Sample records for fuel pin loading

  1. Automated fuel pin loading system

    DOEpatents

    Christiansen, David W.; Brown, William F.; Steffen, Jim M.

    1985-01-01

    An automated loading system for nuclear reactor fuel elements utilizes a gravity feed conveyor which permits individual fuel pins to roll along a constrained path perpendicular to their respective lengths. The individual lengths of fuel cladding are directed onto movable transports, where they are aligned coaxially with the axes of associated handling equipment at appropriate production stations. Each fuel pin can be reciprocated axially and/or rotated about its axis as required during handling steps. The fuel pins are inserted as a batch prior to welding of end caps by one of two disclosed welding systems.

  2. Automated fuel pin loading system

    DOEpatents

    Christiansen, D.W.; Brown, W.F.; Steffen, J.M.

    An automated loading system for nuclear reactor fuel elements utilizes a gravity feed conveyor which permits individual fuel pins to roll along a constrained path perpendicular to their respective lengths. The individual lengths of fuel cladding are directed onto movable transports, where they are aligned coaxially with the axes of associated handling equipment at appropriate production stations. Each fuel pin can be be reciprocated axially and/or rotated about its axis as required during handling steps. The fuel pins are inerted as a batch prior to welding of end caps by one of two disclosed welding systems.

  3. Valve for fuel pin loading system

    DOEpatents

    Christiansen, David W.

    1985-01-01

    A cyclone valve surrounds a wall opening through which cladding is projected. An axial valve inlet surrounds the cladding. Air is drawn through the inlet by a cyclone stream within the valve. An inflatable seal is included to physically engage a fuel pin subassembly during loading of fuel pellets.

  4. Nuclear fuel pin scanner

    DOEpatents

    Bramblett, Richard L.; Preskitt, Charles A.

    1987-03-03

    Systems and methods for inspection of nuclear fuel pins to determine fiss loading and uniformity. The system includes infeed mechanisms which stockpile, identify and install nuclear fuel pins into an irradiator. The irradiator provides extended activation times using an approximately cylindrical arrangement of numerous fuel pins. The fuel pins can be arranged in a magazine which is rotated about a longitudinal axis of rotation. A source of activating radiation is positioned equidistant from the fuel pins along the longitudinal axis of rotation. The source of activating radiation is preferably oscillated along the axis to uniformly activate the fuel pins. A detector is provided downstream of the irradiator. The detector uses a plurality of detector elements arranged in an axial array. Each detector element inspects a segment of the fuel pin. The activated fuel pin being inspected in the detector is oscillated repeatedly over a distance equal to the spacing between adjacent detector elements, thereby multiplying the effective time available for detecting radiation emissions from the activated fuel pin.

  5. Reactor physics behavior of transuranic-bearing TRISO-particle fuel in a pressurized water reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pope, M. A.; Sen, R. S.; Ougouag, A. M.

    2012-07-01

    Calculations have been performed to assess the neutronic behavior of pins of Fully-Ceramic Micro-encapsulated (FCM) fuel in otherwise-conventional Pressurized Water Reactor (PWR) fuel pins. The FCM fuel contains transuranic (TRU) - only oxide fuel in tri-isotropic (TRISO) particles with the TRU loading coming from the spent fuel of a conventional LWR after 5 years of cooling. Use of the TRISO particle fuel would provide an additional barrier to fission product release in the event of cladding failure. Depletion calculations were performed to evaluate reactivity-limited burnup of the TRU-only FCM fuel. These calculations showed that due to relatively little space availablemore » for fuel, the achievable burnup with these pins alone is quite small. Various reactivity parameters were also evaluated at each burnup step including moderator temperature coefficient (MTC), Doppler, and soluble boron worth. These were compared to reference UO{sub 2} and MOX unit cells. The TRU-only FCM fuel exhibits degraded MTC and Doppler coefficients relative to UO{sub 2} and MOX. Also, the reactivity effects of coolant voiding suggest that the behavior of this fuel would be similar to a MOX fuel of very high plutonium fraction, which are known to have positive void reactivity. In general, loading of TRU-only FCM fuel into an assembly without significant quantities of uranium presents challenges to the reactor design. However, if such FCM fuel pins are included in a heterogeneous assembly alongside LEU fuel pins, the overall reactivity behavior would be dominated by the uranium pins while attractive TRU destruction performance levels in the TRU-only FCM fuel pins is retained. From this work, it is concluded that use of heterogeneous assemblies such as these appears feasible from a preliminary reactor physics standpoint. (authors)« less

  6. Reactor Physics Behavior of Transuranic-Bearing TRISO-Particle Fuel in a Pressurized Water Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael A. Pope; R. Sonat Sen; Abderrafi M. Ougouag

    2012-04-01

    Calculations have been performed to assess the neutronic behavior of pins of Fully-Ceramic Micro-encapsulated (FCM) fuel in otherwise-conventional Pressurized Water Reactor (PWR) fuel pins. The FCM fuel contains transuranic (TRU)-only oxide fuel in tri-isotropic (TRISO) particles with the TRU loading coming from the spent fuel of a conventional LWR after 5 years of cooling. Use of the TRISO particle fuel would provide an additional barrier to fission product release in the event of cladding failure. Depletion calculations were performed to evaluate reactivity-limited burnup of the TRU-only FCM fuel. These calculations showed that due to relatively little space available for fuel,more » the achievable burnup with these pins alone is quite small. Various reactivity parameters were also evaluated at each burnup step including moderator temperature coefficient (MTC), Doppler, and soluble boron worth. These were compared to reference UO{sub 2} and MOX unit cells. The TRU-only FCM fuel exhibits degraded MTC and Doppler coefficients relative to UO{sub 2} and MOX. Also, the reactivity effects of coolant voiding suggest that the behavior of this fuel would be similar to a MOX fuel of very high plutonium fraction, which are known to have positive void reactivity. In general, loading of TRU-only FCM fuel into an assembly without significant quantities of uranium presents challenges to the reactor design. However, if such FCM fuel pins are included in a heterogeneous assembly alongside LEU fuel pins, the overall reactivity behavior would be dominated by the uranium pins while attractive TRU destruction performance levels in the TRU-only FCM fuel pins is. From this work, it is concluded that use of heterogeneous assemblies such as these appears feasible from a preliminary reactor physics standpoint.« less

  7. Apparatus for inspecting fuel elements

    DOEpatents

    Oakley, David J.; Groves, Oliver J.; Kaiser, Bruce J.

    1986-01-01

    Disclosed is an alpha monitor usable in an automated nuclear fuel pin loading and processing unit. Fuel pins or other elongated pins are fed laterally into the alpha monitor in a singular fashion and are translated by a first roller assembly into a weld flare machining and decontamination substation not forming a part of the invention. Pins return and are lifted upwardly and transferred across to a combined pin lifting and electrode operating means which lifts the pins upwardly into a clamshell electrode assembly which is spread open by a combined pin lifting and electrode operating means. Once inserted the clamshell type electrode arrangement closes around the fuel pins so that inspection can occur. Fuel pins are inspected by charging electrodes to a negative potential and measuring the change in charge occurring when positively charged alpha particles strike the negatively charged electrodes. After inspection, the fuel pins are lowered by the pin lifting and electrode operating means into a second roller assembly which longitudinally conveys approved pins from the airtight enclosure in which the alpha monitor is mounted. If the fuel pins are rejected then they are moved laterally by a second transfer means and onto another system for further processing.

  8. Apparatus for inspecting fuel elements

    DOEpatents

    Kaiser, B.J.; Oakley, D.J.; Groves, O.J.

    1984-12-21

    This disclosure describes an alpha monitor usable in an automated nuclear fuel pin loading and processing unit. Fuel pins or other elongated pins are fed laterally into the alpha monitor in a singular fashion and are translated by a first roller assembly into a weld flare machining and decontamination substation not forming a part of the invention. Pins return and are lifted upwardly and transferred across to a combined pin lifting and electrode operating means which lifts the pins upwardly into a clamshell electrode assembly which is spread open by a combined pin lifting and electrode operating means. Once inserted the clamshell type electrode arrangement closes around the fuel pins so that inspection can occur. Fuel pins are inspected by charging electrodes to a negative potential and measuring the change in charge occurring when positively charged alpha particles strike the negatively charged electrodes. After inspection, the fuel pins are lowered by the pin lifting and electrode operating means into a second roller assembly which longitudinally conveys approved pins from the airtight enclosure in which the alpha monitor is mounted. If the fuel pins are rejected then they are moved laterally by a second transfer means and onto another system for further processing.

  9. Integral Fast Reactor fuel pin processor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levinskas, D.

    1993-01-01

    This report discusses the pin processor which receives metal alloy pins cast from recycled Integral Fast Reactor (IFR) fuel and prepares them for assembly into new IFR fuel elements. Either full length as-cast or precut pins are fed to the machine from a magazine, cut if necessary, and measured for length, weight, diameter and deviation from straightness. Accepted pins are loaded into cladding jackets located in a magazine, while rejects and cutting scraps are separated into trays. The magazines, trays, and the individual modules that perform the different machine functions are assembled and removed using remote manipulators and master-slaves.

  10. Integral Fast Reactor fuel pin processor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levinskas, D.

    1993-03-01

    This report discusses the pin processor which receives metal alloy pins cast from recycled Integral Fast Reactor (IFR) fuel and prepares them for assembly into new IFR fuel elements. Either full length as-cast or precut pins are fed to the machine from a magazine, cut if necessary, and measured for length, weight, diameter and deviation from straightness. Accepted pins are loaded into cladding jackets located in a magazine, while rejects and cutting scraps are separated into trays. The magazines, trays, and the individual modules that perform the different machine functions are assembled and removed using remote manipulators and master-slaves.

  11. Performance of Transuranic-Loaded Fully Ceramic Micro-Encapsulated Fuel in LWRs Final Report, Including Void Reactivity Evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael A. Pope; R. Sonat Sen; Brian Boer

    2011-09-01

    The current focus of the Deep Burn Project is on once-through burning of transuranics (TRU) in light-water reactors (LWRs). The fuel form is called Fully-Ceramic Micro-encapsulated (FCM) fuel, a concept that borrows the tri-isotropic (TRISO) fuel particle design from high-temperature reactor technology. In the Deep Burn LWR (DB-LWR) concept, these fuel particles are pressed into compacts using SiC matrix material and loaded into fuel pins for use in conventional LWRs. The TRU loading comes from the spent fuel of a conventional LWR after 5 years of cooling. Unit cell and assembly calculations have been performed using the DRAGON-4 code tomore » assess the physics attributes of TRU-only FCM fuel in an LWR lattice. Depletion calculations assuming an infinite lattice condition were performed with calculations of various reactivity coefficients performed at each step. Unit cells and assemblies containing typical UO2 and mixed oxide (MOX) fuel were analyzed in the same way to provide a baseline against which to compare the TRU-only FCM fuel. Then, assembly calculations were performed evaluating the performance of heterogeneous arrangements of TRU-only FCM fuel pins along with UO2 pins.« less

  12. Development of 3D pseudo pin-by-pin calculation methodology in ANC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, B.; Mayhue, L.; Huria, H.

    2012-07-01

    Advanced cores and fuel assembly designs have been developed to improve operational flexibility, economic performance and further enhance safety features of nuclear power plants. The simulation of these new designs, along with strong heterogeneous fuel loading, have brought new challenges to the reactor physics methodologies currently employed in the industrial codes for core analyses. Control rod insertion during normal operation is one operational feature in the AP1000{sup R} plant of Westinghouse next generation Pressurized Water Reactor (PWR) design. This design improves its operational flexibility and efficiency but significantly challenges the conventional reactor physics methods, especially in pin power calculations. Themore » mixture loading of fuel assemblies with significant neutron spectrums causes a strong interaction between different fuel assembly types that is not fully captured with the current core design codes. To overcome the weaknesses of the conventional methods, Westinghouse has developed a state-of-the-art 3D Pin-by-Pin Calculation Methodology (P3C) and successfully implemented in the Westinghouse core design code ANC. The new methodology has been qualified and licensed for pin power prediction. The 3D P3C methodology along with its application and validation will be discussed in the paper. (authors)« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ingham, J.G.

    Maximum cladding temperatures occur when the IDENT 1578 fuel pin shipping container is installed in the T-3 Cask. The maximum allowable cladding temperature of 800/sup 0/F is reached when the rate of energy deposited in the 19-pin basket reaches 400 watts. Since 45% of the energy which is generated in the fuel escapes the 19-pin basket without being deposited, mostly gamma energy, the maximum allowable rate of heat generation is 400/.55 = 727 watts. Similarly, the maximum allowable cladding temperature of 800/sup 0/F is reached when the rate of energy deposited in the 40-pin basket reaches 465 watts. Since 33%more » of the energy which is generated in the fuel escapes the 40-pin basket without being deposited, mostly gamma energy, the maximum allowable rate of heat generation is 465/.66 = 704 watts. The IDENT 1578 fuel pin shipping container therefore meets its thermal design criteria. IDENT 1578 can handle fuel pins with a decay heat load of 600 watts while maintaining the maximum fuel pin cladding temperature below 800/sup 0/F. The emissivities which were determined from the test results for the basket tubes and container are relatively low and correspond to new, shiny conditions. As the IDENT 1578 container is exposed to high temperatures for extended periods of time during the transportation of fuel pins, the emissivities will probably increase. This will result in reduced temperatures.« less

  14. Hybrid Gama Emission Tomography (HGET): FY16 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Erin A.; Smith, Leon E.; Wittman, Richard S.

    2017-02-01

    Current International Atomic Energy Agency (IAEA) methodologies for the verification of fresh low-enriched uranium (LEU) and mixed oxide (MOX) fuel assemblies are volume-averaging methods that lack sensitivity to individual pins. Further, as fresh fuel assemblies become more and more complex (e.g., heavy gadolinium loading, high degrees of axial and radial variation in fissile concentration), the accuracy of current IAEA instruments degrades and measurement time increases. Particularly in light of the fact that no special tooling is required to remove individual pins from modern fuel assemblies, the IAEA needs new capabilities for the verification of unirradiated (i.e., fresh LEU and MOX)more » assemblies to ensure that fissile material has not been diverted. Passive gamma emission tomography has demonstrated potential to provide pin-level verification of spent fuel, but gamma-ray emission rates from unirradiated fuel emissions are significantly lower, precluding purely passive tomography methods. The work presented here introduces the concept of Hybrid Gamma Emission Tomography (HGET) for verification of unirradiated fuels, in which a neutron source is used to actively interrogate the fuel assembly and the resulting gamma-ray emissions are imaged using tomographic methods to provide pin-level verification of fissile material concentration.« less

  15. FUEL ELEMENT FOR NUCLEAR REACTORS

    DOEpatents

    Dickson, J.J.

    1963-09-24

    A method is described whereby fuel tubes or pins are cut, loaded with fuel pellets and a heat transfer medium, sealed at each end with slotted fittings, and assembled into a rectangular tube bundle to form a fuel element. The tubes comprising the fuel element are laterally connected between their ends by clips and tabs to form a linear group of spaced parallel tubes, which receive their vertical support by resting on a grid. The advantages of this method are that it permits elimination of structural material (e.g., fuel-element cans) within the reactor core, and removal of at least one fuel pin from an element and replacement thereof so that a burnable poison may be utilized during the core lifetime. (AEC)

  16. Use of freeze-casting in advanced burner reactor fuel design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lang, A. L.; Yablinsky, C. A.; Allen, T. R.

    2012-07-01

    This paper will detail the modeling of a fast reactor with fuel pins created using a freeze-casting process. Freeze-casting is a method of creating an inert scaffold within a fuel pin. The scaffold is created using a directional solidification process and results in open porosity for emplacement of fuel, with pores ranging in size from 300 microns to 500 microns in diameter. These pores allow multiple fuel types and enrichments to be loaded into one fuel pin. Also, each pore could be filled with varying amounts of fuel to allow for the specific volume of fission gases created by thatmore » fuel type. Currently fast reactors, including advanced burner reactors (ABR's), are not economically feasible due to the high cost of operating the reactors and of reprocessing the fuel. However, if the fuel could be very precisely placed, such as within a freeze-cast scaffold, this could increase fuel performance and result in a valid design with a much lower cost per megawatt. In addition to competitive costs, freeze-cast fuel would also allow for selective breeding or burning of actinides within specific locations in fast reactors. For example, fast flux peak locations could be utilized on a minute scale to target specific actinides for transmutation. Freeze-cast fuel is extremely flexible and has great potential in a variety of applications. This paper performs initial modeling of freeze-cast fuel, with the generic fast reactor parameters for this model based on EBR-II. The core has an assumed power of 62.5 MWt. The neutronics code used was Monte Carlo N-Particle (MCNP5) transport code. Uniform pore sizes were used in increments of 100 microns. Two different freeze-cast scaffold materials were used: ceramic (MgO-ZrO{sub 2}) and steel (SS316L). Separate models were needed for each material because the freeze-cast ceramic and metal scaffolds have different structural characteristics and overall porosities. Basic criticality results were compiled for the various models. Preliminary results show that criticality is achievable with freeze-cast fuel pins despite the significant amount of inert fuel matrix. Freeze casting is a promising method to achieve very precise fuel placement within fuel pins. (authors)« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ingham, J.G.

    The IDENT 1578 container, which is a 110-in. long 5.5-in. OD tube, is designed for shipping FFTF fuel elements in T-3 casks between HEDL, HFEF, and other laboratories. The thermal analysis was conducted to evaluate whether or not the container satisfies its thermal design criteria (handle a decay heat load of 600 watts, max fuel pin cladding temperature not exceeding 800/sup 0/F).

  18. Validation of the analytical methods in the LWR code BOXER for gadolinium-loaded fuel pins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paratte, J.M.; Arkuszewski, J.J.; Kamboj, B.K.

    1990-01-01

    Due to the very high absorption occurring in gadolinium-loaded fuel pins, calculations of lattices with such pins present are a demanding test of the analysis methods in light water reactor (LWR) cell and assembly codes. Considerable effort has, therefore, been devoted to the validation of code methods for gadolinia fuel. The goal of the work reported in this paper is to check the analysis methods in the LWR cell/assembly code BOXER and its associated cross-section processing code ETOBOX, by comparison of BOXER results with those from a very accurate Monte Carlo calculation for a gadolinium benchmark problem. Initial results ofmore » such a comparison have been previously reported. However, the Monte Carlo calculations, done with the MCNP code, were performed at Los Alamos National Laboratory using ENDF/B-V data, while the BOXER calculations were performed at the Paul Scherrer Institute using JEF-1 nuclear data. This difference in the basic nuclear data used for the two calculations, caused by the restricted nature of these evaluated data files, led to associated uncertainties in a comparison of the results for methods validation. In the joint investigations at the Georgia Institute of Technology and PSI, such uncertainty in this comparison was eliminated by using ENDF/B-V data for BOXER calculations at Georgia Tech.« less

  19. Examination of T-111 clad uranium nitride fuel pins irradiated up to 13,000 hours at a clad temperature of 990 C

    NASA Technical Reports Server (NTRS)

    Slaby, J. G.; Siegel, B. L.

    1973-01-01

    The examination of 27 fuel pins irradiated for up to 13,000 hours at 990 C is described. The fuel pin clad was a tantalum alloy with uranium nitride as the nuclear fuel. Two nominal fuel pin diameters were tested with a maximum burnup of 2.34 atom percent. Twenty-two fuel pins were tested for fission gas leaks; thirteen pins leaked. Clad ductility tests indicated clad embrittlement. The embrittlement is attributed to hydrogen from an n,p reaction in the fuel. Fuel swelling was burnup dependent, and the amount of fission gas release was low, generally less than 0.5 percent. No incompatibilities between fuel, liner, and clad were in evidence.

  20. Nondestrucive analysis of fuel pins

    DOEpatents

    Stepan, I.E.; Allard, N.P.; Suter, C.R.

    1972-11-03

    Disclosure is made of a method and a correspondingly adapted facility for the nondestructive analysis of the concentation of fuel and poison in a nuclear reactor fuel pin. The concentrations of fuel and poison in successive sections along the entire length of the fuel pin are determined by measuring the reactivity of a thermal reactor as each successive small section of the fuel pin is exposed to the neutron flux of the reactor core and comparing the measured reactivity with the reactivities measured for standard fuel pins having various known concentrations. Only a small section of the length of the fuel pin is exposed to the neutron flux at any one time while the remainder of the fuel pin is shielded from the neutron flux. In order to expose only a small section at any one time, a boron-10-lined dry traverse tube is passed through the test region within the core of a low-power thermal nuclear reactor which has a very high fuel sensitivity. A narrow window in the boron-10 lining is positioned at the core center line. The fuel pins are then systematically traversed through the tube past the narrow window such that successive small sections along the length of the fuel pin are exposed to the neutron flux which passes through the narrow window.

  1. Testing of uranium nitride fuel in T-111 cladding at 1200 K cladding temperature

    NASA Technical Reports Server (NTRS)

    Rohal, R. G.; Tambling, T. N.; Smith, R. L.

    1973-01-01

    Two groups of six fuel pins each were assembled, encapsulated, and irradiated in the Plum Brook Reactor. The fuel pins employed uranium mononitride (UN) in a tantalum alloy clad. The first group of fuel pins was irradiated for 1500 hours to a maximum burnup of 0.7-atom-percent uranium. The second group of fuel pins was irradiated for about 3000 hours to a maximum burnup of 1.0-atom-percent uranium. The average clad surface temperature during irradiation of both groups of fuel pins was approximately 1200 K. The postirradiation examination revealed the following: no clad failures or fuel swelling occurred; less than 1 percent of the fission gases escaped from the fuel; and the clad of the first group of fuel pins experienced clad embrittlement whereas the second group, which had modified assembly and fabrication procedures to minimize contamination, had a ductile clad after irradiation.

  2. A ``NEW'' Solid-Core Reactor Fuel Form that Maximizes the Performance of Nuclear Thermal and Electric Rockets

    NASA Astrophysics Data System (ADS)

    Rom, Frank E.; Finnegan, Patrick M.

    1994-07-01

    The ``NEW'' solid-core fuel form is the old Vapor Transport (VT) fuel pin investigated at NASA about 30 years ago. It is simply a tube sealed at both ends partially filled with UO2. During operation the UO2 forms an annular layer on the inside of the tube by vaporization and condensation. This form is an ideal structure for overall strength and retention of fission products. All of the structural material lies between the fuel (including fission products) and the reactor coolant. The isothermal inside fuel surface temperature that results from the vaporization and condensation of fuel during operation eliminates hotspots, significantly increasing the design fuel pin surface temperature. For NTP, W-UO2 fuel pins yield higher operating temperatures than for other fuel forms, because W has about a ten-fold lower vaporization rate compared to any other known material. The use of perigee propulsion using W-UO2 fuel pins can result in a more than ten-fold reduction in reactor power. Lower reactor power, together with zero fission product release potential, and the simplicity of fabrication of VT fuel pins should greatly simplify and reduce the cost of development of NTP. For NEP, VT fuel pins can increase fast neutron spectrum reactor life with no fission product release. Thermal spectrum NEP reactors using W184 or Mo VT fuel pins, with only small amounts of high neutron absorbing additives, offer benefits because of much lower fissionable fuel requirements. The VT fuel pin has application to commercial power reactors with similar benefits.

  3. Design, fabrication, and operation of capsules for the irradiation testing of candidate advanced space reactor fuel pins

    NASA Technical Reports Server (NTRS)

    Thoms, K. R.

    1975-01-01

    Fuel irradiation experiments were designed, built, and operated to test uranium mononitride (UN) fuel clad in tungsten-lined T-111 and uranium dioxide fuel clad in both tungsten-lined T-111 and tungsten-lined Nb-1% Zr. A total of nine fuel pins was irradiated at average cladding temperatures ranging from 931 to 1015 C. The UN experiments, capsules UN-4 and -5, operated for 10,480 and 10,037 hr, respectively, at an average linear heat generation rate of 10 kW/ft. The UO2 experiment, capsule UN-6, operated for 8333 hr at an average linear heat generation rate of approximately 5 kW/ft. Following irradiation, the nine fuel pins were removed from their capsules, externally examined, and sent to the NASA Plum Brook Facility for more detailed postirradiation examination. During visual examination, it was discovered that the cladding of the fuel pin containing dense UN in each of capsules UN-4 and -5 had failed, exposing the UN fuel to the NaK in which the pins were submerged and permitting the release of fission gas from the failed pins. A rough analysis of the fission gas seen in samples of the gas in the fuel pin region indicated fission gas release-to-birth rates from these fuel pins in the range of .00001.

  4. INDEXING MECHANISM

    DOEpatents

    Kock, L.J.

    1959-09-22

    A device is presented for loading and unloading fuel elements containing material fissionable by neutrons of thermal energy. The device comprises a combination of mechanical features Including a base, a lever pivotally attached to the base, an Indexing plate on the base parallel to the plane of lever rotation and having a plurality of apertures, the apertures being disposed In rows, each aperture having a keyway, an Index pin movably disposed to the plane of lever rotation and having a plurality of apertures, the apertures being disposed in rows, each aperture having a keyway, an index pin movably disposed on the lever normal to the plane rotation, a key on the pin, a sleeve on the lever spaced from and parallel to the index pin, a pair of pulleys and a cable disposed between them, an open collar rotatably attached to the sleeve and linked to one of the pulleys, a pin extending from the collar, and a bearing movably mounted in the sleeve and having at least two longitudinal grooves in the outside surface.

  5. Fuel pin

    DOEpatents

    Christiansen, D.W.; Karnesky, R.A.; Leggett, R.D.; Baker, R.B.

    1987-11-24

    A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

  6. Fuel pin

    DOEpatents

    Christiansen, David W.; Karnesky, Richard A.; Leggett, Robert D.; Baker, Ronald B.

    1989-10-03

    A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

  7. Fuel pin

    DOEpatents

    Christiansen, David W.; Karnesky, Richard A.; Leggett, Robert D.; Baker, Ronald B.

    1989-01-01

    A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

  8. Spring loaded locator pin assembly

    DOEpatents

    Groll, Todd A.; White, James P.

    1998-01-01

    This invention deals with spring loaded locator pins. Locator pins are sometimes referred to as captured pins. This is a mechanism which locks two items together with the pin that is spring loaded so that it drops into a locator hole on the work piece.

  9. Optical fuel pin scanner. [Patent application; for reading identifications

    DOEpatents

    Kirchner, T.L.; Powers, H.G.

    1980-12-09

    This patent relates to an optical identification system developed for post-irradiation disassembly and analysis of fuel bundle assemblies. The apparatus is designed to be lowered onto a stationary fuel pin to read identification numbers or letters imprinted on the circumference of the top fuel pin and cap. (DLC)

  10. Automated closure system for nuclear reactor fuel assemblies

    DOEpatents

    Christiansen, David W.; Brown, William F.

    1985-01-01

    A welder for automated closure of fuel pins by a pulsed magnetic process in which the open end of a length of cladding is positioned within a complementary tube surrounded by a pulsed magnetic welder. Seals are provided at each end of the tube, which can be evacuated or can receive tag gas for direct introduction to the cladding interior. Loading of magnetic rings and end caps is accomplished automatically in conjunction with the welding steps carried out within the tube.

  11. Application of X-Ray Computer Tomography for Observing the Central Void Formations and the Fuel Pin Deformations of Irradiated FBR Fuel Assemblies

    NASA Astrophysics Data System (ADS)

    Katsuyama, Kozo; Nagamine, Tsuyoshi; Furuya, Hirotaka

    2010-10-01

    In order to observe the structural change in the interior of irradiated fuel assemblies, a non-destructive post-irradiation examination (PIE) technique using X-ray computer tomography (X-ray CT) was developed. This X-ray CT technique was applied to observe the central void formations and fuel pin deformations of fuel assemblies which had been irradiated at high linear heat rating. The central void sizes in all fuel pins were measured on five cross sections of the core fuel column as a parameter for evaluating fuel thermal performance. In addition, the fuel pin deformations were analyzed from X-ray CT images obtained along the axial direction of a fuel assembly at the same separation interval. A dependence of void size on the linear heat rating was seen in the fuel assembly irradiated at high linear heat rating. In addition, significant undulations of the fuel pin were observed along the axial direction, coinciding with the wrapping wire pitch in the core fuel column. Application of the developed technique should provide enhanced resolution of measurements and simplify fuel PIEs.

  12. Spring loaded locator pin assembly

    DOEpatents

    Groll, T.A.; White, J.P.

    1998-03-03

    This invention deals with spring loaded locator pins. Locator pins are sometimes referred to as captured pins. This is a mechanism which locks two items together with the pin that is spring loaded so that it drops into a locator hole on the work piece. 5 figs.

  13. Evaluation of FFTF fuel pin design procedure vis-a-vis steady state irradiation performance in EBR II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, R.J.

    1976-11-01

    The FFTF fuel pin design analysis is shown to be conservative through comparison with pin irradiation experience in EBR-II. This comparison shows that the actual lifetimes of EBR-II fuel pins are either greater than 80,000 MWd/MTM or greater than the calculated allowable lifetimes based on thermal creep strain.

  14. Full-length U-xPu-10Zr (x = 0, 8, 19 wt.%) fast reactor fuel test in FFTF

    NASA Astrophysics Data System (ADS)

    Porter, D. L.; Tsai, Hanchung

    2012-08-01

    The Integral Fast Reactor-1 (IFR-1) experiment performed in the Fast Flux Test Facility (FFTF) was the only U-Pu-10Zr (Pu-0, 8 and 19 wt.%) metallic fast reactor test with commercial-length (91.4-cm active fuel-column length) conducted to date. With few remaining test reactors, there is little opportunity for performing another test with a long active fuel column. The assembly was irradiated to the goal burnup of 10 at.%. The beginning-of-life (BOL) peak cladding temperature of the hottest pin was 608 °C, cooling to 522 °C at end-of-life (EOL). Selected fuel pins were examined non-destructively using neutron radiography, precision axial gamma scanning, and both laser and spiral contact cladding profilometry. Destructive exams included plenum gas pressure, volume, and gas composition determinations on a number of pins followed by optical metallography, electron probe microanalysis (EPMA), and alpha and beta-gamma autoradiography on a single U-19Pu-10Zr pin. The post-irradiation examinations (PIEs) showed very few differences compared to the short-pin (34.3-cm fuel column) testing performed on fuels of similar composition in Experimental Breeder Reactor-II (EBR-II). The fuel column grew axially slightly less than observed in the short pins, but with the same pattern of decreasing growth with increasing Pu content. There was a difference in the fuel-cladding chemical interaction (FCCI) in that the maximum cladding penetration by interdiffusion with fuel/fission products did not occur at the top of the fuel column where the cladding temperature is highest, as observed in EBR-II tests. Instead, the more exaggerated fission-rate profile of the FFTF pins resulted in a peak FCCI at ˜0.7 X/L axial location along the fuel column. This resulted from a higher production of rare-earth fission products at this location and a higher ΔT between fuel center and cladding than at core center, together providing more rare earths at the cladding and more FCCI. This behavior could actually help extend the life of a fuel pin in a "long pin" reactor design to a higher peak fuel burnup.

  15. Retrievable fuel pin end member for a nuclear reactor

    DOEpatents

    Rosa, Jerry M.

    1982-01-01

    A bottom end member (17b) on a retrievable fuel pin (13b) secures the pin (13b) within a nuclear reactor (12) by engaging on a transverse attachment rail (18) with a spring clip type of action. Removal and reinstallation if facilitated as only axial movement of the fuel pin (13b) is required for either operation. A pair of resilient axially extending blades (31) are spaced apart to define a slot (24) having a seat region (34) which receives the rail (18) and having a land region (37), closer to the tips (39) of the blades (31) which is normally of less width than the rail (18). Thus an axially directed force sufficient to wedge the resilient blades (31) apart is required to emplace or release the fuel pin (13b) such force being greater than the axial forces on the fuel pins (13b) which occur during operation of the reactor (12).

  16. Irradiation of TZM: Uranium dioxide fuel pin at 1700 K

    NASA Technical Reports Server (NTRS)

    Mcdonald, G. E.

    1973-01-01

    A fuel pin clad with TZM and containing solid pellets of uranium dioxide was fission heated in a static helium-cooled capsule at a maximum surface temperature of 1700 K for approximately 1000 hr and to a total burnup of 2.0 percent of the uranium-235. The results of the postirradiation examination indicated: (1) A transverse, intergranular failure of the fuel pin occurred when the fuel pin reached 2.0-percent burnup. This corresponds to 1330 kW-hr/cu cm, where the volume is the sum of the fuel, clad, and void volumes in the fuel region. (2) The maximum swelling of the fuel pin was less than 1.5 percent on the fuel-pin diameter. (3) There was no visible interaction between the TZM clad and the UO2. (4) Irradiation at 1700 K produced a course-grained structure, with an average grain diameter of 0.02 centimeter and with some of the grains extending one-half of the thickness of the clad. (5) Below approximately 1500 K, the irradiation of the clad produced a moderately fine-grained structure, with an average grain diameter of 0.004 centimeter.

  17. EXFILE: A program for compiling irradiation data on UN and UC fuel pins

    NASA Technical Reports Server (NTRS)

    Mayer, J. T.; Smith, R. L.; Weinstein, M. B.; Davison, H. W.

    1973-01-01

    A FORTRAN-4 computer program for handling fuel pin data is described. Its main features include standardized output, easy access for data manipulation, and tabulation of important material property data. An additional feature allows simplified preparation of input decks for a fuel swelling computer code (CYGRO-2). Data from over 300 high temperature nitride and carbide based fuel pin irradiations are listed.

  18. Carbide fuel pin and capsule design for irradiations at thermionic temperatures

    NASA Technical Reports Server (NTRS)

    Siegel, B. L.; Slaby, J. G.; Mattson, W. F.; Dilanni, D. C.

    1973-01-01

    The design of a capsule assembly to evaluate tungsten-emitter - carbide-fuel combinations for thermionic fuel elements is presented. An inpile fuel pin evaluation program concerned with clad temperture, neutron spectrum, carbide fuel composition, fuel geometry,fuel density, and clad thickness is discussed. The capsule design was a compromise involving considerations between heat transfer, instrumentation, materials compatibility, and test location. Heat-transfer calculations were instrumental in determining the method of support of the fuel pin to minimize axial temperature variations. The capsule design was easily fabricable and utilized existing state-of-the-art experience from previous programs.

  19. Effect of Fuel Temperature Profile on Eigenvalue Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greifenkamp, Tom E; Clarno, Kevin T; Gehin, Jess C

    2008-01-01

    Use of an average fuel temperature is a current practice when modeling fuel for eigenvalue (k-inf) calculations. This is an approximation, as it is known from Heat-transfer methods that a fuel pin having linear power q', will have a temperature that varies radially and has a maximum temperature at the center line [1]. This paper describes an investigation into the effects on k-inf and isotopic concentrations of modeling a fuel pin using a single average temperature versus a radially varying fuel temperature profile. The axial variation is not discussed in this paper. A single fuel pin was modeled having 1,more » 3, 5, 8, or 10 regions of equal volumes (areas). Fig. 1 shows a model of a 10-ring fuel pin surrounded by a gap and then cladding.« less

  20. Thermal analysis of the FSP-1 fuel pin irradiation test. [for SP-100 space power reactor

    NASA Technical Reports Server (NTRS)

    Lyon, William F., III

    1991-01-01

    Thermal analysis of a pin from the FSP-1 fuels irradiation test has been completed. The purpose of the analysis was to provide predictions of fuel pin temperatures, determine the flow regime within the lithium annulus of the test assembly, and provide a standardized model for a consistent basis of comparison between pins within the test assembly. The calculations have predicted that the pin is operating at slightly above the test design temperatures and that the flow regime within the lithium annulus is a laminar buoyancy driven flow.

  1. Crane-Load Contact Sensor

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert; Mata, Carlos; Cox, Robert

    2005-01-01

    An electronic instrument has been developed as a prototype of a portable crane-load contact sensor. Such a sensor could be helpful in an application in which the load rests on a base in a horizontal position determined by vertical alignment pins (see Figure 1). If the crane is not positioned to lift the load precisely vertically, then the load can be expected to swing once it has been lifted clear of the pins. If the load is especially heavy, large, and/or fragile, it could hurt workers and/or damage itself and nearby objects. By indicating whether the load remains in contact with the pins when it has been lifted a fraction of the length of the pins, the crane-load contact sensor helps the crane operator determine whether it is safe to lift the load clear of the pins: If there is contact, then the load is resting against the sides of the pins and, hence, it may not be safe to lift; if contact is occasionally broken, then the load is probably not resting against the pins, so it should be safe to lift. It is assumed that the load and base, or at least the pins and the surfaces of the alignment holes in the load, are electrically conductive, so the instrument can use electrical contact to indicate mechanical contact. However, DC resistance cannot be used as an indicator of contact for the following reasons: The load and the base are both electrically grounded through cables (the load is grounded through the lifting cable of the crane) to prevent discharge of static electricity. In other words, the DC resistance between the load and the pins is always low, as though they were always in direct contact. Therefore, instead of DC resistance, the instrument utilizes the AC electrical impedance between the pins and the load. The signal frequency used in the measurement is high enough (.1 MHz) that the impedance contributed by the cables and the electrical ground network of the building in which the crane and the base are situated is significantly greater than the contact impedance between the pins and the load. The instrument includes a signal generator and voltage-measuring circuitry, and is connected to the load and the base as shown in Figure 2. The output of the signal generator (typically having amplitude of the order of a volt) is applied to the load via a 50-resistor, and the voltage between the load and the pins is measured. When the load and the pins are not in contact, the impedance between them is relatively high, causing the measured voltage to exceed a threshold value. When the load and the pins are in contact, the impedance between them falls to a much lower value, causing the voltage to fall below the threshold value. The voltage-measuring circuitry turns on a red light-emitting diode (LED) to indicate the lower-voltage/ contact condition. Whenever the contact has been broken and the non-contact/higher-voltage condition has lasted for more than 2 ms, the voltage-measuring circuitry indicates this condition by blinking a green LED.

  2. Fabrication of fuel pin assemblies, phase 3

    NASA Technical Reports Server (NTRS)

    Keeton, A. R.; Stemann, L. G.

    1972-01-01

    Five full size and eight reduced length fuel pins were fabricated for irradiation testing to evaluate design concepts for a fast spectrum lithium cooled compact space power reactor. These assemblies consisted of uranium mononitride fuel pellets encased in a T-111 (Ta-8W-2Hf) clad with a tungsten barrier separating fuel and clad. Fabrication procedures were fully qualified by process development and assembly qualification tests. Detailed specifications and procedures were written for the fabrication and assembly of prototype fuel pins.

  3. TREAT Neutronics Analysis of Water-Loop Concept Accommodating LWR 9-rod Bundle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, Connie M.; Woolstenhulme, Nicolas E.; Parry, James R.

    Abstract. Simulation of a variety of transient conditions has been successfully achieved in the Transient Reactor Test (TREAT) facility during operation between 1959 and 1994 to support characterization and safety analysis of nuclear fuels and materials. A majority of previously conducted tests were focused on supporting sodium-cooled fast reactor (SFR) designs. Experiments evolved in complexity. Simulation of thermal-hydraulic conditions expected to be encountered by fuels and materials in a reactor environment was realized in the development of TREAT sodium loop experiment vehicles. These loops accommodated up to 7-pin fuel bundles and served to simulate more closely the reactor environment whilemore » safely delivering large quantities of energy into the test specimen. Some of the immediate TREAT restart operations will be focused on testing light water reactor (LWR) accident tolerant fuels (ATF). Similar to the sodium loop objectives, a water loop concept, developed and analyzed in the 1990’s, aimed at achieving thermal-hydraulic conditions encountered in commercial power reactors. The historic water loop concept has been analyzed in the context of a reactivity insertion accident (RIA) simulation for high burnup LWR 2-pin and 3-pin fuel bundles. Findings showed sufficient energy could be deposited into the specimens for evaluation. Similar results of experimental feasibility for the water loop concept (past and present) have recently been obtained using MCNP6.1 with ENDF/B-VII.1 nuclear data libraries. The old water loop concept required only two central TREAT core grid spaces. Preparation for future experiments has resulted in a modified water loop conceptual design designated the TREAT water environment recirculating loop (TWERL). The current TWERL design requires nine TREAT core grid spaces in order to place the water recirculating pump under the TREAT core. Due to the effectiveness of water moderation, neutronics analysis shows that removal of seven additional TREAT fuel elements to facilitate the experiment will not inhibit the ability to successfully simulate a RIA for the 2-pin or 3-pin bundle. This new water loop design leaves room for accommodating a larger fuel pin bundle than previously analyzed. The 7-pin fuel bundle in a hexagonal array with similar spacing of fuel pins in a SFR fuel assembly was considered the minimum needed for one central fuel pin to encounter the most correct thermal conditions. The 9-rod fuel bundle in a square array similar in spacing to pins in a LWR fuel assembly would be considered the LWR equivalent. MCNP analysis conducted on a preliminary LWR 9-rod bundle design shows that sufficient energy deposition into the central pin can be achieved well within range to investigate fuel and cladding performance in a simulated RIA. This is achieved by surrounding the flow channel with an additional annulus of water. Findings also show that a highly significant increase in TREAT to specimen power coupling factor (PCF) within the central pin can be achieved by surrounding the experiment with one to two rings of TREAT upgrade fuel assemblies. The experiment design holds promise for the performance evaluation of PWR fuel at extremely high burnup under similar reactor environment conditions.« less

  4. Molybdenum-UO2 cerment irradiation at 1145 K

    NASA Technical Reports Server (NTRS)

    Mcdonald, G.

    1971-01-01

    Two molybdenum-UO2 cermet fuel pins were fission heated in a helium-cooled loop at a temperature of 1145 K and to a total burnup of 5.3 % of the U-235. After irradiation the fuel pins were measured to check dimensional stability, punctured at the plenums to determine fission gas release, and examined metallographically to determine the effect of irradiation. Burnup was determined in several sections of the fuel pin. The results of the postirradiation examination indicated: (1) There was no visible change in the fuel pins on irradiation under the above conditions. (2) The maximum swelling of the fuel pins was less than 1%. (3) There was no migration of UO2 and no visible interaction between the molybdenum and the UO2. (4) Approximately 12% of the fission gas formed was released from the cermet cone into the gas plenum.

  5. The effects of pin elasticity, clearance, and friction on the stresses in a pin-loaded orthotropic plate

    NASA Technical Reports Server (NTRS)

    Hyer, M. W.; Klang, E. C.; Cooper, D. E.

    1987-01-01

    The effects of pin elasticity, clearance, and friction on the stresses in a pin loaded orthotropic plate are studied. The effects are studied by posing the problem as a planar contact elasticity problem, the pin and the plate being two elastic bodies which interact through contact. Coulomb friction is assumed, the pin loads the plate in one of its principal material directions, and the plate is infinite in extent. A collocation scheme and interaction, in conjunction with a complex variable series solution, are used to obtain numerical results. The contact region between the plate and pin is unknown and must be solved for as part of the solution. The same is true of the region of friction induced no slip. Two pin stiffnesses, two clearance levels, two friction levels and two laminates, a (0/+ or - 45/90)s and a (02/+ or - 45)s, are studied. The effects of pin elasticity, clearance, and friction on the load capacity of the plate are assessed by comparing the load capacity of the plate with the capacity when the pin is rigid, perfectly fitting, and frictionless.

  6. Assemblies with both target and fuel pins in an isotope-production reactor

    DOEpatents

    Cawley, W.E.; Omberg, R.P.

    1982-08-19

    A method is described for producing tritium in a fast breeder reactor cooled with liquid metal. Lithium target material is placed in pins adjacent to fuel pins in order to increase the tritium production rate.

  7. STUDIES OF FAST REACTOR FUEL ELEMENT BEHAVIOR UNDER TRANSIENT HEATING TO FAILURE. I. INITIAL EXPERIMENTS ON METALLIC SAMPLES IN THE ABSENCE OF COOLANT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dickerman, C. E.; Sowa, E. S.; Okrent, D.

    1961-08-01

    Meltdown tests on single metallic unirradiated fuel elements in TREAT are described. The fuel elements (EBRII Mark I fuel pins, EBR-II fuel pins with retractory Nb or Ta cladding, and Fermi-I fuel pins) are tested in an inert atmosphere, with no coolant. The fuel elements are exposed to reactor power bursts of 200 msec to 25 sec duration, under conditions simulating fast reactor operations. For these tests, the type of power burst, the integrated power, the fuel enrichment, the maximum cladding temperature, and the effects of the test on the fuel element are recorded. ( T.F.H.)

  8. Measurement of contact angle in a clearance-fit pin-loaded hole

    NASA Technical Reports Server (NTRS)

    Prabhakaran, R.; Naik, R. A.

    1986-01-01

    A technique which measures load-contact variation in a clearance-fit, pin-loaded hole is presented in detail. A steel instrumented pin, which activates a make-or-break electrical circuit in the pin-hole contact region, was inserted into one aluminum and one polycarbonate specimen. The resulting load-contact variations are indicated schematically. The ability to accurately determine the arc of contact at any load was crucial to this measurement. It is noted that this simple experimental technique is applicable to both conducting and nonconducting materials.

  9. Fuel Pin Behavior Under the Slow Power Ramp Transients in the CABRI-2 Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charpenel, Jean; Lemoine, Francette; Sato, Ikken

    Slow ramp-type transient-overpower tests were performed within the framework of the international CABRI-2 experimental program. The implemented power transients of {approx}1% nominal power/s correspond to a control rod withdrawal-type accident in a liquid-metal-cooled fast breeder reactor (FBR). The analysis of the tests includes the information elements derived from the hodoscope signals, which were assessed quantitatively and supported by destructive and nondestructive posttest examinations. These tests, performed with fuels of various geometries, demonstrated the high margin to failure of such FBR fuel pins within the expected power level before the emergency reactor shutdown. At the same time, these tests performed withmore » high- and low-smear-density industrial pins led to clarification of the influence of pellet design on fuel pin behavior under high overpower condition. With the high-smear-density solid fuel pellet pin of high burnup level, the retained gaseous fission products played an important role in the solid fuel swelling, leading to clad deformation and failure at a maximum heating rate of 81 kW.m{sup -1}, which is much greater than the end-of-life (EOL) linear rating of the pin. With the low smear-density annular pellet pin, an important fuel swelling takes place, leading to degradation of the fuel thermal conductivity. This effect was detected at the power level around 73 kW.m{sup -1}, which is also much higher than the EOL value of the pin. Furthermore, the absence of clad deformation, and consequently of failure even at the power level going up to 134.7 kW.m{sup -1}, confirmed the very high margin to failure. In consequence, it was clarified that gaseous fission products have significant effects on failure threshold as well as on thermal performance during overpower condition, and such effects are significantly dependent on fuel design and power operation conditions.« less

  10. 76 FR 28169 - Airworthiness Directives; Agusta S.p.A. Model AB412 Helicopters

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-16

    ... lock pin may cause the loss of the hoist hook and any load. The absence of the lock pin constitutes an... cause the loss of the hoist hook and any load. The absence of the lock pin constitutes an unsafe... absence of this lock pin to prevent the loss of a rescue hoist hook and its load. [[Page 28171

  11. Funnel for fuel pin loading system

    DOEpatents

    Christiansen, D.W.; Steffen, J.M.; Brown, W.F.

    1984-01-01

    An enlarged funnel is described which is releasably mounted at the open end of a length of cladding by an encircling length of shrink tubing which securely engages outer surfaces of both the funnel and cladding. The shrink tubing overlaps an annular shoulder against which pulling force can be exerted to remove the tubing from the cladding. The shoulder can be provided on a separate collar or ring, or on the funnel itself.

  12. Funnel for fuel pin loading system

    DOEpatents

    Christiansen, David W.; Steffen, Jim M.; Brown, William F.

    1985-01-01

    An enlarged funnel is releasably mounted at the open end of a length of cladding by an encircling length of shrink tubing which securely engages outer surfaces of both the funnel and cladding. The shrink tubing overlaps an annular shoulder against which pulling force can be exerted to remove the tubing from the cladding. The shoulder can be provided on a separate collar or ring, or on the funnel itself.

  13. Theoretical analysis of swelling characteristics of cylindrical uranium dioxide fuel pins with a niobium - 1-percent-zirconium clad

    NASA Technical Reports Server (NTRS)

    Saltsman, J. F.

    1973-01-01

    The relations between clad creep strain and fuel volume swelling are shown for cylindrical UO2 fuel pins with a Nb-1Zr clad. These relations were obtained by using the computer code CYGRO-2. These clad-strain - fuel-volume-swelling relations may be used with any fuel-volume-swelling model, provided the fuel volume swelling is isotropic and independent of the clad restraints. The effects of clad temperature (over a range from 118 to 1642 K (2010 to 2960 R)), pin diameter, clad thickness and central hole size in the fuel have been investigated. In all calculations the irradiation time was 500 hours. The burnup rate was varied.

  14. Mechanical evaluation of external skeletal fixator-intramedullary pin tie-in configurations applied to cadaveral humeri from red-tailed hawks (Buteo jamaicensis).

    PubMed

    Van Wettere, Arnaud J; Redig, Patrick T; Wallace, Larry J; Bourgeault, Craig A; Bechtold, Joan E

    2009-12-01

    Use of external skeletal fixator-intramedullary pin (ESF-IM) tie-in fixators is an adjustable and effective method of fracture fixation in birds. The objective of this study was to determine the contribution of each of the following parameters to the compressive and torsional rigidity of an ESF-IM pin tie-in applied to avian bones with an osteotomy gap: (1) varying the fixation pin position in the proximal bone segment and (2) increasing the number of fixation pins in one or both bone segments. ESF-IM pin tie-in constructs were applied to humeri harvested from red-tailed hawks (Buteo jamaicensis) (n=24) that had been euthanatized for clinical reasons. Constructs with a variation in the placement of the proximal fixation pin and with 2, 3, or 4 fixation pins applied to avian bone with an osteotomy gap were loaded to a defined displacement in torque and axial compression. Response variables were determined from resulting load-displacement curves (construct stiffness, load at 1-mm displacement). Increasing the number of fixation pins from 1 to 2 per bone segment significantly increased the stiffness in torque (110%) and compression (60%), and the safe load in torque (107%) and compression (50%). Adding a fixation pin to the distal bone segment to form a 3-pin fixator significantly increased the stiffness (27%) and safe load (20%) in torque but not in axial compression. In the configuration with 2 fixation pins, placing the proximal pin distally in the proximal bone segment significantly increased the stiffness in torque (28%), and the safe load in torque (23%) and in axial compression (32%). Results quantified the relative importance of specific parameters affecting the rigidity of ESF-IM pin tie-in constructs as applied to unstable bone fracture models in birds.

  15. Mechanics of advancing pin-loaded contacts with friction

    NASA Astrophysics Data System (ADS)

    Sundaram, Narayan; Farris, T. N.

    2010-11-01

    This paper considers finite friction contact problems involving an elastic pin and an infinite elastic plate with a circular hole. Using a suitable class of Green's functions, the singular integral equations governing a very general class of conforming contact problems are formulated. In particular, remote plate stresses, pin loads, moments and distributed loading of the pin by conservative body forces are considered. Numerical solutions are presented for different partial slip load cases. In monotonic loading, the dependence of the tractions on the coefficient of friction is strongest when the contact is highly conforming. For less conforming contacts, the tractions are insensitive to an increase in the value of the friction coefficient above a certain threshold. The contact size and peak pressure in monotonic loading are only weakly dependent on the pin load distribution, with center loads leading to slightly higher peak pressure and lower peak shear than distributed loads. In contrast to half-plane cylinder fretting contacts, fretting behavior is quite different depending on whether or not the pin is allowed to rotate freely. If pin rotation is disallowed, the fretting tractions resemble half-plane fretting tractions in the weakly conforming regime but the contact resists sliding in the strongly conforming regime. If pin rotation is allowed, the shear traction behavior resembles planar rolling contacts in that one slip zone is dominant and the peak shear occurs at its edge. In this case, the effects of material dissimilarity in the strongly conforming regime are only secondary and the contact never goes into sliding. Fretting tractions in the forward and reversed load states show shape asymmetry, which persists with continued load cycling. Finally, the governing integro-differential equation for full sliding is derived; in the limiting case of no friction, the same equation governs contacts with center loading and uniform body force loading, resulting in identical pressures when their resultants are equal.

  16. Bearing-Load Modeling and Analysis Study for Mechanically Connected Structures

    NASA Technical Reports Server (NTRS)

    Knight, Norman F., Jr.

    2006-01-01

    Bearing-load response for a pin-loaded hole is studied within the context of two-dimensional finite element analyses. Pin-loaded-hole configurations are representative of mechanically connected structures, such as a stiffener fastened to a rib of an isogrid panel, that are idealized as part of a larger structural component. Within this context, the larger structural component may be idealized as a two-dimensional shell finite element model to identify load paths and high stress regions. Finite element modeling and analysis aspects of a pin-loaded hole are considered in the present paper including the use of linear and nonlinear springs to simulate the pin-bearing contact condition. Simulating pin-connected structures within a two-dimensional finite element analysis model using nonlinear spring or gap elements provides an effective way for accurate prediction of the local effective stress state and peak forces.

  17. Posttest examination results of recent treat tests on metal fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holland, J.W.; Wright, A.E.; Bauer, T.H.

    A series of in-reactor transient tests is underway to study the characteristics of metal-alloy fuel during transient-overpower-without-scam conditions. The initial tests focused on determining the margin to cladding breach and the axial fuel motions that would mitigate the power excursion. The tests were conducted in flowing-sodium loops with uranium - 5% fissium EBR-II Mark-II driver fuel elements in the TREAT facility. Posttest examination of the tests evaluated fuel elongation in intact pins and postfailure fuel motion. Microscopic examination of the intact pins studied the nature and extent of fuel/cladding interaction, fuel melt fraction and mass distribution, and distribution of porosity.more » Eutectic penetration and failure of the cladding were also examined in the failed pins.« less

  18. The chemical state of defective uranium-plutonium oxide fuel pins irradiated in sodium cooled reactors

    NASA Astrophysics Data System (ADS)

    Kleykamp, H.

    1997-09-01

    Steady-state irradiation experiments were conducted in the sodium loop of the Siloe reactor on artificially failed mixed oxide pins that had been pre-irradiated in fast reactors up to 11.5% burnup. The formation of the predominant reaction product Na 3(U,Pu)O 4 starts on the fuel surface and is terminated when a lower O/(U + Pu) threshold of the fuel is attained. The axial extent of the reaction product depends on the size of the initial cladding defect. The occurrence of secondary cracks is possible. Na(U,Pu)O 3 forms at higher fuel temperatures. The existence of Na 3U 1- xPu xO 4 is shown in pre-irradiated blanket pins after artificial defect formation. Caesium in the oxocompounds is reduced to the metallic state and is dissolved in the coolant. Evidence of a very low chemical potential of oxygen in defective fuel pins is sustained by the occurrence of actinide-platinum metal phases formed by coupled reduction of hypostoichiometric fuel with ɛ-(Mo,Tc,Ru,Rh,Pd) precipitates. Continued operation of defective pins is not hazardous by easy precautions.

  19. Sustained Recycle in Light Water and Sodium-Cooled Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steven J. Piet; Samuel E. Bays; Michael A. Pope

    2010-11-01

    From a physics standpoint, it is feasible to sustain recycle of used fuel in either thermal or fast reactors. This paper examines multi-recycle potential performance by considering three recycling approaches and calculating several fuel cycle parameters, including heat, gamma, and neutron emission of fresh fuel; radiotoxicity of waste; and uranium utilization. The first recycle approach is homogeneous mixed oxide (MOX) fuel assemblies in a light water reactor (LWR). The transuranic portion of the MOX was varied among Pu, NpPu, NpPuAm, or all-TRU. (All-TRU means all isotopes through Cf-252.) The Pu case was allowed to go to 10% Pu in freshmore » fuel, but when the minor actinides were included, the transuranic enrichment was kept below 8% to satisfy the expected void reactivity constraint. The uranium portion of the MOX was enriched uranium. That enrichment was increased (to as much as 6.5%) to keep the fuel critical for a typical LWR irradiation. The second approach uses heterogeneous inert matrix fuel (IMF) assemblies in an LWR - a mix of IMF and traditional UOX pins. The uranium-free IMF fuel pins were Pu, NpPu, NpPuAm, or all-TRU. The UOX pins were limited to 4.95% U-235 enrichment. The number of IMF pins was set so that the amount of TRU in discharged fuel from recycle N (from both IMF and UOX pins) was made into the new IMF pins for recycle N+1. Up to 60 of the 264 pins in a fuel assembly were IMF. The assembly-average TRU content was 1-6%. The third approach uses fast reactor oxide fuel in a sodium-cooled fast reactor with transuranic conversion ratio of 0.50 and 1.00. The transuranic conversion ratio is the production of transuranics divided by destruction of transuranics. The FR at CR=0.50 is similar to the CR for the MOX case. The fast reactor cases had a transuranic content of 33-38%, higher than IMF or MOX.« less

  20. Irradiation of three T-111 clad uranium nitride fuel pins for 8070 hours at 990 C (1815 F)

    NASA Technical Reports Server (NTRS)

    Slaby, J. G.; Siegel, B. L.; Gedeon, L.; Galbo, R. J.

    1973-01-01

    The design and successful operation of three tantalum alloy (Ta-8W-2Hf) clad uranium mononitride (UN) fuel pins irradiated for 8070 hr at 990 C (1815 F) is described. Two pin diameters having measured burnups of 0.47 and 0.90 uranium atom percent were tested. No clad failures or swelling was detected; however, postirradiation clad samples tested failed with 1 percent strain. The fuel density decrease was 2 percent, and the fission gas release was less than 0.05 percent. Isotropic fuel swelling, which averaged about 0.5 percent, was less than fuel pin assembly clearances. Thus the clad was not strained. Thermocouples with a modified hot zone operated at average temperatures to 1100 C (2012 F) without failure. Factors that influence the ability to maintain uniform clad temperature as well as the results of the heat transfer calculations are discussed.

  1. Monte Carlo characterization of PWR spent fuel assemblies to determine the detectability of pin diversion

    NASA Astrophysics Data System (ADS)

    Burdo, James S.

    This research is based on the concept that the diversion of nuclear fuel pins from Light Water Reactor (LWR) spent fuel assemblies is feasible by a careful comparison of spontaneous fission neutron and gamma levels in the guide tube locations of the fuel assemblies. The goal is to be able to determine whether some of the assembly fuel pins are either missing or have been replaced with dummy or fresh fuel pins. It is known that for typical commercial power spent fuel assemblies, the dominant spontaneous neutron emissions come from Cm-242 and Cm-244. Because of the shorter half-life of Cm-242 (0.45 yr) relative to that of Cm-244 (18.1 yr), Cm-244 is practically the only neutron source contributing to the neutron source term after the spent fuel assemblies are more than two years old. Initially, this research focused upon developing MCNP5 models of PWR fuel assemblies, modeling their depletion using the MONTEBURNS code, and by carrying out a preliminary depletion of a ¼ model 17x17 assembly from the TAKAHAMA-3 PWR. Later, the depletion and more accurate isotopic distribution in the pins at discharge was modeled using the TRITON depletion module of the SCALE computer code. Benchmarking comparisons were performed with the MONTEBURNS and TRITON results. Subsequently, the neutron flux in each of the guide tubes of the TAKAHAMA-3 PWR assembly at two years after discharge as calculated by the MCNP5 computer code was determined for various scenarios. Cases were considered for all spent fuel pins present and for replacement of a single pin at a position near the center of the assembly (10,9) and at the corner (17,1). Some scenarios were duplicated with a gamma flux calculation for high energies associated with Cm-244. For each case, the difference between the flux (neutron or gamma) for all spent fuel pins and with a pin removed or replaced is calculated for each guide tube. Different detection criteria were established. The first was whether the relative error of the difference was less than 1.00, allowing for the existence of the difference within the margin of error. The second was whether the difference between the two values was big enough to prevent their error bars from overlapping. Error analysis was performed both using a one second count and pseudo-Maxwell statistics for a projected 60 second count, giving four criteria for detection. The number of guide tubes meeting these criteria was compared and graphed for each case. Further analysis at extremes of high and low enrichment and long and short burnup times was done using data from assemblies at the Beaver Valley 1 and 2 PWR. In all neutron flux cases, at least two guide tube locations meet all the criteria for detection of pin diversion. At least one location in almost all of the gamma flux cases does. These results show that placing detectors in the empty guide tubes of spent fuel bundles to identify possible pin diversion is feasible.

  2. Fuel or irradiation subassembly

    DOEpatents

    Seim, O.S.; Hutter, E.

    1975-12-23

    A subassembly for use in a nuclear reactor is described which incorporates a loose bundle of fuel or irradiation pins enclosed within an inner tube which in turn is enclosed within an outer coolant tube and includes a locking comb consisting of a head extending through one side of the inner sleeve and a plurality of teeth which extend through the other side of the inner sleeve while engaging annular undercut portions in the bottom portion of the fuel or irradiation pins to prevent movement of the pins.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ketusky, E.

    The U.S. Department of Energy’s (DOE’s) Used Fuel Disposition Campaign (UFDC) Program has transported high-burnup nuclear sister fuel rods from a commercial nuclear power plant for purposes of evaluation and testing. The evaluation and testing of high-burnup used nuclear fuel is integral to DOE initiatives to collect information useful in determining the integrity of fuel cladding for future safe transportation of the fuel, and for determining the effects of aging, on the integrity of UNF subjected to extended storage and subsequent transportation. The UFDC Program, in collaboration with the U.S. Nuclear Regulatory Commission and the commercial nuclear industry, has obtainedmore » individual used nuclear fuel rods for testing. The rods have been received at Oak Ridge National Laboratory (ORNL) for both separate effects testing (SET) and small-scale testing (SST). To meet the research objectives, testing on multiple 6 inch fuel rod pins cut from the rods at ORNL will be performed at Pacific Northwest National Laboratory (PNNL). Up to 10 rod equivalents will be shipped. Options were evaluated for multiple shipments using the 10-160B (based on 4.5 rod equivalents) and a single shipment using the NAC-LWT. Based on the original INL/Virginia Power transfer agreement, the rods are assumed to 152 inches in length with a 0.374-inch diameter. This report provides a preliminary content evaluation for use of the 10-160B and NAC-LWT for transporting those fuel rod pins from ORNL to PNNL. This report documents the acceptability of using these packagings to transport the fuel segments from ORNL to PNNL based on the following evaluations: enrichment, A2 evaluation, Pu-239 FGE evaluation, heat load, shielding (both gamma and neutron), and content weight/structural evaluation.« less

  4. Summary of LCRE fuel element design including supporting experimental data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    Declassified 18 Sep 1973. The design basis of the LCRE fuel pin is presented. The fuel pin consists of a Cb-1 Zr alloy cladding tube 0.305 inch diameter, 0.015 inch wall thickness and 35.96 inches long. The active fuel section is 13.5 inches long, with top and bottom reflector rods each 6.9 inches long and with a 4 inch gas accumulation space at each end. The cladding is designed as a pressure vessel to contain the gases released from the fuel and end refiector materials, which results in an internal gas pressure buildup in the pins during reactor operation. (23more » referencea) (auth)« less

  5. Improved Quick-Release Pin Mechanism

    NASA Technical Reports Server (NTRS)

    Wright, Jay M.

    2007-01-01

    An improved quick-release pin mechanism supplants a prior such mechanism in which the pin bears a shear load to hold two objects together. The prior mechanism, of a ball-locking design, can fail when vibrations cause balls to fall out. The load-bearing pin is an outer tube with a handle at one end (hereafter denoted the near end). Within the outer tube is a spring-loaded inner tube that includes a handle at its near end and a pivoting tab at its far end. The pin is inserted through holes in the objects to be retained and the inner tube is pushed against an offset pivot inside the outer tube to make the tab rotate outward so that it protrudes past the outer diameter of the outer tube, and the spring load maintains this configuration so that the pin cannot be withdrawn through the holes. Pushing the handles together against the spring load moves the locking tab out far enough that the tab becomes free to rotate inward. Then releasing the inner-tube handle causes the tab to be pulled into a resting position inside the outer tube. The pin can then be pulled out through the holes.

  6. Pulse magnetic welder

    DOEpatents

    Christiansen, D.W.; Brown, W.F.

    1984-01-01

    A welder is described for automated closure of fuel pins by a pulsed magnetic process in which the open end of a length of cladding is positioned within a complementary tube surrounded by a pulsed magnetic welder. Seals are provided at each end of the tube, which can be evacuated or can receive tag gas for direct introduction to the cladding interior. Loading of magnetic rings and end caps is accomplished automatically in conjunction with the welding steps carried out within the tube.

  7. Documentation of Stainless Steel Lithium Circuit Test Section Design. Suppl

    NASA Technical Reports Server (NTRS)

    Godfroy, Thomas J. (Compiler); Martin, James J.

    2010-01-01

    The Early Flight Fission-Test Facilities (EFF-TF) team was tasked by Naval Reactors Prime Contract Team (NRPCT) to design, fabricate, and test an actively pumped lithium (Li) flow circuit. This Li circuit takes advantage of work in progress at the EFF TF on a stainless steel sodium/potassium (NaK) circuit. The effort involved modifying the original stainless steel NaK circuit such that it could be operated with Li in place of NaK. This new design considered freeze/thaw issues and required the addition of an expansion tank and expansion/extrusion volumes in the circuit plumbing. Instrumentation has been specified for Li and circuit heaters have been placed throughout the design to ensure adequate operational temperatures and no uncontrolled freezing of the Li. All major components have been designed and fabricated prior to circuit redesign for Li and were not modified. Basic circuit components include: reactor segment, Li to gas heat exchanger, electromagnetic liquid metal pump, load/drain reservoir, expansion reservoir, instrumentation, and trace heaters. The reactor segment, based on a Los Alamos National Laboratory 100-kW design study with 120 fuel pins, is the only prototypic component in the circuit. However, due to earlier funding constraints, a 37-pin partial-array of the core, including the central three rings of fuel pins (pin and flow path dimensions are the same as those in the full design), was selected for fabrication and test. This Technical Publication summarizes the design and integration of the pumped liquid metal Li flow circuit as of May 1, 2005. This supplement contains drawings, analysis, and calculations

  8. Documentation of Stainless Steel Lithium Circuit Test Section Design

    NASA Technical Reports Server (NTRS)

    Godfroy, T. J.; Martin, J. J.; Stewart, E. T.; Rhys, N. O.

    2010-01-01

    The Early Flight Fission-Test Facilities (EFF-TF) team was tasked by Naval Reactors Prime Contract Team (NRPCT) to design, fabricate, and test an actively pumped lithium (Li) flow circuit. This Li circuit takes advantage of work in progress at the EFF TF on a stainless steel sodium/potassium (NaK) circuit. The effort involved modifying the original stainless steel NaK circuit such that it could be operated with Li in place of NaK. This new design considered freeze/thaw issues and required the addition of an expansion tank and expansion/extrusion volumes in the circuit plumbing. Instrumentation has been specified for Li and circuit heaters have been placed throughout the design to ensure adequate operational temperatures and no uncontrolled freezing of the Li. All major components have been designed and fabricated prior to circuit redesign for Li and were not modified. Basic circuit components include: reactor segment, Li to gas heat exchanger, electromagnetic liquid metal pump, load/drain reservoir, expansion reservoir, instrumentation, and trace heaters. The reactor segment, based on a Los Alamos National Laboratory 100-kW design study with 120 fuel pins, is the only prototypic component in the circuit. However, due to earlier funding constraints, a 37-pin partial-array of the core, including the central three rings of fuel pins (pin and flow path dimensions are the same as those in the full design), was selected for fabrication and test. This Technical Publication summarizes the design and integration of the pumped liquid metal Li flow circuit as of May 1, 2005.

  9. Materials technology for an advanced space power nuclear reactor concept: Program summary

    NASA Technical Reports Server (NTRS)

    Gluyas, R. E.; Watson, G. K.

    1975-01-01

    The results of a materials technology program for a long-life (50,000 hr), high-temperature (950 C coolant outlet), lithium-cooled, nuclear space power reactor concept are reviewed and discussed. Fabrication methods and compatibility and property data were developed for candidate materials for fuel pins and, to a lesser extent, for potential control systems, reflectors, reactor vessel and piping, and other reactor structural materials. The effects of selected materials variables on fuel pin irradiation performance were determined. The most promising materials for fuel pins were found to be 85 percent dense uranium mononitride (UN) fuel clad with tungsten-lined T-111 (Ta-8W-2Hf).

  10. Analytical analyses of startup measurements associated with the first use of LEU fuel in Romania`s 14-MW TRIGA reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bretscher, M.M.; Snelgrove, J.L.; Ciocanescu, M.

    1992-12-01

    The 14-MW TRIGA steady state reactor (SSR) is located in Pitesti, Romania. Beginning with an HEU core (10 wt% U), the reactor first went critical in November 1979 but was shut down ten years later because of insufficient excess reactivity. Last November the Institute for Nuclear Research (INR), which operates the SSR, received from the ANL RERTR program a shipment of 125 LEU pins fabricated by General Atomics and of the same geometry as the original fuel but with an enrichment of 19.7% 235U and a loading of 45 wt% U. Using 100 of these pins, four LEU clusters, eachmore » containing a 5 x 5 square array of fuel rods, were assembled. These four LEU clusters replaced the four most highly burned HEU elements in the SSR. The reactor resumed operations last February with a 35-element mixed HEU/LEU core configuration. In preparation for full power operation of the SSR with this mixed HEU/LEU core, a number of measurements were made. These included control rod calibrations, excess reactivity determinations, worths of experiment facilities, reaction rate distributions, and themocouple measurements of fuel temperatures as a function of reactor power. This paper deals with a comparison of some of these measured reactor parameters with corresponding analytical calculations.« less

  11. Fabrication of capsule assemblies, phase 3

    NASA Technical Reports Server (NTRS)

    Keeton, A. R.; Stemann, L. G.

    1973-01-01

    Thirteen capsule assemblies were fabricated for evaluation of fuel pin design concepts for a fast spectrum lithium cooled compact space power reactor. These instrumented assemblies were designed for real time test of prototype fuel pins. Uranium mononitride fuel pins were encased in AISI 304L stainless steel capsules. Fabrication procedures were fully qualified by process development and assembly qualification tests. Instrumentation reliability was achieved utilizing specially processed and closely controlled thermocouple hot zone fabrication and by thermal screening tests. Overall capsule reliability was achieved with an all electron beam welded assembly.

  12. Fast-spectrum space-power-reactor concepts using boron control devices

    NASA Technical Reports Server (NTRS)

    Mayo, W.

    1973-01-01

    Several fast-spectrum space power reactor concepts that use boron carbide control devices were examined to determine the neutronic feasibility of the designs. The designs considered were (1) a 199-fuel-pin, 12-poison-reflector-control-drum reactor; (2) a 232-fuel-pin reactor with 12 reflector drums and three in-core control rods; (3) a 337-fuel-pin design with 12 incore control rods; and a 181-fuel-pin design with six drums closely coupled to the core to increase reactivity per drum. Adequate reactivity control and excess reactivity could be obtained for each concept, and the goals of 50,000 hours at 2.17 thermal megawatts with a lithium-7 coolant outlet temperature of 1222 K could be met without exceeding the 1-percent-clad-creep criterion. Heating rates in the boron carbide were calculated, but a heat transfer analysis was not done.

  13. A fiber-optic technique for the measurement of contact angle in a clearance-fit pin-loaded hole

    NASA Technical Reports Server (NTRS)

    Prabhakaran, R.; Naik, R. A.

    1987-01-01

    A fiber-optic technique for measuring contact angle during pin loading of a specimen is proposed. The experimental design and procedures for loading a 49.8-mm-diameter instrumented pin into an quasi-isotropic graphite-epoxy specimen are described. The optical fiber was located just above the surface of the pin outer diameter in order to obtain accurate pin-hole contact-angle measurements at increasing load levels. The movement of the optical fiber through the no-contact, contact, and no-contact regions is discussed; the photodiode output decreased monotonically as the fiber moved from the no-contact to the contact region and then decreased monotonically as the fiber moved from the contact region to the no-contact region. Variations in the contact angle measurements are examined as function of applied load level. The measurements are compared to contact angle values obtained using a finite element analysis and an electrical technique; it is determined that the data correlate well.

  14. Preliminary analysis of hot spot factors in an advanced reactor for space electric power systems

    NASA Technical Reports Server (NTRS)

    Lustig, P. H.; Holms, A. G.; Davison, H. W.

    1973-01-01

    The maximum fuel pin temperature for nominal operation in an advanced power reactor is 1370 K. Because of possible nitrogen embrittlement of the clad, the fuel temperature was limited to 1622 K. Assuming simultaneous occurrence of the most adverse conditions a deterministic analysis gave a maximum fuel temperature of 1610 K. A statistical analysis, using a synthesized estimate of the standard deviation for the highest fuel pin temperature, showed probabilities of 0.015 of that pin exceeding the temperature limit by the distribution free Chebyshev inequality and virtually nil assuming a normal distribution. The latter assumption gives a 1463 K maximum temperature at 3 standard deviations, the usually assumed cutoff. Further, the distribution and standard deviation of the fuel-clad gap are the most significant contributions to the uncertainty in the fuel temperature.

  15. Evaluation of refractory-metal-clad uranium nitride and uranium dioxide fuel pins after irradiation for times up to 10 450 hours at 990 C

    NASA Technical Reports Server (NTRS)

    Bowles, K. J.; Gluyas, R. E.

    1975-01-01

    The effects of some materials variables on the irradiation performance of fuel pins for a lithium-cooled space power reactor design concept were examined. The variables studied were UN fuel density, fuel composition, and cladding alloy. All pins were irradiated at about 990 C in a thermal neutron environment to the design fuel burnup. An 85-percent dense UN fuel gave the best overall results in meeting the operational goals. The T-111 cladding on all specimens was embrittled, possibly by hydrogen in the case of the UN fuel and by uranium and oxygen in the case of the UO2 fuel. Tests with Cb-1Zr cladding indicate potential use of this cladding material. The UO2 fueled specimens met the operational goals of less than 1 percent cladding strain, but other factors make UO2 less attractive than low-density UN for the contemplated space power reactor use.

  16. CRITICAL EXPERIMENT WITH BORAX-V. Internal Superheater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plumlee, K.E.; Baird, Q.L.; Stanford, G.S.

    1963-11-01

    A critical experiment was performed with 12 BORAX-V superheater subassemblies in a central voidable region plus 1228 to 1525 UO/sub 2/ fuel pins (3 wt% enriched) in a peripheral region. Removing water (28% of superheater volume) at room temperature decreased reactivity by 2.2%. The midplane (two- dimensional) peak-to-average power distribution in the voided superheater was approximately 1.24, mostly attributable to flux depressions within insulated fuel boxes. Cadmium ratios are also reported. The experiment was initiated to supplement computational information which might have affected plans for loading the superheater zone into the BORAX-V reactor. No changes were indicated by the experiment.more » (auth)« less

  17. Space and Time Distribution of Pu Isotopes inside The First Experimental Fuel Pin Designed for PWR and Manufactured in Indonesia

    NASA Astrophysics Data System (ADS)

    Suwardi; Setiawan, J.; Susilo, J.

    2017-01-01

    The first short fuel pin containing natural UO2 pellet in Zry4 cladding has been prepared and planned to be tested in power ramp irradiation. An irradiation test should be designed to allow an experiment can be performed safely and giving maximum results of many performance aspects of design and manufacturing. Performance analysis to the fuel specimen shows that the specimen is not match to be used for power ramp testing. Enlargement by 0.20 mm of pellet diameter has been proposed. The present work is evaluation of modified design for important aspect of isotopic Pu distribution during irradiation test, because generated Pu isotopes in natural UO2 fuel, contribute more power relative to the contribution by enriched UO2 fuel. The axial profile of neutrons flux have been chosen from both experimental measurement and model calculation. The parameters of ramp power has been obtained from statistical experiment data. A simplified and typical base-load commercial PHWR profile of LHR history has been chosen, to determine the minimum irradiation time before ramp test can be performed. The data design and Mat pro XI materials properties models have been chosen. The axial profile of neutrons flux has been accommodated by 5 slices of discrete pin. The Pu distribution of slice-4 with highest power rate has been chosen to be evaluated. The radial discretion of pellet and cladding and numerical parameter have been used the default best practice of TU. The results shows that Pu 239 increased rapidly. The maximum burn up of slice 4 at upper the median slice, it reached nearly 90% of maximum value at about 6000 h with peak of 0.8%a Pu/HM at 22000 h, which is higher than initial U 235. Each 240, 241 and 240 Pu grows slower and ends up to 0.4, 0.2 and 0.18 % respectively. This results can be used for verification of other aspect of fuel behavior in the modeling results and also can be used as guide and comparison to the future post irradiation examination for Pu isotopes distribution.

  18. Creep relaxation of fuel pin bending and ovalling stresses. [BEND code, OVAL code, MARC-CDC code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, D.P.; Jackson, R.J.

    1981-10-01

    Analytical methods for calculating fuel pin cladding bending and ovalling stresses due to pin bundle-duct mechanical interaction taking into account nonlinear creep are presented. Calculated results are in agreement with finite element results by MARC-CDC program. The methods are used to investigate the effect of creep on the FTR fuel cladding bending and ovalling stresses. It is concluded that the cladding of 316 SS 20 percent CW and reference design has high creep rates in the FTR core region to keep the bending and ovalling stresses to acceptable levels. 6 refs.

  19. Initial Microstructure Evaluation of a U3Si2 + W Fuel Pin Fabricated Via Arc Melt Gravity Drop Casting

    NASA Astrophysics Data System (ADS)

    Hoggan, Rita E.; Harp, Jason M.

    2018-02-01

    Injection casting has historically been used to fabricate metallic nuclear fuel on a large scale. Casting of intermetallic fuel forms, such as U3Si2, may be an alternative pathway for fabrication of fuel pins to powder metallurgy. To investigate casting on a small scale, arc melt gravity drop casting was employed to cast a one-off pin of U3Si2 for evaluation as a fabrication method for U3Si2 as a light water reactor fuel. The pin was sectioned and examined via optical microscopy and scanning electron microscopy equipped with energy dispersive x-ray spectroscopy (EDS). Image analysis was used to estimate the volume fraction of phase impurities as well as porosity. The primary phase determined by EDS was U3Si2 with U-O and U-Si-W phase impurities. Unusually high levels of tungsten were observed because of accidental tungsten introduction during arc melting. No significant changes in microstructure were observed after annealing a section of the pin at 800°C for 72 h. The average density of the sectioned specimens was 12.4 g/cm3 measured via Archimedes principle immersion density and He gas displacement.

  20. In-pile measurement of the thermal conductivity of irradiated metallic fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauer, T.H.; Holland, J.W.

    Transient test data and posttest measurements from recent in-pile overpower transient experiments are used for an in situ determination of metallic fuel thermal conductivity. For test pins that undergo melting but remain intact, a technique is described that relates fuel thermal conductivity to peak pin power during the transient and a posttest measured melt radius. Conductivity estimates and their uncertainty are made for a database of four irradiated Integral Fast Reactor-type metal fuel pins of relatively low burnup (<3 at.%). In the assessment of results, averages and trends of measured fuel thermal conductivity are correlated to local burnup. Emphasis ismore » placed on the changes of conductivity that take place with burnup-induced swelling and sodium logging. Measurements are used to validate simple empirically based analytical models that describe thermal conductivity of porous media and that are recommended for general thermal analyses of irradiated metallic fuel.« less

  1. Redwing: A MOOSE application for coupling MPACT and BISON

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frederick N. Gleicher; Michael Rose; Tom Downar

    Fuel performance and whole core neutron transport programs are often used to analyze fuel behavior as it is depleted in a reactor. For fuel performance programs, internal models provide the local intra-pin power density, fast neutron flux, burnup, and fission rate density, which are needed for a fuel performance analysis. The fuel performance internal models have a number of limitations. These include effects on the intra-pin power distribution by nearby assembly elements, such as water channels and control rods, and the further limitation of applicability to a specified fuel type such as low enriched UO2. In addition, whole core neutronmore » transport codes need an accurate intra-pin temperature distribution in order to calculate neutron cross sections. Fuel performance simulations are able to model the intra-pin fuel displacement as the fuel expands and densifies. These displacements must be accurately modeled in order to capture the eventual mechanical contact of the fuel and the clad; the correct radial gap width is needed for an accurate calculation of the temperature distribution of the fuel rod. Redwing is a MOOSE-based application that enables coupling between MPACT and BISON for transport and fuel performance coupling. MPACT is a 3D neutron transport and reactor core simulator based on the method of characteristics (MOC). The development of MPACT began at the University of Michigan (UM) and now is under the joint development of ORNL and UM as part of the DOE CASL Simulation Hub. MPACT is able to model the effects of local assembly elements and is able calculate intra-pin quantities such as the local power density on a volumetric mesh for any fuel type. BISON is a fuel performance application of Multi-physics Object Oriented Simulation Environment (MOOSE), which is under development at Idaho National Laboratory. BISON is able to solve the nonlinearly coupled mechanical deformation and heat transfer finite element equations that model a fuel element as it is depleted in a nuclear reactor. Redwing couples BISON and MPACT in a single application. Redwing maps and transfers the individual intra-pin quantities such as fission rate density, power density, and fast neutron flux from the MPACT volumetric mesh to the individual BISON finite element meshes. For a two-way coupling Redwing maps and transfers the individual pin temperature field and axially dependent coolant densities from the BISON mesh to the MPACT volumetric mesh. Details of the mapping are given. Redwing advances the simulation with the MPACT solution for each depletion time step and then advances the multiple BISON simulations for fuel performance calculations. Sub-cycle advancement can be applied to the individual BISON simulations and allows multiple time steps to be applied to the fuel performance simulations. Currently, only loose coupling where data from a previous time step is applied to the current time step is performed.« less

  2. Summary and evaluation: fuel dynamics loss-of-flow experiments (tests L2, L3, and L4)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barts, E.W.; Deitrich, L.W.; Eberhart, J.G.

    1975-09-01

    Three similar experiments conducted to support the analyses of hypothetical LMFBR unprotected-loss-of-flow accidents are summarized and evaluated. The tests, designated L2, L3, and L4, provided experimental data against which accident-analysis codes could be compared, so as to guide further analysis and modeling of the initiating phases of the hypothetical accident. The tests were conducted using seven-pin bundles of mixed-oxide fuel pins in Mark-II flowing-sodium loops in the TREAT reactor. Test L2 used fresh fuel. Tests L3 and L4 used irradiated fuel pins having, respectively, ''intermediate-power'' (no central void) and ''high-power'' (fully developed central void) microstructure. 12 references. (auth)

  3. Current status of the development of high density LEU fuel for Russian research reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vatulin, A.; Dobrikova, I.; Suprun, V.

    2008-07-15

    One of the main directions of the Russian RERTR program is to develop U-Mo fuel and fuel elements/FA with this fuel. The development is carried out both for existing reactors, and for new advanced designs of reactors. Many organizations in Russia, i.e. 'TVEL', RDIPE, RIAR, IRM, NPCC participate in the work. Two fuels are under development: dispersion and monolithic U-Mo fuel, as well two types of FA to use the dispersion U-Mo fuel: with tubular type fuel elements and with pin type fuel elements. The first stage of works was successfully completed. This stage included out-pile, in-pile and post irradiationmore » examinations of U-Mo dispersion fuel in experimental tubular and pin fuel elements under parameters similar to operation conditions of Russian design pool-type research reactors. The results received both in Russia and abroad enabled to go on to the next stage of development which includes irradiation tests both of full-scale IRT pin-type and tube-type fuel assemblies with U-Mo dispersion fuel and of mini-fuel elements with modified U-Mo dispersion fuel and monolithic fuel. The paper gives a generalized review of the results of U-Mo fuel development accomplished by now. (author)« less

  4. Design of a proteus lattice representative of a burnt and fresh fuel interface at power conditions in light water reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hursin, M.; Perret, G.

    The research program LIFE (Large-scale Irradiated Fuel Experiment) between PSI and Swissnuclear has been started in 2006 to study the interaction between large sets of burnt and fresh fuel pins in conditions representative of power light water reactors. Reactor physics parameters such as flux ratios and reaction rate distributions ({sup 235}U and {sup 238}U fissions and {sup 238}U capture) are calculated to estimate an appropriate arrangement of burnt and fresh fuel pins within the central element of the test zone of the zero-power research reactor PROTEUS. The arrangement should minimize the number of burnt fuel pins to ease fuel handlingmore » and reduce costs, whilst guaranteeing that the neutron spectrum in both burnt and fresh fuel regions and at their interface is representative of a large uniform array of burnt and fresh pins in the same moderation conditions. First results are encouraging, showing that the burnt/fresh fuel interface is well represented with a 6 x 6 bundle of burnt pins. The second part of the project involves the use of TSUNAMI, CASMO-4E and DAKOTA to perform parametric and optimization studies on the PROTEUS lattice by varying its pitch (P) and fraction of D{sub 2}O in moderator (F{sub D2O}) to be as representative as possible of a power light water reactor core at hot full power conditions at beginning of cycle (BOC). The parameters P and F{sub D2O} that best represent a PWR at BOC are 1.36 cm and 5% respectively. (authors)« less

  5. Pin Load Control Applied to Retractable Pin Tool Technology and its Characterization

    NASA Technical Reports Server (NTRS)

    Oelgoetz, Peter A.

    2000-01-01

    Until the development of retractable pin tool (RPT) technology, friction stir welding (FSW) was limited to constant thickness joining of aluminum materials and the choices of keyhole elimination focused on traditional fusion and plug weld repair techniques. An invention, US Patent Number 5,893,507, "Auto-Adjustable Pin Tool for Friction Stir Welding" assigned to NASA, demonstrated an approach to resolve these serious drawbacks. This approach brings forth a technique that allows the crater, or keyhole, to be closed out automatically at the end of the weld joint without adding any additional equipment or material. Also the probe length can be varied automatically in the weld joint to compensate for material thickness changes, such as, in a tapered joint. This paper reports the effects of pin extension and retraction rates in the weld joint and its correlation to weld quality. The investigation utilized a pin load-detecting device that was integrated in the Phase 2A RPT designed by Boeing for NASA/MSFC. The RPT modification provided pin load data that was accessed and used to eliminate root side indications and determine pin manipulation rates necessary to produce consistence homogeneous joints.

  6. Pin Load Control Applied to Retractable Pin Tool Technology and its Characterization

    NASA Technical Reports Server (NTRS)

    Oelgoetz, Peter

    2000-01-01

    Until the development of retractable pin tool (RPT) technology, friction stir welding (FSW) was limited to constant thickness joining of aluminum materials and the choices of keyhole elimination focused on traditional fusion and plug weld repair techniques. An invention, US Patent Number 5,893.507, "Auto-Adjustable Pin Tool for Friction Stir Welding" assigned to NASA, demonstrated an approach to resolve these serious drawbacks. This approach brings forth a technique that allows the crater, or keyhole, to be closed out automatically at the end of the weld joint without adding any additional equipment or material. Also the probe length can be varied automatically in the weld joint to compensate for material thickness changes, such as, in a tapered joint. This paper reports the effects of pin extension and retraction rates in the weld joint and its correlation to weld quality. The investigation utilized a pin load-detecting device that was integrated in the Phase 2A RPT designed by Boeing for NASA/MSFC. The RPT modification provided pin load data that was accessed and used to eliminate root side indications and determine pin manipulation rates necessary to produce consistence homogeneous joints.

  7. Pin Load Control Applied to Retractable Pin Tool Technology and Its Characterization

    NASA Technical Reports Server (NTRS)

    Olegoetz, P.

    1999-01-01

    Until the development of retractable pin tool (RPT) technology, friction stir welding (FSW) was limited to constant thickness joining of aluminum materials and the choices of keyhole elimination focused on traditional fusion and plug weld repair techniques. An invention, US Patent Number 5,893,507, "Auto-Adjustable Pin Tool for Friction Stir Welding" assigned to NASA, demonstrated an approach to resolve these serious drawbacks. This approach brings forth a technique that allows the crater, or keyhole, to be closed out automatically at the end of the weld joint without adding any additional equipment or material. Also the probe length can be varied automatically in the weld joint to compensate for material thickness changes, such as, in a tapered joint. This paper reports the effects of pin extension and retraction rates in the weld joint and its correlation to weld quality. The investigation utilized a pin load-detecting device that was integrated in the Phase IIA RPT designed by Boeing for NASA/MSFC. The RPT modification provided pin load data that was accessed and used to eliminate root side indications and determine pin manipulation rates necessary to produce consistence homogeneous joints.

  8. Foolproof quick-release locking pin

    NASA Technical Reports Server (NTRS)

    Nelson, E. P.; Othman, T. E.; Zmuda, L. J.

    1970-01-01

    Locking pin can be withdrawn only when stress on the joint is negligible. Pin consists of a forward-pointing sleeve, a spring-loaded sliding handle, and a sliding plunger. Plunger movement controls installation and withdrawal of pin.

  9. Safety consequences of local initiating events in an LMFBR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, R.M.; Marr, W.W.; Padilla, A. Jr.

    1975-12-01

    The potential for fuel-failure propagation in an LMFBR at or near normal conditions is examined. Results are presented to support the conclusion that although individual fuel-pin failure may occur, rapid failure-propagation spreading among a large number of fuel pins in a subassembly is unlikely in an operating LMFBR. This conclusion is supported by operating experience, mechanistic analyses of failure-propagation phenomena, and experiments. In addition, some of the consequences of continued operation with defected fuel are considered.

  10. Tribological Properties Of Coal Slurries

    NASA Technical Reports Server (NTRS)

    Fusaro, Robert L.; Schrubens, Dale L.

    1988-01-01

    Report describes study of tribological properties of coal/methanol slurries with pin-on-disk tribometer. Coefficients of friction, rates of wear of steel pin, and morphological studies of worn surfaces conducted on pins and disks of AISI 440C HT stainless steel and M-50 tool steel, both used as bearing steels. Coal slurries considered as replacement fuels in terrestrial oil-burning facilities and possible fuels for future aircraft turbine engines. Rates of wear of metallic components through which slurries flow limit such practical applications.

  11. Anvil for Flaring PCB Guide Pins

    NASA Technical Reports Server (NTRS)

    Winn, E.; Turner, R.

    1985-01-01

    Spring-loaded anvil results in fewer fractured pins. New anvil for flaring guide pins in printed-circuit boards absorbs approximately 80 percent of press force. As result fewer pins damaged, and work output of flaring press greatly increased.

  12. Comparison between effects of free curcumin and curcumin loaded NIPAAm-MAA nanoparticles on telomerase and PinX1 gene expression in lung cancer cells.

    PubMed

    Badrzadeh, Fariba; Akbarzadeh, Abolfazl; Zarghami, Nosratollah; Yamchi, Mohammad Rahmati; Zeighamian, Vahide; Tabatabae, Fateme Sadate; Taheri, Morteza; Kafil, Hossein Samadi

    2014-01-01

    Herbal compounds such as curcumin which decrease telomerase and gene expression have been considered as beneficial tools for lung cancer treatment. In this article, we compared the effects of pure curcumin and curcumin-loaded NIPAAm-MAA nanoparticles on telomerase and PinX1 gene expression in a lung cancer cell line. A tetrazolium-based assay was used for determination of cytotoxic effects of curcumin on the Calu-6 lung cancer cell line and telomerase and pinX1 gene expression was measured with real-time PCR. MTT assay showed that Curcumin-loaded NIPAAm-MAA inhibited the growth of the Calu-6 lung cancer cell line in a time and dose-dependent manner. Our q-PCR results showed that the expression of telomerase gene was effectively reduced as the concentration of curcumin-loaded NIPAAm-MAA increased while expression of the PinX1 gene became elevated. The results showed that curcumin- loaded- NIPAAm-MAA exerted cytotoxic effects on the Calu-6 cell line through down-regulation of telomerase and stimulation of pinX1 gene expression. NIPPAm-MAA could be good carrier for such kinds of hydrophobic agent.

  13. Off-design temperature effects on nuclear fuel pins for an advanced space-power-reactor concept

    NASA Technical Reports Server (NTRS)

    Bowles, K. J.

    1974-01-01

    An exploratory out-of-reactor investigation was made of the effects of short-time temperature excursions above the nominal operating temperature of 990 C on the compatibility of advanced nuclear space-power reactor fuel pin materials. This information is required for formulating a reliable reactor safety analysis and designing an emergency core cooling system. Simulated uranium mononitride (UN) fuel pins, clad with tungsten-lined T-111 (Ta-8W-2Hf) showed no compatibility problems after heating for 8 hours at 2400 C. At 2520 C and above, reactions occurred in 1 hour or less. Under these conditions free uranium formed, redistributed, and attacked the cladding.

  14. Contact stresses in pin-loaded orthotropic plates

    NASA Technical Reports Server (NTRS)

    Hyer, M. W.; Klang, E. C.

    1984-01-01

    The effects of pin elasticity, friction, and clearance on the stresses near the hole in a pin-loaded orthotropic plate are described. The problem is modeled as a contact elasticity problem using complex variable theory, the pin and the plate being two elastic bodies interacting through contact. This modeling is in contrast to previous works which assumed that the pin is rigid or that it exerts a known cosinusoidal radial traction on the hole boundary. Neither of these approaches explicitly involves a pin. A collocation procedure and iteration were used to obtain numerical results for a variety of plate and pin elastic properties and various levels of friction and clearance. Collocation was used to enforce the boundary and iteration was used to find the contact and no-slip regions on the boundary. Details of the numerical scheme are discussed.

  15. Verification of the FBR fuel bundle-duct interaction analysis code BAMBOO by the out-of-pile bundle compression test with large diameter pins

    NASA Astrophysics Data System (ADS)

    Uwaba, Tomoyuki; Ito, Masahiro; Nemoto, Junichi; Ichikawa, Shoichi; Katsuyama, Kozo

    2014-09-01

    The BAMBOO computer code was verified by results for the out-of-pile bundle compression test with large diameter pin bundle deformation under the bundle-duct interaction (BDI) condition. The pin diameters of the examined test bundles were 8.5 mm and 10.4 mm, which are targeted as preliminary fuel pin diameters for the upgraded core of the prototype fast breeder reactor (FBR) and for demonstration and commercial FBRs studied in the FaCT project. In the bundle compression test, bundle cross-sectional views were obtained from X-ray computer tomography (CT) images and local parameters of bundle deformation such as pin-to-duct and pin-to-pin clearances were measured by CT image analyses. In the verification, calculation results of bundle deformation obtained by the BAMBOO code analyses were compared with the experimental results from the CT image analyses. The comparison showed that the BAMBOO code reasonably predicts deformation of large diameter pin bundles under the BDI condition by assuming that pin bowing and cladding oval distortion are the major deformation mechanisms, the same as in the case of small diameter pin bundles. In addition, the BAMBOO analysis results confirmed that cladding oval distortion effectively suppresses BDI in large diameter pin bundles as well as in small diameter pin bundles.

  16. Biomechanical and Cost Comparisons of Near-Far and Pin-Bar Constructs.

    PubMed

    Whitney Kluk, Augusta; Zhang, Tina; Russell, Joseph P; Kim, Hyunchul; Hsieh, Adam H; O'Toole, Robert V

    2017-03-01

    Orthopedic dogma states that external fixator stiffness is improved by placing 1 pin close to the fracture and 1 as distant as possible ("near-far"). This fixator construct is thought to be less expensive than placing pins a shorter distance apart and using "pin-bar" clamps that attach pins to outriggers. The authors therefore hypothesized that the near-far construct is stiffer and less expensive. They compared mechanical stiffness and costs of near-far and pin-bar constructs commonly used for temporary external fixation of femoral shaft fractures. Their testing model simulated femoral shaft fractures in damage control situations. Fourth-generation synthetic femora (n=18) were used. The near-far construct had 2 pins that were 106 mm apart, placed 25 mm from the gap on each side of the fracture. The pin-bar construct pins were 55 mm apart, placed 40 mm from the gap. Mechanical testing was performed on a material test system machine. Stiffness was determined in the linear portion of the load-displacement curve for both constructs in 4 modes: axial compression, torsional loading, frontal plane 3-point bending, and sagittal plane 3-point bending. Costs were determined from a 2012 price guide. Compared with the near-far construct, the pin-bar construct had stiffness increased by 58% in axial compression (P<.05) and by 52% in torsional loading (P<.05). The pin-bar construct increased cost by 11%. In contrast to the authors' hypothesis and existing orthopedic dogma, the near-far construct was less stiff than the pin-bar construct and was similarly priced. Use of the pin-bar construct is mechanically and economically reasonable. [Orthopedics. 2017; 40(2):e238-e241.]. Copyright 2016, SLACK Incorporated.

  17. Measuring alignment of loading fixture

    DOEpatents

    Scavone, Donald W.

    1989-01-01

    An apparatus and method for measuring the alignment of a clevis and pin type loading fixture for compact tension specimens include a pair of substantially identical flat loading ligaments. Each loading ligament has two apertures for the reception of a respective pin of the loading fixture and a thickness less than one-half of a width of the clevis opening. The pair of loading ligaments are mounted in the clevis openings at respective sides thereof. The loading ligaments are then loaded by the pins of the loading fixture and the strain in each loading ligament is measured. By comparing the relative strain of each loading ligament, the alignment of the loading fixture is determined. Preferably, a suitable strain gage device is located at each longitudinal edge of a respective loading ligament equidistant from the two apertures in order to determine the strain thereat and hence the strain of each ligament. The loading ligaments are made substantially identical by jig grinding the loading ligaments as a matched set. Each loading ligament can also be individually calibrated prior to the measurement.

  18. A fission gas release correlation for uranium nitride fuel pins

    NASA Technical Reports Server (NTRS)

    Weinstein, M. B.; Davison, H. W.

    1973-01-01

    A model was developed to predict fission gas releases from UN fuel pins clad with various materials. The model was correlated with total release data obtained by different experimentors, over a range of fuel temperatures primarily between 1250 and 1660 K, and fuel burnups up to 4.6 percent. In the model, fission gas is transported by diffusion mechanisms to the grain boundaries where the volume grows and eventually interconnects with the outside surface of the fuel. The within grain diffusion coefficients are found from fission gas release rate data obtained using a sweep gas facility.

  19. Multi level optimization of burnable poison utilization for advanced PWR fuel management

    NASA Astrophysics Data System (ADS)

    Yilmaz, Serkan

    The objective of this study was to develop an unique methodology and a practical tool for designing burnable poison (BP) pattern for a given PWR core. Two techniques were studied in developing this tool. First, the deterministic technique called Modified Power Shape Forced Diffusion (MPSFD) method followed by a fine tuning algorithm, based on some heuristic rules, was developed to achieve this goal. Second, an efficient and a practical genetic algorithm (GA) tool was developed and applied successfully to Burnable Poisons (BPs) placement optimization problem for a reference Three Mile Island-1 (TMI-1) core. This thesis presents the step by step progress in developing such a tool. The developed deterministic method appeared to perform as expected. The GA technique produced excellent BP designs. It was discovered that the Beginning of Cycle (BOC) Kinf of a BP fuel assembly (FA) design is a good filter to eliminate invalid BP designs created during the optimization process. By eliminating all BP designs having BOC Kinf above a set limit, the computational time was greatly reduced since the evaluation process with reactor physics calculations for an invalid solution is canceled. Moreover, the GA was applied to develop the BP loading pattern to minimize the total Gadolinium (Gd) amount in the core together with the residual binding at End-of-Cycle (EOC) and to keep the maximum peak pin power during core depletion and Soluble boron concentration at BOC both less than their limit values. The number of UO2/Gd2O3 pins and Gd 2O3 concentrations for each fresh fuel location in the core are the decision variables and the total amount of the Gd in the core and maximum peak pin power during core depletion are in the fitness functions. The use of different fitness function definition and forcing the solution movement towards to desired region in the solution space accelerated the GA runs. Special emphasize is given to minimizing the residual binding to increase core lifetime as well as minimizing the total Gd amount in the core. The GA code developed many good solutions that satisfy all of the design constraints. For these solutions, the EOC soluble boron concentration changes from 68.9 to 97.2 ppm. It is important to note that the difference of 28.3 ppm between the best and the worst solution in the good solutions region represent the potential of 12.5 Effective-Full-Power-Day (EPFD) savings in cycle length. As a comparison, the best BP loading design has 97.2 ppm soluble boron concentration at EOC while the BP loading with available vendors' U/Gd FA designs has 94.4 ppm SOB at EOC. It was estimated that the difference of 2.8 ppm reflected the potential savings of 1.25 EFPD in cycle length. Moreover, the total Gd amount was reduced by 6.89% in mass that provided extra savings in fuel cost compared to the BP loading pattern with available vendor's U/Gd FA designs. (Abstract shortened by UMI.)

  20. Measurement of carbon distribution in nuclear fuel pin cladding specimens by means of a secondary ion mass spectrometer

    NASA Astrophysics Data System (ADS)

    Bart, Gerhard; Aerne, Ernst Tino; Burri, Martin; Zwicky, Hans-Urs

    1986-11-01

    Cladding carburization during irradiation of advanced mixed uranium plutonium carbide fast breeder reactor fuel is possibly a life limiting fuel pin factor. The quantitative assessment of such clad carbon embrittlement is difficult to perform by electron microprobe analysis because of sample surface contamination, and due to the very low energy of the carbon K α X-ray transition. The work presented here describes a method developed at the Swiss Federal Institute for Reactor Research (EIR) to use shielded secondary ion mass spectrometry (SIMS) as an accurate tool to determine radial distribution profiles of carbon in radioactive stainless steel fuel pin cladding. Compared with nuclear microprobe analysis (NMA) [1], which is also an accurate method for carbon analysis, the SIMS method distinguishes itself by its versatility for simultaneous determination of additional impurities.

  1. A comparison of the wear of cross-linked polyethylene against itself with the wear of ultra-high molecular weight polyethylene against itself.

    PubMed

    Joyce, T J; Unsworth, A

    1996-01-01

    Wear tests were carried out on reciprocating pin-on-plate machines which had pins loaded at 10 N and 40 N. The materials tested were irradiated cross-linked polyethylene sliding against itself, irradiated ultra-high molecular weight polyethylene sliding against itself and non-irradiated ultra-high molecular weight polyethylene sliding against itself. After 153.5 km of sliding, the non-irradiated ultra-high molecular weight polyethylene plates and pins showed mean wear factors under 10 N loads, or a nominal contact stress of 0.51 MPa, of 84.0 x 10(-6) mm3/N m for the plates and 81.3 x 10(-6) mm3/N m for the pins. Under 40 N loads, or a nominal contact stress of 2.04 MPa, the non-irradiated ultra-high molecular weight polyethylene pins sheared at 22.3 km. At the last measurement point prior to this failure, 19.1 km, wear factors of 158 x 10(-6) mm3/N m for the plates and 85.0 x 10(-6) mm3/N m for the pins had been measured. After 152.8 km. the irradiated ultra-high molecular weight polyethylene plates and pins showed mean wear factors under 10 N loads of 59.8 x 10(-6) mm3/N m for the plates and 31.1 x 10(-6) mm3/N m for the pins. In contrast, after 150.2 km, a mean wear factor of 0.72 x 10(-6) mm3/N m was found for the irradiated cross-linked polyethylene plates compared with 0.053 x 10(-6) mm3/N m for the irradiated cross-linked polyethylene pins.

  2. Experimental and numerical study of Bondura® 6.6 PIN joints

    NASA Astrophysics Data System (ADS)

    Berkani, I.; Karlsen, Ø.; Lemu, H. G.

    2017-12-01

    Pin joints are widely used in heavy-duty machinery such as aircrafts, cranes and offshore drilling equipment to transfer multi-dimensional shear forces. Their strength and service life depend on the clamping force in the contact region that is provided by interference fits. Though the interference fits provide full contact at the pin-hole interface under pretension loads, the contact interface reduces when the pin is subjected to an external load and hence a smaller contact surface leads to dramatic increase of the contact stress. The PIN joint of Bondura® Technology, investigated in this study, is an innovative solution intended to reduce the slack at the contact surface of the pin joint of heavy-duty machinery by using tapered sleeves on each end of the PIN. The study is aimed to better understand the contact pressure build-up and stress distribution in the supporting contact surface under pre-loading of the joint and the influence of temperature difference between part assembly and operation conditions. Numerical simulation using finite element method and diverse experimental tests were conducted. The numerical simulation and the test results, particularly the tests conducted with lubricated joints, show good conformance.

  3. Performance of low smeared density sodium-cooled fast reactor metal fuel

    NASA Astrophysics Data System (ADS)

    Porter, D. L.; Chichester, H. J. M.; Medvedev, P. G.; Hayes, S. L.; Teague, M. C.

    2015-10-01

    An experiment was performed in the Experimental Breeder Rector-II (EBR-II) in the 1990s to show that metallic fast reactor fuel could be used in reactors with a single, once-through core. To prove the long duration, high burnup, high neutron exposure capability an experiment where the fuel pin was designed with a very large fission gas plenum and very low fuel smeared density (SD). The experiment, X496, operated to only 8.3 at.% burnup because the EBR-II reactor was scheduled for shut-down at that time. Many of the examinations of the fuel pins only funded recently with the resurgence of reactor designs using very high-burnup fuel. The results showed that, despite the low smeared density of 59% the fuel swelled radially to contact the cladding, fission gas release appeared to be slightly higher than demonstrated in conventional 75%SD fuel tests and axial growth was about the same as 75% SD fuel. There were axial positions in some of the fuel pins which showed evidence of fuel restructuring and an absence of fission products with low melting points and gaseous precursors (Cs and Rb). A model to investigate whether these areas may have overheated due to a loss of bond sodium indicates that it is a possible explanation for the fuel restructuring and something to be considered for fuel performance modeling of low SD fuel.

  4. CHF considerations for highly moderated 100% MOX fuels PWRs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saphier, D.; Raymond, P.

    1995-09-01

    A feasibility study on using 100% MOX fuel in a PWR with increased moderating ratio, RMA, was initiated. In the proposed design all the parameters were chosen identical to the French 1450MW PWR, except the fuel pin diameter which was reduced to achieve higher moderating ratios, V{sub M}/V{sub F}, where V{sub M} and V{sub F} are the moderator and fuel volume respectively. Moderating ratios from 2 to 4 were considered. In the present study the thermal-hydraulic feasibility of using fuel assemblies with smaller diameter fuel pins was investigated. The major design constrain in this study was the critical heat fluxmore » (CHF). In order to maintain the fuel pin integrity under nominal operating and transient conditions, the minimum DNBR, (Departure from Nucleate Boiling Ratio given by CHF/q{close_quotes}{sub local}, where q{close_quotes}{sub local} is the local heat flux), has to be above a given value. The limitations of the existing CHF correlations for the present study are outlined. Two designs based on the conventional 17x17 fuel assembly and on the advanced 19x19 assembly meeting the MDNBR criteria and satisfying the control margin requirements, are proposed.« less

  5. Unrestrained swelling of uranium-nitride fuel irradiated at temperatures ranging from 1100 to 1400 K (1980 to 2520 R)

    NASA Technical Reports Server (NTRS)

    Rohal, R. G.; Tambling, T. N.

    1973-01-01

    Six fuel pins were assembled, encapsulated, and irradiated in the Plum Brook Reactor. The fuel pins employed uranium mononitride (UN) in a stainless steel (type 304L) clad. The pins were irradiated for approximately 4000 hours to burnups of about 2.0 atom percent uranium. The average clad surface temperature during irradiation was about 1100 K (1980 deg R). Since stainless steel has a very low creep strength relative to that of UN at this temperature, these tests simulated unrestrained swelling of UN. The tests indicated that at 1 percent uranium atom burnup the unrestrained diametrical swelling of UN is about 0.5, 0.8, and 1.0 percent at 1223, 1264, and 1306 K (2200, deg 2273 deg, and 2350 deg R), respectively. The tests also indicated that the irradiation induced swelling of unrestrained UN fuel pellets appears to be isotropic.

  6. Numerical Study on Influence of Cross Flow on Rewetting of AHWR Fuel Bundle

    PubMed Central

    Kumar, Mithilesh; Mukhopadhyay, D.; Ghosh, A. K.; Kumar, Ravi

    2014-01-01

    Numerical study on AHWR fuel bundle has been carried out to assess influence of circumferential and cross flow rewetting on the conduction heat transfer. The AHWR fuel bundle quenching under accident condition is designed primarily with radial jets at several axial locations. A 3D (r, θ, z) transient conduction fuel pin model has been developed to carry out the study with a finite difference method (FDM) technique with alternating direction implicit (ADI) scheme. The single pin has been considered to study effect of circumferential conduction and multipins have been considered to study the influence of cross flow. Both analyses are carried out with the same fluid temperature and heat transfer coefficients as boundary conditions. It has been found from the analyses that, for radial jet, the circumferential conduction is significant and due to influence of overall cross flow the reductions in fuel temperature in the same quench plane in different rings are different with same initial surface temperature. Influence of cross flow on rewetting is found to be very significant. Outer fuel pins rewetting time is higher than inner. PMID:24672341

  7. Investigation into Z-Pin Reinforced Composite Skin/Stiffener Debond under Monotonic and Cyclic Bending

    NASA Astrophysics Data System (ADS)

    Zhang, Xiangyang; Li, Yong; Van Hoa, Suong; Xiao, Jun; Chu, Qiyi

    2018-02-01

    Skin/stiffener debonding has been a longstanding concern for the users of stiffened composite panels in long-term service. Z-pinning technology is an emerging solution to reinforce the composite assembly joints. This work experimentally characterizes the progressive debonding of Z-pinned skin/stiffener interface with the skin under static bend loading. The three-stage failure process is identified as: flange edge debonding, pin/laminate debonding, and ultimate structural failure. Three different distribution patterns were compared in terms of the static debonding properties revealed the affirmative fact that locating pins in high normal stress regions, that is close to the flange edges in skin/stiffener structures, is more beneficial to utilize the full potential of Z-pinning reinforcement. The unit strip FE model was developed and demonstrated effective to analysis the effect of Z-pin distribution on the ultimate debond load. On the other hand, the evolution of fatigue cracks at Z-pinned skin/flange interface was investigated with a series of displacement-controlled fatigue bending tests and microscopic observations. Results show that Z-pinning postpones crack initiations at low displacement levels, and the remarkable crack-arresting function of pins enables the structure a prolonged fatigue life. However, pins become less effective when the maximum displacement exceeds the crack initiation level due to gradually pullout of pins.

  8. Performance of low smeared density sodium-cooled fast reactor metal fuel

    DOE PAGES

    Porter, D. L.; H. J. M. Chichester; Medvedev, P. G.; ...

    2015-06-17

    An experiment was performed in the Experimental Breeder Rector-II (EBR-II) in the 1990s to show that metallic fast reactor fuel could be used in reactors with a single, once-through core. To prove the long duration, high burnup, high neutron exposure capability an experiment where the fuel pin was designed with a very large fission gas plenum and very low fuel smeared density (SD). The experiment, X496, operated to only 8.3 at. % burnup because the EBR-II reactor was scheduled for shut-down at that time. Many of the examinations of the fuel pins only funded recently with the resurgence of reactormore » designs using very high-burnup fuel. The results showed that, despite the low smeared density of 59% the fuel swelled radially to contact the cladding, fission gas release appeared to be slightly higher than demonstrated in conventional 75%SD fuel tests and axial growth was about the same as 75% SD fuel. There were axial positions in some of the fuel pins which showed evidence of fuel restructuring and an absence of fission products with low metaling points and gaseous precursors (Cs and Rb). Lastly, a model to investigate whether these areas may have overheated due to a loss of bond sodium indicates that it is a possible explanation for the fuel restructuring and something to be considered for fuel performance modeling of low SD fuel.« less

  9. Development of High Fidelity, Fuel-Like Thermal Simulators for Non-Nuclear Testing

    NASA Technical Reports Server (NTRS)

    Bragg-Sitton, S. M.; Farmer, J.; Dixon, D.; Kapernick, R.; Dickens, R.; Adams, M.

    2007-01-01

    Non-nuclear testing can be a valuable tool in development of a space nuclear power or propulsion system. In a non-nuclear test bed, electric heaters are used to simulate the heat from nuclear fuel. Work at the NASA Marshall Space Flight Center seeks to develop high fidelity thermal simulators that not only match the static power profile that would be observed in an operating, fueled nuclear reactor, but to also match the dynamic fuel pin performance during feasible transients. Comparison between the fuel pins and thermal simulators is made at the fuel clad surface, which corresponds to the sheath surface in the thermal simulator. Static and dynamic fuel pin performance was determined using SINDA-FLUINT analysis, and the performance of conceptual thermal simulator designs was compared to the expected nuclear performance. Through a series of iterative analysis, a conceptual high fidelity design will be developed, followed by engineering design, fabrication, and testing to validate the overall design process. Although the resulting thermal simulator will be designed for a specific reactor concept, establishing this rigorous design process will assist in streamlining the thermal simulator development for other reactor concepts.

  10. Small scale mechanical characterization of thin foil materials via pin load microtesting

    DOE PAGES

    Wheeler, Robert; Pandey, Amit; Shyam, Amit; ...

    2015-05-06

    In situ scanning electron microscope (SEM) experiments, where small-scale mechanical tests are conducted on micro- and nanosized specimens, allow direct visualization of elastic and plastic responses over the entirety of the volume being deformed. This enables precise spatial and temporal correlation of slip events contributing to the plastic flow evidenced in a stress–strain curve. A new pin-loading methodology has been employed, in situ within the SEM, to conduct microtensile tests on thin polycrystalline metal foils. This approach can be tailored to a specific foil whose particular grain size may range from microns to tens of microns. Manufacture of the specializedmore » pin grip was accomplished via silicon photolithography-based processing followed by subsequent focused ion beam finishing. Microtensile specimen preparation was achieved by combining a stencil mask methodology employing broad ion beam sputtering along with focused ion beam milling in the study of several metallic foil materials. Finite-element analyses were performed to characterize the stress and strain distributions in the pin grip and micro-specimen under load. Furthermore, under appropriately conceived test conditions, uniaxial stress–strain responses measured within these foils by pin-load microtensile testing exhibit properties consistent with larger scale tests.« less

  11. Neutronics Investigations for the Lower Part of a Westinghouse SVEA-96+ Assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphy, M.F.; Luethi, A.; Seiler, R.

    2002-05-15

    Accurate critical experiments have been performed for the validation of total fission (F{sub tot}) and {sup 238}U-capture (C{sub 8}) reaction rate distributions obtained with CASMO-4, HELIOS, BOXER, and MCNP4B for the lower axial region of a real Westinghouse SVEA-96+ fuel assembly. The assembly comprised fresh fuel with an average {sup 235}U enrichment of 4.02 wt%, a maximum enrichment of 4.74 wt%, 14 burnable-absorber fuel pins, and full-density water moderation. The experimental configuration investigated was core 1A of the LWR-PROTEUS Phase I project, where 61 different fuel pins, representing {approx}64% of the assembly, were gamma-scanned individually. Calculated (C) and measured (E)more » values have been compared in terms of C/E distributions. For F{sub tot}, the standard deviations are 1.2% for HELIOS, 0.9% for CASMO-4, 0.8% for MCNP4B, and 1.7% for BOXER. Standard deviations of 1.1% for HELIOS, CASMO-4, and MCNP4B and 1.2% for BOXER were obtained in the case of C{sub 8}. Despite the high degree of accuracy observed on the average, it was found that the five burnable-absorber fuel pins investigated showed a noticeable underprediction of F{sub tot}, quite systematically, for the deterministic codes evaluated (average C/E for the burnable-absorber fuel pins in the range 0.974 to 0.988, depending on the code)« less

  12. Efficient Geometry and Data Handling for Large-Scale Monte Carlo - Thermal-Hydraulics Coupling

    NASA Astrophysics Data System (ADS)

    Hoogenboom, J. Eduard

    2014-06-01

    Detailed coupling of thermal-hydraulics calculations to Monte Carlo reactor criticality calculations requires each axial layer of each fuel pin to be defined separately in the input to the Monte Carlo code in order to assign to each volume the temperature according to the result of the TH calculation, and if the volume contains coolant, also the density of the coolant. This leads to huge input files for even small systems. In this paper a methodology for dynamical assignment of temperatures with respect to cross section data is demonstrated to overcome this problem. The method is implemented in MCNP5. The method is verified for an infinite lattice with 3x3 BWR-type fuel pins with fuel, cladding and moderator/coolant explicitly modeled. For each pin 60 axial zones are considered with different temperatures and coolant densities. The results of the axial power distribution per fuel pin are compared to a standard MCNP5 run in which all 9x60 cells for fuel, cladding and coolant are explicitly defined and their respective temperatures determined from the TH calculation. Full agreement is obtained. For large-scale application the method is demonstrated for an infinite lattice with 17x17 PWR-type fuel assemblies with 25 rods replaced by guide tubes. Again all geometrical detailed is retained. The method was used in a procedure for coupled Monte Carlo and thermal-hydraulics iterations. Using an optimised iteration technique, convergence was obtained in 11 iteration steps.

  13. Target-fueled nuclear reactor for medical isotope production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coats, Richard L.; Parma, Edward J.

    A small, low-enriched, passively safe, low-power nuclear reactor comprises a core of target and fuel pins that can be processed to produce the medical isotope .sup.99Mo and other fission product isotopes. The fuel for the reactor and the targets for the .sup.99Mo production are the same. The fuel can be low enriched uranium oxide, enriched to less than 20% .sup.235U. The reactor power level can be 1 to 2 MW. The reactor is passively safe and maintains negative reactivity coefficients. The total radionuclide inventory in the reactor core is minimized since the fuel/target pins are removed and processed after 7more » to 21 days.« less

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luna, R. E.

    This paper provides a simple model for estimating the release of respirable aerosols resulting from an attack on a spent fuel cask using a high energy density device (HEDD). Two primary experiments have provided data on potential releases from spent fuel casks under HEDD attack. Sandia National Laboratories (SNL) conducted the first in the early 1980's and the second was sponsored by Gessellshaft fur Anlagen- and Reaktorsicherheit (GRS) in Germany and conducted in France in 1994. Both used surrogate spent fuel assemblies in real casks. The SNL experiments used un-pressurized fuel pin assemblies in a single element cask while themore » GRS tests used pressurized fuel pin assemblies in a 9-element cask. Data from the two test programs is reasonably consistent, given the differences in the experiments, but the use of the test data for prediction of releases resulting from HEDD attack requires a method for accounting for the effects of pin pressurization release and the ratio of pin plenum gas release to cask free volume (VR). To account for the effects of VR and to link the two data sources, a simple model has been developed that uses both the SNL data and the GRS data as well as recent test data on aerosols produced in experiments with single pellets subjected to HEDD effects conducted under the aegis of the International Consortium's Working Group on Sabotage of Transport and Storage Casks (WGSTSC). (authors)« less

  15. SLSF in-reactor local fault safety experiment P4. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, D. H.; Holland, J. W.; Braid, T. H.

    The Sodium Loop Safety Facility (SLSF), a major facility in the US fast-reactor safety program, has been used to simulate a variety of sodium-cooled fast reactor accidents. SLSF experiment P4 was conducted to investigate the behavior of a "worse-than-case" local fault configuration. Objectives of this experiment were to eject molten fuel into a 37-pin bundle of full-length Fast-Test-Reactor-type fuel pins form heat-generating fuel canisters, to characterize the severity of any molten fuel-coolant interaction, and to demonstrate that any resulting blockage could either be tolerated during continued power operation or detected by global monitors to prevent fuel failure propagation. The designmore » goal for molten fuel release was 10 to 30 g. Explusion of molten fuel from fuel canisters caused failure of adjacent pins and a partial flow channel blockage in the fuel bundle during full-power operation. Molten fuel and fuel debris also lodged against the inner surface of the test subassembly hex-can wall. The total fuel disruption of 310 g evaluated from posttest examination data was in excellent agreement with results from the SLSF delayed neutron detection system, but exceeded the target molten fuel release by an order of magnitude. This report contains a summary description of the SLSF in-reactor loop and support systems and the experiment operations. results of the detailed macro- and microexamination of disrupted fuel and metal and results from the analysis of the on-line experimental data are described, as are the interpretations and conclusions drawn from the posttest evaluations. 60 refs., 74 figs.« less

  16. Using graphitic foam as the bonding material in metal fuel pins for sodium fast reactors

    NASA Astrophysics Data System (ADS)

    Karahan, Aydın; Kazimi, Mujid S.

    2013-10-01

    The study evaluates the possible use of graphite foam as the bonding material between U-Pu-Zr metallic fuel and steel clad for sodium fast reactor applications using FEAST-METAL fuel performance code. Furthermore, the applicability of FEAST-METAL to the advanced fuel designs is demonstrated. Replacing the sodium bond with a chemically stable foam material would eliminate fuel clad metallurgical interactions, and allow for fuel swelling under low external stress. Hence, a significant improvement is expected for the steady state and transient performance. FEAST-METAL was used to assess the thermo-mechanical behavior of the new fuel form and a reference metallic fuel pin. Nearly unity conversion ratio, 75% smear density U-15Pu-6Zr metallic fuel pin with sodium bond, and T91 cladding was selected as a reference case. It was found that operating the reference case at high clad temperatures (600-660 °C) results in (1) excessive clad wastage formation/clad thinning due to lanthanide migration and formation of brittle phases at clad inner surface, and (2) excessive clad hoop strain at the upper axial section due mainly to the occurrence of thermal creep. The combination of these two factors may lead to cladding breach. The work concludes that replacing the sodium bond with 80% porous graphite foam and reducing the fuel smear density to 70%, it is likely that the fuel clad metallurgical interaction would be eliminated while the fuel swelling is allowed without excessive fuel clad mechanical interaction. The suggested design appears as an alternative for a high performance metallic fuel design for sodium fast reactors.

  17. Development of variable-width ribbon heating elements for liquid-metal and gas-cooled fast breeder reactor fuel-pin simulators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCulloch, R.W.; Post, D.W.; Lovell, R.T.

    1981-04-01

    Variable-width ribbon heating elements that provide a chopped-cosine variable heat flux profile have been fabricated for fuel pin simulators used in test loops by the Breeder Reactor Program Thermal-Hydraulic Out-of-Reactor Safety test facility and the Gas-Cooled Fast Breeder Reactor-Core Flow Test Loop. Thermal, mechanical, and electrical design considerations are used to derive an analytical expression that precisely describes ribbon contour in terms of the major fabrication parameters. These parameters are used to generate numerical control tapes that control ribbon cutting and winding machines. Infrared scanning techniques are developed to determine the optimum transient thermal profile of the coils and relatemore » this profile to that generated by the coils in completed fuel pin simulators.« less

  18. Static versus dynamic loads as an influence on bone remodelling

    NASA Technical Reports Server (NTRS)

    Lanyon, L. E.; Rubin, C. T.

    1983-01-01

    Bone remodelling activity in the avian ulna was assessed under conditions of disuse alone, disuse with a superimposed continuous compressive load, and disuse interrupted by a short daily period of intermittent loading. The ulna preparation is made by two submetaphyseal osteotomies, the cut ends of the bone being covered with stainless steel caps which, together with the bone they enclosed, are pierced by pins emerging transcutaneously on the dorsal and ventral surfaces of the wing. The 110 mm long undisturbed section of the bone shaft can be protected from functional loading, loaded continuously in compression by joining the pins with springs, or loaded intermittently in compression by engaging the pins in an Instron machine. Similar loads (525 n) were used in both static and dynamic cases engendering similar peak strains at the bone's midshaft (-2000 x 10-6). The intermitent load was applied at a frequency of 1 Hz during a single 100 second period per day as a ramped square wave, with a rate of change of strain during the ramp of 0.01 per second.

  19. The stress distribution in pin-loaded orthotropic plates

    NASA Technical Reports Server (NTRS)

    Klang, E. C.; Hyer, M. W.

    1985-01-01

    The performance of mechanically fastened composite joints was studied. Specially, a single-bolt connector was modeled as a pin-loaded, infinite plate. The model that was developed used two dimensional, complex variable, elasticity techniques combined with a boundary collocation procedure to produce solutions for the problem. Through iteration, the boundary conditions were satisfied and the stresses in the plate were calculated. Several graphite epoxy laminates were studied. In addition, parameters such as the pin modulus, coefficient of friction, and pin-plate clearance were varied. Conclusions drawn from this study indicate: (1) the material properties (i.e., laminate configuration) of the plate alter the stress state and, for highly orthotropic materials, the contact stress deviates greatly from the cosinusoidal distribution often assumed; (2) friction plays a major role in the distribution of stresses in the plate; (3) reversing the load direction also greatly effects the stress distribution in the plate; (4) clearance (or interference) fits change the contact angle and thus the location of the peak hoop stress; and (5) a rigid pin appears to be a good assumption for typical material systems.

  20. Metallography and fuel cladding chemical interaction in fast flux test facility irradiated metallic U-10Zr MFF-3 and MFF-5 fuel pins

    DOE PAGES

    Carmack, W. Jon; Chichester, Heather M.; Porter, Douglas L.; ...

    2016-02-27

    The Mechanistic Fuel Failure (MFF) series of metal fuel irradiations conducted in the Fast Flux Test Facility (FFTF) provides an important potential comparison between data generated in the Experimental Breeder Reactor (EBR-II) and that expected in a larger-scale fast reactor. The irradiations were the beginning tests to qualify U-10wt%Zr as a driver fuel for FFTF. The FFTF core, with a 91.4 cm tall fuel column and a chopped cosine neutron flux profile, operated with a peak cladding temperature at the top of the fuel column, but developed peak burnup at the centerline of the core. This then places the peakmore » fuel temperature midway between the core center and the top of fuel, lower in the fuel column than in previous EBR-II experiments that had a 32-cm height core. The MFF-3 and MFF-5 qualification assemblies operated in FFTF to >10 at% burnup, and performed very well with no cladding breaches. The MFF-3 assembly operated to 13.8 at% burnup with a peak inner cladding temperature of 643°C, and the MFF-5 assembly operated to 10.1 at% burnup with a peak inner cladding temperature of 651°C. Because of the very high operating temperatures for both the fuel and the cladding, data from the MFF assemblies are most comparable to the data obtained from the EBR-II X447 experiment, which experienced two pin breaches. The X447 breaches were strongly influenced by a large amount of fuel/cladding chemical interaction (FCCI). The MFF pins benefitted from different axial locations of high burnup and peak cladding temperature, which helped to reduce interdiffusion between rare earth fission products and stainless steel cladding. Post-irradiation examination evidence illustrates this advantage. After comparing other performance data of the long MFF pins to prior EBR-II test data, the MFF fuel inside the cladding grew less axially, and the gas release data did not reveal a definitive difference.« less

  1. Metallography and fuel cladding chemical interaction in fast flux test facility irradiated metallic U-10Zr MFF-3 and MFF-5 fuel pins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carmack, W. J.; Chichester, H. M.; Porter, D. L.

    2016-05-01

    Abstract The Mechanistic Fuel Failure (MFF) series of metal fuel irradiations conducted in the Fast Flux Test Facility (FFTF) provides an important potential comparison between data generated in the Experimental Breeder Reactor (EBR-II) and that expected in a larger-scale fast reactor. The irradiations were the beginning tests to qualify U-10wt%Zr as a driver fuel for FFTF. The FFTF core, with a 91.4 cm tall fuel column and a chopped cosine neutron flux profile, operated with a peak cladding temperature at the top of the fuel column, but developed peak burnup at the centerline of the core. This places the peakmore » fuel temperature midway between the core center and the top of fuel, lower in the fuel column than in previous EBR-II experiments that had a 32-cm height core. The MFF-3 and MFF-5 qualification assemblies operated in FFTF to >10 at% burnup, and performed very well with no cladding breaches. The MFF-3 assembly operated to 13.8 at% burnup with a peak inner cladding temperature of 643°C, and the MFF-5 assembly operated to 10.1 at% burnup with a peak inner cladding temperature of 651°C. Because of the very high operating temperatures for both the fuel and the cladding, data from the MFF assemblies are most comparable to the data obtained from the EBR-II X447 experiment, which experienced two pin breaches. The X447 breaches were strongly influenced by a large amount of fuel/cladding chemical interaction (FCCI). The MFF pins benefitted from different axial locations of high burnup and peak cladding temperature, which helped to reduce interdiffusion between rare earth fission products and stainless steel cladding. Post-irradiation examination evidence illustrates this advantage. Comparing other performance data of the long MFF pins to prior EBR-II test data, the MFF fuel inside the cladding grew less axially, and the gas release data did not reveal a definitive difference.« less

  2. Establishing the need for an engineering standard for agricultural hitch pins.

    PubMed

    Deboy, G R; Knapp, W M; Field, W E; Krutz, G W; Corum, C L

    2012-04-01

    Documented incidents have occurred in which failure or unintentional disengagement of agricultural hitch pins has contributed to property damage and personal injury. An examination of current hitch pin use on a convenience sample of farm operations in Indiana revealed a variety of non-standard, worn and damaged, and inappropriately sized hitch pins in use. Informal interviews with the farm operators confirmed that hitch pin misuse, failure, or disengagement is a relatively widespread problem that remains largely unaddressed. On-site observations also suggested a low use of hitch pin retaining devices or safety chains. A review of prior research revealed that little attention has been given to this problem, and currently no documentation allows for an estimate of the frequency or severity of losses associated with hitch pin misuse, failure, or disengagement. No specific engineering standards were found that directly applied to the design, appropriate selection, or loading capacity of agricultural hitch pins. Major suppliers of replacement hitch pins currently provide little or no information on matching hitch pin size to intended applications, and most replacement hitch pins examined were of foreign origin, with the overwhelming majority imported from China or India. These replacement hitch pins provided no specifications other than diameter, length, and, in some cases, labeling that indicated that the pins had been "heat treated. " Testing of a sample of 11 commercially available replacement hitch pins found variation along the length of the pin shaft and between individual pins in surface hardness, a potential predictor of pin failure. Examination of 17 commercially available replacement pins also revealed a variety of identifiers used to describe pin composition and fabrication methods, e.g., "heat treated." None of the pins examined provided any specifications on loading capacity. It was therefore concluded that there is a need to develop an agricultural hitch pin engineering standard that would reflect current agricultural applications and practices and that would be promoted to both original equipment manufacturers and manufacturers and suppliers of replacement hitch pins. The standard should address the design of composite pins, heat treating, surface hardening, loading capacity and labeling of such, incorporation of unintentional disengagement prevention devices, indicators of the need for replacement due to wear, and safety information that should be included in operator instructions. ASABE is the most appropriate organization to develop such a standard. It was also concluded that agricultural safety and health programs and professionals need to raise the awareness of farmers concerning the appropriate selection and use of agricultural hitch pins, including the need to replace non-standard pins with pins less likely to fail or disengage during use, the need to replace hitch pins with indications of potential failure, and the importance of using appropriate safety chains, especially during transport of equipment behind tractors and trucks on public roads.

  3. Static vs dynamic loads as an influence on bone remodelling.

    PubMed

    Lanyon, L E; Rubin, C T

    1984-01-01

    Remodelling activity in the avian ulna was assessed under conditions of disuse alone, disuse with a superimposed continuous compressive load, and disuse interrupted by a short daily period of intermittent loading. The ulnar preparation consisted of the 110mm section of the bone shaft between two submetaphyseal osteotomies. Each end of the preparation was transfixed by a stainless steel pin and the shaft either protected from normal functional loading with the pins joined by external fixators, loaded continuously in compression by joining the pins with springs, or loaded intermittently in compression for a single 100s period per day by engaging the pins in an Instron machine. Similar loads (525 N) were used in both static and dynamic cases. The strains engendered were determined by strain gauges, and at their maximum around the bone's midshaft were -0.002. The intermittent load was applied at a frequency of 1 Hz as a ramped square wave, with a rate of change of strain during the ramp of 0.01 s-1. Peak strain at the midshaft of the ulna during wing flapping in the intact bone was recorded from bone bonded strain gauges in vivo as -0.0033 with a maximum rate of change of strain of 0.056 s-1. Examination of bone sections from the midpoint of the preparation after an 8 week period indicated that in both non-loaded and statically loaded bones there was an increase in both endosteal diameter and intra cortical porosity. These changes produced a decrease in cross sectional area which was similar in the two groups (-13%).(ABSTRACT TRUNCATED AT 250 WORDS)

  4. Metallography and fuel cladding chemical interaction in fast flux test facility irradiated metallic U-10Zr MFF-3 and MFF-5 fuel pins

    NASA Astrophysics Data System (ADS)

    Carmack, W. J.; Chichester, H. M.; Porter, D. L.; Wootan, D. W.

    2016-05-01

    The Mechanistic Fuel Failure (MFF) series of metal fuel irradiations conducted in the Fast Flux Test Facility (FFTF) provides an important comparison between data generated in the Experimental Breeder Reactor (EBR-II) and that expected in a larger-scale fast reactor. The MFF fuel operated with a peak cladding temperature at the top of the fuel column, but developed peak burnup at the centerline of the core. This places the peak fuel temperature midway between the core center and the top of fuel, lower in the fuel column than in EBR-II experiments. Data from the MFF-3 and MFF-5 assemblies are most comparable to the data obtained from the EBR-II X447 experiment. The two X447 pin breaches were strongly influenced by fuel/cladding chemical interaction (FCCI) at the top of the fuel column. Post irradiation examination data from MFF-3 and MFF-5 are presented and compared to historical EBR-II data.

  5. [Structural Damage to the Hamstring Graft due to Interaction with Fixation Material and its Effect on Biomechanical Properties of ACL Reconstruction].

    PubMed

    Kautzner, J; Držík, M; Handl, M; Povýšil, C; Kos, P; Trč, T; Havlas, V

    2017-01-01

    PURPOSE OF THE STUDY Hamstring grafts are commonly used for ACL reconstruction. The purpose of our study is to determine the effects of the suspension fixation compared to graft cross-pinning transfixation, and the effect(s) of structural damage during the preparation of the graft on biomechanical properties of the graft. MATERIAL AND METHODS The design of the study is a cadaveric biomechanical laboratory study. 38 fresh-frozen human hamstring specimens from 19 cadaveric donors were used. The grafts were tested for their loading properties. One half of each specimen was suspended over a 3.3mm pin, the other half was cross-pinned by a 3.3mm pin to simulate the graft cross-pinning technique. Single impact testing was performed and the failure force, elongation and acceleration/deceleration of each graft was recorded and the loading force vs. elongation of the graft specimens was calculated. Results for suspended and cross-pinned grafts were analysed using ANOVA method, comparing the grafts from each donor. RESULTS The ultimate strength of a double-strand gracilis graft was 1287 ± 134 N when suspended over a pin, the strength of a cross-pinned graft was 833 ± 111 N. For double-strand semitendinosus grafts the strengths were 1883 ± 198 and 997 ± 234 N, respectively. Thus, the failure load for the cross-pinning method is only 64.7% or 52.9% for the suspension method. DISCUSSION Structural damage to the graft significantly reduces the graft strength. Also, extensive suturing during preparation of the graft reduces its strength. CONCLUSIONS Fixation methods that do not interfere with the graft's structure should be used to reduce the risk of graft failure. Key words: ACL reconstruction, hamstring graft, biomechanical testing.

  6. EURATOM safeguards efforts in the development of spent fuel verification methods by non-destructive assay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matloch, L.; Vaccaro, S.; Couland, M.

    The back end of the nuclear fuel cycle continues to develop. The European Commission, particularly the Nuclear Safeguards Directorate of the Directorate General for Energy, implements Euratom safeguards and needs to adapt to this situation. The verification methods for spent nuclear fuel, which EURATOM inspectors can use, require continuous improvement. Whereas the Euratom on-site laboratories provide accurate verification results for fuel undergoing reprocessing, the situation is different for spent fuel which is destined for final storage. In particular, new needs arise from the increasing number of cask loadings for interim dry storage and the advanced plans for the construction ofmore » encapsulation plants and geological repositories. Various scenarios present verification challenges. In this context, EURATOM Safeguards, often in cooperation with other stakeholders, is committed to further improvement of NDA methods for spent fuel verification. In this effort EURATOM plays various roles, ranging from definition of inspection needs to direct participation in development of measurement systems, including support of research in the framework of international agreements and via the EC Support Program to the IAEA. This paper presents recent progress in selected NDA methods. These methods have been conceived to satisfy different spent fuel verification needs, ranging from attribute testing to pin-level partial defect verification. (authors)« less

  7. Single-screw Fixation of Adolescent Salter-II Proximal Humeral Fractures: Biomechanical Analysis of the "One Pass Door Lock" Technique.

    PubMed

    Miller, Mark Carl; Redman, Christopher N; Mistovich, R Justin; Muriuki, Muturi; Sangimino, Mark J

    2017-09-01

    Pin fixation of Salter-II proximal humeral fractures in adolescents approaching skeletal maturity has potential complications that can be avoided with single-screw fixation. However, the strength of screw fixation relative to parallel and diverging pin fixation is unknown. To compare the biomechanical fixation strength between these fixation modalities, we used synthetic composite humeri, and then compared these results in composite bone with cadaveric humeri specimens. Parallel pinning, divergent pinning, and single-screw fixation repairs were performed on synthetic composite humeri with simulated fractures. Six specimens of each type were tested in axial loading and other 6 were tested in torsion. Five pair of cadaveric humeri were tested with diverging pins and single screws for comparison. Single-screw fixation was statistically stronger than pin fixation in axial and torsional loading in both composite and actual bone. There was no statistical difference between composite and cadaveric bone specimens. Single-screw fixation can offer greater stability to adolescent Salter-II fractures than traditional pinning. Single-screw fixation should be considered as a viable alternative to percutaneous pin fixation in transitional patients with little expected remaining growth.

  8. High energy X-ray CT study on the central void formations and the fuel pin deformations of FBR fuel assemblies

    NASA Astrophysics Data System (ADS)

    Katsuyama, Kozo; Nagamine, Tsuyoshi; Matsumoto, Shin-ichiro; Sato, Seichi

    2007-02-01

    The central void formations and deformations of fuel pins were investigated in fuel assemblies irradiated to high burn-up, using a non-destructive X-ray CT (computer tomography) technique. In this X-ray CT, the effect of strong gamma ray activity could be reduced to a negligible degree by using the pulse of a high energy X-ray source and detecting the intensity of the transmitted X-rays in synchronization with the generated X-rays. Clear cross-sectional images of fuel assemblies irradiated to high burn-up in a fast breeder reactor were successively obtained, in which the wrapping wires, cladding, pellets and central voids could be distinctly seen. The diameter of a typical central void measured by X-ray CT agreed with the one obtained by ceramography within an error of 0.1 mm. Based on this result, the dependence of the central void diameter on the linear heating rate was analyzed. In addition, the deformation behavior of a fuel pin along its axial direction could be analyzed from 20 stepwise X-ray cross-sectional images obtained in a small interval, and the results obtained showed a good agreement with the predictions calculated by two computer codes.

  9. Regulatory Technology Development Plan - Sodium Fast Reactor. Mechanistic Source Term - Metal Fuel Radionuclide Release

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grabaskas, David; Bucknor, Matthew; Jerden, James

    2016-02-01

    The development of an accurate and defensible mechanistic source term will be vital for the future licensing efforts of metal fuel, pool-type sodium fast reactors. To assist in the creation of a comprehensive mechanistic source term, the current effort sought to estimate the release fraction of radionuclides from metal fuel pins to the primary sodium coolant during fuel pin failures at a variety of temperature conditions. These release estimates were based on the findings of an extensive literature search, which reviewed past experimentation and reactor fuel damage accidents. Data sources for each radionuclide of interest were reviewed to establish releasemore » fractions, along with possible release dependencies, and the corresponding uncertainty levels. Although the current knowledge base is substantial, and radionuclide release fractions were established for the elements deemed important for the determination of offsite consequences following a reactor accident, gaps were found pertaining to several radionuclides. First, there is uncertainty regarding the transport behavior of several radionuclides (iodine, barium, strontium, tellurium, and europium) during metal fuel irradiation to high burnup levels. The migration of these radionuclides within the fuel matrix and bond sodium region can greatly affect their release during pin failure incidents. Post-irradiation examination of existing high burnup metal fuel can likely resolve this knowledge gap. Second, data regarding the radionuclide release from molten high burnup metal fuel in sodium is sparse, which makes the assessment of radionuclide release from fuel melting accidents at high fuel burnup levels difficult. This gap could be addressed through fuel melting experimentation with samples from the existing high burnup metal fuel inventory.« less

  10. PRELIMINARY COUPLING OF THE MONTE CARLO CODE OPENMC AND THE MULTIPHYSICS OBJECT-ORIENTED SIMULATION ENVIRONMENT (MOOSE) FOR ANALYZING DOPPLER FEEDBACK IN MONTE CARLO SIMULATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthew Ellis; Derek Gaston; Benoit Forget

    In recent years the use of Monte Carlo methods for modeling reactors has become feasible due to the increasing availability of massively parallel computer systems. One of the primary challenges yet to be fully resolved, however, is the efficient and accurate inclusion of multiphysics feedback in Monte Carlo simulations. The research in this paper presents a preliminary coupling of the open source Monte Carlo code OpenMC with the open source Multiphysics Object-Oriented Simulation Environment (MOOSE). The coupling of OpenMC and MOOSE will be used to investigate efficient and accurate numerical methods needed to include multiphysics feedback in Monte Carlo codes.more » An investigation into the sensitivity of Doppler feedback to fuel temperature approximations using a two dimensional 17x17 PWR fuel assembly is presented in this paper. The results show a functioning multiphysics coupling between OpenMC and MOOSE. The coupling utilizes Functional Expansion Tallies to accurately and efficiently transfer pin power distributions tallied in OpenMC to unstructured finite element meshes used in MOOSE. The two dimensional PWR fuel assembly case also demonstrates that for a simplified model the pin-by-pin doppler feedback can be adequately replicated by scaling a representative pin based on pin relative powers.« less

  11. Outcomes of the JNT 1955 Phase I Viability Study of Gamma Emission Tomography for Spent Fuel Verification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobsson-Svard, Staffan; Smith, Leon E.; White, Timothy

    The potential for gamma emission tomography (GET) to detect partial defects within a spent nuclear fuel assembly has been assessed within the IAEA Support Program project JNT 1955, phase I, which was completed and reported to the IAEA in October 2016. Two safeguards verification objectives were identified in the project; (1) independent determination of the number of active pins that are present in a measured assembly, in the absence of a priori information about the assembly; and (2) quantitative assessment of pin-by-pin properties, for example the activity of key isotopes or pin attributes such as cooling time and relative burnup,more » under the assumption that basic fuel parameters (e.g., assembly type and nominal fuel composition) are known. The efficacy of GET to meet these two verification objectives was evaluated across a range of fuel types, burnups and cooling times, while targeting a total interrogation time of less than 60 minutes. The evaluations were founded on a modelling and analysis framework applied to existing and emerging GET instrument designs. Monte Carlo models of different fuel types were used to produce simulated tomographer responses to large populations of “virtual” fuel assemblies. The simulated instrument response data were then processed using a variety of tomographic-reconstruction and image-processing methods, and scoring metrics were defined and used to evaluate the performance of the methods.This paper describes the analysis framework and metrics used to predict tomographer performance. It also presents the design of a “universal” GET (UGET) instrument intended to support the full range of verification scenarios envisioned by the IAEA. Finally, it gives examples of the expected partial-defect detection capabilities for some fuels and diversion scenarios, and it provides a comparison of predicted performance for the notional UGET design and an optimized variant of an existing IAEA instrument.« less

  12. Interlocking egg-crate type grid assembly

    DOEpatents

    Kast, Steven J.

    1987-01-01

    Disclosed is an interlocking egg-crate hexagonal grid for supporting a nuclear fuel pin in a hexagonal array. The grid is formed from strips bent at an angle of about 120.degree. at each vertex. Over some faces of each hexagonal cell the strips are coplanar but are arranged, by stacking and interlocking, to avoid any double thickness of metal in that plane. Springs and dimples are formed in the faces of each cell to hold the fuel pin substantially centered.

  13. Interlocking egg-crate type grid assembly

    DOEpatents

    Kast, S.J.

    1985-03-15

    Disclosed is an interlocking egg-crate hexagonal grid for supporting a nuclear fuel pin in a hexagonal array. The grid is formed from strips bent at an angle of about 120/sup 0/ at each vertex. Over some faces of each hexagonal cell the strips are coplanar but are arranged, by stacking interlocking, to avoid any double thickness of metal in that plane. Springs and dimples are formed in the faces of each cell to hold the fuel pin substantially centered.

  14. Nonlinear Spring Finite Elements for Predicting Mode I-Dominated Delamination Growth in Laminated Structure with Through-Thickness reinforcement

    NASA Technical Reports Server (NTRS)

    Ratcliffe, James G.; Krueger, Ronald

    2006-01-01

    One particular concern of polymer matrix composite laminates is the relatively low resistance to delamination cracking, in particular when the dominant type of failure is mode I opening. One method proposed for alleviating this problem involves the insertion pultruded carbon pins through the laminate thickness. The pins, known as z-pins, are inserted into the prepreg laminate using an ultrasonic hammer prior to the curing process, resulting in a field of pins embedded normal to the laminate plane as illustrated in Figure. 1. Pin diameters range between 0.28-mm to 0.5-mm and standard areal densities range from 0.5% to 4%. The z-pins are provided by the manufacturer, Aztex(Registered TradeMark) , in a low-density foam preform, which acts to stabilize orientation of the pins during the insertion process [1-3]. Typical pin materials include boron and carbon fibers embedded in a polymer matrix. A number of methods have been developed for predicting delamination growth in laminates reinforced with z-pins. During a study on the effect of z-pin reinforcement on mode I delamination resistance, finite element analyses of z-pin reinforced double cantilever beam (DCB) specimens were performed by Cartie and Partridge [4]. The z-pin bridging stresses were modeled by applying equivalent forces at the pin locations. Single z-pin pull-out tests were performed to characterize the traction law of the pins under mode I loading conditions. Analytical solutions for delamination growth in z-pin reinforced DCB specimens were independently derived by Robinson and Das [5] and Ratcliffe and O'Brien [6]. In the former case, pin bridging stresses were modeled using a distributed load and in the latter example the bridging stresses were discretely modeled by way of grounded springs. Additionally, Robinson and Das developed a data reduction strategy for calculating mode I fracture toughness, G(sub Ic), from a z-pin reinforced DCB specimen test [5]. In both cases a traction law similar to that adopted by Cartie and Partridge was used to represent z-pin failure under mode I loading conditions. In the current work spring elements available in most commercial finite element codes were used to model z-pins. The traction law used in previous analyses [4-6] was employed to represent z-pin damage. This method is intended for and is limited to simulating z-pins in composite laminate structure containing mode I-dominated delamination cracking. The current technique differs from previous analyses in that spring finite elements (available in commercial codes) are employed for simulating zpins, reducing the complexity of the analysis construction process. Furthermore, the analysis method can be applied to general structure that experiences mode I-dominated delamination cracking, in contrast to existing analytical solutions that are only applicable to coupon DCB specimens.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kraus, A.; Garner, P.; Hanan, N.

    Thermal-hydraulic simulations have been performed using computational fluid dynamics (CFD) for the highly-enriched uranium (HEU) design of the IVG.1M reactor at the Institute of Atomic Energy (IAE) at the National Nuclear Center (NNC) in the Republic of Kazakhstan. Steady-state simulations were performed for both types of fuel assembly (FA), i.e. the FA in rows 1 & 2 and the FA in row 3, as well as for single pins in those FA (600 mm and 800 mm pins). Both single pin calculations and bundle sectors have been simulated for the most conservative operating conditions corresponding to the 10 MW outputmore » power, which corresponds to a pin unit cell Reynolds number of only about 7500. Simulations were performed using the commercial code STAR-CCM+ for the actual twisted pin geometry as well as a straight-pin approximation. Various Reynolds-Averaged Navier-Stokes (RANS) turbulence models gave different results, and so some validation runs with a higher-fidelity Large Eddy Simulation (LES) code were performed given the lack of experimental data. These singled out the Realizable Two-Layer k-ε as the most accurate turbulence model for estimating surface temperature. Single-pin results for the twisted case, based on the average flow rate per pin and peak pin power, were conservative for peak clad surface temperature compared to the bundle results. Also the straight-pin calculations were conservative as compared to the twisted pin simulations, as expected, but the single-pin straight case was not always conservative with regard to the straight-pin bundle. This was due to the straight-pin temperature distribution being strongly influenced by the pin orientation, particularly near the outer boundary. The straight-pin case also predicted the peak temperature to be in a different location than the twisted-pin case. This is a limitation of the straight-pin approach. The peak temperature pin was in a different location from the peak power pin in every case simulated, and occurred at an inner pin just before the enrichment change. The 600 mm case demonstrated a peak clad surface temperature of 370.4 K, while the 800 mm case had a temperature of 391.6 K. These temperatures are well below the necessary temperatures for boiling to occur at the rated pressure. Fuel temperatures are also well below the melting point. Future bundle work will include simulations of the proposed low-enriched uranium (LEU) design. Two transient scenarios were also investigated for the single-pin geometries. Both were “model” problems that were focused on pure thermal-hydraulic behavior, and as such were simple power changes that did not incorporate neutron kinetics modeling. The first scenario was a high-power, ramp increase, while the second scenario was a low-power, step increase. A cylindrical RELAP model was also constructed to investigate its accuracy as compared to the higher-fidelity CFD. Comparisons between the two codes showed good agreement for peak temperatures in the fuel and at the cladding surface for both cases. In the step transient, temperatures at four axial levels were also computed. These showed greater but reasonable discrepancy, with RELAP outputting higher temperatures. These results provide some evidence that RELAP can be used with confidence in modeling transients for IVG.« less

  16. Switchable zero-index metamaterials by loading positive-intrinsic-negative diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiang, Nan; Cheng, Qiang, E-mail: qiangcheng@emfield.org; Zhao, Jie

    2014-02-03

    We propose switchable zero-index metamaterials (ZIMs) implemented by split ring resonators (SRRs) loaded with positive-intrinsic-negative (PIN) diode switching elements. We demonstrate that ZIMs can be achieved at around 10 GHz when the PIN diode is switched off. When the PIN diode is switched on, however, the designed metamaterials have impedance matching to the free space, which is useful to reduce the reflections at the interface of two media. The switchable ZIMs are suitable for a wide variety of applications like the beam forming and directive radiation. Experimental results validate the switching ability of the proposed ZIMs.

  17. Inner shell radial pin geometry and mounting arrangement

    DOEpatents

    Leach, David; Bergendahl, Peter Allen

    2002-01-01

    Circumferentially spaced arrays of support pins are disposed through access openings in an outer turbine shell and have projections received in recesses in forward and aft sections of an inner turbine shell supported from the outer shell. The projections have arcuate sides in a circumferential direction affording line contacts with the side walls of the recesses and are spaced from end faces of the recesses, enabling radial and axial expansion and contraction of the inner shell relative to the outer shell. All loads are taken up in a tangential direction by the outer shell with the support pins taking no radial loadings.

  18. Effects of low-modulus coatings on pin-bone contact stresses in external fixation.

    PubMed

    Manley, M T; Hurst, L; Hindes, R; Dee, R; Chiang, F P

    1984-01-01

    The intent of this study was to investigate the stress distribution in cortical bone around fracture fixation pins and around pins coated with various polymeric and elastomeric materials. Since these interface stresses cannot be measured directly, a photoelastic technique was employed and stresses were measured in two-dimensional bone models fabricated from sheets of epoxy resin. Our results showed that when a fixation pin was loaded in compression, the compressive stress measured in the model was greatest at the pin-model interface. The magnitude of the compressive stress was found to diminish steeply away from the hole in a log decrement distribution which was asymptotic to the value of the average stress in the model. When polymeric and elastomeric materials were applied as pin coatings and the performance of the coated pins was compared to that of uncoated pins of the same overall diameter, a reduction of the maximum stress in the bone model was demonstrated. Among the coatings tested, we found that of the polymeric materials ultrahigh molecular weight polyethylene (UHMWPE) was most effective at reducing the peak cortical stress magnitude. The most effective coating material overall was found to be silicon elastomer. Computation of stress values in models loaded through stainless-steel pins and through pins coated with 1-mm silicon elastomer showed that the presence of the elastomer layer caused a reduction of about 50% in the maximum compressive stress in the model.

  19. Proposed Design and Operation of a Heat Pipe Reactor using the Sandia National Laboratories Annular Core Test Facility and Existing UZrH Fuel Pins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, Steven A.; Lipinski, Ronald J.; Pandya, Tara

    2005-02-06

    Heat Pipe Reactors (HPR) for space power conversion systems offer a number of advantages not easily provided by other systems. They require no pumping, their design easily deals with freezing and thawing of the liquid metal, and they can provide substantial levels of redundancy. Nevertheless, no reactor has ever been operated and cooled with heat pipes, and the startup and other operational characteristics of these systems remain largely unknown. Signification deviations from normal reactor heat removal mechanisms exist, because the heat pipes have fundamental heat removal limits due to sonic flow issues at low temperatures. This paper proposes an earlymore » prototypic test of a Heat Pipe Reactor (using existing 20% enriched nuclear fuel pins) to determine the operational characteristics of the HPR. The proposed design is similar in design to the HOMER and SAFE-300 HPR designs (Elliot, Lipinski, and Poston, 2003; Houts, et. al, 2003). However, this reactor uses existing UZrH fuel pins that are coupled to potassium heat pipes modules. The prototype reactor would be located in the Sandia Annular Core Research Reactor Facility where the fuel pins currently reside. The proposed reactor would use the heat pipes to transport the heat from the UZrH fuel pins to a water pool above the core, and the heat transport to the water pool would be controlled by adjusting the pressure and gas type within a small annulus around each heat pipe. The reactor would operate as a self-critical assembly at power levels up to 200 kWth. Because the nuclear heated HPR test uses existing fuel and because it would be performed in an existing facility with the appropriate safety authorization basis, the test could be performed rapidly and inexpensively. This approach makes it possible to validate the operation of a HPR and also measure the feedback mechanisms for a typical HPR design. A test of this nature would be the world's first operating Heat Pipe Reactor. This reactor is therefore called 'HPR-1'.« less

  20. Fixation of the Achilles tendon insertion using suture button technology.

    PubMed

    Fanter, Nathan J; Davis, Edward W; Baker, Champ L

    2012-09-01

    In the operative treatment of Achilles insertional tendinopathy, no guidelines exist concerning which form of fixation of the Achilles tendon insertion is superior. Transcalcaneal drill pin passage does not place any major plantar structures at risk, and the addition of a Krackow stitch and suture button to the fixation technique provides a significant increase in ultimate load to failure in Achilles tendon insertional repairs. Controlled laboratory study. The Achilles tendon insertions in 6 fresh-frozen cadaveric ankles were detached, and transcalcaneal drill pins were passed. Plantar dissection took place to evaluate the drill pin relationship to the plantar fascia, lateral plantar nerve and artery, flexor digitorum longus tendon, and master knot of Henry. The Achilles tendons were then repaired with a double-row suture anchor construct alone or with a suture button and Krackow stitch added to the double-row suture anchor construct. The repairs were then tested to maximum load to failure at 20 mm/min. The mode of failure was recorded, and the mean maximum load to failure was assessed using the Student t test for distributions with equal variance. Transcalcaneal drill pin passage did not place any selected anatomic structures at risk. The mean maximum load to failure for the suture bridge group was 239.2 N; it was 391.4 N for the group with the suture button (P = .014). The lateral plantar artery was the structure placed at greatest risk from drill pin placement, with a mean distance of 22.7 mm (range, 16.5-29.2 mm) between the pin and artery. In this laboratory study, transcalcaneal drill pin passage appeared to be anatomically safe, and the use of suture button technology with a Krackow stitch for Achilles tendon insertional repair significantly increased repair strength. Achilles tendon insertional repair with suture button fixation and a Krackow stitch may facilitate the earlier institution of postoperative rehabilitation and improve clinical outcomes.

  1. Neutronic fuel element fabrication

    DOEpatents

    Korton, George

    2004-02-24

    This disclosure describes a method for metallurgically bonding a complete leak-tight enclosure to a matrix-type fuel element penetrated longitudinally by a multiplicity of coolant channels. Coolant tubes containing solid filler pins are disposed in the coolant channels. A leak-tight metal enclosure is then formed about the entire assembly of fuel matrix, coolant tubes and pins. The completely enclosed and sealed assembly is exposed to a high temperature and pressure gas environment to effect a metallurgical bond between all contacting surfaces therein. The ends of the assembly are then machined away to expose the pin ends which are chemically leached from the coolant tubes to leave the coolant tubes with internal coolant passageways. The invention described herein was made in the course of, or under, a contract with the U.S. Atomic Energy Commission. It relates generally to fuel elements for neutronic reactors and more particularly to a method for providing a leak-tight metal enclosure for a high-performance matrix-type fuel element penetrated longitudinally by a multiplicity of coolant tubes. The planned utilization of nuclear energy in high-performance, compact-propulsion and mobile power-generation systems has necessitated the development of fuel elements capable of operating at high power densities. High power densities in turn require fuel elements having high thermal conductivities and good fuel retention capabilities at high temperatures. A metal clad fuel element containing a ceramic phase of fuel intimately mixed with and bonded to a continuous refractory metal matrix has been found to satisfy the above requirements. Metal coolant tubes penetrate the matrix to afford internal cooling to the fuel element while providing positive fuel retention and containment of fission products generated within the fuel matrix. Metal header plates are bonded to the coolant tubes at each end of the fuel element and a metal cladding or can completes the fuel-matrix enclosure by encompassing the sides of the fuel element between the header plates.

  2. Exploratory Investigation of Failure Mechanisms in Transition Regions between Solid Laminates and X-cor(registered tm) Truss Sandwich

    NASA Technical Reports Server (NTRS)

    OBrien, T. Kevin; Paris, Isabelle L.

    2004-01-01

    Small sub-component specimens consisting of solid laminates at the ends that transition to X-cor(R) truss sandwich in the center, were tested in a combination of three point bending, uni-axial tension, and combined tension and bending. The failure process in the transition region was documented for each loading using digital video and high-resolution cameras. For the 3-point bending tests, most of the deformation occurred in the solid laminate regions on either end of the specimen. Some pin debonding from the skin of the X-cor(R) truss sandwich was observed in the transition region and was accompanied by audible "pings" throughout the loading. Tension loaded specimens failed in the sandwich skin in the middle of the gage length, accompanied by separation of the sandwich core from the back skin and by delamination between the top skin and bottom skin at the transition region. The pinging associated with pin debonding occurred as the load was increased. However, the frequency of the pinging exceeded any visual observations of pin debonding in the video of the transition region. For specimens tested in combined tension and bending, the greatest amount of pinging occurred during initial application of the axial load. High-resolution images in the transition region indicated that the pinging corresponded to pins debonding and buckling due to the through-thickness Poisson contraction of the specimen. This buckling continued to a much smaller extent as the transverse load was applied.

  3. Experimental studies on metallic fuel relocation in a single-pin core structure of a sodium-cooled fast reactor

    DOE PAGES

    Kim, Taeil; Harbaruk, Dzmitry; Gerardi, Craig; ...

    2017-07-10

    Experiments dropping molten uranium into test sections of single fuel pin geometry filled with sodium were conducted to investigate relocation behavior of metallic fuel in the core structures of sodium-cooled fast reactors during a hypothetical core disruptive accident. Metallic uranium was used as a fuel material and HT-9M was used as a fuel cladding material in the experiment in order to accurately mock-up the thermo-physical behavior of the relocation. The fuel cladding failed due to eutectic formation between the uranium and HT-9M for all experiments. The extent of the eutectic formation increased with increasing molten uranium temperature. Voids in themore » relocated fuel were observed for all experiments and were likely formed by sodium boiling in contact with the fuel. In one experiment, numerous fragments of the relocated fuel were found. In conclusion, it could be concluded that the injected metallic uranium fuel was fragmented and dispersed in the narrow coolant channel by sodium boiling« less

  4. Experimental studies on metallic fuel relocation in a single-pin core structure of a sodium-cooled fast reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Taeil; Harbaruk, Dzmitry; Gerardi, Craig

    Experiments dropping molten uranium into test sections of single fuel pin geometry filled with sodium were conducted to investigate relocation behavior of metallic fuel in the core structures of sodium-cooled fast reactors during a hypothetical core disruptive accident. Metallic uranium was used as a fuel material and HT-9M was used as a fuel cladding material in the experiment in order to accurately mock-up the thermo-physical behavior of the relocation. The fuel cladding failed due to eutectic formation between the uranium and HT-9M for all experiments. The extent of the eutectic formation increased with increasing molten uranium temperature. Voids in themore » relocated fuel were observed for all experiments and were likely formed by sodium boiling in contact with the fuel. In one experiment, numerous fragments of the relocated fuel were found. In conclusion, it could be concluded that the injected metallic uranium fuel was fragmented and dispersed in the narrow coolant channel by sodium boiling« less

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    S. Bays; W. Skerjanc; M. Pope

    A comparative analysis and comparison of results obtained between 2-D lattice calculations and 3-D full core nodal calculations, in the frame of MOX fuel design, was conducted. This study revealed a set of advantages and disadvantages, with respect to each method, which can be used to guide the level of accuracy desired for future fuel and fuel cycle calculations. For the purpose of isotopic generation for fuel cycle analyses, the approach of using a 2-D lattice code (i.e., fuel assembly in infinite lattice) gave reasonable predictions of uranium and plutonium isotope concentrations at the predicted 3-D core simulation batch averagemore » discharge burnup. However, it was found that the 2-D lattice calculation can under-predict the power of pins located along a shared edge between MOX and UO2 by as much as 20%. In this analysis, this error did not occur in the peak pin. However, this was a coincidence and does not rule out the possibility that the peak pin could occur in a lattice position with high calculation uncertainty in future un-optimized studies. Another important consideration in realistic fuel design is the prediction of the peak axial burnup and neutron fluence. The use of 3-D core simulation gave peak burnup conditions, at the pellet level, to be approximately 1.4 times greater than what can be predicted using back-of-the-envelope assumptions of average specific power and irradiation time.« less

  6. Fuel pins with both target and fuel pellets in an isotope-production reactor

    DOEpatents

    Cawley, W.E.; Omberg, R.P.

    1982-08-19

    A method is described for producing tritium in a fast breeder reactor cooled with liquid metal. Lithium target pellets are placed in close contact with fissile fuel pellets in order to increase the tritium production rate.

  7. Mechanism for Self-Reacted Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Venable, Richard; Bucher, Joseph

    2004-01-01

    A mechanism has been designed to apply the loads (the stirring and the resection forces and torques) in self-reacted friction stir welding. This mechanism differs somewhat from mechanisms used in conventional friction stir welding, as described below. The tooling needed to apply the large reaction loads in conventional friction stir welding can be complex. Self-reacted friction stir welding has become popular in the solid-state welding community as a means of reducing the complexity of tooling and to reduce costs. The main problems inherent in self-reacted friction stir welding originate in the high stresses encountered by the pin-and-shoulder assembly that produces the weld. The design of the present mechanism solves the problems. The mechanism includes a redesigned pin-and-shoulder assembly. The welding torque is transmitted into the welding pin by a square pin that fits into a square bushing with set-screws. The opposite or back shoulder is held in place by a Woodruff key and high-strength nut on a threaded shaft. The Woodruff key reacts the torque, while the nut reacts the tensile load on the shaft.

  8. Demonstration of optimum fuel-to-moderator ratio in a PWR unit fuel cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feltus, M.A.; Pozsgai, C.

    1992-01-01

    Nuclear engineering students at The Pennsylvania State University develop scaled-down [[approx]350 MW(thermal)] pressurized water reactors (PWRs) using actual plants as references. The design criteria include maintaining the clad temperature below 2200[degree]F, fuel temperature below melting point, sufficient departure from nucleate boiling ratio (DNBR) margin, a beginning-of-life boron concentration that yields a negative moderator temperature coefficient, an adequate cycle power production (330 effective full-power days), and a batch loading scheme that is economical. The design project allows for many degrees of freedom (e.g., assembly number, pitch and height and batch enrichments) so that each student's result is unique. The iterative naturemore » of the design process is stressed in the course. The LEOPARD code is used for the unit cell depletion, critical boron, and equilibrium xenon calculations. Radial two-group diffusion equations are solved with the TWIDDLE-DEE code. The steady-state ZEBRA thermal-hydraulics program is used for calculating DNBR. The unit fuel cell pin radius and pitch (fuel-to-moerator ratio) for the scaled-down design, however, was set equal to the already optimized ratio for the reference PWR. This paper describes an honors project that shows how the optimum fuel-to-moderator ratio is found for a unit fuel cell shown in terms of neutron economics. This exercise illustrates the impact of fuel-to-moderator variations on fuel utilization factor and the effect of assuming space and energy separability.« less

  9. Coupled field-structural analysis of HGTR fuel brick using ABAQUS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohanty, S.; Jain, R.; Majumdar, S.

    2012-07-01

    High-temperature, gas-cooled reactors (HTGRs) are usually helium-gas cooled, with a graphite core that can operate at reactor outlet temperatures much higher than can conventional light water reactors. In HTGRs, graphite components moderate and reflect neutrons. During reactor operation, high temperature and high irradiation cause damage to the graphite crystal and grains and create other defects. This cumulative structural damage during the reactor lifetime leads to changes in graphite properties, which can alter the ability to support the designed loads. The aim of the present research is to develop a finite-element code using commercially available ABAQUS software for the structural integritymore » analysis of graphite core components under extreme temperature and irradiation conditions. In addition, the Reactor Geometry Generator tool-kit, developed at Argonne National Laboratory, is used to generate finite-element mesh for complex geometries such as fuel bricks with multiple pin holes and coolant flow channels. This paper presents the proposed concept and discusses results of stress analysis simulations of a fuel block with H-451 grade material properties. (authors)« less

  10. Thermal Effects on the Bearing Behavior of Composite Joints

    NASA Technical Reports Server (NTRS)

    Walker, Sandra Polesky

    2001-01-01

    Thermal effects on the pin-bearing behavior of an IM7/PET15 composite laminate are studied comprehensively. A hypothesis presents factors influencing a change in pin-bearing strength with a change in temperature for a given joint design. The factors include the change in the state of residual cure stress, the material properties, and the fastener fit with a change in temperature. Experiments are conducted to determine necessary lamina and laminate material property data for the IM7/PET15 being utilized in this study. Lamina material properties are determined between the assumed stress free temperature of 460 F down to -200 F. Laminate strength properties are determined for several lay-ups at the operating temperatures of 350 F, 70 F, and -200 F. A three-dimensional finite element analysis model of a composite laminate subject to compressive loading is developed. Both the resin rich layer located between lamina and the thermal residual stresses present in the laminate due to curing are determined to influence the state of stress significantly. Pin-bearing tests of several lay-ups were conducted to develop an understanding on the effect of temperature changes on the pin-bearing behavior of the material. A computational study investigating the factors influencing pin-bearing strength was performed. A finite element model was developed and used to determine the residual thermal cure stresses in the laminate containing a hole. Very high interlaminar stress concentrations were observed two elements away from the hole boundary at all three operating temperatures. The pin-bearing problem was modeled assuming a rigid frictionless pin and restraining only radial displacements at the hole boundary. A uniform negative pressure load was then applied to the straight end of the model. A solution, where thermal residual stresses were combined with the state of stress due to pin-bearing loads was evaluated. The presence of thermal residual stresses intensified the interlaminar stresses predicted at the hole boundary in the pin-bearing problem. This dissertation shows that changes in material properties drives pin-bearing strength degradation with increasing temperature.

  11. Fuel pin cladding

    DOEpatents

    Vaidyanathan, Swaminathan; Adamson, Martyn G.

    1986-01-01

    An improved fuel pin cladding, particularly adapted for use in breeder reactors, consisting of composite tubing with austenitic steel on the outer portion of the thickness of the tube wall and with nickel and/or ferritic material on the inner portion of the thickness of the tube wall. The nickel forms a sacrificial barrier as it reacts with certain fission products thereby reducing fission product activity at the austenitic steel interface. The ferritic material forms a preventive barrier for the austenitic steel as it is immune to liquid metal embrittlement. The improved cladding permits the use of high density fuel which in turn leads to a better breeding ratio in breeder reactors, and will increase the threshold at which failure occurs during temperature transients.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Syarifah, Ratna Dewi, E-mail: syarifah.physics@gmail.com; Suud, Zaki, E-mail: szaki@fi.itb.ac.id

    Design study of small Pressurized Water Reactors (PWRs) core loaded with uranium nitride fuel (UN) and mixed nitride fuel (UN-PuN), Pa-231 as burnable poison, and Americium has been performed. Pa-231 known as actinide material, have large capture cross section and can be converted into fissile material that can be utilized to reduce excess reactivity. Americium is one of minor actinides with long half life. The objective of adding americium is to decrease nuclear spent fuel in the world. The neutronic analysis results show that mixed nitride fuel have k-inf greater than uranium nitride fuel. It is caused by the additionmore » of Pu-239 in mixed nitride fuel. In fuel fraction analysis, for uranium nitride fuel, the optimum volume fractions are 45% fuel fraction, 10% cladding and 45% moderator. In case of UN-PuN fuel, the optimum volume fractions are 30% fuel fraction, 10% cladding and 60% coolant/ moderator. The addition of Pa-231 as burnable poison for UN fuel, enrichment U-235 5%, with Pa-231 1.6% has k-inf more than one and excess reactivity of 14.45%. And for mixed nitride fuel, the lowest value of reactivity swing is when enrichment (U-235+Pu) 8% with Pa-231 0.4%, the excess reactivity value 13,76%. The fuel pin analyze for the addition of Americium, the excess reactivity value is lower than before, because Americium absorb the neutron. For UN fuel, enrichment U-235 8%, Pa-231 1.6% and Am 0.5%, the excess reactivity is 4.86%. And for mixed nitride fuel, when enrichment (U-235+Pu) 13%, Pa-231 0.4% and Am 0.1%, the excess reactivity is 11.94%. For core configuration, it is better to use heterogeneous than homogeneous core configuration, because the radial power distribution is better.« less

  13. Welding fixture for nuclear fuel pin cladding assemblies

    DOEpatents

    Oakley, David J.; Feld, Sam H.

    1986-01-01

    A welding fixture for locating a driver sleeve about the open end of a nuclear fuel pin cladding. The welding fixture includes a holder provided with an open cavity having shoulders for properly positioning the driver sleeve, the end cap, and a soft, high temperature resistant plastic protective sleeve that surrounds a portion of the end cap stem. Ejected contaminant particles spewed forth by closure of the cladding by pulsed magnetic welding techniques are captured within a contamination trap formed in the holder for ultimate removal and disposal of contaminating particles along with the holder.

  14. Decontamination apparatus and method. [Patent applications

    DOEpatents

    Oakley, D.J.

    1983-12-16

    This invention relates generally to the fabrication of fuel pin elements employed in nuclear reactors and, more particularly, to removing radioactive contamination disposed on the exterior of finally assembled fuel pins. A blast head includes a plurality of spray nozzles mounted in a chamber for receiving a workpiece. The several spray nozzles concurrently direct a plurality of streams of a pressurized gas and abrasive grit mixture toward a peripheral portion of the workpiece to remove particulates or debris therefrom. An exhaust outlet is formed in the chamber for discharging the particulates and spent grit.

  15. 77 FR 2658 - Airworthiness Directives; Bombardier, Inc. Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-19

    ... high pressure fuel lines due to improper installation of an expandable pin on the lower cowl assembly... chafing of the high pressure fuel lines, which if not corrected, could cause fuel leakage in a fire zone... on a high pressure (HP) fuel line. The source of chafing was related to the improper installation of...

  16. Sensitivity Analysis of OECD Benchmark Tests in BISON

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swiler, Laura Painton; Gamble, Kyle; Schmidt, Rodney C.

    2015-09-01

    This report summarizes a NEAMS (Nuclear Energy Advanced Modeling and Simulation) project focused on sensitivity analysis of a fuels performance benchmark problem. The benchmark problem was defined by the Uncertainty Analysis in Modeling working group of the Nuclear Science Committee, part of the Nuclear Energy Agency of the Organization for Economic Cooperation and Development (OECD ). The benchmark problem involv ed steady - state behavior of a fuel pin in a Pressurized Water Reactor (PWR). The problem was created in the BISON Fuels Performance code. Dakota was used to generate and analyze 300 samples of 17 input parameters defining coremore » boundary conditions, manuf acturing tolerances , and fuel properties. There were 24 responses of interest, including fuel centerline temperatures at a variety of locations and burnup levels, fission gas released, axial elongation of the fuel pin, etc. Pearson and Spearman correlatio n coefficients and Sobol' variance - based indices were used to perform the sensitivity analysis. This report summarizes the process and presents results from this study.« less

  17. Refractory oxide insulated thermocouple designed and analyzed for high temperature applications

    NASA Technical Reports Server (NTRS)

    Popper, G. F.; Zeren, T. Z.

    1969-01-01

    Study establishes design criteria for constructing high temperature thermocouple to measure nuclear fuel pin temperature. The study included a literature search to determine the compatibility of material useful for thermocouples, a hot zone error analysis, and a prototype design for hot junction and connector pin connections.

  18. Control of Structure in Conventional Friction Stir Welds through a Kinematic Theory of Metal Flow

    NASA Technical Reports Server (NTRS)

    Rubisoff, H.A.; Schneider, J.A.; Nunes, A.C.

    2009-01-01

    In friction stir welding (FSW), a rotating pin is translated along a weld seam so as to stir the sides of the seam together. Metal is prevented from flowing up the pin, which would result in plowing/cutting instead of welding, by a shoulder on the pin. In conventional FSW, the weld metal rests on an "anvil", which supports the heavy "plunge" load on the tool. In this study, both embedded tungsten wires along and copper plating on the faying surfaces were used to trace the flow of AA2219 weld metal around the C-FSW tool. The effect of tool rotational speed, travel speed, plunge load, and pin thread pitch on the resulting weld metal flow was evaluated. Plan, longitudinal, and transverse section x-ray radiographs were examined to trace the metal flow paths. The results are interpreted in terms of a kinematic theory of metal flow in FSW.

  19. Creating NDA working standards through high-fidelity spent fuel modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skutnik, Steven E; Gauld, Ian C; Romano, Catherine E

    2012-01-01

    The Next Generation Safeguards Initiative (NGSI) is developing advanced non-destructive assay (NDA) techniques for spent nuclear fuel assemblies to advance the state-of-the-art in safeguards measurements. These measurements aim beyond the capabilities of existing methods to include the evaluation of plutonium and fissile material inventory, independent of operator declarations. Testing and evaluation of advanced NDA performance will require reference assemblies with well-characterized compositions to serve as working standards against which the NDA methods can be benchmarked and for uncertainty quantification. To support the development of standards for the NGSI spent fuel NDA project, high-fidelity modeling of irradiated fuel assemblies is beingmore » performed to characterize fuel compositions and radiation emission data. The assembly depletion simulations apply detailed operating history information and core simulation data as it is available to perform high fidelity axial and pin-by-pin fuel characterization for more than 1600 nuclides. The resulting pin-by-pin isotopic inventories are used to optimize the NDA measurements and provide information necessary to unfold and interpret the measurement data, e.g., passive gamma emitters, neutron emitters, neutron absorbers, and fissile content. A key requirement of this study is the analysis of uncertainties associated with the calculated compositions and signatures for the standard assemblies; uncertainties introduced by the calculation methods, nuclear data, and operating information. An integral part of this assessment involves the application of experimental data from destructive radiochemical assay to assess the uncertainty and bias in computed inventories, the impact of parameters such as assembly burnup gradients and burnable poisons, and the influence of neighboring assemblies on periphery rods. This paper will present the results of high fidelity assembly depletion modeling and uncertainty analysis from independent calculations performed using SCALE and MCNP. This work is supported by the Next Generation Safeguards Initiative, Office of Nuclear Safeguards and Security, National Nuclear Security Administration.« less

  20. Wear behavior of pressable lithium disilicate glass ceramic.

    PubMed

    Peng, Zhongxiao; Izzat Abdul Rahman, Muhammad; Zhang, Yu; Yin, Ling

    2016-07-01

    This article reports effects of surface preparation and contact loads on abrasive wear properties of highly aesthetic and high-strength pressable lithium disilicate glass-ceramics (LDGC). Abrasive wear testing was performed using a pin-on-disk device in which LDGC disks prepared with different surface finishes were against alumina pins at different contact loads. Coefficients of friction and wear volumes were measured as functions of initial surface finishes and contact loads. Wear-induced surface morphology changes in both LDGC disks and alumina pins were characterized using three-dimensional laser scanning microscopy, scanning electron microscopy, and energy dispersive X-ray spectroscopy. The results show that initial surface finishes of LDGC specimens and contact loads significantly affected the friction coefficients, wear volumes and wear-induced surface roughness changes of the material. Both wear volumes and friction coefficients of LDGC increased as the load increased while surface roughness effects were complicated. For rough LDGC surfaces, three-body wear was dominant while for fine LDGC surfaces, two-body abrasive wear played a key role. Delamination, plastic deformation, and brittle fracture were observed on worn LDGC surfaces. The adhesion of LDGC matrix materials to alumina pins was also discovered. This research has advanced our understanding of the abrasive wear behavior of LDGC and will provide guidelines for better utilization and preparation of the material for long-term success in dental restorations. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 968-978, 2016. © 2015 Wiley Periodicals, Inc.

  1. An Experimental and Finite Element Investigation into the Nonlinear Material Behavior of Pin-Loaded Composite Laminates

    DTIC Science & Technology

    1991-01-01

    their midsurface counterparts due to the nature of the pin deflection and resulting load transfer. Linear elastic coupon radial stresses also followed... midsurface counterparts. The effects of the nonlinear elastic material behavior were quite evident when viewing the [(0/90)3,01, coupon intralaminar...to the midsurface of the coupon. The nonlinear elastic intralaminar shear stress-strain assumption acted to increase through thickness stresses

  2. Fibre optic sensor based measurements of flow-induced vibration in a liquid metal cooled nuclear reactor set-up

    NASA Astrophysics Data System (ADS)

    De Pauw, B.; Vanlanduit, S.; Van Tichelen, K.; Geernaert, T.; Thienpont, H.; Berghmans, F.

    2017-04-01

    Fuel assembly vibrations in nuclear reactor cores should not be excessive as these can compromise the lifetime of the assembly and lead to safety hazards. This issue is particularly relevant to new reactor designs that use liquid metal coolants. We therefore demonstrate accurate measurements of the vibrations of a fuel assembly in a lead-bismuth eutectic cooled installation with fibre Bragg grating (FBG) based sensors. The use of FBGs in combination with a dedicated sensor integration approach allows accounting for the severe geometrical constraints and providing for the required minimal intrusiveness of the instrumentation, identifying the vibration modes with required accuracy and observing the differences between the vibration amplitudes of the individual fuel pins as well as evidencing a low frequency fuel pin vibration mode resulting from the supports.

  3. Technical Basis for Peak Reactivity Burnup Credit for BWR Spent Nuclear Fuel in Storage and Transportation Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marshall, William BJ J; Ade, Brian J; Bowman, Stephen M

    2015-01-01

    Oak Ridge National Laboratory and the United States Nuclear Regulatory Commission have initiated a multiyear project to investigate application of burnup credit for boiling-water reactor (BWR) fuel in storage and transportation casks. This project includes two phases. The first phase (1) investigates applicability of peak reactivity methods currently used in spent fuel pools (SFPs) to storage and transportation systems and (2) evaluates validation of both reactivity (k eff) calculations and burnup credit nuclide concentrations within these methods. The second phase will focus on extending burnup credit beyond peak reactivity. This paper documents the first phase, including an analysis of latticemore » design parameters and depletion effects, as well as both validation components. Initial efforts related to extended burnup credit are discussed in a companion paper. Peak reactivity analyses have been used in criticality analyses for licensing of BWR fuel in SFPs over the last 20 years. These analyses typically combine credit for the gadolinium burnable absorber present in the fuel with a modest amount of burnup credit. Gadolinium burnable absorbers are used in BWR assemblies to control core reactivity. The burnable absorber significantly reduces assembly reactivity at beginning of life, potentially leading to significant increases in assembly reactivity for burnups less than 15–20 GWd/MTU. The reactivity of each fuel lattice is dependent on gadolinium loading. The number of gadolinium-bearing fuel pins lowers initial lattice reactivity, but it has a small impact on the burnup and reactivity of the peak. The gadolinium concentration in each pin has a small impact on initial lattice reactivity but a significant effect on the reactivity of the peak and the burnup at which the peak occurs. The importance of the lattice parameters and depletion conditions are primarily determined by their impact on the gadolinium depletion. Criticality code validation for BWR burnup credit at peak reactivity requires a different set of experiments than for pressurized-water reactor burnup credit analysis because of differences in actinide compositions, presence of residual gadolinium absorber, and lower fission product concentrations. A survey of available critical experiments is presented along with a sample criticality code validation and determination of undercoverage penalties for some nuclides. The validation of depleted fuel compositions at peak reactivity presents many challenges which largely result from a lack of radiochemical assay data applicable to BWR fuel in this burnup range. In addition, none of the existing low burnup measurement data include residual gadolinium measurements. An example bias and uncertainty associated with validation of actinide-only fuel compositions is presented.« less

  4. Evaluation of Future Fuels in a High Pressure Common Rail System. Part 3. John Deere 4.5L Powertech Plus

    DTIC Science & Technology

    2013-01-01

    within the fuel injectors regardless of viscosity or lubricity levels. 15. SUBJECT TERMS Fuel Lubricity, Viscosity, HPCR, Synthetic Jet Fuel, Denso... injectors regardless of viscosity or lubricity levels. UNCLASSIFIED v UNCLASSIFIED FOREWORD/ACKNOWLEDGMENTS The U.S. Army TARDEC...40 3.10 UPPER INJECTOR CONNECTING PIN

  5. Fuel pin cladding

    DOEpatents

    Vaidyanathan, S.; Adamson, M.G.

    1986-01-28

    Disclosed is an improved fuel pin cladding, particularly adapted for use in breeder reactors, consisting of composite tubing with austenitic steel on the outer portion of the thickness of the tube wall and with nickel and/or ferritic material on the inner portion of the thickness of the tube wall. The nickel forms a sacrificial barrier as it reacts with certain fission products thereby reducing fission product activity at the austenitic steel interface. The ferritic material forms a preventive barrier for the austenitic steel as it is immune to liquid metal embrittlement. The improved cladding permits the use of high density fuel which in turn leads to a better breeding ratio in breeder reactors, and will increase the threshold at which failure occurs during temperature transients. 2 figs.

  6. Fuel pin cladding

    DOEpatents

    Vaidyanathan, S.; Adamson, M.G.

    1983-12-16

    An improved fuel pin cladding, particularly adapted for use in breeder reactors, is described which consist of composite tubing with austenitic steel on the outer portion of the thickness of the tube wall and with nickel an/or ferritic material on the inner portion of the thickness of the tube wall. The nickel forms a sacrificial barrier as it reacts with certain fission products thereby reducing fission product activity at the austenitic steel interface. The ferritic material forms a preventive barrier for the austenitic steel as it is immune to liquid metal embrittlement. The improved cladding permits the use of high density fuel which in turn leads to a better breeding ratio in breeder reactors, and will increase the threshold at which failure occurs during temperature transients.

  7. Submission of FeCrAl Feedstock for Support of AFC ATR-2 Irradiations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Field, Kevin G.; Barrett, Kristine E.; Sun, Zhiqian

    The Advanced Test Reactor (ATR) is currently being used to test accident tolerant fuel (ATF) forms destined for commercial nuclear power plant deployment. One irradiation program using the ATR for ATF concepts, Accident Tolerant Fuel-2 (ATF-2), is a water loop irradiation test using miniaturized fuel pins as test articles. This complicated testing configuration requires a series of pre-test experiments and verification including a flowing loop autoclave test and a sensor qualification test (SQT) prior to full test train deployment within the ATR. In support of the ATF-2 irradiation program, Oak Ridge National Laboratory (ORNL) has supplied two different Generation IImore » FeCrAl alloys in rod stock form to Idaho National Laboratory (INL). These rods will be machined into dummy pins for deployment in the autoclave test and SQT. Post-test analysis of the dummy pins will provide initial insight into the performance of Generation II FeCrAl alloys in the ATF-2 irradiation experiment as well as within a commercial nuclear reactor.« less

  8. Postbuckling and vibration of end-supported elastica pipes conveying fluid and columns under follower loads

    NASA Astrophysics Data System (ADS)

    Plaut, R. H.

    2006-01-01

    Fluid-conveying pipes with supported ends buckle when the fluid velocity reaches a critical value. For higher velocities, the postbuckled equilibrium shape can be directly related to that for a column under a follower end load. However, the corresponding vibration frequencies are different due to the Coriolis force associated with the fluid flow. Clamped-clamped, pinned-pinned, and clamped-pinned pipes are considered first. Axial sliding is permitted at the downstream end. The pipe is modeled as an inextensible elastica. The equilibrium shape may have large displacements, and small motions about that shape are analyzed. The behavior is conservative in the prebuckling range and nonconservative in the postbuckling range (during which the Coriolis force does work and the motions decay). Next, related columns are studied, first with a concentrated follower load at the axially sliding end, and then with a distributed follower load. In all cases, a shooting method is used to solve the nonlinear boundary-value problem for the equilibrium configuration, and to solve the linear boundary-value problem for the first four vibration frequencies. The results for the three different types of loading are compared.

  9. Welding fixture for nuclear fuel pin cladding assemblies

    DOEpatents

    Oakley, D.J.; Feld, S.H.

    1984-02-22

    A welding fixture is described for locating a driver sleeve about the open end of a nuclear fuel pin cladding. The welding fixture includes a holder provided with an open cavity having shoulders for properly positioning the driver sleeve, the end cap, and a soft, high temperature resistant plastic protective sleeve that surrounds a portion of the end cap stem. Ejected contaminant particles spewed forth by closure of the cladding by pulsed magnetic welding techniques are captured within a contamination trap formed in the holder for ultimate removal and disposal of contaminating particles along with the holder.

  10. Adjustable-Torque Truss-Joint Mechanism

    NASA Technical Reports Server (NTRS)

    Bush, Harold G.; Wallsom, Richard E.

    1993-01-01

    Threaded pin tightened or loosened; tedious trial-and-error procedure shortened. Mechanism joining strut and node in truss structure preloaded to desired stress to ensure tight, compressive fit preventing motion of strut during loading or vibration. Preload stress on stack of Belleville spring washers adjusted by tightening or loosening threaded Belleville-washer-alignment pin. Pin turned, by use of allen wrench, to adjust compression preload on Belleville washers and adjusts joint-operating torque.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuuichi Tooya; Tadahiro Washiya; Kenji Koizumi

    Japan Atomic Energy Agency (JAEA) has been leading feasibility study on commercialized fast reactor cycle systems in Japan. In this study, we have proposed a new disassembly technology by mechanical disassembly system that consists of a mechanical cutting step and a wrapper tube pulling step. In the mechanical disassembly system, high durability mechanical tool grinds the wrapper tube (Slit-cut (S/C) operation in circle direction), and then the wrapper tube is pulled out and removed from the fuel assembly. Then the fuel pins are cut (Crop-cut (C/C) operation at entrance nozzle side) and the entrance nozzle is removed. The fuel pinsmore » are transported to the shearing device in next process. The Fundamental tests were carried out with simulated FBR fuel pins and wrapper tube, and cutting performance and wrapper tube pulling performance has been confirmed by engineering scale. As results, we established an efficient disassembly procedure and the fundamental design of mechanical disassembly system. (authors)« less

  12. CFD Analysis of Coolant Flow in VVER-440 Fuel Assemblies with the Code ANSYS CFX 10.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toth, Sandor; Legradi, Gabor; Aszodi, Attila

    2006-07-01

    From the aspect of planning the power upgrading of nuclear reactors - including the VVER-440 type reactor - it is essential to get to know the flow field in the fuel assembly. For this purpose we have developed models of the fuel assembly of the VVER-440 reactor using the ANSYS CFX 10.0 CFD code. At first a 240 mm long part of a 60 degrees segment of the fuel pin bundle was modelled. Implementing this model a sensitivity study on the appropriate meshing was performed. Based on the development of the above described model, further models were developed: a 960more » mm long part of a 60-degree-segment and a full length part (2420 mm) of the fuel pin bundle segment. The calculations were run using constant coolant properties and several turbulence models. The impacts of choosing different turbulence models were investigated. The results of the above-mentioned investigations are presented in this paper. (authors)« less

  13. Detecting pin diversion from pressurized water reactors spent fuel assemblies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ham, Young S.; Sitaraman, Shivakumar

    Detecting diversion of spent fuel from Pressurized Water Reactors (PWR) by determining possible diversion including the steps of providing a detector cluster containing gamma ray and neutron detectors, inserting the detector cluster containing the gamma ray and neutron detectors into the spent fuel assembly through the guide tube holes in the spent fuel assembly, measuring gamma ray and neutron radiation responses of the gamma ray and neutron detectors in the guide tube holes, processing the gamma ray and neutron radiation responses at the guide tube locations by normalizing them to the maximum value among each set of responses and takingmore » the ratio of the gamma ray and neutron responses at the guide tube locations and normalizing the ratios to the maximum value among them and producing three signatures, gamma, neutron, and gamma-neutron ratio, based on these normalized values, and producing an output that consists of these signatures that can indicate possible diversion of the pins from the spent fuel assembly.« less

  14. Stress intensities for cracks emanating from pin-loaded holes

    NASA Technical Reports Server (NTRS)

    Smith, C. W.; Jolles, M.; Peters, W. H.

    1977-01-01

    A series of stress freezing photoelastic experiments were conducted on large plates containing central holes with cracks emanating from the edge formed by the intersection of the hole with the plate surface. Loads were applied through rigid pins with neat fits in the holes. Stress-intensity factors (SIF) were estimated by a computer assisted least squares analysis of the photoelastic data taken from slices near the points of intersection of the flaw border with the hole boundary and the plate surface. Results indicate that the local mode of loading changes from Mode 1 near the hole boundary to mixed mode near the plate surface. The analysis is extended to include mixed mode loading, and results are compared with an existing approximate theory.

  15. A new code for predicting the thermo-mechanical and irradiation behavior of metallic fuels in sodium fast reactors

    NASA Astrophysics Data System (ADS)

    Karahan, Aydın; Buongiorno, Jacopo

    2010-01-01

    An engineering code to predict the irradiation behavior of U-Zr and U-Pu-Zr metallic alloy fuel pins and UO2-PuO2 mixed oxide fuel pins in sodium-cooled fast reactors was developed. The code was named Fuel Engineering and Structural analysis Tool (FEAST). FEAST has several modules working in coupled form with an explicit numerical algorithm. These modules describe fission gas release and fuel swelling, fuel chemistry and restructuring, temperature distribution, fuel-clad chemical interaction, and fuel and clad mechanical analysis including transient creep-fracture for the clad. Given the fuel pin geometry, composition and irradiation history, FEAST can analyze fuel and clad thermo-mechanical behavior at both steady-state and design-basis (non-disruptive) transient scenarios. FEAST was written in FORTRAN-90 and has a simple input file similar to that of the LWR fuel code FRAPCON. The metal-fuel version is called FEAST-METAL, and is described in this paper. The oxide-fuel version, FEAST-OXIDE is described in a companion paper. With respect to the old Argonne National Laboratory code LIFE-METAL and other same-generation codes, FEAST-METAL emphasizes more mechanistic, less empirical models, whenever available. Specifically, fission gas release and swelling are modeled with the GRSIS algorithm, which is based on detailed tracking of fission gas bubbles within the metal fuel. Migration of the fuel constituents is modeled by means of thermo-transport theory. Fuel-clad chemical interaction models based on precipitation kinetics were developed for steady-state operation and transients. Finally, a transient intergranular creep-fracture model for the clad, which tracks the nucleation and growth of the cavities at the grain boundaries, was developed for and implemented in the code. Reducing the empiricism in the constitutive models should make it more acceptable to extrapolate FEAST-METAL to new fuel compositions and higher burnup, as envisioned in advanced sodium reactors. FEAST-METAL was benchmarked against the open-literature EBR-II database for steady state and furnace tests (transients). The results show that the code is able to predict important phenomena such as clad strain, fission gas release, clad wastage, clad failure time, axial fuel slug deformation and fuel constituent redistribution, satisfactorily.

  16. Benchmarking of calculation schemes in APOLLO2 and COBAYA3 for WER lattices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheleva, N.; Ivanov, P.; Todorova, G.

    This paper presents solutions of the NURISP WER lattice benchmark using APOLLO2, TRIPOLI4 and COBAYA3 pin-by-pin. The main objective is to validate MOC based calculation schemes for pin-by-pin cross-section generation with APOLLO2 against TRIPOLI4 reference results. A specific objective is to test the APOLLO2 generated cross-sections and interface discontinuity factors in COBAYA3 pin-by-pin calculations with unstructured mesh. The VVER-1000 core consists of large hexagonal assemblies with 2 mm inter-assembly water gaps which require the use of unstructured meshes in the pin-by-pin core simulators. The considered 2D benchmark problems include 19-pin clusters, fuel assemblies and 7-assembly clusters. APOLLO2 calculation schemes withmore » the step characteristic method (MOC) and the higher-order Linear Surface MOC have been tested. The comparison of APOLLO2 vs. TRIPOLI4 results shows a very close agreement. The 3D lattice solver in COBAYA3 uses transport corrected multi-group diffusion approximation with interface discontinuity factors of Generalized Equivalence Theory (GET) or Black Box Homogenization (BBH) type. The COBAYA3 pin-by-pin results in 2, 4 and 8 energy groups are close to the reference solutions when using side-dependent interface discontinuity factors. (authors)« less

  17. Research of the value of linear distortion of renewable surface of part during rotary processing of bulky items without dismantling unit

    NASA Astrophysics Data System (ADS)

    Bondarenko, J. A.; Fedorenko, M. A.; Pogonin, A. A.

    2018-03-01

    The loading and unloading units and grinding mills of raw devices have internal cone type or pipe screw perceive load of incoming and outgoing material. The main part of the support assembly is a pin. Mounting seats for the pipe screws cone have traces of deformation and work hardening, while they themselves have wear of pins and deformation of the inner and outer cylindrical working surface. In the mill body, there are constantly acting dynamic forces causing vibration, which are transmitted to the stud and inner accelerating elements. Under the influence of stress and vibration, the housing spigot is in the stress-compressed state and stretched vertically and horizontally. As a result, the insertion element is deformed and weakened in the fixture. A moving element appears in the gap leading to the fact that it drops lfeedstock and under the influence of variable loads it is destroyed, as well as the seating surfaces of the insert pin member.

  18. Development of self-interrogation neutron resonance densitometry (sinrd) to measure the fissile content in nuclear fuel

    NASA Astrophysics Data System (ADS)

    LaFleur, Adrienne Marie

    The development of non-destructive assay (NDA) capabilities to directly measure the fissile content in spent fuel is needed to improve the timely detection of the diversion of significant quantities of fissile material. Currently, the International Atomic Energy Agency (IAEA) does not have effective NDA methods to verify spent fuel and recover continuity of knowledge in the event of a containment and surveillance systems failure. This issue has become increasingly critical with the worldwide expansion of nuclear power, adoption of enhanced safeguards criteria for spent fuel verification, and recent efforts by the IAEA to incorporate an integrated safeguards regime. In order to address these issues, the use of Self-Interrogation Neutron Resonance Densitometry (SINRD) has been developed to improve existing nuclear safeguards and material accountability measurements. The following characteristics of SINRD were analyzed: (1) ability to measure the fissile content in Light Water Reactors (LWR) fuel assemblies and (2) sensitivity and penetrability of SINRD to the removal of fuel pins from an assembly. The Monte Carlo Neutral Particle eXtended (MCNPX) transport code was used to simulate SINRD for different geometries. Experimental measurements were also performed with SINRD and were compared to MCNPX simulations of the experiment to verify the accuracy of the MCNPX model of SINRD. Based on the results from these simulations and measurements, we have concluded that SINRD provides a number of improvements over current IAEA verification methods. These improvements include: (1) SINRD provides absolute measurements of burnup independent of the operator's declaration. (2) SINRD is sensitive to pin removal over the entire burnup range and can verify the diversion of 6% of fuel pins within 3o from LWR spent LEU and MOX fuel. (3) SINRD is insensitive to the boron concentration and initial fuel enrichment and can therefore be used at multiple spent fuel storage facilities. (4) The calibration of SINRD at one reactor facility carries over to reactor sites in different countries because it uses the ratio of fission chambers (FCs) that are not facility dependent. (5) SINRD can distinguish fresh and 1-cycle spent MOX fuel from 3- and 4-cycles spent LEU fuel without using reactor burnup codes.

  19. Axisymmetric whole pin life modelling of advanced gas-cooled reactor nuclear fuel

    NASA Astrophysics Data System (ADS)

    Mella, R.; Wenman, M. R.

    2013-06-01

    Thermo-mechanical contributions to pellet-clad interaction (PCI) in advanced gas-cooled reactors (AGRs) are modelled in the ABAQUS finite element (FE) code. User supplied sub-routines permit the modelling of the non-linear behaviour of AGR fuel through life. Through utilisation of ABAQUS's well-developed pre- and post-processing ability, the behaviour of the axially constrained steel clad fuel was modelled. The 2D axisymmetric model includes thermo-mechanical behaviour of the fuel with time and condition dependent material properties. Pellet cladding gap dynamics and thermal behaviour are also modelled. The model treats heat up as a fully coupled temperature-displacement study. Dwell time and direct power cycling was applied to model the impact of online refuelling, a key feature of the AGR. The model includes the visco-plastic behaviour of the fuel under the stress and irradiation conditions within an AGR core and a non-linear heat transfer model. A multiscale fission gas release model is applied to compute pin pressure; this model is coupled to the PCI gap model through an explicit fission gas inventory code. Whole pin, whole life, models are able to show the impact of the fuel on all segments of cladding including weld end caps and cladding pellet locking mechanisms (unique to AGR fuel). The development of this model in a commercial FE package shows that the development of a potentially verified and future-proof fuel performance code can be created and used. The usability of a FE based fuel performance code would be an enhancement over past codes. Pre- and post-processors have lowered the entry barrier for the development of a fuel performance model to permit the ability to model complicated systems. Typical runtimes for a 5 year axisymmetric model takes less than one hour on a single core workstation. The current model has implemented: Non-linear fuel thermal behaviour, including a complex description of heat flow in the fuel. Coupled with a variety of different FE and finite difference models. Non-linear mechanical behaviour of the fuel and cladding including, fuel creep and swelling and cladding creep and plasticity each with dependencies on a variety of different properties. A fission gas release model which takes inputs from first principles calculations. Explicitly integrated inventory calculations performed in a coupled manner. Freedom to model steady state and transient behaviour using implicit time integration. The whole pin geometry is considered over an entire typical fuel life. The model showed by examination of normal operation and a subsequent transient chosen for software demonstration purposes: ABAQUS may be a sufficiently flexible platform to develop a complete and verified fuel performance code. The importance and effectiveness of the geometry of the fuel spacer pellets was characterised. The fuels performance under normal conditions (high friction no power spikes) would not suggest serious degradation of the cladding in fuel life. Large plastic strains were found when pellet bonding was strong, these would appear at all pellets cladding triple points and all pellet radial crack and cladding interfaces thus showing a possible axial direction to cracks forming from ductility exhaustion.

  20. Microseismic Analysis of Fracture of an Intact Rock Asperity Traversing a Sawcut Fault

    NASA Astrophysics Data System (ADS)

    Mclaskey, G.; Lockner, D. A.

    2017-12-01

    Microseismic events carry information related to stress state, fault geometry, and other subsurface properties, but their relationship to large and potentially damaging earthquakes is not well defined. We conducted laboratory rock mechanics experiments that highlight the interaction between a sawcut fault and an asperity composed of an intact rock "pin". The sample is a 76 mm diameter cylinder of Westerly granite with a 21 mm diameter cylinder (the pin) of intact Westerly granite that crosses the sawcut fault. Upon loading to 80 MPa in a triaxial machine, we first observed a slip event that ruptured the sawcut fault, slipped about 35 mm, but was halted by the rock pin. With continued loading, the rock pin failed in a swarm of thousands of M -7 seismic events similar to the localized microcracking that occurs during the final fracture nucleation phase in an intact rock sample. Once the pin was fractured to a critical point, it permitted complete rupture events on the sawcut fault (stick-slip instabilities). No seismicity was detected on the sawcut fault plane until the pin was sheared. Subsequent slip events were preceded by 10s of foreshocks, all located on the fault plane. We also identified an aseismic zone on the fault plane surrounding the fractured rock pin. A post-mortem analysis of the sample showed a thick gouge layer where the pin intersected the fault, suggesting that this gouge propped open the fault and prevented microseismic events in its vicinity. This experiment is an excellent case study in microseismicity since the events separate neatly into three categories: slip on the sawcut fault, fracture of the intact rock pin, and off-fault seismicity associated with pin-related rock joints. The distinct locations, timing, and focal mechanisms of the different categories of microseismic events allow us to study how their occurrence is related to the mechanics of the deforming rock.

  1. Molybdenum-UO2 cermet irradiation at 1145 K.

    NASA Technical Reports Server (NTRS)

    Mcdonald, G.

    1971-01-01

    Two molybdenum-uranium dioxide cermet fuel pins with molybdenum clad were fission-heated in a forced-convection helium coolant for sufficient time to achieve 5.3% burnup. The cermet core contained 20 wt % of 93.2% enriched uranium dioxide. The results were as follows: there was no visible change in the appearance of the molybdenum clad during irradiation; the maximum increase in diameter of the fuel pins was 0.8%; there was no migration of uranium dioxide along grain boundaries and no evident interaction between molybdenum and uranium dioxide; and, finally, approximately 12% of the fission gas formed was released from the cermet core into the gas plenum.

  2. Environment-based pin-power reconstruction method for homogeneous core calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leroyer, H.; Brosselard, C.; Girardi, E.

    2012-07-01

    Core calculation schemes are usually based on a classical two-step approach associated with assembly and core calculations. During the first step, infinite lattice assemblies calculations relying on a fundamental mode approach are used to generate cross-sections libraries for PWRs core calculations. This fundamental mode hypothesis may be questioned when dealing with loading patterns involving several types of assemblies (UOX, MOX), burnable poisons, control rods and burn-up gradients. This paper proposes a calculation method able to take into account the heterogeneous environment of the assemblies when using homogeneous core calculations and an appropriate pin-power reconstruction. This methodology is applied to MOXmore » assemblies, computed within an environment of UOX assemblies. The new environment-based pin-power reconstruction is then used on various clusters of 3x3 assemblies showing burn-up gradients and UOX/MOX interfaces, and compared to reference calculations performed with APOLLO-2. The results show that UOX/MOX interfaces are much better calculated with the environment-based calculation scheme when compared to the usual pin-power reconstruction method. The power peak is always better located and calculated with the environment-based pin-power reconstruction method on every cluster configuration studied. This study shows that taking into account the environment in transport calculations can significantly improve the pin-power reconstruction so far as it is consistent with the core loading pattern. (authors)« less

  3. The prospect of uranium nitride (UN) and mixed nitride fuel (UN-PuN) for pressurized water reactor

    NASA Astrophysics Data System (ADS)

    Syarifah, Ratna Dewi; Suud, Zaki

    2015-09-01

    Design study of small Pressurized Water Reactors (PWRs) core loaded with uranium nitride fuel (UN) and mixed nitride fuel (UN-PuN), Pa-231 as burnable poison, and Americium has been performed. Pa-231 known as actinide material, have large capture cross section and can be converted into fissile material that can be utilized to reduce excess reactivity. Americium is one of minor actinides with long half life. The objective of adding americium is to decrease nuclear spent fuel in the world. The neutronic analysis results show that mixed nitride fuel have k-inf greater than uranium nitride fuel. It is caused by the addition of Pu-239 in mixed nitride fuel. In fuel fraction analysis, for uranium nitride fuel, the optimum volume fractions are 45% fuel fraction, 10% cladding and 45% moderator. In case of UN-PuN fuel, the optimum volume fractions are 30% fuel fraction, 10% cladding and 60% coolant/ moderator. The addition of Pa-231 as burnable poison for UN fuel, enrichment U-235 5%, with Pa-231 1.6% has k-inf more than one and excess reactivity of 14.45%. And for mixed nitride fuel, the lowest value of reactivity swing is when enrichment (U-235+Pu) 8% with Pa-231 0.4%, the excess reactivity value 13,76%. The fuel pin analyze for the addition of Americium, the excess reactivity value is lower than before, because Americium absorb the neutron. For UN fuel, enrichment U-235 8%, Pa-231 1.6% and Am 0.5%, the excess reactivity is 4.86%. And for mixed nitride fuel, when enrichment (U-235+Pu) 13%, Pa-231 0.4% and Am 0.1%, the excess reactivity is 11.94%. For core configuration, it is better to use heterogeneous than homogeneous core configuration, because the radial power distribution is better.

  4. Shock characterization of TOAD pins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weirick, L.J.; Navarro, N.J.

    1995-08-01

    The purpose of this program was to characterize Time Of Arrival Detectors (TOAD) pins response to shock loading with respect to risetime, amplitude, repeatability and consistency. TOAD pins were subjected to impacts of 35 to 420 kilobars amplitude and approximately 1 ms pulse width to investigate the timing spread of four pins and the voltage output profile of the individual pins. Sets of pins were also aged at 45{degrees}, 60{degrees}, and 80{degrees}C for approximately nine weeks before shock testing at 315 kilobars impact stress. Four sets of pins were heated to 50.2{degrees}C (125{degrees}F) for approximately two hours and then impactedmore » at either 50 or 315 kilobars. Also, four sets of pins were aged at 60{degrees}C for nine weeks and then heated to 50.2{degrees}C before shock testing at 50 and 315 kilobars impact stress, respectively. Particle velocity measurements at the contact point between the stainless steel targets and TOAD pins were made using a Velocity Interferometer System for Any Reflector (VISAR) to monitor both the amplitude and profile of the shock waves.« less

  5. Prise en compte d'un couplage fin neutronique-thermique dans les calculs d'assemblage pour les reacteurs a eau pressurisee

    NASA Astrophysics Data System (ADS)

    Greiner, Nathan

    Core simulations for Pressurized Water Reactors (PWR) is insured by a set of computer codes which allows, under certain assumptions, to approximate the physical quantities of interest, such as the effective multiplication factor or the power or temperature distributions. The neutronics calculation scheme relies on three great steps : -- the production of an isotopic cross-sections library ; -- the production of a reactor database through the lattice calculation ; -- the full-core calculation. In the lattice calculation, in which Boltzmann's transport equation is solved over an assembly geometry, the temperature distribution is uniform and constant during irradiation. This represents a set of approximations since, on the one hand, the temperature distribution in the assembly is not uniform (strong temperature gradients in the fuel pins, discrepancies between the fuel pins) and on the other hand, irradiation causes the thermal properties of the pins to change, which modifies the temperature distribution. Our work aims at implementing and introducing a neutronics-thermomechanics coupling into the lattice calculation to finely discretize the temperature distribution and to study its effects. To perform the study, CEA (Commissariat a l'Energie Atomique et aux Energies Alternatives) lattice code APOLLO2 was used for neutronics and EDF (Electricite De France) code C3THER was used for the thermal calculations. We show very small effects of the pin-scaled coupling when comparing the use of a temperature profile with the use of an uniform temperature over UOX-type and MOX-type fuels. We next investigate the thermal feedback using an assembly-scaled coupling taking into account the presence of large water gaps on an UOX-type assembly at burnup 0. We show the very small impact on the calculation of the hot spot factor. Finally, the coupling is introduced into the isotopic depletion calculation and we show that reactivity and isotopic number densities deviations remain small albeit not negligible for UOX-type and MOX-type assemblies. The specific behavior of gadolinium-stuffed fuel pins in an UO2Gd2O 3-type assembly is highlighted.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gleicher, Frederick; Ortensi, Javier; DeHart, Mark

    Accurate calculation of desired quantities to predict fuel behavior requires the solution of interlinked equations representing different physics. Traditional fuels performance codes often rely on internal empirical models for the pin power density and a simplified boundary condition on the cladding edge. These simplifications are performed because of the difficulty of coupling applications or codes on differing domains and mapping the required data. To demonstrate an approach closer to first principles, the neutronics application Rattlesnake and the thermal hydraulics application RELAP-7 were coupled to the fuels performance application BISON under the master application MAMMOTH. A single fuel pin was modeledmore » based on the dimensions of a Westinghouse 17x17 fuel rod. The simulation consisted of a depletion period of 1343 days, roughly equal to three full operating cycles, followed by a station blackout (SBO) event. The fuel rod was depleted for 1343 days for a near constant total power loading of 65.81 kW. After 1343 days the fission power was reduced to zero (simulating a reactor shut-down). Decay heat calculations provided the time-varying energy source after this time. For this problem, Rattlesnake, BISON, and RELAP-7 are coupled under MAMMOTH in a split operator approach. Each system solves its physics on a separate mesh and, for RELAP-7 and BISON, on only a subset of the full problem domain. Rattlesnake solves the neutronics over the whole domain that includes the fuel, cladding, gaps, water, and top and bottom rod holders. Here BISON is applied to the fuel and cladding with a 2D axi-symmetric domain, and RELAP-7 is applied to the flow of the circular outer water channel with a set of 1D flow equations. The mesh on the Rattlesnake side can either be 3D (for low order transport) or 2D (for diffusion). BISON has a matching ring structure mesh for the fuel so both the power density and local burn up are copied accurately from Rattlesnake. At each depletion time step, Rattlesnake calculates a power density, fission density rate, burn-up distribution and fast flux based on the current water density and fuel temperature. These are then mapped to the BISON mesh for a fuels performance solve. BISON calculates the fuel temperature and cladding surface temperature based upon the current power density and bulk fluid temperature. RELAP-7 then calculates the fluid temperature, water density fraction and water phase velocity based upon the cladding surface temperature. The fuel temperature and the fluid density are then passed back to Rattlesnake for another neutronics calculation. Six Picard or fixed-point style iterations are preformed in this manner to obtain consistent tightly coupled and stable results. For this paper a set of results from the detailed calculation are provided for both during depletion and the SBO event. We demonstrate that a detailed calculation closer to first principles can be done under MAMMOTH between different applications on differing domains.« less

  7. Experimental investigation on circumferential and axial temperature gradient over fuel channel under LOCA

    NASA Astrophysics Data System (ADS)

    Yadav, Ashwini Kumar; kumar, Ravi; Gupta, Akhilesh; Chatterjee, Barun; Mukhopadhyay, Deb; Lele, H. G.

    2014-06-01

    In a nuclear reactor temperature rises drastically in fuel channels under loss of coolant accident due to failure of primary heat transportation system. Present investigation has been carried out to capture circumferential and axial temperature gradients during fully and partially voiding conditions in a fuel channel using 19 pin fuel element simulator. A series of experiments were carried out by supplying power to outer, middle and center rods of 19 pin fuel simulator in ratio of 1.4:1.1:1. The temperature at upper periphery of pressure tube (PT) was slightly higher than at bottom due to increase in local equivalent thermal conductivity from top to bottom of PT. To simulate fully voided conditions PT was pressurized at 2.0 MPa pressure with 17.5 kW power injection. Ballooning initiated from center and then propagates towards the ends and hence axial temperature difference has been observed along the length of PT. For asymmetric heating, upper eight rods of fuel simulator were activated and temperature difference up-to 250 °C has been observed from top to bottom periphery of PT. Such situation creates steep circumferential temperature gradient over PT and could lead to breaching of PT under high pressure.

  8. WWER-1000 core and reflector parameters investigation in the LR-0 reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaritsky, S. M.; Alekseev, N. I.; Bolshagin, S. N.

    2006-07-01

    Measurements and calculations carried out in the core and reflector of WWER-1000 mock-up are discussed: - the determination of the pin-to-pin power distribution in the core by means of gamma-scanning of fuel pins and pin-to-pin calculations with Monte Carlo code MCU-REA and diffusion codes MOBY-DICK (with WIMS-D4 cell constants preparation) and RADAR - the fast neutron spectra measurements by proton recoil method inside the experimental channel in the core and inside the channel in the baffle, and corresponding calculations in P{sub 3}S{sub 8} approximation of discrete ordinates method with code DORT and BUGLE-96 library - the neutron spectra evaluations (adjustment)more » in the same channels in energy region 0.5 eV-18 MeV based on the activation and solid state track detectors measurements. (authors)« less

  9. Computation of neutron fluxes in clusters of fuel pins arranged in hexagonal assemblies (2D and 3D)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prabha, H.; Marleau, G.

    2012-07-01

    For computations of fluxes, we have used Carvik's method of collision probabilities. This method requires tracking algorithms. An algorithm to compute tracks (in 2D and 3D) has been developed for seven hexagonal geometries with cluster of fuel pins. This has been implemented in the NXT module of the code DRAGON. The flux distribution in cluster of pins has been computed by using this code. For testing the results, they are compared when possible with the EXCELT module of the code DRAGON. Tracks are plotted in the NXT module by using MATLAB, these plots are also presented here. Results are presentedmore » with increasing number of lines to show the convergence of these results. We have numerically computed volumes, surface areas and the percentage errors in these computations. These results show that 2D results converge faster than 3D results. The accuracy on the computation of fluxes up to second decimal is achieved with fewer lines. (authors)« less

  10. Dry Sliding Tribological Studies of AA6061-B4C-Gr Hybrid Composites

    NASA Astrophysics Data System (ADS)

    Monikandan, V. V.; Joseph, M. A.; Rajendrakumar, P. K.

    2016-10-01

    The dry sliding behavior of stir-cast AA6061-10 wt.% B4C composites containing 2.5, 5 and 7.5 wt.% graphite particles was studied as a function of applied load, sliding speed and sliding distance on a pin-on-disk tribotester. The wear rate and friction coefficient increased with increase in applied load and sliding distance. The increase in graphite addition reduced the increase in wear rate and friction coefficient in the sliding speed range 2-2.5 m/s. Scanning electron microscopy of the worn pin revealed a graphite tribolayer, and transmission electron microscopy revealed overlapping deformation bands under 30 N applied load. Upon increasing the applied load to 40 N, welded region with fine crystalline structure was formed due to dynamic recrystallization of AA6061 alloy matrix.

  11. Numerical calibration of the stable poisson loaded specimen

    NASA Technical Reports Server (NTRS)

    Ghosn, Louis J.; Calomino, Anthony M.; Brewer, Dave N.

    1992-01-01

    An analytical calibration of the Stable Poisson Loaded (SPL) specimen is presented. The specimen configuration is similar to the ASTM E-561 compact-tension specimen with displacement controlled wedge loading used for R-Curve determination. The crack mouth opening displacements (CMOD's) are produced by the diametral expansion of an axially compressed cylindrical pin located in the wake of a machined notch. Due to the unusual loading configuration, a three-dimensional finite element analysis was performed with gap elements simulating the contact between the pin and specimen. In this report, stress intensity factors, CMOD's, and crack displacement profiles are reported for different crack lengths and different contacting conditions. It was concluded that the computed stress intensity factor decreases sharply with increasing crack length, thus making the SPL specimen configuration attractive for fracture testing of brittle, high modulus materials.

  12. Analytical stress intensity solution for the Stable Poisson Loaded specimen

    NASA Technical Reports Server (NTRS)

    Ghosn, Louis J.; Calomino, Anthony M.; Brewer, David N.

    1993-01-01

    An analytical calibration of the Stable Poisson Loaded (SPL) specimen is presented. The specimen configuration is similar to the ASTM E-561 compact-tension specimen with displacement controlled wedge loading used for R-curve determination. The crack mouth opening displacements (CMODs) are produced by the diametral expansion of an axially compressed cylindrical pin located in the wake of a machined notch. Due to the unusual loading configuration, a three-dimensional finite element analysis was performed with gap elements simulating the contact between the pin and specimen. In this report, stress intensity factors, CMODs, and crack displacement profiles, are reported for different crack lengths and different contacting conditions. It was concluded that the computed stress intensity factor decreases sharply with increasing crack length thus making the SPL specimen configuration attractive for fracture testing of brittle, high modulus materials.

  13. CAPSTONE SENIOR DESIGN - SUPRAMOLECULAR PROTON EXCHANGE MEMBRANES FOR FUEL CELLS

    EPA Science Inventory

    In order to assume a leading role in the burgeoning hydrogen economy, new infrastructure will be required for fuel cell manufacturing and R&D capabilities. The objective of this proposal is the development of a new generation of advanced proton exchange membrane (PEM) technol...

  14. Mechanically fastened composite laminates subjected to combined bearing-bypass and shear loading

    NASA Technical Reports Server (NTRS)

    Madenci, Erdogan

    1993-01-01

    Bolts and rivets provide a means of load transfer in the construction of aircraft. However, they give rise to stress concentrations and are often the source and location of static and fatigue failures. Furthermore, fastener holes are prone to cracks during take-off and landing. These cracks present the most common origin of structural failures in aircraft. Therefore, accurate determination of the contact stresses associated with such loaded holes in mechanically fastened joints is essential to reliable strength evaluation and failure prediction. As the laminate is subjected to loading, the contact region, whose extent is not known, develops between the fastener and the hole boundary through this contact region, which consists of slip and no-slip zones due to friction. The presence of the unknown contact stress distribution over the contact region between the pin and the composite laminate, material anisotropy, friction between the pin and the laminate, pin-hole clearance, combined bearing-bypass and shear loading, and finite geometry of the laminate result in a complex non-linear problem. In the case of bearing-bypass loading in compression, this non-linear problem is further complicated by the presence of dual contact regions. Previous research concerning the analysis of mechanical joints subjected to combined bearing-bypass and shear loading is non-existent. In the case of bearing-bypass loading only, except for the study conducted by Naik and Crews (1991), others employed the concept of superposition which is not valid for this non-linear problem. Naik and Crews applied a linear finite element analysis with conditions along the pin-hole contact region specified as displacement constraint equations. The major shortcoming of this method is that the variation of the contract region as a function of the applied load should be known a priori. Also, their analysis is limited to symmetric geometry and material systems, and frictionless boundary conditions. Since the contact stress distribution and the contact region are not known a priori, they did not directly impose the boundary conditions appropriate for modelling the contact and on-contact regions between the fastener and the hole. Furthermore, finite element analysis is not suitable for iterative design calculations for optimizing laminate construction in the presence of fasteners under complex loading conditions. In this study, the solution method developed by Madenci and Ileri (1992a,b) has been extended to determine the contact stresses in mechanical joints under combined bearing-bypass and shear loading, and bearing-bypass loading in compression resulting in dual contact regions.

  15. High Fidelity Thermal Simulators for Non-Nuclear Testing: Analysis and Initial Results

    NASA Technical Reports Server (NTRS)

    Bragg-Sitton, Shannon M.; Dickens, Ricky; Dixon, David

    2007-01-01

    Non-nuclear testing can be a valuable tool in the development of a space nuclear power system, providing system characterization data and allowing one to work through various fabrication, assembly and integration issues without the cost and time associated with a full ground nuclear test. In a non-nuclear test bed, electric heaters are used to simulate the heat from nuclear fuel. Testing with non-optimized heater elements allows one to assess thermal, heat transfer, and stress related attributes of a given system, but fails to demonstrate the dynamic response that would be present in an integrated, fueled reactor system. High fidelity thermal simulators that match both the static and the dynamic fuel pin performance that would be observed in an operating, fueled nuclear reactor can vastly increase the value of non-nuclear test results. With optimized simulators, the integration of thermal hydraulic hardware tests with simulated neutronie response provides a bridge between electrically heated testing and fueled nuclear testing, providing a better assessment of system integration issues, characterization of integrated system response times and response characteristics, and assessment of potential design improvements' at a relatively small fiscal investment. Initial conceptual thermal simulator designs are determined by simple one-dimensional analysis at a single axial location and at steady state conditions; feasible concepts are then input into a detailed three-dimensional model for comparison to expected fuel pin performance. Static and dynamic fuel pin performance for a proposed reactor design is determined using SINDA/FLUINT thermal analysis software, and comparison is made between the expected nuclear performance and the performance of conceptual thermal simulator designs. Through a series of iterative analyses, a conceptual high fidelity design can developed. Test results presented in this paper correspond to a "first cut" simulator design for a potential liquid metal (NaK) cooled reactor design that could be applied for Lunar surface power. Proposed refinements to this simulator design are also presented.

  16. Shock characterization of toad pins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weirick, L.J.; Navarro, M.J.

    1996-05-01

    The purpose of this program was to characterize Time Of Arrival Detectors (TOAD) pins response to shock loading with respect to risetime, amplitude, repeatability and consistency. TOAD pins were subjected to impacts of 35 to 420 kilobars amplitude and approximately 1 ms pulse width to investigate the timing spread of four pins and the voltage output profile of the individual pins. Sets of pins were also aged at 45{degree}, 60{degree} and 80{degree}C for approximately nine weeks before shock testing at 315 kilobars impact stress. Four sets of pins were heated to 50.2{degree}C (125{degree}F) for approximately two hours and then impactedmore » at either 50 or 315 kilobars. Also, four sets of pins were aged at 60{degree}C for nine weeks and then heated to 50.2{degree}C before shock testing at 50 and 315 kilobars impact stress, respectively. Particle velocity measurements at the contact point between the stainless steel targets and TOAD pins were made using a Velocity Interferometer System for Any Reflector (VISAR) to monitor both the amplitude and profile of the shock waves. {copyright} {ital 1996 American Institute of Physics.}« less

  17. Stresses in pin-loaded orthotropic plates using photoelasticity

    NASA Technical Reports Server (NTRS)

    Hyer, M. W.; Liu, D.

    1984-01-01

    The stresses in transparent glass-epoxy plates loaded by a steel pin through a hole were determined by photoelasticity. The stresses around the hole edge, across the net section, along the shear out line, and on the centerline below the hole for quasiisotropic, unidirectional, and angle ply plates are outlined. Stresses in an isotropic comparison specimen are also presented. Stress concentration factors for several locations around the plates are tabulated. The experimental apparatus and the experimental technique are discussed. The isochromatic and isoclinic fringe patterns for the four plates are shown. A description of the necessary photoelastic theory is appended.

  18. High Fidelity, Fuel-Like Thermal Simulators for Non-Nuclear Testing: Analysis and Initial Test Results

    NASA Technical Reports Server (NTRS)

    Bragg-Sitton, Shannon M.; Dickens, Ricky; Dixon, David; Kapernick, Richard

    2007-01-01

    Non-nuclear testing can be a valuable tool in the development of a space nuclear power system, providing system characterization data and allowing one to work through various fabrication, assembly and integration issues without the cost and time associated with a full ground nuclear test. In a non-nuclear test bed, electric heaters are used to simulate the heat from nuclear fuel. Testing with non-optimized heater elements allows one to assess thermal, heat transfer. and stress related attributes of a given system, but fails to demonstrate the dynamic response that would be present in an integrated, fueled reactor system. High fidelity thermal simulators that match both the static and the dynamic fuel pin performance that would be observed in an operating, fueled nuclear reactor can vastly increase the value of non-nuclear test results. With optimized simulators, the integration of thermal hydraulic hardware tests with simulated neutronic response provides a bridge between electrically heated testing and fueled nuclear testing. By implementing a neutronic response model to simulate the dynamic response that would be expected in a fueled reactor system, one can better understand system integration issues, characterize integrated system response times and response characteristics and assess potential design improvements at relatively small fiscal investment. Initial conceptual thermal simulator designs are determined by simple one-dimensional analysis at a single axial location and at steady state conditions; feasible concepts are then input into a detailed three-dimensional model for comparison to expected fuel pin performance. Static and dynamic fuel pin performance for a proposed reactor design is determined using SINDA/FLUINT thermal analysis software, and comparison is made between the expected nuclear performance and the performance of conceptual thermal simulator designs. Through a series of iterative analyses, a conceptual high fidelity design is developed: this is followed by engineering design, fabrication, and testing to validate the overall design process. Test results presented in this paper correspond to a "first cut" simulator design for a potential liquid metal (NaK) cooled reactor design that could be applied for Lunar surface power. Proposed refinements to this simulator design are also presented.

  19. Carbon and metal-carbon implantations into tool steels for improved tribological performance

    NASA Astrophysics Data System (ADS)

    Hirvonen, J.-P.; Harskamp, F.; Torri, P.; Willers, H.; Fusari, A.; Gibson, N.; Haupt, J.

    1997-05-01

    The high-fluence implantation of carbon and dual implantations of metal-metalloid pairs into steels with different microstructures are briefly reviewed. A previously unexamined system, the implantation of Si and C into two kinds of tool steels, M3 and D2, have been studied in terms of microstructure and tribological performance. In both cases ion implantation transfers a surface into an amorphous layer. However, the tribological behavior of these two materials differs remarkably: in the case of ion-implanted M3 a reduction of wear in a steel pin is observed even at high pin loads, whereas in the case of ion-implanted D2 the beneficial effects of ion implantation were limited to the lowest pin load. The importance of an initial phase at the onset of sliding is emphasized and a number of peculiarities observed in ion-implanted M3 steel are discussed.

  20. Normalization of load and clearance effects in ball-in-socket-like replacements.

    PubMed

    Ciavarella, M; Strozzi, A; Baldini, A; Giacopini, M

    2007-08-01

    A normalizing loading parameter useful in summarising the mechanical response of plane pin-in-plate-like contacts is extended to axisymmetric ball-in-socket-like contacts. An example addressing a compliant layered artificial hip joint is presented, and the usefulness of the normalizing loading parameter is evidenced.

  1. Tubing crimping pliers

    DOEpatents

    Lindholm, G.T.

    1981-02-27

    The disclosure relates to pliers and more particularly to pliers for crimping two or more pieces of copper tubing together prior to their being permanently joined by brazing, soldering or the like. A die containing spring-loaded pins rotates within a cammed ring in the head of the pliers. As the die rotates, the pins force a crimp on tubing held within the pliers.

  2. Fabrication of (U, Zr) C-fueled/tungsten-clad specimens for irradiation in the Plum Brook Reactor Facility

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Fuel samples, 90UC - 10 ZrC, and chemically vapor deposited tungsten fuel cups were fabricated for the study of the long term dimensional stability and compatibility of the carbide-tungsten fuel-cladding systems under irradiation. These fuel samples and fuel cups were assembled into the fuel pins of two capsules, designated as V-2E and V-2F, for irradiation in NASA Plum Brook Reactor Facility at a fission power density of 172 watts/c.c. and a miximum cladding temperature of 1823 K. Fabrication methods and characteristics of the fuel samples and fuel cups prepared are described.

  3. Reverse Anterior Cruciate Ligament Reconstruction Fixation: A Biomechanical Comparison Study of Tibial Cross-Pin and Femoral Interference Screw Fixation.

    PubMed

    Lawley, Richard J; Klein, Samuel E; Chudik, Steven C

    2017-03-01

    To evaluate the biomechanical performance of tibial cross-pin (TCP) fixation relative to femoral cross-pin (FCP), femoral interference screw (FIS), and tibial interference screw (TIS) fixation. We randomized 40 porcine specimens (20 tibias and 20 femurs) to TIS fixation (group 1, n = 10), FIS fixation (group 2, n = 10), TCP fixation (group 3, n = 10), or FCP fixation (group 4, n = 10) and performed biomechanical testing to compare ultimate load, stiffness, yield load, cyclic displacement, and load at 5-mm displacement. We performed cross-pin fixation of the looped end and interference screw fixation of the free ends of 9-mm-diameter bovine extensor digitorum communis tendon grafts. Graft fixation constructs were cyclically loaded and then loaded to failure in line with the tunnels. Regarding yield load, FIS was superior to TIS (704 ± 125 N vs 504 ± 118 N, P = .002), TCP was superior to TIS (1,449 ± 265 N vs 504 ± 118 N, P < .001), and TCP was superior to FCP (1,449 ± 265 N vs 792 ± 397 N, P < .001). Cyclic displacement for FCP was superior to TCP. Cyclic displacement for TIS versus FIS showed no statistically significant difference (2.5 ± 1.0 mm vs 2.2 ± 0.6 mm, P = .298). Interference screw fixation consistently failed by graft slippage, whereas TCP fixation failed by tibial bone failure. FCP fixation failed by either femoral bone failure or failure elsewhere in the testing apparatus. Regarding yield load, TCP fixation performed biomechanically superior to the clinically proven FCP at time zero. Because TIS fixation shows the lowest yield strength, it represents the weak link, and combined TCP-FIS fixation theoretically would be biomechanically superior relative to combined FCP-TIS fixation with regard to yield load. Cyclic displacement showed a small difference in favor of FCP over TCP fixation and no difference between TIS and FIS. Time-zero biomechanics of TCP fixation paired with FIS fixation show that this method of fixation can be considered a potential alternative to current practice and may pose clinical benefits in different clinical scenarios of anterior cruciate ligament reconstruction. Copyright © 2016 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  4. Nuclear breeder reactor fuel element with silicon carbide getter

    DOEpatents

    Christiansen, David W.; Karnesky, Richard A.

    1987-01-01

    An improved cesium getter 28 is provided in a breeder reactor fuel element or pin in the form of an extended surface area, low density element formed in one embodiment as a helically wound foil 30 located with silicon carbide, and located at the upper end of the fertile material upper blanket 20.

  5. Heater Development, Fabrication, and Testing: Analysis of Fabricated Heaters

    NASA Technical Reports Server (NTRS)

    Bragg-Sitton, S. M.; Dickens, R. E.; Farmer, J. T.; Davis, J. D.; Adams, M. R.; Martin, J. J.; Webster, K. L.

    2008-01-01

    Thermal simulators (highly designed heater elements) developed at the Early Flight Fission Test Facility (EFF-TF) are used to simulate the heat from nuclear fission in a variety of reactor concepts. When inserted into the reactor geometry, the purpose of the thermal simulators is to deliver thermal power to the test article in the same fashion as if nuclear fuel were present. Considerable effort has been expended to mimic heat from fission as closely as possible. To accurately represent the fuel, the simulators should be capable of matching the overall properties of the nuclear fuel rather than simply matching the fuel temperatures. This includes matching thermal stresses in the pin, pin conductivities, total core power, and core power profile (axial and radial). This Technical Memorandum discusses the historical development of the thermal simulators used in nonnuclear testing at the EFF-TF and provides a basis for the development of the current series of thermal simulators. The status of current heater fabrication and testing is assessed, providing data and analyses for both successes and failures experienced in the heater development and testing program.

  6. The wear of cross-linked polyethylene against itself.

    PubMed

    Joyce, T J; Ash, H E; Unsworth, A

    1996-01-01

    Cross-linked polyethylene (XLPE) may have an application as a material for an all-plastic surface replacement finger joint. It is inexpensive, biocompatible and can be injection-moulded into the complex shapes that are found on the ends of the finger bones. Further, the cross-linking of polyethylene has significantly improved its mechanical properties. Therefore, the opportunity exists for an all-XLPE joint, and so the wear characteristics of XLPE sliding against itself have been investigated. Wear tests were carried out on both reciprocating pin-on-plate machines and a finger function simulator. The reciprocating pin-on-plate machines had pins loaded at 10 N and 40 N. All pin-on-plate tests show wear factors from the plates very much greater than those of the pins. After 349 km of sliding, a mean wear factor of 0.46 x 10(-6) mm3/N m was found for the plates compared with 0.021 x 10(-6) mm3/N m for the pins. A fatigue mechanism may be causing this phenomenon of greater plate wear. Tests using the finger function simulator give an average wear rate of 0.22 x 10(-6) mm3/N m after 368 km. This sliding distance is equivalent to 12.5 years of use in vivo. The wear factors found were comparable with those of ultra-high molecular weight polyethylene (UHMWPE) against a metallic counterface and, therefore, as the loads across the finger joint are much less than those across the knee or the hip, it is probable that an all-XLPE finger joint will be viable from a wear point of view.

  7. An Overview of Reactor Concepts, a Survey of Reactor Designs.

    DTIC Science & Technology

    1985-02-01

    may be very different. HTGRs may use highly enriched uranium, thereby yielding better fuel economy and a reduc- tion of the actual core size for a...specific power level. The HTGR core may have fuel and control rods placed in graphite arrays similar to PWR core con- figuration, or they may have fuel ...rods are pulled out. A Peach Bottom core design is another HTGR design. This design is featured by the fuel pin’s ability to purge itself of fission

  8. A review of inherent safety characteristics of metal alloy sodium-cooled fast reactor fuel against postulated accidents

    DOE PAGES

    Sofu, Tanju

    2015-04-01

    The thermal, mechanical, and neutronic performance of the metal alloy fast reactor fuel design complements the safety advantages of the liquid metal cooling and the pool-type primary system. Together, these features provide large safety margins in both normal operating modes and for a wide range of postulated accidents. In particular, they maximize the measures of safety associated with inherent reactor response to unprotected, double-fault accidents, and to minimize risk to the public and plant investment. High thermal conductivity and high gap conductance play the most significant role in safety advantages of the metallic fuel, resulting in a flatter radial temperaturemore » profile within the pin and much lower normal operation and transient temperatures in comparison to oxide fuel. Despite the big difference in melting point, both oxide and metal fuels have a relatively similar margin to melting during postulated accidents. When the metal fuel cladding fails, it typically occurs below the coolant boiling point and the damaged fuel pins remain coolable. Metal fuel is compatible with sodium coolant, eliminating the potential of energetic fuel--coolant reactions and flow blockages. All these, and the low retained heat leading to a longer grace period for operator action, are significant contributing factors to the inherently benign response of metallic fuel to postulated accidents. This paper summarizes the past analytical and experimental results obtained in past sodium-cooled fast reactor safety programs in the United States, and presents an overview of fuel safety performance as observed in laboratory and in-pile tests.« less

  9. A review of inherent safety characteristics of metal alloy sodium-cooled fast reactor fuel against postulated accidents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sofu, Tanju

    2015-04-01

    The thermal, mechanical, and neutronic performance of the metal alloy fast reactor fuel design complements the safety advantages of the liquid metal cooling and the pool-type primary system. Together, these features provide large safety margins in both normal operating modes and for a wide range of postulated accidents. In particular, they maximize the measures of safety associated with inherent reactor response to unprotected, double-fault accidents, and to minimize risk to the public and plant investment. High thermal conductivity and high gap conductance play the most significant role in safety advantages of the metallic fuel, resulting in a flatter radial temperaturemore » profile within the pin and much lower normal operation and transient temperatures in comparison to oxide fuel. Despite the big difference in melting point, both oxide and metal fuels have a relatively similar margin to melting during postulated accidents. When the metal fuel cladding fails, it typically occurs below the coolant boiling point and the damaged fuel pins remain cool-able. Metal fuel is compatible with sodium coolant, eliminating the potential of energetic fuel coolant reactions and flow blockages. All these, and the low retained heat leading to a longer grace period for operator action, are significant contributing factors to the inherently benign response of metallic fuel to postulated accidents. This paper summarizes the past analytical and experimental results obtained in past sodium-cooled fast reactor safety programs in the United States, and presents an overview of fuel safety performance as observed in laboratory and in-pile tests.« less

  10. Friction and Wear of Unlubricated NiTiHf with Nitriding Surface Treatments

    NASA Technical Reports Server (NTRS)

    Stanford, Malcolm K.

    2018-01-01

    The unlubricated friction and wear properties of the superelastic materials NiTi and NiTiHf, treated by either gas nitriding or plasma nitriding, have been investigated. Pin on disk testing of the studied materials was performed at sliding speeds from 0.01 to 1m/s at normal loads of 1, 5 or 10N. For all of the studied friction pairs (NiTiHf pins vs. NiTi and NiTiHf disks) over the given parameters, the steady-state coefficients of friction varied from 0.22 to 1.6. Pin wear factors ranged from approximately 1E-6 against the NiTiHf and plasma nitrided disks to approximately 1E-4 for the gas nitrided disks. The plasma nitrided disks provided wear protection in several cases and tended to wear by adhesion. The gas nitrided treatment generated the most pin wear but had essentially no disk wear except at the most severe of the studied conditions (1N load and 1m/s sliding speed). The results of this study are expected to provide guidance for design of components such as gears and fasteners.

  11. Linkage design effect on the reliability of surface-micromachined microengines driving a load

    NASA Astrophysics Data System (ADS)

    Tanner, Danelle M.; Peterson, Kenneth A.; Irwin, Lloyd W.; Tangyunyong, Paiboon; Miller, William M.; Eaton, William P.; Smith, Norman F.; Rodgers, M. Steven

    1998-09-01

    The reliability of microengines is a function of the design of the mechanical linkage used to connect the electrostatic actuator to the drive. We have completed a series of reliability stress tests on surface micromachined microengines driving an inertial load. In these experiments, we used microengines that had pin mechanisms with guides connecting the drive arms to the electrostatic actuators. Comparing this data to previous results using flexure linkages revealed that the pin linkage design was less reliable. The devices were stressed to failure at eight frequencies, both above and below the measured resonance frequency of the microengine. Significant amounts of wear debris were observed both around the hub and pin joint of the drive gear. Additionally, wear tracks were observed in the area where the moving shuttle rubbed against the guides of the pin linkage. At each frequency, we analyzed the statistical data yielding a lifetime (t50) for median cycles to failure and (sigma) , the shape parameter of the distribution. A model was developed to describe the failure data based on fundamental wear mechanisms and forces exhibited in mechanical resonant systems. The comparison to the model will be discussed.

  12. Fuels irradiation testing for the SP-100 program

    NASA Technical Reports Server (NTRS)

    Makenas, Bruce J.; Hales, Janell W.; Ward, Alva L.

    1991-01-01

    An SP-100 fuel pin irradiation testing program is well on the way to providing data for performance correlations and demonstrating the lifetime and safety of the fuel system of the compact lithium-cooled reactor. Key SP-100 fuel performance issues addressed are the need for low fuel swelling and low fission gas release to minimize cladding strain, and the need for barrier integrity to prevent fuel/cladding chemical interaction. This paper provides a description of the irradiation test program that addresses these key issues and summarizes recent results of posttest examinations including data obtained at 6 atom percent goal burnup.

  13. Between-cycle laser system for depressurization and resealing of modified design nuclear fuel assemblies

    DOEpatents

    Bradley, John G.

    1982-01-01

    A laser beam is used to puncture fuel cladding for release of contained pressurized fission gas from plenum sections or irradiated fuel pins. Exhausted fission gases are collected and trapped for safe disposal. The laser beam, adjusted to welding mode, is subsequently used to reseal the puncture holes. The fuel assembly is returned to additional irradiation or, if at end of reactivity lifetime, is routed to reprocess. The fuel assembly design provides graded cladding lengths, by rows or arrays, such that the cladding of each component fuel element of the assembly is accessible to laser beam reception.

  14. Nuclear reactor fuel assembly duct-tube-to-handling-socket attachment system

    DOEpatents

    Christiansen, David W.; Smith, Bob G.

    1982-01-01

    A reusable system for removably attaching the upper end 10of a nuclear reactor duct tube to the lower end 30 of a nuclear reactor fuel assembly handling socket. A transition ring 20, fixed to the duct tube's upper end 10, has an interior-threaded section 22 with a first locking hole segment 24. An adaptor ring 40, fixed to the handling socket's lower end 30 has an outside-threaded section 42 with a second locking hole segment 44. The inside 22 and outside 42 threaded sections match and can be joined so that the first 24 and second 44 locking hole segments can be aligned to form a locking hole. A locking ring 50, with a locking pin 52, slides over the adaptor ring 40 so that the locking pin 52 fits in the locking hole. A swage lock 60 or a cantilever finger lock 70 is formed from the locking cup collar 26 to fit in a matching groove 54 or 56 in the locking ring 50 to prevent the locking ring's locking pin 52 from backing out of the locking hole.

  15. EXPERIMENTAL STUDIES OF TRANSIENT EFFECTS IN FAST REACTOR FUELS. SERIES I. UO$sub 2$ IRRADIATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Field, J.H.

    1962-11-15

    An experimental program to evaluate the performance of FCR and EFCR fuel during transient operation is outlined, and the initial series of tests are described in some detail. Test results from five experiments in the TREAT reactor, using 1-in. OD SS-clad UO/sub 2/ fuel specimens, are compared with regard to fuel temperatures, mechanical integrity, and post-irradiation appearance. Incipient fuel pin failure limits for transients are identified with maximum fuel temperatures in the range of 7000 deg F. Multiple transient damage to the cladding is likely for transients above the melting point of the fuel. (auth)

  16. Electronically controlled spoof localized surface plasmons on the corrugated ring with a shorting pin

    NASA Astrophysics Data System (ADS)

    Zhang, Chao; Zhou, Yong Jin

    2018-07-01

    We have demonstrated that spoof localized surface plasmons (LSPs) can be controlled by loading a shorting pin into the corrugated ring resonator in the microwave and terahertz (THz) frequencies. Electronical switchability and tunability of spoof LSPs have been achieved by mounting Schottky barrier diodes and varactor diodes across the slit around the shorting pin in the ground plane. An electronically tunable band-pass filter has been demostrated in the microwave frequencies. Such electronically controlled spoof LSPs devices can find more applications for highly integrated plasmonic circuits in microwave and THz frequencies.

  17. Study of clad ballooning and rupture behaviour of Indian PHWR fuel pins under transient heating condition in steam environment

    NASA Astrophysics Data System (ADS)

    Sawarn, Tapan K.; Banerjee, Suparna; Sheelvantra, Smita S.; Singh, J. L.; Bhasin, Vivek

    2017-11-01

    This paper presents the results of the investigation on the deformation and rupture characteristics of Indian pressurized heavy water reactor (IPHWR) fuel pins under simulated loss of coolant accident (LOCA) condition in steam environment. Transient heating experiments were carried out on single fuel pin internally pressurized with argon gas in the range 3-70 bar. Effect of internal pressure on burst temperature, influence of burst temperature on the circumferential strain and rupture opening area were also studied. Two circumferential strain maxima at the burst temperatures of 740 & ∼979 °C and a minimum at the burst temperature of ∼868 °C were observed. It was found that oxidation had considerable effect on the burst behavior. Test data were used to derive a direct empirical correlation for burst stress exclusively as a function of temperature. The ballooning and rupture behaviours in steam and argon environments have been compared. Experimental data were examined against various correlations using Erbacher equation and author's previous correlation in argon. A second burst correlation has also been developed combining the equation in argon from the previous work of the authors and an exponential factor with oxygen content as a parameter assuming the burst stress to be a function of both temperature and oxygen concentration. The burst temperatures predicted by this empirical correlation are in good agreement with the test data.

  18. Irradiation test of tungsten clad uranium carbide-zirconium carbide ((U,Zr)C) specimens for thermionic reactor application at conditions conductive to long-term performance

    NASA Technical Reports Server (NTRS)

    Creagh, J. W. R.; Smith, J. R.

    1973-01-01

    Uranium carbide fueled, thermionic emitter configurations were encapsulated and irradiated. One capsule contained a specimen clad with fluoride derived chemically vapor deposited (CVD) tungsten. The other capsule used a duplex clad specimen consisting of chloride derived on floride derived CVD tungsten. Both fuel pins were 16 millimeters in diameter and contained a 45.7-millimeter length of fuel.

  19. Modeling of thermo-mechanical and irradiation behavior of mixed oxide fuel for sodium fast reactors

    NASA Astrophysics Data System (ADS)

    Karahan, Aydın; Buongiorno, Jacopo

    2010-01-01

    An engineering code to model the irradiation behavior of UO2-PuO2 mixed oxide fuel pins in sodium-cooled fast reactors was developed. The code was named fuel engineering and structural analysis tool (FEAST-OXIDE). FEAST-OXIDE has several modules working in coupled form with an explicit numerical algorithm. These modules describe: (1) fission gas release and swelling, (2) fuel chemistry and restructuring, (3) temperature distribution, (4) fuel-clad chemical interaction and (5) fuel-clad mechanical analysis. Given the fuel pin geometry, composition and irradiation history, FEAST-OXIDE can analyze fuel and cladding thermo-mechanical behavior at both steady-state and design-basis transient scenarios. The code was written in FORTRAN-90 program language. The mechanical analysis module implements the LIFE algorithm. Fission gas release and swelling behavior is described by the OGRES and NEFIG models. However, the original OGRES model has been extended to include the effects of joint oxide gain (JOG) formation on fission gas release and swelling. A detailed fuel chemistry model has been included to describe the cesium radial migration and JOG formation, oxygen and plutonium radial distribution and the axial migration of cesium. The fuel restructuring model includes the effects of as-fabricated porosity migration, irradiation-induced fuel densification, grain growth, hot pressing and fuel cracking and relocation. Finally, a kinetics model is included to predict the clad wastage formation. FEAST-OXIDE predictions have been compared to the available FFTF, EBR-II and JOYO databases, as well as the LIFE-4 code predictions. The agreement was found to be satisfactory for steady-state and slow-ramp over-power accidents.

  20. For current viewing resistor loads

    DOEpatents

    Lyons, Gregory R [Tijeras, NM; Hass, Jay B [Lee's Summit, MO

    2011-04-19

    The invention comprises a terminal unit for a flat cable comprising a BNC-PCB connector having a pin for electrically contacting one or more conducting elements of a flat cable, and a current viewing resistor having an opening through which the pin extends and having a resistor face that abuts a connector face of the BNC-PCB connector, wherein the device is a terminal unit for the flat cable.

  1. 76 FR 34770 - Rensselaer Polytechnic Institute Critical Experiments Facility; Environmental Assessment and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-14

    ...)) stainless steel tank with an inner diameter of 2.1 m (7 ft). The reactor is fueled with low enriched uranium SPERT fuel pins. Reactivity control is provided by four Boron-10 control rods. A detailed description of... moderator are stainless steel, thus eliminating the need for routine filtration and demineralization of the...

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burke, Timothy P.; Martz, Roger L.; Kiedrowski, Brian C.

    New unstructured mesh capabilities in MCNP6 (developmental version during summer 2012) show potential for conducting multi-physics analyses by coupling MCNP to a finite element solver such as Abaqus/CAE[2]. Before these new capabilities can be utilized, the ability of MCNP to accurately estimate eigenvalues and pin powers using an unstructured mesh must first be verified. Previous work to verify the unstructured mesh capabilities in MCNP was accomplished using the Godiva sphere [1], and this work attempts to build on that. To accomplish this, a criticality benchmark and a fuel assembly benchmark were used for calculations in MCNP using both the Constructivemore » Solid Geometry (CSG) native to MCNP and the unstructured mesh geometry generated using Abaqus/CAE. The Big Ten criticality benchmark [3] was modeled due to its geometry being similar to that of a reactor fuel pin. The C5G7 3-D Mixed Oxide (MOX) Fuel Assembly Benchmark [4] was modeled to test the unstructured mesh capabilities on a reactor-type problem.« less

  3. Pulsed Magnetic Welding for Advanced Core and Cladding Steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Guoping; Yang, Yong

    2013-12-19

    To investigate a solid-state joining method, pulsed magnetic welding (PMW), for welding the advanced core and cladding steels to be used in Generation IV systems, with a specific application for fuel pin end-plug welding. As another alternative solid state welding technique, pulsed magnetic welding (PMW) has not been extensively explored on the advanced steels. The resultant weld can be free from microstructure defects (pores, non-metallic inclusions, segregation of alloying elements). More specifically, the following objectives are to be achieved: 1. To design a suitable welding apparatus fixture, and optimize welding parameters for repeatable and acceptable joining of the fuel pinmore » end-plug. The welding will be evaluated using tensile tests for lap joint weldments and helium leak tests for the fuel pin end-plug; 2 Investigate the microstructural and mechanical properties changes in PMW weldments of proposed advanced core and cladding alloys; 3. Simulate the irradiation effects on the PWM weldments using ion irradiation.« less

  4. A dual-band reconfigurable Yagi-Uda antenna with diverse radiation patterns

    NASA Astrophysics Data System (ADS)

    Saurav, Kushmanda; Sarkar, Debdeep; Srivastava, Kumar Vaibhav

    2017-07-01

    In this paper, a dual-band pattern reconfigurable antenna is proposed. The antenna comprises of a dual-band complementary split ring resonators (CSRRs) loaded dipole as the driven element and two copper strips with varying lengths as parasitic segments on both sides of the driven dipole. PIN diodes are used with the parasitic elements to control their electrical length. The CSRRs loading provide a lower order mode in addition to the reference dipole mode, while the parasitic elements along with the PIN diodes are capable of switching the omni-directional radiation of the dual-band driven element to nine different configurations of radiation patterns which include bi-directional end-fire, broadside, and uni-directional end-fire in both the operating bands. A prototype of the designed antenna together with the PIN diodes and DC bias lines is fabricated to validate the concept of dual-band radiation pattern diversity. The simulation and measurement results are in good agreement. The proposed antenna can be used in wireless access points for PCS and WLAN applications.

  5. Defect features, texture and mechanical properties of friction stir welded lap joints of 2A97 Al-Li alloy thin sheets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Haiyan

    1.4 mm 2A97 Al-Li alloy thin sheets were welded by friction stir lap welding using the stirring tools with different pin length at different rotational speeds. The influence of pin length and rotational speed on the defect features and mechanical properties of lap joints were investigated in detail. Microstructure observation shows that the hook defect geometry and size mainly varies with the pin length instead of the rotational speed. The size of hook defects on both the advancing side (AS) and the retreating side (RS) increased with increasing the pin length, leading to the effective sheet thickness decreased accordingly. Electronmore » backscatter diffraction analysis reveals that the weld zones, especially the nugget zone (NZ), have the much lower texture intensity than the base metal. Some new texture components are formed in the thermo-mechanical affected zone (TMAZ) and the NZ of joint. Lap shear test results show that the failure load of joints generally decreases with increasing the pin length and the rotational speed. The joints failed during the lap shear tests at three locations: the lap interface, the RS of the top sheet and the AS of the bottom sheet. The fracture locations are mainly determined by the hook defects. - Highlights: • Hook defect size mainly varies with the pin length of stirring tool. • The proportion of LAGBs and substructured grains increases from NZ to TMAZ. • Weld zones, especially the NZ, have the much lower texture intensity than the BM. • Lap shear failure load and fracture location of joints is relative to the hook defects.« less

  6. A New Method of Producing a Natural Antibacterial Peptide by Encapsulated Probiotics Internalized with Inulin Nanoparticles as Prebiotics.

    PubMed

    Cui, Lian-Hua; Yan, Chang-Guo; Li, Hui-Shan; Kim, Whee-Soo; Hong, Liang; Kang, Sang-Kee; Choi, Yun-Jaie; Cho, Chong-Su

    2018-04-28

    Synbiotics are a combination of probiotics and prebiotics, which lead to synergistic benefits in host welfare. Probiotics have been used as an alternative to antibiotics. Among the probiotics, Pediococcus acidilactici (PA) has shown excellent antimicrobial activity against Salmonella Gallinarum (SG) as a major poultry pathogen and has improved the production performances of animals. Inulin is widely used as a prebiotic for the improvement of animal health and growth. The main aim of this study is to investigate the effect of the antimicrobial activity of inulin nanoparticles (INs)-internalized PA encapsulated into alginate/chitosan/alginate (ACA) microcapsules (MCs) in future in vivo application. The prepared phthalyl INs (PINs) were characterized by DLS and FE-SEM. The contents of phthal groups in phthalyl inulin were estimated by ¹H-NMR measurement as 25.1 mol.-%. The sizes of the PINs measured by DLS were approximately 203 nm. Internalization into PA was confirmed by confocal microscopy and flow cytometry. Antimicrobial activity of PIN-internalized probiotics encapsulated into ACA MCs was measured by co-culture antimicrobial assays on SG. PIN-internalized probiotics had a higher antimicrobial ability than that of ACA MCs loaded with PA/inulin or PA. Interestingly, when PINs were treated with PA and encapsulated into ACA MCs, as a natural antimicrobial peptide, pediocin was produced much more in the culture medium compared with other groups inulin-loaded ACA MCs and PA-encapsulated into ACA MCs.

  7. Self-designed femoral neck guide pin locator for femoral neck fractures.

    PubMed

    Xia, Shengli; Wang, Ziping; Wang, Minghui; Wu, Zuming; Wang, Xiuhui

    2014-01-01

    Closed reduction and fixation with 3 cannulated screws is a widely accepted surgery for the treatment of femoral neck fractures. However, how to obtain optimal screw placement remains unclear. In the current study, the authors designed a guide pin positioning system for femoral neck fracture cannulated screw fixation and examined its application value by comparing it with freehand guide needle positioning and with general guide pin locator positioning provided by equipment manufacturers. The screw reset rate, screw parallelism, triangle area formed by the link line of the entry point of 3 guide pins, and maximum vertical load bearing of the femoral neck after internal fixation were recorded. As expected, the triangle area was largest in the self-designed positioning group, followed by the general positioning group and the freehand positioning group. The difference among the 3 groups was statistically significant (P<.05). Anteroposterior and lateral radiographs showed that the screws were more parallel in the self-designed positioning group and general positioning group compared with the freehand positioning group (P<.05). The screw reset rate in the self-designed positioning group was significantly lower than that in the general positioning group and the freehand positioning group (P<.05). Maximum bearing load among the 3 groups was equivalent, showing no statistically significant difference (P>.05). The authors’ self-designed guide pin positioning system has the potential to accurately insert cannulated screws in femoral neck fractures and may reduce bone loss and unnecessary radiation.

  8. End-threaded intramedullary positive profile screw ended self-tapping pin (Admit pin) - A cost-effective novel implant for fixing canine long bone fractures.

    PubMed

    Chanana, Mitin; Kumar, Adarsh; Tyagi, Som Prakash; Singla, Amit Kumar; Sharma, Arvind; Farooq, Uiase Bin

    2018-02-01

    The current study was undertaken to evaluate the clinical efficacy of end-threaded intramedullary pinning for management of various long bone fractures in canines. This study was conducted in two phases, managing 25 client-owned dogs presented with different fractures. The technique of application of end-threaded intramedullary pinning in long bone fractures was initially standardized in 6 clinical patients presented with long bone fractures. In this phase, end-threaded pins of different profiles, i.e., positive and negative, were used as the internal fixation technique. On the basis of results obtained from standardization phase, 19 client-owned dogs clinically presented with different fractures were implanted with end-threaded intramedullary positive profile screw ended self-tapping pin in the clinical application phase. The patients, allocated randomly in two groups, when evaluated postoperatively revealed slight pin migration in Group-I (negative profile), which resulted in disruption of callus site causing delayed union in one case and large callus formation in other two cases whereas no pin migration was observed in Group-II (positive profile). Other observations in Group-I was reduced muscle girth and delayed healing time as compared to Group-II. In clinical application, phase 21 st and 42 nd day post-operative radiographic follow-up revealed no pin migration in any of the cases, and there was no bone shortening or fragment collapse in end-threaded intramedullary positive profile screw ended self-tapping pin. The end-threaded intramedullary positive profile screw ended self-tapping pin used for fixation of long bone fractures in canines can resist pin migration, pin breakage, and all loads acting on the bone, i.e., compression, tension, bending, rotation, and shearing to an extent with no post-operative complications.

  9. Biomechanical analysis of fixation of middle third fractures of the clavicle.

    PubMed

    Drosdowech, Darren S; Manwell, Stuart E E; Ferreira, Louis M; Goel, Danny P; Faber, Kenneth J; Johnson, James A

    2011-01-01

    This biomechanical study compares four different techniques of fixation of middle third clavicular fractures. Twenty fresh-frozen clavicles were randomized into four groups. Each group used a different fixation device (3.5 Synthes reconstruction plate, 3.5 Synthes limited contact dynamic compression plate, 3.5 Synthes locking compression plate, and 4.5 DePuy Rockwood clavicular pin). All constructs were mechanically tested in bending and torque modes both with and without a simulated inferior cortical defect. Bending load to failure was also conducted. The four groups were compared using an analysis of variance test. The plate constructs were stiffer than the pin during both pure bending and torque loads with or without an inferior cortical defect. Bending load to failure with an inferior cortical defect revealed that the reconstruction plate was weaker compared with the other three groups. The limited contact and locking plates were stiffer than the reconstruction plate but demonstrated statistical significance only with the cortical defect. As hypothesized, the 3.5 limited contact dynamic compression plate and 3.5 locking compression plate demonstrated the greatest resistance to bending and torque loads, especially in the presence of simulated comminution of a middle third clavicular fracture. The reconstruction plate demonstrated lower stiffness and strength values compared with the other plates, especially with a cortical defect, whereas the pin showed poor resistance to bending and torque loads in all modes of testing. This information may help surgeons to choose the most appropriate method of fixation when treating fractures of the middle third of the clavicle.

  10. Comparative biomechanical evaluation of a pin-sleeve transfixation system in cadaveric calf metacarpal bones.

    PubMed

    Brianza, Stefano; Vogel, Susan; Rothstock, Stephan; Thalhauser, Martin; Desrochers, Andrè; Boure, Ludovic

    2013-01-01

    To compare proximal fragment displacement and the peri-implant strain using a pin-sleeve cast (PSC) system and a transfixation pin cast (TPC) system on a cadaveric calf metacarpal bone fracture model. Experimental. Cadaveric calf metacarpal bones (n = 6 pairs). Paired samples were instrumented with either the TPC or the PSC systems. Strain gauges were applied proximal to the transfixation implants and the bones encased in cast material. The distal part of the construct was removed to mimic an unstable distal comminuted fracture. Constructs were fixed to the material testing machine and initially loaded in axial compression in their elastic range to determine construct stiffness. Constructs were loaded cyclically with a sinusoidal curve that increased until failure. Variables compared statistically between constructs were the initial construct stiffness and, at given load points, the mean metacarpal axial displacement in loading and unloading condition and mean axial strain. Initial construct mean ± SD axial stiffness was not significantly different between constructs (PSC: 689 ± 258; TPC: 879 ± 306 N/mm). There was no significant difference between either investigated displacements of metacarpal bones transfixed with PSC and those transfixed with TPC at all load points. The PSC constructs had a significant decrease in the recorded mean strain (502 ± 340 μstrain) compared to the TPC construct (1738 ± 2218 μstrain). The PSC significantly reduced peri-implant strain with comparable axial displacement to the TPC in cadaveric calf metacarpal bones. © Copyright 2012 by The American College of Veterinary Surgeons.

  11. Hand-held optical fuel pin scanner

    DOEpatents

    Kirchner, T.L.; Powers, H.G.

    1980-12-07

    An optical scanner for indicia arranged in a focal plane perpendicular to an optical system including a rotatable dove prism. The dove prism transmits a rotating image to a stationary photodiode array.

  12. Hand-held optical fuel pin scanner

    DOEpatents

    Kirchner, Tommy L.; Powers, Hurshal G.

    1987-01-01

    An optical scanner for indicia arranged in a focal plane perpendicular to an optical system including a rotatable dove prism. The dove prism transmits a rotating image to a stationary photodiode array.

  13. Stress concentrations for straight-shank and countersunk holes in plates subjected to tension, bending, and pin loading

    NASA Technical Reports Server (NTRS)

    Shivakumar, K. N.; Newman, J. C., Jr.

    1992-01-01

    A three dimensional stress concentration analysis was conducted on straight shank and countersunk (rivet) holes in a large plate subjected to various loading conditions. Three dimensional finite element analysis were performed with 20 node isoparametric elements. The plate material was assumed to be linear elastic and isotropic, with a Poisson ratio of 0.3. Stress concentration along the bore of the hole were computed for several ratios of hole radius to plate thickness (0.1 to 2.5) and ratios of countersink depth to plate thickness (0.25 to 1). The countersink angles were varied from 80 to 100 degrees in some typical cases, but the angle was held constant at 100 degrees for most cases. For straight shank holes, three types of loading were considered: remote tension, remote bending, and wedge loading in the hole. Results for remote tension and wedge loading were used to estimate stress concentration for simulated rivet in pin loading. For countersunk holes only remote tension and bending were considered. Based on the finite element results, stress concentration equations were developed. Whenever possible, the present results were compared with other numerical solutions and experimental results from the literature.

  14. Application of electrically invisible antennas to the Modulated Scatterer Technique

    DOE PAGES

    Crocker, Dylan A.; Donnell, Kristen M.

    2015-09-16

    The modulated scatterer technique (MST) has shown promise for applications in microwave imaging, electric field mapping, and materials characterization. Traditionally, MST scatterers are dipoles centrally loaded with an element capable of modulation (e.g., a p-i-n diode). By modulating the load element, signals scattered from the MST scatterer are also modulated. However, due to the small size of such scatterers, it can be difficult to reliably detect the modulated signal. Increasing the modulation depth (MD; a parameter related to how well the scatterer modulates the scattered signal) may improve the detectability of the scattered signal. In an effort to improve themore » MD, the concept of electrically invisible antennas is applied to the design of MST scatterers. Our paper presents simulations and measurements of MST scatterers that have been designed to be electrically invisible during the reverse bias state of the modulated element (a p-i-n diode in this case), while producing detectable scattering during the forward bias state (i.e., operate in an electrically visible state). Furthermore, the results using the new design show significant improvement to the MD of the scattered signal as compared with a traditional MST scatterer (i.e., dipole centrally loaded with a p-i-n diode).« less

  15. Partial defect verification of spent fuel assemblies by PDET: Principle and field testing in Interim Spent fuel Storage Facility (CLAB) in Sweden

    DOE PAGES

    Ham, Y.; Kerr, P.; Sitaraman, S.; ...

    2016-05-05

    Here, the need for the development of a credible method and instrument for partial defect verification of spent fuel has been emphasized over a few decades in the safeguards communities as the diverted spent fuel pins can be the source of nuclear terrorism or devices. The need is increasingly more important and even urgent as many countries have started to transfer spent fuel to so called "difficult-to-access" areas such as dry storage casks, reprocessing or geological repositories. Partial defect verification is required by IAEA before spent fuel is placed into "difficult-to-access" areas. Earlier, Lawrence Livermore National Laboratory (LLNL) has reportedmore » the successful development of a new, credible partial defect verification method for pressurized water reactor (PWR) spent fuel assemblies without use of operator data, and further reported the validation experiments using commercial spent fuel assemblies with some missing fuel pins. The method was found to be robust as the method is relatively invariant to the characteristic variations of spent fuel assemblies such as initial fuel enrichment, cooling time, and burn-up. Since then, the PDET system has been designed and prototyped for 17×17 PWR spent fuel assemblies, complete with data acquisition software and acquisition electronics. In this paper, a summary description of the PDET development followed by results of the first successful field testing using the integrated PDET system and actual spent fuel assemblies performed in a commercial spent fuel storage site, known as Central Interim Spent fuel Storage Facility (CLAB) in Sweden will be presented. In addition to partial defect detection initial studies have determined that the tool can be used to verify the operator declared average burnup of the assembly as well as intra-assembly bunrup levels.« less

  16. Partial Defect Verification of Spent Fuel Assemblies by PDET: Principle and Field Testing in Interim Spent Fuel Storage Facility (CLAB) in Sweden

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ham, Y.S.; Kerr, P.; Sitaraman, S.

    The need for the development of a credible method and instrument for partial defect verification of spent fuel has been emphasized over a few decades in the safeguards communities as the diverted spent fuel pins can be the source of nuclear terrorism or devices. The need is increasingly more important and even urgent as many countries have started to transfer spent fuel to so called 'difficult-to-access' areas such as dry storage casks, reprocessing or geological repositories. Partial defect verification is required by IAEA before spent fuel is placed into 'difficult-to-access' areas. Earlier, Lawrence Livermore National Laboratory (LLNL) has reported themore » successful development of a new, credible partial defect verification method for pressurized water reactor (PWR) spent fuel assemblies without use of operator data, and further reported the validation experiments using commercial spent fuel assemblies with some missing fuel pins. The method was found to be robust as the method is relatively invariant to the characteristic variations of spent fuel assemblies such as initial fuel enrichment, cooling time, and burn-up. Since then, the PDET system has been designed and prototyped for 17x17 PWR spent fuel assemblies, complete with data acquisition software and acquisition electronics. In this paper, a summary description of the PDET development followed by results of the first successful field testing using the integrated PDET system and actual spent fuel assemblies performed in a commercial spent fuel storage site, known as Central Interim Spent fuel Storage Facility (CLAB) in Sweden will be presented. In addition to partial defect detection initial studies have determined that the tool can be used to verify the operator declared average burnup of the assembly as well as intra-assembly burnup levels. (authors)« less

  17. Partial defect verification of spent fuel assemblies by PDET: Principle and field testing in Interim Spent fuel Storage Facility (CLAB) in Sweden

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ham, Y.; Kerr, P.; Sitaraman, S.

    Here, the need for the development of a credible method and instrument for partial defect verification of spent fuel has been emphasized over a few decades in the safeguards communities as the diverted spent fuel pins can be the source of nuclear terrorism or devices. The need is increasingly more important and even urgent as many countries have started to transfer spent fuel to so called "difficult-to-access" areas such as dry storage casks, reprocessing or geological repositories. Partial defect verification is required by IAEA before spent fuel is placed into "difficult-to-access" areas. Earlier, Lawrence Livermore National Laboratory (LLNL) has reportedmore » the successful development of a new, credible partial defect verification method for pressurized water reactor (PWR) spent fuel assemblies without use of operator data, and further reported the validation experiments using commercial spent fuel assemblies with some missing fuel pins. The method was found to be robust as the method is relatively invariant to the characteristic variations of spent fuel assemblies such as initial fuel enrichment, cooling time, and burn-up. Since then, the PDET system has been designed and prototyped for 17×17 PWR spent fuel assemblies, complete with data acquisition software and acquisition electronics. In this paper, a summary description of the PDET development followed by results of the first successful field testing using the integrated PDET system and actual spent fuel assemblies performed in a commercial spent fuel storage site, known as Central Interim Spent fuel Storage Facility (CLAB) in Sweden will be presented. In addition to partial defect detection initial studies have determined that the tool can be used to verify the operator declared average burnup of the assembly as well as intra-assembly bunrup levels.« less

  18. THRUST BEARING

    DOEpatents

    Heller, P.R.

    1958-09-16

    A thrust bearing suitable for use with a rotor or blower that is to rotate about a vertical axis is descrihed. A centrifagal jack is provided so thnt the device may opernte on one hearing at starting and lower speeds, and transfer the load to another bearing at higher speeds. A low viscosity fluid is used to lubricate the higher speed operation bearing, in connection with broad hearing -surfaces, the ability to withstand great loads, and a relatively high friction loss, as contraated to the lower speed operatio;n bearing which will withstand only light thrust loads but is sufficiently frictionfree to avoid bearing seizure during slow speed or startup operation. An axially aligned shaft pin provides the bearing surface for low rotational speeds, but at higher speed, weights operating against spring tension withdraw nthe shaft pin into the bearing proper and the rotor shaft comes in contact with the large bearing surfaces.

  19. Preliminary Energy Deposition Calculations for GRIST-2 Tests in the TREAT Upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olson, W. O.

    1978-03-01

    Preliminary studies have been made to estimate the energy deposition in GRIST-2 tests irradiated in the proposed TREAT Upgrade reactor. The objective of the GRIST-2 project is to test GCFR (gas cooled fast reactor) fuel under conditions of hypothetical core disruptive accidents (HCDA). Test requirements are (1) an energy deposition in the test of approximately 2500 J/g or higher, (2) a pin-to-pin variation in energy deposition of less than 10% and (3) the variation in the energy deposition across any pin (at a given axial position) should be less than 10%. Calculations performed by EG&G Idaho were made for 7more » and 37-pin tests using one-dimensional transport theory. These yield average energy deposition rates in the test at the axial peak which are in the 5000-5500 J/g range for the 37-pin test and are in the 8500-9000 J/g range for the 7-pin test. These values are obtained with a cadmium thermal neutron filter (TNF) surrounding the test. This hardens the flux to meet the third requirement. The central test pin is fully enriched UO{sub 2}, with the outer pins having lower enrichments to satisfy requirement 2. Addition of the TNF reduces the energy deposition by about 10%. The results in the above calculations are also compared with the Monte Carlo results computed by ANL-West personnel.« less

  20. Fuze for explosive magnetohydrodynamic generator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Webb, G.

    1976-12-23

    An apparatus is examined by which high explosive charges are propelled into and detonated at the center of an MHD-X generator. The high explosive charge units are engaged and propelled by a reciprocating ram device. Detonating in each instance is achieved by striking with a firing pin a detonator charge that is in register with a booster charge, the booster charge being in detonating communication with the high explosive charge. Various safety requirements are satisfied by a spring loaded slider operating in a channel transverse and adjacent to the booster charge. The slide retains the detonator charge out of registermore » with the booster charge until a safety pin that holds the slider in place is pulled by a lanyard attached between the reciprocating ram and the safety pin. Removal of the safety pin permits the detonator charge to slide into alignment with the booster charge. Firing pin actuation is initiated by the slider at the instant the detonator charge and the booster charge come into register.« less

  1. [Dynamic forces of Mitkovic self-dinamysible trochanteric Internal fixators (SIF)].

    PubMed

    Mitković, Milan M; Manić, Miodrag T; Petković, Dusan Lj; Milenković, Sasa S; Mitković, Milorad B

    2013-01-01

    Dynamic trochanteric fractures implants allow fracture fragments to be compressed. Dynamisation can be realized if the axial pin force overcome friction force between pin and body of the implant. Examination of sliding iniciation forces in Mitkovic Selfdinamysible Trochanteric Internal Fixator (SIF). SIF was attached for angle block in the position with vertical orientation of pins. The transversal load of 5 kg was connected to pins by a rope. A dynamometer was used to measure force during the movement of angle block in up direction. Regression coefficients were a1 = 4,052 i b1 = 0,623 for SIF with 2 sliding screws with diameter of 7mm and a2 = 4,534 i b2 = 0,422 for SIF with 1 screw with diameter of 10 mm. Coefficients of determination were: r12 = 0,470 and r22 = 0,123. Sliding of SIF pins can be achieved for each analysed body weight of patient (50-130 kg). Early bearing of operated leg is significant for sliding initiation of SIF sliding screws.

  2. Advanced foil activation techniques for the measurement of within-pin distributions of the 63Cu(n,γ) 64Cu reaction rate in nuclear fuel

    NASA Astrophysics Data System (ADS)

    Macku, K.; Jatuff, F.; Murphy, M. F.; Joneja, O. P.; Bischofberger, R.; Chawla, R.

    2006-06-01

    Different foil activation techniques have been used for measuring spatial distributions of the 63Cu(n,γ) 64Cu reaction within two pins of a SVEA-96 Optima2 boiling water reactor fuel assembly, at the critical facility PROTEUS. This reaction is of interest because its 1/v cross-section gives it a good representation of the 235U fission rate. Initially, radial capture rate profiles were measured with mechanically punched copper foils. More detailed profiles were then determined by using a 0.2 mm copper wire spiral (˜200 μm resolution), as well as 5-, 10-, and 20-ring UV-lithography, electroplating, and molding (UV-LIGA) foils (up to a 100 μm resolution). For azimuthal measurements, apart from manually cut activation foils (into 8 sectors), 8- and 12-sector LIGA foils were used. The highly versatile LIGA foils have the additional advantage of being very easily separated into individual pieces after irradiation without the use of punches or other cutting tools. In order to account for the invasive character of the foil activation techniques, corrections to account for sample perturbations and for self-shielding effects were determined via simplified Monte Carlo (MCNP4C) modeling of the experimental setup. The final results from the various measurements of 63Cu(n,γ) 64Cu within-pin distributions have been compared with MCNP computations employing a detailed model of the full SVEA Optima2 fuel assembly.

  3. Estimating Fuel Bed Loadings in Masticated Areas

    Treesearch

    Sharon Hood; Ros Wu

    2006-01-01

    Masticated fuel treatments that chop small trees, shrubs, and dead woody material into smaller pieces to reduce fuel bed depth are used increasingly as a mechanical means to treat fuels. Fuel loading information is important to monitor changes in fuels. The commonly used planar intercept method however, may not correctly estimate fuel loadings because masticated fuels...

  4. Wear and Friction Behavior of Metal Impregnated Microporous Carbon Composites

    NASA Technical Reports Server (NTRS)

    Goller, Gultekin; Koty, D. P.; Tewari, S. N.; Singh, M.; Tekin, A.

    1996-01-01

    Metal-matrix composites have been prepared by pressure-infiltration casting of copper-base alloy melts into microporous carbon preforms. The carbon preforms contained varying proportions of amorphous carbon and graphite. Load dependence of the wear and friction behavior of the composite pins has been examined under ambient conditions against cast-iron plates, using a pin-on-plate reciprocating wear tester. The wear resistance of the composite is significantly improved, as compared with the base alloy. Contrary to the normally expected behavior, the addition of graphite to the amorphous carbon does not reduce the friction coefficient, especially at high loads. The wear and friction behavior of the composites is very sensitive to the size and distribution of the microstructural constituents.

  5. Computing fluid-particle interaction forces for nano-suspension droplet spreading: molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Zhou, Weizhou; Shi, Baiou; Webb, Edmund

    2017-11-01

    Recently, there are many experimental and theoretical studies to understand and control the dynamic spreading of nano-suspension droplets on solid surfaces. However, fundamental understanding of driving forces dictating the kinetics of nano-suspension wetting and spreading, especially capillary forces that manifest during the process, is lacking. Here, we present results from atomic scale simulations that were used to compute forces between suspended particles and advancing liquid fronts. The role of nano-particle size, particle loading, and interaction strength on forces computed from simulations will be discussed. Results demonstrate that increasing the particle size dramatically changes observed wetting behavior from depinning to pinning. From simulations on varying particle size, a relationship between computed forces and particle size is advanced and compared to existing expressions in the literature. High particle loading significantly slowed spreading kinetics, by introducing tortuous transport paths for liquid delivery to the advancing contact line. Lastly, we show how weakening the interaction between the particle and the underlying substrate can change a system from exhibiting pinning behavior to de-pinning.

  6. Simulation and Analysis of One-time Forming Process of Automobile Steering Ball Head

    NASA Astrophysics Data System (ADS)

    Shi, Peicheng; Zhang, Xujun; Xu, Zengwei; Zhang, Rongyun

    2018-03-01

    Aiming at the problems such as large machining allowance, low production efficiency and material waste during die forging of ball pin, the cold extrusion process of ball head was studied and the analog simulation of the forming process was carried out by using the finite element analysis software DEFORM-3D. Through the analysis of the equivalent stress strain, velocity vector field and load-displacement curve, the flow regularity of the metal during the cold extrusion process of ball pin was clarified, and possible defects during the molding were predicted. The results showed that this process could solve the forming problem of ball pin and provide theoretical basis for actual production of enterprises.

  7. A comparison of five sampling techniques to estimate surface fuel loading in montane forests

    Treesearch

    Pamela G. Sikkink; Robert E. Keane

    2008-01-01

    Designing a fuel-sampling program that accurately and efficiently assesses fuel load at relevant spatial scales requires knowledge of each sample method's strengths and weaknesses.We obtained loading values for six fuel components using five fuel load sampling techniques at five locations in western Montana, USA. The techniques included fixed-area plots, planar...

  8. Test module development to detect the flase call probe pins on microeprocessor test equipment

    NASA Astrophysics Data System (ADS)

    Tang, L. W.; Ong, N. R.; Mohamad, I. S. B.; Alcain, J. B.; Retnasamy, V.

    2017-09-01

    Probe pins are useful for electrical testing of microelectronic components, printed circuit board assembly (PCBA), microprocessors and other electronic devices due to it provides the conductivity test based on specific device circuit design. During the repeatable test runs, the load of test modules, contact failures and the current conductivity induces layer wear off all the tip of probe pins contact. Contamination will be build-up on probe pins and increased contact resistivity which results of cost loss and time loss for rectifying programs, rectifying testers and exchanging new probe pins. In this study, a resistivity approach will be developed to provide "Testing of Test Probes". The test module based on "Four-wire Ohm measurement" method with two alternative ways of applying power supply, that are 9V from a single power supply and 5V from Arduino UNO power supply were demonstrated to measure the small resistance value of microprocessor probe pin. A microcontroller with VEE Pro software was used to record the measurement data. The accuracy of both test modules were calibrated under different temperature conditions and result shows that 9V from a single power supply test module has higher measurement accuracy.

  9. Postoperative complications associated with external skeletal fixators in cats.

    PubMed

    Beever, Lee; Giles, Kirsty; Meeson, Richard

    2017-07-01

    The objective of this study was to quantify complications associated with external skeletal fixators (ESFs) in cats and to identify potential risk factors. A retrospective review of medical records and radiographs following ESF placement was performed. Case records of 140 cats were reviewed; fixator-associated complications (FACs) occurred in 19% of cats. The region of ESF placement was significantly associated with complication development. Complications developed most frequently in the femur (50%), tarsus (35%) and radius/ulna (33%). Superficial pin tract infection (SPTI) and implant failure accounted for 45% and 41% of all FACs, respectively. SPTI occurred more frequently in the femur, humerus and tibia, with implant failure more frequent in the tarsus. No association between breed, age, sex, weight, fracture type (open vs closed), ESF classification, number of pins per bone segment, degree of fracture load sharing, and the incidence or type of FAC was identified. No association between region of placement, breed, age, sex, weight, fracture type (open vs closed), ESF classification, number of pins per bone segment, fracture load sharing and the time to complication development was identified. Complication development is not uncommon in cats following ESF placement. The higher complication rate in the femur, tarsus and radius/ulna should be considered when reviewing options for fracture management. However, cats appear to have a lower rate of pin tract infections than dogs.

  10. Study of the influence of hole quality on composite materials

    NASA Technical Reports Server (NTRS)

    Pengra, J. J.

    1980-01-01

    The influence of hole quality on the structural behavior of composite materials was investigated. From an industry survey it was determined that the most frequent imperfections encountered during hole fabrication are chipout, delamination, and oversize conditions. These hole flaw types were generated in critical areas of static, compression, and fatigue specimens fabricated from T300/5208 graphite/epoxy system. The specimens were tested in static and cyclic pin bearing modes in addition to compression loading. Results of these tests are presented and discussed. The hole chipout defect reduced the static and cyclic endurance characteristics. Oversize holes also lowered the cyclic pin bearing endurance, but had no influence of the static pin bearing characteristics. Delamination had no insignificant influence on the static tension and cyclic pin bearing characteristics. Compression tests demonstrated a deleterious effect for chipout of delamination defects. Hole quality requirements proposed are discussed.

  11. Parametric Instability of Static Shafts-Disk System Using Finite Element Method

    NASA Astrophysics Data System (ADS)

    Wahab, A. M.; Rasid, Z. A.; Abu, A.

    2017-10-01

    Parametric instability condition is an important consideration in design process as it can cause failure in machine elements. In this study, parametric instability behaviour was studied for a simple shaft and disk system that was subjected to axial load under pinned-pinned boundary condition. The shaft was modelled based on the Nelson’s beam model, which considered translational and rotary inertias, transverse shear deformation and torsional effect. The Floquet’s method was used to estimate the solution for Mathieu equation. Finite element codes were developed using MATLAB to establish the instability chart. The effect of additional disk mass on the stability chart was investigated for pinned-pinned boundary conditions. Numerical results and illustrative examples are given. It is found that the additional disk mass decreases the instability region during static condition. The location of the disk as well has significant effect on the instability region of the shaft.

  12. Evaluation of Forces on the Welding Probe of the Automated Retractable Pin-Tool (RPT)

    NASA Technical Reports Server (NTRS)

    Ding, R. J.

    2001-01-01

    The NASA invention entitled 'The Hydraulic Controlled Auto-Adjustable Pin Tool for Friction Stir Welding' (US Patent 5,893,507), better known as the Retractable Pin-Tool (RPT), has been instrumented with a load-detecting device allowing the forces placed on the welding probe to be measured. As the welding probe is plunged into the material, the forces placed on the probe can now be characterized. Of particular interest are those forces experienced as the welding probe comes within close proximity to the back-up anvil. For a given material, it is believed that unique forces are generated relative to the distance between the welding probe and the anvil. The forces have been measured and characterized for several materials, and correlations have been made between these forces and the pin's position relative to the backside of the weld material.

  13. 75 FR 9809 - Airworthiness Directives; Airbus Model A330-243, -341, -342, and -343 Airplanes; and Model A340...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-04

    ..., as a consequence of the over-torque, fail and move away, it would lead to loss of the vertical load pins, which could result in loss of the primary and/or secondary load path of the forward and/or aft..., as a consequence of the over-torque, fail and move away, it would lead to loss of the vertical load...

  14. MOOSE Implementation of MAMBA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galloway, Jack; Matthews, Topher

    The development of MAMBA is targeted at capturing both core wide CRUD induced power shifts (CIPS) as well as pin-­level CRUD induced localized corrosion (CILC). Both CIPS and CILC require some sort of information from thermal-­hydraulic, neutronics, and fuel performance codes, although the degree of coupling is different for the two effects. Since CIPS necessarily requires a core-­wide power distribution solve, it requires tight coupling with a neutronics code. Conversely, CIPS tends to be an individual pin phenomenon, requiring tight coupling a fuel performance code. As efforts are now focused on coupling MAMBA within the VERA suite, a natural separationmore » has surfaced in which a FORTRAN rewrite of MAMBA is optimal for VERA integration to capture CIPS behavior, while a CILC focused calculation would benefit from a tight coupling with BISON, motivating a MOOSE version of MAMBA.« less

  15. Design of a 25-kWe Surface Reactor System Based on SNAP Reactor Technologies

    NASA Astrophysics Data System (ADS)

    Dixon, David D.; Hiatt, Matthew T.; Poston, David I.; Kapernick, Richard J.

    2006-01-01

    A Hastelloy-X clad, sodium-potassium (NaK-78) cooled, moderated spectrum reactor using uranium zirconium hydride (UZrH) fuel based on the SNAP program reactors is a promising design for use in surface power systems. This paper presents a 98 kWth reactor for a power system the uses multiple Stirling engines to produce 25 kWe-net for 5 years. The design utilizes a pin type geometry containing UZrHx fuel clad with Hastelloy-X and NaK-78 flowing around the pins as coolant. A compelling feature of this design is its use of 49.9% enriched U, allowing it to be classified as a category III-D attractiveness and reducing facility costs relative to highly-enriched space reactor concepts. Presented below are both the design and an analysis of this reactor's criticality under various safety and operations scenarios.

  16. Au/Cr Sputter Coating for the Protection of Alumina During Sliding at High Temperatures

    NASA Technical Reports Server (NTRS)

    Benoy, Patricia A.; Dellacorte, Christopher

    1995-01-01

    A sputter deposited bilayer coating of gold and chromium was investigated as a potential solid lubricant to protect alumina substrates in applications involving sliding at high temperature. The proposed lubricant was tested in a pin-on-disk tribometer with coated alumina disks sliding against uncoated alumina pins. Three test parameters; temperature, load, and sliding velocity were varied over a wide range in order to determine the performance envelope on the gold/chromium (Au/Cr) solid lubricant film. The tribo-tests were run in an air atmosphere at temperatures of 25 to 1000 C, under loads of 4.9 to 49.0 N and at sliding velocities from 1 to 15 m/sec. Post test analyses included surface profilometry, wear factor determination and scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS) examination of worn surfaces. Compared to unlubricated Al2O3 sliding, the use of the Au/Cr film reduced friction by 30 to 50 percent and wear by one to two orders of magnitude. Increases in test temperature resulted in lower friction and the Au/Cr film continued to provide low friction, about 0.3, even at 1000 C. Pin wear factors and friction were largely unaffected by increasing loads up to 29.4 N. Sliding velocity had essentially no effect on friction, however, increased velocity reduced coating life (total sliding distance). Based upon these research results, the Au/Cr film is a promising lubricant for moderately loaded, low speed applications operating at temperatures as high as 1000 C.

  17. Investigation of the Feasibility of Utilizing Gamma Emission Computed Tomography in Evaluating Fission Product Migration in Irradiated TRISO Fuel Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jason M. Harp; Paul A. Demkowicz

    2014-10-01

    In the High Temperature Gas-Cooled Reactor (HTGR) the TRISO particle fuel serves as the primary fission product containment. However the large number of TRISO particles present in proposed HTGRs dictates that there will be a small fraction (~10 -4 to 10 -5) of as manufactured and in-pile particle failures that will lead to some fission product release. The matrix material surrounding the TRISO particles in fuel compacts and the structural graphite holding the TRISO particles in place can also serve as sinks for containing any released fission products. However data on the migration of solid fission products through these materialsmore » is lacking. One of the primary goals of the AGR-3/4 experiment is to study fission product migration from failed TRISO particles in prototypic HTGR components such as structural graphite and compact matrix material. In this work, the potential for a Gamma Emission Computed Tomography (GECT) technique to non-destructively examine the fission product distribution in AGR-3/4 components and other irradiation experiments is explored. Specifically, the feasibility of using the Idaho National Laboratory (INL) Hot Fuels Examination Facility (HFEF) Precision Gamma Scanner (PGS) system for this GECT application is considered. To test the feasibility, the response of the PGS system to idealized fission product distributions has been simulated using Monte Carlo radiation transport simulations. Previous work that applied similar techniques during the AGR-1 experiment will also be discussed as well as planned uses for the GECT technique during the post irradiation examination of the AGR-2 experiment. The GECT technique has also been applied to other irradiated nuclear fuel systems that were currently available in the HFEF hot cell including oxide fuel pins, metallic fuel pins, and monolithic plate fuel.« less

  18. Coupled reactor kinetics and heat transfer model for heat pipe cooled reactors

    NASA Astrophysics Data System (ADS)

    Wright, Steven A.; Houts, Michael

    2001-02-01

    Heat pipes are often proposed as cooling system components for small fission reactors. SAFE-300 and STAR-C are two reactor concepts that use heat pipes as an integral part of the cooling system. Heat pipes have been used in reactors to cool components within radiation tests (Deverall, 1973); however, no reactor has been built or tested that uses heat pipes solely as the primary cooling system. Heat pipe cooled reactors will likely require the development of a test reactor to determine the main differences in operational behavior from forced cooled reactors. The purpose of this paper is to describe the results of a systems code capable of modeling the coupling between the reactor kinetics and heat pipe controlled heat transport. Heat transport in heat pipe reactors is complex and highly system dependent. Nevertheless, in general terms it relies on heat flowing from the fuel pins through the heat pipe, to the heat exchanger, and then ultimately into the power conversion system and heat sink. A system model is described that is capable of modeling coupled reactor kinetics phenomena, heat transfer dynamics within the fuel pins, and the transient behavior of heat pipes (including the melting of the working fluid). This paper focuses primarily on the coupling effects caused by reactor feedback and compares the observations with forced cooled reactors. A number of reactor startup transients have been modeled, and issues such as power peaking, and power-to-flow mismatches, and loading transients were examined, including the possibility of heat flow from the heat exchanger back into the reactor. This system model is envisioned as a tool to be used for screening various heat pipe cooled reactor concepts, for designing and developing test facility requirements, for use in safety evaluations, and for developing test criteria for in-pile and out-of-pile test facilities. .

  19. Irradiation and post-irradiation examination of uranium-free nitride fuel

    NASA Astrophysics Data System (ADS)

    Hania, P. R.; Klaassen, F. C.; Wernli, B.; Streit, M.; Restani, R.; Ingold, F.; Fedorov, A. V.; Wallenius, J.

    2015-11-01

    Two identical Phénix-type 15-15Ti steel pinlets each containing a 70 mm Pu0.3Zr0.7N fuel stack in a 1-bar helium atmosphere have been irradiated in the HFR Petten at medium high linear power (46-47 kW/m at BOL) and an average cladding temperature of 505 °C. The pins were irradiated to a plutonium burn-up of 9.7% (88 MWd/kgHM) in 170 full power days. Both pins remained fully intact. Post-irradiation examination performed at NRG and PSI showed that the overall swelling rate of the fuel was 0.92 vol-%/%FIHMA. Fission gas release was 5-6%, while helium release was larger than 50%. No fuel restructuring was observed, and only mild cracking. EPMA measurements show a burn-up increase toward the pellet edge of up to 4 times. All investigated fission products except to some extent the noble metals were found to be evenly distributed over the matrix, indicating good solubility. Local formation of a secondary phase with high Pu content and hardly any Zr was observed. A general conclusion of this investigation is that ZrN is a suitable inert matrix for burning plutonium at high destruction rates.

  20. Comparison of computational results of the SABRE LMFBR pin bundle blockage code with data from well-instrumented out-of-pile test bundles (THORS bundles 3A and 5A)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dearing, J.F.

    The Subchannel Analysis of Blockages in Reactor Elements (SABRE) computer code, developed by the United Kingdom Atomic Energy Authority, is currently the only practical tool available for performing detailed analyses of velocity and temperature fields in the recirculating flow regions downstream of blockages in liquid-metal fast breeder reactor (LMFBR) pin bundles. SABRE is a subchannel analysis code; that is, it accurately represents the complex geometry of nuclear fuel pins arranged on a triangular lattice. The results of SABRE computational models are compared here with temperature data from two out-of-pile 19-pin test bundles from the Thermal-Hydraulic Out-of-Reactor Safety (THORS) Facility atmore » Oak Ridge National Laboratory. One of these bundles has a small central flow blockage (bundle 3A), while the other has a large edge blockage (bundle 5A). Values that give best agreement with experiment for the empirical thermal mixing correlation factor, FMIX, in SABRE are suggested. These values of FMIX are Reynolds-number dependent, however, indicating that the coded turbulent mixing correlation is not appropriate for wire-wrap pin bundles.« less

  1. Uranium dioxide fuel cladding strain investigation with the use of CYGRO-2 computer program

    NASA Technical Reports Server (NTRS)

    Smith, J. R.

    1973-01-01

    Previously irradiated UO2 thermionic fuel pins in which gross fuel-cladding strain occurred were modeled with the use of a computer program to define controlling parameters which may contribute to cladding strain. The computed strain was compared with measured strain, and the computer input data were studied in an attempt to get agreement with measured strain. Because of the limitations of the program and uncertainties in input data, good agreement with measured cladding strain was not attained. A discussion of these limitations is presented.

  2. Uranium nitride fuel fabrication for SP-100 reactors

    NASA Technical Reports Server (NTRS)

    Mason, Richard E.; Chidester, Kenneth M.; Hoth, Carl W.; Matthews, Bruce R.

    1987-01-01

    Fuel pins of uranium mononitride clad in Nb-1 percent Zr were fabricated for irradiation tests in EBR-II. Laboratory scale process parameters to synthesize UN powders and fabricate UN pellets were developed. Uranium mononitride was prepared by converting UO2 to UN. Fuel pellets were prepared by communition of UN briquettes, uniaxial pressing, and high temperature sintering. Techniques for machining, cleaning, and welding Nb-1 percent Zr cladding components were developed. End caps were electron beam welded to the tubing. Helium back-fill holes were sealed with a laser weld.

  3. Uranium nitride fuel fabrication for SP-100 reactors

    NASA Astrophysics Data System (ADS)

    Mason, Richard E.; Chidester, Kenneth M.; Hoth, Carl W.; Matthews, Bruce R.

    Fuel pins of uranium mononitride clad in Nb-1 percent Zr were fabricated for irradiation tests in EBR-II. Laboratory scale process parameters to synthesize UN powders and fabricate UN pellets were developed. Uranium mononitride was prepared by converting UO2 to UN. Fuel pellets were prepared by communition of UN briquettes, uniaxial pressing, and high temperature sintering. Techniques for machining, cleaning, and welding Nb-1 percent Zr cladding components were developed. End caps were electron beam welded to the tubing. Helium back-fill holes were sealed with a laser weld.

  4. Fine scale vegetation classification and fuel load mapping for prescribed burning

    Treesearch

    Andrew D. Bailey; Robert Mickler

    2007-01-01

    Fire managers in the Coastal Plain of the Southeastern United States use prescribed burning as a tool to reduce fuel loads in a variety of vegetation types, many of which have elevated fuel loads due to a history of fire suppression. While standardized fuel models are useful in prescribed burn planning, those models do not quantify site-specific fuel loads that reflect...

  5. A novel hybrid joining methodology for composite to steel joints

    NASA Astrophysics Data System (ADS)

    Sarh, Bastian

    This research has established a novel approach for designing, analyzing, and fabricating load bearing structural connections between resin infused composite materials and components made of steel or other metals or alloys. A design philosophy is proposed wherein overlapping joint sections comprised of fiber reinforced plastics (FRP's) and steel members are connected via a combination of adhesive bonding and integrally placed composite pins. A film adhesive is utilized, placed into the dry stack prior to resin infusion and is cured after infusion through either local heat elements or by placing the structure into an oven. The novel manner in which the composite pins are introduced consists of perforating the steel member with holes and placing pre-formed composite pins through them, also prior to resin infusion of the composite section. In this manner joints are co-molded structures such that secondary processing is eliminated. It is shown that such joints blend the structural benefits of adhesive and mechanically connected joints, and that the fabrication process is feasible for low-cost, large-scale production as applicable to the shipbuilding industry. Analysis procedures used for designing such joints are presented consisting of an adhesive joint design theory and a pin placement theory. These analysis tools are used in the design of specimens, specific designs are fabricated, and these evaluated through structural tests. Structural tests include quasi-static loading and low cycle fatigue evaluation. This research has thereby invented a novel philosophy on joints, created the manufacturing technique for fabricating such joints, established simple to apply analysis procedures used in the design of such joints (consisting of both an adhesive and a pin placement analysis), and has validated the methodology through specimen fabrication and testing.

  6. Precision alignment and mounting apparatus

    NASA Technical Reports Server (NTRS)

    Preston, Dennis R. (Inventor)

    1993-01-01

    An alignment and mounting apparatus for mounting two modules (10,12) includes a first portion having a cylindrical alignment pin (16) projecting normal to a module surface, a second portion having a three-stage alignment guide (18) including a shoehorn flange (34), a Y-slot (42) and a V-block (22) which sequentially guide the alignment pin (16) with successively finer precision and a third portion in the form of a spring-loaded captive fastener (20) for connecting the two modules after alignment is achieved.

  7. 3D Finite Element Analysis of Spider Non-isothermal Forging Process

    NASA Astrophysics Data System (ADS)

    Niu, Ling; Wei, Wei; Wei, Kun Xia; Alexandrov, Igor V.; Hu, Jing

    2016-06-01

    The differences of effective stress, effective strain, velocity field, and the load-time curves between the spider isothermal and non-isothermal forging processes are investigated by making full use of 3D FEA, and verified by the production experiment of spider forging. Effective stress is mainly concentrated on the pin, and becomes lower closer to the front of the pin. The maximum effective strain in the non-isothermal forging is lower than that in the isothermal. The great majority of strain in the non-isothermal forging process is 1.76, which is larger than the strain of 1.31 in the isothermal forging. The maximum load required in the isothermal forging is higher than that in the non-isothermal. The maximum experimental load and deformation temperature in the spider production are in good agreement with those in the non-isothermal FEA. The results indicate that the non-isothermal 3D FEA results can guide the design of the spider forging process.

  8. Friction Stir Welding of Al-Cu Bilayer Sheet by Tapered Threaded Pin: Microstructure, Material Flow, and Fracture Behavior

    NASA Astrophysics Data System (ADS)

    Beygi, R.; Kazeminezhad, M.; Kokabi, A. H.; Loureiro, A.

    2015-06-01

    The fracture behavior and intermetallic formation are investigated after friction stir welding of Al-Cu bilayer sheets performed by tapered threaded pin. To do so, temperature, axial load, and torque measurements during welding, and also SEM and XRD analyses and tensile tests on the welds are carried out. These observations show that during welding from Cu side, higher axial load and temperature lead to formation of different kinds of Al-Cu intermetallics such as Al2Cu, AlCu, and Al4Cu9. Also, existence of Al(Cu)-Al2Cu eutectic structures, demonstrates liquation during welding. The presence of these intermetallics leads to highly brittle fracture and low strength of the joints. In samples welded from Al side, lower axial load and temperature are developed during welding and no intermetallic compound is observed which results in higher strength and ductility of the joints in comparison with those welded from Cu side.

  9. Optical fuel pin scanner

    DOEpatents

    Kirchner, Tommy L.; Powers, Hurshal G.

    1983-01-01

    An optical scanner for indicia arranged in a focal plane at a cylindrical outside surface by use of an optical system including a rotatable dove prism. The dove prism transmits a rotating image of an encircled cylindrical surface area to a stationary photodiode array.

  10. NDE Development for Inspection of the Ares I Crew Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Richter, Joel; Russell, Sam S.

    2007-01-01

    NASA is designing a new crewed launch vehicle called Ares I to replace the Space Shuttle after its scheduled retirement in 2010. This new launch vehicle will build on the Shuttle technology in many ways including using a first stage based upon the Space Shuttle Solid Rocket Booster, advanced aluminum alloys for the second stage tanks, and friction stir welding to assemble the second stage. Friction stir welding uses a spinning pin that is inserted in the joint between two panels that are to be welded. The pin mechanically mixes the metal together below the melting temperature to form the weld. Friction stir welding allows high strength joints in metals that would otherwise lose much of their strength as they are melted during the fusion welding process. One significant change from the Space Shuttle that impacts NDE is the implementation of self-reacting friction stir welding for non-linear welds on the primary metallic structure. The self-reacting technique differs from the conventional technique because the load of the pin tool pressing down on the metal being joined is reacted by a nut on the end of the tool rather than an anvil behind the part. No spacecraft has ever flown with a self-reacting friction stir weld, so this is a major advancement in the manufacturing process, bringing with it a whole new set of challenges for NDE to overcome. Another impact is the proposed usage of an aluminum face sheet, phenolic honeycomb sandwich structure for a common bulkhead between the fuel and oxidizer tanks. This design was used on the second stage of Saturn IB and the second and third stages of Saturn V, but both the manufacturing and subsequent inspection were very costly and time consuming so a more efficient inspection method is sought. The current state of development of these inspections will be presented, along with other information pertinent to NDE of the Ares I.

  11. Nuclear reactor reflector

    DOEpatents

    Hopkins, Ronald J.; Land, John T.; Misvel, Michael C.

    1994-01-01

    A nuclear reactor reflector is disclosed that comprises a stack of reflector blocks with vertical water flow passages to cool the reflector. The interface between blocks is opposite support points for reactor fuel rods. Water flows between the reflector and the reactor barrel from passages in a bottom block. The top block contains a flange to limit this flow and the flange has a slot to receive an alignment pin that is welded to the barrel. The pin is held in the slot by two removable shims. Alignment bars extend the length of the stack in slots machined in each block when the stack is assembled.

  12. Nuclear reactor reflector

    DOEpatents

    Hopkins, R.J.; Land, J.T.; Misvel, M.C.

    1994-06-07

    A nuclear reactor reflector is disclosed that comprises a stack of reflector blocks with vertical water flow passages to cool the reflector. The interface between blocks is opposite support points for reactor fuel rods. Water flows between the reflector and the reactor barrel from passages in a bottom block. The top block contains a flange to limit this flow and the flange has a slot to receive an alignment pin that is welded to the barrel. The pin is held in the slot by two removable shims. Alignment bars extend the length of the stack in slots machined in each block when the stack is assembled. 12 figs.

  13. Parametric Study of the Effect of Burnable Poison Rods for PWR Burnup Credit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagner, J.C.

    2001-09-28

    The Interim Staff Guidance on burnup credit (ISG-8) issued by the United States Nuclear Regulatory Commission's (U.S. NRC) Spent Fuel Project Office recommends restricting the use of burnup credit to assemblies that have not used burnable absorbers. This recommended restriction eliminates a large portion of the currently discharged spent fuel assemblies from cask loading, and thus severely limits the practical usefulness of burnup credit. In the absence of readily available information on burnable poison rod (BPR) design specifications and usage in U.S. pressurized-water-reactors (PWRs), and the subsequent reactivity effect of BPR exposure on discharged spent nuclear fuel (SNF), NRC staffmore » has indicated a need for additional information in these areas. In response, this report presents a parametric study of the effect of BPR exposure on the reactivity of SNF for various BPR designs, fuel enrichments, and exposure conditions, and documents BPR design specifications. Trends in the reactivity effects of BPRs are established with infinite pin-cell and assembly array calculations with the SCALE and HELIOS code packages, respectively. Subsequently, the reactivity effects of BPRs for typical initial enrichment and burnup combinations are quantified based on three-dimensional (3-D) KENO V.a Monte Carlo calculations with a realistic rail-type cask designed for burnup credit. The calculations demonstrate that the positive reactivity effect due to BPR exposure increases nearly linearly with burnup and is dependent on the number, poison loading, and design of the BPRs and the initial fuel enrichment. Expected typical reactivity increases, based on one-cycle BPR exposure, were found to be less than 1% {Delta}k. Based on the presented analysis, guidance is offered on an appropriate approach for calculating bounding SNF isotopic data for assemblies exposed to BPRs. Although the analyses do not address the issue of validation of depletion methods for assembly designs with BPRs, they do demonstrate that the effect of BPRs is generally well behaved and that independent codes and cross-section libraries predict similar results. The report concludes with a discussion of the issues for consideration and recommendations for inclusion of SNF assemblies exposed to BPRs in criticality safety analyses using burnup credit for dry cask storage and transport.« less

  14. A comparison of three methods for classifying fuel loads in the Southern Appalachian Mountains

    Treesearch

    Lucy Brudnak; Thomas A. Waldrop; Sandra Rideout-Hanzak

    2006-01-01

    As the wildland-urban interface in the Southern Appalachian Mountains has grown and become more complex, land managers, property owners, and ecologists have found it increasingly necessary to understand factors that drive fuel loading. Few predictive fuel loading models have been created for this important region. Three approaches to estimating fuel loads are compared...

  15. Friction Stir Welding of Tapered Thickness Welds Using an Adjustable Pin Tool

    NASA Technical Reports Server (NTRS)

    Adams, Glynn; Venable, Richard; Lawless, Kirby

    2003-01-01

    Friction stir welding (FSW) can be used for joining weld lands that vary in thickness along the length of the weld. An adjustable pin tool mechanism can be used to accomplish this in a single-pass, full-penetration weld by providing for precise changes in the pin length relative to the shoulder face during the weld process. The difficulty with this approach is in accurately adjusting the pin length to provide a consistent penetration ligament throughout the weld. The weld technique, control system, and instrumentation must account for mechanical and thermal compliances of the tooling system to conduct tapered welds successfully. In this study, a combination of static and in-situ measurements, as well as active control, is used to locate the pin accurately and maintain the desired penetration ligament. Frictional forces at the pin/shoulder interface were a source of error that affected accurate pin position. A traditional FSW pin tool design that requires a lead angle was used to join butt weld configurations that included both constant thickness and tapered sections. The pitch axis of the tooling was fixed throughout the weld; therefore, the effective lead angle in the tapered sections was restricted to within the tolerances allowed by the pin tool design. The sensitivity of the FSW process to factors such as thickness offset, joint gap, centerline offset, and taper transition offset were also studied. The joint gap and the thickness offset demonstrated the most adverse affects on the weld quality. Two separate tooling configurations were used to conduct tapered thickness welds successfully. The weld configurations included sections in which the thickness decreased along the weld, as well as sections in which the thickness increased along the weld. The data presented here include weld metallography, strength data, and process load data.

  16. A reduced Iwan model that includes pinning for bolted joint mechanics

    DOE PAGES

    Brake, M. R. W.

    2016-10-28

    Bolted joints are prevalent in most assembled structures; however, predictive models for their behavior do not exist. Calibrated models, such as the Iwan model, are able to predict the response of a jointed structure over a range of excitations once calibrated at a nominal load. The Iwan model, though, is not widely adopted due to the high computational expense of implementation. To address this, an analytical solution of the Iwan model is derived under the hypothesis that for an arbitrary load reversal, there is a new distribution of dry friction elements, which are now stuck, that approximately resemble a scaledmore » version of the original distribution of dry friction elements. The dry friction elements internal to the Iwan model do not have a uniform set of parameters and are described by a distribution of parameters, i.e., which internal dry friction elements are stuck or slipping at a given load, that ultimately governs the behavior of the joint as it transitions from microslip to macroslip. This hypothesis allows the model to require no information from previous loading cycles. Additionally, the model is extended to include the pinning behavior inherent in a bolted joint. Modifications of the resulting framework are discussed to highlight how the constitutive model for friction can be changed (in the case of an Iwan–Stribeck formulation) or how the distribution of dry friction elements can be changed (as is the case for the Iwan plasticity model). Finally, the reduced Iwan plus pinning model is then applied to the Brake–Reuß beam in order to discuss methods to deduce model parameters from experimental data.« less

  17. Analysis of the ORNL/TSF GCFR Grid-Plate Shield Design Confirmation Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slater, C.O.; Cramer, S.N.; Ingersoll, D.T.

    1979-08-01

    The results of the analysis of the GCFR Grid-Plate Shield Design Confirmation Experiment are presented. The experiment, performed at the ORNL Tower Shielding Facility, was designed to test the adequacy of methods and data used in the analysis of the GCFR design. In particular, the experiment tested the adequacy of methods to calculate: (1) axial neutron streaming in the GCFR core and axial blanket, (2) the amount and location of the maximum fast-neutron exposure to the grid plate, and (3) the neutron source leaving the top of the grid plate and entering the upper plenum. Other objectives of the experimentmore » were to verify the grid-plate shielding effectiveness and to assess the effects of fuel-pin and subassembly spacing on radiation levels in the GCFR. The experimental mockups contained regions representing the GCFR core/blanket region, the grid-plate shield section, and the grid plate. Most core design options were covered by allowing: (1) three different spacings between fuel subassemblies, (2) two different void fractions within a subassembly by variation of the number of fuel pins, and (3) a mockup of a control-rod channel.« less

  18. The Pitt Innovation Challenge (PInCh): Driving Innovation in Translational Research Through an Incentive-Based, Problem-Focused Competition.

    PubMed

    Fitzpatrick, Nicole Edgar; Maier, John; Yasko, Laurel; Mathias, David; Qua, Kacy; Wagner, Erika; Miller, Elizabeth; Reis, Steven E

    2017-05-01

    Translational research aims to move scientific discoveries across the biomedical spectrum from the laboratory to humans, and to ultimately transform clinical practice and public health policies. Despite efforts to accelerate translational research through national initiatives, several major hurdles remain. The authors created the Pitt Innovation Challenge (PInCh) as an incentive-based, problem-focused approach to solving identified clinical or public health problems at the University of Pittsburgh Clinical and Translational Science Institute in spring 2014. With input from a broad range of stakeholders, PInCh leadership arrived at the challenge question: How do we empower individuals to take control of their own health outcomes? The authors developed the PInCh's three-round proposal submission and review process as well as an online contest management tool to support the process. Ninety-two teams submitted video proposals in round one. Proposals included mobile applications (29; 32%), other information technology (19; 21%), and community program (22; 24%) solutions. Ten teams advanced to the final round, where three were awarded $100,000 to implement their solution over 12 months. In a 6-month follow-up survey, 6/11 (55%) team leaders stated the PInCh helped to facilitate connections outside their normal sphere of collaborators. Additional educational training sessions related to problem-focused research will be developed. The PInCh will be expanded to engage investment and industry communities to facilitate the translation of solutions to clinical practice via commercialization pathways. External organizations and other universities will be engaged to use the PInCh as a mechanism to fuel innovation in their spaces.

  19. Dynamics of column stability with partial end restraints

    NASA Technical Reports Server (NTRS)

    Gregory, Peyton B.

    1990-01-01

    The dynamic behavior of columns with partial end restraints and loads consisting of a dead load and a pulsating load are investigated. The differential equation is solved using a lumped impulse recurrence formula relative to time coupled with a finite difference discretization along the member length. A computer program is written from which the first critical frequencies are found as a function of end stiffness. The case of a pinned ended column compares very well with the exact solution. Also, the natural frequency and buckling load formulas are derived for equal and unequal end restraints.

  20. Frequency Reconfigurable Quasi-Yagi Antenna with a Novel Balun Loading Four PIN Diodes

    NASA Astrophysics Data System (ADS)

    Xie, Peng; Wang, Guang-Ming; Li, Hai-Peng; Wen, Tong; Kong, Xiangxin

    2018-04-01

    A novel frequency reconfigurable Quasi-Yagi antenna is proposed. The antenna has two dipoles on different layers of the substrate and they are fed by two coplanar striplines. Four PIN diodes, loading inside the coplanar striplines, are used as the switches. By switching the states of the four diodes, the antenna can work in three modes with different working bands around 3.5 GHz (cover the band of WiMAX), 5.2 GHz (cover the band of WLAN) and 7 GHz respectively. In addition, the working bands can be independently tuned by adjusting several parameters of the antenna. A prototype antenna was fabricated and tested. Good agreement between the simulation and the measurement is achieved. The results prove that the antenna can realize frequency reconfiguration effectively while maintaining the pattern characteristic of Yagi antenna at all frequency.

  1. Alternative Fuel Reduction Treatments in the Gunflint Corridor of the Superior National Forest: Second year results and sampling recommendations

    Treesearch

    Daniel W. Gilmore; Douglas N. Kastendick; John C. Zasada; Paula J. Anderson

    2003-01-01

    Fuel loadings need to be considered in two ways: 1) the total fuel loadings of various size classes and 2) their distribution across a site. Fuel treatments in this study affected both. We conclude that 1) mechanical treatments of machine piling and salvage logging reduced fine and heavy fuel loadings and 2) prescribed fire was successful in reducing fine fuel...

  2. Load and dynamic assessment of B-52B-008 carrier aircraft for finned configuration 1 space shuttle solid rocket booster deceleration subsystem drop test vehicle. Volume 4: Pylon load data

    NASA Technical Reports Server (NTRS)

    Quade, D. A.

    1978-01-01

    The pylon loading at the drop test vehicle and wing interface attack points is presented. The loads shown are determined using a stiffness method, which assumes the side stiffness of the forward hook guide and the fore and aft stiffness of each drag pin to be equal. The net effect of this assumption is that the forward hook guide reacts approximately 96% of the drop test vehicle yawing moment. For a comparison of these loads to previous X-15 analysis design loadings, see Volume 1 of this document.

  3. Physical properties, chemical composition, and cloud forming potential of particulate emissions from a marine diesel engine at various load conditions.

    PubMed

    Petzold, A; Weingartner, E; Hasselbach, J; Lauer, P; Kurok, C; Fleischer, F

    2010-05-15

    Particulate matter (PM) emissions from one serial 4-stroke medium-speed marine diesel engine were measured for load conditions from 10% to 110% in test rig studies using heavy fuel oil (HFO). Testing the engine across its entire load range permitted the scaling of exhaust PM properties with load. Emission factors for particle number, particle mass, and chemical compounds were determined. The potential of particles to form cloud droplets (cloud condensation nuclei, CCN) was calculated from chemical composition and particle size. Number emission factors are (3.43 +/- 1.26) x 10(16) (kg fuel)(-1) at 85-110% load and (1.06 +/- 0.10) x 10(16) (kg fuel)(-1) at 10% load. CCN emission factors of 1-6 x 10(14) (kg fuel)(-1) are at the lower bound of data reported in the literature. From combined thermal and optical methods, black carbon (BC) emission factors of 40-60 mg/(kg fuel) were determined for 85-100% load and 370 mg/(kg fuel) for 10% load. The engine load dependence of the conversion efficiency for fuel sulfur into sulfate of (1.08 +/- 0.15)% at engine idle to (3.85 +/- 0.41)% at cruise may serve as input to global emission calculations for various load conditions.

  4. Effect of Thread and Rotating Speed on Material Flow Behavior and Mechanical Properties of Friction Stir Lap Welding Joints

    NASA Astrophysics Data System (ADS)

    Ji, Shude; Li, Zhengwei; Zhou, Zhenlu; Wu, Baosheng

    2017-10-01

    This study focused on the effects of thread on hook and cold lap formation, lap shear property and impact toughness of alclad 2024-T4 friction stir lap welding (FSLW) joints. Except the traditional threaded pin tool (TR-tool), three new tools with different thread locations and orientations were designed. Results showed that thread significantly affected hook, cold lap morphologies and lap shear properties. The tool with tip-threaded pin (T-tool) fabricated joint with flat hook and cold lap, which resulted in shear fracture mode. The tools with bottom-threaded pin (B-tool) eliminated the hook. The tool with reverse-threaded pin (R-tool) widened the stir zone width. When using configuration A, the joints fabricated by the three new tools showed higher failure loads than the joint fabricated by the TR-tool. The joint using the T-tool owned the optimum impact toughness. This study demonstrated the significance of thread during FSLW and provided a reference to optimize tool geometry.

  5. Irradiation performance of (Th,Pu)O2 fuel under Pressurized Water Reactor conditions

    NASA Astrophysics Data System (ADS)

    Boer, B.; Lemehov, S.; Wéber, M.; Parthoens, Y.; Gysemans, M.; McGinley, J.; Somers, J.; Verwerft, M.

    2016-04-01

    This paper examines the in-pile safety performance of (Th,Pu)O2 fuel pins under simulated Pressurized Water Reactor (PWR) conditions. Both sol-gel and SOLMAS produced (Th,Pu)O2 fuels at enrichments of 7.9% and 12.8% in Pu/HM have been irradiated at SCK·CEN. The irradiation has been performed under PWR conditions (155 bar, 300 °C) in a dedicated loop of the BR-2 reactor. The loop is instrumented with flow and temperature monitors at inlet and outlet, which allow for an accurate measurement of the deposited enthalpy.

  6. Landscape variation in tree regeneration and snag fall drive fuel loads in 24-year old post-fire lodgepole pine forests.

    PubMed

    Nelson, Kellen N; Turner, Monica G; Romme, William H; Tinker, Daniel B

    2016-12-01

    Escalating wildfire in subalpine forests with stand-replacing fire regimes is increasing the extent of early-seral forests throughout the western USA. Post-fire succession generates the fuel for future fires, but little is known about fuel loads and their variability in young post-fire stands. We sampled fuel profiles in 24-year-old post-fire lodgepole pine (Pinus contorta var. latifolia) stands (n = 82) that regenerated from the 1988 Yellowstone Fires to answer three questions. (1) How do canopy and surface fuel loads vary within and among young lodgepole pine stands? (2) How do canopy and surface fuels vary with pre- and post-fire lodgepole pine stand structure and environmental conditions? (3) How have surface fuels changed between eight and 24 years post-fire? Fuel complexes varied tremendously across the landscape despite having regenerated from the same fires. Available canopy fuel loads and canopy bulk density averaged 8.5 Mg/ha (range 0.0-46.6) and 0.24 kg/m 3 (range: 0.0-2.3), respectively, meeting or exceeding levels in mature lodgepole pine forests. Total surface-fuel loads averaged 123 Mg/ha (range: 43-207), and 88% was in the 1,000-h fuel class. Litter, 1-h, and 10-h surface fuel loads were lower than reported for mature lodgepole pine forests, and 1,000-h fuel loads were similar or greater. Among-plot variation was greater in canopy fuels than surface fuels, and within-plot variation was greater than among-plot variation for nearly all fuels. Post-fire lodgepole pine density was the strongest positive predictor of canopy and fine surface fuel loads. Pre-fire successional stage was the best predictor of 100-h and 1,000-h fuel loads in the post-fire stands and strongly influenced the size and proportion of sound logs (greater when late successional stands had burned) and rotten logs (greater when early successional stands had burned). Our data suggest that 76% of the young post-fire lodgepole pine forests have 1,000-h fuel loads that exceed levels associated with high-severity surface fire potential, and 63% exceed levels associated with active crown fire potential. Fire rotations in Yellowstone National Park are predicted to shorten to a few decades and this prediction cannot be ruled out by a lack of fuels to carry repeated fires. © 2016 by the Ecological Society of America.

  7. Evaluation of the finite element fuel rod analysis code (FRANCO)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, K.; Feltus, M.A.

    1994-12-31

    Knowledge of temperature distribution in a nuclear fuel rod is required to predict the behavior of fuel elements during operating conditions. The thermal and mechanical properties and performance characteristics are strongly dependent on the temperature, which can vary greatly inside the fuel rod. A detailed model of fuel rod behavior can be described by various numerical methods, including the finite element approach. The finite element method has been successfully used in many engineering applications, including nuclear piping and reactor component analysis. However, fuel pin analysis has traditionally been carried out with finite difference codes, with the exception of Electric Powermore » Research Institute`s FREY code, which was developed for mainframe execution. This report describes FRANCO, a finite element fuel rod analysis code capable of computing temperature disrtibution and mechanical deformation of a single light water reactor fuel rod.« less

  8. Irradiation performance of PFBR MOX fuel after 112 GWd/t burn-up

    NASA Astrophysics Data System (ADS)

    Venkiteswaran, C. N.; Jayaraj, V. V.; Ojha, B. K.; Anandaraj, V.; Padalakshmi, M.; Vinodkumar, S.; Karthik, V.; Vijaykumar, Ran; Vijayaraghavan, A.; Divakar, R.; Johny, T.; Joseph, Jojo; Thirunavakkarasu, S.; Saravanan, T.; Philip, John; Rao, B. P. C.; Kasiviswanathan, K. V.; Jayakumar, T.

    2014-06-01

    The 500 MWe Prototype Fast Breeder Reactor (PFBR) which is in advanced stage of construction at Kalpakkam, India, will use mixed oxide (MOX) fuel with a target burnup of 100 GWd/t. The fuel pellet is of annular design to enable operation at a peak linear power of 450 W/cm with the requirement of minimum duration of pre-conditioning. The performance of the MOX fuel and the D9 clad and wrapper material was assessed through Post Irradiation Examinations (PIE) after test irradiation of 37 fuel pin subassembly in Fast Breeder Test Reactor (FBTR) to a burn-up of 112 GWd/t. Fission product distribution, swelling and fuel-clad gap evolution, central hole diameter variation, restructuring, fission gas release and clad wastage due to fuel-clad chemical interaction were evaluated through non-destructive and destructive examinations. The examinations have indicated that the MOX fuel can safely attain the desired target burn-up in PFBR.

  9. The photoload sampling technique: estimating surface fuel loadings from downward-looking photographs of synthetic fuelbeds

    Treesearch

    Robert E. Keane; Laura J. Dickinson

    2007-01-01

    Fire managers need better estimates of fuel loading so they can more accurately predict the potential fire behavior and effects of alternative fuel and ecosystem restoration treatments. This report presents a new fuel sampling method, called the photoload sampling technique, to quickly and accurately estimate loadings for six common surface fuel components (1 hr, 10 hr...

  10. Estimation of Forest Fuel Load from Radar Remote Sensing

    NASA Technical Reports Server (NTRS)

    Saatchi, Sassan; Despain, Don G.; Halligan, Kerry; Crabtree, Robert

    2007-01-01

    Understanding fire behavior characteristics and planning for fire management require maps showing the distribution of wildfire fuel loads at medium to fine spatial resolution across large landscapes. Radar sensors from airborne or spaceborne platforms have the potential of providing quantitative information about the forest structure and biomass components that can be readily translated to meaningful fuel load estimates for fire management. In this paper, we used multifrequency polarimetric synthetic aperture radar imagery acquired over a large area of the Yellowstone National Park (YNP) by the AIRSAR sensor, to estimate the distribution of forest biomass and canopy fuel loads. Semi-empirical algorithms were developed to estimate crown and stem biomass and three major fuel load parameters, canopy fuel weight, canopy bulk density, and foliage moisture content. These estimates when compared directly to measurements made at plot and stand levels, provided more than 70% accuracy, and when partitioned into fuel load classes, provided more than 85% accuracy. Specifically, the radar generated fuel parameters were in good agreement with the field-based fuel measurements, resulting in coefficients of determination of R(sup 2) = 85 for the canopy fuel weight, R(sup 2)=.84 for canopy bulk density and R(sup 2) = 0.78 for the foliage biomass.

  11. Material tradeoffs to minimize flooding reactivity

    NASA Technical Reports Server (NTRS)

    Protsik, R.; Cowan, C. L.; Kangilaski, M.; Vaidyanathan, S.

    1987-01-01

    In the GE 100 KWe SP-100 design, the array of fuel pins in the core was surrounded by a thin neutron barrier made of a mixture of Nb-1 percent Zr and 20 percent B4C. The purpose of this barrier was to prevent the return to the reactor of thermalized neutrons in the event of a reactor flooding accident. Neutronically, the barrier produced a reduction in k sub eff of 15 percent. However, a mixture of Nb-1 percent Zr and B4C is a development item and may not be possible to produce. Several alternatives to this design were investigated. These include the use of W-26 percent Re for the fuel barrier and the introduction of fuel pin ducts made of Ta-8 percent W-2 percent Hf, Hf-10 percent Nb or pure Re. The use of W-26 percent Re for the fuel barrier material in place of W, and the use of T111, Hf-10 percent Nb, or Re duct material in place of Nb-1 percent Zr or Nb-1 percent Zr-20 percent B4C were found to substantially decrease k sub eff in the flooding situation. The best choice neutronically for duct material is Hf-10 percent Nb, because of its small impact on the k sub eff of the normal core.

  12. Dish/stirling hybrid-receiver

    DOEpatents

    Mehos, Mark S.; Anselmo, Kenneth M.; Moreno, James B.; Andraka, Charles E.; Rawlinson, K. Scott; Corey, John; Bohn, Mark S.

    2002-01-01

    A hybrid high-temperature solar receiver is provided which comprises a solar heat-pipe-receiver including a front dome having a solar absorber surface for receiving concentrated solar energy, a heat pipe wick, a rear dome, a sidewall joining the front and the rear dome, and a vapor and a return liquid tube connecting to an engine, and a fossil fuel fired combustion system in radial integration with the sidewall for simultaneous operation with the solar heat pipe receiver, the combustion system comprising an air and fuel pre-mixer, an outer cooling jacket for tangentially introducing and cooling the mixture, a recuperator for preheating the mixture, a burner plenum having an inner and an outer wall, a porous cylindrical metal matrix burner firing radially inward facing a sodium vapor sink, the mixture ignited downstream of the matrix forming combustion products, an exhaust plenum, a fossil-fuel heat-input surface having an outer surface covered with a pin-fin array, the combustion products flowing through the array to give up additional heat to the receiver, and an inner surface covered with an extension of the heat-pipe wick, a pin-fin shroud sealed to the burner and exhaust plenums, an end seal, a flue-gas diversion tube and a flue-gas valve for use at off-design conditions to limit the temperature of the pre-heated air and fuel mixture, preventing pre-ignition.

  13. Locomotive fuel tank structural safety testing program : passenger locomotive fuel tank jackknife derailment load test.

    DOT National Transportation Integrated Search

    2010-08-01

    This report presents the results of a passenger locomotive fuel tank load test simulating jackknife derailment (JD) load. The test is based on FRA requirements for locomotive fuel tanks in the Title 49, Code of Federal Regulations (CFR), Part 238, Ap...

  14. High pressure electrical insulated feed thru connector

    DOEpatents

    Oeschger, Joseph E.; Berkeland, James E.

    1979-11-13

    A feed-thru type hermetic electrical connector including at least one connector pin feeding through an insulator block within the metallic body of the connector shell. A compression stop arrangement coaxially disposed about the insulator body is brazed to the shell, and the shoulder on the insulator block bears against this top in a compression mode, the high pressure or internal connector being at the opposite end of the shell. Seals between the pin and an internal bore at the high pressure end of the insulator block and between the insulator block and the metallic shell at the high pressure end are hermetically brazed in place, the first of these also functioning to transfer the axial compressive load without permitting appreciable shear action between the pin and insulator block.

  15. Double swivel toggle release

    NASA Technical Reports Server (NTRS)

    King, Guy L.; Schneider, William C.

    1989-01-01

    A pyrotechnic actuated structural release device is disclosed which is mechanically two fault tolerant for release. The device comprises a fastener plate and fastener body each attachable to one of a pair of structures to be joined. The fastener plate and the fastener body are fastened by a dual swivel toggle member. The toggle member is supported at one end on the fastener plate and mounted for universal pivotal movement thereon. Its other end is received in a central opening in the fastener body, and has a universally mounted retainer ring member. The toggle member is restrained by three retractable latching pins symmetrically disposed in equiangular spacing about the axis of the toggle member and positionable in latching engagement with the retainer ring member on the toggle member. Each pin is retractable by a pyrotechnic charge, the expanding gases of which are applied to a pressure receiving face on the latch pins to effect retraction from the ring member. While retraction of all three pins releases the ring member, the fastener is mechanically two fault tolerant since the failure of any single one or pair of the latch pins to retract results in an asymmetrical loading on the ring member and its dual pivotal movement ensures a release.

  16. Microstructure and Mechanical Performance of Friction Stir Spot-Welded Aluminum-5754 Sheets

    NASA Astrophysics Data System (ADS)

    Pathak, N.; Bandyopadhyay, K.; Sarangi, M.; Panda, Sushanta Kumar

    2013-01-01

    Friction stir spot welding (FSSW) is a recent trend of joining light-weight sheet metals while fabricating automotive and aerospace body components. For the successful application of this solid-state welding process, it is imperative to have a thorough understanding of the weld microstructure, mechanical performance, and failure mechanism. In the present study, FSSW of aluminum-5754 sheet metal was tried using tools with circular and tapered pin considering different tool rotational speeds, plunge depths, and dwell times. The effects of tool design and process parameters on temperature distribution near the sheet-tool interface, weld microstructure, weld strength, and failure modes were studied. It was found that the peak temperature was higher while welding with a tool having circular pin compared to tapered pin, leading to a bigger dynamic recrystallized stir zone (SZ) with a hook tip bending towards the upper sheet and away from the keyhole. Hence, higher lap shear separation load was observed in the welds made from circular pin compared to those made from tapered pin. Due to influence of size and hardness of SZ on crack propagation, three different failure modes of weld nugget were observed through optical cross-sectional micrograph and SEM fractographs.

  17. Thorium Fuel Options for Sustained Transuranic Burning in Pressurized Water Reactors - 12381

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rahman, Fariz Abdul; Lee, John C.; Franceschini, Fausto

    2012-07-01

    As described in companion papers, Westinghouse is proposing the adoption of a thorium-based fuel cycle to burn the transuranics (TRU) contained in the current Used Nuclear Fuel (UNF) and transition towards a less radio-toxic high level waste. A combination of both light water reactors (LWR) and fast reactors (FR) is envisaged for the task, with the emphasis initially posed on their TRU burning capability and eventually to their self-sufficiency. Given the many technical challenges and development times related to the deployment of TRU burners fast reactors, an interim solution making best use of the current resources to initiate burning themore » legacy TRU inventory while developing and testing some technologies of later use is desirable. In this perspective, a portion of the LWR fleet can be used to start burning the legacy TRUs using Th-based fuels compatible with the current plants and operational features. This analysis focuses on a typical 4-loop PWR, with 17x17 fuel assembly design and TRUs (or Pu) admixed with Th (similar to U-MOX fuel, but with Th instead of U). Global calculations of the core were represented with unit assembly simulations using the Linear Reactivity Model (LRM). Several assembly configurations have been developed to offer two options that can be attractive during the TRU transmutation campaign: maximization of the TRU transmutation rate and capability for TRU multi-recycling, to extend the option of TRU recycling in LWR until the FR is available. Homogeneous as well as heterogeneous assembly configurations have been developed with various recycling schemes (Pu recycle, TRU recycle, TRU and in-bred U recycle etc.). Oxide as well as nitride fuels have been examined. This enabled an assessment of the potential for burning and multi-recycling TRU in a Th-based fuel PWR to compare against other more typical alternatives (U-MOX and variations thereof). Results will be shown indicating that Th-based PWR fuel is a promising option to multi-recycle and burn TRU in a thermal spectrum, while satisfying top-level operational and safety constraints. Various assembly designs have been proposed to assess the TRU burning potential of Th-based fuel in PWRs. In addition to typical homogeneous loading patterns, heterogeneous configurations exploiting the breeding potential of thorium to enable multiple cycles of TRU irradiation and burning have been devised. The homogeneous assembly design, with all pins featuring TRU in Th, has the benefit of a simple loading pattern and the highest rate of TRU transmutation, but it can be used only for a few cycles due to the rapid rise in the TRU content of the recycled fuel, which challenges reactivity control, safety coefficients and fuel handling. Due to its simple loading pattern, such assembly design can be used as the first step of Th implementation, achieving up to 3 times larger TRU transmutation rate than conventional U-MOX, assuming same fraction of MOX assemblies in the core. As the next step in thorium implementation, heterogeneous assemblies featuring a mixed array of Th-U and Th-U-TRU pins, where the U is in-bred from Th, have been proposed. These designs have the potential to enable burning an external supply of TRU through multiple cycles of irradiation, recovery (via reprocessing) and recycling of the residual actinides at the end of each irradiation cycle. This is achieved thanks to a larger breeding of U from Th in the heterogeneous assemblies, which reduces the TRU supply and thus mitigates the increase in the TRU core inventory for the multi-recycled fuel. While on an individual cycle basis the amount of TRU burned in the heterogeneous assembly is reduced with respect to the homogeneous design, TRU burning rates higher than single-pass U-MOX fuel can still be achieved, with the additional benefits of a multi-cycle transmutation campaign recycling all TRU isotopes. Nitride fuel, due its higher density and U breeding potential, together with its better thermal properties, ideally suits the objectives and constraints of the heterogeneous assemblies. However, significant technological advancements must be made before nitride fuels can be employed in an LWR: its water resistance needs to be improved and a viable technology to enrich N in N-15 must be devised. Moreover, for the nitride heterogeneous configurations examined in this study, the enhancement in TRU burning performance is achieved not only by replacing oxide with nitride fuel, but also by increasing the fuel rod size. This latter modification, allowed by the high thermal conductivity of nitride fuel, leads however to a very tight lattice, which may challenge reactor coolant pumps and assembly hold-down mechanisms, the former through an increase in core pressure drop and the latter through an increase in assembly lift-off forces. To alleviate these issues, while still achieving the large fuel-to-moderator ratios resulting from using tight lattices, wire wraps could be used in place of grid spacers. For tight lattices, typical grid spacers are hard to manufacture and their replacement with wire wraps is known to allow for a pressure drop reduction by at least 2 times. The studies, while certainly very preliminary, provide a starting point to devise an optimum strategy for TRU transmutation in Th-based PWR fuel. The viability of the scheme proposed depends on the timely phasing in of the associated technologies, with proper lead time and to solve the many challenges. These challenges are certainly substantial, and make the current once-through U-based scheme pursued in the US by far a more practical (and cheaper) option. However, when compared to other transmutation schemes, the proposed one has arguably similar challenges and unknowns with potentially bigger rewards. (authors)« less

  18. A Biomechanical Comparison Of Pin Configurations Used For Percutaneous Pinning Of Distal Tibia Fractures In Children.

    PubMed

    Brantley, Justin; Majumdar, Aditi; Jobe, J Taylor; Kallur, Antony; Salas, Christina

    2016-01-01

    Percutaneous pin fixation is often used in conjunction with closed-reduction and cast immobilization to treat pediatric distal tibia fractures. The goal of this procedure is to maintain reduction and provide improved stabilization, in effort to facilitate a more anatomic union. We conducted a biomechanical study of the torsional and bending stability of three commonly used pin configurations in distal tibia fracture fixation. A transverse fracture was simulated at the metaphyseal/diaphyseal junction in 15 synthetic tibias. Each fracture was reduced and fixed with two Kirschner wires, arranged in one of three pin configurations: parallel, retrograde, medial to lateral pins entering at the medial malleolus distal to the fracture (group A); parallel, antegrade, medial to lateral pins entering at the medial diaphysis proximal to the fracture (group B); or a cross-pin configuration with one retrograde, medial to lateral pin entering the medial malleolus distal to the fracture and the second an antegrade, medial to lateral pin entering at the medial diaphysis proximal to the fracture (group C). Stability of each construct was assessed by resistance to torsion and bending. Resistance to external rotation stress was significantly higher in group A than group B (P = 0.044). Resistance to internal rotation stress was significantly higher in group C than group B (P = 0.003). There was no significant difference in torsional stiffness when comparing group A with group C. Under a medial-directed load, group B and C specimens were significantly stiffer than those in group A (28 N/mm and 24 N/mm vs. 14 N/mm for A; P = 0.001 and P = 0.009, respectively). None of the three pin configurations produced superior results with respect to all variables studied. Group A configuration provided the highest resistance to external rotation forces, which is the most clinically relevant variable under short-cast immobilization. Parallel, retrograde, medial to lateral pins entering at the medial malleolus provide the greatest resistance to external rotation of the foot while minimizing the potential for iatrogenic injury to soft tissue structures.

  19. Gas tungsten arc welder

    DOEpatents

    Christiansen, D.W.; Brown, W.F.

    A welder for automated closure of fuel pins by a gas tungsten arc process in which a rotating length of cladding is positioned adjacent a welding electrode in a sealed enclosure. An independently movable axial grinder is provided in the enclosure for refurbishing the used electrode between welds.

  20. Counterrotating-Shoulder Mechanism for Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Nunes, Arthur C., Jr.

    2007-01-01

    A counterrotating-shoulder mechanism has been proposed as an alternative to the mechanism and fixtures used in conventional friction stir welding. The mechanism would internally react most or all of the forces and torques exerted on the workpiece, making it unnecessary to react the forces and torques through massive external fixtures. In conventional friction stir welding, a rotating pin tool is inserted into, and moved along, a weld seam. As the pin tool moves, it stirs together material from the opposite sides of the seam to form the weld. A large axial plunge force must be exerted upon the workpiece through and by the pin tool and a shoulder attached above the pin tool in order to maintain the pressure necessary for the process. The workpiece is secured on top of an anvil, which supports the workpiece against the axial plunge force and against the torque exerted by the pin tool and shoulder. The anvil and associated fixtures must be made heavy (and, therefore, are expensive) to keep the workpiece stationary. In addition, workpiece geometries must be limited to those that can be accommodated by the fixtures. The predecessor of the proposed counterrotating-shoulder mechanism is a second-generation, self-reacting tool, resembling a bobbin, that makes it possible to dispense with the heavy anvil. This tool consists essentially of a rotating pin tool with opposing shoulders. Although the opposing shoulders maintain the necessary pressure without need to externally apply or react a large plunge force, the torque exerted on the workpiece remains unreacted in the absence of a substantial external fixture. Depending on the RPM and the thickness of the workpiece, the torque can be large. The proposed mechanism (see figure) would include a spindle attached to a pin tool with a lower shoulder. The spindle would be coupled via splines to the upper one of three bevel gears in a differential drive. The middle bevel gear would be the power-input gear and would be coupled to the upper and lower bevel gears. The lower bevel gear would be attached to the upper shoulder and would slide and rotate freely over the spindle. The spindle would be fastened by its threaded upper end to an external submechanism that would exert axial tension on the spindle to load the workpiece in compression between the shoulders. By reducing or eliminating (relative to the use of a self reacting tool) the torque that must be reacted externally, the use of the proposed tool would reduce the tendency toward distortion or slippage of the workpiece. To begin a weld, the spindle would be inserted through a hole in the workpiece or run-on tab at the beginning of the seam and fastened to the loading submechanism. Rotation and axial loading would be increased gradually from zero and, after a time to be determined by trial and error, translation along the weld seam would be increased gradually from zero to a steady weld speed. The weld would be ended by running the mechanism off the workpiece or, if the lower shoulder were detachable, by detaching the lower shoulder from the spindle and pulling the pin tool out.

  1. The potential for LiDAR technology to map fire fuel hazard over large areas of Australian forest.

    PubMed

    Price, Owen F; Gordon, Christopher E

    2016-10-01

    Fuel load is a primary determinant of fire spread in Australian forests. In east Australian forests, litter and canopy fuel loads and hence fire hazard are thought to be highest at and beyond steady-state fuel loads 15-20 years post-fire. Current methods used to predict fuel loads often rely on course-scale vegetation maps and simple time-since-fire relationships which mask fine-scale processes influencing fuel loads. Here we use Light Detecting and Remote Sensing technology (LiDAR) and field surveys to quantify post-fire mid-story and crown canopy fuel accumulation and fire hazard in Dry Sclerophyll Forests of the Sydney Basin (Australia) at fine spatial-scales (20 × 20 m cell resolution). Fuel cover was quantified in three strata important for crown fire propagation (0.5-4 m, 4-15 m, >15 m) over a 144 km(2) area subject to varying fire fuel ages. Our results show that 1) LiDAR provided a precise measurement of fuel cover in each strata and a less precise but still useful predictor of surface fuels, 2) cover varied greatly within a mapped vegetation class of the same fuel age, particularly for elevated fuel, 3) time-since-fire was a poor predictor of fuel cover and crown fire hazard because fuel loads important for crown fire propagation were variable over a range of fire fuel ages between 2 and 38 years post-fire, and 4) fuel loads and fire hazard can be high in the years immediately following fire. Our results show the benefits of spatially and temporally specific in situ fuel sampling methods such as LiDAR, and are widely applicable for fire management actions which aim to decrease human and environmental losses due to wildfire. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Physics Features of TRU-Fueled VHTRs

    DOE PAGES

    Lewis, Tom G.; Tsvetkov, Pavel V.

    2009-01-01

    The current waste management strategy for spent nuclear fuel (SNF) mandated by the US Congress is the disposal of high-level waste (HLW) in a geological repository at Yucca Mountain. Ongoing efforts on closed-fuel cycle options and difficulties in opening and safeguarding such a repository have led to investigations of alternative waste management strategies. One potential strategy for the US fuel cycle would be to make use of fuel loadings containing high concentrations of transuranic (TRU) nuclides in the next-generation reactors. The use of such fuels would not only increase fuel supply but could also potentially facilitate prolonged operation modes (viamore » fertile additives) on a single fuel loading. The idea is to approach autonomous operation on a single fuel loading that would allow marketing power units as nuclear batteries for worldwide deployment. Studies have already shown that high-temperature gas-cooled reactors (HTGRs) and their Generation IV (GEN IV) extensions, very-high-temperature reactors (VHTRs), have encouraging performance characteristics. This paper is focused on possible physics features of TRU-fueled VHTRs. One of the objectives of a 3-year U.S. DOE NERI project was to show that TRU-fueled VHTRs have the possibility of prolonged operation on a single fuel loading. A 3D temperature distribution was developed based on conceivable operation conditions of the 600 MWth VHTR design. Results of extensive criticality and depletion calculations with varying fuel loadings showed that VHTRs are capable for autonomous operation and HLW waste reduction when loaded with TRU fuel.« less

  3. Innovative Tools Advance Revolutionary Weld Technique

    NASA Technical Reports Server (NTRS)

    2009-01-01

    The iconic, orange external tank of the space shuttle launch system not only contains the fuel used by the shuttle s main engines during liftoff but also comprises the shuttle s backbone, supporting the space shuttle orbiter and solid rocket boosters. Given the tank s structural importance and the extreme forces (7.8 million pounds of thrust load) and temperatures it encounters during launch, the welds used to construct the tank must be highly reliable. Variable polarity plasma arc welding, developed for manufacturing the external tank and later employed for building the International Space Station, was until 1994 the best process for joining the aluminum alloys used during construction. That year, Marshall Space Flight Center engineers began experimenting with a relatively new welding technique called friction stir welding (FSW), developed in 1991 by The Welding Institute, of Cambridge, England. FSW differs from traditional fusion welding in that it is a solid-state welding technique, using frictional heat and motion to join structural components without actually melting any of the material. The weld is created by a shouldered pin tool that is plunged into the seam of the materials to be joined. The tool traverses the line while rotating at high speeds, generating friction that heats and softens but does not melt the metal. (The heat produced approaches about 80 percent of the metal s melting temperature.) The pin tool s rotation crushes and stirs the plasticized metal, extruding it along the seam as the tool moves forward. The material cools and consolidates, resulting in a weld with superior mechanical properties as compared to those weld properties of fusion welds. The innovative FSW technology promises a number of attractive benefits. Because the welded materials are not melted, many of the undesirables associated with fusion welding porosity, cracking, shrinkage, and distortion of the weld are minimized or avoided. The process is more energy efficient, safe (no toxic smoke or shielding gas, liquid metal splatter, arcing, dangerous voltage, or radiation), and environmentally sound (no consumables, fumes, or noise) than fusion welding. Under computer control, an automated FSW machine can create welds with high reproducibility, improving efficiency and overall quality of manufactured materials. The process also allows for welding dissimilar metals as well as those metals considered to be "unweldable" such as the 7xxx series aluminum alloys. Its effectiveness and versatility makes FSW useful for aerospace, rail, automotive, marine, and military applications. A downside to FSW, however, is the keyhole opening left in the weld when the FSW pin tool exits the weld joint. This is a significant problem when using the FSW process to join circumferential structures such as pipes and storage containers. Furthermore, weld joints that taper in material thickness also present problems when using the conventional FSW pin tool, because the threaded pin rotating within the weld joint material is a fixed length. There must be capability for the rotating pin to both increase and decrease in length in real time while welding the tapered material. (Both circumferential and tapered thickness weldments are found in the space shuttle external tank.) Marshall engineers addressed both the keyhole and tapered material thickness problems by developing the auto-adjustable pin tool. This unique piece of equipment automatically withdraws the pin into the tool s shoulder for keyhole closeout. In addition, the auto-adjustable pin tool retracts, or shortens, the rotating pin while welding a weld joint that tapers from one thickness to a thinner thickness. This year, the impact of the Marshall innovation was recognized with an "Excellence in Technology Transfer Award" from the Federal Laboratory Consortium.

  4. Review of Transient Testing of Fast Reactor Fuels in the Transient REActor Test Facility (TREAT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jensen, C.; Wachs, D.; Carmack, J.

    The restart of the Transient REActor Test (TREAT) facility provides a unique opportunity to engage the fast reactor fuels community to reinitiate in-pile experimental safety studies. Historically, the TREAT facility played a critical role in characterizing the behavior of both metal and oxide fast reactor fuels under off-normal conditions, irradiating hundreds of fuel pins to support fast reactor fuel development programs. The resulting test data has provided validation for a multitude of fuel performance and severe accident analysis computer codes. This paper will provide a review of the historical database of TREAT experiments including experiment design, instrumentation, test objectives, andmore » salient findings. Additionally, the paper will provide an introduction to the current and future experiment plans of the U.S. transient testing program at TREAT.« less

  5. Cargo-Positioning System for Next-Generation Spacecraft

    NASA Technical Reports Server (NTRS)

    Holladay, Jon; Colton, Jonathan

    2006-01-01

    A report discusses a proposed system for mounting loaded pallets in the cargo bay of a next-generation space-shuttle-like spacecraft, such that the center of mass of the cargo would lie within a 1-in. (2.54-cm) cube that would also contain the center of mass of the spacecraft. The system would include (1) an algorithm for planning the locations of the pallets, given the geometric and weight properties of the pallets, and the geometric restrictions of the cargo bay; (2) quick-connect/quick-disconnect mounting mechanisms similar to those now used on air hoses; (3) other mounting mechanisms, comprising mostly spring-loaded pins, in a locking subsystem that would prevent shifting of the pallets under load; and (4) mechanisms for performing fine position adjustments to satisfy the center-of-mass requirement. The position- adjusting mechanisms would be motor-driven lead-screw mechanisms in groups of three - one for positioning each pin of the locking subsystem along each of three mutually perpendicular coordinate axes. The system also would include a triple-threaded screw that would provide compensation for thermal expansion or contraction of the spacecraft.

  6. Estimation of forest fuel load from radar remote sensing

    USGS Publications Warehouse

    Saatchi, S.; Halligan, K.; Despain, Don G.; Crabtree, R.L.

    2007-01-01

    Understanding fire behavior characteristics and planning for fire management require maps showing the distribution of wildfire fuel loads at medium to fine spatial resolution across large landscapes. Radar sensors from airborne or spaceborne platforms have the potential of providing quantitative information about the forest structure and biomass components that can be readily translated to meaningful fuel load estimates for fire management. In this paper, we used multifrequency polarimetric synthetic aperture radar (SAR) imagery acquired over a large area of the Yellowstone National Park by the Airborne SAR sensor to estimate the distribution of forest biomass and canopy fuel loads. Semiempirical algorithms were developed to estimate crown and stem biomass and three major fuel load parameters, namely: 1) canopy fuel weight; 2) canopy bulk density; and 3) foliage moisture content. These estimates, when compared directly to measurements made at plot and stand levels, provided more than 70% accuracy and, when partitioned into fuel load classes, provided more than 85% accuracy. Specifically, the radar-generated fuel parameters were in good agreement with the field-based fuel measurements, resulting in coefficients of determination of R2 = 85 for the canopy fuel weight, R 2 = 0.84 for canopy bulk density, and R2 =0.78 for the foliage biomass. ?? 2007 IEEE.

  7. Gas tungsten arc welder with electrode grinder

    DOEpatents

    Christiansen, David W.; Brown, William F.

    1984-01-01

    A welder for automated closure of fuel pins by a gas tungsten arc process in which a rotating length of cladding is positioned adjacent a welding electrode in a sealed enclosure. An independently movable axial grinder is provided in the enclosure for refurbishing the used electrode between welds.

  8. The Pitt Innovation Challenge (PInCh): Driving Innovation in Translational Research Through an Incentive-Based, Problem-Focused Competition

    PubMed Central

    Fitzpatrick, Nicole Edgar; Maier, John; Yasko, Laurel; Mathias, David; Qua, Kacy; Wagner, Erika; Miller, Elizabeth; Reis, Steven E.

    2017-01-01

    Problem Translational research aims to move scientific discoveries across the biomedical spectrum from the laboratory to humans, and to ultimately transform clinical practice and public health policies. Despite efforts to accelerate translational research through national initiatives, several major hurdles remain. Approach The authors created the Pitt Innovation Challenge (PInCh) as an incentive-based, problem-focused approach to solving identified clinical or public health problems at the University of Pittsburgh Clinical and Translational Science Institute in spring 2014. With input from a broad range of stakeholders, PInCh leadership arrived at the challenge question: How do we empower individuals to take control of their own health outcomes? The authors developed the PInCh’s three-round proposal submission and review process as well as an online contest management tool to support the process. Outcomes Ninety-two teams submitted videos proposals in round one. Proposals included mobile applications (29, 32%), other information technology (19, 21%), and community program (22, 24%) solutions. Ten teams advanced to the final round, where three were awarded $100,000 to implement their solution over twelve months. In a six-month follow-up survey, 6/11 (55%) team leaders stated the PInCh helped to facilitate connections outside their normal sphere of collaborators. Next Steps Additional educational training sessions related to problem-focused research will be developed. The PInCh will be expanded to engage investment and industry communities to facilitate the translation of solutions to clinical practice via commercialization pathways. External organizations and other universities will be engaged to use the PInCh as a mechanism to fuel innovation in their spaces. PMID:27508341

  9. Colorado Front Range fuel photo series

    Treesearch

    Michael A. Battaglia; Jonathan M. Dodson; Wayne D. Shepperd; Mark J. Platten; Owen M. Tallmadge

    2005-01-01

    This photo series was developed to help fire managers estimate ground and surface fuel loads that exist in cover types of the Southern Colorado Front Range wildland-urban interface. Photos and associated data representing low, medium, and high fuel loadings from this study are presented by forest type, along with examples of typical or median fuel loadings that were...

  10. Relating fuel loads to overstorey structure and composition in a fire-excluded Sierra Nevada mixed conifer forest

    Treesearch

    Jamie M. Lydersen; Brandon M. Collins; Eric E. Knapp; Gary B. Roller; Scott Stephens

    2015-01-01

    Although knowledge of surface fuel loads is critical for evaluating potential fire behaviour and effects, their inherent variability makes these difficult to quantify. Several studies relate fuel loads to vegetation type, topography and spectral imaging, but little work has been done examining relationships between forest overstorey variables and surface fuel...

  11. Evidence of Self-Organized Criticality in Dry Sliding Friction

    NASA Technical Reports Server (NTRS)

    Zypman, Fredy R.; Ferrante, John; Jansen, Mark; Scanlon, Kathleen; Abel, Phillip

    2003-01-01

    This letter presents experimental results on unlubricated friction, which suggests that stick-slip is described by self-organized criticality (SOC). The data, obtained with a pin-on-disc tribometer examines the variation of the friction force as a function of time-or sliding distance. This is the first time that standard tribological equipment has been used to examine the possibility of SOC. The materials were matching pins and discs of aluminium loaded with 250, 500 and 1000 g masses, and matching M50 steel couples loaded with a 1000 g mass. An analysis of the data shows that the probability distribution of slip sizes follows a power law. We perform a careful analysis of all the properties, beyond the two just mentioned, which are required to imply the presence of SOC. Our data strongly support the existence of SOC for stick-slip in dry sliding friction.

  12. Load and dynamic assessment of B-52B-008 carrier aircraft for finned configuration 1 space shuttle solid rocket booster decelerator subsystem drop test vehicle. Volume 3: Pylon load data method 1

    NASA Technical Reports Server (NTRS)

    Quade, D. A.

    1978-01-01

    The pylon loading at the drop test vehicle and wing interface attach points is presented. The loads shown are determined using a stiffness method, which assumes the side stiffness of the foreward hook guide to be one-fourth of the fore and aft stiffness of each drag pin. The net effect of this assumption is that the forward hook guide reacts approximately 85% of the drop test vehicle yawing moment. For a comparison of these loads to previous X-15 analysis design loadings, see Volume 1 of this document.

  13. [Fire behavior of Mongolian oak leaves fuel bed under no-wind and zero-slope conditions. II. Analysis of the factors affecting flame length and residence time and related prediction models].

    PubMed

    Zhang, Ji-Li; Liu, Bo-Fei; Di, Xue-Ying; Chu, Teng-Fei; Jin, Sen

    2012-11-01

    Taking fuel moisture content, fuel loading, and fuel bed depth as controlling factors, the fuel beds of Mongolian oak leaves in Maoershan region of Northeast China in field were simulated, and a total of one hundred experimental burnings under no-wind and zero-slope conditions were conducted in laboratory, with the effects of the fuel moisture content, fuel loading, and fuel bed depth on the flame length and its residence time analyzed and the multivariate linear prediction models constructed. The results indicated that fuel moisture content had a significant negative liner correlation with flame length, but less correlation with flame residence time. Both the fuel loading and the fuel bed depth were significantly positively correlated with flame length and its residence time. The interactions of fuel bed depth with fuel moisture content and fuel loading had significant effects on the flame length, while the interactions of fuel moisture content with fuel loading and fuel bed depth affected the flame residence time significantly. The prediction model of flame length had better prediction effect, which could explain 83.3% of variance, with a mean absolute error of 7.8 cm and a mean relative error of 16.2%, while the prediction model of flame residence time was not good enough, which could only explain 54% of variance, with a mean absolute error of 9.2 s and a mean relative error of 18.6%.

  14. Carbon, fire, and fuels: The importance of fuels and fuel characterization and the status of wildland fire fuels data for the United States

    NASA Astrophysics Data System (ADS)

    French, N. H. F.; Prichard, S.; McKenzie, D.; Kennedy, M. C.; Billmire, M.; Ottmar, R. D.; Kasischke, E. S.

    2016-12-01

    Quantification of emissions of carbon during combustion relies on knowing three general variables: how much landscape is impacted by fire (burn area), how much carbon is in that landscape (fuel loading), and fuel properties that determine the fraction that is consumed (fuel condition). These variables also determine how much carbon remains at the site in the form of unburned organic material or char, and therefore drive post-fire carbon dynamics and pools. In this presentation we review the importance of understanding fuel type, fuel loading, and fuel condition for quantifying carbon dynamics properly during burning and for measuring and mapping fuels across landscapes, regions, and continents. Variability in fuels has been shown to be a major driver of uncertainty in fire emissions, but has had little attention until recently. We review the current state of fuel characterization for fire management and carbon accounting, and present a new approach to quantifying fuel loading for use in fire-emissions mapping and for improving fire-effects assessment. The latest results of a study funded by the Joint Fire Science Program (JFSP) are presented, where a fuel loading database is being built to quantify variation in fuel loadings, as represented in the Fuel Characteristic Classification System (FCCS), across the conterminous US and Alaska. Statistical assessments of these data at multiple spatial scales will improve tools used by fire managers and scientists to quantify fire's impact on the land, atmosphere, and carbon cycle.

  15. Sources of variance in BC mass measurements from a small marine engine: Influence of the instruments, fuels and loads

    NASA Astrophysics Data System (ADS)

    Jiang, Yu; Yang, Jiacheng; Gagné, Stéphanie; Chan, Tak W.; Thomson, Kevin; Fofie, Emmanuel; Cary, Robert A.; Rutherford, Dan; Comer, Bryan; Swanson, Jacob; Lin, Yue; Van Rooy, Paul; Asa-Awuku, Akua; Jung, Heejung; Barsanti, Kelley; Karavalakis, Georgios; Cocker, David; Durbin, Thomas D.; Miller, J. Wayne; Johnson, Kent C.

    2018-06-01

    Knowledge of black carbon (BC) emission factors from ships is important from human health and environmental perspectives. A study of instruments measuring BC and fuels typically used in marine operation was carried out on a small marine engine. Six analytical methods measured the BC emissions in the exhaust of the marine engine operated at two load points (25% and 75%) while burning one of three fuels: a distillate marine (DMA), a low sulfur, residual marine (RMB-30) and a high-sulfur residual marine (RMG-380). The average emission factors with all instruments increased from 0.08 to 1.88 gBC/kg fuel in going from 25 to 75% load. An analysis of variance (ANOVA) tested BC emissions against instrument, load, and combined fuel properties and showed that both engine load and fuels had a statistically significant impact on BC emission factors. While BC emissions were impacted by the fuels used, none of the fuel properties investigated (sulfur content, viscosity, carbon residue and CCAI) was a primary driver for BC emissions. Of the two residual fuels, RMB-30 with the lower sulfur content, lower viscosity and lower residual carbon, had the highest BC emission factors. BC emission factors determined with the different instruments showed a good correlation with the PAS values with correlation coefficients R2 >0.95. A key finding of this research is the relative BC measured values were mostly independent of load and fuel, except for some instruments in certain fuel and load combinations.

  16. Minor Actinides-Loaded FBR Core Concept Suitable for the Introductory Period in Japan

    NASA Astrophysics Data System (ADS)

    Fujimura, Koji; Sasahira, Akira; Yamashita, Junichi; Fukasawa, Tetsuo; Hoshino, Kuniyoshi

    According to the Japan's Framework for Nuclear Energy Policy(1), a basic scenario for fast breeder reactors (FBRs) is that they will be introduced on a commercial basis starting around 2050 replacing light water reactors (LWRs). During the FBR introduction period, the Pu from LWR spent fuel is used for FBR startup. Howerver, the FBR core loaded with this Pu has a larger burnup reactivity due to its larger isotopic content of Pu-241 than a core loaded with Pu from an FBR multi-recycling core. The increased burnup reactivity may reduce the cycle length of an FBR. We investigated, an FBR transitional core concept to confront the issues of the FBR introductory period in Japan. Core specifications are based on the compact-type sodium-cooled mixed oxide (MOX)-fueled core designed from the Japanese FBR cycle feasibility studies, because lower Pu inventory should be better for the FBR introductory period in view of its flexibility for the required reprocessing amount of LWR spent fuel to start up FBRs. The reference specifications were selected as follows. Output of 1500MWe and average discharge fuel burnup of about 150GWd/t. Minor Actinides (MAs) recovered from LWR spent fuels which provide Pu to startup FBRs are loaded to the initial loading fuels and exchanged fuels during few cycles until equilibrium. We made the MA content of the initial loading fuel four kinds like 0%, 3%, 4%, 5%. The average of the initial loading fuel is assumed to be 3%, and that of the exchange fuel is set as 5%. This 5% maximum of the MA content is based on the irradiation results of the experimental fast reactor Joyo. We evaluated the core performances including burnup characteristics and the reactivity coefficient and confirmed that transitional core from initial loading until equilibrium cycle with loaded Pu from LWR spent fuel performs similary to an FBR multi-recycling core.

  17. Influence of different transitional restorations on the fracture resistance of premolar teeth.

    PubMed

    Qualtrough, A J; Cawte, S G; Wilson, N H

    2001-01-01

    Controversy exists over the most favorable material and type of restoration to be used to transitionally restore teeth destined to be crowned. This in vitro study uses fracture resistance testing to compare eight different transitional restorations in maxillary premolars. Ninety sound maxillary premolars were randomly selected and allocated to nine groups, each comprising 10 teeth. One group remained unrestored and was used as the control. Teeth in the remaining groups were prepared to a standard cavity form using: a copy milling process removing the palatal cusp. Restorations were placed using amalgam with dentin pins and cavity varnish; amalgam with an amalgam bonding agent; resin composite with dentin pins and a dentin bonding agent; resin composite with a dentin bonding agent only; resin-modified glass ionomer with dentin pins; resin-modified glass ionomer cement alone and cermet with dentin pins and cermet alone. Each restored tooth was then subjected to axial loading via a bar contacting the buccal and restored palatal cusps until failure of the restored tooth occurred. The mean load-to-fracture values were statistically compared and the modes of failure recorded. It was found that the choice of restorative material and type of restoration had little effect on the fracture resistance of the restored tooth with the exception of those teeth restored with reinforced glass ionomer cement alone, which exhibited a significantly lower resistance to fracture than the other restored teeth. However, the choice of restorative material/technique did influence the mode of failure. Failure in teeth restored with resin-modified glass ionomer cement alone produced the least damage to the remaining tooth tissue when failure occurred. Consequently, this material may offer the most favorable range of properties for the transitional restoration of extensively broken-down maxillary premolar teeth destined to be crowned. Furthermore, the findings of this study fail to support the use of dentin pins in the placement of bonded build-up restorations.

  18. [Fire behavior of Mongolian oak leaves fuel-bed under no-wind and zero-slope conditions. I. Factors affecting fire spread rate and modeling].

    PubMed

    Jin, Sen; Liu, Bo-Fei; Di, Xue-Ying; Chu, Teng-Fei; Zhang, Ji-Li

    2012-01-01

    Aimed to understand the fire behavior of Mongolian oak leaves fuel-bed under field condition, the leaves of a secondary Mongolian oak forest in Northeast Forestry University experimental forest farm were collected and brought into laboratory to construct fuel-beds with varied loading, height, and moisture content, and a total of 100 experimental fires were burned under no-wind and zero-slope conditions. It was observed that the fire spread rate of the fuel-beds was less than 0.5 m x min(-1). Fuel-bed loading, height, and moisture contents all had significant effects on the fire spread rate. The effect of fuel-bed moisture content on the fire spread had no significant correlations with fuel-bed loading and height, but the effect of fuel-bed height was related to the fuel-bed loading. The packing ratio of fuel-beds had less effect on the fire spread rate. Taking the fuel-bed loading, height, and moisture content as predictive variables, a prediction model for the fire spread rate of Mongolian oak leaves fuel-bed was established, which could explain 83% of the variance of the fire spread rate, with a mean absolute error 0.04 m x min(-1) and a mean relative error less than 17%.

  19. Analysis on Reactor Criticality Condition and Fuel Conversion Capability Based on Different Loaded Plutonium Composition in FBR Core

    NASA Astrophysics Data System (ADS)

    Permana, Sidik; Saputra, Geby; Suzuki, Mitsutoshi; Saito, Masaki

    2017-01-01

    Reactor criticality condition and fuel conversion capability are depending on the fuel arrangement schemes, reactor core geometry and fuel burnup process as well as the effect of different fuel cycle and fuel composition. Criticality condition of reactor core and breeding ratio capability have been investigated in this present study based on fast breeder reactor (FBR) type for different loaded fuel compositions of plutonium in the fuel core regions. Loaded fuel of Plutonium compositions are based on spent nuclear fuel (SNF) of light water reactor (LWR) for different fuel burnup process and cooling time conditions of the reactors. Obtained results show that different initial fuels of plutonium gives a significant chance in criticality conditions and fuel conversion capability. Loaded plutonium based on higher burnup process gives a reduction value of criticality condition or less excess reactivity. It also obtains more fuel breeding ratio capability or more breeding gain. Some loaded plutonium based on longer cooling time of LWR gives less excess reactivity and in the same time, it gives higher breeding ratio capability of the reactors. More composition of even mass plutonium isotopes gives more absorption neutron which affects to decresing criticality or less excess reactivity in the core. Similar condition that more absorption neutron by fertile material or even mass plutonium will produce more fissile material or odd mass plutonium isotopes to increase the breeding gain of the reactor.

  20. Pellet-clad mechanical interaction screening using VERA applied to Watts Bar Unit 1, Cycles 1–3

    DOE PAGES

    Stimpson, Shane; Powers, Jeffrey; Clarno, Kevin; ...

    2017-12-22

    The Consortium for Advanced Simulation of Light Water Reactors (CASL) aims to provide high-fidelity multiphysics simulations of light water nuclear reactors. To accomplish this, CASL is developing the Virtual Environment for Reactor Applications (VERA), which is a suite of code packages for thermal hydraulics, neutron transport, fuel performance, and coolant chemistry. As VERA continues to grow and expand, there has been an increased focus on incorporating fuel performance analysis methods. One of the primary goals of CASL is to estimate local cladding failure probability through pellet-clad interaction, which consists of both pellet-clad mechanical interaction (PCMI) and stress corrosion cracking. Estimatingmore » clad failure is important to preventing release of fission products to the primary system and accurate estimates could prove useful in establishing less conservative power ramp rates or when considering load-follow operations.While this capability is being pursued through several different approaches, the procedure presented in this article focuses on running independent fuel performance calculations with BISON using a file-based one-way coupling based on multicycle output data from high fidelity, pin-resolved coupled neutron transport–thermal hydraulics simulations. This type of approach is consistent with traditional fuel performance analysis methods, which are typically separate from core simulation analyses. A more tightly coupled approach is currently being developed, which is the ultimate target application in CASL.Recent work simulating 12 cycles of Watts Bar Unit 1 with VERA core simulator are capitalized upon, and quarter-core BISON results for parameters of interest to PCMI (maximum centerline fuel temperature, maximum clad hoop stress, and minimum gap size) are presented for Cycles 1–3. In conclusion, based on these results, this capability demonstrates its value and how it could be used as a screening tool for gathering insight into PCMI, singling out limiting rods for further, more detailed analysis.« less

  1. Pellet-clad mechanical interaction screening using VERA applied to Watts Bar Unit 1, Cycles 1–3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stimpson, Shane; Powers, Jeffrey; Clarno, Kevin

    The Consortium for Advanced Simulation of Light Water Reactors (CASL) aims to provide high-fidelity multiphysics simulations of light water nuclear reactors. To accomplish this, CASL is developing the Virtual Environment for Reactor Applications (VERA), which is a suite of code packages for thermal hydraulics, neutron transport, fuel performance, and coolant chemistry. As VERA continues to grow and expand, there has been an increased focus on incorporating fuel performance analysis methods. One of the primary goals of CASL is to estimate local cladding failure probability through pellet-clad interaction, which consists of both pellet-clad mechanical interaction (PCMI) and stress corrosion cracking. Estimatingmore » clad failure is important to preventing release of fission products to the primary system and accurate estimates could prove useful in establishing less conservative power ramp rates or when considering load-follow operations.While this capability is being pursued through several different approaches, the procedure presented in this article focuses on running independent fuel performance calculations with BISON using a file-based one-way coupling based on multicycle output data from high fidelity, pin-resolved coupled neutron transport–thermal hydraulics simulations. This type of approach is consistent with traditional fuel performance analysis methods, which are typically separate from core simulation analyses. A more tightly coupled approach is currently being developed, which is the ultimate target application in CASL.Recent work simulating 12 cycles of Watts Bar Unit 1 with VERA core simulator are capitalized upon, and quarter-core BISON results for parameters of interest to PCMI (maximum centerline fuel temperature, maximum clad hoop stress, and minimum gap size) are presented for Cycles 1–3. In conclusion, based on these results, this capability demonstrates its value and how it could be used as a screening tool for gathering insight into PCMI, singling out limiting rods for further, more detailed analysis.« less

  2. Surface fuel changes after severe disturbances in northern Rocky Mountain ecosystems

    Treesearch

    Chris Stalling; Robert E. Keane; Molly Retzlaff

    2017-01-01

    It is generally assumed that severe disturbances predispose damaged forests to high fire hazard by creating heavy fuel loading conditions. Of special concern is the perception that surface fuel loadings become high as recently killed trees deposit foliage and woody material on the ground and that these high fuel loadings may cause abnormally severe fires. This study...

  3. Source Term Experiments Project (STEP): Aerosol characterization system

    NASA Astrophysics Data System (ADS)

    Schlenger, B. J.; Dunn, P. F.

    A series of four experiments is being conducted at Argonne National Laboratory's TREAT Reactor. They were designed to provide some of the necessary data regarding magnitude and release rates of fission products from degraded fuel pins, physical and chemical characteristics of released fission products, and aerosol formation and transport phenomena. These are in pile experiments, whereby the test fuel is heated by neutron induced fission and subsequent clad oxidation in steam environments that simulate as closely as practical predicted reactor accident conditions. The test sequences cover a range of pressure and fuel heatup rate, and include the effect of Aq/In/Cd control rod material.

  4. Wear studies of all UHMWPE couples under various bio-tribological conditions.

    PubMed

    Joyce, T J; Unsworth, A

    2004-01-01

    Wear tests were undertaken in which ultra high molecular weight polyethylene (UHMWPE) was rubbed against itself. Tests primarily employed a pin-on-plate wear test machine, with distilled water, Ringer solution and dilute bovine serum being used as the lubricants. Loads of 10N and 40N were employed, and some test pins had a rotational motion added. In all cases wear was high, with mean wear factors of up to 91 10 -6 mm3/Nm being measured, but the addition of rotation reduced the amount of material worn from the test plates. In the presence of bovine serum and under reciprocation only, pin wear was relatively low. With bovine serum as the lubricant, total mean wear factors for the UHMWPE couples were calculated to be in the range of 35 to 58 10-6mm3/Nm. Therefore the pin-on-plate tests showed that the choice of lubricant as well as the motion applied to the test pin had a significant influence on the wear volumes measured. A two-piece UHMWPE 'prosthesis' with matching hemispherical faces was fabricated and tested on a finger simulator. Distilled water was used as the lubricant and wear factors were found to be greater for the metacarpal component, 21 10 -6mm3/Nm, than the phalangeal component, 3 10-6mm3/Nm, after ten million cycles of testing. This result paralleled the greater wear seen by the plate than by the pin in the pin-on-plate tests under reciprocating motion. (Journal of Applied Biomaterials & Biomechanics 2004; 2: 29-34).

  5. Enhancing BWR proliferation resistance fuel with minor actinides

    NASA Astrophysics Data System (ADS)

    Chang, Gray S.

    2009-03-01

    To reduce spent fuel for storage and enhance the proliferation resistance for the intermediate-term, there are two major approaches (a) increase the discharged spent fuel burnup in the advanced light water reactor- LWR (Gen-III Plus), which not only can reduce the spent fuel for storage, but also increase the 238Pu isotopes ratio to enhance the proliferation resistance, and (b) use of transuranic nuclides ( 237Np and 241Am) in the high burnup fuel, which can drastically increase the proliferation resistance isotope ratio of 238Pu/Pu. For future advanced nuclear systems, minor actinides (MA) are viewed more as a resource to be recycled, and transmuted to less hazardous and possibly more useful forms, rather than simply disposed of as a waste stream in an expensive repository facility. As a result, MAs play a much larger part in the design of advanced systems and fuel cycles, not only as additional sources of useful energy, but also as direct contributors to the reactivity control of the systems into which they are incorporated. In the study, a typical boiling water reactor (BWR) fuel unit lattice cell model with UO 2 fuel pins will be used to investigate the effectiveness of minor actinide reduction approach (MARA) for enhancing proliferation resistance and improving the fuel cycle performance in the intermediate-term goal for future nuclear energy systems. To account for the water coolant density variation from the bottom (0.76 g/cm 3) to the top (0.35 g/cm 3) of the core, the axial coolant channel and fuel pin were divided to 24 nodes. The MA transmutation characteristics at different elevations were compared and their impact on neutronics criticality discussed. The concept of MARA, which involves the use of transuranic nuclides ( 237Np and/or 241Am), significantly increases the 238Pu/Pu ratio for proliferation resistance, as well as serves as a burnable absorber to hold-down the initial excess reactivity. It is believed that MARA can play an important role in atoms for peace and the intermediate-term of nuclear energy reconnaissance.

  6. USING WASTE TO CLEAN UP THE ENVIRONMENT: CELLULOSIC ETHANOL, THE FUTURE OF FUELS

    EPA Science Inventory

    In the process of converting municipal solid waste (MSW) into ethanol we optimized the first two major steps of pretreatment and enzymatic hydrolysis stages to enhance the sugar yield and to reduce the cost. For the pretreatment process, we tested different parameters of react...

  7. Stereo photo series for quantifying natural fuels. Volume XII: Post-hurricane fuels in forests of the Southeast United States.

    Treesearch

    Robert E. Vihnanek; Cameron S. Balog; Clinton S. Wright; Roger D. Ottmar; Jeffrey W. Kelly

    2009-01-01

    Two series of single and stereo photographs display a range of natural conditions and fuel loadings in post-hurricane forests in the southeastern United States. Each group of photos includes inventory information summarizing vegetation composition, structure and loading, woody material loading and density by size class, forest floor loading, and various site...

  8. Final report of fuel dynamics Test E7

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doerner, R.C.; Murphy, W.F.; Stanford, G.S.

    1977-04-01

    Test data from an in-pile failure experiment of high-power LMFBR-type fuel pins in a simulated $3/s transient-overpower (TOP) accident are reported and analyzed. Major conclusions are that (1) a series of cladding ruptures during the 100-ms period preceding fuel release injected small bursts of fission gas into the flow stream; (2) gas release influenced subsequent cladding melting and fuel release (there were no measurable FCI's (fuel-coolant interactions), and all fuel motion observed by the hodoscope was very slow); (3) the predominant postfailure fuel motion appears to be radial swelling that left a spongy fuel crust on the holder wall; (4)more » less than 4 to 6 percent of the fuel moved axially out of the original fuel zone, and most of this froze within a 10-cm region above the original top of the fuel zone to form the outlet blockage. An inlet blockage approximately 1 cm long was formed and consisted of large interconnected void regions. Both blockages began just beyond the ends of the fuel pellets.« less

  9. 40 CFR 80.510 - What are the standards and marker requirements for NRLM diesel fuel and ECA marine fuel?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... for in paragraph (i) of this section, any diesel fuel, other than jet fuel or kerosene that is... this section, any diesel fuel, other than jet fuel or kerosene that is downstream of a truck loading... diesel fuel, other than jet fuel or kerosene that is downstream of a truck loading terminal, that...

  10. 40 CFR 80.510 - What are the standards and marker requirements for NRLM diesel fuel and ECA marine fuel?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... for in paragraph (i) of this section, any diesel fuel, other than jet fuel or kerosene that is... this section, any diesel fuel, other than jet fuel or kerosene that is downstream of a truck loading... diesel fuel, other than jet fuel or kerosene that is downstream of a truck loading terminal, that...

  11. Precast/Prestressed Concrete Experiments Performance on Non-Load Bearing Sandwich Wall Panels

    DTIC Science & Technology

    2011-01-01

    expanded polystyrene (EPS), extruded expanded polystyrene (XPS...34 Ø Strands @ 14.9 kips 3/8" Ø Strands @ 14.9 kips 9" #3@18" XEPS Insulation Extruded Expanded Polystyrene 4" (Metal C-Pins) Metal C-Pins 1’-8" 3" 3...34 3" 8" 1’-4" 8" 2’-8" 11 2 " 6" 11 2 " 3/8" Ø Strands @ 14.9 kips 3/8" Ø Strands @ 14.9 kips 9" #3@18" XEPS Insulation Extruded Expanded Polystyrene

  12. 78. PIPING CHANNEL FOR FUEL LOADING, FUEL TOPPING, COMPRESSED AIR, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    78. PIPING CHANNEL FOR FUEL LOADING, FUEL TOPPING, COMPRESSED AIR, GASEOUS NITROGEN, AND HELIUM - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  13. Optimization of geometric parameters of heat exchange pipes pin finning

    NASA Astrophysics Data System (ADS)

    Akulov, K. A.; Golik, V. V.; Voronin, K. S.; Zakirzakov, A. G.

    2018-05-01

    The work is devoted to optimization of geometric parameters of the pin finning of heat-exchanging pipes. Pin fins were considered from the point of view of mechanics of a deformed solid body as overhang beams with a uniformly distributed load. It was found out under what geometric parameters of the nib (diameter and length); the stresses in it from the influence of the washer fluid will not exceed the yield strength of the material (aluminum). Optimal values of the geometric parameters of nibs were obtained for different velocities of the medium washed by them. As a flow medium, water and air were chosen, and the cross section of the nibs was round and square. Pin finning turned out to be more than 3 times more compact than circumferential finning, so its use makes it possible to increase the number of fins per meter of the heat-exchanging pipe. And it is well-known that this is the main method for increasing the heat transfer of a convective surface, giving them an indisputable advantage.

  14. Comparison of the Effects of Tool Geometry for Friction Stir Welding Thin Sheet Aluminum Alloys for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Merry, Josh; Takeshita, Jennifer; Tweedy, Bryan; Burford, Dwight

    2006-01-01

    In this presentation, the results of a recent study on the effect of pin tool design for friction stir welding thin sheets (0.040") of aluminum alloys 2024 and 7075 are provided. The objective of this study was to investigate and document the effect of tool shoulder and pin diameter, as well as the presence of pin flutes, on the resultant microstructure and mechanical properties at both room temperature and cryogenic temperature. Specifically, the comparison between three tools will include: FSW process load analysis (tool forces required to fabricate the welds), Static Mechanical Properties (ultimate tensile strength, yield strength, and elongation), and Process window documenting the range of parameters that can be used with the three pin tools investigated. All samples were naturally aged for a period greater than 10 days. Prior research has shown 7075 may require post weld heat treatment. Therefore, an additional pair of room temperature and cryogenic temperature samples was post-weld aged to the 7075-T7 condition prior to mechanical testing.

  15. Comparing fuel reduction treatments for reducing wildfire size and intensity in a boreal forest landscape of northeastern China.

    PubMed

    Wu, Zhiwei; He, Hong S; Liu, Zhihua; Liang, Yu

    2013-06-01

    Fuel load is often used to prioritize stands for fuel reduction treatments. However, wildfire size and intensity are not only related to fuel loads but also to a wide range of other spatially related factors such as topography, weather and human activity. In prioritizing fuel reduction treatments, we propose using burn probability to account for the effects of spatially related factors that can affect wildfire size and intensity. Our burn probability incorporated fuel load, ignition probability, and spread probability (spatial controls to wildfire) at a particular location across a landscape. Our goal was to assess differences in reducing wildfire size and intensity using fuel-load and burn-probability based treatment prioritization approaches. Our study was conducted in a boreal forest in northeastern China. We derived a fuel load map from a stand map and a burn probability map based on historical fire records and potential wildfire spread pattern. The burn probability map was validated using historical records of burned patches. We then simulated 100 ignitions and six fuel reduction treatments to compare fire size and intensity under two approaches of fuel treatment prioritization. We calibrated and validated simulated wildfires against historical wildfire data. Our results showed that fuel reduction treatments based on burn probability were more effective at reducing simulated wildfire size, mean and maximum rate of spread, and mean fire intensity, but less effective at reducing maximum fire intensity across the burned landscape than treatments based on fuel load. Thus, contributions from both fuels and spatially related factors should be considered for each fuel reduction treatment. Published by Elsevier B.V.

  16. Predicting response of fuel load to future changes in climate and atmospheric composition in the Southern United States.

    Treesearch

    Chi Zhang; Hanqin Tian; Yuhang Wang; Tao Zeng; Yongqiang Liu

    2010-01-01

    The model projected ecosystem carbon dynamics were incorporated into the default (contemporary) fuel load map developed by FCCS (Fuel Characteristic Classification System) to estimate the dynamics of fuel load in the Southern United States in response to projected changes in climate and atmosphere (CO2 and nitrogen deposition) from 2002 to 2050. The study results...

  17. Vibration analyses of an inclined flat plate subjected to moving loads

    NASA Astrophysics Data System (ADS)

    Wu, Jia-Jang

    2007-01-01

    The object of this paper is to present a moving mass element so that one may easily perform the dynamic analysis of an inclined plate subjected to moving loads with the effects of inertia force, Coriolis force and centrifugal force considered. To this end, the mass, damping and stiffness matrices of the moving mass element, with respect to the local coordinate system, are derived first by using the principle of superposition and the definition of shape functions. Next, the last property matrices of the moving mass element are transformed into the global coordinate system and combined with the property matrices of the inclined plate itself to determine the effective overall property matrices and the instantaneous equations of motion of the entire vibrating system. Because the property matrices of the moving mass element have something to do with the instantaneous position of the moving load, both the property matrices of the moving mass element and the effective overall ones of the entire vibrating system are time-dependent. At any instant of time, solving the instantaneous equations of motion yields the instantaneous dynamic responses of the inclined plate. For validation, the presented technique is used to determine the dynamic responses of a horizontal pinned-pinned plate subjected to a moving load and a satisfactory agreement with the existing literature is achieved. Furthermore, extensive studies on the inclined plate subjected to moving loads reveal that the influences of moving-load speed, inclined angle of the plate and total number of the moving loads on the dynamic responses of the inclined plate are significant in most cases, and the effects of Coriolis force and centrifugal force are perceptible only in the case of higher moving-load speed.

  18. Mode I analysis of a cracked circular disk subject to a couple and a force

    NASA Technical Reports Server (NTRS)

    Gross, B.

    1978-01-01

    Mode I stress intensity coefficients were obtained for an edge-cracked disk (round compact specimen). Results for this plane elastostatic problem, obtained by a boundary collocation analysis are presented for A/D ratios of 0.35 to 1, where A is the crack length and D is the disk diameter. The results presented are for two complementary types of loading. By superposition of these results the stress intensity factor for any practical load line location of a pin-loaded round compact specimen can be obtained.

  19. Fracture Testing of Integral Stiffened Structure

    NASA Technical Reports Server (NTRS)

    Newman, John A.; Smith, Stephen W.; Piascik, Robert S.; Dawicke, David S.; Johnston, William M.; Willard, Scott A.

    2008-01-01

    Laboratory testing was conducted to evaluate safety concerns for integrally-stiffened tanks that were found to have developed cracks during pressurization testing. Cracks occurred at fastener holes where additional stiffeners were attached to the integrally-stiffened tank structure. Tests were conducted to obtain material properties and to reproduce the crack morphologies that were observed in service to help determine if the tanks are safe for operation. Reproducing the cracking modes observed during pressurization testing required a complex loading state involving both a tensile load in the integrally-stiffened structure and a pin-load at a fastener hole.

  20. The Dugdale model for the compact specimen

    NASA Technical Reports Server (NTRS)

    Mall, S.; Newman, J. C., Jr.

    1983-01-01

    Plastic zone size and crack tip opening displacement (CTOD) equations were developed. Boundary collocation analyses were used to analyze the compact specimen subjected to various loading conditions (pin loads, concentrated forces, and uniform pressure acting on the crack surface). Stress intensity factor and crack surface displacement equations for some of these loadings were developed and used to obtain the Dugdale model. The results from the equations for plastic zone size and CTOD agreed well with numerical values calculated by Terada for crack length to width ratios greater than 0.4.

  1. Chinese-English Electronics and Telecommunications Dictionary. Volume 2

    DTIC Science & Technology

    1976-11-01

    cA fS] i^ W ^- bearing pin 01 axial 02 axial symmetry; rotational 03 synmetry axle weight 0« shaft clip 05 collar; burr CM axial ...terminal strips 07 J<A# three-way Joint ; triple Joint 08 K#frtt three-wattmeter method. 09 *t*Ü«f*f* three-dimensional wave propagation 10...design load ; assumed load ; 29 load rating 1040 •hejl genju wttt mm •hejl gongahl sir«* •h«Ji jlauan Äjtrt» •hejl Jlsuanblao ■ it it * /< •h«Jl

  2. Using field data to assess model predictions of surface and ground fuel consumption by wildfire in coniferous forests of California

    NASA Astrophysics Data System (ADS)

    Lydersen, Jamie M.; Collins, Brandon M.; Ewell, Carol M.; Reiner, Alicia L.; Fites, Jo Ann; Dow, Christopher B.; Gonzalez, Patrick; Saah, David S.; Battles, John J.

    2014-03-01

    Inventories of greenhouse gas (GHG) emissions from wildfire provide essential information to the state of California, USA, and other governments that have enacted emission reductions. Wildfires can release a substantial amount of GHGs and other compounds to the atmosphere, so recent increases in fire activity may be increasing GHG emissions. Quantifying wildfire emissions however can be difficult due to inherent variability in fuel loads and consumption and a lack of field data of fuel consumption by wildfire. We compare a unique set of fuel data collected immediately before and after six wildfires in coniferous forests of California to fuel consumption predictions of the first-order fire effects model (FOFEM), based on two different available fuel characterizations. We found strong regional differences in the performance of different fuel characterizations, with FOFEM overestimating the fuel consumption to a greater extent in the Klamath Mountains than in the Sierra Nevada. Inaccurate fuel load inputs caused the largest differences between predicted and observed fuel consumption. Fuel classifications tended to overestimate duff load and underestimate litter load, leading to differences in predicted emissions for some pollutants. When considering total ground and surface fuels, modeled consumption was fairly accurate on average, although the range of error in estimates of plot level consumption was very large. These results highlight the importance of fuel load input to the accuracy of modeled fuel consumption and GHG emissions from wildfires in coniferous forests.

  3. Fuel composition and secondary organic aerosol formation: gas-turbine exhaust and alternative aviation fuels.

    PubMed

    Miracolo, Marissa A; Drozd, Greg T; Jathar, Shantanu H; Presto, Albert A; Lipsky, Eric M; Corporan, Edwin; Robinson, Allen L

    2012-08-07

    A series of smog chamber experiments were performed to investigate the effects of fuel composition on secondary particulate matter (PM) formation from dilute exhaust from a T63 gas-turbine engine. Tests were performed at idle and cruise loads with the engine fueled on conventional military jet fuel (JP-8), Fischer-Tropsch synthetic jet fuel (FT), and a 50/50 blend of the two fuels. Emissions were sampled into a portable smog chamber and exposed to sunlight or artificial UV light to initiate photo-oxidation. Similar to previous studies, neat FT fuel and a 50/50 FT/JP-8 blend reduced the primary particulate matter emissions compared to neat JP-8. After only one hour of photo-oxidation at typical atmospheric OH levels, the secondary PM production in dilute exhaust exceeded primary PM emissions, except when operating the engine at high load on FT fuel. Therefore, accounting for secondary PM production should be considered when assessing the contribution of gas-turbine engine emissions to ambient PM levels. FT fuel substantially reduced secondary PM formation in dilute exhaust compared to neat JP-8 at both idle and cruise loads. At idle load, the secondary PM formation was reduced by a factor of 20 with the use of neat FT fuel, and a factor of 2 with the use of the blend fuel. At cruise load, the use of FT fuel resulted in no measured formation of secondary PM. In every experiment, the secondary PM was dominated by organics with minor contributions from sulfate when the engine was operated on JP-8 fuel. At both loads, FT fuel produces less secondary organic aerosol than JP-8 because of differences in the composition of the fuels and the resultant emissions. This work indicates that fuel reformulation may be a viable strategy to reduce the contribution of emissions from combustion systems to secondary organic aerosol production and ultimately ambient PM levels.

  4. Nondestructive Assay Data Integration with the SKB-50 Assemblies - FY16 Update

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tobin, Stephen Joseph; Fugate, Michael Lynn; Trellue, Holly Renee

    2016-10-28

    A project to research the application of non-destructive assay (NDA) techniques for spent fuel assemblies is underway at the Central Interim Storage Facility for Spent Nuclear Fuel (for which the Swedish acronym is Clab) in Oskarshamn, Sweden. The research goals of this project contain both safeguards and non-safeguards interests. These nondestructive assay (NDA) technologies are designed to strengthen the technical toolkit of safeguard inspectors and others to determine the following technical goals more accurately; Verify initial enrichment, burnup, and cooling time of facility declaration for spent fuel assemblies; Detect replaced or missing pins from a given spent fuel assembly tomore » confirm its integrity; and Estimate plutonium mass and related plutonium and uranium fissile mass parameters in spent fuel assemblies. Estimate heat content, and measure reactivity (multiplication).« less

  5. Experimental investigation of regulated and unregulated emissions from a diesel engine fueled with ultralow-sulfur diesel fuel blended with ethanol and dodecanol

    NASA Astrophysics Data System (ADS)

    Cheung, C. S.; Di, Yage; Huang, Zuohua

    Experiments were conducted on a four-cylinder direct-injection diesel engine using ultralow-sulfur diesel as the main fuel, ethanol as the oxygenate additive and dodecanol as the solvent, to investigate the regulated and unregulated emissions of the engine under five engine loads at an engine speed of 1800 rev min -1. Blended fuels containing 6.1%, 12.2%, 18.2% and 24.2% by volume of ethanol, corresponding to 2%, 4%, 6% and 8% by mass of oxygen in the blended fuel, were used. The results indicate that with an increase in ethanol in the fuel, the brake specific fuel consumption becomes higher while there is little change in the brake thermal efficiency. Regarding the regulated emissions, HC and CO increase significantly at low engine load but might decrease at high engine load, NO x emission slightly decreases at low engine load but slightly increases at high engine load, while particulate mass decreases significantly at high engine load. For the unregulated gaseous emissions, unburned ethanol and acetaldehyde increase but formaldehyde, ethene, ethyne, 1,3-butadiene and BTX (benzene, toluene and xylene) in general decrease, especially at high engine load. A diesel oxidation catalyst (DOC) is found to reduce significantly most of the pollutants, including the air toxics.

  6. 14 CFR 23.343 - Design fuel loads.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... zero fuel to the selected maximum fuel load. (b) If fuel is carried in the wings, the maximum allowable weight of the airplane without any fuel in the wing tank(s) must be established as “maximum zero wing... part and— (1) The structure must be designed to withstand a condition of zero fuel in the wing at limit...

  7. 14 CFR 23.343 - Design fuel loads.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... zero fuel to the selected maximum fuel load. (b) If fuel is carried in the wings, the maximum allowable weight of the airplane without any fuel in the wing tank(s) must be established as “maximum zero wing... part and— (1) The structure must be designed to withstand a condition of zero fuel in the wing at limit...

  8. 14 CFR 23.343 - Design fuel loads.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... zero fuel to the selected maximum fuel load. (b) If fuel is carried in the wings, the maximum allowable weight of the airplane without any fuel in the wing tank(s) must be established as “maximum zero wing... part and— (1) The structure must be designed to withstand a condition of zero fuel in the wing at limit...

  9. 14 CFR 23.343 - Design fuel loads.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... zero fuel to the selected maximum fuel load. (b) If fuel is carried in the wings, the maximum allowable weight of the airplane without any fuel in the wing tank(s) must be established as “maximum zero wing... part and— (1) The structure must be designed to withstand a condition of zero fuel in the wing at limit...

  10. Debris protection cover assembly for cable connectors

    NASA Technical Reports Server (NTRS)

    Yovan, Roger D. (Inventor)

    1999-01-01

    A protective cover assembly for an end of a cable connector having a cable housing that encloses a plurality of connective pins or sockets and that satisfies all requirements for space applications. A connector body flange is formed at the extremity of a cable and is positioned so that it may register with a corresponding connector body flange on the end of a companion cable to which a connection is to be made, one cable end having cable lead pins and the companion cable end having lead sockets with which the pins register. A latch mechanism having a latch housing is received in the connector body flange and a crank connected to a manually rotatable cap actuates a spring-loaded latch element that is engageable with a connector body flange to secure or to release the cover assembly with the simple twisting motion of the cap, thereby simplifying the task of effecting coupling and decoupling of the cable ends.

  11. Tribological properties of Ag/Ti films on Al2O3 ceramic substrates

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christopher; Pepper, Stephen V.; Honecy, Frank S.

    1991-01-01

    Ag solid lubricant films, with a thin Ti interlayer for enhanced adhesion, were sputter deposited on Al2O3 substrate disks to reduce friction and wear. The dual Ag/Ti films were tested at room temperature in a pin-on-disk tribometer sliding against bare, uncoated Al2O3 pins under a 4.9 N load at a sliding velocity of 1 m/s. The Ag/Ti films reduced the friction coefficient by 50 percent to about 0.41 compared to unlubricated baseline specimens. Pin wear was reduced by a factor of 140 and disk wear was reduced by a factor of 2.5 compared to the baseline. These films retain their good tribological properties including adhesion after heat treatments at 850 C and thus may be able to lubricate over a wide temperature range. This lubrication technique is applicable to space lubrication, advanced heat engines, and advanced transportation systems.

  12. Parasitic load control system for exhaust temperature control

    DOEpatents

    Strauser, Aaron D.; Coleman, Gerald N.; Coldren, Dana R.

    2009-04-28

    A parasitic load control system is provided. The system may include an exhaust producing engine and a fuel pumping mechanism configured to pressurize fuel in a pressure chamber. The system may also include an injection valve configured to cause fuel pressure to build within the pressure chamber when in a first position and allow injection of fuel from the pressure chamber into one or more combustion chambers of the engine when in a second position. The system may further include a controller configured to independently regulate the pressure in the pressure chamber and the injection of fuel into the one or more combustion chambers, to increase a load on the fuel pumping mechanism, increasing parasitic load on the engine, thereby increasing a temperature of the exhaust produced by the engine.

  13. Two Body Wear of Newly Introduced Nanocomposite Teeth and Cross Linked Four Layered Acrylic Teeth: a Comparitive In Vitro Study.

    PubMed

    Ilangkumaran, R; Srinivasan, J; Baburajan, K; Balaji, N

    2014-12-01

    Wear of complete denture teeth results in compromise in denture esthetics and functions. To counteract this problem, artificial teeth with increased wear resistance had been introduced in the market such as nanocomposite teeth. The purpose of this study was to compare the amount of wear between nanocomposite teeth and acrylic teeth. Fifteen specimens were chosen from each group namely the nanocomposite teeth (SR_-PHONARES) and the acrylic teeth (ACRY PLUS). Maxillary premolar was only chosen for testing and the samples were customized according to the specifications of the pin on disc machine. Pin on disc machine is a two body tribometer which quantifies the amount of wear under a specific load and time. Test samples were mounted on to the receptacle of the pin on disc machine and tested under a load of 0.3 kg for 1,000 cycles of rotation against a 600 grit emery paper. The amount of wear is displayed from the digital reading obtained from the pin on disc machine. After statistical analysis, it was found that, the amount of wear is more in four layered acrylic teeth. The p value obtained is 0.002 (<0.005) thus implies that the difference in wear between nanocomposite teeth and acrylic teeth is statistically significant. Though the nanocomposite teeth has less amount of wear than the four layered acrylic teeth, the difference is very less and adds only to a little clinical significance but the cost of the nanocomposite is four times that of the acrylic teeth. Further clinical studies must be performed to confirm our results.

  14. Studying the effects of fuel treatment based on burn probability on a boreal forest landscape.

    PubMed

    Liu, Zhihua; Yang, Jian; He, Hong S

    2013-01-30

    Fuel treatment is assumed to be a primary tactic to mitigate intense and damaging wildfires. However, how to place treatment units across a landscape and assess its effectiveness is difficult for landscape-scale fuel management planning. In this study, we used a spatially explicit simulation model (LANDIS) to conduct wildfire risk assessments and optimize the placement of fuel treatments at the landscape scale. We first calculated a baseline burn probability map from empirical data (fuel, topography, weather, and fire ignition and size data) to assess fire risk. We then prioritized landscape-scale fuel treatment based on maps of burn probability and fuel loads (calculated from the interactions among tree composition, stand age, and disturbance history), and compared their effects on reducing fire risk. The burn probability map described the likelihood of burning on a given location; the fuel load map described the probability that a high fuel load will accumulate on a given location. Fuel treatment based on the burn probability map specified that stands with high burn probability be treated first, while fuel treatment based on the fuel load map specified that stands with high fuel loads be treated first. Our results indicated that fuel treatment based on burn probability greatly reduced the burned area and number of fires of different intensities. Fuel treatment based on burn probability also produced more dispersed and smaller high-risk fire patches and therefore can improve efficiency of subsequent fire suppression. The strength of our approach is that more model components (e.g., succession, fuel, and harvest) can be linked into LANDIS to map the spatially explicit wildfire risk and its dynamics to fuel management, vegetation dynamics, and harvesting. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Process and apparatus for recovery of fissionable materials from spent reactor fuel by anodic dissolution

    DOEpatents

    Tomczuk, Zygmunt; Miller, William E.; Wolson, Raymond D.; Gay, Eddie C.

    1991-01-01

    An electrochemical process and apparatus for the recovery of uranium and plutonium from spent metal clad fuel pins is disclosed. The process uses secondary reactions between U.sup.+4 cations and elemental uranium at the anode to increase reaction rates and improve anodic efficiency compared to prior art processes. In another embodiment of the process, secondary reactions between Cd.sup.+2 cations and elemental uranium to form uranium cations and elemental cadmium also assists in oxidizing the uranium at the anode.

  16. Flexible fuel cell gas manifold system

    DOEpatents

    Cramer, Michael; Shah, Jagdish; Hayes, Richard P.; Kelley, Dana A.

    2005-05-03

    A fuel cell stack manifold system in which a flexible manifold body includes a pan having a central area, sidewall extending outward from the periphery of the central area, and at least one compound fold comprising a central area fold connecting adjacent portions of the central area and extending between opposite sides of the central area, and a sidewall fold connecting adjacent portions of the sidewall. The manifold system further includes a rail assembly for attachment to the manifold body and adapted to receive pins by which dielectric insulators are joined to the manifold assembly.

  17. Intelligent Engine Systems: Alternate Fuels Evaluation

    NASA Technical Reports Server (NTRS)

    Ballal, Dilip

    2008-01-01

    The performance and gaseous emissions were measured for a well-stirred reactor operating under lean conditions for two fuels: JP8 and a synthetic Fisher-Tropsch fuel over a range of equivalence ratios from 0.6 down to the lean blowout. The lean blowout characteristics were determined in LBO experiments at loading parameter values from 0.7 to 1.4. The lean blowout characteristics were then explored under higher loading conditions by simulating higher altitude operation with the use of nitrogen as a dilution gas for the air stream. The experiments showed that: (1) The lean blowout characteristics for the two fuels were close under both low loading and high loading conditions. (2) The combustion temperatures and observed combustion efficiencies were similar for the two fuels. (3) The gaseous emissions were similar for the two fuels and the differences in the H2O and CO2 emissions appear to be directly relatable to the C/H ratio for the fuels.

  18. Diffusion Bonding Technology of Tungsten and SiC/SiC Composites for Nuclear Applications

    NASA Astrophysics Data System (ADS)

    Kishimoto, Hirotatsu; Shibayama, Tamaki; Abe, Takahiro; Shimoda, Kazuya; Kawamura, Satoshi; Kohyama, Akira

    2011-10-01

    Silicon carbide (SiC) is a candidate for the structural material in the next generation nuclear plants. Use of SiC/SiC composites is expected to increase the operation temperature of system over 1000 °C. For the high temperature system, refractory metals are planned to be used for several components. Tungsten is a candidate of armor on the divertor component in fusion, and is planned to be used for an upper-end plug of SiC/SiC fuel pin in a Gas cooled Fast Reactor (GFR). Joining technique of the SiC/SiC composites and tungsten is an important issue for nuclear systems in future. Nano-Infiltration and Transient Eutectoid (NITE) method is able to provide dense stable and high strength SiC/SiC composites having high resistance against pressure at elevated temperature, a diffusion bonding technique is usable to join the materials. Present research produces a NITE-SiC/SiC composite and tungsten as the similar dimension as a projected cladding tube of fuel pin for GFR using diffusion bonding, and investigated microstructure and mechanical properties.

  19. Comparative Studies on Performance Characteristics of CI Engine Fuelled with Neem Methyl Ester and Mahua Methyl Ester and Its Respective Blends with Diesel Fuel.

    PubMed

    Ragit, S S; Mohapatra, S K; Kundu, K

    2014-01-01

    In the present investigation, neem and mahua methyl ester were prepared by transesterification using potassium hydroxide as a catalyst and tested in 4-stroke single cylinder water cooled diesel engine. Tests were carried out at constant speed of 1500 rev/min at different brake mean effective pressures. A series of tests were conducted which worked at different brake mean effective pressures, OkPa, 1kPa, 2kPa, 3kPa, 4kPa, 5kPa, 6kPa and 6.5kPa. The performance and exhaust emission characteristics of the diesel engine were analyzed and compared with diesel fuel. Results showed that BTE of NME was comparable with diesel and it was noted that the BTE of N0100 is 63.11% higher than that of diesel at part load whereas it reduces 11.2% with diesel fuel at full load. In case of full load, NME showed decreasing trend with diesel fuel. BTE of diesel was 15.37% and 36.89% at part load and full load respectively. The observation indicated that BTE for MME 100 was slightly higher than diesel at part loads. The specific fuel consumption (SFC) was more for almost all blends at all loads, compared to diesel. At part load, the EGT of MME and its blends were showing similar trend to diesel fuel and at full load, the exhaust gas temperature of MME and blends were higher than diesel. Based on this study, NME could be a substitute for diesel fuel in diesel engine.

  20. Light Water Breeder Reactor fuel rod design and performance characteristics (LWBR Development Program)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, W.R.; Giovengo, J.F.

    1987-10-01

    Light Water Breeder Reactor (LWBR) fuel rods were designed to provide a reliable fuel system utilizing thorium/uranium-233 mixed-oxide fuel while simultaneously minimizing structural material to enhance fuel breeding. The fuel system was designed to be capable of operating successfully under both load follow and base load conditions. The breeding objective required thin-walled, low hafnium content Zircaloy cladding, tightly spaced fuel rods with a minimum number of support grid levels, and movable fuel rod bundles to supplant control rods. Specific fuel rod design considerations and their effects on performance capability are described. Successful completion of power operations to over 160 percentmore » of design lifetime including over 200 daily load follow cycles has proven the performance capability of the fuel system. 68 refs., 19 figs., 44 tabs.« less

  1. Tension degradation of anterior cruciate ligament grafts with dynamic flexion-extension loading: a biomechanical model in porcine knees.

    PubMed

    Dargel, Jens; Koebke, Jürgen; Brüggemann, Gert-Peter; Pennig, Dietmar; Schmidt-Wiethoff, Rüdiger

    2009-10-01

    This study investigates the influence of various femoral anterior cruciate ligament graft fixation methods on the amount of tension degradation and the initial fixation strength after cyclic flexion-extension loading in a porcine knee model. One hundred twenty porcine digital extensor tendons, used as 4-stranded free tendon grafts, were fixated within porcine femoral bone tunnels by use of extracortical button, cross-pin, or interference screw fixation. One hundred twenty porcine patellar tendon-bone grafts were fixated by use of cross-pin, interference screw, or press-fit fixation. Each femur-graft complex was submitted to cyclic flexion-extension loading for 1,000 cycles throughout different loading ranges, and the total loss of tension was determined. After cyclic testing, the grafts were loaded to failure, and the data were compared with a pullout series without cyclic loading. Tension degradation after 1,000 cycles of flexion-extension loading averaged 62.6% +/- 10.0% in free tendon grafts and 48.9% +/- 13.35% in patellar tendon-bone grafts. There was no influence of the loading range on the total amount of tension degradation. The total amount of tension degradation was the highest with interference screw fixation of free tendon and patellar tendon-bone grafts. Despite excessive loss of tension, the initial fixation strength of the femur-graft complex was not reduced. The method of femoral graft fixation significantly influenced tension degradation during dynamic flexion-extension loading. Femoral graft fixation methods that secure the graft close to the tunnel entrance and that displace the graft substance from the center of the bone tunnel show the largest amount of tension degradation during cyclic flexion-extension loading. The graft substance, not the fixation site, was the weakest link of the graft complex within this investigation. We believe that the graft fixation method should be considered when aiming to improve the precision of femoral graft placement in anterior cruciate ligament reconstruction.

  2. Heat Control via Torque Control in Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Venable, Richard; Colligan, Kevin; Knapp, Alan

    2004-01-01

    In a proposed advance in friction stir welding, the torque exerted on the workpiece by the friction stir pin would be measured and controlled in an effort to measure and control the total heat input to the workpiece. The total heat input to the workpiece is an important parameter of any welding process (fusion or friction stir welding). In fusion welding, measurement and control of heat input is a difficult problem. However, in friction stir welding, the basic principle of operation affords the potential of a straightforward solution: Neglecting thermal losses through the pin and the spindle that supports it, the rate of heat input to the workpiece is the product of the torque and the speed of rotation of the friction stir weld pin and, hence, of the spindle. Therefore, if one acquires and suitably processes data on torque and rotation and controls the torque, the rotation, or both, one should be able to control the heat input into the workpiece. In conventional practice in friction stir welding, one uses feedback control of the spindle motor to maintain a constant speed of rotation. According to the proposal, one would not maintain a constant speed of rotation: Instead, one would use feedback control to maintain a constant torque and would measure the speed of rotation while allowing it to vary. The torque exerted on the workpiece would be estimated as the product of (1) the torque-multiplication ratio of the spindle belt and/or gear drive, (2) the force measured by a load cell mechanically coupled to the spindle motor, and (3) the moment arm of the load cell. Hence, the output of the load cell would be used as a feedback signal for controlling the torque (see figure).

  3. Effects of salvage logging and pile-and-burn on fuel loading, potential fire behaviour, fuel consumption and emissions

    Treesearch

    Morris C. Johnson; Jessica E. Halofsky; David L. Peterson

    2013-01-01

    We used a combination of field measurements and simulation modelling to quantify the effects of salvage logging, and a combination of salvage logging and pile-and-burn fuel surface fuel treatment (treatment combination), on fuel loadings, fire behaviour, fuel consumption and pollutant emissions at three points in time: post-windstorm (before salvage logging), post-...

  4. Effects of experimental fuel additions on fire intensity and severity: unexpected carbon resilience of a neotropical forest.

    PubMed

    Brando, Paulo M; Oliveria-Santos, Claudinei; Rocha, Wanderley; Cury, Roberta; Coe, Michael T

    2016-07-01

    Global changes and associated droughts, heat waves, logging activities, and forest fragmentation may intensify fires in Amazonia by altering forest microclimate and fuel dynamics. To isolate the effects of fuel loads on fire behavior and fire-induced changes in forest carbon cycling, we manipulated fine fuel loads in a fire experiment located in southeast Amazonia. We predicted that a 50% increase in fine fuel loads would disproportionally increase fire intensity and severity (i.e., tree mortality and losses in carbon stocks) due to multiplicative effects of fine fuel loads on the rate of fire spread, fuel consumption, and burned area. The experiment followed a fully replicated randomized block design (N = 6) comprised of unburned control plots and burned plots that were treated with and without fine fuel additions. The fuel addition treatment significantly increased burned area (+22%) and consequently canopy openness (+10%), fine fuel combustion (+5%), and mortality of individuals ≥5 cm in diameter at breast height (dbh; +37%). Surprisingly, we observed nonsignificant effects of the fuel addition treatment on fireline intensity, and no significant differences among the three treatments for (i) mortality of large trees (≥30 cm dbh), (ii) aboveground forest carbon stocks, and (iii) soil respiration. It was also surprising that postfire tree growth and wood increment were higher in the burned plots treated with fuels than in the unburned control. These results suggest that (i) fine fuel load accumulation increases the likelihood of larger understory fires and (ii) single, low-intensity fires weakly influence carbon cycling of this primary neotropical forest, although delayed postfire mortality of large trees may lower carbon stocks over the long term. Overall, our findings indicate that increased fine fuel loads alone are unlikely to create threshold conditions for high-intensity, catastrophic fires during nondrought years. © 2016 John Wiley & Sons Ltd.

  5. Biaxial and Shear Testing Apparatus with Force Controls

    DTIC Science & Technology

    2006-03-30

    materials as the test specimen. (2) Description of the Prior Art [0004] It is known in the art that pressurized fabric tubes ; pressure-stabilized beams...apparatus is that these roller pins prevent any torsional load from reaching the test specimen. [0010] In Ward et al., (United States Patent No. 5,279,166...loading a specimen through pressurizing the inside surface of a cylinder is disclosed. A thin-wall tube specimen is biaxially tested for stress analysis

  6. Tribology of monolayer films: comparison between n-alkanethiols on gold and n-alkyl trichlorosilanes on silicon.

    PubMed

    Booth, Brandon D; Vilt, Steven G; McCabe, Clare; Jennings, G Kane

    2009-09-01

    This Article presents a quantitative comparison of the frictional performance for monolayers derived from n-alkanethiolates on gold and n-alkyl trichlorosilanes on silicon. Monolayers were characterized by pin-on-disk tribometry, contact angle analysis, ellipsometry, and electrochemical impedance spectroscopy (EIS). Pin-on-disk microtribometry provided frictional analysis at applied normal loads from 10 to 1000 mN at a speed of 0.1 mm/s. At low loads (10 mN), methyl-terminated n-alkanethiolate self-assembled monolayers (SAMs) exhibited a 3-fold improvement in coefficient of friction over SAMs with hydroxyl- or carboxylic-acid-terminated surfaces. For monolayers prepared from both n-alkanethiols on gold and n-alkyl trichlorosilanes on silicon, a critical chain length of at least eight carbons is required for beneficial tribological performance at an applied load of 9.8 mN. Evidence for disruption of chemisorbed alkanethiolate SAMs with chain lengths n

  7. Simplified Load-Following Control for a Fuel Cell System

    NASA Technical Reports Server (NTRS)

    Vasquez, Arturo

    2010-01-01

    A simplified load-following control scheme has been proposed for a fuel cell power system. The scheme could be used to control devices that are important parts of a fuel cell system but are sometimes characterized as parasitic because they consume some of the power generated by the fuel cells.

  8. 40 CFR 92.107 - Fuel flow measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... (iii) If the mass of fuel consumed is measured electronically (load cell, load beam, etc.), the error... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Fuel flow measurement. 92.107 Section...) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test Procedures § 92.107 Fuel flow...

  9. 40 CFR 92.107 - Fuel flow measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... (iii) If the mass of fuel consumed is measured electronically (load cell, load beam, etc.), the error... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Fuel flow measurement. 92.107 Section...) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test Procedures § 92.107 Fuel flow...

  10. 40 CFR 92.107 - Fuel flow measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... (iii) If the mass of fuel consumed is measured electronically (load cell, load beam, etc.), the error... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Fuel flow measurement. 92.107 Section...) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test Procedures § 92.107 Fuel flow...

  11. 40 CFR 92.107 - Fuel flow measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... (iii) If the mass of fuel consumed is measured electronically (load cell, load beam, etc.), the error... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Fuel flow measurement. 92.107 Section...) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test Procedures § 92.107 Fuel flow...

  12. 40 CFR 92.107 - Fuel flow measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... (iii) If the mass of fuel consumed is measured electronically (load cell, load beam, etc.), the error... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Fuel flow measurement. 92.107 Section...) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test Procedures § 92.107 Fuel flow...

  13. Mode I analysis of a cracked circular disk subject to a couple and a force

    NASA Technical Reports Server (NTRS)

    Gross, B.

    1977-01-01

    Mode 1 stress intensity coefficients were obtained for an edge-cracked disk (round compact specimen). Results for this plane elastostatic problem, obtained by a boundary collocation analysis are presented for ratios 0.35 less than A/D less than 1, where A is the crack length and D is the disk diameter. The results presented are for two complementary types of loading. By superposition of these results the stress intensity factor K sub I for any practical load line location of a pin-loaded round compact specimen can be obtained.

  14. Sudden oak death-caused changes to surface fuel loading and potential fire behavior in Douglas-fir-tanoak forests

    Treesearch

    Y.S. Valachovic; C.A. Lee; H. Scanlon; J.M. Varner; R. Glebocki; B.D. Graham; D.M. Rizzo

    2011-01-01

    We compared stand structure and fuel loading in northwestern California forests invaded by Phytophthora ramorum, the cause of sudden oak death, to assess whether the continued presence of this pathogen alters surface fuel loading and potential fire behavior in ways that may encumber future firefighting response. To attempt to account for these...

  15. Self-regulating control of parasitic loads in a fuel cell power system

    NASA Technical Reports Server (NTRS)

    Vasquez, Arturo (Inventor)

    2011-01-01

    A fuel cell power system comprises an internal or self-regulating control of a system or device requiring a parasitic load. The internal or self-regulating control utilizes certain components and an interconnection scheme to produce a desirable, variable voltage potential (i.e., power) to a system or device requiring parasitic load in response to varying operating conditions or requirements of an external load that is connected to a primary fuel cell stack of the system. Other embodiments comprise a method of designing such a self-regulated control scheme and a method of operating such a fuel cell power system.

  16. Cuspal reinforcement in endodontically treated molars.

    PubMed

    Uyehara, M Y; Davis, R D; Overton, J D

    1999-01-01

    This in vitro study compared the ability of horizontal pins and a dental adhesive to reinforce the facial cusps of endodontically treated mandibular molars. Seventy-two mandibular molars were divided into six groups and mounted in acrylic blocks (n = 12). In Groups 1-5 standardized endodontic access and instrumentation in the coronal one-third of each root canal were completed. In Groups 1-4 the lingual cusps were reduced, leaving the buccal cusps intact. The facial cusps of the teeth in each group received one of the following modes of reinforcement: Group 1--no reinforcement; Group 2--dentin adhesive (Amalgambond Plus); Group 3--two horizontal TMS Minim pins; Group 4--two horizontal TMS Minim pins and Amalgambond Plus. Teeth in Group 5 were prepared for and restored with a complete cuspal coverage amalgam restoration using four vertical TMS Minim pins. Group 6 consisted of intact natural teeth. Using an Instron Universal Testing Machine, the lingual slope of the facial cusp of each specimen was loaded to failure using a compressive force applied at an angle 60 degrees to the long axis of the tooth. The mean fracture strengths for all groups were analyzed using a one-way ANOVA and Student-Newman-Keuls multiple range test (alpha = 0.05). Fracture patterns and modes of failure were also evaluated. The intact teeth (Group 6) were significantly more fracture resistant than all other groups, with the exception of Group 4 (combination of pins and adhesive). Group 1 (non-reinforced teeth) was significantly weaker than all other groups. Groups 2-4 (specimens with reinforced cusps) were not significantly different from each other. The use of horizontal pins or a combination of horizontal pins plus dentin adhesive for cuspal reinforcement resulted in significantly more teeth demonstrating favorable fracture patterns than did the use of adhesives alone. The buccal cusps of endodontically treated mandibular molars reinforced with a combination of horizontal pins and dentin adhesive were not significantly weaker than intact teeth. Of the restored teeth, those which had buccal cusps reinforced with horizontal pins and those treated with complete cuspal coverage amalgam restorations exhibited the most favorable restorative prognosis following cusp fracture.

  17. Ground measurements of fuel and fuel consumption from experimental and operational prescribed fires at Eglin Air Force Base, Florida

    Treesearch

    Roger D. Ottmar; Robert E. Vihnanek; Clinton S. Wright; Andrew T. Hudak

    2014-01-01

    Ground-level measurements of fuel loading, fuel consumption, and fuel moisture content were collected on nine research burns conducted at Eglin Air Force Base, Florida in November, 2012. A grass or grass-shrub fuelbed dominated eight of the research blocks; the ninth was a managed longleaf pine (Pinus palustrus) forest. Fuel loading ranged from 1.7 Mg ha-1 on a...

  18. Stress-intensity factors and crack-opening displacements for round compact specimens. [fracture toughness of metallic materials

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.

    1979-01-01

    A two dimensional, boundary collocation stress analysis was used to analyze various round compact specimens. The influence of the round external boundary and of pin-loaded holes on stress intensity factors and crack opening displacements was determined as a function of crack-length-to-specimen-width ratios. A wide-range equation for the stress intensity factors was developed. Equations for crack-surface displacements and load-point displacements were also developed. In addition, stress intensity factors were calculated from compliance methods to demonstrate that load-displacement records must be made at the loading points and not along the crack line for crack-length-to-specimen-width ratios less than about 0.4.

  19. Effects of fuel load and moisture content on fire behaviour and heating in masticated litter-dominated fuels

    Treesearch

    Jesse K. Kreye; Leda N. Kobziar; Wayne C. Zipperer

    2013-01-01

    Mechanical fuels treatments are being used in fire-prone ecosystems where fuel loading poses a hazard, yetlittle research elucidating subsequent fire behaviour exists, especially in litter-dominated fuelbeds. To address this deficiency, we burned constructed fuelbeds from masticated sites in pine flatwoods forests in northern Florida...

  20. 14 CFR 23.967 - Fuel tank installation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ....967 Fuel tank installation. (a) Each fuel tank must be supported so that tank loads are not... tank liner is used, it must be supported so that it is not required to withstand fluid loads; (4... securing or loss of the fuel filler cap. (b) Each tank compartment must be ventilated and drained to...

  1. 14 CFR 23.967 - Fuel tank installation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ....967 Fuel tank installation. (a) Each fuel tank must be supported so that tank loads are not... tank liner is used, it must be supported so that it is not required to withstand fluid loads; (4... securing or loss of the fuel filler cap. (b) Each tank compartment must be ventilated and drained to...

  2. 14 CFR 23.967 - Fuel tank installation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ....967 Fuel tank installation. (a) Each fuel tank must be supported so that tank loads are not... tank liner is used, it must be supported so that it is not required to withstand fluid loads; (4... securing or loss of the fuel filler cap. (b) Each tank compartment must be ventilated and drained to...

  3. 14 CFR 23.967 - Fuel tank installation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ....967 Fuel tank installation. (a) Each fuel tank must be supported so that tank loads are not... tank liner is used, it must be supported so that it is not required to withstand fluid loads; (4... securing or loss of the fuel filler cap. (b) Each tank compartment must be ventilated and drained to...

  4. 14 CFR 23.967 - Fuel tank installation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ....967 Fuel tank installation. (a) Each fuel tank must be supported so that tank loads are not... tank liner is used, it must be supported so that it is not required to withstand fluid loads; (4... securing or loss of the fuel filler cap. (b) Each tank compartment must be ventilated and drained to...

  5. Method for monitoring irradiated fuel using Cerenkov radiation

    DOEpatents

    Dowdy, E.J.; Nicholson, N.; Caldwell, J.T.

    1980-05-21

    A method is provided for monitoring irradiated nuclear fuel inventories located in a water-filled storage pond wherein the intensity of the Cerenkov radiation emitted from the water in the vicinity of the nuclear fuel is measured. This intensity is then compared with the expected intensity for nuclear fuel having a corresponding degree of irradiation exposure and time period after removal from a reactor core. Where the nuclear fuel inventory is located in an assembly having fuel pins or rods with intervening voids, the Cerenkov light intensity measurement is taken at selected bright sports corresponding to the water-filled interstices of the assembly in the water storage, the water-filled interstices acting as Cerenkov light channels so as to reduce cross-talk. On-line digital analysis of an analog video signal is possible, or video tapes may be used for later measurement using a video editor and an electrometer. Direct measurement of the Cerenkov radiation intensity also is possible using spot photometers pointed at the assembly.

  6. Scoping studies of vapor behavior during a severe accident in a metal-fueling reactor

    NASA Astrophysics Data System (ADS)

    Spencer, B. W.; Marchaterre, J. F.

    1985-04-01

    The consequences of fuel melting and pin failures for a reactivity-insertion type accident in a sodium-cooled, pool-type reactor fueled with a metal alloy fuel were examined. The principal gas and vapor species released are shown to be Xe, Cs, and bond sodium contained within the fuel porosity. Condensation of sodium vapor as it expands into the upper sodium pool in a jet mixing regime may occur as rapidly as the vapor emerges from the disrupted core. If the predictions of rapid direct-contact condensation can be verified experimentally for the sodium system, the ability of vapor expansion to perform appreciable work on the system and the ability of an expanding vapor bubble to transport fuel and fission produce species to the cover gas region where they may be released to the containment are largely eliminated. The radionuclide species except for fission gas are largely retained within the core and sodium pool.

  7. Mastication and prescribed fire impacts on fuels in a 25-year old ponderosa pine plantation, southern Sierra Nevada

    Treesearch

    Alicia L. Reiner; Nicole M. Vaillant; JoAnn Fites-Kaufman; Scott N. Dailey

    2009-01-01

    Due to increases in tree density and hazardous fuel loading in Sierra Nevadan forests, land management is focusing on fuel reduction treatments to moderate the risk of catastrophic fires. Fuel treatments involving mechanical and prescribed fire methods can reduce surface as well as canopy fuel loads. Mastication is a mechanical method which shreds smaller trees and...

  8. Fuel Type Classification and Fuel Loading in Central Interior, Korea: Uiseong-Gun

    Treesearch

    Myoung Soo Won; Kyo Sang Koo; Myung Bo Lee; Si Young Lee

    2006-01-01

    The objective of this study is classification of fuel type and calculation of fuel loading to assess forest fire hazard by fuel characteristics at Uiseong-gun, Gyeongbuk located in the central interior of Korea. A database was constructed of eight factors such as forest type and topography using ArcGIS 9.1 GIS programs. An on-site survey was conducted for investigating...

  9. Study of the influence of fuel load and slope on a fire spreading across a bed of pine needles by using oxygen consumption calorimetry

    NASA Astrophysics Data System (ADS)

    Tihay, V.; Morandini, F.; Santoni, P. A.; Perez-Ramirez, Y.; Barboni, T.

    2012-11-01

    A set of experiments using a Large Scale Heat Release Rate Calorimeter was conducted to test the effects of slope and fuel load on the fire dynamics. Different parameters such as the geometry of the flame front, the rate of spread, the mass loss rate and the heat release rate were investigated. Increasing the fuel load or the slope modifies the fire behaviour. As expected, the flame length and the rate of spread increase when fuel load or slope increases. The heat release rate does not reach a quasi-steady state when the propagation takes place with a slope of 20° and a high fuel load. This is due to an increase of the length of the fire front leading to an increase of fuel consumed. These considerations have shown that the heat release can be estimated with the mass loss rate by considering the effective heat of combustion. This approach can be a good alternative to estimate accurately the fireline intensity when the measure of oxygen consumption is not possible.

  10. Downed woody fuel loading dynamics of a large-scale blowdown in northern Minnesota, U.S.A.

    Treesearch

    C.W. Woodall; L.M. Nagel

    2007-01-01

    On July 4, 1999, a large-scale blowdown occurred in the BoundaryWaters Canoe AreaWilderness (BWCAW) of northern Minnesota affecting up to 150,000 ha of forest. To further understand the relationship between downed woody fuel loading, stand processes, and disturbance effects, this study compares fuel loadings defined by three strata: (1) blowdown areas of the BWCAW (n...

  11. Effects of overstory composition and prescribed fire on fuel loading across a heterogeneous managed landscape in the southeastern USA

    Treesearch

    Bernard R. Parresol; John I. Blake; Andrew J. Thompson

    2012-01-01

    In the southeastern USA, land use history, forest management and natural geomorphic features have created heterogeneous fuel loads. This apparent temporal and spatial variation in fuel loads make it difficult to reliably assess potential fire behavior from remotely sensed canopy variables to determine risk and to prescribe treatments. We examined this variation by...

  12. Evaluation of effects of super-heavy loading on the US 41 bridge over the White River : appendices.

    DOT National Transportation Integrated Search

    2011-01-01

    Built in 1958, the US-41 White River Bridge is a two-girder, riveted steel structure located in Hazelton, IN. The bridge is comprised of two, sixteen span superstructures sharing a common substructure. Each superstructure also contains four pin and h...

  13. Evaluation of effects of super-heavy loading on the US 41 bridge over the White River.

    DOT National Transportation Integrated Search

    2011-01-01

    Built in 1958, the US-41 White River Bridge is a two-girder, riveted steel structure located in Hazelton, IN. The bridge is comprised of two, sixteen span : superstructures sharing a common substructure. Each superstructure also contains four pin and...

  14. 77 FR 6522 - Airworthiness Directives; The Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-08

    ...Rulemaking Portal: Go to http://www.regulations.gov . Follow the instructions for submitting comments. Fax... hold the door closed for the design loads. Fractured and missing latch pin retention bolts, if not... cargo door, fuselage frames, internal and external skin of the fuselage, cargo door frames, mid-span...

  15. Preliminary Design, Vertical Stores Handling Conveyor

    DTIC Science & Technology

    1977-05-01

    molybtdenum di. 3 sulphide base of grease. A grease fitting is provided for routine P nmaintenlance. 65 Typical arrangement of Type "JA" with Shifter Ring for...over- load occurs, the actuating pin becomes operative, traveling ’/" to strike a limit or mercury switch that will actuate a warning ENGAGED -DISENGAGED

  16. 14 CFR 25.689 - Cable systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Control Systems § 25.689 Cable systems. (a... cable system must be designed so that there will be no hazardous change in cable tension throughout the... subject to load or motion and retained only by cotter pins may not be used in the control system. (e...

  17. 14 CFR 25.689 - Cable systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Control Systems § 25.689 Cable systems. (a... cable system must be designed so that there will be no hazardous change in cable tension throughout the... subject to load or motion and retained only by cotter pins may not be used in the control system. (e...

  18. 14 CFR 25.689 - Cable systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Control Systems § 25.689 Cable systems. (a... cable system must be designed so that there will be no hazardous change in cable tension throughout the... subject to load or motion and retained only by cotter pins may not be used in the control system. (e...

  19. 14 CFR 25.689 - Cable systems.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Control Systems § 25.689 Cable systems. (a... cable system must be designed so that there will be no hazardous change in cable tension throughout the... subject to load or motion and retained only by cotter pins may not be used in the control system. (e...

  20. Evaluation of effects of super-heavy loading on the US 41 bridge over the White River : technical summary.

    DOT National Transportation Integrated Search

    2011-01-01

    Built in 1958, the US-41 White River Bridge is a two-girder, riveted steel structure located near Hazelton, IN. The bridge is comprised of two, sixteen span superstructures sharing a common substructure. Each superstructure also contains four pin and...

  1. Pressure and temperature effects on fuels with varying octane sensitivity at high load in SI engines

    DOE PAGES

    Szybist, James P.; Splitter, Derek A.

    2017-01-06

    The octane sensitivity (S), defined as the difference between the Research Octane Number (RON) and the Motor Octane Number (MON), is of increasing interest in spark ignition (SI) engines because of its relevance to knock resistance at boosted high load conditions. In this study, three fuels with nearly constant RON (99.2-100) and varying S (S = 0, 6.5, and 12) are operated at the knock limited spark advance (KLSA) at nominal engine loads of 10, 15, and 20 bar IMEP in a single cylinder SI engine with side-mount direct injection fueling, at λ =1 stoichiometry. At each load condition, themore » intake manifold temperature is swept from 35 °C to 95 °C to alter the temperature and pressure history of the charge. Results show that at the 10 bar IMEP condition, knock resistance is inversely proportional to fuel S where the S=0 fuel is the most knock resist, but as load increases the trend reverses and knock resistance becomes proportional to fuel S, and the S=12 fuel is the most knock resistant. The reversal of knock resistance as a function of S with load it is attributed to changing fuel ignition delay, as bulk gas intermediate temperature heat release (ITHR) is observed for the S = 0 several crank angles prior to the spark command and ITHR magnitude is a function of increasing intake temperature. As intake temperature continued to increase, the S=0 fuel transitioned from ITHR to low-temperature heat release (LTHR) prior to the spark event. At the highest load and intake temperature, 95 C, the S=0 fuel exhibits distinct LTHR and negative temperature coefficient (NTC), and the intermediate S value fuel (S=6.5) exhibited distinct ITHR behavior several crank angles prior to the spark command. However, for the tested conditions, the S=12 fuel exhibits neither ITHR nor LTHR. To understand the measured trends, chemical kinetic modeling is used to elucidate the fuel specific dependencies on in-cylinder temperature and pressure history. Lastly, the bulk gas composition change that occurs for fuels and conditions exhibiting ITHR and LTHR is analyzed in the modeling, including their implications on flame speed and combustion stability at late phasing. Furthermore, the combined findings illustrate the commonality and utility of fuel S, ITHR, LTHR, and NTC across a wide range of conditions, and the associated implications of fuel S in highly boosted modern GDI SI engines relative to the RON and MON tests.« less

  2. Spatial variability of surface fuels in treated and untreated ponderosa pine forests of the southern Rocky Mountains

    Treesearch

    Emma Vakili; Chad M. Hoffman; Robert E. Keane; Wade T. Tinkham; Yvette Dickinson

    2016-01-01

    There is growing consensus that spatial variability in fuel loading at scales down to 0.5 m may govern fire behaviour and effects. However, there remains a lack of understanding of how fuels vary through space in wildland settings. This study quantifies surface fuel loading and its spatial variability in ponderosa pine sites before and after fuels treatment in the...

  3. 14 CFR 23.1583 - Operating limitations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...) The maximum zero wing fuel weight, where relevant, as established in accordance with § 23.343. (d... passenger seating configuration. The maximum passenger seating configuration. (k) Allowable lateral fuel loading. The maximum allowable lateral fuel loading differential, if less than the maximum possible. (l...

  4. Mapping Fuel Loads and Dynamics in Rangelands Using Multi-Sensor Data in the Great Basin, USA

    NASA Astrophysics Data System (ADS)

    Li, Z.; Shi, H.; Vogelmann, J. E.; Hawbaker, T. J.; Reeves, M. C.

    2016-12-01

    Fuel conditions in rangelands are influenced by disturbances such as wildfires, and is also strongly controlled by weather and climate. These factors impact the availability of fuel loads, which is the key component to stimulate burned area and severity. In this paper, we developed an approach for mapping live fuel loads (biomass density) and their dynamics using field collection, Landsat 8, and MODIS data sets at a spatial resolution of 30 m from the growing season. Using the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) modelling process, we generated monthly shrub and grassland greenness levels for 2015. The spatial resolution of Landsat and the temporal resolution of MODIS complimented each other to allow us to produce monthly products. Understanding the dynamics of these greenness patterns helps the fire management community to recognize areas that have high likelihood of burning in the future, thus enabling them to anticipate and plan accordingly. We obtained field biomass information from selected shrub and grass sites located throughout the Great Basin. This information was used to calibrate fire models and generate remotely-sensed data sets. We then used Landsat 8 NDVI dates representing the phenological profile, regression tree models, and product validation. The calculated fuel loads were further examined and validated using high resolution images (World View 2/3), field measurements, and Google Earth. Once we have the requisite image data converted to biomass, we anticipate fire conditions and behavior using various models developed by the fire community. One key element is to use information from this study to improve and inform the Rangeland Vegetation Simulator. Finally, we analyzed the correlations of fire occurrence (frequency) and burn severity with live fuel loads and climate conditions. Our results show modeled fuel loads and their dynamics in rangelands capture the spatiotemporal heterogeneity of non-forest live fuel types and the variations in both wildfire disturbances and climate/weather conditions. This suggests the developed approach to map fuel loads is robust and can improve the existing LANDFIRE fuel data in rangelands. It can also be used to monitor the changes in fuel conditions in response to management activities and climate change.

  5. Microstructural Characterization of High Burn-up Mixed Oxide Fast Reactor Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melissa C. Teague; Brian P. Gorman; Steven L. Hayes

    2013-10-01

    High burn-up mixed oxide fuel with local burn-ups of 3.4–23.7% FIMA (fissions per initial metal atom) were destructively examined as part of a research project to understand the performance of oxide fuel at extreme burn-ups. Optical metallography of fuel cross-sections measured the fuel-to-cladding gap, clad thickness, and central void evolution in the samples. The fuel-to-cladding gap closed significantly in samples with burn-ups below 7–9% FIMA. Samples with burn-ups in excess of 7–9% FIMA had a reopening of the fuel-to-cladding gap and evidence of joint oxide-gain (JOG) formation. Signs of axial fuel migration to the top of the fuel column weremore » observed in the fuel pin with a peak burn-up of 23.7% FIMA. Additionally, high burn-up structure (HBS) was observed in the two highest burn-up samples (23.7% and 21.3% FIMA). The HBS layers were found to be 3–5 times thicker than the layers found in typical LWR fuel. The results of the study indicate that formation of JOG and or HBS prevents any significant fuel-cladding mechanical interaction from occurring, thereby extending the potential life of the fuel elements.« less

  6. Integrated Thermal Insulation System for Spacecraft

    NASA Technical Reports Server (NTRS)

    Kolodziej, Paul (Inventor); Bull, Jeff (Inventor); Kowalski, Thomas (Inventor); Switzer, Matthew (Inventor)

    1998-01-01

    An integrated thermal protection system (TPS) for a spacecraft includes a grid that is bonded to skin of the spacecraft, e.g., to support the structural loads of the spacecraft. A plurality of thermally insulative, relatively large panels are positioned on the grid to cover the skin of the spacecraft to which the grid has been bonded. Each panel includes a rounded front edge and a front flange depending downwardly from the front edge. Also, each panel includes a rear edge formed with a rounded socket for receiving the rounded front edge of another panel therein, and a respective rear flange depends downwardly from each rear edge. Pins are formed on the front flanges, and pin receptacles are formed on the rear flanges, such that the pins of a panel mechanically interlock with the receptacles of the immediately forward panel. To reduce the transfer to the skin of heat which happens to leak through the panels to the grid, the grid includes stringers that are chair-shaped in cross-section.

  7. Mechanical strength and tribological behavior of ion-beam deposited boron nitride films on non-metallic substrates

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Buckley, Donald H.; Pouch, John J.; Alterovitz, Samuel A.; Sliney, Harold E.

    1987-01-01

    An investigation was conducted to examine the mechanical strength and tribological properties of boron nitride (BN) films ion-beam deposited on silicon (Si), fused silica (SiO2), gallium arsenide (GaAs), and indium phosphide (InP) substrates in sliding contact with a diamond pin under a load. The results of the investigation indicate that BN films on nonmetallic substrates, like metal films on metallic substrates, deform elastically and plastically in the interfacial region when in contact with a diamond pin. However, unlike metal films and substrates, BN films on nonmetallic substrates can fracture when they are critically loaded. Not only does the yield pressure (hardness) of Si and SiO2 substrates increase by a factor of 2 in the presence of a BN film, but the critical load needed to fracture increases as well. The presence of films on the brittle substrates can arrest crack formation. The BN film reduces adhesion and friction in the sliding contact. BN adheres to Si and SiO2 and forms a good quality film, while it adheres poorly to GaAs and InP. The interfacial adhesive strengths were 1 GPa for a BN film on Si and appreciably higher than 1 GPa for a BN film on SiO2.

  8. Ultrahigh energy density harvested from domain-engineered relaxor ferroelectric single crystals under high strain rate loading

    NASA Astrophysics Data System (ADS)

    Shkuratov, Sergey I.; Baird, Jason; Antipov, Vladimir G.; Talantsev, Evgueni F.; Chase, Jay B.; Hackenberger, Wesley; Luo, Jun; Jo, Hwan R.; Lynch, Christopher S.

    2017-04-01

    Relaxor ferroelectric single crystals have triggered revolution in electromechanical systems due to their superior piezoelectric properties. Here the results are reported on experimental studies of energy harvested from (1-y-x)Pb(In1/2Nb1/2)O3-(y)Pb(Mg1/3Nb2/3)O3-(x)PbTiO3 (PIN-PMN-PT) crystals under high strain rate loading. Precise control of ferroelectric properties through composition, size and crystallographic orientation of domains made it possible to identify single crystals that release up to three times more electric charge density than that produced by PbZr0.52Ti0.48O3 (PZT 52/48) and PbZr0.95Ti0.05O3 (PZT 95/5) ferroelectric ceramics under identical loading conditions. The obtained results indicate that PIN-PMN-PT crystals became completely depolarized under 3.9 GPa compression. It was found that the energy density generated in the crystals during depolarization in the high voltage mode is four times higher than that for PZT 52/48 and 95/5. The obtained results promise new single crystal applications in ultrahigh-power transducers that are capable of producing hundreds kilovolt pulses and gigawatt-peak power microwave radiation.

  9. Ultrahigh energy density harvested from domain-engineered relaxor ferroelectric single crystals under high strain rate loading

    PubMed Central

    Shkuratov, Sergey I.; Baird, Jason; Antipov, Vladimir G.; Talantsev, Evgueni F.; Chase, Jay B.; Hackenberger, Wesley; Luo, Jun; Jo, Hwan R.; Lynch, Christopher S.

    2017-01-01

    Relaxor ferroelectric single crystals have triggered revolution in electromechanical systems due to their superior piezoelectric properties. Here the results are reported on experimental studies of energy harvested from (1-y-x)Pb(In1/2Nb1/2)O3–(y)Pb(Mg1/3Nb2/3)O3–(x)PbTiO3 (PIN-PMN-PT) crystals under high strain rate loading. Precise control of ferroelectric properties through composition, size and crystallographic orientation of domains made it possible to identify single crystals that release up to three times more electric charge density than that produced by PbZr0.52Ti0.48O3 (PZT 52/48) and PbZr0.95Ti0.05O3 (PZT 95/5) ferroelectric ceramics under identical loading conditions. The obtained results indicate that PIN-PMN-PT crystals became completely depolarized under 3.9 GPa compression. It was found that the energy density generated in the crystals during depolarization in the high voltage mode is four times higher than that for PZT 52/48 and 95/5. The obtained results promise new single crystal applications in ultrahigh-power transducers that are capable of producing hundreds kilovolt pulses and gigawatt-peak power microwave radiation. PMID:28440336

  10. Mechanical strength and tribological behavior of ion-beam-deposited boron nitride films on non-metallic substrates

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Pouch, John J.; Alterovitz, Samuel A.; Sliney, Harold E.; Buckley, Donald H.

    1987-01-01

    An investigation was conducted to examine the mechanical strength and tribological properties of boron nitride (BN) films ion-beam deposited on silicon (Si), fused silica (SiO2), gallium arsenide (GaAs), and indium phosphide (InP) substrates in sliding contact with a diamond pin under a load. The results of the investigation indicate that BN films on nonmetallic substrates, like metal films on metallic substrates, deform elastically and plastically in the interfacial region when in contact with a diamond pin. However, unlike metal films and substrates, BN films on nonmetallic substrates can fracture when they are critically loaded. Not only does the yield pressure (hardness) of Si and SiO2 substrates increase by a factor of 2 in the presence of a BN film, but the critical load needed to fracture increases as well. The presence of films on the brittle substrates can arrest crack formation. The BN film reduces adhesion and friction in the sliding contact. BN adheres to Si and SiO2 and forms a good quality film, while it adheres poorly to GaAs and InP. The interfacial adhesive strengths were 1 GPa for a BN film on Si and appreciably higher than 1 GPa for a BN film on SiO2.

  11. Measuring spatial variability in soil characteristics

    DOEpatents

    Hoskinson, Reed L.; Svoboda, John M.; Sawyer, J. Wayne; Hess, John R.; Hess, J. Richard

    2002-01-01

    The present invention provides systems and methods for measuring a load force associated with pulling a farm implement through soil that is used to generate a spatially variable map that represents the spatial variability of the physical characteristics of the soil. An instrumented hitch pin configured to measure a load force is provided that measures the load force generated by a farm implement when the farm implement is connected with a tractor and pulled through or across soil. Each time a load force is measured, a global positioning system identifies the location of the measurement. This data is stored and analyzed to generate a spatially variable map of the soil. This map is representative of the physical characteristics of the soil, which are inferred from the magnitude of the load force.

  12. Validation of the new code package APOLLO2.8 for accurate PWR neutronics calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santamarina, A.; Bernard, D.; Blaise, P.

    2013-07-01

    This paper summarizes the Qualification work performed to demonstrate the accuracy of the new APOLLO2.S/SHEM-MOC package based on JEFF3.1.1 nuclear data file for the prediction of PWR neutronics parameters. This experimental validation is based on PWR mock-up critical experiments performed in the EOLE/MINERVE zero-power reactors and on P.I. Es on spent fuel assemblies from the French PWRs. The Calculation-Experiment comparison for the main design parameters is presented: reactivity of UOX and MOX lattices, depletion calculation and fuel inventory, reactivity loss with burnup, pin-by-pin power maps, Doppler coefficient, Moderator Temperature Coefficient, Void coefficient, UO{sub 2}-Gd{sub 2}O{sub 3} poisoning worth, Efficiency ofmore » Ag-In-Cd and B4C control rods, Reflector Saving for both standard 2-cm baffle and GEN3 advanced thick SS reflector. From this qualification process, calculation biases and associated uncertainties are derived. This code package APOLLO2.8 is already implemented in the ARCADIA new AREVA calculation chain for core physics and is currently under implementation in the future neutronics package of the French utility Electricite de France. (authors)« less

  13. Development of Innovative Accident Tolerant High Thermal Conductivity UO 2-Diamond Composite Fuel Pellets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tulenko, James; Subhash, Ghatu

    2016-01-01

    The University of Florida (UF) evaluated a composite fuel consisting of UO 2 powder mixed with diamond micro particles as a candidate as an accident-tolerant fuel (ATF). The research group had previous extensive experience researching with diamond micro particles as an addition to reactor coolant for improved plant thermal performance. The purpose of this research work was to utilize diamond micro particles to develop UO 2-Diamond composite fuel pellets with significantly enhanced thermal properties, beyond that already being measured in the previous UF research projects of UO 2 – SiC and UO 2 – Carbon Nanotube fuel pins. UF ismore » proving with the current research results that the addition of diamond micro particles to UO 2 may greatly enhanced the thermal conductivity of the UO 2 pellets producing an accident-tolerant fuel. The Beginning of life benefits have been proven and fuel samples are being irradiated in the ATR reactor to confirm that the thermal conductivity improvements are still present under irradiation.« less

  14. Black carbon from ships: a review of the effects of ship speed, fuel quality and exhaust gas scrubbing

    NASA Astrophysics Data System (ADS)

    Lack, D. A.; Corbett, J. J.

    2012-01-01

    The International Maritime Organization (IMO) has moved to address the health and climate impact of the emissions from the combustion of low-quality residual fuels within the commercial shipping industry. Fuel sulfur content (FS) limits and an efficiency design index for future ships are examples of such IMO actions. The impacts of black carbon (BC) emissions from shipping are now under review by the IMO, with a particular focus on the potential impacts of future Arctic shipping. Recognizing that associating impacts with BC emissions requires both ambient and onboard observations, we provide recommendations for the measurement of BC. We also evaluate current insights regarding the effect of ship speed (engine load), fuel quality and exhaust gas scrubbing on BC emissions from ships. Observations demonstrate that BC emission factors (EFBC) increases 3 to 6 times at very low engine loads (<25% compared to EFBC at 85-100% load); absolute BC emissions (per nautical mile of travel) also increase up to 100% depending on engine load, even with reduced load fuel savings. If fleets were required to operate at lower maximum engine loads, presumably associated with reduced speeds, then engines could be re-tuned, which would reduce BC emissions. Ships operating in the Arctic are likely running at highly variable engine loads (25-100%) depending on ice conditions and ice breaking requirements. The ships operating at low load may be emitting up to 50% more BC than they would at their rated load. Such variable load conditions make it difficult to assess the likely emissions rate of BC. Current fuel sulfur regulations have the effect of reducing EFBC by an average of 30% and potentially up to 80% regardless of engine load; a removal rate similar to that of scrubbers. Uncertainties among current observations demonstrate there is a need for more information on (a) the impact of fuel quality on EFBC using robust measurement methods and (b) the efficacy of scrubbers for the removal of particulate matter by size and composition.

  15. Black carbon from ships: a review of the effects of ship speed, fuel quality and exhaust gas scrubbing

    NASA Astrophysics Data System (ADS)

    Lack, D. A.; Corbett, J. J.

    2012-05-01

    The International Maritime Organization (IMO) has moved to address the health and climate impact of the emissions from the combustion of low-quality residual fuels within the commercial shipping industry. Fuel sulfur content (FS) limits and an efficiency design index for future ships are examples of such IMO actions. The impacts of black carbon (BC) emissions from shipping are now under review by the IMO, with a particular focus on the potential impacts of future Arctic shipping. Recognizing that associating impacts with BC emissions requires both ambient and onboard observations, we provide recommendations for the measurement of BC. We also evaluate current insights regarding the effect of ship speed (engine load), fuel quality and exhaust gas scrubbing on BC emissions from ships. Observations demonstrate that BC emission factors (EFBC) increases 3 to 6 times at very low engine loads (<25% compared to EFBC at 85-100% load); absolute BC emissions (per nautical mile of travel) also increase up to 100% depending on engine load, even with reduced load fuel savings. If fleets were required to operate at lower maximum engine loads, presumably associated with reduced speeds, then engines could be re-tuned, which would reduce BC emissions. Ships operating in the Arctic are likely running at highly variable engine loads (25-100%) depending on ice conditions and ice breaking requirements. The ships operating at low load may be emitting up to 50% more BC than they would at their rated load. Such variable load conditions make it difficult to assess the likely emissions rate of BC. Current fuel sulfur regulations have the effect of reducing EFBC by an average of 30% and potentially up to 80% regardless of engine load; a removal rate similar to that of scrubbers. Uncertainties among current observations demonstrate there is a need for more information on a) the impact of fuel quality on EFBC using robust measurement methods and b) the efficacy of scrubbers for the removal of particulate matter by size and composition.

  16. The effect of salvage logging on surface fuel loads and fuel moisture in beetle-infested lodgepole pine forests

    Treesearch

    Paul R. Hood; Kellen N. Nelson; Charles C. Rhoades; Daniel B. Tinker

    2017-01-01

    Widespread tree mortality from mountain pine beetle (MPB; Dendroctonus ponderosae Hopkins) outbreaks has prompted forest management activities to reduce crown fire hazard in the Rocky Mountain region. However, little is known about how beetle-related salvage logging and biomass utilization options affect woody surface fuel loads and fuel moisture dynamics. We compared...

  17. Forest fuels and landscape-level fire risk assessment of the ozark highlands, Missouri

    Treesearch

    Michael C. Stambaugh; Richard P. Guyette; Daniel C. Dey

    2007-01-01

    In this paper we describe a fire risk assessment of the Ozark Highlands. Fire risk is rated using information on ignition potential and fuel hazard. Fuel loading, a component of the fire hazard module, is weakly predicted (r2 = 0.19) by site- and landscape-level attributes. Fuel loading does not significantly differ between Ozark ecological...

  18. Modeling fuel treatment costs on Forest Service Lands in the Western United States

    Treesearch

    David Calkin; Krista Gebert

    2006-01-01

    Years of successful fire suppression have led to high fuel loads on the nation's forests, and steps are being taken by the nation's land management agencies to reduce these fuel loads. However, to achieve desired outcomes in a fiscally responsible manner, the cost and effectiveness in reducing losses due to wildland fire of different fuel treatments in...

  19. Effectiveness of Prescribed Fire as a Fuel Treatment in Californian Coniferous Forests

    Treesearch

    Nicole M. Vaillant; JoAnn Fites-Kaufman; Scott L. Stephens

    2006-01-01

    Effective fire suppression for the past century has altered forest structure and increased fuel loads. Prescribed fire as a fuels treatment can reduce wildfire size and severity. This study investigates how prescribed fire affects fuel loads, forest structure, potential fire behavior, and modeled tree mortality at 80th, 90th, and 97.5th percentile fire weather...

  20. Fuel loadings in southwestern ecosystems of the United States

    Treesearch

    Stephen S. Sackett; Sally M Haase

    1996-01-01

    Natural forest fuel loadings cause extreme fire behavior during dry, windy weather experienced during most fire seasons in the Southwest. Fire severity is also exacerbated from burning heavy fuels, including heavy humus layers on the forest floor. Ponderosa pine and mixed conifer stands possess more than 21.7 and 44.1 tons per acre of total forest floor fuel,...

  1. Displacement coefficients along the inner boundaries of radially cracked ring segments subject to forces and couples

    NASA Technical Reports Server (NTRS)

    Gross, B.

    1978-01-01

    Displacement results of plane boundary collocation analysis are given for various locations on the inner boundaries of radially cracked ring segments (C-shaped specimens) subject to two complementary types of loading. Results are presented for ratios of outer to inner radius in the range of 1.1 to 2.5 and ratios a/W in the range 0.1 to 0.8, where a is the crack length for a specimen of wall thickness W. By combination of these results the resultant displacement coefficient or the corresponding influence coefficient can be obtained for any practical load line location of a pin-loaded specimen.

  2. Use of Pd-Pt loaded graphene aerogel on nickel foam in direct ethanol fuel cell

    NASA Astrophysics Data System (ADS)

    Tsang, Chi Him A.; Leung, D. Y. C.

    2018-01-01

    A size customized binder-free bimetallic Pd-Pt loaded graphene aerogel deposited on nickel foam plate (Pd-Pt/GA/NFP) was prepared and used as an electrode for an alkaline direct ethanol fuel cell (DEFC) under room temperature. The effect of fuel concentration and metal composition on the output power density of the DEFC was systematically investigated. Under the optimum fuel concentration, the cell could achieve a value of 3.6 mW cm-2 at room temperature for the graphene electrode with Pd/Pt ratio approaching 1:1. Such results demonstrated the possibility of producing a size customized metal loaded GA/NFP electrode for fuel cell with high performance.

  3. Investigating the pros and cons of browns gas and varying EGR on combustion, performance, and emission characteristics of diesel engine.

    PubMed

    Thangaraj, Suja; Govindan, Nagarajan

    2018-01-01

    The significance of mileage to the fruitful operation of a trucking organization cannot be downplayed. Fuel is one of the biggest variable expenses in a trucking wander. An attempt is made in this research to improve the combustion efficiency of a diesel engine for better fuel economy by introducing hydroxy gas which is also called browns gas or HHO gas in the suction line, without compromising performance and emission. Brown's gas facilitates the air-fuel mixture to ignite faster and efficient combustion. By considering safety and handling issues in automobiles, HHO gas generation by electrolysis of water in the presence of sodium bicarbonate electrolytes (NaHCO 3 ) and usage was explored in this research work over compressed pure hydrogen, due to generation and capacity of immaculate hydrogen as of now confines the application in diesel engine operation. Brown's gas was utilized as a supplementary fuel in a single-cylinder, four-stroke compression ignition (CI) engine. Experiments were carried out on a constant speed engine at 1500 rpm, result shows at constant HHO flow rate of 0.73 liter per minute (LPM), brake specific fuel consumption (BSFC) decreases by 7% at idle load to 16% at full load, and increases brake thermal efficiency (BTE) by 8.9% at minimum load to 19.7% at full load. In the dual fuel (diesel +HHO) operation, CO emissions decreases by 19.4, 64.3, and 34.6% at 25, 50, and 75% load, respectively, and unburned hydrocarbon (UHC) emissions decreased by 11.3% at minimum load to 33.5% at maximum load at the expense of NO x emission increases by 1.79% at 75% load and 1.76% at full load than neat diesel operation. The negative impact of an increase in NO x is reduced by adding EGR. It was evidenced in this experimental work that the use of Brown's gas with EGR in the dual fuel mode in a diesel engine improves the fuel efficiency, performance, and reduces the exhaust emissions.

  4. VIEW OF CRANE LOADING AND UNLOADING AREA OF FUEL STORAGE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF CRANE LOADING AND UNLOADING AREA OF FUEL STORAGE BUILDING (CPP-603). PHOTO TAKEN LOOKING NORTH. INL PHOTO NUMBER HD-54-17-4. Mike Crane, Photographer, 8/2005 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  5. VIEW OF CRANE LOADING AND UNLOADING AREA OF FUEL STORAGE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF CRANE LOADING AND UNLOADING AREA OF FUEL STORAGE BUILDING (CPP-603). PHOTO TAKEN LOOKING SOUTH. INL PHOTO NUMBER HD-54-17-1. Mike Crane, Photographer, 8/2005 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  6. Features of postfailure fuel behavior in transient overpower and transient undercooled/overpower tests in the transient reactor test facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doerner, R.C.; Bauer, T.H.; Morman, J.A.

    Prototypic oxide fuel was subjected to simulated, fast reactor severe accident conditions in a series of in-pile tests in the Transient Reactor Test Facility reactor. Seven experiments were performed on fresh and previously irradiated oxide fuel pins under transient overpower and transient undercooled. overpower accident conditions. For each of the tests, fuel motions were observed by the hodoscope. Hodoscope data are correlated with coolant flow, pressure, and temperature data recorded by the loop instrumentation. Data were analyzed from the onset of initial failure to a final mass distribution at the end of the test. In this paper results of thesemore » analyses are compared to pre- and posttest accident calculations and to posttest metallographic accident calculations and to posttest metallographic examinations and computed tomographic reconstructions from neutron radiographs.« less

  7. Iso-geometric analysis for neutron diffusion problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, S. K.; Eaton, M. D.; Williams, M. M. R.

    Iso-geometric analysis can be viewed as a generalisation of the finite element method. It permits the exact representation of a wider range of geometries including conic sections. This is possible due to the use of concepts employed in computer-aided design. The underlying mathematical representations from computer-aided design are used to capture both the geometry and approximate the solution. In this paper the neutron diffusion equation is solved using iso-geometric analysis. The practical advantages are highlighted by looking at the problem of a circular fuel pin in a square moderator. For this problem the finite element method requires the geometry tomore » be approximated. This leads to errors in the shape and size of the interface between the fuel and the moderator. In contrast to this iso-geometric analysis allows the interface to be represented exactly. It is found that, due to a cancellation of errors, the finite element method converges more quickly than iso-geometric analysis for this problem. A fuel pin in a vacuum was then considered as this problem is highly sensitive to the leakage across the interface. In this case iso-geometric analysis greatly outperforms the finite element method. Due to the improvement in the representation of the geometry iso-geometric analysis can outperform traditional finite element methods. It is proposed that the use of iso-geometric analysis on neutron transport problems will allow deterministic solutions to be obtained for exact geometries. Something that is only currently possible with Monte Carlo techniques. (authors)« less

  8. Effects of Heat of Vaporization and Octane Sensitivity on Knock-Limited Spark Ignition Engine Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ratcliff, Matthew A; Burton, Jonathan L; Sindler, Petr

    Knock-limited loads for a set of surrogate gasolines all having nominal 100 research octane number (RON), approximately 11 octane sensitivity (S), and a heat of vaporization (HOV) range of 390 to 595 kJ/kg at 25 degrees C were investigated. A single-cylinder spark-ignition engine derived from a General Motors Ecotec direct injection (DI) engine was used to perform load sweeps at a fixed intake air temperature (IAT) of 50 degrees C, as well as knock-limited load measurements across a range of IATs up to 90 degrees C. Both DI and pre-vaporized fuel (supplied by a fuel injector mounted far upstream ofmore » the intake valves and heated intake runner walls) experiments were performed to separate the chemical and thermal effects of the fuels' knock resistance. The DI load sweeps at 50 degrees C intake air temperature showed no effect of HOV on the knock-limited performance. The data suggest that HOV acts as a thermal contributor to S under the conditions studied. Measurement of knock-limited loads from the IAT sweeps for DI at late combustion phasing showed that a 40 vol% ethanol (E40) blend provided additional knock resistance at the highest temperatures, compared to a 20 vol% ethanol blend and hydrocarbon fuel with similar RON and S. Using the pre-vaporized fuel system, all the high S fuels produced nearly identical knock-limited loads at each temperature across the range of IATs studied. For these fuels RON ranged from 99.2 to 101.1 and S ranged from 9.4 to 12.2, with E40 having the lowest RON and highest S. The higher knock-limited loads for E40 at the highest IATs examined were consistent with the slightly higher S for this fuel, and the lower engine operating condition K values arising from use of this fuel. The study highlights how fuel HOV can affect the temperature at intake valve closing, and consequently the pressure-temperature history of the end gas leading to more negative values of K, thereby enhancing the effect of S on knock resistance.« less

  9. Dwarf mistletoe effects on fuel loadings in ponderosa pine forests in northern Arizona

    Treesearch

    Chad Hoffman; Robert Mathiasen; Carolyn Hull Sieg

    2007-01-01

    Southwestern dwarf mistletoe (Arceuthobium vaginatum (Willd.) J. Presl ssp. cryptopodum) infests about 0.9 million ha in the southwestern United States. Several studies suggest that dwarf mistletoes affect forest fuels and fire behavior; however, few studies have quantified these effects. We compared surface fuel loadings and...

  10. Optimum Design of a Ceramic Tensile Creep Specimen Using a Finite Element Method

    PubMed Central

    Wang, Z.; Chiang, C. K.; Chuang, T.-J.

    1997-01-01

    An optimization procedure for designing a ceramic tensile creep specimen to minimize stress concentration is carried out using a finite element method. The effect of pin loading and the specimen geometry are considered in the stress distribution calculations. A growing contact zone between the pin and the specimen has been incorporated into the problem solution scheme as the load is increased to its full value. The optimization procedures are performed for the specimen, and all design variables including pinhole location and pinhole diameter, head width, neck radius, and gauge length are determined based on a set of constraints imposed on the problem. In addition, for the purpose of assessing the possibility of delayed failure outside the gage section, power-law creep in the tensile specimen is considered in the analysis. Using a particular grade of advanced ceramics as an example, it is found that if the specimen is not designed properly, significant creep deformation and stress redistribution may occur in the head of the specimen resulting in undesirable (delayed) head failure of the specimen during the creep test. PMID:27805126

  11. Investigation on wear and corrosion behavior of equal channel angular pressed aluminium 2014 alloy

    NASA Astrophysics Data System (ADS)

    Divya, S. P.; Yoganandan, G.; Balaraju, J. N.; Srinivasan, S. A.; Nagaraj, M.; Ravisankar, B.

    2018-02-01

    Aluminium 2014 alloy solutionized at 495°C, aged at 195°C was subjected to Equal Channel Angular Pressing (ECAP). Dry sliding wear tests were conducted using pin on disc tribometer system under nominal loads of 10N and 30N with constant speed 2m/s for 2000m in order to investigate their wear behavior after ECAP. The Co-efficient of friction and loss in volume were decreased after ECAP. The dominant wear mechanism observed was adhesion, delamination in addition to these wear mechanisms, oxidation and transfer of Fe from the counter surface to the Al 2014 pin were observed at higher loading condition. The corrosion behavior was evaluated by potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy (EIS) in 3.5% NaCl solution. The results obtained from PDP showed higher corrosion potential and lower corrosion density after ECAP than base. Electrochemical impedance spectroscopy (EIS) showed higher charge transfer resistance after ECAP. Surface morphology showed decreased pit size and increased oxygen content in ECAP sample than base after PDP.

  12. Analysis of DMFC/battery hybrid power system for portable applications

    NASA Astrophysics Data System (ADS)

    Lee, Bong-Do; Jung, Doo-Hwan; Ko, Young-Ho

    This study was carried out to develop a direct methanol fuel cell (DMFC)/battery hybrid power system used in portable applications. For a portable power system, the DMFC was applied for the main power source at average load and the battery was applied for auxiliary power at overload. Load share characteristics of hybrid power source were analyzed by computational simulation. The connection apparatus between the DMFC and the battery was set and investigated in the real system. Voltages and currents of the load, the battery and the DMFC were measured according to fuel, air and load changes. The relationship between load share characteristic and battery capacity was surveyed. The relationship was also studied in abnormal operation. A DMFC stack was manufactured for this experiment. For the study of the connection characteristics to the fuel cell Pb-acid, Ni-Cd and Ni-MH batteries were tested. The results of this study can be applied to design the interface module of the fuel cell/battery hybrid system and to determine the design requirement in the fuel cell stack for portable applications.

  13. Supplemental Reactor Physics Calculations and Analysis of ELF Mk 1A Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pope, Michael A.

    2014-10-01

    These calculations supplement previous the reactor physics work evaluating the Enhanced Low Enriched Uranium (LEU) Fuel (ELF) Mk 1A element. This includes various additional comparisons between the current Highly Enriched Uranium (HEU) and LEU along with further characterization of the performance of the ELF fuel. The excess reactivity to be held down at BOC for ELF Mk 1A fuel is estimated to be approximately $2.75 greater than with HEU for a typical cycle. This is a combined effect of the absence of burnable poison in the ELF fuel and the reduced neck shim worth in LEU fuel compared to HEU.more » Burnable poison rods were conceptualized for use in the small B positions containing Gd2O3 absorber. These were shown to provide $2.37 of negative reactivity at BOC and to burn out in less than half of a cycle. The worth of OSCCs is approximately the same between HEU and ELF Mk 1A (LEU) fuels in the representative loading evaluated. This was evaluated by rotating all banks simultaneously. The safety rod worth is relatively unchanged between HEU and ELF Mk 1A (LEU) fuels in the representative loading evaluated. However, this should be reevaluated with different loadings. Neutron flux, both total and fast (>1 MeV), is either the same or reduced upon changing from HEU to ELF Mk 1A (LEU) fuels in the representative loading evaluated. This is consistent with the well-established trend of lower neutron fluxes for a given power in LEU than HEU.The IPT loop void reactivity is approximately the same or less positive with ELF Mk 1A (LEU) fuel than HEU in the representative loading evaluated.« less

  14. Assessment of SFR Wire Wrap Simulation Uncertainties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delchini, Marc-Olivier G.; Popov, Emilian L.; Pointer, William David

    Predictive modeling and simulation of nuclear reactor performance and fuel are challenging due to the large number of coupled physical phenomena that must be addressed. Models that will be used for design or operational decisions must be analyzed for uncertainty to ascertain impacts to safety or performance. Rigorous, structured uncertainty analyses are performed by characterizing the model’s input uncertainties and then propagating the uncertainties through the model to estimate output uncertainty. This project is part of the ongoing effort to assess modeling uncertainty in Nek5000 simulations of flow configurations relevant to the advanced reactor applications of the Nuclear Energy Advancedmore » Modeling and Simulation (NEAMS) program. Three geometries are under investigation in these preliminary assessments: a 3-D pipe, a 3-D 7-pin bundle, and a single pin from the Thermal-Hydraulic Out-of-Reactor Safety (THORS) facility. Initial efforts have focused on gaining an understanding of Nek5000 modeling options and integrating Nek5000 with Dakota. These tasks are being accomplished by demonstrating the use of Dakota to assess parametric uncertainties in a simple pipe flow problem. This problem is used to optimize performance of the uncertainty quantification strategy and to estimate computational requirements for assessments of complex geometries. A sensitivity analysis to three turbulent models was conducted for a turbulent flow in a single wire wrapped pin (THOR) geometry. Section 2 briefly describes the software tools used in this study and provides appropriate references. Section 3 presents the coupling interface between Dakota and a computational fluid dynamic (CFD) code (Nek5000 or STARCCM+), with details on the workflow, the scripts used for setting up the run, and the scripts used for post-processing the output files. In Section 4, the meshing methods used to generate the THORS and 7-pin bundle meshes are explained. Sections 5, 6 and 7 present numerical results for the 3-D pipe, the single pin THORS mesh, and the 7-pin bundle mesh, respectively.« less

  15. Small volume low mechanical stress cytometry using computer-controlled Braille display microfluidics.

    PubMed

    Tung, Yi-Chung; Torisawa, Yu-suke; Futai, Nobuyuki; Takayama, Shuichi

    2007-11-01

    This paper describes a micro flow cytometer system designed for efficient and non-damaging analysis of samples with small numbers of precious cells. The system utilizes actuation of Braille-display pins for micro-scale fluid manipulation and a fluorescence microscope with a CCD camera for optical detection. The microfluidic chip is fully disposable and is composed of a polydimethylsiloxane (PDMS) slab with microchannel features sealed against a thin deformable PDMS membrane. The channels are designed with diffusers to alleviate pulsatile flow behaviors inherent in pin actuator-based peristaltic pumping schemes to maximize hydrodynamic focusing of samples with minimal disturbances in the laminar streams within the channel. A funnel connected to the microfluidic channel is designed for efficient loading of samples with small number of cells and is also positioned on the chip to prevent physical damages of the samples by the squeezing actions of Braille pins during actuation. The sample loading scheme was characterized by both computational fluidic dynamics (CFD) simulation and experimental observation. A fluorescein solution was first used for flow field investigation, followed by use of fluorescence beads with known relative intensities for optical detection performance calibration. Murine myoblast cells (C2C12) were exploited to investigate cell viability for the sample loading scheme of the device. Furthermore, human promyelocytic leukemia (HL60) cells stained by hypotonic DNA staining buffer were also tested in the system for cell cycle analysis. The ability to efficiently analyze cellular samples where the number of cells is small was demonstrated by analyzing cells from a single embryoid body derived from mouse embryonic stem cells. Consequently, the designed microfluidic device reported in this paper is promising for easy-to-use, small sample size flow cytometric analysis, and has potential to be further integrated with other Braille display-based microfluidic devices to facilitate a multi-functional lab-on-a-chip for mammalian cell manipulations.

  16. Stereo photo series for quantifying natural fuels Volume X: sagebrush with grass and ponderosa pine-juniper types in central Montana.

    Treesearch

    Roger D. Ottmar; Robert E. Vihnanek; Clinton S. Wright

    2007-01-01

    Two series of single and stereo photographs display a range of natural conditions and fuel loadings in sagebrush with grass and ponderosa pinejuniper types in central Montana. Each group of photos includes inventory information summarizing vegetation composition, structure, and loading; woody material loading and density by size class; forest floor depth and loading;...

  17. Controlled crack growth specimen for brittle systems

    NASA Technical Reports Server (NTRS)

    Calomino, Anthony M.; Brewer, David N.

    1990-01-01

    A pure Mode 1 fracture specimen and test procedure has been developed which provides extended, stable, through-thickness crack growth in ceramics and other brittle, nonmetallic materials. Fixed displacement loading, applied at the crack mouth, promotes stable crack extension by reducing the stored elastic strain energy. Extremely fine control of applied displacements is achieved by utilizing the Poisson's expansion of a compressively loaded cylindrical pin. Stable cracks were successfully grown in soda-lime glass and monolithic Al2O3 for lengths in excess of 20 mm without uncontrollable catastrophic failure.

  18. Controlled crack growth specimen for brittle systems

    NASA Technical Reports Server (NTRS)

    Calomino, Anthony M.; Brewer, David N.

    1992-01-01

    A pure Mode 1 fracture specimen and test procedure has been developed which provides extended, stable, through-thickness crack growth in ceramics and other brittle, nonmetallic materials. Fixed displacement loading, applied at the crack mouth, promotes stable crack extension by reducing the stored elastic strain energy. Extremely fine control of applied displacements is achieved by utilizing the Poisson's expansion of a compressively loaded cylindrical pin. Stable cracks were successfully grown in soda-lime glass and monolithic Al2O3 for lengths in excess of 2O mm without uncontrollable catastrophic failure.

  19. Short-term effects of fuel reduction treatments on soil mycorrhizal inoculum potential in beetle-killed stands

    Treesearch

    Aaron D. Stottlemyer; G. Geoff Wang; Thomas A. Waldrop; Christina E. Wells; Mac A. Callaham

    2013-01-01

    Heavy fuel loads were created by southern pine beetle (Dendroctonus frontalis Ehrh.) outbreak throughout the southeastern Piedmont during the early 2000s. Prescribed burning and mechanical mulching (mastication) were used to reduce fuel loading, but many ecological impacts are unknown. Successful forest regeneration depends on ectomycorrhizal (ECM)...

  20. Bayesian techniques for surface fuel loading estimation

    Treesearch

    Kathy Gray; Robert Keane; Ryan Karpisz; Alyssa Pedersen; Rick Brown; Taylor Russell

    2016-01-01

    A study by Keane and Gray (2013) compared three sampling techniques for estimating surface fine woody fuels. Known amounts of fine woody fuel were distributed on a parking lot, and researchers estimated the loadings using different sampling techniques. An important result was that precise estimates of biomass required intensive sampling for both the planar intercept...

  1. Development and evaluation of the photoload sampling technique

    Treesearch

    Robert E. Keane; Laura J. Dickinson

    2007-01-01

    Wildland fire managers need better estimates of fuel loading so they can accurately predict potential fire behavior and effects of alternative fuel and ecosystem restoration treatments. This report presents the development and evaluation of a new fuel sampling method, called the photoload sampling technique, to quickly and accurately estimate loadings for six common...

  2. Emergency cooling analysis for the loss of coolant malfunction

    NASA Technical Reports Server (NTRS)

    Peoples, J. A.

    1972-01-01

    This report examines the dynamic response of a conceptual space power fast-spectrum lithium cooled reactor to the loss of coolant malfunction and several emergency cooling concepts. The results show that, following the loss of primary coolant, the peak temperatures of the center most 73 fuel elements can range from 2556 K to the region of the fuel melting point of 3122 K within 3600 seconds after the start of the accident. Two types of emergency aftercooling concepts were examined: (1) full core open loop cooling and (2) partial core closed loop cooling. The full core open loop concept is a one pass method of supplying lithium to the 247 fuel pins. This method can maintain fuel temperature below the 1611 K transient damage limit but requires a sizable 22,680-kilogram auxiliary lithium supply. The second concept utilizes a redundant internal closed loop to supply lithium to only the central area of each hexagonal fuel array. By using this method and supplying lithium to only the triflute region, fuel temperatures can be held well below the transient damage limit.

  3. Comparison of metal versus absorbable implants in tension-band wiring: a preliminary study.

    PubMed

    Morgan, W J; Slowman, L A; Wotton, H M; Nairus, J

    2001-04-01

    The strength of tension-band wiring using bioabsorbable materials versus metal implants was assessed with a rabbit knee fusion model. Ten rabbit knees were osteotomized and rigidly fixed using a tension-band technique: five with metal implants (2 pins and 24-gauge wire) and five with absorbable implants (2-mm pins [Bionx, Blue Bell, Pa] and 1 Maxon [Davis and Geck, Danbury, Conn]). Biomechanical testing of the fixation strength was completed using a servohydraulic mechanical testing machine and a specifically designed four-point bending jig. The parameters assessed were maximal load, relative stiffness, displacement, and bending moment of the constructs. Results of the biomechanical testing showed no statistical difference between the constructs on any of the parameters assessed.

  4. Downhole tool

    DOEpatents

    Hall, David R.; Muradov, Andrei; Pixton, David S.; Dahlgren, Scott Steven; Briscoe, Michael A.

    2007-03-20

    A double shouldered downhole tool connection comprises box and pin connections having mating threads intermediate mating primary and secondary shoulders. The connection further comprises a secondary shoulder component retained in the box connection intermediate a floating component and the primary shoulders. The secondary shoulder component and the pin connection cooperate to transfer a portion of makeup load to the box connection. The downhole tool may be selected from the group consisting of drill pipe, drill collars, production pipe, and reamers. The floating component may be selected from the group consisting of electronics modules, generators, gyroscopes, power sources, and stators. The secondary shoulder component may comprises an interface to the box connection selected from the group consisting of radial grooves, axial grooves, tapered grooves, radial protrusions, axial protrusions, tapered protrusions, shoulders, and threads.

  5. Initial Testing of the Stainless Steel NaK-Cooled Circuit (SNaKC)

    NASA Technical Reports Server (NTRS)

    Garber, Anne; Godfroy, Thomas

    2007-01-01

    An actively pumped alkali metal flow circuit, designed and fabricated at the NASA Marshall Space Flight Center, is currently undergoing testing in the Early Flight Fission Test Facility (EFF-TF). Sodium potassium (NaK) was selected as the primary coolant. Basic circuit components include: simulated reactor core, NaK to gas heat exchanger, electromagnetic liquid metal pump, liquid metal flowmeter, load/drain reservoir, expansion reservoir, test section, and instrumentation. Operation of the circuit is based around the 37-pin partial-array core (pin and flow path dimensions are the same as those in a full core), designed to operate at 33 kWt. This presentation addresses the construction, fill and initial testing of the Stainless Steel NaK-Cooled Circuit (SNaKC).

  6. Analysis of composite laminates with multiple fasteners by boundary collocation technique

    NASA Astrophysics Data System (ADS)

    Sergeev, Boris Anatolievich

    Mechanical fasteners remain the primary means of load transfer between structural components made of composite laminates. As, in pursuit of increasing efficiency of the structure, the operational load continues to grow, the load carried by each fastener increases accordingly. This accelerates initiation of fatigue-related cracks near the fasteners holes and increases probability of failure. Therefore, the assessment of the stresses around the fastener holes and the stress intensity factors associated with edge cracks becomes critical for damage-tolerant design. Because of the presence of unknown contact stresses and the contact region between the fastener and the laminate, the analysis of a pin-loaded hole becomes considerably more complex than that of a traction-free hole. The accurate prediction of the contact stress distribution along the hole boundary is critical for determining the stress intensity factors and is essential for reliable strength evaluation and failure prediction. This study concerns the development of an analytical methodology, based on the boundary collocation technique, to determine the contact stresses and stress intensity factors required for strength and life prediction of bolted joints with many fasteners. It provides an analytical capability for determining the non-linear contact stresses in mechanically fastened composite laminates while capturing the effects of finite geometry, presence of edge cracks, interaction among fasteners, material anisotropy, fastener flexibility, fastener-hole clearance, friction between the pin and the laminate, and by-pass loading. Also, the proposed approach permits the determination of the fastener load distribution, which significantly influences the failure load of a multi-fastener joint. The well known phenomenon of the fastener tightening torque (clamping force) influence on the load distribution among the different fastener in a multi-fastener joints is taken into account by means of bi-linear representation of the elastic fastener deflection. Finally, two different failure criteria, maximum strains averaged over the characteristic distances and Tsai-Wu criterion, were used to predict the failure load and failure mode in two composite-aluminum joints. The comparison of the present predictions with the published experimental results reveals their agreement.

  7. Effect of ethanol-gasoline blends on small engine generator energy efficiency and exhaust emission.

    PubMed

    Lin, Wen-Yinn; Chang, Yuan-Yi; Hsieh, You-Ru

    2010-02-01

    This study was focused on fuel energy efficiency and pollution analysis of different ratios of ethanol-gasoline blended fuels (E0, E3, E6, and E9) under different loadings. In this research, the experimental system consisted of a small engine generator, a particulate matter measurement system, and an exhaust gas analyzer system. Different fuels, unleaded gasoline, and ethanol-gasoline blends (E0, E3, E6, and E9) were used to study their effects on the exhaust gas emission and were expressed as thermal efficiency of the small engine generator energy efficiency. The results suggested that particle number concentration increased as the engine loading increased; however, it decreased as the ethanol content in the blend increased. While using E6 as fuel, the carbon monoxide (CO) concentration was less than other fuels (E0, E3, and E9) for each engine loading. The average of CO concentration reduction by using E3, E6, and E9 is 42, 86, and 83%, respectively. Using an ethanol-gasoline blend led to a significant reduction in exhaust emissions by approximately 78.7, 97.5, and 89.46% of the mean average values of hydrocarbons (HCs) with E3, E6, and E9 fuels, respectively, for all engine loadings. Using an ethanol-gasoline blend led to a significant reduction in exhaust emissions by approximately 35, 86, and 77% of the mean average values of nitrogen oxides (NOx) with E3, E6, and E9 fuels, respectively, at each engine loading. The E6 fuel gave the best results of the exhaust emissions, and the E9 fuel gave the best results of the particle emissions and engine performance. The thermal efficiency of the small engine generator increased as the ethanol content in the blend increased and as the engine loading increased.

  8. Analysis on fuel breeding capability of FBR core region based on minor actinide recycling doping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Permana, Sidik; Novitrian,; Waris, Abdul

    Nuclear fuel breeding based on the capability of fuel conversion capability can be achieved by conversion ratio of some fertile materials into fissile materials during nuclear reaction processes such as main fissile materials of U-233, U-235, Pu-239 and Pu-241 and for fertile materials of Th-232, U-238, and Pu-240 as well as Pu-238. Minor actinide (MA) loading option which consists of neptunium, americium and curium will gives some additional contribution from converted MA into plutonium such as conversion Np-237 into Pu-238 and it's produced Pu-238 converts to Pu-239 via neutron capture. Increasing composition of Pu-238 can be used to produce fissilemore » material of Pu-239 as additional contribution. Trans-uranium (TRU) fuel (Mixed fuel loading of MOX (U-Pu) and MA composition) and mixed oxide (MOX) fuel compositions are analyzed for comparative analysis in order to show the effect of MA to the plutonium productions in core in term of reactor criticality condition and fuel breeding capability. In the present study, neptunium (Np) nuclide is used as a representative of MAin trans-uranium (TRU) fuel composition as Np-MOX fuel type. It was loaded into the core region gives significant contribution to reduce the excess reactivity in comparing to mixed oxide (MOX) fuel and in the same time it contributes to increase nuclear fuel breeding capability of the reactor. Neptunium fuel loading scheme in FBR core region gives significant production of Pu-238 as fertile material to absorp neutrons for reducing excess reactivity and additional contribution for fuel breeding.« less

  9. Displacement coefficients along the inner boundaries of radially cracked ring segments subject to forces and couples

    NASA Technical Reports Server (NTRS)

    Gross, B.

    1977-01-01

    Displacement results of plane boundary collocation analysis are given for various locations on the inner boundaries of radially cracked ring segments (C-shaped specimens) subject to two complementary types of loading. Results are presented for ratios of outer to inner radius R sub o/R sub i in the range of 1.1 to 2.5, and ratios a/W in the range 0.1 to 0.8 where a is the crack length for a specimen of wall thickness W. By combination of these results the resultant displacement coefficient delta or the corresponding influence coefficient, can be obtained for any practical load line location of a pin loaded specimen.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szybist, James P.; Splitter, Derek A.

    The octane sensitivity (S), defined as the difference between the Research Octane Number (RON) and the Motor Octane Number (MON), is of increasing interest in spark ignition (SI) engines because of its relevance to knock resistance at boosted high load conditions. In this study, three fuels with nearly constant RON (99.2-100) and varying S (S = 0, 6.5, and 12) are operated at the knock limited spark advance (KLSA) at nominal engine loads of 10, 15, and 20 bar IMEP in a single cylinder SI engine with side-mount direct injection fueling, at λ =1 stoichiometry. At each load condition, themore » intake manifold temperature is swept from 35 °C to 95 °C to alter the temperature and pressure history of the charge. Results show that at the 10 bar IMEP condition, knock resistance is inversely proportional to fuel S where the S=0 fuel is the most knock resist, but as load increases the trend reverses and knock resistance becomes proportional to fuel S, and the S=12 fuel is the most knock resistant. The reversal of knock resistance as a function of S with load it is attributed to changing fuel ignition delay, as bulk gas intermediate temperature heat release (ITHR) is observed for the S = 0 several crank angles prior to the spark command and ITHR magnitude is a function of increasing intake temperature. As intake temperature continued to increase, the S=0 fuel transitioned from ITHR to low-temperature heat release (LTHR) prior to the spark event. At the highest load and intake temperature, 95 C, the S=0 fuel exhibits distinct LTHR and negative temperature coefficient (NTC), and the intermediate S value fuel (S=6.5) exhibited distinct ITHR behavior several crank angles prior to the spark command. However, for the tested conditions, the S=12 fuel exhibits neither ITHR nor LTHR. To understand the measured trends, chemical kinetic modeling is used to elucidate the fuel specific dependencies on in-cylinder temperature and pressure history. Lastly, the bulk gas composition change that occurs for fuels and conditions exhibiting ITHR and LTHR is analyzed in the modeling, including their implications on flame speed and combustion stability at late phasing. Furthermore, the combined findings illustrate the commonality and utility of fuel S, ITHR, LTHR, and NTC across a wide range of conditions, and the associated implications of fuel S in highly boosted modern GDI SI engines relative to the RON and MON tests.« less

  11. Fuel cell system

    DOEpatents

    Early, Jack; Kaufman, Arthur; Stawsky, Alfred

    1982-01-01

    A fuel cell system is comprised of a fuel cell module including sub-stacks of series-connected fuel cells, the sub-stacks being held together in a stacked arrangement with cold plates of a cooling means located between the sub-stacks to function as electrical terminals. The anode and cathode terminals of the sub-stacks are connected in parallel by means of the coolant manifolds which electrically connect selected cold plates. The system may comprise a plurality of the fuel cell modules connected in series. The sub-stacks are designed to provide a voltage output equivalent to the desired voltage demand of a low voltage, high current DC load such as an electrolytic cell to be driven by the fuel cell system. This arrangement in conjunction with switching means can be used to drive a DC electrical load with a total voltage output selected to match that of the load being driven. This arrangement eliminates the need for expensive voltage regulation equipment.

  12. An investigation on dry sliding wear behaviour of AA6061-AlNp composite

    NASA Astrophysics Data System (ADS)

    Mahesh Naidu, K.; Mohan Reddy, Chandra

    2018-03-01

    This paper studies the effect of load, sliding distance, reinforcement percentage and temperature on dry sliding wear behaviour of Al-AlNp composites by using pin on disc machine. The wear test was conducted at different loads (1,2,3 & 4 Kg), temperatures (30°C, 100°C, 170°C & 240°C) and sliding distances (500m,1000m,1500m and 2000m). Increase in wear rate has been observed by increasing the load and sliding distance, at the same time it has been decreased by increasing the reinforcement percentage and temperature. At the higher loads, temperatures and sliding distances adhesive wear, abrasive wear and oxidation wear are observed to be dominant modes of wear mechanisms in the composite.

  13. Modelling the vertical distribution of canopy fuel load using national forest inventory and low-density airbone laser scanning data.

    PubMed

    González-Ferreiro, Eduardo; Arellano-Pérez, Stéfano; Castedo-Dorado, Fernando; Hevia, Andrea; Vega, José Antonio; Vega-Nieva, Daniel; Álvarez-González, Juan Gabriel; Ruiz-González, Ana Daría

    2017-01-01

    The fuel complex variables canopy bulk density and canopy base height are often used to predict crown fire initiation and spread. Direct measurement of these variables is impractical, and they are usually estimated indirectly by modelling. Recent advances in predicting crown fire behaviour require accurate estimates of the complete vertical distribution of canopy fuels. The objectives of the present study were to model the vertical profile of available canopy fuel in pine stands by using data from the Spanish national forest inventory plus low-density airborne laser scanning (ALS) metrics. In a first step, the vertical distribution of the canopy fuel load was modelled using the Weibull probability density function. In a second step, two different systems of models were fitted to estimate the canopy variables defining the vertical distributions; the first system related these variables to stand variables obtained in a field inventory, and the second system related the canopy variables to airborne laser scanning metrics. The models of each system were fitted simultaneously to compensate the effects of the inherent cross-model correlation between the canopy variables. Heteroscedasticity was also analyzed, but no correction in the fitting process was necessary. The estimated canopy fuel load profiles from field variables explained 84% and 86% of the variation in canopy fuel load for maritime pine and radiata pine respectively; whereas the estimated canopy fuel load profiles from ALS metrics explained 52% and 49% of the variation for the same species. The proposed models can be used to assess the effectiveness of different forest management alternatives for reducing crown fire hazard.

  14. Use of Adaptive Injection Strategies to Increase the Full Load Limit of RCCI Operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanson, Reed; Ickes, Andrew; Wallner, Thomas

    2015-01-01

    Dual-fuel combustion using port-injection of low reactivity fuel combined with direct injection of a higher reactivity fuel, otherwise known as Reactivity Controlled Compression Ignition (RCCI), has been shown as a method to achieve low-temperature combustion with moderate peak pressure rise rates, low engine-out soot and NOx emissions, and high indicated thermal efficiency. A key requirement for extending to high-load operation is moderating the reactivity of the premixed charge prior to the diesel injection. One way to accomplish this is to use a very low reactivity fuel such as natural gas. In this work, experimental testing was conducted on a 13Lmore » multi-cylinder heavy-duty diesel engine modified to operate using RCCI combustion with port injection of natural gas and direct injection of diesel fuel. Engine testing was conducted at an engine speed of 1200 RPM over a wide variety of loads and injection conditions. The impact on dual-fuel engine performance and emissions with respect to varying the fuel injection parameters is quantified within this study. The injection strategies used in the work were found to affect the combustion process in similar ways to both conventional diesel combustion and RCCI combustion for phasing control and emissions performance. As the load is increased, the port fuel injection quantity was reduced to keep peak cylinder pressure and maximum pressure rise rate under the imposed limits. Overall, the peak load using the new injection strategy was shown to reach 22 bar BMEP with a peak brake thermal efficiency of 47.6%.« less

  15. Dynamic Response during PEM Fuel Cell Loading-up

    PubMed Central

    Pei, Pucheng; Yuan, Xing; Gou, Jun; Li, Pengcheng

    2009-01-01

    A study on the effects of controlling and operating parameters for a Proton Exchange Membrane (PEM) fuel cell on the dynamic phenomena during the loading-up process is presented. The effect of the four parameters of load-up amplitudes and rates, operating pressures and current levels on gas supply or even starvation in the flow field is analyzed based accordingly on the transient characteristics of current output and voltage. Experiments are carried out in a single fuel cell with an active area of 285 cm2. The results show that increasing the loading-up amplitude can inevitably increase the possibility of gas starvation in channels when a constant flow rate has been set for the cathode; With a higher operating pressure, the dynamic performance will be improved and gas starvations can be relieved. The transient gas supply in the flow channel during two loading-up mode has also been discussed. The experimental results will be helpful for optimizing the control and operation strategies for PEM fuel cells in vehicles.

  16. Thinning and underburning effects on ground fuels in Jeffrey pine

    Treesearch

    R.F. Walker; R.M. Fecko; W.B. Frederick; J.D. Murphy; D.W. Johnson; W.W. Miller

    2007-01-01

    Thinning with cut-to-length and whole-tree harvesting systems followed by underburning were evaluated for their impacts on downed and dead fuel loading by timelag category in eastern Sierra Nevada Jeffrey pine (Pinus jeffreyi Grev. & Balf.). Cut-to-length harvesting resulted in an approximate doubling of total fuel loading to 113829 kg ha

  17. Fire history of coniferous riparian forests in the Sierra Nevada

    Treesearch

    K. Van de Water; M. North

    2010-01-01

    Fire is an important ecological process in many western U.S. coniferous forests, yet high fuel loads, rural home construction and other factors have encouraged the suppression of most wildfires. Using mechanical thinning and prescribed burning, land managers often try to reduce fuels in strategic areas with the highest fuel loads. Riparian forests, however, are often...

  18. Aluminum hydroxide coating thickness measurements and brushing tests on K West Basin fuel elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pitner, A.L.

    1998-09-11

    Aluminum hydroxide coating thicknesses were measured on fuel elements stored in aluminum canisters in K West Basin using specially developed eddy current probes . The results were used to estimate coating inventories for MCO fuel,loading. Brushing tests successfully demonstrated the ability to remove the coating if deemed necessary prior to MCO loading.

  19. Hardness and modulus of elasticity of primary and permanent teeth after wear against different dental materials

    PubMed Central

    Galo, Rodrigo; Contente, Marta Maria Martins Giamatei; Galafassi, Daniel; Borsatto, Maria Cristina

    2015-01-01

    Objectives: The purpose of this study was to determine the Young's modulus and the hardness of deciduous and permanent teeth following wear challenges using different dental materials. Materials and Methods: Wear challenges were performed against four dental materials: A resin-based fissure sealant (Fluoroshield®), a glass ionomer based fissure sealant (Vitremer®), and two microhybrid composite resins (Filtek Z250 and P90®). Using the pin-on-plate design, a deciduous or a permanent tooth was made into a pin (4 mm × 4 mm × 2 mm) working at a 3 N vertical load, 1 Hz frequency, and 900 cycles (15 min) with Fusayama artificial saliva as a lubricant. Before and after the tribological tests, the hardness and elasticity modulus of the tooth samples were measured by creating a nanoindentation at load forces up to 50 mN and 150 mN. All of the results were statistically analyzed using ANOVA and post-hoc Duncan's tests (P < 0.05). Results: No difference in hardness was encountered between deciduous and permanent teeth (P < 0.05) or modulus of elasticity (P < 0.05) before or after the wear challenges for all of the dental materials tested. Conclusions: Wear challenges against the studied dental materials did not alter the properties of permanent or deciduous teeth after the application of a 3 N load. PMID:26929700

  20. Investigation of explosives mechanic impact sensitivity on the samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loboyko, B.G.; Alekseev, A.V.; Litvinov, B.V.

    1996-05-01

    Several results of investigation into HMX-based explosive compound sensitivity to mechanic impact on the samples are presented. Mechanic loading of samples was effected by dynamic insertion of a pin. Alternation of physical state of explosive compound on account of preliminary thermal treatment or destruction of samples increased their sensitivity considerably. {copyright} {ital 1996 American Institute of Physics.}

  1. X-ray scattering and spectroscopy studies on diesel soot from oxygenated fuel under various engine load conditions

    USGS Publications Warehouse

    Braun, Andreas; Shah, N.; Huggins, Frank E.; Kelly, K.E.; Sarofim, A.; Jacobsen, C.; Wirick, S.; Francis, H.; Ilavsky, J.; Thomas, G.E.; Huffman, G.P.

    2005-01-01

    Diesel soot from reference diesel fuel and oxygenated fuel under idle and load engine conditions was investigated with X-ray scattering and X-ray carbon K-edge absorption spectroscopy. Up to five characteristic size ranges were found. Idle soot was generally found to have larger primary particles and aggregates but smaller crystallites, than load soot. Load soot has a higher degree of crystallinity than idle soot. Adding oxygenates to diesel fuel enhanced differences in the characteristics of diesel soot, or even reversed them. Aromaticity of idle soot from oxygenated diesel fuel was significantly larger than from the corresponding load soot. Carbon near-edge X-ray absorption fine structure (NEXAFS) spectroscopy was applied to gather information about the presence of relative amounts of carbon double bonds (CC, CO) and carbon single bonds (C-H, C-OH, COOH). Using scanning X-ray transmission microspectroscopy (STXM), the relative amounts of these carbon bond states were shown to vary spatially over distances approximately 50 to 100 nm. The results from the X-ray techniques are supported by thermo-gravimetry analysis and high-resolution transmission electron microscopy. ?? 2005 Elsevier Ltd. All rights reserved.

  2. Fuel loads and fuel type mapping

    USGS Publications Warehouse

    Chuvieco, Emilio; Riaño, David; Van Wagtendonk, Jan W.; Morsdof, Felix; Chuvieco, Emilio

    2003-01-01

    Correct description of fuel properties is critical to improve fire danger assessment and fire behaviour modeling, since they guide both fire ignition and fire propagation. This chapter deals with properties of fuel that can be considered static in short periods of time: biomass loads, plant geometry, compactness, etc. Mapping these properties require a detail knowledge of vegetation vertical and horizontal structure. Several systems to classify the great diversity of vegetation characteristics in few fuel types are described, as well as methods for mapping them with special emphasis on those based on remote sensing images.

  3. Finite size and geometrical non-linear effects during crack pinning by heterogeneities: An analytical and experimental study

    NASA Astrophysics Data System (ADS)

    Vasoya, Manish; Unni, Aparna Beena; Leblond, Jean-Baptiste; Lazarus, Veronique; Ponson, Laurent

    2016-04-01

    Crack pinning by heterogeneities is a central toughening mechanism in the failure of brittle materials. So far, most analytical explorations of the crack front deformation arising from spatial variations of fracture properties have been restricted to weak toughness contrasts using first order approximation and to defects of small dimensions with respect to the sample size. In this work, we investigate the non-linear effects arising from larger toughness contrasts by extending the approximation to the second order, while taking into account the finite sample thickness. Our calculations predict the evolution of a planar crack lying on the mid-plane of a plate as a function of material parameters and loading conditions, especially in the case of a single infinitely elongated obstacle. Peeling experiments are presented which validate the approach and evidence that the second order term broadens its range of validity in terms of toughness contrast values. The work highlights the non-linear response of the crack front to strong defects and the central role played by the thickness of the specimen on the pinning process.

  4. Tribological characteristics of sputtered Au/Cr films on alumina substrates at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Benoy, P. A.; Dellacorte, C.

    1993-01-01

    Research to evaluate the tribological properties of alumina pins sliding against thin sputtered gold films deposited on alumina disk substrates is described. A 250 A thick chromium interlayer was first deposited onto the alumina test disks to enhance adhesion and high temperature wetting of the gold films. The Au/Cr films were tribotested in pure sliding in a pin-on-disk tribometer under a 4.9 N load at 1m/s. The test atmosphere was room air at temperatures of 25, 500, and 800 C and the test duration varied from 60 to 540 min. The use of the Au/Cr films reduced friction by about a factor of two compared to the unlubricated alumina sliding couple. The coatings prevented wear of the alumina substrate disks and reduced pin wear by one to two orders of magnitude. In addition, wear lives in excess of 200,000 sliding passes (9 hr) were observed during sliding at 800 C. The results suggest that these films show promise for the practical lubrication of many high temperature sliding components.

  5. Evaluation of Transient Pin-Stress Requirements for Spacecraft Launching in Lightning Environments. Pain Free Analysis to Alleviate Those Pin Stress Headaches

    NASA Technical Reports Server (NTRS)

    Edwards, Paul; Terseck, Alex; Trout, Dawn

    2016-01-01

    Spacecraft are generally protected from direct lightning attachment by encapsulation within the payload fairing of a launch vehicle and the ground structures that exist at the launch site. Regardless of where lightning strikes, potentially damaging indirect effects prevail from the coupling of electromagnetic fields into a loop created by outer shield of the payload umbilical. The energy coupled into individual spacecraft circuits is dependent on the umbilical current drive, the cable transfer impedance and the source/ load circuitry, and the reference potential used. Lightning induced transient susceptibility of the spacecraft avionics needs to be fully understood in order to define realistic re-test criteria in the event of a lightning occurrence during the launch campaign. Use of standards such as RTCA/DO-160 & SAE 5412 has some applicability but do not represent the indirect environment adequately. This paper evaluates the launch pad environments, the measurement data available, and computer simulations to provide pain-free analysis to alleviate the transient pin-stress headaches for spacecraft launching in Lightning environments.

  6. Tribology approach to the engineering and study of articular cartilage.

    PubMed

    Wimmer, Markus A; Grad, Sibylle; Kaup, Thomas; Hänni, Markus; Schneider, Erich; Gogolewski, Sylwester; Alini, Mauro

    2004-01-01

    This study has been based on the assumption that articular motion is an important aspect of mechanotransduction in synovial joints. For this reason a new bioreactor concept, able to reproduce joint kinematics more closely, has been designed. The prototype consists of a rotating scaffold and/or cartilage pin, which is pressed onto an orthogonally rotating ball. By oscillating pin and ball in phase difference, elliptical displacement trajectories are generated that are similar to the motion paths occurring in vivo. Simultaneously, dynamic compression may be applied with a linear actuator, while two-step-motors generate the rotation of pin and ball. The whole apparatus is placed in an incubator. The control station is located outside. Preliminary investigations at the gene expression level demonstrated promising results. Compared with free-swelling control and/or simply compression-loaded samples, chondrocyte-seeded scaffolds as well as nasal cartilage explants exposed to interface motion both showed elevated levels of cartilage oligomeric matrix protein mRNA. The final design of the bioreactor will include four individual stations in line, which will facilitate the investigation of motion-initiated effects at the contacting surfaces in more detail.

  7. Friction and Wear Characteristics of Candidate Foil Bearing Materials from 25 C to 800 C

    NASA Technical Reports Server (NTRS)

    DellaCorte, C.; Laskowski, J. A.

    1996-01-01

    The friction and wear behavior of unlubricated metal/metal sliding couples was investigated to screen potential candidates for high temperature foil bearings. The tribo-tests were run in an induction-heated high temperature pin-on-disk tribometer in an air atmosphere at a load of 4.9 N and at a sliding velocity of 1 m/s. The friction and wear properties of several nickel based alloys (Rene'41, Inconel X-750, Inconel 713C), iron based alloys (MA956 and Inconel 909) and a ceramic (Al2O3) were tested at 25, 500, and 800 C. In general, at elevated temperatures the alloys oxidized and formed a tenacious and lubricous oxide surface film or layer. At 800 C, Inconel X-750 versus Rene'41 had the lowest friction coefficient (0.27) and at 500 C, Inconel X-750 versus Inconel 909 the lowest pin wear (2.84 x 10(exp -6)cu mm/N-m). Gouging and severe wear of the softer material occurred whenever a significant difference in hardness existed between the pin and disk specimens.

  8. Results of Performance Tests Performed on the John Watts WW Casing Connection on 7" Pipe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John D. Watts

    2000-02-01

    Stress Engineering Services (SES) was contracted by Mr. John Watts to test his ''WW'' threaded connection developed for oilfield oil and gas service. This work was a continuation of testing performed by SES as reported in August of 1999. The connection design tested was identified as ''WW''. The samples were all integral (no coupled connections) and contained a wedge thread form with 90{sup o} flank angles relative to the pipe centerline. The wedge thread form is a variable width thread that primarily engages on the flanks. This thread form provides very high torque capacity and good stabbing ability and makeup.more » The test procedure selected for one of the samples was the newly written ISO 13679 procedure for full scale testing of casing and tubing connections, which is currently going through the ISO acceptance process. The ISO procedure requires a variety of tests that includes makeup/breakout testing, internal gas sealability/external water sealability testing with axial tension, axial compression, bending, internal gas thermal cycle tests and limit load (failure) tests. This test procedure was performed with one sample. Four samples were tested to failure. Table 1 contains a summary of the tasks performed by SES. The project started with the delivery of test samples by Mr. Watts. Pipe from the previous round of tests was used for the new samples. Figure 1 shows the structural and sealing results relative to the pipe body. Sample 1 was used to determine the torque capacity of the connection. Torque was applied to the capacity of SES's equipment which was 28,424 ft-lbs. From this, an initial recommended torque range of 7,200 to 8,800 ft-lbs. was selected. The sample was disassembled and while there was no galling observed in the threads, the end of the pin had collapsed inward. Sample 2 received three makeups. Breakouts 1 and 2 also had collapsing of the pin end, with no thread galling. From these make/breaks, it was decided to reduce the amount of lubricant applied to the connection by applying it to the box or pin only and reducing the amount applied. Samples 3 and 4 received one makeup only. Sample 5 initially received two make/breaks to test for galling resistance before final makeup, No galling was observed. Later, three additional make/breaks were performed with no pin end collapse and galling over 1/2 a thread occurring on one of the breakouts. During the make/break tests, the stabbing and hand tight makeup of the WW connection was found to be very easy and trouble free. There was no tendency to crossthread, even when stabbed at an angle, and it screwed together very smoothly up to hand tight. During power tight makeup, there was no heat generated in the box (as checked by hand contact) and no jerkiness associated with any of the makeups or breakouts. Sample 2 was tested in pure compression. The maximum load obtained was 1,051 kips and the connection was beginning to significantly deform as the sample buckled. Actual pipe yield was 1,226 kips. Sample 3 was capped-end pressure tested to failure. The capped-end yield pressure of the pipe was 16,572 psi and the sample began to leak at 12,000 psi. Sample 4 was tested in pure tension. The maximum load obtained was 978 kips and the connection failed by fracture at the pin critical section. Actual pipe yield was 1,226 kips. Sample 5 was tested in combined tension/compression and internal gas pressure. The sample was assembled, setup and tested four times. The first time was with a torque of 7,298 ft-lbs and the connection leaked halfway to ISO Load Point 2 with loads of 693 kips and 4,312 psi. The second time the torque was increased to 14,488 ft-lbs and a leak occurred at 849 kips and 9,400 psi, which was ISO Load Point 2. The third time the makeup torque was again increased, to 20,456 ft-lbs, and a leak occurred at 716 kips and 11,342 psi, ISO Load Point 4. The fourth test was with the same torque as before, 20,617 ft-lbs, and the connection successfully tested up to load step 56, ISO Load Point 6 (second round) before leaking at 354 kips and 11,876 psi. At this point, time and funds prevented additional testing to be performed.« less

  9. Fuel cladding behavior under rapid loading conditions

    NASA Astrophysics Data System (ADS)

    Yueh, K.; Karlsson, J.; Stjärnsäter, J.; Schrire, D.; Ledergerber, G.; Munoz-Reja, C.; Hallstadius, L.

    2016-02-01

    A modified burst test (MBT) was used in an extensive test program to characterize fuel cladding failure behavior under rapid loading conditions. The MBT differs from a normal burst test with the use of a driver tube to simulate the expansion of a fuel pellet, thereby producing a partial strain driven deformation condition similar to that of a fuel pellet expansion in a reactivity insertion accident (RIA). A piston/cylinder assembly was used to pressurize the driver tube. By controlling the speed and distance the piston travels the loading rate and degree of sample deformation could be controlled. The use of a driver tube with a machined gauge section localizes deformation and allows for continuous monitoring of the test sample diameter change at the location of maximum hoop strain, during each test. Cladding samples from five irradiated fuel rods were tested between 296 and 553 K and loading rates from 1.5 to 3.5/s. The test rods included variations of Zircaloy-2 with different liners and ZIRLO, ranging in burn-up from 41 to 74 GWd/MTU. The test results show cladding ductility is strongly temperature and loading rate dependent. Zircaloy-2 cladding ductility degradation due to operational hydrogen pickup started to recover at approximately 358 K for test condition used in the study. This recovery temperature is strongly loading rate dependent. At 373 K, ductility recovery was small for loading rates less than 8 ms equivalent RIA pulse width, but longer than 8 ms the ductility recovery increased exponentially with increasing pulse width, consistent with literature observations of loading rate dependent brittle-to-ductile (BTD) transition temperature. The cladding ductility was also observed to be strongly loading rate/pulse width dependent for BWR cladding below the BTD temperature and Pressurized Water Reactor (PWR) cladding at both 296 and 553 K.

  10. Scoping Calculations of Power Sources for Nuclear Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Difilippo, F. C.

    1994-01-01

    This technical memorandum describes models and calculational procedures to fully characterize the nuclear island of power sources for nuclear electric propulsion. Two computer codes were written: one for the gas-cooled NERVA derivative reactor and the other for liquid metal-cooled fuel pin reactors. These codes are going to be interfaced by NASA with the balance of plant in order to make scoping calculations for mission analysis.

  11. The Effect of Stress and Hot Corrosion on Nickel-Base Superalloys

    DTIC Science & Technology

    1985-03-01

    in a degradation of material properties and reduced component life. Allen and Whitlow(6). stated that superalloys in combustion turbine environments...pins are tested in combustion gas streams at elevated temperatures. A hot corrosion environment is usually simulated by burning a sulfur-containing fuel...corrosion attack frequently observed on combustion turbine blades retrieved from service. Figure 1 shows the effect of salt thickness on hot corrosion

  12. Fuel cell-gas turbine hybrid system design part II: Dynamics and control

    NASA Astrophysics Data System (ADS)

    McLarty, Dustin; Brouwer, Jack; Samuelsen, Scott

    2014-05-01

    Fuel cell gas turbine hybrid systems have achieved ultra-high efficiency and ultra-low emissions at small scales, but have yet to demonstrate effective dynamic responsiveness or base-load cost savings. Fuel cell systems and hybrid prototypes have not utilized controls to address thermal cycling during load following operation, and have thus been relegated to the less valuable base-load and peak shaving power market. Additionally, pressurized hybrid topping cycles have exhibited increased stall/surge characteristics particularly during off-design operation. This paper evaluates additional control actuators with simple control methods capable of mitigating spatial temperature variation and stall/surge risk during load following operation of hybrid fuel cell systems. The novel use of detailed, spatially resolved, physical fuel cell and turbine models in an integrated system simulation enables the development and evaluation of these additional control methods. It is shown that the hybrid system can achieve greater dynamic response over a larger operating envelope than either individual sub-system; the fuel cell or gas turbine. Results indicate that a combined feed-forward, P-I and cascade control strategy is capable of handling moderate perturbations and achieving a 2:1 (MCFC) or 4:1 (SOFC) turndown ratio while retaining >65% fuel-to-electricity efficiency, while maintaining an acceptable stack temperature profile and stall/surge margin.

  13. Calculation of Internal Pressures in the Fuel Tube of a Nuclear Reactor

    NASA Technical Reports Server (NTRS)

    Rosenbaum, B. M.; Allen, G.

    1952-01-01

    General procedures for computing internal pressures in fuel tubes of nuclear reactors are described and the effects on the pressure of varying neutron flux, fissioning material, and operating temperatures are discussed. A general proof is given that during pile operation each fission product is monotonically increasing and therefore a maximum amount of all elements is present at the time of shit down. The post-shutdown build-up of elements that are held in check during pile operation because of their inordinately high capture cross sections is calculated quantitatively. An account of chemical interactions between the many fission-product elements and the resulting effect on the total pressure completes the discussion. The general methods are illustrated by calculations applied to a system consisting of 90 percent enriched U235 in the form of UO2 packed into a hollow metal cylinder or "pin", operating at a flux of 8 x 10(exp 14) at 2000 F. Calculations of the pressure inside a pin are made with and without a sodium metal heat-transfer additive. The bulk of the pressure is shown to depend on the four elements, xenon, krypton, rubidium, and cesium; the amount of free oxygen, however, was also significant. For a shutdown time of 10(exp 6) seconds, the pressure was about 100 atmospheres.

  14. Comparison of various hours living fission products for absolute power density determination in VVER-1000 mock up in LR-0 reactor.

    PubMed

    Košťál, Michal; Švadlenková, Marie; Koleška, Michal; Rypar, Vojtěch; Milčák, Ján

    2015-11-01

    Measuring power level of zero power reactor is a quite difficult task. Due to the absence of measurable cooling media heating, it is necessary to employ a different method. The gamma-ray spectroscopy of fission products induced within reactor operation is one of possible ways of power determination. The method is based on the proportionality between fission product buildup and released power. The (92)Sr fission product was previously preferred as nuclide for LR-0 power determination for short-time irradiation experiments. This work aims to find more appropriate candidates, because the (92)Sr, however suitable, has a short half-life, which limits the maximal measurable amount of fuel pins within a single irradiation batch. The comparison of various isotopes is realized for (92)Sr, (97)Zr, (135)I, (91)Sr, and (88)Kr. The comparison between calculated and experimentally determined (C/E-1 values) net peak areas is assessed for these fission products. Experimental results show that studied fission products, except (88)Kr, are in comparable agreement with (92)Sr results. Since (91)Sr has notably higher half-life than (92)Sr, (91)Sr seems to be more appropriate marker in experiments with a large number of measured fuel pins. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Real-time analysis of organic compounds in ship engine aerosol emissions using resonance-enhanced multiphoton ionisation and proton transfer mass spectrometry.

    PubMed

    Radischat, Christian; Sippula, Olli; Stengel, Benjamin; Klingbeil, Sophie; Sklorz, Martin; Rabe, Rom; Streibel, Thorsten; Harndorf, Horst; Zimmermann, Ralf

    2015-08-01

    Organic combustion aerosols from a marine medium-speed diesel engine, capable to run on distillate (diesel fuel) and residual fuels (heavy fuel oil), were investigated under various operating conditions and engine parameters. The online chemical characterisation of the organic components was conducted using a resonance-enhanced multiphoton ionisation time-of-flight mass spectrometer (REMPI TOF MS) and a proton transfer reaction-quadrupole mass spectrometer (PTR-QMS). Oxygenated species, alkenes and aromatic hydrocarbons were characterised. Especially the aromatic hydrocarbons and their alkylated derivatives were very prominent in the exhaust of both fuels. Emission factors of known health-hazardous compounds (e.g. mono- and poly-aromatic hydrocarbons) were calculated and found in higher amounts for heavy fuel oil (HFO) at typical engine loadings. Lower engine loads lead in general to increasing emissions for both fuels for almost every compound, e.g. naphthalene emissions varied for diesel fuel exhaust between 0.7 mg/kWh (75 % engine load, late start of injection (SOI)) and 11.8 mg/kWh (10 % engine load, late SOI) and for HFO exhaust between 3.3 and 60.5 mg/kWh, respectively. Both used mass spectrometric techniques showed that they are particularly suitable methods for online monitoring of combustion compounds and very helpful for the characterisation of health-relevant substances. Graphical abstract Three-dimensional REMPI data of organic species in diesel fuel and heavy fuel oil exhaust.

  16. Heterogeneity in fire severity within early season and late season prescribed burns in a mixed-conifer forest

    USGS Publications Warehouse

    Knapp, E.E.; Keeley, J.E.

    2006-01-01

    Structural heterogeneity in forests of the Sierra Nevada was historically produced through variation in fire regimes and local environmental factors. The amount of heterogeneity that prescription burning can achieve might now be more limited owing to high fuel loads and increased fuel continuity. Topography, woody fuel loading, and vegetative composition were quantified in plots within replicated early and late season burn units. Two indices of fire severity were evaluated in the same plots after the burns. Scorch height ranged from 2.8 to 25.4 m in early season plots and 3.1 to 38.5 m in late season plots, whereas percentage of ground surface burned ranged from 24 to 96% in early season plots and from 47 to 100% in late season plots. Scorch height was greatest in areas with steeper slopes, higher basal area of live trees, high percentage of basal area composed of pine, and more small woody fuel. Percentage of area burned was greatest in areas with less bare ground and rock cover (more fuel continuity), steeper slopes, and units burned in the fall (lower fuel moisture). Thus topographic and biotic factors still contribute to the abundant heterogeneity in fire severity with prescribed burning, even under the current high fuel loading conditions. Burning areas with high fuel loads in early season when fuels are moister may lead to patterns of heterogeneity in fire effects that more closely approximate the expected patchiness of historical fires.

  17. Improvement of fatigue resistance for multilayer lead zirconate titanate (PZT)-based ceramic actuators by external mechanical loads

    NASA Astrophysics Data System (ADS)

    Yang, Gang; Yue, Zhenxing; Ji, Ye; Chu, Xiangcheng; Li, Longtu

    2008-12-01

    The influence of external compressive loads, applied along a direction perpendicular to polarization, on fatigue behaviors of multilayer lead zirconate titanate (PZT)-based ceramic actuators was investigated. Under no external mechanical load, a normal fatigue behavior was observed, demonstrating that both switching polarization (Pswitching) and remnant polarization (Pr) progressively decreased with increasing switching cycles due to domain pinning by charge point defects. However, an anomalous enhancement in both switching and remnant polarizations was observed upon application of the external compressive loads. After 5×106 cycles of polarization switching, Pswitching and Pr increase by about 13% and 6% at 40 MPa, respectively, while Pswitching and Pr increase by about 11% and 21% at 60 MPa, respectively. The improvement of fatigue resistance can be attributed to non-180° domain switching and suppression of microcracking, triggered by external mechanical loads.

  18. Effects of mixing system and pilot fuel quality on diesel-biogas dual fuel engine performance.

    PubMed

    Bedoya, Iván Darío; Arrieta, Andrés Amell; Cadavid, Francisco Javier

    2009-12-01

    This paper describes results obtained from CI engine performance running on dual fuel mode at fixed engine speed and four loads, varying the mixing system and pilot fuel quality, associated with fuel composition and cetane number. The experiments were carried out on a power generation diesel engine at 1500 m above sea level, with simulated biogas (60% CH(4)-40% CO(2)) as primary fuel, and diesel and palm oil biodiesel as pilot fuels. Dual fuel engine performance using a naturally aspirated mixing system and diesel as pilot fuel was compared with engine performance attained with a supercharged mixing system and biodiesel as pilot fuel. For all loads evaluated, was possible to achieve full diesel substitution using biogas and biodiesel as power sources. Using the supercharged mixing system combined with biodiesel as pilot fuel, thermal efficiency and substitution of pilot fuel were increased, whereas methane and carbon monoxide emissions were reduced.

  19. Spent fuel cask handling at an operating nuclear power plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pal, A.C.

    1988-01-01

    The importance of spent fuel handling at operating nuclear power plants cannot be overstated. Because of its highly radioactive nature, however, spent fuel must be handled in thick, lead-lined containers or casks. Thus, all casks for spent fuel handling are heavy loads by the US Nuclear Regulatory Commission's definition, and any load-drop must be evaluated for its potential to damage safety-related equipment. Nuclear Regulatory Guide NUREG-0612 prescribes the regulatory requirements of alternative heavy-load-handling methodologies such as (a) by providing cranes that meet the requirements of NUREG-0554, which shall be called the soft path, or (b) by providing protective devices atmore » all postulated load-drop areas to prevent any damage to safety-related equipment, which shall be called the hard path. The work reported in this paper relates to cask handling at New York Power Authority's James A. FitzPatrick (JAF) plant.« less

  20. Feasibility of solid oxide fuel cell dynamic hydrogen coproduction to meet building demand

    NASA Astrophysics Data System (ADS)

    Shaffer, Brendan; Brouwer, Jacob

    2014-02-01

    A dynamic internal reforming-solid oxide fuel cell system model is developed and used to simulate the coproduction of electricity and hydrogen while meeting the measured dynamic load of a typical southern California commercial building. The simulated direct internal reforming-solid oxide fuel cell (DIR-SOFC) system is controlled to become an electrical load following device that well follows the measured building load data (3-s resolution). The feasibility of the DIR-SOFC system to meet the dynamic building demand while co-producing hydrogen is demonstrated. The resulting thermal responses of the system to the electrical load dynamics as well as those dynamics associated with the filling of a hydrogen collection tank are investigated. The DIR-SOFC system model also allows for resolution of the fuel cell species and temperature distributions during these dynamics since thermal gradients are a concern for DIR-SOFC.

  1. Role of fuel chemical properties on combustor radiative heat load

    NASA Technical Reports Server (NTRS)

    Rosfjord, T. J.

    1984-01-01

    In an attempt to rigorously study the fuel chemical property influence on combustor radiative heat load, United Technologies Research Center (UTRC) has conducted an experimental program using 25 test fuels. The burner was a 12.7-cm dia cylindrical device fueled by a single pressure-atomizing injector. Fuel physical properties were de-emphasized by selecting injectors which produced high-atomized, and hence rapidly-vaporizing sprays. The fuels were specified to cover the following wide ranges of chemical properties; hydrogen, 9.1 to 15- (wt) pct; total aromatics, 0 to 100 (vol) pct; and naphthalene, 0 to 30 (vol) pct. They included standard fuels, specialty products and fuel blends. Fuel naphthalene content exhibited the strongest influence on radiation of the chemical properties investigated. Smoke point was a good global indicator of radiation severity.

  2. Ionic Liquid Fuels for Chemical Propulsion

    DTIC Science & Technology

    2014-11-20

    researchers seeking hypergolic fuels have limited themselves to the extremely toxic and corrosive nitric acid solutions. While important questions remain...storable oxidizer (N204 , nitric acid ) have been synthesized and demonstrated. The bipropellant fuels are based upon salts containing dicyanamide or...20-30% nanoparticle loading but decreases between 10-20%, perhaps indicating an optimal loading concentration for these nanoparticles between 10-20

  3. Fuel loadings 5 years after a bark beetle outbreak in south-western USA ponderosa pine forests

    Treesearch

    Chad M. Hoffman; Carolyn Hull Sieg; Joel D. McMillin; Peter Z. Fule

    2012-01-01

    Landscape-level bark beetle (Coleoptera: Curculionidae, Scolytinae) outbreaks occurred in Arizona ponderosa pine (Pinus ponderosa Dougl. ex Law.) forests from 2001 to 2003 in response to severe drought and suitable forest conditions.We quantified surface fuel loadings and depths, and calculated canopy fuels based on forest structure attributes in 60 plots established 5...

  4. Heterogeneity in fire severity with early season and late season prescribed burns in a mixed conifer forest

    Treesearch

    Eric E. Knapp; Jon E. Keeley

    2006-01-01

    Structural heterogeneity in forests of the Sierra Nevada was historically produced through variation in fire regimes and local environmental factors. The amount of heterogeneity that prescription burning can achieve might now be more limited owing to high fuel loads and increased fuel continuity. Topography, woody fuel loading, and vegetative composition were...

  5. Photo Series for Estimating Post-Hurricane Residues and Fire Behavior in Southern Pine

    Treesearch

    Dale D. Wade; James K. Forbus; James M. Saveland

    1993-01-01

    Following Hurricane Hugo, fuels were sampled on nine 2-acre blocks which were then burned during the spring wildfire season. The study was superimposed on dormant-season fire-interval research plots established in 1958 on the Francis Marion National Forest near Charleston, SC. Photographs of preburn fuel loads, fire behavior, and postburn fuel loads were taken to...

  6. Fuel load modeling from mensuration attributes in temperate forests in northern Mexico

    Treesearch

    Maricela Morales-Soto; Marín Pompa-Garcia

    2013-01-01

    The study of fuels is an important factor in defining the vulnerability of ecosystems to forest fires. The aim of this study was to model a dead fuel load based on forest mensuration attributes from forest management inventories. A scatter plot analysis was performed and, from explanatory trends between the variables considered, correlation analysis was carried out...

  7. Variability in Loading of Mechanically Masticated Fuel Beds in Northern California and Southwestern Oregon

    Treesearch

    Jeffrey M. Kane; Eric E. Knapp; J. Morgan Varner

    2006-01-01

    The use of mechanical mastication to treat non-merchantable fuels is becoming increasingly popular, but loadings and other characteristics of masticated fuel beds are unknown. Surveys of eight recently masticated sites in northern California and southwestern Oregon indicate that significant site level differences were detected for 1 hr and 10 hr time-lag classes and...

  8. Spatial and temporal variability of guinea grass (Megathyrsus maximus) fuel loads and moisture on Oahu, Hawaii

    Treesearch

    Lisa M. Ellsworth; Creighton M. Litton; Andrew D. Taylor; J. Boone Kauffman

    2013-01-01

    Frequent wildfires in tropical landscapes dominated by non-native invasive grasses threaten surrounding ecosystems and developed areas. To better manage fire, accurate estimates of the spatial and temporal variability in fuels are urgently needed. We quantified the spatial variability in live and dead fine fuel loads and moistures at four guinea grass (...

  9. NEUTRONIC REACTORS

    DOEpatents

    Wigner, E.P.; Young, G.J.

    1958-10-14

    A method is presented for loading and unloading rod type fuel elements of a neutronic reactor of the heterogeneous, solld moderator, liquid cooled type. In the embodiment illustrated, the fuel rods are disposed in vertical coolant channels in the reactor core. The fuel rods are loaded and unloaded through the upper openings of the channels which are immersed in the coolant liquid, such as water. Unloading is accomplished by means of a coffer dam assembly having an outer sleeve which is placed in sealing relation around the upper opening. A radiation shield sleeve is disposed in and reciprocable through the coffer dam sleeve. A fuel rod engaging member operates through the axial bore in the radiation shield sleeve to withdraw the fuel rod from its position in the reactor coolant channel into the shield, the shield snd rod then being removed. Loading is accomplished in the reverse procedure.

  10. A Nuclear Reactor and Chemical Processing Design for Production of Molybdenum-99 with Crystalline Uranyl Nitrate Hexahydrate Fuel

    NASA Astrophysics Data System (ADS)

    Stange, Gary Michael

    Medical radioisotopes are used in tens of millions of procedures every year to detect and image a wide variety of maladies and conditions in the human body. The most widely-used diagnostic radioisotope is technetium-99m, a metastable isomer of technetium-99 that is generated by the radioactive decay of molybdenum-99. For a number of reasons, the supply of molybdenum-99 has become unreliable and the techniques used to produce it have become unattractive. This has spurred the investigation of new technologies that avoid the use of highly enriched uranium to produce molybdenum-99 in the United States, where approximately half of the demand originates. The first goal of this research is to develop a critical nuclear reactor design powered by solid, discrete pins of low enriched uranium. Analyses of single-pin heat transfer and whole-core neutronics are performed to determine the required specifications. Molybdenum-99 is produced directly in the fuel of this reactor and then extracted through a series of chemical processing steps. After this extraction, the fuel is left in an aqueous state. The second goal of this research is to describe a process by which the uranium may be recovered from this spent fuel solution and reconstituted into the original fuel form. Fuel recovery is achieved through a crystallization step that generates solid uranyl nitrate hexahydrate while leaving the majority of fission products and transuranic isotopes in solution. This report provides background information on molybdenum-99 production and crystallization chemistry. The previously unknown thermal conductivity of the fuel material is measured. Following this is a description of the modeling and calculations used to develop a reactor concept. The operational characteristics of the reactor core model are analyzed and reported. Uranyl nitrate crystallization experiments have also been conducted, and the results of this work are presented here. Finally, a process flow scheme for uranium recovery is examined, in part qualitatively and in part quantitatively, based upon the preceding data garnered through literature review, modeling, and experimentation. The sum of this research is meant to allow for a complete understanding of the process flow, from the beginning of one production cycle to the beginning of another.

  11. Distributed ignition method and apparatus for a combustion engine

    DOEpatents

    Willi, Martin L.; Bailey, Brett M.; Fiveland, Scott B.; Gong, Weidong

    2006-03-07

    A method and apparatus for operating an internal combustion engine is provided. The method comprises the steps of introducing a primary fuel into a main combustion chamber of the engine, introducing a pilot fuel into the main combustion chamber of the engine, determining an operating load of the engine, determining a desired spark plug ignition timing based on the engine operating load, and igniting the primary fuel and pilot fuel with a spark plug at the desired spark plug ignition timing. The method is characterized in that the octane number of the pilot fuel is lower than the octane number of the primary fuel.

  12. NEUTRONIC REACTOR

    DOEpatents

    Ohlinger, L.A.; Wigner, E.P.; Weinberg, A.M.; Young, G.J.

    1958-09-01

    This patent relates to neutronic reactors of the heterogeneous water cooled type, and in particular to a fuel element charging and discharging means therefor. In the embodiment illustrated the reactor contains horizontal, parallel coolant tubes in which the fuel elements are disposed. A loading cart containing a magnzine for holding a plurality of fuel elements operates along the face of the reactor at the inlet ends of the coolant tubes. The loading cart is equipped with a ram device for feeding fuel elements from the magazine through the inlot ends of the coolant tubes. Operating along the face adjacent the discharge ends of the tubes there is provided another cart means adapted to receive irradiated fuel elements as they are forced out of the discharge ends of the coolant tubes by the incoming new fuel elements. This cart is equipped with a tank coataining a coolant, such as water, into which the fuel elements fall, and a hydraulically operated plunger to hold the end of the fuel element being discharged. This inveation provides an apparatus whereby the fuel elements may be loaded into the reactor, irradiated therein, and unloaded from the reactor without stopping the fiow of the coolant and without danger to the operating personnel.

  13. [Vertical distribution of fuels in Pinus yunnanensis forest and related affecting factors].

    PubMed

    Wang, San; Niu, Shu-Kui; Li, De; Wang, Jing-Hua; Chen, Feng; Sun, Wu

    2013-02-01

    In order to understand the effects of fuel loadings spatial distribution on forest fire kinds and behaviors, the canopy fuels and floor fuels of Pinus yunnanensis forests with different canopy density, diameter at breast height (DBH), tree height, and stand age and at different altitude, slope grade, position, and aspect in Southwest China were taken as test objects, with the fuel loadings and their spatial distribution characteristics at different vertical layers compared and the fire behaviors in different stands analyzed. The relationships between the fuel loadings and the environmental factors were also analyzed by canonical correspondence analysis (CCA). In different stands, there existed significant differences in the vertical distribution of fuels. Pinus yunnanensis-Qak-Syzygium aromaticum, Pinus yunnanensis-oak, and Pinus yunnanensis forests were likely to occur floor fire but not crown fire, while Pinus yunnanensis-Platycladus orientalis, Pinus yunnanensis-Keteleeria fortune, and Keteleeria fortune-Pinus yunnanensis were not only inclined to occur floor fire, but also, the floor fire could be easily transformed into crown fire. The crown fuels were mainly affected by the stand age, altitude, DBH, and tree height, while the floor fuels were mainly by the canopy density, slope grade, altitude, and stand age.

  14. Gaseous and Particulate Emissions from Diesel Engines at Idle and under Load: Comparison of Biodiesel Blend and Ultralow Sulfur Diesel Fuels

    PubMed Central

    Chin, Jo-Yu; Batterman, Stuart A.; Northrop, William F.; Bohac, Stanislav V.; Assanis, Dennis N.

    2015-01-01

    Diesel exhaust emissions have been reported for a number of engine operating strategies, after-treatment technologies, and fuels. However, information is limited regarding emissions of many pollutants during idling and when biodiesel fuels are used. This study investigates regulated and unregulated emissions from both light-duty passenger car (1.7 L) and medium-duty (6.4 L) diesel engines at idle and load and compares a biodiesel blend (B20) to conventional ultralow sulfur diesel (ULSD) fuel. Exhaust aftertreatment devices included a diesel oxidation catalyst (DOC) and a diesel particle filter (DPF). For the 1.7 L engine under load without a DOC, B20 reduced brake-specific emissions of particulate matter (PM), elemental carbon (EC), nonmethane hydrocarbons (NMHCs), and most volatile organic compounds (VOCs) compared to ULSD; however, formaldehyde brake-specific emissions increased. With a DOC and high load, B20 increased brake-specific emissions of NMHC, nitrogen oxides (NOx), formaldehyde, naphthalene, and several other VOCs. For the 6.4 L engine under load, B20 reduced brake-specific emissions of PM2.5, EC, formaldehyde, and most VOCs; however, NOx brake-specific emissions increased. When idling, the effects of fuel type were different: B20 increased NMHC, PM2.5, EC, formaldehyde, benzene, and other VOC emission rates from both engines, and changes were sometimes large, e.g., PM2.5 increased by 60% for the 6.4 L/2004 calibration engine, and benzene by 40% for the 1.7 L engine with the DOC, possibly reflecting incomplete combustion and unburned fuel. Diesel exhaust emissions depended on the fuel type and engine load (idle versus loaded). The higher emissions found when using B20 are especially important given the recent attention to exposures from idling vehicles and the health significance of PM2.5. The emission profiles demonstrate the effects of fuel type, engine calibration, and emission control system, and they can be used as source profiles for apportionment, inventory, and exposure purposes. PMID:25722535

  15. Use of Adaptive Injection Strategies to Increase the Full Load Limit of RCCI Operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanson, Reed; Ickes, Andrew; Wallner, Thomas

    Dual-fuel combustion using port-injection of low reactivity fuel combined with direct injection (DI) of a higher reactivity fuel, otherwise known as reactivity controlled compression ignition (RCCI), has been shown as a method to achieve low-temperature combustion with moderate peak pressure rise rates, low engine-out soot and NOx emissions, and high indicated thermal efficiency. A key requirement for extending to high-load operation is moderating the reactivity of the premixed charge prior to the diesel injection. One way to accomplish this is to use a very low reactivity fuel such as natural gas. In this work, experimental testing was conducted on amore » 13 l multicylinder heavy-duty diesel engine modified to operate using RCCI combustion with port injection of natural gas and DI of diesel fuel. Engine testing was conducted at an engine speed of 1200 rpm over a wide variety of loads and injection conditions. The impact on dual-fuel engine performance and emissions with respect to varying the fuel injection parameters is quantified within this study. The injection strategies used in the work were found to affect the combustion process in similar ways to both conventional diesel combustion (CDC) and RCCI combustion for phasing control and emissions performance. As the load is increased, the port fuel injection (PFI) quantity was reduced to keep peak cylinder pressure (PCP) and maximum pressure rise rate (MPRR) under the imposed limits. Overall, the peak load using the new injection strategy was shown to reach 22 bar brake mean effective pressure (BMEP) with a peak brake thermal efficiency (BTE) of 47.6%.« less

  16. Modelling the vertical distribution of canopy fuel load using national forest inventory and low-density airbone laser scanning data

    PubMed Central

    Castedo-Dorado, Fernando; Hevia, Andrea; Vega, José Antonio; Vega-Nieva, Daniel; Ruiz-González, Ana Daría

    2017-01-01

    The fuel complex variables canopy bulk density and canopy base height are often used to predict crown fire initiation and spread. Direct measurement of these variables is impractical, and they are usually estimated indirectly by modelling. Recent advances in predicting crown fire behaviour require accurate estimates of the complete vertical distribution of canopy fuels. The objectives of the present study were to model the vertical profile of available canopy fuel in pine stands by using data from the Spanish national forest inventory plus low-density airborne laser scanning (ALS) metrics. In a first step, the vertical distribution of the canopy fuel load was modelled using the Weibull probability density function. In a second step, two different systems of models were fitted to estimate the canopy variables defining the vertical distributions; the first system related these variables to stand variables obtained in a field inventory, and the second system related the canopy variables to airborne laser scanning metrics. The models of each system were fitted simultaneously to compensate the effects of the inherent cross-model correlation between the canopy variables. Heteroscedasticity was also analyzed, but no correction in the fitting process was necessary. The estimated canopy fuel load profiles from field variables explained 84% and 86% of the variation in canopy fuel load for maritime pine and radiata pine respectively; whereas the estimated canopy fuel load profiles from ALS metrics explained 52% and 49% of the variation for the same species. The proposed models can be used to assess the effectiveness of different forest management alternatives for reducing crown fire hazard. PMID:28448524

  17. Fine woody fuel particle diameters for improved planar intersect fuel loading estimates in Southern Rocky Mountain ponderosa pine forests

    Treesearch

    Emma Vakili; Chad M. Hoffman; Robert E. Keane

    2016-01-01

    Fuel loading estimates from planar intersect sampling protocols for fine dead down woody surface fuels require an approximation of the mean squared diameter (d2) of 1-h (0-0.63 cm), 10-h (0.63-2.54 cm), and 100-h (2.54-7.62 cm) timelag size classes. The objective of this study is to determine d2 in ponderosa pine (Pinus ponderosa) forests of New Mexico and Colorado,...

  18. Stereo photo series for quantifying natural fuels Volume IX: oak/juniper in southern Arizona and New Mexico.

    Treesearch

    Roger D. Ottmar; Robert E. Vihnanek; Clinton S. Wright; Geoffrey B. Seymour

    2007-01-01

    A series of single and stereo photographs display a range of natural conditions and fuel loadings in evergreen and deciduous oak/juniper woodland and savannah ecosystems in southern Arizona and New Mexico. This group of photos includes inventory data summarizing vegetation composition, structure, and loading; woody material loading and density by size class; forest...

  19. On the possibility of producing piston pins for diesel engines from steel 18KhGT with the use of mechanical and chemical heat treatment

    NASA Astrophysics Data System (ADS)

    Zolot'ko, V. A.

    1997-06-01

    At the present time pisto pins of highly loaded diesel engines are produced by mechanical treatment from tube preforms of steel 12KhN3A and carburized by subsequent heat treatment. The high cost of domestic steel and the absence of preforms of the requisite size make it necessary to choose a less scare material and develop a treatment process that would provide the requisite operational characteristics of the parts. The present work is devoted to a study of the possibility of using for the purpose steel 18KhGT in a state of substructural toughening created by cold plastic straining (CPS) and a stabilizing heat treatment with subsequent ion nitriding.

  20. Nuclear Resonance Fluorescence for Materials Assay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quiter, Brian; Ludewigt, Bernhard; Mozin, Vladimir

    This paper discusses the use of nuclear resonance fluorescence (NRF) techniques for the isotopic and quantitative assaying of radioactive material. Potential applications include age-dating of an unknown radioactive source, pre- and post-detonation nuclear forensics, and safeguards for nuclear fuel cycles Examples of age-dating a strong radioactive source and assaying a spent fuel pin are discussed. The modeling work has ben performed with the Monte Carlo radiation transport computer code MCNPX, and the capability to simulate NRF has bee added to the code. Discussed are the limitations in MCNPX's photon transport physics for accurately describing photon scattering processes that are importantmore » contributions to the background and impact the applicability of the NRF assay technique.« less

Top