Code of Federal Regulations, 2012 CFR
2012-01-01
... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System Components § 25.991 Fuel pumps. (a) Main pumps. Each fuel pump required for proper engine operation, or required to meet the fuel system... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel pumps. 25.991 Section 25.991...
Code of Federal Regulations, 2013 CFR
2013-01-01
... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System Components § 25.991 Fuel pumps. (a) Main pumps. Each fuel pump required for proper engine operation, or required to meet the fuel system... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel pumps. 25.991 Section 25.991...
Code of Federal Regulations, 2014 CFR
2014-01-01
... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System Components § 25.991 Fuel pumps. (a) Main pumps. Each fuel pump required for proper engine operation, or required to meet the fuel system... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel pumps. 25.991 Section 25.991...
Code of Federal Regulations, 2011 CFR
2011-01-01
... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System Components § 25.991 Fuel pumps. (a) Main pumps. Each fuel pump required for proper engine operation, or required to meet the fuel system... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel pumps. 25.991 Section 25.991...
Code of Federal Regulations, 2010 CFR
2010-01-01
... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System Components § 25.991 Fuel pumps. (a) Main pumps. Each fuel pump required for proper engine operation, or required to meet the fuel system... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel pumps. 25.991 Section 25.991...
Fuel pumping system and method
Shafer, Scott F [Morton, IL; Wang, Lifeng ,
2006-12-19
A fuel pumping system that includes a pump drive is provided. A first pumping element is operatively connected to the pump drive and is operable to generate a first flow of pressurized fuel. A second pumping element is operatively connected to the pump drive and is operable to generate a second flow of pressurized fuel. A first solenoid is operatively connected to the first pumping element and is operable to vary at least one of a fuel pressure and a fuel flow rate of the first flow of pressurized fuel. A second solenoid is operatively connected to the second pumping element and is operable to vary at least one of a fuel pressure and a fuel flow rate of the second flow of pressurized fuel.
Fuel Pumping System And Method
Shafer, Scott F.; Wang, Lifeng
2005-12-13
A fuel pumping system that includes a pump drive is provided. A first pumping element is operatively connected to the pump drive and is operable to generate a first flow of pressurized fuel. A second pumping element is operatively connected to the pump drive and is operable to generate a second flow of pressurized fuel. A first solenoid is operatively connected to the first pumping element and is operable to vary at least one of a fuel pressure and a fuel flow rate of the first flow of pressurized fuel. A second solenoid is operatively connected to the second pumping element and is operable to vary at least one of a fuel pressure and a fuel flow rate of the second flow of pressurized fuel.
Fuel system for rotary distributor fuel injection pump
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klopfer, K.H.; Kelly, W.W.
1993-06-01
In a fuel injection pump having a drive shaft, a pump rotor driven by the drive shaft, reciprocating pumping means with periodic intake and pumping strokes to periodically receive an intake charge of fuel and deliver fuel at high pressure for fuel injection is described; a distributor head with a plurality of angularly spaced distributor outlets, the pump rotor providing a distributor rotor with a distributor port connected to the pumping means, the distributor rotor being rotatably mounted in the distributor head for sequential registration of the distributor port with the distributor outlets for distributing said high pressure delivery ofmore » fuel thereto; a fuel system for supplying fuel to the pumping means, having an end chamber at one end of the pump rotor and a fuel supply pump driven by the drive shaft and having an inlet and outlet, the supply pump outlet being connected to the end chamber for supplying fuel thereto, and a pressure regulator for regulating the fuel pressure in the end chamber; and a control valve connected between the pumping means and the end chamber and selectively opened during the intake strokes to supply fuel to the pumping means from the end chamber and during the pumping strokes to spill fuel from the pumping means into the end chamber to terminate said high pressure delivery of fuel; the improvement wherein the fuel system comprises a fuel return passage connected in series with the end chamber downstream thereof, wherein the pressure regulator is mounted in the return passage for regulating the upstream fuel pressure, including the upstream fuel pressure within the end chamber, and is connected for conducting excess fuel for return to the supply pump inlet, and wherein the supply pump is driven by the drive shaft to supply fuel at a rate exceeding the rate of said high pressure delivery of fuel for fuel injection and to provide excess fuel flow continuously through the end chamber and return passage to the pressure regulator.« less
Code of Federal Regulations, 2010 CFR
2010-01-01
... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System Components... installations, each fuel pump required for proper engine operation, or required to meet the fuel system... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel pumps. 23.991 Section 23.991...
Code of Federal Regulations, 2014 CFR
2014-01-01
... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System Components... installations, each fuel pump required for proper engine operation, or required to meet the fuel system... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel pumps. 23.991 Section 23.991...
Code of Federal Regulations, 2012 CFR
2012-01-01
... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System Components... installations, each fuel pump required for proper engine operation, or required to meet the fuel system... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel pumps. 23.991 Section 23.991...
Code of Federal Regulations, 2013 CFR
2013-01-01
... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System Components... installations, each fuel pump required for proper engine operation, or required to meet the fuel system... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel pumps. 23.991 Section 23.991...
Code of Federal Regulations, 2011 CFR
2011-01-01
... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System Components... installations, each fuel pump required for proper engine operation, or required to meet the fuel system... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel pumps. 23.991 Section 23.991...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Fuel pumps. 183.524 Section 183... SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Equipment Standards § 183.524 Fuel pumps. (a) Each diaphragm pump must not leak fuel from the pump if the primary diaphragm fails. (b) Each electrically...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Fuel pumps. 183.524 Section 183... SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Equipment Standards § 183.524 Fuel pumps. (a) Each diaphragm pump must not leak fuel from the pump if the primary diaphragm fails. (b) Each electrically...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Fuel pumps. 183.524 Section 183... SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Equipment Standards § 183.524 Fuel pumps. (a) Each diaphragm pump must not leak fuel from the pump if the primary diaphragm fails. (b) Each electrically...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Fuel pumps. 183.524 Section 183... SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Equipment Standards § 183.524 Fuel pumps. (a) Each diaphragm pump must not leak fuel from the pump if the primary diaphragm fails. (b) Each electrically...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Fuel pumps. 183.524 Section 183... SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Equipment Standards § 183.524 Fuel pumps. (a) Each diaphragm pump must not leak fuel from the pump if the primary diaphragm fails. (b) Each electrically...
33 CFR 183.566 - Fuel pumps: Placement.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Fuel pumps: Placement. 183.566...) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Manufacturer Requirements § 183.566 Fuel pumps: Placement. Each fuel pump must be on the engine it serves or within 12 inches of the engine, unless it is a...
Code of Federal Regulations, 2013 CFR
2013-01-01
... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.955 Fuel flow. (a) General. The fuel system for each engine must be shown to provide the engine with at least 100 percent of the fuel required... to rotorcraft flight attitudes. (4) The critical fuel pump (for pump-fed systems) is installed to...
Code of Federal Regulations, 2014 CFR
2014-01-01
... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.955 Fuel flow. (a) General. The fuel system for each engine must be shown to provide the engine with at least 100 percent of the fuel required... to rotorcraft flight attitudes. (4) The critical fuel pump (for pump-fed systems) is installed to...
Code of Federal Regulations, 2014 CFR
2014-01-01
... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.955 Fuel flow. (a) General. The fuel system for each engine must provide the engine with at least 100 percent of the fuel required under all... flow transmitter, if installed, and the critical fuel pump (for pump-fed systems) must be installed to...
Code of Federal Regulations, 2011 CFR
2011-01-01
... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.955 Fuel flow. (a) General. The fuel system for each engine must be shown to provide the engine with at least 100 percent of the fuel required... to rotorcraft flight attitudes. (4) The critical fuel pump (for pump-fed systems) is installed to...
Code of Federal Regulations, 2010 CFR
2010-01-01
... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.955 Fuel flow. (a) General. The fuel system for each engine must be shown to provide the engine with at least 100 percent of the fuel required... to rotorcraft flight attitudes. (4) The critical fuel pump (for pump-fed systems) is installed to...
Code of Federal Regulations, 2013 CFR
2013-01-01
... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.955 Fuel flow. (a) General. The fuel system for each engine must provide the engine with at least 100 percent of the fuel required under all... flow transmitter, if installed, and the critical fuel pump (for pump-fed systems) must be installed to...
Code of Federal Regulations, 2012 CFR
2012-01-01
... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.955 Fuel flow. (a) General. The fuel system for each engine must provide the engine with at least 100 percent of the fuel required under all... flow transmitter, if installed, and the critical fuel pump (for pump-fed systems) must be installed to...
Code of Federal Regulations, 2010 CFR
2010-01-01
... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.955 Fuel flow. (a) General. The fuel system for each engine must provide the engine with at least 100 percent of the fuel required under all... flow transmitter, if installed, and the critical fuel pump (for pump-fed systems) must be installed to...
Code of Federal Regulations, 2012 CFR
2012-01-01
... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.955 Fuel flow. (a) General. The fuel system for each engine must be shown to provide the engine with at least 100 percent of the fuel required... to rotorcraft flight attitudes. (4) The critical fuel pump (for pump-fed systems) is installed to...
Code of Federal Regulations, 2011 CFR
2011-01-01
... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.955 Fuel flow. (a) General. The fuel system for each engine must provide the engine with at least 100 percent of the fuel required under all... flow transmitter, if installed, and the critical fuel pump (for pump-fed systems) must be installed to...
77 FR 54793 - Airworthiness Directives; the Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-06
... was prompted by fuel system reviews conducted by the manufacturer. This AD requires adding design... system must shut off each pump no later than 60 seconds after the fuel tank is emptied. Noting that the... paragraph (g)(2): ``The pump shutoff system design must preclude undetected running of a fuel pump in an...
46 CFR 111.103-9 - Machinery stop stations.
Code of Federal Regulations, 2011 CFR
2011-10-01
... fan, induced draft fan, blower of an inert gas system, fuel oil transfer pump, fuel oil unit, fuel oil service pump, and any other fuel oil pumps must have a stop control that is outside of the space containing the pump or fan. (b) Each stop control must meet § 111.103-7. ...
46 CFR 111.103-9 - Machinery stop stations.
Code of Federal Regulations, 2012 CFR
2012-10-01
... fan, induced draft fan, blower of an inert gas system, fuel oil transfer pump, fuel oil unit, fuel oil service pump, and any other fuel oil pumps must have a stop control that is outside of the space containing the pump or fan. (b) Each stop control must meet § 111.103-7. ...
46 CFR 111.103-9 - Machinery stop stations.
Code of Federal Regulations, 2014 CFR
2014-10-01
... fan, induced draft fan, blower of an inert gas system, fuel oil transfer pump, fuel oil unit, fuel oil service pump, and any other fuel oil pumps must have a stop control that is outside of the space containing the pump or fan. (b) Each stop control must meet § 111.103-7. ...
46 CFR 111.103-9 - Machinery stop stations.
Code of Federal Regulations, 2013 CFR
2013-10-01
... fan, induced draft fan, blower of an inert gas system, fuel oil transfer pump, fuel oil unit, fuel oil service pump, and any other fuel oil pumps must have a stop control that is outside of the space containing the pump or fan. (b) Each stop control must meet § 111.103-7. ...
46 CFR 111.103-9 - Machinery stop stations.
Code of Federal Regulations, 2010 CFR
2010-10-01
... fan, induced draft fan, blower of an inert gas system, fuel oil transfer pump, fuel oil unit, fuel oil service pump, and any other fuel oil pumps must have a stop control that is outside of the space containing the pump or fan. (b) Each stop control must meet § 111.103-7. ...
NASA Technical Reports Server (NTRS)
Gelalles, A G; Marsh, E T
1933-01-01
Using the method of weighing fuel collected in a receiver during a definite interval of the injection period, rates of discharge were determined, and the effects noted, when various changes were made in a fuel-injection system. The injection system consisted primarily of a by-pass controlled fuel pump and an automatic injection valve. The variables of the system studied were the pump speed, pump-throttle setting, discharge-orifice diameter, injection-valve opening and closing pressures, and injection-tube length and diameter.
Mountain Plains Learning Experience Guide: Automotive Repair. Course: Automotive Fuel Systems.
ERIC Educational Resources Information Center
Osland, Walt
One of twelve individualized courses included in an automotive repair curriculum, this course covers the theory, operation, and repair of the carburetor, fuel pump, and other related fuel system components and parts. The course is comprised of six units: (1) Fundamentals of Fuel Systems, (2) Fuel Pumps, (3) Fuel Lines and Filters, (4) Carburetors,…
Engine with hydraulic fuel injection and ABS circuit using a single high pressure pump
Bartley, Bradley E.; Blass, James R.; Gibson, Dennis H.
2001-01-01
An engine system comprises a hydraulically actuated fuel injection system and an ABS circuit connected via a fluid flow passage that provides hydraulic fluid to both the fuel injection system and to the ABS circuit. The hydraulically actuated system includes a high pressure pump. The fluid control passage is in fluid communication with an outlet from the high pressure pump.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel pumps. 27.991 Section 27.991 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System Components § 27.991 Fuel pumps. Compliance with...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel pumps. 27.991 Section 27.991 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System Components § 27.991 Fuel pumps. Compliance with...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel pumps. 27.991 Section 27.991 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System Components § 27.991 Fuel pumps. Compliance with...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel pumps. 27.991 Section 27.991 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System Components § 27.991 Fuel pumps. Compliance with...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel pumps. 29.991 Section 29.991 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System Components § 29.991 Fuel pumps. (a...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel pumps. 29.991 Section 29.991 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System Components § 29.991 Fuel pumps. (a...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel pumps. 27.991 Section 27.991 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System Components § 27.991 Fuel pumps. Compliance with...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel pumps. 29.991 Section 29.991 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System Components § 29.991 Fuel pumps. (a...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel pumps. 29.991 Section 29.991 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System Components § 29.991 Fuel pumps. (a...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel pumps. 29.991 Section 29.991 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System Components § 29.991 Fuel pumps. (a...
NASA Astrophysics Data System (ADS)
Meng, Dennis Desheng; Kim, C. J.
As an alternative or supplement to small batteries, the much-anticipated micro-direct methanol fuel cell (μDMFC) faces several key technical issues such as methanol crossover, reactant delivery, and byproduct release. This paper addresses two of the issues, removal of CO 2 bubbles and delivery of methanol fuel, in a non-prohibitive way for system miniaturization. A recently reported bubble-driven pumping mechanism is applied to develop active μDMFCs free of an ancillary pump or a gas separator. The intrinsically generated CO 2 bubbles in the anodic microchannels are used to pump and circulate the liquid fuel before being promptly removed as a part of the pumping mechanism. Without a discrete liquid pump or gas separator, the widely known packaging penalty incurred within many micro-fuel-cell systems can be alleviated so that the system's power/energy density does not decrease dramatically as a result of miniaturization. Since the power required for pumping is provided by the byproduct of the fuel cell reaction, the parasitic power loss due to an external pump is also eliminated. The fuel circulation is visually confirmed, and the effectiveness for fuel cell applications is verified during continuous operation of a μDMFC for over 70 min with 1.2 mL of 2 M methanol. The same device was shown to operate for only 5 min if the pumping mechanism is disabled by blocking the gas venting membrane. Methanol consumption while utilizing the reported self-circulation mechanism is estimated to be 46%. Different from common pump-free fuel delivery approaches, the reported mechanism delivers the fuel actively and is independent of gravity.
Study of fuel systems for LH2-fueled subsonic transport aircraft, volume 1
NASA Technical Reports Server (NTRS)
Brewer, G. D.; Morris, R. E.; Davis, G. W.; Versaw, E. F.; Cunnington, G. R., Jr.; Riple, J. C.; Baerst, C. F.; Garmong, G.
1978-01-01
Several engine concepts examined to determine a preferred design which most effectively exploits the characteristics of hydrogen fuel in aircraft tanks received major emphasis. Many candidate designs of tank structure and cryogenic insulation systems were evaluated. Designs of all major elements of the aircraft fuel system including pumps, lines, valves, regulators, and heat exchangers received attention. Selected designs of boost pumps to be mounted in the LH2 tanks, and of a high pressure pump to be mounted on the engine were defined. A final design of LH2-fueled transport aircraft was established which incorporates a preferred design of fuel system. That aircraft was then compared with a conventionally fueled counterpart designed to equivalent technology standards.
Study on Improving Partial Load by Connecting Geo-thermal Heat Pump System to Fuel Cell Network
NASA Astrophysics Data System (ADS)
Obara, Shinya; Kudo, Kazuhiko
Hydrogen piping, the electric power line, and exhaust heat recovery piping of the distributed fuel cells are connected with network, and operational planning is carried out. Reduction of the efficiency in partial load is improved by operation of the geo-thermal heat pump linked to the fuel cell network. The energy demand pattern of the individual houses in Sapporo was introduced. And the analysis method aiming at minimization of the fuel rate by the genetic algorithm was described. The fuel cell network system of an analysis example assumed connecting the fuel cell co-generation of five houses. When geo-thermal heat pump was introduced into fuel cell network system stated in this paper, fuel consumption was reduced 6% rather than the conventional method
Passive Fuel Tank Inerting Systems for Ground Combat Vehicles
1988-09-01
elastomers and sealants used in currently fielded equipment and redesign of selected hydraulic and gun recoil systems would be necessary to...constraint~s or access problems. "* Fuel Lines.- Fuel lines are routed to use the least amount of line possible. Fuel lines are high-pressure braided ...steel and rubber hose or steel tube construction. "* Fuel Pumps. Fuel pumps are usually mounted internal to the fuel tanks, are of heavy-duty commercial
35. VIEW LOOKING EAST IN PUMP ROOM. AIR COMPRESSOR ON ...
35. VIEW LOOKING EAST IN PUMP ROOM. AIR COMPRESSOR ON LEFT, FUEL OIL PUMP BEHIND ON LEFT, FUEL OIL HEATERS AND PUMPS IN BACKGROUND WITH DRAIN SYSTEM - Georgetown Steam Plant, South Warsaw Street, King County Airport, Seattle, King County, WA
Supercritical fuel injection system
NASA Technical Reports Server (NTRS)
Marek, C. J.; Cooper, L. P. (Inventor)
1980-01-01
a fuel injection system for gas turbines is described including a pair of high pressure pumps. The pumps provide fuel and a carrier fluid such as air at pressures above the critical pressure of the fuel. A supercritical mixing chamber mixes the fuel and carrier fluid and the mixture is sprayed into a combustion chamber. The use of fuel and a carrier fluid at supercritical pressures promotes rapid mixing of the fuel in the combustion chamber so as to reduce the formation of pollutants and promote cleaner burning.
Oil cooling system for a gas turbine engine
NASA Technical Reports Server (NTRS)
Coffinberry, G. A.; Kast, H. B. (Inventor)
1977-01-01
A gas turbine engine fuel delivery and control system is provided with means to recirculate all fuel in excess fuel control requirements back to the aircraft fuel tank. This increases the fuel pump heat sink and decreases the pump temperature rise without the addition of valving other than normally employed. A fuel/oil heat exchanger and associated circuitry is provided to maintain the hot engine oil in heat exchange relationship with the cool engine fuel. Where anti-icing of the fuel filter is required, means are provided to maintain the fuel temperature entering the filter at or above a minimum level to prevent freezing thereof. In one embodiment, a divider valve is provided to take all excess fuel from either upstream or downstream of the fuel filter and route it back to the tanks, the ratio of upstream to downstream extraction being a function of fuel pump discharge pressure.
NASA Astrophysics Data System (ADS)
Fabian, T.; O'Hayre, R.; Litster, S.; Prinz, F. B.; Santiago, J. G.
In a typical air-breathing fuel cell design, ambient air is supplied to the cathode by natural convection and dry hydrogen is supplied to a dead-ended anode. While this design is simple and attractive for portable low-power applications, the difficulty in implementing effective and robust water management presents disadvantages. In particular, excessive flooding of the open-cathode during long-term operation can lead to a dramatic reduction of fuel cell power. To overcome this limitation, we report here on a novel air-breathing fuel cell water management design based on a hydrophilic and electrically conductive wick in conjunction with an electroosmotic (EO) pump that actively pumps water out of the wick. Transient experiments demonstrate the ability of the EO-pump to "resuscitate" the fuel cell from catastrophic flooding events, while longer term galvanostatic measurements suggest that the design can completely eliminate cathode flooding using less than 2% of fuel cell power, and lead to stable operation with higher net power performance than a control design without EO-pump. This demonstrates that active EO-pump water management, which has previously only been demonstrated in forced-convection fuel cell systems, can also be applied effectively to miniaturized (<5 W) air-breathing fuel cell systems.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-12
... automatic shutoff system for the center and auxiliary tank fuel boost pumps, as applicable, and installing a placard in the airplane flight deck if necessary; replacing the P5-2 fuel system module assembly; and installing the un-commanded on (UCO) protection system for the center and auxiliary tank fuel boost pumps, as...
NASA Technical Reports Server (NTRS)
Lubenetsky, W S
1936-01-01
This report presents investigations into the design and construction of fuel pumps for diesel engines. The results of the pump tests on the engines showed that, with a good cut-off, accurate injection, assured by the proper adjustment of the pump elements, there is a decrease in the consumption of fuel and hence an increase in the rated power of the engine. Some of the aspects investigated include: cam profile, coefficient of discharge, and characteristics of the injection system.
Penetration and Duration of Fuel Sprays from a Pump Injection System
NASA Technical Reports Server (NTRS)
Rothrock, A M; Marsh, E T
1934-01-01
High-speed motion pictures were taken of individual fuel sprays from a pump injection system. The changes in the spray-tip penetration with changes in the pump speed, injection-valve opening and closing pressures, discharge-orifice area, injection-tube length and diameter, and pump throttle setting were measured. The pump was used with and without a check valve. The results show that the penetration of the spray tip can be controlled by the dimensions of the injection tube, the area of the discharge orifice, and the injection-valve opening and closing pressures.
Code of Federal Regulations, 2010 CFR
2010-10-01
... control for the means of stopping machinery driving forced and induced draft fans, fuel oil transfer pumps, fuel oil unit pumps, and fans in the ventilation systems serving machinery and cargo spaces shall be...
40 CFR 65.107 - Standards: Pumps in light liquid service.
Code of Federal Regulations, 2011 CFR
2011-07-01
... or fuel gas system or connected by a closed vent system to a control device that complies with the requirements of § 65.115; or (C) Equipped with a closed-loop system that purges the barrier fluid into a... section. (3) Routed to a process or fuel gas system or equipped with a closed vent system. Any pump that...
Lessing, Paul A.; Zuppero, Anthony C.
1997-06-24
A miniature power source assembly capable of providing portable electricity is provided. A preferred embodiment of the power source assembly employing a fuel tank, fuel pump and control, air pump, heat management system, power chamber, power conditioning and power storage. The power chamber utilizes a ceramic fuel cell to produce the electricity. Incoming hydro carbon fuel is automatically reformed within the power chamber. Electrochemical combustion of hydrogen then produces electricity.
NASA Astrophysics Data System (ADS)
Treephak, Kasem; Thongpron, Jutturit; Somsak, Dhirasak; Saelao, Jeerawan; Patcharaprakiti, Nopporn
2015-08-01
In this paper we propose the design and economic evaluation of the water pumping systems for rice cultivation using solar energy, gasoline fuel and compare both systems. The design of the water and gasoline engine pumping system were evaluated. The gasoline fuel cost used in rice cultivation in an area of 1.6 acres. Under same conditions of water pumping system is replaced by the photovoltaic system which is composed of a solar panel, a converter and an electric motor pump which is compose of a direct current (DC) motor or an alternating current (AC) motor with an inverter. In addition, the battery is installed to increase the efficiency and productivity of rice cultivation. In order to verify, the simulation and economic evaluation of the storage energy battery system with batteries and without batteries are carried out. Finally the cost of four solar pumping systems was evaluated and compared with that of the gasoline pump. The results showed that the solar pumping system can be used to replace the gasoline water pumping system and DC solar pump has a payback less than 10 years. The systems that can payback the fastest is the DC solar pumping system without batteries storage system. The system the can payback the slowest is AC solar pumping system with batteries storage system. However, VAC motor pump of 220 V can be more easily maintained than the motor pump of 24 VDC and batteries back up system can supply a more stable power to the pump system.
Hydraulics of Fuel-Injection Pumps for Compression-ignition Engines
NASA Technical Reports Server (NTRS)
Rothrock, A M
1932-01-01
Formulas are derived for computing the instantaneous pressures delivered by a fuel pump. The first derivation considers the compressibility of the fuel and the second, the compressibility, elasticity, and inertia of the fuel. The second derivation follows that given by Sass; it is shown to be the more accurate of the two. Additional formulas are given for determining the resistance losses in the injection tube. Experimental data are presented in support of the analyses. The report is concluded with an application of the theory to the design of fuel pump injection systems for which sample calculations are included.
Correction of Dynamic Characteristics of SAR Cryogenic GTE on Consumption of Gasified Fuel
NASA Astrophysics Data System (ADS)
Bukin, V. A.; Gimadiev, A. G.; Gangisetty, G.
2018-01-01
When the gas turbine engines (GTE) NK-88 were developed for liquid hydrogen and NK-89 for liquefied natural gas, performance of the systems with a turbo-pump unitary was improved and its proved without direct regulation of the flow of a cryogenic fuel, which was supplied by a centrifugal pump of the turbo-pump unit (TPU) Command from the “kerosene” system. Such type of the automatic control system (SAR) has the property of partial “neutralization” of the delay caused by gasification of the fuel. This does not require any measurements in the cryogenic medium, and the failure of the centrifugal cryogenic pump does not lead to engine failure. On the other hand, the system without direct regulation of the flow of cryogenic fuel has complex internal dynamic connections, their properties are determined by the characteristics of the incoming units and assemblies, and it is difficult to maintain accurate the maximum boundary level and minimum fuel consumption due to the influence of a booster pressure change. Direct regulation of the consumption of cryogenic fuel (prior to its gasification) is the preferred solution, since for using traditional liquid and gaseous fuels this is the main and proven method. The scheme of correction of dynamic characteristics of a single-loop SAR GTE for the consumption of a liquefied cryogenic fuel with a flow rate correction in its gasified state, which ensures the dynamic properties of the system is not worse than for NK-88 and NK-89 engines.
Code of Federal Regulations, 2014 CFR
2014-01-01
... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.951 General. (a) Each fuel system must be.... (b) Each fuel system must be arranged so that— (1) No fuel pump can draw fuel from more than one tank at a time; or (2) There are means to prevent introducing air into the system. (c) Each fuel system...
Code of Federal Regulations, 2013 CFR
2013-01-01
... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.951 General. (a) Each fuel system must be.... (b) Each fuel system must be arranged so that— (1) No fuel pump can draw fuel from more than one tank at a time; or (2) There are means to prevent introducing air into the system. (c) Each fuel system...
Code of Federal Regulations, 2012 CFR
2012-01-01
... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.951 General. (a) Each fuel system must be.... (b) Each fuel system must be arranged so that— (1) No fuel pump can draw fuel from more than one tank at a time; or (2) There are means to prevent introducing air into the system. (c) Each fuel system...
Code of Federal Regulations, 2010 CFR
2010-01-01
... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.951 General. (a) Each fuel system must be.... (b) Each fuel system must be arranged so that— (1) No fuel pump can draw fuel from more than one tank at a time; or (2) There are means to prevent introducing air into the system. (c) Each fuel system...
Code of Federal Regulations, 2011 CFR
2011-01-01
... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.951 General. (a) Each fuel system must be.... (b) Each fuel system must be arranged so that— (1) No fuel pump can draw fuel from more than one tank at a time; or (2) There are means to prevent introducing air into the system. (c) Each fuel system...
Diesel Fuel Systems. Teacher Edition (Revised).
ERIC Educational Resources Information Center
Clark, Elton; Huston, Jane, Ed.
This module is one of a series of teaching guides that cover diesel mechanics. The module contains six instructional units that cover the following topics: (1) introduction to fuel injection systems and components; (2) injection nozzles; (3) distributor type injection pumps; (4) unit injectors; (5) in-line injection pumps; and (6) pressure timed…
Penetration and Duration of Fuel Sprays from a Pump Injection System
NASA Technical Reports Server (NTRS)
Rothrock, A M; Marsh, E T
1931-01-01
High-speed motion pictures were taken of individual fuel sprays from a pump injection system. The changes in the spray-tip penetration with changes in the pump speed, injection-valve opening and closing pressures, discharge-orifice area, injection-tube length and diameter, and pump throttle setting were measured. In addition, the effects of the variables on the time lag and duration of injection can be controlled by the dimensions of the injection tube, the area of the discharge orifice, and the injection-valve opening and closing pressures.
Code of Federal Regulations, 2014 CFR
2014-01-01
... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.951 General. (a) Each fuel system must... permitted to be in operation. (b) Each fuel system must be arranged so that— (1) No engine or fuel pump can... system. (c) Each fuel system for a turbine engine must be capable of sustained operation throughout its...
Code of Federal Regulations, 2012 CFR
2012-01-01
... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.951 General. (a) Each fuel system must... permitted to be in operation. (b) Each fuel system must be arranged so that— (1) No engine or fuel pump can... system. (c) Each fuel system for a turbine engine must be capable of sustained operation throughout its...
Code of Federal Regulations, 2013 CFR
2013-01-01
... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.951 General. (a) Each fuel system must... permitted to be in operation. (b) Each fuel system must be arranged so that— (1) No engine or fuel pump can... system. (c) Each fuel system for a turbine engine must be capable of sustained operation throughout its...
Code of Federal Regulations, 2011 CFR
2011-01-01
... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.951 General. (a) Each fuel system must... permitted to be in operation. (b) Each fuel system must be arranged so that— (1) No engine or fuel pump can... system. (c) Each fuel system for a turbine engine must be capable of sustained operation throughout its...
Code of Federal Regulations, 2010 CFR
2010-01-01
... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.951 General. (a) Each fuel system must... permitted to be in operation. (b) Each fuel system must be arranged so that— (1) No engine or fuel pump can... system. (c) Each fuel system for a turbine engine must be capable of sustained operation throughout its...
Oil cooling system for a gas turbine engine
NASA Technical Reports Server (NTRS)
Coffinberry, G. A.; Kast, H. B. (Inventor)
1977-01-01
A gas turbine engine fuel delivery and control system is provided with means to recirculate all fuel in excess of fuel control requirements back to aircraft fuel tank, thereby increasing the fuel pump heat sink and decreasing the pump temperature rise without the addition of valving other than that normally employed. A fuel/oil heat exchanger and associated circuitry is provided to maintain the hot engine oil in heat exchange relationship with the cool engine fuel. Where anti-icing of the fuel filter is required, means are provided to maintain the fuel temperature entering the filter at or above a minimum level to prevent freezing thereof. Fluid circuitry is provided to route hot engine oil through a plurality of heat exchangers disposed within the system to provide for selective cooling of the oil.
The relationship between fuel lubricity and diesel injection system wear
NASA Astrophysics Data System (ADS)
Lacy, Paul I.
1992-01-01
Use of low-lubricity fuel may have contributed to increased failure rates associated with critical fuel injection equipment during the 1991 Operation Desert Storm. However, accurate quantitative analysis of failed components from the field is almost impossible due to the unique service history of each pump. This report details the results of pump stand tests with fuels of equal viscosity, but widely different lubricity. Baseline tests were also performed using reference no. 2 diesel fuel. Use of poor lubricity fuel under these controlled conditions was found to greatly reduce both pump durability and engine performance. However, both improved metallurgy and fuel lubricity additives significantly reduced wear. Good correlation was obtained between standard bench tests and lightly loaded pump components. However, high contact loads on isolated components produced a more severe wear mechanism that is not well reflected by the Ball-on-Cylinder Lubricity Evaluator.
Aviation-fuel lubricity evaluation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1988-07-01
Fuel-system components have experienced problems with the slipperiness or lubricity of the fuel back to the early 1960's. As a consequence of the level of refinement necessary for the PWA 523 fuel (now designated MIL-T-38219 grade JP-7) to obtain its high-temperature stability, many of the polar compounds contributing to lubricity had been removed, resulting in abnormal hydraulic fuel-pump wear. A lubricity-enhancing compound was developed (PWA 536) to eliminate the wear problem. High-pressure piston-type fuel pumps were one of the first parts of the engine fuel system to exhibit problems related to fuel properties. One early problem manifested itself as corrosionmore » of silver-plated slipper pads and was related to carryover of residual-chlorides fuel. Fuel controls were another part of the engine fuel system susceptible to fuel properties. Lack of lubricity agents caused fuel control sliding servo valves to stick.« less
NASA Astrophysics Data System (ADS)
Yamanishi, Manabu
A combined experimental and computational investigation was performed in order to evaluate the effects of various design parameters of an in-line injection pump on the nozzle exit characteristics for DI diesel engines. Measurements of the pump chamber pressure and the delivery valve lift were included for validation by using specially designed transducers installed inside the pump. The results confirm that the simulation model is capable of predicting the pump operation for all the different designs investigated pump operating conditions. Following the successful validation of this model, parametric studies were performed which allow for improved fuel injection system design.
Integrated Cabin and Fuel Cell System Thermal Management with a Metal Hydride Heat Pump
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hovland, V.
2004-12-01
Integrated approaches for the heating and cooling requirements of both the fuel cell (FC) stack and cabin environment are critical to fuel cell vehicle performance in terms of stack efficiency, fuel economy, and cost. An integrated FC system and cabin thermal management system would address the cabin cooling and heating requirements, control the temperature of the stack by mitigating the waste heat, and ideally capture the waste heat and use it for useful purposes. Current work at the National Renewable Energy Laboratory (NREL) details a conceptual design of a metal hydride heat pump (MHHP) for the fuel cell system andmore » cabin thermal management.« less
40 CFR 86.402-78 - Definitions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... atmosphere from any opening downstream from the exhaust port of a motor vehicle engine. Fuel system means the combination of fuel tank, fuel pump, fuel lines, oil injection metering system, and carburetor or fuel injection components, and includes all fuel system vents. Loaded vehicle mass means curb mass plus 80 kg...
40 CFR 86.402-78 - Definitions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... atmosphere from any opening downstream from the exhaust port of a motor vehicle engine. Fuel system means the combination of fuel tank, fuel pump, fuel lines, oil injection metering system, and carburetor or fuel injection components, and includes all fuel system vents. Loaded vehicle mass means curb mass plus 80 kg...
40 CFR 86.402-78 - Definitions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... atmosphere from any opening downstream from the exhaust port of a motor vehicle engine. Fuel system means the combination of fuel tank, fuel pump, fuel lines, oil injection metering system, and carburetor or fuel injection components, and includes all fuel system vents. Loaded vehicle mass means curb mass plus 80 kg...
40 CFR 86.402-78 - Definitions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... atmosphere from any opening downstream from the exhaust port of a motor vehicle engine. Fuel system means the combination of fuel tank, fuel pump, fuel lines, oil injection metering system, and carburetor or fuel injection components, and includes all fuel system vents. Loaded vehicle mass means curb mass plus 80 kg...
40 CFR 86.402-78 - Definitions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... atmosphere from any opening downstream from the exhaust port of a motor vehicle engine. Fuel system means the combination of fuel tank, fuel pump, fuel lines, oil injection metering system, and carburetor or fuel injection components, and includes all fuel system vents. Loaded vehicle mass means curb mass plus 80 kg...
Parasitic load control system for exhaust temperature control
Strauser, Aaron D.; Coleman, Gerald N.; Coldren, Dana R.
2009-04-28
A parasitic load control system is provided. The system may include an exhaust producing engine and a fuel pumping mechanism configured to pressurize fuel in a pressure chamber. The system may also include an injection valve configured to cause fuel pressure to build within the pressure chamber when in a first position and allow injection of fuel from the pressure chamber into one or more combustion chambers of the engine when in a second position. The system may further include a controller configured to independently regulate the pressure in the pressure chamber and the injection of fuel into the one or more combustion chambers, to increase a load on the fuel pumping mechanism, increasing parasitic load on the engine, thereby increasing a temperature of the exhaust produced by the engine.
1996-07-24
to fuel tank 27 aboard 23 test torpedo 26. Pressure switch 19B operates to close solenoid 24 valve 22A and concurrently open solenoid valve 22D...leading to a pump explosion. The boost pump 4 is driven by its 11 motor 14B and positive displacement pump 1 by its respective 12 motor 14A. Pressure ... switch 19A monitors the head pressure 13 created by the boost pump 4 and it will shut off the motor 14A of 14 the positive displacement pump 1 if
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baylor, Larry R.; Meitner, Steven J.
Magnetically confined fusion plasmas generate energy from deuterium-tritium (DT) fusion reactions that produce energetic 3.5 MeV alpha particles and 14 MeV neutrons. Since the DT fusion reaction rate is a strong function of plasma density, an efficient fueling source is needed to maintain high plasma density in such systems. Energetic ions in fusion plasmas are able to escape the confining magnetic fields at a much higher rate than the fusion reactions occur, thus dictating the fueling rate needed. These lost ions become neutralized and need to be pumped away as exhaust gas to be reinjected into the plasma as fuelmore » atoms.The technology to fuel and pump fusion plasmas has to be inherently compatible with the tritium fuel. An ideal holistic solution would couple the pumping and fueling such that the pump exhaust is directly fed back into pellet formation without including impurity gases. This would greatly reduce the processing needs for the exhaust. Concepts to accomplish this are discussed along with the fueling and pumping needs for a DT fusion reactor.« less
46 CFR 119.458 - Portable fuel systems.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Portable fuel systems. 119.458 Section 119.458 Shipping... Machinery Requirements § 119.458 Portable fuel systems. (a) Portable fuel systems, including portable tanks and related fuel lines and accessories, are prohibited except where used for portable dewatering pumps...
46 CFR 119.458 - Portable fuel systems.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Portable fuel systems. 119.458 Section 119.458 Shipping... Machinery Requirements § 119.458 Portable fuel systems. (a) Portable fuel systems, including portable tanks and related fuel lines and accessories, are prohibited except where used for portable dewatering pumps...
NASA Technical Reports Server (NTRS)
1987-01-01
Stirling Engine's advanced technology engine offers multiple advantages, principal among them reduced fuel consumption and lower exhaust emissions than comparable internal combustion auto engines, plus multifuel capability. Stirling can use gasoline, kerosene, diesel fuel, jet fuel, alcohol, methanol, butane and that's not the whole list. Applications include irrigation pumping, heat pumps, and electricity generation for submarine, Earth and space systems.
78 FR 52836 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-27
...) of America Code 2800, Aircraft Fuel System. (e) Unsafe Condition This AD was prompted by reports of... airplanes of total loss of boost pump pressure of the fuel feed system, followed by loss of fuel system... operational tests of the engine fuel suction feed of the fuel system, and corrective actions if necessary. We...
77 FR 41934 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-17
... Transport Association (ATA) of America Code 2800, Aircraft Fuel System. (e) Unsafe Condition This AD was... operational tests of the engine fuel suction feed of the fuel system, and other related testing if necessary... loss of boost pump pressure of the fuel feed system, followed by loss of fuel system suction feed...
Code of Federal Regulations, 2011 CFR
2011-01-01
... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.951 General. (a) Each fuel system must be constructed and arranged to ensure fuel flow at a rate and pressure... unit is permitted to be in operation. (b) Each fuel system must be arranged so that— (1) No fuel pump...
Code of Federal Regulations, 2010 CFR
2010-01-01
... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.951 General. (a) Each fuel system must be constructed and arranged to ensure fuel flow at a rate and pressure... unit is permitted to be in operation. (b) Each fuel system must be arranged so that— (1) No fuel pump...
Code of Federal Regulations, 2014 CFR
2014-01-01
... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.951 General. (a) Each fuel system must be constructed and arranged to ensure fuel flow at a rate and pressure... unit is permitted to be in operation. (b) Each fuel system must be arranged so that— (1) No fuel pump...
Code of Federal Regulations, 2013 CFR
2013-01-01
... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.951 General. (a) Each fuel system must be constructed and arranged to ensure fuel flow at a rate and pressure... unit is permitted to be in operation. (b) Each fuel system must be arranged so that— (1) No fuel pump...
Code of Federal Regulations, 2012 CFR
2012-01-01
... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.951 General. (a) Each fuel system must be constructed and arranged to ensure fuel flow at a rate and pressure... unit is permitted to be in operation. (b) Each fuel system must be arranged so that— (1) No fuel pump...
Hoff, Brian D.; Johnson, Kris William; Algrain, Marcelo C.; Akasam, Sivaprasad
2006-06-06
A method of controlling the delivery of fluid to an engine includes receiving a fuel flow rate signal. An electric pump is arranged to deliver fluid to the engine. The speed of the electric pump is controlled based on the fuel flow rate signal.
Dual nozzle single pump fuel injection system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonzalez, C.
1992-02-25
This patent describes an improvement in a fuel injection system in a stratified charge hybrid internal combustion engine including a main combustion chamber, a precombustion chamber connected with the main chamber, fuel injectors in the main combustion chamber and precombustion chamber which open at higher and lower pressure levels respectively to sequentially inject fuel into the prechamber and the main chamber, timed spark ignition means in the prechamber for ignition of the fuel-air mixture therein, and an engine driven and timed fuel injection pump having a variable output capacity that varies with power level position, the injection pump is suppliedmore » by a low pressure charging pump. The improvement comprises: a shuttle valve including a bore therein; a shuttle spool means positioned within the bore defining a prechamber supply chamber on one side thereof and a spool activation chamber on the opposite side thereof the spool means having a first and second position; biasing means urging the spool towards it first position with the spool actuation chamber at its minimum volume; first conduit means connecting charging pressure to the prechamber supply camber in the first position oil the spool means; second conduit means connecting the injection pump to spool actuation chamber; third conduit means connecting the spool actuating chamber with the main injector; forth conduit means connecting the prechamber supply chamber with the prechamber injector; the initial charge from the injection pump actuates the spool means from its fir to its second position.« less
Discharge characteristics of a high speed fuel injection system
NASA Technical Reports Server (NTRS)
Matthews, Robertson
1925-01-01
Discussed here are some discharge characteristics of a fuel injection system intended primarily for high speed service. The system consisted of a cam actuated fuel pump, a spring loaded automatic injection valve, and a connecting tube.
Regenerative Fuel Cell Test Rig at Glenn Research Center
NASA Technical Reports Server (NTRS)
Chang, Bei-Jiann; Johnson, Donald W.; Garcia, Christopher P.; Jakupca, Ian J.; Scullin, Vincent J.; Bents, David J.
2003-01-01
The regenerative fuel cell development effort at Glenn Research Center (GRC) involves the integration of a dedicated fuel cell and electrolyzer into an energy storage system test rig. The test rig consists of a fuel cell stack, an electrolysis stack, cooling pumps, a water transfer pump, gas recirculation pumps, phase separators, storage tanks for oxygen (O2) and hydrogen (H2), heat exchangers, isolation valves, pressure regulators, interconnecting tubing, nitrogen purge provisions, and instrumentation for control and monitoring purposes. The regenerative fuel cell (RFC) thus formed is a completely closed system which is capable of autonomous cyclic operation. The test rig provides direct current (DC) load and DC power supply to simulate power consumption and solar power input. In addition, chillers are used as the heat sink to dissipate the waste heat from the electrochemical stack operation. Various vents and nitrogen (N2) sources are included in case inert purging is necessary to safe the RFC test rig.
NASA Technical Reports Server (NTRS)
Vasquez, Arturo
2011-01-01
An advanced reactant pressure regulator with an internal ejector reactant circulation pump has been developed to support NASA's future fuel cell power systems needs. These needs include reliable and safe operation in variable-gravity environments, and for exploration activities with both manned and un manned vehicles. This product was developed for use in Proton Exchange Membrane Fuel Cell (PEMFC) power plant reactant circulation systems, but the design could also be applied to other fuel cell system types, (e.g., solid-oxide or alkaline) or for other gas pressure regulation and circulation needs. The regulator design includes porting for measurement of flow and pressure at key points in the system, and also includes several fuel cell system integration options. NASA has recognized ejectors as a viable alternative to mechanical pumps for use in spacecraft fuel cell power systems. The ejector motive force is provided by a variable, high-pressure supply gas that travels through the ejector s jet nozzle, whereby the pressure energy of the fluid stream is converted to kinetic energy in the gas jet. The ejector can produce circulation-to-consumption-flow ratios that are relatively high (2-3 times), and this phenomenon can potentially (with proper consideration of the remainder of the fuel cell system s design) be used to provide completely for reactant pre-humidification and product water removal in a fuel cell system. Specifically, a custom pressure regulator has been developed that includes: (1) an ejector reactant circulation pump (with interchangeable jet nozzles and mixer sections, gas-tight sliding and static seals in required locations, and internal fluid porting for pressure-sensing at the regulator's control elements) and (2) internal fluid porting to allow for flow rate and system pressure measurements. The fluid porting also allows for inclusion of purge, relief, and vacuum-breaker check valves on the regulator assembly. In addition, this regulator could also be used with NASA's advanced nonflow-through fuel cell power systems by simply incorporating a jet nozzle with an appropriate nozzle diameter.
46 CFR 129.540 - Remote stopping-systems on OSVs of 100 or more gross tons.
Code of Federal Regulations, 2013 CFR
2013-10-01
... pump for bilge slop or dirty oil, at the deck discharge. (3) For each powered ventilation system, outside the space ventilated. (4) For each fuel-oil pump, outside the space containing the pump. (5) For each cargo-transfer pump for combustible and flammable liquid, at each transfer-control station. (c...
46 CFR 129.540 - Remote stopping-systems on OSVs of 100 or more gross tons.
Code of Federal Regulations, 2011 CFR
2011-10-01
... pump for bilge slop or dirty oil, at the deck discharge. (3) For each powered ventilation system, outside the space ventilated. (4) For each fuel-oil pump, outside the space containing the pump. (5) For each cargo-transfer pump for combustible and flammable liquid, at each transfer-control station. (c...
46 CFR 129.540 - Remote stopping-systems on OSVs of 100 or more gross tons.
Code of Federal Regulations, 2012 CFR
2012-10-01
... pump for bilge slop or dirty oil, at the deck discharge. (3) For each powered ventilation system, outside the space ventilated. (4) For each fuel-oil pump, outside the space containing the pump. (5) For each cargo-transfer pump for combustible and flammable liquid, at each transfer-control station. (c...
Self-Regulating Water-Separator System for Fuel Cells
NASA Technical Reports Server (NTRS)
Vasquez, Arturo; McCurdy, Kerri; Bradley, Karla F.
2007-01-01
proposed system would perform multiple coordinated functions in regulating the pressure of the oxidant gas (usually, pure oxygen) flowing to a fuelcell stack and in removing excess product water that is generated in the normal fuel-cell operation. The system could function in the presence or absence of gravitation, and in any orientation in a gravitational field. Unlike some prior systems for removing product water, the proposed system would not depend on hydrophobicity or hydrophilicity of surfaces that are subject to fouling and, consequently, to gradual deterioration in performance. Also unlike some prior systems, the proposed system would not include actively controlled electric motors for pumping; instead, motive power for separation and pumping away of product water would be derived primarily from the oxidant flow and perhaps secondarily from the fuel flow. The net effect of these and other features would be to make the proposed system more reliable and safer, relative to the prior systems. The proposed system (see figure) would include a pressure regulator and sensor in the oxidant supply just upstream from an ejector reactant pump. The pressure of the oxidant supply would depend on the consumption flow. In one of two control subsystems, the pressure of oxidant flowing from the supply to the ejector would be sensed and used to control the speed of a set of a reciprocating constant-displacement pump so that the volumetric flow of nominally incompressible water away from the system would slightly exceed the rate at which water was produced by the fuel cell(s). The two-phase (gas/liquid water) outlet stream from the fuel cell(s) would enter the water separator, a turbinelike centrifugal separator machine driven primarily by the oxidant gas stream. A second control subsystem would utilize feedback derived from the compressibility of the outlet stream: As the separator was emptied of liquid water, the compressibility of the pumped stream would increase. The compressibility would be sensed, and an increase in compressibility beyond a preset point (signifying a decrease in water content below an optimum low level) would cause the outflow from the reciprocating pump to be diverted back to the separator to recycle some water.
ERIC Educational Resources Information Center
Human Engineering Inst., Cleveland, OH.
THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE CONSTRUCTION, OPERATION, AND MAINTENANCE OF THE DIESEL ENGINE FUEL AND RADIATOR SHUTTER SYSTEMS. TOPICS ARE (1) MORE ABOUT THE CUMMINS FUEL SYSTEM, (2) CALIBRATING THE PT FUEL PUMP, (3) CALIBRATING THE FUEL INJECTORS, (4) UNDERSTANDING THE SHUTTER SYSTEM, (5) THE…
Parametric sensitivity study for solar-assisted heat-pump systems
NASA Astrophysics Data System (ADS)
White, N. M.; Morehouse, J. H.
1981-07-01
The engineering and economic parameters affecting life-cycle costs for solar-assisted heat pump systems are investigted. The change in energy usage resulting from each engineering parameter varied was developed from computer simulations, and is compared with results from a stand-alone heat pump system. Three geographical locations are considered: Washington, DC, Fort Worth, TX, and Madison, WI. Results indicate that most engineering changes to the systems studied do not provide significant energy savings. The most promising parameters to ary are the solar collector parameters tau (-) and U/sub L/ the heat pump capacity at design point, and the minimum utilizable evaporator temperature. Costs associated with each change are estimated, and life-cycle costs computed for both engineering parameters and economic variations in interest rate, discount rate, tax credits, fuel unit costs and fuel inflation rates. Results indicate that none of the feasibile engineering changes for the system configuration studied will make these systems economically competitive with the stand-alone heat pump without a considerable tax credit.
Experimental study of operation performance for hydrocarbon fuel pump with low specific speed
NASA Astrophysics Data System (ADS)
Wu, Xianyu; Yang, Jun; Jin, Xuan
2017-10-01
In this paper, a small flow rate hydrocarbon turbine pump was used to pressurize the fuel supply system of scramjet engine. Some experiments were carried out to investigate the characteristics of turbine pump driven by nitrogen or combustion gas under different operating conditions. A experimental database with regard to the curves of the rotational speed, mass flow rate and net head with regard to centrifugal pump were plotted. These curves were represented as functions of the pressure and temperature at turbine inlet/outlet and the throttle diameter at downstream of centrifugal pump. A sensitivity study has been carried out based on design of experiments. The experimental was employed to analyze net head of centrifugal and throttle characteristics. The research results can accumulate foundations for the close loop control system of turbine pump.
Fuel Cell Balance-of-Plant Reliability Testbed Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sproat, Vern; LaHurd, Debbie
Reliability of the fuel cell system balance-of-plant (BoP) components is a critical factor that needs to be addressed prior to fuel cells becoming fully commercialized. Failure or performance degradation of BoP components has been identified as a life-limiting factor in fuel cell systems.1 The goal of this project is to develop a series of test beds that will test system components such as pumps, valves, sensors, fittings, etc., under operating conditions anticipated in real Polymer Electrolyte Membrane (PEM) fuel cell systems. Results will be made generally available to begin removing reliability as a roadblock to the growth of the PEMmore » fuel cell industry. Stark State College students participating in the project, in conjunction with their coursework, have been exposed to technical knowledge and training in the handling and maintenance of hydrogen, fuel cells and system components as well as component failure modes and mechanisms. Three test beds were constructed. Testing was completed on gas flow pumps, tubing, and pressure and temperature sensors and valves.« less
77 FR 75908 - Airworthiness Directives; Gulfstream Aerospace Corporation
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-26
.... (d) Subject Joint Aircraft System Component (JASC)/Air Transport Association (ATA) of America Code... of the fuel boost pump and over-heat damage found on the internal components and external housing. This proposed AD would require doing an inspection to determine if fuel boost pumps having a certain...
Water outlet control mechanism for fuel cell system operation in variable gravity environments
NASA Technical Reports Server (NTRS)
Vasquez, Arturo (Inventor); McCurdy, Kerri L. (Inventor); Bradley, Karla F. (Inventor)
2007-01-01
A self-regulated water separator provides centrifugal separation of fuel cell product water from oxidant gas. The system uses the flow energy of the fuel cell's two-phase water and oxidant flow stream and a regulated ejector or other reactant circulation pump providing the two-phase fluid flow. The system further uses a means of controlling the water outlet flow rate away from the water separator that uses both the ejector's or reactant pump's supply pressure and a compressibility sensor to provide overall control of separated water flow either back to the separator or away from the separator.
Electric Fuel Pump Condition Monitor System Using Electricalsignature Analysis
Haynes, Howard D [Knoxville, TN; Cox, Daryl F [Knoxville, TN; Welch, Donald E [Oak Ridge, TN
2005-09-13
A pump diagnostic system and method comprising current sensing probes clamped on electrical motor leads of a pump for sensing only current signals on incoming motor power, a signal processor having a means for buffering and anti-aliasing current signals into a pump motor current signal, and a computer having a means for analyzing, displaying, and reporting motor current signatures from the motor current signal to determine pump health using integrated motor and pump diagnostic parameters.
Multi-stage internal gear/turbine fuel pump
Maier, Eugen; Raney, Michael Raymond
2004-07-06
A multi-stage internal gear/turbine fuel pump for a vehicle includes a housing having an inlet and an outlet and a motor disposed in the housing. The multi-stage internal gear/turbine fuel pump also includes a shaft extending axially and disposed in the housing. The multi-stage internal gear/turbine fuel pump further includes a plurality of pumping modules disposed axially along the shaft. One of the pumping modules is a turbine pumping module and another of the pumping modules is a gerotor pumping module for rotation by the motor to pump fuel from the inlet to the outlet.
Hydrogen-Fuel Engine Component Tests Near Completion
NASA Technical Reports Server (NTRS)
2003-01-01
Gaseous hydrogen is burned off at the E1 Test Stand the night of Oct. 7 during a cold-flow test of the fuel turbopump of the Integrated Powerhead Demonstrator (IPD) at NASA Stennis Space Center (SSC). The gaseous hydrogen spins the pump's turbine during the test, which was conducted to verify the pump's performance. Engineers plan one more test before sending the pump to The Boeing Co. for inspection. It will then be returned to SSC for engine system assembly. The IPD is the first reusable hydrogen-fueled advanced engine in development since the Space Shuttle Main Engine.
Hydrogen-Fuel Engine Component Tests Near Completion
2003-11-05
Gaseous hydrogen is burned off at the E1 Test Stand the night of Oct. 7 during a cold-flow test of the fuel turbopump of the Integrated Powerhead Demonstrator (IPD) at NASA Stennis Space Center (SSC). The gaseous hydrogen spins the pump's turbine during the test, which was conducted to verify the pump's performance. Engineers plan one more test before sending the pump to The Boeing Co. for inspection. It will then be returned to SSC for engine system assembly. The IPD is the first reusable hydrogen-fueled advanced engine in development since the Space Shuttle Main Engine.
Design of Intelligent Hydraulic Excavator Control System Based on PID Method
NASA Astrophysics Data System (ADS)
Zhang, Jun; Jiao, Shengjie; Liao, Xiaoming; Yin, Penglong; Wang, Yulin; Si, Kuimao; Zhang, Yi; Gu, Hairong
Most of the domestic designed hydraulic excavators adopt the constant power design method and set 85%~90% of engine power as the hydraulic system adoption power, it causes high energy loss due to mismatching of power between the engine and the pump. While the variation of the rotational speed of engine could sense the power shift of the load, it provides a new method to adjust the power matching between engine and pump through engine speed. Based on negative flux hydraulic system, an intelligent hydraulic excavator control system was designed based on rotational speed sensing method to improve energy efficiency. The control system was consisted of engine control module, pump power adjusted module, engine idle module and system fault diagnosis module. Special PLC with CAN bus was used to acquired the sensors and adjusts the pump absorption power according to load variation. Four energy saving control strategies with constant power method were employed to improve the fuel utilization. Three power modes (H, S and L mode) were designed to meet different working status; Auto idle function was employed to save energy through two work status detected pressure switches, 1300rpm was setting as the idle speed according to the engine consumption fuel curve. Transient overload function was designed for deep digging within short time without spending extra fuel. An increasing PID method was employed to realize power matching between engine and pump, the rotational speed's variation was taken as the PID algorithm's input; the current of proportional valve of variable displacement pump was the PID's output. The result indicated that the auto idle could decrease fuel consumption by 33.33% compared to work in maximum speed of H mode, the PID control method could take full use of maximum engine power at each power mode and keep the engine speed at stable range. Application of rotational speed sensing method provides a reliable method to improve the excavator's energy efficiency and realize power match between pump and engine.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-15
... fuel transfer system. We are issuing this AD to detect and correct damage to certain fuel booster pumps... problem with the fuel transfer system. The results of the subsequent investigation revealed damage on the... was prompted by a report of an in-flight problem with the fuel transfer system. We are issuing this AD...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-21
... in certain fuel pump pressure switches. This proposed AD results from fuel system reviews conducted... systems. As a result of those findings, we issued a regulation titled ``Transport Airplane Fuel Tank... certificate (TC) and supplemental type certificate (STC)) holders to substantiate that their fuel tank systems...
77 FR 64704 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-23
... airplanes of total loss of boost pump pressure of the fuel feed system, followed by loss of fuel system... the engine fuel suction feed capability of the fuel system, which, in the event of total loss of the... Airplanes, Attention: Data & Services Management, P. O. Box 3707, MC 2H-65, Seattle, WA 98124-2207...
ROTARY FUEL INJECTION PUMP WEAR TESTING USING A 30 %/ 70% ATJ/F-24 FUEL BLEND
2017-09-30
30/70 ATJ/F-24 with 24-ppm CI/LI Fuel at 77 ºC ............................................... 49 Figure 28. Pump SN:17200043 Transfer Pump Blade ...Pump SN:17200043 Transfer Pump Blade Edges with 1000-Hours Testing with 30/70 ATJ/F-24 with 24-ppm CI/LI Fuel at 77 ºC...50 Figure 30. Pump SN:17200043 Transfer Pump Blade Sides before Testing with 30/70 ATJ/F-24 with 24-ppm CI/LI Fuel at 77 ºC
NASA Astrophysics Data System (ADS)
Motojima, G.; Masuzaki, S.; Tanaka, H.; Morisaki, T.; Sakamoto, R.; Murase, T.; Tsuchibushi, Y.; Kobayashi, M.; Schmitz, O.; Shoji, M.; Tokitani, M.; Yamada, H.; Takeiri, Y.; The LHD Experiment Group
2018-01-01
Superior control of particle recycling and hence full governance of plasma density has been established in the Large Helical Device (LHD) using largely enhanced active pumping of the closed helical divertor (CHD). In-vessel cryo-sorption pumping systems inside the CHD in five out of ten inner toroidal divertor sections have been developed and installed step by step in the LHD. The total effective pumping speed obtained was 67 ± 5 m3 s-1 in hydrogen, which is approximately seven times larger than previously obtained. As a result, a low recycling state was observed with CHD pumping for the first time in LHD featuring excellent density control even under intense pellet fueling conditions. A global particle confinement time (τ p* ) is used for comparison of operation with and without the CHD pumping. The τ p* was evaluated from the density decay after the fueling of hydrogen pellet injection or gas puffing in NBI plasmas. A reliably low base density before the fueling and short τ p* after the fueling were obtained during the CHD pumping, demonstrating for the first time full control of the particle balance with active pumping in the CHD.
Analysis and Test of a Proton Exchange Membrane Fuel Cell Power System for Space Power Applications
NASA Technical Reports Server (NTRS)
Vasquez, Arturo; Varanauski, Donald; Clark, Robert, Jr.
2000-01-01
An effort is underway to develop a prototype Proton Exchange Membrane (PEM) Fuel Cell breadboard system for fuhlre space applications. This prototype will be used to develop a comprehensive design basis for a space-rated PEM fuel cell powerplant. The prototype system includes reactant pressure regulators, ejector-based reactant pumps, a 4-kW fuel cell stack and cooling system, and a passive, membranebased oxygen / water separator. A computer model is being developed concurrently to analytically predict fluid flow in the oxidant reactant system. Fuel cells have historically played an important role in human-rated spacecraft. The Gemini and Apollo spacecraft used fuel cells for vehicle electrical power. The Space Shuttle currently uses three Alkaline Fuel Cell Powerplants (AFCP) to generate all of the vehicle's 15-20kW electrical power. Engineers at the Johnson Space Center have leveraged off the development effort ongoing in the commercial arena to develop PEM fuel cel ls for terrestrial uses. The prototype design originated from efforts to develop a PEM fuel cell replacement for the current Space Shuttle AFCP' s. In order to improve on the life and an already excellent hi storical record of reliability and safety, three subsystems were focused on. These were the fuel cell stack itself, the reactant circulation devices, and reactant / product water separator. PEM fuel cell stack performance is already demonstrating the potential for greater than four times the useful life of the current Shuttle's AFCP. Reactant pumping for product water removal has historically been accomplished with mechanical pumps. Ejectors offer an effective means of reactant pumping as well as the potential for weight reduction, control simplification, and long life. Centrifugal water separation is used on the current AFCP. A passive, membrane-based water separator offers compatibility with the micro-gravity environment of space, and the potential for control simplification, elimination of moving parts in an oxygen environment, and long life. The prototype system has been assembled from components that have previously been tested and evaluated at the component level. Preliminary data obtained from tests performed with the prototype system, as well as other published data, has been used to validate the analytical component models. These components have been incorporated into an integrated oxidant fluid system model. Results obtained from both the performance tests and the analytical model are presented.
Application of sorption heat pumps for increasing of new power sources efficiency
NASA Astrophysics Data System (ADS)
Vasiliev, L.; Filatova, O.; Tsitovich, A.
2010-07-01
In the 21st century the way to increase the efficiency of new sources of energy is directly related with extended exploration of renewable energy. This modern tendency ensures the fuel economy needs to be realized with nature protection. The increasing of new power sources efficiency (cogeneration, trigeneration systems, fuel cells, photovoltaic systems) can be performed by application of solid sorption heat pumps, regrigerators, heat and cold accumulators, heat transformers, natural gas and hydrogen storage systems and efficient heat exchangers.
An Apparatus for Measuring Rates of Discharge of a Fuel-Injection System
NASA Technical Reports Server (NTRS)
Dutee, Francis J
1941-01-01
A portable apparatus for rapidly determining rates of discharge of a fuel-injection system is described. Satisfactory operation of this apparatus with injection-pump speeds up to 2400 r.p.m was obtained. Rate-of-discharge tests were made with several cam-plunger-valve injection systems with long injection tubes. A check valve designed to reduce secondary discharges was tested. This check valve was operated with injection-pump speeds up to 2400 r.p.m without the occurrence of large secondary discharges.
Improvement of fuel injection system of locomotive diesel engine.
Li, Minghai; Cui, Hongjiang; Wang, Juan; Guan, Ying
2009-01-01
The traditional locomotive diesels are usually designed for the performance of rated condition and much fuel will be consumed. A new plunger piston matching parts of fuel injection pump and injector nozzle matching parts were designed. The experimental results of fuel injection pump test and diesel engine show that the fuel consumption rate can be decreased a lot in the most of the working conditions. The forced lubrication is adopted for the new injector nozzle matching parts, which can reduce failure rate and increase service life. The design has been patented by Chinese State Patent Office.
Advancements in Dual-Pump Broadband CARS for Supersonic Combustion Measurements
NASA Technical Reports Server (NTRS)
Tedder, Sarah Augusta Umberger
2010-01-01
Space- and time-resolved measurements of temperature and species mole fractions of nitrogen, oxygen, and hydrogen were obtained with a dual-pump coherent anti-Stokes Raman spectroscopy (CARS) system in hydrogen-fueled supersonic combustion free jet flows. These measurements were taken to provide time-resolved fluid properties of turbulent supersonic combustion for use in the creation and verification of computational fluid dynamic (CFD) models. CFD models of turbulent supersonic combustion flow currently facilitate the design of air-breathing supersonic combustion ramjet (scramjet) engines. Measurements were made in supersonic axi-symmetric free jets of two scales. First, the measurement system was tested in a laboratory environment using a laboratory-scale burner (approx.10 mm at nozzle exit). The flow structures of the laboratory-burner were too small to be resolved with the CARS measurements volume, but the composition and temperature of the jet allowed the performance of the system to be evaluated. Subsequently, the system was tested in a burner that was approximately 6 times larger, whose length scales are better resolved by the CARS measurement volume. During both these measurements, weaknesses of the CARS system, such as sensitivity to vibrations and beam steering and inability to measure temperature or species concentrations in hydrogen fuel injection regions were indentified. Solutions were then implemented in improved CARS systems. One of these improved systems is a dual-pump broadband CARS technique called, Width Increased Dual-pump Enhanced CARS (WIDECARS). The two lowest rotational energy levels of hydrogen detectable by WIDECARS are H2 S(3) and H2 S(4). The detection of these lines gives the system the capability to measure temperature and species concentrations in regions of the flow containing pure hydrogen fuel at room temperature. WIDECARS is also designed for measurements of all the major species (except water) in supersonic combustion flows fueled with hydrogen and hydrogen/ethylene mixtures (N2, O2, H2, C2H4, CO, and CO2). This instrument can characterize supersonic combustion fueled with surrogate fuel mixtures of hydrogen and ethylene. This information can lead to a better understanding of the chemistry and performance of supersonic combustion fueled with cracked jet propulsion (JP)-type fuel.
Best Practices for Fuel System Contamination Detection and Remediation
2015-12-14
Valve Fyre Ring GR DBB Style Plug Valve Gasket SS graphite Spiral DBB Style Plug Valve O- rings & slip seals VI DBB Style Plug Valve Packing gland...Pumps Impeller Key SS Vertical Turbine Pumps Impeller Retaining Ring SS Vertical Turbine Pumps Impellers (Electroless Nickel Plating) DI Vertical... Turbine Pumps Line Shaft SS Vertical Turbine Pumps Lineshaft Bearing CA Vertical Turbine Pumps Mating Ring Si-C Vertical Turbine Pumps Mechanical
Best Practices for Fuel System Contamination Detection and Remediation
2016-01-15
Valve Fyre Ring GR DBB Style Plug Valve Gasket SS graphite Spiral DBB Style Plug Valve O- rings & slip seals VI DBB Style Plug Valve Packing gland...Pumps Impeller Key SS Vertical Turbine Pumps Impeller Retaining Ring SS Vertical Turbine Pumps Impellers (Electroless Nickel Plating) DI Vertical... Turbine Pumps Line Shaft SS Vertical Turbine Pumps Lineshaft Bearing CA Vertical Turbine Pumps Mating Ring Si-C Vertical Turbine Pumps Mechanical
14 CFR 25.957 - Flow between interconnected tanks.
Code of Federal Regulations, 2013 CFR
2013-01-01
... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.957 Flow between interconnected tanks. If fuel can be pumped from one tank to another in flight, the fuel tank vents and the fuel transfer system must be designed so that no structural damage to the tanks can occur because of overfilling. ...
14 CFR 25.957 - Flow between interconnected tanks.
Code of Federal Regulations, 2011 CFR
2011-01-01
... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.957 Flow between interconnected tanks. If fuel can be pumped from one tank to another in flight, the fuel tank vents and the fuel transfer system must be designed so that no structural damage to the tanks can occur because of overfilling. ...
14 CFR 25.957 - Flow between interconnected tanks.
Code of Federal Regulations, 2010 CFR
2010-01-01
... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.957 Flow between interconnected tanks. If fuel can be pumped from one tank to another in flight, the fuel tank vents and the fuel transfer system must be designed so that no structural damage to the tanks can occur because of overfilling. ...
14 CFR 25.957 - Flow between interconnected tanks.
Code of Federal Regulations, 2014 CFR
2014-01-01
... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.957 Flow between interconnected tanks. If fuel can be pumped from one tank to another in flight, the fuel tank vents and the fuel transfer system must be designed so that no structural damage to the tanks can occur because of overfilling. ...
14 CFR 25.957 - Flow between interconnected tanks.
Code of Federal Regulations, 2012 CFR
2012-01-01
... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.957 Flow between interconnected tanks. If fuel can be pumped from one tank to another in flight, the fuel tank vents and the fuel transfer system must be designed so that no structural damage to the tanks can occur because of overfilling. ...
Risse, John T.; Taggart, James C.
1976-01-01
A vehicle fuel system comprising a plurality of tanks, each tank having a feed and a return conduit extending into a lower portion thereof, the several feed conduits joined to form one supply conduit feeding fuel to a supply pump and using means, unused fuel being returned via a return conduit which branches off to the several return conduits.
NASA Astrophysics Data System (ADS)
Vanheyden, L.; Evertz, E.
1980-12-01
Compression type air/water heat pumps were developed for domestic heating systems rated at 20 to 150 kW. The heat pump is driven either by a reciprocating piston or rotary piston engine modified to operate on natural gas. Particular features of natural gas engines as prime movers, such as waste heat recovery and variable speed, are stressed. Two systems suitable for heat pump operation were selected from among five different mass produced car engines and were modified to incorporate reciprocating piston compressor pairs. The refrigerants used are R 12 and R 22. Test rig data transferred to field conditions show that the fuel consumption of conventional boilers can be reduced by 50% and more by the installation of engine driven heat pumps. Pilot heat pumps based on a 1,600 cc reciprocating piston engine were built for heating four two-family houses. Pilot pump operation confirms test rig findings. The service life of rotary piston and reciprocating piston engines was investigated. The tests reveal characteristic curves for reciprocating piston engines and include exhaust composition measurements.
46 CFR 129.540 - Remote stopping-systems on OSVs of 100 or more gross tons.
Code of Federal Regulations, 2014 CFR
2014-10-01
..., outside the space ventilated. (4) For each fuel-oil pump, outside the space containing the pump. (5) For each cargo-transfer pump for combustible and flammable liquid, at each transfer-control station. (c...
LOX/hydrocarbon auxiliary propulsion system study
NASA Technical Reports Server (NTRS)
Orton, G. F.; Mark, T. D.; Weber, D. D.
1982-01-01
Liquid oxygen (LOX)/hydrocarbon propulsion concepts for a "second generation' orbiter auxiliary propulsion system was evaluated. The most attractive fuel and system design approach identified, and the technology advancements that are needed to provide high confidence for a subsequent system development were determined. The fuel candidates were ethanol, methane, propane, and ammonia. Even though ammonia is not a hydrocarbon, it was included for evaluation because it is clean burning and has a good technology base. The major system design options were pump versus pressure feed, cryogenic versus ambient temperature RCS propellant feed, and the degree of OMS-RCS integration. Ethanol was determined to be the best fuel candidate. It is an earth-storable fuel with a vapor pressure slightly higher than monomethyl hydrazine. A pump-fed OMS was recommended because of its high specific impulse, enabling greater velocity change and greater payload capability than a pressure fed system.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 2 2010-10-01 2010-10-01 false Fuel system. 63.15-3 Section 63.15-3 Shipping COAST... General Requirements § 63.15-3 Fuel system. (a) Firing of an automatic auxiliary boiler by natural gas is... pump and its piping system must be designed in accordance with § 56.50-65 of this chapter. All...
Lubricity of biobased diesel fuels and additives
USDA-ARS?s Scientific Manuscript database
Modern diesel engines rely on the fuel itself to lubricate moving parts in the fuel and engine systems. Prior to the late 1990s, diesel fuel from petroleum provided sufficient lubricity to effectively reduce wear in injectors and fuel pumps. Increasingly stringent limitations on the sulfur content o...
Antimisting Fuel (AMK) Flight Degrader Development and Aircraft Fuel System Investigation
1987-02-01
Summary of Test Results 134 CV880 Support of the CID Mission 135 Comparison of the Pump/Degrader and Needle- Valve Degrader 146 Operation on Freshly Blended...Drain Valve 53 AM 33. View of Right Side of Number 3 Engine 54 34. Redundant Shutoff Valve 55 35. Bottom View of Number 3 Engine 55 36. Onboard...Supply and Regulation/Shutoff Valves 78 44. ATMP8O-1 Pump/Degrader Test Module 79 45. Fuel Flow Circuits 80 vii La LIST OF ILLUSTRATIONS (Continued
NASA Astrophysics Data System (ADS)
Kumarasubramanian, R.; Xavier, Goldwin; Nishanthi, W. Mary; Rajasekar, R.
2017-05-01
Considering the fuel crises today many work and research were conducted to reduce the fuel consumption of the internal combustion engine. The fuel consumption of an internal combustion engine can be relatively reduced by use of the electromagnetic clutch water pump and pneumatic compressor. Normally in an engine, the water pump is driven by the crankshaft, with an aid of belt, for the circulation of the water for the cooling process. The circulation of coolant is resisted by the thermostat valve, while the temperature inside the coolant jacket of the engine is below 375K the thermostat is closed only above 375K it tends to open. But water pump run continuously even when thermostat is closed. In pneumatic braking system, pneumatic or air compressor purpose is to compress the air and stored into the storage tank for the brake operation. When the air pressure of the storage tanks gets increases above its storage capacity pressure is regulated by governor, by passing them to atmosphere. Such unnecessary work of this water pump and air compressor can be minimized by use of the electromagnetic clutch water pump and air compressor. The European Driving Cycle is used to evaluate the performance of this water pump and air compressor when used in an engine. The result shows that the fuel economy of the engine while using electromagnetic water pump and pneumatic compressor were improved by 8.0% compared with conventional types which already exist. The application of these electromagnetic water pump and pneumatic compressor are expected to contribute for the improvement of engine performance because of their effect in reduction of the rate of fuel consumption.
2015-09-01
Transfer Pump Liner before Testing with 25/75 ATJ/JP-8 Fuel with 9-ppm CI/LI...46 Figure 26. Pump SN:16756534 Transfer Pump Liner with 251-hours Testing with 25/75 ATJ/JP-8 Fuel...Transfer Pump Liner before Testing with 25/75 ATJ/JP-8 Fuel with 9-ppm CI/LI
Mathematical Model of the Jet Engine Fuel System
NASA Astrophysics Data System (ADS)
Klimko, Marek
2015-05-01
The paper discusses the design of a simplified mathematical model of the jet (turbo-compressor) engine fuel system. The solution will be based on the regulation law, where the control parameter is a fuel mass flow rate and the regulated parameter is the rotational speed. A differential equation of the jet engine and also differential equations of other fuel system components (fuel pump, throttle valve, pressure regulator) will be described, with respect to advanced predetermined simplifications.
B-1 Systems Approach to Training. Task Analysis Listings
1975-07-01
OFF FUEL VALVES AND PUMPS PHR-OFF FUEL VALVES AND PUMPS = AUTO ^FT TFR MODE LAND SELECTOR SWITCHES TQ *QFF...TFR MODE SWITCH-RIGHT «JFT L TFR MODE SELECT SWITCH TQ * TF1 CHECKLIST TFR MODE SWITCH-LEFT TFR MODE SWITCH-LEFT...DOOR HANDLE ENTRY LADDER CONTROL SWITCH ENTRY LADDER CONTROL SWITCH = DN* 16.1.1.001.OC* SET TANK FILL VALVE SWS ON
NASA Astrophysics Data System (ADS)
Liu, You; Yuan, Zhi-Guo; Fan, Li-Yun; Tian, Bin-Qi
2010-12-01
The electronic in-line pump (EIP) is a complex system consisting of mechanical, hydraulic, and electromagnetic parts. Experimental study showed that the fuel pressure of the plunger and the fuel drainage of the pressure system after fuel injection could result in fuel pressure fluctuation in the low pressure system. Such fluctuation exhibited pulsating cycle fluctuation as the amplitude rose with the increase of the injection pulse width. The time domain analysis found that the pressure time history curve and injection cylinders corresponded with a one-to-one relationship. By frequency domain analysis, the result was that with the increase of the working cylinder number, the high frequency amplitude gradually increased and the basic frequency amplitude gradually decreased. The conclusion was that through wavelet transformation, the low pressure signal simultaneously moved towards low frequency as the high frequency of the wavelet transformation signal with the working cylinder number increased. Lastly, by using the numerical model, the study investigated the simulation research concerning the relationship of the fluctuation dynamic characteristic in the low pressure system and the fuel injection characteristic of the high pressure system, completing the conclusions obtained by the experimental study.
Fuel control for gas turbine with continuous pilot flame
Swick, Robert M.
1983-01-01
An improved fuel control for a gas turbine engine having a continuous pilot flame and a fuel distribution system including a pump drawing fuel from a source and supplying a line to the main fuel nozzle of the engine, the improvement being a control loop between the pump outlet and the pump inlet to bypass fuel, an electronically controlled throttle valve to restrict flow in the control loop when main nozzle demand exists and to permit substantially unrestricted flow without main nozzle demand, a minimum flow valve in the control loop downstream of the throttle valve to maintain a minimum pressure in the loop ahead of the flow valve, a branch tube from the pilot flame nozzle to the control loop between the throttle valve and the minimum flow valve, an orifice in the branch tube, and a feedback tube from the branch tube downstream of the orifice to the minimum flow valve, the minimum flow valve being operative to maintain a substantially constant pressure differential across the orifice to maintain constant fuel flow to the pilot flame nozzle.
LCRE and SNAP 50-DR-1 programs. Engineering and progress report, April 1, 1963--June 30, 1963
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
BS>Declassified 6 Sep 1973. Information is presented concerning the LCRE kinetics, auxiliary systems, fuel, primary cooling system components, instrumentation, secondary cooling system, materials development, and fabrication; and SNAP-50/SPUR kinetics, fuel, primary system pump, steam generator, and materials development. (DCC)
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-01
... fuel pump pressure switches. This AD results from fuel system reviews conducted by the manufacturer. We.... Unsafe Condition (e) This AD results from fuel system reviews conducted by the manufacturer. The Federal... installing an in-line fuse in certain float level switches and sleeving the wires between the fuel tank and...
ERIC Educational Resources Information Center
Human Engineering Inst., Cleveland, OH.
THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE FUEL SYSTEM AND THE PROCEDURES FOR DIESEL ENGINE INSTALLATION. TOPICS ARE FUEL FLOW CHARACTERISTICS, PTG FUEL PUMP, PREPARATION FOR INSTALLATION, AND INSTALLING ENGINE. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL BRANCH…
Development of Passive Fuel Cell Thermal Management Technology
NASA Technical Reports Server (NTRS)
Burke, Kenneth A.; Jakupca, Ian; Colozza, Anthony
2011-01-01
The NASA Glenn Research Center is developing advanced passive thermal management technology to reduce the mass and improve the reliability of space fuel cell systems for the NASA exploration program. The passive thermal management system relies on heat conduction within the cooling plate to move the heat from the central portion of the cell stack out to the edges of the fuel cell stack rather than using a pumped loop cooling system to convectively remove the heat. Using the passive approach eliminates the need for a coolant pump and other cooling loop components which reduces fuel cell system mass and improves overall system reliability. Previous analysis had identified that low density, ultra-high thermal conductivity materials would be needed for the cooling plates in order to achieve the desired reductions in mass and the highly uniform thermal heat sink for each cell within a fuel cell stack. A pyrolytic graphite material was identified and fabricated into a thin plate using different methods. Also a development project with Thermacore, Inc. resulted in a planar heat pipe. Thermal conductivity tests were done using these materials. The results indicated that lightweight passive fuel cell cooling is feasible.
Evaluation of Future Fuels in a High Pressure Common Rail System - Part 1 Cummins XPI
2012-10-01
compressed against the underside of the pump head to maintain contact with the pump camshaft. The underside of the pump head is shown in Figure 5...Figure 5. High Pressure Pump Head Unclassified 8 The two barrel retainers located on the underside of the pump head hold the ceramic plungers...which develop the high pressures within the pump. The plungers are driven into the barrels by the tappets as the shaft turns. They are forced back out
Hydrogen-methane fuel control systems for turbojet engines
NASA Technical Reports Server (NTRS)
Goldsmith, J. S.; Bennett, G. W.
1973-01-01
Design, development, and test of a fuel conditioning and control system utilizing liquid methane (natural gas) and liquid hydrogen fuels for operation of a J85 jet engine were performed. The experimental program evaluated the stability and response of an engine fuel control employing liquid pumping of cryogenic fuels, gasification of the fuels at supercritical pressure, and gaseous metering and control. Acceptably stable and responsive control of the engine was demonstrated throughout the sea level power range for liquid gas fuel and up to 88 percent engine speed using liquid hydrogen fuel.
Motor vehicle technology:Mobility for prosperity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1985-01-01
This book presents the papers given at a conference on internal combustion engines for vehicles. Topics considered at the conference included combustion chambers, the lubrication of turbocharged engines, oil filters, fuel consumption, traffic control, crashworthiness, brakes, acceleration, unleaded gasoline, methanol fuels, pressure drop, safety regulations, tire vibration, detergents, fuel economy, ceramics in engines, steels, catalytic converters, fuel additives, heat exchangers, pump systems, emissions control, fuel injection systems, noise pollution control, natural gas fuels, assembly plant productivity, aerodynamics, torsion, electronics, and automatic transmissions.
40 CFR 60.482-2a - Standards: Pumps in light liquid service.
Code of Federal Regulations, 2011 CFR
2011-07-01
... routed to a process or fuel gas system or connected by a closed vent system to a control device that... sensor that will detect failure of the seal system, the barrier fluid system, or both. (4)(i) Each pump... indications of liquids dripping as a leak. (5)(i) Each sensor as described in paragraph (d)(3) is checked...
Experimental Study on Relationship between NOx Emission and Fuel Consumption of a Diesel Engine
NASA Astrophysics Data System (ADS)
Ning, Ping; Liu, Chunjiang; Feng, Zhiqiang; Xia, Yijiang
2018-01-01
For YC6112 diesel engine assembled Delphl model single fuel pump electric controlled, in the premise of not changing its overall unit structure parameters of other systems, three different types of camshaft for single pumps, two kinds of fuel injectors, two types of superchargers and some phase shifting angle of different camshafts were chosen to match with the engine precisely, the experiments under thirteen kinds of working conditions for the engine with different matching were carried out, the change regulation between NOX emission and fuel consumption for the engine with different kinds of configurations was analyzed. The experiment results show the NOX emission and fuel consumption can be reduced greatly by configuring proper camshaft, fuel injectors and superchargers with YC6112 diesel engine.
Method and device for feeding fuel in a fuel system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williamson, E.
1988-07-26
This patent describes a device for feeding fuel in a fuel system for a liquid fuel engine, with the fuel system having a fuel tank, fuel lines, multiple microscreen fuel filters, a fuel pump, and engine fuel injectors, with the fuel tank having a fill opening having a perimeter, comprising, in combination: a ball having a size for overfitting and abutting with the perimeter of the fill opening of differing sizes, shapes, and constructions; and means for introducing air pressure greater than atmospheric through the ball and through the fill opening and into the fuel tank, with the ball havingmore » a solid cross section and being generally impermeable to air passage, with the ball being deformable to conform to the perimeter of the fill opening for sealingly engaging the perimeter of the fill opening and having a firmness for transmitting a force applied to the ball in the direction of the fill opening into a sealing force applied by the ball to the fill opening to balance opposing forces created by the introduction of air pressure into the fuel tank and for increasing the air pressure in the fuel tank acting on the fuel to increase the rate of fuel flow from the fuel tank into the fuel line for assisting the fuel pump in moving the fuel from the fuel tank through the fuel lines and through the microscreen filters to the engine fuel injectors while allowing an excessive air pressure to escape from the fill opening around the ball.« less
Solar assisted heat pumps: A possible wave of the future
NASA Technical Reports Server (NTRS)
Smetana, F. O.
1976-01-01
With the higher costs of electric power and the widespread interest to use solar energy to reduce the national dependence on fossil fuels, heat pumps are examined to determine their suitability for use with solar energy systems.
Engineering microbial biofuel tolerance and export using efflux pumps
Dunlop, Mary J; Dossani, Zain Y; Szmidt, Heather L; Chu, Hou Cheng; Lee, Taek Soon; Keasling, Jay D; Hadi, Masood Z; Mukhopadhyay, Aindrila
2011-01-01
Many compounds being considered as candidates for advanced biofuels are toxic to microorganisms. This introduces an undesirable trade-off when engineering metabolic pathways for biofuel production because the engineered microbes must balance production against survival. Cellular export systems, such as efflux pumps, provide a direct mechanism for reducing biofuel toxicity. To identify novel biofuel pumps, we used bioinformatics to generate a list of all efflux pumps from sequenced bacterial genomes and prioritized a subset of targets for cloning. The resulting library of 43 pumps was heterologously expressed in Escherichia coli, where we tested it against seven representative biofuels. By using a competitive growth assay, we efficiently distinguished pumps that improved survival. For two of the fuels (n-butanol and isopentanol), none of the pumps improved tolerance. For all other fuels, we identified pumps that restored growth in the presence of biofuel. We then tested a beneficial pump directly in a production strain and demonstrated that it improved biofuel yields. Our findings introduce new tools for engineering production strains and utilize the increasingly large database of sequenced genomes. PMID:21556065
Fuel cycle for a fusion neutron source
NASA Astrophysics Data System (ADS)
Ananyev, S. S.; Spitsyn, A. V.; Kuteev, B. V.
2015-12-01
The concept of a tokamak-based stationary fusion neutron source (FNS) for scientific research (neutron diffraction, etc.), tests of structural materials for future fusion reactors, nuclear waste transmutation, fission reactor fuel production, and control of subcritical nuclear systems (fusion-fission hybrid reactor) is being developed in Russia. The fuel cycle system is one of the most important systems of FNS that provides circulation and reprocessing of the deuterium-tritium fuel mixture in all fusion reactor systems: the vacuum chamber, neutral injection system, cryogenic pumps, tritium purification system, separation system, storage system, and tritium-breeding blanket. The existing technologies need to be significantly upgraded since the engineering solutions adopted in the ITER project can be only partially used in the FNS (considering the capacity factor higher than 0.3, tritium flow up to 200 m3Pa/s, and temperature of reactor elements up to 650°C). The deuterium-tritium fuel cycle of the stationary FNS is considered. The TC-FNS computer code developed for estimating the tritium distribution in the systems of FNS is described. The code calculates tritium flows and inventory in tokamak systems (vacuum chamber, cryogenic pumps, neutral injection system, fuel mixture purification system, isotope separation system, tritium storage system) and takes into account tritium loss in the fuel cycle due to thermonuclear burnup and β decay. For the two facility versions considered, FNS-ST and DEMO-FNS, the amount of fuel mixture needed for uninterrupted operation of all fuel cycle systems is 0.9 and 1.4 kg, consequently, and the tritium consumption is 0.3 and 1.8 kg per year, including 35 and 55 g/yr, respectively, due to tritium decay.
Alternative Fuels Data Center: Status Update: Ethanol Blender Pump
someone by E-mail Share Alternative Fuels Data Center: Status Update: Ethanol Blender Pump Dispenser Certified (August 2010) on Facebook Tweet about Alternative Fuels Data Center: Status Update: Ethanol Blender Pump Dispenser Certified (August 2010) on Twitter Bookmark Alternative Fuels Data Center: Status
46 CFR 58.01-25 - Means of stopping machinery.
Code of Federal Regulations, 2014 CFR
2014-10-01
... forced-draft and induced-draft fans, fuel-oil transfer pumps, fuel-oil unit and service pumps, and similar fuel-oil pumps must be fitted with remote controls from a readily accessible position outside the space concerned so that the fans or pumps may be stopped in case of fire in the compartment in which...
46 CFR 58.01-25 - Means of stopping machinery.
Code of Federal Regulations, 2013 CFR
2013-10-01
... forced-draft and induced-draft fans, fuel-oil transfer pumps, fuel-oil unit and service pumps, and similar fuel-oil pumps must be fitted with remote controls from a readily accessible position outside the space concerned so that the fans or pumps may be stopped in case of fire in the compartment in which...
46 CFR 58.01-25 - Means of stopping machinery.
Code of Federal Regulations, 2011 CFR
2011-10-01
... forced-draft and induced-draft fans, fuel-oil transfer pumps, fuel-oil unit and service pumps, and similar fuel-oil pumps must be fitted with remote controls from a readily accessible position outside the space concerned so that the fans or pumps may be stopped in case of fire in the compartment in which...
46 CFR 58.01-25 - Means of stopping machinery.
Code of Federal Regulations, 2012 CFR
2012-10-01
... forced-draft and induced-draft fans, fuel-oil transfer pumps, fuel-oil unit and service pumps, and similar fuel-oil pumps must be fitted with remote controls from a readily accessible position outside the space concerned so that the fans or pumps may be stopped in case of fire in the compartment in which...
Air Force Research Laboratory Technology Milestones 2007
2007-01-01
Propulsion Fuel Pumps and Fuel Systems Liquid Rockets and Combustion Gas Generators Micropropulsion Gears Monopropellants High-Cycle Fatigue and Its... Systems Electric Propulsion Engine Health Monitoring Systems High-Energy-Density Matter Exhaust Nozzles Injectors and Spray Measurements Fans Laser...of software models to drive development of component-based systems and lightweight domain-specific specification and verification technology. Highly
Solar- and wind-powered irrigation systems
NASA Astrophysics Data System (ADS)
Enochian, R. V.
1982-02-01
Five different direct solar and wind energy systems are technically feasible for powering irrigation pumps. However, with projected rates of fossil fuel costs, only two may produce significant unsubsidied energy for irrigation pumping before the turn of the century. These are photovoltaic systems with nonconcentrating collectors (providing that projected costs of manufacturing solar cells prove correct); and wind systems, especially in remote areas where adequate wind is available.
Bipropellant propulsion with reciprocating pumps
NASA Astrophysics Data System (ADS)
Whitehead, John C.
1993-06-01
A pressure regulated gas generator rocket cycle with alternately pressurized pairs of reciprocating pumps offers thrust-on-demand operation with significantly lower inert mass than conventional spacecraft liquid propulsion systems. The operation of bipropellant feed systems with reciprocating pumps is explained, with consideration for both short and long term missions. There are several methods for startup and shutdown of this self-starting pump-fed system, with preference determined by thrust duty cycle and mission duration. Progress to date includes extensive development testing of components unique to this type of system, and several live tests with monopropellant hydrazine. Pneumatic pump control valves which render pistons and bellows automatically responsive to downstream liquid demand are significantly simpler than those described previously. A compact pumpset mounted to central liquid manifolds has a pair of oxidizer pumps pneumatically slaved to a pair of fuel pumps to reduce vibration. A warm gas pressure reducer for tank expulsion can eliminate any remaining need for inert gas storage.
The time lag and interval of discharge with a spring actuated fuel injection pump
NASA Technical Reports Server (NTRS)
Matthews, Robertson; Gardiner, A W
1923-01-01
Discussed here is research on a spring activated fuel pump for solid or airless injection with small, high speed internal combustion engines. The pump characteristics under investigation were the interval of fuel injection in terms of degrees of crank travel and in absolute time, the lag between the time the injection pump plunger begins its stroke and the appearance of the jet at the orifice, and the manner in which the fuel spray builds up to a maximum when the fuel valve is opened, and then diminishes.
Ambient pressure fuel cell system
Wilson, Mahlon S.
2000-01-01
An ambient pressure fuel cell system is provided with a fuel cell stack formed from a plurality of fuel cells having membrane/electrode assemblies (MEAs) that are hydrated with liquid water and bipolar plates with anode and cathode sides for distributing hydrogen fuel gas and water to a first side of each one of the MEAs and air with reactant oxygen gas to a second side of each one of the MEAs. A pump supplies liquid water to the fuel cells. A recirculating system may be used to return unused hydrogen fuel gas to the stack. A near-ambient pressure blower blows air through the fuel cell stack in excess of reaction stoichiometric amounts to react with the hydrogen fuel gas.
Hydrogen-Oxygen PEM Regenerative Fuel Cell at NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Bents, David J.
2004-01-01
The NASA Glenn Research Center has constructed a closed-cycle hydrogen-oxygen PEM regenerative fuel cell (RFC) to explore its potential use as an energy storage device for a high altitude solar electric aircraft. Built up over the last 2 years from specialized hardware and off the shelf components the Glenn RFC is a complete "brassboard" energy storage system which includes all the equipment required to (1) absorb electrical power from an outside source and store it as pressurized hydrogen and oxygen and (2) make electrical power from the stored gases, saving the product water for re-use during the next cycle. It consists of a dedicated hydrogen-oxygen fuel cell stack and an electrolyzer stack, the interconnecting plumbing and valves, cooling pumps, water transfer pumps, gas recirculation pumps, phase separators, storage tanks for oxygen (O2) and hydrogen (H2), heat exchangers, isolation valves, pressure regulators, nitrogen purge provisions, instrumentation, and other components. It specific developmental functions include: (1) Test fuel cells and fuel cell components under repeated closed-cycle operation (nothing escapes; everything is used over and over again). (2) Simulate diurnal charge-discharge cycles (3) Observe long-term system performance and identify degradation and loss mechanisms. (4) Develop safe and convenient operation and control strategies leading to the successful development of mission-capable, flight-weight RFC's.
2015-04-01
system. The new calibrated fuel injection pump and injectors were installed, and the fuel injection timing of the new fuel injection system was set to...Product 6.5L Turbocharged diesel engine at two inlet temperature conditions. The GEP 6.5LT engine represents legacy diesel engine design with...derived cetane number DF-2 Diesel Fuel number 2 ft Foot HEFA Hydro-treated Esters and Fatty Acid(s) HP or hp Horsepower hr Hour in Inch in³ cubic
Rotary distributor type fuel injection pump
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klopfer, K.H.; Dordjevic, I.; Higgins, M.C.
1993-07-20
In a fuel injection pump having a pump body and distributor rotor in coaxial alignment, the pump body is described having a pumping chamber provided by an annular arrangement of pumping plunger bores with axes extending generally radially outwardly from the axis of the distributor rotor, a pumping plunger mounted in each plunger bore for reciprocation, annular cam means surrounding the annular arrangement of plunger bores for reciprocating the pumping plungers to provide alternating intake and pumping strokes thereof for respectively supplying intake charges of fuel to the pumping chamber and delivering high pressure charges of fuel from the pumpingmore » chamber for fuel injection, a distributor head with a plurality of distributor outlets, the distributor rotor being rotatably mounted in the distributor head for distributing the high pressure charges of fuel to the distributor outlets; the improvement wherein the pump body and distributor rotor have a central coaxial bore extending there through and providing a valve bore intersecting the annular arrangement of plunger bores, the pump body providing an annular valve seat around the central bore between one end thereof away from the distributor rotor and the intersection of the valve bore and annular arrangement of plunger bores, an elongated valve member mounted in the valve bore having a sealing head at one end thereof engageable with the annular valve seat and extending from the sealing head toward the other end of the central bore, a fuel supply chamber connected to the one end of the central bore for supplying fuel to the pumping chamber, valve actuating means comprising an electromagnet at the other end of the valve member from the sealing head and operable when energized to shift the valve member in one axial direction thereof to one of its the positions, and means for shifting the valve member in the opposite axial direction thereof to its other position when the electromagnet is deenergized.« less
14 CFR 29.1143 - Engine controls.
Code of Federal Regulations, 2014 CFR
2014-01-01
... means of controlling its engine. (d) Each fluid injection control other than fuel system control must be in the corresponding power control. However, the injection system pump may have a separate control. (e) If a power control incorporates a fuel shutoff feature, the control must have a means to prevent...
14 CFR 29.1143 - Engine controls.
Code of Federal Regulations, 2013 CFR
2013-01-01
... means of controlling its engine. (d) Each fluid injection control other than fuel system control must be in the corresponding power control. However, the injection system pump may have a separate control. (e) If a power control incorporates a fuel shutoff feature, the control must have a means to prevent...
14 CFR 29.1143 - Engine controls.
Code of Federal Regulations, 2011 CFR
2011-01-01
... means of controlling its engine. (d) Each fluid injection control other than fuel system control must be in the corresponding power control. However, the injection system pump may have a separate control. (e) If a power control incorporates a fuel shutoff feature, the control must have a means to prevent...
14 CFR 29.1143 - Engine controls.
Code of Federal Regulations, 2012 CFR
2012-01-01
... means of controlling its engine. (d) Each fluid injection control other than fuel system control must be in the corresponding power control. However, the injection system pump may have a separate control. (e) If a power control incorporates a fuel shutoff feature, the control must have a means to prevent...
1977-05-01
444 EN 2 31043 TEST UNIT INJECTORS AND/OR FUEL INJECTION NOZZLES 445 EN 2 31044 MAINTENANCE OF FUEL OIL INJECTORS 446 EN 2 31049 PREVENTION OF...OPERATIONAL MAINTENANCE OF DIESEL ENGINES OPERATE INTERNAL COMBUSTION ENGINES JACKING GEAR ON INTERNAL COMBUSTION ENGINES CARRYOUT TURNING OVER OF MAIN...ENGINES ALIGN LUBRICATING OIL SYSTEM USE OF STANDBY LUBRICATING OIL PUMPS PURGE DIESEL ENGINE FUEL INJECTION SYSTEM ENTRIES TO MAIN PROPULSION
Effect of the self-pumped limiter concept on the tritium fuel cycle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Finn, P.A.; Sze, D.K.; Hassanein, A.
1988-01-01
The self-pumped limiter concept for impurity control of the plasma of a fusion reactor has a major impact on the design of the tritium systems. To achieve a sustained burn, conventional limiters and divertors remove large quantities of unburnt tritium and deuterium from the plasma which must be then recycled using a plasma processing system. The self-pumped limiter which does not remove the hydrogen species, does not require any plasma processing equipment. The blanket system and the coolant processing systems acquire greater importance with the use of this unconventional impurity control system. 3 refs., 2 figs.
Effect of delivery condition on desorption rate of ZrCo metal hydride bed for fusion fuel cycle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, H.G.; Yun, S.H.; Chung, D.
2015-03-15
For the safety of fusion fuel cycle, hydrogen isotope gases including tritium are stored as metal hydride form. To satisfy fueling requirement of fusion machine, rapid delivery from metal hydride bed is one of major factors for the development of tritium storage and delivery system. Desorption from metal hydride depends on the operation scenario by pressure and temperature control of the bed. The effect of operation scenario and pump performance on desorption rate of metal hydride bed was experimentally investigated using ZrCo bed. The results showed that the condition of pre-heating scenario before actual delivery of gas affected the deliverymore » performance. Different pumps were connected to desorption line from bed and the effect of pump capacity on desorption rate were also found to be significant. (authors)« less
Characterization of the Dynamic Pressure Response of Fuels in Microchannels
NASA Astrophysics Data System (ADS)
Haendler, Brenda; Pisano, Albert; Liepmann, Dorian
2004-11-01
In order to create a self-pumping fuel vaporization and delivery systems for a MEMS rotary engine power system, the dynamic pressure response due to phase eruption of fuels in micro channels must be characterized. Testing is done using micro channels with diameters the same order of magnitude as the critical bubble radius, a constant mass flow rate syringe pump, and a steady heat source. Pressure changes in the micro channel due to the periodic movement of the phase change meniscus are measured for a variety of flow conditions. A discrete Fourier transform is performed on the data to determine the dominant frequencies in the signal. Critical trends are discussed comparing both the frequency and the amplitude of the pressure spikes for a variety of temperatures and flow rates. The results presented on the trends in the pressure signature due to phase eruption for fuels are then related back to the fuel delivery system, which is using a nozzle-diffuser design to accomplish positive flow rectification given the periodic pressure condition at the phase eruption interface.
Alternative Fuels Data Center: Blender Pump Dispensers
... Blender Pump Dispensers Updated April 2, 2012 Federal and local initiatives to increase the use of ethanol choose the blend of fuel they want to use based on price, their vehicle's fuel economy, and other factors blends of those two fuels. Many conventional stations today use blender pump dispensers to generate
40 CFR 600.302-08 - Fuel economy label format requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... or diesel fuel as calculated in § 600.210-08(a) and (b). (3) The fuel pump logo. (4) The following... *”. The title shall be positioned in the grey area above the window of the fuel pump logo, in a size and...)”]”. Both of these titles are centered in the grey area above the window of the fuel pump logo, with a size...
40 CFR 600.302-08 - Fuel economy label format requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... or diesel fuel as calculated in § 600.210-08(a) and (b). (3) The fuel pump logo. (4) The following... *”. The title shall be positioned in the grey area above the window of the fuel pump logo, in a size and...)”]”. Both of these titles are centered in the grey area above the window of the fuel pump logo, with a size...
Theoretical Investigation For The Effect of Fuel Quality on Gas Turbine Power Plants
NASA Astrophysics Data System (ADS)
AbdulRazzak khudair, Omar; Alwan Abass, Khetam; Saadi Abed, Noor; Hussain Ali, Khalid; AbdulAziz, Saad; Chlaib Shaboot, Ali
2018-05-01
Gas turbine engine power generation is declined dramatically because of the reduction in thermodynamic parameters as a work of turbine, compressor ratio, compressor work, and air mass flow rate and fuel consumption. There are two main objectives of this work, the first is related with the effect of fuel kinds and their quality on the operation of fuel flow divider and its performance specifically gear pump displacement and fuel flow rate to the combustion chambers of gas power plant. AL-DORA gas turbine power plant 35MW was chosen to predict these effects on its performance MATLAB Software program is used to perform thermodynamic calculations. Fuel distribution stage before the process of combustion and as a result of the kind and its quality, chemical reaction will occur between the fuel and the parts of the gear system of each pump of the flow divider, which causes the erosion of the internal pump wall and the teeth of the gear system, thus hampering the pump operation in terms of fuel discharge. The discharge of fuel form the eight external gates of flow divider is decreased and varied when going to the combustion chambers, so that, flow divider does not give reliable mass flow rate due to absence of accurate pressure in each of eight exit pipes. The second objective deals with the stage of fuel combustion process inside the combustion chamber. A comparative study based upon performance parameters, such as specific fuel consumption for gas and gasoil and power generation. Fuel poor quality causes incomplete combustion and increased its consumption, so that combustion products are interacted with the surface of the turbine blades, causing the erosion and create surface roughness of the blade and disruption of gas flow. As a result of this situation, turbulence flow of these gases will increase causing the separation of gas boundary layers over the suction surface of the blade. Therefore the amount of extracted gas will decrease causing retreat work done by turbine, as a result decline of power and gas turbine power plant efficiency causing the drop in the level of electric generation. The fuel quality is found to be a strong function of specific fuel consumption and its effects on the power generation and the efficiency of the gas turbine power plants and hence, the cycle performance shifts towards favorable conditions.
Schenewerk, William E.; Glasgow, Lyle E.
1983-01-01
A liquid metal cooled fast breeder reactor provided with an emergency core cooling system includes a reactor vessel which contains a reactor core comprising an array of fuel assemblies and a plurality of blanket assemblies. The reactor core is immersed in a pool of liquid metal coolant. The reactor also includes a primary coolant system comprising a pump and conduits for circulating liquid metal coolant to the reactor core and through the fuel and blanket assemblies of the core. A converging-diverging venturi nozzle with an intermediate throat section is provided in between the assemblies and the pump. The intermediate throat section of the nozzle is provided with at least one opening which is in fluid communication with the pool of liquid sodium. In normal operation, coolant flows from the pump through the nozzle to the assemblies with very little fluid flowing through the opening in the throat. However, when the pump is not running, residual heat in the core causes fluid from the pool to flow through the opening in the throat of the nozzle and outwardly through the nozzle to the assemblies, thus providing a means of removing decay heat.
46 CFR 28.840 - Means for stopping pumps, ventilation, and machinery.
Code of Federal Regulations, 2014 CFR
2014-10-01
... pumps, ventilation, and machinery. All electrically driven fuel oil transfer pumps, fuel oil unit and service pumps, and ventilation fans shall be fitted with remote controls from a readily accessible... 46 Shipping 1 2014-10-01 2014-10-01 false Means for stopping pumps, ventilation, and machinery. 28...
46 CFR 28.840 - Means for stopping pumps, ventilation, and machinery.
Code of Federal Regulations, 2010 CFR
2010-10-01
... pumps, ventilation, and machinery. All electrically driven fuel oil transfer pumps, fuel oil unit and service pumps, and ventilation fans shall be fitted with remote controls from a readily accessible... 46 Shipping 1 2010-10-01 2010-10-01 false Means for stopping pumps, ventilation, and machinery. 28...
46 CFR 28.840 - Means for stopping pumps, ventilation, and machinery.
Code of Federal Regulations, 2013 CFR
2013-10-01
... pumps, ventilation, and machinery. All electrically driven fuel oil transfer pumps, fuel oil unit and service pumps, and ventilation fans shall be fitted with remote controls from a readily accessible... 46 Shipping 1 2013-10-01 2013-10-01 false Means for stopping pumps, ventilation, and machinery. 28...
46 CFR 28.840 - Means for stopping pumps, ventilation, and machinery.
Code of Federal Regulations, 2012 CFR
2012-10-01
... pumps, ventilation, and machinery. All electrically driven fuel oil transfer pumps, fuel oil unit and service pumps, and ventilation fans shall be fitted with remote controls from a readily accessible... 46 Shipping 1 2012-10-01 2012-10-01 false Means for stopping pumps, ventilation, and machinery. 28...
46 CFR 28.840 - Means for stopping pumps, ventilation, and machinery.
Code of Federal Regulations, 2011 CFR
2011-10-01
... pumps, ventilation, and machinery. All electrically driven fuel oil transfer pumps, fuel oil unit and service pumps, and ventilation fans shall be fitted with remote controls from a readily accessible... 46 Shipping 1 2011-10-01 2011-10-01 false Means for stopping pumps, ventilation, and machinery. 28...
Balanced pressure gerotor fuel pump
Raney, Michael Raymond; Maier, Eugen
2004-08-03
A gerotor pump for pressurizing gasoline fuel is capable of developing pressures up to 2.0 MPa with good mechanical and volumetric efficiency and satisfying the durability requirements for an automotive fuel pump. The pump has been designed with optimized clearances and by including features that promote the formation of lubricating films of pressurized fuel. Features of the improved pump include the use of a shadow port in the side plate opposite the outlet port to promote balancing of high fuel pressures on the opposite sides of the rotors. Inner and outer rotors have predetermined side clearances with the clearances of the outer rotor being greater than those of the inner rotor in order to promote fuel pressure balance on the sides of the outer rotor. Support of the inner rotor and a drive shaft on a single bushing with bearing sleeves maintains concentricity. Additional features are disclosed.
SSME structural dynamic model development
NASA Technical Reports Server (NTRS)
Foley, Michael J.
1989-01-01
The high pressure fuel turbopump (HPFTP) is a major component of the Space Shuttle Main Engine (SSME) powerhead. The device is a three stage centrifugal pump that is directly driven by a two stage hot gas turbine. The purpose of the pump is to deliver fuel (liquid hydrogen) from the low pressure fuel turbopump (LPFTP) through the main fuel valve (MFV) to the thrust chamber coolant circuits. In doing so, the pump pressurizes the fuel from an inlet pressure of approximately 178 psi to a discharge pressure of over 6000 psi. At full power level (FPL), the pump rotates at a speed of over 37,000 rpm while generating approximately 77,000 horsepower. Obviously, a pump failure at these speeds and power levels could jeopardize the mission. Results are summarized for work in which the solutions obtained from analytical models of the fuel turbopump impellers are compared with the results obtained from dynamic tests.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-01
... determine if a certain fuel pump housing electrical connector is installed. The existing AD also requires a... procedures for disabling certain fuel pump electrical circuits following failure of a fuel pump housing electrical connector if applicable. The existing AD also requires the deactivation of certain fuel tanks or...
40 CFR 600.307-95 - Fuel economy label format requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... pump logo. (iv) The phrase “Compare this [vehicle/truck] to others in the FREE FUEL ECONOMY GUIDE... (example “METHANOL “(M85))”)”. The title shall be positioned above the fuel pump logo and shall be in upper... automobiles, the title “NATURAL GAS*”. The title shall be positioned above the fuel pump logo and shall be in...
Regenerative Fuel Cell Test Rig Completed and Operational at Glenn Research Center
NASA Technical Reports Server (NTRS)
Bents, David J.
2004-01-01
The NASA Glenn Research Center has completed construction of its first closed-cycle hydrogen-oxygen regenerative fuel cell (RFC). The RFC is an electrochemical system that collects and stores solar energy during the day then releases that energy at night, thus making the Sun's energy available all 24 hours. It consists of a dedicated hydrogen-oxygen fuel cell stack and an electrolyzer stack, the interconnecting plumbing and valves, cooling pumps, water transfer pumps, gas recirculation pumps, phase separators, storage tanks for oxygen (O2) and hydrogen (H2), heat exchangers, isolation valves, pressure regulators, nitrogen purge provisions, instrumentation, and other components. It includes all the equipment required to (1) absorb electrical power from an outside source and store it as pressurized hydrogen and oxygen and (2) make electrical power from the stored gases, saving the product water for reuse during the next cycle.
40 CFR 63.1026 - Pumps in light liquid service standards.
Code of Federal Regulations, 2011 CFR
2011-07-01
... or fuel gas system or connected by a closed-vent system to a control device that complies with the requirements of either § 63.1034 or § 63.1021(b) of this part; or (C) Equipped with a closed-loop system that... paragraph (b) of this section. (3) Routed to a process or fuel gas system or equipped with a closed vent...
Darrieus wind-turbine and pump performance for low-lift irrigation pumping
NASA Astrophysics Data System (ADS)
Hagen, L. J.; Sharif, M.
1981-10-01
In the Great Plains about 15 percent of the irrigation water pumped on farms comes from surface water sources; for the United States as a whole, the figure is about 22 percent. Because of forecast fuel shortages, there is a need to develop alternative energy sources such as wind power for surface water pumping. Specific objectives of this investigation were to: design and assemble a prototype wind powered pumping system for low lift irrigation pumping; determine performance of the prototype system; design and test an irrigation system using the wind powered prototype in a design and test an farm application; and determine the size combinations of wind turbines, tailwater pits, and temporary storage reservoirs needed for successful farm application of wind powered tailwater pumping systems in western Kansas. The power source selected was a two bladed, 6 m diameter, 9 m tall Darrieus vertical axis wind turbine with 0.10 solidity and 36.1 M(2) swept area.
Cooling system for high speed aircraft
NASA Technical Reports Server (NTRS)
Lawing, P. L.; Pagel, L. L. (Inventor)
1981-01-01
The system eliminates the necessity of shielding an aircraft airframe constructed of material such as aluminum. Cooling is accomplished by passing a coolant through the aircraft airframe, the coolant acting as a carrier to remove heat from the airframe. The coolant is circulated through a heat pump and a heat exchanger which together extract essentially all of the added heat from the coolant. The heat is transferred to the aircraft fuel system via the heat exchanger and the heat pump. The heat extracted from the coolant is utilized to power the heat pump. The heat pump has associated therewith power turbine mechanism which is also driven by the extracted heat. The power turbines are utilized to drive various aircraft subsystems, the compressor of the heat pump, and provide engine cooling.
Micronized coal burner facility
NASA Technical Reports Server (NTRS)
Calfo, F. D.; Lupton, M. W. (Inventor)
1984-01-01
A combustor or burner system in which the ash resulting from burning a coal in oil mixture is of submicron particle size is described. The burner system comprises a burner section, a flame exit nozzle, a fuel nozzle section, and an air tube by which preheated air is directed into the burner section. Regulated air pressure is delivered to a fuel nozzle. Means are provided for directing a mixture of coal particles and oil from a drum to a nozzle at a desired rate and pressure while means returns excess fuel to the fuel drum. Means provide for stable fuel pressure supply from the fuel pump to the fuel nozzle.
2016-10-31
Pump Blade Edges before Testing with 20/80 DSH8/JP-8 Fuel with 9-ppm CI/LI...46 Figure 22. Pump SN:17102937 Transfer Pump Blade Edges with 500-Hours Testing with 20/80 DSH8/JP-8 Fuel with 9... Blade Sides before Testing with 20/80 DSH8/JP-8 Fuel with 9-ppm CI/LI
An investigation of the performance of an electronic in-line pump system for diesel engines
NASA Astrophysics Data System (ADS)
Fan, Li-Yun; Zhu, Yuan-Xian; Long, Wu-Qiang; Ma, Xiu-Zhen; Xue, Ying-Ying
2008-12-01
WIT Electronic Fuel System Co., Ltd. has developed a new fuel injector, the Electronic In-line Pump (EIP) system, designed to meet China’s diesel engine emission and fuel economy regulations. It can be used on marine diesel engines and commercial vehicle engines through different EIP systems. A numerical model of the EIP system was built in the AMESim environment for the purpose of creating a design tool for engine application and system optimization. The model was used to predict key injection characteristics under different operating conditions, such as injection pressure, injection rate, and injection duration. To validate these predictions, experimental tests were conducted under the conditions that were modeled. The results were quite encouraging and in agreement with model predictions. Additional experiments were conducted to study the injection characteristics of the EIP system. These results show that injection pressure and injection quantity are insensitive to injection timing variations, this is due to the design of the constant velocity cam profile. Finally, injection quantity and pressure vs. pulse width at different cam speeds are presented, an important injection characteristic for EIP system calibration.
Distribution and regularity of injection from a multicylinder fuel-injection pump
NASA Technical Reports Server (NTRS)
Rothrock, A M; Marsh, E T
1936-01-01
This report presents the results of performance test conducted on a six-cylinder commercial fuel-injection pump that was adjusted to give uniform fuel distribution among the cylinders at a throttle setting of 0.00038 pound per injection and a pump speed of 750 revolutions per minute. The throttle setting and pump speed were then varied through the operating range to determine the uniformity of distribution and regularity of injection.
7 CFR Appendix D to Subpart B of... - Technical Report for Flexible Fuel Pumps
Code of Federal Regulations, 2014 CFR
2014-01-01
... flexible fuel pump projects, as defined in § 4280.103. (a) Qualifications of project team. The flexible fuel pump project team is expected to consist of a project manager, an equipment supplier of major... may serve more than one role. Authoritative evidence that project team service providers have the...
7 CFR Appendix D to Subpart B of... - Technical Report for Flexible Fuel Pumps
Code of Federal Regulations, 2012 CFR
2012-01-01
... flexible fuel pump projects, as defined in § 4280.103. (a) Qualifications of project team. The flexible fuel pump project team is expected to consist of a project manager, an equipment supplier of major... may serve more than one role. Authoritative evidence that project team service providers have the...
7 CFR Appendix D to Subpart B of... - Technical Report for Flexible Fuel Pumps
Code of Federal Regulations, 2013 CFR
2013-01-01
... flexible fuel pump projects, as defined in § 4280.103. (a) Qualifications of project team. The flexible fuel pump project team is expected to consist of a project manager, an equipment supplier of major... may serve more than one role. Authoritative evidence that project team service providers have the...
Components for digitally controlled aircraft engines
NASA Technical Reports Server (NTRS)
Meador, J. D.
1981-01-01
Control system components suitable for use in digital electronic control systems are defined. Compressor geometry actuation concepts and fuel handling system concepts suitable for use in large high performance turbofan/turbojet engines are included. Eight conceptual system designs were formulated for the actuation of the compressor geometry. Six conceptual system designs were formulated for the engine fuel handling system. Assessment criteria and weighting factors were established and trade studies performed on their candidate systems to establish the relative merits of the various concepts. Fuel pumping and metering systems for small turboshaft engines were also studied. Seven conceptual designs were formulated, and trade studies performed. A simplified bypassing fuel metering scheme was selected and a preliminary design defined.
IEA HPT ANNEX 41 – Cold climate heat pumps: US country report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Groll, Eckhard A.; Baxter, Van D.
In 2012 the International Energy Agency (IEA) Heat Pump Programme (now the Heat Pump Technologies (HPT) program) established Annex 41 to investigate technology solutions to improve performance of heat pumps for cold climates. Four IEA HPT member countries are participating in the Annex – Austria, Canada, Japan, and the United States (U.S.). The principal focus of Annex 41 is on electrically driven air-source heat pumps (ASHP) since that system type has the lowest installation cost of all heat pump alternatives. They also have the most significant performance challenges given their inherent efficiency and capacity issues at cold outdoor temperatures. Availabilitymore » of ASHPs with improved low ambient performance would help bring about a much stronger heat pump market presence in cold areas, which today rely predominantly on fossil fuel furnace heating systems.« less
46 CFR 56.50-65 - Burner fuel-oil service systems.
Code of Federal Regulations, 2011 CFR
2011-10-01
... service systems. (a) All discharge piping from the fuel oil service pumps to burners must be seamless steel with a thickness of at least Schedule 80. If required by § 56.07-10(e) of this part or paragraph... than Schedule 80. Short lengths of steel, or annealed copper nickel, nickel copper, or copper pipe and...
46 CFR 56.50-65 - Burner fuel-oil service systems.
Code of Federal Regulations, 2010 CFR
2010-10-01
... service systems. (a) All discharge piping from the fuel oil service pumps to burners must be seamless steel with a thickness of at least Schedule 80. If required by § 56.07-10(e) of this part or paragraph... than Schedule 80. Short lengths of steel, or annealed copper nickel, nickel copper, or copper pipe and...
46 CFR 56.50-65 - Burner fuel-oil service systems.
Code of Federal Regulations, 2012 CFR
2012-10-01
... service systems. (a) All discharge piping from the fuel oil service pumps to burners must be seamless steel with a thickness of at least Schedule 80. If required by § 56.07-10(e) of this part or paragraph... than Schedule 80. Short lengths of steel, or annealed copper nickel, nickel copper, or copper pipe and...
46 CFR 56.50-65 - Burner fuel-oil service systems.
Code of Federal Regulations, 2014 CFR
2014-10-01
... service systems. (a) All discharge piping from the fuel oil service pumps to burners must be seamless steel with a thickness of at least Schedule 80. If required by § 56.07-10(e) of this part or paragraph... than Schedule 80. Short lengths of steel, or annealed copper nickel, nickel copper, or copper pipe and...
46 CFR 56.50-65 - Burner fuel-oil service systems.
Code of Federal Regulations, 2013 CFR
2013-10-01
... service systems. (a) All discharge piping from the fuel oil service pumps to burners must be seamless steel with a thickness of at least Schedule 80. If required by § 56.07-10(e) of this part or paragraph... than Schedule 80. Short lengths of steel, or annealed copper nickel, nickel copper, or copper pipe and...
49 CFR 571.303 - Standard No. 303; Fuel system integrity of compressed natural gas vehicles.
Code of Federal Regulations, 2014 CFR
2014-10-01
... vehicle crashes. S3. Application. This standard applies to passenger cars, multipurpose passenger vehicles... requirements. S5.1Vehicle requirements. S5.1.1Vehicles with GVWR of 10,000 pounds or less. Each passenger car... has an electrically driven fuel pump that normally runs when the vehicle's electrical system is...
49 CFR 571.303 - Standard No. 303; Fuel system integrity of compressed natural gas vehicles.
Code of Federal Regulations, 2012 CFR
2012-10-01
... vehicle crashes. S3. Application. This standard applies to passenger cars, multipurpose passenger vehicles... requirements. S5.1Vehicle requirements. S5.1.1Vehicles with GVWR of 10,000 pounds or less. Each passenger car... has an electrically driven fuel pump that normally runs when the vehicle's electrical system is...
Alternative Fuels Data Center: Medium-Duty Vehicle Idle Reduction
vehicle's regular heat-transfer system and are mounted in the engine compartment. The heater draws gasoline or diesel from the fuel tank to heat the vehicle's coolant and pumps the heated coolant through the starts. Waste-Heat Recovery Systems Another option for keeping a vehicle warm is an energy recovery
49 CFR 571.303 - Standard No. 303; Fuel system integrity of compressed natural gas vehicles.
Code of Federal Regulations, 2011 CFR
2011-10-01
... vehicle crashes. S3. Application. This standard applies to passenger cars, multipurpose passenger vehicles... requirements. S5.1Vehicle requirements. S5.1.1Vehicles with GVWR of 10,000 pounds or less. Each passenger car... has an electrically driven fuel pump that normally runs when the vehicle's electrical system is...
2011-12-01
burning of fossil fuels (e.g., oil , natural gas , coal), solid waste decay, and trees and wood products and also as a result of chemical reactions...to negative GHG effects. Methane. CH4 is a GHG that is emitted during the production and transport of coal, natural gas , and oil . Methane...the pump station (Facility 486); Control Room (Facility 487); and the oil -water separator (Facility 488). • Construction of a new Type III pump house
76 FR 68661 - Airworthiness Directives; Turbomeca S.A. Arriel 2B and 2B1 Turboshaft Engines
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-07
... high- pressure (HP) pump shaft on HP/LP pump hydro-mechanical metering units (HMUs) that do not...-mechanical metering unit (HMU) LP fuel pump impeller and the HP fuel pump shaft, since AD 2010-03-06 (75 FR...
The study on injection parameters of selected alternative fuels used in diesel engines
NASA Astrophysics Data System (ADS)
Balawender, K.; Kuszewski, H.; Lejda, K.; Lew, K.
2016-09-01
The paper presents selected results concerning fuel charging and spraying process for selected alternative fuels, including regular diesel fuel, rape oil, FAME, blends of these fuels in various proportions, and blends of rape oil with diesel fuel. Examination of the process included the fuel charge measurements. To this end, a set-up for examination of Common Rail-type injection systems was used constructed on the basis of Bosch EPS-815 test bench, from which the high-pressure pump drive system was adopted. For tests concerning the spraying process, a visualisation chamber with constant volume was utilised. The fuel spray development was registered with the use of VisioScope (AVL).
Strip cell test and evaluation program
NASA Technical Reports Server (NTRS)
Gitlow, B.; Bell, W. F.; Martin, R. E.
1978-01-01
The performance characteristics of alkaline fuel cells to be used for space power systems were tested. Endurance tests were conducted on the cells during energy conversion operations. A feature of the cells fabricated and tested was the capability to evaporate the product water formed during the energy conversion reaction directly to space vacuum. A fuel cell powerplant incorporating these cells does not require a condenser and a hydrogen recirculating pump water separator to remove the product water. This simplified the fuel cell powerplant system, reduced the systems weight, and reduced the systems parasite power.
NASA Technical Reports Server (NTRS)
Gardiner, Arthur W
1927-01-01
This report summarizes some results obtained with a single cylinder test engine at the Langley Field Laboratory during a preliminary investigation of the problem of applying fuel injection and compression ignition to aircraft engines. For this work a standard Liberty Engine cylinder was fitted with a high compression, 11.4 : 1 compression ratio, piston, and equipped with an airless injection system, including a primary fuel pump, an injection pump, and an automatic injection valve. The results obtained during this investigation have indicated the possibility of applying airless injection and compression ignition to a cylinder of this size, 8-inch bore by 7-inch stroke, when operating at engine speeds as high as 1,850 R. P. M. A minimum specific fuel consumption with diesel engine fuel oil of 0.30 pound per I. HP. Hour was obtained when developing about 16 B. HP. At 1,730 R. P. M.
78 FR 24037 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-24
... and to detect a pump running in an empty fuel tank. We are issuing this AD to reduce the potential of... features to detect electrical faults, to detect a pump running in an empty fuel tank, and to ensure that a fuel pump's operation is not affected by certain conditions. Comments We gave the public the...
LCRE and SNAP 50-DR-1 programs. Engineering progress report, January 1, 1963--March 31, 1963
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Declassified 5 Sep 1973. Information is presented concerning LCRE specifications, primary coolant circuit, aaxiliary systems, fuel elements, instrumentation, materials development, and fabrication; and SNAP-50DR-1 specifications, fuel elements, pumps, steam generator, and materials development. (DCC)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1984-01-01
Major accomplishments during the second quarter of 1984 were completion of the Diaphragm Separation Seal clear liquid testing, and initiation of Phase III Field Testing. Diaphragm operational testing was conducted on a clear water test loop. The test goals were to ensure; mechanical reliability of the Diaphragm Seal, safe operation with simulated component failure, and proper operation of the Diaphragm Buffer Volume Control System. This latter system is essential in controlling the phasing of the diaphragm with its driving plunger. These tests were completed successfully. All operational problems were solved. However, it must be emphasized that the Diaphragm Seal wouldmore » be damaged by allowing the pump to operate in a cavitating condition for an extended period of time. A change in the Field Test phase of the program was made regarding choice of field test site. There is no operating Syn-Fuel pilot plant capable of inexpensively producing the slurry stream required for the reciprocating pump testing. The Field Tests will now be conducted by first testing the prototype pump and separation seals in an ambient temperature sand water slurry. This will determine resistence to abrasive wear and determine any operation problems at pressure over a lengthy period of time. After successful conclusion of these tests the pump and seals will be operated with a high temperature oil, but without solids, to identify any problems associated with thermal gradients, thermal shock and differential growth. After successful completion of the high temperature clean oil tests the pump will be deemed ready for in-line installation at a designated Syn-Fuel pilot plant. The above approach avoids the expense and complications of a separate hot slurry test loop. It also reduces risk of operational problems while in-line at the pilot plant. 5 figs.« less
Venturi vacuum systems for hypobaric chamber operations.
Robinson, R; Swaby, G; Sutton, T; Fife, C; Powell, M; Butler, B D
1997-11-01
Physiological studies of the effects of high altitude on man often require the use of a hypobaric chamber to simulate the reduced ambient pressures. Typical "altitude" chambers in use today require complex mechanical vacuum systems to evacuate the chamber air, either directly or via reservoir system. Use of these pumps adds to the cost of both chamber procurement and maintenance, and service of these pumps requires trained support personnel and regular upkeep. In this report we describe use of venturi vacuum pumps to perform the function of mechanical vacuum pumps for human and experimental altitude chamber operations. Advantages of the venturi pumps include their relatively low procurement cost, small size and light weight, ease of installation and plumbing, lack of moving parts, and independence from electrical power sources, fossil fuels and lubricants. Conversion of three hyperbaric chambers to combined hyper/hypobaric use is described.
76 FR 28 - Airworthiness Directives; The Boeing Company Model 757 Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-03
... relays having a ground fault interrupt (GFI) feature. That NPRM was prompted by results from fuel system..., -200CB, and -300 series airplanes. That NPRM was published in the Federal Register on October 19, 2009... pumps and override pumps with new relays having a ground fault interrupt (GFI) feature. Actions Since...
Engineering model system study for a regenerative fuel cell: Study report
NASA Technical Reports Server (NTRS)
Chang, B. J.; Schubert, F. H.; Kovach, A. J.; Wynveen, R. A.
1984-01-01
Key design issues of the regenerative fuel cell system concept were studied and a design definition of an alkaline electrolyte based engineering model system or low Earth orbit missions was completed. Definition of key design issues for a regenerative fuel cell system include gaseous reactant storage, shared heat exchangers and high pressure pumps. A power flow diagram for the 75 kW initial space station and the impact of different regenerative fuel cell modular sizes on the total 5 year to orbit weight and volume are determined. System characteristics, an isometric drawing, component sizes and mass and energy balances are determined for the 10 kW engineering model system. An open loop regenerative fuel cell concept is considered for integration of the energy storage system with the life support system of the space station. Technical problems and their solutions, pacing technologies and required developments and demonstrations for the regenerative fuel cell system are defined.
4. Bulk fuel tanks and pump station. Detail of a ...
4. Bulk fuel tanks and pump station. Detail of a vertical tank. View to southeast. - Conrad Refining Company Oil Refinery, Bulk Tanks & Pump Station, 90 feet northeast of Office & Warehouse Building, Conrad, Pondera County, MT
1. Bulk fuel tanks and pump station. East side of ...
1. Bulk fuel tanks and pump station. East side of tanks. View to northwest. - Conrad Refining Company Oil Refinery, Bulk Tanks & Pump Station, 90 feet northeast of Office & Warehouse Building, Conrad, Pondera County, MT
3. Bulk fuel tanks and pump station. West side of ...
3. Bulk fuel tanks and pump station. West side of tanks. View to southeast. - Conrad Refining Company Oil Refinery, Bulk Tanks & Pump Station, 90 feet northeast of Office & Warehouse Building, Conrad, Pondera County, MT
2. Bulk fuel tanks and pump station. North side of ...
2. Bulk fuel tanks and pump station. North side of tanks. View to southwest. - Conrad Refining Company Oil Refinery, Bulk Tanks & Pump Station, 90 feet northeast of Office & Warehouse Building, Conrad, Pondera County, MT
Code of Federal Regulations, 2011 CFR
2011-07-01
... (such as reboiler, condenser, vacuum pump, steam jet, etc.), plus any associated recovery system. Flame.... Process heater means a device that transfers heat liberated by burning fuel to fluids contained in tubes... chemicals in § 60.667. A process unit can operate independently if supplied with sufficient fuel or raw...
Gunasekera, Thusitha S; Striebich, Richard C; Mueller, Susan S; Strobel, Ellen M; Ruiz, Oscar N
2013-01-01
Fuel is a harsh environment for microbial growth. However, some bacteria can grow well due to their adaptive mechanisms. Our goal was to characterize the adaptations required for Pseudomonas aeruginosa proliferation in fuel. We have used DNA-microarrays and RT-PCR to characterize the transcriptional response of P. aeruginosa to fuel. Transcriptomics revealed that genes essential for medium- and long-chain n-alkane degradation including alkB1 and alkB2 were transcriptionally induced. Gas chromatography confirmed that P. aeruginosa possesses pathways to degrade different length n-alkanes, favoring the use of n-C11-18. Furthermore, a gamut of synergistic metabolic pathways, including porins, efflux pumps, biofilm formation, and iron transport, were transcriptionally regulated. Bioassays confirmed that efflux pumps and biofilm formation were required for growth in jet fuel. Furthermore, cell homeostasis appeared to be carefully maintained by the regulation of porins and efflux pumps. The Mex RND efflux pumps were required for fuel tolerance; blockage of these pumps precluded growth in fuel. This study provides a global understanding of the multiple metabolic adaptations required by bacteria for survival and proliferation in fuel-containing environments. This information can be applied to improve the fuel bioremediation properties of bacteria.
Technical evaluation and assessment of CNG/LPG bi-fuel and flex-fuel vehicle viability
NASA Astrophysics Data System (ADS)
Sinor, J. E.
1994-05-01
This report compares vehicles using compressed natural gas (CNG), liquefied petroleum gas (LPG), and combinations of the two in bi-fuel or flex-fuel configurations. Evidence shows that environmental and energy advantages can be gained by replacing two-fuel CNG/gasoline vehicles with two-fuel or flex-fuel systems to be economically competitive, it is necessary to develop a universal CNG/LPG pressure-regulator-injector and engine control module to switch from one tank to the other. For flex-fuel CNG/LPG designs, appropriate composition sensors, refueling pumps, fuel tanks, and vaporizers are necessary.
The Advantages of Non-Flow-Through Fuel Cell Power Systems for Aerospace Applications
NASA Technical Reports Server (NTRS)
Hoberecht, Mark; Burke, Kenneth; Jakupca, Ian
2011-01-01
NASA has been developing proton-exchange-membrane (PEM) fuel cell power systems for the past decade, as an upgraded technology to the alkaline fuel cells which presently provide power for the Shuttle Orbiter. All fuel cell power systems consist of one or more fuel cell stacks in combination with appropriate balance-of-plant hardware. Traditional PEM fuel cells are characterized as flow-through, in which recirculating reactant streams remove product water from the fuel cell stack. NASA recently embarked on the development of non-flow-through fuel cell systems, in which reactants are dead-ended into the fuel cell stack and product water is removed by internal wicks. This simplifies the fuel cell power system by eliminating the need for pumps to provide reactant circulation, and mechanical water separators to remove the product water from the recirculating reactant streams. By eliminating these mechanical components, the resulting fuel cell power system has lower mass, volume, and parasitic power requirements, along with higher reliability and longer life. These improved non-flow-through fuel cell power systems therefore offer significant advantages for many aerospace applications.
46 CFR 58.01-25 - Means of stopping machinery.
Code of Federal Regulations, 2010 CFR
2010-10-01
... forced-draft and induced-draft fans, fuel-oil transfer pumps, fuel-oil unit and service pumps, and... space concerned so that the fans or pumps may be stopped in case of fire in the compartment in which...
Effect of the self-pumped limiter concept on the tritium fuel cycle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Finn, P.A.; Sze, D.K.; Hassanein, A.
1988-09-01
The self-pumped limiter concept was the impurity control system for the reactor in the Tokamak Power Systems Study (TPSS). The use of a self-pumped limiter had a major impact on the design of the tritium systems of the TPSS fusion reactor. The self-pumped limiter functions by depositing the helium ash under a layer of metal (vanadium). The majority of the hydrogen species are recycled at the plasma edge; a small fraction permeates to the blanket/coolant which was lithium in TPSS. Use of the self-pumped limiter results in the elimination of the plasma processing system. Thus, the blanket tritium processing systemmore » becomes the major tritium system. The main advantages achieved for the tritium systems with a self-pumped limiter are a reduction in the capital cost of tritium processing equipment as well as a reduction in building space, a reduced tritium inventory for processing and for reserve storage, an increase in the inherent safety of the fusion plant and an improvement in economics for a fusion world economy.« less
ADM. Tanks: from left to right: fuel oil tank, fuel ...
ADM. Tanks: from left to right: fuel oil tank, fuel pump house (TAN-611), engine fuel tank, water pump house, water storage tank. Camera facing northwest. Not edge of shielding berm at left of view. Date: November 25, 1953. INEEL negative no. 9217 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
14 CFR 25.1337 - Powerplant instruments.
Code of Federal Regulations, 2013 CFR
2013-01-01
... supplying reciprocating engines, at a point downstream of any fuel pump except fuel injection pumps. In... hazard. (b) Fuel quantity indicator. There must be means to indicate to the flight crewmembers, the quantity, in gallons or equivalent units, of usable fuel in each tank during flight. In addition— (1) Each...
14 CFR 25.1337 - Powerplant instruments.
Code of Federal Regulations, 2011 CFR
2011-01-01
... supplying reciprocating engines, at a point downstream of any fuel pump except fuel injection pumps. In... hazard. (b) Fuel quantity indicator. There must be means to indicate to the flight crewmembers, the quantity, in gallons or equivalent units, of usable fuel in each tank during flight. In addition— (1) Each...
14 CFR 25.1337 - Powerplant instruments.
Code of Federal Regulations, 2012 CFR
2012-01-01
... supplying reciprocating engines, at a point downstream of any fuel pump except fuel injection pumps. In... hazard. (b) Fuel quantity indicator. There must be means to indicate to the flight crewmembers, the quantity, in gallons or equivalent units, of usable fuel in each tank during flight. In addition— (1) Each...
14 CFR 25.1337 - Powerplant instruments.
Code of Federal Regulations, 2010 CFR
2010-01-01
... supplying reciprocating engines, at a point downstream of any fuel pump except fuel injection pumps. In... hazard. (b) Fuel quantity indicator. There must be means to indicate to the flight crewmembers, the quantity, in gallons or equivalent units, of usable fuel in each tank during flight. In addition— (1) Each...
14 CFR 25.1337 - Powerplant instruments.
Code of Federal Regulations, 2014 CFR
2014-01-01
... supplying reciprocating engines, at a point downstream of any fuel pump except fuel injection pumps. In... hazard. (b) Fuel quantity indicator. There must be means to indicate to the flight crewmembers, the quantity, in gallons or equivalent units, of usable fuel in each tank during flight. In addition— (1) Each...
40 CFR 60.482-2a - Standards: Pumps in light liquid service.
Code of Federal Regulations, 2010 CFR
2010-07-01
...)(iii) of this section shall be repaired within 15 days of detection by eliminating the conditions that... repaired within 15 days of detection by eliminating visual indications of liquids dripping. (e) Any pump... system capable of capturing and transporting any leakage from the seal or seals to a process or to a fuel...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, R.C.
An integrated system of heat pumps is used to reject heat into or extract heat from circulating water from a shallow well adjacent to the river to demonstrate the efficiency and fuel cost savings of water-to-air heat pumps, without the expense of drilling a deep well. Water is returned unpolluted to the Guadalupe River and is circulated through a five-building complex at River Gardens Intermediate Care Facility for the Mentally Retarded in New Braunfels, Texas. The water is used as a heat source or sink for 122 heat pumps providing space heating and cooling, and for refrigeration and freezer units.more » The system was not installed as designed, which resulted in water pumping loads being higher than the original design. Electrical consumption for pumping water represented 36 to 37% of system electrical consumption. Without the water pumping load, the water-to-air system was an average of 25% more efficient in heating than a comparable air-to-air unit with resistance heating. With water pumping load included, the installed system averaged 17% less efficient in cooling and 19% more efficient in heating than the comparable unit.« less
BOILING WATER REACTOR WITH FEED WATER INJECTION NOZZLES
Treshow, M.
1963-04-30
This patent covers the use of injection nozzles for pumping water into the lower ends of reactor fuel tubes in which water is converted directly to steam. Pumping water through fuel tubes of this type of boiling water reactor increases its power. The injection nozzles decrease the size of pump needed, because the pump handles only the water going through the nozzles, additional water being sucked into the tubes by the nozzles independently of the pump from the exterior body of water in which the fuel tubes are immersed. The resulting movement of exterior water along the tubes holds down steam formation, and thus maintains the moderator effectiveness, of the exterior body of water. (AEC)
Isothermal pumping analysis for high-altitude tethered balloons
Kuo, Kirsty A.; Hunt, Hugh E. M.
2015-01-01
High-altitude tethered balloons have potential applications in communications, surveillance, meteorological observations and climate engineering. To maintain balloon buoyancy, power fuel cells and perturb atmospheric conditions, fluids could be pumped from ground level to altitude using the tether as a hose. This paper examines the pumping requirements of such a delivery system. Cases considered include delivery of hydrogen, sulfur dioxide (SO2) and powders as fluid-based slurries. Isothermal analysis is used to determine the variation of pressures and velocities along the pipe length. Results show that transport of small quantities of hydrogen to power fuel cells and maintain balloon buoyancy can be achieved at pressures and temperatures that are tolerable in terms of both the pipe strength and the current state of pumping technologies. To avoid solidification, transport of SO2 would require elevated temperatures that cannot be tolerated by the strength fibres in the pipe. While the use of particle-based slurries rather than SO2 for climate engineering can reduce the pipe size significantly, the pumping pressures are close to the maximum bursting pressure of the pipe. PMID:26543573
Isothermal pumping analysis for high-altitude tethered balloons.
Kuo, Kirsty A; Hunt, Hugh E M
2015-06-01
High-altitude tethered balloons have potential applications in communications, surveillance, meteorological observations and climate engineering. To maintain balloon buoyancy, power fuel cells and perturb atmospheric conditions, fluids could be pumped from ground level to altitude using the tether as a hose. This paper examines the pumping requirements of such a delivery system. Cases considered include delivery of hydrogen, sulfur dioxide (SO2) and powders as fluid-based slurries. Isothermal analysis is used to determine the variation of pressures and velocities along the pipe length. Results show that transport of small quantities of hydrogen to power fuel cells and maintain balloon buoyancy can be achieved at pressures and temperatures that are tolerable in terms of both the pipe strength and the current state of pumping technologies. To avoid solidification, transport of SO2 would require elevated temperatures that cannot be tolerated by the strength fibres in the pipe. While the use of particle-based slurries rather than SO2 for climate engineering can reduce the pipe size significantly, the pumping pressures are close to the maximum bursting pressure of the pipe.
Additional experiments on flowability improvements of aviation fuels at low temperatures, volume 2
NASA Technical Reports Server (NTRS)
Stockemer, F. J.; Deane, R. L.
1982-01-01
An investigation was performed to study flow improver additives and scale-model fuel heating systems for use with aviation hydrocarbon fuel at low temperatures. Test were performed in a facility that simulated the heat transfer and temperature profiles anticipated in wing fuel tanks during flight of long-range commercial aircraft. The results are presented of experiments conducted in a test tank simulating a section of an outer wing integral fuel tank approximately full-scale in height, chilled through heat exchange panels bonded to the upper and lower horizontal surfaces. A separate system heated lubricating oil externally by a controllable electric heater, to transfer heat to fuel pumped from the test tank through an oil-to-fuel heat exchanger, and to recirculate the heated fuel back to the test tank.
Demand thrust pumped propulsion with automatic warm gas valving
NASA Astrophysics Data System (ADS)
Whitehead, J. C.
1992-06-01
Operation of a thrust-on-demand, monopropellant rocket propulsion system which uses lightweight low-pressure tankage, free-piston pumps, and a small high-pressure thrust chamber, is explained. The pump intake-exhaust valves use warm gas pneumatic signals to ensure that two reciprocating pumps are alternately pressurized, with overlap during switchover to permit uninterrupted propellant flow. Experiments demonstrate that the miniature pumps operate at any speed depending on downstream demand, and can deliver nearly their own mass in hydrazine per second, at 7 MPa (1000 psi). The valves, which use the alternating layers of metal and graphite to mitigate the effects of differential thermal expansion, have been warm-gas tested for thousands of cycles. For biopropellant operation, a pair of reciprocating oxidizer pumps would be slaved to the fuel pumps' pneumatic oscillator, to provide for pulsed or continuous demand-driven flow of both liquids. Mass ratios and thrust-to-weight ratios of demand-thrust pumped propulsion systems compare quite favorably to those of pressure-fed and turbo-pumped systems. Due to the relatively high densities of storable propellants, liquid mass fractions greater than 0.95 are attainable with these novel pumps, with thrust/weight ratios above 10. The high performance potential of small propulsion systems which use reciprocating pumps suggests that this technology can significantly increase the capability of many types of small spacecraft.
76 FR 33660 - Airworthiness Directives; Austro Engine GmbH Model E4 Diesel Piston Engines
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-09
...We propose to supersede an existing airworthiness directive (AD) that applies to the products listed above. The existing AD currently requires frequent inspections of the fuel pressure supply for excessive oscillations to determine if high-pressure fuel pumps have been exposed to damaging pressure oscillations. Pumps that have been exposed require replacement before further flight. Since we issued that AD, Austro Engine, the manufacturer of the pump, introduced a new part number (P/N) fuel pump as mandatory terminating action to the repetitive inspections. This proposed AD would require the initial and repetitive inspections of AD 2010-23-09, but would also require installing HP fuel pump P/N E4A-30-200-000, as mandatory terminating action to the repetitive inspections. We are proposing this AD to prevent engine power loss or in-flight shutdown, which could result in loss of control of the airplane.
Characterization Testing of the Teledyne Passive Breadboard Fuel Cell Powerplant
NASA Technical Reports Server (NTRS)
Loyselle, Patricia; Prokopius, Kevin
2011-01-01
NASA's Exploration Technology Development Program (ETDP) is tasked with the development of enabling and enhancing technologies for NASA's exploration missions. As part of that initiative, the return to the Moon requires a reliable, efficient, and lightweight fuel cell powerplant system to provide power to the Altair Lunar Lander and for lunar surface systems. Fuel cell powerplants are made up of two basic parts; the fuel cell itself and the supporting ancillary subsystem. This subsystem is designed to deliver reactants to the fuel cell and remove product water and waste heat from the fuel cell. Typically, fuel cell powerplant ancillary subsystems rely upon pumps and active water separation techniques to accomplish these tasks for closed hydrogen/oxygen systems. In a typical system, these components are the largest contributors to the overall parasitic power load of the fuel cell powerplant. A potential step towards the development of an efficient lightweight power system is to maximize the use of "passive" or low-power ancillary components as a replacement to these high-power load components
Jet Propellant (JP)-8 Fuel Evaluation Test Mk II - Reset (Mk II R) Bridge Erection Boat (BEB)
2008-10-01
diesel engines (fig. 2 and 3) equipped with Delphi rotary fuel injection pumps. Figure 1. Mk II R BEB pushing a two-bay IRB raft. TR No. WF-E-83 2... nozzles . The new pump (serial No. 08813K7B) and gasket were installed. 24 May 07 51.0 50.4 44.9 103 Port Fuel Pump and Injectors Replaced. At the...part No. 3909356) were installed on the injector nozzles . The new pump (serial No. 59640HZB) and gasket were installed. 31 May 07 51.5 50.5 44.9 104
Development of a lightweight fuel cell vehicle
NASA Astrophysics Data System (ADS)
Hwang, J. J.; Wang, D. Y.; Shih, N. C.
This paper described the development of a fuel cell system and its integration into the lightweight vehicle known as the Mingdao hydrogen vehicle (MHV). The fuel cell system consists of a 5-kW proton exchange membrane fuel cell (PEMFC), a microcontroller and other supported components like a compressed hydrogen cylinder, blower, solenoid valve, pressure regulator, water pump, heat exchanger and sensors. The fuel cell not only propels the vehicle but also powers the supporting components. The MHV performs satisfactorily over a hundred-kilometer drive thus validating the concept of a fuel cell powered zero-emission vehicle. Measurements further show that the fuel cell system has an efficiency of over 30% at the power consumption for vehicle cruise, which is higher than that of a typical internal combustion engine. Tests to improve performance such as speed enhancement, acceleration and fuel efficiency will be conducted in the future work. Such tests will consist of hybridizing with a battery pack.
Early, James W.; Lester, Charles S.
2002-01-01
In the apparatus of the invention, a first excitation laser or other excitation light source capable of producing alternating beams of light having different wavelengths is used in tandem with one or more ignitor lasers to provide a compact, durable, engine deployable fuel ignition laser system. Reliable fuel ignition is provided over a wide range of fuel conditions by using the single remote excitation light source for pumping one or more small lasers located proximate to one or more fuel combustion zones with alternating wavelengths of light.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, J.L.; Jenkins, E.M.; Walthers, C.R.
Compound cryopumps have been added to the Tritium Systems Test Assembly (TSTA) integrated fusion fuel loop. Operations have been performed which closely simulate an actual fusion reactor pumping scenario. In addition, performance data have been taken that support the concept of using coconut charcoal as a sorbent at 4K for pumping helium. Later tests show that coconut charcoal may be used to co-pump D,T and He mixtures on a single 4K panel. Rotary spiral pumps have been used successfully in several applications at TSTA and have acquired more than 9000 hours of maintenance-free operation. Metal bellows pumps have been usedmore » to back the spiral pumps and have been relatively trouble free in loop operations. Bellows pumps also have more than 9000 hours of maintenance-free operation. 5 refs., 6 figs.« less
Cobb, W.G.
1959-06-01
A reactor fuel pump is described which offers long life, low susceptibility to radiation damage, and gaseous fission product removal. An inert-gas lubricated bearing supports a journal on one end of the drive shsft. The other end has an impeller and expansion chamber which effect pumping and gas- liquid separation. (T.R.H.)
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-25
... Airworthiness Limitations inspections (ALIs). This proposed AD results from a design review of the fuel tank...,'' and also adds ALI 30-1 for a pneumatic system decay check to minimize the risk of hot air impingement... 5, 2010, adds ALI 28-1, ``DC-8 Alternate and Center Auxiliary Tank Fuel Pump Control Systems Check...
Gas turbine engine fuel control
NASA Technical Reports Server (NTRS)
Gold, H. S. (Inventor)
1973-01-01
A variable orifice system is described that is responsive to compressor inlet pressure and temperature, compressor discharge pressure and rotational speed of a gas-turbine engine. It is incorporated into a hydraulic circuit that includes a zero gradient pump driven at a speed proportional to the speed of the engine. The resulting system provides control of fuel rate for starting, steady running, acceleration and deceleration under varying altitudes and flight speeds.
An assessment of the use of antimisting fuel in turbofan engines
NASA Technical Reports Server (NTRS)
Fiorentino, A.; Desaro, R.; Franz, T.
1980-01-01
The effects of antimisting kerosene on the performance of the components from the fuel system and the combustor of a JT8D aircraft engine were evaluated. The problems associated with antimisting kerosene were identified and the extent of shearing or degradation required to allow the engine components to achieve satisfactory operation were determined. The performance of the combustor was assessed in a high pressure facility and in an altitude relight/cold ignition facility. The performance of the fuel pump and control system was evaluated in an open loop simulation.
Inerting Aircraft Fuel Systems Using Exhaust Gases
NASA Technical Reports Server (NTRS)
Hehemann, David G.
2002-01-01
Our purpose in this proposal was to determine the feasibility of using carbon dioxide, possibly obtained from aircraft exhaust gases as a substance to inert the fuel contained in fuel tanks aboard aircraft. To do this, we decided to look at the effects carbon dioxide has upon commercial Jet-A aircraft fuel. In particular, we looked at the solubility of CO2 in Jet-A fuel, the pumpability of CO2-saturated Jet-A fuel, the flashpoint of Jet-A fuel under various mixtures of air and CO2, the static outgassing of CO2-Saturated Jet-A fuel and the dynamic outgassing of Jet-A fuel during pumping of Jet-A fuel.
Corletti, Michael M.; Lau, Louis K.; Schulz, Terry L.
1993-01-01
The spent fuel pit of a pressured water reactor (PWR) nuclear power plant has sufficient coolant capacity that a safety rated cooling system is not required. A non-safety rated combined cooling and purification system with redundant branches selectively provides simultaneously cooling and purification for the spent fuel pit, the refueling cavity, and the refueling water storage tank, and transfers coolant from the refueling water storage tank to the refueling cavity without it passing through the reactor core. Skimmers on the suction piping of the combined cooling and purification system eliminate the need for separate skimmer circuits with dedicated pumps.
Self sufficient wireless transmitter powered by foot-pumped urine operating wearable MFC.
Taghavi, M; Stinchcombe, A; Greenman, J; Mattoli, V; Beccai, L; Mazzolai, B; Melhuish, C; Ieropoulos, I A
2015-12-10
The first self-sufficient system, powered by a wearable energy generator based on microbial fuel cell (MFC) technology is introduced. MFCs made from compliant material were developed in the frame of a pair of socks, which was fed by urine via a manual gaiting pump. The simple and single loop cardiovascular fish circulatory system was used as the inspiration for the design of the manual pump. A wireless programmable communication module, engineered to operate within the range of the generated electricity, was employed, which opens a new avenue for research in the utilisation of waste products for powering portable as well as wearable electronics.
Gas Requirements in Pressurized Transfer of Liquid Hydrogen
NASA Technical Reports Server (NTRS)
Gluck, D. F.; Kline, J. F.
1961-01-01
Of late, liquid hydrogen has become a very popular fuel for space missions. It is being used in such programs as Centaur and Saturn. Furthermore, hydrogen is the ideal working fluid for nuclear powered space vehicles currently under development. In these applications, liquid hydrogen fuel is generally transferred to the combustion chamber by a combination of pumping and pressurization. The pump forces the liquid propellant from the fuel tank to the combustion chamber; gaseous pressurant holds tank pressure sufficiently high to prevent cavitation at the pump inlet and to maintain the structural rigidity of the tank. The pressurizing system, composed of pressurant, tankage, and associated hardware can be a large portion of the total vehicle weight. Pressurant weight can be reduced by introducing the pressurizing gas at temperatures substantially greater than those of liquid hydrogen. Heat and mass transfer processes thereby induced complicate gas requirements during discharge. These requirements must be known to insure proper design of the pressurizing system. The aim of this paper is to develop from basic mass and energy transfer processes a general method to predict helium and hydrogen gas usage for the pressurized transfer of liquid hydrogen. This required an analytical and experimental investigation, the results of which are described in this paper.
Aircraft Wing Fuel Tank Environmental Simulator Tests for Evaluation of Antimisting Fuels.
1984-10-01
C.*: % _ _ _.__ _ o During boost pump operation, strands of a gel-like, semi-transparent material were observed on the free surface of the fuel and...Boeing Materials Technology (BMT) laboratory to measure the water content of the fuel samples is described in appendix C. 2.5.3 Water Ingestion Results...Jet A pump at 8 gpm 32 .. . . ... . . . . . . . -%tr. go*7 .*.**.*.*..* -*.... * . . recuroed for each fueling increment. From these data a height
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christensen, Earl; McCormick, Robert L.; Sigelko, Jenny
Adoption of high-pressure common-rail (HPCR) fuel systems, which subject diesel fuels to higher temperatures and pressures, has brought into question the efficacy of ASTM International specifications for biodiesel and biodiesel blend oxidation stability, as well as the lack of any stability parameter for diesel fuel. A controlled experiment was developed to investigate the impact of a light-duty diesel HPCR fuel system on the stability of 20% biodiesel (B20) blends under conditions of intermittent use and long-term storage in a relatively hot and dry climate. B20 samples with Rancimat induction periods (IPs) near the current 6.0-hour minimum specification (6.5 hr) andmore » roughly double the ASTM specification (13.5 hr) were prepared from a conventional diesel and a highly unsaturated biodiesel. Four 2011 model year Volkswagen Passats equipped with HPCR fuel injection systems were utilized: one on B0, two on B20-6.5 hr, and one on B20-13.5 hr. Each vehicle was operated over a one-hour drive cycle in a hot running loss test cell to initially stress the fuel. The cars were then kept at Volkswagen's Arizona Proving Ground for two (35 degrees C average daily maximum) to six months (26 degrees C average daily maximum). The fuel was then stressed again by running a portion of the one-hour dynamometer drive cycle (limited by the amount of fuel in the tank). Fuel rail and fuel tank samples were analyzed for IP, acid number, peroxide content, polymer content, and ester profile. The HPCR fuel pumps were removed, dismantled, and inspected for deposits or abnormal wear. Analysis of fuels collected during initial dynamometer tests showed no impact of exposure to HPCR conditions. Long-term storage with intermittent use showed that IP remained above 3 hours, acid number below 0.3 mg KOH/g, peroxides low, no change in ester profile, and no production of polymers. Final dynamometer tests produced only small changes in fuel properties. Inspection of the HPCR fuel pumps revealed no deposits or abnormal wear for any fuel. The results provide some confidence that the ASTM D7467 stability requirement of 6 hr. minimum IP for B6 to B20 blends provides adequate protection for modern engine fuel systems.« less
Conservation and Renewable Energy Program: Bibliography, 1988 edition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vaughan, K.H.
The 831 references covering the period 1980 through Feb. 1988, are arranged under the following: analysis and evaluation, building equipment, building thermal envelope systems and materials, community systems and cogeneration, residential conservation service, retrofit, advanced heat engine ceramics, alternative fuels, microemulsion fuels, industrial chemical heat pumps, materials for waste heat utilization, energy conversion and utilization materials, tribology, emergency energy conservation,inventions, electric energy systems, thermal storage, biofuels production, biotechnology, solar technology, geothermal, and continuous chromatography in multicomponent separations. An author index is included.
Advanced chemical hydride-based hydrogen generation/storage system for fuel cell vehicles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Breault, R.W.; Rolfe, J.
1998-08-01
Because of the inherent advantages of high efficiency, environmental acceptability, and high modularity, fuel cells are potentially attractive power supplies. Worldwide concerns over clean environments have revitalized research efforts on developing fuel cell vehicles (FCV). As a result of intensive research efforts, most of the subsystem technology for FCV`s are currently well established. These include: high power density PEM fuel cells, control systems, thermal management technology, and secondary power sources for hybrid operation. For mobile applications, however, supply of hydrogen or fuel for fuel cell operation poses a significant logistic problem. To supply high purity hydrogen for FCV operation, Thermomore » Power`s Advanced Technology Group is developing an advanced hydrogen storage technology. In this approach, a metal hydride/organic slurry is used as the hydrogen carrier and storage media. At the point of use, high purity hydrogen will be produced by reacting the metal hydride/organic slurry with water. In addition, Thermo Power has conceived the paths for recovery and regeneration of the spent hydride (practically metal hydroxide). The fluid-like nature of the spent hydride/organic slurry will provide a unique opportunity for pumping, transporting, and storing these materials. The final product of the program will be a user-friendly and relatively high energy storage density hydrogen supply system for fuel cell operation. In addition, the spent hydride can relatively easily be collected at the pumping station and regenerated utilizing renewable sources, such as biomass, natural, or coal, at the central processing plants. Therefore, the entire process will be economically favorable and environmentally friendly.« less
NASA Technical Reports Server (NTRS)
Bartlett, Walter, A , jr; Hagginbotham, William K , Jr
1955-01-01
Data obtained from the first flight test of a ram jet utilizing a magnesium slurry fuel are presented. The ram jet accelerated from a Mach number of 1.75 to a Mach number of 3.48 in 15.5 seconds. During this period a maximum values of air specific impulse and gross thrust coefficient were calculated to be 151 seconds and 0.658, respectively. The rocket gas generator used as a fuel-pumping system operated successfully.
Corletti, M.M.; Lau, L.K.; Schulz, T.L.
1993-12-14
The spent fuel pit of a pressured water reactor (PWR) nuclear power plant has sufficient coolant capacity that a safety rated cooling system is not required. A non-safety rated combined cooling and purification system with redundant branches selectively provides simultaneously cooling and purification for the spent fuel pit, the refueling cavity, and the refueling water storage tank, and transfers coolant from the refueling water storage tank to the refueling cavity without it passing through the reactor core. Skimmers on the suction piping of the combined cooling and purification system eliminate the need for separate skimmer circuits with dedicated pumps. 1 figures.
Small Portable PEM Fuel Cell Systems for NASA Exploration Missions
NASA Technical Reports Server (NTRS)
Burke, Kenneth A.
2005-01-01
Oxygen-Hydrogen PEM-based fuel cell systems are being examined as a portable power source alternative in addition to advanced battery technology. Fuel cell power systems have been used by the Gemini, Apollo, and Space Shuttle programs. These systems have not been portable, but have been integral parts of their spacecraft, and have used reactants from a separate cryogenic supply. These systems typically have been higher in power. They also have had significant ancillary equipment sections that perform the pumping of reactants and coolant through the fuel cell stack and the separation of the product water from the unused reactant streams. The design of small portable fuel cell systems will be a significant departure from these previous designs. These smaller designs will have very limited ancillary equipment, relying on passive techniques for reactant and thermal management, and the reactant storage will be an integral part of the fuel cell system. An analysis of the mass and volume for small portable fuel cell systems was done to evaluate and quantify areas of technological improvement. A review of current fuel cell technology as well as reactant storage and management technology was completed to validate the analysis and to identify technology challenges
Width-Increased Dual-Pump Enhanced Coherent Anti-Stokes Raman Spectroscopy (WIDECARS)
NASA Technical Reports Server (NTRS)
Tedder, Sarah A.; Wheeler, Jeffrey L.; Danehy, Paul M.
2010-01-01
WIDECARS is a dual-pump coherent anti-Stokes Raman Spectroscopy technique that is capable of simultaneously measuring temperature and species mole fractions of N2, O2, H2, C2H4, CO, and CO2. WIDECARS is designed for measurements of all the major species (except water) in supersonic combustion flows fueled with hydrogen and hydrogen/ethylene mixtures. The two lowest rotational energy levels of hydrogen detectable by WIDECARS are H2 S(3) and H2 S(4). The detection of these lines gives the system the capability to measure temperature and species concentrations in regions of the flow containing pure hydrogen fuel at room temperature.
2014-09-04
They included two Force Projection Technology (FPT) diesel driven pumping assemblies of 350 and 600 gallons per minute (GPM), and the Advanced...Army Tank Automotive Research Development and Engineering Center (TARDEC). They included two Force Projection Technology (FPT) diesel driven...research programs. The first two systems identified were Force Projection Technology (FPT) diesel -driven pumping assemblies of 350 and 600 gallons per
Sievers, Robert K.; Cooper, Martin H.; Tupper, Robert B.
1987-01-01
A self-actuated shutdown system incorporated into a reactivity control assembly in a nuclear reactor includes pumping means for creating an auxiliary downward flow of a portion of the heated coolant exiting from the fuel assemblies disposed adjacent to the control assembly. The shutdown system includes a hollow tubular member which extends through the outlet of the control assembly top nozzle so as to define an outer annular flow channel through the top nozzle outlet separate from an inner flow channel for primary coolant flow through the control assembly. Also, a latching mechanism is disposed in an inner duct of the control assembly and is operable for holding absorber bundles in a raised position in the control assembly and for releasing them to drop them into the core of the reactor for shutdown purposes. The latching mechanism has an inner flow passage extending between and in flow communication with the absorber bundles and the inner flow channel of the top nozzle for accommodating primary coolant flow upwardly through the control assembly. Also, an outer flow passage separate from the inner flow passage extends through the latching mechanism between and in flow communication with the inner duct and the outer flow channel of the top nozzle for accommodating inflow of a portion of the heated coolant from the adjacent fuel assemblies. The latching mechanism contains a magnetic material sensitive to temperature and operable to cause mating or latching together of the components of the latching mechanism when the temperature sensed is below a known temperature and unmating or unlatching thereof when the temperature sensed is above a given temperature. The temperature sensitive magnetic material is positioned in communication with the heated coolant flow through the outer flow passage for directly sensing the temperature thereof. Finally, the pumping means includes a jet induction pump nozzle and diffuser disposed adjacent the bottom nozzle of the control assembly and in flow communication with the inlet thereof. The pump nozzle is operable to create an upward driving flow of primary coolant through the pump diffuser and then to the absorber bundles. The upward driving flow of primary coolant, in turn, creates a suction head within the outer flow channel of the top nozzle and thereby an auxiliary downward flow of the heated coolant portion exiting from the upper end of the adjacent fuel assemblies through the outer flow channel to the pump nozzle via the outer flow passage of the latching mechanism and an annular space between the outer and inner spaced ducts of the control assembly housing. The temperature of the heated coolant exiting from the adjacent fuel assemblies can thereby be sensed directly by the temperature sensitive magnetic material in the latching mechanism.
NASA Astrophysics Data System (ADS)
Clementina Caputo, Maria; Masciale, Rita; Masciopinto, Costantino; De Carlo, Lorenzo
2016-04-01
The high cost and scarcity of fossil fuels have promoted the increased use of natural heat for a number of direct applications. Just as for fossil fuels, the exploitation of geothermal energy should consider its environmental impact and sustainability. Particular attention deserves the so-called open loop geothermal groundwater heat pump (GWHP) system, which uses groundwater as geothermal fluid. From an economic point of view, the implementation of this kind of geothermal system is particularly attractive in coastal areas, which have generally shallow aquifers. Anyway the potential problem of seawater intrusion has led to laws that restrict the use of groundwater. The scarcity of freshwater could be a major impediment for the utilization of geothermal resources. In this study a new methodology has been proposed. It was based on an experimental approach to characterize a coastal area in order to exploit the low-enthalpy geothermal resource. The coastal karst and fractured aquifer near Bari, in Southern Italy, was selected for this purpose. For the purpose of investigating the influence of an open-loop GWHP system on the seawater intrusion, a long-term pumping test was performed. The test simulated the effects of a prolonged withdrawal on the chemical-physical groundwater characteristics of the studied aquifer portion. The duration of the test was programmed in 16 days, and it was performed with a constant pumping flowrate of 50 m3/h. The extracted water was outflowed into an adjacent artificial channel, by means of a piping system. Water depth, temperature and electrical conductivity of the pumped water were monitored for 37 days, including also some days before and after the pumping duration. The monitored parameters, collected in the pumping and in five observation wells placed 160 m down-gradient with respect to the groundwater flow direction, have been used to estimate different scenarios of the impact of the GWHP system on the seawater intrusion by mean of a numerical model. Model flow simulations were carried out under transient flow conditions, in order to determine perturbations of the saline front into the Bari fractured aquifer, caused by the long-term pumping at 50 m3/h.
Piezoelectric-hydraulic pump based band brake actuation system for automotive transmission control
NASA Astrophysics Data System (ADS)
Kim, Gi-Woo; Wang, K. W.
2007-04-01
The actuation system of friction elements (such as band brakes) is essential for high quality operations in modern automotive automatic transmissions (in short, ATs). The current band brake actuation system consists of several hydraulic components, including the oil pump, the regulating valve and the control valves. In general, it has been recognized that the current AT band brake actuation system has many limitations. For example, the oil pump and valve body are relatively heavy and complex. Also, the oil pumps induce inherently large drag torque, which affects fuel economy. This research is to overcome these problems of the current system by exploring the utilization of a hybrid type piezo-hydraulic pump device for AT band brake control. This new actuating system integrates a piezo-hydraulic pump to the input of the band brake. Compared with the current systems, this new actuator features much simpler structure, smaller size, and lower weight. This paper describes the development, design and fabrication of the new stand-alone prototype actuator for AT band brake control. An analytical model is developed and validated using experimental data. Performance tests on the hardware and system simulations utilizing the validated model are performed to characterize the new prototype actuator. It is predicted that with increasing of accumulator pressure and driving frequency, the proposed prototype actuating system will satisfy the band brake requirement for AT shift control.
The use of hydrogen for aircraft propulsion in view of the fuel crisis.
NASA Technical Reports Server (NTRS)
Weiss, S.
1973-01-01
In view of projected decreases in available petroleum fuels, interest has been generated in exploiting the potential of liquid hydrogen (LH2) as an aircraft fuel. Cost studies of LH2 production show it to be more expensive than presently used fuels. Regardless of cost considerations, LH2 is viewed as an attractive aircraft fuel because of the potential performance benefits it offers. Accompanying these benefits, however, are many new problems associated with aircraft design and operations; for example, problems related to fuel system design and the handling of LH2 during ground servicing. Some of the factors influencing LH2 fuel tank design, pumping, heat exchange, and flow regulation are discussed.
40 CFR 600.302-12 - Fuel economy label-general provisions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... includes hybrid electric vehicles that do not have plug-in capability. Include a logo corresponding to the..., include a fuel pump logo and the designation “E85”. (iii) Identify plug-in hybrid electric vehicles as... fuel pump logo as specified in paragraph (b)(3)(i) of this section and an electric plug logo to the...
40 CFR 600.302-12 - Fuel economy label-general provisions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... includes hybrid electric vehicles that do not have plug-in capability. Include a logo corresponding to the..., include a fuel pump logo and the designation “E85”. (iii) Identify plug-in hybrid electric vehicles as... fuel pump logo as specified in paragraph (b)(3)(i) of this section and an electric plug logo to the...
Dielectric elastomer pump for artificial organisms
NASA Astrophysics Data System (ADS)
Bowers, Amy E.; Rossiter, Jonathan M.; Walters, Peter J.; Ieropoulos, Ioannis A.
2011-04-01
This paper presents a bio-inspired, dielectric elastomer (DE) based tubular pumping unit, developed for eventual use as a component of an artificial digestive tract onboard a microbial fuel cell powered robot (EcoBot). The pump effects fluid displacement by direct actuation of the tube wall as opposed to excitation by an external body. The actuator consists of a DE tube moulded from silicone, held in a negative pressure chamber, which is used for prestraining the tube. The pump is coupled with custom designed polymeric check valves in order to rectify the fluid flow and assess the performance of the unit. The valves exhibited the necessary low opening pressures required for use with the actuator. The tube's actuation characteristics were measured both with and without liquid in the system. Based on these data the optimal operating conditions for the pump are discussed. The pump and valve system has achieved flowrates in excess of 40μl/s. This radially contracting/expanding actuator element is the fundamental component of a peristaltic pump. This 'soft pump' concept is suitable for biomimetic robotic systems, or for the medical or food industries where hard contact with the delivered substrate may be undesirable. Future work will look at connecting multiple tubes in series in order to achieve peristalsis.
40 CFR 65.107 - Standards: Pumps in light liquid service.
Code of Federal Regulations, 2010 CFR
2010-07-01
... frequency of drips and to the sensor that indicates failure of the seal system, the barrier fluid system, or... or fuel gas system or connected by a closed vent system to a control device that complies with the... equipped with a sensor that will detect failure of the seal system, the barrier fluid system, or both. (v...
Pulse-actuated fuel-injection spark plug
Murray, Ian; Tatro, Clement A.
1978-01-01
A replacement spark plug for reciprocating internal combustion engines that functions as a fuel injector and as a spark plug to provide a "stratified-charge" effect. The conventional carburetor is retained to supply the main fuel-air mixture which may be very lean because of the stratified charge. The replacement plug includes a cylindrical piezoelectric ceramic which contracts to act as a pump whenever an ignition pulse is applied to a central rod through the ceramic. The rod is hollow at its upper end for receiving fuel, it is tapered along its lower length to act as a pump, and it is flattened at its lower end to act as a valve for fuel injection from the pump into the cylinder. The rod also acts as the center electrode of the plug, with the spark jumping from the plug base to the lower end of the rod to thereby provide spark ignition that has inherent proper timing with the fuel injection.
Laser spark distribution and ignition system
Woodruff, Steven [Morgantown, WV; McIntyre, Dustin L [Morgantown, WV
2008-09-02
A laser spark distribution and ignition system that reduces the high power optical requirements for use in a laser ignition and distribution system allowing for the use of optical fibers for delivering the low peak energy pumping pulses to a laser amplifier or laser oscillator. An optical distributor distributes and delivers optical pumping energy from an optical pumping source to multiple combustion chambers incorporating laser oscillators or laser amplifiers for inducing a laser spark within a combustion chamber. The optical distributor preferably includes a single rotating mirror or lens which deflects the optical pumping energy from the axis of rotation and into a plurality of distinct optical fibers each connected to a respective laser media or amplifier coupled to an associated combustion chamber. The laser spark generators preferably produce a high peak power laser spark, from a single low power pulse. The laser spark distribution and ignition system has application in natural gas fueled reciprocating engines, turbine combustors, explosives and laser induced breakdown spectroscopy diagnostic sensors.
Static regenerative fuel cell system for use in space
NASA Technical Reports Server (NTRS)
Levy, Alexander H. (Inventor); VanDine, Leslie L. (Inventor); Trocciola, John C. (Inventor)
1989-01-01
The cell stack can be operated as a fuel cell stack or as an electrolysis cell stack. The stack consists of a series of alternate fuel cell subassemblies with intervening electrolysis cell subassemblies, and interspersed cooling plates. The water produced and consumed in the two modes of operation migrates between adjacent cell subassemblies. The component plates are annular with a central hydrogen plenum and integral internal oxygen manifolds. No fluid pumps are needed to operate the stack in either mode.
NASA Astrophysics Data System (ADS)
Fesko, Steve
1996-11-01
Eaton operates a corporate aircraft hanger facility in Battle Creek, Michigan. Tests showed that two underground storage tanks leaked. Investigation confirmed this release discharged several hundred gallons of Jet A kerosene into the soil and groundwater. The oil moved downward approximately 30 feet and spread laterally onto the water table. Test results showed kerosene in the adsorbed, free and dissolved states. Eaton researched and investigated three clean-up options. They included pump and treat, dig and haul and bioremediation. Jet fuel is composed of readily biodegradable hydrocarbon chains. This fact coupled with the depth to groundwater and geologic setting made bioremediation the low cost and most effective alternative. A recovery well was installed at the leading edge of the dissolved contamination. A pump moved water from this well into a nutrient addition system. Nutrients added included nitrogen, phosphorous and potassium. Additionally, air was sparged into the water. The water was discharged into an infiltration gallery installed when the underground storage tanks were removed. Water circulated between the pump and the infiltration basin in a closed loop fashion. This oxygenated, nutrient rich water actively and aggressively treated the soils between the bottom of the gallery and the top of the groundwater and the groundwater. The system began operating in August of 1993 and reduced jet fuel to below detection levels. In August of 1995 The State of Michigan issued a clean closure declaration to the site.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alderfer, R.R.; Futa, P.W.
This patent describes a fuel system for an engine having a filter through which fuel from a pump passes to a regulator in response to an operator input. The regulator controls the flow of fuel presented to a combustion chamber in the engine, the regulator having a feedback apparatus to provide an operator with a signal indicative of the fuel supplied to the combustion chamber. It comprises: bypass means having a housing with a chamber therein, the chamber having an entrance port connected to the pump and an exit port connected to the regulator; piston means located in the chambermore » for separating the entrance port from the exit port, the piston having a face with a projection extending therefrom; stop means located in the chamber; resilient means located is the chamber for urging the piston means toward the stop means to prevent the flow of fuel from the pump through the housing to the regulator; and indicator means having a body retained in the housing with a first end which extends through the housing into the from a full-open position at which the closed circuit is fully opened to a full-closed position at which the closed circuit is fully blocked; ratio detecting means which detects the speed reduction ratio to find if the speed reduction ratio becomes substantially 1; and valve position detecting means which detects position of the direct clutch valve to find if the direct clutch valve is moved to a slight-open position at which the closed circuit is slightly opened.« less
40 CFR 63.1007 - Pumps in light liquid service standards.
Code of Federal Regulations, 2011 CFR
2011-07-01
... sensor that indicates failure of the seal system, the barrier fluid system, or both. The owner or... reservoir that is routed to a process or fuel gas system or connected by a closed vent system to a control... liquid service. (iv) Each barrier fluid system is equipped with a sensor that will detect failure of the...
40 CFR 63.1007 - Pumps in light liquid service standards.
Code of Federal Regulations, 2010 CFR
2010-07-01
... sensor that indicates failure of the seal system, the barrier fluid system, or both. The owner or... reservoir that is routed to a process or fuel gas system or connected by a closed vent system to a control... liquid service. (iv) Each barrier fluid system is equipped with a sensor that will detect failure of the...
40 CFR 63.1026 - Pumps in light liquid service standards.
Code of Federal Regulations, 2010 CFR
2010-07-01
... presence and frequency of drips and to the sensor that indicates failure of the seal system, the barrier... or fuel gas system or connected by a closed-vent system to a control device that complies with the.... (iv) Each barrier fluid system is equipped with a sensor that will detect failure of the seal system...
NASA PEMFC Development Background and History
NASA Technical Reports Server (NTRS)
Hoberecht, Mark
2011-01-01
NASA has been developing proton-exchange-membrane (PEM) fuel cell power systems for the past decade, as an upgraded technology to the alkaline fuel cells which presently provide power for the Shuttle Orbiter. All fuel cell power systems consist of one or more fuel cell stacks in combination with appropriate balance-of-plant hardware. Traditional PEM fuel cells are characterized as flow-through, in which recirculating reactant streams remove product water from the fuel cell stack. NASA recently embarked on the development of non-flow-through fuel cell systems, in which reactants are dead-ended into the fuel cell stack and product water is removed by internal wicks. This simplifies the fuel cell power system by eliminating the need for pumps to provide reactant circulation, and mechanical water separators to remove the product water from the recirculating reactant streams. By eliminating these mechanical components, the resulting fuel cell power system has lower mass, volume, and parasitic power requirements, along with higher reliability and longer life. Four vendors have designed and fabricated non-flow-through fuel cell stacks under NASA funding. One of these vendors is considered the "baseline" vendor, and the remaining three vendors are competing for the "alternate" role. Each has undergone testing of their stack hardware integrated with a NASA balance-of-plant. Future Exploration applications for this hardware include primary fuel cells for a Lunar Lander and regenerative fuel cells for Surface Systems.
View from southwest to northeast of fuel oil pump station, ...
View from southwest to northeast of fuel oil pump station, showing cooling towers to right. The tops of liquid nitrogen storage tanks A & B can be seen above the station roof. In the foreground, left to right, can be seen the covers for diesel fuel tanks no's 9 (structure #819), 8 (#818), 7 (#817), and 6 (#816). At right of center, next to the station, are no's 1 (#803) and 2 (#804). In the distant background are no's 3 (#806), 4 (#807), 5 (#808). No's 3 and 4 are 12,000-gallon tanks, the rest hold 50,000 gallons each - Stanley R. Mickelsen Safeguard Complex, Fuel Oil Pump Station, In Limited Access Area between Service Roads A & D, Nekoma, Cavalier County, ND
Siryk, Yury Paul; Balytski, Ivan Peter; Korolyov, Volodymyr George; Klishyn, Olexiy Nick; Lnianiy, Vitaly Nick; Lyakh, Yury Alex; Rogulin, Victor Valery
2013-04-30
A plant for producing an oxygen-containing additive for liquid motor fuels comprises an anaerobic fermentation vessel, a gasholder, a system for removal of sulphuretted hydrogen, and a hotwell. The plant further comprises an aerobic fermentation vessel, a device for liquid substance pumping, a device for liquid aeration with an oxygen-containing gas, a removal system of solid mass residue after fermentation, a gas distribution device; a device for heavy gases utilization; a device for ammonia adsorption by water; a liquid-gas mixer; a cavity mixer, a system that serves superficial active and dispersant matters and a cooler; all of these being connected to each other by pipelines. The technical result being the implementation of a process for producing an oxygen containing additive, which after being added to liquid motor fuels, provides an ecologically beneficial component for motor fuels by ensuring the stability of composition fuel properties during long-term storage.
Analysis of a fuel cell on-site integrated energy system for a residential complex
NASA Technical Reports Server (NTRS)
Simons, S. N.; Maag, W. L.
1979-01-01
The energy use and costs of the on-site integrated energy system (OS/IES) which provides electric power from an on-site power plant and recovers heat that would normally be rejected to the environment is compared to a conventional system purchasing electricity from a utility and a phosphoric acid fuel cell powered system. The analysis showed that for a 500-unit apartment complex a fuel OS/IES would be about 10% more energy conservative in terms of total coal consumption than a diesel OS/IES system or a conventional system. The fuel cell OS/IES capital costs could be 30 to 55% greater than the diesel OS/IES capital costs for the same life cycle costs. The life cycle cost of a fuel cell OS/IES would be lower than that for a conventional system as long as the cost of electricity is greater than $0.05 to $0.065/kWh. An analysis of several parametric combinations of fuel cell power plant and state-of-art energy recovery systems and annual fuel requirement calculations for four locations were made. It was shown that OS/IES component choices are a major factor in fuel consumption, with the least efficient system using 25% more fuel than the most efficient. Central air conditioning and heat pumps result in minimum fuel consumption while individual air conditioning units increase it, and in general the fuel cell of highest electrical efficiency has the lowest fuel consumption.
Energy Sources | Climate Neutral Research Campuses | NREL
. Common systems include: Biomass Deep Water Cooling Fuel Cells Geothermal Energy Ground-Source Heat Pumps Sources Energy Sources Many opportunities exist to improve the efficiency of energy supply systems and to incorporate renewable energy, especially at large research campuses with many facilities
Entropy, pricing and productivity of pumped-storage
NASA Astrophysics Data System (ADS)
Karakatsanis, Georgios; Tyralis, Hristos; Tzouka, Katerina
2016-04-01
Pumped-storage constitutes today a mature method of bulk electricity storage in the form of hydropower. This bulk electricity storability upgrades the economic value of hydropower as it may mitigate -or even neutralize- stochastic effects deriving from various geophysical and socioeconomic factors, which produce numerous load balance inefficiencies due to increased uncertainty. Pumped-storage further holds a key role for unifying intermittent renewable (i.e. wind, solar) units with controllable non-renewable (i.e. nuclear, coal) fuel electricity generation plants into integrated energy systems. We develop a set of indicators for the measurement of performance of pumped-storage, in terms of the latter's energy and financial contribution to the energy system. More specifically, we use the concept of entropy in order to examine: (1) the statistical features -and correlations- of the energy system's intermittent components and (2) the statistical features of electricity demand prediction deviations. In this way, the macroeconomics of pumped-storage emerges naturally from its statistical features (Karakatsanis et al. 2014). In addition, these findings are combined to actual daily loads. Hence, not only the amount of energy harvested from the pumped-storage component is expected to be important, but the harvesting time as well, as the intraday price of electricity varies significantly. Additionally, the structure of the pumped-storage market proves to be a significant factor as well for the system's energy and financial performance (Paine et al. 2014). According to the above, we aim at postulating a set of general rules on the productivity of pumped-storage for (integrated) energy systems. Keywords: pumped-storage, storability, economic value of hydropower, stochastic effects, uncertainty, energy systems, entropy, intraday electricity price, productivity References 1. Karakatsanis, Georgios et al. (2014), Entropy, pricing and macroeconomics of pumped-storage systems, Vienna, Austria, April 27 - May 2 2014, "The Face of the Earth - Process and Form", European Geophysical Union General Assembly 2. Paine, Nathan et al. (2014), Why market rules matter: Optimizing pumped hydroelectric storage when compensation rules differ, Energy Economics 46, 10-19
Fluid circulating pump operated by same incident solar energy which heats energy collection fluid
NASA Technical Reports Server (NTRS)
Collins, E. R.
1980-01-01
The application of using a spacecraft solar powered pump terrestrially to reduce or eliminate the need for fossil fuel generated electricity for domestic solar hot water systems was investigated. A breadboard prototype model was constructed utilizing bimetals to convert thermal energy into mechanical motion by means of a toggle operated shutter mechanism. Although it did not meet expected thermal efficiency, the prototype model was sufficient to demonstrate the mechanical concept.
Fuel flexibility via real-time Raman fuel-gas analysis for turbine system control
NASA Astrophysics Data System (ADS)
Buric, M.; Woodruff, S.; Chorpening, B.; Tucker, D.
2015-06-01
The modern energy production base in the U.S. is increasingly incorporating opportunity fuels such as biogas, coalbed methane, coal syngas, solar-derived hydrogen, and others. In many cases, suppliers operate turbine-based generation systems to efficiently utilize these diverse fuels. Unfortunately, turbine engines are difficult to control given the varying energy content of these fuels, combined with the need for a backup natural gas supply to provide continuous operation. Here, we study the use of a specially designed Raman Gas Analyzer based on capillary waveguide technology with sub-second response time for turbine control applications. The NETL Raman Gas Analyzer utilizes a low-power visible pump laser, and a capillary waveguide gas-cell to integrate large spontaneous Raman signals, and fast gas-transfer piping to facilitate quick measurements of fuel-gas components. A U.S. Department of Energy turbine facility known as HYPER (hybrid performance system) serves as a platform for apriori fuel composition measurements for turbine speed or power control. A fuel-dilution system is used to simulate a compositional upset while simultaneously measuring the resultant fuel composition and turbine response functions in real-time. The feasibility and efficacy of system control using the spontaneous Raman-based measurement system is then explored with the goal of illustrating the ability to control a turbine system using available fuel composition as an input process variable.
Pump-to-Wheels Methane Emissions from the Heavy-Duty Transportation Sector.
Clark, Nigel N; McKain, David L; Johnson, Derek R; Wayne, W Scott; Li, Hailin; Akkerman, Vyacheslav; Sandoval, Cesar; Covington, April N; Mongold, Ronald A; Hailer, John T; Ugarte, Orlando J
2017-01-17
Pump-to-wheels (PTW) methane emissions from the heavy-duty (HD) transportation sector, which have climate change implications, are poorly documented. In this study, methane emissions from HD natural gas fueled vehicles and the compressed natural gas (CNG) and liquefied natural gas (LNG) fueling stations that serve them were characterized. A novel measurement system was developed to quantify methane leaks and losses. Engine related emissions were characterized from twenty-two natural gas fueled transit buses, refuse trucks, and over-the-road (OTR) tractors. Losses from six LNG and eight CNG stations were characterized during compression, fuel delivery, storage, and from leaks. Cryogenic boil-off pressure rise and pressure control venting from LNG storage tanks were characterized using theoretical and empirical modeling. Field and laboratory observations of LNG storage tanks were used for model development and evaluation. PTW emissions were combined with a specific scenario to view emissions as a percent of throughput. Vehicle tailpipe and crankcase emissions were the highest sources of methane. Data from this research are being applied by the authors to develop models to forecast methane emissions from the future HD transportation sector.
Fracture control of H-O engine components. [titanium tin alloy fuel pump impellers
NASA Technical Reports Server (NTRS)
Ryder, J. T.
1977-01-01
An investigation was made to obtain the material characterization and fatigue crack propagation data necessary to establish the salient characteristics of a Ti-6Al-2.5Sn(ELI) alloy fuel pump impeller to be used in a cryogenic service environment. Testing variables considered were: coupon orientation, frequency, load range ratio, and temperature. Data analysis correlated crack propagation data from conventional laboratory coupons with data from a parallel sided rotating disk used to model rotor stresses. Four major design recommendations when bore regions of fuel pump impellers to be operated in cryogenic environments are to be relatively highly stressed are discussed.
INTRACORPOREAL HEAT DISSIPATION FROM A RADIOISOTOPE-POWERED ARTIFICIAL HEART.
Huffman, Fred N.; Hagen, Kenneth G.; Whalen, Robert L.; Fuqua, John M.; Norman, John C.
1974-01-01
The feasibility of radioisotope-fueled circulatory support systems depends on the ability of the body to dissipate the reject heat from the power source driving the blood pump as well as to tolerate chronic intracorporeal radiation. Our studies have focused on the use of the circulating blood as a heat sink. Initial in vivo heat transfer studies utilized straight tube heat exchangers (electrically and radioisotope energized) to replace a segment of the descending aorta. More recent studies have used a left ventricular assist pump as a blood-cooled heat exchanger. This approach minimizes trauma, does not increase the area of prosthetic interface with the blood, and minimizes system volume. Heat rejected from the thermal engine (vapor or gas cycle) is transported from the nuclear power source in the abdomen to the pump in the thoracic cavity via hydraulic lines. Adjacent tissue is protected from the fuel capsule temperature (900 to 1200 degrees F) by vacuum foil insulation and polyurethane foam. The in vivo thermal management problems have been studied using a simulated thermal system (STS) which approximates the heat rejection and thermal transport mechanisms of the nuclear circulatory support systems under development by NHLI. Electric heaters simulate the reject heat from the thermal engines. These studies have been essential in establishing the location, suspension, surgical procedures, and postoperative care for implanting prototype nuclear heart assist systems in calves. The pump has a thermal impedance of 0.12 degrees C/watt. Analysis of the STS data in terms of an electrical analog model implies a heat transfer coefficient of 4.7 x 10(-3) watt/cm(2) degrees C in the abdomen compared to a value of 14.9 x 10(-3) watt/cm(2) degrees C from the heat exchanger plenum into the diaphragm.
Influence of test fuel properties and composition on UNECE R101 CO2 and fuel economy valuation
NASA Astrophysics Data System (ADS)
Parker, A.
2015-12-01
CO2 emission and fuel consumption of passenger cars is now assessed by using a simplistic procedure measuring the emission during a test performed without any control of the fuel properties and computing the fuel consumption through an unsophisticated formula. As pump gasoline and diesel fuels are refinery products mixture of many different hydrocarbons, and in case of gasoline may also contain a significant amount of oxygenates, the fuel properties, including the density, carbon and energy content may strongly vary from one pump fuel to the other. Being the specific test fuels carefully selected by the car manufacturers and everything but randomly chosen pump fuels, the claimed CO2 emission and fuel economy figures may differ largely from the certification values. I show from the analysis of the 2014 UK government data for 2358 diesel and 2103 petrol vehicles how same volumes of only theoretically same pump fuels used during the certification test by the cars manufacturers unfortunately do not produce the same carbon dioxide emission, and very likely do not have the same energy content. The CO2 emission per liter of diesel fuel is shown to oscillate froma maximum of 3049 g to a minimum of 2125 g, with an average of 2625 g, froma +16.13% to a -19.06% of the average. TheCO2 emission per liter of petrol fuel is shown to oscillate even more from a maximum of 3735 g to a minimum of 1767 g with an average of 2327 g, from a +60.48% to a -24.05% of the average. The proposed solution is to center the assessment on the energy demand by measuring with accuracy the mass of fuel consumed and the fuel properties of the test fuel starting from the lower heating. The corrected fuel consumption and the corrected carbon dioxide emission to mention from the test are then computed by using pure hydrocarbon reference fuels for diesel and petrol having a given lower heating value and a given hydrocarbon composition. Alternatively, exactly the same test fuel should be used by all the manufacturers.
Code of Federal Regulations, 2011 CFR
2011-10-01
... control for the means of stopping machinery driving forced and induced draft fans, fuel oil transfer pumps..., including fluid control systems. 61.20-3 Section 61.20-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND... Equipment § 61.20-3 Main and auxiliary machinery and associated equipment, including fluid control systems...
Code of Federal Regulations, 2014 CFR
2014-10-01
... control for the means of stopping machinery driving forced and induced draft fans, fuel oil transfer pumps..., including fluid control systems. 61.20-3 Section 61.20-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND... Equipment § 61.20-3 Main and auxiliary machinery and associated equipment, including fluid control systems...
Code of Federal Regulations, 2012 CFR
2012-10-01
... control for the means of stopping machinery driving forced and induced draft fans, fuel oil transfer pumps..., including fluid control systems. 61.20-3 Section 61.20-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND... Equipment § 61.20-3 Main and auxiliary machinery and associated equipment, including fluid control systems...
Code of Federal Regulations, 2013 CFR
2013-10-01
... control for the means of stopping machinery driving forced and induced draft fans, fuel oil transfer pumps..., including fluid control systems. 61.20-3 Section 61.20-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND... Equipment § 61.20-3 Main and auxiliary machinery and associated equipment, including fluid control systems...
40 CFR 63.163 - Standards: Pumps in light liquid service.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) Equipped with a barrier fluid degassing reservoir that is routed to a process or fuel gas system or... with a sensor that will detect failure of the seal system, the barrier fluid system, or both. (4) Each... per million or greater is measured, a leak is detected. (5) Each sensor as described in paragraph (e...
The SAS4A/SASSYS-1 Safety Analysis Code System, Version 5
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fanning, T. H.; Brunett, A. J.; Sumner, T.
The SAS4A/SASSYS-1 computer code is developed by Argonne National Laboratory for thermal, hydraulic, and neutronic analysis of power and flow transients in liquidmetal- cooled nuclear reactors (LMRs). SAS4A was developed to analyze severe core disruption accidents with coolant boiling and fuel melting and relocation, initiated by a very low probability coincidence of an accident precursor and failure of one or more safety systems. SASSYS-1, originally developed to address loss-of-decay-heat-removal accidents, has evolved into a tool for margin assessment in design basis accident (DBA) analysis and for consequence assessment in beyond-design-basis accident (BDBA) analysis. SAS4A contains detailed, mechanistic models of transientmore » thermal, hydraulic, neutronic, and mechanical phenomena to describe the response of the reactor core, its coolant, fuel elements, and structural members to accident conditions. The core channel models in SAS4A provide the capability to analyze the initial phase of core disruptive accidents, through coolant heat-up and boiling, fuel element failure, and fuel melting and relocation. Originally developed to analyze oxide fuel clad with stainless steel, the models in SAS4A have been extended and specialized to metallic fuel with advanced alloy cladding. SASSYS-1 provides the capability to perform a detailed thermal/hydraulic simulation of the primary and secondary sodium coolant circuits and the balance-ofplant steam/water circuit. These sodium and steam circuit models include component models for heat exchangers, pumps, valves, turbines, and condensers, and thermal/hydraulic models of pipes and plena. SASSYS-1 also contains a plant protection and control system modeling capability, which provides digital representations of reactor, pump, and valve controllers and their response to input signal changes.« less
Primeau, John J.
1983-03-01
A self-starting, fuel-fired, air heating system including a vapor generator, a turbine, and a condenser connected in a closed circuit such that the vapor output from the vapor generator is conducted to the turbine and then to the condenser where it is condensed for return to the vapor generator. The turbine drives an air blower which passes air over the condenser for cooling the condenser. Also, a condensate pump is driven by the turbine. The disclosure is particularly concerned with the provision of heat exchanger and circuitry for cooling the condensed fluid output from the pump prior to its return to the vapor generator.
40 CFR 80.35 - Labeling of retail gasoline pumps; oxygenated gasoline.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 16 2011-07-01 2011-07-01 false Labeling of retail gasoline pumps; oxygenated gasoline. 80.35 Section 80.35 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Oxygenated Gasoline § 80.35 Labeling...
40 CFR 80.35 - Labeling of retail gasoline pumps; oxygenated gasoline.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Labeling of retail gasoline pumps; oxygenated gasoline. 80.35 Section 80.35 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Oxygenated Gasoline § 80.35 Labeling...
40 CFR 80.35 - Labeling of retail gasoline pumps; oxygenated gasoline.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 17 2014-07-01 2014-07-01 false Labeling of retail gasoline pumps; oxygenated gasoline. 80.35 Section 80.35 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Oxygenated Gasoline § 80.35 Labeling...
40 CFR 80.35 - Labeling of retail gasoline pumps; oxygenated gasoline.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 17 2013-07-01 2013-07-01 false Labeling of retail gasoline pumps; oxygenated gasoline. 80.35 Section 80.35 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Oxygenated Gasoline § 80.35 Labeling...
40 CFR 80.35 - Labeling of retail gasoline pumps; oxygenated gasoline.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 17 2012-07-01 2012-07-01 false Labeling of retail gasoline pumps; oxygenated gasoline. 80.35 Section 80.35 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Oxygenated Gasoline § 80.35 Labeling...
40 CFR 61.242-2 - Standards: Pumps.
Code of Federal Regulations, 2011 CFR
2011-07-01
... fluid degassing reservoir that is routed to a process or fuel gas system or connected by a closed-vent..., is not in VOC service. (3) Each barrier fluid system is equipped with a sensor that will detect... employ a gas chromatography column to limit the response of the monitor to VHAP, at the option of the...
40 CFR 61.242-2 - Standards: Pumps.
Code of Federal Regulations, 2010 CFR
2010-07-01
... fluid degassing reservoir that is routed to a process or fuel gas system or connected by a closed-vent..., is not in VOC service. (3) Each barrier fluid system is equipped with a sensor that will detect... employ a gas chromatography column to limit the response of the monitor to VHAP, at the option of the...
Experimental study of cleaning aircraft GTE fuel injectors using a vortex ejector
NASA Astrophysics Data System (ADS)
Evdokimov, O. A.; Piralishvili, Sh A.; Veretennikov, S. V.; Elkes, A. A.
2017-11-01
The main ways of cleaning the fuel injectors and the circuits of jet and vortex ejectors used for pumping gas, liquid and two-phase media, as well as for evacuation of enclosed spaces are analyzed. The possibility of organizing the process of pumping the liquid out of the fuel injection manifold secondary circuit using a vortex ejector is shown experimentally. The regimes of manifold evacuation at various inlet liquid pressure values are studied. The technology of carbon cleaning fuel injectors using a washing liquid at various working process parameters is tested.
Tests of several bearing materials lubricated by gasoline
NASA Technical Reports Server (NTRS)
Joachin, W F; Case, Harold W
1926-01-01
This investigation on the relative wear of several bearing materials lubricated by gasoline was conducted at the Langley Memorial Aeronautical Laboratory, as part of a general research on fuel injection engines for aircraft. The specific purpose of the work was to find a durable bearing material for gear pumps to be used for the delivery of gasoline and diesel engine fuel oil at moderate pressures to the high pressure pumps of fuel injection engines.
The use of AntiMisting Kerosene (AMK) in turbojet engines
NASA Technical Reports Server (NTRS)
Schmidt, H. W.
1981-01-01
The effect of antimisting kerosene (AMK) flow characteristics on fan jet engines and the impact of degradation requirements on the fuel system was evaluated. It was determined from the present program that AMK fuel cannot be used without predegradation, although some degradation occurs throughout the fuel feed system, expecially in the fuel pumps. There is a tendency toward FM-9 AMK additive agglomeration and gel formation when the liquid flows at a critical velocity through very small passages. The data indicate this phenomenon to be a function of the degree of degradation, the passage size, the differential pressure, the fluid temperature, and the accumulated flow time. Additionally, test results indicate that the long term cumulative effects of this phenomenon may require more degradation than the theoretical requirement determined from short term tests.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cirrito, A.J.
Combustion jet pumps ingest waste heat gases from power plant engines and boilers to boost their pressure for the ultimate low temperature utilization of the captured heat for heating homes, full-year hot houses, sterilization purposes, recreational hot water, absorption refrigeration and the like. Jet pump energy is sustained from the incineration of solids, liquids and gases and vapors or simply from burning fuels. This is the energy needed to transport the reaction products to the point of heat utilization and to optimize the heat transfer to that point. Sequent jet pumps raise and preserve energy levels. Crypto-steady and special jetmore » pumps increase pumping efficiency. The distribution conduit accepts fluidized solids, liquids, gases and vapors in multiphase flow. Temperature modulation and flow augmentation takes place by water injection. Macro solids such as dried sewage waste are removed by cyclone separation. Micro particles remain entrained and pass out with waste condensate just beyond each point of final heat utilization to recharge the water table. The non-condensible gases separated at this point are treated for pollution control. Further, jet pump reactions are controlled to yield fuel gas as necessary to power jet pumps or other use. In all these effects introduced sequentially, the available energy necessary to provide the flow energy, for the continuously distributed heating medium, is first extracted from fuel and fuel-like additions to the stream. As all energy, any way, finally converts to heat, which in this case is retained or recaptured in the flow, the captured heat is practically 90% available at the point of low temperature utilization. The jet pump for coal gasification is also disclosed as are examples of coal gasification and hydrogen production.« less
Comparative tests of bench equipment for fuel control system testing of gas-turbine engine
NASA Astrophysics Data System (ADS)
Shendaleva, E. V.
2018-04-01
The relevance of interlaboratory comparative researches is confirmed by attention of world metrological community to this field of activity. Use of the interlaboratory comparative research methodology not only for single gages collation, but also for bench equipment complexes, such as modeling stands for fuel control system testing of gas-turbine engine, is offered. In this case a comparative measure of different bench equipment will be the control fuel pump. Ensuring traceability of measuring result received at test benches of various air enterprises, development and introduction of national standards to practice of bench tests and, eventually, improvement of quality and safety of a aircraft equipment is result of this approach.
Research on Power Loss of Continuously Variable Transmission Based on Driving Cycles
NASA Astrophysics Data System (ADS)
Fu, Bing; Zhou, Yunshan; Cao, Chenglong; Li, Quan; Zhang, Feitie
2018-01-01
In order to further enhance the fuel economy of vehicles with continuously variable transmission (CVT), a CVT power loss model under dynamic condition is established based on the power loss model of each transmission component and the vehicle dynamic model. With driving cycles 10-15, NEDC and US06 as input, the distribution of CVT power loss and the influence of the main losses to vehicle fuel economy are analysed. The results show that the variation loss, oil pump loss and torque converter loss are the main losses of CVT power loss under driving cycles, and the metal belt and oil pump have relatively larger fuel saving potential. At low speed reducing the pump loss is more effective to fuel saving, while at high speed reducing the variation loss is more effective.
Demonstration of Passive Fuel Cell Thermal Management Technology
NASA Technical Reports Server (NTRS)
Burke, Kenneth A.; Jakupca, Ian; Colozza, Anthony; Wynne, Robert; Miller, Michael; Meyer, Al; Smith, William
2012-01-01
The NASA Glenn Research Center is developing advanced passive thermal management technology to reduce the mass and improve the reliability of space fuel cell systems for the NASA Exploration program. The passive thermal management system relies on heat conduction within highly thermally conductive cooling plates to move the heat from the central portion of the cell stack out to the edges of the fuel cell stack. Using the passive approach eliminates the need for a coolant pump and other cooling loop components within the fuel cell system which reduces mass and improves overall system reliability. Previous development demonstrated the performance of suitable highly thermally conductive cooling plates and integrated heat exchanger technology to collect the heat from the cooling plates (Ref. 1). The next step in the development of this passive thermal approach was the demonstration of the control of the heat removal process and the demonstration of the passive thermal control technology in actual fuel cell stacks. Tests were run with a simulated fuel cell stack passive thermal management system outfitted with passive cooling plates, an integrated heat exchanger and two types of cooling flow control valves. The tests were run to demonstrate the controllability of the passive thermal control approach. Finally, successful demonstrations of passive thermal control technology were conducted with fuel cell stacks from two fuel cell stack vendors.
Computation of incompressible viscous flows through turbopump components
NASA Technical Reports Server (NTRS)
Kiris, Cetin; Chang, Leon
1993-01-01
Flow through pump components, such as an inducer and an impeller, is efficiently simulated by solving the incompressible Navier-Stokes equations. The solution method is based on the pseudocompressibility approach and uses an implicit-upwind differencing scheme together with the Gauss-Seidel line relaxation method. the equations are solved in steadily rotating reference frames and the centrifugal force and the Coriolis force are added to the equation of motion. Current computations use a one-equation Baldwin-Barth turbulence model which is derived from a simplified form of the standard k-epsilon model equations. The resulting computer code is applied to the flow analysis inside a generic rocket engine pump inducer, a fuel pump impeller, and SSME high pressure fuel turbopump impeller. Numerical results of inducer flow are compared with experimental measurements. In the fuel pump impeller, the effect of downstream boundary conditions is investigated. Flow analyses at 80 percent, 100 percent, and 120 percent of design conditions are presented.
Accident Analysis for the NIST Research Reactor Before and After Fuel Conversion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baek J.; Diamond D.; Cuadra, A.
Postulated accidents have been analyzed for the 20 MW D2O-moderated research reactor (NBSR) at the National Institute of Standards and Technology (NIST). The analysis has been carried out for the present core, which contains high enriched uranium (HEU) fuel and for a proposed equilibrium core with low enriched uranium (LEU) fuel. The analyses employ state-of-the-art calculational methods. Three-dimensional Monte Carlo neutron transport calculations were performed with the MCNPX code to determine homogenized fuel compositions in the lower and upper halves of each fuel element and to determine the resulting neutronic properties of the core. The accident analysis employed a modelmore » of the primary loop with the RELAP5 code. The model includes the primary pumps, shutdown pumps outlet valves, heat exchanger, fuel elements, and flow channels for both the six inner and twenty-four outer fuel elements. Evaluations were performed for the following accidents: (1) control rod withdrawal startup accident, (2) maximum reactivity insertion accident, (3) loss-of-flow accident resulting from loss of electrical power with an assumption of failure of shutdown cooling pumps, (4) loss-of-flow accident resulting from a primary pump seizure, and (5) loss-of-flow accident resulting from inadvertent throttling of a flow control valve. In addition, natural circulation cooling at low power operation was analyzed. The analysis shows that the conversion will not lead to significant changes in the safety analysis and the calculated minimum critical heat flux ratio and maximum clad temperature assure that there is adequate margin to fuel failure.« less
78 FR 14934 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-08
... discrepancies of the wiring and surrounding Teflon sleeves of the fuel tank boost pumps and override/jettison... the wiring and sleeves with new parts, as necessary. The first SNPRM proposed to reduce the initial... inspections to detect discrepancies of the wiring and surrounding Teflon sleeves of the fuel tank boost pumps...
75 FR 11433 - Airworthiness Directives; Hawker Beechcraft Corporation Model G58 Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-11
... brake reservoir tubing and the heater fuel pump wiring for minimum clearance and installing acceptable... of a power wire shorting out on the brake reservoir tube. We are issuing this AD to detect and correct inadequate clearance of the brake reservoir tubing and the heater fuel pump wiring, which could...
NASA Astrophysics Data System (ADS)
Cheng, Chuyang; McGonigal, Paul R.; Schneebeli, Severin T.; Li, Hao; Vermeulen, Nicolaas A.; Ke, Chenfeng; Stoddart, J. Fraser
2015-06-01
Carrier proteins consume fuel in order to pump ions or molecules across cell membranes, creating concentration gradients. Their control over diffusion pathways, effected entirely through noncovalent bonding interactions, has inspired chemists to devise artificial systems that mimic their function. Here, we report a wholly artificial compound that acts on small molecules to create a gradient in their local concentration. It does so by using redox energy and precisely organized noncovalent bonding interactions to pump positively charged rings from solution and ensnare them around an oligomethylene chain, as part of a kinetically trapped entanglement. A redox-active viologen unit at the heart of a dumbbell-shaped molecular pump plays a dual role, first attracting and then repelling the rings during redox cycling, thereby enacting a flashing energy ratchet mechanism with a minimalistic design. Our artificial molecular pump performs work repetitively for two cycles of operation and drives rings away from equilibrium toward a higher local concentration.
Performance of fuel system at different diesel temperature
NASA Astrophysics Data System (ADS)
Xu, Xiaoyong; Li, Xiaolu; Sun, Zai
2010-08-01
This paper presents the findings about performance of the fuel system of a diesel engine at different diesel temperature obtained through simulation and experiment. It can be seen from these findings that at the same rotational speed of fuel pump, the initial pressure in the fuel pipe remain unchanged as the fuel temperature increases, the peak pressure at the side of fuel pipe near the injector delays, and its largest value of pressure decreases. Meanwhile, at the same temperature, as the rotational speed increases, the initial pressure of fuel pipe is also essentially the same, the arrival of its peaks delays, and its largest value of pressure increases. The maximum fuel pressure at the side of fuel pipe near the injector has an increase of 28.9 %, 22.3%, and 13.9% respectively than the previous ones according to its conditions. At the same rotational speed, as the temperature increases, the injection quantity through the nozzle orifice decreases. At the same temperature, as the rotational speed increases, the injection quantity through the nozzle orifice increases. These experimental results are consistent with simulation results.
Experimental Investigation and Modeling of Scale Effects in Micro Jet Pumps
NASA Astrophysics Data System (ADS)
Gardner, William Geoffrey
2011-12-01
Since the mid-1990s there has been an active effort to develop hydrocarbon-fueled power generation and propulsion systems on the scale of centimeters or smaller. This effort led to the creation and expansion of a field of research focused around the design and reduction to practice of Power MEMS (microelectromechanical systems) devices, beginning first with microscale jet engines and a generation later more broadly encompassing MEMS devices which generate power or pump heat. Due to small device scale and fabrication techniques, design constraints are highly coupled and conventional solutions for device requirements may not be practicable. This thesis describes the experimental investigation, modeling and potential applications for two classes of microscale jet pumps: jet ejectors and jet injectors. These components pump fluids with no moving parts and can be integrated into Power MEMS devices to satisfy pumping requirements by supplementing or replacing existing solutions. This thesis presents models developed from first principles which predict losses experienced at small length scales and agree well with experimental results. The models further predict maximum achievable power densities at the onset of detrimental viscous losses.
The use of hydrogen for aircraft propulsion in view of the fuel crisis
NASA Technical Reports Server (NTRS)
Weiss, S.
1973-01-01
Some factors influencing the technical feasibility of operating a liquid hydrogen-fueled airplane are discussed in light of the projected decrease of fossil fuels. Other sources of energy, such as wind, tidal, solar, and geothermal, are briefly mentioned. In view of projected decreases in available petroleum fuels, interest has been generated in exploiting the potential of liquid hydrogen (LH2) as an aircraft fuel. Cost studies of LH2 production show it to be more expensive than presently used fuels. Regardless of cost considerations, LH2 is viewed as an attractive aircraft fuel because of the potential performance benefits it offers. Accompanying these benefits, however, are many new problems associated with aircraft design and operations; for example, problems related to fuel system design and the handling of LH2 during ground servicing. Some of the factors influencing LH2 fuel tank design, pumping, heat exchange, and flow regulation are discussed.
Catalog of selected heavy duty transport energy management models
NASA Technical Reports Server (NTRS)
Colello, R. G.; Boghani, A. B.; Gardella, N. C.; Gott, P. G.; Lee, W. D.; Pollak, E. C.; Teagan, W. P.; Thomas, R. G.; Snyder, C. M.; Wilson, R. P., Jr.
1983-01-01
A catalog of energy management models for heavy duty transport systems powered by diesel engines is presented. The catalog results from a literature survey, supplemented by telephone interviews and mailed questionnaires to discover the major computer models currently used in the transportation industry in the following categories: heavy duty transport systems, which consist of highway (vehicle simulation), marine (ship simulation), rail (locomotive simulation), and pipeline (pumping station simulation); and heavy duty diesel engines, which involve models that match the intake/exhaust system to the engine, fuel efficiency, emissions, combustion chamber shape, fuel injection system, heat transfer, intake/exhaust system, operating performance, and waste heat utilization devices, i.e., turbocharger, bottoming cycle.
Solar hot water system installed at Quality Inn, Key West, Florida
NASA Astrophysics Data System (ADS)
1980-04-01
The solar energy hot water system installed in the Quality Inn, Key West, Florida, which consists of four buildings is described. Three buildings are low-rise, two-story buildings containing 100 rooms. The fourth is a four-story building with 48 rooms. The solar system was designed to provide approximately 50 percent of the energy required for the domestic hot water system. The solar system consists of approximately 1400 square feet of flat plate collector, two 500 gallon storage tanks, a circulating pump, and a controller. Operation of the system was begun in April 1978, and has continued to date with only three minor interruptions for pump repair. In the first year of operation, it was determined that the use of the solar facility resulted in forty percent fuel savings.
Solar hot water system installed at Quality Inn, Key West, Florida
NASA Technical Reports Server (NTRS)
1980-01-01
The solar energy hot water system installed in the Quality Inn, Key West, Florida, which consists of four buildings is described. Three buildings are low-rise, two-story buildings containing 100 rooms. The fourth is a four-story building with 48 rooms. The solar system was designed to provide approximately 50 percent of the energy required for the domestic hot water system. The solar system consists of approximately 1400 square feet of flat plate collector, two 500 gallon storage tanks, a circulating pump, and a controller. Operation of the system was begun in April 1978, and has continued to date with only three minor interruptions for pump repair. In the first year of operation, it was determined that the use of the solar facility resulted in forty percent fuel savings.
Thermal Design for Extra-Terrestrial Regenerative Fuel Cell System
NASA Technical Reports Server (NTRS)
Gilligan, R.; Guzik, M.; Jakupca, I.; Bennett, W.; Smith, P.; Fincannon, J.
2017-01-01
The Advanced Exploration Systems (AES) Advanced Modular Power Systems (AMPS) Project is investigating different power systems for various lunar and Martian mission concepts. The AMPS Fuel Cell (FC) team has created two system-level models to evaluate the performance of regenerative fuel cell (RFC) systems employing different fuel cell chemistries. Proton Exchange Membrane fuel cells PEMFCs contain a polymer electrolyte membrane that separates the hydrogen and oxygen cavities and conducts hydrogen cations (protons) across the cell. Solid Oxide fuel cells (SOFCs) operate at high temperatures, using a zirconia-based solid ceramic electrolyte to conduct oxygen anions across the cell. The purpose of the modeling effort is to down select one fuel cell chemistry for a more detailed design effort. Figures of merit include the system mass, volume, round trip efficiency, and electrolyzer charge power required. PEMFCs operate at around 60 C versus SOFCs which operate at temperatures greater than 700 C. Due to the drastically different operating temperatures of the two chemistries the thermal control systems (TCS) differ. The PEM TCS is less complex and is characterized by a single pump cooling loop that uses deionized water coolant and rejects heat generated by the system to the environment via a radiator. The solid oxide TCS has its own unique challenges including the requirement to reject high quality heat and to condense the steam produced in the reaction. This paper discusses the modeling of thermal control systems for an extraterrestrial RFC that utilizes either a PEM or solid oxide fuel cell.
Status of Kilowatt-Class Stirling Power Conversion Using a Pumped NaK Loop for Thermal Input
NASA Technical Reports Server (NTRS)
Briggs, Maxwell H.; Geng, Steven M.; Robbie, Malcolm G.
2010-01-01
Free-piston Stirling power conversion has been identified as a viable option for potential Fission Surface Power (FSP) systems on the Moon and Mars. Proposed systems consist of two or more Stirling convertors, in a dual-opposed configuration, coupled to a low-temperature uranium-dioxide-fueled, liquid-metal-cooled reactor. To reduce developmental risks associated with liquid-metal loop integration, a test rig has been built to evaluate the performance of a pair of 1-kW free-piston Stirling convertors using a pumped sodium-potassium (NaK) loop for thermal energy input. Baseline performance maps have been generated at the Glenn Research Center (GRC) for these 1-kW convertors operating with an electric heat source. Each convertor was then retrofitted with a custom-made NaK heater head and integrated into a pumped NaK system at the Marshall Space Flight Center (MSFC). This paper documents baseline testing at GRC as well as the progress made in integrating the Stirling convertors into the pumped NaK loop.
Study of hybrid power system potential to power agricultural water pump in mountain area
NASA Astrophysics Data System (ADS)
Syuhada, Ahmad; Mubarak, Amir Zaki; Maulana, M. Ilham
2016-03-01
As industry and Indonesian economy grow fast, there are a lot of agricultural land has changed into housing and industrial land. This causes the agricultural land moves to mountain area. In mountainous agricultural area, farmers use the water resources of small rivers in the groove of the mountain to irrigate the farmland. Farmers use their power to lift up water from the river to their land which causes inefectivity in the work of the farmers. Farmers who have capital utilize pump to raise water to their land. The only way to use pump in mountain area is by using fuel energy as there is no electricity, and the fuel price in mountain area is very expensive. Based on those reasons it is wise to consider the exploration of renewable energy available in the area such as solar energy, wind energy and hybrid energy. This study analyses the potential of the application of hybrid power plant, which is the combination of solar and wind energy, to power agricultural pump. In this research, the data of wind speed and solar radiation are collected from the measurement of BMKG SMPK Plus Sare. Related to the solar energy, the photovoltaic output power calculation is 193 W with duration of irradiation of 5 hours/day. While for the wind energy, the output power of the wind turbine is 459.84 W with blade diameter of 3 m and blow duration of 7 hours/day. The power of the pump is 558 W with 8 hours of usage, and the water capacity is 2.520 liters/hour for farmland with the area of 15 ha. Based on the analysis result, the designed system will generate electricity of 3.210 kW/year with initial investment of US 14,938.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-01
... installed on wire harnesses of the tail tank fuel transfer pumps, and to determine if damaged wires are... a permanent modification of the wire harnesses if metallic transitions are not installed, which... harnesses of the tail tank fuel transfer pumps, and to determine if damaged wires are present; and repair...
76 FR 54373 - Airworthiness Directives; Austro Engine GmbH Model E4 Diesel Piston Engines
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-01
...We are superseding an existing airworthiness directive (AD) for the products listed above. That AD currently requires frequent inspections of the fuel pressure supply for excessive oscillations to determine if high-pressure (HP) fuel pumps have been exposed to damaging pressure oscillations. Pumps that have been exposed require replacement before further flight. This new AD requires the initial and repetitive inspections of AD 2010-23-09, but also requires installing HP fuel pump part number (P/N) E4A-30-200-000, as mandatory terminating action to the repetitive inspections. We are issuing this AD to prevent engine power loss or in-flight shutdown, which could result in loss of control of the airplane.
Making use of renewable energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnston, J.C.
1984-01-01
This book describes renewable energy projects proposed for the rural areas of developing countries. Topics considered include biogas generation in Zimbabwe, biogas technology for water pumping in Botswana, soil fertility and energy problems in rural development in the Zaire rain forest, international scientific collaboration on biogas technologies for rural development, alcohol from biomass, an ethanol project in Zimbabwe, biomass alcohol and the fuel-food issue, solar water heating in Zimbabwe, absorbent box solar cookers, solar crop drying in Zimbabwe, the use of passive solar energy in Botswana buildings, the potential of mini hydro systems, woodfuel as a potential renewable energy source,more » small-scale afforestation for domestic needs in the communal lands of Zimbabwe, muscle power, the use of human energy in construction, hand-operated water pumps, animal power for water pumping in Botswana, the production of charcoal in Zambia, improving the efficiency of a traditional charcoal-burning Burmese cooking stove, social impacts, non-engineering constraints affecting energy use in a rural area, women and energy, and non-technical factors influencing the establishment of fuels-from-crops industries in developing countries.« less
Spacecraft active thermal control subsystem design and operation considerations
NASA Technical Reports Server (NTRS)
Sadunas, J. A.; Lehtinen, A. M.; Nguyen, H. T.; Parish, R.
1986-01-01
Future spacecraft missions will be characterized by high electrical power requiring active thermal control subsystems for acquisition, transport, and rejection of waste heat. These systems will be designed to operate with minimum maintenance for up to 10 years, with widely varying externally-imposed environments, as well as the spacecraft waste heat rejection loads. This paper presents the design considerations and idealized performance analysis of a typical thermal control subsystem with emphasis on the temperature control aspects during off-design operation. The selected thermal management subsystem is a cooling loop for a 75-kWe fuel cell subsystem, consisting of a fuel cell heat exchanger, thermal storage, pumps, and radiator. Both pumped-liquid transport and two-phase (liquid/vapor) transport options are presented with examination of similarities and differences of the control requirements for these representative thermal control options.
Molten salt destruction of energetic waste materials
Brummond, W.A.; Upadhye, R.S.; Pruneda, C.O.
1995-07-18
A molten salt destruction process is used to treat and destroy energetic waste materials such as high explosives, propellants, and rocket fuels. The energetic material is pre-blended with a solid or fluid diluent in safe proportions to form a fluid fuel mixture. The fuel mixture is rapidly introduced into a high temperature molten salt bath. A stream of molten salt is removed from the vessel and may be recycled as diluent. Additionally, the molten salt stream may be pumped from the reactor, circulated outside the reactor for further processing, and delivered back into the reactor or cooled and circulated to the feed delivery system to further dilute the fuel mixture entering the reactor. 4 figs.
Molten salt destruction of energetic waste materials
Brummond, William A.; Upadhye, Ravindra S.; Pruneda, Cesar O.
1995-01-01
A molten salt destruction process is used to treat and destroy energetic waste materials such as high explosives, propellants, and rocket fuels. The energetic material is pre-blended with a solid or fluid diluent in safe proportions to form a fluid fuel mixture. The fuel mixture is rapidly introduced into a high temperature molten salt bath. A stream of molten salt is removed from the vessel and may be recycled as diluent. Additionally, the molten salt stream may be pumped from the reactor, circulated outside the reactor for further processing, and delivered back into the reactor or cooled and circulated to the feed delivery system to further dilute the fuel mixture entering the reactor.
NASA Astrophysics Data System (ADS)
Thanikasalam, K.; Rahmat, M.; Fahmi, A. G. Mohammad; Zulkifli, A. M.; Shawal, N. Noor; Ilanchelvi, K.; Ananth, M.; Elayarasan, R.
2018-05-01
Mogas has been an alternative to leaded fuel since 1964 when Experimental Aircraft Association (EAA) began testing on it. However, in order for mogas to be used in aircraft engines and air frame modification, approval via the Supplemental Type Certificate (STC) authorization from Federal Aviation Administration (FAA) is mandatory. Cessna on 01.06.2010 evaluated alternative fuels with ethanol based fuels approved by FAA STCs for use in some single engine airplanes. However, Cessna’s tests discovered that ethanol based gasoline cannot be viewed as an option to 100LL avgas. The test likewise proposed that operational safety might be in jeopardy if usage of these fuels containing ethanol is continued. Cessna outlined a few problems in MOGAS; MOGAS needs fuel flow increase of 40% compared to AVGAS, MOGAS fuel is incompatible with some fuel system components, possible hazardous influence of electric fuel pumps by adding internal wear causing unexpected spark generation, MOGAS is incompatible with some fuel gauging systems and cause be able to incorrect fuel amount signs on the indicator, dissolve large amounts of water at conditions down to -77°F, impeding detection and removal of water from the fuel system, possible blockage of fuel filters and fuel flow and possible heavy losses from evaporation. This paper reviews concerns when using MOGAS in aircraft.
Strategies for Efficient Charge Separation and Transfer in Artificial Photosynthesis of Solar Fuels.
Xu, Yuxing; Li, Ailong; Yao, Tingting; Ma, Changtong; Zhang, Xianwen; Shah, Jafar Hussain; Han, Hongxian
2017-11-23
Converting sunlight to solar fuels by artificial photosynthesis is an innovative science and technology for renewable energy. Light harvesting, photogenerated charge separation and transfer (CST), and catalytic reactions are the three primary steps in the processes involved in the conversion of solar energy to chemical energy (SE-CE). Among the processes, CST is the key "energy pump and delivery" step in determining the overall solar-energy conversion efficiency. Efficient CST is always high priority in designing and assembling artificial photosynthesis systems for solar-fuel production. This Review not only introduces the fundamental strategies for CST but also the combinatory application of these strategies to five types of the most-investigated semiconductor-based artificial photosynthesis systems: particulate, Z-scheme, hybrid, photoelectrochemical, and photovoltaics-assisted systems. We show that artificial photosynthesis systems with high SE-CE efficiency can be rationally designed and constructed through combinatory application of these strategies, setting a promising blueprint for the future of solar fuels. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Equipment and Tracking Test Results for the NRL Ship-to- Ship DF Laser Transmission Experiment.
1982-04-05
combined with the 2" collimated HeNe laser beam at dichoric beam splitter TBSI. TF2, TF1 , and TPFI direct the beam onto the f/6 parabola Pl. From...following work was done on the pumping system: 1. Install new valves , springs, and seats. 2. Install a new drive shaft, with new bearings and seals. 3...Install a new needle valve in the oil regulator. 4. Steam clean the inside pump surface. The new components were tested first with F2 fuel, then with NF 3
LEO-to-GEO low thrust chemical propulsion
NASA Technical Reports Server (NTRS)
Shoji, J. M.
1980-01-01
One approach being considered for transporting large space structures from low Earth orbit (LEO) to geosynchronous equatorial orbit (GEO) is the use of low thrust chemical propulsion systems. A variety of chemical rocket engine cycles evaluated for this application for oxygen/hydrogen and oxygen/hydrocarbon propellants (oxygen/methane and oxygen/RF-1) are discussed. These cycles include conventional propellant turbine drives, turboalternator/electric motor pump drive, and fuel cell/electric motor pump drive as well as pressure fed engines. Thrust chamber cooling analysis results are presented for regenerative/radiation and film/radiation cooling.
Development of Passive Fuel Cell Thermal Management Heat Exchanger
NASA Technical Reports Server (NTRS)
Burke, Kenneth A.; Jakupca, Ian J.; Colozza, Anthony J.
2010-01-01
The NASA Glenn Research Center is developing advanced passive thermal management technology to reduce the mass and improve the reliability of space fuel cell systems for the NASA Exploration program. The passive thermal management system relies on heat conduction within highly thermally conductive cooling plates to move the heat from the central portion of the cell stack out to the edges of the fuel cell stack. Using the passive approach eliminates the need for a coolant pump and other cooling loop components within the fuel cell system which reduces mass and improves overall system reliability. Previous development demonstrated the performance of suitable highly thermally conductive cooling plates that could conduct the heat, provide a sufficiently uniform temperature heat sink for each cell of the fuel cell stack, and be substantially lighter than the conventional thermal management approach. Tests were run with different materials to evaluate the design approach to a heat exchanger that could interface with the edges of the passive cooling plates. Measurements were made during fuel cell operation to determine the temperature of individual cooling plates and also to determine the temperature uniformity from one cooling plate to another.
ADM. Fuel Pump House (TAN611). Elevations, floor plan. Drawing includes ...
ADM. Fuel Pump House (TAN-611). Elevations, floor plan. Drawing includes elevation and plans for "H.M." structures (Hose Storage?). Ralph M. Parsons 902-2-ANP-611-A 78 Date: December 1952. Approved by INEEL Classification Office for public release. INEEL index code no. 035-0611-00-693-106741 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
IET. Fuel transfer pumping building (TAN625). Elevations, foundation. Detail of ...
IET. Fuel transfer pumping building (TAN-625). Elevations, foundation. Detail of access stairway to coupling station. Ralph M. Parsons 902-a-ANY-620-625-A&S 414. Date: February 1954. Approved by INEEL Classification Office for public release. INEEL index code no. 035-0625-00-693-106971 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
NASA Astrophysics Data System (ADS)
Pine, G. D.; Christian, J. E.; Mixon, W. R.; Jackson, W. L.
1980-07-01
The procedures and data sources used to develop an energy consumption and system cost data base for use in predicting the market penetration of phosphoric acid fuel cell total energy systems in the nonindustrial building market are described. A computer program was used to simulate the hourly energy requirements of six types of buildings; office buildings; retail stores; hotels and motels; schools; hospitals; and multifamily residences. The simulations were done by using hourly weather tapes for one city in each of the ten Department of Energy administrative regions. Two types of building construction were considered, one for existing buildings and one for new buildings. A fuel cell system combined with electrically driven heat pumps and one combined with a gas boiler and an electrically driven chiller were compared with similar conventional systems. The methods of system simulation, component sizing, and system cost estimation are described for each system.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-30
... Bulletin 737-28A1201, Revision 1, dated May 28, 2009. Subject (d) Joint Aircraft System Component (JASC... control relays in the P91 and P92 power distribution panels for the fuel boost and override pumps with new... INFORMATION CONTACT: Georgios Roussos, Aerospace Engineer, Systems and Equipment Branch, ANM-130S, FAA...
Thermal System Modeling for Lunar and Martian Surface Regenerative Fuel Cell Systems
NASA Technical Reports Server (NTRS)
Gilligan, Ryan Patrick; Smith, Phillip James; Jakupca, Ian Joseph; Bennett, William Raymond; Guzik, Monica Christine; Fincannon, Homer J.
2017-01-01
The Advanced Exploration Systems (AES) Advanced Modular Power Systems (AMPS) Project is investigating different power systems for various lunar and Martian mission concepts. The AMPS Fuel Cell (FC) team has created two system-level models to evaluate the performance of regenerative fuel cell (RFC) systems employing different fuel cell chemistries. Proton Exchange Membrane fuel cells PEMFCs contain a polymer electrolyte membrane that separates the hydrogen and oxygen cavities and conducts hydrogen cations (protons) across the cell. Solid Oxide fuel cells (SOFCs) operate at high temperatures, using a zirconia-based solid ceramic electrolyte to conduct oxygen anions across the cell. The purpose of the modeling effort is to down select one fuel cell chemistry for a more detailed design effort. Figures of merit include the system mass, volume, round trip efficiency, and electrolyzer charge power required. PEMFCs operate at around 60 degrees Celsius versus SOFCs which operate at temperatures greater than 700 degrees Celsius. Due to the drastically different operating temperatures of the two chemistries the thermal control systems (TCS) differ. The PEM TCS is less complex and is characterized by a single pump cooling loop that uses deionized water coolant and rejects heat generated by the system to the environment via a radiator. The solid oxide TCS has its own unique challenges including the requirement to reject high quality heat and to condense the steam produced in the reaction. This paper discusses the modeling of thermal control systems for an extraterrestrial RFC that utilizes either a PEM or solid oxide fuel cell.
Total Energy Concepts as Applied to Universities.
ERIC Educational Resources Information Center
Gudgeon, R.L.
A comprehensive discussion of single fuel source generation of power and heating requirements is presented. Definition and explanation of system concepts includes--(1) heat pumps, (2) steam turbines, (3) gas turbines, and (4) gas and diesel engines. Concept cost evaluation factors described are--(1) load pattern, (2) campus configuration, (3) fuel…
NASA Technical Reports Server (NTRS)
Swette, Larry L.; Laconti, Anthony B.; Mccatty, Stephen A.
1993-01-01
This paper will update the progress in developing electrocatalyst systems and electrode structures primarily for the positive electrode of single-unit solid polymer proton exchange membrane (PEM) regenerative fuel cells. The work was done with DuPont Nafion 117 in complete fuel cells (40 sq cm electrodes). The cells were operated alternately in fuel cell mode and electrolysis mode at 80 C. In fuel cell mode, humidified hydrogen and oxygen were supplied at 207 kPa (30 psi); in electrolysis mode, water was pumped over the positive electrode and the gases were evolved at ambient pressure. Cycling data will be presented for Pt-Ir catalysts and limited bifunctional data will be presented for Pt, Ir, Ru, Rh, and Na(x)Pt3O4 catalysts as well as for electrode structure variations.
Self-Calibrating Pressure Transducer
NASA Technical Reports Server (NTRS)
Lueck, Dale E. (Inventor)
2006-01-01
A self-calibrating pressure transducer is disclosed. The device uses an embedded zirconia membrane which pumps a determined quantity of oxygen into the device. The associated pressure can be determined, and thus, the transducer pressure readings can be calibrated. The zirconia membrane obtains oxygen .from the surrounding environment when possible. Otherwise, an oxygen reservoir or other source is utilized. In another embodiment, a reversible fuel cell assembly is used to pump oxygen and hydrogen into the system. Since a known amount of gas is pumped across the cell, the pressure produced can be determined, and thus, the device can be calibrated. An isolation valve system is used to allow the device to be calibrated in situ. Calibration is optionally automated so that calibration can be continuously monitored. The device is preferably a fully integrated MEMS device. Since the device can be calibrated without removing it from the process, reductions in costs and down time are realized.
Complete modeling for systems of a marine diesel engine
NASA Astrophysics Data System (ADS)
Nahim, Hassan Moussa; Younes, Rafic; Nohra, Chadi; Ouladsine, Mustapha
2015-03-01
This paper presents a simulator model of a marine diesel engine based on physical, semi-physical, mathematical and thermodynamic equations, which allows fast predictive simulations. The whole engine system is divided into several functional blocks: cooling, lubrication, air, injection, combustion and emissions. The sub-models and dynamic characteristics of individual blocks are established according to engine working principles equations and experimental data collected from a marine diesel engine test bench for SIMB Company under the reference 6M26SRP1. The overall engine system dynamics is expressed as a set of simultaneous algebraic and differential equations using sub-blocks and S-Functions of Matlab/Simulink. The simulation of this model, implemented on Matlab/Simulink has been validated and can be used to obtain engine performance, pressure, temperature, efficiency, heat release, crank angle, fuel rate, emissions at different sub-blocks. The simulator will be used, in future work, to study the engine performance in faulty conditions, and can be used to assist marine engineers in fault diagnosis and estimation (FDI) as well as designers to predict the behavior of the cooling system, lubrication system, injection system, combustion, emissions, in order to optimize the dimensions of different components. This program is a platform for fault simulator, to investigate the impact on sub-blocks engine's output of changing values for faults parameters such as: faulty fuel injector, leaky cylinder, worn fuel pump, broken piston rings, a dirty turbocharger, dirty air filter, dirty air cooler, air leakage, water leakage, oil leakage and contamination, fouling of heat exchanger, pumps wear, failure of injectors (and many others).
“A System for Automatically Maintaining Pressure in a Commercial Truck Tire”
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maloney, John
2017-07-07
Under-inflated tires significantly reduce a vehicle’s fuel efficiency by increasing rolling resistance (drag force). The Air Maintenance Technology (“AMT”) system developed through this project replenishes lost air and maintains optimal tire cavity pressure whenever the tire is rolling in service, thus improving overall fuel economy by reducing the tire’s rolling resistance. The system consists of an inlet air filter, an air pump driven by tire deformation during rotation, and a pressure regulating device. Pressurized air in the tire cavity naturally escapes by diffusion through the tire and wheel, leaks in tire seating, and through the filler valve and its seating.more » As a result, tires require constant maintenance to replenish lost air. Since manual tire inflation maintenance is both labor intensive and time consuming, it is frequently overlooked or ignored. By automating the maintenance of optimal tire pressure, the tire’s contribution to the vehicle’s overall fuel economy can be maximized. The work was divided into three phases. The objectives of Phase 1, Planning and Initial Design, resulted in an effective project plan and to create a baseline design. The objectives for Phase 2, Design and Process Optimization, were: to identify finalized design for the pump, regulator and filter components; identify a process to build prototype tires; assemble prototype tires; test prototype tires and document results. The objectives of Phase 3, Design Release and Industrialization, were to finalize system tire assembly, perform release testing and industrialize the assembly process.« less
NASA Astrophysics Data System (ADS)
Dietrich, Ralph-Uwe; Oelze, Jana; Lindermeir, Andreas; Spitta, Christian; Steffen, Michael; Küster, Torben; Chen, Shaofei; Schlitzberger, Christian; Leithner, Reinhard
The transfer of high electrical efficiencies of solid oxide fuel cells (SOFC) into praxis requires appropriate system concepts. One option is the anode-offgas recycling (AOGR) approach, which is based on the integration of waste heat using the principle of a chemical heat pump. The AOGR concept allows a combined steam- and dry-reforming of hydrocarbon fuel using the fuel cell products steam and carbon dioxide. SOFC fuel gas of higher quantity and quality results. In combination with internal reuse of waste heat the system efficiency increases compared to the usual path of partial oxidation (POX). The demonstration of the AOGR concept with a 300 Wel-SOFC stack running on propane required: a combined reformer/burner-reactor operating in POX (start-up) and AOGR modus; a hotgas-injector for anode-offgas recycling to the reformer; a dynamic process model; a multi-variable process controller; full system operation for experimental proof of the efficiency gain. Experimental results proof an efficiency gain of 18 percentage points (η·POX = 23%, η·AOGR = 41%) under idealized lab conditions. Nevertheless, further improvements of injector performance, stack fuel utilization and additional reduction of reformer reformer O/C ratio and system pressure drop are required to bring this approach into self-sustaining operation.
Unshrouded Impeller Technology Development Status
NASA Technical Reports Server (NTRS)
Droege, Alan R.; Williams, Robert W.; Garcia, Roberto
2000-01-01
To increase payload and decrease the cost of future Reusable Launch Vehicles (RLVs), engineers at NASA/MSFC and Boeing, Rocketdyne are developing unshrouded impeller technology for application to rocket turbopumps. An unshrouded two-stage high-pressure fuel pump is being developed to meet the performance objectives of a three-stage shrouded pump. The new pump will have reduced manufacturing costs and pump weight. The lower pump weight will allow for increased payload.
46 CFR 108.239 - Fuel transfer equipment.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Fuel transfer equipment. 108.239 Section 108.239... AND EQUIPMENT Construction and Arrangement Helicopter Facilities § 108.239 Fuel transfer equipment. (a... static grounding device. (d) Each electric fuel transfer pump must have a control with a fuel transfer...
Advanced technology lightweight fuel cell program
NASA Technical Reports Server (NTRS)
Martin, R. E.
1981-01-01
The potential of the alkaline electrolyte fuel cell as the power source in a multi hundred kilowatt orbital energy storage system was studied. The total system weight of an electrolysis cell energy storage system was determined. The tests demonstrated: (1) the performance stability of a platinum on carbon anode catalyst configuration after 5000 hours of testing has no loss in performance; (2) capability of the alkaline fuel cell to operate to a cyclical load profile; (3) suitability of a lightweight graphite electrolyte reservoir plate for use in the alkaline fuel cell; (4) long life potential of a hybrid polysulfone cell edge frame construction; and (5) long term stability of a fiber reinforced potassium titanate matrix structure. The power section tested operates with passive water removal eliminating the requirement for a dynamic hydrogen pump water separator thereby allowing a powerplant design with reduced weight, lower parasite power, and a potential for high reliability and extended endurance. It is concluded that two perovskites are unsuitable for use as a catalyst or as a catalyst support at the cathode of an alkaline fuel cell.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Domestic hot water (DHW) heating is the second largest energy end use in U.S. buildings, exceeded only by space conditioning. Recirculation systems consisting of a pump and piping loop(s) are commonly used in multifamily buildings to reduce wait time for hot water at faucets; however, constant pumping increases energy consumption by exposing supply and return line piping to continuous heat loss, even during periods when there is no demand for hot water. In this study, ARIES installed and tested two types of recirculation controls in a pair of buildings in order to evaluate their energy savings potential. Demand control, temperaturemore » modulation controls, and the simultaneous operation of both were compared to the baseline case of constant recirculation. Additionally, interactive effects between DHW control fuel reductions and space conditioning (heating and cooling) were estimated in order to make more realistic predictions of the payback and financial viability of retrofitting DHW systems with these controls. Results showed that DHW fuel consumption reduced by 7 percent after implementing the demand control technique, 2 percent after implementing temperature modulation, and 15 percent after implementing demand control and temperature modulation techniques simultaneously; recirculation pump runtime was reduced to 14 minutes or less per day. With space heating and cooling interactions included, the estimated annual cost savings were 8 percent, 1 percent, and 14 percent for the respective control techniques. Possible complications in the installation, commissioning and operation of the controls were identified and solutions offered.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. Dentz; E. Ansanelli, H. Henderson, Jr.; K. Varshney
Domestic hot water (DHW) heating is the second largest energy end use in U.S. buildings, exceeded only by space conditioning. Recirculation systems consisting of a pump and piping loop(s) are commonly used in multifamily buildings to reduce wait time for hot water at faucets; however, constant pumping increases energy consumption by exposing supply and return line piping to continuous heat loss, even during periods when there is no demand for hot water. In this study, ARIES installed and tested two types of recirculation controls in a pair of buildings in order to evaluate their energy savings potential. Demand control, temperaturemore » modulation controls, and the simultaneous operation of both were compared to the baseline case of constant recirculation. Additionally, interactive effects between DHW control fuel reductions and space conditioning (heating and cooling) were estimated in order to make more realistic predictions of the payback and financial viability of retrofitting DHW systems with these controls. Results showed that DHW fuel consumption reduced by 7% after implementing the demand control technique, 2% after implementing temperature modulation, and 15% after implementing demand control and temperature modulation techniques simultaneously; recirculation pump runtime was reduced to 14 minutes or less per day. With space heating and cooling interactions included, the estimated annual cost savings were 8%, 1%, and 14% for the respective control techniques. Possible complications in the installation, commissioning and operation of the controls were identified and solutions offered.« less
Control Strategies to Reduce the Energy Consumption of Central Domestic Hot Water Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dentz, Jordan; Ansanelli, Eric; Henderson, Hugh
Domestic hot water (DHW) heating is the second largest energy end use in U.S. buildings, exceeded only by space conditioning. Recirculation systems consisting of a pump and piping loop(s) are commonly used in multifamily buildings to reduce wait time for hot water at faucets; however, constant pumping increases energy consumption by exposing supply and return line piping to continuous heat loss, even during periods when there is no demand for hot water. In this study, ARIES installed and tested two types of recirculation controls in a pair of buildings in order to evaluate their energy savings potential. Demand control, temperaturemore » modulation controls, and the simultaneous operation of both were compared to the baseline case of constant recirculation. Additionally, interactive effects between DHW control fuel reductions and space conditioning (heating and cooling) were estimated in order to make more realistic predictions of the payback and financial viability of retrofitting DHW systems with these controls. Results showed that DHW fuel consumption reduced by 7% after implementing the demand control technique, 2% after implementing temperature modulation, and 15% after implementing demand control and temperature modulation techniques simultaneously; recirculation pump runtime was reduced to 14 minutes or less per day. With space heating and cooling interactions included, the estimated annual cost savings were 8%, 1%, and 14% for the respective control techniques. Possible complications in the installation, commissioning and operation of the controls were identified and solutions offered.« less
Heat-pump-centered integrated community energy systems: System development summary
NASA Astrophysics Data System (ADS)
Calm, J. M.
1980-02-01
An introduction to district heating systems employing heat pumps to enable use of low temperature energy sources is presented. These systems operate as thermal utilities to provide space heating and may also supply space cooling, service water heating, and other thermal services. Otherwise wasted heat from industrial and commercial processes, natural sources including solar and geothermal heat, and heat stored on an annual cycle from summer cooling may be effectively utilized by the systems described. More than one quarter of the energy consumed in the United States is used to heat and cool buildings and to heat service water. Natural gas and oil provide approximately 83% of this energy. The systems described show potential to reduce net energy consumption for these services by 20 to 50% and to allow fuel substitution with less scarce resources not practical in smaller, individual building systems. Seven studies performed for the system development phase are summarized.
Indirect-cycle FBR cooled by supercritical steam-concept and design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoshiaki, Oka; Tatjana, Jevremovic; Sei-ichi, Koshizuka
1993-01-01
Neutronic and thermal-hydraulic design of an in direct-cycle supercritical steam-cooled fast breeder reactor (SCFBR-I) is carried out to find a way to make low-cost FBRs (Ref. 1). The advantages of supercritical steam cooling are high thermal efficiency, low pumping power, simplified system (no primary steam generators and no Loeffler boilers), and the use of experienced technology in fossil-fired power plants. The design goals are fissile fuel breeding (compound system doubling time below 30 yr), 1000-M(electric) class out-put, high fuel discharge burnup, and a long refueling period. The coolant void reactivity should be negative throughout fuel lifetime because the loss-of-coolant accidentmore » is the design-basis accident. These goals have never been satisfied simultaneously in previous SCFBRs.« less
BioCapacitor: A novel principle for biosensors.
Sode, Koji; Yamazaki, Tomohiko; Lee, Inyoung; Hanashi, Takuya; Tsugawa, Wakako
2016-02-15
Studies regarding biofuel cells utilizing biocatalysts such as enzymes and microorganisms as electrocatalysts have been vigorously conducted over the last two decades. Because of their environmental safety and sustainability, biofuel cells are expected to be used as clean power generators. Among several principles of biofuel cells, enzyme fuel cells have attracted significant attention for their use as alternative energy sources for future implantable devices, such as implantable insulin pumps and glucose sensors in artificial pancreas and pacemakers. However, the inherent issue of the biofuel cell principle is the low power of a single biofuel cell. The theoretical voltage of biofuel cells is limited by the redox potential of cofactors and/or mediators employed in the anode and cathode, which are inadequate for operating any devices used for biomedical application. These limitations inspired us to develop a novel biodevice based on an enzyme fuel cell that generates sufficient stable power to operate electric devices, designated "BioCapacitor." To increase voltage, the enzyme fuel cell is connected to a charge pump. To obtain a sufficient power and voltage to operate an electric device, a capacitor is used to store the potential generated by the charge pump. Using the combination of a charge pump and capacitor with an enzyme fuel cell, high voltages with sufficient temporary currents to operate an electric device were generated without changing the design and construction of the enzyme fuel cell. In this review, the BioCapacitor principle is described. The three different representative categories of biodevices employing the BioCapacitor principle are introduced. Further, the recent challenges in the developments of self-powered stand-alone biodevices employing enzyme fuel cells combined with charge pumps and capacitors are introduced. Finally, the future prospects of biodevices employing the BioCapacitor principle are addressed. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dentz, Jordan; Ansanelli, Eric; Henderson, Hugh
Domestic hot water (DHW) heating is the second largest energy end use in U.S. buildings, exceeded only by space conditioning. Recirculation systems consisting of a pump and piping loop(s) are commonly used in multifamily buildings to reduce wait time for hot water at faucets; however, constant pumping increases energy consumption by exposing supply and return line piping to continuous heat loss, even during periods when there is no demand for hot water. In this study, ARIES installed and tested two types of recirculation controls in a pair of buildings in order to evaluate their energy savings potential. Demand control, temperaturemore » modulation controls, and the simultaneous operation of both were compared to the baseline case of constant recirculation. Additionally, interactive effects between DHW control fuel reductions and space conditioning (heating and cooling) were estimated in order to make more realistic predictions of the payback and financial viability of retrofitting DHW systems with these controls. Results showed that DHW fuel consumption reduced by 7% after implementing the demand control technique, 2% after implementing temperature modulation, and 15% after implementing demand control and temperature modulation techniques simultaneously; recirculation pump runtime was reduced to 14 minutes or less per day. With space heating and cooling interactions included, the estimated annual cost savings were 8%, 1%, and 14% for the respective control techniques. Possible complications in the installation, commissioning and operation of the controls were identified and solutions offered.« less
Auto Drain Valve Water Separator inside the Unit of Komatsu HD 465-7R
NASA Astrophysics Data System (ADS)
Manurung, V. A. T.; Joko W, Y. T.; Poetra, R. I.
2018-02-01
Water separator is a component that separate water from fuel, so the circulating fuel in the fuel system is not contaminated by water. If there is water inside the water separator, it will be carried by into the fuel system and then impacting to the engine performance. It’s such as lowering engine power because the fuel filter is clogged due to the fuel mix with water. Then the real danger is in case of the fuel mixes with the water. It will damage the fuel system components such as blockage of injectors due to corrosion and wear of fuel supply pump. As informed from daily maintenance record data, we have found that the low power engine trouble was caused by the fuel filter that was clogged high enough. Using the fishbone analysis, we got the main problem is there was water in the fuel separator at maximum level and did not discharge. In this condition, it is need optional device to automatically discharge the water from the water separator while maximum level reached, so the operator does not need to drain the water manually. The operator will be warned by buzzing active alarm and flashing caution lamp inside the cabin. By this method, the potential risk of mix up water with fuel would be avoided and the loss of others component failure would be mostly avoided. By using this tool, we can save net quality income around IDR (Indonesia Rupiah) 11,673,519,800.
Winning with Green Remediation Practices at the Former McClellan AFB, Sacramento CA
2011-05-12
PCE) Metals (lead, cadmium, chromium) Fuels (gas and diesel ) Radiological (Radium 226) Largest cleanup effort in the Air Force 318 sites...Existing pump and treat system replaced with sustainable in-situ bioremediation (passive vegetable oil injection) Cost to complete reduced by $15,000,000
10 CFR 434.404 - Building service systems and equipment.
Code of Federal Regulations, 2012 CFR
2012-01-01
... ratio Btuh/gal Test Method a Energy factor Thermal efficiency Et% Standby loss %/HR NAECA all electric... Loss. (a) When testing an electric storage water heater, the procedures of Z21.10.3-1990 (RS-39... manufacturer with smoke no greater than 1 and the fuel pump pressure within ±1% of the manufacturer's...
10 CFR 434.404 - Building service systems and equipment.
Code of Federal Regulations, 2014 CFR
2014-01-01
... ratio Btuh/gal Test Method a Energy factor Thermal efficiency Et% Standby loss %/HR NAECA all electric... Loss. (a) When testing an electric storage water heater, the procedures of Z21.10.3-1990 (RS-39... manufacturer with smoke no greater than 1 and the fuel pump pressure within ±1% of the manufacturer's...
10 CFR 434.404 - Building service systems and equipment.
Code of Federal Regulations, 2010 CFR
2010-01-01
... ratio Btuh/gal Test Method a Energy factor Thermal efficiency Et% Standby loss %/HR NAECA all electric... Loss. (a) When testing an electric storage water heater, the procedures of Z21.10.3-1990 (RS-39... manufacturer with smoke no greater than 1 and the fuel pump pressure within ±1% of the manufacturer's...
10 CFR 434.404 - Building service systems and equipment.
Code of Federal Regulations, 2011 CFR
2011-01-01
... ratio Btuh/gal Test Method a Energy factor Thermal efficiency Et% Standby loss %/HR NAECA all electric... Loss. (a) When testing an electric storage water heater, the procedures of Z21.10.3-1990 (RS-39... manufacturer with smoke no greater than 1 and the fuel pump pressure within ±1% of the manufacturer's...
Detecting Solenoid Valve Deterioration in In-Use Electronic Diesel Fuel Injection Control Systems
Tsai, Hsun-Heng; Tseng, Chyuan-Yow
2010-01-01
The diesel engine is the main power source for most agricultural vehicles. The control of diesel engine emissions is an important global issue. Fuel injection control systems directly affect fuel efficiency and emissions of diesel engines. Deterioration faults, such as rack deformation, solenoid valve failure, and rack-travel sensor malfunction, are possibly in the fuel injection module of electronic diesel control (EDC) systems. Among these faults, solenoid valve failure is most likely to occur for in-use diesel engines. According to the previous studies, this failure is a result of the wear of the plunger and sleeve, based on a long period of usage, lubricant degradation, or engine overheating. Due to the difficulty in identifying solenoid valve deterioration, this study focuses on developing a sensor identification algorithm that can clearly classify the usability of the solenoid valve, without disassembling the fuel pump of an EDC system for in-use agricultural vehicles. A diagnostic algorithm is proposed, including a feedback controller, a parameter identifier, a linear variable differential transformer (LVDT) sensor, and a neural network classifier. Experimental results show that the proposed algorithm can accurately identify the usability of solenoid valves. PMID:22163597
Detecting solenoid valve deterioration in in-use electronic diesel fuel injection control systems.
Tsai, Hsun-Heng; Tseng, Chyuan-Yow
2010-01-01
The diesel engine is the main power source for most agricultural vehicles. The control of diesel engine emissions is an important global issue. Fuel injection control systems directly affect fuel efficiency and emissions of diesel engines. Deterioration faults, such as rack deformation, solenoid valve failure, and rack-travel sensor malfunction, are possibly in the fuel injection module of electronic diesel control (EDC) systems. Among these faults, solenoid valve failure is most likely to occur for in-use diesel engines. According to the previous studies, this failure is a result of the wear of the plunger and sleeve, based on a long period of usage, lubricant degradation, or engine overheating. Due to the difficulty in identifying solenoid valve deterioration, this study focuses on developing a sensor identification algorithm that can clearly classify the usability of the solenoid valve, without disassembling the fuel pump of an EDC system for in-use agricultural vehicles. A diagnostic algorithm is proposed, including a feedback controller, a parameter identifier, a linear variable differential transformer (LVDT) sensor, and a neural network classifier. Experimental results show that the proposed algorithm can accurately identify the usability of solenoid valves.
The 300 H.P. Benz Aircraft Engine
NASA Technical Reports Server (NTRS)
Heller, A
1921-01-01
A description is given of the Benz 12-cylinder aircraft engine. The 300 H.P. engine, with the cylinders placed at an angle of 60 degrees not only realizes a long-cherished conception, but has received refinement in detail. It may be described as a perfect example of modern German aircraft engine construction. Here, a detailed description is given of the construction of this engine. Emphasis is placed on the design and construction of the cylinders, pistons, and connecting rods. Also discussed are engine fitting, lubrication, oil pumps, bearings, the oil tank, fuel pump, carburetors, and cooling system.
System Regulates the Water Contents of Fuel-Cell Streams
NASA Technical Reports Server (NTRS)
Vasquez, Arturo; Lazaroff, Scott
2005-01-01
An assembly of devices provides for both humidification of the reactant gas streams of a fuel cell and removal of the product water (the water generated by operation of the fuel cell). The assembly includes externally-sensing forward-pressure regulators that supply reactant gases (fuel and oxygen) at variable pressures to ejector reactant pumps. The ejector supply pressures depend on the consumption flows. The ejectors develop differential pressures approximately proportional to the consumption flow rates at constant system pressure and with constant flow restriction between the mixer-outlet and suction ports of the ejectors. For removal of product water from the circulating oxygen stream, the assembly includes a water/gas separator that contains hydrophobic and hydrophilic membranes. The water separator imposes an approximately constant flow restriction, regardless of the quality of the two-phase flow that enters it from the fuel cell. The gas leaving the water separator is nearly 100 percent humid. This gas is returned to the inlet of the fuel cell along with a quantity of dry incoming oxygen, via the oxygen ejector, thereby providing some humidification.
Dong, Yue; Feng, Yujie; Qu, Youpeng; Du, Yue; Zhou, Xiangtong; Liu, Jia
2015-12-15
Energy self-sufficiency is a highly desirable goal of sustainable wastewater treatment. Herein, a combined system of a microbial fuel cell and an intermittently aerated biological filter (MFC-IABF) was designed and operated in an energy self-sufficient manner. The system was fed with synthetic wastewater (COD = 1000 mg L(-1)) in continuous mode for more than 3 months at room temperature (~25 °C). Voltage output was increased to 5 ± 0.4 V using a capacitor-based circuit. The MFC produced electricity to power the pumping and aeration systems in IABF, concomitantly removing COD. The IABF operating under an intermittent aeration mode (aeration rate 1000 ± 80 mL h(-1)) removed the residual nutrients and improved the water quality at HRT = 7.2 h. This two-stage combined system obtained 93.9% SCOD removal and 91.7% TCOD removal (effluent SCOD = 61 mg L(-1), TCOD = 82.8 mg L(-1)). Energy analysis indicated that the MFC unit produced sufficient energy (0.27 kWh m(-3)) to support the pumping system (0.014 kWh m(-3)) and aeration system (0.22 kWh m(-3)). These results demonstrated that the combined MFC-IABF system could be operated in an energy self-sufficient manner, resulting to high-quality effluent.
Entropy, pumped-storage and energy system finance
NASA Astrophysics Data System (ADS)
Karakatsanis, Georgios
2015-04-01
Pumped-storage holds a key role for integrating renewable energy units with non-renewable fuel plants into large-scale energy systems of electricity output. An emerging issue is the development of financial engineering models with physical basis to systematically fund energy system efficiency improvements across its operation. A fundamental physically-based economic concept is the Scarcity Rent; which concerns the pricing of a natural resource's scarcity. Specifically, the scarcity rent comprises a fraction of a depleting resource's full price and accumulates to fund its more efficient future use. In an integrated energy system, scarcity rents derive from various resources and can be deposited to a pooled fund to finance the energy system's overall efficiency increase; allowing it to benefit from economies of scale. With pumped-storage incorporated to the system, water upgrades to a hub resource, in which the scarcity rents of all connected energy sources are denominated to. However, as available water for electricity generation or storage is also limited, a scarcity rent upon it is also imposed. It is suggested that scarcity rent generation is reducible to three (3) main factors, incorporating uncertainty: (1) water's natural renewability, (2) the energy system's intermittent components and (3) base-load prediction deviations from actual loads. For that purpose, the concept of entropy is used in order to measure the energy system's overall uncertainty; hence pumped-storage intensity requirements and generated water scarcity rents. Keywords: pumped-storage, integration, energy systems, financial engineering, physical basis, Scarcity Rent, pooled fund, economies of scale, hub resource, uncertainty, entropy Acknowledgement: This research was funded by the Greek General Secretariat for Research and Technology through the research project Combined REnewable Systems for Sustainable ENergy DevelOpment (CRESSENDO; grant number 5145)
Pulsation-based method for reduction of nitrogen oxides content in torch combustion products
NASA Astrophysics Data System (ADS)
Berg, I. A.; Porshnev, S. V.; Oshchepkova, V. Y.; Kit, M.
2018-01-01
Out of all ways to fuel bum the torch combustion systems is used most often. Even though the processes in the steam boiler are stochastic, the system can be controlled rather easily by changing the flowrate of the air pumped into it and - in case of balanced flue units - exhausters load. Advantages offered by torch-based combustion systems are offset by a disadvantage resulted in oxidation of nitrogen contained in the air. This paper provides rationale for an NOx content reduction method that employs pulsation mode of fuel combustion; it also describes combustion control and monitoring system employed for implementation of this method. Described methodology can be used not only for pulsation combustion studies but also for studies of torches formed by conventional burning systems. The outcome of the experimental study supports the assumption that it is possible to create conditions for NOx content reduction in flue gases by means of cycling the fuel supply on/off valve at the rate of 6 Hz.
30. Launch Area, Generator Building, interior view showing diesel fuel ...
30. Launch Area, Generator Building, interior view showing diesel fuel tank, fuel pump (foreground) and fuel lines leading to power-generating units (removed) VIEW NORTHWEST - NIKE Missile Battery PR-79, Launch Area, East Windsor Road south of State Route 101, Foster, Providence County, RI
Zhao, Shanyu; Jiang, Bo; Maeder, Thomas; Muralt, Paul; Kim, Nayoung; Matam, Santhosh Kumar; Jeong, Eunho; Han, Yen-Lin; Koebel, Matthias M
2015-08-26
With growing public interest in portable electronics such as micro fuel cells, micro gas total analysis systems, and portable medical devices, the need for miniaturized air pumps with minimal electrical power consumption is on the rise. Thus, the development and downsizing of next-generation thermal transpiration gas pumps has been investigated intensively during the last decades. Such a system relies on a mesoporous membrane that generates a thermomolecular pressure gradient under the action of an applied temperature bias. However, the development of highly miniaturized active membrane materials with tailored porosity and optimized pumping performance remains a major challenge. Here we report a systematic study on the manufacturing of aerogel membranes using an optimized, minimal-shrinkage sol-gel process, leading to low thermal conductivity and high air conductance. This combination of properties results in superior performance for miniaturized thermomolecular air pump applications. The engineering of such aerogel membranes, which implies pore structure control and chemical surface modification, requires both chemical processing know-how and a detailed understanding of the influence of the material properties on the spatial flow rate density. Optimal pumping performance was found for devices with integrated membranes with a density of 0.062 g cm(-3) and an average pore size of 142.0 nm. Benchmarking of such low-density hydrophobic active aerogel membranes gave an air flow rate density of 3.85 sccm·cm(-2) at an operating temperature of 400 °C. Such a silica aerogel membrane based system has shown more than 50% higher pumping performance when compared to conventional transpiration pump membrane materials as well as the ability to withstand higher operating temperatures (up to 440 °C). This study highlights new perspectives for the development of miniaturized thermal transpiration air pumps while offering insights into the fundamentals of molecular pumping in three-dimensional open-mesoporous materials.
Air Force Groundwater Contamination Cleanup: An Evaluation of the Pump- and-Treat Method.
1988-09-01
Other contaminants commonly detected at Air Force installations are benzene, mercury , pesticides, polychlori- nated biphenyls (PCBs), and Toxaphene...the air base experienced a 3000 gallon fuel (JP-4) spill at Fire Training Area 5 and contracted the DETOX company to conduct cleanup operations. After...several months of pumping, DETOX estimated that only 300 gallons of the fuel had been recovered. Wright-Patterson Air Force Base, unsatisfied with
1940-03-21
Goddard rocket in launching tower at Roswell, New Mexico, March 21, 1940. Fuel was injected by pumps from the fueling platform at left. From 1930 to 1941, Dr. Goddard made substantial progress in the development of progressively larger rockets, which attained altitudes of 2400 meters, and refined his equipment for guidance and control, his techniques of welding, and his insulation, pumps, and other associated equipment. In many respects, Dr. Goddard laid the essential foundations of practical rocket technology
46 CFR 108.239 - Fuel transfer equipment.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Fuel transfer equipment. 108.239 Section 108.239 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN... static grounding device. (d) Each electric fuel transfer pump must have a control with a fuel transfer...
2011-01-01
natural gas vehicle-fueling station, improving the efficiency of boilers, installing a generating system to supplement the electricity purchased during...voltage regulation of transformers in its substations to improve energy efficiency and a small study on customer assistance, both at BPA’s own expense...Fort Campbell has installed more energy efficient boilers, HVAC systems , hot water heaters, lighting, 10 A ground source heat pump (GSHP), also
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-29
... spool down, which occurred while applying fuel gravity feed procedure, in response to low pressure... fuel gravity feed procedure, in response to low pressure indications from all fuel boost pumps, in both... while applying fuel gravity feed procedure, in response to low pressure indications from all fuel boost...
75 FR 39869 - Airworthiness Directives; Airbus Model A330-200 and A330-300 Series Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-13
... uncommanded engine 1 in flight spool down, which occurred while applying fuel gravity feed procedure, in... while applying fuel gravity feed procedure, in response to low pressure indications from all fuel boost... applying fuel gravity feed procedure, in response to low pressure indications from all fuel boost pumps, in...
Complex Mobile Independent Power Station for Urban Areas
NASA Astrophysics Data System (ADS)
Tunik, A. A.; Tolstoy, M. Y.
2017-11-01
A new type of a complex mobile independent power station developed in the Department of Engineering Communications and Life-Support Systems of Irkutsk National Research Technical University, is presented in this article. This station contains only solar panel, wind turbine, accumulator, diesel generator and microbial fuel cell for to produce electric energy, heat pump and solar collector to generate heat energy and also wastewater treatment plant and new complex control system. The complex mobile independent power station is intended for full power supply of a different kind of consumers located even in remote areas thus reducing their dependence from centralized energy supply systems, decrease the fossil fuel consumption, improve the environment of urban areas and solve the problems of the purification of industrial and municipal wastewater.
2013-01-01
after pump calibrations , transfer pump blade measurements, injector nozzle tests, pump parts evaluation, and parts conditions photographs are also... Injectors –0 0.53 5,500 0.257 1 2-15293089 DF2 As Purchased 105 (40) 1,000 1,000 Calibration off spec areas–4 Pump Rating–1.04 Failed Injectors –0 0.53...5,500 0.257 2 1-15382732 DF2 As Purchased 135 (57) 1,000 1,000 Calibration off spec areas–4 Pump Rating–1.13 Failed Injectors –0 0.55
participating in any of the following activities: Installing a biofuel pump or tank, except property leased from the franchisor; Converting an existing tank or pump for biofuels use; Advertising the sale of biofuels sources if the franchisor does not offer biofuel; Installing or operating an ethanol blender pump, if the
Pumping Insulin during Exercise: What Healthcare Providers and Diabetic Patients Need To Know.
ERIC Educational Resources Information Center
Colberg, Sheri R.; Walsh, John
2002-01-01
Exercise can decrease insulin resistance. Insulin pumps deliver precise insulin adjustments that improve fuel availability and provide glycemic control to help people with diabetes overcome obstacles to exercise. Physicians, patients, and healthcare providers should be familiar with the features and nuances of specific pump models and follow basic…
NASA Technical Reports Server (NTRS)
Hagedorn, N. H.; Prokipius, P. R.
1977-01-01
A test program was conducted to evaluate the design of a heat and product-water removal system to be used with fuel cell having static water removal and evaporative cooling. The program, which was conducted on a breadboard version of the system, provided a general assessment of the design in terms of operational integrity and transient stability. This assessment showed that, on the whole, the concept appears to be inherently sound but that in refining this design, several facets will require additional study. These involve interactions between pressure regulators in the pumping loop that occur when they are not correctly matched and the question of whether an ejector is necessary in the system.
Renewables cannot be stored economically on a well-run power system
NASA Astrophysics Data System (ADS)
Swift-Hook, Donald
2017-11-01
Economic storage on a power system must rely on arbitrage, buying electrical power when it is cheap and selling when it is dear. In practice, this means a store must buy power at night and sell it during the day. There is no solar power at night [by definition], so solar power cannot be stored economically on a well-run power system. Also renewables [and nuclear] are installed commercially to save fuel but fuel costs the same at night as it does during the day, so there is no arbitrage on fuel-saving to justify storage. Pumped water storage has always been widely used on power systems and is still the only method that is economic today, although many others have been tried, including fuels cells, compressed air and batteries. Devices for power correction and balancing [e.g. capacitor banks and batteries] may physically involve the storage of energy [just as a mobile phone does] but it is misleading to describe them as methods of power system storage, [just as it would be misleading to call a School bus a fuel transportation system, even though it does transport fuel]. When a power system has different sorts of plant generating - coal, gas, nuclear, wind etc - any power being put into storage is from the plant that would need to be switched off [because less power was needed] if storage ceased [e.g. because the store became full or failed]. On a well-run power system, that always has the highest fuel/running cost, but the wind blows free and has zero fuel/running cost, so wind is never [normally] stored unless there is no other plant on line i.e. wind power is the last to be stored.
1990-06-01
amplitude of the l IC actuators are set manually with no feedback of airframe response. Closed loop contrl refers to a system which utilizes response...mixture being controlled by the all position diaphragm carburetor and fuel pump . Ignition spark is ac-.cvd using " OX I mm spark plg. 28 b. Drive
40 CFR 60.482-2 - Standards: Pumps in light liquid service.
Code of Federal Regulations, 2011 CFR
2011-07-01
...; or (ii) Equipped with a barrier fluid degassing reservoir that is routed to a process or fuel gas... in VOC service. (3) Each barrier fluid system is equipped with a sensor that will detect failure of...) Designate the visual indications of liquids dripping as a leak. (5)(i) Each sensor as described in paragraph...
40 CFR 60.482-2 - Standards: Pumps in light liquid service.
Code of Federal Regulations, 2010 CFR
2010-07-01
...; or (ii) Equipped with a barrier fluid degassing reservoir that is routed to a process or fuel gas... in VOC service. (3) Each barrier fluid system is equipped with a sensor that will detect failure of...) Designate the visual indications of liquids dripping as a leak. (5)(i) Each sensor as described in paragraph...
Multiple Learning Strategies Project. Small Engine Repair Service. Regular Vocational. [Vol. 1.
ERIC Educational Resources Information Center
Pitts, Jim; And Others
This instructional package is one of two designed for use by regular vocational students in the vocational area of small engine repair service. Contained in this document are forty-four learning modules organized into ten units: engine block; air cleaner; starters; fuel tanks; lines, filters, and pumps; carburetors; electrical; magneto systems;…
Multi-Function Gas Fired Heat Pump
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abu-Heiba, Ahmad; Vineyard, Edward Allan
2015-11-01
The aim of this project was to design a residential fuel fired heat pump and further improve efficiency in collaboration with an industry partner – Southwest Gas, the developer of the Nextaire commercial rooftop fuel-fired heat pump. Work started in late 2010. After extensive search for suitable engines, one manufactured by Marathon was selected. Several prototypes were designed and built over the following four years. Design changes were focused on lowering the cost of components and the cost of manufacturing. The design evolved to a final one that yielded the lowest cost. The final design also incorporates noise and vibrationmore » reduction measures that were verified to be effective through a customer survey. ETL certification is currently (as of November 2015) underway. Southwest Gas is currently in talks with GTI to reach an agreement through which GTI will assess the commercial viability and potential of the heat pump. Southwest Gas is searching for investors to manufacture the heat pump and introduce it to the market.« less
Dr. Robert H. Goddard and His Rocket
NASA Technical Reports Server (NTRS)
1940-01-01
Goddard rocket in launching tower at Roswell, New Mexico, March 21, 1940. Fuel was injected by pumps from the fueling platform at left. From 1930 to 1941, Dr. Goddard made substantial progress in the development of progressively larger rockets, which attained altitudes of 2400 meters, and refined his equipment for guidance and control, his techniques of welding, and his insulation, pumps, and other associated equipment. In many respects, Dr. Goddard laid the essential foundations of practical rocket technology
Unitized Regenerative Fuel Cell System Development
NASA Technical Reports Server (NTRS)
Burke, Kenneth A.
2003-01-01
Unitized Regenerative Fuel Cells (URFC) have recently been developed by several fuel cell manufacturers. These manufacturers have concentrated their efforts on the development of the cell stack technology itself, and have not up to this point devoted much effort to the design and development of the balance of plant. A fuel cell technology program at the Glenn Research Center (GRC) that has as its goal the definition and feasibility testing of the URFC system balance of plant. Besides testing the feasibility, the program also intends to minimize the system weight, volume, and parasitic power as its goal. The design concept currently being developed uses no pumps to circulate coolant or reactants, and minimizes the ancillary components to only the oxygen and hydrogen gas storage tanks, a water storage tank, a loop heat pipe to control the temperature and two pressure control devices to control the cell stack pressures during operation. The information contained in this paper describes the design and operational concepts employed in this concept. The paper also describes the NASA Glenn research program to develop this concept and test its feasibility.
Zinn, W.H.
1958-07-01
A fast nuclear reactor system ls described for producing power and radioactive isotopes. The reactor core is of the heterogeneous, fluid sealed type comprised of vertically arranged elongated tubular fuel elements having vertical coolant passages. The active portion is surrounded by a neutron reflector and a shield. The system includes pumps and heat exchangers for the primary and secondary coolant circuits. The core, primary coolant pump and primary heat exchanger are disposed within an irapenforate tank which is filled with the primary coolant, in this case a liquid metal such as Na or NaK, to completely submerge these elements. The tank is completely surrounded by a thick walled concrete shield. This reactor system utilizes enriched uranium or plutonium as the fissionable material, uranium or thorium as a diluent and thorium or uranium containing less than 0 7% of the U/sup 235/ isotope as a fertile material.
1982-06-04
cutaway Rockwell International Space Shuttle Main Engines: Powerhead (Left side - fuel preburner, fuel trubopump - Center - Main Combustion Chamber, nozzle forward manifold - Right side - oxidizer preburner, oxidizer turbopump, preburner boost pump)
NASA Technical Reports Server (NTRS)
Power, Gloria B.; Violett, Rebeca S.
1989-01-01
The analysis performed on the High Pressure Oxidizer Turbopump (HPOTP) preburner pump bearing assembly located on the Space Shuttle Main Engine (SSME) is summarized. An ANSYS finite element model for the inlet assembly was built and executed. Thermal and static analyses were performed.
High Head Unshrouded Impeller Pump Stage Technology
NASA Technical Reports Server (NTRS)
Williams, Robert W.; Skelley, Stephen E.; Stewart, Eric T.; Droege, Alan R.; Prueger, George H.; Chen, Wei-Chung; Williams, Morgan; Turner, James E. (Technical Monitor)
2000-01-01
A team of engineers at NASA/MSFC and Boeing, Rocketdyne division, are developing unshrouded impeller technologies that will increase payload and decrease cost of future reusable launch vehicles. Using the latest analytical techniques and experimental data, a two-stage unshrouded fuel pump is being designed that will meet the performance requirements of a three-stage shrouded pump. Benefits of the new pump include lower manufacturing costs, reduced weight, and increased payload to orbit.
NASA Astrophysics Data System (ADS)
Nishihara, Munetake; Freund, Jonathan B.; Glumac, Nick G.; Elliott, Gregory S.
2018-03-01
This paper presents dual-pump coherent anti-Stokes Raman scattering (CARS) measurements for simultaneous detection of flow temperature and relative concentration, applied to the characterization of a discharge-coupled reacting jet in a cross flow. The diagnostic is hydrogen Q-branch based, providing a much wider dynamic range compared to detection in the S-branch. For a previously developed dielectric barrier discharge, aligned co-axially with the fuel jet, OH planar laser induced fluorescence measurements show that the disturbance in the flame boundary leads to mixing enhancement. The H2-N2 dual-pump CARS measurement was used to map two-dimensional temperature distributions. The increase of the maximum temperature was up to 300 K, with 50% more H2 consumption, providing the reason for the decrease in the flame length by 25%. The increase of the relative H2O-H2 fraction was accompanied with a temperature increase, which indicates local equivalence ratios of below 1. The H2-O2 dual-pump measurements confirmed that the fuel-oxidizer ratios remain in the fuel-lean side at most of the probed locations.
Optimization of Domestic-Size Renewable Energy System Designs Suitable for Cold Climate Regions
NASA Astrophysics Data System (ADS)
Akpan, Itoro Etim; Sasaki, Masafumi; Endoh, Noboru
Five different kinds of domestic-size renewable energy system configurations for very cold climate regions were investigated. From detailed numerical modeling and system simulations, it was found that the consumption of fuel oil for the auxiliary boiler in residential-type households can almost be eliminated with a renewable energy system that incorporates photovoltaic panel arrays for electricity generation and two storage tanks: a well-insulated electric water storage tank that services the hot water loads, and a compact boiler/geothermal heat pump tank for room heating during very cold seasons. A reduction of Greenhouse Gas Emissions (GHG) of about 28% was achieved for this system compared to an equivalent conventional system. The near elimination of the use of fuel oil in this system makes it very promising for very cold climate regions in terms of energy savings because the running cost is not so dependent on the unstable nature of global oil prices.
Dong, Yue; Feng, Yujie; Qu, Youpeng; Du, Yue; Zhou, Xiangtong; Liu, Jia
2015-01-01
Energy self-sufficiency is a highly desirable goal of sustainable wastewater treatment. Herein, a combined system of a microbial fuel cell and an intermittently aerated biological filter (MFC-IABF) was designed and operated in an energy self-sufficient manner. The system was fed with synthetic wastewater (COD = 1000 mg L−1) in continuous mode for more than 3 months at room temperature (~25 °C). Voltage output was increased to 5 ± 0.4 V using a capacitor-based circuit. The MFC produced electricity to power the pumping and aeration systems in IABF, concomitantly removing COD. The IABF operating under an intermittent aeration mode (aeration rate 1000 ± 80 mL h−1) removed the residual nutrients and improved the water quality at HRT = 7.2 h. This two-stage combined system obtained 93.9% SCOD removal and 91.7% TCOD removal (effluent SCOD = 61 mg L−1, TCOD = 82.8 mg L−1). Energy analysis indicated that the MFC unit produced sufficient energy (0.27 kWh m−3) to support the pumping system (0.014 kWh m−3) and aeration system (0.22 kWh m−3). These results demonstrated that the combined MFC-IABF system could be operated in an energy self-sufficient manner, resulting to high-quality effluent. PMID:26666392
Hydrogen Fuel System Design Trades for High-Altitude Long-Endurance Remotely- Operated Aircraft
NASA Technical Reports Server (NTRS)
Millis, Marc G.; Tornabene, Robert T.; Jurns, John M.; Guynn, Mark D.; Tomsik, Thomas M.; VanOverbeke, Thomas J.
2009-01-01
Preliminary design trades are presented for liquid hydrogen fuel systems for remotely-operated, high-altitude aircraft that accommodate three different propulsion options: internal combustion engines, and electric motors powered by either polymer electrolyte membrane fuel cells or solid oxide fuel cells. Mission goal is sustained cruise at 60,000 ft altitude, with duration-aloft a key parameter. The subject aircraft specifies an engine power of 143 to 148 hp, gross liftoff weight of 9270 to 9450 lb, payload of 440 lb, and a hydrogen fuel capacity of 2650 to 2755 lb stored in two spherical tanks (8.5 ft inside diameter), each with a dry mass goal of 316 lb. Hydrogen schematics for all three propulsion options are provided. Each employs vacuum-jacketed tanks with multilayer insulation, augmented with a helium pressurant system, and using electric motor driven hydrogen pumps. The most significant schematic differences involve the heat exchangers and hydrogen reclamation equipment. Heat balances indicate that mission durations of 10 to 16 days appear achievable. The dry mass for the hydrogen system is estimated to be 1900 lb, including 645 lb for each tank. This tank mass is roughly twice that of the advanced tanks assumed in the initial conceptual vehicle. Control strategies are not addressed, nor are procedures for filling and draining the tanks.
Alternative Fuels Data Center: Hydrogen
this section... Hydrogen Basics Benefits & Considerations Stations Vehicles Laws & Incentives distribution, research and development, and related links. Icon of a scale. Benefits and Considerations Explore the benefits and considerations of using hydrogen as a vehicle fuel. Icon of a fueling pump. Stations
NASA Technical Reports Server (NTRS)
Kimble, Michael C.; Hoberecht, Mark
2003-01-01
NASA's Next Generation Launch Technology (NGLT) program is being developed to meet national needs for civil and commercial space access with goals of reducing the launch costs, increasing the reliability, and reducing the maintenance and operating costs. To this end, NASA is considering an all- electric capability for NGLT vehicles requiring advanced electrical power generation technology at a nominal 20 kW level with peak power capabilities six times the nominal power. The proton exchange membrane (PEM) fuel cell has been identified as a viable candidate to supply this electrical power; however, several technology aspects need to be assessed. Electrochem, Inc., under contract to NASA, has developed a breadboard power generator to address these technical issues with the goal of maximizing the system reliability while minimizing the cost and system complexity. This breadboard generator operates with dry hydrogen and oxygen gas using eductors to recirculate the gases eliminating gas humidification and blowers from the system. Except for a coolant pump, the system design incorporates passive components allowing the fuel cell to readily follow a duty cycle profile and that may operate at high 6:1 peak power levels for 30 second durations. Performance data of the fuel cell stack along with system performance is presented to highlight the benefits of the fuel cell stack design and system design for NGLT vehicles.
Hydrodynamic design of generic pump components
NASA Technical Reports Server (NTRS)
Eastland, A. H. J.; Dodson, H. C.
1991-01-01
Inducer and impellar base geometries were defined for a fuel pump for a generic generator cycle. Blade surface data and inlet flowfield definition are available in sufficient detail to allow computational fluid dynamic analysis of the two components.
AAFES Gas Station at Creech Air Force Base Environmental Assessment
2009-07-01
Creech AFB with modern fuel refilling services. The AAFES Gas Station would include a one pump two hose filling station, a concrete slab, a 12,000...at both end of each hose , a shear valve at the base of the pump, and an electronic sensor in the dispenser to detect fuel leakage. In order to add...designed and built with leak prevention safety equipment. Shut- off valves would be installed at both ends of each hose . A shear valve would be
Fiber optic distributed chemical sensor for the real time detection of hydrocarbon fuel leaks
NASA Astrophysics Data System (ADS)
Mendoza, Edgar; Kempen, C.; Esterkin, Yan; Sun, Sunjian
2015-09-01
With the increase worldwide demand for hydrocarbon fuels and the vast development of new fuel production and delivery infrastructure installations around the world, there is a growing need for reliable hydrocarbon fuel leak detection technologies to provide safety and reduce environmental risks. Hydrocarbon leaks (gas or liquid) pose an extreme danger and need to be detected very quickly to avoid potential disasters. Gas leaks have the greatest potential for causing damage due to the explosion risk from the dispersion of gas clouds. This paper describes progress towards the development of a fast response, high sensitivity, distributed fiber optic fuel leak detection (HySense™) system based on the use of an optical fiber that uses a hydrocarbon sensitive fluorescent coating to detect the presence of fuel leaks present in close proximity along the length of the sensor fiber. The HySense™ system operates in two modes, leak detection and leak localization, and will trigger an alarm within seconds of exposure contact. The fast and accurate response of the sensor provides reliable fluid leak detection for pipelines, storage tanks, airports, pumps, and valves to detect and minimize any potential catastrophic damage.
Method and apparatus for operating a self-starting air heating system
Heinrich, Charles E.
1983-12-06
A self-starting, fuel fired, air heating system including a fuel burner fired vapor generator, a turbine, and a condenser connected in a closed circuit such that the vapor output from the vapor generator is conducted to the turbine and then to the condenser where it is condensed for return to the vapor generator. The turbine drives an air blower which passes air over the condenser for cooling the condenser and heating the air. Also, a condensate pump is driven by the turbine. The disclosure is particularly concerned with a method and apparatus which on start-up prevents the vapor generator's vapor output from being conducted to the turbine until a predetermined pressure differential has been achieved. However, after the vapor flow is once permitted, it cannot again be prevented until after the fuel burner has been shut off and restarted.
NASA Technical Reports Server (NTRS)
Rothrock, A M; Marsh, E T
1935-01-01
Test data and analysis show that the rate of fuel leakage between a lapped plunger and sleeve varies directly with the density of the fuel, the diameter of the plunger, the pressure producing the leakage, and the cube of the mean clearance between the plunger and sleeve. The rate varies inversely as the length of the lapped fit and the viscosity of the fuel. With a mean clearance between the plunger and sleeve of 0.0001 inch the leakage amounts to approximately 0.2 percent of the fuel injected with gasoline and as low as 0.01 percent with diesel fuel oils. With this mean clearance an effective seal is obtained when the length of the lap is three times the diameter of the lap. The deformation of the sleeve and plunger under pressure is sufficient to change the rate of leakage appreciably from that which would be obtained if the clearance was constant under pressure.
NASA Astrophysics Data System (ADS)
Zhang, Tao; Wang, Qing-Ming
A fuel cell is a device that can convert chemical energy into electricity directly. Among various types of fuel cells, both polymer electrolyte membrane fuel cells (PEMFCs) and direct methanol fuel cells (DMFCs) can work at low temperature (<80 °C). Therefore, they can be used to supply power for commercial portable electronics such as laptop computers, digital cameras, PDAs and cell phones. The focus of this paper is to investigate the performance of a miniaturized DMFC device using a micropump to deliver fuel. The core of this micropump is a piezoelectric ring-type bending actuator and the associated nozzle/diffuser for directing fuel flow. Based on the experimental measurements, it is found that the performance of the fuel cell can be significantly improved if enough fuel flow is induced by the micropump at anode. Three factors may contribute to the performance enhancement including replenishment of methanol, decrease of diffusion resistance and removal of carbon dioxide. In comparison with conventional mini pumps, the size of the piezoelectric micropump is much smaller and the energy consumption is much lower. Thus, it is very viable and effective to use a piezoelectric valveless micropump for fuel delivery in miniaturized DMFC power systems.
Unearthing the secrets of mitochondrial ROS and glutathione in bioenergetics.
Mailloux, Ryan J; McBride, Skye L; Harper, Mary-Ellen
2013-12-01
During the cellular oxidation of fuels, electrons are used to power the proton pumps of the mitochondrial electron transport chain (ETC) and ultimately drive ATP synthesis and the reduction of molecular oxygen to water. During these oxidative processes, some electrons can 'spin off' during fuel oxidation and electron transport to univalently reduce O2, forming reactive oxygen species (ROS). In excess, ROS can be detrimental; however, at low concentrations oxyradicals are essential signaling molecules. Mitochondria thus use a battery of systems to finely control types and levels of ROS, including antioxidants. Several antioxidant systems depend on glutathione. Here, we review mitochondrial ROS homeostatic systems, including emerging knowledge about roles of glutathione in redox balance and the control of protein function by post-translational modification. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Frady, Greg; Smaolloey, Kurt; LaVerde, Bruce; Bishop, Jim
2004-01-01
The paper will discuss practical and analytical findings of a test program conducted to assist engineers in determining which analytical strain fields are most appropriate to describe the crack initiating and crack propagating stresses in thin walled cylindrical hardware that serves as part of the Space Shuttle Main Engine's fuel system. In service the hardware is excited by fluctuating dynamic pressures in a cryogenic fuel that arise from turbulent flow/pump cavitation. A bench test using a simplified system was conducted using acoustic energy in air to excite the test articles. Strain measurements were used to reveal response characteristics of two Flowliner test articles that are assembled as a pair when installed in the engine feed system.
Energy Efficiency and Renewable Energy Program. Bibliography, 1993 edition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vaughan, K.H.
1993-06-01
The Bibliography contains listings of publicly available reports, journal articles, and published conference papers sponsored by the DOE Office of Energy Efficiency and Renewable Energy and published between 1987 and mid-1993. The topics of Bibliography include: analysis and evaluation; building equipment research; building thermal envelope systems and materials; district heating; residential and commercial conservation program; weatherization assistance program; existing buildings research program; ceramic technology project; alternative fuels and propulsion technology; microemulsion fuels; industrial chemical heat pumps; materials for advanced industrial heat exchangers; advanced industrial materials; tribology; energy-related inventions program; electric energy systems; superconducting technology program for electric energy systems; thermalmore » energy storage; biofuels feedstock development; biotechnology; continuous chromatography in multicomponent separations; sensors for electrolytic cells; hydropower environmental mitigation; environmental control technology; continuous fiber ceramic composite technology.« less
APPARATUS FOR CONTROL OF A BOILING REACTOR RESPONSIVE TO STEAM DEMAND
Treshow, M.
1963-07-23
A method of controlling a fuel-rod-in-tube-type boilingwater reactor having nozzles at the point of water entry into the tube is described. Water is pumped into the nozzles by an auxiliary pump operated by steam from an interstage position of the associated turbine, so that the pumping speed is responsive to turbine demand. (AEC)
A liquid-metal filling system for pumped primary loop space reactors
NASA Astrophysics Data System (ADS)
Crandall, D. L.; Reed, W. C.
Some concepts for the SP-100 space nuclear power reactor use liquid metal as the primary coolant in a pumped loop. Prior to filling ground engineering test articles or reactor systems, the liquid metal must be purified and circulated through the reactor primary system to remove contaminants. If not removed, these contaminants enhance corrosion and reduce reliability. A facility was designed and built to support Department of Energy Liquid Metal Fast Breeder Reactor tests conducted at the Idaho National Engineering Laboratory. This test program used liquid sodium to cool nuclear fuel in in-pile experiments; thus, a system was needed to store and purify sodium inventories and fill the experiment assemblies. This same system, with modifications and potential changeover to lithium or sodium-potassium (NaK), can be used in the Space Nuclear Power Reactor Program. This paper addresses the requirements, description, modifications, operation, and appropriateness of using this liquid-metal system to support the SP-100 space reactor program.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berglin, Eric J.; Enderlin, Carl W.; Schmidt, Andrew J.
2012-11-01
The National Advanced Biofuels Consortium is working to develop improved methods for producing high-value hydrocarbon fuels. The development of one such method, the hydrothermal liquefaction (HTL) process, is being led by the Pacific Northwest National Laboratory (PNNL). The HTL process uses a wet biomass slurry at elevated temperatures (i.e., 300 to 360°C [570 to 680°F]) and pressures above the vapor pressure of water (i.e., 15 to 20 MPa [2200 to 3000 psi] at these temperatures) to facilitate a condensed-phase reaction medium. The process has been successfully tested at bench-scale and development and testing at a larger scale is required tomore » prove the viability of the process at production levels. Near-term development plans include a pilot-scale system on the order of 0.5 to 40 gpm, followed by a larger production-scale system on the order of 2000 dry metric tons per day (DMTPD). A significant challenge to the scale-up of the HTL process is feeding a highly viscous fibrous biomass wood/corn stover feedstock into a pump system that provides the required 3000 psi of pressure for downstream processing. In October 2011, PNNL began investigating commercial feed and pumping options that would meet these HTL process requirements. Initial efforts focused on generating a HTL feed and pump specification and then providing the specification to prospective vendors to determine the suitability of their pumps for the pilot-scale and production-scale plants. Six vendors were identified that could provide viable equipment to meet HTL feed and/or pump needs. Those six vendors provided options consisting three types of positive displacement pumps (i.e., diaphragm, piston, and lobe pumps). Vendors provided capabilities and equipment related to HTL application. This information was collected, assessed, and summarized and is provided as appendices to this report.« less
29 CFR 1917.156 - Fuel handling and storage.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) Liquid fuel dispensing devices, such as pumps, shall be mounted either on a concrete island or be...) Containers shall be examined before recharging and again before reuse for the following: (A) Dents, scrapes...
29 CFR 1917.156 - Fuel handling and storage.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) Liquid fuel dispensing devices, such as pumps, shall be mounted either on a concrete island or be...) Containers shall be examined before recharging and again before reuse for the following: (A) Dents, scrapes...
29 CFR 1917.156 - Fuel handling and storage.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) Liquid fuel dispensing devices, such as pumps, shall be mounted either on a concrete island or be...) Containers shall be examined before recharging and again before reuse for the following: (A) Dents, scrapes...
29 CFR 1917.156 - Fuel handling and storage.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) Liquid fuel dispensing devices, such as pumps, shall be mounted either on a concrete island or be...) Containers shall be examined before recharging and again before reuse for the following: (A) Dents, scrapes...
29 CFR 1917.156 - Fuel handling and storage.
Code of Federal Regulations, 2014 CFR
2014-07-01
...) Liquid fuel dispensing devices, such as pumps, shall be mounted either on a concrete island or be...) Containers shall be examined before recharging and again before reuse for the following: (A) Dents, scrapes...
High Pressure Earth Storable Rocket Technology Program: Basic Program
NASA Technical Reports Server (NTRS)
Chazen, M. L.; Sicher, D.; Huang, D.; Mueller, T.
1995-01-01
The HIPES Program was conducted for NASA-LeRC by TRW. The Basic Program consisted of system studies, design of testbed engine, fabrication and testing of engine. Studies of both pressure-fed and pump-fed systems were investigated for N2O4 and both MMH and N2H4 fuels with the result that N2H4 provides the maximum payload for all satellites over MMH. The higher pressure engine offers improved performance with smaller envelope and associated weight savings. Pump-fed systems offer maximum payload for large and medium weight satellites while pressure-fed systems offer maximum payload for small light weight satellites. The major benefits of HIPES are high performance within a confined length maximizing payload for lightsats which are length (volume) constrained. Three types of thrust chambers were evaluated -- Copper heatsink at 400, 500 and 600 psia chamber pressures for performance/thermal; water cooled to determine heat absorbed to predict rhenium engine operation; and rhenium to validate the concept. The HIPES engine demonstrated very high performance at 50 lbf thrust (epsilon = 150) and Pc = 500 psia with both fuels: Isp = 337 sec using N2O4-N2H4 and ISP = 327.5 sec using N2O4-MMH indicating combustion efficiencies greater than 98%. A powder metallurgy rhenium engine demonstrated operation with high performance at Pc = 500 psia which indicated the viability of the concept.
NASA Astrophysics Data System (ADS)
Kim, Gi-Woo; Wang, K. W.
2008-03-01
In recent years, researchers have investigated the feasibility of utilizing piezoelectric-hydraulic pump based actuation systems for automotive transmission controls. This new concept could eventually reduce the complexity, weight, and fuel consumption of the current transmissions. In this research, we focus on how to utilize this new approach on the shift control of automatic transmissions (AT), which generally requires pressure profiling for friction elements during the operation. To illustrate the concept, we will consider the 1--> 2 up shift control using band brake friction elements. In order to perform the actuation force tracking for AT shift control, nonlinear force feedback control laws are designed based on the sliding mode theory for the given nonlinear system. This paper will describe the modeling of the band brake actuation system, the design of the nonlinear force feedback controller, and simulation and experimental results for demonstration of the new concept.
NASA Astrophysics Data System (ADS)
1982-04-01
The feasibility of a geothermal heating system at the Ojo Caliente Mineral Springs Co. was investigated. The geothermal energy will be used to preheat hot water for the laundry facilities and to heat the water for a two pipe fan coil heating system in the hotel. Present annual heating fuel costs of $11,218 for propane will be replaced by electricity to operate fans and pump at an annual cost of $2547, resulting in a net savings of $8671. Installation costs include $10,100 for a well system, $1400 for a laundry system, and $41,100 for a heating system. With the addition of a 10% design fee the total installation cost is $57,860. Ignoring escalating propane fuel prices, tax credits for energy conservation equipment, and potential funding from the State of New Mexico for a geothermal demonstration project, the simple economic payback period for this project is 6.7 years.
Water Chemistry Control System for Recovery of Damaged and Degraded Spent Fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sindelar, R.; Fisher, D.; Thomas, J.
2011-02-18
The International Atomic Energy Agency (IAEA) and the government of Serbia have led the project cosponsored by the U.S, Russia, European Commission, and others to repackage and repatriate approximately 8000 spent fuel elements from the RA reactor fuel storage basins at the VIN?A Institute of Nuclear Sciences to Russia for reprocessing. The repackaging and transportation activities were implemented by a Russian consortium which includes the Sosny Company, Tekhsnabeksport (TENEX) and Mayak Production Association. High activity of the water of the fuel storage basin posed serious risk and challenges to the fuel removal from storage containers and repackaging for transportation. Themore » risk centered on personnel exposure, even above the basin water, due to the high water activity levels caused by Cs-137 leached from fuel elements with failed cladding. A team of engineers from the U.S. DOE-NNSA's Global Threat Reduction Initiative, the Vinca Institute, and the IAEA performed the design, development, and deployment of a compact underwater water chemistry control system (WCCS) to remove the Cs-137 from the basin water and enable personnel safety above the basin water for repackaging operations. Key elements of the WCCS system included filters, multiple columns containing an inorganic sorbent, submersible pumps and flow meters. All system components were designed to be remotely serviceable and replaceable. The system was assembled and successfully deployed at the Vinca basin to support the fuel removal and repackaging activities. Following the successful operations, the Cs-137 is now safely contained and consolidated on the zeolite sorbent used in the columns of the WCCS, and the fuel has been removed from the basins. This paper reviews the functional requirements, design, and deployment of the WCCS.« less
A Three-Dimensional Parallel Time-Accurate Turbopump Simulation Procedure Using Overset Grid System
NASA Technical Reports Server (NTRS)
Kiris, Cetin; Chan, William; Kwak, Dochan
2002-01-01
The objective of the current effort is to provide a computational framework for design and analysis of the entire fuel supply system of a liquid rocket engine, including high-fidelity unsteady turbopump flow analysis. This capability is needed to support the design of pump sub-systems for advanced space transportation vehicles that are likely to involve liquid propulsion systems. To date, computational tools for design/analysis of turbopump flows are based on relatively lower fidelity methods. An unsteady, three-dimensional viscous flow analysis tool involving stationary and rotational components for the entire turbopump assembly has not been available for real-world engineering applications. The present effort provides developers with information such as transient flow phenomena at start up, and nonuniform inflows, and will eventually impact on system vibration and structures. In the proposed paper, the progress toward the capability of complete simulation of the turbo-pump for a liquid rocket engine is reported. The Space Shuttle Main Engine (SSME) turbo-pump is used as a test case for evaluation of the hybrid MPI/Open-MP and MLP versions of the INS3D code. CAD to solution auto-scripting capability is being developed for turbopump applications. The relative motion of the grid systems for the rotor-stator interaction was obtained using overset grid techniques. Unsteady computations for the SSME turbo-pump, which contains 114 zones with 34.5 million grid points, are carried out on Origin 3000 systems at NASA Ames Research Center. Results from these time-accurate simulations with moving boundary capability are presented along with the performance of parallel versions of the code.
Electric Vehicles : Impacts on Transportation Revenue
DOT National Transportation Integrated Search
2017-06-07
The maintenance of transportation infrastructures has traditionally been funded from federal and state taxes collected by the state from fossil fuel distributors, included into fuel price at the pump and ultimately paid by all internal combustion eng...
DOE Office of Scientific and Technical Information (OSTI.GOV)
C.C. Baker; T.M. Pfeiffer; J.C. Price
2013-09-01
Inspection and drying equipment has been implemented in a hot cell to address the inadvertent ingress of water into used nuclear fuel storage bottles. Operated with telemanipulators, the system holds up to two fuel bottles and allows their threaded openings to be connected to pressure transducers and a vacuum pump. A prescribed pressure rebound test is used to diagnose the presence of moisture. Bottles found to contain moisture are dried by vaporization. The drying process is accelerated by the application of heat and vacuum. These techniques detect and remove virtually all free water (even water contained in a debris bed)more » while leaving behind most, if not all, particulates. The extracted water vapour passes through a thermoelectric cooler where it is condensed back to the liquid phase for collection. Fuel bottles are verified to be dry by passing the pressure rebound test.« less
System design description of forced-convection molten-salt corrosion loops MSR-FCL-3 and MSR-FCL-4
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huntley, W.R.; Silverman, M.D.
1976-11-01
Molten-salt corrosion loops MSR-FCL-3 and MSR-FCL-4 are high-temperature test facilities designed to evaluate corrosion and mass transfer of modified Hastelloy N alloys for future use in Molten-Salt Breeder Reactors. Salt is circulated by a centrifugal sump pump to evaluate material compatibility with LiF-BeF/sub 2/-ThF/sub 4/-UF/sub 4/ fuel salt at velocities up to 6 m/s (20 fps) and at salt temperatures from 566 to 705/sup 0/C (1050 to 1300/sup 0/F). The report presents the design description of the various components and systems that make up each corrosion facility, such as the salt pump, corrosion specimens, salt piping, main heaters, salt coolers,more » salt sampling equipment, and helium cover-gas system, etc. The electrical systems and instrumentation and controls are described, and operational procedures, system limitations, and maintenance philosophy are discussed.« less
Dual-Pump Coherent Anti-Stokes Raman Scattering Temperature and CO2 Concentration Measurements
NASA Technical Reports Server (NTRS)
Lucht, Robert P.; Velur-Natarajan, Viswanathan; Carter, Campbell D.; Grinstead, Keith D., Jr.; Gord, James R.; Danehy, Paul M.; Fiechtner, G. J.; Farrow, Roger L.
2003-01-01
Measurements of temperature and CO2 concentration using dual-pump coherent anti-Stokes Raman scattering, (CARS) are described. The measurements were performed in laboratory flames,in a room-temperature gas cell, and on an engine test stand at the U.S. Air Force Research Laboratory, Wright-Patterson Air Force Base. A modeless dye laser, a single-mode Nd:YAG laser, and an unintensified back-illuminated charge-coupled device digital camera were used for these measurements. The CARS measurements were performed on a single-laser-shot basis. The standard deviations of the temperatures and CO2 mole fractions determined from single-shot dual-pump CARS spectra in steady laminar propane/air flames were approximately 2 and 10% of the mean values of approximately 2000 K and 0.10, respectively. The precision and accuracy of single-shot temperature measurements obtained from the nitrogen part of the dual-pump CARS system were investigated in detail in near-adiabatic hydrogen/air/CO2 flames. The precision of the CARS temperature measurements was found to be comparable to the best results reported in the literature for conventional two-laser, single-pump CARS. The application of dual-pump CARS for single-shot measurements in a swirl-stabilized combustor fueled with JP-8 was also demonstrated.
STS-31: APU Controller Removal
NASA Technical Reports Server (NTRS)
1990-01-01
The launch April 10 of the STS-31 was scrubbed at T-4 minutes due to a faulty valve in auxiliary power unit (APU) number one. The auxiliary power unit is a hydrazine-fueled, turbine-driven power unit that generates mechanical shaft power to drive a hydraulic pump that produces pressure for the orbiter's hydraulic system. This video shows the removal of the STS-31's auxiliary power unit (APU).
Large-Flow-Area Flow-Selective Liquid/Gas Separator
NASA Technical Reports Server (NTRS)
Vasquez, Arturo; Bradley, Karla F.
2010-01-01
This liquid/gas separator provides the basis for a first stage of a fuel cell product water/oxygen gas phase separator. It can separate liquid and gas in bulk in multiple gravity environments. The system separates fuel cell product water entrained with circulating oxygen gas from the outlet of a fuel cell stack before allowing the gas to return to the fuel cell stack inlet. Additional makeup oxygen gas is added either before or after the separator to account for the gas consumed in the fuel cell power plant. A large volume is provided upstream of porous material in the separator to allow for the collection of water that does not exit the separator with the outgoing oxygen gas. The water then can be removed as it continues to collect, so that the accumulation of water does not impede the separating action of the device. The system is designed with a series of tubes of the porous material configured into a shell-and-tube heat exchanger configuration. The two-phase fluid stream to be separated enters the shell-side portion of the device. Gas flows to the center passages of the tubes through the porous material and is then routed to a common volume at the end of the tubes by simple pressure difference from a pumping device. Gas flows through the porous material of the tubes with greater ease as a function of the ratio of the dynamic viscosity of the water and gas. By careful selection of the dimensions of the tubes (wall thickness, porosity, diameter, length of the tubes, number of the tubes, and tube-to-tube spacing in the shell volume) a suitable design can be made to match the magnitude of water and gas flow, developed pressures from the oxygen reactant pumping device, and required residual water inventory for the shellside volume.
Fissioning uranium plasmas and nuclear-pumped lasers
NASA Technical Reports Server (NTRS)
Schneider, R. T.; Thom, K.
1975-01-01
Current research into uranium plasmas, gaseous-core (cavity) reactors, and nuclear-pumped lasers is discussed. Basic properties of fissioning uranium plasmas are summarized together with potential space and terrestrial applications of gaseous-core reactors and nuclear-pumped lasers. Conditions for criticality of a uranium plasma are outlined, and it is shown that the nonequilibrium state and the optical thinness of a fissioning plasma can be exploited for the direct conversion of fission fragment energy into coherent light (i.e., for nuclear-pumped lasers). Successful demonstrations of nuclear-pumped lasers are described together with gaseous-fuel reactor experiments using uranium hexafluoride.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gu, A.G.; Miller, M.S.
1991-01-01
All space missions require a reliable, compact source of energy. This paper describes preliminary neutronics studies of pocket'' reactor concepts employing PuF{sub 6} and transplutonic materials as fuels for space high power/energy Nuclear Pumped Lasers (NPLs). Previous research has studied NPL reactor concepts with thin fuel layers, aerosol fuels and gaseous UF{sub 6}. The total reactor volumes for compact reactors with these types of fuels typically range from 3 m{sup 3} to 50 m{sup 3}. By employing PuF{sub 6} and transplutonic fuels at the same low densities, a calculated value for Keff of 1.2 has been achieved for conditions ofmore » 900 K and 5 atm, with total reactor volumes of 1.5 m{sup 3} for PuF{sub 6}, 0.51 m{sup 3} for Am-242m, 0.58 m{sup 3} for Cm-245 and 0.63 m{sup 3} for Cf-249.« less
NASA Astrophysics Data System (ADS)
Archer, Alexandra
The use of Jatropha curcas as a source of oil for fueling water pumps holds promise for rural communities struggling to achieve water security in arid climates. The potential for use in developing communities as an affordable, sustainable fuel source has been highly recommended for many reasons: it is easily propagated, drought resistant, grows rapidly, and has high-oil-content seeds, as well as medicinal and economic potential. This study uses a rural community in Senegal, West Africa, and calculates at what level of Jatropha curcas production the village is able to be self-sufficient in fueling their water system to meet drinking, sanitation and irrigation requirements. The current water distribution system was modelled to represent irrigation requirements for nine different Jatropha curcas cultivation and processing schemes. It was found that a combination of using recycled greywater for irrigation and a mechanical press to maximize oil recovered from the seeds of mature Jatropha curcas trees, would be able to operate the water system with no diesel required.
Climate Adaptivity and Field Test of the Space Heating Used Air-Source Transcritical CO2 Heat Pump
NASA Astrophysics Data System (ADS)
Song, Yulong; Ye, Zuliang; Cao, Feng
2017-08-01
In this study, an innovation of air-sourced transcritical CO2 heat pump which was employed in the space heating application was presented and discussed in order to solve the problem that the heating performances of the transcritical CO2 heat pump water heater deteriorated sharply with the augment in water feed temperature. An R134a cycle was adopted as a subcooling device in the proposed system. The prototype of the presented system was installed and supplied hot water for three places in northern China in winter. The field test results showed that the acceptable return water temperature can be increased up to 55°C, while the supply water temperature was raised rapidly by the presented prototype to up to 70°C directly, which was obviously appropriate to the various conditions of heating radiator in space heating application. Additionally, though the heating capacity and power dissipation decreased with the decline in ambient temperature or the augment in water temperature, the presented heat pump system performed efficiently whatever the climate and water feed temperature were. The real time COP of the presented system was generally more than 1.8 in the whole heating season, while the seasonal performance coefficient (SPC) was also appreciable, which signified that the economic efficiency of the presented system was more excellent than other space heating approaches such as fuel, gas, coal or electric boiler. As a result, the novel system will be a promising project to solve the energy issues in future space heating application.
Time-Dependent Simulations of Turbopump Flows
NASA Technical Reports Server (NTRS)
Kris, Cetin C.; Kwak, Dochan
2001-01-01
The objective of the current effort is to provide a computational framework for design and analysis of the entire fuel supply system of a liquid rocket engine, including high-fidelity unsteady turbopump flow analysis. This capability is needed to support the design of pump sub-systems for advanced space transportation vehicles that are likely to involve liquid propulsion systems. To date, computational tools for design/analysis of turbopump flows are based on relatively lower fidelity methods. An unsteady, three-dimensional viscous flow analysis tool involving stationary and rotational components for the entire turbopump assembly has not been available for real-world engineering applications. The present effort will provide developers with information such as transient flow phenomena at start up, impact of non-uniform inflows, system vibration and impact on the structure. In the proposed paper, the progress toward the capability of complete simulation of the turbo-pump for a liquid rocket engine is reported. The Space Shuttle Main Engine (SSME) turbo-pump is used as a test case for evaluation of the hybrid MPI/Open-MP and MLP versions of the INS3D code. The relative motion of the grid systems for the rotor-stator interaction was obtained using overset grid techniques. Time-accuracy of the scheme has been evaluated with simple test cases. Unsteady computations for the SSME turbo-pump, which contains 114 zones with 34.5 million grid points, are carried out on Origin 2000 systems at NASA Ames Research Center. Results from these time-accurate simulations with moving boundary capability will be presented along with the performance of parallel versions of the code.
NASA Astrophysics Data System (ADS)
Hetrick, Robert E.; Hohnke, D. K.; Logothetis, E. M.
1981-01-01
Ceramic ZrO2, TiO2 and related oxides with suitable O2-sensitive electrical properties have found important applications in devices for measuring exhaust-gas O2 concentration. For example, such devices are key components in feedback control systems that would maintain the intake air-to-fuel ratio near the stoichiometric value where regulated emissions can be minimized. The physical principles underlying the operation of ZrO2 based O2-concentration cells and TiO2-based resistive devices for the stoichiometric application are described. Finally, a device based on electrochemical O2 pumping is discussed which may be useful for A/F control in the fuel-efficient lean region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sandstrom, Matthew M.
2012-03-30
This is the final report for a grant-funded project to financially assist and otherwise provide support to projects that increase E85 infrastructure in Michigan at retail fueling locations. Over the two-year project timeframe, nine E85 and/or flex-fuel pumps were installed around the State of Michigan at locations currently lacking E85 infrastructure. A total of five stations installed the nine pumps, all providing cost share toward the project. By using cost sharing by station partners, the $200,000 provided by the Department of Energy facilitated a total project worth $746,332.85. This project was completed over a two-year timetable (eight quarters). The firstmore » quarter of the project focused on project outreach to station owners about the incentive on the installation and/or conversion of E85 compatible fueling equipment including fueling pumps, tanks, and all necessary electrical and plumbing connections. Utilizing Clean Energy Coalition (CEC) extensive knowledge of gasoline/ethanol infrastructure throughout Michigan, CEC strategically placed these pumps in locations to strengthen the broad availability of E85 in Michigan. During the first and second quarters, CEC staff approved projects for funding and secured contracts with station owners; the second through eighth quarters were spent working with fueling station owners to complete projects; the third through eighth quarters included time spent promoting projects; and beginning in the second quarter and running for the duration of the project was spent performing project reporting and evaluation to the US DOE. A total of 9 pumps were installed (four in Elkton, two in Sebewaing, one in East Lansing, one in Howell, and one in Whitmore Lake). At these combined station locations, a total of 192,445 gallons of E85, 10,786 gallons of E50, and 19,159 gallons of E30 were sold in all reporting quarters for 2011. Overall, the project has successfully displaced 162,611 gallons (2,663 barrels) of petroleum, and reduced regional GHG emissions by 375 tons in the first year of station deployment.« less
Automotive Stirling engine system component review
NASA Technical Reports Server (NTRS)
Hindes, Chip; Stotts, Robert
1987-01-01
The design and testing of the power and combustion control system for the basic Stirling engine, Mod II, are examined. The power control system is concerned with transparent operation, and the Mod II uses engine working gas pressure variation to control the power output of the engine. The main components of the power control system, the power control valve, the pump-down system, and the hydrogen stable system, are described. The combustion control system consists of a combustion air supply system and an air/fuel ratio control system, and the system is to maintain constant heater head temperature, and to maximize combustion efficiency and to minimize exhaust emissions.
Department of the Air Force. FY 1995 Budget Estimates. Military Construction and Family Housing
1994-02-01
monorail lift systems and provide AFFF fire protection system, and elevators. Renovate engineering and work areas; provide new air make-up unit and...135,0U0 SY 1,200 880-212 AFFF FIRE SUPPRESSION SYSTEM LS 800 FOR FUEL CELL TOTAL: 10,450 9b. Future Projects: Typical Planned Next Three Years: 111...PROTECT 2 EA 3,600 PH II & AFFF PUMPS/RESERVOIR TOTAL: 27,900 9b. Future Projects: Typical Planned Next Three Years: 442-758 WAREHOUSE 107,000 SF
A 6-DOF vibration isolation system for hydraulic hybrid vehicles
NASA Astrophysics Data System (ADS)
Nguyen, The; Elahinia, Mohammad; Olson, Walter W.; Fontaine, Paul
2006-03-01
This paper presents the results of vibration isolation analysis for the pump/motor component of hydraulic hybrid vehicles (HHVs). The HHVs are designed to combine gasoline/diesel engine and hydraulic power in order to improve the fuel efficiency and reduce the pollution. Electric hybrid technology is being applied to passenger cars with small and medium engines to improve the fuel economy. However, for heavy duty vehicles such as large SUVs, trucks, and buses, which require more power, the hydraulic hybridization is a more efficient choice. In function, the hydraulic hybrid subsystem improves the fuel efficiency of the vehicle by recovering some of the energy that is otherwise wasted in friction brakes. Since the operation of the main component of HHVs involves with rotating parts and moving fluid, noise and vibration are an issue that affects both passengers (ride comfort) as well as surrounding people (drive-by noise). This study looks into the possibility of reducing the transmitted noise and vibration from the hydraulic subsystem to the vehicle's chassis by using magnetorheological (MR) fluid mounts. To this end, the hydraulic subsystem is modeled as a six degree of freedom (6-DOF) rigid body. A 6-DOF isolation system, consisting of five mounts connected to the pump/motor at five different locations, is modeled and simulated. The mounts are designed by combining regular elastomer components with MR fluids. In the simulation, the real loading and working conditions of the hydraulic subsystem are considered and the effects of both shock and vibration are analyzed. The transmissibility of the isolation system is monitored in a wide range of frequencies. The geometry of the isolation system is considered in order to sustain the weight of the hydraulic system without affecting the design of the chassis and the effectiveness of the vibration isolating ability. The simulation results shows reduction in the transmitted vibration force for different working cycles of the regenerative system.
NASA Technical Reports Server (NTRS)
Myers, William; Winter, Steve
2006-01-01
The General Electric Reliable and Affordable Controls effort under the NASA Advanced Subsonic Technology (AST) Program has designed, fabricated, and tested advanced controls hardware and software to reduce emissions and improve engine safety and reliability. The original effort consisted of four elements: 1) a Hydraulic Multiplexer; 2) Active Combustor Control; 3) a Variable Displacement Vane Pump (VDVP); and 4) Intelligent Engine Control. The VDVP and Intelligent Engine Control elements were cancelled due to funding constraints and are reported here only to the state they progressed. The Hydraulic Multiplexing element developed and tested a prototype which improves reliability by combining the functionality of up to 16 solenoids and servo-valves into one component with a single electrically powered force motor. The Active Combustor Control element developed intelligent staging and control strategies for low emission combustors. This included development and tests of a Controlled Pressure Fuel Nozzle for fuel sequencing, a Fuel Multiplexer for individual fuel cup metering, and model-based control logic. Both the Hydraulic Multiplexer and Controlled Pressure Fuel Nozzle system were cleared for engine test. The Fuel Multiplexer was cleared for combustor rig test which must be followed by an engine test to achieve full maturation.
Computational Fluid Dynamics (CFD) Analysis for the Reduction of Impeller Discharge Flow Distortion
NASA Technical Reports Server (NTRS)
Garcia, R.; McConnaughey, P. K.; Eastland, A.
1993-01-01
The use of Computational Fluid Dynamics (CFD) in the design and analysis of high performance rocket engine pumps has increased in recent years. This increase has been aided by the activities of the Marshall Space Flight Center (MSFC) Pump Stage Technology Team (PSTT). The team's goals include assessing the accuracy and efficiency of several methodologies and then applying the appropriate methodology(s) to understand and improve the flow inside a pump. The PSTT's objectives, team membership, and past activities are discussed in Garcia1 and Garcia2. The PSTT is one of three teams that form the NASA/MSFC CFD Consortium for Applications in Propulsion Technology (McConnaughey3). The PSTT first applied CFD in the design of the baseline consortium impeller. This impeller was designed for the Space Transportation Main Engine's (STME) fuel turbopump. The STME fuel pump was designed with three impeller stages because a two-stage design was deemed to pose a high developmental risk. The PSTT used CFD to design an impeller whose performance allowed for a two-stage STME fuel pump design. The availability of this design would have lead to a reduction in parts, weight, and cost had the STME reached production. One sample of the baseline consortium impeller was manufactured and tested in a water rig. The test data showed that the impeller performance was as predicted and that a two-stage design for the STME fuel pump was possible with minimal risk. The test data also verified another CFD predicted characteristic of the design that was not desirable. The classical 'jet-wake' pattern at the impeller discharge was strengthened by two aspects of the design: by the high head coefficient necessary for the required pressure rise and by the relatively few impeller exit blades, 12, necessary to reduce manufacturing cost. This 'jet-wake pattern produces an unsteady loading on the diffuser vanes and has, in past rocket engine programs, lead to diffuser structural failure. In industrial applications, this problem is typically avoided by increasing the space between the impeller and the diffuser to allow the dissipation of this pattern and, hence, the reduction of diffuser vane unsteady loading. This approach leads to small performance losses and, more importantly in rocket engine applications, to significant increases in the pump's size and weight. This latter consideration typically makes this approach unacceptable in high performance rocket engines.
NASA Technical Reports Server (NTRS)
Dolan, F. X.; Kennedy, F. E.; Schulson, E. M.
1984-01-01
Cracking of the titanium knife edges on the labyrinth seals of the liquid hydrogen fuel pump in the Space Shuttle main engine is considered. Finite element analysis of the thermal response of the knife edge in sliding contact with the wear ring surface shows that interfacial temperatures can be quite high and they are significantly influenced by the thermal conductivity of the surfaces in rubbing contact. Thermal shock experiments on a test specimen similar to the knife edge geometry demonstrate that cracking of the titanium alloy is possible in a situation involving repeated thermal cycles over a wide temperature range, as might be realized during a rub in the liquid hydrogen fuel pump. High-speed rub interaction tests were conducted using a representative knife edge and seal geometry over a broad range of interaction rates and alternate materials were experimentally evaluated. Plasma-sprayed aluminum-graphite was found to be significantly better than presently used aluminum alloy seals from the standpoint of rub performance. Ion nitriding the titanium alloy knife-edges also improved rub performance compared to the untreated baseline.
NASA Technical Reports Server (NTRS)
Hasseeb, Hashmatullah; Iannetti, Anthony
2017-01-01
A major component of a Martian In-Situ Resource Utilization (ISRU) system is the CO2 acquisition subsystem. This subsystem must be able to extract and separate CO2 at ambient Martian pressures and then output the gas at high pressures for the chemical reactors to generate fuel and oxygen. The Temperature Swing Adsorption (TSA) Pump is a competitive design that can perform this task using heating and cooling cycles in an enclosed volume. The design of this system is explored and analyzed for an output pressure range of 50 kPa to 500 kPa and an adsorption temperature range of -50 C to 40 C while meeting notional requirements for two mission scenarios. Mass and energy consumption results are presented for 2-stage, 3-stage, and 4-stage systems using the following adsorbents: Grace 544 13X, BASF 13X, Grace 522 5A and VSA 10 LiX.
77 FR 65501 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-29
... done. (g) Retained Replacement of Wiring, Installation of Sleeving, and Associated Actions This... requires replacing wiring for the fuel boost pumps and override pumps with new wiring, installing Teflon sleeving on the wiring, and doing associated actions; and doing repetitive inspections to detect damage of...
78 FR 10499 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-14
... done. (g) Retained Replacement of Wiring, Installation of Sleeving, and Associated Actions This... replacing wiring for the fuel boost pumps and override pumps with new wiring, installing Teflon sleeving on the wiring, and doing associated actions; and doing repetitive inspections to detect damage of the...
A Three Dimensional Parallel Time Accurate Turbopump Simulation Procedure Using Overset Grid Systems
NASA Technical Reports Server (NTRS)
Kiris, Cetin; Chan, William; Kwak, Dochan
2001-01-01
The objective of the current effort is to provide a computational framework for design and analysis of the entire fuel supply system of a liquid rocket engine, including high-fidelity unsteady turbopump flow analysis. This capability is needed to support the design of pump sub-systems for advanced space transportation vehicles that are likely to involve liquid propulsion systems. To date, computational tools for design/analysis of turbopump flows are based on relatively lower fidelity methods. An unsteady, three-dimensional viscous flow analysis tool involving stationary and rotational components for the entire turbopump assembly has not been available for real-world engineering applications. The present effort provides developers with information such as transient flow phenomena at start up, and non-uniform inflows, and will eventually impact on system vibration and structures. In the proposed paper, the progress toward the capability of complete simulation of the turbo-pump for a liquid rocket engine is reported. The Space Shuttle Main Engine (SSME) turbo-pump is used as a test case for evaluation of the hybrid MPI/Open-MP and MLP versions of the INS3D code. CAD to solution auto-scripting capability is being developed for turbopump applications. The relative motion of the grid systems for the rotor-stator interaction was obtained using overset grid techniques. Unsteady computations for the SSME turbo-pump, which contains 114 zones with 34.5 million grid points, are carried out on Origin 3000 systems at NASA Ames Research Center. Results from these time-accurate simulations with moving boundary capability will be presented along with the performance of parallel versions of the code.
NASA Technical Reports Server (NTRS)
Watson, G. K.
1974-01-01
Simulated nuclear fuel element specimens, consisting of uranium mononitride (UN) fuel cylinders clad with tungsten-lined T-111, were exposed for up to 7500 hr at 1040 C (1900 F) in a pumped-lithium loop. The lithium flow velocity was 1.5 m/sec (5 ft/sec) in the specimen test section. No evidence of any compatibility problems between the specimens and the flowing lithium was found based on appearance, weight change, chemistry, and metallography. Direct exposure of the UN to the lithium through a simulated cladding crack resulted in some erosion of the UN in the area of the defect. The T-111 cladding was ductile after lithium exposure, but it was sensitive to hydrogen embrittlement during post-test handling.
Noise optimization of a regenerative automotive fuel pump
NASA Astrophysics Data System (ADS)
Wang, J. F.; Feng, H. H.; Mou, X. L.; Huang, Y. X.
2017-03-01
The regenerative pump used in automotive is facing a noise problem. To understand the mechanism in detail, Computational Fluid Dynamics (CFD) and Computational Acoustic Analysis (CAA) together were used to understand the fluid and acoustic characteristics of the fuel pump using ANSYS-CFX 15.0 and LMS Virtual. Lab Rev12, respectively. The CFD model and acoustical model were validated by mass flow rate test and sound pressure test, respectively. Comparing the computational and experimental results shows that sound pressure levels at the observer position are consistent at high frequencies, especially at blade passing frequency. After validating the models, several numerical models were analyzed in the study for noise improvement. It is observed that for configuration having greater number of impeller blades, noise level was significantly improved at blade passing frequency, when compared to that of the original model.
NEUTRONIC REACTOR OPERATIONAL METHOD AND CORE SYSTEM
Winters, C.E.; Graham, C.B.; Culver, J.S.; Wilson, R.H.
1960-07-19
Homogeneous neutronic reactor systems are described wherein an aqueous fuel solution is continuously circulated through a spherical core tank. The pumped fuel solution-is injected tangentially into the hollow spherical interior, thereby maintaining vigorous rotation of the solution within the tank in the form of a vortex; gaseous radiolytic decomposition products concentrate within the axial vortex cavity. The evolved gas is continuously discharged through a gas- outlet port registering with an extremity of the vortex cavity. and the solution stream is discharged through an annular liquid outlet port concentrically encircling the gas outlet by virtue of which the vortex and its cavity are maintained precisely axially aligned with the gas outlet. A primary heat exchanger extracts useful heat from the hot effluent fuel solution before its recirculation into the core tank. Hollow cylinders and other alternative core- tank configurations defining geometric volumes of revolution about a principal axis are also covered. AEC's Homogeneous Reactor Experiment No. 1 is a preferred embodiment.
77 FR 20505 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-05
... Company Model 757 airplanes. This AD requires replacing the power control relays for the fuel boost pumps and override pumps with new relays having a ground fault interrupter (GFI) feature. This AD also requires an electrical bonding resistance measurement for certain GFI relays to verify that certain bonding...
NASA Technical Reports Server (NTRS)
Fortini, Anthony; Hendrix, Charles D.; Huff, Vearl N.
1959-01-01
The performance for four altitudes (sea-level, 51,000, 65,000, and 70,000 ft) of a rocket engine having a nozzle area ratio of 48.39 and using JP-4 fuel and liquid oxygen as a propellant was evaluated experimentally by use of a 1000-pound-thrust engine operating at a chamber pressure of 600 pounds per square inch absolute. The altitude environment was obtained by a rocket-ejector system which utilized the rocket exhaust gases as the pumping fluid of the ejector. Also, an engine having a nozzle area ratio of 5.49 designed for sea level was tested at sea-level conditions. The following table lists values from faired experimental curves at an oxidant-fuel ratio of 2.3 for various approximate altitudes.
Irrigation market for solar thermal parabolic dish systems
NASA Technical Reports Server (NTRS)
Habib-Agahi, H.; Jones, S. C.
1981-01-01
The potential size of the onfarm-pumped irrigation market for solar thermal parabolic dish systems in seven high-insolation states is estimated. The study is restricted to the displacement of three specific fuels: gasoline, diesel and natural gas. The model was developed to estimate the optimal number of parabolic dish modules per farm based on the minimum cost mix of conventional and solar thermal energy required to meet irrigation needs. The study concludes that the potential market size for onfarm-pumped irrigation applications ranges from 101,000 modules when a 14 percent real discount rate is assumed to 220,000 modules when the real discount rate drops to 8 percent. Arizona, Kansas, Nebraska, New Mexico and Texas account for 98 percent of the total demand for this application, with the natural gas replacement market accounting for the largest segment (71 percent) of the total market.
Hydrogen generation systems and methods utilizing sodium silicide and sodium silica gel materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wallace, Andrew P.; Melack, John M.; Lefenfeld, Michael
Systems, devices, and methods combine thermally stable reactant materials and aqueous solutions to generate hydrogen and a non-toxic liquid by-product. The reactant materials can sodium silicide or sodium silica gel. The hydrogen generation devices are used in fuels cells and other industrial applications. One system combines cooling, pumping, water storage, and other devices to sense and control reactions between reactant materials and aqueous solutions to generate hydrogen. Springs and other pressurization mechanisms pressurize and deliver an aqueous solution to the reaction. A check valve and other pressure regulation mechanisms regulate the pressure of the aqueous solution delivered to the reactantmore » fuel material in the reactor based upon characteristics of the pressurization mechanisms and can regulate the pressure of the delivered aqueous solution as a steady decay associated with the pressurization force. The pressure regulation mechanism can also prevent hydrogen gas from deflecting the pressure regulation mechanism.« less
Hydrogen generation systems and methods utilizing sodium silicide and sodium silica gel materials
Wallace, Andrew P.; Melack, John M.; Lefenfeld, Michael
2015-08-11
Systems, devices, and methods combine thermally stable reactant materials and aqueous solutions to generate hydrogen and a non-toxic liquid by-product. The reactant materials can sodium silicide or sodium silica gel. The hydrogen generation devices are used in fuels cells and other industrial applications. One system combines cooling, pumping, water storage, and other devices to sense and control reactions between reactant materials and aqueous solutions to generate hydrogen. Springs and other pressurization mechanisms pressurize and deliver an aqueous solution to the reaction. A check valve and other pressure regulation mechanisms regulate the pressure of the aqueous solution delivered to the reactant fuel material in the reactor based upon characteristics of the pressurization mechanisms and can regulate the pressure of the delivered aqueous solution as a steady decay associated with the pressurization force. The pressure regulation mechanism can also prevent hydrogen gas from deflecting the pressure regulation mechanism.
Qualitative Importance Measures of Systems Components - A New Approach and Its Applications
NASA Astrophysics Data System (ADS)
Chybowski, Leszek; Gawdzińska, Katarzyna; Wiśnicki, Bogusz
2016-12-01
The paper presents an improved methodology of analysing the qualitative importance of components in the functional and reliability structures of the system. We present basic importance measures, i.e. the Birnbaum's structural measure, the order of the smallest minimal cut-set, the repetition count of an i-th event in the Fault Tree and the streams measure. A subsystem of circulation pumps and fuel heaters in the main engine fuel supply system of a container vessel illustrates the qualitative importance analysis. We constructed a functional model and a Fault Tree which we analysed using qualitative measures. Additionally, we compared the calculated measures and introduced corrected measures as a tool for improving the analysis. We proposed scaled measures and a common measure taking into account the location of the component in the reliability and functional structures. Finally, we proposed an area where the measures could be applied.
NASA Astrophysics Data System (ADS)
Yu, Bin; Zhou, Weixing; Qin, Jiang; Bao, Wen
2017-12-01
Regenerative cooling with fuel as the coolant is used in the scramjet engine. In order to grasp the dynamic characteristics of engine fuel supply processes, this article studies the dynamic characteristics of hydrocarbon fuel within the channel. A one-dimensional dynamic model was proved, the thermal energy storage effect, fuel volume effect and chemical dynamic effect have been considered in the model, the ordinary differential equations were solved using a 4th order Runge-Kutta method. The precision of the model was validated by three groups of experimental data. The effects of input signal, working condition, tube size on the dynamic characteristics of pressure, flow rate, temperature have been simulated. It is found that cracking reaction increased the compressibility of the fuel pyrolysis mixture and lead to longer responding time of outlet flow. The responding time of outlet flow can reach 3s when tube is 5m long which will greatly influence the control performance of the engine thrust system. Meanwhile, when the inlet flow rate appears the step change, the inlet pressure leads to overshoot, the overshoot can reach as much as 100%, such highly transient impulse will result in detrimental effect on fuel pump.
On-board generation of a highly volatile starting fuel to reduce automobile cold-start emissions.
Ashford, Marcus D; Matthews, Ronald D
2006-09-15
The on-board distillation system (OBDS) was developed to extract, from gasoline, a high-volatility fuel for exclusive use during the starting and warm-up periods. The use of OBDS distillate fuel results in much improved mixture preparation, allowing combinations of air/fuel ratio and ignition timing that are not possible with gasoline, even with a fully warm engine. The volatility of the distillate is a function of the parent fuel volatility; however, the variability in distillate quality can be diminished via manipulation of the OBDS operating conditions. Thus, it is possible to develop aggressive starting calibrations that are relatively immune to variations in pump gasoline volatility. The key benefits provided bythe OBDS fuel relative to standard gasoline were found to be (1) improved mixture preparation allowing a 70% reduction of cranking fuel requirements, elimination of air-fuel mixture enrichment during the warm-up period, and significant extension of warm-up ignition timing retard; (2) a 57% decrease in catalyst light-off time, (3) emissions reductions over the FTP drive cycle of 81% for regulated hydrocarbons (NMOG); (4) emissions index (NMOG) approaching that of SULEV/PZEV vehicles; and (5) an apparent 1% increase in fuel economy over the FTP drive cycle.
Geothermal heat pumps for heating and cooling
NASA Astrophysics Data System (ADS)
Garg, Suresh C.
1994-03-01
Naval Facilities Engineering Service Center (NFESC) has been tasked by Naval Shore Facilities Energy Office to evaluate the NAS Patuxent River ground-source heat pump (GHP) installation. A large part of a building's energy consumption consists of heating and air conditioning for occupant comfort. The space heating requirements are normally met by fossil-fuel-fired equipment or electric resistance heating. Cooling is provided by either air conditioners or heat pumps, both using electricity as an energy source.
Hybrid propulsion technology program. Volume 1: Conceptional design package
NASA Technical Reports Server (NTRS)
Jensen, Gordon E.; Holzman, Allen L.; Leisch, Steven O.; Keilbach, Joseph; Parsley, Randy; Humphrey, John
1989-01-01
A concept design study was performed to configure two sizes of hybrid boosters; one which duplicates the advanced shuttle rocket motor vacuum thrust time curve and a smaller, quarter thrust level booster. Two sizes of hybrid boosters were configured for either pump-fed or pressure-fed oxygen feed systems. Performance analyses show improved payload capability relative to a solid propellant booster. Size optimization and fuel safety considerations resulted in a 4.57 m (180 inch) diameter large booster with an inert hydrocarbon fuel. The preferred diameter for the quarter thrust level booster is 2.53 m (96 inches). As part of the design study critical technology issues were identified and a technology acquisition and demonstration plan was formulated.
Hybrid propulsion technology program. Volume 2: Technology definition package
NASA Technical Reports Server (NTRS)
Jensen, Gordon E.; Holzman, Allen L.; Leisch, Steven O.; Keilbach, Joseph; Parsley, Randy; Humphrey, John
1989-01-01
A concept design study was performed to configure two sizes of hybrid boosters; one which duplicates the advanced shuttle rocket motor vacuum thrust time curve and a smaller, quarter thrust level booster. Two sizes of hybrid boosters were configured for either pump-fed or pressure-fed oxygen feed systems. Performance analyses show improved payload capability relative to a solid propellant booster. Size optimization and fuel safety considerations resulted in a 4.57 m (180 inch) diameter large booster with an inert hydrocarbon fuel. The preferred diameter for the quarter thrust level booster is 2.53 m (96 inches). The demonstration plan would culminate with test firings of a 3.05 m (120 inch) diameter hybrid booster.
General view of a Space Shuttle Main Engine (SSME) mounted ...
General view of a Space Shuttle Main Engine (SSME) mounted on an SSME engine handler, taken in the SSME Processing Facility at Kennedy Space Center. The most prominent features of the engine assembly in this view are the Low-Pressure Fuel Turbopump Discharge Duct looping diagonally across the top of the assembly and connecting to the High-Pressure Fuel Turbopump, the Low-Pressure Oxidizer Turbopump (LPOTP) located center right of the assembly and the LPOTP Discharge Duct looping around from the pump to the underside of the engine assembly in this view. - Space Transportation System, Space Shuttle Main Engine, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
Study of fuel cell thermal control systems for advanced missions.
NASA Technical Reports Server (NTRS)
Caputo, R. S.
1972-01-01
This study evaluated many heat rejection and thermal control concepts which could be applied to fuel cells for long term (600 hours) orbital and lunar surface missions. The concepts considered several types of radiators which utilized pumped gas, liquid and two phase working fluids and incorporated solid conduction fins as well as heat pipe (vapor chamber) fins. The comparison of the concepts was based on weight, area and other factors such as standby power, ability to accommodate heat load variation, control complexity, and meteoroid survival capability. A design selection matrix was established and an optimum (primary) and an alternate (secondary) heat rejection concept was chosen. Heat rejection techniques utilizing self-controlled heat pipe radiators dominate the results.
Space Shuttle Orbiter auxiliary power unit status
NASA Technical Reports Server (NTRS)
Reck, M.; Loken, G.; Horton, J.; Lukens, W.; Scott, W.; Baughman, J.; Bauch, T.
1991-01-01
An overview of the United States Space Shuttle Orbiter APU, which provides power to the Orbiter vehicle hydraulic system, is presented. Three complete APU systems, each with its own separate fuel system, supply power to three dedicated hydraulic systems. These in turn provide power to all Orbiter vehicle critical flight functions including launch, orbit, reentry, and landing. The basic APU logic diagram is presented. The APU includes a hydrazine-powered turbine that drives a hydraulic pump and various accessories through a high-speed gearbox. The APU also features a sophisticated thermal management system designed to ensure safe and reliable operation in the various launch, orbit, reentry, and landing environments.
NASA Technical Reports Server (NTRS)
Brandenburf, G. P.; Hoffman, E. E.; Smith, J. P.
1974-01-01
The performance was determined of refractory metal alloys and uranium nitride fuel element specimens in flowing 1900F (1083C) lithium. The results demonstrate the suitability of the selected materials to perform satisfactorily from a chemical compatibility standpoint.
Plasma Reforming of Liquid Hydrocarbon Fuels in Non-Thermal Plasma-Liquid Systems
2010-04-30
microporous liquid which has a very large ratio of the plasma-liquid contact surface to the plasma volume. As is known the ultrasonic (US) cavitation is a very...effective method for creating micropores in liquid [17]. Therefore, the DGCLW with additional US pumping is also very interesting for research and...electrodes. Another PLS reactor was prepared with the DGCLW working with the air flow in the liquid under the induced microporous
Evaluating the financial efficiency of energy and water saving installations in passive house
NASA Astrophysics Data System (ADS)
Stec, Agnieszka; Mazur, Aleksandra; Słyś, Daniel
2017-11-01
The article contains the outcomes of the Life Cycle Cost analysis for alternative energy and water sources utilized in passive buildings. The solutions taken into account included: heat pumps, solar collectors, photovoltaic panels, Drain Water Heat Recovery units, Rain Water Harvesting Systems and Greywater Recycling Systems. In addition, air pollution emission reduction was also calculated for all the installation variants analyzed. The analysis have shown that the systems under consideration could serve as alternatives for traditional installations. Their use has resulted in reductions in the consumption of fossil fuels and natural water resources, thus contributing to environmental improvements.
Competing power-generating technologies for the 21st century
NASA Astrophysics Data System (ADS)
Troost, G. K.
1994-04-01
Several new and advanced power-generating systems are presently being developed, e.g., fuel cells, advanced heat pumps, high-performance gas turbines. An analysis of these systems is presented and is based on projections of comparative studies and relevant trends. For advanced systems, a trade-off between efficiency gain and projected development cost is crucial. Projections for market conditions in the 21st century and, in particular, environmental issues are made in order to assess market-entry opportunities. Results from various case studies indicate challenging opportunities in process and metallurgical industries; several process-integrated configurations are being studied.
Updated estimation of energy efficiencies of U.S. petroleum refineries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palou-Rivera, I.; Wang, M. Q.
2010-12-08
Evaluation of life-cycle (or well-to-wheels, WTW) energy and emission impacts of vehicle/fuel systems requires energy use (or energy efficiencies) of energy processing or conversion activities. In most such studies, petroleum fuels are included. Thus, determination of energy efficiencies of petroleum refineries becomes a necessary step for life-cycle analyses of vehicle/fuel systems. Petroleum refinery energy efficiencies can then be used to determine the total amount of process energy use for refinery operation. Furthermore, since refineries produce multiple products, allocation of energy use and emissions associated with petroleum refineries to various petroleum products is needed for WTW analysis of individual fuels suchmore » as gasoline and diesel. In particular, GREET, the life-cycle model developed at Argonne National Laboratory with DOE sponsorship, compares energy use and emissions of various transportation fuels including gasoline and diesel. Energy use in petroleum refineries is key components of well-to-pump (WTP) energy use and emissions of gasoline and diesel. In GREET, petroleum refinery overall energy efficiencies are used to determine petroleum product specific energy efficiencies. Argonne has developed petroleum refining efficiencies from LP simulations of petroleum refineries and EIA survey data of petroleum refineries up to 2006 (see Wang, 2008). This memo documents Argonne's most recent update of petroleum refining efficiencies.« less
Development of high temperature transport technology for LiCl-KCl eutectic salt in pyroprocessing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Sung Ho; Lee, Hansoo; Kim, In Tae
The development of high-temperature transport technologies for molten salt is a prerequisite and a key issue in the industrialization of pyro-reprocessing for advanced fuel cycle scenarios. The solution of a molten salt centrifugal pump was discarded because of the high corrosion power of a high temperature molten salt, so the suction pump solution was selected. An apparatus for salt transport experiments by suction was designed and tested using LiC-KCl eutectic salt. The experimental results of lab-scale molten salt transport by suction showed a 99.5% transport rate (ratio of transported salt to total salt) under a vacuum range of 100 mtorrmore » - 10 torr at 500 Celsius degrees. The suction system has been integrated to the PRIDE (pyroprocessing integrated inactive demonstration) facility that is a demonstrator using non-irradiated materials (natural uranium and surrogate materials). The performance of the suction pump for the transport of molten salts has been confirmed.« less
Fluid-driven reciprocating apparatus and valving for controlling same
Whitehead, John C.; Toews, Hans G.
1993-01-01
A control valve assembly for alternately actuating a pair of fluid-driven free-piston devices by using fluid pressure communication therebetween. Each control valve is switched by a pressure signal depending on the state of its counterpart's piston. The communication logic is arranged to provide overlap of the forward strokes of the pistons, so that at least one of the pair will always be pressurized. Thus, uninterrupted pumping of liquid is made possible from a pair of free-piston pumps. In addition, the speed and frequency of piston stroking is entirely dependent on the mechanical power load applied. In the case of a pair of pumps, this enables liquid delivery at a substantially constant pressure over the full range of flow rates, from zero to maximum flow. One embodiment of the invention utilized two pairs of fluid-driven free-piston devices whereby a bipropellant liquid propulsion system may be operated, so as to provide continuous flow of both fuel and oxidizer liquids when used in rocket applications, for example.
NASA Technical Reports Server (NTRS)
Eberhart, C. J.; Snellgrove, L. M.; Zoladz, T. F.
2015-01-01
High intensity acoustic edgetones located upstream of the RS-25 Low Pressure Fuel Turbo Pump (LPFTP) were previously observed during Space Launch System (STS) airflow testing of a model Main Propulsion System (MPS) liquid hydrogen (LH2) feedline mated to a modified LPFTP. MPS hardware has been adapted to mitigate the problematic edgetones as part of the Space Launch System (SLS) program. A follow-on airflow test campaign has subjected the adapted hardware to tests mimicking STS-era airflow conditions, and this manuscript describes acoustic environment identification and characterization born from the latest test results. Fluid dynamics responsible for driving discrete excitations were well reproduced using legacy hardware. The modified design was found insensitive to high intensity edgetone-like discretes over the bandwidth of interest to SLS MPS unsteady environments. Rather, the natural acoustics of the test article were observed to respond in a narrowband-random/mixed discrete manner to broadband noise thought generated by the flow field. The intensity of these responses were several orders of magnitude reduced from those driven by edgetones.
Marina, Olga A [Richland, WA; Stevenson, Jeffry W [Richland, WA
2010-03-02
The present invention provides novel compositions that find advantageous use in making electrodes for electrochemical cells and electrochemical devices such as solid oxide fuel cells, electrolyzers, sensors, pumps and the like, the compositions comprising cerium-modified doped strontium titanate. The invention also provides novel methods for making and using anode material compositions and solid oxide fuel cells and solid oxide fuel cell assemblies having anodes comprising the compositions.
Marina, Olga A [Richland, WA; Stevenson, Jeffry W [Richland, WA
2010-11-23
The present invention provides novel compositions that find advantageous use in making electrodes for electrochemical cells and electrochemical devices such as solid oxide fuel cells, electrolyzers, sensors, pumps and the like, the compositions comprising cerium-modified doped strontium titanate. The invention also provides novel methods for making and using anode material compositions and solid oxide fuel cells and solid oxide fuel cell assemblies having anodes comprising the compositions.
Effects of biodiesel on emissions of a bus diesel engine.
Kegl, Breda
2008-03-01
This paper discusses the influence of biodiesel on the injection, spray, and engine characteristics with the aim to reduce harmful emissions. The considered engine is a bus diesel engine with injection M system. The injection, fuel spray, and engine characteristics, obtained with biodiesel, are compared to those obtained with mineral diesel (D2) under various operating regimes. The considered fuel is neat biodiesel from rapeseed oil. Its density, viscosity, surface tension, and sound velocity are determined experimentally and compared to those of D2. The obtained results are used to analyze the most important injection, fuel spray, and engine characteristics. The injection characteristics are determined numerically under the operating regimes, corresponding to the 13 mode ESC test. The fuel spray is obtained experimentally under peak torque condition. Engine characteristics are determined experimentally under 13 mode ESC test conditions. The results indicate that, by using biodiesel, harmful emissions (NO(x), CO, smoke and HC) can be reduced to some extent by adjusting the injection pump timing properly.
RELAP5 Application to Accident Analysis of the NIST Research Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baek, J.; Cuadra Gascon, A.; Cheng, L.Y.
Detailed safety analyses have been performed for the 20 MW D{sub 2}O moderated research reactor (NBSR) at the National Institute of Standards and Technology (NIST). The time-dependent analysis of the primary system is determined with a RELAP5 transient analysis model that includes the reactor vessel, the pump, heat exchanger, fuel element geometry, and flow channels for both the six inner and twenty-four outer fuel elements. A post-processing of the simulation results has been conducted to evaluate minimum critical heat flux ratio (CHFR) using the Sudo-Kaminaga correlation. Evaluations are performed for the following accidents: (1) the control rod withdrawal startup accidentmore » and (2) the maximum reactivity insertion accident. In both cases the RELAP5 results indicate that there is adequate margin to CHF and no damage to the fuel will occur because of sufficient coolant flow through the fuel channels and the negative scram reactivity insertion.« less
Influence of several factors on ignition lag in a compression-ignition engine
NASA Technical Reports Server (NTRS)
Gerrish, Harold C; Voss, Fred
1932-01-01
This investigation was made to determine the influence of fuel quality, injection advance angle, injection valve-opening pressure, inlet-air pressure, compression ratio, and engine speed on the time lag of auto-ignition of a Diesel fuel oil in a single-cylinder compression-ignition engine as obtained from an analysis of indicator diagrams. Three cam-operated fuel-injection pumps, two pumps cams, and an automatic injection valve with two different nozzles were used. Ignition lag was considered to be the interval between the start of injection of the fuel as determined with a Stroborama and the start of effective combustion as determined from the indicator diagram, the latter being the point where 4.0 x 10(exp-6) pound of fuel had been effectively burned. For this particular engine and fuel it was found that: (1) for a constant start and the same rate of fuel injection up the point of cut-off, a variation in fuel quantity from 1.2 x 10(exp-4) to 4.1 x 10(exp-4) pound per cycle has no appreciable effect on the ignition lag; (2) injection advance angle increases or decreases the lag according to whether density, temperature, or turbulence has the controlling influence; (3) increase in valve-opening pressure slightly increases the lag; and (4) increase of inlet-air pressure, compression ratio, and engine speed reduces the lag.
Essays on Infrastructure Design and Planning for Clean Energy Systems
NASA Astrophysics Data System (ADS)
Kocaman, Ayse Selin
The International Energy Agency estimates that the number of people who do not have access to electricity is nearly 1.3 billion and a billion more have only unreliable and intermittent supply. Moreover, current supply for electricity generation mostly relies on fossil fuels, which are finite and one of the greatest threats to the environment. Rising population growth rates, depleting fuel sources, environmental issues and economic developments have increased the need for mathematical optimization to provide a formal framework that enables systematic and clear decision-making in energy operations. This thesis through its methodologies and algorithms enable tools for energy generation, transmission and distribution system design and help policy makers make cost assessments in energy infrastructure planning rapidly and accurately. In Chapter 2, we focus on local-level power distribution systems planning for rural electrification using techniques from combinatorial optimization. We describe a heuristic algorithm that provides a quick solution for the partial electrification problem where the distribution network can only connect a pre-specified number of households with low voltage lines. The algorithm demonstrates the effect of household settlement patterns on the electrification cost. We also describe the first heuristic algorithm that selects the locations and service areas of transformers without requiring candidate solutions and simultaneously builds a two-level grid network in a green-field setting. The algorithms are applied to real world rural settings in Africa, where household locations digitized from satellite imagery are prescribed. In Chapter 3 and 4, we focus on power generation and transmission using clean energy sources. Here, we imagine a country in the future where hydro and solar are the dominant sources and fossil fuels are only available in minimal form. We discuss the problem of modeling hydro and solar energy production and allocation, including long-term investments and storage, capturing the stochastic nature of hourly supply and demand data. We mathematically model two hybrid energy generation and allocation systems where time variability of energy sources and demand is balanced using the water stored in the reservoirs. In Chapter 3, we use conventional hydro power stations (incoming stream flows are stored in large dams and water release is deferred until it is needed) and in Chapter 4, we use pumped hydro stations (water is pumped from lower reservoir to upper reservoir during periods of low demand to be released for generation when demand is high). Aim of the models is to determine optimal sizing of infrastructure needed to match demand and supply in a most reliable and cost effective way. An innovative contribution of this work is the establishment of a new perspective to energy modeling by including fine-grained sources of uncertainty such as stream flow and solar radiations in hourly level as well as spatial location of supply and demand and transmission network in national level. In addition, we compare the conventional and the pumped hydro power systems in terms of reliability and cost efficiency and quantitatively show the improvement provided by including pumped hydro storage. The model will be presented with a case study of India and helps to answer whether solar energy in addition to hydro power potential in Himalaya Mountains would be enough to meet growing electricity demand if fossil fuels could be almost completely phased out from electricity generation.
Space shuttle main engine high pressure fuel pump aft platform seal cavity flow analysis
NASA Technical Reports Server (NTRS)
Lowry, S. A.; Keeton, L. W.
1987-01-01
A general purpose, three-dimensional computational fluid dynamics code named PHOENICS, developed by CHAM Inc., is used to model the flow in the aft-platform seal cavity in the high pressure fuel pump of the space shuttle main engine. The model is used to predict the temperatures, velocities, and pressures in the cavity for six different sets of boundary conditions. The results are presented as input for further analysis of two known problems in the region, specifically: erratic pressures and temperatures in the adjacent coolant liner cavity and cracks in the blade shanks near the outer diameter of the aft-platform seal.
Preliminary Study of a Piston Pump for Cryogenic Fluids
NASA Technical Reports Server (NTRS)
Biermann, Arnold E.; Kohl, Robert C.
1959-01-01
Preliminary data are presented covering the performance of a low-speed, five-cylinder piston pump designed for handling boiling hydrogen. This pump was designed for a flow of 55 gallons per minute at 240 rpm with a discharge pressure of 135 pounds per square inch. Tests were made using JP-4 fuel, liquid nitrogen, and liquid hydrogen. Pump delivery and endurance characteristics were satisfactory for the range of operation covered. In connection with the foregoing pump development, the cavitation characteristics of a preliminary visual model, glass-cylinder pump and of a simple reciprocating disk were studied. Subcooling of approximately 0.60 F was obtained from the cavitation produced by reciprocating a disk in boiling nitrogen and in boiling water. The subcooling obtained in a similar manner with liquid hydrogen was somewhat less.
78 FR 21230 - Airworthiness Directives; Airbus Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-10
... Failed Post-Modification Operational Test After accomplishment of the modification specified in paragraph... of the GFI or deactivation of the associated fuel pump following failure of any post-modification operational test of the GFI. We are issuing this AD to prevent the potential of ignition sources inside fuel...
Code of Federal Regulations, 2012 CFR
2012-07-01
... perfluoropolyether, and any hydrofluoropolyether. Fossil fuel means natural gas, petroleum, coal, or any form of... generator. Emergency equipment means any auxiliary fossil fuel-powered equipment, such as a fire pump, that... the kiln to produce heat to form the clinker product. Feedstock means raw material inputs to a process...
Code of Federal Regulations, 2011 CFR
2011-07-01
... perfluoropolyether, and any hydrofluoropolyether. Fossil fuel means natural gas, petroleum, coal, or any form of... generator. Emergency equipment means any auxiliary fossil fuel-powered equipment, such as a fire pump, that... the kiln to produce heat to form the clinker product. Feedstock means raw material inputs to a process...
Code of Federal Regulations, 2014 CFR
2014-07-01
... perfluoropolyether, and any hydrofluoropolyether. Fossil fuel means natural gas, petroleum, coal, or any form of... generator. Emergency equipment means any auxiliary fossil fuel-powered equipment, such as a fire pump, that... the kiln to produce heat to form the clinker product. Feedstock means raw material inputs to a process...
Code of Federal Regulations, 2013 CFR
2013-07-01
... perfluoropolyether, and any hydrofluoropolyether. Fossil fuel means natural gas, petroleum, coal, or any form of... generator. Emergency equipment means any auxiliary fossil fuel-powered equipment, such as a fire pump, that... the kiln to produce heat to form the clinker product. Feedstock means raw material inputs to a process...
BioRadioTransmitter: a self-powered wireless glucose-sensing system.
Hanashi, Takuya; Yamazaki, Tomohiko; Tsugawa, Wakako; Ikebukuro, Kazunori; Sode, Koji
2011-09-01
Although an enzyme fuel cell can be utilized as a glucose sensor, the output power generated is too low to power a device such as a currently available transmitter and operating system, and an external power source is required for operating an enzyme-fuel-cell-based biosensing system. We proposed a novel biosensor that we named BioCapacitor, in which a capacitor serves as a transducer. In this study, we constructed a new BioCapacitor-based system with an added radio-transmitter circuit and a miniaturized enzyme fuel cell. A miniaturized direct-electron-transfer-type compartmentless enzyme fuel cell was constructed with flavin adenine dinucleotide-dependent glucose dehydrogenase complex-based anode and a bilirubin-oxidase-based cathode. For construction of a BioRadioTransmitter wireless sensing system, a capacitor, an ultra-low-voltage charge-pump-integrated circuit, and Hartley oscillator circuit were connected to the miniaturized enzyme fuel cell. A radio-receiver circuit, comprising two field-effect transistors and a coil as an antenna, was used to amplify the signal generated from the biofuel cells. Radio wave signals generated by the BioRadioTransmitter were received, amplified, and converted from alternate to direct current by the radio receiver. When the capacitor discharges in the presence of glucose, the BioRadioTransmitter generates a radio wave, which is monitored by a radio receiver connected wirelessly to the sensing device. Magnitude of the radio wave transmission frequency change observed at the radio receiver was correlated to glucose concentration in the fuel cells. We constructed a stand-alone, self-powered, wireless glucose-sensing system called a BioRadioTransmitter by using a radio transmitter in which the radio wave transmission frequency changes with the glucose concentration in the fuel cell. The BioRadioTransmitter is a significant advance toward construction of an implantable continuous glucose monitor. © 2011 Diabetes Technology Society.