligible level (i.e., <10-20 mol m-2 s-1).
Composite nuclear fuel fabrication methodology for gas fast reactors
NASA Astrophysics Data System (ADS)
Vasudevamurthy, Gokul
An advanced fuel form for use in Gas Fast Reactors (GFR) was investigated. Criteria for the fuel includes operation at high temperature (˜1400°C) and high burnup (˜150 MWD/MTHM) with effective retention of fission products even during transient temperatures exceeding 1600°C. The GFR fuel is expected to contain up to 20% transuranics for a closed fuel cycle. Earlier evaluations of reference fuels for the GFR have included ceramic-ceramic (cercer) dispersion type composite fuels of mixed carbide or nitride microspheres coated with SiC in a SiC matrix. Studies have indicated that ZrC is a potential replacement for SiC on account of its higher melting point, increased fission product corrosion resistance and better chemical stability. The present work investigated natural uranium carbide microspheres in a ZrC matrix instead of SiC. Known issues of minor actinide volatility during traditional fabrication procedures necessitated the investigation of still high temperature but more rapid fabrication techniques to minimize these anticipated losses. In this regard, fabrication of ZrC matrix by combustion synthesis from zirconium and graphite powders was studied. Criteria were established to obtain sufficient matrix density with UC microsphere volume fractions up to 30%. Tests involving production of microspheres by spark erosion method (similar to electrodischarge machining) showed the inability of the method to produce UC microspheres in the desired range of 300 to 1200 mum. A rotating electrode device was developed using a minimum current of 80A and rotating at speeds up to 1500 rpm to fabricate microspheres between 355 and 1200 mum. Using the ZrC process knowledge, UC electrodes were fabricated and studied for use in the rotating electrode device to produce UC microspheres. Fabrication of the cercer composite form was studied using microsphere volume fractions of 10%, 20%, and 30%. The macrostructure of the composite and individual components at various stages were characterized to understand the required fabrication techniques and at the same time meet the necessary GFR fuel characteristics.
Dry compliant seal for phosphoric acid fuel cell
Granata, Jr., Samuel J.; Woodle, Boyd M.
1990-01-01
A dry compliant overlapping seal for a phosphoric acid fuel cell preformed f non-compliant Teflon to make an anode seal frame that encircles an anode assembly, a cathode seal frame that encircles a cathode assembly and a compliant seal frame made of expanded Teflon, generally encircling a matrix assembly. Each frame has a thickness selected to accommodate various tolerances of the fuel cell elements and are either bonded to one of the other frames or to a bipolar or end plate. One of the non-compliant frames is wider than the other frames forming an overlap of the matrix over the wider seal frame, which cooperates with electrolyte permeating the matrix to form a wet seal within the fuel cell that prevents process gases from intermixing at the periphery of the fuel cell and a dry seal surrounding the cell to keep electrolyte from the periphery thereof. The frames may be made in one piece, in L-shaped portions or in strips and have an outer perimeter which registers with the outer perimeter of bipolar or end plates to form surfaces upon which flanges of pan shaped, gas manifolds can be sealed.
Long-life high performance fuel cell program
NASA Technical Reports Server (NTRS)
Martin, R. E.
1985-01-01
A multihundred kilowatt Regenerative Fuel Cell for use in a space station is envisioned. Three 0.508 sq ft (471.9 cm) active area multicell stacks were assembled and endurance tested. The long term performance stability of the platinum on carbon catalyst configuration suitability of the lightweight graphite electrolyte reservoir plate, the stability of the free standing butyl bonded potassium titanate matrix structure, and the long life potential of a hybrid polysulfone cell edge frame construction were demonstrated. A 18,000 hour demonstration test of multicell stack to a continuous cyclical load profile was conducted. A total of 12,000 cycles was completed, confirming the ability of the alkaline fuel cell to operate to a load profile simulating Regenerative Fuel Cell operation. An orbiter production hydrogen recirculation pump employed in support of the cyclical load profile test completed 13,000 hours of maintenance free operation. Laboratory endurance tests demonstrated the suitability of the butyl bonded potassium matrix, perforated nickel foil electrode substrates, and carbon ribbed substrate anode for use in the alkaline fuel cell. Corrosion testing of materials at 250 F (121.1 C) in 42% wgt. potassium identified ceria, zirconia, strontium titanate, strontium zirconate and lithium cobaltate as candidate matrix materials.
Method and system for low-NO.sub.x dual-fuel combustion of liquid and/or gaseous fuels
Gard, Vincent; Chojnacki, Dennis A; Rabovitser, Ioseph K
2014-12-02
A method and apparatus for combustion in which a pressurized preheated liquid fuel is atomized and a portion thereof flash vaporized, creating a mixture of fuel vapor and liquid droplets. The mixture is mixed with primary combustion oxidant, producing a fuel/primary oxidant mixture which is then injected into a primary combustion chamber in which the fuel/primary oxidant mixture is partially combusted, producing a secondary gaseous fuel containing hydrogen and carbon oxides. The secondary gaseous fuel is mixed with a secondary combustion oxidant and injected into the second combustion chamber wherein complete combustion of the secondary gaseous fuel is carried out. The resulting second stage flue gas containing very low amounts of NO.sub.x is then vented from the second combustion chamber.
Cermet-fueled reactors for advanced space applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cowan, C.L.; Palmer, R.S.; Taylor, I.N.
Cermet-fueled nuclear reactors are attractive candidates for high-performance advanced space power systems. The cermet consists of a hexagonal matrix of a refractory metal and a ceramic fuel, with multiple tubular flow channels. The high performance characteristics of the fuel matrix come from its high strength at elevated temperatures and its high thermal conductivity. The cermet fuel concept evolved in the 1960s with the objective of developing a reactor design that could be used for a wide range of mobile power generating sytems, including both Brayton and Rankine power conversion cycles. High temperature thermal cycling tests for the cermet fuel weremore » carried out by General Electric as part of the 710 Project (General Electric 1966), and by Argonne National Laboratory in the Direct Nuclear Rocket Program (1965). Development programs for cermet fuel are currently under way at Argonne National Laboratory and Pacific Northwest Laboratory. The high temperature qualification tests from the 1960s have provided a base for the incorporation of cermet fuel in advanced space applications. The status of the cermet fuel development activities and descriptions of the key features of the cermet-fueled reactor design are summarized in this paper.« less
NUCLEAR REACTOR FUEL ELEMENTS AND METHOD OF PREPARATION
Kingston, W.E.; Kopelman, B.; Hausner, H.H.
1963-07-01
A fuel element consisting of uranium nitride and uranium carbide in the form of discrete particles in a solid coherent matrix of a metal such as steel, beryllium, uranium, or zirconium and clad with a metal such as steel, aluminum, zirconium, or beryllium is described. The element is made by mixing powdered uranium nitride and uranium carbide with powdered matrix metal, then compacting and sintering the mixture. (AEC)
Molten carbonate fuel cell matrices
Vogel, Wolfgang M.; Smith, Stanley W.
1985-04-16
A molten carbonate fuel cell including a cathode electrode of electrically conducting or semiconducting lanthanum containing material and an electrolyte containing matrix of an electrically insulating lanthanum perovskite. In addition, in an embodiment where the cathode electrode is LaMnO.sub.3, the matrix may include LaAlO.sub.3 or a lithium containing material such as LiAlO.sub.2 or Li.sub.2 TiO.sub.3.
U.S. Department of Energy Accident Resistant SiC Clad Nuclear Fuel Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
George W. Griffith
2011-10-01
A significant effort is being placed on silicon carbide ceramic matrix composite (SiC CMC) nuclear fuel cladding by Light Water Reactor Sustainability (LWRS) Advanced Light Water Reactor Nuclear Fuels Pathway. The intent of this work is to invest in a high-risk, high-reward technology that can be introduced in a relatively short time. The LWRS goal is to demonstrate successful advanced fuels technology that suitable for commercial development to support nuclear relicensing. Ceramic matrix composites are an established non-nuclear technology that utilizes ceramic fibers embedded in a ceramic matrix. A thin interfacial layer between the fibers and the matrix allows formore » ductile behavior. The SiC CMC has relatively high strength at high reactor accident temperatures when compared to metallic cladding. SiC also has a very low chemical reactivity and doesn't react exothermically with the reactor cooling water. The radiation behavior of SiC has also been studied extensively as structural fusion system components. The SiC CMC technology is in the early stages of development and will need to mature before confidence in the developed designs can created. The advanced SiC CMC materials do offer the potential for greatly improved safety because of their high temperature strength, chemical stability and reduced hydrogen generation.« less
An improved model of fission gas atom transport in irradiated uranium dioxide
NASA Astrophysics Data System (ADS)
Shea, J. H.
2018-04-01
The hitherto standard approach to predicting fission gas release has been a pure diffusion gas atom transport model based upon Fick's law. An additional mechanism has subsequently been identified from experimental data at high burnup and has been summarised in an empirical model that is considered to embody a so-called fuel matrix 'saturation' phenomenon whereby the fuel matrix has become saturated with fission gas so that the continued addition of extra fission gas atoms results in their expulsion from the fuel matrix into the fuel rod plenum. The present paper proposes a different approach by constructing an enhanced fission gas transport law consisting of two components: 1) Fick's law and 2) a so-called drift term. The new transport law can be shown to be effectively identical in its predictions to the 'saturation' approach and is more readily physically justifiable. The method introduces a generalisation of the standard diffusion equation which is dubbed the Drift Diffusion Equation. According to the magnitude of a dimensionless Péclet number, P, the new equation can vary from pure diffusion to pure drift, which latter represents a collective motion of the fission gas atoms through the fuel matrix at a translational velocity. Comparison is made between the saturation and enhanced transport approaches. Because of its dependence on P, the Drift Diffusion Equation is shown to be more effective at managing the transition from one type of limiting transport phenomenon to the other. Thus it can adapt appropriately according to the reactor operation.
Heterogeneous fuel for hybrid rocket
NASA Technical Reports Server (NTRS)
Stickler, David B. (Inventor)
1996-01-01
Heterogeneous fuel compositions suitable for use in hybrid rocket engines and solid-fuel ramjet engines, The compositions include mixtures of a continuous phase, which forms a solid matrix, and a dispersed phase permanently distributed therein. The dispersed phase or the matrix vaporizes (or melts) and disperses into the gas flow much more rapidly than the other, creating depressions, voids and bumps within and on the surface of the remaining bulk material that continuously roughen its surface, This effect substantially enhances heat transfer from the combusting gas flow to the fuel surface, producing a correspondingly high burning rate, The dispersed phase may include solid particles, entrained liquid droplets, or gas-phase voids having dimensions roughly similar to the displacement scale height of the gas-flow boundary layer generated during combustion.
Production of fuel-grade ethanol from renewable resources, such as biomass, is gaining attention due to the phase out of methyl t-butyl ether (MTBE) as a fuel oxygenate, national security issues related to non-domestic sources of fuels, and the effect of fossil fuel combustion on...
The production of fuel-grade ethanol from renewable resources, such as biomass, is gaining attention due to the phase out of methyl t-butyl ether (MTBE) as a fuel oxygenate, national security issues related to non-domestic sources of fuels, and the effect of fossil fuel combustio...
Reconstituted asbestos matrix for fuel cells
NASA Technical Reports Server (NTRS)
Mcbryar, H.
1975-01-01
Method is described for reprocessing commercially available asbestos matrix stock to yield greater porosity and bubble pressure (due to increased surface tension), improved homogeneity, and greater uniformity.
Plastic scintillator with effective pulse shape discrimination for neutron and gamma detection
Zaitseva, Natalia P.; Carman, M Leslie; Cherepy, Nerine; Glenn, Andrew M.; Hamel, Sebastien; Payne, Stephen A.; Rupert, Benjamin L.
2016-04-12
In one embodiment, a scintillator material includes a polymer matrix; and a primary dye in the polymer matrix, the primary dye being a fluorescent dye, the primary dye being present in an amount of 5 wt % or more; wherein the scintillator material exhibits an optical response signature for neutrons that is different than an optical response signature for gamma rays. In another embodiment, a scintillator material includes a polymer matrix; and a primary dye in the polymer matrix, the primary dye being a fluorescent dye, the primary dye being present in an amount greater than 10 wt %.
TEM characterization of irradiated U-7Mo/Mg dispersion fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gan, J.; Keiser, D. D.; Miller, B. D.
This paper presents the results of transmission electron microscopy (TEM) characterization on neutron-irradiated samples taken from the low-flux and high-flux sides of the same fuel plate with U-7Mo fuel particles dispersed in Mg matrix with aluminum alloy Al6061 as cladding material that was irradiated edge-on to the core in the Advanced Test Reactor. The corresponding local fission density and fission rate of the fuel particles and the average fuel-plate centerline temperature for the low-flux and high-flux samples are estimated to be 3.7 × 10 21 f/cm 3, 7.4 × 10 14 f/cm 3/s and 123 °C, and 5.5 × 10more » 21 f/cm3, 11.0 × 10 14 f/cm 3/s and 158 °C, respectively. Complex interaction layers developed at the Al-Mg interface, consisting of Al 3Mg 2 and Al 12Mg 17 along with precipitates of MgO, Mg 2Si and FeAl 5.3. No interaction between Mg matrix and U-Mo fuel particle was identified. For the U-Mo fuel particles, at low fission density, small elongated bubbles wrapped around the clean areas with a fission gas bubble superlattice, which suggests that bubble coalescence is an important mechanism for converting the fission gas bubble superlattice to large bubbles. At high fission density, no bubbles or porosity were observed in the Mg matrix, and pockets of residual fission gas bubble superlattice were observed in the U-Mo fuel particle interior.« less
TEM characterization of irradiated U-7Mo/Mg dispersion fuel
Gan, J.; Keiser, D. D.; Miller, B. D.; ...
2017-07-15
This paper presents the results of transmission electron microscopy (TEM) characterization on neutron-irradiated samples taken from the low-flux and high-flux sides of the same fuel plate with U-7Mo fuel particles dispersed in Mg matrix with aluminum alloy Al6061 as cladding material that was irradiated edge-on to the core in the Advanced Test Reactor. The corresponding local fission density and fission rate of the fuel particles and the average fuel-plate centerline temperature for the low-flux and high-flux samples are estimated to be 3.7 × 10 21 f/cm 3, 7.4 × 10 14 f/cm 3/s and 123 °C, and 5.5 × 10more » 21 f/cm3, 11.0 × 10 14 f/cm 3/s and 158 °C, respectively. Complex interaction layers developed at the Al-Mg interface, consisting of Al 3Mg 2 and Al 12Mg 17 along with precipitates of MgO, Mg 2Si and FeAl 5.3. No interaction between Mg matrix and U-Mo fuel particle was identified. For the U-Mo fuel particles, at low fission density, small elongated bubbles wrapped around the clean areas with a fission gas bubble superlattice, which suggests that bubble coalescence is an important mechanism for converting the fission gas bubble superlattice to large bubbles. At high fission density, no bubbles or porosity were observed in the Mg matrix, and pockets of residual fission gas bubble superlattice were observed in the U-Mo fuel particle interior.« less
Minor actinide transmutation in thorium and uranium matrices in heavy water moderated reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhatti, Zaki; Hyland, B.; Edwards, G.W.R.
2013-07-01
The irradiation of Th{sup 232} breeds fewer of the problematic minor actinides (Np, Am, Cm) than the irradiation of U{sup 238}. This characteristic makes thorium an attractive potential matrix for the transmutation of these minor actinides, as these species can be transmuted without the creation of new actinides as is the case with a uranium fuel matrix. Minor actinides are the main contributors to long term decay heat and radiotoxicity of spent fuel, so reducing their concentration can greatly increase the capacity of a long term deep geological repository. Mixing minor actinides with thorium, three times more common in themore » Earth's crust than natural uranium, has the additional advantage of improving the sustainability of the fuel cycle. In this work, lattice cell calculations have been performed to determine the results of transmuting minor actinides from light water reactor spent fuel in a thorium matrix. 15-year-cooled group-extracted transuranic elements (Np, Pu, Am, Cm) from light water reactor (LWR) spent fuel were used as the fissile component in a thorium-based fuel in a heavy water moderated reactor (HWR). The minor actinide (MA) transmutation rates, spent fuel activity, decay heat and radiotoxicity, are compared with those obtained when the MA were mixed instead with natural uranium and taken to the same burnup. Each bundle contained a central pin containing a burnable neutron absorber whose initial concentration was adjusted to have the same reactivity response (in units of the delayed neutron fraction β) for coolant voiding as standard NU fuel. (authors)« less
Combustor with two stage primary fuel tube with concentric members and flow regulating
Parker, David Marchant; Whidden, Graydon Lane; Zolyomi, Wendel
1999-01-01
A combustor for a gas turbine having a centrally located fuel nozzle and inner, middle and outer concentric cylindrical liners, the inner liner enclosing a primary combustion zone. The combustor has an air inlet that forms two passages for pre-mixing primary fuel and air to be supplied to the primary combustion zone. Each of the pre-mixing passages has a circumferential array of swirl vanes. A plurality of primary fuel tube assemblies extend through both pre-mixing passages, with each primary fuel tube assembly located between a pair of swirl vanes. Each primary fuel tube assembly is comprised of two tubular members. The first member supplies fuel to the first pre-mixing passage, while the second member, which extends through the first member, supplies fuel to the second pre-mixing passage. An annular fuel manifold is divided into first and second chambers by a circumferentially extending baffle. The proximal end of the first member is attached to the manifold itself while the proximal end of the second member is attached to the baffle. The distal end of the first member is attached directly to the second member at around its mid-point. The inlets of the first and second members are in flow communication with the first and second manifold chambers, respectively. Control valves separately regulate the flow of fuel to the two chambers and, therefore, to the two members of the fuel tube assemblies, thereby allowing the flow of fuel to the first and second pre-mixing passages to be separately controlled.
Surface engineering of low enriched uranium-molybdenum
NASA Astrophysics Data System (ADS)
Leenaers, A.; Van den Berghe, S.; Detavernier, C.
2013-09-01
Recent attempts to qualify the LEU(Mo) dispersion plate fuel with Si addition to the Al matrix up to high power and burn-up have not yet been successful due to unacceptable fuel plate swelling at a local burn-up above 60% 235U. The root cause of the failures is clearly related directly to the formation of the U(Mo)-Al(Si) interaction layer. Excessive formation of these layers around the fuel kernels severely weakens the local mechanical integrity and eventually leads to pillowing of the plate. In 2008, SCK·CEN has launched the SELENIUM U(Mo) dispersion fuel development project in an attempt to find an alternative way to reduce the interaction between U(Mo) fuel kernels and the Al matrix to a significantly low level: by applying a coating on the U(Mo) kernels. Two fuel plates containing 8gU/cc U(Mo) coated with respectively 600 nm Si and 1000 nm ZrN in a pure Al matrix were manufactured. These plates were irradiated in the BR2 reactor up to a maximum heat flux of 470 W/cm2 until a maximum local burn-up of approximately 70% 235U (˜50% plate average) was reached. Awaiting the PIE results, the advantages of applying a coating are discussed in this paper through annealing experiments and TRIM (the Transport of Ions in Matter) calculations.
Reliability analysis of dispersion nuclear fuel elements
NASA Astrophysics Data System (ADS)
Ding, Shurong; Jiang, Xin; Huo, Yongzhong; Li, Lin an
2008-03-01
Taking a dispersion fuel element as a special particle composite, the representative volume element is chosen to act as the research object. The fuel swelling is simulated through temperature increase. The large strain elastoplastic analysis is carried out for the mechanical behaviors using FEM. The results indicate that the fission swelling is simulated successfully; the thickness increments grow linearly with burnup; with increasing of burnup: (1) the first principal stresses at fuel particles change from tensile ones to compression ones, (2) the maximum Mises stresses at the particles transfer from the centers of fuel particles to the location close to the interfaces between the matrix and the particles, their values increase with burnup; the maximum Mises stresses at the matrix exist in the middle location between the two particles near the mid-plane along the length (or width) direction, and the maximum plastic strains are also at the above region.
Quantification of rare earth elements using laser-induced breakdown spectroscopy
Martin, Madhavi; Martin, Rodger C.; Allman, Steve; ...
2015-10-21
In this paper, a study of the optical emission as a function of concentration of laser-ablated yttrium (Y) and of six rare earth elements, europium (Eu), gadolinium (Gd), lanthanum (La), praseodymium (Pr), neodymium (Nd), and samarium (Sm), has been evaluated using the laser-induced breakdown spectroscopy (LIBS) technique. Statistical methodology using multivariate analysis has been used to obtain the sampling errors, coefficient of regression, calibration, and cross-validation of measurements as they relate to the LIBS analysis in graphite-matrix pellets that were doped with elements at several concentrations. Each element (in oxide form) was mixed in the graphite matrix in percentages rangingmore » from 1% to 50% by weight and the LIBS spectra obtained for each composition as well as for pure oxide samples. Finally, a single pellet was mixed with all the elements in equal oxide masses to determine if we can identify the elemental peaks in a mixed pellet. This dataset is relevant for future application to studies of fission product content and distribution in irradiated nuclear fuels. These results demonstrate that LIBS technique is inherently well suited for the future challenge of in situ analysis of nuclear materials. Finally, these studies also show that LIBS spectral analysis using statistical methodology can provide quantitative results and suggest an approach in future to the far more challenging multielemental analysis of ~ 20 primary elements in high-burnup nuclear reactor fuel.« less
Code of Federal Regulations, 2011 CFR
2011-07-01
... PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Fossil-Fuel-Fired Steam Generators for..., matrix material, clay, and other organic and inorganic material. Fossil fuel means natural gas, petroleum, coal, and any form of solid, liquid, or gaseous fuel derived from such materials for the purpose of...
Code of Federal Regulations, 2010 CFR
2010-07-01
... PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Fossil-Fuel-Fired Steam Generators for..., matrix material, clay, and other organic and inorganic material. Fossil fuel means natural gas, petroleum, coal, and any form of solid, liquid, or gaseous fuel derived from such materials for the purpose of...
DOE Office of Scientific and Technical Information (OSTI.GOV)
D. M. Perez
2011-05-01
The RERTR-9 experiment was designed to test the effect of modified fuel/clad interfaces in monolithic fuel plates and to demonstrate that the addition of Si to the matrix material in dispersion plates continued to be effective at high loading (~8.5 g U/cc). Several monolithic fuel plates were fabricated by Hot Isostatic Pressing (HIP) and Friction Bonding (FB) with thin layers of Si inserted and by HIP with a Zr diffusion barrier between the fuel and cladding. Si was applied to the interface by thermal spray of Al Si mixtures and by the insertion of thin Si-rich Al alloy foil betweenmore » the fuel/clad interface. The dispersion fuel plates were fabricated by semi-standard rolling techniques (the reduction by rolling was lowered to limit fabrication defects). Matrix materials consisted of Al-Si alloys and mixtures with various levels of Si. The following report summarizes the life of the RERTR-9A/B experiment through end of irradiation, including as-run neutronic analysis, thermal analysis and hydraulic testing results.« less
Analyses of transients for an 800 MW-class accelerator driven transmuter with fertile-free fuels
NASA Astrophysics Data System (ADS)
Maschek, Werner; Suzuki, Tohru; Chen, Xue-Nong; Rineiski, Andrei; Matzerath Boccaccini, Claudia; Mori, Magnus; Morita, Koji
2006-06-01
In the FUTURE Program, the development and application of fertile-free fuels for Accelerator Driven Transmuters (ADTs) has been advanced. To assess the reactor performance and safety behavior of an ADT with so-called dedicated fuels, various transient cases for an 800 MW-class Pb/Bi-cooled ADT were investigated using the SIMMER-III code. The FUTURE ADT also served as vehicle to develop and test ideas on a safety concept for such transmuters. After an extensive ranking procedure, a CERCER fuel with an MgO matrix and a CERMET fuel with a Mo-92 matrix were chosen. The transient scenarios shown here are: spurious beam trip (BT), unprotected loss of flow (ULOF) and unprotected blockage accident (UBA). Since the release of fission gas and helium after cladding failure could induce a significant positive reactivity, the gas-blowdown was investigated for the transient scenarios. The present analyses showed that power excursions could be avoided by the fuel sweep-out from the core under severe accident conditions.
Hybrid rocket engine, theoretical model and experiment
NASA Astrophysics Data System (ADS)
Chelaru, Teodor-Viorel; Mingireanu, Florin
2011-06-01
The purpose of this paper is to build a theoretical model for the hybrid rocket engine/motor and to validate it using experimental results. The work approaches the main problems of the hybrid motor: the scalability, the stability/controllability of the operating parameters and the increasing of the solid fuel regression rate. At first, we focus on theoretical models for hybrid rocket motor and compare the results with already available experimental data from various research groups. A primary computation model is presented together with results from a numerical algorithm based on a computational model. We present theoretical predictions for several commercial hybrid rocket motors, having different scales and compare them with experimental measurements of those hybrid rocket motors. Next the paper focuses on tribrid rocket motor concept, which by supplementary liquid fuel injection can improve the thrust controllability. A complementary computation model is also presented to estimate regression rate increase of solid fuel doped with oxidizer. Finally, the stability of the hybrid rocket motor is investigated using Liapunov theory. Stability coefficients obtained are dependent on burning parameters while the stability and command matrixes are identified. The paper presents thoroughly the input data of the model, which ensures the reproducibility of the numerical results by independent researchers.
Corrosion free phosphoric acid fuel cell
Wright, Maynard K.
1990-01-01
A phosphoric acid fuel cell with an electrolyte fuel system which supplies electrolyte via a wick disposed adjacent a cathode to an absorbent matrix which transports the electrolyte to portions of the cathode and an anode which overlaps the cathode on all sides to prevent corrosion within the cell.
Irradiation performance of U-Mo monolithic fuel
Meyer, M. K.; Gan, J.; Jue, J. F.; ...
2014-04-01
High-performance research reactors require fuel that operates at high specific power to high fission density, but at relatively low temperatures. Research reactor fuels are designed for efficient heat rejection, and are composed of assemblies of thin-plates clad in aluminum alloy. The development of low-enriched fuels to replace high-enriched fuels for these reactors requires a substantially increased uranium density in the fuel to offset the decrease in enrichment. Very few fuel phases have been identified that have the required combination of very-high uranium density and stable fuel behavior at high burnup. U-Mo alloys represent the best known tradeoff in these properties.more » Testing of aluminum matrix U-Mo aluminum matrix dispersion fuel revealed a pattern of breakaway swelling behavior at intermediate burnup, related to the formation of a molybdenum stabilized high aluminum intermetallic phase that forms during irradiation. In the case of monolithic fuel, this issue was addressed by eliminating, as much as possible, the interfacial area between U-Mo and aluminum. Based on scoping irradiation test data, a fuel plate system composed of solid U-10Mo fuel meat, a zirconium diffusion barrier, and Al6061 cladding was selected for development. Developmental testing of this fuel system indicates that it meets core criteria for fuel qualification, including stable and predictable swelling behavior, mechanical integrity to high burnup, and geometric stability. In addition, the fuel exhibits robust behavior during power-cooling mismatch events under irradiation at high power.« less
IRRADIATION PERFORMANCE OF U-Mo MONOLITHIC FUEL
DOE Office of Scientific and Technical Information (OSTI.GOV)
M.K. Meyer; J. Gan; J.-F. Jue
2014-04-01
High-performance research reactors require fuel that operates at high specific power to high fission density, but at relatively low temperatures. Research reactor fuels are designed for efficient heat rejection, and are composed of assemblies of thin-plates clad in aluminum alloy. The development of low-enriched fuels to replace high-enriched fuels for these reactors requires a substantially increased uranium density in the fuel to offset the decrease in enrichment. Very few fuel phases have been identified that have the required combination of very-high uranium density and stable fuel behavior at high burnup. UMo alloys represent the best known tradeoff in these properties.more » Testing of aluminum matrix U-Mo aluminum matrix dispersion fuel revealed a pattern of breakaway swelling behavior at intermediate burnup, related to the formation of a molybdenum stabilized high aluminum intermetallic phase that forms during irradiation. In the case of monolithic fuel, this issue was addressed by eliminating, as much as possible, the interfacial area between U-Mo and aluminum. Based on scoping irradiation test data, a fuel plate system composed of solid U-10Mo fuel meat, a zirconium diffusion barrier, and Al6061 cladding was selected for development. Developmental testing of this fuel system indicates that it meets core criteria for fuel qualification, including stable and predictable swelling behavior, mechanical integrity to high burnup, and geometric stability. In addition, the fuel exhibits robust behavior during power-cooling mismatch events under irradiation at high power.« less
Low Cost Nuclear Thermal Rocket Cermet Fuel Element Environment Testing
NASA Technical Reports Server (NTRS)
Bradley, D. E.; Mireles, O. R.; Hickman, R. R.
2011-01-01
Deep space missions with large payloads require high specific impulse and relatively high thrust to achieve mission goals in reasonable time frames.1,2 Conventional storable propellants produce average specific impulse. Nuclear thermal rockets capable of producing high specific impulse are proposed. Nuclear thermal rockets employ heat produced by fission reaction to heat and therefore accelerate hydrogen, which is then forced through a rocket nozzle providing thrust. Fuel element temperatures are very high (up to 3000 K), and hydrogen is highly reactive with most materials at high temperatures. Data covering the effects of high-temperature hydrogen exposure on fuel elements are limited.3 The primary concern is the mechanical failure of fuel elements that employ high-melting-point metals, ceramics, or a combination (cermet) as a structural matrix into which the nuclear fuel is distributed. The purpose of the testing is to obtain data to assess the properties of the non-nuclear support materials, as-fabricated, and determine their ability to survive and maintain thermal performance in a prototypical NTR reactor environment of exposure to hydrogen at very high temperatures. The fission process of the planned fissile material and the resulting heating performance is well known and does not therefore require that active fissile material be integrated in this testing. A small-scale test bed designed to heat fuel element samples via non-contact radio frequency heating and expose samples to hydrogen is being developed to assist in optimal material and manufacturing process selection without employing fissile material. This paper details the test bed design and results of testing conducted to date.
Characterization of an Irradiated RERTR-7 Fuel Plate Using Transmission Electron Microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. Gan; D. D. Keiser, Jr.; B. D. Miller
2010-03-01
Transmission electron microscopy (TEM) has been used to characterize an irradiated fuel plate with Al-2Si matrix from the RERTR-7 experiment that was irradiated under moderate reactor conditions. The results of this work showed the presence of a bubble superlattice within the U-7Mo grains that accommodated fission gases (e.g., Xe). The presence of this structure helps the U-7Mo exhibit a stable swelling behaviour during irradiation. Furthermore, TEM analysis showed that the Si-rich interaction layers that develop around the fuel particles at the U-7Mo/matrix interface during fuel plate fabrication and irradiation become amorphous during irradiation, and in regions of the interaction layermore » that have relatively high Si concentrations the fission gas bubbles remain small and contained within the layer but in areas with lower Si concentrations the bubbles grow in size. An important question that remains to be answered about the irradiation behaviour of U-Mo dispersion fuels, is how do more aggressive irradiation conditions affect the behaviour of fission gases within the U-7Mo fuel particles and in the amorphous interaction layers on the microstructural scale that can be characterized using TEM? This paper discusses the results of TEM analysis that was performed on a sample taken from an irradiated RERTR-7 fuel plate with Al-2Si matrix. This plate was exposed to more aggressive irradiation conditions than was the sample taken from the RERTR-6 plate. The microstructural features present within the U-7Mo and the amorphous interaction layers will be discussed. The results of this analysis will be compared to what was observed in the earlier RERTR-6 fuel plate characterization.« less
Two-phase pressure drop reduction BWR assembly design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dix, G.E.; Crowther, R.L.; Colby, M.J.
1991-05-21
This patent describes an improved fuel assembly for a boiling water reactor. It comprises: a fuel channel; a lower tie plate; an upper tie plate; the lower tie plate and the upper tie plate defining a two-dimensional matrix; at least one water rod the fuel rods being partial length rods.
Induction Heating Model of Cermet Fuel Element Environmental Test (CFEET)
NASA Technical Reports Server (NTRS)
Gomez, Carlos F.; Bradley, D. E.; Cavender, D. P.; Mireles, O. R.; Hickman, R. R.; Trent, D.; Stewart, E.
2013-01-01
Deep space missions with large payloads require high specific impulse and relatively high thrust to achieve mission goals in reasonable time frames. Nuclear Thermal Rockets (NTR) are capable of producing a high specific impulse by employing heat produced by a fission reactor to heat and therefore accelerate hydrogen through a rocket nozzle providing thrust. Fuel element temperatures are very high (up to 3000 K) and hydrogen is highly reactive with most materials at high temperatures. Data covering the effects of high-temperature hydrogen exposure on fuel elements are limited. The primary concern is the mechanical failure of fuel elements due to large thermal gradients; therefore, high-melting-point ceramics-metallic matrix composites (cermets) are one of the fuels under consideration as part of the Nuclear Cryogenic Propulsion Stage (NCPS) Advance Exploration System (AES) technology project at the Marshall Space Flight Center. The purpose of testing and analytical modeling is to determine their ability to survive and maintain thermal performance in a prototypical NTR reactor environment of exposure to hydrogen at very high temperatures and obtain data to assess the properties of the non-nuclear support materials. The fission process and the resulting heating performance are well known and do not require that active fissile material to be integrated in this testing. A small-scale test bed; Compact Fuel Element Environmental Tester (CFEET), designed to heat fuel element samples via induction heating and expose samples to hydrogen is being developed at MSFC to assist in optimal material and manufacturing process selection without utilizing fissile material. This paper details the analytical approach to help design and optimize the test bed using COMSOL Multiphysics for predicting thermal gradients induced by electromagnetic heating (Induction heating) and Thermal Desktop for radiation calculations.
Assessment of Silicon Carbide Composites for Advanced Salt-Cooled Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katoh, Yutai; Wilson, Dane F; Forsberg, Charles W
2007-09-01
The Advanced High-Temperature Reactor (AHTR) is a new reactor concept that uses a liquid fluoride salt coolant and a solid high-temperature fuel. Several alternative fuel types are being considered for this reactor. One set of fuel options is the use of pin-type fuel assemblies with silicon carbide (SiC) cladding. This report provides (1) an initial viability assessment of using SiC as fuel cladding and other in-core components of the AHTR, (2) the current status of SiC technology, and (3) recommendations on the path forward. Based on the analysis of requirements, continuous SiC fiber-reinforced, chemically vapor-infiltrated SiC matrix (CVI SiC/SiC) compositesmore » are recommended as the primary option for further study on AHTR fuel cladding among various industrially available forms of SiC. Critical feasibility issues for the SiC-based AHTR fuel cladding are identified to be (1) corrosion of SiC in the candidate liquid salts, (2) high dose neutron radiation effects, (3) static fatigue failure of SiC/SiC, (4) long-term radiation effects including irradiation creep and radiation-enhanced static fatigue, and (5) fabrication technology of hermetic wall and sealing end caps. Considering the results of the issues analysis and the prospects of ongoing SiC research and development in other nuclear programs, recommendations on the path forward is provided in the order or priority as: (1) thermodynamic analysis and experimental examination of SiC corrosion in the candidate liquid salts, (2) assessment of long-term mechanical integrity issues using prototypical component sections, and (3) assessment of high dose radiation effects relevant to the anticipated operating condition.« less
Basic materials and structures aspects for hypersonic transport vehicles (HTV)
NASA Astrophysics Data System (ADS)
Steinheil, E.; Uhse, W.
A Mach 5 transport design is used to illustrate structural concepts and criteria for materials selections and also key technologies that must be followed in the areas of computational methods, materials and construction methods. Aside from the primary criteria of low weight, low costs, and conceivable risks, a number of additional requirements must be met, including stiffness and strength, corrosion resistance, durability, and a construction adequate for inspection, maintenance and repair. Current aircraft construction requirements are significantly extended for hypersonic vehicles. Additional consideration is given to long-duration temperature resistance of the airframe structure, the integration of large-volume cryogenic fuel tanks, computational tools, structural design, polymer matrix composites, and advanced manufacturing technologies.
NASA Astrophysics Data System (ADS)
Jayamani, E.; Perera, D. S.; Soon, K. H.; Bakri, M. K. B.
2017-04-01
A systematic method of material analysis aiming for fuel efficiency improvement with the utilization of natural fiber reinforced polymer matrix composites in the automobile industry is proposed. A multi-factor based decision criteria with Analytical Hierarchy Process (AHP) was used and executed through MATLAB to achieve improved fuel efficiency through the weight reduction of vehicular components by effective comparison between two engine hood designs. The reduction was simulated by utilizing natural fiber polymer composites with thermoplastic polypropylene (PP) as the matrix polymer and benchmarked against a synthetic based composite component. Results showed that PP with 35% of flax fiber loading achieved a 0.4% improvement in fuel efficiency, and it was the highest among the 27 candidate fibers.
Annealing tests of in-pile irradiated oxide coated U-Mo/Al-Si dispersed nuclear fuel
NASA Astrophysics Data System (ADS)
Zweifel, T.; Valot, Ch.; Pontillon, Y.; Lamontagne, J.; Vermersch, A.; Barrallier, L.; Blay, T.; Petry, W.; Palancher, H.
2014-09-01
U-Mo/Al based nuclear fuels have been worldwide considered as a promising high density fuel for the conversion of high flux research reactors from highly enriched uranium to lower enrichment. In this paper, we present the annealing test up to 1800 °C of in-pile irradiated U-Mo/Al-Si fuel plate samples. More than 70% of the fission gases (FGs) are released during two major FG release peaks around 500 °C and 670 °C. Additional characterisations of the samples by XRD, EPMA and SEM suggest that up to 500 °C FGs are released from IDL/matrix interfaces. The second peak at 670 °C representing the main release of FGs originates from the interaction between U-Mo and matrix in the vicinity of the cladding.
Goeddel, W.V.; Simnad, M.T.
1963-04-30
This patent relates to a method of making a fuel compact having a matrix of carbon or graphite which carries the carbides of fissile material. A nuclear fuel material selected from the group including uranium and thorium carbides, silicides, and oxides is first mixed both with sufficient finely divided carbon to constitute a matrix in the final product and with a diffusional bonding material selected from the class consisting of zirconium, niobium, molybdenum, titanium, nickel, chromium, and silicon. The mixture is then heated at a temperature of 1500 to 1800 nif- C while maintaining it under a pressure of over about 2,000 pounds per square inch. Preferably, heating is accomplished by the electrical resistance of the compact itself. (AEC)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jolly, Brian C.; Lindemer, Terrence; Terrani, Kurt A.
In support of fully ceramic matrix (FCM) fuel development, coating development work has begun at the Oak Ridge National Laboratory (ORNL) to produce tri-isotropic (TRISO) coated fuel particles with UN kernels. The nitride kernels are used to increase heavy metal density in these SiC-matrix fuel pellets with details described elsewhere. The advanced gas reactor (AGR) program at ORNL used fluidized bed chemical vapor deposition (FBCVD) techniques for TRISO coating of UCO (two phase mixture of UO 2 and UC x) kernels. Similar techniques were employed for coating of the UN kernels, however significant changes in processing conditions were required tomore » maintain acceptable coating properties due to physical property and dimensional differences between the UCO and UN kernels.« less
NASA Astrophysics Data System (ADS)
Uyttenhove, W.; Sobolev, V.; Maschek, W.
2011-09-01
A potential option for neutralization of minor actinides (MA) accumulated in spent nuclear fuel of light water reactors (LWRs) is their transmutation in dedicated accelerator-driven systems (ADS). A promising fuel candidate dedicated to MA transmutation is a CERMET composite with Mo metal matrix and (Pu, Np, Am, Cm)O 2-x fuel particles. Results of optimisation studies of the CERMET fuel targeting to increasing the MA transmutation efficiency of the EFIT (European Facility for Industrial Transmutation) core are presented. In the adopted strategy of MA burning the plutonium (Pu) balance of the core is minimized, allowing a reduction in the reactivity swing and the peak power form-factor deviation and an extension of the cycle duration. The MA/Pu ratio is used as a variable for the fuel optimisation studies. The efficiency of MA transmutation is close to the foreseen theoretical value of 42 kg TW -1 h -1 when level of Pu in the actinide mixture is about 40 wt.%. The obtained results are compared with the reference case of the EFIT core loaded with the composite CERCER fuel, where fuel particles are incorporated in a ceramic magnesia matrix. The results of this study offer additional information for the EFIT fuel selection.
Transport properties of C and O in UN fuels
NASA Astrophysics Data System (ADS)
Schuler, Thomas; Lopes, Denise Adorno; Claisse, Antoine; Olsson, Pär
2017-03-01
Uranium nitride fuel is considered for fast reactors (GEN-IV generation and space reactors) and for light water reactors as a high-density fuel option. Despite this large interest, there is a lack of information about its behavior for in-pile and out-of-pile conditions. From the present literature, it is known that C and O impurities have significant influence on the fuel performance. Here we perform a systematic study of these impurities in the UN matrix using electronic-structure calculations of solute-defect interactions and microscopic jump frequencies. These quantities were calculated in the DFT +U approximation combined with the occupation matrix control scheme, to avoid convergence to metastable states for the 5 f levels. The transport coefficients of the system were evaluated with the self-consistent mean-field theory. It is demonstrated that carbon and oxygen impurities have different diffusion properties in the UN matrix, with O atoms having a higher mobility, and C atoms showing a strong flux coupling anisotropy. The kinetic interplay between solutes and vacancies is expected to be the main cause for surface segregation, as incorporation energies show no strong thermodynamic segregation preference for (001) surfaces compared with the bulk.
Diurnal profiles of isoprene, methacrolein and methyl vinyl ketone at an urban site in Hong Kong
NASA Astrophysics Data System (ADS)
Cheung, K.; Guo, H.; Ou, J. M.; Simpson, I. J.; Barletta, B.; Meinardi, S.; Blake, D. R.
2014-02-01
Methacrolein (MACR) and methyl vinyl ketone (MVK) are major oxidation products of isoprene, but they also have primary emissions in urban environments, for example from fuel use. To examine whether MACR and MVK could be used as a direct measurement of the oxidation rate of isoprene in an urban setting, the diurnal variations of isoprene, MACR and MVK were characterized at an urban site in Hong Kong from September to November, 2010. Ozone (O3), carbon monoxide (CO), sulfur dioxide (SO2), and nitrogen oxides (NOx) were simultaneously monitored. The average isoprene mixing ratio was 252 ± 204 pptv, with a bell-shaped distribution observed on most sampling days. Higher levels of isoprene were recorded in the beginning of the sampling period, when the temperature was higher. The average mixing ratios of MACR and MVK were 101 ± 85 pptv and 175 ± 131 pptv, respectively. While isoprene, MACR and MVK experienced peak concentrations from 11 a.m. to 3 p.m., increased levels of MACR and MVK during the morning rush hour did not coincide with isoprene. The low associations between isoprene and MACR/MVK suggest that either MACR/MVK were not formed from local isoprene oxidation and/or they could partly originate from primary emissions such as fuel evaporation or combustion. Statistical analyses of linear regression and positive matrix factorization revealed that approximately 20-29% of the measured MACR and MVK was associated with biogenic emissions, and 55-71% was impacted by vehicular emissions, particularly during morning rush hours. Since MACR and MVK originated from both primary emissions and biogenic emissions at this urban site, they can therefore overestimate the actual rate of isoprene oxidation and its contribution to O3 production in urban areas with strong primary emissions.
Multiphase Nanocrystalline Ceramic Concept for Nuclear Fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mecartnery, Martha; Graeve, Olivia; Patel, Maulik
2017-05-25
The goal of this research is to help develop new fuels for higher efficiency, longer lifetimes (higher burn-up) and increased accident tolerance in future nuclear reactors. Multiphase nanocrystalline ceramics will be used in the design of simulated advanced inert matrix nuclear fuel to provide for enhanced plasticity, better radiation tolerance, and improved thermal conductivity
Dissolution behavior of MgO based inert matrix fuel for the transmutation of minor actinides
NASA Astrophysics Data System (ADS)
Mühr-Ebert, E. L.; Lichte, E.; Bukaemskiy, A.; Finkeldei, S.; Klinkenberg, M.; Brandt, F.; Bosbach, D.; Modolo, G.
2018-07-01
This study explores the dissolution properties of magnesia-based inert matrix nuclear fuel (IMF) containing transuranium elements (TRU). Pure MgO pellets as well as MgO pellets containing CeO2, as surrogate for TRU oxides, and are considered as model systems for genuine magnesia based inert matrix fuel were fabricated. The aim of this study is to identify conditions at which the matrix material can be selectively dissolved during the head-end reprocessing step, allowing a separation of MgO from the actinides, whereas the actinides remain undissolved. The dissolution behavior was studied in macroscopic batch experiments as a function of nitric acid concentration, dissolution medium volume, temperature, stirring velocity, and pellet density (85, 90, 96, and 99%TD). To mimic pellets with various burn-ups the density of the here fabricated pellets was varied. MgO is soluble even under mild conditions (RT, 2.5 mol/L HNO3). The dissolution rates of MgO at different acid concentrations are rather similar, whereas the dissolution rate is strongly dependent on the temperature. Via a microscopic approach, a model was developed to describe the evolution of the pellet surface area during dissolution and determine a surface normalized dissolution rate. Moreover, dissolution rates of the inert matrix fuel containing CeO2 were determined as a function of the acid concentration and temperature. During the dissolution of MgO/CeO2 pellets the MgO dissolves completely, while CeO2 (>99%) remains undissolved. This study intends to provide a profound understanding of the chemical performance of magnesia based IMF containing fissile material. The feasibility of the dissolution of magnesia based IMF with nitric acid is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prokofiev, I.; Wiencek, T.; McGann, D.
1997-10-07
Powder metallurgy dispersions of uranium alloys and silicides in an aluminum matrix have been developed by the RERTR program as a new generation of proliferation-resistant fuels. Testing is done with miniplate-type fuel plates to simulate standard fuel with cladding and matrix in plate-type configurations. In order to seal the dispersion fuel plates, a diffusion bond must exist between the aluminum coverplates surrounding the fuel meat. Four different variations in the standard method for roll-bonding 6061 aluminum were studied. They included mechanical cleaning, addition of a getter material, modifications to the standard chemical etching, and welding methods. Aluminum test pieces weremore » subjected to a bend test after each rolling pass. Results, based on 400 samples, indicate that at least a 70% reduction in thickness is required to produce a diffusion bond using the standard rollbonding method versus a 60% reduction using the Type II method in which the assembly was welded 100% and contained open 9mm holes at frame corners.« less
NASA Astrophysics Data System (ADS)
Todoroki, Akira; Omagari, Kazuomi
Carbon Fiber Reinforced Plastic (CFRP) laminates are adopted for fuel tank structures of next generation space rockets or automobiles. Matrix cracks may cause fuel leak or trigger fatigue damage. A monitoring system of the matrix crack density is required. The authors have developed an electrical resistance change method for the monitoring of delamination cracks in CFRP laminates. Reinforcement fibers are used as a self-sensing system. In the present study, the electric potential method is adopted for matrix crack density monitoring. Finite element analysis (FEA) was performed to investigate the possibility of monitoring matrix crack density using multiple electrodes mounted on a single surface of a specimen. The FEA reveals the matrix crack density increases electrical resistance for a target segment between electrodes. Experimental confirmation was also performed using cross-ply laminates. Eight electrodes were mounted on a single surface of a specimen using silver paste after polishing of the specimen surface with sandpaper. The two outermost electrodes applied electrical current, and the inner electrodes measured electric voltage changes. The slope of electrical resistance during reloading is revealed to be an appropriate index for the detection of matrix crack density.
75 FR 25120 - List of Approved Spent Fuel Storage Casks: NUHOMS® HD System Revision 1
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-07
...-235, clarify the requirements of reconstituted fuel assemblies, add requirements to qualify metal matrix composite neutron absorbers with integral aluminum cladding, delete use of nitrogen for draining...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rest, J.; Hofman, G.L.
1997-12-01
The Dispersion Analysis Research Tool (DART) contains models for fission-gas-induced fuel swelling, interaction of fuel with the matrix aluminum, for the resultant reaction-product swelling, and for the calculation of the stress gradient within the fuel particle. The effects of an aluminide shell on fuel particle swelling are evaluated. Validation of the model is demonstrated by a comparison of DART calculations of fuel swelling of U{sub 3}SiAl-Al and U{sub 3}Si{sub 2}-Al for various dispersion fuel element designs with the data.
Fully ceramic nuclear fuel and related methods
Venneri, Francesco; Katoh, Yutai; Snead, Lance Lewis
2016-03-29
Various embodiments of a nuclear fuel for use in various types of nuclear reactors and/or waste disposal systems are disclosed. One exemplary embodiment of a nuclear fuel may include a fuel element having a plurality of tristructural-isotropic fuel particles embedded in a silicon carbide matrix. An exemplary method of manufacturing a nuclear fuel is also disclosed. The method may include providing a plurality of tristructural-isotropic fuel particles, mixing the plurality of tristructural-isotropic fuel particles with silicon carbide powder to form a precursor mixture, and compacting the precursor mixture at a predetermined pressure and temperature.
Thomson, W.B.; Corbin, A. Jr.
1961-07-18
An improved core for a gas-cooled power reactor which admits gas coolant at high temperatures while affording strong integral supporting structure and efficient moderation of neutrons is described. The multiplicities of fuel elements constituting the critical amassment of fissionable material are supported and confined by a matrix of metallic structure which is interspersed therebetween. Thermal insulation is interposed between substantially all of the metallic matrix and the fuel elements; the insulation then defines the principal conduit system for conducting the coolant gas in heat-transfer relationship with the fuel elements. The metallic matrix itseif comprises a system of ducts through which an externally-cooled hydrogeneous liquid, such as water, is circulated to serve as the principal neutron moderant for the core and conjointly as the principal coolant for the insulated metallic structure. In this way, use of substantially neutron transparent metals, such as aluminum, becomes possible for the supporting structure, despite the high temperatures of the proximate gas. The Aircraft Nuclear Propulsion program's "R-1" reactor design is a preferred embodiment.
Electrochemical reduction of CerMet fuels for transmutation using surrogate CeO2-Mo pellets
NASA Astrophysics Data System (ADS)
Claux, B.; Souček, P.; Malmbeck, R.; Rodrigues, A.; Glatz, J.-P.
2017-08-01
One of the concepts chosen for the transmutation of minor actinides in Accelerator Driven Systems or fast reactors proposes the use of fuels and targets containing minor actinides oxides embedded in an inert matrix either composed of molybdenum metal (CerMet fuel) or of ceramic magnesium oxide (CerCer fuel). Since the sufficient transmutation cannot be achieved in a single step, it requires multi-recycling of the fuel including recovery of the not transmuted minor actinides. In the present work, a pyrochemical process for treatment of Mo metal inert matrix based CerMet fuels is studied, particularly the electroreduction in molten chloride salt as a head-end step required prior the main separation process. At the initial stage, different inactive pellets simulating the fuel containing CeO2 as minor actinide surrogates were examined. The main studied parameters of the process efficiency were the porosity and composition of the pellets and the process parameters as current density and passed charge. The results indicated the feasibility of the process, gave insight into its limiting parameters and defined the parameters for the future experiment on minor actinide containing material.
NASA Astrophysics Data System (ADS)
Walker, C. T.; Goll, W.; Matsumura, T.
1997-06-01
The fuel investigated was manufactured by Siemens-KWU and irradiated at low rating in the KWO reactor in Germany. The MOX agglomerates in the cold outer region of the fuel shared several common features with the high burn-up structure at the rim of UO 2 fuel. It is proposed that in both cases the mechanism producing the microstructure change is recrystallisation. Further, it is shown that surface MOX agglomerates do not noticeably retard cladding creepdown although they swell into the gap. The contracting cladding appears able to push the agglomerates back into the fuel. The thickness of the oxide layer on the inner cladding surface increased at points where contact with surface MOX agglomerates had occurred. Despite this, the mean thickness of the oxide did not differ significantly from that found in UO 2 fuel rods of like design. It is judged that the high burn-up structure will form in the UO 2 matrix when the local burn-up there reaches 60 to 80 GWd/tM. Limiting the MOX scrap addition in the UO 2 matrix will delay its formation.
Prediction of U-Mo dispersion nuclear fuels with Al-Si alloy using artificial neural network
DOE Office of Scientific and Technical Information (OSTI.GOV)
Susmikanti, Mike, E-mail: mike@batan.go.id; Sulistyo, Jos, E-mail: soj@batan.go.id
2014-09-30
Dispersion nuclear fuels, consisting of U-Mo particles dispersed in an Al-Si matrix, are being developed as fuel for research reactors. The equilibrium relationship for a mixture component can be expressed in the phase diagram. It is important to analyze whether a mixture component is in equilibrium phase or another phase. The purpose of this research it is needed to built the model of the phase diagram, so the mixture component is in the stable or melting condition. Artificial neural network (ANN) is a modeling tool for processes involving multivariable non-linear relationships. The objective of the present work is to developmore » code based on artificial neural network models of system equilibrium relationship of U-Mo in Al-Si matrix. This model can be used for prediction of type of resulting mixture, and whether the point is on the equilibrium phase or in another phase region. The equilibrium model data for prediction and modeling generated from experimentally data. The artificial neural network with resilient backpropagation method was chosen to predict the dispersion of nuclear fuels U-Mo in Al-Si matrix. This developed code was built with some function in MATLAB. For simulations using ANN, the Levenberg-Marquardt method was also used for optimization. The artificial neural network is able to predict the equilibrium phase or in the phase region. The develop code based on artificial neural network models was built, for analyze equilibrium relationship of U-Mo in Al-Si matrix.« less
Distributed ignition method and apparatus for a combustion engine
Willi, Martin L.; Bailey, Brett M.; Fiveland, Scott B.; Gong, Weidong
2006-03-07
A method and apparatus for operating an internal combustion engine is provided. The method comprises the steps of introducing a primary fuel into a main combustion chamber of the engine, introducing a pilot fuel into the main combustion chamber of the engine, determining an operating load of the engine, determining a desired spark plug ignition timing based on the engine operating load, and igniting the primary fuel and pilot fuel with a spark plug at the desired spark plug ignition timing. The method is characterized in that the octane number of the pilot fuel is lower than the octane number of the primary fuel.
ERIC Educational Resources Information Center
Lopez Gaxiola, Daniel
2011-01-01
In this project we developed conductive thermoplastic resins by adding varying amounts of three different carbon fillers: carbon black (CB), synthetic graphite (SG) and multi-walled carbon nanotubes (CNT) to a polypropylene matrix for application as fuel cell bipolar plates. This component of fuel cells provides mechanical support to the stack,…
NASA Astrophysics Data System (ADS)
Keiser, Dennis D.; Williams, Walter; Robinson, Adam; Wachs, Dan; Moore, Glenn; Crawford, Doug
2017-10-01
The Materials Management and Minimization program is developing fuel designs to replace highly enriched fuel with fuels of low enrichment. Swelling is an important irradiation behavior that needs to be well understood. Data from high resolution thickness measurements performed on U-7Mo dispersion fuel plates with Al-Si alloy matrices that were irradiated at high power is sparse. This paper reports the results of detailed thickness measurements performed on two dispersion fuel plates that were irradiated at relatively high power to high fission densities in the Advanced Test Reactor in the same RERTR-9B experiment. Both plates were irradiated to similar fission densities, but one was irradiated at a higher power than the other. The goal of this work is to identify any differences in the swelling behavior when fuel plates are irradiated at different powers to the same fission densities. Based on the results of detailed thickness measurments, more swelling occurs when a U-7Mo dispersion fuel with Al-3.5Si matrix is irradiated to a high fission density at high power compared to one irradiated at a lower power to high fission density.
NUCLEAR REACTOR FUEL ELEMENT AND METHOD OF MANUFACTURE
Brooks, H.
1960-04-26
A description is given for a fuel element comprising a body of uranium metal or an uranium compound dispersed in a matrix material made from magnesium, calcium, or barium and a stainless steel jacket enclosing the body.
Process for immobilizing plutonium into vitreous ceramic waste forms
Feng, Xiangdong; Einziger, Robert E.
1997-01-01
Disclosed is a method for converting spent nuclear fuel and surplus plutonium into a vitreous ceramic final waste form wherein spent nuclear fuel is bound in a crystalline matrix which is in turn bound within glass.
Process for immobilizing plutonium into vitreous ceramic waste forms
Feng, X.; Einziger, R.E.
1997-08-12
Disclosed is a method for converting spent nuclear fuel and surplus plutonium into a vitreous ceramic final waste form wherein spent nuclear fuel is bound in a crystalline matrix which is in turn bound within glass.
Process for immobilizing plutonium into vitreous ceramic waste forms
Feng, X.; Einziger, R.E.
1997-01-28
Disclosed is a method for converting spent nuclear fuel and surplus plutonium into a vitreous ceramic final waste form wherein spent nuclear fuel is bound in a crystalline matrix which is in turn bound within glass.
Power plant fuel switching and air quality in a tropical, forested environment
Medeiros, Adan S. S.; Calderaro, Gisele; Guimarães, Patricia C.; ...
2017-07-26
How a changing energy matrix for electricity production affects air quality is considered for an urban region in a tropical, forested environment. Manaus, the largest city in the central Amazon Basin of Brazil, is in the process of changing its energy matrix for electricity production from fuel oil and diesel to natural gas over an approximately 10-year period, with a minor contribution by hydropower. Three scenarios of urban air quality, specifically afternoon ozone concentrations, were simulated using the Weather Research and Forecasting (WRF-Chem) model. The first scenario used fuel oil and diesel for electricity production, which was the reality inmore » 2008. The second scenario was based on the fuel mix from 2014, the most current year for which data were available. The third scenario considered nearly complete use of natural gas for electricity production, which is the anticipated future, possibly for 2018. For each case, inventories of anthropogenic emissions were based on electricity generation, refinery operations, and transportation. Transportation and refinery operations were held constant across the three scenarios to focus on effects of power plant fuel switching in a tropical context. The simulated NO x and CO emissions for the urban region decrease by 89 and 55 %, respectively, after the complete change in the energy matrix. The results of the simulations indicate that a change to natural gas significantly decreases maximum afternoon ozone concentrations over the population center, reducing ozone by >70 % for the most polluted days. The sensitivity of ozone concentrations to the fuel switchover is consistent with a NO x-limited regime, as expected for a tropical forest having high emissions of biogenic volatile organic compounds, high water vapor concentrations, and abundant solar radiation. There are key differences in a shifting energy matrix in a tropical, forested environment compared to other world environments. Therefore, policies favoring the burning of natural gas in place of fuel oil and diesel have great potential for ozone reduction and improved air quality for growing urban regions located in tropical, forested environments around the world.« less
Power plant fuel switching and air quality in a tropical, forested environment
NASA Astrophysics Data System (ADS)
Medeiros, Adan S. S.; Calderaro, Gisele; Guimarães, Patricia C.; Magalhaes, Mateus R.; Morais, Marcos V. B.; Rafee, Sameh A. A.; Ribeiro, Igor O.; Andreoli, Rita V.; Martins, Jorge A.; Martins, Leila D.; Martin, Scot T.; Souza, Rodrigo A. F.
2017-07-01
How a changing energy matrix for electricity production affects air quality is considered for an urban region in a tropical, forested environment. Manaus, the largest city in the central Amazon Basin of Brazil, is in the process of changing its energy matrix for electricity production from fuel oil and diesel to natural gas over an approximately 10-year period, with a minor contribution by hydropower. Three scenarios of urban air quality, specifically afternoon ozone concentrations, were simulated using the Weather Research and Forecasting (WRF-Chem) model. The first scenario used fuel oil and diesel for electricity production, which was the reality in 2008. The second scenario was based on the fuel mix from 2014, the most current year for which data were available. The third scenario considered nearly complete use of natural gas for electricity production, which is the anticipated future, possibly for 2018. For each case, inventories of anthropogenic emissions were based on electricity generation, refinery operations, and transportation. Transportation and refinery operations were held constant across the three scenarios to focus on effects of power plant fuel switching in a tropical context. The simulated NOx and CO emissions for the urban region decrease by 89 and 55 %, respectively, after the complete change in the energy matrix. The results of the simulations indicate that a change to natural gas significantly decreases maximum afternoon ozone concentrations over the population center, reducing ozone by > 70 % for the most polluted days. The sensitivity of ozone concentrations to the fuel switchover is consistent with a NOx-limited regime, as expected for a tropical forest having high emissions of biogenic volatile organic compounds, high water vapor concentrations, and abundant solar radiation. There are key differences in a shifting energy matrix in a tropical, forested environment compared to other world environments. Policies favoring the burning of natural gas in place of fuel oil and diesel have great potential for ozone reduction and improved air quality for growing urban regions located in tropical, forested environments around the world.
Power plant fuel switching and air quality in a tropical, forested environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Medeiros, Adan S. S.; Calderaro, Gisele; Guimarães, Patricia C.
How a changing energy matrix for electricity production affects air quality is considered for an urban region in a tropical, forested environment. Manaus, the largest city in the central Amazon Basin of Brazil, is in the process of changing its energy matrix for electricity production from fuel oil and diesel to natural gas over an approximately 10-year period, with a minor contribution by hydropower. Three scenarios of urban air quality, specifically afternoon ozone concentrations, were simulated using the Weather Research and Forecasting (WRF-Chem) model. The first scenario used fuel oil and diesel for electricity production, which was the reality inmore » 2008. The second scenario was based on the fuel mix from 2014, the most current year for which data were available. The third scenario considered nearly complete use of natural gas for electricity production, which is the anticipated future, possibly for 2018. For each case, inventories of anthropogenic emissions were based on electricity generation, refinery operations, and transportation. Transportation and refinery operations were held constant across the three scenarios to focus on effects of power plant fuel switching in a tropical context. The simulated NO x and CO emissions for the urban region decrease by 89 and 55 %, respectively, after the complete change in the energy matrix. The results of the simulations indicate that a change to natural gas significantly decreases maximum afternoon ozone concentrations over the population center, reducing ozone by >70 % for the most polluted days. The sensitivity of ozone concentrations to the fuel switchover is consistent with a NO x-limited regime, as expected for a tropical forest having high emissions of biogenic volatile organic compounds, high water vapor concentrations, and abundant solar radiation. There are key differences in a shifting energy matrix in a tropical, forested environment compared to other world environments. Therefore, policies favoring the burning of natural gas in place of fuel oil and diesel have great potential for ozone reduction and improved air quality for growing urban regions located in tropical, forested environments around the world.« less
Fuel Cell Research and Development for Future NASA Missions
NASA Technical Reports Server (NTRS)
Manzo, Michelle A.; Hoberecht, Mark; Loyselle, Patricia; Burke, Kenneth; Bents, David; Farmer, Serene; Kohout, Lisa
2006-01-01
NASA has been using fuel cell systems since the early days of space flight. Polymer Exchange Membrane Fuel cells provided the primary power for the Gemini and Apollo missions and more recently, alkaline fuel cells serve as the primary power source for the Space Shuttle. NASA's current investments in fuel cell technology support both Exploration and Aeronautics programs. This presentation provides an overview of NASA's fuel cell development programs.
Study on the Algorithm of Judgment Matrix in Analytic Hierarchy Process
NASA Astrophysics Data System (ADS)
Lu, Zhiyong; Qin, Futong; Jin, Yican
2017-10-01
A new algorithm is proposed for the non-consistent judgment matrix in AHP. A primary judgment matrix is generated firstly through pre-ordering the targeted factor set, and a compared matrix is built through the top integral function. Then a relative error matrix is created by comparing the compared matrix with the primary judgment matrix which is regulated under the control of the relative error matrix and the dissimilar degree of the matrix step by step. Lastly, the targeted judgment matrix is generated to satisfy the requirement of consistence and the least dissimilar degree. The feasibility and validity of the proposed method are verified by simulation results.
Porous matrix structures for alkaline electrolyte fuel cells
NASA Technical Reports Server (NTRS)
Vine, R. W.; Narsavage, S. T.
1975-01-01
A number of advancements have been realized by a continuing research program to develop higher chemically stable porous matrix structures with high bubble pressure (crossover resistance) for use as separators in potassium hydroxide electrolyte fuel cells. More uniform, higher-bubble-pressure asbestos matrices were produced by reconstituting Johns-Manville asbestos paper; Fybex potassium titanate which was found compatible with 42% KOH at 250 F for up to 3000 hr; good agreement was found between bubble pressures predicted by an analytical study and those measured with filtered structures; Teflon-bonded Fybex matrices with bubble pressures greater than 30 psi were obtained by filtering a water slurry of the mixture directly onto fuel cell electrodes; and PBI fibers have satisfactory compatibility with 42% KOH at 250 F.
Diffusion Couple Alloying of Refractory Metals in Austenitic and Ferritic/Martensitic Steels
2012-03-01
applications of austenitic stainless steel and ferritic/martensitic steel can vary from structural and support components in the reactor core to reactor fuel ... fuel . It serves as a boundary to prevent both fission products from escaping to the core coolant, and segregates the fuel from the coolant to...uranium oxide (UO2) fuel in the core . It resists corrosion by the fuel matrix on the inner surface of the cladding and the liquid sodium coolant on
Chemical state of fission products in irradiated uranium carbide fuel
NASA Astrophysics Data System (ADS)
Arai, Yasuo; Iwai, Takashi; Ohmichi, Toshihiko
1987-12-01
The chemical state of fission products in irradiated uranium carbide fuel has been estimated by equilibrium calculation using the SOLGASMIX-PV program. Solid state fission products are distributed to the fuel matrix, ternary compounds, carbides of fission products and intermetallic compounds among the condensed phases appearing in the irradiated uranium carbide fuel. The chemical forms are influenced by burnup as well as stoichiometry of the fuel. The results of the present study almost agree with the experimental ones reported for burnup simulated carbides.
Fuel electrode containing pre-sintered nickel/zirconia for a solid oxide fuel cell
Ruka, Roswell J.; Vora, Shailesh D.
2001-01-01
A fuel cell structure (2) is provided, having a pre-sintered nickel-zirconia fuel electrode (6) and an air electrode (4), with a ceramic electrolyte (5) disposed between the electrodes, where the pre-sintered fuel electrode (6) contains particles selected from the group consisting of nickel oxide, cobalt and cerium dioxide particles and mixtures thereof, and titanium dioxide particles, within a matrix of yttria-stabilized zirconia and spaced-apart filamentary nickel strings having a chain structure, and where the fuel electrode can be sintered to provide an active solid oxide fuel cell.
Advanced materials for space nuclear power systems
NASA Technical Reports Server (NTRS)
Titran, Robert H.; Grobstein, Toni L.; Ellis, David L.
1991-01-01
The overall philosophy of the research was to develop and characterize new high temperature power conversion and radiator materials and to provide spacecraft designers with material selection options and design information. Research on three candidate materials (carbide strengthened niobium alloy PWC-11 for fuel cladding, graphite fiber reinforced copper matrix composites for heat rejection fins, and tungsten fiber reinforced niobium matrix composites for fuel containment and structural supports considered for space power system applications is discussed. Each of these types of materials offers unique advantages for space power applications.
Reactive flash volatilization of fluid fuels
Schmidt, Lanny D.; Dauenhauer, Paul J.; Dreyer, Bradon J.; Salge, James R.
2013-01-08
The invention provides methods for the production of synthesis gas. More particularly, various embodiments of the invention relate to systems and methods for volatilizing fluid fuel to produce synthesis gas by using a metal catalyst on a solid support matrix.
NASA Astrophysics Data System (ADS)
Timonen, Hilkka; Karjalainen, Panu; Saukko, Erkka; Saarikoski, Sanna; Aakko-Saksa, Päivi; Simonen, Pauli; Murtonen, Timo; Dal Maso, Miikka; Kuuluvainen, Heino; Bloss, Matthew; Ahlberg, Erik; Svenningsson, Birgitta; Pagels, Joakim; Brune, William H.; Keskinen, Jorma; Worsnop, Douglas R.; Hillamo, Risto; Rönkkö, Topi
2017-04-01
The effect of fuel ethanol content (10, 85 and 100 %) on primary emissions and on subsequent secondary aerosol formation was investigated for a Euro 5 flex-fuel gasoline vehicle. Emissions were characterized during a New European Driving Cycle (NEDC) using a comprehensive set-up of high time-resolution instruments. A detailed chemical composition of the exhaust particulate matter (PM) was studied using a soot particle aerosol mass spectrometer (SP-AMS), and secondary aerosol formation was studied using a potential aerosol mass (PAM) chamber. For the primary gaseous compounds, an increase in total hydrocarbon emissions and a decrease in aromatic BTEX (benzene, toluene, ethylbenzene and xylenes) compounds was observed when the amount of ethanol in the fuel increased. In regard to particles, the largest primary particulate matter concentrations and potential for secondary particle formation was measured for the E10 fuel (10 % ethanol). As the ethanol content of the fuel increased, a significant decrease in the average primary particulate matter concentrations over the NEDC was found. The PM emissions were 0.45, 0.25 and 0.15 mg m-3 for E10, E85 and E100, respectively. Similarly, a clear decrease in secondary aerosol formation potential was observed with a larger contribution of ethanol in the fuel. The secondary-to-primary PM ratios were 13.4 and 1.5 for E10 and E85, respectively. For E100, a slight decrease in PM mass was observed after the PAM chamber, indicating that the PM produced by secondary aerosol formation was less than the PM lost through wall losses or the degradation of the primary organic aerosol (POA) in the chamber. For all fuel blends, the formed secondary aerosol consisted mostly of organic compounds. For E10, the contribution of organic compounds containing oxygen increased from 35 %, measured for primary organics, to 62 % after the PAM chamber. For E85, the contribution of organic compounds containing oxygen increased from 42 % (primary) to 57 % (after the PAM chamber), whereas for E100 the amount of oxidized organics remained the same (approximately 62 %) with the PAM chamber when compared to the primary emissions.
Evaluation of Li{sub 3}N accumulation in a fused LiCl/Li salt matrix
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eberle, C.S.
1998-09-01
Pyrochemical conditioning of spent nuclear fuel for the purpose of final disposal is currently being demonstrated at Argonne National Laboratory (ANL), and ongoing research in this area includes the demonstration of this process on spent oxide fuel. In conjunction with this research, a pilot scale of the preprocessing stage is being designed by ANL-West to demonstrate the in situ hot cell capability of the chemical reduction process. An impurity evaluation was completed for a Li/LiCl salt matrix in the presence of spent light water reactor uranium oxide fuel. A simple analysis was performed in which the sources of impurities inmore » the salt matrix were only from the cell atmosphere. Only reactions with the lithium were considered. The levels of impurities were shown to be highly sensitive system conditions. A predominance diagram for the Li-O-N system was constructed for the device, and the general oxidation, nitridation, and combined reactions were calculated as a function of oxygen and nitrogen partial pressure. These calculations and hot cell atmosphere data were used to determine the total number and type of impurities expected in the salt matrix, and the mass rate for the device was determined.« less
Bian, Xihui; Li, Shujuan; Lin, Ligang; Tan, Xiaoyao; Fan, Qingjie; Li, Ming
2016-06-21
Accurate prediction of the model is fundamental to the successful analysis of complex samples. To utilize abundant information embedded over frequency and time domains, a novel regression model is presented for quantitative analysis of hydrocarbon contents in the fuel oil samples. The proposed method named as high and low frequency unfolded PLSR (HLUPLSR), which integrates empirical mode decomposition (EMD) and unfolded strategy with partial least squares regression (PLSR). In the proposed method, the original signals are firstly decomposed into a finite number of intrinsic mode functions (IMFs) and a residue by EMD. Secondly, the former high frequency IMFs are summed as a high frequency matrix and the latter IMFs and residue are summed as a low frequency matrix. Finally, the two matrices are unfolded to an extended matrix in variable dimension, and then the PLSR model is built between the extended matrix and the target values. Coupled with Ultraviolet (UV) spectroscopy, HLUPLSR has been applied to determine hydrocarbon contents of light gas oil and diesel fuels samples. Comparing with single PLSR and other signal processing techniques, the proposed method shows superiority in prediction ability and better model interpretation. Therefore, HLUPLSR method provides a promising tool for quantitative analysis of complex samples. Copyright © 2016 Elsevier B.V. All rights reserved.
Interdiffusion in U 3Si-Al, U 3Si 2-Al, and USi-Al dispersion fuels during irradiation
NASA Astrophysics Data System (ADS)
Kim, Yeon Soo; Hofman, Gerard L.
2011-03-01
Uranium-silicide compound fuel dispersion in an Al matrix is used in research and test reactors worldwide. Interaction layer (IL) growth between fuel particles and the matrix is one of performance issues. The interaction layer growth data for U 3Si, U 3Si 2 and USi dispersions in Al were obtained from both out-of-pile and in-pile tests. The IL is dominantly U(AlSi) 3 from out-of-pile tests, but its (Al + Si)/U ratio from in-pile tests is higher than the out-of-pile data, because of amorphous behavior of the ILs. IL growth correlations were developed for U 3Si-Al and U 3Si 2-Al. The IL growth rates were dependent on the U/Si ratio of the fuel compounds. During irradiation, however, the IL growth rates did not decrease with the decreasing U/Si ratio by fission. It is reasoned that transition metal fission products in the IL compensate the loss of U atoms by providing chemical potential for Al diffusion and volume expansion by solid swelling and gas bubble swelling. The addition of Mo in U 3Si 2 reduces the IL growth rate, which is similar to that of UMo alloy dispersion in a silicon-added Al matrix.
Novel mixed matrix membranes for sulfur removal and for fuel cell applications
NASA Astrophysics Data System (ADS)
Lin, Ligang; Wang, Andong; Zhang, Longhui; Dong, Meimei; Zhang, Yuzhong
2012-12-01
Sulfur removal is significant for fuels used as hydrogen source for fuel cell applications and to avoid sulfur poisoning of therein used catalysts. Novel mixed matrix membranes (MMMs) with well-defined transport channels are proposed for sulfur removal. MMMs are fabricated using polyimide (PI) as matrix material and Y zeolites as adsorptive functional materials. The influence of architecture conditions on the morphology transition from finger-like to sponge-like structure and the “short circuit” effect are investigated. The adsorption and regeneration behavior of MMMs is discussed, combining the detailed analysis of FT-IR, morphology, XPS, XRD and thermal properties of MMMs, the process-structure-function relationship is obtained. The results show that the functional zeolites are incorporated into three-dimensional network and the adsorption capacity of MMMs comes to 8.6 and 9.5 mg S g-1 for thiophene and dibenzothiophene species, respectively. And the regeneration behavior suggests that the spent membranes can recover about 88% and 96% of the desulfurization capacity by solvent washing and thermal treating regeneration, respectively. The related discussions provide some general suggestions in promoting the novel application of MMMs on the separation of organic-organic mixtures, and a potential alternative for the production of sulfur-free hydrogen source for fuel cell applications.
Silva, Chinthaka M.; Snead, Lance Lewis; Hunn, John D.; ...
2015-08-03
X-ray microcomputed tomography (µCT) was applied in characterizing the internal structures of a number of irradiated materials, including carbon-carbon fibre composites, nuclear-grade graphite and tristructural isotropic-coated fuel particles. Local cracks in carbon-carbon fibre composites associated with their synthesis process were observed with µCT without any destructive sample preparation. Pore analysis of graphite samples was performed quantitatively, and qualitative analysis of pore distribution was accomplished. It was also shown that high-resolution µCT can be used to probe internal layer defects of tristructural isotropic-coated fuel particles to elucidate the resulting high release of radioisotopes. Layer defects of sizes ranging from 1 tomore » 5 µm and up could be isolated by to-mography. As an added advantage, µCT could also be used to identify regions with high densities of radioisotopes to deter-mine the proper plane and orientation of particle mounting for further analytical characterization, such as materialographic sectioning followed by optical and electron microscopy. Lastly, in fully ceramic matrix fuel forms, despite the highly absorbing matrix, characterization of tristructural isotropic-coated particles embedded in a silicon carbide matrix was accomplished usingµCT and related advanced image analysis techniques.« less
Categorization and Characterization of American Driving Conditions (Phase I)
DOT National Transportation Integrated Search
1978-11-01
The objectives of the study were: (1) to develop a multidimensional matrix as an analysis framework to classify travel of personal motor vehicles according to fuel consumption, (2) to identify and assess available information on travel and fuel consu...
Firing of pulverized solvent refined coal
Lennon, Dennis R.; Snedden, Richard B.; Foster, Edward P.; Bellas, George T.
1990-05-15
A burner for the firing of pulverized solvent refined coal is constructed and operated such that the solvent refined coal can be fired successfully without any performance limitations and without the coking of the solvent refined coal on the burner components. The burner is provided with a tangential inlet of primary air and pulverized fuel, a vaned diffusion swirler for the mixture of primary air and fuel, a center water-cooled conical diffuser shielding the incoming fuel from the heat radiation from the flame and deflecting the primary air and fuel steam into the secondary air, and a watercooled annulus located between the primary air and secondary air flows.
Carbonate fuel cell and components thereof for in-situ delayed addition of carbonate electrolyte
Johnsen, Richard [Waterbury, CT; Yuh, Chao-Yi [New Milford, CT; Farooque, Mohammad [Danbury, CT
2011-05-10
An apparatus and method in which a delayed carbonate electrolyte is stored in the storage areas of a non-electrolyte matrix fuel cell component and is of a preselected content so as to obtain a delayed time release of the electrolyte in the storage areas in the operating temperature range of the fuel cell.
NASA Astrophysics Data System (ADS)
Van Renterghem, W.; Miller, B. D.; Leenaers, A.; Van den Berghe, S.; Gan, J.; Madden, J. W.; Keiser, D. D.
2018-01-01
Two fuel plates, containing Si and ZrN coated U-Mo fuel particles dispersed in an Al matrix, were irradiated in the BR2 reactor of SCK•CEN to a burn-up of ∼70% 235U. Five samples were prepared by INL using focused ion beam milling and transported to SCK•CEN for transmission electron microscopy (TEM) investigation. Two samples were taken from the Si coated U-Mo fuel particles at a burn-up of ∼42% and ∼66% 235U and three samples from the ZrN coated U-Mo at a burn-up of ∼42%, ∼52% and ∼66% 235U. The evolution of the coating, fuel structure, fission products and the formation of interaction layers are discussed. Both coatings appear to be an effective barrier against fuel matrix interaction and only on the samples having received the highest burn-up and power, the formation of an interaction between Al and U(Mo) can be observed on those locations where breaches in the coatings were formed during plate fabrication.
Triso coating development progress for uranium nitride kernels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jolly, Brian C.; Lindemer, Terrence; Terrani, Kurt A.
2015-08-01
In support of fully ceramic matrix (FCM) fuel development [1-2], coating development work is ongoing at the Oak Ridge National Laboratory (ORNL) to produce tri-structural isotropic (TRISO) coated fuel particles with UN kernels [3]. The nitride kernels are used to increase fissile density in these SiC-matrix fuel pellets with details described elsewhere [4]. The advanced gas reactor (AGR) program at ORNL used fluidized bed chemical vapor deposition (FBCVD) techniques for TRISO coating of UCO (two phase mixture of UO2 and UCx) kernels [5]. Similar techniques were employed for coating of the UN kernels, however significant changes in processing conditions weremore » required to maintain acceptable coating properties due to physical property and dimensional differences between the UCO and UN kernels (Table 1).« less
Solid oxide fuel cell matrix and modules
Riley, B.
1988-04-22
Porous refractory ceramic blocks arranged in an abutting, stacked configuration and forming a three dimensional array provide a support structure and coupling means for a plurality of solid oxide fuel cells (SOFCs). The stack of ceramic blocks is self-supporting, with a plurality of such stacked arrays forming a matrix enclosed in an insulating refractory brick structure having an outer steel layer. The necessary connections for air, fuel, burnt gas, and anode and cathode connections are provided through the brick and steel outer shell. The ceramic blocks are so designed with respect to the strings of modules that by simple and logical design the strings could be replaced by hot reloading if one should fail. The hot reloading concept has not been included in any previous designs. 11 figs.
Helium in inert matrix dispersion fuels
NASA Astrophysics Data System (ADS)
van Veen, A.; Konings, R. J. M.; Fedorov, A. V.
2003-07-01
The behaviour of helium, an important decay product in the transmutation chains of actinides, in dispersion-type inert matrix fuels is discussed. A phenomenological description of its accumulation and release in CERCER and CERMET fuel is given. A summary of recent He-implantation studies with inert matrix metal oxides (ZrO 2, MgAl 2O 4, MgO and Al 2O 3) is presented. A general picture is that for high helium concentrations helium and vacancy defects form helium clusters which convert into over-pressurized bubbles. At elevated temperature helium is released from the bubbles. On some occasions thermal stable nano-cavities or nano-pores remain. On the basis of these results the consequences for helium induced swelling and helium storage in oxide matrices kept at 800-1000 °C will be discussed. In addition, results of He-implantation studies for metal matrices (W, Mo, Nb and V alloys) will be presented. Introduction of helium in metals at elevated temperatures leads to clustering of helium to bubbles. When operational temperatures are higher than 0.5 melting temperature, swelling and helium embrittlement might occur.
NASA Astrophysics Data System (ADS)
Tanaka, Manabu; Takeda, Yasushi; Wakiya, Takeru; Wakamoto, Yuta; Harigaya, Kaori; Ito, Tatsunori; Tarao, Takashi; Kawakami, Hiroyoshi
2017-02-01
High-performance polymer electrolyte membranes (PEMs) with excellent proton conductivity, gas barrier property, and membrane stability are desired for future fuel cells. Here we report the development of PEMs based on our proposed new concept "Nanofiber Framework (NfF)." The NfF composite membranes composed of phytic acid-doped polybenzimidazole nanofibers (PBINf) and Nafion matrix show higher proton conductivity than the recast-Nafion membrane without nanofibers. A series of analyses reveal the formation of three-dimensional network nanostructures to conduct protons and water effectively through acid-condensed layers at the interface of PBINf and Nafion matrix. In addition, the NfF composite membrane achieves high gas barrier property and distinguished membrane stability. The fuel cell performance by the NfF composite membrane, which enables ultra-thin membranes with their thickness less than 5 μm, is superior to that by the recast-Nafion membrane, especially at low relative humidity. Such NfF-based high-performance PEM will be accomplished not only by the Nafion matrix used in this study but also by other polymer electrolyte matrices for future PEFCs.
Fabrication and Characterization of Surrogate Fuel Particles Using the Spark Erosion Method
NASA Astrophysics Data System (ADS)
Metzger, Kathryn E.
In light of the disaster at the Fukushima Daiichi Nuclear Plant, the Department of Energy's Advanced Fuels Program has shifted its interest from enhanced performance fuels to enhanced accident tolerance fuels. Dispersion fuels possess higher thermal conductivities than traditional light water reactor fuel and as a result, offer improved safety margins. The benefits of a dispersion fuel are due to the presence of the secondary non-fissile phase (matrix), which serves as a barrier to fission products and improves the overall thermal performance of the fuel. However, the presence of a matrix material reduces the fuel volume, which lowers the fissile content of dispersion. This issue can be remedied through the development of higher density fuel phases or through an optimization of fuel particle size and volume loading. The latter requirement necessitates the development of fabrication methods to produce small, micron-order fuel particles. This research examines the capabilities of the spark erosion process to fabricate particles on the order of 10 μm. A custom-built spark erosion device by CT Electromechanica was used to produce stainless steel surrogate fuel particles in a deionized water dielectric. Three arc intensities were evaluated to determine the effect on particle size. Particles were filtered from the dielectric using a polycarbonate membrane filter and vacuum filtration system. Fabricated particles were characterized via field emission scanning electron microscopy (FESEM), laser light particle size analysis, energy-dispersive spectroscopy (EDS), X-ray diffraction analysis (XRD), and gas pycnometry. FESEM images reveal that the spark erosion process produces highly spherical particles on the order of 10 microns. These findings are substantiated by the results of particle size analysis. Additionally, EDS and XRD results indicate the presence of oxide phases, which suggests the dielectric reacted with the molten debris during particle formation.
Alkaline fuel cells for the regenerative fuel cell energy storage system
NASA Technical Reports Server (NTRS)
Martin, R. E.
1983-01-01
The development of the alkaline Regenerative Fuel Cell System, whose fuel cell module would be a derivative of the 12-kW fuel cell power plant currently being produced for the Space Shuttle Orbiter, is reviewed. Long-term endurance testing of full-size fuel cell modules has demonstrated: (1) the extended endurance capability of potassium titanate matrix cells, (2) the long-term performance stability of the anode catalyst, and (3) the suitability of a lightweight graphite structure for use at the anode. These approaches, developed in the NASA-sponsored fuel cell technology advancement program, would also reduce cell weight by nearly one half.
Combustor with two stage primary fuel assembly
Sharifi, Mehran; Zolyomi, Wendel; Whidden, Graydon Lane
2000-01-01
A combustor for a gas turbine having first and second passages for pre-mixing primary fuel and air supplied to a primary combustion zone. The flow of fuel to the first and second pre-mixing passages is separately regulated using a single annular fuel distribution ring having first and second row of fuel discharge ports. The interior portion of the fuel distribution ring is divided by a baffle into first and second fuel distribution manifolds and is located upstream of the inlets to the two pre-mixing passages. The annular fuel distribution ring is supplied with fuel by an annular fuel supply manifold, the interior portion of which is divided by a baffle into first and second fuel supply manifolds. A first flow of fuel is regulated by a first control valve and directed to the first fuel supply manifold, from which the fuel is distributed to first fuel supply tubes that direct it to the first fuel distribution manifold. From the first fuel distribution manifold, the first flow of fuel is distributed to the first row of fuel discharge ports, which direct it into the first pre-mixing passage. A second flow of fuel is regulated by a second control valve and directed to the second fuel supply manifold, from which the fuel is distributed to second fuel supply tubes that direct it to the second fuel distribution manifold. From the second fuel distribution manifold, the second flow of fuel is distributed to the second row of fuel discharge ports, which direct it into the second pre-mixing passage.
Wright, Maynard K.
1989-01-01
A fuel cell having an electrolyte control volume includes a pair of porous opposed electrodes. A maxtrix is positioned between the pair of electrodes for containing an electrolyte. A first layer of backing paper is positioned adjacent to one of the electrodes. A portion of the paper is substantially previous to the acceptance of the electrolyte so as to absorb electrolyte when there is an excess in the matrix and to desorb electrolyte when there is a shortage in the matrix. A second layer of backing paper is positioned adjacent to the first layer of paper and is substantially impervious to the acceptance of electrolyte.
Nuclear reactor fuel structure containing uranium alloy wires embedded in a metallic matrix plate
Travelli, A.
1985-10-25
A flat or curved plate structure, to be used as fuel in a nuclear reactor, comprises elongated fissionable wires or strips embedded in a metallic continuous non-fissionable matrix plate. The wires or strips are made predominantly of a malleable uranium alloy, such as uranium silicide, uranium gallide or uranium germanide. The matrix plate is made predominantly of aluminum or an aluminum alloy. The wires or strips are located in a single row at the midsurface of the plate, parallel with one another and with the length dimension of the plate. The wires or strips are separated from each other, and from the surface of the plate, by sufficient thicknesses of matrix material, to provide structural integrity and effective fission product retention, under neutron irradiation. This construction makes it safely feasible to provide a high uranium density, so that the uranium enrichment with uranium 235 may be reduced below about 20%, to deter the reprocessing of the uranium for use in nuclear weapons.
Nuclear reactor fuel structure containing uranium alloy wires embedded in a metallic matrix plate
Travelli, Armando
1988-01-01
A flat or curved plate structure, to be used as fuel in a nuclear reactor, comprises elongated fissionable wires or strips embedded in a metallic continuous non-fissionable matrix plate. The wires or strips are made predominantly of a malleable uranium alloy, such as uranium silicide, uranium gallide or uranium germanide. The matrix plate is made predominantly of aluminum or an aluminum alloy. The wires or strips are located in a single row at the midsurface of the plate, parallel with one another and with the length dimension of the plate. The wires or strips are separated from each other, and from the surface of the plate, by sufficient thicknesses of matrix material, to provide structural integrity and effective fission product retention, under neutron irradiation. This construction makes it safely feasible to provide a high uranium density, so that the uranium enrichment with uranium 235 may be reduced below about 20%, to deter the reprocessing of the uranium for use in nuclear weapons.
Desai, Seema S.; Tung, Jason C.; Zhou, Vivian X.; Grenert, James P.; Malato, Yann; Rezvani, Milad; Español-Suñer, Regina; Willenbring, Holger; Weaver, Valerie M.; Chang, Tammy T.
2016-01-01
Matrix rigidity has important effects on cell behavior and is increased during liver fibrosis; however, its effect on primary hepatocyte function is unknown. We hypothesized that increased matrix rigidity in fibrotic livers would activate mechanotransduction in hepatocytes and lead to inhibition of hepatic-specific functions. To determine the physiologically relevant ranges of matrix stiffness at the cellular level, we performed detailed atomic force microscopy analysis across liver lobules from normal and fibrotic livers. We determined that normal liver matrix stiffness was around 150Pa and increased to 1–6kPa in areas near fibrillar collagen deposition in fibrotic livers. In vitro culture of primary hepatocytes on collagen matrix of tunable rigidity demonstrated that fibrotic levels of matrix stiffness had profound effects on cytoskeletal tension and significantly inhibited hepatocyte-specific functions. Normal liver stiffness maintained functional gene regulation by hepatocyte nuclear factor 4 alpha (HNF4α) whereas fibrotic matrix stiffness inhibited the HNF4α transcriptional network. Fibrotic levels of matrix stiffness activated mechanotransduction in primary hepatocytes through focal adhesion kinase (FAK). In addition, blockade of the Rho/Rho-associated protein kinase (ROCK) pathway rescued HNF4α expression from hepatocytes cultured on stiff matrix. Conclusion Fibrotic levels of matrix stiffness significantly inhibit hepatocyte-specific functions in part by inhibiting the HNF4α transcriptional network mediated through the Rho/ROCK pathway. Increased appreciation of the role of matrix rigidity in modulating hepatocyte function will advance our understanding of the mechanisms of hepatocyte dysfunction in liver cirrhosis and spur development of novel treatments for chronic liver disease. PMID:26755329
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krawiec, F.; Thomas, T.; Jackson, F.
1980-11-01
An examination is made of the current and future energy demands, and uses, and cost to characterize typical applications and resulting services in the US and industrial sectors of 15 selected states. Volume III presents tables containing data on selected states' manufacturing subsector energy consumption, functional uses, and cost in 1974 and 1976. Alabama, California, Illinois, Indiana, Louisiana, Michigan, Missouri, New Jersey, New York, Ohio, Oregon, Pennsylvania, Texas, West Virginia, and Wisconsin were chosen as having the greatest potential for replacing conventional fuel with solar energy. Basic data on the quantities, cost, and types of fuel and electric energy purchasedmore » by industr for heat and power were obtained from the 1974 and 1976 Annual Survey of Manufacturers. The specific indutrial energy servic cracteristics developed for each selected state include. 1974 and 1976 manufacturing subsector fuels and electricity consumption by 2-, 3-, and 4-digit SIC and primary fuel (quantity and relative share); 1974 and 1976 manufacturing subsector fuel consumption by 2-, 3-, and 4-digit SIC and primary fuel (quantity and relative share); 1974 and 1976 manufacturing subsector average cost of purchsed fuels and electricity per million Btu by 2-, 3-, and 4-digit SIC and primary fuel (in 1976 dollars); 1974 and 1976 manufacturing subsector fuels and electric energy intensity by 2-, 3-, and 4-digit SIC and primary fuel (in 1976 dollars); manufacturing subsector average annual growth rates of (1) fuels and electricity consumption, (2) fuels and electric energy intensity, and (3) average cost of purchased fuels and electricity (1974 to 1976). Data are compiled on purchased fuels, distillate fuel oil, residual ful oil, coal, coal, and breeze, and natural gas. (MCW)« less
The WSTIAC Quarterly. Volume 9, Number 3
2010-01-25
program .[8] THE THORIUM FUEL CYCLE AND LFTR POWER PLANT The thorium fuel cycle is based on a series of neutron absorp- tion and beta decay processes...the fig- ure is a graphite matrix moderated MSR reactor with fuel salt mixture (ThF4-U233F4) being circulated by a pump through the core and to a...the core as purified salt. As one of the unique safety features, a melt-plug at the reactor bottom would permit the reactor fluid fuel to be drained
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rest, J.; Hofman, G.L.
1997-06-01
The Dispersion Analysis Research Tool (DART) contains models for fission-gas induced fuel swelling, interaction of fuel with the matrix aluminum, resultant reaction-product swelling, and calculation of the stress gradient within the fuel particle. The effects of an aluminide shell on fuel particle swelling are evaluated. Validation of the model is demonstrated by a comparison of DART calculations of fuel swelling of U{sub 3}SiAl-Al and U{sub 3}Si{sub 2}-Al for various dispersion fuel element designs with the data. DART results are compared with data for fuel swelling Of U{sub 3}SiAl-Al in plate, tube, and rod configurations as a function of fission density.more » Plate and tube calculations were performed at a constant fuel temperature of 373 K and 518 K, respectively. An irradiation temperature of 518 K results in a calculated aluminide layer thickness for the Russian tube that is in the center of the measured range (16 {mu}m). Rod calculations were performed with a temperature gradient across the rod characterized by surface and central temperatures of 373 K and 423 K, respectively. The effective yield stress of irradiated Al matrix material and the aluminide was determined by comparing the results of DART calculations with postirradiation immersion volume measurement of U{sub 3}SiAl plates. The values for the effective yield stress were used in all subsequent simulations. The lower calculated fuel swelling in the rod-type element is due to an assumed biaxial stress state. Fuel swelling in plates results in plate thickness increase only. Likewise, in tubes, only the wall thickness increases. Irradiation experiments have shown that plate-type dispersion fuel elements can develop blisters or pillows at high U-235 burnup when fuel compounds exhibiting breakaway swelling are used at moderate to high fuel volume fractions. DART-calculated interaction layer thickness and fuel swelling follows the trends of the observations. 3 refs., 2 figs.« less
US-RERTR Advanced Fuel Development Plans : 1999.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyer, M. K.
1998-10-22
Twelve fuel alloys were included in the very-high-density RERTR-1 and RERTR-2 microplate irradiation experiments. Experience gained during fabrication and results from the post-irradiation examination of these fuels has allowed us to narrow the focus of our fuel development efforts in preparation for the next set of irradiation experiments. Specific technical problems in both the areas of fuel fabrication and irradiation performance remain to be addressed. Examples of these are powder fabrication, fuel phase gamma stability versus density, and fuel-matrix interaction. In order to more efficiently address metal alloy fuel performance issues, work will continue on establishing a theoretical basis formore » alloy stability and metal alloy dispersion fuel irradiation performance. Plans to address these fuel development issues in the coming year will be presented.« less
Tests of blending and correlation of distillate fuel properties
NASA Technical Reports Server (NTRS)
Erwin, J.; Bowden, J. N.
1982-01-01
The development of a fuel test matrix, results from tests of several blends of distillate aircraft fuels, and the use of correlations in formulation determination during a NASA-sponsored program to identify new aircraft fuels are described. The program was initiated in order to characterize fuel blends which are appropriate for different types of combustors in use and under development. The fuels were required to feature a specified range of properties. Attention is given to fuel volatility, hydrogen content, aromatic content, freezing point, kinematic viscosity, and naphthalene content. Paraffinic and naphtenic base stocks were employed, using alkyl benzene, naphthene benzenes, and naphthalenes to adjust the blend properties. Categories for the test fuels comprised source-controlled and composition controlled fuels. Test results and compositions of various fuels are provided.
Development Status of PEM Non-Flow-Through Fuel Cell System Technology for NASA Applications
NASA Technical Reports Server (NTRS)
Hoberecht, Mark A.; Jakupca, Ian J.
2011-01-01
Today s widespread development of proton-exchange-membrane (PEM) fuel cell technology for commercial users owes its existence to NASA, where fuel cell technology saw its first applications. Beginning with the early Gemini and Apollo programs, and continuing to this day with the Shuttle Orbiter program, fuel cells have been a primary source of electrical power for many NASA missions. This is particularly true for manned missions, where astronauts are able to make use of the by-product of the fuel cell reaction, potable water. But fuel cells also offer advantages for unmanned missions, specifically when power requirements exceed several hundred watts and primary batteries are not a viable alternative. In recent years, NASA s Exploration Technology Development Program (ETDP) funded the development of fuel cell technology for applications that provide both primary power and regenerative fuel cell energy storage for planned Exploration missions that involved a return to the moon. Under this program, the Altair Lunar Lander was a mission requiring fuel cell primary power. There were also various Lunar Surface System applications requiring regenerative fuel cell energy storage, in which a fuel cell and electrolyzer combine to form an energy storage system with hydrogen, oxygen, and water as common reactants. Examples of these systems include habitat modules and large rovers. In FY11, the ETDP has been replaced by the Enabling Technology Development and Demonstration Program (ETDDP), with many of the same technology goals and requirements applied against NASA s revised Exploration portfolio.
NASA Astrophysics Data System (ADS)
Chen, Jing; Liu, Huiqun; Zhang, Ruiqian; Li, Gang; Yi, Danqing; Lin, Gaoyong; Guo, Zhen; Liu, Shaoqiang
2018-06-01
High-temperature compression deformation of a Zr-4 metal matrix with dispersed coated surrogate nuclear fuel particles was investigated at 750 °C-950 °C with a strain rate of 0.01-1.0 s-1 and height reduction of 20%. Scanning electron microscopy was utilized to investigate the influence of the deformation conditions on the microstructure of the composite and damage to the coated surrogate fuel particles. The results indicated that the flow stress of the composite increased with increasing strain rate and decreasing temperature. The true stress-strain curves showed obvious serrated oscillation characteristics. There were stable deformation ranges at the initial deformation stage with low true strain at strain rate 0.01 s-1 for all measured temperatures. Additionally, the coating on the surface of the surrogate nuclear fuel particles was damaged when the Zr-4 matrix was deformed at conditions of high strain rate and low temperature. The deformation stability was obtained from the processing maps and microstructural characterization. The high-temperature deformation activation energy was 354.22, 407.68, and 433.81 kJ/mol at true strains of 0.02, 0.08, and 0.15, respectively. The optimum deformation parameters for the composite were 900-950 °C and 0.01 s-1. These results are expected to provide guidance for subsequent determination of possible hot working processes for this composite.
Graphene oxide based nanohybrid proton exchange membranes for fuel cell applications: An overview.
Pandey, Ravi P; Shukla, Geetanjali; Manohar, Murli; Shahi, Vinod K
2017-02-01
In the context of many applications, such as polymer composites, energy-related materials, sensors, 'paper'-like materials, field-effect transistors (FET), and biomedical applications, chemically modified graphene was broadly studied during the last decade, due to its excellent electrical, mechanical, and thermal properties. The presence of reactive oxygen functional groups in the grapheme oxide (GO) responsible for chemical functionalization makes it a good candidate for diversified applications. The main objectives for developing a GO based nanohybrid proton exchange membrane (PEM) include: improved self-humidification (water retention ability), reduced fuel crossover (electro-osmotic drag), improved stabilities (mechanical, thermal, and chemical), enhanced proton conductivity, and processability for the preparation of membrane-electrode assembly. Research carried on this topic may be divided into protocols for covalent grafting of functional groups on GO matrix, preparation of free-standing PEM or choice of suitable polymer matrix, covalent or hydrogen bonding between GO and polymer matrix etc. Herein, we present a brief literature survey on GO based nano-hybrid PEM for fuel cell applications. Different protocols were adopted to produce functionalized GO based materials and prepare their free-standing film or disperse these materials in various polymer matrices with suitable interactions. This review article critically discussed the suitability of these PEMs for fuel cell applications in terms of the dependency of the intrinsic properties of nanohybrid PEMs. Potential applications of these nanohybrid PEMs, and current challenges are also provided along with future guidelines for developing GO based nanohybrid PEMs as promising materials for fuel cell applications. Copyright © 2016 Elsevier B.V. All rights reserved.
Reactant gas composition for fuel cell potential control
Bushnell, Calvin L.; Davis, Christopher L.
1991-01-01
A fuel cell (10) system in which a nitrogen (N.sub.2) gas is used on the anode section (11) and a nitrogen/oxygen (N.sub.2 /O.sub.2) gaseous mix is used on the cathode section (12) to maintain the cathode at an acceptable voltage potential during adverse conditions occurring particularly during off-power conditions, for example, during power plant shutdown, start-up and hot holds. During power plant shutdown, the cathode section is purged with a gaseous mixture of, for example, one-half percent (0.5%) oxygen (O.sub.2) and ninety-nine and a half percent (99.5%) nitrogen (N.sub.2) supplied from an ejector (21) bleeding in air (24/28) into a high pressure stream (27) of nitrogen (N.sub.2) as the primary or majority gas. Thereafter the fuel gas in the fuel processor (31) and the anode section (11) is purged with nitrogen gas to prevent nickel (Ni) carbonyl from forming from the shift catalyst. A switched dummy electrical load (30) is used to bring the cathode potential down rapidly during the start of the purges. The 0.5%/99.5% O.sub.2 /N.sub.2 mixture maintains the cathode potential between 0.3 and 0.7 volts, and this is sufficient to maintain the cathode potential at 0.3 volts for the case of H.sub.2 diffusing to the cathode through a 2 mil thick electrolyte filled matrix and below 0.8 volts for no diffusion at open circuit conditions. The same high pressure gas source (20) is used via a "T" juncture ("T") to purge the anode section and its associated fuel processor (31).
Packaging Strategies for Criticality Safety for "Other" DOE Fuels in a Repository
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larry L Taylor
2004-06-01
Since 1998, there has been an ongoing effort to gain acceptance of U.S. Department of Energy (DOE)-owned spent nuclear fuel (SNF) in the national repository. To accomplish this goal, the fuel matrix was used as a discriminating feature to segregate fuels into nine distinct groups. From each of those groups, a characteristic fuel was selected and analyzed for criticality safety based on a proposed packaging strategy. This report identifies and quantifies the important criticality parameters for the canisterized fuels within each criticality group to: (1) demonstrate how the “other” fuels in the group are bounded by the baseline calculations ormore » (2) allow identification of individual type fuels that might require special analysis and packaging.« less
NASA Astrophysics Data System (ADS)
Degueldre, C.; Martin, M.; Kuri, G.; Grolimund, D.; Borca, C.
2011-09-01
Plutonium-uranium mixed oxide (MOX) fuels are currently used in nuclear reactors. The potential differences of metal redox state and microstructural developments of the matrix before and after irradiation are commonly analysed by electron probe microanalysis. In this work the structure and next-neighbor atomic environments of Pu and U oxide features within unirradiated homogeneous MOX and irradiated (60 MW d kg -1) MOX samples was analysed by micro-X-ray fluorescence (μ-XRF), micro-X-ray diffraction (μ-XRD) and micro-X-ray absorption fine structure (μ-XAFS) spectroscopy. The grain properties, chemical bonding, valences and stoichiometry of Pu and U are determined from the experimental data gained for the unirradiated as well as for irradiated fuel material examined in the center of the fuel as well as in its peripheral zone (rim). The formation of sub-grains is observed as well as their development from the center to the rim (polygonization). In the irradiated sample Pu remains tetravalent (>95%) and no (<5%) Pu(V) or Pu(VI) can be detected while the fuel could undergo slight oxidation in the rim zone. Any slight potential plutonium oxidation is buffered by the uranium dioxide matrix while locally fuel cladding interaction could also affect the redox of the fuel.
Safeguards Challenges for Pebble-Bed Reactors (PBRs):Peoples Republic of China (PRC)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forsberg, Charles W.; Moses, David Lewis
2009-11-01
The Peoples Republic of China (PRC) is operating the HTR-10 pebble-bed reactor (PBR) and is in the process of building a prototype PBR plant with two modular reactors (250-MW(t) per reactor) feeding steam to a single turbine-generator. It is likely to be the first modular hightemperature reactor to be ready for commercial deployment in the world because it is a highpriority project for the PRC. The plant design features multiple modular reactors feeding steam to a single turbine generator where the number of modules determines the plant output. The design and commercialization strategy are based on PRC strengths: (1) amore » rapidly growing electric market that will support low-cost mass production of modular reactor units and (2) a balance of plant system based on economics of scale that uses the same mass-produced turbine-generator systems used in PRC coal plants. If successful, in addition to supplying the PRC market, this strategy could enable China to be the leading exporter of nuclear reactors to developing countries. The modular characteristics of the reactor match much of the need elsewhere in the world. PBRs have major safety advantages and a radically different fuel. The fuel, not the plant systems, is the primary safety system to prevent and mitigate the release of radionuclides under accident conditions. The fuel consists of small (6-cm) pebbles (spheres) containing coatedparticle fuel in a graphitized carbon matrix. The fuel loading per pebble is small (~9 grams of low-enriched uranium) and hundreds of thousands of pebbles are required to fuel a nuclear plant. The uranium concentration in the fuel is an order of magnitude less than in traditional nuclear fuels. These characteristics make the fuel significantly less attractive for illicit use (weapons production or dirty bomb); but, its unusual physical form may require changes in the tools used for safeguards. This report describes PBRs, what is different, and the safeguards challenges. A series of safeguards recommendations are made based on the assumption that the reactor is successfully commercialized and is widely deployed.« less
DART model for irradiation-induced swelling of uranium silicide dispersion fuel elements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rest, J.; Hofman, G.L.
1999-04-01
Models for the interaction of uranium silicide dispersion fuels with an aluminum matrix, for the resultant reaction product swelling, and for the calculation of the stress gradient within the fuel particles are described within the context of DART fission-gas-induced swelling models. The effects of an aluminide shell on fuel particle swelling are evaluated. Validation of the model is demonstrated by comparing DART calculations with irradiation data for the swelling of U{sub 3}SiAl-Al and U{sub 3}Si{sub 2}-Al in variously designed dispersion fuel elements.
A New Equivalence Theory Method for Treating Doubly Heterogeneous Fuel - I. Theory
Williams, Mark L.; Lee, Deokjung; Choi, Sooyoung
2015-03-04
A new methodology has been developed to treat resonance self-shielding in doubly heterogeneous very high temperature gas-cooled reactor systems in which the fuel compact region of a reactor lattice consists of small fuel grains dispersed in a graphite matrix. This new method first homogenizes the fuel grain and matrix materials using an analytically derived disadvantage factor from a two-region problem with equivalence theory and intermediate resonance method. This disadvantage factor accounts for spatial self-shielding effects inside each grain within the framework of an infinite array of grains. Then the homogenized fuel compact is self-shielded using a Bondarenko method to accountmore » for interactions between the fuel compact regions in the fuel lattice. In the final form of the equations for actual implementations, the double-heterogeneity effects are accounted for by simply using a modified definition of a background cross section, which includes geometry parameters and cross sections for both the grain and fuel compact regions. With the new method, the doubly heterogeneous resonance self-shielding effect can be treated easily even with legacy codes programmed only for a singly heterogeneous system by simple modifications in the background cross section for resonance integral interpolations. This paper presents a detailed derivation of the new method and a sensitivity study of double-heterogeneity parameters introduced during the derivation. The implementation of the method and verification results for various test cases are presented in the companion paper.« less
Desai, Seema S; Tung, Jason C; Zhou, Vivian X; Grenert, James P; Malato, Yann; Rezvani, Milad; Español-Suñer, Regina; Willenbring, Holger; Weaver, Valerie M; Chang, Tammy T
2016-07-01
Matrix rigidity has important effects on cell behavior and is increased during liver fibrosis; however, its effect on primary hepatocyte function is unknown. We hypothesized that increased matrix rigidity in fibrotic livers would activate mechanotransduction in hepatocytes and lead to inhibition of liver-specific functions. To determine the physiologically relevant ranges of matrix stiffness at the cellular level, we performed detailed atomic force microscopy analysis across liver lobules from normal and fibrotic livers. We determined that normal liver matrix stiffness was around 150 Pa and increased to 1-6 kPa in areas near fibrillar collagen deposition in fibrotic livers. In vitro culture of primary hepatocytes on collagen matrix of tunable rigidity demonstrated that fibrotic levels of matrix stiffness had profound effects on cytoskeletal tension and significantly inhibited hepatocyte-specific functions. Normal liver stiffness maintained functional gene regulation by hepatocyte nuclear factor 4 alpha (HNF4α), whereas fibrotic matrix stiffness inhibited the HNF4α transcriptional network. Fibrotic levels of matrix stiffness activated mechanotransduction in primary hepatocytes through focal adhesion kinase. In addition, blockade of the Rho/Rho-associated protein kinase pathway rescued HNF4α expression from hepatocytes cultured on stiff matrix. Fibrotic levels of matrix stiffness significantly inhibit hepatocyte-specific functions in part by inhibiting the HNF4α transcriptional network mediated through the Rho/Rho-associated protein kinase pathway. Increased appreciation of the role of matrix rigidity in modulating hepatocyte function will advance our understanding of the mechanisms of hepatocyte dysfunction in liver cirrhosis and spur development of novel treatments for chronic liver disease. (Hepatology 2016;64:261-275). © 2016 by the American Association for the Study of Liver Diseases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
R. Sonat Sen; Michael A. Pope; Abderrafi M. Ougouag
2012-04-01
The tri-isotropic (TRISO) fuel developed for High Temperature reactors is known for its extraordinary fission product retention capabilities [1]. Recently, the possibility of extending the use of TRISO particle fuel to Light Water Reactor (LWR) technology, and perhaps other reactor concepts, has received significant attention [2]. The Deep Burn project [3] currently focuses on once-through burning of transuranic fissile and fissionable isotopes (TRU) in LWRs. The fuel form for this purpose is called Fully-Ceramic Micro-encapsulated (FCM) fuel, a concept that borrows the TRISO fuel particle design from high temperature reactor technology, but uses SiC as a matrix material rather thanmore » graphite. In addition, FCM fuel may also use a cladding made of a variety of possible material, again including SiC as an admissible choice. The FCM fuel used in the Deep Burn (DB) project showed promising results in terms of fission product retention at high burnup values and during high-temperature transients. In the case of DB applications, the fuel loading within a TRISO particle is constituted entirely of fissile or fissionable isotopes. Consequently, the fuel was shown to be capable of achieving reasonable burnup levels and cycle lengths, especially in the case of mixed cores (with coexisting DB and regular LWR UO2 fuels). In contrast, as shown below, the use of UO2-only FCM fuel in a LWR results in considerably shorter cycle length when compared to current-generation ordinary LWR designs. Indeed, the constraint of limited space availability for heavy metal loading within the TRISO particles of FCM fuel and the constraint of low (i.e., below 20 w/0) 235U enrichment combine to result in shorter cycle lengths compared to ordinary LWRs if typical LWR power densities are also assumed and if typical TRISO particle dimensions and UO2 kernels are specified. The primary focus of this summary is on using TRISO particles with up to 20 w/0 enriched uranium kernels loaded in Pressurized Water Reactor (PWR) assemblies. In addition to consideration of this 'naive' use of TRISO fuel in LWRs, several refined options are briefly examined and others are identified for further consideration including the use of advanced, high density fuel forms and larger kernel diameters and TRISO packing fractions. The combination of 800 {micro}m diameter kernels of 20% enriched UN and 50% TRISO packing fraction yielded reactivity sufficient to achieve comparable burnup to present-day PWR fuel.« less
Fluidized bed combustion of pelletized biomass and waste-derived fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chirone, R.; Scala, F.; Solimene, R.
2008-10-15
The fluidized bed combustion of three pelletized biogenic fuels (sewage sludge, wood, and straw) has been investigated with a combination of experimental techniques. The fuels have been characterized from the standpoints of patterns and rates of fuel devolatilization and char burnout, extent of attrition and fragmentation, and their relevance to the fuel particle size distribution and the amount and size distribution of primary ash particles. Results highlight differences and similarities among the three fuels tested. The fuels were all characterized by limited primary fragmentation and relatively long devolatilization times, as compared with the time scale of particle dispersion away frommore » the fuel feeding ports in practical FBC. Both features are favorable to effective lateral distribution of volatile matter across the combustor cross section. The three fuels exhibited distinctively different char conversion patterns. The high-ash pelletized sludge burned according to the shrinking core conversion pattern with negligible occurrence of secondary fragmentation. The low-ash pelletized wood burned according to the shrinking particle conversion pattern with extensive occurrence of secondary fragmentation. The medium-ash pelletized straw yielded char particles with a hollow structure, resembling big cenospheres, characterized by a coherent inorganic outer layer strong enough to prevent particle fragmentation. Inert bed particles were permanently attached to the hollow pellets as they were incorporated into ash melts. Carbon elutriation rates were very small for all the fuels tested. For pelletized sludge and straw, this was mostly due to the shielding effect of the coherent ash skeleton. For the wood pellet, carbon attrition was extensive, but was largely counterbalanced by effective afterburning due to the large intrinsic reactivity of attrited char fines. The impact of carbon attrition on combustion efficiency was negligible for all the fuels tested. The size distribution of primary ash particles liberated upon complete carbon burnoff largely reflected the combustion pattern of each fuel. Primary ash particles of size nearly equal to that of the parent fuel were generated upon complete burnoff of the pelletized sludge. Nonetheless, secondary attrition of primary ash from pelletized sludge is large, to the point where generation of fine ash would be extensive over the typical residence time of bed ash in fluidized bed combustors. Very few and relatively fine primary ash particles were released after complete burnoff of wood pellets. Primary ash particles remaining after complete burnoff of pelletized straw had sizes and shapes that were largely controlled by the occurrence of ash agglomeration phenomena. (author)« less
Study of aircraft crashworthiness for fire protection
NASA Technical Reports Server (NTRS)
Cominsky, A.
1981-01-01
Impact-survivable postcrash fire accidents were surveyed. The data base developed includes foreign and domestic accidents involving airlines and jet aircraft. The emphasis was placed on domestic accidents, airlines, and jet aircraft due principally to availability of information. Only transport category aircraft in commercial service designed under FAR Part 25 were considered. A matrix was prepared to show the relationships between the accident characteristics and the fire fatalities. Typical postcrash fire scenaries were identified. Safety concepts were developed for three engineering categories: cabin interiors - cabin subsystems; power plant - engines and fuel systems; and structural mechanics - primary and secondary structures. The parameters identified for concept evaluation are cost, effectiveness, and societal concerns. Three concepts were selected for design definition and cost and effectiveness analysis: improved fire-resistant seat materials; anti-misting kerosene; and additional cabin emergency exits.
2015-09-01
NC. 14. ABSTRACT A high-resolution numerical simulation of jet breakup and spray formation from a complex diesel fuel injector at diesel engine... diesel fuel injector at diesel engine type conditions has been performed. A full understanding of the primary atomization process in diesel fuel... diesel liquid sprays the complexity is further compounded by the physical attributes present including nozzle turbulence, large density ratios
NASA Astrophysics Data System (ADS)
Pistner, C.; Liebert, W.; Fujara, F.
2006-06-01
Inert matrix fuels (IMF) with plutonium may play a significant role to dispose of stockpiles of separated plutonium from military or civilian origin. For reasons of reactivity control of such fuels, burnable poisons (BP) will have to be used. The impact of different possible BP candidates (B, Eu, Er and Gd) on the achievable burnup as well as on safety and non-proliferation aspects of IMF are analyzed. To this end, cell burnup calculations have been performed and burnup dependent reactivity coefficients (boron worth, fuel temperature and moderator void coefficient) were calculated. All BP candidates were analyzed for one initial BP concentration and a range of different initial plutonium-concentrations (0.4-1.0 g cm-3) for reactor-grade plutonium isotopic composition as well as for weapon-grade plutonium. For the two most promising BP candidates (Er and Gd), a range of different BP concentrations was investigated to study the impact of BP concentration on fuel burnup. A set of reference fuels was identified to compare the performance of uranium-fuels, MOX and IMF with respect to (1) the fraction of initial plutonium being burned, (2) the remaining absolute plutonium concentration in the spent fuel and (3) the shift in the isotopic composition of the remaining plutonium leading to differences in the heat and neutron rate produced. In the case of IMF, the remaining Pu in spent fuel is unattractive for a would be proliferator. This underlines the attractiveness of an IMF approach for disposal of Pu from a non-proliferation perspective.
Gas turbine engine control system
NASA Technical Reports Server (NTRS)
Idelchik, Michael S. (Inventor)
1991-01-01
A control system and method of controlling a gas turbine engine. The control system receives an error signal and processes the error signal to form a primary fuel control signal. The control system also receives at least one anticipatory demand signal and processes the signal to form an anticipatory fuel control signal. The control system adjusts the value of the anticipatory fuel control signal based on the value of the error signal to form an adjusted anticipatory signal and then the adjusted anticipatory fuel control signal and the primary fuel control signal are combined to form a fuel command signal.
Oxidation and reduction behaviors of a prototypic MgO-PuO2-x inert matrix fuel
NASA Astrophysics Data System (ADS)
Miwa, Shuhei; Osaka, Masahiko
2017-04-01
Oxidation and reduction behaviors of prototypic MgO-based inert matrix fuels (IMFs) containing PuO2-x were experimentally investigated by means of thermogravimetry. The oxidation and reduction kinetics of the MgO-PuO2-x specimen were determined. The oxidation and reduction rates of the MgO-PuO2-x were found to be low compared with those of PuO2-x. It is note that the changes in O/Pu ratios of MgO-PuO2-x from stoichiometry were smaller than those of PuO2-x at high oxygen partial pressure.
NASA Technical Reports Server (NTRS)
1973-01-01
The evaluation of candidate cryogenic fuel systems for space shuttle vehicles is discussed. A set of guidelines was used to establish a matrix of possible combinations for the integration of potential cryogenic systems. The various concepts and combinations which resulted from the integration efforts are described. The parameters which were considered in developing the matrix are: (1) storage of cryogenic materials, (2) fuel lines, (3) tank pressure control, (4) thermal control, (5) fluid control, and (6) fluid conditioning. Block diagrams and drawings of the candidate systems are provided. Performance predictions for the systems are outlined in tables of data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dr. Sean M. McDeavitt; Thomas J. Downar; Dr. Temitope A. Taiwo
2009-03-01
The U.S. Department of Energy is developing next generation processing methods to recycle uranium and transuranic (TRU) isotopes from spent nuclear fuel. The objective of the 3-year project described in this report was to develop near-term options for storing TRU oxides isolated through the uranium extraction (UREX+) process. More specifically, a Zircaloy matrix cermet was developed as a storage form for transuranics with the understanding that the cermet also has the ability to serve as a inert matrix fuel form for TRU burning after intermediate storage. The goals of this research projects were: 1) to develop the processing steps requiredmore » to transform the effluent TRU nitrate solutions and the spent Xircaloy cladding into a zireonium matrix cermet sotrage form; and 2) to evaluate the impact of phenomena that govern durability of the storage form, material processing, and TRU utiliztion in fast reactor fuel. This report represents a compilation of the results generated under this program. The information is presented as a brief technical narrative in the following sections with appended papers, presentations and academic theses to provide a detailed review of the project's accomplishments.« less
10 CFR 504.6 - Prohibitions by order (case-by-case).
Code of Federal Regulations, 2013 CFR
2013-01-01
... had, the technical capability to use an alternate fuel as a primary energy source; (2) The unit has... (3) It is financially feasible for the unit to use an alternate fuel as its primary energy source. (b... Energy DEPARTMENT OF ENERGY (CONTINUED) ALTERNATE FUELS EXISTING POWERPLANTS § 504.6 Prohibitions by...
10 CFR 504.6 - Prohibitions by order (case-by-case).
Code of Federal Regulations, 2014 CFR
2014-01-01
... had, the technical capability to use an alternate fuel as a primary energy source; (2) The unit has... (3) It is financially feasible for the unit to use an alternate fuel as its primary energy source. (b... Energy DEPARTMENT OF ENERGY (CONTINUED) ALTERNATE FUELS EXISTING POWERPLANTS § 504.6 Prohibitions by...
10 CFR 504.6 - Prohibitions by order (case-by-case).
Code of Federal Regulations, 2012 CFR
2012-01-01
... had, the technical capability to use an alternate fuel as a primary energy source; (2) The unit has... (3) It is financially feasible for the unit to use an alternate fuel as its primary energy source. (b... Energy DEPARTMENT OF ENERGY (CONTINUED) ALTERNATE FUELS EXISTING POWERPLANTS § 504.6 Prohibitions by...
10 CFR 504.6 - Prohibitions by order (case-by-case).
Code of Federal Regulations, 2011 CFR
2011-01-01
... had, the technical capability to use an alternate fuel as a primary energy source; (2) The unit has... (3) It is financially feasible for the unit to use an alternate fuel as its primary energy source. (b... Energy DEPARTMENT OF ENERGY (CONTINUED) ALTERNATE FUELS EXISTING POWERPLANTS § 504.6 Prohibitions by...
Anode Material Testing for Marine Sediment Microbial Fuel Cells
2013-09-26
of fuel cell that uses the environment of submerged sediments to provide a natural voltage difference. The fuel cell is comprised of an anode...that it is fully submerged . Air bubbles trapped in the foam matrix will be removed by placing a vacuum on the pipette. Once the air bubbles are...lactic acid bacterium phylogenetically related to Enterococcus gallinarum isolated from submerged soil. J Appl Microbiol, 2005 99(4):978–987. 16. Jung
THE MANUFACTURE OF FUEL ELEMENTS OF THE ARGONAUT TYPE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kittl, J.; Machado, R.E.; Mazza, J.A.
1958-06-10
The conditions required for the manufacture of the RA-1 Argonant type fuel elements are investigated. The fuel elements are in the form of a plate which is manufactured by the extrusion of a presintered mass of U/sub 3/O/sub 8/ (20% enriched) in an aluminum matrix. Steps in the investigation were obtention and specification of U/sub 3/O/sub 8/ and Al in powder form for testing, filling, and extrusion tests, finishing of the fuel elements, and computation of U/sub 3/O/sub 8/ content. (W.D.M.)
Four-body trajectory optimization
NASA Technical Reports Server (NTRS)
Pu, C. L.; Edelbaum, T. N.
1974-01-01
A comprehensive optimization program has been developed for computing fuel-optimal trajectories between the earth and a point in the sun-earth-moon system. It presents methods for generating fuel optimal two-impulse trajectories which may originate at the earth or a point in space and fuel optimal three-impulse trajectories between two points in space. The extrapolation of the state vector and the computation of the state transition matrix are accomplished by the Stumpff-Weiss method. The cost and constraint gradients are computed analytically in terms of the terminal state and the state transition matrix. The 4-body Lambert problem is solved by using the Newton-Raphson method. An accelerated gradient projection method is used to optimize a 2-impulse trajectory with terminal constraint. The Davidon's Variance Method is used both in the accelerated gradient projection method and the outer loop of a 3-impulse trajectory optimization problem.
Metallization of bacterial cellulose for electrical and electronic device manufacture
Evans, Barbara R [Oak Ridge, TN; O'Neill, Hugh M [Knoxville, TN; Jansen, Valerie Malyvanh [Memphis, TN; Woodward, Jonathan [Knoxville, TN
2011-06-07
A method for the deposition of metals in bacterial cellulose and for the employment of the metallized bacterial cellulose in the construction of fuel cells and other electronic devices is disclosed. The method for impregnating bacterial cellulose with a metal comprises placing a bacterial cellulose matrix in a solution of a metal salt such that the metal salt is reduced to metallic form and the metal precipitates in or on the matrix. The method for the construction of a fuel cell comprises placing a hydrated bacterial cellulose support structure in a solution of a metal salt such that the metal precipitates in or on the support structure, inserting contact wires into two pieces of the metal impregnated support structure, placing the two pieces of metal impregnated support structure on opposite sides of a layer of hydrated bacterial cellulose, and dehydrating the three layer structure to create a fuel cell.
Metallization of bacterial cellulose for electrical and electronic device manufacture
Evans, Barbara R [Oak Ridge, TN; O'Neill, Hugh M [Knoxville, TN; Jansen, Valerie Malyvanh [Memphis, TN; Woodward, Jonathan [Knoxville, TN
2010-09-28
A method for the deposition of metals in bacterial cellulose and for the employment of the metallized bacterial cellulose in the construction of fuel cells and other electronic devices is disclosed. The method for impregnating bacterial cellulose with a metal comprises placing a bacterial cellulose matrix in a solution of a metal salt such that the metal salt is reduced to metallic form and the metal precipitates in or on the matrix. The method for the construction of a fuel cell comprises placing a hydrated bacterial cellulose support structure in a solution of a metal salt such that the metal precipitates in or on the support structure, inserting contact wires into two pieces of the metal impregnated support structure, placing the two pieces of metal impregnated support structure on opposite sides of a layer of hydrated bacterial cellulose, and dehydrating the three layer structure to create a fuel cell.
Post-irradiation examinations of THERMHET composite fuels for transmutation
NASA Astrophysics Data System (ADS)
Noirot, J.; Desgranges, L.; Chauvin, N.; Georgenthum, V.
2003-07-01
The thermal behaviour of composite targets dedicated to minor actinide transmutation was studied using THERMHET (thermal behaviour of heterogeneous fuel) irradiation in the SILOE reactor. Three inert matrix fuel designs were tested (macro-mass, jingle and microdispersion) all with a MgAl 2O 4 spinel inert matrix and around 40% weight of UO 2 to simulate minor actinide inclusions. The post-irradiation examinations led to a new interpretation of the temperature measurement by thermocouples located in the central hole of the pellets. A major change in the micro-dispersed structure was detected. The examinations enabled us to understand the behaviour of the spinel during the different stages of irradiation. They revealed an amorphisation at low temperature and then a nano re-crystallisation at high temperature of the spinel in the micro-dispersed case. These results, together with those obtained in the MATINA irradiation of an equivalent structure, show the importance of the irradiation temperature on spinel behaviour.
In situ ceramic layer growth on coated fuel particles dispersed in a zirconium metal matrix
DOE Office of Scientific and Technical Information (OSTI.GOV)
Terrani, Kurt A; Silva, G W Chinthaka M; Kiggans, Jim
2013-01-01
The extent and nature of the chemical interaction between the outermost coating layer of coated fuel particles embedded in zirconium metal during fabrication of metal matrix microencapsulated fuels was examined. Various particles with outermost coating layers of pyrocarbon, SiC, and ZrC have been investigated in this study. ZrC-Zr interaction was least substantial while PyC-Zr reaction can be exploited to produce a ZrC layer at the interface in an in situ manner. The thickness of the ZrC layer in the latter case can be controlled by adjusting the time and temperature during processing. The kinetics of ZrC layer growth is significantlymore » faster from what is predicted using literature carbon diffusivity data in ZrC. SiC-Zr interaction is more complex and results in formation of various chemical phases in a layered aggregate morphology at the interface.« less
Omrani, Hengameh; Barnes, Jack A; Dudelzak, Alexander E; Loock, Hans-Peter; Waechter, Helen
2012-06-21
Excitation emission matrix (EEM) and cavity ring-down (CRD) spectral signatures have been used to detect and quantitatively assess contamination of jet fuels with aero-turbine lubricating oil. The EEM spectrometer has been fiber-coupled to permit in situ measurements of jet turbine oil contamination of jet fuel. Parallel Factor (PARAFAC) analysis as well as Principal Component Analysis and Regression (PCA/PCR) were used to quantify oil contamination in a range from the limit of detection (10 ppm) to 1000 ppm. Fiber-loop cavity ring-down spectroscopy using a pulsed 355 nm laser was used to quantify the oil contamination in the range of 400 ppm to 100,000 ppm. Both methods in combination therefore permit the detection of oil contamination with a linear dynamic range of about 10,000.
NASA Technical Reports Server (NTRS)
Boland, J. S., III
1973-01-01
The conventional six-engine reaction control jet relay attitude control law with deadband is shown to be a good linear approximation to a weighted time-fuel optimal control law. Techniques for evaluating the value of the relative weighting between time and fuel for a particular relay control law is studied along with techniques to interrelate other parameters for the two control laws. Vehicle attitude control laws employing control moment gyros are then investigated. Steering laws obtained from the expression for the reaction torque of the gyro configuration are compared to a total optimal attitude control law that is derived from optimal linear regulator theory. This total optimal attitude control law has computational disadvantages in the solving of the matrix Riccati equation. Several computational algorithms for solving the matrix Riccati equation are investigated with respect to accuracy, computational storage requirements, and computational speed.
40 CFR 266.109 - Low risk waste exemption.
Code of Federal Regulations, 2012 CFR
2012-07-01
... of fuel fired to the device shall be fossil fuel, fuels derived from fossil fuel, tall oil, or, if... comparable to fossil fuel. Such fuels are termed “primary fuel” for purposes of this section. (Tall oil is a...
40 CFR 266.109 - Low risk waste exemption.
Code of Federal Regulations, 2014 CFR
2014-07-01
... of fuel fired to the device shall be fossil fuel, fuels derived from fossil fuel, tall oil, or, if... comparable to fossil fuel. Such fuels are termed “primary fuel” for purposes of this section. (Tall oil is a...
40 CFR 266.109 - Low risk waste exemption.
Code of Federal Regulations, 2011 CFR
2011-07-01
... of fuel fired to the device shall be fossil fuel, fuels derived from fossil fuel, tall oil, or, if... comparable to fossil fuel. Such fuels are termed “primary fuel” for purposes of this section. (Tall oil is a...
40 CFR 266.109 - Low risk waste exemption.
Code of Federal Regulations, 2010 CFR
2010-07-01
... of fuel fired to the device shall be fossil fuel, fuels derived from fossil fuel, tall oil, or, if... comparable to fossil fuel. Such fuels are termed “primary fuel” for purposes of this section. (Tall oil is a...
40 CFR 266.109 - Low risk waste exemption.
Code of Federal Regulations, 2013 CFR
2013-07-01
... of fuel fired to the device shall be fossil fuel, fuels derived from fossil fuel, tall oil, or, if... comparable to fossil fuel. Such fuels are termed “primary fuel” for purposes of this section. (Tall oil is a...
Schwantes, Jon M; Orton, Christopher R; Clark, Richard A
2012-08-21
Researchers evaluated radionuclide measurements of environmental samples taken from the Fukushima Daiichi nuclear facility and reported on the Tokyo Electric Power Co. Website following the 2011 tsunami-initiated catastrophe. This effort identified Units 1 and 3 as the major source of radioactive contamination to the surface soil near the facility. Radionuclide trends identified in the soils suggested that: (1) chemical volatility driven by temperature and reduction potential within the vented reactors' primary containment vessels dictated the extent of release of radiation; (2) all coolant had likely evaporated by the time of venting; and (3) physical migration through the fuel matrix and across the cladding wall were minimally effective at containing volatile species, suggesting damage to fuel bundles was extensive. Plutonium isotopic ratios and their distance from the source indicated that the damaged reactors were the major contributor of plutonium to surface soil at the source, decreasing rapidly with distance from the facility. Two independent evaluations estimated the fraction of the total plutonium inventory released to the environment relative to cesium from venting Units 1 and 3 to be ∼0.002-0.004%. This study suggests significant volatile radionuclides within the spent fuel at the time of venting, but not as yet observed and reported within environmental samples, as potential analytes of concern for future environmental surveys around the site. The majority of the reactor inventories of isotopes of less volatile elements like Pu, Nb, and Sr were likely contained within the damaged reactors during venting.
Liquid phase products and solid deposit formation from thermally stressed model jet fuels
NASA Technical Reports Server (NTRS)
Kim, W. S.; Bittker, D. A.
1984-01-01
The relationship between solid deposit formation and liquid degradation product concentration was studied for the high temperature (400 C) stressing of three hydrocarbon model fuels. A Jet Fuel Thermal Oxidation Tester was used to simulate actual engine fuel system conditions. The effects of fuel type, dissolved oxygen concentration, and hot surface contact time (reaction time) were studied. Effects of reaction time and removal of dissolved oxygen on deposit formation were found to be different for n-dodecane and for 2-ethylnaphthalene. When ten percent tetralin is added to n-dodecane to give a simpler model of an actual jet fuel, the tetralin inhibits both the deposit formation and the degradation of n-dodecane. For 2-ethylnaphthalene primary product analyses indicate a possible self-inhibition at long reaction times of the secondary reactions which form the deposit precursors. The mechanism of the primary breakdown of these fuels is suggested and the primary products which participate in these precursor-forming reactions are identified. Some implications of the results to the thermal degradation of real jet fuels are given.
Advanced High-Temperature Engine Materials Technology Progresses
NASA Technical Reports Server (NTRS)
1995-01-01
The objective of the Advanced High Temperature Engine Materials Technology Program (HITEMP) is to generate technology for advanced materials and structural analysis that will increase fuel economy, improve reliability, extend life, and reduce operating costs for 21st century civil propulsion systems. The primary focus is on fan and compressor materials (polymer-matrix composites--PMC's), compressor and turbine materials (superalloys, and metal-matrix and intermetallic-matrix composites--MMC's and IMC's) and turbine materials (ceramic-matrix composites--CMC's). These advanced materials are being developed by in-house researchers and on grants and contracts. NASA considers this program to be a focused materials and structures research effort that builds on our base research programs and supports component-development projects. HITEMP is coordinated with the Advanced Subsonic Technology (AST) Program and the Department of Defense/NASA Integrated High-Performance Turbine Engine Technology (IHPTET) Program. Advanced materials and structures technologies from HITEMP may be used in these future applications. Recent technical accomplishments have not only improved the state-of-the-art but have wideranging applications to industry. A high-temperature thin-film strain gage was developed to measure both dynamic and static strain up to 1100 C (2000 F). The gage's unique feature is that it is minimally intrusive. This technology, which received a 1995 R&D 100 Award, has been transferred to AlliedSignal Engines, General Electric Company, and Ford Motor Company. Analytical models developed at the NASA Lewis Research Center were used to study Textron Specialty Materials' manufacturing process for titanium-matrix composite rings. Implementation of our recommendations on tooling and processing conditions resulted in the production of defect free rings. In the Lincoln Composites/AlliedSignal/Lewis cooperative program, a composite compressor case is being manufactured with a Lewis-developed matrix, VCAP. The compressor case, which will reduce weight by 30 percent and costs by 50 percent, is scheduled to be engine tested in the near future.
NASA Astrophysics Data System (ADS)
Popel, A. J.; Le Solliec, S.; Lampronti, G. I.; Day, J.; Petrov, P. K.; Farnan, I.
2017-02-01
This work considers the effect of fission fragment damage on the structural integrity and dissolution of the CeO2 matrix in water, as a simulant for the UO2 matrix of spent nuclear fuel. For this purpose, thin films of CeO2 on Si substrates were produced and irradiated by 92 MeV 129Xe23+ ions to a fluence of 4.8 × 1015 ions/cm2 to simulate fission damage that occurs within nuclear fuels along with bulk CeO2 samples. The irradiated and unirradiated samples were characterised and a static batch dissolution experiment was conducted to study the effect of the induced irradiation damage on dissolution of the CeO2 matrix. Complex restructuring took place in the irradiated films and the irradiated samples showed an increase in the amount of dissolved cerium, as compared to the corresponding unirradiated samples. Secondary phases were also observed on the surface of the irradiated CeO2 films after the dissolution experiment.
Transport dynamics of a high-power-density matrix-type hydrogen-oxygen fuel cell
NASA Technical Reports Server (NTRS)
Prokopius, P. R.; Hagedorn, N. H.
1974-01-01
Experimental transport dynamics tests were made on a space power fuel cell of current design. Various operating transients were introduced and transport-related response data were recorded with fluidic humidity sensing instruments. Also, sampled data techniques were developed for measuring the cathode-side electrolyte concentration during transient operation.
Method and apparatus for assembling solid oxide fuel cells
Szreders, B.E.; Campanella, N.
1988-05-11
This invention relates generally to solid oxide fuel power generators and is particularly directed to improvements in the assembly and coupling of solid oxide fuel cell modules. A plurality of jet air tubes are supported and maintained in a spaced matrix array by a positioning/insertion assembly for insertion in respective tubes of a solid oxide fuel cell (SOFC) in the assembly of an SOFC module. The positioning/insertion assembly includes a plurality of generally planar, elongated, linear vanes which are pivotally mounted at each end thereof to a support frame. A rectangular compression assembly of adjustable size is adapted to receive and squeeze a matrix of SOFC tubes so as to compress the inter-tube nickel felt conductive pads which provide series/parallel electrical connection between adjacent SOFCs, with a series of increasingly larger retainer frames used to maintain larger matrices of SOFC tubes in position. Expansion of the SOFC module housing at the high operating temperatures of the SOFC is accommodated by conductive, flexible, resilient expansion, connector bars which provide support and electrical coupling at the top and bottom of the SOFC module housing. 17 figs.
Adenoviral transduction supports matrix expression of alginate cultured articular chondrocytes.
Pohle, D; Kasch, R; Herlyn, P; Bader, R; Mittlmeier, T; Pützer, B M; Müller-Hilke, B
2012-09-01
The present study examines the effects of adenoviral (Ad) transduction of human primary chondrocyte on transgene expression and matrix production. Primary chondrocytes were isolated from healthy articular cartilage and from cartilage with mild osteoarthritis (OA), transduced with an Ad vector and either immediately cultured in alginate or expanded in monolayer before alginate culture. Proteoglycan production was measured using dimethylmethylene blue (DMMB) assay and matrix gene expression was quantified by real-time PCR. Viral infection of primary chondrocytes results in a stable long time transgene expression for up to 13 weeks. Ad transduction does not significantly alter gene expression and matrix production if chondrocytes are immediately embedded in alginate. However, if expanded prior to three dimension (3D) culture in alginate, chondrocytes produce not only more proteoglycans compared to non-transduced controls, but also display an increased anabolic and decreased catabolic activity compared to non-transduced controls. We therefore suggest that successful autologous chondrocyte transplantation (ACT) should combine adenoviral transduction of primary chondrocytes with expansion in monolayer followed by 3D culture. Future studies will be needed to investigate whether the subsequent matrix production can be further improved by using Ad vectors bearing genes encoding matrix proteins. Copyright © 2012 Wiley Periodicals, Inc.
Spark plasma sintering and microstructural analysis of pure and Mo doped U3Si2 pellets
NASA Astrophysics Data System (ADS)
Lopes, Denise Adorno; Benarosch, Anna; Middleburgh, Simon; Johnson, Kyle D.
2017-12-01
U3Si2 has been considered as an alternative fuel for Light Water Reactors (LWRs) within the Accident Tolerant Fuels (ATF) initiative, begun after the Fukushima-Daiichi Nuclear accidents. Its main advantages are high thermal conductivity and high heavy metal density. Despite these benefits, U3Si2 presents an anisotropic crystallographic structure and low solubility of fission products, which can result in undesirable effects under irradiation conditions. In this paper, spark plasma sintering (SPS) of U3Si2 pellets is studied, with evaluation of the resulting microstructure. Additionally, exploiting the short sintering time in SPS, a molybdenum doped pellet was produced to investigate the early stages of the Mo-U3Si2 interaction, and analyze how this fission product is accommodated in the fuel matrix. The results show that pellets of U3Si2 with high density (>95% TD) can be obtained with SPS in the temperature range of 1200°C-1300 °C. Moreover, the short time employed in this technique was found to generate a unique microstructure for this fuel, composed mainly of closed nano-pores (<1 μm) and small average grain size (∼4.5 μm). The addition of Mo (1.5 at%) demonstrated no solubility of Mo in the U3Si2 matrix. The interaction of this fission product with the fuel matrix at 1200 °C formed, in the early stages, the stoichiometric U2Mo3Si4 ternary as well as precipitates of free uranium with small quantities of dissolved Si and Mo at the front of the reaction.
Vehicle and Fuel Emissions Testing
EPA's National Vehicle and Fuel Emissions Laboratory's primary responsibilities include: evaluating emission control technology; testing vehicles, engines and fuels; and determining compliance with federal emissions and fuel economy standards.
Electric power and the global economy: Advances in database construction and sector representation
NASA Astrophysics Data System (ADS)
Peters, Jeffrey C.
The electricity sector plays a crucial role in the global economy. The sector is a major consumer of fossil fuel resources, producer of greenhouse gas emissions, and an important indicator and correlate of economic development. As such, the sector is a primary target for policy-makers seeking to address these issues. The sector is also experiencing rapid technological change in generation (e.g. renewables), primary inputs (e.g. horizontal drilling and hydraulic fracturing), and end-use efficiency. This dissertation seeks to further our understanding of the role of the electricity sector as part of the dynamic global energy-economy, which requires significant research advances in both database construction and modeling techniques. Chapter 2 identifies useful engineering-level data and presents a novel matrix balancing method for integrating these data in global economic databases. Chapter 3 demonstrates the relationship between matrix balancing method and modeling results, and Chapter 4 presents the full construction methodology for GTAP-Power, the foremost, publicly-available global computable general equilibrium database. Chapter 5 presents an electricity-detailed computational equilibrium model that explicitly and endogenously captures capacity utilization, capacity expansion, and their interdependency - important aspects of technological substitution in the electricity sector. The individual, but interrelated, research contributions to database construction and electricity modeling in computational equilibrium are placed in the context of analyzing the US EPA Clean Power Plan (CPP) CO 2 target of 32 percent reduction of CO2 emissions in the US electricity sector from a 2005 baseline by 2030. Assuming current fuel prices, the model predicts an almost 28 percent CO2 reduction without further policy intervention. Next, a carbon tax and investment subsidies for renewable technologies to meet the CPP full targets are imposed and compared (Chapter 6). The carbon tax achieves the target via both utilization and expansion, while the renewable investment subsidies lead to over-expansion and compromises some of the possibilities via utilization. In doing so, this dissertation furthers our understanding of the role of the electricity sector as part of the dynamic global energy-economy.
NASA Technical Reports Server (NTRS)
Barnes, M. W.; Tucker, D. S.; Hone, L.; Cook, S.
2017-01-01
Nuclear thermal propulsion is an enabling technology for crewed Mars missions. An investigation was conducted to evaluate spark plasma sintering (SPS) as a method to produce tungsten-depleted uranium dioxide (W-dUO2) fuel material when employing fuel particles that were tungsten powder coated. Ceramic metal fuel wafers were produced from a blend of W-60vol% dUO2 powder that was sintered via SPS. The maximum sintering temperatures were varied from 1,600 to 1,850 C while applying a 50-MPa axial load. Wafers exhibited high density (>95% of theoretical) and a uniform microstructure (fuel particles uniformly dispersed throughout tungsten matrix).
NASA Astrophysics Data System (ADS)
Keiser, Dennis D.; Jue, Jan-Fong; Woolstenhulme, Nicolas E.; Ewh, Ashley
2011-12-01
Low-enriched uranium-molybdenum (U-Mo) alloy particles dispersed in aluminum alloy (e.g., dispersion fuels) are being developed for application in research and test reactors. To achieve the best performance of these fuels during irradiation, optimization of the starting microstructure may be required by utilizing a heat treatment that results in the formation of uniform, Si-rich interaction layers between the U-Mo particles and Al-Si matrix. These layers behave in a stable manner under certain irradiation conditions. To identify the optimum heat treatment for producing these kinds of layers in a dispersion fuel plate, a systematic annealing study has been performed using actual dispersion fuel samples, which were fabricated at relatively low temperatures to limit the growth of any interaction layers in the samples prior to controlled heat treatment. These samples had different Al matrices with varying Si contents and were annealed between 450 and 525 °C for up to 4 h. The samples were then characterized using scanning electron microscopy (SEM) to examine the thickness, composition, and uniformity of the interaction layers. Image analysis was performed to quantify various attributes of the dispersion fuel microstructures that related to the development of the interaction layers. The most uniform layers were observed to form in fuel samples that had an Al matrix with at least 4 wt.% Si and a heat treatment temperature of at least 475 °C.
Cluster Analysis of Indonesian Province Based on Household Primary Cooking Fuel Using K-Means
NASA Astrophysics Data System (ADS)
Huda, S. N.
2017-03-01
Each household definitely provides installations for cooking. Kerosene, which is refined from petroleum products once dominated types of primary fuel for cooking in Indonesia, whereas kerosene has an expensive cost and small efficiency. Other household use LPG as their primary cooking fuel. However, LPG supply is also limited. In addition, with a very diverse environments and cultures in Indonesia led to diversity of the installation type of cooking, such as wood-burning stove brazier. The government is also promoting alternative fuels, such as charcoal briquettes, and fuel from biomass. The use of other fuels is part of the diversification of energy that is expected to reduce community dependence on petroleum-based fuels. The use of various fuels in cooking that vary from one region to another reflects the distribution of fuel basic use by household. By knowing the characteristics of each province, the government can take appropriate policies to each province according each character. Therefore, it would be very good if there exist a cluster analysis of all provinces in Indonesia based on the type of primary cooking fuel in household. Cluster analysis is done using K-Means method with K ranging from 2-5. Cluster results are validated using Silhouette Coefficient (SC). The results show that the highest SC achieved from K = 2 with SC value 0.39135818388151. Two clusters reflect provinces in Indonesia, one is a cluster of more traditional provinces and the other is a cluster of more modern provinces. The cluster results are then shown in a map using Google Map API.
NASA Astrophysics Data System (ADS)
Magnin, M.; Jégou, C.; Caraballo, R.; Broudic, V.; Tribet, M.; Peuget, S.; Talip, Z.
2015-07-01
The (U,Pu)O2 matrix behavior of an irradiated MIMAS-type (MIcronized MASter blend) MOX fuel, under radiolytic oxidation in aerated pure water at pH 5-5.5 was studied by combining chemical and radiochemical analyses of the alteration solution with Raman spectroscopy characterizations of the surface state. Two leaching experiments were performed on segments of irradiated fuel under different conditions: with or without an external γ irradiation field, over long periods (222 and 604 days, respectively). The gamma irradiation field was intended to be representative of the irradiation conditions for a fuel assembly in an underwater interim storage situation. The data acquired enabled an alteration mechanism to be established, characterized by uranium (UO22+) release mainly controlled by solubility of studtite over the long-term. The massive precipitation of this phase was observed for the two experiments based on high uranium oversaturation indexes of the solution and the kinetics involved depended on the irradiation conditions. External gamma irradiation accelerated the precipitation kinetics and the uranium concentrations (2.9 × 10-7 mol/l) were lower than for the non-irradiated reference experiment (1.4 × 10-5 mol/l), as the quantity of hydrogen peroxide was higher. Under slightly acidic pH conditions, the formation of an oxidized UO2+x phase was not observed on the surface and did not occur in the radiolysis dissolution mechanism of the fuel matrix. The Raman spectroscopy performed on the heterogeneous MOX fuel matrix surface, showed that the fluorite structure of the mainly UO2 phase surrounding the Pu-enriched aggregates had not been particularly impacted by any major structural change compared to the data obtained prior to leaching. For the plutonium, its behavior in solution involved a continuous release up to concentrations of approximately 3 × 10-6 mol L-1 with negligible colloid formation. This data appears to support a predominance of the +V oxidation state for plutonium in solution under highly oxidizing conditions. Furthermore, the Raman spectroscopy monitoring of the sample surface oxidation states did not point to any significant effect from the high Pu content of the aggregates (10-15%) and therefore did not indicate a better aggregate stability under radiolysis compared to the mainly UO2 matrix. This is because acidic pH conditions do not favor the development of oxidized layers on a fuel surface, with the exception of secondary phases.
40 CFR 266.110 - Waiver of DRE trial burn for boilers.
Code of Federal Regulations, 2014 CFR
2014-07-01
... percent of fuel fired to the device shall be fossil fuel, fuels derived from fossil fuel, tall oil, or, if... comparable to fossil fuel. Such fuels are termed “primary fuel” for purposes of this section. (Tall oil is a...
40 CFR 266.110 - Waiver of DRE trial burn for boilers.
Code of Federal Regulations, 2010 CFR
2010-07-01
... percent of fuel fired to the device shall be fossil fuel, fuels derived from fossil fuel, tall oil, or, if... comparable to fossil fuel. Such fuels are termed “primary fuel” for purposes of this section. (Tall oil is a...
40 CFR 266.110 - Waiver of DRE trial burn for boilers.
Code of Federal Regulations, 2012 CFR
2012-07-01
... percent of fuel fired to the device shall be fossil fuel, fuels derived from fossil fuel, tall oil, or, if... comparable to fossil fuel. Such fuels are termed “primary fuel” for purposes of this section. (Tall oil is a...
40 CFR 266.110 - Waiver of DRE trial burn for boilers.
Code of Federal Regulations, 2013 CFR
2013-07-01
... percent of fuel fired to the device shall be fossil fuel, fuels derived from fossil fuel, tall oil, or, if... comparable to fossil fuel. Such fuels are termed “primary fuel” for purposes of this section. (Tall oil is a...
40 CFR 266.110 - Waiver of DRE trial burn for boilers.
Code of Federal Regulations, 2011 CFR
2011-07-01
... percent of fuel fired to the device shall be fossil fuel, fuels derived from fossil fuel, tall oil, or, if... comparable to fossil fuel. Such fuels are termed “primary fuel” for purposes of this section. (Tall oil is a...
Maimoun, Mousa; Madani, Kaveh; Reinhart, Debra
2016-04-15
Historically, the U.S. waste collection fleet was dominated by diesel-fueled waste collection vehicles (WCVs); the growing need for sustainable waste collection has urged decision makers to incorporate economically efficient alternative fuels, while mitigating environmental impacts. The pros and cons of alternative fuels complicate the decisions making process, calling for a comprehensive study that assesses the multiple factors involved. Multi-criteria decision analysis (MCDA) methods allow decision makers to select the best alternatives with respect to selection criteria. In this study, two MCDA methods, Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) and Simple Additive Weighting (SAW), were used to rank fuel alternatives for the U.S. waste collection industry with respect to a multi-level environmental and financial decision matrix. The environmental criteria consisted of life-cycle emissions, tail-pipe emissions, water footprint (WFP), and power density, while the financial criteria comprised of vehicle cost, fuel price, fuel price stability, and fueling station availability. The overall analysis showed that conventional diesel is still the best option, followed by hydraulic-hybrid WCVs, landfill gas (LFG) sourced natural gas, fossil natural gas, and biodiesel. The elimination of the WFP and power density criteria from the environmental criteria ranked biodiesel 100 (BD100) as an environmentally better alternative compared to other fossil fuels (diesel and natural gas). This result showed that considering the WFP and power density as environmental criteria can make a difference in the decision process. The elimination of the fueling station and fuel price stability criteria from the decision matrix ranked fossil natural gas second after LFG-sourced natural gas. This scenario was found to represent the status quo of the waste collection industry. A sensitivity analysis for the status quo scenario showed the overall ranking of diesel and fossil natural gas to be more sensitive to changing fuel prices as compared to other alternatives. Copyright © 2016 Elsevier B.V. All rights reserved.
Alternative Fuels Data Center: Fuel Prices
Report provides regional alternative and conventional fuel prices for biodiesel, compressed natural gas petroleum fuels (gasoline and diesel fuel) is the primary driver of liquid fuel prices. This is because the liquid fuels are used in non-dedicated vehicles and can be substituted out by petroleum fuels if their
NASA Astrophysics Data System (ADS)
Tang, Shanshan; Du, Lin; Tsona, Narcisse T.; Zhao, Hailiang; Wang, Wenxing
2017-08-01
Biofuels are considered to be an environmental friendly alternative to fossil fuels. Furanic compounds have been considered as second generation biofuels as they can be produced from non-food biomass. However, the atmospheric behavior of such compounds is required to evaluate their potential to be used as biofuels. The matrix isolation technique combined with infrared spectroscopy has been used to study the ozonolysis mechanism of 2,5-dihydrofuran. A new reaction pathway that is different from the widely accepted Criegee mechanism has been found. Experimental and theoretical results show the evidence of the formation of a furan-H2O3 complex through a dehydrogenation process. The complex is trapped in the argon matrix and stabilized through hydrogen bonding interaction. Meanwhile, the conventional ozonolysis intermediates were also observed, including the primary ozonide, the Criegee intermediate and the secondary ozonide. The present study highlights the cases in which the Criegee mechanism is not the dominant pathway for the reactions of cyclic alkenes with ozone. The cyclic alkenes that can form an aromatic conjugated system by the dehydrogenation process may follow the new mechanism when react with ozone in the atmosphere.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zevenhoven-Onderwater, M.; Blomquist, J.P.; Skrifvars, B.J.
1999-07-01
The behavior of different ashes is predicted by means of a combination of an advanced fuel analysis and global equilibrium calculations. In order to cover a broad spectrum of fuels a coal, a peat, a forest residue and Salix (i.e. willow) are studied. The latter was taken with and without soil contamination, i.e. with a high and low content of silica , respectively. It is shown that mineral matter in fossil and biomass fuels can be present in the matrix of the fuel itself or as included minerals. Using an advanced fuel analysis, i.e. a fractionation method, this mineral contentmore » can be divided into four fractions. The first fraction mainly contains those metal ions, that can be leached out of the fuel by water and mainly contains alkali sulfates, carbonates and chlorides. The second fraction mainly consists of those ions leached out by ammonium acetate and covers those ions, that are connected to the organic matrix. The third fraction contains the metals leached out by hydrochloric acid and contains earth alkali carbonates and sulfates as well as pyrites. The rest fraction contains those minerals, that are not leached out by any of the above mentioned solvents, such as silicates. A global equilibrium analysis is used to predict the thermal and chemical behavior of the combined first and second fractions and of the combined third and rest fractions under pressurized and/or atmospheric combustion conditions. Results of both the fuel analysis and the global equilibrium analysis are discussed and practical implications for combustion processes are pointed out.« less
Jet fuel based high pressure solid oxide fuel cell system
NASA Technical Reports Server (NTRS)
Gummalla, Mallika (Inventor); Yamanis, Jean (Inventor); Olsommer, Benoit (Inventor); Dardas, Zissis (Inventor); Bayt, Robert (Inventor); Srinivasan, Hari (Inventor); Dasgupta, Arindam (Inventor); Hardin, Larry (Inventor)
2013-01-01
A power system for an aircraft includes a solid oxide fuel cell system which generates electric power for the aircraft and an exhaust stream; and a heat exchanger for transferring heat from the exhaust stream of the solid oxide fuel cell to a heat requiring system or component of the aircraft. The heat can be transferred to fuel for the primary engine of the aircraft. Further, the same fuel can be used to power both the primary engine and the SOFC. A heat exchanger is positioned to cool reformate before feeding to the fuel cell. SOFC exhaust is treated and used as inerting gas. Finally, oxidant to the SOFC can be obtained from the aircraft cabin, or exterior, or both.
Low NOx nozzle tip for a pulverized solid fuel furnace
Donais, Richard E; Hellewell, Todd D; Lewis, Robert D; Richards, Galen H; Towle, David P
2014-04-22
A nozzle tip [100] for a pulverized solid fuel pipe nozzle [200] of a pulverized solid fuel-fired furnace includes: a primary air shroud [120] having an inlet [102] and an outlet [104], wherein the inlet [102] receives a fuel flow [230]; and a flow splitter [180] disposed within the primary air shroud [120], wherein the flow splitter disperses particles in the fuel flow [230] to the outlet [104] to provide a fuel flow jet which reduces NOx in the pulverized solid fuel-fired furnace. In alternative embodiments, the flow splitter [180] may be wedge shaped and extend partially or entirely across the outlet [104]. In another alternative embodiment, flow splitter [180] may be moved forward toward the inlet [102] to create a recessed design.
Jet Fuel Based High Pressure Solid Oxide Fuel Cell System
NASA Technical Reports Server (NTRS)
Srinivasan, Hari (Inventor); Hardin, Larry (Inventor); Gummalla, Mallika (Inventor); Yamanis, Jean (Inventor); Olsommer, Benoit (Inventor); Dardas, Zissis (Inventor); Dasgupta, Arindam (Inventor); Bayt, Robert (Inventor)
2015-01-01
A power system for an aircraft includes a solid oxide fuel cell system which generates electric power for the aircraft and an exhaust stream; and a heat exchanger for transferring heat from the exhaust stream of the solid oxide fuel cell to a heat requiring system or component of the aircraft. The heat can be transferred to fuel for the primary engine of the aircraft. Further, the same fuel can be used to power both the primary engine and the SOFC. A heat exchanger is positioned to cool reformate before feeding to the fuel cell. SOFC exhaust is treated and used as inerting gas. Finally, oxidant to the SOFC can be obtained from the aircraft cabin, or exterior, or both.
Method and apparatus for advanced staged combustion utilizing forced internal recirculation
Rabovitser, Iosif K.; Knight, Richard A.; Cygan, David F.; Nester, Serguei; Abbasi, Hamid A.
2003-12-16
A method and apparatus for combustion of a fuel in which a first-stage fuel and a first-stage oxidant are introduced into a combustion chamber and ignited, forming a primary combustion zone. At least about 5% of the total heat output produced by combustion of the first-stage fuel and the first-stage oxidant is removed from the primary combustion zone, forming cooled first-stage combustion products. A portion of the cooled first-stage combustion products from a downstream region of the primary combustion zone is recirculated to an upstream region of primary combustion zone. A second-stage fuel is introduced into the combustion chamber downstream of the primary combustion zone and ignited, forming a secondary combustion zone. At least about 5% of the heat from the secondary combustion zone is removed. In accordance with one embodiment, a third-stage oxidant is introduced into the combustion chamber downstream of the secondary combustion zone, forming a tertiary combustion zone.
Kevlar/PMR-15 polyimide matrix composite for a complex shaped DC-9 drag reduction fairing
NASA Technical Reports Server (NTRS)
Kawai, R. T.; Mccarthy, R. F.; Willer, M. S.; Hrach, F. J.
1982-01-01
The Aircraft Energy Efficiency (ACEE) Program was established by NASA to improve the fuel efficiency of commercial transport aircraft and thereby to reduce the amount of fuel consumed by the air transportation industry. One of the final items developed by the program is an improved fairing which is the aft closure for the thrust reverser actuators on the JT8D nacelles on DC-9 aircraft. The reduced-drag fairing uses, in the interest of weight savings, an advanced composite construction. The composite material contains Kevlar 49 fibers in a PMR-15 matrix. Attention is given to the aerodynamic configuration, the material system, and aspects of fabrication development.
NASA Astrophysics Data System (ADS)
Fan, Xingjun; Wei, Siye; Zhu, Mengbo; Song, Jianzhong; Peng, Ping'an
2016-10-01
Humic-like substances (HULIS) in smoke fine particulate matter (PM2.5) emitted from the combustion of biomass materials (rice straw, corn straw, and pine branch) and fossil fuels (lignite coal and diesel fuel) were comprehensively studied in this work. The HULIS fractions were first isolated with a one-step solid-phase extraction method, and were then investigated with a series of analytical techniques: elemental analysis, total organic carbon analysis, UV-vis (ultraviolet-visible) spectroscopy, excitation-emission matrix (EEM) fluorescence spectroscopy, Fourier transform infrared spectroscopy, and 1H-nuclear magnetic resonance spectroscopy. The results show that HULIS account for 11.2-23.4 and 5.3 % of PM2.5 emitted from biomass burning (BB) and coal combustion, respectively. In addition, contributions of HULIS-C to total carbon and water-soluble carbon in smoke PM2.5 emitted from BB are 8.0-21.7 and 56.9-66.1 %, respectively. The corresponding contributions in smoke PM2.5 from coal combustion are 5.2 and 45.5 %, respectively. These results suggest that BB and coal combustion are both important sources of HULIS in atmospheric aerosols. However, HULIS in diesel soot only accounted for ˜ 0.8 % of the soot particles, suggesting that vehicular exhaust may not be a significant primary source of HULIS. Primary HULIS and atmospheric HULIS display many similar chemical characteristics, as indicated by the instrumental analytical characterization, while some distinct features were also apparent. A high spectral absorbance in the UV-vis spectra, a distinct band at λex/λem ≈ 280/350 nm in EEM spectra, lower H / C and O / C molar ratios, and a high content of [Ar-H] were observed for primary HULIS. These results suggest that primary HULIS contain more aromatic structures, and have a lower content of aliphatic and oxygen-containing groups than atmospheric HULIS. Among the four primary sources of HULIS, HULIS from BB had the highest O / C molar ratios (0.43-0.54) and [H-C-O] content (10-19 %), indicating that HULIS from this source mainly consisted of carbohydrate- and phenolic-like structures. HULIS from coal combustion had a lower O / C molar ratio (0.27) and a higher content of [Ar-H] (31 %), suggesting that aromatic compounds were extremely abundant in HULIS from this source. Moreover, the absorption Ångström exponents of primary HULIS from BB and coal combustion were 6.7-8.2 and 13.6, respectively. The mass absorption efficiencies of primary HULIS from BB and coal combustion at 365 nm (MAE365) were 0.97-2.09 and 0.63 m2 gC-1, respectively. Noticeably higher MAE365 values for primary HULIS from BB than coal combustion indicate that the former has a stronger contribution to the light-absorbing properties of aerosols in the atmospheric environment.
NASA Technical Reports Server (NTRS)
Norgren, C. T.; Ingebo, R. D.
1974-01-01
The effects of reducing the primary-zone equivalence ratio on the exhaust emission levels of oxides of nitrogen, carbon monoxide, and unburned hydrocarbons in experimental hydrocarbon-fueled combustor segments at simulated supersonic cruise and idle conditions were investigated. In addition, the effects of the injection of hydrogen fuel (up to 4 percent of the total weight of fuel) on the stability of the hydrocarbon flame and exhaust emissions were studied and compared with results obtained without hydrogen addition.
Modeling a failure criterion for U-Mo/Al dispersion fuel
NASA Astrophysics Data System (ADS)
Oh, Jae-Yong; Kim, Yeon Soo; Tahk, Young-Wook; Kim, Hyun-Jung; Kong, Eui-Hyun; Yim, Jeong-Sik
2016-05-01
The breakaway swelling in U-Mo/Al dispersion fuel is known to be caused by large pore formation enhanced by interaction layer (IL) growth between fuel particles and Al matrix. In this study, a critical IL thickness was defined as a criterion for the formation of a large pore in U-Mo/Al dispersion fuel. Specifically, the critical IL thickness is given when two neighboring fuel particles come into contact with each other in the developed IL. The model was verified using the irradiation data from the RERTR tests and KOMO-4 test. The model application to full-sized sample irradiations such as IRISs, FUTURE, E-FUTURE, and AFIP-1 tests resulted in conservative predictions. The parametric study revealed that the fuel particle size and the homogeneity of the fuel particle distribution are influential for fuel performance.
Spatial distribution of jet fuel in the vadoze zone of a heterogeneous and fractured soil.
Tzovolou, D N; Benoit, Y; Haeseler, F; Klint, K E; Tsakiroglou, C D
2009-04-01
The goal of the present work is to screen and evaluate all available data before selecting and testing remediation technologies on heterogeneous soils polluted by jet fuel. The migration pathways of non-aqueous phase liquids (NAPLs) in the subsurface relate closely with soil properties. A case study is performed on the vadoze zone of a military airport of north-west Poland contaminated by jet fuel. Soil samples are collected from various depths of two cells, and on-site and off-site chemical analyses of hydrocarbons are conducted by using Pollut Eval apparatus and GC-MS, respectively. The geological conceptual model of the site along with microscopic and hydraulic properties of the porous matrix and fractures enable us to interpret the non-uniform spatial distribution of jet fuel constituents. The total concentration of the jet fuel and its main hydrocarbon families (n-paraffins, major aromatics) over the two cells is governed by the slow preferential flow of NAPL through the porous matrix, the rapid NAPL convective flow through vertical desiccation and sub-horizontal glaciotectonic fractures, and n-paraffin biodegradation in upper layers where the rates of oxygen transfer is not limited by complexities of the pore structure. The information collected is valuable for the selection, implementation and evaluation of two in situ remediation methods.
Characterization of urban aerosol in Cork City (Ireland) using aerosol mass spectrometry
NASA Astrophysics Data System (ADS)
Dall'Osto, M.; Ovadnevaite, J.; Ceburnis, D.; Martin, D.; Healy, R. M.; O'Connor, I. P.; Sodeau, J. R.; Wenger, J. C.; O'Dowd, C.
2012-11-01
Ambient wintertime background urban aerosol in Cork City, Ireland, was characterized using aerosol mass spectrometry. During the three-week measurement study in 2009, 93% of the 1 200 000 single particles characterized by an Aerosol Time-Of-Flight Mass Spectrometer (TSI ATOFMS) were classified into five organic-rich particle types, internally-mixed to different proportions with Elemental Carbon (EC), sulphate and nitrate while the remaining 7% was predominantly inorganic in nature. Non-refractory PM1 aerosol was also characterized using a High Resolution Time-Of-Flight Aerodyne Aerosol Mass Spectrometer (HR-ToF-AMS) and was also found to comprise organic matter as the most abundant species (62%), followed by nitrate (15%), sulphate (9%) and ammonium (9%), and then chloride (5%). Positive matrix factorization (PMF) was applied to the HR-ToF-AMS organic matrix and a five-factor solution was found to describe the variance in the data well. Specifically, "Hydrocarbon-like" Organic Aerosol (HOA) comprised 19% of the mass, "Oxygenated low volatility" Organic Aerosols (LV-OOA) comprised 19%, "Biomass wood Burning" Organic Aerosol (BBOA) comprised 23%, non-wood solid-fuel combustion "Peat and Coal" Organic Aerosol (PCOA) comprised 21%, and finally, a species type characterized by primary m/z peaks at 41 and 55, similar to previously-reported "Cooking" Organic Aerosol (COA) but possessing different diurnal variations to what would be expected for cooking activities, contributed 18%. Despite wood, cool and peat being minor fuel types used for domestic space heating in urban areas, their relatively low combustion efficiencies result in a significant contribution to PM1 aerosol mass (44% and 28% of the total organic aerosols mass and non refractory PM1, respectively).
Characterization of urban aerosol in Cork city (Ireland) using aerosol mass spectrometry
NASA Astrophysics Data System (ADS)
Dall'Osto, M.; Ovadnevaite, J.; Ceburnis, D.; Martin, D.; Healy, R. M.; O'Connor, I. P.; Kourtchev, I.; Sodeau, J. R.; Wenger, J. C.; O'Dowd, C.
2013-05-01
Ambient wintertime background urban aerosol in Cork city, Ireland, was characterized using aerosol mass spectrometry. During the three-week measurement study in 2009, 93% of the ca. 1 350 000 single particles characterized by an Aerosol Time-of-Flight Mass Spectrometer (TSI ATOFMS) were classified into five organic-rich particle types, internally mixed to different proportions with elemental carbon (EC), sulphate and nitrate, while the remaining 7% was predominantly inorganic in nature. Non-refractory PM1 aerosol was characterized using a High Resolution Time-of-Flight Aerosol Mass Spectrometer (Aerodyne HR-ToF-AMS) and was also found to comprise organic aerosol as the most abundant species (62%), followed by nitrate (15%), sulphate (9%) and ammonium (9%), and chloride (5%). Positive matrix factorization (PMF) was applied to the HR-ToF-AMS organic matrix, and a five-factor solution was found to describe the variance in the data well. Specifically, "hydrocarbon-like" organic aerosol (HOA) comprised 20% of the mass, "low-volatility" oxygenated organic aerosol (LV-OOA) comprised 18%, "biomass burning" organic aerosol (BBOA) comprised 23%, non-wood solid-fuel combustion "peat and coal" organic aerosol (PCOA) comprised 21%, and finally a species type characterized by primary {m/z} peaks at 41 and 55, similar to previously reported "cooking" organic aerosol (COA), but possessing different diurnal variations to what would be expected for cooking activities, contributed 18%. Correlations between the different particle types obtained by the two aerosol mass spectrometers are also discussed. Despite wood, coal and peat being minor fuel types used for domestic space heating in urban areas, their relatively low combustion efficiencies result in a significant contribution to PM1 aerosol mass (44% and 28% of the total organic aerosol mass and non-refractory total PM1, respectively).
Coated powder for electrolyte matrix for carbonate fuel cell
Iacovangelo, Charles D.; Browall, Kenneth W.
1985-01-01
A plurality of electrolyte carbonate-coated ceramic particle which does not differ significantly in size from that of the ceramic particle and wherein no significant portion of the ceramic particle is exposed is fabricated into a porous tape comprised of said coated-ceramic particles bonded together by the coating for use in a molten carbonate fuel cell.
Monroe, Jr., James E.
1977-08-09
A thermionic device for converting nuclear energy into electrical energy comprising a tubular anode spaced from and surrounding a cylindrical cathode, the cathode having an outer emitting surface of ruthenium, and nuclear fuel on the inner cylindrical surface. The nuclear fuel is a ceramic composition of fissionable material in a metal matrix. An axial void is provided to collect and contain fission product gases.
Examination of UC-ZrC after long term irradiation at thermionic temperature
NASA Technical Reports Server (NTRS)
Yang, L.; Johnson, H. O.
1972-01-01
Two fluoride tungsten clad UC-ZrC fueled capsules, designated as V-2C and V-2D, were examined a hot cell after irradiation in NASA Plum Brook Reactor at a maximum cladding temperature of 1930 K for 11,089 and 12,031 hours to burnups of 3.0 x 10 to the 20th power and 2.1 x 10 to the 20th power fission/c.c. respectively. Percentage of fission gas release from the fuel material was measured by radiochemical means. Cladding deformation, fuel-cladding interaction and microstructures of fuel, cladding, and fuel-cladding interface were studied metallographically. Compositions of dispersions in fuel, fuel matrix and fuel-cladding interaction layer were analyzed by electron microprobe techniques. Axial and radial distributions of burnup were determined by gamma-scan, autoradiography and isotopic burnup analysis. The results are presented and discussed in conjunction with the requirements of thermionic fuel elements for space power application.
Carlson, Gary A.
1976-01-01
An aerially delivered fuel-air munition consisting of an impermeable tank filled with a pressurized liquid fuel and joined at its two opposite ends with a nose section and a tail assembly respectively to complete an aerodynamic shape. On impact the tank is explosively ruptured to permit dispersal of the fuel in the form of a fuel-air cloud which is detonated after a preselected time delay by means of high explosive initiators ejected from the tail assembly. The primary component in the fuel is methylacetylene, propadiene, or mixtures thereof to which is added a small mole fraction of a relatively high vapor pressure liquid diluent or a dissolved gas diluent having a low solubility in the primary component.
Zocher, Roy W.
1991-01-01
A nuclear fuel element and a method of manufacturing the element. The fuel element is comprised of a metal primary container and a fuel pellet which is located inside it and which is often fragmented. The primary container is subjected to elevated pressure and temperature to deform the container such that the container conforms to the fuel pellet, that is, such that the container is in substantial contact with the surface of the pellet. This conformance eliminates clearances which permit rubbing together of fuel pellet fragments and rubbing of fuel pellet fragments against the container, thus reducing the amount of dust inside the fuel container and the amount of dust which may escape in the event of container breach. Also, as a result of the inventive method, fuel pellet fragments tend to adhere to one another to form a coherent non-fragmented mass; this reduces the tendency of a fragment to pierce the container in the event of impact.
Atomistic Simulation of High-Density Uranium Fuels
Garcés, Jorge Eduardo; Bozzolo, Guillermo
2011-01-01
We apply an atomistic modeling approach to deal with interfacial phenomena in high-density uranium fuels. The effects of Si, as additive to Al or as U-Mo-particles coating, on the behavior of the Al/U-Mo interface is modeled by using the Bozzolo-Ferrante-Smith (BFS) method for alloys. The basic experimental features characterizing the real system are identified, via simulations and atom-by-atom analysis. These include (1) the trend indicating formation of interfacial compounds, (2) much reduced diffusion of Al into U-Mo solid solution due to the high Si concentration, (3) Si depletion in the Al matrix, (4) an unexpected interaction between Mo and Simore » which inhibits Si diffusion to deeper layers in the U-Mo solid solution, and (5) the minimum amount of Si needed to perform as an effective diffusion barrier. Simulation results related to alternatives to Si dispersed in the Al matrix, such as the use of C coating of U-Mo particles or Zr instead of the Al matrix, are also shown. Recent experimental results confirmed early theoretical proposals, along the lines of the results reported in this work, showing that atomistic computational modeling could become a valuable tool to aid the experimental work in the development of nuclear fuels.« less
Phenol-selective mass spectrometric analysis of jet fuel.
Zhu, Haoxuan; Janusson, Eric; Luo, Jingwei; Piers, James; Islam, Farhana; McGarvey, G Bryce; Oliver, Allen G; Granot, Ori; McIndoe, J Scott
2017-08-21
Bromobenzyl compounds react selectively with phenols via the Williamson ether synthesis. An imidazolium charge-tagged bromobenzyl compound can be used to reveal phenol impurities in jet fuel by analysis via electrospray ionization mass spectrometry. The complex matrix as revealed by Cold EI GC/MS analysis is reduced to a few simple sets of compounds in the charge-tagged ESI mass spectrum, primarily substituted phenols and thiols. Examination of jet fuels treated by different refinery methods reveals the efficacy of these approaches in removing these contaminants.
Science Unlimited: Grades K-6 Competency Matrix.
ERIC Educational Resources Information Center
Pennsylvania State Dept. of Education, Harrisburg. Div. of Arts and Sciences.
This competency matrix matches the primary and intermediate Science Unlimited lessons with the established competencies which appear in the Science Unlimited competency continuum. Primary lessons deal with: investigating dripping faucets; classification/sorting; smell; eyes; color; air; weather; observation and description; mystery boxes; change;…
NASA Astrophysics Data System (ADS)
Allan, J. D.; Williams, P. I.; Morgan, W. T.; Martin, C. L.; Flynn, M. J.; Lee, J.; Nemitz, E.; Phillips, G. J.; Gallagher, M. W.; Coe, H.
2010-01-01
Organic matter frequently represents the single largest fraction of fine particulates in urban environments and yet the exact contributions from different sources and processes remain uncertain, owing in part to its substantial chemical complexity. Positive Matrix Factorisation (PMF) has recently proved to be a powerful tool for the purposes of source attribution and profiling when applied to ambient organic aerosol data from the Aerodyne Aerosol Mass Spectrometer (AMS). Here we present PMF analysis applied to AMS data from UK cities for the first time. Three datasets are analysed, with the focus on objectivity and consistency. The data were collected in London during the Regent's Park and Tower Environmental Experiment (REPARTEE) intensives and Manchester. These occurred during the autumn and wintertime, such that the primary fraction would be prominent. Ambiguities associated with rotationality within sets of potential solutions are explored and the most appropriate solution sets selected based on comparisons with external data. In addition to secondary organic aerosols, three candidate sources of primary organic aerosol (POA) were identified according to mass spectral and diurnal profiles; traffic emissions, cooking and solid fuel burning (for space heating). Traffic represented, on average, 40% of POA during colder conditions and exhibited a hydrocarbon-like mass spectrum similar to those previously reported. Cooking aerosols represented 34% of POA and through laboratory work, their profile was matched with that sampled from the heating of seed oils, rather than previously-published spectra derived from charbroiling. This suggests that in these locations, oil from frying may have contributed more to the particulate than the meat itself. Solid fuel aerosols represented 26% of POA during cold weather conditions but were not discernable during the first REPARTEE campaign, when conditions were warmer than the other campaigns. This factor showed features associated with biomass burning and occurred mainly at night. Grid-scale emission factors of the combustion aerosols suitable for use in chemical transport models were derived relative to CO and NOx. The traffic aerosols were found to be 20.5 μg m-3 ppm-1 relative to CO for Manchester and 31.6 μg m-3 ppm-1 relative to NOx for London. Solid fuel emissions were derived as 24.7 μg m-3 ppm-1 relative to CO for Manchester. These correspond to mass emission ratios of 0.018, 0.026 (as NO) and 0.021 respectively and are of a similar order to previously published estimates, derived from other regions or using other approaches.
NASA Astrophysics Data System (ADS)
Zweifel, T.; Palancher, H.; Leenaers, A.; Bonnin, A.; Honkimaki, V.; Tucoulou, R.; Van Den Berghe, S.; Jungwirth, R.; Charollais, F.; Petry, W.
2013-11-01
A new type of high density fuel is needed for the conversion of research and test reactors from high to lower enriched uranium. The most promising one is a dispersion of atomized uranium-molybdenum (U-Mo) particles in an Al matrix. However, during in-pile irradiation the growth of an interaction layer between the U-Mo and the Al matrix strongly limits the fuel's performance. To improve the in-pile behaviour, the U-Mo particles can be coated with protective layers. The SELENIUM (Surface Engineering of Low ENrIched Uranium-Molybdenum) fuel development project consists of the production, irradiation and post-irradiation examination of 2 flat, full-size dispersion fuel plates containing respectively Si and ZrN coated U-Mo atomized powder dispersed in a pure Al matrix. In this paper X-ray diffraction analyses of the Si and ZrN layers after deposition, fuel plate manufacturing and thermal annealing are reported. It was found for the U-Mo particles coated with ZrN (thickness 1 μm), that the layer is crystalline, and exhibits lower density than the theoretical one. Fuel plate manufacturing does not strongly influence these crystallographic features. For the U-Mo particles coated with Si (thickness 0.6 μm), the measurements of the as received material suggest an amorphous state of the deposited layer. Fuel plate manufacturing strongly modifies its composition: Si reacts with the U-Mo particles and the Al matrix to grow U(Al, Si)3 and U3Si5 phases. Finally both coatings have shown excellent performances under thermal treatment by limiting drastically the U-Mo/Al interdiffusion. U(Al,Si)3 with two lattice parameters (4.16 Å and 4.21 Å), A distorted U3Si5 phase. Note that these phases were not present in the U-Mo(Si) powders. These phases are usually found in the Silicon rich diffusion layer (SiRDL) obtained in dispersed fuels (as-manufactured U-Mo/Al(Si) fuel plates [12,3] or annealed UMo(Si)/Al fuel rods [40]) as well as in diffusion couples (U-Mo/Al(Si7) [37-39] or U-Mo/Si [41]). This analysis is furthermore in full agreement with the SEM/EDX characterisations which have highlighted the growth of a SiRDL in these U-Mo(Si)/Al_P fuel plates [30]. However it must be stressed that the amount of these U(Al,Si)3 and U3Si5 crystalline phases (about 0.3 wt%) is lower than the one obtained for fuel plates containing 4-6 wt% Si in the matrix [12]. It equals to the SiRDL amount measured in the IRIS4_2.1%Si fuel plate. Using these HE-XRD measurements, the Si concentration in SiRDLs is evaluated to 51 at%. This value is somewhat higher than when measured by EDX: it has been estimated to 40 at% in [30]. U2Mo and α"-U phase for compacts annealed at 340 °C, U2Mo and α'-U phase for compacts annealed at 450 °C [43], gamma;-U-Mo and α'-U for compacts annealed at 550 °C. These results obtained on compacts are in good agreement with previous works performed on U-8Mo ingots (see Fig. 9A) -even if some differences in the α-U phase structure must be mentioned - and in very close agreement with recent studies on thermally annealed U-Mo/Al fuel plates. Indeed destabilisation products found in this work are identical to those identified after fuel plate annealing at 550 °C [25] and 450 °C [43]. Moreover this work helps establishing that destabilisation products are U2Mo and α"-U at lower temperatures (below 450 °C). This was first demonstrated on fuel plates annealed at 425 °C for more than 50 h [43] and this is confirmed here with the analysis of the compacts annealed at 340 °C during 130 days. Note finally that whatever the presence of a coating, destabilisation ratios are very close in compacts annealed in the same conditions (see Fig. 9B) and that destabilisation ratios show the expected increase between 2 and 4 h annealing at 550 °C. The non-annealed U-Mo(Si)/Al compact has been lost during fabrication.
Modeling a failure criterion for U–Mo/Al dispersion fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oh, Jae-Yong; Kim, Yeon Soo; Tahk, Young-Wook
2016-05-01
The breakaway swelling in U-Mo/Al dispersion fuel is known to be caused by large pore formation enhanced by interaction layer (IL) growth between fuel particles and Al matrix. In this study, a critical IL thickness was defined as a criterion for the formation of a large pore in U-Mo/Al dispersion fuel. Specifically, the critical IL thickness is given when two neighboring fuel particles come into contact with each other in the developed IL. The model was verified using the irradiation data from the RERTR tests and KOMO- 4 test. The model application to full-sized sample irradiations such as IRISs, FUTURE,more » E-FUTURE, and AFIP-1 tests resulted in conservative predictions. The parametric study revealed that the fuel particle size and the homogeneity of the fuel particle distribution are influential for fuel performance.« less
In-pile test results of U-silicide or U-nitride coated U-7Mo particle dispersion fuel in Al
NASA Astrophysics Data System (ADS)
Kim, Yeon Soo; Park, J. M.; Lee, K. H.; Yoo, B. O.; Ryu, H. J.; Ye, B.
2014-11-01
U-silicide or U-nitride coated U-Mo particle dispersion fuel in Al (U-Mo/Al) was in-pile tested to examine the effectiveness of the coating as a diffusion barrier between the U-7Mo fuel kernels and Al matrix. This paper reports the PIE data and analyses focusing on the effectiveness of the coating in terms of interaction layer (IL) growth and general fuel performance. The U-silicide coating showed considerable success, but it also provided evidence for additional improvement for coating process. The U-nitride coated specimen showed largely inefficient results in reducing IL growth. From the test, important observations were also made that can be utilized to improve U-Mo/Al fuel performance. The heating process for coating turned out to be beneficial to suppress fuel swelling. The use of larger fuel particles confirmed favorable effects on fuel performance.
Simulation on reactor TRIGA Puspati core kinetics fueled with thorium (Th) based fuel element
NASA Astrophysics Data System (ADS)
Mohammed, Abdul Aziz; Pauzi, Anas Muhamad; Rahman, Shaik Mohmmed Haikhal Abdul; Zin, Muhamad Rawi Muhammad; Jamro, Rafhayudi; Idris, Faridah Mohamad
2016-01-01
In confronting global energy requirement and the search for better technologies, there is a real case for widening the range of potential variations in the design of nuclear power plants. Smaller and simpler reactors are attractive, provided they can meet safety and security standards and non-proliferation issues. On fuel cycle aspect, thorium fuel cycles produce much less plutonium and other radioactive transuranic elements than uranium fuel cycles. Although not fissile itself, Th-232 will absorb slow neutrons to produce uranium-233 (233U), which is fissile. By introducing Thorium, the numbers of highly enriched uranium fuel element can be reduced while maintaining the core neutronic performance. This paper describes the core kinetic of a small research reactor core like TRIGA fueled with a Th filled fuel element matrix using a general purpose Monte Carlo N-Particle (MCNP) code.
Simulation on reactor TRIGA Puspati core kinetics fueled with thorium (Th) based fuel element
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohammed, Abdul Aziz, E-mail: azizM@uniten.edu.my; Rahman, Shaik Mohmmed Haikhal Abdul; Pauzi, Anas Muhamad, E-mail: anas@uniten.edu.my
2016-01-22
In confronting global energy requirement and the search for better technologies, there is a real case for widening the range of potential variations in the design of nuclear power plants. Smaller and simpler reactors are attractive, provided they can meet safety and security standards and non-proliferation issues. On fuel cycle aspect, thorium fuel cycles produce much less plutonium and other radioactive transuranic elements than uranium fuel cycles. Although not fissile itself, Th-232 will absorb slow neutrons to produce uranium-233 ({sup 233}U), which is fissile. By introducing Thorium, the numbers of highly enriched uranium fuel element can be reduced while maintainingmore » the core neutronic performance. This paper describes the core kinetic of a small research reactor core like TRIGA fueled with a Th filled fuel element matrix using a general purpose Monte Carlo N-Particle (MCNP) code.« less
Processing of uranium oxide and silicon carbide based fuel using polymer infiltration and pyrolysis
NASA Astrophysics Data System (ADS)
Singh, Abhishek K.; Zunjarrao, Suraj C.; Singh, Raman P.
2008-09-01
Ceramic composite pellets consisting of uranium oxide, UO 2, contained within a silicon carbide matrix, were fabricated using a novel processing technique based on polymer infiltration and pyrolysis (PIP). In this process, particles of depleted uranium oxide, in the form of U 3O 8, were dispersed in liquid allylhydridopolycarbosilane (AHPCS), and subjected to pyrolysis up to 900 °C under a continuous flow of ultra high purity argon. The pyrolysis of AHPCS, at these temperatures, produced near-stoichiometric amorphous silicon carbide ( a-SiC). Multiple polymer infiltration and pyrolysis (PIP) cycles were performed to minimize open porosity and densify the silicon carbide matrix. Analytical characterization was conducted to investigate chemical interaction between U 3O 8 and SiC. It was observed that U 3O 8 reacted with AHPCS during the very first pyrolysis cycle, and was converted to UO 2. As a result, final composition of the material consisted of UO 2 particles contained in an a-SiC matrix. The physical and mechanical properties were also quantified. It is shown that this processing scheme promotes uniform distribution of uranium fuel source along with a high ceramic yield of the parent matrix.
Electrolyte paste for molten carbonate fuel cells
Bregoli, Lawrance J.; Pearson, Mark L.
1995-01-01
The electrolyte matrix and electrolyte reservoir plates in a molten carbonate fuel cell power plant stack are filled with electrolyte by applying a paste of dry electrolyte powder entrained in a dissipatable carrier to the reactant flow channels in the current collector plate. The stack plates are preformed and solidified to final operating condition so that they are self sustaining and can be disposed one atop the other to form the power plant stack. Packing the reactant flow channels with the electrolyte paste allows the use of thinner electrode plates, particularly on the anode side of the cells. The use of the packed electrolyte paste provides sufficient electrolyte to fill the matrix and to entrain excess electrolyte in the electrode plates, which also serve as excess electrolyte reservoirs. When the stack is heated up to operating temperatures, the electrolyte in the paste melts, the carrier vaporizes, or chemically decomposes, and the melted electrolyte is absorbed into the matrix and electrode plates.
Liu, Z Gerald; Vasys, Victoria N; Kittelson, David B
2007-09-15
The effects of fuel sulfur content and primary dilution on PM number emissions were investigated during transient operations of an old and a modern diesel engine. Emissions were also studied during steady-state operations in order to confirm consistency with previous findings. Testing methods were concurrent with those implemented by the EPA to regulate PM mass emissions, including the use of the Federal Transient Testing Procedure-Heavy Duty cycle to simulate transient conditions and the use of a Critical Flow Venturi-Constant Volume System to provide primary dilution. Steady-state results were found to be consistent with previous studies in that nuclei-mode particulate emissions were largely reduced when lower-sulfur content fuel was used in the newer engine, while the nuclei-mode PM emissions from the older engine were much less affected by fuel sulfur content. The transient results, however, show that the total number of nuclei-mode PM emissions from both engines increases with fuel sulfur content, although this effect is only seen under the higher primary dilution ratios with the older engine. Transient results further show that higher primary dilution ratios increase total nuclei-mode PM number emissions in both engines.
Early implementation of SiC cladding fuel performance models in BISON
DOE Office of Scientific and Technical Information (OSTI.GOV)
Powers, Jeffrey J.
2015-09-18
SiC-based ceramic matrix composites (CMCs) [5–8] are being developed and evaluated internationally as potential LWR cladding options. These development activities include interests within both the DOE-NE LWR Sustainability (LWRS) Program and the DOE-NE Advanced Fuels Campaign. The LWRS Program considers SiC ceramic matrix composites (CMCs) as offering potentially revolutionary gains as a cladding material, with possible benefits including more efficient normal operating conditions and higher safety margins under accident conditions [9]. Within the Advanced Fuels Campaign, SiC-based composites are a candidate ATF cladding material that could achieve several goals, such as reducing the rates of heat and hydrogen generation duemore » to lower cladding oxidation rates in HT steam [10]. This work focuses on the application of SiC cladding as an ATF cladding material in PWRs, but these work efforts also support the general development and assessment of SiC as an LWR cladding material in a much broader sense.« less
NASA Astrophysics Data System (ADS)
Worrall, Michael Jason
One of the current challenges facing space exploration is the creation of a power source capable of providing useful energy for the entire duration of a mission. Historically, radioisotope batteries have been used to provide load power, but this conventional system may not be capable of sustaining continuous power for longer duration missions. To remedy this, many forays into nuclear powered spacecraft have been investigated, but no robust system for long-term power generation has been found. In this study, a novel spin on the traditional fission power system that represents a potential optimum solution is presented. By utilizing mature High Temperature Gas Reactor (HTGR) technology in conjunction with the capabilities of the thorium fuel cycle, we have created a light-weight, long-term power source capable of a continuous electric power output of up to 70kW for over 15 years. This system relies upon a combination of fissile, highly-enriched uranium dioxide and fertile thorium carbide Tri-Structural Isotropic (TRISO) fuel particles embedded in a hexagonal beryllium oxide matrix. As the primary fissile material is consumed, the fertile material breeds new fissile material leading to more steady fuel loading over the lifetime of the core. Reactor control is achieved through an innovative approach to the conventional boron carbide neutron absorber by utilizing sections of borated aluminum placed in rotating control drums within the reflector. Borated aluminum allows for much smaller boron concentrations, thus eliminating the potential for 10B(n,alpha)6Li heating issues that are common in boron carbide systems. A wide range of other reactivity control systems are also investigated, such as a radially-split rotating reflector. Lastly, an extension of the design to a terrestrial based system is investigated. In this system, uranium enrichment is dropped to 20 percent in order to meet current regulations, a solid uranium-zirconium hydride fissile driver replaces the uranium dioxide TRISO particles, and the moderating material is changed from beryllium oxide to graphite. These changes result in an increased core size, but the same long-term power generation potential is achieved. Additionally, small amounts of erbium are added to the hydride matrix to further extend core lifetime.
Partial oxidation power plant with reheating and method thereof
Newby, Richard A.; Yang, Wen-Ching; Bannister, Ronald L.
1999-01-01
A system and method for generating power having an air compression/partial oxidation system, a turbine, and a primary combustion system. The air compression/partial oxidation system receives a first air stream and a fuel stream and produces a first partially oxidized fuel stream and a first compressed air stream therefrom. The turbine expands the first partially oxidized fuel stream while being cooled by the first compressed air stream to produce a heated air stream. The heated air stream is injected into the expanding first partially oxidized fuel stream, thereby reheating it in the turbine. A second partially oxidized fuel stream is emitted from the turbine. The primary combustion system receives said second partially oxidized fuel stream and a second air stream, combusts said second partially oxidized fuel stream, and produces rotating shaft power and an emission stream therefrom.
On-line detection of key radionuclides for fuel-rod failure in a pressurized water reactor.
Qin, Guoxiu; Chen, Xilin; Guo, Xiaoqing; Ni, Ning
2016-08-01
For early on-line detection of fuel rod failure, the key radionuclides useful in monitoring must leak easily from failing rods. Yield, half-life, and mass share of fission products that enter the primary coolant also need to be considered in on-line analyses. From all the nuclides that enter the primary coolant during fuel-rod failure, (135)Xe and (88)Kr were ultimately chosen as crucial for on-line monitoring of fuel-rod failure. A monitoring system for fuel-rod failure detection for pressurized water reactor (PWR) based on the LaBr3(Ce) detector was assembled and tested. The samples of coolant from the PWR were measured using the system as well as a HPGe γ-ray spectrometer. A comparison showed the method was feasible. Finally, the γ-ray spectra of primary coolant were measured under normal operations and during fuel-rod failure. The two peaks of (135)Xe (249.8keV) and (88)Kr (2392.1keV) were visible, confirming that the method is capable of monitoring fuel-rod failure on-line. Copyright © 2016 Elsevier Ltd. All rights reserved.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Fuel pumps. 183.524 Section 183... SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Equipment Standards § 183.524 Fuel pumps. (a) Each diaphragm pump must not leak fuel from the pump if the primary diaphragm fails. (b) Each electrically...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Fuel pumps. 183.524 Section 183... SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Equipment Standards § 183.524 Fuel pumps. (a) Each diaphragm pump must not leak fuel from the pump if the primary diaphragm fails. (b) Each electrically...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Fuel pumps. 183.524 Section 183... SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Equipment Standards § 183.524 Fuel pumps. (a) Each diaphragm pump must not leak fuel from the pump if the primary diaphragm fails. (b) Each electrically...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Fuel pumps. 183.524 Section 183... SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Equipment Standards § 183.524 Fuel pumps. (a) Each diaphragm pump must not leak fuel from the pump if the primary diaphragm fails. (b) Each electrically...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Fuel pumps. 183.524 Section 183... SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Equipment Standards § 183.524 Fuel pumps. (a) Each diaphragm pump must not leak fuel from the pump if the primary diaphragm fails. (b) Each electrically...
Copolymers For Capillary Gel Electrophoresis
Liu, Changsheng; Li, Qingbo
2005-08-09
This invention relates to an electrophoresis separation medium having a gel matrix of at least one random, linear copolymer comprising a primary comonomer and at least one secondary comonomer, wherein the comonomers are randomly distributed along the copolymer chain. The primary comonomer is an acrylamide or an acrylamide derivative that provides the primary physical, chemical, and sieving properties of the gel matrix. The at least one secondary comonomer imparts an inherent physical, chemical, or sieving property to the copolymer chain. The primary and secondary comonomers are present in a ratio sufficient to induce desired properties that optimize electrophoresis performance. The invention also relates to a method of separating a mixture of biological molecules using this gel matrix, a method of preparing the novel electrophoresis separation medium, and a capillary tube filled with the electrophoresis separation medium.
NASA's high-temperature engine materials program for civil aeronautics
NASA Technical Reports Server (NTRS)
Gray, Hugh R.; Ginty, Carol A.
1992-01-01
The Advanced High-Temperature Engine Materials Technology Program is described in terms of its research initiatives and its goal of developing propulsion systems for civil aeronautics with low levels of noise, pollution, and fuel consumption. The program emphasizes the analysis and implementation of structural materials such as polymer-matrix composites in fans, casings, and engine-control systems. Also investigated in the program are intermetallic- and metal-matrix composites for uses in compressors and turbine disks as well as ceramic-matrix composites for extremely high-temperature applications such as turbine vanes.
A Hybrid Approach to Tactical Vehicles
2011-09-01
membrane fuel cell ( PEMFC ), molten carbonate fuel cell (MCFC), solid oxide fuel cell (SOFC), phosphoric acid fuel cell (PAFC), alkaline fuel cell (AFC...and the direct methanol fuel cell (DMFC) (Ehsani, Gao, & Emadi, 2010). Of the six major types of fuel cells; the PEMFC , SOFC, and AFC are... PEMFC (21st Century Truck Program, 2000). There are a number of advantages of using a fuel cell as the primary power source for a vehicle. All fuel
Sivy, J.L.; Rodgers, L.W.; Koslosy, J.V.; LaRue, A.D.; Kaufman, K.C.; Sarv, H.
1998-11-03
A burner is described having lower emissions and lower unburned fuel losses by implementing a transition zone in a low NO{sub x} burner. The improved burner includes a pulverized fuel transport nozzle surrounded by the transition zone which shields the central oxygen-lean fuel devolatilization zone from the swirling secondary combustion air. The transition zone acts as a buffer between the primary and the secondary air streams to improve the control of near-burner mixing and flame stability by providing limited recirculation regions between primary and secondary air streams. These limited recirculation regions transport evolved NO{sub x} back towards the oxygen-lean fuel pyrolysis zone for reduction to molecular nitrogen. Alternate embodiments include natural gas and fuel oil firing. 8 figs.
Sivy, Jennifer L.; Rodgers, Larry W.; Koslosy, John V.; LaRue, Albert D.; Kaufman, Keith C.; Sarv, Hamid
1998-01-01
A burner having lower emissions and lower unburned fuel losses by implementing a transition zone in a low NO.sub.x burner. The improved burner includes a pulverized fuel transport nozzle surrounded by the transition zone which shields the central oxygen-lean fuel devolatilization zone from the swirling secondary combustion air. The transition zone acts as a buffer between the primary and the secondary air streams to improve the control of near-burner mixing and flame stability by providing limited recirculation regions between primary and secondary air streams. These limited recirculation regions transport evolved NO.sub.x back towards the oxygen-lean fuel pyrolysis zone for reduction to molecular nitrogen. Alternate embodiments include natural gas and fuel oil firing.
Utilization of TRISO Fuel with LWR Spent Fuel in Fusion-Fission Hybrid Reactor System
NASA Astrophysics Data System (ADS)
Acır, Adem; Altunok, Taner
2010-10-01
HTRs use a high performance particulate TRISO fuel with ceramic multi-layer coatings due to the high burn up capability and very neutronic performance. TRISO fuel because of capable of high burn up and very neutronic performance is conducted in a D-T fusion driven hybrid reactor. In this study, TRISO fuels particles are imbedded body-centered cubic (BCC) in a graphite matrix with a volume fraction of 68%. The neutronic effect of TRISO coated LWR spent fuel in the fuel rod used hybrid reactor on the fuel performance has been investigated for Flibe, Flinabe and Li20Sn80 coolants. The reactor operation time with the different first neutron wall loads is 24 months. Neutron transport calculations are evaluated by using XSDRNPM/SCALE 5 codes with 238 group cross section library. The effect of TRISO coated LWR spent fuel in the fuel rod used hybrid reactor on tritium breeding (TBR), energy multiplication (M), fissile fuel breeding, average burn up values are comparatively investigated. It is shown that the high burn up can be achieved with TRISO fuel in the hybrid reactor.
Institutional and matrix support and its relationship with primary healthcare
dos Santos, Alaneir de Fátima; Machado, Antônio Thomaz Gonzaga da Matta; dos Reis, Clarice Magalhães Rodrigues; Abreu, Daisy Maria Xavier; de Araújo, Lucas Henrique Lobato; Rodrigues, Simone Cristina; de Lima, Ângela Maria de Lourdes Dayrell; Jorge, Alzira de Oliveira; Fonseca, Délcio
2015-01-01
OBJECTIVE To analyze whether the level of institutional and matrix support is associated with better certification of primary healthcare teams. METHODS In this cross-sectional study, we evaluated two kinds of primary healthcare support – 14,489 teams received institutional support and 14,306 teams received matrix support. Logistic regression models were applied. In the institutional support model, the independent variable was “level of support” (as calculated by the sum of supporting activities for both modalities). In the matrix support model, in turn, the independent variables were the supporting activities. The multivariate analysis has considered variables with p < 0.20. The model was adjusted by the Hosmer-Lemeshow test. RESULTS The teams had institutional and matrix supporting activities (84.0% and 85.0%), respectively, with 55.0% of them performing between six and eight activities. For the institutional support, we have observed 1.96 and 3.77 chances for teams who had medium and high levels of support to have very good or good certification, respectively. For the matrix support, the chances of their having very good or good certification were 1.79 and 3.29, respectively. Regarding to the association between institutional support activities and the certification, the very good or good certification was positively associated with self-assessment (OR = 1.95), permanent education (OR = 1.43), shared evaluation (OR = 1.40), and supervision and evaluation of indicators (OR = 1.37). In regards to the matrix support, the very good or good certification was positively associated with permanent education (OR = 1.50), interventions in the territory (OR = 1.30), and discussion in the work processes (OR = 1.23). CONCLUSIONS In Brazil, supporting activities are being incorporated in primary healthcare, and there is an association between the level of support, both matrix and institutional, and the certification result. PMID:26274872
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jolly, Brian C.; Helmreich, Grant; Cooley, Kevin M.
In support of fully ceramic microencapsulated (FCM) fuel development, coating development work is ongoing at Oak Ridge National Laboratory (ORNL) to produce tri-structural isotropic (TRISO) coated fuel particles with both UN kernels and surrogate (uranium-free) kernels. The nitride kernels are used to increase fissile density in these SiC-matrix fuel pellets with details described elsewhere. The surrogate TRISO particles are necessary for separate effects testing and for utilization in the consolidation process development. This report focuses on the fabrication and characterization of surrogate TRISO particles which use 800μm in diameter ZrO 2 microspheres as the kernel.
Campbell, Keri R.; Judge, Elizabeth J.; Barefield, James E.; ...
2017-04-22
We show the analysis of light water reactor simulated used nuclear fuel using laser-induced breakdown spectroscopy (LIBS) is explored using a simplified version of the main oxide phase. The main oxide phase consists of the actinides, lanthanides, and zirconium. The purpose of this study is to develop a rapid, quantitative technique for measuring zirconium in a uranium dioxide matrix without the need to dissolve the material. A second set of materials including cerium oxide is also analyzed to determine precision and limit of detection (LOD) using LIBS in a complex matrix. Two types of samples are used in this study:more » binary and ternary oxide pellets. The ternary oxide, (U,Zr,Ce)O 2 pellets used in this study are a simplified version the main oxide phase of used nuclear fuel. The binary oxides, (U,Ce)O 2 and (U,Zr)O 2 are also examined to determine spectral emission lines for Ce and Zr, potential spectral interferences with uranium and baseline LOD values for Ce and Zr in a UO 2 matrix. In the spectral range of 200 to 800 nm, 33 cerium lines and 25 zirconium lines were identified and shown to have linear correlation values (R 2) > 0.97 for both the binary and ternary oxides. The cerium LOD in the (U,Ce)O 2 matrix ranged from 0.34 to 1.08 wt% and 0.94 to 1.22 wt% in (U,Ce,Zr)O 2 for 33 of Ce emission lines. The zirconium limit of detection in the (U,Zr)O 2 matrix ranged from 0.84 to 1.15 wt% and 0.99 to 1.10 wt% in (U,Ce,Zr)O 2 for 25 Zr lines. Finally, the effect of multiple elements in the plasma and the impact on the LOD is discussed.« less
Correlative characterization of primary Al{sub 3}(Sc,Zr) phase in an Al–Zn–Mg based alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, J.H., E-mail: jie-hua.li@hotmail.com; Wiessner, M.; Albu, M.
2015-04-15
Three-dimensional electron backscatter diffraction, focused ion beam, transmission electron microscopy and energy filtered transmission electron microscopy were employed to investigate the structural information of primary Al{sub 3}(Sc,Zr) phase, i.e. size, shape, element distribution and orientation relationship with the α-Al matrix. It was found that (i) most primary Al{sub 3}(Sc,Zr) phases have a cubic three-dimensional morphology, with a size of about 6–10 μm, (ii) most primary Al{sub 3}(Sc,Zr) phases are located within the α-Al matrix, and exhibit a cube to cube orientation relationship with the α-Al matrix, and (iii) a layer by layer growth was observed within primary Al{sub 3}(Sc,Zr) phases.more » Al, Cu, Si and Fe are enriched in the α-Al matrix between the layers of cellular eutectic Al{sub 3}(Sc,Zr) phase, while Sc, Ti and Zr are enriched in small Al{sub 3}(Sc,Zr) phases. A peritectic reaction and subsequent eutectic reaction between Al{sub 3}Sc and Al was proposed to interpret the observed layer by layer growth. This paper demonstrates that the presence of impurities (Fe, Si, Cu, Ti) in the diffusion field surrounding the growing Al{sub 3}(Sc,Zr) particle enhances the heterogeneous nucleation of Al{sub 3}(Sc,Zr) phases. - Highlights: • Most fine cubic primary Al{sub 3}(Sc,Zr) phases were observed within the α-Al matrix. • A layer by layer growth within primary Al{sub 3}(Sc,Zr) phase was observed. • A peritectic and subsequent eutectic reaction between Al{sub 3}Sc and Al was proposed. • Impurities in diffusion fields enhance heterogeneous nucleation of Al{sub 3}(Sc,Zr)« less
Chen, Wan-Chun; Lin, Hsi-Hui; Tang, Ming-Jer
2014-09-15
To explore whether matrix stiffness affects cell differentiation, proliferation, and transforming growth factor (TGF)-β1-induced epithelial-mesenchymal transition (EMT) in primary cultures of mouse proximal tubular epithelial cells (mPTECs), we used a soft matrix made from monomeric collagen type I-coated polyacrylamide gel or matrigel (MG). Both kinds of soft matrix benefited primary mPTECs to retain tubular-like morphology with differentiation and growth arrest and to evade TGF-β1-induced EMT. However, the potent effect of MG on mPTEC differentiation was suppressed by glutaraldehyde-induced cross-linking and subsequently stiffening MG or by an increasing ratio of collagen in the soft mixed gel. Culture media supplemented with MG also helped mPTECs to retain tubular-like morphology and a differentiated phenotype on stiff culture dishes as soft MG did. We further found that the protein level and activity of ERK were scaled with the matrix stiffness. U-0126, a MEK inhibitor, abolished the stiff matrix-induced dedifferentiation and proliferation. These data suggest that the ERK signaling pathway plays a vital role in matrix stiffness-regulated cell growth and differentiation. Taken together, both compliant property and specific MG signals from the matrix are required for the regulation of epithelial differentiation and proliferation. This study provides a basic understanding of how physical and chemical cues derived from the extracellular matrix regulate the physiological function of proximal tubules and the pathological development of renal fibrosis. Copyright © 2014 the American Physiological Society.
Chemical Mechanisms of Toxic Solute Interactions with Soil Constituents
1993-04-01
been widely reported (References 125-127). However, in days such as montmorillonite and kaolinite , whose cations have been (partially) exchanged with...matrix-isolation methods were used to characterize the sorption of water and fuel compounds on a model soil consisting of montmorillonite clay. The...only under very dry conditions. 14. SUBJECT TERMS Montmorillonite clay, fuels, infrared 15 NUMBER Of PAGES spectroscopy, ultraviolet-visible
1982-05-01
these composites are bound with polymeric resins which burn even though the matrix such as Fiberglas or boron graphite will not. The third souce of...fuels, programs are underway to determine compatibility of the antimist additive with changes in base fuel compositions , such as increased aromatics...storage or an onboard oxygen/nitrogen separation unit. T se units are essentially based on semi-permeable hollow fibres and membranes together ith
NASA Technical Reports Server (NTRS)
1989-01-01
The design and verification requirements are defined which are appropriate to hardware at the detail, subassembly, component, and engine levels and to correlate these requirements to the development demonstrations which provides verification that design objectives are achieved. The high pressure fuel turbopump requirements verification matrix provides correlation between design requirements and the tests required to verify that the requirement have been met.
Hayes, John R; Grosvenor, Andrew P; Saoudi, Mouna
2016-02-01
Inert matrix fuels (IMF) consist of transuranic elements (i.e., Pu, Am, Np, Cm) embedded in a neutron transparent (inert) matrix and can be used to "burn up" (transmute) these elements in current or Generation IV nuclear reactors. Yttria-stabilized zirconia has been extensively studied for IMF applications, but the low thermal conductivity of this material limits its usefulness. Other elements can be used to stabilize the cubic zirconia structure, and the thermal conductivity of the fuel can be increased through the use of a lighter stabilizing element. To this end, a series of Nd(x)Sc(y)Zr(1-x-y)O(2-δ) materials has been synthesized via a co-precipitation reaction and characterized by multiple techniques (Nd was used as a surrogate for Am). The long-range and local structures of these materials were studied using powder X-ray diffraction, scanning electron microscopy, and X-ray absorption spectroscopy. Additionally, the stability of these materials over a range of temperatures has been studied by annealing the materials at 1100 and 1400 °C. It was shown that the Nd(x)Sc(y)Zr(1-x-y)O(2-δ) materials maintained a single cubic phase upon annealing at high temperatures only when both Nd and Sc were present with y ≥ 0.10 and x + y > 0.15.
Partial oxidation power plant with reheating and method thereof
Newby, R.A.; Yang, W.C.; Bannister, R.L.
1999-08-10
A system and method are disclosed for generating power having an air compression/partial oxidation system, a turbine, and a primary combustion system. The air compression/partial oxidation system receives a first air stream and a fuel stream and produces a first partially oxidized fuel stream and a first compressed air stream therefrom. The turbine expands the first partially oxidized fuel stream while being cooled by the first compressed air stream to produce a heated air stream. The heated air stream is injected into the expanding first partially oxidized fuel stream, thereby reheating it in the turbine. A second partially oxidized fuel stream is emitted from the turbine. The primary combustion system receives said second partially oxidized fuel stream and a second air stream, combusts said second partially oxidized fuel stream, and produces rotating shaft power and an emission stream therefrom. 2 figs.
Robustness of Thirty Meter Telescope primary mirror control
NASA Astrophysics Data System (ADS)
Macmynowski, Douglas G.; Thompson, Peter M.; Shelton, Chris; Roberts, Lewis C., Jr.
2010-07-01
The primary mirror control system for the Thirty Meter Telescope (TMT) maintains the alignment of the 492 segments in the presence of both quasi-static (gravity and thermal) and dynamic disturbances due to unsteady wind loads. The latter results in a desired control bandwidth of 1Hz at high spatial frequencies. The achievable bandwidth is limited by robustness to (i) uncertain telescope structural dynamics (control-structure interaction) and (ii) small perturbations in the ill-conditioned influence matrix that relates segment edge sensor response to actuator commands. Both of these effects are considered herein using models of TMT. The former is explored through multivariable sensitivity analysis on a reduced-order Zernike-basis representation of the structural dynamics. The interaction matrix ("A-matrix") uncertainty has been analyzed theoretically elsewhere, and is examined here for realistic amplitude perturbations due to segment and sensor installation errors, and gravity and thermal induced segment motion. The primary influence of A-matrix uncertainty is on the control of "focusmode"; this is the least observable mode, measurable only through the edge-sensor (gap-dependent) sensitivity to the dihedral angle between segments. Accurately estimating focus-mode will require updating the A-matrix as a function of the measured gap. A-matrix uncertainty also results in a higher gain-margin requirement for focus-mode, and hence the A-matrix and CSI robustness need to be understood simultaneously. Based on the robustness analysis, the desired 1 Hz bandwidth is achievable in the presence of uncertainty for all except the lowest spatial-frequency response patterns of the primary mirror.
Montana fuel tax refunds : draft final report.
DOT National Transportation Integrated Search
2011-11-01
"The primary source of funding for transportation infrastructure is the taxes that are imposed on motor fuels. One aspect of fuel tax collections is the process that requires consumers to apply for refunds of taxes paid on fuels used for tax-exempt p...
Wake-Induced Aerodynamics on a Trailing Aircraft
NASA Technical Reports Server (NTRS)
Mendenhall, Michael R.; Lesieutre, Daniel J.; Kelly, Michael J.
2016-01-01
NASA conducted flight tests to measure the exhaust products from alternative fuels using a DC-8 transport aircraft and a Falcon business jet. An independent analysis of the maximum vortex-induced loads on the Falcon in the DC-8 wake was conducted for pre-flight safety analysis and to define safe trail distances for the flight tests. Static and dynamic vortex-induced aerodynamic loads on the Falcon were predicted at a matrix of locations aft of the DC-8 under flight-test conditions, and the maximum loads were compared with design limit loads to assess aircraft safety. Trajectory simulations for the Falcon during close encounters with the DC-8 wake were made to study the vortex-induced loads during traverses of the DC-8 primary trailing vortex. A parametric study of flight traverses through the trailing vortex was conducted to assess Falcon flight behavior and motion characteristics.
Experimental Characterization of Gas Turbine Emissions at Simulated Flight Altitude Conditions
NASA Technical Reports Server (NTRS)
Howard, R. P.; Wormhoudt, J. C.; Whitefield, P. D.
1996-01-01
NASA's Atmospheric Effects of Aviation Project (AEAP) is developing a scientific basis for assessment of the atmospheric impact of subsonic and supersonic aviation. A primary goal is to assist assessments of United Nations scientific organizations and hence, consideration of emissions standards by the International Civil Aviation Organization (ICAO). Engine tests have been conducted at AEDC to fulfill the need of AEAP. The purpose of these tests is to obtain a comprehensive database to be used for supplying critical information to the atmospheric research community. It includes: (1) simulated sea-level-static test data as well as simulated altitude data; and (2) intrusive (extractive probe) data as well as non-intrusive (optical techniques) data. A commercial-type bypass engine with aviation fuel was used in this test series. The test matrix was set by parametrically selecting the temperature, pressure, and flow rate at sea-level-static and different altitudes to obtain a parametric set of data.
Second level semi-degenerate fields in W_3 Toda theory: matrix element and differential equation
NASA Astrophysics Data System (ADS)
Belavin, Vladimir; Cao, Xiangyu; Estienne, Benoit; Santachiara, Raoul
2017-03-01
In a recent study we considered W_3 Toda 4-point functions that involve matrix elements of a primary field with the highest-weight in the adjoint representation of sl_3 . We generalize this result by considering a semi-degenerate primary field, which has one null vector at level two. We obtain a sixth-order Fuchsian differential equation for the conformal blocks. We discuss the presence of multiplicities, the matrix elements and the fusion rules.
10 CFR 503.24 - Future use of synthetic fuels.
Code of Federal Regulations, 2012 CFR
2012-01-01
... use of a synthetic fuel derived from coal or another alternate fuel as a primary energy source in the... 10 Energy 4 2012-01-01 2012-01-01 false Future use of synthetic fuels. 503.24 Section 503.24 Energy DEPARTMENT OF ENERGY (CONTINUED) ALTERNATE FUELS NEW FACILITIES Temporary Exemptions for New...
10 CFR 503.24 - Future use of synthetic fuels.
Code of Federal Regulations, 2013 CFR
2013-01-01
... use of a synthetic fuel derived from coal or another alternate fuel as a primary energy source in the... 10 Energy 4 2013-01-01 2013-01-01 false Future use of synthetic fuels. 503.24 Section 503.24 Energy DEPARTMENT OF ENERGY (CONTINUED) ALTERNATE FUELS NEW FACILITIES Temporary Exemptions for New...
10 CFR 503.24 - Future use of synthetic fuels.
Code of Federal Regulations, 2011 CFR
2011-01-01
... use of a synthetic fuel derived from coal or another alternate fuel as a primary energy source in the... 10 Energy 4 2011-01-01 2011-01-01 false Future use of synthetic fuels. 503.24 Section 503.24 Energy DEPARTMENT OF ENERGY (CONTINUED) ALTERNATE FUELS NEW FACILITIES Temporary Exemptions for New...
10 CFR 503.24 - Future use of synthetic fuels.
Code of Federal Regulations, 2014 CFR
2014-01-01
... use of a synthetic fuel derived from coal or another alternate fuel as a primary energy source in the... 10 Energy 4 2014-01-01 2014-01-01 false Future use of synthetic fuels. 503.24 Section 503.24 Energy DEPARTMENT OF ENERGY (CONTINUED) ALTERNATE FUELS NEW FACILITIES Temporary Exemptions for New...
Alternative Fuels Data Center: Alternative Fuels and Advanced Vehicles
-sector vehicle fleets are the primary users for most of these fuels and vehicles, but individual conventional fuels and vehicles helps the United States conserve fuel and lower vehicle emissions. Biodiesel , animal fats, or recycled cooking grease for use in diesel vehicles. Icon of a vehicle Diesel Vehicles
10 CFR 503.24 - Future use of synthetic fuels.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false Future use of synthetic fuels. 503.24 Section 503.24 Energy DEPARTMENT OF ENERGY (CONTINUED) ALTERNATE FUELS NEW FACILITIES Temporary Exemptions for New... use of a synthetic fuel derived from coal or another alternate fuel as a primary energy source in the...
Hydrogen suppresses UO 2 corrosion
NASA Astrophysics Data System (ADS)
Carbol, Paul; Fors, Patrik; Gouder, Thomas; Spahiu, Kastriot
2009-08-01
Release of long-lived radionuclides such as plutonium and caesium from spent nuclear fuel in deep geological repositories will depend mainly on the dissolution rate of the UO 2 fuel matrix. This dissolution rate will, in turn, depend on the redox conditions at the fuel surface. Under oxidative conditions UO 2 will be oxidised to the 1000 times more soluble UO 2.67. This may occur in a repository as the reducing deep groundwater becomes locally oxidative at the fuel surface under the effect of α-radiolysis, the process by which α-particles emitted from the fuel split water molecules. On the other hand, the groundwater corrodes canister iron generating large amounts of hydrogen. The role of molecular hydrogen as reductant in a deep bedrock repository is questioned. Here we show evidence of a surface-catalysed reaction, taking place in the H 2-UO 2-H 2O system where molecular hydrogen is able to reduce oxidants originating from α-radiolysis. In our experiment the UO 2 surface remained stoichiometric proving that the expected oxidation of UO 2.00 to UO 2.67 due to radiolytic oxidants was absent. As a consequence, the dissolution of UO 2 stopped when equilibrium was reached between the solid phase and U 4+ species in the aqueous phase. The steady-state concentration of uranium in solution was determined to be 9 × 10 -12 M, about 30 times lower than previously reported for reducing conditions. Our findings show that fuel dissolution is suppressed by H 2. Consequently, radiotoxic nuclides in spent nuclear fuel will remain immobilised in the UO 2 matrix. A mechanism for the surface-catalysed reaction between molecular hydrogen and radiolytic oxidants is proposed.
National Vehicle and Fuel Emissions Laboratory (NVFEL)
NVFEL is the primary EPA research laboratory used for fuel and emissions testing. The laboratory supports emission standards for motor vehicles, engines, and fuels, as well as the development of automotive technology.
Low NOx Heavy Fuel Combustor Concept Program
NASA Technical Reports Server (NTRS)
Novick, A. S.; Troth, D. L.
1981-01-01
The development of the technology required to operate an industrial gas turbine combustion system on minimally processed, heavy petroleum or residual fuels having high levels of fuel-bound nitrogen (FBN) while producing acceptable levels of exhaust emissions is discussed. Three combustor concepts were designed and fabricated. Three fuels were supplied for the combustor test demonstrations: a typical middle distillate fuel, a heavy residual fuel, and a synthetic coal-derived fuel. The primary concept was an air staged, variable-geometry combustor designed to produce low emissions from fuels having high levels of FBN. This combustor used a long residence time, fuel-rich primary combustion zone followed by a quick-quench air mixer to rapidly dilute the fuel rich products for the fuel-lean final burnout of the fuel. This combustor, called the rich quench lean (RQL) combustor, was extensively tested using each fuel over the entire power range of the model 570 K engine. Also, a series of parameteric tests was conducted to determine the combustor's sensitivity to rich-zone equivalence ratio, lean-zone equivalence ratio, rich-zone residence time, and overall system pressure drop. Minimum nitrogen oxide emissions were measured at 50 to 55 ppmv at maximum continuous power for all three fuels. Smoke was less than a 10 SAE smoke number.
Electrolyte matrix in a molten carbonate fuel cell stack
Reiser, C.A.; Maricle, D.L.
1987-04-21
A fuel cell stack is disclosed with modified electrolyte matrices for limiting the electrolytic pumping and electrolyte migration along the stack external surfaces. Each of the matrices includes marginal portions at the stack face of substantially greater pore size than that of the central body of the matrix. Consequently, these marginal portions have insufficient electrolyte fill to support pumping or wicking of electrolyte from the center of the stack of the face surfaces in contact with the vertical seals. Various configurations of the marginal portions include a complete perimeter, opposite edge portions corresponding to the air plenums and tab size portions corresponding to the manifold seal locations. These margins will substantially limit the migration of electrolyte to and along the porous manifold seals during operation of the electrochemical cell stack. 6 figs.
Electrolyte matrix in a molten carbonate fuel cell stack
Reiser, Carl A.; Maricle, Donald L.
1987-04-21
A fuel cell stack is disclosed with modified electrolyte matrices for limiting the electrolytic pumping and electrolyte migration along the stack external surfaces. Each of the matrices includes marginal portions at the stack face of substantially greater pore size than that of the central body of the matrix. Consequently, these marginal portions have insufficient electrolyte fill to support pumping or wicking of electrolyte from the center of the stack of the face surfaces in contact with the vertical seals. Various configurations of the marginal portions include a complete perimeter, opposite edge portions corresponding to the air plenums and tab size portions corresponding to the manifold seal locations. These margins will substantially limit the migration of electrolyte to and along the porous manifold seals during operation of the electrochemical cell stack.
10 CFR 504.9 - Environmental requirements for certifying powerplants.
Code of Federal Regulations, 2011 CFR
2011-01-01
....9 Section 504.9 Energy DEPARTMENT OF ENERGY (CONTINUED) ALTERNATE FUELS EXISTING POWERPLANTS § 504.9... use of natural gas or petroleum, or both, as a primary energy source in any certifying powerplant... fuel as a primary energy source in a certifying powerplant. (a) NEPA compliance. Except as provided in...
10 CFR 504.9 - Environmental requirements for certifying powerplants.
Code of Federal Regulations, 2013 CFR
2013-01-01
....9 Section 504.9 Energy DEPARTMENT OF ENERGY (CONTINUED) ALTERNATE FUELS EXISTING POWERPLANTS § 504.9... use of natural gas or petroleum, or both, as a primary energy source in any certifying powerplant... fuel as a primary energy source in a certifying powerplant. (a) NEPA compliance. Except as provided in...
10 CFR 504.9 - Environmental requirements for certifying powerplants.
Code of Federal Regulations, 2014 CFR
2014-01-01
....9 Section 504.9 Energy DEPARTMENT OF ENERGY (CONTINUED) ALTERNATE FUELS EXISTING POWERPLANTS § 504.9... use of natural gas or petroleum, or both, as a primary energy source in any certifying powerplant... fuel as a primary energy source in a certifying powerplant. (a) NEPA compliance. Except as provided in...
10 CFR 504.9 - Environmental requirements for certifying powerplants.
Code of Federal Regulations, 2012 CFR
2012-01-01
....9 Section 504.9 Energy DEPARTMENT OF ENERGY (CONTINUED) ALTERNATE FUELS EXISTING POWERPLANTS § 504.9... use of natural gas or petroleum, or both, as a primary energy source in any certifying powerplant... fuel as a primary energy source in a certifying powerplant. (a) NEPA compliance. Except as provided in...
LCRE and SNAP 50-DR-1 programs. Engineering and progress report, April 1, 1963--June 30, 1963
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
BS>Declassified 6 Sep 1973. Information is presented concerning the LCRE kinetics, auxiliary systems, fuel, primary cooling system components, instrumentation, secondary cooling system, materials development, and fabrication; and SNAP-50/SPUR kinetics, fuel, primary system pump, steam generator, and materials development. (DCC)
Code of Federal Regulations, 2014 CFR
2014-07-01
... used to heat waste gas to combustion temperatures. Any energy recovery section is not physically formed..., photoionization, or thermal conductivity. Primary fuel means the fuel that provides the principal heat input (i.e... flame, the primary purpose of which is to transfer heat to a process fluid or process material that is...
Code of Federal Regulations, 2013 CFR
2013-07-01
... used to heat waste gas to combustion temperatures. Any energy recovery section is not physically formed..., photoionization, or thermal conductivity. Primary fuel means the fuel that provides the principal heat input (i.e... flame, the primary purpose of which is to transfer heat to a process fluid or process material that is...
ERIC Educational Resources Information Center
Drummond, Robert J.; And Others
The Children's Interaction Matrix, Intermediate and Primary Forms, are designed to identify the preferred work and content styles of children in group situations. These factors aid the researcher, teacher, and counselor in understanding the individual's preferred mode of behavior in groups as well as indicating the students' reaction to group…
Lemieux, Hélène; Blier, Pierre U; Gnaiger, Erich
2017-06-06
Fuel substrate supply and oxidative phosphorylation are key determinants of muscle performance. Numerous studies of mammalian mitochondria are carried out (i) with substrate supply that limits electron flow, and (ii) far below physiological temperature. To analyze potentially implicated biases, we studied mitochondrial respiratory control in permeabilized mouse myocardial fibers using high-resolution respirometry. The capacity of oxidative phosphorylation at 37 °C was nearly two-fold higher when fueled by physiological substrate combinations reconstituting tricarboxylic acid cycle function, compared with electron flow measured separately through NADH to Complex I or succinate to Complex II. The relative contribution of the NADH pathway to physiological respiratory capacity increased with a decrease in temperature from 37 to 25 °C. The apparent excess capacity of cytochrome c oxidase above physiological pathway capacity increased sharply under hypothermia due to limitation by NADH-linked dehydrogenases. This mechanism of mitochondrial respiratory control in the hypothermic mammalian heart is comparable to the pattern in ectotherm species, pointing towards NADH-linked mt-matrix dehydrogenases and the phosphorylation system rather than electron transfer complexes as the primary drivers of thermal sensitivity at low temperature. Delineating the link between stress and remodeling of oxidative phosphorylation is important for understanding metabolic perturbations in disease evolution and cardiac protection.
Brown, Kristen E; Hottle, Troy Alan; Bandyopadhyay, Rubenka; Babaee, Samaneh; Dodder, Rebecca Susanne; Kaplan, Pervin Ozge; Lenox, Carol; Loughlin, Dan
2018-06-21
The energy system is the primary source of air pollution. Thus, evolution of the energy system into the future will affect society's ability to maintain air quality. Anticipating this evolution is difficult because of inherent uncertainty in predicting future energy demand, fuel use, and technology adoption. We apply Scenario Planning to address this uncertainty, developing four very different visions of the future. Stakeholder engagement suggested technological progress and social attitudes toward the environment are critical and uncertain factors for determining future emissions. Combining transformative and static assumptions about these factors yields a matrix of four scenarios that encompass a wide range of outcomes. We implement these scenarios in the U.S. EPA MARKAL model. Results suggest that both shifting attitudes and technology transformation may lead to emission reductions relative to present, even without additional policies. Emission caps, such as the Cross State Air Pollution Rule, are most effective at protecting against future emission increases. An important outcome of this work is the scenario implementation approach, which uses technology-specific discount rates to encourage scenario-specific technology and fuel choices. End-use energy demands are modified to approximate societal changes. This implementation allows the model to respond to perturbations in manners consistent with each scenario.
Alkaline regenerative fuel cell energy storage system for manned orbital satellites
NASA Technical Reports Server (NTRS)
Martin, R. E.; Gitlow, B.; Sheibley, D. W.
1982-01-01
It is pointed out that the alkaline regenerative fuel cell system represents a highly efficient, lightweight, reliable approach for providing energy storage in an orbiting satellite. In addition to its energy storage function, the system can supply hydrogen and oxygen for attitude control of the satellite and for life support. A summary is presented of the results to date obtained in connection with the NASA-sponsored fuel cell technology advancement program, giving particular attention to the requirements of the alkaline regenerative fuel cell and the low-earth mission. Attention is given to system design guidelines, weight considerations, gold-platinum cathode cell performance, matrix development, the electrolyte reservoir plate, and the cyclical load profile tests.
An experimental study on Sodalite and SAP matrices for immobilization of spent chloride salt waste
NASA Astrophysics Data System (ADS)
Giacobbo, Francesca; Da Ros, Mirko; Macerata, Elena; Mariani, Mario; Giola, Marco; De Angelis, Giorgio; Capone, Mauro; Fedeli, Carlo
2018-02-01
In the frame of Generation IV reactors a renewed interest in pyro-processing of spent nuclear fuel is underway. Molten chloride salt waste arising from the recovering of uranium and plutonium through pyro-processing is one of the problematic wastes for direct application of vitrification or ceramization. In this work, Sodalite and SAP have been evaluated and compared as potential matrices for confinement of spent chloride salt waste coming from pyro-processing. To this aim Sodalite and SAP were synthesized both in pure form and mixed with different glass matrices, i.e. commercially available glass frit and borosilicate glass. The confining matrices were loaded with mixed chloride salts to study their retention capacities with respect to the elements of interest. The matrices were characterized and leached for contact times up to 150 days at room temperature and at 90 °C. SEM analyses were also performed in order to compare the matrix surface before and after leaching. Leaching results are discussed and compared in terms of normalized releases with similar results reported in literature. According to this comparative study the SAP matrix with glass frit binder resulted in the best matrix among the ones studied, with respect to retention capacities for both matrix and spent fuel elements.
NASA Technical Reports Server (NTRS)
Larson, Daniel B.; Boyer, Eric; Wachs,Trevor; Kuo, Kenneth K.; Story, George
2012-01-01
Many approaches have been considered in an effort to improve the regression rate of solid fuels for hybrid rocket applications. One promising method is to use a fuel with a fast burning rate such as paraffin wax; however, additional performance increases to the fuel regression rate are necessary to make the fuel a viable candidate to replace current launch propulsion systems. The addition of energetic and/or nano-sized particles is one way to increase mass-burning rates of the solid fuels and increase the overall performance of the hybrid rocket motor.1,2 Several paraffin-based fuel grains with various energetic additives (e.g., lithium aluminum hydride (LiAlH4) have been cast in an attempt to improve regression rates. There are two major advantages to introducing LiAlH4 additive into the solid fuel matrix: 1) the increased characteristic velocity, 2) decreased dependency of Isp on oxidizer-to-fuel ratio. The testing and characterization of these solid-fuel grains have shown that continued work is necessary to eliminate unburned/unreacted fuel in downstream sections of the test apparatus.3 Changes to the fuel matrix include higher melting point wax and smaller energetic additive particles. The reduction in particle size through various methods can result in more homogeneous grain structure. The higher melting point wax can serve to reduce the melt-layer thickness, allowing the LiAlH4 particles to react closer to the burning surface, thus increasing the heat feedback rate and fuel regression rate. In addition to the formulation of LiAlH4 and paraffin wax solid-fuel grains, liquid additives of triethylaluminum and diisobutylaluminum hydride will be included in this study. Another promising fuel formulation consideration is to incorporate a small percentage of RDX as an additive to paraffin. A novel casting technique will be used by dissolving RDX in a solvent to crystallize the energetic additive. After dissolving the RDX in a solvent chosen for its compatibility with both paraffin and RDX, the mixture will be combined with the melted paraffin. With the melting point of the paraffin far below the decomposition temperature of the RDX, the solvent will be boiled off, leaving the crystallized RDX embedded in the paraffin. At low percentages of RDX additive and with crystallized RDX surrounded by paraffin, the fuel grains will remain inert, maintaining a key benefit of hybrids in the safety of the solid fuel.
NASA Astrophysics Data System (ADS)
Drera, Saleem S.; Hofman, Gerard L.; Kee, Robert J.; King, Jeffrey C.
2014-10-01
Low-enriched uranium (LEU) fuel plates for high power materials test reactors (MTR) are composed of nominally spherical uranium-molybdenum (U-Mo) particles within an aluminum matrix. Fresh U-Mo particles typically range between 10 and 100 μm in diameter, with particle volume fractions up to 50%. As the fuel ages, reaction-diffusion processes cause the formation and growth of interaction layers that surround the fuel particles. The growth rate depends upon the temperature and radiation environment. The cellular automaton algorithm described in this paper can synthesize realistic random fuel-particle structures and simulate the growth of the intermetallic interaction layers. Examples in the present paper pack approximately 1000 particles into three-dimensional rectangular fuel structures that are approximately 1 mm on each side. The computational approach is designed to yield synthetic microstructures consistent with images from actual fuel plates and is validated by comparison with empirical data on actual fuel plates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Yeon Soo; Jeong, G. Y.; Sohn, D. -S.
U-Mo/Al dispersion fuel is currently under development in the DOE’s Material Management and Minimization program to convert HEU-fueled research reactors to LEU-fueled reactors. In some demanding conditions in high-power and high-performance reactors, large pores form in the interaction layers between the U-Mo fuel particles and the Al matrix, which pose a potential to cause fuel failure. In this study, comprehension of the formation and growth of these pores was explored. As a product, a model to predict pore growth and porosity increase was developed. Well-characterized in-pile data from reduced-size plates were used to fit the model parameters. A data setmore » of full-sized plates, independent and distinctively different from those used to fit the model parameters, was used to examine the accuracy of the model.« less
dos Santos, Bruno César Diniz Brito; Flumignan, Danilo Luiz; de Oliveira, José Eduardo
2012-10-01
A three-step development, optimization and validation strategy is described for gas chromatography (GC) fingerprints of Brazilian commercial diesel fuel. A suitable GC-flame ionization detection (FID) system was selected to assay a complex matrix such as diesel. The next step was to improve acceptable chromatographic resolution with reduced analysis time, which is recommended for routine applications. Full three-level factorial designs were performed to improve flow rate, oven ramps, injection volume and split ratio in the GC system. Finally, several validation parameters were performed. The GC fingerprinting can be coupled with pattern recognition and multivariate regressions analyses to determine fuel quality and fuel physicochemical parameters. This strategy can also be applied to develop fingerprints for quality control of other fuel types.
Small Reactor Designs Suitable for Direct Nuclear Thermal Propulsion: Interim Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruce G. Schnitzler
Advancement of U.S. scientific, security, and economic interests requires high performance propulsion systems to support missions beyond low Earth orbit. A robust space exploration program will include robotic outer planet and crewed missions to a variety of destinations including the moon, near Earth objects, and eventually Mars. Past studies, in particular those in support of both the Strategic Defense Initiative (SDI) and the Space Exploration Initiative (SEI), have shown nuclear thermal propulsion systems provide superior performance for high mass high propulsive delta-V missions. In NASA's recent Mars Design Reference Architecture (DRA) 5.0 study, nuclear thermal propulsion (NTP) was again selectedmore » over chemical propulsion as the preferred in-space transportation system option for the human exploration of Mars because of its high thrust and high specific impulse ({approx}900 s) capability, increased tolerance to payload mass growth and architecture changes, and lower total initial mass in low Earth orbit. The recently announced national space policy2 supports the development and use of space nuclear power systems where such systems safely enable or significantly enhance space exploration or operational capabilities. An extensive nuclear thermal rocket technology development effort was conducted under the Rover/NERVA, GE-710 and ANL nuclear rocket programs (1955-1973). Both graphite and refractory metal alloy fuel types were pursued. The primary and significantly larger Rover/NERVA program focused on graphite type fuels. Research, development, and testing of high temperature graphite fuels was conducted. Reactors and engines employing these fuels were designed, built, and ground tested. The GE-710 and ANL programs focused on an alternative ceramic-metallic 'cermet' fuel type consisting of UO2 (or UN) fuel embedded in a refractory metal matrix such as tungsten. The General Electric program examined closed loop concepts for space or terrestrial applications as well as open loop systems for direct nuclear thermal propulsion. Although a number of fast spectrum reactor and engine designs suitable for direct nuclear thermal propulsion were proposed and designed, none were built. This report summarizes status results of evaluations of small nuclear reactor designs suitable for direct nuclear thermal propulsion.« less
Irradiation and post-irradiation examination of uranium-free nitride fuel
NASA Astrophysics Data System (ADS)
Hania, P. R.; Klaassen, F. C.; Wernli, B.; Streit, M.; Restani, R.; Ingold, F.; Fedorov, A. V.; Wallenius, J.
2015-11-01
Two identical Phénix-type 15-15Ti steel pinlets each containing a 70 mm Pu0.3Zr0.7N fuel stack in a 1-bar helium atmosphere have been irradiated in the HFR Petten at medium high linear power (46-47 kW/m at BOL) and an average cladding temperature of 505 °C. The pins were irradiated to a plutonium burn-up of 9.7% (88 MWd/kgHM) in 170 full power days. Both pins remained fully intact. Post-irradiation examination performed at NRG and PSI showed that the overall swelling rate of the fuel was 0.92 vol-%/%FIHMA. Fission gas release was 5-6%, while helium release was larger than 50%. No fuel restructuring was observed, and only mild cracking. EPMA measurements show a burn-up increase toward the pellet edge of up to 4 times. All investigated fission products except to some extent the noble metals were found to be evenly distributed over the matrix, indicating good solubility. Local formation of a secondary phase with high Pu content and hardly any Zr was observed. A general conclusion of this investigation is that ZrN is a suitable inert matrix for burning plutonium at high destruction rates.
High-heat transfer low-NO.sub.x combustion system
Abbasi, Hamid A.; Hobson, Jr., William J.; Rue, David M.; Smirnov, Valeriy
2005-09-06
A combustion apparatus comprising a pre-combustor stage and a primary combustion stage, the pre-combustor stage having two co-axial cylinders, one for oxidant and one for fuel gas, in which the fuel gas is preheated and the primary combustion stage having rectangular co-axial passages through which fuel and oxidant are admitted into a refractory burner block. Both passages converge in the vertical plane and diverge in the horizontal plane. The passage through the refractory burner block also has a rectangular profile and diverges in the horizontal plane. The outlets to the primary combustion stage are recessed in the refractory burner block at a distance which may be varied.
Rozas, F; Castellote, M
2015-03-15
In this paper a procedure for selecting the enhancing solutions in electrokinetic remediation experiments is proposed. For this purpose, dredged marine sediment was contaminated with fuel, and a total of 22 different experimental conditions were tested, analysing the influence of different enhancing solutions by using three commercial non-ionic surfactants, one bio-surfactant, one chelating agent, and one weak acid. Characterisation, microelectrophoretic and electrokinetic remediation trials were carried out. The results are explained on the basis of the interactions between the fuel, the enhancing electrolytes and the matrix. For one specific system, the electrophoretic zeta potential, (ζ), of the contaminated matrix in the solution was found to be related to the electroosmotic averaged ζ in the experiment and not to the efficiency in the extraction. This later was correlated to a parameter accounting for both contributions, the contaminant and the enhancing solution, calculated on the basis of differences in the electrophoretic ζ in different conditions which has allowed to propose a methodology for selection of enhancing solutions. Copyright © 2014 Elsevier Ltd. All rights reserved.
Metal-matrix composites: Status and prospects
NASA Technical Reports Server (NTRS)
1974-01-01
Applications of metal matrix composites for air frames and jet engine components are discussed. The current state of the art in primary and secondary fabrication is presented. The present and projected costs were analyzed to determine the cost effectiveness of metal matrix composites. The various types of metal matrix composites and their characteristics are described.
NASA Technical Reports Server (NTRS)
Hoberecht, Mark A.
2010-01-01
As part of the Exploration Technology Development Program (ETDP) under the auspices of the Exploration Systems Mission Directorate (ESMD), NASA is developing both primary fuel cell power systems and regenerative fuel cell (RFC) energy storage systems within the fuel cell portion of the Energy Storage Project. This effort is being led by the NASA Glenn Research Center (GRC) in partnership with the NASA Johnson Space Center (JSC), Jet Propulsion Laboratory (JPL), NASA Kennedy Space Center (KSC), and industrial partners. The development goals are to improve fuel cell and electrolysis stack electrical performance, reduce system mass, volume, and parasitic power requirements, and increase system life and reliability. A major focus of this effort has been the parallel development of both flow-through and non-flow-through proton exchange membrane (PEM) primary fuel cell power systems. The plan has been, at the appropriate time, to select a single primary fuel cell technology for eventual flight hardware development. Ideally, that appropriate time would occur after both technologies have achieved a technology readiness level (TRL) of six, which represents an engineering model fidelity PEM fuel cell system being successfully tested in a relevant environment. Budget constraints in fiscal year 2009 and beyond have prevented NASA from continuing to pursue the parallel development of both primary fuel cell options. Because very limited data exists for either system, a toplevel, qualitative assessment based on engineering judgement was performed expeditiously to provide guidance for a selection. At that time, the non-flow-through technology was selected for continued development because of potentially major advantages in terms of weight, volume, parasitic power, reliability, and life. This author believes that the advantages are significant enough, and the potential benefits great enough, to offset the higher state of technology readiness of flow-through technology. This paper summarizes the technical considerations which helped form the engineering judgement that led to the final decision.
DOT National Transportation Integrated Search
2011-03-01
The fuel tax, which is assessed on the physical amount of fuel purchased by the consumer, is the primary : means of funding roadway development at the state and national level. However, because it is assessed on a : gallon basis, drivers of vehicles ...
NASA Astrophysics Data System (ADS)
Guzman-Morales, J.; Frossard, A. A.; Corrigan, A. L.; Russell, L. M.; Liu, S.; Takahama, S.; Taylor, J. W.; Allan, J.; Coe, H.; Zhao, Y.; Goldstein, A. H.
2014-05-01
Observations during CalNex and Cal-Mex field campaigns at Bakersfield, Pasadena, Tijuana, and on board the R/V Atlantis show a substantial contribution of fossil fuel emissions to the ambient particle organic mass (OM). At least two fossil fuel combustion (FFC) factors with a range of contributions of oxidized organic functional groups were identified at each site and accounted for 60-88% of the total OM. Additional marine, vegetative detritus, and biomass burning or biogenic sources contribute up to 40% of the OM. Comparison of the FTIR spectra of four different unburned fossil fuels (gasoline, diesel, motor oil, and ship diesel) with PMF factors from ambient samples shows absorbance peaks from the fuels are retained in organic aerosols, with the spectra of all of the FFC factors containing at least three of the four characteristic alkane peaks observed in fuel standards at 2954, 2923, 2869 and 2855 cm-1. Based on this spectral similarity, we estimate the primary OM from FFC sources for each site to be 16-20%, with secondary FFC OM accounting for an additional 42-62%. Two other methods for estimating primary OM that use carbon monoxide (CO) and elemental carbon (EC) as tracers of primary organic mass were investigated, but both approaches were problematic for the CalNex and Cal-Mex urban sites because they were influenced by multiple emission sources that had site-specific and variable initial ratios to OM. For example, using the ΔPOM/ΔCO ratio of 0.0094 μg ppb V-1 proposed by other studies produces unrealistically high estimates of primary FFC OM of 55-100%.
Evaluation of catalytic combustion of actual coal-derived gas
NASA Technical Reports Server (NTRS)
Blanton, J. C.; Shisler, R. A.
1982-01-01
The combustion characteristics of a Pt-Pl catalytic reactor burning coal-derived, low-Btu gas were investigated. A large matrix of test conditions was explored involving variations in fuel/air inlet temperature and velocity, reactor pressure, and combustor exit temperature. Other data recorded included fuel gas composition, reactor temperatures, and exhaust emissions. Operating experience with the reactor was satisfactory. Combustion efficiencies were quite high (over 95 percent) over most of the operating range. Emissions of NOx were quite high (up to 500 ppm V and greater), owing to the high ammonia content of the fuel gas.
Study of LH2 fueled subsonic passenger transport aircraft
NASA Technical Reports Server (NTRS)
Brewer, G. D.; Morris, R. E.
1976-01-01
The potential of using liquid hydrogen as fuel in subsonic transport aircraft was investigated to explore an expanded matrix of passenger aircraft sizes. Aircraft capable of carrying 130 passengers 2,780 km (1500 n.mi.); 200 passengers 5,560 km (3000 n.mi.); and 400 passengers on a 9,265 km (5000 n.mi.) radius mission, were designed parametrically. Both liquid hydrogen and conventionally fueled versions were generated for each payload/range in order that comparisons could be made. Aircraft in each mission category were compared on the basis of weight, size, cost, energy utilization, and noise.
Advanced technology for extended endurance alkaline fuel cells
NASA Technical Reports Server (NTRS)
Sheibley, D. W.; Martin, R. A.
1987-01-01
Advanced components have been developed for alkaline fuel cells with a view to the satisfaction of NASA Space Station design requirements for extended endurance. The components include a platinum-on-carbon catalyst anode, a potassium titanate-bonded electrolyte matrix, a lightweight graphite electrolyte reservoir plate, a gold-plated nickel-perforated foil electrode substrate, a polyphenylene sulfide cell edge frame material, and a nonmagnesium cooler concept. When incorporated into the alkaline fuel cell unit, these components are expected to yield regenerative operation in a low earth orbit Space Station with a design life greater than 5 years.
Accident tolerant fuel cladding development: Promise, status, and challenges
NASA Astrophysics Data System (ADS)
Terrani, Kurt A.
2018-04-01
The motivation for transitioning away from zirconium-based fuel cladding in light water reactors to significantly more oxidation-resistant materials, thereby enhancing safety margins during severe accidents, is laid out. A review of the development status for three accident tolerant fuel cladding technologies, namely coated zirconium-based cladding, ferritic alumina-forming alloy cladding, and silicon carbide fiber-reinforced silicon carbide matrix composite cladding, is offered. Technical challenges and data gaps for each of these cladding technologies are highlighted. Full development towards commercial deployment of these technologies is identified as a high priority for the nuclear industry.
Introducing catalyst in alkaline membrane for improved performance direct borohydride fuel cells
NASA Astrophysics Data System (ADS)
Qin, Haiying; Lin, Longxia; Chu, Wen; Jiang, Wei; He, Yan; Shi, Qiao; Deng, Yonghong; Ji, Zhenguo; Liu, Jiabin; Tao, Shanwen
2018-01-01
A catalytic material is introduced into the polymer matrix to prepare a novel polymeric alkaline electrolyte membrane (AEM) which simultaneously increases ionic conductivity, reduces the fuel cross-over. In this work, the hydroxide anion exchange membrane is mainly composed of poly(vinylalcohol) and alkaline exchange resin. CoCl2 is added into the poly(vinylalcohol) and alkaline exchange resin gel before casting the membrane to introduce catalytic materials. CoCl2 is converted into CoOOH after the reaction with KOH solution. The crystallinity of the polymer matrix decreases and the ionic conductivity of the composite membrane is notably improved by the introduction of Co-species. A direct borohydride fuel cell using the composite membrane exhibits an open circuit voltage of 1.11 V at 30 °C, which is notably higher than that of cells using other AEMs. The cell using the composite membrane achieves a maximum power density of 283 mW cm-2 at 60 °C while the cell using the membrane without Co-species only reaches 117 mW cm-2 at the same conditions. The outstanding performance of the cell using the composite membrane benefits from impregnation of the catalytic Co-species in the membrane, which not only increases the ionic conductivity but also reduces electrode polarization thus improves the fuel cell performance. This work provides a new approach to develop high-performance fuel cells through adding catalysts in the electrolyte membrane.
Analysis of Fuel Injection and Atomization of a Hybrid Air-Blast Atomizer.
NASA Astrophysics Data System (ADS)
Ma, Peter; Esclape, Lucas; Buschhagen, Timo; Naik, Sameer; Gore, Jay; Lucht, Robert; Ihme, Matthias
2015-11-01
Fuel injection and atomization are of direct importance to the design of injector systems in aviation gas turbine engines. Primary and secondary breakup processes have significant influence on the drop-size distribution, fuel deposition, and flame stabilization, thereby directly affecting fuel conversion, combustion stability, and emission formation. The lack of predictive modeling capabilities for the reliable characterization of primary and secondary breakup mechanisms is still one of the main issues in improving injector systems. In this study, an unstructured Volume-of-Fluid method was used in conjunction with a Lagrangian-spray framework to conduct high-fidelity simulations of the breakup and atomization processes in a realistic gas turbine hybrid air blast atomizer. Results for injection with JP-8 aviation fuel are presented and compared to available experimental data. Financial support through the FAA National Jet Fuel Combustion Program is gratefully acknowledged.
Gordon, Timothy D; Tkacik, Daniel S; Presto, Albert A; Zhang, Mang; Jathar, Shantanu H; Nguyen, Ngoc T; Massetti, John; Truong, Tin; Cicero-Fernandez, Pablo; Maddox, Christine; Rieger, Paul; Chattopadhyay, Sulekha; Maldonado, Hector; Maricq, M Matti; Robinson, Allen L
2013-12-17
Dilution and smog chamber experiments were performed to characterize the primary emissions and secondary organic aerosol (SOA) formation from gasoline and diesel small off-road engines (SOREs). These engines are high emitters of primary gas- and particle-phase pollutants relative to their fuel consumption. Two- and 4-stroke gasoline SOREs emit much more (up to 3 orders of magnitude more) nonmethane organic gases (NMOGs), primary PM and organic carbon than newer on-road gasoline vehicles (per kg of fuel burned). The primary emissions from a diesel transportation refrigeration unit were similar to those of older, uncontrolled diesel engines used in on-road vehicles (e.g., premodel year 2007 heavy-duty diesel trucks). Two-strokes emitted the largest fractional (and absolute) amount of SOA precursors compared to diesel and 4-stroke gasoline SOREs; however, 35-80% of the NMOG emissions from the engines could not be speciated using traditional gas chromatography or high-performance liquid chromatography. After 3 h of photo-oxidation in a smog chamber, dilute emissions from both 2- and 4-stroke gasoline SOREs produced large amounts of semivolatile SOA. The effective SOA yield (defined as the ratio of SOA mass to estimated mass of reacted precursors) was 2-4% for 2- and 4-stroke SOREs, which is comparable to yields from dilute exhaust from older passenger cars and unburned gasoline. This suggests that much of the SOA production was due to unburned fuel and/or lubrication oil. The total PM contribution of different mobile source categories to the ambient PM burden was calculated by combining primary emission, SOA production and fuel consumption data. Relative to their fuel consumption, SOREs are disproportionately high total PM sources; however, the vastly greater fuel consumption of on-road vehicles renders them (on-road vehicles) the dominant mobile source of ambient PM in the Los Angeles area.
Catalytic combustor for integrated gasification combined cycle power plant
Bachovchin, Dennis M [Mauldin, SC; Lippert, Thomas E [Murrysville, PA
2008-12-16
A gasification power plant 10 includes a compressor 32 producing a compressed air flow 36, an air separation unit 22 producing a nitrogen flow 44, a gasifier 14 producing a primary fuel flow 28 and a secondary fuel source 60 providing a secondary fuel flow 62 The plant also includes a catalytic combustor 12 combining the nitrogen flow and a combustor portion 38 of the compressed air flow to form a diluted air flow 39 and combining at least one of the primary fuel flow and secondary fuel flow and a mixer portion 78 of the diluted air flow to produce a combustible mixture 80. A catalytic element 64 of the combustor 12 separately receives the combustible mixture and a backside cooling portion 84 of the diluted air flow and allows the mixture and the heated flow to produce a hot combustion gas 46 provided to a turbine 48. When fueled with the secondary fuel flow, nitrogen is not combined with the combustor portion.
High temperature solar thermal receiver
NASA Technical Reports Server (NTRS)
1979-01-01
A design concept for a high temperature solar thermal receiver to operate at 3 atmospheres pressure and 2500 F outlet was developed. The performance and complexity of windowed matrix, tube-header, and extended surface receivers were evaluated. The windowed matrix receiver proved to offer substantial cost and performance benefits. An efficient and cost effective hardware design was evaluated for a receiver which can be readily interfaced to fuel and chemical processes or to heat engines for power generation.
Method and apparatus for igniting an in situ oil shale retort
Burton, Robert S.; Rundberg, Sten I.; Vaughn, James V.; Williams, Thomas P.; Benson, Gregory C.
1981-01-01
A technique is provided for igniting an in situ oil shale retort having an open void space over the top of a fragmented mass of particles in the retort. A conduit is extended into the void space through a hole in overlying unfragmented formation and has an open end above the top surface of the fragmented mass. A primary air pipe having an open end above the open end of the conduit and a liquid atomizing fuel nozzle in the primary air pipe above the open end of the primary air pipe are centered in the conduit. Fuel is introduced through the nozzle, primary air through the pipe, and secondary air is introduced through the conduit for vortical flow past the open end of the primary air pipe. The resultant fuel and air mixture is ignited for combustion within the conduit and the resultant heated ignition gas impinges on the fragmented mass for heating oil shale to an ignition temperature.
NASA Astrophysics Data System (ADS)
Cui, S. Y.; Miao, Q.; Liang, W. P.; Huang, B. Z.; Ding, Z.; Chen, B. W.
2017-02-01
WC-10Co-4Cr coating was applied to the surface of F6NM stainless steel by high-velocity oxygen-fuel spraying. The slurry erosion behavior of the matrix and coating was examined at different rotational speeds using a self-made machine. This experiment effectively simulates real slurry erosion in an environment with high silt load. At low velocity (<6 m/s), the main failure mechanism was cavitation. Small bubbles acted as an air cushion, obstructing direct contact between sand and the matrix surface. However, at velocity above 9 m/s, abrasive wear was the dominant failure mechanism. The results indicate that WC-10Co-4Cr coating significantly improved the slurry resistance at higher velocity, because it created a thin and dense WC coating on the surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayes, John R.; Grosvenor, Andrew P.
Yttria-stabilized zirconia (YSZ) is a material that we are considering in our inert matrix fuel nuclear reactors, but a complete characterization of these materials is required for them to be licensed for use. A series of NdxY0.25–xZr0.75O1.88 materials have been synthesized using a co-precipitation method, and the thermal stability of these materials has been studied by annealing them at 1400 and 1500 °C. (Nd was used as surrogate for Am.) The long-range and local structures of the materials were characterized via powder X-ray diffraction, scanning electron microscopy, wavelength dispersive spectroscopy, and X-ray absorption spectroscopy at the Zr K- and Ymore » K-edges. These results were compared with the previous characterization of Nd-YSZ materials synthesized using a ceramic method. Moreover, the results indicated that the ordering in the local metal–oxygen polyhedral remains relatively unaffected by the synthetic method, but there was increased long-range disorder in the materials prepared by the co-precipitation method. Further, it was found that the materials produced by the co-precipitation method were unexpectedly unstable when annealed at high temperature. This study highlights the importance of determining the effect of synthetic method on material properties and demonstrates how the co-precipitation route could be used to produce inert matrix fuels.« less
Saz, Çağdaş; Türe, Cengiz; Türker, Onur Can; Yakar, Anıl
2018-03-01
An operation of microcosm-constructed wetland modules combined with microbial fuel cell device (CW-MFC) was assessed for wastewater treatment and bioelectric generation. One of the crucial aims of the present experiment is also to determine effect of vegetation on wastewater treatment process and bioelectric production in wetland matrix with microbial fuel cell. Accordingly, CW-MFC modules with vegetation had higher treatment efficiency compared to unplanted wetland module, and average COD, NH 4 + , and TP removal efficiency in vegetated wetland modules were ranged from 85 to 88%, 95 to 97%, and 95 to 97%, respectively. However, the highest NO 3 - removal (63%) was achieved by unplanted control module during the experiment period. The maximum average output voltage, power density, and Coulombic efficiency were obtained in wetland module vegetated with Typha angustifolia for 1.01 ± 0.14 V, 7.47 ± 13.7 mWatt/m 2 , and 8.28 ± 10.4%, respectively. The results suggest that the presence of Typha angustifolia vegetation in the CW-MFC matrix provides the benefits for treatment efficiency and bioelectric production; thus, it increases microbial activities which are responsible for biodegradation of organic compounds and catalyzed to electron flow from anode to cathode. Consequently, we suggest that engineers can use vegetated wetland matrix with Typha angustifolia in CW-MFC module in order to maximize treatment efficiency and bioelectric production.
Electrolyte matrix for molten carbonate fuel cells
Huang, C.M.; Yuh, C.Y.
1999-02-09
A matrix is described for a carbonate electrolyte including a support material and an additive constituent having a relatively low melting temperature and a relatively high coefficient of thermal expansion. The additive constituent is from 3 to 45 weight percent of the matrix and is formed from raw particles whose diameter is in a range of 0.1 {micro}m to 20 {micro}m and whose aspect ratio is in a range of 1 to 50. High energy intensive milling is used to mix the support material and additive constituent during matrix formation. Also disclosed is the use of a further additive constituent comprising an alkaline earth containing material. The further additive is mixed with the support material using high energy intensive milling. 5 figs.
Electrolyte matrix for molten carbonate fuel cells
Huang, Chao M.; Yuh, Chao-Yi
1999-01-01
A matrix for a carbonate electrolyte including a support material and an additive constituent having a relatively low melting temperature and a relatively high coefficient of thermal expansion. The additive constituent is from 3 to 45 weight percent of the matrix and is formed from raw particles whose diameter is in a range of 0.1 .mu.m to 20 .mu.m and whose aspect ratio is in a range of 1 to 50. High energy intensive milling is used to mix the support material and additive constituent during matrix formation. Also disclosed is the use of a further additive constituent comprising an alkaline earth containing material. The further additive is mixed with the support material using high energy intensive milling.
Alternative Aviation Fuel Experiment (AAFEX)
NASA Technical Reports Server (NTRS)
Anderson, B. E.; Beyersdorf, A. J.; Hudgins, C. H.; Plant, J. V.; Thornhill, K. L.; Winstead, E. L.; Ziemba, L. D.; Howard, R.; Corporan, E.; Miake-Lye, R. C.;
2011-01-01
The rising cost of oil coupled with the need to reduce pollution and dependence on foreign suppliers has spurred great interest and activity in developing alternative aviation fuels. Although a variety of fuels have been produced that have similar properties to standard Jet A, detailed studies are required to ascertain the exact impacts of the fuels on engine operation and exhaust composition. In response to this need, NASA acquired and burned a variety of alternative aviation fuel mixtures in the Dryden Flight Research Center DC-8 to assess changes in the aircraft s CFM-56 engine performance and emission parameters relative to operation with standard JP-8. This Alternative Aviation Fuel Experiment, or AAFEX, was conducted at NASA Dryden s Aircraft Operations Facility (DAOF) in Palmdale, California, from January 19 to February 3, 2009 and specifically sought to establish fuel matrix effects on: 1) engine and exhaust gas temperatures and compressor speeds; 2) engine and auxiliary power unit (APU) gas phase and particle emissions and characteristics; and 3) volatile aerosol formation in aging exhaust plumes
Carbide fuels for nuclear thermal propulsion
NASA Astrophysics Data System (ADS)
Matthews, R. B.; Blair, H. T.; Chidester, K. M.; Davidson, K. V.; Stark, W. E.; Storms, E. K.
1991-09-01
A renewed interest in manned exploration of space has revitalized interest in the potential for advancing nuclear rocket technology developed during the 1960's. Carbide fuel performance, melting point, stability, fabricability and compatibility are key technology issues for advanced Nuclear Thermal Propulsion reactors. The Rover fuels development ended with proven carbide fuel forms with demonstrated operating temperatures up to 2700 K for over 100 minutes. The next generation of nuclear rockets will start where the Rover technology ended, but with a more rigorous set of operating requirements including operating lifetime to 10 hours, operating temperatures greater that 3000 K, low fission product release, and compatibility. A brief overview of Rover/NERVA carbide fuel development is presented. A new fuel form with the highest potential combination of operating temperature and lifetime is proposed that consists of a coated uranium carbide fuel sphere with built-in porosity to contain fission products. The particles are dispersed in a fiber reinforced ZrC matrix to increase thermal shock resistance.
NASA Astrophysics Data System (ADS)
Knight, Travis W.; Anghaie, Samim
2002-11-01
Optimization of powder processing techniques were sought for the fabrication of single-phase, solid-solution mixed uranium/refractory metal carbide nuclear fuels - namely (U, Zr, Nb)C. These advanced, ultra-high temperature nuclear fuels have great potential for improved performance over graphite matrix, dispersed fuels tested in the Rover/NERVA program of the 1960s and early 1970s. Hypostoichiometric fuel samples with carbon-to-metal ratios of 0.98, uranium metal mole fractions of 5% and 10%, and porosities less than 5% were fabricated. These qualities should provide for the longest life and highest performance capability for these fuels. Study and optimization of processing methods were necessary to provide the quality assurance of samples for meaningful testing and assessment of performance for nuclear thermal propulsion applications. The processing parameters and benefits of enhanced sintering by uranium carbide liquid-phase sintering were established for the rapid and effective consolidation and formation of a solid-solution mixed carbide nuclear fuel.
Alternative Fuel Vehicles: What Do the Drivers Say?
); dedicated compressed natural gas (CNG) models; CNG after-market conversions; flexible-fuel methanol models ; flexible-fuel ethanol models, and gasoline models. Overall, drivers reported positive experiences, with primary concerns being lack of range (particularly for the CNG models) and lack of convenient fueling
Nitrous oxide emissions control by reburning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rutar, T.; Kramlich, J.C.; Malte, P.C.
1996-12-01
Fluidized bed coal combustors emit much higher concentrations of nitrous oxide (N{sub 2}O) than do most other combustion systems. This is of concern because N{sub 2}O is highly stable in the atmosphere, and may contribute to both the greenhouse effect and to stratospheric ozone depletion. In this article laboratory results are presented on N{sub 2}O removal by the reburning (i.e., afterburning) method. The destruction of N{sub 2}O is observed during contact between hot flue gases containing N{sub 2}O and various reburning fuels. A laboratory combustion reactor is used to sequentially generate the hot combustion gas, and to put this gasmore » in contact with N{sub 2}O and reburning fuel under well-characterized conditions. The initial N{sub 2}O in the primary combustion products is between 200 and 350 ppmv (dry). The temperature of the primary combustion products is varied between 1,080 and 1,370 K, and the oxygen level of these gases is varied between 3.3 and 4.8% (dry). Five reburning fuels are tested. The rank order of reburning effectiveness (based on equal heat input by the reburning fuels) is H{sub 2} > CH{sub 4} > C{sub 2}H{sub 4} and C{sub 2}H{sub 6} > CO. Experiments are also performed with the primary combustor operated fuel rich. Without any reburning fuel added, removal of large amounts of N{sub 2}O are obtained when the fuel-air equivalence ratio of the primary combustion is about 1.1. The experimental results are presented, discussed, and compared to chemical kinetic modeling. Also, some discussions of the practical implications is presented.« less
Integrating fuel treatment into ecosystem management: A proposed project planning process
Keith D. Stockmann; Kevin D. Hyde; J. Greg Jones; Dan R. Loeffler; Robin P. Silverstein
2010-01-01
Concern over increased wildland fire threats on public lands throughout the western United States makes fuel reduction activities the primary driver of many management projects. This single-issue focus recalls a management planning process practiced frequently in recent decades - a least-harm approach where the primary objective is first addressed and then plans are...
Researchers at the U.S. Environmental Protection Agency's (EPA's) Office of Research and
Development (ORD) have conducted a series of tests to characterize the size and composition of primary particulate matter (PM) generated from the combustion of heavy fuel oil and pulverize...
Screening of polar components of petroleum products by electrospray ionization mass spectrometry
Rostad, Colleen E.
2005-01-01
The polar components of fuels may enable differentiation between fuel types or commercial fuel sources. Screening for these components in the hydrocarbon product is difficult due to their very low concentrations in such a complex matrix. Various commercial fuels from several sources were analyzed by flow injection analysis/electrospray ionization/mass spectrometry without extensive sample preparation, separation, or chromatography. This technique enabled screening for unique polar components at very low concentrations in commercial hydrocarbon products. This analysis was then applied to hydrocarbon samples collected from the subsurface with a different extent of biodegradation or weathering. Although the alkane and isoprenoid portion had begun to biodegrade or weather, the polar components had changed little over time. Because these polar compounds are unique in different fuels, this screening technique can provide source information on hydrocarbons released into the environment.
NASA Technical Reports Server (NTRS)
Schultz, D. F.; Wolfbrandt, G.
1980-01-01
An experimental parametric study of rich-lean two-stage combustion in a flame tube is described and approaches for minimizing the conversion of fuel-bound nitrogen to nitrogen oxides in a premixed, homogeneous combustion system are evaluated. Air at 672 K and 0.48 MPa was premixed with fuel blends of propane, toluene, and pyridine at primary equivalence ratios ranging from 0.5 to 2.0 and secondary equivalence ratios of 0.5 to 0.7. Distillates of SRC-II, a coal syncrude, were also tested. The blended fuels were proportioned to vary fuel hydrogen composition from 9.0 to 18.3 weight percent and fuel nitrogen composition from zero to 1.5 weight percent. Rich-lean combustion proved effective in reducing fuel nitrogen to NO sub x conversion; conversion rates up to 10 times lower than those normally produced by single-stage combustion were achieved. The optimum primary equivalence ratio, where the least NO sub x was produced and combustion efficiency was acceptable, shifted between 1.4 and 1.7 with changes in fuel nitrogen content and fuel hydrogen content. Increasing levels of fuel nitrogen content lowered the conversion rate, but not enough to avoid higher NO sub x emissions as fuel nitrogen increased.
United States transportation fuel economics (1975 - 1995)
NASA Technical Reports Server (NTRS)
Alexander, A. D., III
1975-01-01
The United States transportation fuel economics in terms of fuel resources options, processing alternatives, and attendant economics for the period 1975 to 1995 are evaluated. The U.S. energy resource base is reviewed, portable fuel-processing alternatives are assessed, and selected future aircraft fuel options - JP fuel, liquid methane, and liquid hydrogen - are evaluated economically. Primary emphasis is placed on evaluating future aircraft fuel options and economics to provide guidance for future strategy of NASA in the development of aviation and air transportation research and technology.
Review of Jet Fuel Life Cycle Assessment Methods and Sustainability Metrics
DOT National Transportation Integrated Search
2015-12-01
The primary aim of this study is to help aviation jet fuel purchasers (primarily commercial airlines and the U.S. military) to understand the sustainability implications of their jet fuel purchases and provide guidelines for procuring sustainable fue...
LIQUID AND GASEOUS FUEL DISTRIBUTION SYSTEM
The report describes the national liquid and gaseous fuel distribution system. he study leading to the report was performed as part of an effort to better understand emissions of volatile organic compounds from the fuel distribution system. he primary, secondary, and tertiary seg...
Electrically conductive cellulose composite
Evans, Barbara R.; O'Neill, Hugh M.; Woodward, Jonathan
2010-05-04
An electrically conductive cellulose composite includes a cellulose matrix and an electrically conductive carbonaceous material incorporated into the cellulose matrix. The electrical conductivity of the cellulose composite is at least 10 .mu.S/cm at 25.degree. C. The composite can be made by incorporating the electrically conductive carbonaceous material into a culture medium with a cellulose-producing organism, such as Gluconoacetobacter hansenii. The composites can be used to form electrodes, such as for use in membrane electrode assemblies for fuel cells.
NASA Astrophysics Data System (ADS)
Hooie, D. T.; Harrington, B. C., III; Mayfield, M. J.; Parsons, E. L.
1992-07-01
The primary objective of DOE's Fossil Energy Fuel Cell program is to fund the development of key fuel cell technologies in a manner that maximizes private sector participation and in a way that will give contractors the opportunity for a competitive posture, early market entry, and long-term market growth. This summary includes an overview of the Fuel Cell program, an elementary explanation of how fuel cells operate, and a synopsis of the three major fuel cell technologies sponsored by the DOE/Fossil Energy Phosphoric Acid Fuel Cell program, the Molten Carbonate Fuel Cell program, and the Solid Oxide Fuel Cell program.
Constrained Sintering in Fabrication of Solid Oxide Fuel Cells
Lee, Hae-Weon; Park, Mansoo; Hong, Jongsup; Kim, Hyoungchul; Yoon, Kyung Joong; Son, Ji-Won; Lee, Jong-Ho; Kim, Byung-Kook
2016-01-01
Solid oxide fuel cells (SOFCs) are inevitably affected by the tensile stress field imposed by the rigid substrate during constrained sintering, which strongly affects microstructural evolution and flaw generation in the fabrication process and subsequent operation. In the case of sintering a composite cathode, one component acts as a continuous matrix phase while the other acts as a dispersed phase depending upon the initial composition and packing structure. The clustering of dispersed particles in the matrix has significant effects on the final microstructure, and strong rigidity of the clusters covering the entire cathode volume is desirable to obtain stable pore structure. The local constraints developed around the dispersed particles and their clusters effectively suppress generation of major process flaws, and microstructural features such as triple phase boundary and porosity could be readily controlled by adjusting the content and size of the dispersed particles. However, in the fabrication of the dense electrolyte layer via the chemical solution deposition route using slow-sintering nanoparticles dispersed in a sol matrix, the rigidity of the cluster should be minimized for the fine matrix to continuously densify, and special care should be taken in selecting the size of the dispersed particles to optimize the thermodynamic stability criteria of the grain size and film thickness. The principles of constrained sintering presented in this paper could be used as basic guidelines for realizing the ideal microstructure of SOFCs. PMID:28773795
Modeling fuel treatment leverage: Encounter rates, risk reduction, and suppression cost impacts
Matthew P. Thompson; Karin L. Riley; Dan Loeffler; Jessica R. Haas
2017-01-01
The primary theme of this study is the cost-effectiveness of fuel treatments at multiple scales of investment. We focused on the nexus of fuel management and suppression response planning, designing spatial fuel treatment strategies to incorporate landscape features that provide control opportunities that are relevant to fire operations. Our analysis explored the...
10 CFR 504.5 - Prohibitions by order (certifying powerplants under section 301 of FUA, as amended).
Code of Federal Regulations, 2010 CFR
2010-01-01
... feasibility to use coal or another alternate fuel as a primary energy source in the unit. The informational... production of fuel or fuel handling equipment, and contracts for the purchase of alternate fuels, and... section 301 of FUA, as amended). 504.5 Section 504.5 Energy DEPARTMENT OF ENERGY (CONTINUED) ALTERNATE...
Jesse K. Kreye; J.Morgan Varner; Eric E. Knapp
2012-01-01
Mechanical mastication is increasingly used as a wildland fuel treatment, reducing standing trees and shrubs to compacted fuelbeds of fractured woody fuels. One major shortcoming in our understanding of these fuelbeds is how particle fracturing influences moisture gain or loss, a primary determinant of fire behaviour. To better understand fuel moisture dynamics, we...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drera, Saleem S.; Hofman, Gerard L.; Kee, Robert J.
Low-enriched uranium (LEU) fuel plates for high power materials test reactors (MTR) are composed of nominally spherical uranium-molybdenum (U-Mo) particles within an aluminum matrix. Fresh U-Mo particles typically range between 10 and 100 mu m in diameter, with particle volume fractions up to 50%. As the fuel ages, reaction-diffusion processes cause the formation and growth of interaction layers that surround the fuel particles. The growth rate depends upon the temperature and radiation environment. The cellular automaton algorithm described in this paper can synthesize realistic random fuel-particle structures and simulate the growth of the intermetallic interaction layers. Examples in the presentmore » paper pack approximately 1000 particles into three-dimensional rectangular fuel structures that are approximately 1 mm on each side. The computational approach is designed to yield synthetic microstructures consistent with images from actual fuel plates and is validated by comparison with empirical data on actual fuel plates. (C) 2014 Elsevier B.V. All rights reserved.« less
THE LIQUID AND GASEOUS FUEL DISTRIBUTION SYSTEM
The report describes the national liquid and gaseous fuel distribution system. he study leading to the report was performed as part of an effort to better understand emissions of volatile organic compounds from the fuel distribution system. he primary, secondary, and tertiary seg...
Reducing mode circulating fluid bed combustion
Lin, Yung-Yi; Sadhukhan, Pasupati; Fraley, Lowell D.; Hsiao, Keh-Hsien
1986-01-01
A method for combustion of sulfur-containing fuel in a circulating fluid bed combustion system wherein the fuel is burned in a primary combustion zone under reducing conditions and sulfur captured as alkaline sulfide. The reducing gas formed is oxidized to combustion gas which is then separated from solids containing alkaline sulfide. The separated solids are then oxidized and recycled to the primary combustion zone.
Mehos, Mark S.; Anselmo, Kenneth M.; Moreno, James B.; Andraka, Charles E.; Rawlinson, K. Scott; Corey, John; Bohn, Mark S.
2002-01-01
A hybrid high-temperature solar receiver is provided which comprises a solar heat-pipe-receiver including a front dome having a solar absorber surface for receiving concentrated solar energy, a heat pipe wick, a rear dome, a sidewall joining the front and the rear dome, and a vapor and a return liquid tube connecting to an engine, and a fossil fuel fired combustion system in radial integration with the sidewall for simultaneous operation with the solar heat pipe receiver, the combustion system comprising an air and fuel pre-mixer, an outer cooling jacket for tangentially introducing and cooling the mixture, a recuperator for preheating the mixture, a burner plenum having an inner and an outer wall, a porous cylindrical metal matrix burner firing radially inward facing a sodium vapor sink, the mixture ignited downstream of the matrix forming combustion products, an exhaust plenum, a fossil-fuel heat-input surface having an outer surface covered with a pin-fin array, the combustion products flowing through the array to give up additional heat to the receiver, and an inner surface covered with an extension of the heat-pipe wick, a pin-fin shroud sealed to the burner and exhaust plenums, an end seal, a flue-gas diversion tube and a flue-gas valve for use at off-design conditions to limit the temperature of the pre-heated air and fuel mixture, preventing pre-ignition.
NASA Technical Reports Server (NTRS)
Bittker, D. A.
1980-01-01
The influence of ground-based gas turbine combustor operating conditions and fuel-bound nitrogen (FBN) found in coal-derived liquid fuels on the formation of nitrogen oxides and carbon monoxide is investigated. Analytical predictions of NOx and CO concentrations are obtained for a two-stage, adiabatic, perfectly-stirred reactor operating on a propane-air mixture, with primary equivalence ratios from 0.5 to 1.7, secondary equivalence ratios of 0.5 or 0.7, primary stage residence times from 12 to 20 msec, secondary stage residence times of 1, 2 and 3 msec and fuel nitrogen contents of 0.5, 1.0 and 2.0 wt %. Minimum nitrogen oxide but maximum carbon monoxide formation is obtained at primary zone equivalence ratios between 1.4 and 1.5, with percentage conversion of FBN to NOx decreasing with increased fuel nitrogen content. Additional secondary dilution is observed to reduce final pollutant concentrations, with NOx concentration independent of secondary residence time and CO decreasing with secondary residence time; primary zone residence time is not observed to affect final NOx and CO concentrations significantly. Finally, comparison of computed results with experimental values shows a good semiquantitative agreement.
Distillate Fuel Trends: International Supply Variations and Alternate Fuel Properties
2013-01-31
general trend toward a more uniform diesel around the world but the use of alternative fuels, such as biodiesel , has introduced additional variations...reduce sulfur; however, there are still areas with high sulfur, poor stability fuel. The primary source of alternate diesel fuel is Biodiesel , more...US FAME Fatty Acid Methyl Ester, aka Biodiesel FIA Fluorescent Indicator Adsorption FT SPK Fischer Tropsch derived Synthetic Paraffinic Kerosene
Block Copolymers for Alkaline Fuel Cell Membrane Materials
2014-07-30
temperature fuel cells including proton exchange membrane fuel cell ( PEMFC ) and alkaline fuel cell (AFC) with operation temperature usually lower than 120...advantages over proton exchange membrane fuel cells ( PEMFCs ) resulting in the popularity of AFCs in the US space program.[8-11] The primary benefit AFC...offered over PEMFC is better electrochemical kinetics on the anode and cathode under the alkaline environment, which results in the ability to use
Microstructure of the irradiated U 3Si 2/Al silicide dispersion fuel
NASA Astrophysics Data System (ADS)
Gan, J.; Keiser, D. D.; Miller, B. D.; Jue, J.-F.; Robinson, A. B.; Madden, J. W.; Medvedev, P. G.; Wachs, D. M.
2011-12-01
The silicide dispersion fuel of U 3Si 2/Al is recognized as the best performance fuel for many nuclear research and test reactors with up to 4.8 gU/cm 3 fuel loading. An irradiated U 3Si 2/Al dispersion fuel ( 235U ˜ 75%) from the high-flux side of a fuel plate (U0R040) from the Reduced Enrichment for Research and Test Reactors (RERTR)-8 test was characterized using transmission electron microscopy (TEM). The fuel was irradiated in the Advanced Test Reactor (ATR) for 105 days. The average irradiation temperature and fission density of the U 3Si 2 fuel particles for the TEM sample are estimated to be approximately 110 °C and 5.4 × 10 27 f/m 3. The characterization was performed using a 200-kV TEM. The U/Si ratio for the fuel particle and (Si + Al)/U for the fuel-matrix-interaction layer are approximately 1.1 and 4-10, respectively. The estimated average diameter, number density and volume fraction for small bubbles (<1 μm) in the fuel particle are ˜94 nm, 1.05 × 10 20 m -3 and ˜11%, respectively. The results and their implication on the performance of the U 3Si 2/Al silicide dispersion fuel are discussed.
Nd and Sm isotopic composition of spent nuclear fuels from three material test reactors
Sharp, Nicholas; Ticknor, Brian W.; Bronikowski, Michael; ...
2016-11-17
Rare earth elements such as neodymium and samarium are ideal for probing the neutron environment that spent nuclear fuels are exposed to in nuclear reactors. The large number of stable isotopes can provide distinct isotopic signatures for differentiating the source material for nuclear forensic investigations. The rare-earth elements were isolated from the high activity fuel matrix via ion exchange chromatography in a shielded cell. The individual elements were then separated using cation exchange chromatography. In conclusion, the neodymium and samarium aliquots were analyzed via MC–ICP–MS, resulting in isotopic compositions with a precision of 0.01–0.3%.
Nd and Sm isotopic composition of spent nuclear fuels from three material test reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharp, Nicholas; Ticknor, Brian W.; Bronikowski, Michael
Rare earth elements such as neodymium and samarium are ideal for probing the neutron environment that spent nuclear fuels are exposed to in nuclear reactors. The large number of stable isotopes can provide distinct isotopic signatures for differentiating the source material for nuclear forensic investigations. The rare-earth elements were isolated from the high activity fuel matrix via ion exchange chromatography in a shielded cell. The individual elements were then separated using cation exchange chromatography. In conclusion, the neodymium and samarium aliquots were analyzed via MC–ICP–MS, resulting in isotopic compositions with a precision of 0.01–0.3%.
Li, Jiehua; Hage, Fredrik S; Liu, Xiangfa; Ramasse, Quentin; Schumacher, Peter
2016-04-28
The heterogeneous nucleation of primary Si and eutectic Si can be attributed to the presence of AlP. Although P, in the form of AlP particles, is usually observed in the centre of primary Si, there is still a lack of detailed investigations on the distribution of P within primary Si and eutectic Si in hypereutectic Al-Si alloys at the atomic scale. Here, we report an atomic-scale experimental investigation on the distribution of P in hypereutectic Al-Si alloys. P, in the form of AlP particles, was observed in the centre of primary Si. However, no significant amount of P was detected within primary Si, eutectic Si and the Al matrix. Instead, P was observed at the interface between the Al matrix and eutectic Si, strongly indicating that P, in the form of AlP particles (or AlP 'patch' dependent on the P concentration), may have nucleated on the surface of the Al matrix and thereby enhanced the heterogeneous nucleation of eutectic Si. The present investigation reveals some novel insights into heterogeneous nucleation of primary Si and eutectic Si by AlP in hypereutectic Al-Si alloys and can be used to further develop heterogeneous nucleation mechanisms based on adsorption.
Accident Analysis for the NIST Research Reactor Before and After Fuel Conversion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baek J.; Diamond D.; Cuadra, A.
Postulated accidents have been analyzed for the 20 MW D2O-moderated research reactor (NBSR) at the National Institute of Standards and Technology (NIST). The analysis has been carried out for the present core, which contains high enriched uranium (HEU) fuel and for a proposed equilibrium core with low enriched uranium (LEU) fuel. The analyses employ state-of-the-art calculational methods. Three-dimensional Monte Carlo neutron transport calculations were performed with the MCNPX code to determine homogenized fuel compositions in the lower and upper halves of each fuel element and to determine the resulting neutronic properties of the core. The accident analysis employed a modelmore » of the primary loop with the RELAP5 code. The model includes the primary pumps, shutdown pumps outlet valves, heat exchanger, fuel elements, and flow channels for both the six inner and twenty-four outer fuel elements. Evaluations were performed for the following accidents: (1) control rod withdrawal startup accident, (2) maximum reactivity insertion accident, (3) loss-of-flow accident resulting from loss of electrical power with an assumption of failure of shutdown cooling pumps, (4) loss-of-flow accident resulting from a primary pump seizure, and (5) loss-of-flow accident resulting from inadvertent throttling of a flow control valve. In addition, natural circulation cooling at low power operation was analyzed. The analysis shows that the conversion will not lead to significant changes in the safety analysis and the calculated minimum critical heat flux ratio and maximum clad temperature assure that there is adequate margin to fuel failure.« less
Kim, Hyung Kyu; Zhang, Gang; Nam, Changwoo; Chung, T C Mike
2015-12-04
This paper examines polymer film morphology and several important properties of polyethylene-graft-sulfonated polyarylene ether sulfone (PE-g-s-PAES) proton exchange membranes (PEMs) for direct methanol fuel cell applications. Due to the extreme surface energy differences between a semi-crystalline and hydrophobic PE backbone and several amorphous and hydrophilic s-PAES side chains, the PE-g-s-PAES membrane self-assembles into a unique morphology, with many proton conductive s-PAES channels embedded in the stable and tough PE matrix and a thin hydrophobic PE layer spontaneously formed on the membrane surfaces. In the bulk, these membranes show good mechanical properties (tensile strength >30 MPa, Young's modulus >1400 MPa) and low water swelling (λ < 15) even with high IEC >3 mmol/g in the s-PAES domains. On the surface, the thin hydrophobic and semi-crystalline PE layer shows some unusual barrier (protective) properties. In addition to exhibiting higher through-plane conductivity (up to 160 mS/cm) than in-plane conductivity, the PE surface layer minimizes methanol cross-over from anode to cathode with reduced fuel loss, and stops the HO• and HO₂• radicals, originally formed at the anode, entering into PEM matrix. Evidently, the thin PE surface layer provides a highly desirable protecting layer for PEMs to reduce fuel loss and increase chemical stability. Overall, the newly developed PE-g-s-PAES membranes offer a desirable set of PEM properties, including conductivity, selectivity, mechanical strength, stability, and cost-effectiveness for direct methanol fuel cell applications.
PARFUME Theory and Model basis Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Darrell L. Knudson; Gregory K Miller; G.K. Miller
2009-09-01
The success of gas reactors depends upon the safety and quality of the coated particle fuel. The fuel performance modeling code PARFUME simulates the mechanical, thermal and physico-chemical behavior of fuel particles during irradiation. This report documents the theory and material properties behind vari¬ous capabilities of the code, which include: 1) various options for calculating CO production and fission product gas release, 2) an analytical solution for stresses in the coating layers that accounts for irradiation-induced creep and swelling of the pyrocarbon layers, 3) a thermal model that calculates a time-dependent temperature profile through a pebble bed sphere or amore » prismatic block core, as well as through the layers of each analyzed particle, 4) simulation of multi-dimensional particle behavior associated with cracking in the IPyC layer, partial debonding of the IPyC from the SiC, particle asphericity, and kernel migration (or amoeba effect), 5) two independent methods for determining particle failure probabilities, 6) a model for calculating release-to-birth (R/B) ratios of gaseous fission products that accounts for particle failures and uranium contamination in the fuel matrix, and 7) the evaluation of an accident condition, where a particle experiences a sudden change in temperature following a period of normal irradiation. The accident condi¬tion entails diffusion of fission products through the particle coating layers and through the fuel matrix to the coolant boundary. This document represents the initial version of the PARFUME Theory and Model Basis Report. More detailed descriptions will be provided in future revisions.« less
Kim, Hyung Kyu; Zhang, Gang; Nam, Changwoo; Chung, T.C. Mike
2015-01-01
This paper examines polymer film morphology and several important properties of polyethylene-graft-sulfonated polyarylene ether sulfone (PE-g-s-PAES) proton exchange membranes (PEMs) for direct methanol fuel cell applications. Due to the extreme surface energy differences between a semi-crystalline and hydrophobic PE backbone and several amorphous and hydrophilic s-PAES side chains, the PE-g-s-PAES membrane self-assembles into a unique morphology, with many proton conductive s-PAES channels embedded in the stable and tough PE matrix and a thin hydrophobic PE layer spontaneously formed on the membrane surfaces. In the bulk, these membranes show good mechanical properties (tensile strength >30 MPa, Young’s modulus >1400 MPa) and low water swelling (λ < 15) even with high IEC >3 mmol/g in the s-PAES domains. On the surface, the thin hydrophobic and semi-crystalline PE layer shows some unusual barrier (protective) properties. In addition to exhibiting higher through-plane conductivity (up to 160 mS/cm) than in-plane conductivity, the PE surface layer minimizes methanol cross-over from anode to cathode with reduced fuel loss, and stops the HO• and HO2• radicals, originally formed at the anode, entering into PEM matrix. Evidently, the thin PE surface layer provides a highly desirable protecting layer for PEMs to reduce fuel loss and increase chemical stability. Overall, the newly developed PE-g-s-PAES membranes offer a desirable set of PEM properties, including conductivity, selectivity, mechanical strength, stability, and cost-effectiveness for direct methanol fuel cell applications. PMID:26690232
Highly conductive composites for fuel cell flow field plates and bipolar plates
Jang, Bor Z; Zhamu, Aruna; Song, Lulu
2014-10-21
This invention provides a fuel cell flow field plate or bipolar plate having flow channels on faces of the plate, comprising an electrically conductive polymer composite. The composite is composed of (A) at least 50% by weight of a conductive filler, comprising at least 5% by weight reinforcement fibers, expanded graphite platelets, graphitic nano-fibers, and/or carbon nano-tubes; (B) polymer matrix material at 1 to 49.9% by weight; and (C) a polymer binder at 0.1 to 10% by weight; wherein the sum of the conductive filler weight %, polymer matrix weight % and polymer binder weight % equals 100% and the bulk electrical conductivity of the flow field or bipolar plate is at least 100 S/cm. The invention also provides a continuous process for cost-effective mass production of the conductive composite-based flow field or bipolar plate.
Trace and surface analysis of ceramic layers of solid oxide fuel cells by mass spectrometry.
Becker, J S; Breuer, U; Westheide, J; Saprykin, A I; Holzbrecher, H; Nickel, H; Dietze, H J
1996-06-01
For the trace analysis of impurities in thick ceramic layers of a solid oxide fuel cell (SOFC) sensitive solid-state mass spectrometric methods, such as laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and radiofrequency glow discharge mass spectrometry (rf-GDMS) have been developed and used. In order to quantify the analytical results of LA-ICP-MS, the relative sensitivity coefficients of elements in a La(0.6)Sr(0.35)MnO(3) matrix have been determined using synthetic standards. Secondary ion mass spectrometry (SIMS) - as a surface analytical method - has been used to characterize the element distribution and diffusion profiles of matrix elements on the interface of a perovskite/Y-stabilized ZrO(2) layer. The application of different mass spectrometric methods for process control in the preparation of ceramic layers for the SOFC is described.
Thermal efficiency and environmental performances of a biogas-diesel stationary engine.
Bilcan, A; Le Corre, O; Delebarre, A
2003-09-01
Municipal and agricultural waste, and sludge from wastewater treatment represent a large source of pollution. Gaseous fuels can be produced from waste decomposition and then used to run internal combustion engines for power and heat generation. The present paper focuses on thermal efficiency and environmental performances of dual-fuel engines fuelled with biogas. Experiments have been carried out on a Lister-Petter single cylinder diesel engine, modified for dual-fuel operation. Natural gas was first used as the primary fuel. An empirical correlation was determined to predict the engine load for a given mass flow rate for the pilot fuel (diesel) and for the primary fuel (natural gas). That correlation has then been tested for three synthesized biogas compositions. Computations were performed and the error was estimated to be less than 10%. Additionally, NOx and CO2 contents were measured from exhaust gases. Based on exhausts gas temperature, the activation energy and the pre-exponential factor of an Arrhenius law were then proposed, resulting in a simpler mean to predict NOx.
O'Sullivan, M; Rap, A; Reddington, C L; Spracklen, D V; Gloor, M; Buermann, W
2016-08-16
The global terrestrial carbon sink has increased since the start of this century at a time of growing carbon emissions from fossil fuel burning. Here we test the hypothesis that increases in atmospheric aerosols from fossil fuel burning enhanced the diffuse light fraction and the efficiency of plant carbon uptake. Using a combination of models, we estimate that at global scale changes in light regimes from fossil fuel aerosol emissions had only a small negative effect on the increase in terrestrial net primary production over the period 1998-2010. Hereby, the substantial increases in fossil fuel aerosol emissions and plant carbon uptake over East Asia were effectively canceled by opposing trends across Europe and North America. This suggests that if the recent increase in the land carbon sink would be causally linked to fossil fuel emissions, it is unlikely via the effect of aerosols but due to other factors such as nitrogen deposition or nitrogen-carbon interactions.
Matrix Organization of a Residency Program in an Academic Medical Center.
ERIC Educational Resources Information Center
Smith, Ellen S.; Eisenberg, John M.
1980-01-01
Matrix organization offers a structure that can facilitate coordination and cooperation in health care educational administration. Its application within the health care system is reviewed, the matrix organization of the primary care residency at the University of Pennsylvania is reported, and advantages and disadvantages are discussed.…
Characterizing the Degree of Fuel Magnetization for MagLIF Using Neutron Diagnostics
NASA Astrophysics Data System (ADS)
Hahn, K. D.; Chandler, G. A.; Schmit, P. F.; Knapp, P. F.; Hansen, S. B.; Harding, E.; Ruiz, C. L.; Jones, B.; Gomez, M. R.; Ampleford, D. J.; Torres, J. A.; Alberto, P. J.; Cooper, G. W.; Styron, J. D.
2017-10-01
We are studying Magnetized Liner Inertial Fusion sources which utilize deuterium fuel and produce up to 4e12 primary DD and 5e10 secondary DT neutrons. For this concept, magnetizing the fuel can relax the stagnation pressures and densities required for ignition by insulating the hot fuel and confining the charged fusion products. The degree of magnetization of the fuel at stagnation is quantified using secondary DT neutron spectral measurements in the axial and radial directions and is also related to the ratio of the secondary DT yield to the primary DD yield. Measurements have confirmed that charged fusion products are strongly magnetized, as indicated by the product of the magnetic field and the fuel radius, to 0.4 MG-cm. We present new results that compare the degree of fuel magnetization inferred from spectral and yield measurements. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525.
NASA Astrophysics Data System (ADS)
Huang, Dongmei; Guo, Chenning; Shi, Long
2017-03-01
Soot particles from the burning of typical fuels are one of the critical sources causing environmental problems and human disease. To understand the soot formation of these typical fuels, the size and morphology of soot aggregates produced from the burning of typical solid and liquid fuels, including diesel, kerosene, natural rubber (NR) latex foam, and wood crib, were studied by both extractive sampling and subsequent image analysis. The 2D and 3D fractal dimensions together with the diameter distribution of agglomerate and primary particles were analyzed for these four typical fuels. The average diameters of the primary particles were within 45-85 nm when sampling from different heights above the fire sources. Irregular sheet structures and flake-like masses were observed from the burning of NR latex foam and wood cribs. Superaggregates with a mean maximum length scale of over 100 μm were also found from the burning of all these four tested fuels. The fractal dimension of a single aggregate was 3 for all the tested fuels.
Solid Fuel Use for Household Cooking: Country and Regional Estimates for 1980–2010
Bonjour, Sophie; Adair-Rohani, Heather; Wolf, Jennyfer; Bruce, Nigel G.; Mehta, Sumi; Lahiff, Maureen; Rehfuess, Eva A.; Mishra, Vinod; Smith, Kirk R.
2013-01-01
Background: Exposure to household air pollution from cooking with solid fuels in simple stoves is a major health risk. Modeling reliable estimates of solid fuel use is needed for monitoring trends and informing policy. Objectives: In order to revise the disease burden attributed to household air pollution for the Global Burden of Disease 2010 project and for international reporting purposes, we estimated annual trends in the world population using solid fuels. Methods: We developed a multilevel model based on national survey data on primary cooking fuel. Results: The proportion of households relying mainly on solid fuels for cooking has decreased from 62% (95% CI: 58, 66%) to 41% (95% CI: 37, 44%) between 1980 and 2010. Yet because of population growth, the actual number of persons exposed has remained stable at around 2.8 billion during three decades. Solid fuel use is most prevalent in Africa and Southeast Asia where > 60% of households cook with solid fuels. In other regions, primary solid fuel use ranges from 46% in the Western Pacific, to 35% in the Eastern Mediterranean and < 20% in the Americas and Europe. Conclusion: Multilevel modeling is a suitable technique for deriving reliable solid-fuel use estimates. Worldwide, the proportion of households cooking mainly with solid fuels is decreasing. The absolute number of persons using solid fuels, however, has remained steady globally and is increasing in some regions. Surveys require enhancement to better capture the health implications of new technologies and multiple fuel use. PMID:23674502
Application of the DART Code for the Assessment of Advanced Fuel Behavior
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rest, J.; Totev, T.
2007-07-01
The Dispersion Analysis Research Tool (DART) code is a dispersion fuel analysis code that contains mechanistically-based fuel and reaction-product swelling models, a one dimensional heat transfer analysis, and mechanical deformation models. DART has been used to simulate the irradiation behavior of uranium oxide, uranium silicide, and uranium molybdenum aluminum dispersion fuels, as well as their monolithic counterparts. The thermal-mechanical DART code has been validated against RERTR tests performed in the ATR for irradiation data on interaction thickness, fuel, matrix, and reaction product volume fractions, and plate thickness changes. The DART fission gas behavior model has been validated against UO{sub 2}more » fission gas release data as well as measured fission gas-bubble size distributions. Here DART is utilized to analyze various aspects of the observed bubble growth in U-Mo/Al interaction product. (authors)« less
Revised Point of Departure Design Options for Nuclear Thermal Propulsion
NASA Technical Reports Server (NTRS)
Fittje, James E.; Borowski, Stanley K.; Schnitzler, Bruce
2015-01-01
In an effort to further refine potential point of departure nuclear thermal rocket engine designs, four proposed engine designs representing two thrust classes and utilizing two different fuel matrix types are designed and analyzed from both a neutronics and thermodynamic cycle perspective. Two of these nuclear rocket engine designs employ a tungsten and uranium dioxide cermet (ceramic-metal) fuel with a prismatic geometry based on the ANL-200 and the GE-710, while the other two designs utilize uranium-zirconium-carbide in a graphite composite fuel and a prismatic fuel element geometry developed during the Rover/NERVA Programs. Two engines are analyzed for each fuel type, a small criticality limited design and a 111 kN (25 klbf) thrust class engine design, which has been the focus of numerous manned mission studies, including NASA's Design Reference Architecture 5.0. slightly higher T/W ratios, but they required substantially more 235U.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Shi'ang
Primary particles formed in as-cast Al-5Mg-0.6Sc alloy and their role in microstructure and mechanical properties of the alloy were investigated using optical microscopy (OM), scanning electron microscopy (SEM), electron back-scatter diffraction (EBSD) and tensile testing. It was found that primary particles due to a close orientation to matrix could serve as the potent heterogeneous nucleation sites for α-Al during solidification and thus impose a remarkable grain refinement effect. Eutectic structure consisted of layer by layer of ‘Al{sub 3}Sc + α-Al + Al{sub 3}Sc + ⋯’ and cellular-dendritic substructure were simultaneously observed at the particles inside, indicating that these particles couldmore » be identified as the eutectics rather than individual Al{sub 3}Sc phase. A calculating method, based on EBSD results, was introduced for the spatial distribution of these particles in matrix. The results showed that these eutectic particles randomly distributed in matrix. In addition, the formation of primary eutectic particles significant improved the strength of the Al-Mg alloy in as-cast condition, which is ascribed to the structural evolution from coarse dendrites to prefect fine equiaxed grains. On the other hand, these large-sized particles due to the tendency to act as the microcrack sources could cause a harmful effect in the ductility of Al-Mg-Sc alloy. - Highlights: •Primary particles exhibit an ‘Al{sub 3}Sc + α-Al + Al{sub 3}Sc + ⋯’ multilayer feature with a cellular-dendritic mode of growth. •EBSD analyses the mechanism of grain refinement and the distribution of primary particles in α-Al matrix. •A computational method was presented to calculate the habit planes of primary particles.« less
Abu Sayeed, M D; Talukdar, Krishan; Kim, Hee Jin; Park, Younjin; Gopalan, A I; Kim, Young Ho; Lee, Kwang-Pill; Choi, Sang-June
2014-12-01
Multi-walled carbon nanotubes (MWCNTs) are regarded as ideal fillers for Nafion polymer electrolyte membranes (PEMs) for fuel cell applications. The highly aggregated properties of MWCNTs can be overcome by the successful cross-linking with polyvinyl alcohol (PVA) into the MWCNTs/Nafion membrane. In this study, a series of nanocomposite membranes were fabricated with the PVA-influenced functionalized MWCNTs reinforced into the Nafion polymer matrix by a solution casting method. Several different PVA contents were blended to f-MWCNTs/Nafion nanocomposite membranes followed by successful cross-linking by annealing. The surface morphologies and the inner structures of the resulting PVA-MWCNTs/Nafion nanocomposite membranes were then observed by optical microscopy and scanning electron microscopy (SEM) to investigate the dispersion of MWCNTs into the PVA/Nafion composite membranes. After that, the nanocomposite membranes were characterized by thermo-gravimetric analysis (TGA) to observe the thermal enhancement caused by effective cross-linking between the f-MWCNTs with the composite polymer matrixes. Improved water uptake with reduced methanol uptake revealed the successful fabrication of PVA-blended f-MWCNTs/Nafion membranes. In addition, the ion exchange capacity (IEC) was evaluated for PEM fuel cell (PEMFC) applications.
Zaitseva, Natalia P.; Carman, M. Leslie; Faust, Michelle A.; Glenn, Andrew M.; Martinez, H. Paul; Pawelczak, Iwona A.; Payne, Stephen A.
2017-05-16
A scintillator material according to one embodiment includes a polymer matrix; a primary dye in the polymer matrix, the primary dye being a fluorescent dye, the primary dye being present in an amount of 3 wt % or more; and at least one component in the polymer matrix, the component being selected from a group consisting of B, Li, Gd, a B-containing compound, a Li-containing compound and a Gd-containing compound, wherein the scintillator material exhibits an optical response signature for thermal neutrons that is different than an optical response signature for fast neutrons and gamma rays. A system according to one embodiment includes a scintillator material as disclosed herein and a photodetector for detecting the response of the material to fast neutron, thermal neutron and gamma ray irradiation.
Effects of hydrogen on thermal creep behaviour of Zircaloy fuel cladding
NASA Astrophysics Data System (ADS)
Suman, Siddharth; Khan, Mohd Kaleem; Pathak, Manabendra; Singh, R. N.
2018-01-01
Zirconium alloys are extensively used for nuclear fuel cladding. Creep is one of the most likely degradation mechanisms for fuel cladding during reactor operating and repository conditions. Fuel cladding tubes undergo waterside corrosion during service and hydrogen is produced as a result of it-a fraction of which is picked up by cladding. Hydrogen remains in solid solution up to terminal solid solubility and it precipitates as brittle hydride phase in the zirconium metal matrix beyond this limiting concentration. Hydrogen, either in solid solution or as precipitated hydride, alters the creep behaviour of zirconium alloys. The present article critically reviews the influence of hydrogen on thermal creep behaviour of zirconium alloys, develops the systematic understanding of this multifaceted phenomenon, and delineates the thrust areas which require further investigations.
Molecular artificial photosynthesis.
Berardi, Serena; Drouet, Samuel; Francàs, Laia; Gimbert-Suriñach, Carolina; Guttentag, Miguel; Richmond, Craig; Stoll, Thibaut; Llobet, Antoni
2014-11-21
The replacement of fossil fuels by a clean and renewable energy source is one of the most urgent and challenging issues our society is facing today, which is why intense research has been devoted to this topic recently. Nature has been using sunlight as the primary energy input to oxidise water and generate carbohydrates (solar fuel) for over a billion years. Inspired, but not constrained, by nature, artificial systems can be designed to capture light and oxidise water and reduce protons or other organic compounds to generate useful chemical fuels. This tutorial review covers the primary topics that need to be understood and mastered in order to come up with practical solutions for the generation of solar fuels. These topics are: the fundamentals of light capturing and conversion, water oxidation catalysis, proton and CO2 reduction catalysis and the combination of all of these for the construction of complete cells for the generation of solar fuels.
Arku, Raphael E; Ezzati, Majid; Baumgartner, Jill; Fink, Günther; Zhou, Bin; Hystad, Perry; Brauer, Michael
2018-01-01
Approximately three billion people are exposed to household air pollution (HAP) from solid fuel cookstoves. Studies from single settings have linked HAP with elevated blood pressure (BP), but no evidence exists from multi-country analyses. Using nationally representative and internationally comparable data, we examined the association between solid fuel use and BP in 77,605 largely premenopausal women (aged 15-49) from ten resource-poor countries. We obtained data on systolic and diastolic BP, self-reported primary cooking fuel, health and socio-demographic characteristics from 12 Demographic and Health Surveys conducted in Albania, Armenia, Azerbaijan, Bangladesh, Benin, Ghana, Kyrgyzstan, Lesotho, Namibia, and Peru. We estimated associations between history of fuel use [solid fuel (coal or biomass) versus clean fuel (electricity or gas)] with systolic and diastolic BP and hypertension using a meta-analytical approach. Overall, the country-level mean systolic and diastolic BP were 117 (range: 111-127) and 74 (71-83) mmHg, respectively. The country-level mean age of the women was 30.8 years (range: 28.4-32.9). The prevalence of solid fuel use was 46.0% (range: 4.1-95.8). In adjusted, pooled analyses, primary use of solid fuel was associated with 0.58mmHg higher systolic BP (95% CI: 0.23, 0.93) as compared to primary use of clean fuel. The pooled estimates for diastolic BP and pulse pressure were also positive, but the confidence intervals contained zero. The pooled odds of hypertension was [OR = 1.07 (95% CI: 0.99, 1.16)], an effect that was driven by rural participants for whom solid fuel use was associated with a 16% greater odds of hypertension [OR = 1.16 (95% CI: 1.01, 1.35)]. Cooking with solid fuels was associated with small increases in BP and odds of hypertension. Use of cleaner fuels like gas or electricity may reduce cardiovascular risk in developing countries, particularly among rural residents. Copyright © 2017 Elsevier Inc. All rights reserved.
TEM Characterization of High Burn-up Microstructure of U-7Mo Alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jian Gan; Brandon Miller; Dennis Keiser
2014-04-01
As an essential part of global nuclear non-proliferation effort, the RERTR program is developing low enriched U-Mo fuels (< 20% U-235) for use in research and test reactors that currently employ highly enriched uranium fuels. One type of fuel being developed is a dispersion fuel plate comprised of U-7Mo particles dispersed in Al alloy matrix. Recent TEM characterizations of the ATR irradiated U-7Mo dispersion fuel plates include the samples with a local fission densities of 4.5, 5.2, 5.6 and 6.3 E+21 fissions/cm3 and irradiation temperatures of 101-136?C. The development of the irradiated microstructure of the U-7Mo fuel particles consists ofmore » fission gas bubble superlattice, large gas bubbles, solid fission product precipitates and their association to the large gas bubbles, grain subdivision to tens or hundreds of nanometer size, collapse of bubble superlattice, and amorphisation. This presentation will describe the observed microstructures specifically focusing on the U-7Mo fuel particles. The impact of the observed microstructure on the fuel performance and the comparison of the relevant features with that of the high burn-up UO2 fuels will be discussed.« less
The irradiation behavior of atomized U-Mo alloy fuels at high temperature
NASA Astrophysics Data System (ADS)
Park, Jong-Man; Kim, Ki-Hwan; Kim, Chang-Kyu; Meyer, M. K.; Hofman, G. L.; Strain, R. V.
2001-04-01
Post-irradiation examinations of atomized U-10Mo, U-6Mo, and U-6Mo-1.7Os dispersion fuels from the RERTR-3 experiment irradiated in the Advanced Test Reactor (ATR) were carried out in order to investigate the fuel behavior of high uranium loading (8 gU/cc) at a high temperature (higher than 200°C). It was observed after about 40 at% BU that the U-Mo alloy fuels at a high temperature showed similar irradiation bubble morphologies compared to those at a lower temperature found in the RERTR-1 irradiation result, but there was a thick reaction layer with the aluminum matrix which was found to be greatly affected by the irradiation temperature and to a lesser degree by the fuel composition. In addition, the chemical analysis for the irradiated U-Mo fuels using the Electron Probe Micro Analysis (EPMA) method were conducted to investigate the compositional changes during the formation of the reaction product.
Microstructure of RERTR DU-Alloys Irradiated with Krypton Ions
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. Gan; D. Keiser; D. Wachs
2009-11-01
Fuel development for reduced enrichment research and test reactor (RERTR) program is tasked with the development of new low enrichment uranium fuels that can be employed to replace existing high enrichment uranium fuels currently used in many research and test reactors worldwide. Radiation stability of the interaction product formed at fuel-matrix interface has a strong impact on fuel performance. Three depleted uranium alloys are cast that consist of the following 5 phases of interest to be investigated: U(Si,Al)3, (U,Mo)(Si,Al)3, UMo2Al20, U6Mo4Al43 and UAl4. Irradiation of TEM disc samples with 500 keV Kr ions at 200?C to high doses up tomore » ~100 dpa were conducted using an intermediate voltage electron microscope equipped with an ion accelerator. The irradiated microstructure of the 5 phases is characterized using transmission electron microscopy. The results will be presented and the implication of the observed irradiated microstructure on the fuel performance will be discussed.« less
On the condition of UO2 nuclear fuel irradiated in a PWR to a burn-up in excess of 110 MWd/kgHM
NASA Astrophysics Data System (ADS)
Restani, R.; Horvath, M.; Goll, W.; Bertsch, J.; Gavillet, D.; Hermann, A.; Martin, M.; Walker, C. T.
2016-12-01
Post-irradiation examination results are presented for UO2 fuel from a PWR fuel rod that had been irradiated to an average burn-up of 105 MWd/kgHM and showed high fission gas release of 42%. The radial distribution of xenon and the partitioning of fission gas between bubbles and the fuel matrix was investigated using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and electron probe microanalysis. It is concluded that release from the fuel at intermediate radial positions was mainly responsible for the high fission gas release. In this region thermal release had occurred from the high burn-up structure (HBS) at some point after the sixth irradiation cycle. The LA-ICP-MS results indicate that gas release had also occurred from the HBS in the vicinity of the pellet periphery. It is shown that the gas pressure in the HBS pores is well below the pressure that the fuel can sustain.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michael A. Pope; R. Sonat Sen; Brian Boer
2011-09-01
The current focus of the Deep Burn Project is on once-through burning of transuranics (TRU) in light-water reactors (LWRs). The fuel form is called Fully-Ceramic Micro-encapsulated (FCM) fuel, a concept that borrows the tri-isotropic (TRISO) fuel particle design from high-temperature reactor technology. In the Deep Burn LWR (DB-LWR) concept, these fuel particles are pressed into compacts using SiC matrix material and loaded into fuel pins for use in conventional LWRs. The TRU loading comes from the spent fuel of a conventional LWR after 5 years of cooling. Unit cell and assembly calculations have been performed using the DRAGON-4 code tomore » assess the physics attributes of TRU-only FCM fuel in an LWR lattice. Depletion calculations assuming an infinite lattice condition were performed with calculations of various reactivity coefficients performed at each step. Unit cells and assemblies containing typical UO2 and mixed oxide (MOX) fuel were analyzed in the same way to provide a baseline against which to compare the TRU-only FCM fuel. Then, assembly calculations were performed evaluating the performance of heterogeneous arrangements of TRU-only FCM fuel pins along with UO2 pins.« less
NASA Astrophysics Data System (ADS)
Gupta, Nikhil; Paramsothy, Muralidharan
2014-06-01
The special topic "Metal- and Polymer-Matrix Composites" is intended to capture the state of the art in the research and practice of functional composites. The current set of articles related to metal-matrix composites includes reviews on functionalities such as self-healing, self-lubricating, and self-cleaning capabilities; research results on a variety of aluminum-matrix composites; and investigations on advanced composites manufacturing methods. In addition, the processing and properties of carbon nanotube-reinforced polymer-matrix composites and adhesive bonding of laminated composites are discussed. The literature on functional metal-matrix composites is relatively scarce compared to functional polymer-matrix composites. The demand for lightweight composites in the transportation sector is fueling the rapid development in this field, which is captured in the current set of articles. The possibility of simultaneously tailoring several desired properties is attractive but very challenging, and it requires significant advancements in the science and technology of composite materials. The progress captured in the current set of articles shows promise for developing materials that seem capable of moving this field from laboratory-scale prototypes to actual industrial applications.
Method of forming an electrically conductive cellulose composite
Evans, Barbara R [Oak Ridge, TN; O'Neill, Hugh M [Knoxville, TN; Woodward, Jonathan [Ashtead, GB
2011-11-22
An electrically conductive cellulose composite includes a cellulose matrix and an electrically conductive carbonaceous material incorporated into the cellulose matrix. The electrical conductivity of the cellulose composite is at least 10 .mu.S/cm at 25.degree. C. The composite can be made by incorporating the electrically conductive carbonaceous material into a culture medium with a cellulose-producing organism, such as Gluconoacetobacter hansenii. The composites can be used to form electrodes, such as for use in membrane electrode assemblies for fuel cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Shenyang; Burkes, Douglas E.; Lavender, Curt A.
2016-07-08
Nano-gas bubble superlattices are often observed in irradiated UMo nuclear fuels. However, the for- mation mechanism of gas bubble superlattices is not well understood. A number of physical processes may affect the gas bubble nucleation and growth; hence, the morphology of gas bubble microstructures including size and spatial distributions. In this work, a phase-field model integrating a first-passage Monte Carlo method to investigate the formation mechanism of gas bubble superlattices was devel- oped. Six physical processes are taken into account in the model: 1) heterogeneous generation of gas atoms, vacancies, and interstitials informed from atomistic simulations; 2) one-dimensional (1-D) migration of interstitials; 3) irradiation-induced dissolution of gas atoms; 4) recombination between vacancies and interstitials; 5) elastic interaction; and 6) heterogeneous nucleation of gas bubbles. We found that the elastic interaction doesn’t cause the gas bubble alignment, and fast 1-D migration of interstitials alongmore » $$\\langle$$110$$\\rangle$$ directions in the body-centered cubic U matrix causes the gas bubble alignment along $$\\langle$$110$$\\rangle$$ directions. It implies that 1-D interstitial migration along [110] direction should be the primary mechanism of a fcc gas bubble superlattice which is observed in bcc UMo alloys. Simulations also show that fission rates, saturated gas concentration, and elastic interaction all affect the morphology of gas bubble microstructures.« less
Cleary, Edward N. G.
1982-10-12
An air proportioner is provided for a liquid hydrocarbon fueled gas turbine of the type which is convertible to oil gas fuel and to coal gas fuel. The turbine includes a shell for enclosing the turbine, an air duct for venting air in said shell to a gasifier, and a fuel injector for injecting gasified fuel into the turbine. The air proportioner comprises a second air duct for venting air from the air duct for mixing with fuel from the gasifier. The air can be directly injected into the gas combustion basket along with the fuel from the injector or premixed with fuel from the gasifier prior to injection by the fuel injector.
NASA Astrophysics Data System (ADS)
Duran, Sean Patrick Hynes
A line of sight imaging technique was developed which utilized pulse slicing of laser pulses to shorten the duration of the parent laser pulse, thereby making time gating more effective at removing multiple scattered light. This included the development of an optical train which utilized a Kerr cell to selectively pass the initial part of the laser pulse while rejecting photons contained later within the pulse. This line of sight ballistic imaging technique was applied to image high-pressure fuel sprays injected into conditions typically encountered in a diesel combustion chamber. Varying the environmental conditions into which the fuel was injected revealed trends in spray behavior which depend on both temperature and pressure. Different fuel types were also studied in this experiment which demonstrated remarkably different shedding structures from one another. Additional experiments were performed to characterize the imaging technique at ambient conditions. The technique was modified to use two wavelengths to allow further rejection of scattered light. The roles of spatial, temporal and polarization filtration were examined by imaging an USAF 1951 line-pair target through a highly scattering field of polystyrene micro-spheres. The optical density of the scattering field was varied by both the optical path length and number densities of the spheres. The equal optical density, but with variable path length results demonstrated the need for an aggressively shorter pulse length to effectively image the distance scales typical encountered in the primary breakup regions of diesel sprays. Results indicate that the system performance improved via the use of two wavelengths. A final investigation was undertaken to image coherent light which has elastically scattered orthogonal to the direction of the laser pulse. Two wavelengths were focused into ˜150 micron sheets via a cylindrical lens and passed under the injector nozzle. The two sheets were adjustable spatially to allow probing of the sprays three dimensional structure. The test matrix included two nozzle diameters, 160 and 320 microns, and two fuels dodecane and methyl oleate. Results are presented comparing the fuels and the effects of nozzle diameter. A mathematical interpretation of the results is also presented.
Ozoh, Obianuju B; Okwor, Tochi J; Adetona, Olorunfemi; Akinkugbe, Ayesha O; Amadi, Casmir E; Esezobor, Christopher; Adeyeye, Olufunke O; Ojo, Oluwafemi; Nwude, Vivian N; Mortimer, Kevin
2018-03-31
Cooking with dirty-burning fuels is associated with health risk from household air pollution. We assessed the prevalence of and factors associated with the use of cooking fuels, and attitudes and barriers towards use of liquefied petroleum gas (LPG). This was a cross-sectional, population-based survey conducted in 519 households in Lagos, Nigeria. We used a structured questionnaire to obtain information regarding choice of household cooking fuel and the attitudes towards the use of LPG. Kerosene was the most frequently used cooking fuel ( n = 475, 91.5%; primary use n = 364, 70.1%) followed by charcoal ( n = 159, 30.6%; primary use n = 88, 17%) and LPG ( n = 86, 16.6%; primary use n = 63, 12.1%). Higher level of education, higher income and younger age were associated with LPG vs. kerosene use. Fuel expenditure on LPG was significantly lower than for kerosene ( N (Naira) 2169.0 ± 1507.0 vs. N 2581.6 ± 1407.5). Over 90% of non-LPG users were willing to switch to LPG but cited safety issues and high cost as potential barriers to switching. Our findings suggest that misinformation and beliefs regarding benefits, safety and cost of LPG are important barriers to LPG use. An educational intervention program could be a cost-effective approach to improve LPG adoption and should be formally addressed through a well-designed community-based intervention study.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forsberg, Charles W.; Lam, Stephen; Carpenter, David M.
Three advanced nuclear power systems use liquid salt coolants that generate tritium and thus face the common challenges of containing and capturing tritium to prevent its release to the environment. The fluoride salt–cooled high-temperature reactor (FHR) uses clean fluoride salt coolants and the same graphite-matrix coated-particle fuel as high-temperature gas-cooled reactors. Molten salt reactors (MSRs) dissolve the fuel in a fluoride or chloride salt with release of fission product tritium into the salt. In most FHR and MSR systems, the baseline salts contain lithium where isotopically separated 7Li is proposed to minimize tritium production from neutron interactions with the salt.more » The Chinese Academy of Sciences plans to start operation of a 2-MW(thermal) molten salt test reactor by 2020. For high-magnetic-field fusion machines, the use of lithium enriched in 6Li is proposed to maximize tritium generation—the fuel for a fusion machine. Advances in superconductors that enable higher power densities may require the use of molten lithium salts for fusion blankets and as coolants. Recent technical advances in these three reactor classes have resulted in increased government and private interest and the beginning of a coordinated effort to address the tritium control challenges in 700°C liquid salt systems. In this paper, we describe characteristics of salt-cooled fission and fusion machines, the basis for growing interest in these technologies, tritium generation in molten salts, the environment for tritium capture, models for high-temperature tritium transport in salt systems, alternative strategies for tritium control, and ongoing experimental work. Several methods to control tritium appear viable. Finally, limited experimental data are the primary constraint for designing efficient cost-effective methods of tritium control.« less
The effect of ion irradiation on the dissolution of UO 2 and UO 2 -based simulant fuel
Popel, Aleksej J.; Wietsma, Thomas W.; Engelhard, Mark H.; ...
2017-11-21
Our aim is to study the separate effect of fission fragment damage on the dissolution of simulant UK advanced gas-cooled reactor nuclear fuel in water. Plain UO 2 and UO 2 samples, doped with inactive fission products to simulate 43 GWd/tU of burn-up, were fabricated. A set of these samples were then irradiated with 92 MeV 129Xe 23+ ions to a fluence of 4.8 × 10 15 ions/cm 2 to simulate the fission damage that occurs within nuclear fuels. The primary effect of the irradiation on the UO 2 samples, observed by scanning electron microscopy, was to induce a smootheningmore » of the surface features and formation of hollow blisters, which was attributed to multiple overlap of ion tracks. Dissolution experiments were conducted in single-pass flow-through (SPFT) mode under anoxic conditions (<0.1 O 2 ppm in Ar) to study the effect of the induced irradiation damage on the dissolution of the UO 2 matrix with data collection capturing six minute intervals for several hours. These time-resolved data showed that the irradiated samples showed a higher initial release of uranium than unirradiated samples, but that the uranium concentrations converged towards ~10 -9 mol/l after a few hours. And apart from the initial spike in uranium concentration, attributed to irradiation induced surficial micro-structural changes, no noticeable difference in uranium chemistry as measured by X-ray electron spectroscopy or ‘effective solubility’ was observed between the irradiated, doped and undoped samples in this work. Some secondary phase formation was observed on the surface of UO 2 samples after the dissolution experiment.« less
The effect of ion irradiation on the dissolution of UO 2 and UO 2 -based simulant fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Popel, Aleksej J.; Wietsma, Thomas W.; Engelhard, Mark H.
Our aim is to study the separate effect of fission fragment damage on the dissolution of simulant UK advanced gas-cooled reactor nuclear fuel in water. Plain UO 2 and UO 2 samples, doped with inactive fission products to simulate 43 GWd/tU of burn-up, were fabricated. A set of these samples were then irradiated with 92 MeV 129Xe 23+ ions to a fluence of 4.8 × 10 15 ions/cm 2 to simulate the fission damage that occurs within nuclear fuels. The primary effect of the irradiation on the UO 2 samples, observed by scanning electron microscopy, was to induce a smootheningmore » of the surface features and formation of hollow blisters, which was attributed to multiple overlap of ion tracks. Dissolution experiments were conducted in single-pass flow-through (SPFT) mode under anoxic conditions (<0.1 O 2 ppm in Ar) to study the effect of the induced irradiation damage on the dissolution of the UO 2 matrix with data collection capturing six minute intervals for several hours. These time-resolved data showed that the irradiated samples showed a higher initial release of uranium than unirradiated samples, but that the uranium concentrations converged towards ~10 -9 mol/l after a few hours. And apart from the initial spike in uranium concentration, attributed to irradiation induced surficial micro-structural changes, no noticeable difference in uranium chemistry as measured by X-ray electron spectroscopy or ‘effective solubility’ was observed between the irradiated, doped and undoped samples in this work. Some secondary phase formation was observed on the surface of UO 2 samples after the dissolution experiment.« less
Forsberg, Charles W.; Lam, Stephen; Carpenter, David M.; ...
2017-02-26
Three advanced nuclear power systems use liquid salt coolants that generate tritium and thus face the common challenges of containing and capturing tritium to prevent its release to the environment. The fluoride salt–cooled high-temperature reactor (FHR) uses clean fluoride salt coolants and the same graphite-matrix coated-particle fuel as high-temperature gas-cooled reactors. Molten salt reactors (MSRs) dissolve the fuel in a fluoride or chloride salt with release of fission product tritium into the salt. In most FHR and MSR systems, the baseline salts contain lithium where isotopically separated 7Li is proposed to minimize tritium production from neutron interactions with the salt.more » The Chinese Academy of Sciences plans to start operation of a 2-MW(thermal) molten salt test reactor by 2020. For high-magnetic-field fusion machines, the use of lithium enriched in 6Li is proposed to maximize tritium generation—the fuel for a fusion machine. Advances in superconductors that enable higher power densities may require the use of molten lithium salts for fusion blankets and as coolants. Recent technical advances in these three reactor classes have resulted in increased government and private interest and the beginning of a coordinated effort to address the tritium control challenges in 700°C liquid salt systems. In this paper, we describe characteristics of salt-cooled fission and fusion machines, the basis for growing interest in these technologies, tritium generation in molten salts, the environment for tritium capture, models for high-temperature tritium transport in salt systems, alternative strategies for tritium control, and ongoing experimental work. Several methods to control tritium appear viable. Finally, limited experimental data are the primary constraint for designing efficient cost-effective methods of tritium control.« less
NASA Astrophysics Data System (ADS)
Leenaers, A.; Detavernier, C.; Van den Berghe, S.
2008-11-01
The core of the BR1 research reactor at SCK•CEN, Mol (Belgium) has a graphite matrix loaded with fuel rods consisting of a natural uranium slug in aluminum cladding. The BR1 reactor has been in operation since 1956 and still contains its original fuel rods. After more than 50 years irradiation at low temperature, some of the fuel rods have been examined. Fabrication reports indicate that a so-called AlSi bonding layer and an U(Al,Si) 3 anti-diffusion layer on the natural uranium fuel slug were applied to limit the interaction between the uranium fuel and aluminum cladding. The microstructure of the fuel, bonding and anti-diffusion layer and cladding were analysed using optical microscopy, scanning electron microscopy and electron microprobe analysis. It was found that the AlSi bonding layer does provide a tight bond between fuel and cladding but that it is a thin USi layer that acts as effective anti-diffusion layer and not the intended U(Al,Si) 3 layer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pavel G. Medvedev
2009-11-01
Effect of in-pile degradation of thermal conductivity on the maximum temperature of the plate-type research reactor fuels has been assessed using the steady-state heat conduction equation and assuming convection cooling. It was found that due to very low meat thickness, characteristic for this type of fuel, the effect of thermal conductivity degradation on the maximum fuel temperature is minor. For example, the fuel plate featuring 0.635 mm thick meat operating at heat flux of 600 W/cm2 would experience only a 20oC temperature rise if the meat thermal conductivity degrades from 0.8 W/cm-s to 0.3 W/cm-s. While degradation of meat thermalmore » conductivity in dispersion-type U-Mo fuel can be very substantial due to formation of interaction layer between the particles and the matrix, and development of fission gas filled porosity, this simple analysis demonstrates that this phenomenon is unlikely to significantly affect the temperature-based safety margin of the fuel during normal operation.« less
DART model for thermal conductivity of U{sub 3}Si{sub 2} aluminum dispersion fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rest, J.; Snelgrove, J.L.; Hofman, G.L.
1995-09-01
This paper describes the primary physical models that form the basis of the DART model for calculating irradiation-induced changes in the thermal conductivity of aluminium dispersion fuel. DART calculations of fuel swelling, pore closure, and thermal conductivity are compared with measured values.
Research of carbon composite material for nonlinear finite element method
NASA Astrophysics Data System (ADS)
Kim, Jung Ho; Garg, Mohit; Kim, Ji Hoon
2012-04-01
Works on the absorption of collision energy in the structural members are carried out widely with various material and cross-sections. And, with ever increasing safety concerns, they are presently applied in various fields including railroad trains, air crafts and automobiles. In addition to this, problem of lighting structural members became important subject by control of exhaust gas emission, fuel economy and energy efficiency. CFRP(Carbon Fiber Reinforced Plastics) usually is applying the two primary structural members because of different result each design parameter as like stacking thickness, stacking angle, moisture absorption ect. We have to secure the data for applying primary structural members. But it always happens to test design parameters each for securing the data. So, it has much more money and time. We can reduce the money and the time, if can ensure the CFRP material properties each design parameters. In this study, we experiment the coupon test each tension, compression and shear using CFRP prepreg sheet and simulate non-linear analyze at the sources - test result, Caron longitudinal modulus and matrix poisson's ratio using GENOAMQC is specialized at Composite analysis. And then we predict the result that specimen manufacture changing stacking angle and experiment in such a way of test method using GENOA-MCQ.
Muoio, Deborah M.; Noland, Robert C.; Kovalik, Jean-Paul; Seiler, Sarah E.; Davies, Michael N.; DeBalsi, Karen L.; Ilkayeva, Olga R.; Stevens, Robert D.; Kheterpal, Indu; Zhang, Jingying; Covington, Jeffrey D.; Bajpeyi, Sudip; Ravussin, Eric; Kraus, William; Koves, Timothy R.; Mynatt, Randall L.
2012-01-01
Summary The concept of “metabolic inflexibility” was first introduced to describe the failure of insulin resistant human subjects to appropriately adjust mitochondrial fuel selection in response to nutritional cues. This phenomenon has since gained increasing recognition as a core component of the metabolic syndrome, but the underlying mechanisms have remained elusive. Here, we identify an essential role for the mitochondrial matrix enzyme, carnitine acetyltransferase (CrAT), in regulating substrate switching and glucose tolerance. By converting acetyl-CoA to its membrane permeant acetylcarnitine ester, CrAT regulates mitochondrial and intracellular carbon trafficking. Studies in muscle-specific Crat knockout mice, primary human skeletal myocytes and human subjects undergoing L-carnitine supplementation support a model wherein CrAT combats nutrient stress, promotes metabolic flexibility and enhances insulin action by permitting mitochondrial efflux of excess acetyl moieties that otherwise inhibit key regulatory enzymes such as pyruvate dehydrogenase. These findings offer therapeutically relevant insights into the molecular basis of metabolic inflexibility. PMID:22560225
Muoio, Deborah M; Noland, Robert C; Kovalik, Jean-Paul; Seiler, Sarah E; Davies, Michael N; DeBalsi, Karen L; Ilkayeva, Olga R; Stevens, Robert D; Kheterpal, Indu; Zhang, Jingying; Covington, Jeffrey D; Bajpeyi, Sudip; Ravussin, Eric; Kraus, William; Koves, Timothy R; Mynatt, Randall L
2012-05-02
The concept of "metabolic inflexibility" was first introduced to describe the failure of insulin-resistant human subjects to appropriately adjust mitochondrial fuel selection in response to nutritional cues. This phenomenon has since gained increasing recognition as a core component of the metabolic syndrome, but the underlying mechanisms have remained elusive. Here, we identify an essential role for the mitochondrial matrix enzyme, carnitine acetyltransferase (CrAT), in regulating substrate switching and glucose tolerance. By converting acetyl-CoA to its membrane permeant acetylcarnitine ester, CrAT regulates mitochondrial and intracellular carbon trafficking. Studies in muscle-specific Crat knockout mice, primary human skeletal myocytes, and human subjects undergoing L-carnitine supplementation support a model wherein CrAT combats nutrient stress, promotes metabolic flexibility, and enhances insulin action by permitting mitochondrial efflux of excess acetyl moieties that otherwise inhibit key regulatory enzymes such as pyruvate dehydrogenase. These findings offer therapeutically relevant insights into the molecular basis of metabolic inflexibility. Copyright © 2012 Elsevier Inc. All rights reserved.
Müller, Stephan A; van der Smissen, Anja; von Feilitzsch, Margarete; Anderegg, Ulf; Kalkhof, Stefan; von Bergen, Martin
2012-12-01
Fibroblasts are the main matrix producing cells of the dermis and are also strongly regulated by their matrix environment which can be used to improve and guide skin wound healing processes. Here, we systematically investigated the molecular effects on primary dermal fibroblasts in response to high-sulfated hyaluronan [HA] (hsHA) by quantitative proteomics. The comparison of non- and high-sulfated HA revealed regulation of 84 of more than 1,200 quantified proteins. Based on gene enrichment we found that sulfation of HA alters extracellular matrix remodeling. The collagen degrading enzymes cathepsin K, matrix metalloproteinases-2 and -14 were found to be down-regulated on hsHA. Additionally protein expression of thrombospondin-1, decorin, collagen types I and XII were reduced, whereas the expression of trophoblast glycoprotein and collagen type VI were slightly increased. This study demonstrates that global proteomics provides a valuable tool for revealing proteins involved in molecular effects of growth substrates for further material optimization.
Phase I Final Scientific Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Xijia; Fetvedt, Jeremy; Dimmig, Walker
This Final Scientific Report addresses the accomplishments achieved during Phase I of DE- FE0023985, Coal Syngas Combustor Development for Supercritical CO 2 Power Cycles. The primary objective of the project was to develop a coal syngas-fueled combustor design for use with high-pressure, high-temperature, oxy-fuel, supercritical CO 2 power cycles, with particular focus given to the conditions required by the Allam Cycle. The primary goals, from the Statement of Project Objectives, were to develop: (1) a conceptual design of a syngas-fueled combustor-turbine block for a 300MWe high-pressure, oxy-fuel, sCO2 power plant; (2) the preliminary design of a 5MWt test combustor; andmore » (3) the definition of a combustor test program. Accomplishments for each of these goals are discussed in this report.« less
Neutronic study on conversion of SAFARI-1 to LEU silicide fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ball, G.; Pond, R.; Hanan, N.
1995-02-01
This paper marks the initial study into the technical and economic feasibility of converting the SAFARI-1 reactor in South Africa to LEU silicide fuel. Several MTR assembly geometries and LEU uranium densities have been studied and compared with MEU and HEU fuels. Two factors of primary importance for conversion of SAFARI-1 to LEU fuel are the economy of the fuel cycle and the performance of the incore and excore irradiation positions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayes, S. L.; Harp, J. M.; Chichester, H. J. M.
Research and development activities on metallic fuels in the US are focused on their potential use for actinide transmutation in future sodium fast reactors. As part of this application, there is a desire to demonstrate a multifold increase in burnup potential. A number of metallic fuel design innovations are under investigation with a view toward significantly increasing the burnup potential of metallic fuels, since higher discharge burnups equate to lower potential actinide losses during recycle. Promising innovations under investigation include: 1) lowering the fuel smeared density in order to accommodate the additional swelling expected as burnups increase, 2) utilizing anmore » annular fuel geometry for better geometrical stability at low smeared densities, as well as the potential to eliminate the need for a sodium bond, and 3) minor alloy additions to immobilize lanthanide fission products inside the metallic fuel matrix and prevent their transport to the cladding resulting in fuel-cladding chemical interaction. This paper presents results from these efforts to advance metallic fuel technology in support of high burnup and actinide transmutation objectives. Highlights include examples of fabrication of low smeared density annular metallic fuels, experiments to identify alloy additions effective in immobilizing lanthanide fission products, and early postirradiation examinations of annular metallic fuels having low smeared densities and palladium additions for fission product immobilization.« less
Biomass fuel exposure and respiratory diseases in India.
Prasad, Rajendra; Singh, Abhijeet; Garg, Rajiv; Giridhar, Giridhar B
2012-10-01
One half of the world's population relies on biomass fuel as the primary source of domestic energy. Biomass fuel exposure causes a high degree of morbidity and mortality in humans. This is especially true in the context of developing countries, which account for 99% of the world's biomass fuel use. Biomass fuel consists of fire wood, dung cakes, agricultural crop residues such as straw, grass, and shrubs, coal fuels and kerosene. Together, they supply 75% of the domestic energy in India. An estimated three-quarters of Indian households use biomass fuel as the primary means for domestic cooking. Ninety percent of rural households and 32% of urban households cook their meals on a biomass stove. There are wide variations between the rural and urban households regarding the specific type of biomass fuel used. Globally, almost 2 million deaths per year are attributable to solid fuel use, with more than 99% of these occurring in developing countries. Biomass fuel accounts for 5-6% of the national burden of disease. Burning biomass fuels emits toxic fumes into the air that consist of small solid particles, carbon monoxide, polyorganic and polyaromatic hydrocarbons, and formaldehyde. Exposure to biomass fuels has been found to be associated with many respiratory diseases such as acute lower respiratory infections, chronic obstructive pulmonary disease, lung cancer, pulmonary tuberculosis, and asthma. Biomass fuel exposure is closely related to the burden of disease in India. Hopes are that future studies will examine the morbidity associated with biomass exposure and seek to prevent it. Concerted efforts to improve stove design and transition to high-efficiency low-emission fuels may reduce respiratory disease associated with biomass fuel exposure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, Keri R.; Judge, Elizabeth J.; Barefield, James E.
We show the analysis of light water reactor simulated used nuclear fuel using laser-induced breakdown spectroscopy (LIBS) is explored using a simplified version of the main oxide phase. The main oxide phase consists of the actinides, lanthanides, and zirconium. The purpose of this study is to develop a rapid, quantitative technique for measuring zirconium in a uranium dioxide matrix without the need to dissolve the material. A second set of materials including cerium oxide is also analyzed to determine precision and limit of detection (LOD) using LIBS in a complex matrix. Two types of samples are used in this study:more » binary and ternary oxide pellets. The ternary oxide, (U,Zr,Ce)O 2 pellets used in this study are a simplified version the main oxide phase of used nuclear fuel. The binary oxides, (U,Ce)O 2 and (U,Zr)O 2 are also examined to determine spectral emission lines for Ce and Zr, potential spectral interferences with uranium and baseline LOD values for Ce and Zr in a UO 2 matrix. In the spectral range of 200 to 800 nm, 33 cerium lines and 25 zirconium lines were identified and shown to have linear correlation values (R 2) > 0.97 for both the binary and ternary oxides. The cerium LOD in the (U,Ce)O 2 matrix ranged from 0.34 to 1.08 wt% and 0.94 to 1.22 wt% in (U,Ce,Zr)O 2 for 33 of Ce emission lines. The zirconium limit of detection in the (U,Zr)O 2 matrix ranged from 0.84 to 1.15 wt% and 0.99 to 1.10 wt% in (U,Ce,Zr)O 2 for 25 Zr lines. Finally, the effect of multiple elements in the plasma and the impact on the LOD is discussed.« less
Kumar, Kamal; Zhang, Yu; Sung, Chi -Jen; ...
2015-04-13
We study the influence of blending n-butanol on the ignition delay times of n-heptane and iso-octane, the primary reference fuels for gasoline. The ignition delay times are measured using a rapid compression machine, with an emphasis on the low-to-intermediate temperature conditions. The experiments are conducted at equivalence ratios of 0.4 and 1.0, for a compressed pressure of 20 bar, with the temperatures at the end of compression ranging from 613 K to 979 K. The effect of n-butanol addition on the development of the two-stage ignition characteristics for the two primary reference fuels is also examined. The experimental results aremore » compared to predictions obtained using a detailed chemical kinetic mechanism, which has been obtained by a systematic merger of previously reported base models for the combustion of the individual fuel constituents. In conclusion, a sensitivity analysis on the base, and the merged models, is also performed to understand the dependence of autoignition delay times on the model parameters.« less
Analysis of Advanced Fuel Assemblies and Core Designs for the Current and Next Generations of LWRs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ragusa, Jean; Vierow, Karen
2011-09-01
The objective of the project is to design and analyze advanced fuel assemblies for use in current and future light water reactors and to assess their ability to reduce the inventory of transuranic elements, while preserving operational safety. The reprocessing of spent nuclear fuel can delay or avoid the need for a second geological repository in the US. Current light water reactor fuel assembly designs under investigation could reduce the plutonium inventory of reprocessed fuel. Nevertheless, these designs are not effective in stabilizing or reducing the inventory of minor actinides. In the course of this project, we developed and analyzedmore » advanced fuel assembly designs with improved thermal transmutation capability regarding transuranic elements and especially minor actinides. These designs will be intended for use in thermal spectrum (e.g., current and future fleet of light water reactors in the US). We investigated various fuel types, namely high burn-up advanced mixed oxides and inert matrix fuels, in various geometrical designs that are compliant with the core internals of current and future light water reactors. Neutronic/thermal hydraulic effects were included. Transmutation efficiency and safety parameters were used to rank and down-select the various designs.« less
Performance of the MTR core with MOX fuel using the MCNP4C2 code.
Shaaban, Ismail; Albarhoum, Mohamad
2016-08-01
The MCNP4C2 code was used to simulate the MTR-22 MW research reactor and perform the neutronic analysis for a new fuel namely: a MOX (U3O8&PuO2) fuel dispersed in an Al matrix for One Neutronic Trap (ONT) and Three Neutronic Traps (TNTs) in its core. Its new characteristics were compared to its original characteristics based on the U3O8-Al fuel. Experimental data for the neutronic parameters including criticality relative to the MTR-22 MW reactor for the original U3O8-Al fuel at nominal power were used to validate the calculated values and were found acceptable. The achieved results seem to confirm that the use of MOX fuel in the MTR-22 MW will not degrade the safe operational conditions of the reactor. In addition, the use of MOX fuel in the MTR-22 MW core leads to reduce the uranium fuel enrichment with (235)U and the amount of loaded (235)U in the core by about 34.84% and 15.21% for the ONT and TNTs cases, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.
Method and apparatus for adding electrolyte to a fuel cell stack
DOE Office of Scientific and Technical Information (OSTI.GOV)
Congdon, J.V.; English, J.G.
1986-06-24
A process is described for adding electrolyte to a fuel cell stack, the stack comprising sheet-like elements defining a plurality of fuel cell units disposed one atop the other in abutting relationship, the units defining a substantially flat, vertically extending face, each unit including a cell comprising a pair of sheet-like spaced apart gas porous electrodes with a porous matrix layer sandwiched therebetween for retaining electrolyte during cell operation, each unit also including a sheet-like substantially non-porous separator, the separator being sandwiched between the cells of adjacent units. The improvement described here consists of: extending at least one of themore » sheet-like elements of each of a plurality of the fuel cell units outwardly from the stack face to define horizontal tabs disposed one above the other; depositing dilute electrolyte directly from electrolyte supply means upon substantially the full length, parallel to the stack face, of at least the uppermost tab, the tabs being constructed and arranged such that at least a portion of the deposited electrolyte cascades from tab to tab and down the face of the stack, the deposited electrolyte being absorbed by capillary action into the elements of the stack, the step of depositing continuing until all of the electrodes and matrix layers of the stack are fully saturated with the dilute electrolyte; and thereafter evaporating liquid from the saturated elements under controlled conditions of humidity and temperature until the stack has a desired electrolyte volume and electrolyte concentration therein.« less
Optomechanical characterization of proton-exchange membrane fuel cells
NASA Astrophysics Data System (ADS)
Jalani, Nikhil H.; Mizar, Shivananda P.; Choi, Pyoungho; Furlong, Cosme; Datta, Ravindra
2004-08-01
Nafion is widely used as the polymer electrolyte in proton exchange membrane (PEM) fuel cells. The properties that make the Nafion membrane indispensable are the combination of good water uptake, ion-exchange capacity, proton conductivity, gas permeability, and excellent electrochemical stability. The amount of water sorbed in the Nafion membrane is critical as the proton conductivity depends directly on the water content of the membrane which determines the fuel cell performance. The factors which affect the extent of the solvent uptake by Nafion are temperature, ion-exchange capacity, pretreatment of membrane, and the physical state of absorbing water, whether it is in liquid or vapor phase. The water sorption in the membrane is explained in terms of thermodynamic equilibrium of water in the vapor and absorption phases. As the membrane imbibes more water, the membrane matrix expands and exerts a pressure on the pore liquid which affects its chemical potential and limits extent of swelling. The extent of matrix expansion of the membranes depends on the elastic modulus, E, of the membrane, which directly affects the sorption. Hence, it is important to understand the variation of E for Nafion membrane with relative humidity (RH) and temperature. Optoelectronic holography (OEH) techniques are applied to perform quantitative, noninvasive, full field of view investigations to determine temperature and water activity dependence of E. The results obtained confirm that with the increase in temperature, E decreases and the membranes imbibes more water. Such results will allow optimization and realization of fuel cells with improved efficiency and performance.
Solid oxide fuel cell matrix and modules
Riley, Brian
1990-01-01
Porous refractory ceramic blocks arranged in an abutting, stacked configuration and forming a three dimensional array provide a support structure and coupling means for a plurality of solid oxide fuel cells (SOFCs). Each of the blocks includes a square center channel which forms a vertical shaft when the blocks are arranged in a stacked array. Positioned within the channel is a SOFC unit cell such that a plurality of such SOFC units disposed within a vertical shaft form a string of SOFC units coupled in series. A first pair of facing inner walls of each of the blocks each include an interconnecting channel hole cut horizontally and vertically into the block walls to form gas exit channels. A second pair of facing lateral walls of each block further include a pair of inner half circular grooves which form sleeves to accommodate anode fuel and cathode air tubes. The stack of ceramic blocks is self-supporting, with a plurality of such stacked arrays forming a matrix enclosed in an insulating refractory brick structure having an outer steel layer. The necessary connections for air, fuel, burnt gas, and anode and cathode connections are provided through the brick and steel outer shell. The ceramic blocks are so designed with respect to the strings of modules that by simple and logical design the strings could be replaced by hot reloading if one should fail. The hot reloading concept has not been included in any previous designs.
Steady-State Thermal-Hydraulics Analyses for the Conversion of the BR2 Reactor to LEU
DOE Office of Scientific and Technical Information (OSTI.GOV)
Licht, J. R.; Bergeron, A.; Dionne, B.
BR2 is a research reactor used for radioisotope production and materials testing. It’s a tank-in-pool type reactor cooled by light water and moderated by beryllium and light water. The reactor core consists of a beryllium moderator forming a matrix of 79 hexagonal prisms in a hyperboloid configuration; each having a central bore that can contain a variety of different components such as a fuel assembly, a control or regulating rod, an experimental device, or a beryllium or aluminum plug. Based on a series of tests, the BR2 operation is currently limited to a maximum allowable heat flux of 470 W/cmmore » 2 to ensure fuel plate integrity during steady-state operation and after a loss-of-flow/loss-of-pressure accident. A feasibility study for the conversion of the BR2 reactor from highly-enriched uranium (HEU) to low-enriched uranium (LEU) fuel was previously performed to verify it can operate safely at the same maximum nominal steady-state heat flux. An assessment was also performed to quantify the heat fluxes at which the onset of flow instability and critical heat flux occur for each fuel type. This document updates and expands these results for the current representative core configuration (assuming a fresh beryllium matrix) by evaluating the onset of nucleate boiling (ONB), onset of fully developed nucleate boiling (FDNB), onset of flow instability (OFI) and critical heat flux (CHF).« less
NASA Non-Flow-Through PEM Fuel Cell System for Aerospace Applications
NASA Technical Reports Server (NTRS)
Araghi, Koorosh R.
2011-01-01
NASA is researching passive NFT Proton Exchange Membrane (PEM) fuel cell technologies for primary fuel cell power plants in air-independent applications. NFT fuel cell power systems have a higher power density than flow through systems due to both reduced parasitic loads and lower system mass and volume. Reactant storage still dominates system mass/volume considerations. NFT fuel cell stack testing has demonstrated equivalent short term performance to flow through stacks. More testing is required to evaluate long-term performance.
Hydrogen permeation in FeCrAl alloys for LWR cladding application
NASA Astrophysics Data System (ADS)
Hu, Xunxiang; Terrani, Kurt A.; Wirth, Brian D.; Snead, Lance L.
2015-06-01
FeCrAl, an advanced oxidation-resistant iron-based alloy class, is a highly prevalent candidate as an accident-tolerant fuel cladding material. Compared with traditional zirconium alloy fuel cladding, increased tritium permeation through FeCrAl fuel cladding to the primary coolant is expected, raising potential safety concerns. In this study, the hydrogen permeability of several FeCrAl alloys was obtained using a static permeation test station, which was calibrated and validated using 304 stainless steel. The high hydrogen permeability of FeCrAl alloys leads to concerns with respect to potentially significant tritium release when used for fuel cladding in LWRs. The total tritium inventory inside the primary coolant of a light water reactor was quantified by applying a 1-dimensional steady state tritium diffusion model to demonstrate the dependence of tritium inventory on fuel cladding type. Furthermore, potential mitigation strategies for tritium release from FeCrAl fuel cladding were discussed and indicate the potential for application of an alumina layer on the inner clad surface to serve as a tritium barrier. More effort is required to develop a robust, economical mitigation strategy for tritium permeation in reactors using FeCrAl clad fuel assemblies.
NASA Astrophysics Data System (ADS)
Riebe, My E. I.; Huber, Liliane; Metzler, Knut; Busemann, Henner; Luginbuehl, Stefanie M.; Meier, Matthias M. M.; Maden, Colin; Wieler, Rainer
2017-09-01
Whether or not some meteorites retain a record of irradiation by a large flux of energetic particles from the early sun in the form of excesses of cosmic-ray produced noble gases in individual crystals or single chondrules is a topic of ongoing debate. Here, we present He and Ne isotopic data for individual chondrules in Murchison, a chondritic regolith breccia of the CM group. We separated 27 chondrules from a clastic matrix portion and 26 chondrules from an adjacent single so-called "primary accretionary rock" (Metzler et al., 1992). All chondrules from the primary rock fragment are expected to share a common irradiation history, whereas chondrules from the clastic matrix were stirred in the regolith independently of each other. All "primary rock chondrules" and 23 of the "matrix chondrules" have very similar concentrations of cosmogenic 3He and 21Ne, corresponding to a cosmic-ray exposure age to galactic cosmic rays (GCR) of ∼1.3-1.9 Ma, in the range of Murchison's meteoroid exposure age determined with cosmogenic radionuclides. Four clastic matrix chondrules contain excesses of cosmogenic 3He and 21Ne, corresponding to nominal 4π exposure ages of ∼4-∼29 Ma, with a Ne isotopic composition as expected for production by GCR. If the fraction of excess cosmogenic gas bearing chondrules in the primary rock and clastic matrix were the same, we would expect this result with a statistical probability of only 0.5 - 2.7%. Therefore, the exposure age distributions for Murchison chondrules in primary rock and clastic matrix are very likely different. Such a difference is expected if the excess cosmogenic gas was acquired by some of the matrix chondrules in the regolith, but not if chondrules were irradiated in the solar nebula by the early sun before they accreted on the Murchison parent body. Therefore, Murchison does not provide evidence for irradiation by a high fluence of energetic particles from the early sun. By inference, this statement likely holds for the other regolithic meteorites for which large occasional excesses of cosmogenic noble gases have been reported. Considering pre-irradiation in a regolith (2π exposure), the pre-exposure times for these four chondrules are at least between some 4 and 40 Ma near the very surface of the parent body, and even longer if they were buried deeper in the regolith.
10 CFR 503.21 - Lack of alternate fuel supply.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 4 2014-01-01 2014-01-01 false Lack of alternate fuel supply. 503.21 Section 503.21 Energy DEPARTMENT OF ENERGY (CONTINUED) ALTERNATE FUELS NEW FACILITIES Temporary Exemptions for New... substantially exceed the cost of using imported petroleum as a primary energy source as defined in § 503.6 (Cost...
10 CFR 503.21 - Lack of alternate fuel supply.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 4 2011-01-01 2011-01-01 false Lack of alternate fuel supply. 503.21 Section 503.21 Energy DEPARTMENT OF ENERGY (CONTINUED) ALTERNATE FUELS NEW FACILITIES Temporary Exemptions for New... substantially exceed the cost of using imported petroleum as a primary energy source as defined in § 503.6 (Cost...
10 CFR 503.21 - Lack of alternate fuel supply.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 4 2013-01-01 2013-01-01 false Lack of alternate fuel supply. 503.21 Section 503.21 Energy DEPARTMENT OF ENERGY (CONTINUED) ALTERNATE FUELS NEW FACILITIES Temporary Exemptions for New... substantially exceed the cost of using imported petroleum as a primary energy source as defined in § 503.6 (Cost...
10 CFR 503.21 - Lack of alternate fuel supply.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 4 2012-01-01 2012-01-01 false Lack of alternate fuel supply. 503.21 Section 503.21 Energy DEPARTMENT OF ENERGY (CONTINUED) ALTERNATE FUELS NEW FACILITIES Temporary Exemptions for New... substantially exceed the cost of using imported petroleum as a primary energy source as defined in § 503.6 (Cost...
40 CFR 63.7575 - What definitions apply to this subpart?
Code of Federal Regulations, 2011 CFR
2011-07-01
.... Liquid fossil fuel means petroleum, distillate oil, residual oil and any form of liquid fuel derived from... primary purpose of recovering thermal energy in the form of steam or hot water. Waste heat boilers are... unit means a fossil fuel-fired combustion unit of more than 25 megawatts that serves a generator that...
40 CFR 63.7575 - What definitions apply to this subpart?
Code of Federal Regulations, 2012 CFR
2012-07-01
.... Liquid fossil fuel means petroleum, distillate oil, residual oil and any form of liquid fuel derived from... primary purpose of recovering thermal energy in the form of steam or hot water. Waste heat boilers are... unit means a fossil fuel-fired combustion unit of more than 25 megawatts that serves a generator that...
40 CFR 63.7575 - What definitions apply to this subpart?
Code of Federal Regulations, 2010 CFR
2010-07-01
.... Liquid fossil fuel means petroleum, distillate oil, residual oil and any form of liquid fuel derived from... primary purpose of recovering thermal energy in the form of steam or hot water. Waste heat boilers are... unit means a fossil fuel-fired combustion unit of more than 25 megawatts that serves a generator that...
49 CFR 173.172 - Aircraft hydraulic power unit fuel tank.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 2 2012-10-01 2012-10-01 false Aircraft hydraulic power unit fuel tank. 173.172... Class 1 and Class 7 § 173.172 Aircraft hydraulic power unit fuel tank. Aircraft hydraulic power unit... consist of an aluminum pressure vessel made from tubing and having welded heads. Primary containment of...
49 CFR 173.172 - Aircraft hydraulic power unit fuel tank.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 2 2014-10-01 2014-10-01 false Aircraft hydraulic power unit fuel tank. 173.172... Class 1 and Class 7 § 173.172 Aircraft hydraulic power unit fuel tank. Aircraft hydraulic power unit... consist of an aluminum pressure vessel made from tubing and having welded heads. Primary containment of...
49 CFR 173.172 - Aircraft hydraulic power unit fuel tank.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 2 2011-10-01 2011-10-01 false Aircraft hydraulic power unit fuel tank. 173.172... Class 1 and Class 7 § 173.172 Aircraft hydraulic power unit fuel tank. Aircraft hydraulic power unit... consist of an aluminum pressure vessel made from tubing and having welded heads. Primary containment of...
49 CFR 173.172 - Aircraft hydraulic power unit fuel tank.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 2 2013-10-01 2013-10-01 false Aircraft hydraulic power unit fuel tank. 173.172... Class 1 and Class 7 § 173.172 Aircraft hydraulic power unit fuel tank. Aircraft hydraulic power unit... consist of an aluminum pressure vessel made from tubing and having welded heads. Primary containment of...
49 CFR 173.172 - Aircraft hydraulic power unit fuel tank.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 2 2010-10-01 2010-10-01 false Aircraft hydraulic power unit fuel tank. 173.172... Class 1 and Class 7 § 173.172 Aircraft hydraulic power unit fuel tank. Aircraft hydraulic power unit... consist of an aluminum pressure vessel made from tubing and having welded heads. Primary containment of...
O'Sullivan, M.; Rap, A.; Reddington, C. L.; ...
2016-07-29
The global terrestrial carbon sink has increased since the start of this century at a time of growing carbon emissions from fossil fuel burning. Here we test the hypothesis that increases in atmospheric aerosols from fossil fuel burning enhanced the diffuse light fraction and the efficiency of plant carbon uptake. Using a combination of models, we estimate that at global scale changes in light regimes from fossil fuel aerosol emissions had only a small negative effect on the increase in terrestrial net primary production over the period 1998–2010. Hereby, the substantial increases in fossil fuel aerosol emissions and plant carbonmore » uptake over East Asia were effectively canceled by opposing trends across Europe and North America. This suggests that if the recent increase in the land carbon sink would be causally linked to fossil fuel emissions, it is unlikely via the effect of aerosols but due to other factors such as nitrogen deposition or nitrogen-carbon interactions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Sullivan, M.; Rap, A.; Reddington, C. L.
The global terrestrial carbon sink has increased since the start of this century at a time of growing carbon emissions from fossil fuel burning. Here we test the hypothesis that increases in atmospheric aerosols from fossil fuel burning enhanced the diffuse light fraction and the efficiency of plant carbon uptake. Using a combination of models, we estimate that at global scale changes in light regimes from fossil fuel aerosol emissions had only a small negative effect on the increase in terrestrial net primary production over the period 1998–2010. Hereby, the substantial increases in fossil fuel aerosol emissions and plant carbonmore » uptake over East Asia were effectively canceled by opposing trends across Europe and North America. This suggests that if the recent increase in the land carbon sink would be causally linked to fossil fuel emissions, it is unlikely via the effect of aerosols but due to other factors such as nitrogen deposition or nitrogen-carbon interactions.« less
Schuetz, Mark A.
1983-01-01
A burner assembly provides for 100% premixing of fuel and air by drawing the air into at least one high velocity stream of fuel without power assist. Specifically, the nozzle assembly for injecting the fuel into a throat comprises a plurality of nozzles in a generally circular array. Preferably, swirl is imparted to the air/fuel mixture by angling the nozzles. The diffuser comprises a conical primary diffuser followed by a cusp diffuser.
NASA Astrophysics Data System (ADS)
Takano, Y.; Liou, K. N.; Kahnert, M.; Yang, P.
2013-08-01
The single-scattering properties of eight black carbon (BC, soot) fractal aggregates, composed of primary spheres from 7 to 600, computed by the geometric-optics surface-wave (GOS) approach coupled with the Rayleigh-Gans-Debye (RGD) adjustment for size parameters smaller than approximately 2, are compared with those determined from the superposition T-matrix method. We show that under the condition of random orientation, the results from GOS/RGD are in general agreement with those from T-matrix in terms of the extinction and absorption cross-sections, the single-scattering co-albedo, and the asymmetry factor. When compared with the specific absorption (m2/g) measured in the laboratory, we illustrate that using the observed radii of primary spheres ranging from 3.3 to 25 nm, the theoretical values determined from GOS/RGD for primary sphere numbers of 100-600 are within the range of measured values. The GOS approach can be effectively applied to aggregates composed of a large number of primary spheres (e.g., >6000) and large size parameters (≫2) in terms of computational efforts.
Low hydrostatic head electrolyte addition to fuel cell stacks
Kothmann, Richard E.
1983-01-01
A fuel cell and system for supply electrolyte, as well as fuel and an oxidant to a fuel cell stack having at least two fuel cells, each of the cells having a pair of spaced electrodes and a matrix sandwiched therebetween, fuel and oxidant paths associated with a bipolar plate separating each pair of adjacent fuel cells and an electrolyte fill path for adding electrolyte to the cells and wetting said matrices. Electrolyte is flowed through the fuel cell stack in a back and forth fashion in a path in each cell substantially parallel to one face of opposite faces of the bipolar plate exposed to one of the electrodes and the matrices to produce an overall head uniformly between cells due to frictional pressure drop in the path for each cell free of a large hydrostatic head to thereby avoid flooding of the electrodes. The bipolar plate is provided with channels forming paths for the flow of the fuel and oxidant on opposite faces thereof, and the fuel and the oxidant are flowed along a first side of the bipolar plate and a second side of the bipolar plate through channels formed into the opposite faces of the bipolar plate, the fuel flowing through channels formed into one of the opposite faces and the oxidant flowing through channels formed into the other of the opposite faces.
Transportation fuels and vehicles.
DOT National Transportation Integrated Search
1999-06-24
Environmental concerns are currently the primary driver of innovation in the area of Transportation Fuels and Vehicles. Road vehicle emissions are a significant determinant of urban air quality and produce a very substantial quantity of carbon dioxid...
78 FR 34105 - Proposed Information Collection Activity; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-06
... include Natural Gas, Electricity, Fuel Oil, Propane, Wood and Coal. The average annual primary home energy... using a secondary source of heat. Annual Heating Fuel Consumption: The grantee would need to collect...
Okwor, Tochi J.; Adetona, Olorunfemi; Akinkugbe, Ayesha O.; Amadi, Casmir E.; Esezobor, Christopher; Adeyeye, Olufunke O.; Ojo, Oluwafemi; Nwude, Vivian N.; Mortimer, Kevin
2018-01-01
Cooking with dirty-burning fuels is associated with health risk from household air pollution. We assessed the prevalence of and factors associated with the use of cooking fuels, and attitudes and barriers towards use of liquefied petroleum gas (LPG). This was a cross-sectional, population-based survey conducted in 519 households in Lagos, Nigeria. We used a structured questionnaire to obtain information regarding choice of household cooking fuel and the attitudes towards the use of LPG. Kerosene was the most frequently used cooking fuel (n = 475, 91.5%; primary use n = 364, 70.1%) followed by charcoal (n = 159, 30.6%; primary use n = 88, 17%) and LPG (n = 86, 16.6%; primary use n = 63, 12.1%). Higher level of education, higher income and younger age were associated with LPG vs. kerosene use. Fuel expenditure on LPG was significantly lower than for kerosene (N (Naira) 2169.0 ± 1507.0 vs. N2581.6 ± 1407.5). Over 90% of non-LPG users were willing to switch to LPG but cited safety issues and high cost as potential barriers to switching. Our findings suggest that misinformation and beliefs regarding benefits, safety and cost of LPG are important barriers to LPG use. An educational intervention program could be a cost-effective approach to improve LPG adoption and should be formally addressed through a well-designed community-based intervention study. PMID:29614713
Mironov, Vladislav P; Matusevich, Janna L; Kudrjashov, Vladimir P; Boulyga, Sergei F; Becker, J Sabine
2002-12-01
This work presents experimental results on the distribution of irradiated reactor uranium from fallout after the accident at Chernobyl Nuclear Power Plant (NPP) in comparison to natural uranium distribution in different soil types. Oxidation processes and vertical migration of irradiated uranium in soils typical of the 30 km relocation area around Chernobyl NPP were studied using 236U as the tracer for irradiated reactor uranium and inductively coupled plasma mass spectrometry as the analytical method for uranium isotope ratio measurements. Measurements of natural uranium yielded significant variations of its concentration in upper soil layers from 2 x 10(-7) g g(-1) to 3.4 x 10(-6) g g(-1). Concentrations of irradiated uranium in the upper 0-10 cm soil layers at the investigated sampling sites varied from 5 x 10(-12) g g(-1) to 2 x 10(-6) g g(-1) depending on the distance from Chernobyl NPP. In the majority of investigated soil profiles 78% to 97% of irradiated "Chernobyl" uranium is still contained in the upper 0-10 cm soil layers. The physical and chemical characteristics of the soil do not have any significant influence on processes of fuel particle destruction. Results obtained using carbonate leaching of 236U confirmed that more than 60% of irradiated "Chernobyl" uranium is still in a tetravalent form, ie. it is included in the fuel matrix (non-oxidized fuel UO2). The average value of the destruction rate of fuel particles determined for the Western radioactive trace (k = 0.030 +/- 0.005 yr(-1)) and for the Northern radioactive trace (k = 0.035 + 0.009 yr(-1)) coincide within experimental errors. Use of leaching of fission products in comparison to leaching of uranium for study of the destruction rate of fuel particles yielded poor coincidence due to the fact that use of fission products does not take into account differences in the chemical properties of fission products and fuel matrix (uranium).
Stability Study of the RERTR Fuel Microstructure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jian Gan; Dennis Keiser; Brandon Miller
2014-04-01
The irradiation stability of the interaction phases at the interface of fuel and Al alloy matrix as well as the stability of the fission gas bubble superlattice is believed to be very important to the U-Mo fuel performance. In this paper the recent result from TEM characterization of Kr ion irradiated U-10Mo-5Zr alloy will be discussed. The focus will be on the phase stability of Mo2-Zr, a dominated second phase developed at the interface of U-10Mo and the Zr barrier in a monolithic fuel plate from fuel fabrication. The Kr ion irradiations were conducted at a temperature of 200 degreesmore » C to an ion fluence of 2.0E+16 ions/cm2. To investigate the thermal stability of the fission gas bubble superlattice, a key microstructural feature in both irradiated dispersion U-7Mo fuel and monolithic U-10Mo fuel, a FIB-TEM sample of the irradiated U-10Mo fuel (3.53E+21 fission/cm3) was used for a TEM in-situ heating experiment. The preliminary result showed extraordinary thermal stability of the fission gas bubble superlattice. The implication of the TEM observation from these two experiments on the fuel microstructural evolution under irradiation will be discussed.« less
Cladding material, tube including such cladding material and methods of forming the same
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garnier, John E.; Griffith, George W.
A multi-layered cladding material including a ceramic matrix composite and a metallic material, and a tube formed from the cladding material. The metallic material forms an inner liner of the tube and enables hermetic sealing of thereof. The metallic material at ends of the tube may be exposed and have an increased thickness enabling end cap welding. The metallic material may, optionally, be formed to infiltrate voids in the ceramic matrix composite, the ceramic matrix composite encapsulated by the metallic material. The ceramic matrix composite includes a fiber reinforcement and provides increased mechanical strength, stiffness, thermal shock resistance and highmore » temperature load capacity to the metallic material of the inner liner. The tube may be used as a containment vessel for nuclear fuel used in a nuclear power plant or other reactor. Methods for forming the tube comprising the ceramic matrix composite and the metallic material are also disclosed.« less
A matrix-inversion method for gamma-source mapping from gamma-count data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adsley, Ian; Burgess, Claire; Bull, Richard K
In a previous paper it was proposed that a simple matrix inversion method could be used to extract source distributions from gamma-count maps, using simple models to calculate the response matrix. The method was tested using numerically generated count maps. In the present work a 100 kBq Co{sup 60} source has been placed on a gridded surface and the count rate measured using a NaI scintillation detector. The resulting map of gamma counts was used as input to the matrix inversion procedure and the source position recovered. A multi-source array was simulated by superposition of several single-source count maps andmore » the source distribution was again recovered using matrix inversion. The measurements were performed for several detector heights. The effects of uncertainties in source-detector distances on the matrix inversion method are also examined. The results from this work give confidence in the application of the method to practical applications, such as the segregation of highly active objects amongst fuel-element debris. (authors)« less
Ultra-deep desulfurization via reactive adsorption on peroxophosphomolybdate/agarose hybrids.
Xu, Jian; Li, Huacheng; Wang, Shengtian; Luo, Fang; Liu, Yunyu; Wang, Xiaohong; Jiang, Zijiang
2014-09-01
A catalyst system composed of peroxophosphomolybdates as catalytic center and agarose as matrix material had been designed. The [C16H33N(CH3)3]3[PO4{MoO(O2)2}4]/agarose (C16PMo(O2)2/agarose) hybrid was found to be active for oxidation desulfurization (ODS) of dibenzothiophene (DBT) or real fuel into corresponding sulfone by H2O2 as an oxidant, while the sulfur content could be reduced to 5ppm. The higher activity comes from its components including [PO4{MoO(O2)2}4] catalytic sites, the hydrophobic quaternary ammonium cation affinity to low polarity substrates, and agarose matrix affinity to H2O2 and sulfone. During the oxidative reaction, the mass transfer resistance between H2O2 and organic sulfurs could be decreased and the reaction rate could increase by the assistance of agarose and hydrophobic tails of [C16H33N(CH3)3]3[PO4{MoO(O2)2}4]. Meanwhile, the oxidative products could be adsorbed by agarose matrix to give clean fuel avoiding the post-treatment. In addition, the hybrid was easily regenerated to be reused. Copyright © 2014 Elsevier Ltd. All rights reserved.
General classification of ``hot`` particles from the nearest Chernobyl contaminated areas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shabalev, S.I.; Burakov, B.E.; Anderson, E.B.
1997-12-31
The morphology and composition both chemical and radionuclide of the main types of the solid-phase hot particles formed following the accident on the Chernobyl NPP have been studied by SEM, electron microprobe and gamma-spectrometry methods. Differences in many isotopes including: {sup 106}Ru, {sup 134}Cs, {sup 137}Cs dependent upon the hot particle matrix chemical composition was observed. The classification of hot particles based upon the chemical composition of their matrices has been done. It includes three main types: (1) fuel particles with UO{sub x} matrix; (2) fuel-constructional particles with Zr-U-O matrix, (3) hot particles with metallic inclusions of Fe-Cr-Ni. Moreover, theremore » are more rare types of hot particles with silicate or metal matrices. It was shown that only metallic inclusions of Fe-Cr-Ni are concentrators of {sup 106}Ru, which caused this nuclides assimilation in the molten stainless steel during the initial stages of the accident. Soils contamination of non-radioactive lead oxide particles in the Chernobyl NPP region were noticed. It was supposed that part of metallic lead, dropped from helicopters into burning reactor during first days of accident, was evaporated and oxidized accompanying solid oxide particles formation.« less
Preliminary results of post-irradiation examination of the AGR-1 TRISO fuel compacts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paul Demkowicz; John Hunn; Robert Morris
2012-10-01
Five irradiated fuel compacts from the AGR-1 experiment have been examined in detail in order to assess in-pile fission product release behavior. Compacts were electrolytically deconsolidated and analyzed using the leach-burn-leach technique to measure fission product inventory in the compact matrix and identify any particles with a defective SiC layer. Loose particles were then gamma counted to measure the fission product inventory. One particle with a defective SiC layer was found in the five compacts examined. The fractional release of Ag 110m from the particles was significant. The total fraction of silver released from all the particles within a compactmore » ranged from 0-0.63 and individual particles within a single compact often exhibited a very wide range of silver release. The average fractional release of Eu-154 from all particles in a compact was 2.4×10-4—1.3×10-2, which is indicative of release through intact coatings. The fractional Cs-134 inventory in the compact matrix was <2×10-5 when all coatings remained intact, indicating good cesium retention. Approximately 1% of the palladium inventory was found in the compact matrix for two of the compacts, indicating significant release through intact coatings.« less
Analytical Micromechanics Modeling Technique Developed for Ceramic Matrix Composites Analysis
NASA Technical Reports Server (NTRS)
Min, James B.
2005-01-01
Ceramic matrix composites (CMCs) promise many advantages for next-generation aerospace propulsion systems. Specifically, carbon-reinforced silicon carbide (C/SiC) CMCs enable higher operational temperatures and provide potential component weight savings by virtue of their high specific strength. These attributes may provide systemwide benefits. Higher operating temperatures lessen or eliminate the need for cooling, thereby reducing both fuel consumption and the complex hardware and plumbing required for heat management. This, in turn, lowers system weight, size, and complexity, while improving efficiency, reliability, and service life, resulting in overall lower operating costs.
Latire, Thomas; Legendre, Florence; Bigot, Nicolas; Carduner, Ludovic; Kellouche, Sabrina; Bouyoucef, Mouloud; Carreiras, Franck; Marin, Frédéric; Lebel, Jean-Marc; Galéra, Philippe; Serpentini, Antoine
2014-01-01
Mollusc shells are composed of more than 95% calcium carbonate and less than 5% of an organic matrix consisting mostly of proteins, glycoproteins and polysaccharides. Previous studies have elucidated the biological activities of the shell matrices from bivalve molluscs on skin, especially on the expression of the extracellular matrix components of fibroblasts. In this work, we have investigated the potential biological activities of shell matrix components extracted from the shell of the scallop Pecten maximus on human fibroblasts in primary culture. Firstly, we demonstrated that shell matrix components had different effects on general cellular activities. Secondly, we have shown that the shell matrix components stimulate the synthesis of type I and III collagens, as well as that of sulphated GAGs. The increased expression of type I collagen is likely mediated by the recruitment of transactivating factors (Sp1, Sp3 and human c-Krox) in the -112/-61 bp COL1A1 promoter region. Finally, contrarily to what was obtained in previous works, we demonstrated that the scallop shell extracts have only a small effect on cell migration during in vitro wound tests and have no effect on cell proliferation. Thus, our research emphasizes the potential use of shell matrix of Pecten maximus for dermo-cosmetic applications.
Miracolo, Marissa A; Drozd, Greg T; Jathar, Shantanu H; Presto, Albert A; Lipsky, Eric M; Corporan, Edwin; Robinson, Allen L
2012-08-07
A series of smog chamber experiments were performed to investigate the effects of fuel composition on secondary particulate matter (PM) formation from dilute exhaust from a T63 gas-turbine engine. Tests were performed at idle and cruise loads with the engine fueled on conventional military jet fuel (JP-8), Fischer-Tropsch synthetic jet fuel (FT), and a 50/50 blend of the two fuels. Emissions were sampled into a portable smog chamber and exposed to sunlight or artificial UV light to initiate photo-oxidation. Similar to previous studies, neat FT fuel and a 50/50 FT/JP-8 blend reduced the primary particulate matter emissions compared to neat JP-8. After only one hour of photo-oxidation at typical atmospheric OH levels, the secondary PM production in dilute exhaust exceeded primary PM emissions, except when operating the engine at high load on FT fuel. Therefore, accounting for secondary PM production should be considered when assessing the contribution of gas-turbine engine emissions to ambient PM levels. FT fuel substantially reduced secondary PM formation in dilute exhaust compared to neat JP-8 at both idle and cruise loads. At idle load, the secondary PM formation was reduced by a factor of 20 with the use of neat FT fuel, and a factor of 2 with the use of the blend fuel. At cruise load, the use of FT fuel resulted in no measured formation of secondary PM. In every experiment, the secondary PM was dominated by organics with minor contributions from sulfate when the engine was operated on JP-8 fuel. At both loads, FT fuel produces less secondary organic aerosol than JP-8 because of differences in the composition of the fuels and the resultant emissions. This work indicates that fuel reformulation may be a viable strategy to reduce the contribution of emissions from combustion systems to secondary organic aerosol production and ultimately ambient PM levels.
Evaluation of Ceramic Matrix Composite Technology for Aircraft Turbine Engine Applications
NASA Technical Reports Server (NTRS)
Halbig, Michael C.; Jaskowiak, Martha H.; Kiser, James D.; Zhu, Dongming
2013-01-01
The goals of the NASA Environmentally Responsible Aviation (ERA) Project are to reduce the NO(x) emissions, fuel burn, and noise from turbine engines. In order to help meet these goals, commercially-produced ceramic matrix composite (CMC) components and environmental barrier coatings (EBCs) are being evaluated as parts and panels. The components include a CMC combustor liner, a CMC high pressure turbine vane, and a CMC exhaust nozzle as well as advanced EBCs that are tailored to the operating conditions of the CMC combustor and vane. The CMC combustor (w/EBC) could provide 2700 F temperature capability with less component cooling requirements to allow for more efficient combustion and reductions in NOx emissions. The CMC vane (w/EBC) will also have temperature capability up to 2700 F and allow for reduced fuel burn. The CMC mixer nozzle will offer reduced weight and improved mixing efficiency to provide reduced fuel burn. The main objectives are to evaluate the manufacturability of the complex-shaped components and to evaluate their performance under simulated engine operating conditions. Progress in CMC component fabrication, evaluation, and testing is presented in which the goal is to advance from the proof of concept validation (TRL 3) to a system/subsystem or prototype demonstration in a relevant environment (TRL 6).
[Accessibility and resolution of mental health care: the matrix support experience].
Quinderé, Paulo Henrique Dias; Jorge, Maria Salete Bessa; Nogueira, Maria Sônia Lima; Costa, Liduina Farias Almeida da; Vasconcelos, Mardenia Gomes Ferreira
2013-07-01
Psycho-social Care Centers (PCC) are also designed to coordinate actions in mental health care in Brazil, mainly at Primary Health Care (PHC) level. Matrix support is one of the pillars of the program, as it aims to ensure assistance of specialized back-up staff to the health teams. In this respect, this research seeks to understand how matrix actions in mental health contribute to the accessibility and resolution of mental health cases. This study involved qualitative research conducted in the cities of Fortaleza and Sobral in the State of Ceará, where 37 (thirty-seven) mental health workers, 14 (fourteen) primary health care users and 13 (thirteen) relatives who took part in matrix support actions were interviewed. As the results revealed, the PHC workers do not feel qualified to intervene in mental health cases. There is also excess haste in referring users to PCCs making access to mental health care more difficult. However, it was identified that discussions on mental health in primary care allow the appropriation of cases by PHC workers and promote rapprochement between the teams. In this way, they influence the resolution of mental health cases.
Research on the interfacial behaviors of plate-type dispersion nuclear fuel elements
NASA Astrophysics Data System (ADS)
Wang, Qiming; Yan, Xiaoqing; Ding, Shurong; Huo, Yongzhong
2010-04-01
The three-dimensional constitutive relations are constructed, respectively, for the fuel particles, the metal matrix and the cladding of dispersion nuclear fuel elements, allowing for the effects of large deformation and thermal-elastoplasticity. According to the constitutive relations, the method of modeling their irradiation behaviors in ABAQUS is developed and validated. Numerical simulations of the interfacial performances between the fuel meat and the cladding are implemented with the developed finite element models for different micro-structures of the fuel meat. The research results indicate that: (1) the interfacial tensile stresses and shear stresses for some cases will increase with burnup, but the relative stresses will decrease with burnup for some micro-structures; (2) at the lower burnups, the interfacial stresses increase with the particle sizes and the particle volume fractions; however, it is not the case at the higher burnups; (3) the particle distribution characteristics distinctly affect the interfacial stresses, and the face-centered cubic case has the best interfacial performance of the three considered cases.
Method of combustion for dual fuel engine
Hsu, Bertrand D.; Confer, Gregory L.; Shen, Zujing; Hapeman, Martin J.; Flynn, Paul L.
1993-12-21
Apparatus and a method of introducing a primary fuel, which may be a coal water slutty, and a high combustion auxiliary fuel, which may be a conventional diesel oil, into an internal combustion diesel engine comprises detecting the load conditions of the engine, determining the amount of time prior to the top dead center position of the piston to inject the main fuel into the combustion chamber, and determining the relationship of the timing of the injection of the auxiliary fuel into the combustion chamber to achieve a predetermined specific fuel consumption, a predetermined combustion efficiency, and a predetermined peak cylinder firing pressure.
Year One Summary of X-energy Pebble Fuel Development at ORNL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Helmreich, Grant W.; Hunn, John D.; McMurray, Jake W.
2017-06-01
The Advanced Reactor Concepts X-energy (ARC-Xe) Pebble Fuel Development project at Oak Ridge National Laboratory (ORNL) has successfully completed its first year, having made excellent progress in accomplishing programmatic objectives. The primary focus of research at ORNL in support of X-energy has been the training of X-energy fuel fabrication engineers and the establishment of US pebble fuel production capabilities able to supply the Xe-100 pebble-bed reactor. These efforts have been strongly supported by particle fuel fabrication and characterization expertise present at ORNL from the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luther, Erik; Rooyen, Isabella van; Leckie, Rafael
2015-03-01
In an effort to explore fuel systems that are more robust under accident scenarios, the DOE-NE has identified the need to resume transient testing. The Transient Reactor Test (TREAT) facility has been identified as the preferred option for the resumption of transient testing of nuclear fuel in the United States. In parallel, NNSA’s Global Threat Reduction Initiative (GTRI) Convert program is exploring the needs to replace the existing highly enriched uranium (HEU) core with low enriched uranium (LEU) core. In order to construct a new LEU core, materials and fabrication processes similar to those used in the initial core fabricationmore » must be identified, developed and characterized. In this research, graphite matrix fuel blocks were extruded and materials properties of were measured. Initially the extrusion process followed the historic route; however, the project was expanded to explore methods to increase the graphite content of the fuel blocks and explore modern resins. Materials properties relevant to fuel performance including density, heat capacity and thermal diffusivity were measured. The relationship between process defects and materials properties will be discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yim, J. S.; Tahk, Y. W.; Oh, J. Y.
In order to cope with global shortage of Mo-99 supplies and with growing demand of neutron transmutation doping, KJRR construction plan has been launched since April 2012 to provide self-sufficiency of domestic RI demand, and to extend Si doping capacity for power device market growth. Through comprehensive surveillance of the fuels in-reactor behavior, KAERI has selected the fuel meat of U-7%Mo dispersion in an aluminum matrix with 5wt%Si for the KJRR fuel. As part of the efforts for fuel licensing and qualification of the KJRR fuel, an LTA irradiation test at the ATR started from November 2015 was successfully completedmore » by reaching at 219 EFPD in the end of February 2017. Together with the results of HAMP-1 already completed irradiation and PIE, the successful irradiation of the LTA also demonstrates the fuel integrity under more rigorous conditions than the KJRR operation conditions. This paper updates the current status of the KJRR U7Mo (8 g-U/cm3) LTA irradiation and PIE plan up to date as of February 2017.« less
Modeling of the heat transfer performance of plate-type dispersion nuclear fuel elements
NASA Astrophysics Data System (ADS)
Ding, Shurong; Huo, Yongzhong; Yan, XiaoQing
2009-08-01
Considering the mutual actions between fuel particles and the metal matrix, the three-dimensional finite element models are developed to simulate the heat transfer behaviors of dispersion nuclear fuel plates. The research results indicate that the temperatures of the fuel plate might rise more distinctly with considering the particle swelling and the degraded surface heat transfer coefficients with increasing burnup; the local heating phenomenon within the particles appears when their thermal conductivities are too low. With rise of the surface heat transfer coefficients, the temperatures within the fuel plate decrease; the temperatures of the fuel plate are sensitive to the variations of the heat transfer coefficients whose values are lower, but their effects are weakened and slight when the heat transfer coefficients increase and reach a certain extent. Increasing the heat generation rate leads to elevating the internal temperatures. The temperatures and the maximum temperature differences within the plate increase along with the particle volume fractions. The surface thermal flux goes up along with particle volume fractions and heat generation rates, but the effects of surface heat transfer coefficients are not evident.
NASA Astrophysics Data System (ADS)
Zaytsev, D. A.; Repnikov, V. M.; Soldatkin, D. M.; Solntsev, V. A.
2017-11-01
This paper provides the description of temperature cycle testing of U-Zr heterogeneous fuel composition. The composition is essentially a niobium-doped zirconium matrix with metallic uranium filaments evenly distributed over the cross section. The test samples 150 mm long had been fabricated using a fiber-filament technology. The samples were essentially two-bladed spiral mandrel fuel elements parts. In the course of experiments the following temperatures were applied: 350, 675, 780 and 1140 °C with total exposure periods equal to 200, 30, 30 and 6 hours respectively. The fuel element samples underwent post-exposure material science examination including: geometry measurements, metallographic analysis, X-ray phase analysis and electron-microscopic analysis as well as micro-hardness measurement. It has been found that no significant thermal swelling of the samples occurs throughout the whole temperature range from 350 °C up to 1140 °C. The paper presents the structural changes and redistribution of the fuel component over the fuel element cross section with rising temperature.
1976-09-01
testing evaluation and production process development . This coated microspherical fuel particle has been successfully developed over a period of...this reliable concept began with attempts to blend ceramic (oxide or carbide) fuel powders into a graphite matrix in the early concepts of ROVER, HTGR ...lubricants. An ongoing program at the Naval Air Development Center is investigating how some parameters affect corro- sion between solid film
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This guidebook addresses the primary requirements of the Alternative Fuel Transportation Program to help state and alternative fuel provider fleets comply with the Energy Policy Act via the Standard Compliance option. It also addresses the topics that covered fleets ask about most frequently.
EVALUATION OF TIRE-DERIVED FUEL FOR USE IN NITROGEN OXIDE REDUCTION BY REBURNING
Tire-derived fuel (TDF) was tested in a small-scale (44 kW or 150,000 Btu/hr) combustor to determine its feasibility as a fuel for use in reburning for control of nitrogen oxide (NO). TDF was gravity-fed into upward flowing combustion gases from a primary natural gas flame doped ...
Polymer, metal and ceramic matrix composites for advanced aircraft engine applications
NASA Technical Reports Server (NTRS)
Mcdanels, D. L.; Serafini, T. T.; Dicarlo, J. A.
1985-01-01
Advanced aircraft engine research within NASA Lewis is being focused on propulsion systems for subsonic, supersonic, and hypersonic aircraft. Each of these flight regimes requires different types of engines, but all require advanced materials to meet their goals of performance, thrust-to-weight ratio, and fuel efficiency. The high strength/weight and stiffness/weight properties of resin, metal, and ceramic matrix composites will play an increasingly key role in meeting these performance requirements. At NASA Lewis, research is ongoing to apply graphite/polyimide composites to engine components and to develop polymer matrices with higher operating temperature capabilities. Metal matrix composites, using magnesium, aluminum, titanium, and superalloy matrices, are being developed for application to static and rotating engine components, as well as for space applications, over a broad temperature range. Ceramic matrix composites are also being examined to increase the toughness and reliability of ceramics for application to high-temperature engine structures and components.
Operation and postirradiation examination of ORR capsule OF-2: accelerated testing of HTGR fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tiegs, T.N.; Thoms, K.R.
1979-03-01
Irradiation capsule OF-2 was a test of High-Temperature Gas-Cooled Reactor fuel types under accelerated irradiation conditions in the Oak Ridge Research Reactor. The results showed good irradiation performance of Triso-coated weak-acid-resin fissile particles and Biso-coated fertile particles. These particles had been coated by a fritted gas distributor in the 0.13-m-diam furnace. Fast-neutron damage (E > 0.18 MeV) and matrix-particle interaction caused the outer pyrocarbon coating on the Triso-coated particles to fail. Such failure depended on the optical anisotropy, density, and open porosity of the outer pyrocarbon coating, as well as on the coke yield of the matrix. Irradiation of specimensmore » with values outside prescribed limits for these properties increased the failure rate of their outer pyrocarbon coating. Good irradiation performance was observed for weak-acid-resin particles with conversions in the range from 15 to 75% UC/sub 2/.« less
Kong, Zehui; Liu, Teng
2017-01-01
To further improve the fuel economy of series hybrid electric tracked vehicles, a reinforcement learning (RL)-based real-time energy management strategy is developed in this paper. In order to utilize the statistical characteristics of online driving schedule effectively, a recursive algorithm for the transition probability matrix (TPM) of power-request is derived. The reinforcement learning (RL) is applied to calculate and update the control policy at regular time, adapting to the varying driving conditions. A facing-forward powertrain model is built in detail, including the engine-generator model, battery model and vehicle dynamical model. The robustness and adaptability of real-time energy management strategy are validated through the comparison with the stationary control strategy based on initial transition probability matrix (TPM) generated from a long naturalistic driving cycle in the simulation. Results indicate that proposed method has better fuel economy than stationary one and is more effective in real-time control. PMID:28671967
Kong, Zehui; Zou, Yuan; Liu, Teng
2017-01-01
To further improve the fuel economy of series hybrid electric tracked vehicles, a reinforcement learning (RL)-based real-time energy management strategy is developed in this paper. In order to utilize the statistical characteristics of online driving schedule effectively, a recursive algorithm for the transition probability matrix (TPM) of power-request is derived. The reinforcement learning (RL) is applied to calculate and update the control policy at regular time, adapting to the varying driving conditions. A facing-forward powertrain model is built in detail, including the engine-generator model, battery model and vehicle dynamical model. The robustness and adaptability of real-time energy management strategy are validated through the comparison with the stationary control strategy based on initial transition probability matrix (TPM) generated from a long naturalistic driving cycle in the simulation. Results indicate that proposed method has better fuel economy than stationary one and is more effective in real-time control.
Development of advanced fuel cell system, phase 3
NASA Technical Reports Server (NTRS)
Handley, L. M.; Meyer, A. P.; Bell, W. F.
1975-01-01
A multiple task research and development program was performed to improve the weight, life, and performance characteristics of hydrogen-oxygen alkaline fuel cells for advanced power systems. Gradual wetting of the anode structure and subsequent long-term performance loss was determined to be caused by deposition of a silicon-containing material on the anode. This deposit was attributed to degradation of the asbestos matrix, and attention was therefore placed on development of a substitute matrix of potassium titanate. An 80 percent gold 20 percent platinum catalyst cathode was developed which has the same performance and stability as the standard 90 percent gold - 10 percent platinum cathode but at half the loading. A hybrid polysulfone/epoxy-glass fiber frame was developed which combines the resistance to the cell environment of pure polysulfone with the fabricating ease of epoxy-glass fiber laminate. These cell components were evaluated in various configurations of full-size cells. The ways in which the baseline engineering model system would be modified to accommodate the requirements of the space tug application are identified.
Estimating the time for dissolution of spent fuel exposed to unlimited water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leider, H.R.; Nguyen, S.N.; Stout, R.B.
1991-12-01
The release of radionuclides from spent fuel cannot be precisely predicted at this point because a satisfactory dissolution model based on specific chemical processes is not yet available. However, preliminary results on the dissolution rate of UO{sub 2} and spent fuel as a function of temperature and water composition have recently been reported. This information, together with data on fragment size distribution of spent fuel, are used to estimate the dissolution response of spent fuel in excess flowing water within the framework of a simple model. In this model, the reaction/dissolution front advances linearly with time and geometry is preserved.more » This also estimates the dissolution rate of the bulk of the fission products and higher actinides, which are uniformly distributed in the UO{sub 2} matrix and are presumed to dissolve congruently. We have used a fuel fragment distribution actually observed to calculate the time for total dissolution of spent fuel. A worst-case estimate was also made using the initial (maximum) rate of dissolution to predict the total dissolution time. The time for total dissolution of centimeter size particles is estimated to be 5.5 {times} 10{sup 4} years at 25{degrees}C.« less
Durability test on irradiated rock-like oxide fuels
NASA Astrophysics Data System (ADS)
Kuramoto, K.; Nitani, N.; Yamashita, T.
2003-06-01
For a profitable use of Pu, Japan Atomic Energy Research Institute has been promoting researches for once-through type fuels. The strategy consists of stable rock-like oxide fuel fabrication in conventional fuel facilities followed by almost complete Pu burning in LWR and disposal of chemically stable spent fuel without further processing. Because leach rates of hazardous nuclides, such as TRU and β-emitters, that have long half-lives, are very important for the evaluation of geological safety, leaching tests in deionized water at 363 K were performed with reference to the MCC-1 method. Five irradiated fuel pellets, a single phase fuel of a yttria-stabilized zirconia (YSZ) containing UO 2 (U-YSZ), two fuels of U-YSZ particle dispersed in MgAl 2O 4 (SPI) or Al 2O 3 (COR) matrix, two homogeneous-blended fuels of U-YSZ and SPI or COR powders, were submitted to the tests. Stainless steel containers with Au coating and ethylene propylene diene monomer were used as leaching vessels and packing, respectively. The evaluated normalized leach rates of Zr, U and Pu were obviously lower than those of the other important elements and nuclides. Americium, Np and especially Y showed unexpectedly high evaluated normalized leach rates. The volatile elements, Cs and I, showed enhanced leaching within particle-dispersed type fuels because of crack formation around the particle.
The role of the extracellular matrix in primary myelofibrosis
Leiva, O; Ng, S K; Chitalia, S; Balduini, A; Matsuura, S; Ravid, K
2017-01-01
Primary myelofibrosis (PMF) is a myeloproliferative neoplasm that arises from clonal proliferation of hematopoietic stem cells and leads to progressive bone marrow (BM) fibrosis. While cellular mutations involved in the development of PMF have been heavily investigated, noteworthy is the important role the extracellular matrix (ECM) plays in the progression of BM fibrosis. This review surveys ECM proteins contributors of PMF, and highlights how better understanding of the control of the ECM within the BM niche may lead to combined therapeutic options in PMF. PMID:28157219
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnitt, R. A.; Chernich, D.; Burnitzki, M.
2010-05-01
A novel in situ method was used to measure emissions and fuel consumption of transport refrigeration units (TRUs). The test matrix included two fuels, two exhaust configurations, and two TRU engine operating speeds. Test fuels were California ultra low sulfur diesel and gas-to-liquid (GTL) diesel. Exhaust configurations were a stock muffler and a Thermo King pDPF diesel particulate filter. The TRU engine operating speeds were high and low, controlled by the TRU user interface. Results indicate that GTL diesel fuel reduces all regulated emissions at high and low engine speeds. Application of a Thermo King pDPF reduced regulated emissions, sometimesmore » almost entirely. The application of both GTL diesel and a Thermo King pDPF reduced regulated emissions at high engine speed, but showed an increase in oxides of nitrogen at low engine speed.« less
Method and device for fabricating dispersion fuel comprising fission product collection spaces
Shaber, Eric L; Fielding, Randall S
2015-05-05
A method of fabricating a nuclear fuel comprising a fissile material, one or more hollow microballoons, a phenolic resin, and metal matrix. The fissile material, phenolic resin and the one or more hollow microballoons are combined. The combined fissile material, phenolic resin and the hollow microballoons are heated sufficiently to form at least some fissile material carbides creating a nuclear fuel particle. The resulting nuclear fuel particle comprises one or more fission product collection spaces. In a preferred embodiment, the fissile material, phenolic resin and the one or more hollow microballoons are combined by forming the fissile material into microspheres. The fissile material microspheres are then overcoated with the phenolic resin and microballoon. In another preferred embodiment, the fissile material, phenolic resin and the one or more hollow microballoons are combined by overcoating the microballoon with the fissile material, and phenolic resin.
Minimally refined biomass fuel
Pearson, Richard K.; Hirschfeld, Tomas B.
1984-01-01
A minimally refined fluid composition, suitable as a fuel mixture and derived from biomass material, is comprised of one or more water-soluble carbohydrates such as sucrose, one or more alcohols having less than four carbons, and water. The carbohydrate provides the fuel source; water solubilizes the carbohydrates; and the alcohol aids in the combustion of the carbohydrate and reduces the vicosity of the carbohydrate/water solution. Because less energy is required to obtain the carbohydrate from the raw biomass than alcohol, an overall energy savings is realized compared to fuels employing alcohol as the primary fuel.
The maze and the minotaur: mental health in primary health care.
Hirdes, Alice; Scarparo, Helena Beatriz Kochenborger
2015-02-01
The article aims to discuss the issue of integration of mental health in primary care by matrix support in mental health. We point out the main barriers in the use of this work method, as well as the facilitating factors of the matrix support of mental health in primary care. The first are within the scope of epistemological specificities, professional issues and management in the political and ideological dimensions. Among the second, we highlight: the care for people with mental disorders in the territory; the reduction of stigma and discrimination; the development of new skills for professionals in primary care; reduction of costs; simultaneous treatment of physical and mental illness, which often overlap; the possibility of incorporating mental health care in a perspective of extended clinical service using an inter/transdisciplinary approach.
Combined catalysts for the combustion of fuel in gas turbines
Anoshkina, Elvira V.; Laster, Walter R.
2012-11-13
A catalytic oxidation module for a catalytic combustor of a gas turbine engine is provided. The catalytic oxidation module comprises a plurality of spaced apart catalytic elements for receiving a fuel-air mixture over a surface of the catalytic elements. The plurality of catalytic elements includes at least one primary catalytic element comprising a monometallic catalyst and secondary catalytic elements adjacent the primary catalytic element comprising a multi-component catalyst. Ignition of the monometallic catalyst of the primary catalytic element is effective to rapidly increase a temperature within the catalytic oxidation module to a degree sufficient to ignite the multi-component catalyst.
NASA Technical Reports Server (NTRS)
Ingebo, R. D.; Norgren, C. T.
1973-01-01
A combustor segment 0.457 meter (18 in.) long with a maximum cross section of 0.153 by 0.305 meter (6 by 12 in.) was operated at inlet-air temperatures of 590 and 700 K, inlet-air pressures of 4 and 10 atmospheres, and fuel-air ratios of 0.014 and 0.018 to determine the effect of primary-zone water injection on pollutants from burning either propane or ASTM A-1 fuel. At a simulated takeoff condition of 10 atmospheres and 700 K, multiple-orifice nozzles used to inject water at 1 percent of the airflow rate reduced nitrogen oxides 75 percent with propane and 65 percent with ASTM A-1 fuel. Although carbon monoxide and unburned hydrocarbons increased with water injection, they remained relatively low; and smoke numbers were well below the visibility limit.
NASA Astrophysics Data System (ADS)
Link, M. F.; Friedman, B.; Fulgham, R.; Brophy, P.; Galang, A.; Jathar, S. H.; Veres, P.; Roberts, J. M.; Farmer, D. K.
2016-04-01
Isocyanic acid (HNCO) is a well-known air pollutant that affects human health. Biomass burning, smoking, and combustion engines are known HNCO sources, but recent studies suggest that secondary production in the atmosphere may also occur. We directly observed photochemical production of HNCO from the oxidative aging of diesel exhaust during the Diesel Exhaust Fuel and Control experiments at Colorado State University using acetate ionization time-of-flight mass spectrometry. Emission ratios of HNCO were enhanced, after 1.5 days of simulated atmospheric aging, from 50 to 230 mg HNCO/kg fuel at idle engine operating conditions. Engines operated at higher loads resulted in less primary and secondary HNCO formation, with emission ratios increasing from 20 to 40 mg HNCO/kg fuel under 50% load engine operating conditions. These results suggest that photochemical sources of HNCO could be more significant than primary sources in urban areas.
NASA Astrophysics Data System (ADS)
Ni, Haiyan; Huang, Rujin; Dusek, Ulrike
2017-04-01
Fine particulate matter (PM2.5) samples were collected from 5 July 2008 to 27 June 2009 at Xi'an, a very polluted megacity in Northwest China. The 24 h averaged PM2.5concentrations (ranged from 32 μg m-3 to 339 μg m-3) were 1-14 times higher than the WHO guideline for 24 h PM2.5(25 μg m-3). In this work, we unambiguously quantify fossil (e.g., vehicle emissions, coal burning etc.) and non-fossil (e.g., biomass burning, cooking, biogenic emissions etc.) contributions to organic carbon (OC) and elemental carbon (EC) of PM2.5using radiocarbon (14C) measurement. In addition, we measured PM2.5 major components and source markers, including OC and EC, ions, trace elements, polycyclic aromatic hydrocarbons (PAHs), oxygenated PAHs (o-PAHs), anhydrous sugars and hopanes. The preliminary results of radiocarbon measurements in OC and EC show that the annual mean contributions from fossil-fuel combustion to EC was 76 ± 8% (6 ± 2 μg m-3). The remaining 24 ± 8% (2 ± 1 μg m-3) was attributed to biomass burning, with higher contribution in the cold period (˜33%) compared to the warm period (˜21%), due to enhanced emissions from local biomass burning activities in winter. In contrast with EC, OC was dominated by non-fossil sources, with an annual average of 54 ± 8 % (13 ± 10 μg m-3). Clear seasonal variations were seen in OC concentrations both from fossil fuel (OCff), and from non-fossil sources (OCnf), with maxima in the cold period and minima in the warm period, because of enhanced fossil and non-fossil activities in winter, mainly biomass burning and domestic coal burning. Further source apportionment of OC, including primary/secondary fossil OC, primary/secondary non-fossil OC, will be conducted by combining 14C results with positive matrix factorization (PMF) analysis of organic matter (OM).
2010-03-01
this would complete the fossil fuel cycle, as algae are understood to be the progenitors of our current oil based fossil fuel stocks. As primary... oil . However, considering the scope of the world’s energy uses, these sources cannot possibly replace the fossil fuels currently in use. Some...122 Jatropha 1892 140 77 Coconut 2689 99 54 Oil Palm 5950 45 24 * For meeting 50% of transport fuel requirements in the United States
Laser-Induced Fluorescence and Synthetic Jet Fuel Analysis in the Ultra Compact Combustor
2009-12-01
In the primary zone, high- temperature, high-pressure air enters from the compressor and flows around fuel injectors spraying atomized liquid -droplet...chemical reaction in which synthesis gas , a mixture of carbon monoxide and hydrogen, is converted into liquid hydrocarbons of various forms. The most...the fuel lines needed to be rebuilt due to a recent COAL lab renovation. The liquid fuel system had not been used for nearly two years so some
Hydrogen permeation in FeCrAl alloys for LWR cladding application
Hu, Xunxiang; Terrani, Kurt A.; Wirth, Brian D.; ...
2015-03-19
FeCrAl is an advanced oxidation-resistant iron-based alloy class, is a highly prevalent candidate as an accident-tolerant fuel cladding material. Compared with traditional zirconium alloy fuel cladding, increased tritium permeation through FeCrAl fuel cladding to the primary coolant is expected, raising potential safety concerns. In our study, the hydrogen permeability of several FeCrAl alloys was obtained using a static permeation test station, which was calibrated and validated using 304 stainless steel. The high hydrogen permeability of FeCrAl alloys leads to concerns with respect to potentially significant tritium release when used for fuel cladding in LWRs. Also, the total tritium inventory insidemore » the primary coolant of a light water reactor was quantified by applying a 1-dimensional steady state tritium diffusion model to demonstrate the dependence of tritium inventory on fuel cladding type. Furthermore, potential mitigation strategies for tritium release from FeCrAl fuel cladding were discussed and indicate the potential for application of an alumina layer on the inner clad surface to serve as a tritium barrier. More effort is required to develop a robust, economical mitigation strategy for tritium permeation in reactors using FeCrAl clad fuel assemblies.« less
NASA Astrophysics Data System (ADS)
Barber, Duncan Henry
During some postulated accidents at nuclear power stations, fuel cooling may be impaired. In such cases, the fuel heats up and the subsequent increased fission-gas release from the fuel to the gap may result in fuel sheath failure. After fuel sheath failure, the barrier between the coolant and the fuel pellets is lost or impaired, gases and vapours from the fuel-to-sheath gap and other open voids in the fuel pellets can be vented. Gases and steam from the coolant can enter the broken fuel sheath and interact with the fuel pellet surfaces and the fission-product inclusion on the fuel surface (including material at the surface of the fuel matrix). The chemistry of this interaction is an important mechanism to model in order to assess fission-product releases from fuel. Starting in 1995, the computer program SOURCE 2.0 was developed by the Canadian nuclear industry to model fission-product release from fuel during such accidents. SOURCE 2.0 has employed an early thermochemical model of irradiated uranium dioxide fuel developed at the Royal Military College of Canada. To overcome the limitations of computers of that time, the implementation of the RMC model employed lookup tables to pre-calculated equilibrium conditions. In the intervening years, the RMC model has been improved, the power of computers has increased significantly, and thermodynamic subroutine libraries have become available. This thesis is the result of extensive work based on these three factors. A prototype computer program (referred to as SC11) has been developed that uses a thermodynamic subroutine library to calculate thermodynamic equilibria using Gibbs energy minimization. The Gibbs energy minimization requires the system temperature (T) and pressure (P), and the inventory of chemical elements (n) in the system. In order to calculate the inventory of chemical elements in the fuel, the list of nuclides and nuclear isomers modelled in SC11 had to be expanded from the list used by SOURCE 2.0. A benchmark calculation demonstrates the improvement in agreement of the total inventory of those chemical elements included in the RMC fuel model to an ORIGEN-S calculation. ORIGEN-S is the Oak Ridge isotope generation and depletion computer program. The Gibbs energy minimizer requires a chemical database containing coefficients from which the Gibbs energy of pure compounds, gas and liquid mixtures, and solid solutions can be calculated. The RMC model of irradiated uranium dioxide fuel has been converted into the required format. The Gibbs energy minimizer has been incorporated into a new model of fission-product vaporization from the fuel surface. Calculated release fractions using the new code have been compared to results calculated with SOURCE IST 2.0P11 and to results of tests used in the validation of SOURCE 2.0. The new code shows improvements in agreement with experimental releases for a number of nuclides. Of particular significance is the better agreement between experimental and calculated release fractions for 140La. The improved agreement reflects the inclusion in the RMC model of the solubility of lanthanum (III) oxide (La2O3) in the fuel matrix. Calculated lanthanide release fractions from earlier computer programs were a challenge to environmental qualification analysis of equipment for some accident scenarios. The new prototype computer program would alleviate this concern. Keywords: Nuclear Engineering; Material Science; Thermodynamics; Radioactive Material, Gibbs Energy Minimization, Actinide Generation and Depletion, FissionProduct Generation and Depletion.