Science.gov

Sample records for fuel reprocessing process

  1. Integrated process for reprocessing spent nuclear fuel

    SciTech Connect

    Forsberg, C.W.

    1991-03-06

    This invention is comprised of a process for recovering nuclear fuel from spent fuel assemblies that employs a single canister process container. The cladding and fuel are oxidized in the container, the fuel is dissolved and removed from the container for separation from the aqueous phase, the aqueous phase containing radioactive waste is returned to the container. This container is also the disposal vessel. Add solidification agents and compress container for long term storage.

  2. Process for recovery of palladium from nuclear fuel reprocessing wastes

    DOEpatents

    Campbell, D.O.; Buxton, S.R.

    1980-06-16

    Palladium is selectively removed from spent nuclear fuel reprocessing waste by adding sugar to a strong nitric acid solution of the waste to partially denitrate the solution and cause formation of an insoluble palladium compound. The process includes the steps of: (a) adjusting the nitric acid content of the starting solution to about 10 M; (b) adding 50% sucrose solution in an amount sufficient to effect the precipitation of the palladium compound; (c) heating the solution at reflux temperature until precipitation is complete; and (d) centrifuging the solution to separate the precipitated palladium compound from the supernatant liquid.

  3. Process for recovery of palladium from nuclear fuel reprocessing wastes

    DOEpatents

    Campbell, David O.; Buxton, Samuel R.

    1981-01-01

    Palladium is selectively removed from spent nuclear fuel reprocessing waste by adding sugar to a strong nitric acid solution of the waste to partially denitrate the solution and cause formation of an insoluble palladium compound. The process includes the steps of: (a) adjusting the nitric acid content of the starting solution to about 10 M, (b) adding 50% sucrose solution in an amount sufficient to effect the precipitation of the palladium compound, (c) heating the solution at reflux temperature until precipitation is complete, and (d) centrifuging the solution to separate the precipitated palladium compound from the supernatant liquid.

  4. Nuclear Fuel Reprocessing

    SciTech Connect

    Harold F. McFarlane; Terry Todd

    2013-11-01

    Reprocessing is essential to closing nuclear fuel cycle. Natural uranium contains only 0.7 percent 235U, the fissile (see glossary for technical terms) isotope that produces most of the fission energy in a nuclear power plant. Prior to being used in commercial nuclear fuel, uranium is typically enriched to 3–5% in 235U. If the enrichment process discards depleted uranium at 0.2 percent 235U, it takes more than seven tonnes of uranium feed to produce one tonne of 4%-enriched uranium. Nuclear fuel discharged at the end of its economic lifetime contains less one percent 235U, but still more than the natural ore. Less than one percent of the uranium that enters the fuel cycle is actually used in a single pass through the reactor. The other naturally occurring isotope, 238U, directly contributes in a minor way to power generation. However, its main role is to transmute into plutoniumby neutron capture and subsequent radioactive decay of unstable uraniumand neptuniumisotopes. 239Pu and 241Pu are fissile isotopes that produce more than 40% of the fission energy in commercially deployed reactors. It is recovery of the plutonium (and to a lesser extent the uranium) for use in recycled nuclear fuel that has been the primary focus of commercial reprocessing. Uraniumtargets irradiated in special purpose reactors are also reprocessed to obtain the fission product 99Mo, the parent isotope of technetium, which is widely used inmedical procedures. Among the fission products, recovery of such expensive metals as platinum and rhodium is technically achievable, but not economically viable in current market and regulatory conditions. During the past 60 years, many different techniques for reprocessing used nuclear fuel have been proposed and tested in the laboratory. However, commercial reprocessing has been implemented along a single line of aqueous solvent extraction technology called plutonium uranium reduction extraction process (PUREX). Similarly, hundreds of types of reactor

  5. Nuclear Fuel Reprocessing

    SciTech Connect

    Michael F. Simpson; Jack D. Law

    2010-02-01

    This is an a submission for the Encyclopedia of Sustainable Technology on the subject of Reprocessing Spent Nuclear Fuel. No formal abstract was required for the article. The full article will be attached.

  6. Head-end process for the reprocessing of HTGR spent fuel

    SciTech Connect

    Chen, J.; Wen, M.

    2013-07-01

    The reprocessing of HTGR spent fuels is in favor of the sustainable development of nuclear energy to realize the maximal use of nuclear resource and the minimum disposal of nuclear waste. The head-end of HTGR spent fuels reprocessing is different from that of the LWR spent fuels reprocessing because of the difference of spent fuel structure. The dismantling of the graphite spent fuel element and the highly effective dissolution of fuel kernel is the most difficult process in the head end of the reprocessing. Recently, some work on the head-end has been done in China. First, the electrochemical method with nitrate salt as electrolyte was studied to disintegrate the graphite matrix from HTGR fuel elements and release the coated fuel particles, to provide an option for the head-end technology of reprocessing. The results show that the graphite matrix can be effectively separated from the coated particle without any damage to the SiC layer. Secondly, the microwave-assisted heating was applied to dissolve the UO{sub 2} kernel from the crashed coated fuel particles. The ceramic UO{sub 2} as the solute has a good ability to absorb the microwave energy. The results of UO{sub 2} kernel dissolution from crushed coated particles by microwave heating show that the total dissolution percentage of UO{sub 2} is more than 99.99% after 3 times cross-flow dissolution with the following parameters: 8 mol/L HNO{sub 3}, temperature 100 Celsius degrees, initial ratio of solid to liquid 1.2 g/ml. (authors)

  7. Historic American Engineering Record, Idaho National Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex

    SciTech Connect

    Susan Stacy; Julie Braun

    2006-12-01

    Just as automobiles need fuel to operate, so do nuclear reactors. When fossil fuels such as gasoline are burned to power an automobile, they are consumed immediately and nearly completely in the process. When the fuel is gone, energy production stops. Nuclear reactors are incapable of achieving this near complete burn-up because as the fuel (uranium) that powers them is burned through the process of nuclear fission, a variety of other elements are also created and become intimately associated with the uranium. Because they absorb neutrons, which energize the fission process, these accumulating fission products eventually poison the fuel by stopping the production of energy from it. The fission products may also damage the structural integrity of the fuel elements. Even though the uranium fuel is still present, sometimes in significant quantities, it is unburnable and will not power a reactor unless it is separated from the neutron-absorbing fission products by a method called fuel reprocessing. Construction of the Fuel Reprocessing Complex at the Chem Plant started in 1950 with the Bechtel Corporation serving as construction contractor and American Cyanamid Company as operating contractor. Although the Foster Wheeler Corporation assumed responsibility for the detailed working design of the overall plant, scientists at Oak Ridge designed all of the equipment that would be employed in the uranium separations process. After three years of construction activity and extensive testing, the plant was ready to handle its first load of irradiated fuel.

  8. Technical aspects of fuel reprocessing

    SciTech Connect

    Groenier, W.S.

    1982-02-01

    The purpose of this paper is to present a brief description of fuel reprocessing and some present developments which show the reliability of nuclear energy as a long-term supply. The following topics are discussed: technical reasons for reprocessing; economic reasons for reprocessing; past experience; justification for advanced reprocessing R and D; technical aspects of current reprocessing development. The present developments are mainly directed at the reprocessing of breeder reactor fuels but there are also many applications to light-water reactor fuel reprocessing. These new developments involve totally remote operation, and maintenance. To demonstrate this advanced reprocessing concept, pilot-scale demonstration facilities are planned with commercial application occurring sometime after the year 2000. (ATT)

  9. Nuclear fuel reprocessing deactivation plan for the Idaho Chemical Processing Plant, Revision 1

    SciTech Connect

    Patterson, M.W.

    1994-10-01

    The decision was announced on April 28, 1992 to cease all United States Department of Energy (DOE) reprocessing of nuclear fuels. This decision leads to the deactivation of all fuels dissolution, solvent extraction, krypton gas recovery operations, and product denitration at the Idaho Chemical Processing Plant (ICPP). The reprocessing facilities will be converted to a safe and stable shutdown condition awaiting future alternate uses or decontamination and decommissioning (D&D). This ICPP Deactivation Plan includes the scope of work, schedule, costs, and associated staffing levels necessary to achieve a safe and orderly deactivation of reprocessing activities and the Waste Calcining Facility (WCF). Deactivation activities primarily involve shutdown of operating systems and buildings, fissile and hazardous material removal, and related activities. A minimum required level of continued surveillance and maintenance is planned for each facility/process system to ensure necessary environmental, health, and safety margins are maintained and to support ongoing operations for ICPP facilities that are not being deactivated. Management of the ICPP was transferred from Westinghouse Idaho Nuclear Company, Inc. (WINCO) to Lockheed Idaho Technologies Company (LITCO) on October 1, 1994 as part of the INEL consolidated contract. This revision of the deactivation plan (formerly the Nuclear Fuel Reprocessing Phaseout Plan for the ICPP) is being published during the consolidation of the INEL site-wide contract and the information presented here is current as of October 31, 1994. LITCO has adopted the existing plans for the deactivation of ICPP reprocessing facilities and the plans developed under WINCO are still being actively pursued, although the change in management may result in changes which have not yet been identified. Accordingly, the contents of this plan are subject to revision.

  10. Risks of nuclear fuel reprocessing

    SciTech Connect

    Durant, W.S.

    1990-01-01

    The Savannah River Site's primary function is the production of weapons materials. It consists of four reactors, two fuel reprocessing facilities, a fuel fabrication facility, a nuclear fuel facility for the Navy and a heavy water recycle facility. Under construction is a facility to convert the site's liquid wastes into borosilicate glass. The topic of this paper is risks of nuclear fuel reprocessing. Also discussed are facility operations. 18 figs.

  11. Spectroscopic Online Monitoring for Process Control and Safeguarding of Radiochemical Fuel Reprocessing Streams

    SciTech Connect

    Bryan, Samuel A.; Levitskaia, Tatiana G.; Casella, Amanda J.; Peterson, James M.

    2013-02-24

    There is a renewed interest worldwide to promote the use of nuclear power and close the nuclear fuel cycle. The long term successful use of nuclear power is critically dependent upon adequate and safe processing and disposition of the spent nuclear fuel. Liquid-liquid extraction is a separation technique commonly employed for the processing of the dissolved spent nuclear fuel. The instrumentation used to monitor these processes must be robust, require little or no maintenance, and be able to withstand harsh environments such as high radiation fields and aggressive chemical matrices. In addition, the ability for continuous online monitoring allows for numerous benefits. This paper reviews application of the absorption and vibrational spectroscopic techniques supplemented by physicochemical measurements for radiochemical process monitoring. In this context, our team experimentally assessed the potential of Raman and spectrophotometric techniques for on-line real-time monitoring of the U(VI)/nitrate ion/nitric acid and Pu(IV)/Np(V)/Nd(III), respectively, in solutions relevant to spent fuel reprocessing. Both techniques demonstrated robust performance in the repetitive batch measurements of each analyte in a wide concentration range using simulant and commercial dissolved spent fuel solutions. Static spectroscopic measurements served as training sets for the multivariate data analysis to obtain partial least squares predictive models, which were validated using on-line centrifugal contactor extraction tests. Satisfactory prediction of the analytes concentrations in these preliminary experiments warrants further development of the spectroscopy-based methods for radiochemical safeguards and process control.

  12. Spectroscopic Online Monitoring for Process Control and Safeguarding of Radiochemical Fuel Reprocessing Streams - 13553

    SciTech Connect

    Bryan, S.A.; Levitskaia, T.G.; Casella, Amanda; Peterson, James

    2013-07-01

    There is a renewed interest worldwide to promote the use of nuclear power and close the nuclear fuel cycle. The long term successful use of nuclear power is critically dependent upon adequate and safe processing and disposition of the used nuclear fuel. Liquid-liquid extraction is a separation technique commonly employed for the processing of the dissolved spent nuclear fuel. The instrumentation used to monitor these processes must be robust, require little or no maintenance, and be able to withstand harsh environments such as high radiation fields and aggressive chemical matrices. This paper discusses application of absorption and vibrational spectroscopic techniques supplemented by physicochemical measurements for radiochemical process monitoring. In this context, our team experimentally assessed the potential of Raman and spectrophotometric techniques for on-line real-time monitoring of the U(VI)/nitrate ion/nitric acid and Pu(IV)/Np(V)/Nd(III), respectively, in solutions relevant to spent fuel reprocessing. Both techniques demonstrated robust performance in the repetitive batch measurements of each analyte in a wide concentration range using simulant and commercial dissolved spent fuel solutions. Static spectroscopic measurements served as training sets for the multivariate data analysis to obtain partial least squares predictive models, which were validated using on-line centrifugal contactor extraction tests. Satisfactory prediction of the analytes concentrations in these preliminary experiments warrants further development of the spectroscopy-based methods for radiochemical safeguards and process control. (authors)

  13. Spent nuclear fuel reprocessing modeling

    SciTech Connect

    Tretyakova, S.; Shmidt, O.; Podymova, T.; Shadrin, A.; Tkachenko, V.; Makeyeva, I.; Tkachenko, V.; Verbitskaya, O.; Schultz, O.; Peshkichev, I.

    2013-07-01

    The long-term wide development of nuclear power requires new approaches towards the realization of nuclear fuel cycle, namely, closed nuclear fuel cycle (CNFC) with respect to fission materials. Plant nuclear fuel cycle (PNFC), which is in fact the reprocessing of spent nuclear fuel unloaded from the reactor and the production of new nuclear fuel (NF) at the same place together with reactor plant, can be one variant of CNFC. Developing and projecting of PNFC is a complicated high-technology innovative process that requires modern information support. One of the components of this information support is developed by the authors. This component is the programme conducting calculations for various variants of process flow sheets for reprocessing SNF and production of NF. Central in this programme is the blocks library, where the blocks contain mathematical description of separate processes and operations. The calculating programme itself has such a structure that one can configure the complex of blocks and correlations between blocks, appropriate for any given flow sheet. For the ready sequence of operations balance calculations are made of all flows, i.e. expenses, element and substance makeup, heat emission and radiation rate are determined. The programme is open and the block library can be updated. This means that more complicated and detailed models of technological processes will be added to the library basing on the results of testing processes using real equipment, in test operating mode. The development of the model for the realization of technical-economic analysis of various variants of technologic PNFC schemes and the organization of 'operator's advisor' is expected. (authors)

  14. Molten tin reprocessing of spent nuclear fuel elements. [Patent application; continuous process

    DOEpatents

    Heckman, R.A.

    1980-12-19

    A method and apparatus for reprocessing spent nuclear fuel is described. Within a containment vessel, a solid plug of tin and nitride precipitates supports a circulating bath of liquid tin therein. Spent nuclear fuel is immersed in the liquid tin under an atmosphere of nitrogen, resulting in the formation of nitride precipitates. The layer of liquid tin and nitride precipitates which interfaces the plug is solidified and integrated with the plug. Part of the plug is melted, removing nitride precipitates from the containment vessel, while a portion of the plug remains solidified to support te liquid tin and nitride precipitates remaining in the containment vessel. The process is practiced numerous times until substantially all of the precipitated nitrides are removed from the containment vessel.

  15. PYRO, a system for modeling fuel reprocessing

    SciTech Connect

    Ackerman, J.P.

    1989-01-01

    Compact, on-site fuel reprocessing and waste management for the Integral Fast Reactor are based on the pyrochemical reprocessing of metal fuel. In that process, uranium and plutonium in spent fuel are separated from fission products in an electrorefiner using liquid cadmium and molten salt solvents. Quantitative estimates of the distribution of the chemical elements among the metal and salt phases are essential for development of both individual pyrochemical process steps and the complete process. This paper describes the PYRO system of programs used to generate reliable mass flows and compositions.

  16. Radioactive Semivolatiles in Nuclear Fuel Reprocessing

    SciTech Connect

    Jubin, R. T.; Strachan, D. M.; Ilas, G.; Spencer, B. B.; Soelberg, N. R.

    2014-09-01

    In nuclear fuel reprocessing, various radioactive elements enter the gas phase from the unit operations found in the reprocessing facility. In previous reports, the pathways and required removal were discussed for four radionuclides known to be volatile, 14C, 3H, 129I, and 85Kr. Other, less volatile isotopes can also report to the off-gas streams in a reprocessing facility. These were reported to be isotopes of Cs, Cd, Ru, Sb, Tc, and Te. In this report, an effort is made to determine which, if any, of 24 semivolatile radionuclides could be released from a reprocessing plant and, if so, what would be the likely quantities released. As part of this study of semivolatile elements, the amount of each generated during fission is included as part of the assessment for the need to control their emission. Also included in this study is the assessment of the cooling time (time out of reactor) before the fuel is processed. This aspect is important for the short-lived isotopes shown in the list, especially for cooling times approaching 10 y. The approach taken in this study was to determine if semivolatile radionuclides need to be included in a list of gas-phase radionuclides that might need to be removed to meet Environmental Protection Agency (EPA) and Nuclear Regulatory Commission (NRC) regulations. A list of possible elements was developed through a literature search and through knowledge and literature on the chemical processes in typical aqueous processing of nuclear fuels. A long list of possible radionuclides present in irradiated fuel was generated and then trimmed by considering isotope half-life and calculating the dose from each to a maximum exposed individual with the US EPA airborne radiological dispersion and risk assessment code CAP88 (Rosnick 1992) to yield a short list of elements that actually need to be considered for control because they require high decontamination factors to meet a reasonable fraction of the regulated release. Each of these elements is

  17. Status of the nuclear measurement stations for the process control of spent fuel reprocessing at AREVA NC/La Hague

    SciTech Connect

    Eleon, Cyrille; Passard, Christian; Hupont, Nicolas; Estre, Nicolas; Battel, Benjamin; Doumerc, Philippe; Dupuy, Thierry; Batifol, Marc; Grassi, Gabriele

    2015-07-01

    Nuclear measurements are used at AREVA NC/La Hague for the monitoring of spent fuel reprocessing. The process control is based on gamma-ray spectroscopy, passive neutron counting and active neutron interrogation, and gamma transmission measurements. The main objectives are criticality and safety, online process monitoring, and the determination of the residual fissile mass and activities in the metallic waste remained after fuel shearing and dissolution (empty hulls, grids, end pieces), which are put in radioactive waste drums before compaction. The whole monitoring system is composed of eight measurement stations which will be described in this paper. The main measurement stations no. 1, 3 and 7 are needed for criticality control. Before fuel element shearing for dissolution, station no. 1 allows determining the burn-up of the irradiated fuel by gamma-ray spectroscopy with HP Ge (high purity germanium) detectors. The burn-up is correlated to the {sup 137}Cs and {sup 134}Cs gamma emission rates. The fuel maximal mass which can be loaded in one bucket of the dissolver is estimated from the lowest burn-up fraction of the fuel element. Station no. 3 is dedicated to the control of the correct fuel dissolution, which is performed with a {sup 137}Cs gamma ray measurement with a HP Ge detector. Station no. 7 allows estimating the residual fissile mass in the drums filled with the metallic residues, especially in the hulls, from passive neutron counting (spontaneous fission and alpha-n reactions) and active interrogation (fission prompt neutrons induced by a pulsed neutron generator) with proportional {sup 3}He detectors. The measurement stations have been validated for the reprocessing of Uranium Oxide (UOX) fuels with a burn-up rate up to 60 GWd/t. This paper presents a brief overview of the current status of the nuclear measurement stations. (authors)

  18. Equipment specifications for an electrochemical fuel reprocessing plant

    SciTech Connect

    Hemphill, Kevin P

    2010-01-01

    Electrochemical reprocessing is a technique used to chemically separate and dissolve the components of spent nuclear fuel, in order to produce new metal fuel. There are several different variations to electrochemical reprocessing. These variations are accounted for by both the production of different types of spent nuclear fuel, as well as different states and organizations doing research in the field. For this electrochemical reprocessing plant, the spent fuel will be in the metallurgical form, a product of fast breeder reactors, which are used in many nuclear power plants. The equipment line for this process is divided into two main categories, the fuel refining equipment and the fuel fabrication equipment. The fuel refining equipment is responsible for separating out the plutonium and uranium together, while getting rid of the minor transuranic elements and fission products. The fuel fabrication equipment will then convert this plutonium and uranium mixture into readily usable metal fuel.

  19. Impact of the use of the ferritic/martensitic ODS steels cladding on the fuel reprocessing PUREX process

    NASA Astrophysics Data System (ADS)

    Gwinner, B.; Auroy, M.; Mas, D.; Saint-Jevin, A.; Pasquier-Tilliette, S.

    2012-09-01

    Some ferritic/martensitic oxide dispersed strengthened (F/M ODS) steels are presently developed at CEA for the fuel cladding of the next generation of sodium fast nuclear reactors. The objective of this work is to study if this change of cladding could have any consequences on the spent fuel reprocessing PUREX process. During the fuel dissolution stage the cladding can actually be corroded by nitric acid. But some process specifications impose not to exceed a limit concentration of the corrosion products such as iron and chromium in the dissolution medium. For that purpose the corrosion behavior of these F/M ODS steels is studied in hot and concentrated nitric acid. The influence of some metallurgical parameters such as the chromium content, the elaboration process and the presence of the yttrium oxides is first discussed. The influence of environmental parameters such as the nitric acid concentration, the temperature and the presence of oxidizing species coming from the fuel is then analyzed. The corrosion rate is characterized by mass loss measurements and electrochemical tests. Analyses of the corroded surface are carried out by X-ray photoelectron spectroscopy.

  20. Development of spent fuel reprocessing process based on selective sulfurization: Study on the Pu, Np and Am sulfurization

    NASA Astrophysics Data System (ADS)

    Kirishima, Akira; Amano, Yuuki; Nihei, Toshifumi; Mitsugashira, Toshiaki; Sato, Nobuaki

    2010-03-01

    For the recovery of fissile materials from spent nuclear fuel, we have proposed a novel reprocessing process based on selective sulfurization of fission products (FPs). The key concept of this process is utilization of unique chemical property of carbon disulfide (CS2), i.e., it works as a reductant for U3O8 but works as a sulfurizing agent for minor actinides and lanthanides. Sulfurized FPs and minor actinides (MA) are highly soluble to dilute nitric acid while UO2 and PuO2 are hardly soluble, therefore, FPs and MA can be removed from Uranium and Plutonium matrix by selective dissolution. As a feasibility study of this new concept, the sulfurization behaviours of U, Pu, Np, Am and Eu are investigated in this paper by the thermodynamical calculation, phase analysis of chemical analogue elements and tracer experiments.

  1. Process Description and Operating History for the CPP-601/-640/-627 Fuel Reprocessing Complex at the Idaho National Engineering and Environmental Laboratory

    SciTech Connect

    E. P. Wagner

    1999-06-01

    The Fuel Reprocessing Complex (FRC) at the Idaho Nuclear Technology and Engineering Center at the Idaho National Engineering and Environmental Laboratory was used for reprocessing spent nuclear fuel from the early 1950's until 1992. The reprocessing facilities are now scheduled to be deactivated. As part of the deactivation process, three Resource Conservation and Recovery Act (RCRA) interim status units located in the complex must be closed. This document gathers the historical information necessary to provide a rational basis for the preparation of a comprehensive closure plan. Included are descriptions of process operations and the operating history of the FRC. A set of detailed tables record the service history and present status of the process vessels and transfer lines.

  2. Consolidated Fuel Reprocessing Program. Progress report for period, April 1-June 30, 1985

    SciTech Connect

    Not Available

    1985-08-01

    All research and development on civilian power reactor fuel reprocessing in the United States is managed under the Consolidated Fuel Reprocessing Program (CFRP) centered at Oak Ridge National Laboratory (ORNL). Technical progress is reported in overview fashion for the following: (1) process and engineering R and D; (2) engineering systems; (3) integrated equipment test facility operations; (4) strategic planning and analysis; (5) breeder reprocessing engineering test project; and HTGR fuel reprocessing.

  3. Reprocessing of research reactor fuel the Dounreay option

    SciTech Connect

    Cartwright, P.

    1997-08-01

    Reprocessing is a proven process for the treatment of spent U/Al Research Reactor fuel. At Dounreay 12679 elements have been reprocessed during the past 30 years. For reactors converting to LEU fuel the uranium recovered in reprocessing can be blended down to less than 20% U{sub 235}, enrichment and be fabricated into new elements. For reactors already converted to LEU it is technically possible to reprocess spent silicide fuel to reduce the U{sub 235} burden and present to a repository only stable conditioned waste. The main waste stream from reprocessing which contains the Fission products is collected in underground storage tanks where it is kept for a period of at least five years before being converted to a stable solid form for return to the country of origin for subsequent storage/disposal. Discharges to the environment from reprocessing are low and are limited to the radioactive gases contained in the spent fuel and a low level liquid waste steam. Both of these discharges are independently monitored, and controlled within strict discharge limits set by the UK Government`s Scottish Office. Transportation of spent fuel to Dounreay has been undertaken using many routes from mainland Europe and has utilised over the past few years both chartered and scheduled vessel services. Several different transport containers have been handled and are currently licensed in the UK. This paper provides a short history of MTR reprocessing at Dounreay, and provides information to show reprocessing can satisfy the needs of MTR operators, showing that reprocessing is a valuable asset in non-proliferation terms, offers a complete solution and is environmentally acceptable.

  4. Methodology of Qualification of CCIM Vitrification Process Applied to the High- Level Liquid Waste from Reprocessed Oxide Fuels - 12438

    SciTech Connect

    Lemonnier, S.; Labe, V.; Ledoux, A.; Nonnet, H.; Godon, N.

    2012-07-01

    The vitrification of high-level liquid waste from reprocessed oxide fuels (UOX fuels) by Cold Crucible Induction Melter is planed by AREVA in 2013 in a production line of the R7 facility at La Hague plant. Therefore, the switch of the vitrification technology from the Joule Heated Metal Melter required a complete process qualification study. It involves three specialties, namely the matrix formulation, the glass long-term behavior and the vitrification process development on full-scale pilot. A new glass frit has been elaborated in order to adapt the redox properties and the thermal conductivity of the glass suitable for being vitrified with the Cold Crucible Induction Melter. The role of cobalt oxide on the long term behavior of the glass has been described in the range of the tested concentrations. Concerning the process qualification, the nominal tests, the sensitivity tests and the study of the transient modes allowed to define the nominal operating conditions. Degraded operating conditions tests allowed to identify means of detecting incidents leading to these conditions and allowed to define the procedures to preserve the process equipments protection and the material quality. Finally, the endurance test validated the nominal operating conditions over an extended time period. This global study allowed to draft the package qualification file. The qualification file of the UOX package is currently under approval by the French Nuclear Safety Authority. (authors)

  5. CORAL: a stepping stone for establishing the Indian fast reactor fuel reprocessing technology

    SciTech Connect

    Venkataraman, M.; Natarajan, R.; Raj, Baldev

    2007-07-01

    The reprocessing of spent fuel from Fast Breeder Test Reactor (FBTR) has been successfully demonstrated in the pilot plant, CORAL (COmpact Reprocessing facility for Advanced fuels in Lead shielded cell). Since commissioning in 2003, spent mixed carbide fuel from FBTR of different burnups and varying cooling period, have been reprocessed in this facility. Reprocessing of the spent fuel with a maximum burnup of 100 GWd/t has been successfully carried out so far. The feed backs from these campaigns with progressively increasing specific activities, have been useful in establishing a viable process flowsheet for reprocessing the Prototype Fast Breeder Reactor (PFBR) spent fuel. Also, the design of various equipments and processes for the future plants, which are either under design for construction, namely, the Demonstration Fast Reactor Fuel Reprocessing Plant (DFRP) and the Fast reactor fuel Reprocessing Plant (FRP) could be finalized. (authors)

  6. Classic Nuclear Fuel Reprocessing Flowsheet

    SciTech Connect

    Fallgren, Andrew James

    2015-02-13

    This is a flowsheet as well as a series of subsheets to be used for discussion on the standard design of a reprocessing plant. This flowsheet consists of four main sections: offgas handling, separations, solvent wash, and acid recycle. As well as having the main flowsheet, subsections have been broken off into their own sheets to provide for larger font and ease of printing.

  7. Summary of nuclear fuel reprocessing activities around the world

    SciTech Connect

    Mellinger, P.J.; Harmon, K.M.; Lakey, L.T.

    1984-11-01

    This review of international practices for nuclear fuel reprocessing was prepared to provide a nontechnical summary of the current status of nuclear fuel reprocessing activities around the world. The sources of information are widely varied.

  8. Nuclear Fuel Reprocessing: U.S. Policy Development

    DTIC Science & Technology

    2006-11-29

    Nuclear Fuel Reprocessing: U.S. Policy Development Anthony Andrews Specialist in Industrial Engineering and Infrastructure Policy Resources, Science...separate and recover fissionable plutonium from irradiated nuclear fuel. In the early stage of commercial nuclear power, reprocessing was thought essential...to supplying nuclear fuel. Federally sponsored breeder reactor development included research into advanced reprocessing technology. Several

  9. Consolidated fuel reprocessing program. Progress report, January 1-March 31, 1981

    SciTech Connect

    Not Available

    1981-06-01

    Progress and activities are reported on process development, laboratory R and D, engineering research, engineering systems, Integrated Equipment Test (IET) facility operations, and HTGR fuel reprocessing. (DLC)

  10. ON-LINE MONITORING FOR PROCESS CONTROL AND SAFEGUARDING OF RADIOCHEMICAL STREAMS AT SPENT FUEL REPROCESSING PLANTS

    SciTech Connect

    Bryan, Samuel A.; Levitskaia, Tatiana G.; Casella, Amanda J.

    2014-10-20

    The International Atomic Energy Agency (IAEA) has established international safeguards standards for fissionable material at spent nuclear fuel reprocessing plants to ensure that significant quantities of weapons-grade nuclear material are not diverted from these facilities. Currently, methods to verify material control and accountancy (MC&A) at these facilities require time-consuming and resource-intensive destructive assay (DA). Leveraging new on-line non-destructive assay (NDA) techniques in conjunction with the traditional and highly precise DA methods may provide a more timely, cost-effective and resource-efficient means for MC&A verification at such facilities. Pacific Northwest National Laboratory (PNNL) is developing on-line NDA process monitoring technologies, including a spectroscopy-based monitoring system, to potentially reduce the time and resource burden associated with current techniques. The spectroscopic monitor continuously measures chemical compositions of the process streams including actinide metal ions (U, Pu, Np), selected fission products, and major non-radioactive flowsheet chemicals using UV-vis-near infrared and Raman spectroscopy. This paper provides an overview of the methods and reports our on-going efforts to develop and demonstrate the technologies. Our ability to identify material intentionally diverted from a liquid-liquid extraction contactor system was successfully tested using on-line process monitoring as a means to detect the amount of material diverted. A chemical diversion and detection of that diversion, from a solvent extraction scheme was demonstrated using a centrifugal contactor system operating a tributyl phosphate based extraction. A portion of the feed from a counter-current extraction system was diverted while a continuous extraction experiment was underway; the spectroscopic on-line process monitoring system was simultaneously measuring the feed, raffinate and organic products streams. The amount observed to be

  11. Toward a Greenish Nuclear Fuel Cycle: Ionic Liquids as Solvents for Spent Nuclear Fuel Reprocessing and Other Decontamination Processes for Contaminated Metal Waste

    NASA Astrophysics Data System (ADS)

    Straka, Martin

    2016-12-01

    The final disposition of spent nuclear fuel (SNF) is an area that requires innovative solutions. The use of ionic liquids (ILs) has been examined as one means to remediate SNF in a variety of different chemical environments and with different chemical starting materials. The effectiveness of various ILs for SNF reprocessing, as well as the reaction chemistry that occurs in them, is discussed.

  12. Radioactive Iodine and Krypton Control for Nuclear Fuel Reprocessing Facilities

    SciTech Connect

    Soelberg, Nicolas R.; Garn, Troy; Greenhalgh, Mitchell; Law, Jack; Jubin, Robert T.; Strachan, Denis M.; Thallapally, Praveen K.

    2013-07-22

    Nuclear fission results in the production of fission products and activation products, some of which tend to be volatile during used fuel reprocessing. These can evolve in volatile species in the reprocessing facility off-gas streams, depending on the separations and reprocessing technologies that are used. Radionuclides that have been identified as “volatile radionuclides” are noble gases (most notably isotopes of Kr and Xe); 3H; 14C; and 129I. Radionuclides that tend to form volatile species that evolve into reprocessing facility off-gas systems are more challenging to efficiently control compared to radionuclides that tend to stay in solid or liquid phases. Future used fuel reprocessing facilities in the United States can require efficient capture of some volatile radionuclides in their off-gas streams to meet regulatory emission requirements. In aqueous reprocessing, these radionuclides are most commonly expected to evolve into off-gas streams in tritiated water [3H2O (T2O) and 3HHO (THO)], radioactive CO2, noble gases, and gaseous HI, I2, or volatile organic iodides. The fate and speciation of these radionuclides from a non-aqueous fuel reprocessing facility is less well known at this time, but active investigations are in progress. An Off-Gas Sigma Team was formed in late FY 2009 to integrate and coordinate the Fuel Cycle Research and Development (FCR&D) activities directed towards the capture and sequestration of the these volatile radionuclides (Jubin 2012a). The Sigma Team concept was envisioned to bring together multidisciplinary teams from across the DOE complex that would work collaboratively to solve the technical challenges and to develop the scientific basis for the capture and immobilization technologies such that the sum of the efforts was greater than the individual parts. The Laboratories currently participating in this effort are Argonne National Laboratory (ANL), Idaho National Laboratory (INL), Oak Ridge National Laboratory (ORNL), Pacific

  13. Is Spent Fuel or Waste from Reprocessed Spent Fuel Simpler to Dispose of?

    DTIC Science & Technology

    1981-06-12

    the space in a repository for processed high-level waste has not included the disposal of transuranic waste from the co.mercial fuel cycle which will...AD-AI06 573 GENERAL ACCOUNTING OFFICE WASHINGTON OC ENERGY AND M-ETC F/G 18/7 i S PENT FUEL OR WASTE FROM REPROCESSED SPENT FUEL SIMPLER TO D--TC(U...the Congress entitled "Is Spent Fuel or Waste from Reprocessed Spent Fuel Simpler to Dispose of?" (EID-81-78, June 12, 1981)z Insert the following

  14. Process monitoring in international safeguards for reprocessing plants: A demonstration

    SciTech Connect

    Ehinger, M.H.

    1989-01-01

    In the period 1985--1987, the Oak Ridge National Laboratory investigated the possible role of process monitoring for international safeguards applications in fuel reprocessing plants. This activity was conducted under Task C.59, ''Review of Process Monitoring Safeguards Technology for Reprocessing Facilities'' of the US program of Technical Assistance to the International Atomic Energy Agency (IAEA) Safeguards program. The final phase was a demonstration of process monitoring applied in a prototypical reprocessing plant test facility at ORNL. This report documents the demonstration and test results. 35 figs.

  15. Methodology for estimating reprocessing costs for nuclear fuels

    SciTech Connect

    Carter, W. L.; Rainey, R. H.

    1980-02-01

    A technological and economic evaluation of reprocessing requirements for alternate fuel cycles requires a common assessment method and a common basis to which various cycles can be related. A methodology is described for the assessment of alternate fuel cycles utilizing a side-by-side comparison of functional flow diagrams of major areas of the reprocessing plant with corresponding diagrams of the well-developed Purex process as installed in the Barnwell Nuclear Fuel Plant (BNFP). The BNFP treats 1500 metric tons of uranium per year (MTU/yr). Complexity and capacity factors are determined for adjusting the estimated facility and equipment costs of BNFP to determine the corresponding costs for the alternate fuel cycle. Costs of capacities other than the reference 1500 MT of heavy metal per year are estimated by the use of scaling factors. Unit costs of reprocessed fuel are calculated using a discounted cash flow analysis for three economic bases to show the effect of low-risk, typical, and high-risk financing methods.

  16. THE MULTI-ISOTOPE PROCESS (MIP) MONITOR: A NEAR-REAL-TIME, NON-DESTRUCTIVE, INDICATOR OF SPENT NUCLEAR FUEL REPROCESSING CONDITIONS

    SciTech Connect

    Schwantes, Jon M.; Orton, Christopher R.; Fraga, Carlos G.; Douglas, Matthew; Christensen, Richard

    2010-05-07

    Researchers from Pacific Northwest National Laboratory and The Ohio State University are working to develop a system for monitoring spent nuclear fuel reprocessing facilities on-line, non-destructively, and in near-real-time. This method, known as the Multi-Isotope Process (MIP) Monitor, is based upon the measurement of distribution patterns of a suite of indicator (radioactive) isotopes present within product and waste streams of a nuclear reprocessing facility. Signatures from these indicator isotopes are monitored on-line by gamma spectrometry and compared, in near-real-time, to patterns representing "normal" process conditions using multivariate pattern recognition software. By targeting gamma-emitting indicator isotopes, the MIP Monitor approach is compatible with the use of small, portable, high-resolution gamma detectors that may be easily deployed throughout an existing facility. In addition, utilization of a suite of radio-elements, including ones with multiple oxidation states, increases the likelihood that attempts to divert material via process manipulation would be detected. Proof-of-principle modeling exercises simulating changes in acid strength have been completed and the results are promising. Laboratory validation is currently under way and significant results are available. The latest experimental results, along with an overview of the method will be presented.

  17. MONITORING SPENT NUCLEAR FUEL REPROCESSING CONDITIONS NON-DESTRUCTIVELY AND IN NEAR-REAL-TIME USING THE MULTI-ISOTOPE PROCESS (MIP) MONITOR

    SciTech Connect

    Orton, Christopher R.; Fraga, Carlos G.; Douglas, Matthew; Christensen, Richard; Schwantes, Jon M.

    2010-05-07

    Researchers from Pacific Northwest National Laboratory and The Ohio State University are working to develop a system for monitoring spent nuclear fuel reprocessing facilities on-line, nondestructively, and in near-real-time. This method, known as the Multi-Isotope Process (MIP) Monitor, is based upon the measurement of distribution patterns of a suite of indicator (radioactive) isotopes present within product and waste streams of a nuclear reprocessing facility. Signatures from these indicator isotopes are monitored on-line by gamma spectrometry and compared, in near-real-time, to patterns representing "normal" process conditions using multivariate pattern recognition software. By targeting gamma-emitting indicator isotopes, the MIP Monitor approach is compatible with the use of small, portable, high-resolution gamma detectors that may be easily deployed throughout an existing facility. In addition, utilization of a suite of radio-elements, including ones with multiple oxidation states, increases the likelihood that attempts to divert material via process manipulation would be detected. Proof-of-principle modeling exercises simulating changes in acid strength have been completed and the results are promising. Laboratory testing is currently under way and significant results are available. Recent experimental results, along with an overview of the method are presented.

  18. Survey of Dynamic Simulation Programs for Nuclear Fuel Reprocessing

    SciTech Connect

    Troy J. Tranter; Daryl R. Haefner

    2008-06-01

    The absence of any industrial scale nuclear fuel reprocessing in the U.S. has precluded the necessary driver for developing the advanced simulation capability now prevalent in so many other industries. Modeling programs to simulate the dynamic behavior of nuclear fuel separations and processing were originally developed to support the US government’s mission of weapons production and defense fuel recovery. Consequently there has been little effort is the US devoted towards improving this specific process simulation capability during the last two or three decades. More recent work has been focused on elucidating chemical thermodynamics and developing better models of predicting equilibrium in actinide solvent extraction systems. These equilibrium models have been used to augment flowsheet development and testing primarily at laboratory scales. The development of more robust and complete process models has not kept pace with the vast improvements in computational power and user interface and is significantly behind simulation capability in other chemical processing and separation fields.

  19. Consolidated fuel-reprocessing program. Progress report, April 1-June 30, 1982

    SciTech Connect

    Burch, W D

    1982-09-01

    Highlights of progress accomplished during the quarter ending June 30, 1982 are summarized. Discussion is presented under the headings: Process development; Laboratory R and D; Engineering research; Engineering systems; Integrated equipment test facility operation; Instrument development; and HTGR fuel reprocessing.

  20. Consolidated fuel reprocessing program. Progress report, July 1-September 30, 1981

    SciTech Connect

    1981-12-01

    Technical progress is reported in overview fashion in the following areas: process development, laboratory R and D, engineering research, engineering systems, integrated equipment test facility (IET) operations, and HTGR fuel reprocessing. (DLC)

  1. Chemical basis for pyrochemical reprocessing of nuclear fuel

    SciTech Connect

    Ackerman, J.P. )

    1991-01-01

    The integral fast reactor (IFR) is an advanced breeder reactor concept that includes on-site reprocessing of spent fuel and wastes. Spent metallic fuel from the IFR is separated from fission products and cladding, and wastes are put into acceptable forms by use of a compact pyrochemical process based on partition of fuel and wastes between molten salt and liquid metal. To minimize reagent usage and, consequently, waste volume, electrotransport between metal phases is used extensively for feed dissolution and product recovery, but chemical oxidation and reduction are required for some operations. This paper describes the processes that are used and presents the chemical theory that was developed for quantitatively predicting the results of both chemical and electrotransport operations.

  2. Cost and availability of gadolinium for nuclear fuel reprocessing plants

    SciTech Connect

    Klepper, O.H.

    1985-06-01

    Gadolinium is currently planned for use as a soluble neutron poison in nuclear fuel reprocessing plants to prevent criticality of solutions of spent fuel. Gadolinium is relatively rare and expensive. The present study was undertaken therefore to estimate whether this material is likely to be available in quantities sufficient for fuel reprocessing and at reasonable prices. It was found that gadolinium, one of 16 rare earth elements, appears in the marketplace as a by-product and that its present supply is a function of the production rate of other more prevalent rare earths. The potential demand for gadolinium in a fuel reprocessing facility serving a future fast reactor industry amounts to only a small fraction of the supply. At the present rate of consumption, domestic supplies of rare earths containing gadolinium are adequate to meet national needs (including fuel reprocessing) for over 100 years. With access to foreign sources, US demands can be met well beyond the 21st century. It is concluded therefore that the supply of gadolinium will quite likely be more than adequate for reprocessing spent fuel for the early generation of fast reactors. The current price of 99.99% pure gadolinium oxide lies in the range $50/lb to $65/lb (1984 dollars). By the year 2020, in time for reprocessing spent fuel from an early generation of large fast reactors, the corresponding values are expected to lie in the $60/lb to $75/lb (1984 dollars) price range. This increase is modest and its economic impact on nuclear fuel reprocessing would be minor. The economic potential for recovering gadolinium from the wastes of nuclear fuel reprocessing plants (which use gadolinium neutron poison) was also investigated. The cost of recycled gadolinium was estimated at over twelve times the cost of fresh gadolinium, and thus recycle using current recovery technology is not economical. 15 refs., 4 figs., 11 tabs.

  3. MicroRaman measurements for nuclear fuel reprocessing applications

    DOE PAGES

    Casella, Amanda; Lines, Amanda; Nelson, Gilbert; ...

    2016-12-01

    Treatment and reuse of used nuclear fuel is a key component in closing the nuclear fuel cycle. Solvent extraction reprocessing methods that have been developed contain various steps tailored to the separation of specific radionuclides, which are highly dependent upon solution properties. The instrumentation used to monitor these processes must be robust, require little or no maintenance, and be able to withstand harsh environments such as high radiation fields and aggressive chemical matrices. Our group has been investigating the use of optical spectroscopy for the on-line monitoring of actinides, lanthanides, and acid strength within fuel reprocessing streams. This paper willmore » focus on the development and application of a new MicroRaman probe for on-line real-time monitoring of the U(VI)/nitrate ion/nitric acid in solutions relevant to used nuclear fuel reprocessing. Previous research has successfully demonstrated the applicability on the macroscopic scale, using sample probes requiring larger solution volumes. In an effort to minimize waste and reduce dose to personnel, we have modified this technique to allow measurement at the microfluidic scale using a Raman microprobe. Under the current sampling environment, Raman samples typically require upwards of 10 mL and larger. Using the new sampling system, we can sample volumes at 10 μL or less, which is a scale reduction of over 1,000 fold in sample size. Finally, this paper will summarize our current work in this area including: comparisons between the macroscopic and microscopic probes for detection limits, optimized channel focusing, and application in a flow cell with varying levels of HNO3, and UO2(NO3)2.« less

  4. MicroRaman measurements for nuclear fuel reprocessing applications

    SciTech Connect

    Casella, Amanda; Lines, Amanda; Nelson, Gilbert; Bello, Job; Bryan, Samuel

    2016-12-01

    Treatment and reuse of used nuclear fuel is a key component in closing the nuclear fuel cycle. Solvent extraction reprocessing methods that have been developed contain various steps tailored to the separation of specific radionuclides, which are highly dependent upon solution properties. The instrumentation used to monitor these processes must be robust, require little or no maintenance, and be able to withstand harsh environments such as high radiation fields and aggressive chemical matrices. Our group has been investigating the use of optical spectroscopy for the on-line monitoring of actinides, lanthanides, and acid strength within fuel reprocessing streams. This paper will focus on the development and application of a new MicroRaman probe for on-line real-time monitoring of the U(VI)/nitrate ion/nitric acid in solutions relevant to used nuclear fuel reprocessing. Previous research has successfully demonstrated the applicability on the macroscopic scale, using sample probes requiring larger solution volumes. In an effort to minimize waste and reduce dose to personnel, we have modified this technique to allow measurement at the microfluidic scale using a Raman microprobe. Under the current sampling environment, Raman samples typically require upwards of 10 mL and larger. Using the new sampling system, we can sample volumes at 10 μL or less, which is a scale reduction of over 1,000 fold in sample size. Finally, this paper will summarize our current work in this area including: comparisons between the macroscopic and microscopic probes for detection limits, optimized channel focusing, and application in a flow cell with varying levels of HNO3, and UO2(NO3)2.

  5. MicroRaman Measurements for Nuclear Fuel Reprocessing Applications

    SciTech Connect

    Casella, Amanda; Lines, Amanda; Nelson, Gilbert; Bello, Job; Bryan, Samuel

    2016-01-01

    Treatment and reuse of used nuclear fuel is a key component in closing the nuclear fuel cycle. Solvent extraction reprocessing methods that have been developed contain various steps tailored to the separation of specific radionuclides, which are highly dependent upon solution properties. The instrumentation used to monitor these processes must be robust, require little or no maintenance, and be able to withstand harsh environments such as high radiation fields and aggressive chemical matrices. Our group has been investigating the use of optical spectroscopy for the on-line monitoring of actinides, lanthanides, and acid strength within fuel reprocessing streams. This paper will focus on the development and application of a new MicroRaman probe for on-line real-time monitoring of the U(VI)/nitrate ion/nitric acid in solutions relevant to used nuclear fuel reprocessing. Previous research has successfully demonstrated the applicability on the macroscopic scale, using sample probes requiring larger solution volumes. In an effort to minimize waste and reduce dose to personnel, we have modified this technique to allow measurement at the microfluidic scale using a Raman microprobe. Under the current sampling environment, Raman samples typically require upwards of 10 mL and larger. Using the new sampling system, we can sample volumes at 10 μL or less, which is a scale reduction of over 1,000 fold in sample size. This paper will summarize our current work in this area including: comparisons between the macroscopic and microscopic probes for detection limits, optimized channel focusing, and application in a flow cell with varying levels of HNO3, and UO2(NO3)2.

  6. Proof of concept simulations of the Multi-Isotope Process monitor: An online, nondestructive, near-real-time safeguards monitor for nuclear fuel reprocessing facilities

    NASA Astrophysics Data System (ADS)

    Orton, Christopher R.; Fraga, Carlos G.; Christensen, Richard N.; Schwantes, Jon M.

    2011-02-01

    The International Atomic Energy Agency will require the development of advanced technologies to effectively safeguard nuclear material at increasingly large-scale nuclear recycling facilities. Ideally, the envisioned technologies would be capable of nondestructive, near-real-time, autonomous process monitoring. This paper describes recent results from model simulations designed to test the Multi-Isotope Process (MIP) monitor, a novel addition to a safeguards system for reprocessing facilities. The MIP monitor combines the detection of intrinsic gamma ray signatures emitted from process solutions with multivariate analysis to detect off-normal conditions in process streams nondestructively and in near-real-time. Three computer models including ORIGEN-ARP, AMUSE, and SYNTH were used in series to predict spent nuclear fuel composition, estimate element partitioning during separation, and simulate spectra from product and raffinate streams using a variety of gamma detectors, respectively. Simulations were generated for fuel with various irradiation histories and under a variety of plant operating conditions. Principal component analysis was applied to the simulated gamma spectra to investigate pattern variations as a function of acid concentration, burnup, and cooling time. Hierarchical cluster analysis and partial least squares (PLS) were also used in the analysis. The MIP monitor was found to be sensitive to induced variations of several operating parameters including distinguishing ±2.5% variation from normal process acid concentrations. The ability of PLS to predict burnup levels from simulated spectra was also demonstrated to be within 3.5% of measured values.

  7. Corrosion studies in fuel element reprocessing environments containing nitric acid

    SciTech Connect

    Beavers, J A; White, R R; Berry, W E; Griess, J C

    1982-04-01

    Nitric acid is universally used in aqueous fuel element reprocessing plants; however, in the processing scheme being developed by the Consolidated Fuel Reprocessing Program, some of the equipment will be exposed to nitric acid under conditions not previously encountered in fuel element reprocessing plants. A previous report presented corrosion data obtained in hyperazeotropic nitric acid and in concentrated magnesium nitrate solutions used in its preparation. The results presented in this report are concerned with the following: (1) corrosion of titanium in nitric acid; (2) corrosion of nickel-base alloys in a nitric acid-hydrofluoric acid solution; (3) the formation of Cr(VI), which enhances corrosion, in nitric acid solutions; and (4) corrosion of mechanical pipe connectors in nitric acid. The results show that the corrosion rate of titanium increased with the refreshment rate of boiling nitric acid, but the effect diminished rapidly as the temperature decreased. The addition of iodic acid inhibited attack. Also, up to 200 ppM of fluoride in 70% HNO/sub 3/ had no major effect on the corrosion of either titanium or tantalum. In boiling 8 M HNO/sub 3/-0.05 M HF, Inconel 671 was more resistant than Inconel 690, but both alloys experienced end-grain attack. In the case of Inconel 671, heat treatment was very important; annealed and quenched material was much more resistant than furnace-cooled material.The rate of oxidation of Cr(III) to Cr(VI) increased significantly as the nitric acid concentration increased, and certain forms of ruthenium in the solution seemed to accelerate the rate of formation. Mechanical connectors of T-304L stainless steel experienced end-grain attack on the exposed pipe ends, and seal rings of both stainless steel and a titanium alloy (6% Al-4% V) underwent heavy attack in boiling 8 M HNO/sub 3/.

  8. Proof of concept experiments of the multi-isotope process monitor: An online, nondestructive, near real-time monitor for spent nuclear fuel reprocessing facilities

    NASA Astrophysics Data System (ADS)

    Orton, Christopher R.; Fraga, Carlos G.; Christensen, Richard N.; Schwantes, Jon M.

    2012-04-01

    Operators, national regulatory agencies and the IAEA will require the development of advanced technologies to efficiently control and safeguard nuclear material at increasingly large-scale nuclear recycling facilities. Ideally, the envisioned technologies would be capable of non-destructive, near real-time (NRT), autonomous process monitoring. This paper describes results from proof-of-principle experiments designed to test the multi-isotope process (MIP) monitor, a novel approach to monitoring and safeguarding reprocessing facilities. The MIP Monitor combines the detection of intrinsic gamma ray signatures emitted from process solutions with multivariate analysis to detect off-normal conditions in process streams nondestructively and in NRT. Commercial spent nuclear fuel of various irradiation histories was dissolved and separated using a PUREX-based batch solvent extraction. Extractions were performed at various nitric acid concentrations to mimic both normal and off-normal industrial plant operating conditions. Principal component analysis (PCA) was applied to the simulated gamma spectra to investigate pattern variations as a function of acid concentration, burnup and cooling time. Partial least squares (PLS) regression was applied to attempt to quantify both the acid concentration and burnup of the dissolved spent fuel during the initial separation stage of recycle. The MIP Monitor demonstrated sensitivity to induced variations of acid concentration, including the distinction of ±1.3 M variation from normal process conditions by way of PCA. Acid concentration was predicted using measurements from the organic extract and PLS resulting in predictions with <0.7 M relative error. Quantification of burnup levels from dissolved fuel spectra using PLS was demonstrated to be within 2.5% of previously measured values.

  9. Molten tin reprocessing of spent nuclear fuel elements

    DOEpatents

    Heckman, Richard A.

    1983-01-01

    A method and apparatus for reprocessing spent nuclear fuel is described. Within a containment vessel, a solid plug of tin and nitride precipitates supports a circulating bath of liquid tin therein. Spent nuclear fuel is immersed in the liquid tin under an atmosphere of nitrogen, resulting in the formation of nitride precipitates. The layer of liquid tin and nitride precipitates which interfaces the plug is solidified and integrated with the plug. Part of the plug is melted, removing nitride precipitates from the containment vessel, while a portion of the plug remains solidified to support the liquid tin and nitride precipitates remaining in the containment vessel. The process is practiced numerous times until substantially all of the precipitated nitrides are removed from the containment vessel.

  10. MICROBIAL TRANSFORMATIONS OF RADIONUCLIDES RELEASED FROM NUCLEAR FUEL REPROCESSING PLANTS.

    SciTech Connect

    FRANCIS,A.J.

    2006-10-18

    Microorganisms can affect the stability and mobility of the actinides U, Pu, Cm, Am, Np, and the fission products Tc, I, Cs, Sr, released from nuclear fuel reprocessing plants. Under appropriate conditions, microorganisms can alter the chemical speciation, solubility and sorption properties and thus could increase or decrease the concentrations of radionuclides in solution and the bioavailability. Dissolution or immobilization of radionuclides is brought about by direct enzymatic action or indirect non-enzymatic action of microorganisms. Although the physical, chemical, and geochemical processes affecting dissolution, precipitation, and mobilization of radionuclides have been investigated, we have only limited information on the effects of microbial processes. The mechanisms of microbial transformations of the major and minor actinides and the fission products under aerobic and anaerobic conditions in the presence of electron donors and acceptors are reviewed.

  11. Alternate extractants to tributyl phosphate for reactor fuel reprocessing

    SciTech Connect

    Crouse, D.J.; Arnold, W.D.; Hurst, F.J.

    1983-01-01

    Both tri(n-hexyl) phosphate (THP) and tri(2-ethylhexyl) phosphate (TEHP) have some important potential process advantages over TBP for reactor fuel reprocessing. These include negligible aqueous phase solubility and less tendency toward third phase and crud formation. The alkyl chain branching of TEHP makes it much more stable to chemical degradation than TBP and probably also accounts for its much weaker ruthenium extraction. The higher uranium and plutonium extraction power of THP and TEHP allows higher solvent loadings in extraction but makes them somewhat more difficult to strip. The phase separation properties of 1.09 M solutions of THP and TEHP are inferior to those of 1.09 M TBP (30 vol %) but are favorable at lower concentrations. Use of more dilute THP and TEHP solutions is recommended for this reason and to obtain a better balance of extraction power in the extraction versus stripping steps.

  12. Waste Minimization Study on Pyrochemical Reprocessing Processes

    SciTech Connect

    Boussier, H.; Conocar, O.; Lacquement, J.

    2006-07-01

    Ideally a new pyro-process should not generate more waste, and should be at least as safe and cost effective as the hydrometallurgical processes currently implemented at industrial scale. This paper describes the thought process, the methodology and some results obtained by process integration studies to devise potential pyro-processes and to assess their capability of achieving this challenging objective. As example the assessment of a process based on salt/metal reductive extraction, designed for the reprocessing of Generation IV carbide spent fuels, is developed. Salt/metal reductive extraction uses the capability of some metals, aluminum in this case, to selectively reduce actinide fluorides previously dissolved in a fluoride salt bath. The reduced actinides enter the metal phase from which they are subsequently recovered; the fission products remain in the salt phase. In fact, the process is not so simple, as it requires upstream and downstream subsidiary steps. All these process steps generate secondary waste flows representing sources of actinide leakage and/or FP discharge. In aqueous processes the main solvent (nitric acid solution) has a low boiling point and evaporate easily or can be removed by distillation, thereby leaving limited flow containing the dissolved substance behind to be incorporated in a confinement matrix. From the point of view of waste generation, one main handicap of molten salt processes, is that the saline phase (fluoride in our case) used as solvent is of same nature than the solutes (radionuclides fluorides) and has a quite high boiling point. So it is not so easy, than it is with aqueous solutions, to separate solvent and solutes in order to confine only radioactive material and limit the final waste flows. Starting from the initial block diagram devised two years ago, the paper shows how process integration studies were able to propose process fittings which lead to a reduction of the waste variety and flows leading at an 'ideal

  13. New method of uranium and plutonium extraction in reprocessing of the spent nuclear fuel

    SciTech Connect

    Volk, V.; Dvoeglazov, K.; Veslov, S.; Rubisov, V.; Alekseenko, V.; Krivitsky, Y.; Alekseenko, S.; Bondin, V.

    2013-07-01

    It is shown that a two-stage process of uranium and plutonium extraction during the reprocessing of spent nuclear fuel solves the problem of obtaining a high-concentrated extract without increasing the loss risk with raffinate and avoids the accumulation of plutonium in the unit. A possible further optimization of the process would be the creation of steps inside the stages.

  14. Consolidated Fuel Reprocessing Program: Progress report for period October 1 to December 31, 1986

    SciTech Connect

    Groenier, W.S.; Meacham, S.A.; Stradley, J.G.

    1987-06-01

    All research and development (R and D) on civilian power reactor oxide fuel reprocessing in the United States is managed under the Consolidated Fuel Reprocessing Program (CFRP) centered at Oak Ridge National Laboratory (ORNL). A prime focus of present work is on technical exchanges and collaboration with other countries. In this context, the US Department of Energy (DOE) is in the process of negotiating a major collaboration with Japan. Both work associated with the foreign exchanges and collaboration and some on-going work are reported in overview fashion in this series of quarterly progress reports.

  15. Consolidated Fuel Reprocessing Program. National Program Plan FY 1984

    SciTech Connect

    Not Available

    1984-01-01

    This FY 1984 National Program Plan for the Consolidated Fuel Reprocessing Program (CFRP) provides specific guidance from the Department of Energy (DOE) for FY 1984 CFRP activities and a baseline for activities in future years. This is the second issue of the Plan, which is updated anually and summarizes program objectives, summary plans and schedules, budget allocations, contractor involvement, and interfaces with other research programs. The National Program Plan is a controlling document for the Technical Program Plan, which is prepared annually by the CFRP at Oak Ridge National Laboratory (ORNL) and is one of the hierarchical group of planning documents. The CFRP is a part of the DOE's program of research and development (R and D) on nuclear fission systems and is directed by the LMFBR Fuel Cycle Projects Division, Office of Spent Fuel Management and Reprocessing Systems at DOE-Headquarters through the Oak Ridge Operations Office (ORO). The strategy of the program is to maintain the capability to commit to a breeder option through a strong R and D program on breeder reprocessing and alternate fuels and fuel cycles in order to achieve operating and economic advantages.

  16. Consolidated Fuel Reprocessing Program: National Program Plan, FY 1983

    SciTech Connect

    Not Available

    1983-01-01

    This FY 1983 National Program Plan for the Consolidated Fuel Reprocessing Program (CFRP) provides specific guidance from the Department of Energy (DOE) for FY 1983 CFRP activities and a baseline for future year activities. This initial issue of the Plan, which will be updated annually, summarizes program objectives, summary plans and schedules, budget allocations, contractor involvement, and interfaces with other research programs. The National Program Plan is a controlling document for the Technical Program Plan, which is prepared annually by the CFRP at ORNL and is one of a hierarchical group of planning documents. The CFRP is a part of the DOE's program of research and development (R and D) on nuclear fission systems and is directed by the LMFBR Fuel Cycle Projects Division, Office of Spent Fuel Management and Reprocessing Systems at DOE-Headquarters through the Oak Ridge Operations Office (ORO). The strategy of the program is to maintain the capability to commit to a breeder option through a strong R and D program on breeder reprocessing and alternate fuels and fuel cycles to achieve operating and economic advantages.

  17. Electrolysis cell for reprocessing plutonium reactor fuel

    DOEpatents

    Miller, William E.; Steindler, Martin J.; Burris, Leslie

    1986-01-01

    An electrolytic cell for refining a mixture of metals including spent fuel containing U and Pu contaminated with other metals, the cell including a metallic pot containing a metallic pool as one anode at a lower level, a fused salt as the electrolyte at an intermediate level and a cathode and an anode basket in spaced-apart positions in the electrolyte with the cathode and anode being retractable to positions above the electrolyte during which spent fuel may be added to the anode basket and the anode basket being extendable into the lower pool to dissolve at least some metallic contaminants, the anode basket containing the spent fuel acting as a second anode when in the electrolyte.

  18. Electrolysis cell for reprocessing plutonium reactor fuel

    DOEpatents

    Miller, W.E.; Steindler, M.J.; Burris, L.

    1985-01-04

    An electrolytic cell for refining a mixture of metals including spent fuel containing U and Pu contaminated with other metals is claimed. The cell includes a metallic pot containing a metallic pool as one anode at a lower level, a fused salt as the electrolyte at an intermediate level and a cathode and an anode basket in spaced-apart positions in the electrolyte with the cathode and anode being retractable to positions above the electrolyte during which spent fuel may be added to the anode basket. The anode basket is extendable into the lower pool to dissolve at least some metallic contaminants; the anode basket contains the spent fuel acting as a second anode when in the electrolyte.

  19. Organic derivatives of hydrazine and hydroxylamine in future technology of spent nuclear fuel reprocessing

    SciTech Connect

    Koltunov, V.S.; Baranov, S.M.

    1993-12-31

    An important issue in nuclear fuel reprocessing is the reduction of salts. It is seen that this can be accomplished utilizing organic derivatives of hydrazine and hydroxylamine as reductants of Np(VI) and Pu(IV). The chemistry of this process is described.

  20. High temperature gas-cooled reactor (HTGR) graphite pebble fuel: Review of technologies for reprocessing

    SciTech Connect

    Mcwilliams, A. J.

    2015-09-08

    This report reviews literature on reprocessing high temperature gas-cooled reactor graphite fuel components. A basic review of the various fuel components used in the pebble bed type reactors is provided along with a survey of synthesis methods for the fabrication of the fuel components. Several disposal options are considered for the graphite pebble fuel elements including the storage of intact pebbles, volume reduction by separating the graphite from fuel kernels, and complete processing of the pebbles for waste storage. Existing methods for graphite removal are presented and generally consist of mechanical separation techniques such as crushing and grinding chemical techniques through the use of acid digestion and oxidation. Potential methods for reprocessing the graphite pebbles include improvements to existing methods and novel technologies that have not previously been investigated for nuclear graphite waste applications. The best overall method will be dependent on the desired final waste form and needs to factor in the technical efficiency, political concerns, cost, and implementation.

  1. Spent fuel and residue measurement instrumentation at the Sellafield nuclear fuel reprocessing facility

    SciTech Connect

    Chesterman, A.S.; Clark, P.A.

    1995-12-31

    The Sellafield reprocessing plant receives and reprocesses several thousand tonnes of spent light water reactor (LWR), advanced gas cooled reactor (AGR) and natural uranium magnesium alloy clad (Magnox) fuels each year. The safety and cost effectiveness of these operations has been supported by the development and installation, at key points in the process, of a range of special purpose radiometric instrumentation. Systems in routine operational use verify the cooling time, burn-tip and initial and final U-235 equivalent enrichment of fuel assemblies in the storage and handling ponds. Other systems determine the radionuclide inventories of fuel residues in intermediate level waste arising from plant operations. The measurement techniques employed include high resolution gamma spectrometry, passive neutron counting and neutron interrogation by the use of a Cf-252 source and deuterium-tritium (D-T) pulsed neutron generators. Details of the instruments including mechanical installation arrangements and measurement data are presented in the paper along with a discussion of possible future uses of similar instruments for burn-up credit associated with fuel and residue storage, transportation and disposal.

  2. Status of radioiodine control for nuclear fuel reprocessing plants

    SciTech Connect

    Burger, L.L.; Scheele, R.D.

    1983-07-01

    This report summarizes the status of radioiodine control in a nuclear fuel reprocessing plant with respect to capture, fixation, and disposal. Where possible, we refer the reader to a number of survey documents which have been published in the last four years. We provide updates where necessary. Also discussed are factors which must be considered in developing criteria for iodine control. For capture from gas streams, silver mordenite and a silver nitrate impregnated silica (AC-6120) are considered state-of-the-art and are recommended. Three aqueous scrubbing processes have been demonstrated: Caustic scrubbing is simple but probably will not give an adequate iodine retention by itself. Mercurex (mercuric nitrate-nitric acid scrubbing) has a number of disadvantages including the use of toxic mercury. Iodox (hyperazeotropic nitric acid scrubbing) is effective but employs a very corrosive and hazardous material. Other technologies have been tested but require extensive development. The waste forms recommended for long-term storage or disposal are silver iodide, the iodates of barium, strontium, or calcium, and silver loaded sorbents, all fixed in cement. Copper iodide in bitumen (asphalt) is a possibility but requires testing. The selection of a specific form will be influenced by the capture process used.

  3. Method for reprocessing and separating spent nuclear fuels

    DOEpatents

    Krikorian, Oscar H.; Grens, John Z.; Parrish, Sr., William H.

    1983-01-01

    Spent nuclear fuels, including actinide fuels, volatile and non-volatile fission products, are reprocessed and separated in a molten metal solvent housed in a separation vessel made of a carbon-containing material. A first catalyst, which promotes the solubility and permeability of carbon in the metal solvent, is included. By increasing the solubility and permeability of the carbon in the solvent, the rate at which actinide oxides are reduced (carbothermic reduction) is greatly increased. A second catalyst, included to increase the affinity for nitrogen in the metal solvent, is added to increase the rate at which actinide nitrides form after carbothermic reduction is complete.

  4. Method for reprocessing and separating spent nuclear fuels. [Patent application

    DOEpatents

    Krikorian, O.H.; Grens, J.Z.; Parrish, W.H. Sr.

    1982-01-19

    Spent nuclear fuels, including actinide fuels, volatile and nonvolatile fission products, are reprocessed and separated in a molten metal solvent housed in a separation vessel made of a carbon-containing material. A first catalyst, which promotes the solubility and permeability of carbon in the metal solvent, is included. By increasing the solubility and permeability of the carbon in the solvent, the rate at which actinide oxides are reduced (carbothermic reduction) is greatly increased. A second catalyst, included to increase the affinity for nitrogen in the metal solvent, is added to increase the rate at which actinide nitrides form after carbothermic reduction is complete.

  5. Radioactive Iodine and Krypton Control for Nuclear Fuel Reprocessing Facilities

    SciTech Connect

    Soelberg, Nick R.; Garn, Troy G.; Greenhalgh, Mitchell R.; Law, Jack D.; Jubin, Robert; Strachan, Denis M.; Thallapally, Praveen K.

    2013-01-01

    The removal of volatile radionuclides generated during used nuclear fuel reprocessing in the US is almost certain to be necessary for the licensing of a reprocessing facility in the US. Various control technologies have been developed, tested, or used over the past 50 years for control of volatile radionuclide emissions from used fuel reprocessing plants. The US DOE has sponsored, since 2009, an Off-gas Sigma Team to perform research and development focused on the most pressing volatile radionuclide control and immobilization problems. In this paper, we focus on the control requirements and methodologies for85Kr and129I. Numerous candidate technologies have been studied and developed at laboratory and pilot-plant scales in an effort to meet the need for high iodine control efficiency and to advance alternatives to cryogenic separations for krypton control. Several of these show promising results. Iodine decontamination factors as high as 105, iodine loading capacities, and other adsorption parameters including adsorption rates have been demonstrated under some conditions for both silver zeolite (AgZ) and Ag-functionalized aerogel. Sorbents, including an engineered form of AgZ and selected metal organic framework materials (MOFs), have been successfully demonstrated to capture Kr and Xe without the need for separations at cryogenic temperatures.

  6. Improved measurement of aluminum in irradiated fuel reprocessed at the Savannah River Site

    SciTech Connect

    Maxwell, S.L. III.

    1991-01-01

    At the Savannah River Site (SRS), irradiated fuel from research reactor operators or their contract fuel service companies is reprocessed in the H-Canyon Separations Facility. Final processing costs are based on analytical measurements of the amount of total metal dissolved. Shipper estimates for uranium and uranium-235 and measured values at SRS have historically agreed very well. There have occasionally been significant differences between shipper estimates for aluminum and the aluminum content determined at SRS. To minimize analytical error that might contribute to poor shipper-receiver agreement for the reprocessing of off-site fuel, a new analytical method to measure aluminum was developed by SRS Analytical Laboratories at the Central Laboratory Facilities. An EDTA (ethylenediaminetetraacetic acid) titration method, subject to dissolver matrix interferences, was previously used at SRS to measure aluminum in H-Canyon dissolver during the reprocessing of offsite fuel. The new method combines rapid ion exchange technology with direct current argon plasma spectrometry to enhance the reliability of aluminum measurements for off-site fuel. The technique rapidly removes spectral interferences such as uranium and significantly lowers gamma levels due to fission products. Aluminium is separated quantitatively by using an anion exchange technique that employs oxalate complexing, small particle size resin and rapid flow rates. The new method, which has eliminated matrix interference problems with these analyses and improved the quality of aluminum measurements, has improved the overall agreement between shipper-receiver values for offsite fuel processed SRS.

  7. Improved measurement of aluminum in irradiated fuel reprocessed at the Savannah River Site

    SciTech Connect

    Maxwell, S.L. III

    1991-12-31

    At the Savannah River Site (SRS), irradiated fuel from research reactor operators or their contract fuel service companies is reprocessed in the H-Canyon Separations Facility. Final processing costs are based on analytical measurements of the amount of total metal dissolved. Shipper estimates for uranium and uranium-235 and measured values at SRS have historically agreed very well. There have occasionally been significant differences between shipper estimates for aluminum and the aluminum content determined at SRS. To minimize analytical error that might contribute to poor shipper-receiver agreement for the reprocessing of off-site fuel, a new analytical method to measure aluminum was developed by SRS Analytical Laboratories at the Central Laboratory Facilities. An EDTA (ethylenediaminetetraacetic acid) titration method, subject to dissolver matrix interferences, was previously used at SRS to measure aluminum in H-Canyon dissolver during the reprocessing of offsite fuel. The new method combines rapid ion exchange technology with direct current argon plasma spectrometry to enhance the reliability of aluminum measurements for off-site fuel. The technique rapidly removes spectral interferences such as uranium and significantly lowers gamma levels due to fission products. Aluminium is separated quantitatively by using an anion exchange technique that employs oxalate complexing, small particle size resin and rapid flow rates. The new method, which has eliminated matrix interference problems with these analyses and improved the quality of aluminum measurements, has improved the overall agreement between shipper-receiver values for offsite fuel processed SRS.

  8. Feasibility study of a plant for LWR used fuel reprocessing by pyrochemical methods

    SciTech Connect

    Bychkov, A.V.; Kormilitsyn, M.V.; Savotchkin, Yu.P.; Sokolovsky, Yu.S.; Baganz, Catherine; Lopoukhine, Serge; Maurin, Guy; Medzadourian, Michel

    2007-07-01

    In 2005, experts from AREVA and RIAR performed a joint research work on the feasibility study of a plant reprocessing 1000 t/y of LWR spent nuclear fuel by the gas-fluoride and pyro-electrochemical techniques developed at RIAR. This work was based on the RIAR experience in development of pyrochemical processes and AREVA experience in designing UNF reprocessing plants. UNF reprocessing pyrochemical processes have been developed at RIAR at laboratory scale and technology for granulated MOX fuel fabrication and manufacturing of vibro-packed fuel rods is developed at pilot scale. The research work resulted in a preliminary feasibility assessment of the reprocessing plant according to the norms and standards applied in France. The study results interpretation must integrate the fact that the different technology steps are at very different stage of development. It appears clearly however that in its present state of development, pyro-electrochemical technology is not adapted to the treatment of an important material flow issuing from thermal reactors. There is probably an economic optimum to be studied for the choice of hydrometallurgical or pyro-electrochemical technology, depending on the area of application. This work is an example of successful and fruitful collaboration between French and Russian specialists. (authors)

  9. Consolidated Fuel Reprocessing Program. National Program Plan, FY 1985

    SciTech Connect

    Not Available

    1985-03-01

    This FY 1985 National Program Plan for the Consolidated Fuel Reprocessing Program (CFRP) provides specific guidance from the Department of Energy (DOE) for FY 1985 CFRP activities and a baseline for activities in future years. This is the third issue of the Plan, which is updated annually and summarizes program objectives, plans, and schedules, budget allocations, contractor involvements, and interfaces with other research programs. The National Program Plan is a controlling document for the Technical Program Plan, which is prepared annually by the CFRP at Oak Ridge National Laboratory (ORNL) and is one of a hierarchical group of planning documents. The CFRP is a part of the DOE's program of research and development (R and D) on nuclear fission systems and is directed by the LMFBR Fuel Cycle Projects Division, Office of Spent Fuel Management and Reprocessing Systems at DOE-Headquarters through the Oak Ridge Operations Office (ORO). The strategy of the program is to maintain the capability to commit to a breeder option through a strong fuel cycle R and D program and international technical exchanges.

  10. Development of fast breeder reactor fuel reprocessing technology at the Power Reactor and Nuclear Fuel Development Corporation

    SciTech Connect

    Kawata, T.; Takeda, H.; Togashi, A.; Hayashi, S. . Tokai Works); Stradley, J.G. )

    1991-01-01

    For the past two decades, a broad range of research development (R D) programs to establish fast breeder reactor (FBR) system and its associated fuel cycle technology have been pursued by the Power Reactor and Nuclear Fuel Development Corporation (PNC). Developmental activities for FBR fuel reprocessing technology have been primarily conducted at PNC Tokai Works where many important R D facilities for nuclear fuel cycle are located. These include cold and uranium tests for process equipment development in the Engineering Demonstration Facilities (EDF)-I and II, and laboratory-scale hot tests in the Chemical Processing Facility (CPF) where fuel dissolution and solvent extraction characteristics are being investigated with irradiated FBR fuel pins whose burn-up ranges up to 100,000 MWd/t. An extensive effort has also been made at EDF-III to develop advanced remote technology which enables to increase plant availability and to decrease radiation exposures to the workers in future reprocessing plants. The PNC and the United States Department of Energy (USDOE) entered into the joint collaboration in which the US shares the R Ds to support FBR fuel reprocessing program at the PNC. Several important R Ds on advanced process equipment such as a rotary dissolver and a centrifugal contactor system are in progress in a joint effort with the Oak Ridge National Laboratory (ORNL) Consolidated Fuel Reprocessing Program (CFRP). In order to facilitate hot testing on advanced processes and equipment, the design of a new engineering-scale hot test facility is now in progress aiming at the start of hot operation in late 90's. 31 refs., 2 tabs.

  11. Extending Spent Fuel Storage until Transport for Reprocessing or Disposal

    SciTech Connect

    Carlsen, Brett; Chiguer, Mustapha; Grahn, Per; Sampson, Michele; Wolff, Dietmar; Bevilaqua, Arturo; Wasinger, Karl; Saegusa, Toshiari; Seelev, Igor

    2016-09-01

    Spent fuel (SF) must be stored until an end point such as reprocessing or geologic disposal is imple-mented. Selection and implementation of an end point for SF depends upon future funding, legisla-tion, licensing and other factors that cannot be predicted with certainty. Past presumptions related to the availability of an end point have often been wrong and resulted in missed opportunities for properly informing spent fuel management policies and strategies. For example, dry cask storage systems were originally conceived to free up needed space in reactor spent fuel pools and also to provide SFS of up to 20 years until reprocessing and/or deep geological disposal became available. Hundreds of dry cask storage systems are now employed throughout the world and will be relied upon well beyond the originally envisioned design life. Given present and projected rates for the use of nuclear power coupled with projections for SF repro-cessing and disposal capacities, one concludes that SF storage will be prolonged, potentially for several decades. The US Nuclear Regulatory Commission has recently considered 300 years of storage to be appropriate for the characterization and prediction of ageing effects and ageing management issues associated with extending SF storage and subsequent transport. This paper encourages addressing the uncertainty associated with the duration of SF storage by de-sign – rather than by default. It suggests ways that this uncertainty may be considered in design, li-censing, policy, and strategy decisions and proposes a framework for safely extending spent fuel storage until SF can be transported for reprocessing or disposal – regardless of how long that may be. The paper however is not intended to either encourage or facilitate needlessly extending spent fuel storage durations. Its intent is to ensure a design and safety basis with sufficient margin to accommodate the full range of potential future scenarios. Although the focus is primarily on

  12. Overview of reductants utilized in nuclear fuel reprocessing/recycling

    SciTech Connect

    Patricia Paviet-Hartmann; Catherine Riddle; Keri Campbell; Edward Mausolf

    2013-10-01

    Most of the aqueous processes developed, or under consideration worldwide for the recycling of used nuclear fuel (UNF) utilize the oxido-reduction properties of actinides to separate them from other radionuclides. Generally, after acid dissolution of the UNF, (essentially in nitric acid solution), actinides are separated from the raffinate by liquid-liquid extraction using specific solvents, associated along the process, with a particular reductant that will allow the separation to occur. For example, the industrial PUREX process utilizes hydroxylamine as a plutonium reductant. Hydroxylamine has numerous advantages: not only does it have the proper attributes to reduce Pu(IV) to Pu(III), but it is also a non-metallic chemical that is readily decomposed to innocuous products by heating. However, it has been observed that the presence of high nitric acid concentrations or impurities (such as metal ions) in hydroxylamine solutions increase the likelihood of the initiation of an autocatalytic reaction. Recently there has been some interest in the application of simple hydrophilic hydroxamic ligands such as acetohydroxamic acid (AHA) for the stripping of tetravalent actinides in the UREX process flowsheet. This approach is based on the high coordinating ability of hydroxamic acids with tetravalent actinides (Np and Pu) compared with hexavalent uranium. Thus, the use of AHA offers a route for controlling neptunium and plutonium in the UREX process by complexant based stripping of Np(IV) and Pu(IV) from the TBP solvent phase, while U(VI) ions are not affected by AHA and remain solvated in the TBP phase. In the European GANEX process, AHA is also used to form hydrophilic complexes with actinides and strip them from the organic phase into nitric acid. However, AHA does not decompose completely when treated with nitric acid and hampers nitric acid recycling. In lieu of using AHA in the UREX + process, formohydroxamic acid (FHA), although not commercially available, hold

  13. Consolidated fuel reprocessing. Program progress report, April 1-June 30, 1980

    SciTech Connect

    Not Available

    1980-09-01

    This progress report is compiled from major contributions from three programs: (1) the Advanced Fuel Recycle Program at ORNL; (2) the Converter Fuel Reprocessing Program at Savannah River Laboratory; and (3) the reprocessing components of the HTGR Fuel Recycle Program, primarily at General Atomic and ORNL. The coverage is generally overview in nature; experimental details and data are limited.

  14. Issues for Conceptual Design of AFCF and CFTC LWR Spent Fuel Separations Influencing Next-Generation Aqueous Fuel Reprocessing

    SciTech Connect

    D. Hebditch; R. Henry; M. Goff; K. Pasamehmetoglu; D. Ostby

    2007-09-01

    In 2007, the U.S. Department of Energy (DOE) published the Global Nuclear Energy Partnership (GNEP) strategic plan, which aims to meet US and international energy, safeguards, fuel supply and environmental needs by harnessing national laboratory R&D, deployment by industry and use of international partnerships. Initially, two industry-led commercial scale facilities, an advanced burner reactor (ABR) and a consolidated fuel treatment center (CFTC), and one developmental facility, an advanced fuel cycle facility (AFCF) are proposed. The national laboratories will lead the AFCF to provide an internationally recognized R&D center of excellence for developing transmutation fuels and targets and advancing fuel cycle reprocessing technology using aqueous and pyrochemical methods. The design drivers for AFCF and the CFTC LWR spent fuel separations are expected to impact on and partly reflect those for industry, which is engaging with DOE in studies for CFTC and ABR through the recent GNEP funding opportunity announcement (FOA). The paper summarizes the state-of-the-art of aqueous reprocessing, gives an assessment of engineering drivers for U.S. aqueous processing facilities, examines historic plant capital costs and provides conclusions with a view to influencing design of next-generation fuel reprocessing plants.

  15. Workshop on instrumentation and analyses for a nuclear fuel reprocessing hot pilot plant

    SciTech Connect

    Babcock, S.M.; Feldman, M.J.; Wymer, R.G.; Hoffman, D.

    1980-05-01

    In order to assist in the study of instrumentation and analytical needs for reprocessing plants, a workshop addressing these needs was held at Oak Ridge National Laboratory from May 5 to 7, 1980. The purpose of the workshop was to incorporate the knowledge of chemistry and of advanced measurement techniques held by the nuclear and radiochemical community into ideas for improved and new plant designs for both process control and inventory and safeguards measurements. The workshop was athended by experts in nuclear and radiochemistry, in fuel recycle plant design, and in instrumentation and analysis. ORNL was a particularly appropriate place to hold the workshop since the Consolidated Fuel Reprocessing Program (CFRP) is centered there. Requirements for safeguarding the special nuclear materials involved in reprocessing, and for their timely measurement within the process, within the reprocessing facility, and at the facility boundaries are being studied. Because these requirements are becoming more numerous and stringent, attention is also being paid to the analytical requirements for these special nuclear materials and to methods for measuring the physical parameters of the systems containing them. In order to provide a focus for the consideration of the workshop participants, the Hot Experimental Facility (HEF) being designed conceptually by the CFRP was used as a basis for consideration and discussions.

  16. Krypton-85 health risk assessment for a nuclear fuel reprocessing plant

    SciTech Connect

    Mellinger, P.J.; Brackenbush, L.W.; Tanner, J.E.; Gilbert, E.S.

    1984-08-01

    The risks involved in the routine release of /sup 85/Kr from nuclear fuel reprocessing operations to the environment were compared to those resulting from the capture and storage of /sup 85/Kr. Instead of releasing the /sup 85/Kr to the environment when fuel is reprocessed, it can be captured, immobilized and stored. Two alternative methods of capturing /sup 85/Kr (cryogenic distillation and fluorocarbon absorption) and one method of immobilizing the captured gas (ion implantation/sputtering) were theoretically incorporated into a representative fuel reprocessing plant, the Barnwell Nuclear Fuel Plant, even though there are no known plans to start up this facility. Given the uncertainties in the models used to generate lifetime risk numbers (0.02 to 0.027 radiation induced fatal cancers expected in the occupational workforce and 0.017 fatal cancers in the general population), the differences in total risks for the three situations, (i.e., no-capture and two-capture alternatives) cannot be considered meaningful. It is possible that no risks would occur from any of the three situations. There is certainly no reason to conclude that risks from /sup 85/Kr routinely released to the environment are greater than those that would result from the other two situations considered. Present regulations mandate recovery and disposal of /sup 85/Kr from the off gases of a facility reprocessing spent fuel from commercial sources. Because of the lack of a clear-cut indication that recovery woud be beneficial, it does not seem prudent to burden the facilities with a requirement for /sup 85/Kr recovery, at least until operating experience demonstrates the incentive. The probable high aging of the early fuel to be processed and the higher dose resulting from the release of the unregulated /sup 3/H and /sup 14/C also encourage delaying implementation of the /sup 85/Kr recovery in the early plants.

  17. Container for reprocessing and permanent storage of spent nuclear fuel assemblies

    DOEpatents

    Forsberg, Charles W.

    1992-01-01

    A single canister process container for reprocessing and permanent storage of spent nuclear fuel assemblies comprising zirconium-based cladding and fuel, which process container comprises a collapsible container, having side walls that are made of a high temperature alloy and an array of collapsible support means wherein the container is capable of withstanding temperature necessary to oxidize the zirconium-based cladding and having sufficient ductility to maintain integrity when collapsed under pressure. The support means is also capable of maintaining their integrity at temperature necessary to oxide the zirconium-based cladding. The process container also has means to introduce and remove fluids to and from the container.

  18. An Assessment of Spent Fuel Reprocessing for Actinide Destruction and Resource Sustainability.

    SciTech Connect

    Cipiti, Benjamin B.; Smith, James D.

    2008-09-01

    The reprocessing and recycling of spent nuclear fuel can benefit the nuclear fuel cycle by destroying actinides or extending fissionable resources if uranium supplies become limited. The purpose of this study was to assess reprocessing and recycling in both fast and thermal reactors to determine the effectiveness for actinide destruction and resource utilization. Fast reactor recycling will reduce both the mass and heat load of actinides by a factor of 2, but only after 3 recycles and many decades. Thermal reactor recycling is similarly effective for reducing actinide mass, but the heat load will increase by a factor of 2. Economically recoverable reserves of uranium are estimated to sustain the current global fleet for the next 100 years, and undiscovered reserves and lower quality ores are estimated to contain twice the amount of economically recoverable reserves--which delays the concern of resource utilization for many decades. Economic analysis reveals that reprocessed plutonium will become competitive only when uranium prices rise to about %24360 per kg. Alternative uranium sources are estimated to be competitive well below that price. Decisions regarding the development of a near term commercial-scale reprocessing fuel cycle must partially take into account the effectiveness of reactors for actnides destruction and the time scale for when uranium supplies may become limited. Long-term research and development is recommended in order to make more dramatic improvements in actinide destruction and cost reductions for advanced fuel cycle technologies.The original scope of this work was to optimize an advanced fuel cycle using a tool that couples a reprocessing plant simulation model with a depletion analysis code. Due to funding and time constraints of the late start LDRD process and a lack of support for follow-on work, the project focused instead on a comparison of different reprocessing and recycling options. This optimization study led to new insight into

  19. Consolidated Fuel Reprocessing Program. Progress report, January 1-March 31, 1985

    SciTech Connect

    Not Available

    1985-04-01

    The DOE has concentrated all US research and development on fuel reprocessing into one major program - the Consolidated Fuel Reprocessing Program (CFRP) - under the management of the Oak Ridge National Laboratory and the Oak Ridge Operations Office. Other major program participants are GA Technologies, Inc., where reprocessing research and development on the HTGR fuel cycle are done, and the Hanford Engineering Development Laboratory (HEDL). The coverage is generally overview in nature. Experimental details and data have been limited to (1) make the report more concise and (2) meet the requirements which would qualify the report for unrestricted distribution in the open literature. All research and development on civilian power reactor fuel reprocessing in the United States is managed under the Consolidated Fuel Reprocessing Program (CFRP) centered at Oak Ridge National Laboratory (ORNL). Technical progress is reported in overview fashion in this series of quarterly progress reports.

  20. Evaluation of methods for decladding LWR fuel for a pyroprocessing-based reprocessing plant

    SciTech Connect

    Bond, W.D.; Mailen, J.C.; Michaels, G.E.

    1992-10-01

    The first step in reprocessing disassembled light-water reactor (LWR) spent fuel is to separate the zirconium-based cladding from the UO{sub 2} fuel. A survey of decladding technologies has been performed to identify candidate decladding processes suitable for LWR fuel and compatible with downstream pyropr for separation of actinides and fission products. Technologies for the primary separation of Zircaloy cladding from oxide fuel and for secondary separations (in most cases, a further decontamination of the cladding) were reviewed. Because cutting of the fuel cladding is a necessary step in all flowsheet options, metal cutting technologies were also briefly evaluated. The assessment of decladding processes resulted in the identification of the three or four potentially attractive options that may warrant additional near-term evaluation. These options are summarized, and major strengths and issues of each option are discussed.

  1. Evaluation of methods for decladding LWR fuel for a pyroprocessing-based reprocessing plant

    SciTech Connect

    Bond, W.D.; Mailen, J.C.; Michaels, G.E.

    1992-10-01

    The first step in reprocessing disassembled light-water reactor (LWR) spent fuel is to separate the zirconium-based cladding from the UO[sub 2] fuel. A survey of decladding technologies has been performed to identify candidate decladding processes suitable for LWR fuel and compatible with downstream pyropr for separation of actinides and fission products. Technologies for the primary separation of Zircaloy cladding from oxide fuel and for secondary separations (in most cases, a further decontamination of the cladding) were reviewed. Because cutting of the fuel cladding is a necessary step in all flowsheet options, metal cutting technologies were also briefly evaluated. The assessment of decladding processes resulted in the identification of the three or four potentially attractive options that may warrant additional near-term evaluation. These options are summarized, and major strengths and issues of each option are discussed.

  2. Processes for the control of /sup 14/CO/sub 2/ during reprocessing

    SciTech Connect

    Notz, K.J.; Holladay, D.W.; Forsberg, C.W.; Haag, G.L.

    1980-01-01

    The fixation of /sup 14/CO/sub 2/ may be required at some future time because of the significant fractional contribution of /sup 14/C, via the ingestion pathway, to the total population dose from the nuclear fuel cycle, even though the actual quantity of this dose is very small when compared to natural background. The work described here was done in support of fuel reprocessing development, of both graphite fuel (HTGRs) and metal-clad fuel (LWRs and LMFBRs), and was directed to the control of /sup 14/CO/sub 2/ released during reprocessing operations. However, portions of this work are also applicable to the control of /sup 14/CO/sub 2/ released during reactor operation. The work described falls in three major areas: (1) The application of liquid-slurry fixation with Ca(OH)/sub 2/, which converts the CO/sub 2/ to CaCO/sub 3/, carried out after treatment of the CO/sub 2/-containing stream to remove other gaseous radioactive components, mainly /sup 85/Kr. This approach is primarily for application to HTGR fuel reprocessing. (2) The above process for CO/sub 2/ fixation, but used ahead of Kr removal, and followed by a molecular sieve process to take out the /sup 85/Kr. This approach was developed for use with HTGR reprocessing, but certain aspects also have application to metal-clad fuel reprocessing and to reactor operation. (3) The use of solid Ba(OH)/sub 2/ hydrate reacting directly with the gaseous phase. This process is generally applicable to both reprocessing and to reactor operation.

  3. Materials management in an internationally safeguarded fuels reprocessing plant

    SciTech Connect

    Hakkila, E.A.; Baker, A.L.; Cobb, D.D.

    1980-04-01

    The following appendices are included: aqueous reprocessing and conversion technology, reference facilities, process design and operating features relevant to materials accounting, operator's safeguards system structure, design principles of dynamic materials accounting systems, modeling and simulation approach, optimization of measurement control, aspects of international verification problem, security and reliability of materials measurement and accounting system, estimation of in-process inventory in solvent-extraction contactors, conventional measurement techniques, near-real-time measurement techniques, isotopic correlation techniques, instrumentation available to IAEA inspectors, and integration of materials accounting and containment and surveillance. (DLC)

  4. Application of a Plasma Mass Separator to Advanced LWR Spent Fuel Reprocessing

    SciTech Connect

    Freeman, Richard; Miller, Robert; Papay, Larry; Wagoner, John; Ahlfeld, Charles; Czerwinski, Ken

    2006-07-01

    The US Department of Energy (DOE) is investigating spent fuel reprocessing for the purposes of increasing the effective capacity of a deep geological repository, reducing the radiotoxicity of waste placed in the repository and conserving nuclear fuel resources. DOE is considering hydro-chemical processing of the spent fuel after cutting the fuel cladding and fuel dissolution in nitric acid. The front end process, known as UREX, is largely based on the PUREX process and extracts U, Tc as well as fission product gases. A number of additional processing steps have become known as UREX+. One of the steps includes a further chemical treatment of remove Cs and Sr to reduce repository heat load. Other steps include successive extraction of the actinides from residual fission products, including the lanthanides. The additional UREX+ processing renders the actinides suitable for burning as reactor fuel in an advanced reactor to convert actinides to shorter-lived fission products and to produce power. New methods for separating groups of elements by their atomic mass have been developed and can be exploited to enhance spent fuel reprocessing. These physical processes dry the waste streams so that they can be vaporized and singly ionized in plasma that is contained in longitudinal magnetic and perpendicular electric fields. Proper configuration of the fields causes the plasma to rapidly rotate and expel heavier mass ions at the center of the machine. Lower mass ions form closed orbits within the cylindrical plasma column and are transported to either end of the machine. This plasma mass separator was originally developed to reduce the mass of material that must be immobilized in borosilicate glass from DOE defense waste at former weapons production facilities. The plasma mass separator appears to be well-suited for processing the UREX raffinate and solids streams by exploiting the large atomic mass gap that exists between lanthanides (< {approx}180 amu) and actinides

  5. Surveillance system using the CCTV at the fuel transfer pond in the Tokai reprocessing plant

    SciTech Connect

    Hayakawa, T.; Fukuhara, J.; Ochiai, K.; Ohnishi, T.; Ogata, Y.; Okamoto, H. )

    1991-01-01

    The Fuel Transfer Pond (FTP) in the Tokai Reprocessing Plant (TRP) is a strategic point for safeguards. Spent fuels, therefore, in the FTP have been surveyed by the surveillance system using the underwater CCTV. This system was developed through the improvement of devices composed of cameras and VCRs and the provision of tamper resistance function as one of the JASPAS (Japan Support Program for Agency Safeguards) program. The purpose of this program is to realize the continuous surveillance of the slanted tunnel through which the spent fuel on the conveyor is moved from the FTP to the Mechanical Processing Cell (MPC). This paper reports that, when this surveillance system is applied to an inspection device, the following requirements are needed: To have the ability of continuous and unattended surveillance of the spent fuel on the conveyor path from the FTP to the MPC; To have the tamper resistance function for continuous and unattended surveillance of the spent fuel.

  6. (Design of nuclear fuel reprocessing plants, Neuherberg, Munich, Hannover and Wackersdorf, FRG, July 5--19, 1989): Foreign trip report

    SciTech Connect

    Fields, D.E.

    1989-07-24

    The proposed fuel reprocessing site was characterized as to meteorological and hydrological characteristics and population geographical distribution. Data were gathered characterizing the fuel reprocessing plant licensing procedure currently used in the FRG. Comparisons were made of fuel reprocessing in the FRG, France, and Great Britain.

  7. Consolidated Fuel-Reprocessing Program. Progress report, April 1 to June 30, 1983

    SciTech Connect

    Not Available

    1983-08-01

    All research and development on fuel reprocessing in the United States is managed under the Consolidated Fuel Reprocessing Program. Technical progress is reported in overview fashion. Conceptual studies for the proposed Breeder Reprocessing Engineering Test (BRET) have continued. Studies to date have confirmed the feasibility of modifying an existing DOE facility at Hanford, Washington. A study to measure the extent of plutonium polymerization during steam-jet transfers of nitric acid solutions indicated polymer would appear only after several successive transfers at temperatures of 75/sup 0/C or higher. Fast-Flux Test Facility fuel was processed for the first time in the Solvent Extraction Test Facility. Studies of krypton release from pulverized sputter-deposited Ni-Y-Kr matrices have shown that the release rate is inversely proportional to the particle radius at 200/sup 0/C. Preparation of the initial 500-g batch of mixed oxide gel-spheres was completed. Fabrication processing at HEDL of mixed oxide gel-spheres (DIPRES process) was initiated. Operational testing of both 8 packs of the centrifugal contactor has been completed. Fabrication of both the prototypical disassembly system and the prototypical shear system has been initiated. Planning for FY 1984 installation and modification work in the integrated equipment list facility was completed. Acceptance tests of the original Integrated Process Demonstration system have been completed. Instrumentation and controls work with the prototype multiwavelength uranium photometer was successful and has been expanded to continuously and simultaneously monitor three process streams (raffinate, aqueous feed, and organic strip) in the secondary extraction cycle. Major efforts of the environmental, safeguards, and waste management areas were directed toward providing data for BRET.

  8. Development of a safeguards data acquisition system for the process monitoring of a simulated reprocessing facility

    SciTech Connect

    Wachter, J.W.

    1986-01-01

    As part of the Consolidated Fuel Reprocessing Program of the Fuel Recycle Division at the Oak Ridge National Laboratory (ORNL), an Integrated Process Demonstration (IPD) facility has been constructed for development of reprocessing plant technology. Through the use of cold materials, the IPD facility provides for the integrated operation of the major equipment items of the chemical-processing portion of a nuclear fuel reprocessing plant. The equipment, processes, and the extensive use of computers in data acquisition and control are prototypical of future reprocessing facilities and provide a unique test-bed for nuclear safeguards demonstrations. The data acquisition and control system consists of several microprocessors that communicate with one another and with a host minicomputer over a common data highway. At intervals of a few minutes, a ''snapshot'' is taken of the process variables, and the data are transmitted to a safeguards computer and minicomputer work station for analysis. This paper describes this data acquisition system and the data-handling procedures leading to microscopic process monitoring for safeguards purposes.

  9. Dynamic considerations in the development of centrifugal separators used for reprocessing nuclear fuel

    SciTech Connect

    Strunk, W.D.; Singh, S.P.; Tuft, R.M.

    1988-01-01

    The development of centrifugal separators has been a key ingredient in improving the process used for reprocessing of spent nuclear fuel. The separators are used to segregate uranium and plutonium from the fission products produced by a controlled nuclear reaction. The separators are small variable speed centrifuges, designed to operate in a harsh environment. Dynamic problems were detected by vibration analysis and resolved using modal analysis and trending. Problems with critical speeds, resonances in the base, balancing, weak components, precision manufacturing, and short life have been solved.

  10. An evaluation of retention and disposal options for tritium in fuel reprocessing

    SciTech Connect

    Benjamin, R.W.; Hampson, D.C.

    1987-12-31

    This report assesses the possible options for retention of tritium and its ultimate disposal during future reprocessing of irradiated oxide fuels discharged from light water reactors (LWRs) and liquid metal fast breeder reactors (LMFBRs). The assessment includes an appraisal of the state of the retention and disposal options, an estimate of the dose commitments to the general public, an estimation of the incremental costs of the several retention and disposal options, and the potential reduction of the dose commitments resulting from retention and disposal of the tritium. The assessment is based upon an extensive study of tritium retention in reprocessing completed in 1982 by Grimes et al. Two plants were assumed, one to process LWR oxide fuel and the other to process LMFBR fuel. In each base case plant the tritium was vaporized to the atmosphere. Each of the hypothetical plants was assumed to be constructed during the 1990`s and to operate for a 20-year lifetime beginning in the year 2000 at a rate of 1,500 metric tons of heavy metal (MTHM) per 300-d year. In addition to the base case (Case 1), six other cases which included tritium retention options were examined. Although many of the features of the base-case plants remain unchanged in the tritium retention options, each case requires some additions, deletions, and modifications of portions of the plants. The retained tritium must also be managed and disposed of in a manner that is environmentally acceptable.

  11. Container for reprocessing and permanent storage of spent nuclear fuel assemblies

    DOEpatents

    Forsberg, C.W.

    1992-03-24

    A single canister process container is described for reprocessing and permanent storage of spent nuclear fuel assemblies comprising zirconium-based cladding and fuel, which process container comprises a collapsible container, having side walls that are made of a high temperature alloy and an array of collapsible support means wherein the container is capable of withstanding temperature necessary to oxidize the zirconium-based cladding and having sufficient ductility to maintain integrity when collapsed under pressure. The support means is also capable of maintaining its integrity at a temperature necessary to oxidize the zirconium-based cladding. The process container also has means to introduce and remove fluids to and from the container. 10 figs.

  12. Next-generation purex flowsheets with acetohydroxamic acid as complexant for FBR and thermal-fuel reprocessing

    SciTech Connect

    Kumar, Shekhar; Koganti, S.B.

    2008-07-01

    Acetohydroxamic acid (AHA) is a novel complexant for recycle of nuclear-fuel materials. It can be used in ordinary centrifugal extractors, eliminating the need for electro-redox equipment or complex maintenance requirements in a remotely maintained hot cell. In this work, the effect of AHA on Pu(IV) distribution ratios in 30% TBP system was quantified, modeled, and integrated in SIMPSEX code. Two sets of batch experiments involving macro Pu concentrations (conducted at IGCAR) and one high-Pu flowsheet (literature) were simulated for AHA based U-Pu separation. Based on the simulation and validation results, AHA based next-generation reprocessing flowsheets are proposed for co-processing based FBR and thermal-fuel reprocessing as well as evaporator-less macro-level Pu concentration process required for MOX fuel fabrication. Utilization of AHA results in significant simplification in plant design and simpler technology implementations with significant cost savings. (authors)

  13. Reprocessing of nuclear fuels at the Savannah River Plant

    SciTech Connect

    Gray, L.W.

    1986-10-04

    For more than 30 years, the Savannah River Plant (SRP) has been a major supplier of nuclear materials such as plutonium-239 and tritium-3 for nuclear and thermonuclear weapons, plutonium-238 for space exploration, and isotopes of americium, curium, and californium for use in the nuclear research community. SRP is a complete nuclear park, providing most of the processes in the nuclear fuel cycle. Key processes involve fabrication and cladding of the nuclear fuel, target, and control assemblies; rework of heavy water for use as reactor moderator; reactor loading, operation, and unloading; chemical recovery of the reactor transmutation products and spent fuels; and management of the gaseous, liquid, and solid nuclear and chemical wastes; plus a host of support operations. The site's history and the key processes from fabrication of reactor fuels and targets to finishing of virgin plutonium for use in the nuclear weapons complex are reviewed. Emphasis has been given to the chemistry of the recovery and purification of weapons grade plutonium from irradiated reactor targets.

  14. Method for cleaning solution used in nuclear fuel reprocessing

    DOEpatents

    Tallent, O.K.; Crouse, D.J.; Mailen, J.C.

    1980-12-17

    Nuclear fuel processing solution consisting of tri-n-butyl phosphate and dodecane, with a complex of uranium, plutonium, or zirconium and with a solvent degradation product such as di-n-butyl phosphate therein, is contacted with an aqueous solution of a salt formed from hydrazine and either a dicarboxylic acid or a hydroxycarboxylic acid, thereby removing the aforesaid complex from the processing solution.

  15. Method for cleaning solution used in nuclear fuel reprocessing

    DOEpatents

    Tallent, Othar K.; Crouse, David J.; Mailen, James C.

    1982-01-01

    Nuclear fuel processing solution consisting of tri-n-butyl phosphate and dodecane, with a complex of uranium, plutonium, or zirconium and with a solvent degradation product such as di-n-butyl phosphate therein, is contacted with an aqueous solution of a salt formed from hydrazine and either a dicarboxylic acid or a hydroxycarboxylic acid, thereby removing the aforesaid complex from the processing solution.

  16. New approaches to reprocessing of oxide nuclear fuel.

    PubMed

    Myasoedov, B F; Kulyako, Yu M

    Dissolution of UO2, U3O8, and solid solutions of actinides in UO2 in subacid aqueous solutions (pH 0.9-1.4) of Fe(III) nitrate was studied. Complete dissolution of the oxides is attained at a molar ratio of ferric nitrate to uranium of 1.6. During this process actinides pass into the solution in the form of U(VI), Np(V), Pu(III), and Am(III). In the solutions obtained U(VI) is stable both at room temperature and at elevated temperatures (60 °C), and at high U concentrations (up to 300 mg mL(-1)). Behavior of fission products corresponding to spent nuclear fuel of a WWER-1000 reactor in the process of dissolution the simulated spent nuclear fuel in ferric nitrate solutions was studied. Cs, Sr, Ba, Y, La, and Ce together with U pass quantitatively from the fuel into the solution, whereas Mo, Tc, and Ru remain in the resulting insoluble precipitate of basic Fe salt and do not pass into the solution. Nd, Zr, and Pd pass into the solution by approximately 50 %. The recovery of U or jointly U + Pu from the dissolution solution of the oxide nuclear fuel is performed by precipitation of their peroxides, which allows efficient separation of actinides from residues of fission products and iron.

  17. Consolidated fuel reprocessing program: Criticality experiments with fast test reactor fuel pins in an organic moderator

    SciTech Connect

    Bierman, S.R.

    1986-12-01

    The results obtained in a series of criticality experiments performed as part of a joint program on criticality data development between the United States Department of Energy and the Power Reactor and Nuclear Fuel Development Corporation of Japan are presented in this report along with a complete description of the experiments. The experiments involved lattices of Fast Test Reactor (FTR) fuel pins in an organic moderator mixture similar to that used in the solvent extraction stage of fuel reprocessing. The experiments are designed to provide data for direct comparison with previously performed experimental measurements with water moderated lattices of FTR fuel pins. The same lattice arrangements and FTR fuel pin types are used in these organic moderated experimental assemblies as were used in the water moderated experiments. The organic moderator is a mixture of 38 wt % tributylphosphate in a normal paraffin hydrocarbon mixture of C{sub 11}H{sub 24} to C{sub 15}H{sub 32} molecules. Critical sizes of 1054.8, 599.2, 301.8, 199.5 and 165.3 fuel pins were obtained respectively for organic moderated lattices having 0.761 cm, 0.968 cm, 1.242 cm, 1.537 cm and 1.935 cm square lattice pitches as compared to 1046.9, 571.9, 293.9, 199.7 and 165.1 fuel pins for the same lattices water moderated.

  18. Multiple recycle of REMIX fuel based on reprocessed uranium and plutonium mixture in thermal reactors

    SciTech Connect

    Fedorov, Y.S.; Bibichev, B.A.; Zilberman, B.Y.; Baryshnikov, M.V.; Kryukov, O.V.; Khaperskaya, A.V.

    2013-07-01

    REMIX fuel consumption in WWER-1000 is considered. REMIX fuel is fabricated from non-separated mixture of uranium and plutonium obtained during NPP spent fuel reprocessing with further makeup by enriched natural uranium. It makes possible to recycle several times the total amount of uranium and plutonium obtained from spent fuel with 100% loading of the WWER-1000 core. The stored SNF could be also involved in REMIX fuel cycle by enrichment of regenerated uranium. The same approach could be applied to closing the fuel cycle of CANDU reactors. (authors)

  19. On-Line Monitoring and Control of Radiochemical Streams at Spent Fuel Reprocessing Plant

    SciTech Connect

    Levitskaia, Tatiana G.; Bryan, Samuel A.

    2008-05-23

    Techniques are needed to provide on-line monitoring and control of the radiochemical processes that are being developed and demonstrated under the Global Nuclear Energy Partnership (GNEP) initiative. The instrumentation used to monitor these processes must be robust and must be able to withstand harsh radiation and chemical environments. A new on-line monitoring system satisfying these requirements featuring Raman spectroscopy combined with a Coriolis and conductivity probes, has been recently developed by our research team. It provides immediate chemical data and flow parameters of high-level radioactive waste streams with high brine/high alkalinity generated during retrieval from Hanford nuclear waste storage tanks. We are currently applying similar methodology for monitoring the radiochemical streams generated at the spent fuel reprocessing plant. The nature of these strems calls for additional spectroscopic information, which can be gained by the utilization of UV-vis-NIR capabilities.

  20. The use of artificial intelligence for safeguarding fuel reprocessing plants

    SciTech Connect

    Wachter, J.W.; Forgy, C.L.

    1987-01-01

    Recorded process data from the ''Minirun'' campaigns conducted at the Barnwell Nuclear Fuel Plant (BNFP) in Barnwell, South Carolina during 1980 to 1981 have been utilized to study the suitability of computer-based Artificial Intelligence (AI) methods for process monitoring for safeguards purposes. The techniques of knowledge engineering were used to formulate the decision-making software which operates on the process data customarily used for process operations. The OPS5 AI language was used to construct an Expert System for this purpose. Such systems are able to form reasoned conclusions from incomplete, inaccurate or otherwise ''fuzzy'' data, and to explain the reasoning that led to them. The programs were tested using minirun data taken during simulated diversions ranging in size from 1 to 20 L of solution that had been monitored previously using conventional procedural techniques. 13 refs., 3 figs.

  1. 10 CFR Appendix B to Part 50 - Quality Assurance Criteria for Nuclear Power Plants and Fuel Reprocessing Plants

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Quality Assurance Criteria for Nuclear Power Plants and... Criteria for Nuclear Power Plants and Fuel Reprocessing Plants Introduction. Every applicant for a..., and components of the reactor. Nuclear power plants and fuel reprocessing plants include...

  2. 10 CFR Appendix B to Part 50 - Quality Assurance Criteria for Nuclear Power Plants and Fuel Reprocessing Plants

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Quality Assurance Criteria for Nuclear Power Plants and... Criteria for Nuclear Power Plants and Fuel Reprocessing Plants Introduction. Every applicant for a..., and components of the reactor. Nuclear power plants and fuel reprocessing plants include...

  3. 10 CFR Appendix B to Part 50 - Quality Assurance Criteria for Nuclear Power Plants and Fuel Reprocessing Plants

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Quality Assurance Criteria for Nuclear Power Plants and... Criteria for Nuclear Power Plants and Fuel Reprocessing Plants Introduction. Every applicant for a..., and components of the reactor. Nuclear power plants and fuel reprocessing plants include...

  4. 10 CFR Appendix B to Part 50 - Quality Assurance Criteria for Nuclear Power Plants and Fuel Reprocessing Plants

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Quality Assurance Criteria for Nuclear Power Plants and... Criteria for Nuclear Power Plants and Fuel Reprocessing Plants Introduction. Every applicant for a..., and components of the reactor. Nuclear power plants and fuel reprocessing plants include...

  5. 10 CFR Appendix B to Part 50 - Quality Assurance Criteria for Nuclear Power Plants and Fuel Reprocessing Plants

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Quality Assurance Criteria for Nuclear Power Plants and... Criteria for Nuclear Power Plants and Fuel Reprocessing Plants Introduction. Every applicant for a..., and components of the reactor. Nuclear power plants and fuel reprocessing plants include...

  6. Method for cleaning solution used in nuclear fuel reprocessing

    DOEpatents

    Tallent, Othar K.; Dodson, Karen E.; Mailen, James C.

    1983-01-01

    A nuclear fuel processing solution containing (1) hydrocarbon diluent, (2) tri-n-butyl phosphate or tri-2-ethylhexyl phosphate, and (3) monobutyl phosphate, dibutyl phosphate, mono-2-ethylhexyl phosphate, di-2-ethylhexyl phosphate, or a complex formed by plutonium, uranium, or a fission product thereof with monobutyl phosphate, dibutyl phosphate, mono-2-ethylhexyl phosphate, or di-2-ethylhexyl phosphate is contacted with silica gel having alkali ions absorbed thereon to remove any one of the degradation products named in section (3) above from said solution.

  7. On-Line Monitoring for Control and Safeguarding of Radiochemical Streams at Spent Fuel Reprocessing Plant

    SciTech Connect

    Bryan, Samuel A.; Levitskaia, Tatiana G.; Casella, Amanda J.; Peterson, James M.; Lines, Amanda M.; Jordan, Elizabeth A.; Verdugo, Dawn E.; Skomurski, Frances N.

    2011-07-19

    There is a renewed interest worldwide to promote the use of nuclear power and close the nuclear fuel cycle. The long term successful use of nuclear power is critically dependent upon adequate and safe processing and disposition of the spent nuclear fuel Liquid-liquid extraction is a separation technique commonly employed for the processing of the dissolved spent nuclear fuel. Our approach is based on prerequisite that real time monitoring of the solvent extraction flowsheets provides unique capability to quickly detect unwanted manipulations with fissile isotopes present in the radiochemical streams during reprocessing activities. The instrumentation used to monitor these processes must be robust, require little or no maintenance, and be able to withstand harsh environments such as high radiation fields and aggressive chemical matrices. In addition, the ability for continuous on-line monitoring allows for numerous benefits. Our team experimentally assessed the potential of Raman and vis-NIR spectrophotometric techniques for on-line real-time monitoring of the U(VI)/nitrate ion/nitric acid and Pu(IV)/Np(V)/Nd(III), respectively, in solutions relevant to spent fuel reprocessing. Both techniques demonstrated robust performance in the repetitive batch measurements of each analyte in a wide concentration range using simulant and commercial dissolved spent fuel solutions. Static spectroscopic measurements served as training sets for the multivariate data analysis to obtain partial least squares predictive models, which were validated using on-line centrifugal contactor extraction tests. The corresponding spectrometers used under the laboratory conditions are easily convertible to the process-friendly configurations allowing remote measurements under the flow conditions. A fiber optic Raman probe allows monitoring of the high concentration species encountered in both aqueous and organic phases within the PUREX suite of flowsheets, including metal oxide ions, such as

  8. The used nuclear fuel problem - can reprocessing and consolidated storage be complementary?

    SciTech Connect

    Phillips, C.; Thomas, I.

    2013-07-01

    This paper describes our CISF (Consolidated Interim Storage Facilities) and Reprocessing Facility concepts and show how they can be combined with a geologic repository to provide a comprehensive system for dealing with spent fuels in the USA. The performance of the CISF was logistically analyzed under six operational scenarios. A 3-stage plan has been developed to establish the CISF. Stage 1: the construction at the CISF site of only a rail receipt interface and storage pad large enough for the number of casks that will be received. The construction of the CISF Canister Handling Facility, the Storage Cask Fabrication Facility, the Cask Maintenance Facility and supporting infrastructure are performed during stage 2. The construction and placement into operation of a water-filled pool repackaging facility is completed for Stage 3. By using this staged approach, the capital cost of the CISF is spread over a number of years. It also allows more time for a final decision on the geologic repository to be made. A recycling facility will be built, this facility will used the NUEX recycling process that is based on the aqueous-based PUREX solvent extraction process, using a solvent of tri-N-butyl phosphate in a kerosene diluent. It is capable of processing spent fuels at a rate of 5 MT per day, at burn-ups up to 50 GWD per ton of spent fuels and a minimum of 5 years out-of-reactor cooling.

  9. Cadmium transport through molten salts in the reprocessing of spent fuel for the integral fast reactor

    SciTech Connect

    Goff, K.M.; Schneider, A. ); Battles, J.E. )

    1993-06-01

    The reprocessing of spent fuel from the Integral Fast Reactor is to be accomplished with a pyrochemical process employing molten LiCl-KCl salt covering a pool of cadmium. An examination of this system demonstrates that cadmium metal is soluble to a small extent in this salt and that it diffuses through the salt covering and vaporizes at the surface. The cadmium is soluble in the salt because of either chemical or physical solubility, both of which are dependent on the salt's surface tension. Mixing increases the vaporization rate of the cadmium by increasing its transport to the salt surface. The cadmium vapors can therefore be reduced by decreasing the mixing conditions, by choosing a salt with a higher surface tension so that the cadmium is less soluble, or by decreasing the temperature of the system, thereby lowering the vapor pressure of the cadmium.

  10. A Non-Proliferating Fuel Cycle: No Enrichment, Reprocessing or Accessible Spent Fuel - 12375

    SciTech Connect

    Parker, Frank L.

    2012-07-01

    Current fuel cycles offer a number of opportunities for access to plutonium, opportunities to create highly enriched uranium and access highly radioactive wastes to create nuclear weapons and 'dirty' bombs. The non-proliferating fuel cycle however eliminates or reduces such opportunities and access by eliminating the mining, milling and enrichment of uranium. The non-proliferating fuel cycle also reduces the production of plutonium per unit of energy created, eliminates reprocessing and the separation of plutonium from the spent fuel and the creation of a stream of high-level waste. It further simplifies the search for land based deep geologic repositories and interim storage sites for spent fuel in the USA by disposing of the spent fuel in deep sub-seabed sediments after storing the spent fuel at U.S. Navy Nuclear Shipyards that have the space and all of the necessary equipment and security already in place. The non-proliferating fuel cycle also reduces transportation risks by utilizing barges for the collection of spent fuel and transport to the Navy shipyards and specially designed ships to take the spent fuel to designated disposal sites at sea and to dispose of them there in deep sub-seabed sediments. Disposal in the sub-seabed sediments practically eliminates human intrusion. Potential disposal sites include Great Meteor East and Southern Nares Abyssal Plain. Such sites then could easily become international disposal sites since they occur in the open ocean. It also reduces the level of human exposure in case of failure because of the large physical and chemical dilution and the elimination of a major pathway to man-seawater is not potable. Of course, the recovery of uranium from sea water and the disposal of spent fuel in sub-seabed sediments must be proven on an industrial scale. All other technologies are already operating on an industrial scale. If externalities, such as reduced terrorist threats, environmental damage (including embedded emissions), long

  11. THE ECONOMICS OF REPROCESSING vs DIRECT DISPOSAL OF SPENT NUCLEAR FUEL

    SciTech Connect

    Matthew Bunn; Steve Fetter; John P. Holdren; Bob van der Zwaan

    2003-07-01

    This report assesses the economics of reprocessing versus direct disposal of spent nuclear fuel. The breakeven uranium price at which reprocessing spent nuclear fuel from existing light-water reactors (LWRs) and recycling the resulting plutonium and uranium in LWRs would become economic is assessed, using central estimates of the costs of different elements of the nuclear fuel cycle (and other fuel cycle input parameters), for a wide range of range of potential reprocessing prices. Sensitivity analysis is performed, showing that the conclusions reached are robust across a wide range of input parameters. The contribution of direct disposal or reprocessing and recycling to electricity cost is also assessed. The choice of particular central estimates and ranges for the input parameters of the fuel cycle model is justified through a review of the relevant literature. The impact of different fuel cycle approaches on the volume needed for geologic repositories is briefly discussed, as are the issues surrounding the possibility of performing separations and transmutation on spent nuclear fuel to reduce the need for additional repositories. A similar analysis is then performed of the breakeven uranium price at which deploying fast neutron breeder reactors would become competitive compared with a once-through fuel cycle in LWRs, for a range of possible differences in capital cost between LWRs and fast neutron reactors. Sensitivity analysis is again provided, as are an analysis of the contribution to electricity cost, and a justification of the choices of central estimates and ranges for the input parameters. The equations used in the economic model are derived and explained in an appendix. Another appendix assesses the quantities of uranium likely to be recoverable worldwide in the future at a range of different possible future prices.

  12. Assessing the effectiveness of safeguards at a medium-sized spent-fuel reprocessing facility

    SciTech Connect

    Higinbotham, W.; Fishbone, L.G.; Suda, S.

    1983-01-01

    In order to evaluate carefully and systematically the effectiveness of safeguards at nuclear-fuel-cycle facilities, the International Atomic Energy Agency has adopted a safeguards effectiveness assessment methodology. The methodology has been applied to a well-characterized, medium-sized, spent-fuel reprocessing plant to understand how explicit safeguards inspection procedures would serve to expose conceivable nuclear materials diversion schemes, should such diversion occur.

  13. Overview of reductants utilized in nuclear fuel reprocessing/recycling

    SciTech Connect

    Paviet-Hartmann, P.; Riddle, C.; Campbell, K.; Mausolf, E.

    2013-07-01

    The most widely used reductant to partition plutonium from uranium in the Purex process was ferrous sulfamate, other alternates were proposed such as hydrazine-stabilized ferrous nitrate or uranous nitrate, platinum catalyzed hydrogen, and hydrazine, hydroxylamine salts. New candidates to replace hydrazine or hydroxylamine nitrate (HAN) are pursued worldwide. They may improve the performance of the industrial Purex process towards different operations such as de-extraction of plutonium and reduction of the amount of hydrazine which will limit the formation of hydrazoic acid. When looking at future recycling technologies using hydroxamic ligands, neither acetohydroxamic acid (AHA) nor formohydroxamic acid (FHA) seem promising because they hydrolyze to give hydroxylamine and the parent carboxylic acid. Hydroxyethylhydrazine, HOC{sub 2}H{sub 4}N{sub 2}H{sub 3} (HEH) is a promising non-salt-forming reductant of Np and Pu ions because it is selective to neptunium and plutonium ions at room temperature and at relatively low acidity, it could serve as a replacement of HAN or AHA for the development of a novel used nuclear fuel recycling process.

  14. Methods of Gas Phase Capture of Iodine from Fuel Reprocessing Off-Gas: A Literature Survey

    SciTech Connect

    Daryl Haefner

    2007-02-01

    A literature survey was conducted to collect information and summarize the methods available to capture iodine from fuel reprocessing off-gases. Techniques were categorized as either wet scrubbing or solid adsorbent methods, and each method was generally described as it might be used under reprocessing conditions. Decontamination factors are quoted only to give a rough indication of the effectiveness of the method. No attempt is made to identify a preferred capture method at this time, although activities are proposed that would provide a consistent baseline that would aid in evaluating technologies.

  15. Potential safety-related incidents with possible applicability to a nuclear fuel reprocessing plant

    SciTech Connect

    Durant, W.S.; Perkins, W.C.; Lee, R.; Stoddard, D.H.

    1982-05-20

    The Safety Technology Group is developing methodology that can be used to assess the risk of operating a plant to reprocess spent nuclear fuel. As an early step in the methodology, a preliminary hazards analysis identifies safety-related incidents. In the absence of appropriate safety features, these incidents could lead to significant consequences and risk to onsite personnel or to the public. This report is a compilation of potential safety-related incidents that have been identified in studies at SRL and in safety analyses of various commercially designed reprocessing plants. It is an expanded revision of the version originally published as DP-1558, Published December 1980.

  16. Spent Fuel Reprocessing: More Value for Money Spent in a Geological Repository?

    SciTech Connect

    Kaplan, P.; Vinoche, R.; Devezeaux, J-G.; Bailly, F.

    2003-02-25

    Today, each utility or country operating nuclear power plants can select between two long-term spent fuel management policies: either, spent fuel is considered as waste to dispose of through direct disposal or, spent fuel is considered a resource of valuable material through reprocessing-recycling. Reading and listening to what is said in the nuclear community, we understand that most people consider that the choice of policy is, actually, a choice among two technical paths to handle spent fuel: direct disposal versus reprocessing. This very simple situation has been recently challenged by analysis coming from countries where both policies are on survey. For example, ONDRAF of Belgium published an interesting study showing that, economically speaking for final disposal, it is worth treating spent fuel rather than dispose of it as a whole, even if there is no possibility to recycle the valuable part of it. So, the question is raised: is there such a one-to-one link between long term spent fuel management political option and industrial option? The purpose of the presentation is to discuss the potential advantages and drawbacks of spent fuel treatment as an implementation of the policy that considers spent fuel as waste to dispose of. Based on technical considerations and industrial experience, we will study qualitatively, and quantitatively when possible, the different answers proposed by treatment to the main concerns of spent-fuel-as-a-whole geological disposal.

  17. Apparatus and method for reprocessing and separating spent nuclear fuels. [Patent application

    DOEpatents

    Krikorian, O.H.; Grens, J.Z.; Parrish, W.H. Sr.

    1982-01-19

    Spent nuclear fuels, including actinide fuels, volatile and non-volatile fission products, are reprocessed and separated in a molten metal solvent housed in the reaction region of a separation vessel which includes a reflux region positioned above the molten tin solvent. The reflux region minimizes loss of evaporated solvent during the separation of the actinide fuels from the volatile fission products. Additionally, inclusion of the reflux region permits the separation of the more volatile fission products (noncondensable) from the less volatile ones (condensable).

  18. Development of Online Spectroscopic pH Monitoring for Nuclear Fuel Reprocessing Plants: Weak Acid Schemes.

    PubMed

    Casella, Amanda J; Ahlers, Laura R H; Campbell, Emily L; Levitskaia, Tatiana G; Peterson, James M; Smith, Frances N; Bryan, Samuel A

    2015-05-19

    In nuclear fuel reprocessing, separating trivalent minor actinides and lanthanide fission products is extremely challenging and often necessitates tight pH control in TALSPEAK (Trivalent Actinide-Lanthanide Separation by Phosphorus reagent Extraction from Aqueous Komplexes) separations. In TALSPEAK and similar advanced processes, aqueous pH is one of the most important factors governing the partitioning of lanthanides and actinides between an aqueous phase containing a polyaminopolycarboxylate complexing agent and a weak carboxylic acid buffer and an organic phase containing an acidic organophosphorus extractant. Real-time pH monitoring would significantly increase confidence in the separation performance. Our research is focused on developing a general method for online determination of the pH of aqueous solutions through chemometric analysis of Raman spectra. Spectroscopic process-monitoring capabilities, incorporated in a counter-current centrifugal contactor bank, provide a pathway for online, real-time measurement of solution pH. The spectroscopic techniques are process-friendly and can be easily configured for online applications, whereas classic potentiometric pH measurements require frequent calibration/maintenance and have poor long-term stability in aggressive chemical and radiation environments. Raman spectroscopy discriminates between the protonated and deprotonated forms of the carboxylic acid buffer, and the chemometric processing of the Raman spectral data with PLS (partial least-squares) regression provides a means to quantify their respective abundances and therefore determine the solution pH. Interpretive quantitative models have been developed and validated under a range of chemical composition and pH conditions using a lactic acid/lactate buffer system. The developed model was applied to new spectra obtained from online spectral measurements during a solvent extraction experiment using a counter-current centrifugal contactor bank. The model

  19. Flowsheet Analysis of U-Pu Co-Crystallization Process as a New Reprocessing System

    SciTech Connect

    Shunji Homma; Jun-ichi Ishii; Jiro Koga; Shiro Matsumoto; Toshiaki Kikuchi; Takahiro Chikazawa; Atsuhiro Shibata

    2006-07-01

    A new fuel reprocessing system by U-Pu co-crystallization process is proposed and examined by flowsheet analysis. This reprocessing system is based on the fact that hexavalent plutonium in nitric acid solution is co-crystallized with uranyl nitrate, whereas it is not crystallized when uranyl nitrate does not exist in the solution. The system consists of five steps: dissolution of spent fuel, plutonium oxidation, U-Pu co-crystallization as a co-decontamination, re-dissolution of the crystals, and U re-crystallization as a U-Pu separation. The system requires a recycling of the mother liquor from the U-Pu co-crystallization step and the appropriate recycle ratio is determined by flowsheet analysis such that the satisfactory decontamination is achieved. Further flowsheet study using four different compositions of LWR spent fuels demonstrates that the constant ratio of plutonium to uranium in mother liquor from the re-crystallization step is achieved for every composition by controlling the temperature. It is also demonstrated by comparing to the Purex process that the size of the plant based on the proposed system is significantly reduced. (authors)

  20. GRACE Mission And Data Re-Processing Status

    NASA Astrophysics Data System (ADS)

    Bettadpur, S. V.; Tapley, B. D.

    2006-05-01

    The Gravity Recovery And Climate Experiment was launched on Mar 17, 2002 in order to measure mass flux within the Earth system through its effects on Earth's gravity field. Since that time, using the inter-satellite tracking data between the twin GRACE satellites, monthly gravity field estimates for nearly 4 years have been delivered to the user community. These fields have shown clear evidence of hydrological, oceanographic & glaciological phenomena. The GRACE Science Data System is in the midst of a re-processing activity, focusing on improvements to the background models and processing methodology. In addition to an overview of the mission status and future plans, this paper describes the status of the new results from the re- processing. These include changes to the background models, improvement in the processing, and the resulting error characteristics.

  1. Method for recovering palladium and technetium values from nuclear fuel reprocessing waste solutions

    DOEpatents

    Horwitz, E. Philip; Delphin, Walter H.

    1979-07-24

    A method for recovering palladium and technetium values from nuclear fuel reprocessing waste solutions containing these and other values by contacting the waste solution with an extractant of tricaprylmethylammonium nitrate in an inert hydrocarbon diluent which extracts the palladium and technetium values from the waste solution. The palladium and technetium values are recovered from the extractant and from any other coextracted values with a strong nitric acid strip solution.

  2. Conservatism in effective dose calculations for accident events involving fuel reprocessing waste tanks.

    PubMed

    Bevelacqua, J J

    2011-07-01

    Conservatism in the calculation of the effective dose following an airborne release from an accident involving a fuel reprocessing waste tank is examined. Within the regulatory constraints at the Hanford Site, deterministic effective dose calculations are conservative by at least an order of magnitude. Deterministic calculations should be used with caution in reaching decisions associated with required safety systems and mitigation philosophy related to the accidental release of airborne radioactive material to the environment.

  3. Contaminants of the bismuth phosphate process as signifiers of nuclear reprocessing history.

    SciTech Connect

    Schwantes, Jon M.; Sweet, Lucas E.

    2012-10-01

    Reagents used in spent nuclear fuel recycling impart unique contaminant patterns into the product stream of the process. Efforts are underway at Pacific Northwest National Laboratory to characterize and understand the relationship between these patterns and the process that created them. A main challenge to this effort, recycling processes that were employed at the Hanford site from 1944-1989 have been retired for decades. This precludes direct measurements of the contaminant patterns that propagate within product streams of these facilities. In the absence of any operating recycling facilities at Hanford, we have taken a multipronged approach to cataloging contaminants of U.S. reprocessing activities using: (1) historical records summarizing contaminants within the final Pu metal button product of these facilities; (2) samples of opportunity that represent intermediate products of these processes; and (3) lab-scale experiments and model simulations designed to replicate contaminant patterns at each stage of nuclear fuel reprocessing. This report provides a summary of the progress and results from Fiscal Year (April 1, 2010-September 30) 2011.

  4. Estimating reprocessing plant in-process inventories by simulation

    SciTech Connect

    Coulter, C.A.; Burr, T.L.; Hakkila, E.A.; Ai, H.; Kadokura, I.; Fujimaki, K.

    1995-09-01

    The Safeguards Systems Group`s generic simulation program FacSim was used to model the operation of the proposed Rokkasho Reprocessing Plant during an operating cycle consisting of a start-up phase, a period of steady-state operation, and a flush-out phase. The simulation results give a detailed account of nuclear material inventories in various process vessels as a function of time. As expected, it is found that the pulsed columns and the concentrator determine the rate at which the system responds to feed variations and transients; but the in-process inventory is dominated by the contents of the concentrator and tanks, and particularly by the contents of the tanks downstream from the concentrator. The results of the simulation were used for statistical studies of diversion detection, as described elsewhere in the Proceedings.

  5. Development of On-Line Spectroscopic pH Monitoring for Nuclear Fuel Reprocessing Plants: Weak Acid Schemes

    SciTech Connect

    Casella, Amanda J.; Hylden, Laura R.; Campbell, Emily L.; Levitskaia, Tatiana G.; Peterson, James M.; Smith, Frances N.; Bryan, Samuel A.

    2015-05-19

    Knowledge of real-time solution properties and composition is a necessity for any spent nuclear fuel reprocessing method. Metal-ligand speciation in aqueous solutions derived from the dissolved commercial spent fuel is highly dependent upon the acid concentration/pH, which influences extraction efficiency and the resulting speciation in the organic phase. Spectroscopic process monitoring capabilities, incorporated in a counter current centrifugal contactor bank, provide a pathway for on-line real-time measurement of solution pH. The spectroscopic techniques are process-friendly and can be easily configured for on-line applications, while classic potentiometric pH measurements require frequent calibration/maintenance and have poor long-term stability in aggressive chemical and radiation environments. Our research is focused on developing a general method for on-line determination of pH of aqueous solutions through chemometric analysis of Raman spectra. Interpretive quantitative models have been developed and validated under the range of chemical composition and pH using a lactic acid/lactate buffer system. The developed model was applied to spectra obtained on-line during solvent extractions performed in a centrifugal contactor bank. The model predicted the pH within 11% for pH > 2, thus demonstrating that this technique could provide the capability of monitoring pH on-line in applications such as nuclear fuel reprocessing.

  6. Consolidated Fuel Reprocessing Program. Operating experience with pulsed-column holdup estimators

    SciTech Connect

    Ehinger, M.H.

    1986-01-01

    Methods for estimating pulsed-column holdup are being investigated as part of the Safeguards Assessment task of the Consolidated Fuel Reprocessing Program (CFRP) at the Oak Ridge National Laboratory. The CFRP was a major sponsor of test runs at the Barnwell Nuclear Fuel plant (BNFP) in 1980 and 1981. During these tests, considerable measurement data were collected for pulsed columns in the plutonium purification portion of the plant. These data have been used to evaluate and compare three available methods of holdup estimation.

  7. Head-end reprocessing studies with irradiated high temperature gas-cooled reactor (HTGR) fuels

    SciTech Connect

    Fitzgerald, C.L.; Vaughen, V.C.A.

    1980-01-01

    Fifty (U-2.75 Th)C/sub 2/ and ThC/sub 2/ coated-particle fuel rods irradated in Peach Bottom were crushed and burned. The fertile and fissile fractions were separated using Thorex reagent and chemical analyses conducted for carbon, heavy metals, and fission products. Results were generally consistent with predictions, indicating that the reprocessing of TRISO-BISO fuel can be accomplished by the proposed flowsheet steps of crushing, fluidized-bed burning, coated particle separation and crushing, secondary burning, dissolution, clarification, and solvent extraction. (DLC)

  8. Laser-fluorescence monitoring of {sup 129}I in industrial reprocessing of nuclear fuel

    SciTech Connect

    Kireev, S.V.; Protsenko, E.D.; Shnyrev, L.S.; Veselov, V.K.; Isupov, V.K.

    1995-01-01

    A laser-fluorescence system is developed that uses a He-Ne (633 nm) laser for continuous monitoring of {sup 129}I during HNO{sub 3} dissolution of irradiated nuclear fuel. Tests at Khlopin Radium Institute indicated that the sensitivity of the {sup 129}I detection (at worst 8{center_dot}10{sup {minus}5} g/m{sup 3}) ensures reliable monitoring of this isotope both directly in the working gas during industrial reprocessing of irradiated nuclear fuel and following gas-purification systems at radiochemical plants.

  9. Vitrification of HLW Produced by Uranium/Molybdenum Fuel Reprocessing in COGEMA's Cold Crucible Melter

    SciTech Connect

    Do Quang, R.; Petitjean, V.; Hollebecque, F.; Pinet, O.; Flament, T.; Prod'homme, A.

    2003-02-25

    The performance of the vitrification process currently used in the La Hague commercial reprocessing plants has been continuously improved during more than ten years of operation. In parallel COGEMA (industrial Operator), the French Atomic Energy Commission (CEA) and SGN (respectively COGEMA's R&D provider and Engineering) have developed the cold crucible melter vitrification technology to obtain greater operating flexibility, increased plant availability and further reduction of secondary waste generated during operations. The cold crucible is a compact water-cooled melter in which the radioactive waste and the glass additives are melted by direct high frequency induction. The cooling of the melter produces a solidified glass layer that protects the melter's inner wall from corrosion. Because the heat is transferred directly to the melt, high operating temperatures can be achieved with no impact on the melter itself. COGEMA plans to implement the cold crucible technology to vitrify high level liquid waste from reprocessed spent U-Mo-Sn-Al fuel (used in gas cooled reactor). The cold crucible was selected for the vitrification of this particularly hard-to-process waste stream because it could not be reasonably processed in the standard hot induction melters currently used at the La Hague vitrification facilities : the waste has a high molybdenum content which makes it very corrosive and also requires a special high temperature glass formulation to obtain sufficiently high waste loading factors (12 % in molybdenum). A special glass formulation has been developed by the CEA and has been qualified through lab and pilot testing to meet standard waste acceptance criteria for final disposal of the U-Mo waste. The process and the associated technologies have been also being qualified on a full-scale prototype at the CEA pilot facility in Marcoule. Engineering study has been integrated in parallel in order to take into account that the Cold Crucible should be installed

  10. Review of recent ORNL studies in solvent cleanup and diluent degradation. Consolidated Fuel-Reprocessing Program

    SciTech Connect

    Mailen, J.C.; Tallent, O.K.

    1982-01-01

    Testing of solvent cleanup methods to replace the use of sodium carbonate in the Purex process has been ongoing for several years in order to reduce the quantity of waste sodium nitrate generated and to improve phase separation. Alternate solvent cleanup methods include the use of packed columns of base-treated silica gel or solvent scrubbing with hydrazine oxalate. Degradation of the diluent was shown to generate long-chain organic acids which appear to be the major culprits in the phase separation problems encountered in sodium carbonate scrubbers. Solvent scrubbing with hydrazine oxalate gives improved phase separations. Solvent cleanup in columns packed with base-treated silica gel avoids the phase separation problem since a dispersable aqueous phase is not present. Removals of TBP degradation products and metal-ion complexes by sodium carbonate, hydrazine salts, or by packed beds of base-treated silica gel are all satisfactory. Solvent scrubbing by hydrazine oxalate solutions is the prime candidate for solvent cleanup in fuel reprocessing plants.

  11. Analysis of the Reuse of Uranium Recovered from the Reprocessing of Commercial LWR Spent Fuel

    SciTech Connect

    DelCul, Guillermo Daniel; Trowbridge, Lee D; Renier, John-Paul; Ellis, Ronald James; Williams, Kent Alan; Spencer, Barry B; Collins, Emory D

    2009-02-01

    This report provides an analysis of the factors involved in the reuse of uranium recovered from commercial light-water-reactor (LWR) spent fuels (1) by reenrichment and recycling as fuel to LWRs and/or (2) by recycling directly as fuel to heavy-water-reactors (HWRs), such as the CANDU (registered trade name for the Canadian Deuterium Uranium Reactor). Reuse is an attractive alternative to the current Advanced Fuel Cycle Initiative (AFCI) Global Nuclear Energy Partnership (GNEP) baseline plan, which stores the reprocessed uranium (RU) for an uncertain future or attempts to dispose of it as 'greater-than-Class C' waste. Considering that the open fuel cycle currently deployed in the United States already creates a huge excess quantity of depleted uranium, the closed fuel cycle should enable the recycle of the major components of spent fuel, such as the uranium and the hazardous, long-lived transuranic (TRU) actinides, as well as the managed disposal of fission product wastes. Compared with the GNEP baseline scenario, the reuse of RU in the uranium fuel cycle has a number of potential advantages: (1) avoidance of purchase costs of 11-20% of the natural uranium feed; (2) avoidance of disposal costs for a large majority of the volume of spent fuel that is reprocessed; (3) avoidance of disposal costs for a portion of the depleted uranium from the enrichment step; (4) depending on the {sup 235}U assay of the RU, possible avoidance of separative work costs; and (5) a significant increase in the production of {sup 238}Pu due to the presence of {sup 236}U, which benefits somewhat the transmutation value of the plutonium and also provides some proliferation resistance.

  12. Sensitivity Analysis of Reprocessing Cooling Times on Light Water Reactor and Sodium Fast Reactor Fuel Cycles

    SciTech Connect

    R. M. Ferrer; S. Bays; M. Pope

    2008-04-01

    The purpose of this study is to quantify the effects of variations of the Light Water Reactor (LWR) Spent Nuclear Fuel (SNF) and fast reactor reprocessing cooling time on a Sodium Fast Reactor (SFR) assuming a single-tier fuel cycle scenario. The results from this study show the effects of different cooling times on the SFR’s transuranic (TRU) conversion ratio (CR) and transuranic fuel enrichment. Also, the decay heat, gamma heat and neutron emission of the SFR’s fresh fuel charge were evaluated. A 1000 MWth commercial-scale SFR design was selected as the baseline in this study. Both metal and oxide CR=0.50 SFR designs are investigated.

  13. Advanced dry head-end reprocessing of light water reactor spent nuclear fuel

    SciTech Connect

    Collins, Emory D; Delcul, Guillermo D; Hunt, Rodney D; Johnson, Jared A; Spencer, Barry B

    2013-11-05

    A method for reprocessing spent nuclear fuel from a light water reactor includes the step of reacting spent nuclear fuel in a voloxidation vessel with an oxidizing gas having nitrogen dioxide and oxygen for a period sufficient to generate a solid oxidation product of the spent nuclear fuel. The reacting step includes the step of reacting, in a first zone of the voloxidation vessel, spent nuclear fuel with the oxidizing gas at a temperature ranging from 200-450.degree. C. to form an oxidized reaction product, and regenerating nitrogen dioxide, in a second zone of the voloxidation vessel, by reacting oxidizing gas comprising nitrogen monoxide and oxygen at a temperature ranging from 0-80.degree. C. The first zone and the second zone can be separate. A voloxidation system is also disclosed.

  14. Advanced dry head-end reprocessing of light water reactor spent nuclear fuel

    SciTech Connect

    Collins, Emory D.; Delcul, Guillermo D.; Hunt, Rodney D.; Johnson, Jared A.; Spencer, Barry B.

    2014-06-10

    A method for reprocessing spent nuclear fuel from a light water reactor includes the step of reacting spent nuclear fuel in a voloxidation vessel with an oxidizing gas having nitrogen dioxide and oxygen for a period sufficient to generate a solid oxidation product of the spent nuclear fuel. The reacting step includes the step of reacting, in a first zone of the voloxidation vessel, spent nuclear fuel with the oxidizing gas at a temperature ranging from 200-450.degree. C. to form an oxidized reaction product, and regenerating nitrogen dioxide, in a second zone of the voloxidation vessel, by reacting oxidizing gas comprising nitrogen monoxide and oxygen at a temperature ranging from 0-80.degree. C. The first zone and the second zone can be separate. A voloxidation system is also disclosed.

  15. Exploratory Design of a Reactor/Fuel Cycle Using Spent Nuclear Fuel Without Conventional Reprocessing - 13579

    SciTech Connect

    Bertch, Timothy C.; Schleicher, Robert W.; Rawls, John D.

    2013-07-01

    General Atomics has started design of a waste to energy nuclear reactor (EM2) that can use light water reactor (LWR) spent nuclear fuel (SNF). This effort addresses two problems: using an advanced small reactor with long core life to reduce nuclear energy overnight cost and providing a disposal path for LWR SNF. LWR SNF is re-fabricated into new EM2 fuel using a dry voloxidation process modeled on AIROX/ OREOX processes which remove some of the fission products but no heavy metals. By not removing all of the fission products the fuel remains self-protecting. By not separating heavy metals, the process remains proliferation resistant. Implementation of Energy Multiplier Module (EM2) fuel cycle will provide low cost nuclear energy while providing a long term LWR SNF disposition path which is important for LWR waste confidence. With LWR waste confidence recent impacts on reactor licensing, an alternate disposition path is highly relevant. Centered on a reactor operating at 250 MWe, the compact electricity generating system design maximizes site flexibility with truck transport of all system components and available dry cooling features that removes the need to be located near a body of water. A high temperature system using helium coolant, electricity is efficiently produced using an asynchronous high-speed gas turbine while the LWR SNF is converted to fission products. Reactor design features such as vented fuel and silicon carbide cladding support reactor operation for decades between refueling, with improved fuel utilization. Beyond the reactor, the fuel cycle is designed so that subsequent generations of EM2 reactor fuel will use the previous EM2 discharge, providing its own waste confidence plus eliminating the need for enrichment after the first generation. Additional LWR SNF is added at each re-fabrication to replace the removed fission products. The fuel cycle uses a dry voloxidation process for both the initial LWR SNF re-fabrication and later for EM2

  16. Removal of actinides from nuclear fuel reprocessing wastes: engineering studies

    SciTech Connect

    Maxey, H. R.; McIsaac, L. D.; Chamberlain, D. B.; McManus, G. J.

    1980-01-01

    The major pilot plant effort has been directed towards understanding the behavior of the extraction column. This emphasis was placed on extraction because the actinide-free raffinate from this column is the process product. Although actual radioactive feeds have been used only in a very limited number of tests, the combination of simulated column tests, minimixer-settler tests, and pilot plant experiments have shown that an actinide-free raffinate can be produced. A pulsed sieve plate column can achieve this separation in a reasonable height. In the design of an extraction process, there are several tradeoffs that have to be examined. One such tradeoff is that between column capacity and separation efficiency; an increase in column diameter (or capacity) means a faster processing rate, but, unfortunately, it also means a decrease in column efficiency. Therefore, the greater the diameter, the larger the HTU and the higher the column has to be to achieve the desired separation. In nuclear applications this is very important since column height is limited by the size of the process containment building. In increasing the diameter from 3 to 8 inches, an increase in HTU's up to 50% was observed by Sege. For plant operations, the pulse columns could probably be pulsed at 40 CPM, 2.5 cm per pulse. At these conditions, the HTU should be no greater than 0.75 m, even considering changes resulting from scaleup.

  17. Novel Sorbent Development and Evaluation for the Capture of Krypton and Xenon from Nuclear Fuel Reprocessing Off-Gas Streams

    SciTech Connect

    Troy G. Garn; Mitchell R. Greenhalgh; Jack D. Law

    2013-10-01

    The release of volatile radionuclides generated during Used Nuclear Fuel reprocessing in the US will most certainly need to be controlled to meet US regulatory emission limits. A US DOE sponsored Off-Gas Sigma Team has been tasked with a multi-lab collaborative research and development effort to investigate and evaluate emissions and immobilization control technologies for the volatile radioactive species generated from commercial Used Nuclear Fuel (UNF) Reprocessing. Physical Adsorption technology is a simpler and potential economical alternative to cryogenic distillation processes that can be used for the capture of krypton and xenon and has resulted in a novel composite sorbent development procedure using synthesized mordenite as the active material. Utilizing the sorbent development procedure, INL sigma team members have developed two composite sorbents that have been evaluated for krypton and xenon capacities at ambient and 191 K temperature using numerous test gas compositions. Adsorption isotherms have been generated to predict equilibration and maximum capacities enabling modeling to support process equipment scale-up.

  18. Novel Sorbent Development and Evaluation for the Capture of Krypton and Xenon from Nuclear Fuel Reprocessing Off-Gas Streams

    SciTech Connect

    Troy G. Garn; Mitchell R. Greenhalgh; Jack D. Law

    2013-09-01

    The release of volatile radionuclides generated during Used Nuclear Fuel reprocessing in the US will most certainly need to be controlled to meet US regulatory emission limits. A US DOE sponsored Off-Gas Sigma Team has been tasked with a multi-lab collaborative research and development effort to investigate and evaluate emissions and immobilization control technologies for the volatile radioactive species generated from commercial Used Nuclear Fuel (UNF) Reprocessing. Physical Adsorption technology is a simpler and potential economical alternative to cryogenic distillation processes that can be used for the capture of krypton and xenon and has resulted in a novel composite sorbent development procedure using synthesized mordenite as the active material. Utilizing the sorbent development procedure, INL sigma team members have developed two composite sorbents that have been evaluated for krypton and xenon capacities at ambient and 191 K temperature using numerous test gas compositions. Adsorption isotherms have been generated to predict equilibration and maximum capacities enabling modeling to support process equipment scale-up.

  19. Novel sorbent development and evaluation for the capture of krypton and xenon from nuclear fuel reprocessing off-gas stream

    SciTech Connect

    Garn, T.G.; Greenhalgh, M.R.; Law, J.D.

    2013-07-01

    The release of volatile radionuclides generated during Used Nuclear Fuel reprocessing in the US will most certainly need to be controlled to meet US regulatory emission limits. A US DOE sponsored Off-Gas Sigma Team has been tasked with a multi-lab collaborative research and development effort to investigate and evaluate emissions and immobilization control technologies for the volatile radioactive species generated from commercial Used Nuclear Fuel (UNF) Reprocessing. Physical Adsorption technology is a simpler and potential economical alternative to cryogenic distillation processes that can be used for the capture of krypton and xenon and has resulted in a novel composite sorbent development procedure using synthesized mordenite as the active material. Utilizing the sorbent development procedure, Idaho National Laboratory sigma team members have developed two composite sorbents that have been evaluated for krypton and xenon capacities at ambient and 191 K temperature using numerous test gas compositions. Adsorption isotherms have been generated to predict equilibration and maximum capacities enabling modeling to support process equipment scale-up. (authors)

  20. Glass ceramics containment matrix for insoluble residues coming from spent fuel reprocessing

    NASA Astrophysics Data System (ADS)

    Pinet, O.; Boën, R.

    2014-04-01

    Spent fuel reprocessing by hydrometallurgical process generates insoluble residues waste streams called fines solution. Considering their radioactivity, fines solution could be considered as Intermediate Level Waste. This waste stream is usually mixed with fission products stream before vitrification. Thus fines are incorporated in glass matrix designed for High Level Waste. The withdrawal of fines from high level glass could decrease the volume of high level waste after conditioning. It could also decrease the reaction time between high level waste and additives to obtain a homogeneous melt and then increase the vitrification process capacity. Separated conditioning of fines in glass matrices has been tested. The fines content targeted value is 16 wt%. To achieve this objective, two types of glass ceramic formulations have been tested. 700 g of the two selected glass ceramics have been prepared using simulated fines. Additives used were ground glass. Melting is achieved at 1100 °C. According to the type of glass ceramic, reducing or oxidizing conditions have been performed during melting. Due to their composition and the melting redox conditions, different phases have been observed. These crystalline phases are typically RuO2, metallic Ru, metallic Pd, MoO2 and CaMoO4. In view of melting these matrices in an in can process the corrosiveness of one of the most oxidizing borosilicate glass ceramic formulation has been tested. This one has been remelted at 1100 °C in inconel 601 pot for 3 days. The oxygen fugacity measurement performed in the remelted glass leads to an oxidizing value, indicating that no significant reaction occurred between the inconel pot and the glass melt had occurred.

  1. Assessment of lead tellurite glass for immobilizing electrochemical salt wastes from used nuclear fuel reprocessing

    DOE PAGES

    Riley, Brian J.; Kroll, Jared O.; Peterson, Jacob A.; ...

    2017-08-30

    Here, this paper provides an overview of research evaluating the use of lead tellurite glass as a waste form for salt wastes from electrochemical reprocessing of used nuclear fuel. The efficacy of using lead tellurite glass to immobilize three different salt compositions was evaluated: a LiCl-Li2O oxide reduction salt containing fission products from oxide fuel, a LiCl-KCl eutectic salt containing fission products from metallic fuel, and SrCl2. Physical and chemical properties of glasses made with these salts were characterized with X-ray diffraction, bulk density measurements, differential thermal analysis, chemical durability tests, scanning and transmission electron microscopies, and energy-dispersive X-ray spectroscopy.more » These glasses were found to accommodate high salt concentrations and have high densities, but further development is needed to improve chemical durability.« less

  2. Apparatus and method for reprocessing and separating spent nuclear fuels. [Patent application

    DOEpatents

    Krikorian, O.H.; Grens, J.Z.; Parrish, W.H. Sr.; Coops, M.S.

    1982-01-19

    A method and apparatus for separating and reprocessing spent nuclear fuels includes a separation vessel housing a molten metal solvent in a reaction region, a reflux region positioned above and adjacent to the reaction region, and a porous filter member defining the bottom of the separation vessel in a supporting relationship with the metal solvent. Spent fuels are added to the metal solvent. A nonoxidizing nitrogen-containing gas is introduced into the separation vessel, forming solid actinide nitrides in the metal solvent from actinide fuels, while leaving other fission products in solution. A pressure of about 1.1 to 1.2 atm is applied in the reflux region, forcing the molten metal solvent and soluble fission products out of the vessel, while leaving the solid actinide nitrides in the separation vessel.

  3. Assessment of sensitivity of neutron-physical parameters of fast neutron reactor to purification of reprocessed fuel from minor actinides

    NASA Astrophysics Data System (ADS)

    Cherny, V. A.; Kochetkov, L. A.; Nevinitsa, A. I.

    2013-12-01

    The work is devoted to computational investigation of the dependence of basic physical parameters of fast neutron reactors on the degree of purification of plutonium from minor actinides obtained as a result of pyroelectrochemical reprocessing of spent nuclear fuel and used for manufacturing MOX fuel to be reloaded into the reactors mentioned. The investigations have shown that, in order to preserve such important parameters of a BN-800 type reactor as the criticality, the sodium void reactivity effect, the Doppler effect, and the efficiency of safety rods, it is possible to use the reprocessed fuel without separation of minor actinides for refueling (recharging) the core.

  4. A novel waste form for disposal of spent-nuclear-fuel reprocessing waste: A vitrifiable cement

    SciTech Connect

    Gougar, M.L.D.; Scheetz, B.E.; Siemer, D.D.

    1999-01-01

    A cement capable of being hot isostatically pressed into a glass ceramic has been proposed as the waste form for spent-nuclear-fuel reprocessing wastes at the Idaho National Engineering and Environmental Laboratory (INEEL). This intermediate cement, with a composition based on that of common glasses, has been designed and tested. The cement formulations included mixed INEEL wastes, blast furnace slag, reactive silica, and INEEL soil or vermiculite, which were activated with potassium or sodium hydroxide. Following autoclave processing, the cements were characterized. X-ray diffraction analysis revealed three notable crystalline phases: quartz, calcite, and fluorite. Results of compressive strength testing ranged from 1452 and 4163 psi, exceeding the US Nuclear Regulatory Commission (NRC)-suggested standard of >500 psi. From American National Standards Institute/American Nuclear Society 16.1-1986 leach testing, effective diffusivities for Cs were determined to be on the order of 10{sup {minus}11} to 10{sup {minus}10} cm{sup 2}/s and for Sr were 10{sup {minus}12} cm{sup 2}/s, which are four orders of magnitude less than diffusivities in some other radwaste materials. Average leach indices (LI) were 9.6 and 11.9 for Cs and Sr, respectively, meeting the NRC Standard of LI > 6. The 28-day Materials Characterization Center-1 leach testing resulted in normalized elemental mass losses between 0.63 and 28 g/(m{sup 2}{center_dot}day) for Cs and between 0.34 and 0.70 g/(m{sup 2}{center_dot}day) industry-accepted standard while Cs losses indicate a process sensitive parameter.

  5. 76 FR 24494 - Draft Guidance for Industry and FDA Staff: Processing/Reprocessing Medical Devices in Health Care...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-02

    .../ Reprocessing Medical Devices in Health Care Settings: Validation Methods and Labeling; Availability AGENCY... Staff: Processing/Reprocessing Medical Devices in Health Care Settings: Validation Methods and Labeling... ``Draft Guidance for Industry and FDA Staff: Processing/Reprocessing Medical Devices in Health Care...

  6. Process centrifuge operating problems and equipment failures in canyon reprocessing facilities at the Savannah River Site

    SciTech Connect

    Durant, W.S.; Baughman, D.F.

    1990-03-01

    The Savannah River Laboratory (SRL) maintains a compilation of operating problems and equipment failures that have occurred in the fuel reprocessing areas of the Savannah River Site (SRS). At present, the data bank contains more than 230,000 entries ranging from minor equipment malfunctions to incidents with the potential for injury or contamination of personnel, or for economic loss. The data bank has been used extensively for a wide variety of purposes, such as failure analyses, trend analyses, and preparation of safety analyses. Typical of the data are problems associated with the canyon process centrifuges. This report contains a compilation of the centrifuge operating problems and equipment failures primarily as an aid to organizations with related equipment. Publication of these data was prompted by a number of requests for this information by other Department of Energy (DOE) sites. 11 refs., 2 figs., 4 tabs.

  7. Process agitator operating problems and equipment failures, F-Canyon Reprocessing Facility

    SciTech Connect

    Durant, W.S.; Starks, J.B.; Low, J.M.; Galloway, W.D.

    1988-09-01

    The Savannah River Laboratory (SRL) maintains a compilation of operating problems and equipment failures that have occurred in the fuel reprocessing areas of the Savannah River Plant (SRP). At present, the data bank contains more than 200,000 entries ranging from minor equipment malfunctions to incidents with the potential for injury or contamination of personnel, or for economic loss. The data bank has been used extensively for a wide variety of purposes, such as failure analyses, trend analyses, and preparation of safety analyses. Typical of the data are problems associated with the F-Canyon process agitators. This report contains a compilation of the agitator operating problems and equipment failures primarily as an aid to organizations with related equipment. Publication of these data was prompted by a number of requests for this information by other Department of Energy (DOE) sites. 4 figs., 4 tabs.

  8. Potential radiological impact of tornadoes on the safety of Nuclear Fuel Services' West Valley Fuel Reprocessing Plant. 2. Reentrainment and discharge of radioactive materials

    SciTech Connect

    Davis, W Jr

    1981-07-01

    This report describes results of a parametric study of quantities of radioactive materials that might be discharged by a tornado-generated depressurization on contaminated process cells within the presently inoperative Nuclear Fuel Services' (NFS) fuel reprocessing facility near West Valley, New York. The study involved the following tasks: determining approximate quantities of radioactive materials in the cells and characterizing particle-size distribution; estimating the degree of mass reentrainment from particle-size distribution and from air speed data presented in Part 1; and estimating the quantities of radioactive material (source term) released from the cells to the atmosphere. The study has shown that improperly sealed manipulator ports in the Process Mechanical Cell (PMC) present the most likely pathway for release of substantial quantities of radioactive material in the atmosphere under tornado accident conditions at the facility.

  9. Principles of qualification of the PAMELA process for the vitrification of HLLW of the Karlsruhe Reprocessing Plant (WAK)

    SciTech Connect

    Ewest, E.; Kunz, W.; Demonie, M.; Martens, B.R.; Goeyse, M. de

    1993-12-31

    After having reprocessed about 211 t of Uranium, the WAK Karlsruhe Pilot Reprocessing Plant was shut down in 1991. While all the other radioactive waste arising from reprocessing were conditioned parallel to the plant operation, some 60 m{sup 3} of High Level Liquid Waste (HLLW) having a specific {beta}, {gamma}-activity of about 2 E13 Bq/l is not yet processed. The waste is stored in two tanks, having a different activity level and chemical composition. In order to obtain a uniform product both solutions will be blended in a suitable way. It is intended to ship this waste to the PAMELA Vitrification Plant located on the Belgoprocess (BP) site in Dessel, Belgium. The vitrified product shall be returned to Germany. As from October 1986 until September 1991, the facility was operated by a mixed Belgian-German crew under the responsibility of BP for the vitrification of 800 m{sup 3} of HEWC (concentrated high-level waste from the reprocessing of high-enriched uranium fuels). Between October 1, 1985 and September 1, 1991, the total amount of 907 m{sup 3} of EUROCHEMIC HLLW has been successfully vitrified and conditioned in about 2,200 canisters. The typical composition of the different types of glass products are compared with the design data of the WAK glass product.

  10. Release of radioactive materials in simulation test of a postulated solvent fire in a nuclear fuel reprocessing plant

    SciTech Connect

    Nishio, G.; Hashimoto, K. )

    1989-12-01

    This paper reports on small- and large-scale fire tests performed to examine the adequacy of a safety evaluation method for a solvent fire in the extraction process of a nuclear fuel reprocessing plant. The test objectives were to obtain information on the confinement of radioactive materials during a 30% tri-n-butyl phosphate-n-dodecane fire while air ventilation is operating in the cell. The rates of release of cesium, strontium, cerium, ruthenium, and uranium from a burning solvent were determined. The quantities of species released were obtained from the solvent burning rate, smoke generation rate, partition coefficients of species between solvent and water, and coefficients of species entrainment to atmosphere in cell.

  11. 75 FR 45167 - Notice of Public Workshop on a Potential Rulemaking for Spent Nuclear Fuel Reprocessing Facilities

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-02

    ... COMMISSION Notice of Public Workshop on a Potential Rulemaking for Spent Nuclear Fuel Reprocessing Facilities AGENCY: Nuclear Regulatory Commission (NRC). ACTION: Notice of Public Workshop. SUMMARY: The U.S. Nuclear Regulatory Commission (NRC) plans to conduct two public workshops to solicit public input on major issues...

  12. Evaluation of retention and disposal options for tritium in fuel reprocessing

    SciTech Connect

    Grimes, W.R.; Hampson, D.C.; Larkin, D.J.; Skolrud, J.O.; Benjamin, R.W.

    1982-08-01

    Five options were evaluated as means of retaining tritium released from light-water reactor or fast breeder reactor fuel during the head-end steps of a typical Purex reprocessing scheme. Cost estimates for these options were compared with a base case in which no retention of tritium within the facility was obtained. Costs were also estimated for a variety of disposal methods of the retained tritium. The disposal costs were combined with the retention costs to yield total costs (capital plus operating) for retention and disposal of tritium under the conditions envisioned. The above costs were converted to an annual basis and to a dollars per curie retained basis. This then was used to estimate the cost in dollars per man-rem saved by retaining the tritium. Only the options that used the least expensive disposal costs could approach the $1000/man-rem cost used as a guide by the Nuclear Regulatory Commission.

  13. Multi-Isotope Process (MIP) Monitor: A Near-Real-Time Monitor For Reprocessing Facilities

    SciTech Connect

    Schwantes, Jon M.; Douglas, Matthew; Orton, Christopher R.; Fraga, Carlos G.; Christensen, Richard

    2008-06-01

    INTRODUCTION The threat of protracted diversion of Pu from commercial reprocessing operations is perhaps the greatest concern to national and international agencies tasked with safeguarding these facilities. While it is generally understood that a method for direct monitoring of process on-line and in near-real time (NRT) would be the best defense against protracted diversion scenarios, an effective method with these qualities has yet to be developed. Here, we attempt to bridge this gap by proposing an on-line NRT process monitoring method that should be sensitive to minor alterations in process conditions and compatible with small, easily deployable, detection systems. This Approach is known as the Multi-Isotope Process (MIP) Monitor and involves the determination and recognition of the contaminant pattern within a process stream for a suite of indicator (radioactive) elements present in the spent fuel as a function of process variables. Utilization of a suite of radio-elements, including ones with multiple oxidation states, decreases the likelihood that attempts to divert Pu by altering the ReDox environment within the process would go undetected. In addition, by identifying gamma-emitting indicator isotopes, this Approach might eliminate the need for bulky neutron detection systems, relying instead on small, portable, high-resolution gamma detectors easily deployable throughout the facility.

  14. Study on Gaseous Effluent Treatment for Dissolution Step of Spent Nuclear Fuel Reprocessing

    SciTech Connect

    Mineo, H.; Iizuka, M.; Fujisaki, S.; Hotoku, S.; Asakura, T.; Uchiyama, G.

    2002-02-27

    Behavior of radioiodine and carbon-14 during spent fuel dissolution was studied in a bench-scale reprocessing test rig where 29 and 44 GWdt-1 spent fuels were respectively dissolved. Decontamination factor of AGS (silica-gel impregnated with silver nitrate) column for iodine-129 removal was measured to be more than 36,000. The measurement of iodine-129 profile in the adsorption column showed that the nuclide was effectively trapped by the adsorbent. Measurement of iodine-129 in the dissolver solution after the iodine-stripping operation using NO2 gas at 363 K, revealed that less than 0.57% of total iodine-129 generated, which was estimated by ORIGEN II calculation, was remained in the dissolver solution. Also, measurement of iodine-129 by an iodine-stripping operation from the dissolver solution using potassium iodate showed that another 2.72% of total iodine-129 precipitated as iodide. In addition, about 70 % of total iodine generated was measured in the AGS columns. Rest of iodine-129 was supposed to adsorb to a HEPA filter and the inner surface of dissolver off-gas lines. Those results on iodine-129 distribution were found to be almost identical to the results obtained in the study using iodine-131 as tracer and the results reported by other works. It was demonstrated that the two-steps iodine-stripping method using potassium iodate could expel additional iodine from the solution, more effectively than iodine-stripping operation using NO2 gas. Iodine-131 was also detected on the AGS columns at the spent fuel dissolution. Increasing burnup showed larger amount of iodine-131 since amount of curium-244 contained in the spent fuel increased with the burnup. Release of carbon-14 as carbon dioxide during dissolution was found to occur when the release of krypton-85. From the 14CO2 measurement, initial nitrogen-14 concentration in the fuel was estimated to be about several ppm, which was within the range reported.

  15. The multi-isotope process monitor: Non-destructive, near-real-time nuclear safeguards monitoring at a reprocessing facility

    NASA Astrophysics Data System (ADS)

    Orton, Christopher Robert

    The IAEA will require advanced technologies to effectively safeguard nuclear material at envisioned large scale nuclear reprocessing plants. This dissertation describes results from simulations and experiments designed to test the Multi-Isotope Process (MIP) Monitor, a novel safeguards approach for process monitoring in reprocessing plants. The MIP Monitor combines the detection of intrinsic gamma ray signatures emitted from process solutions with multivariate analysis to detect off-normal conditions in process streams, nondestructively and in near-real time (NRT). Three different models were used to predict spent nuclear fuel composition, estimate chemical distribution during separation, and simulate spectra from a variety of gamma detectors in product and raffinate streams for processed fuel. This was done for fuel with various irradiation histories and under a variety of plant operating conditions. Experiments were performed to validate the results from the model. Three segments of commercial spent nuclear fuel with variations in burnup and cooling time were dissolved and subjected to a batch PUREX method to separate the uranium and plutonium from fission and activation products. Gamma spectra were recorded by high purity germanium (HPGe) and cadmium zinc telluride (CZT) detectors. Hierarchal Cluster Analysis (HCA) and Principal Component Analysis (PCA) were applied to spectra from both model and experiment to investigate spectral variations as a function of acid concentration, burnup level and cooling time. Partial Least Squares was utilized to extract quantitative information about process variables, such as acid concentration or burnup. The MIP Monitor was found to be sensitive to the induced variations of the process and was capable of extracting quantitative process information from the analyzed spectra.

  16. Light water reactor fuel reprocessing: dissolution studies of voloxidized and nonvoloxidized fuel

    SciTech Connect

    Johnson, D.R.; Stone, J.A.

    1980-04-01

    Small-scale tests with irradiated Zircaloy-clad fuels from Robinson, Oconee, Saxton, and Point Beach reactors with burnups from about 200 to 28,000 MWD/MTHM have been made to determine the dissolution behavior of both voloxidized (U{sub 3}O{sub 8}) and nonvoloxidized (UO{sub 2}) fuel. No significant technical problems were encountered in batch-dissolving of either form. Dissolution rates were well-controlled in all tests. Significant characteristics of U{sub 3}O{sub 8} dissolution that differed from UO{sub 2} dissolution included: (1) reduced tritium and ruthenium ({sup 106}Ru) concentrations in product solutions, (2) increased insoluble noble metal fission product residue (about 2.2X greater), and (3) increased insoluble plutonium in the fission product residue. The insoluble plutonium is easily leached from the residue by 10M HNO{sub 3}. The weight of the fission product residue collected from both U{sub 3}O{sub 8} and UO{sub 2} fuels increased aproximately linearly with fuel burnup. A major fraction (>83%) of the {sup 85}Kr was evolved from U{sub 3}O{sub 8} fuel during dissolution rather than voloxidation. The {sup 85}Kr evolution rate was an appropriate monitor of fuel dissolution rate. Virtually all of the {sup 129}I was evolved by air sparging of the dissolver solution during dissolution. 30 tables, 18 figures.

  17. Materials accounting in a fast-breeder-reactor fuels-reprocessing facility: optimal allocation of measurement uncertainties

    SciTech Connect

    Dayem, H.A.; Ostenak, C.A.; Gutmacher, R.G.; Kern, E.A.; Markin, J.T.; Martinez, D.P.; Thomas, C.C. Jr.

    1982-07-01

    This report describes the conceptual design of a materials accounting system for the feed preparation and chemical separations processes of a fast breeder reactor spent-fuel reprocessing facility. For the proposed accounting system, optimization techniques are used to calculate instrument measurement uncertainties that meet four different accounting performance goals while minimizing the total development cost of instrument systems. We identify instruments that require development to meet performance goals and measurement uncertainty components that dominate the materials balance variance. Materials accounting in the feed preparation process is complicated by large in-process inventories and spent-fuel assembly inputs that are difficult to measure. To meet 8 kg of plutonium abrupt and 40 kg of plutonium protracted loss-detection goals, materials accounting in the chemical separations process requires: process tank volume and concentration measurements having a precision less than or equal to 1%; accountability and plutonium sample tank volume measurements having a precision less than or equal to 0.3%, a shortterm correlated error less than or equal to 0.04%, and a long-term correlated error less than or equal to 0.04%; and accountability and plutonium sample tank concentration measurements having a precision less than or equal to 0.4%, a short-term correlated error less than or equal to 0.1%, and a long-term correlated error less than or equal to 0.05%. The effects of process design on materials accounting are identified. Major areas of concern include the voloxidizer, the continuous dissolver, and the accountability tank.

  18. Use of the Waste-Incidental-to-Reprocessing Citation Process at the West Valley Demonstration Project - 12250

    SciTech Connect

    Sullivan, Dan; Suttora, Linda; Goldston, Sonny; Petras, Robert; Rowell, Laurene; McNeil, Jim

    2012-07-01

    The West Valley Demonstration Project recently achieved a breakthrough in management of radioactive waste from reprocessing of spent nuclear fuel by taking advantage of lessons learned at other Department of Energy (DOE) sites in implementation of the waste-incidental-to-reprocessing citation process of DOE Manual 435.1-1, Radioactive Waste Management. This breakthrough involved a revision to the site procedure on waste-incidental to reprocessing. This procedure revision served as the basis for a determination by the DOE West Valley field office using the citation process that three secondary waste streams consisting of equipment that had once been contaminated by association with HLW are not HLW following decontamination and may be disposed of as low-level waste (LLW) or transuranic waste. These waste streams, which comprised much of the approximately 380 cubic meters of West Valley waste contaminated by association with HLW, included several vessels and certain tank farm equipment. By making use of lessons learned in use of the citation process by other DOE sites and information developed to support use of the citation process at the Hanford site and the Savannah River Site, the team developed a technical basis for showing that use of the citation process of DOE Manual 435.1-1 for the three new waste stream was appropriate and technically justified. The Waste Management Working Group of the EFCOG assisted in transferring lessons learned by drawing on experience from around the DOE complex. This process shared knowledge about effective implementation of the citation process in a manner that proved to be beneficial to the West Valley Demonstration Project and resulted in a technical basis document that could be used to determine that the three new waste streams were not HLW. (authors)

  19. Concept of a closed nuclear fuel cycle with fluoride reprocessing of spent fuel

    SciTech Connect

    Prusakov, V.N.; Ezhov, V.K.; Lebedev. O.G.

    1995-10-01

    The transition to a closed nuclear fuel cycle (NFC), envisaged by the concept of the development of nuclear power in Russia up to 2010, is desirable both from the resource (decrease in the demand for natural uranium) and ecological (many-fold decrease in the volume of high-level wastes) standpoints and, moreover, it can give an economic gain, specially in the long-term future.

  20. DEVELOPMENT OF GLASS COMPOSITIONS TO IMMOBILIZE ALKALI, ALKALINE EARTH, LANTHANIDE AND TRANSITION METAL FISSION PRODUCTS FROM NUCLEAR FUEL REPROCESSING

    SciTech Connect

    Marra, J.; Billings, A.

    2009-06-24

    The Advanced Fuel Cycle Initiative (AFCI) waste management strategy revolves around specific treatment of individual or groups of separated waste streams. A goal for the separations processes is to efficiently manage the waste to be dispositioned as high level radioactive waste. The Advanced Fuel Cycle Initiative (AFCI) baseline technology for immobilization of the lanthanide (Ln) and transition metal fission product (TM) wastes is vitrification into a borosilicate glass. A current interest is to evaluate the feasibility of vitrifying combined waste streams to most cost effectively immobilize the wastes resulting from aqueous fuel reprocessing. Studies showed that high waste loadings are achievable for the Ln only (Option 1) stream. Waste loadings in excess of 60 wt % (on a calcined oxide basis) were demonstrated via a lanthanide borosilicate (LaBS) glass. The resulting glasses had excellent relative durability as determined by the Product Consistency Test (PCT). For a combined Ln and TM waste stream glass (Option 2), noble metal solubility was found to limit waste loading. However, the measured PCT normalized elemental releases for this glass were at least an order of magnitude below that of Environmental Assessment (EA) glass. Current efforts to evaluate the feasibility of vitrifying combined Ln, TM, alkali (Cs is the primary radionuclide of concern) and alkaline earth (Sr is the primary radionuclide of concern) wastes (Option 3) have shown that these approaches are feasible. However, waste loading limitations with respect to heat load (Cs/Sr loading), molybdenum solubility and/or noble metal solubility will likely be realized and must be considered in determining the cost effectiveness of these approaches.

  1. Electrorefining Experience For Pyrochemical Reprocessing of Spent EBR-II Driver Fuel

    SciTech Connect

    S. X. Li; T. A. Johnson; B. R. Westphal; K. M. Goff; R. W. Benedict

    2005-10-01

    Pyrochemical processing has been implemented for the treatment of spent fuel from the Experimental Breeder Reactor-II (EBR-II) at Idaho National Laboratory since 1996. This report summarizes technical advancements made in electrorefining of spent EBR-II driver fuel in the Mk-IV electrorefiner since the pyrochemical processing was integrated into the AFCI program in 2002. The significant advancements include improving uranium dissolution and noble metal retention from chopped fuel segments, increasing cathode current efficiency, and achieving co-collection of zirconium along with uranium from the cadmium pool.

  2. Potential radiological impact of tornadoes on the safety of Nuclear Fuel Services' West Valley Fuel Reprocessing Plant. Volume I. Tornado effects on head-end cell airflow

    SciTech Connect

    Holloway, L.J.; Andrae, R.W.

    1981-09-01

    This report describes results of a parametric study of the impacts of a tornado-generated depressurization on airflow in the contaminated process cells within the presently inoperative Nuclear Fuel Services fuel reprocessing facility near West Valley, NY. The study involved the following tasks: (1) mathematical modeling of installed ventilation and abnormal exhaust pathways from the cells and prediction of tornado-induced airflows in these pathways; (2) mathematical modeling of individual cell flow characteristics and prediction of in-cell velocities induced by flows from step 1; and (3) evaluation of the results of steps 1 and 2 to determine whether any of the pathways investigated have the potential for releasing quantities of radioactively contaminated air from the main process cells. The study has concluded that in the event of a tornado strike, certain pathways from the cells have the potential to release radioactive materials of the atmosphere. Determination of the quantities of radioactive material released from the cells through pathways identified in step 3 is presented in Part II of this report.

  3. Safety demonstration tests of hypothetical explosive burning in the cell and air ventilation system in a nuclear fuel reprocessing plant

    SciTech Connect

    Nisio, G.; Suzuki, M.; Mukaide, S. )

    1991-09-01

    This paper reports on a nuclear fuel reprocessing plant equipped with an air ventilation system consisting of cells, ducts, dampers, high-efficiency particulate air filters, and blowers. This ventilation system is required to have multiple safeguards in order to confine airborne radioactive materials within the plant in the event of fire, explosion, and criticality. To evaluate these safeguards, three kinds of explosive burning tests are performed using a large-scale facility simulating the ventilation system of a reprocessing plant. In the boilover test, an organic solvent is burned on a layer of water in a burning pan to determine the magnitude of the burning caused by the sudden boiling of the water under the solvent. The optimum conditions for boilover burning are determined by the relationship between the pan size and the ventilation rate.

  4. Offline Memory Reprocessing: Involvement of the Brain's Default Network in Spontaneous Thought Processes

    PubMed Central

    Wang, Kun; Yu, Chunshui; Xu, Lijuan; Qin, Wen; Li, Kuncheng; Xu, Lin; Jiang, Tianzi

    2009-01-01

    Background Spontaneous thought processes (STPs), also called daydreaming or mind-wandering, occur ubiquitously in daily life. However, the functional significance of STPs remains largely unknown. Methodology/Principal Finding Using functional magnetic resonance imaging (fMRI), we first identified an STPs-network whose activity was positively correlated with the subjects' tendency of having STPs during a task-free state. The STPs-network was then found to be strongly associated with the default network, which has previously been established as being active during the task-free state. Interestingly, we found that offline reprocessing of previously memorized information further increased the activity of the STPs-network regions, although during a state with less STPs. In addition, we found that the STPs-network kept a dynamic balance between functional integration and functional separation among its component regions to execute offline memory reprocessing in STPs. Conclusion/Significance These findings strengthen a view that offline memory reprocessing and STPs share the brain's default network, and thus implicate that offline memory reprocessing may be a predetermined function of STPs. This supports the perspective that memory can be consolidated and modified during STPs, and thus gives rise to a dynamic behavior dependent on both previous external and internal experiences. PMID:19290044

  5. Independent verification of reprocessing input and process volumes. Progress report

    SciTech Connect

    Smith, D.H.; Turner, M.L.; McBay, E.H.; Lewis, B.E.; Hobson, D.E.; Ehinger, M.H.

    1995-04-01

    One of the most difficult challenges in the nuclear fuel cycle is to establish a material balance for tanks containing spent fuel solutions. These tanks present an extremely hostile environment to the analyst, making determination of the amount of fissile material in them difficult. Historic methods used to determine the volumes of solutions in these tanks are usually based on use of tank geometry in conjunction with depth and density measurements, both of which vary with temperature and are normally controlled by the operator of the facility. Changes in the interior geometry of tanks due to addition of various types of equipment, minor structural modifications, and accumulation of insoluble materials at the bottom and on the interior surfaces of the tanks affect the available volume and make difficult its accurate measurement. For safeguards purposes, it is thus desirable to have a repeatable method of volume determination independent of the operator and other factors. To determine the quantity of uranium and plutonium in a given tank, aliquots are withdrawn and subjected to analysis; both isotopic abundances and the amount of each element present are determined. Isotope dilution mass spectrometry is the method of choice for quantitative measurements in this application and yields values more precise and accurate than other methods. In the research that is the focus of this project, the application of isotope dilution mass spectrometry has been extended, through use of a double lutetium spike, to the determination of the volume (or weight) of the solution in tanks of any size and shape, regardless of the nature of the solutions within them. The goal of the work described in this report was to develop hot-cell compatible chemical separation procedures for lutetium and to try to devise a better method for quantitatively introducing natural lutetium to the tank.

  6. Waste management system alternatives for treatment of wastes from spent fuel reprocessing

    SciTech Connect

    McKee, R.W.; Swanson, J.L.; Daling, P.M.; Clark, L.L.; Craig, R.A.; Nesbitt, J.F.; McCarthy, D.; Franklin, A.L.; Hazelton, R.F.; Lundgren, R.A.

    1986-09-01

    This study was performed to help identify a preferred TRU waste treatment alternative for reprocessing wastes with respect to waste form performance in a geologic repository, near-term waste management system risks, and minimum waste management system costs. The results were intended for use in developing TRU waste acceptance requirements that may be needed to meet regulatory requirements for disposal of TRU wastes in a geologic repository. The waste management system components included in this analysis are waste treatment and packaging, transportation, and disposal. The major features of the TRU waste treatment alternatives examined here include: (1) packaging (as-produced) without treatment (PWOT); (2) compaction of hulls and other compactable wastes; (3) incineration of combustibles with cementation of the ash plus compaction of hulls and filters; (4) melting of hulls and failed equipment plus incineration of combustibles with vitrification of the ash along with the HLW; (5a) decontamination of hulls and failed equipment to produce LLW plus incineration and incorporation of ash and other inert wastes into HLW glass; and (5b) variation of this fifth treatment alternative in which the incineration ash is incorporated into a separate TRU waste glass. The six alternative processing system concepts provide progressively increasing levels of TRU waste consolidation and TRU waste form integrity. Vitrification of HLW and intermediate-level liquid wastes (ILLW) was assumed in all cases.

  7. Vitrifiable concrete for disposal of spent nuclear fuel reprocessing waste at I.N.E.L.

    SciTech Connect

    Gougar, M.L.D.; Scheetz, B.E.; Siemer, D.D.

    1996-08-01

    A cement capable of being Hot Isostatically Pressed (HIP`ed) into a glass-ceramic has been proposed for use as the waste form for SNF reprocessing wastes at the Idaho National Engineering Laboratories. Such an ``intermediate`` cement, with a composition based on that of common glasses, has been designed and tested. The cement formulations included mixed I.N.E.L. wastes, blast furnace flag, reactive silica, alumina, and I.N.E.L. soil or vermiculite, which was activated with potassium or sodium hydroxide. Modified FUETAP processing was performed and the cement was subsequently characterized. Results of compressive strength testing ranged from 1,452 psi to 4,163 psi, exceeding the NRC-suggested standard of >500 psi. Total dissolved solids concentrations in waste form leachates were calculated from a static leach test in which leachate conductivity was measured. Effective diffusivities for radioisotopes Cs and Sr were calculated from leachate analysis data. Diffusivity values were on the order of 10{sup {minus}15} to 10{sup {minus}10} cm{sup 2}/sec, which compare favorably with diffusivities in other materials.

  8. Characterization and simulation of soft gamma-ray mirrors for their use with spent fuel rods at reprocessing facilities

    SciTech Connect

    Ruz, J.; Descalle, M. A.; Alameda, J. B.; Chichester, David L.; Decker, T. A.; Fernandez-Perea, M.; Hill, R. M.; Kisner, Roger A.; Melin, Alexander M.; Patton, Bruce W.; Soufli, R.; Trellue, Holly; Watson, S. M.; Ziock, Klaus -Peter; Pivovaroff, Michael J.; Brejnholt, N. F.

    2016-05-24

    The use of a grazing incidence optic to selectively reflect K-shell fluorescence emission and isotope-specific lines from special nuclear materials is a highly desirable nondestructive analysis method for use in reprocessing fuel environments. Preliminary measurements have been performed, and a simulation suite has been developed to give insight into the design of the x ray optics system as a function of the source emission, multilayer coating characteristics, and general experimental configurations. As a result, the experimental results are compared to the predictions from our simulation toolkit to illustrate the ray-tracing capability and explore the effect of modified optics in future measurement campaigns.

  9. Characterization and simulation of soft gamma-ray mirrors for their use with spent fuel rods at reprocessing facilities

    SciTech Connect

    Ruz, J.; Descalle, M. A.; Alameda, J. B.; Chichester, David L.; Decker, T. A.; Fernandez-Perea, M.; Hill, R. M.; Kisner, Roger A.; Melin, Alexander M.; Patton, Bruce W.; Soufli, R.; Trellue, Holly; Watson, S. M.; Ziock, Klaus -Peter; Pivovaroff, Michael J.; Brejnholt, N. F.

    2016-05-24

    The use of a grazing incidence optic to selectively reflect K-shell fluorescence emission and isotope-specific lines from special nuclear materials is a highly desirable nondestructive analysis method for use in reprocessing fuel environments. Preliminary measurements have been performed, and a simulation suite has been developed to give insight into the design of the x ray optics system as a function of the source emission, multilayer coating characteristics, and general experimental configurations. As a result, the experimental results are compared to the predictions from our simulation toolkit to illustrate the ray-tracing capability and explore the effect of modified optics in future measurement campaigns.

  10. PRELIMINARY STUDY OF CERAMICS FOR IMMOBILIZATION OF ADVANCED FUEL CYCLE REPROCESSING WASTES

    SciTech Connect

    Fox, K.; Billings, A.; Brinkman, K.; Marra, J.

    2010-09-22

    The Savannah River National Laboratory (SRNL) developed a series of ceramic waste forms for the immobilization of Cesium/Lanthanide (CS/LN) and Cesium/Lanthanide/Transition Metal (CS/LN/TM) waste streams anticipated to result from nuclear fuel reprocessing. Simple raw materials, including Al{sub 2}O{sub 3}, CaO, and TiO{sub 2} were combined with simulated waste components to produce multiphase ceramics containing hollandite-type phases, perovskites (particularly BaTiO{sub 3}), pyrochlores, zirconolite, and other minor metal titanate phases. Identification of excess Al{sub 2}O{sub 3} via X-ray Diffraction (XRD) and Scanning Electron Microscopy with Energy Dispersive Spectroscopy (SEM/EDS) in the first series of compositions led to a Phase II study, with significantly reduced Al{sub 2}O{sub 3} concentrations and increased waste loadings. Three fabrication methodologies were used, including melting and crystallizing, pressing and sintering, and Spark Plasma Sintering (SPS), with the intent of studying phase evolution under various sintering conditions. XRD and SEM/EDS results showed that the partitioning of the waste elements in the sintered materials was very similar, despite varying stoichiometry of the phases formed. The Phase II compositions generally contained a reduced amount of unreacted Al{sub 2}O{sub 3} as identified by XRD, and had phase assemblages that were closer to the initial targets. Chemical composition measurements showed no significant issues with meeting the target compositions. However, volatilization of Cs and Mo was identified, particularly during melting, since sintering of the pressed pellets and SPS were performed at lower temperatures. Partitioning of some of the waste components was difficult to determine via XRD. SEM/EDS mapping showed that those elements, which were generally present in small concentrations, were well distributed throughout the waste forms. Initial studies of radiation damage tolerance using ion beam irradiation at Los

  11. Corrosion property of 9Cr-ODS steel in nitric acid solution for spent nuclear fuel reprocessing

    SciTech Connect

    Takeuchi, M.; Koizumi, T.; Inoue, M.; Koyama, S.I.

    2013-07-01

    Corrosion tests of oxide dispersion strengthened with 9% Cr (9Cr-ODS) steel, which is one of the desirable materials for cladding tube of sodium-cooled fast reactors, in pure nitric acid solution, spent FBR fuel solution, and its simulated solution were performed to understand the corrosion behavior in a spent nuclear fuel reprocessing. In this study, the 9Cr-ODS steel with lower effective chromium content was evaluated to understand the corrosion behavior conservatively. As results, the tube-type specimens of the 9Cr-ODS steels suffered severe weight loss owing to active dissolution at the beginning of the immersion test in pure nitric acid solution in the range from 1 to 3.5 M. In contrast, the weight loss was decreased and they showed a stable corrosion in the higher nitric acid concentration, the dissolved FBR fuel solution, and its simulated solution by passivation. The corrosion rates of the 9Cr-ODS steel in the dissolved FBR fuel solution and its simulated solution were 1-2 mm/y and showed good agreement with each other. The passivation was caused by the shift of corrosion potential to noble side owing to increase in nitric acid concentration or oxidative ions in the dissolved FBR fuel solution and the simulated spent fuel solution. (authors)

  12. Audit of fuel processing restoration property

    SciTech Connect

    1995-10-01

    In April, 1992, due to a diminished need for reprocessed uranium, the Secretary of Energy terminated the Fuel Processing Restoration (FPR) project. The termination left management and operating (M&O) contractors at the Idaho National Engineering Laboratory (Laboratory) with over $54 million in tools, equipment and material to be retained, utilized or disposed of. The objectives of the audit were to determine whether FPR property was adequately accounted for and whether the property was properly redistributed or excessed when the FPR project was terminated.

  13. Uranium transport to solid electrodes in pyrochemical reprocessing of nuclear fuel

    SciTech Connect

    Tomczuk, Z.; Ackerman, J.P.; Wolson, R.D.; Miller, W.E. . Chemical Technology Div.)

    1992-12-01

    A unique pyrochemical process developed for the separation of metallic nuclear fuel from fission products by electrotransport through molten LiCl-KCl eutectic salt to solid and liquid metal cathodes. The process allow for recovery and reuse of essentially all of the actinides in spent fuel from the integral fast reactor (IFR) and disposal of wastes in satisfactory forms. Electrotransport is used to minimize reagent consumption and, consequently, waste volume. In particular, electrotransport to solid cathodes is used for recovery of an essentially pure uranium product in the presence of other actinides; removal of pure uranium is used to adjust the electrolyte composition in preparation for recovery of a plutonium-rich mixture with uranium in liquid cadmium cathodes. This paper presents experiments that delineate the behavior of key actinide and rare-earth elements during electrotransport to a solid electrode over a useful range of PuCl[sub 3]/UCl[sub 3] ratios in the electrolyte, a thermodynamic basis for that behavior, and a comparison of the observed behavior with that calculated from a thermodynamic model. This work clearly established that recovery of nearly pure uranium can be a key step in the overall pyrochemical-fuel-processing strategy for the IFR.

  14. Fuel gas conditioning process

    DOEpatents

    Lokhandwala, Kaaeid A.

    2000-01-01

    A process for conditioning natural gas containing C.sub.3+ hydrocarbons and/or acid gas, so that it can be used as combustion fuel to run gas-powered equipment, including compressors, in the gas field or the gas processing plant. Compared with prior art processes, the invention creates lesser quantities of low-pressure gas per unit volume of fuel gas produced. Optionally, the process can also produce an NGL product.

  15. World-wide redistribution of 129Iodine from nuclear fuel reprocessing facilities:results from meteoric, river, and seawater tracer studies

    SciTech Connect

    Fehn, U; Moran, J E; Oktay, S; Santschi, P H; Schink, D R; Snyder, G

    1998-10-02

    Releases of the long-lived radioisotope of iodine, 129I from commercial nuclear fuel reprocessing facilities in England and France have surpassed natural, and even bomb test inventories. 129I/127I ratios measured in a variety of environmental matrices from Europe, North America and the southern hemisphere show the influence of fuel reprocessing-derived 129I, which is transported globally via the atmosphere. Transport and cycling of I and 129I in the hydrosphere and in soils are described based on a spatial survey of 129I in freshwater.

  16. Potential applications of sonochemistry in spent nuclear fuel reprocessing: a short review.

    PubMed

    Nikitenko, S I; Venault, L; Pflieger, R; Chave, T; Bisel, I; Moisy, P

    2010-08-01

    The industrial treatment of spent nuclear fuel is based upon a hydrometallurgical process in nitric acid medium. In order to minimize the volume of radioactive waste it seems interesting to generate the reactive species in situ in such solutions using ultrasonic irradiation without addition of salt-forming reagents. This review summarizes for the first time the versatile sonochemical processes with uranium, neptunium and plutonium in homogeneous nitric acid solutions and heterogeneous systems. The dissolution of refractory solids, ultrasonically driven liquid-liquid extraction and the sonochemical degradation of the volatile products of organic solvent radiolysis issued from PUREX process are considered. Also the guidelines for required further work to ensure successful application of the studied processes at industrial scale are discussed. Copyright 2009 Elsevier B.V. All rights reserved.

  17. Disaggregation of collective dose--a worked example based on future discharges from the Sellafield nuclear fuel reprocessing site, UK.

    PubMed

    Jones, S R; Lambers, B; Stevens, A

    2004-03-01

    Collective dose has long been advocated as an important measure of the detriment associated with practices that involve the use of radioactivity. Application of collective dose in the context of worker protection is relatively straightforward, whereas its application in the context of discharges to the environment can yield radically different conclusions depending upon the population groups and integration times that are considered. The computer program PC-CREAM98 has been used to provide an indicative disaggregation into individual dose bands of the collective dose due to potential future radioactive discharges from the nuclear fuel reprocessing site at Sellafield in the UK. Two alternative discharge scenarios are considered, which represent a 'stop reprocessing early, minimum discharge' scenario and a 'reprocessing beyond current contracts' scenario. For aerial discharges, collective dose at individual effective dose rates exceeding 0.015 microSv y(-1) is only incurred within the UK, and at effective dose rates exceeding 1.5 microSv y(-1) is only incurred within about 20 km of Sellafield. The geographical distribution of collective dose from liquid discharges is harder to assess, but it appears that collective dose incurred outside the UK is at levels of individual effective dose rate below 1.5 microSv y(-1), with the majority being incurred at rates of 0.002 microSv y(-1) or less. In multi-attribute utility analyses, the view taken on the radiological detriment to be attributed to the two discharge scenarios will depend critically on the weight or monetary value ascribed to collective doses incurred within the differing bands of individual dose rate.

  18. AERIAL SHOWING COMPLETED REMOTE ANALYTICAL FACILITY (CPP627) ADJOINING FUEL PROCESSING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    AERIAL SHOWING COMPLETED REMOTE ANALYTICAL FACILITY (CPP-627) ADJOINING FUEL PROCESSING BUILDING AND EXCAVATION FOR HOT PILOT PLANT TO RIGHT (CPP-640). INL PHOTO NUMBER NRTS-60-1221. J. Anderson, Photographer, 3/22/1960 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  19. Use of process monitoring for verifying facility design of large-scale reprocessing plants

    SciTech Connect

    Hakkila, E.A.; Zack, N.R. ); Ehinger, M.H. ); Franssen, F. )

    1991-01-01

    During the decade of the 1990s, the International Atomic Energy Agency (IAEA) faces the challenge of implementing safeguards in large, new reprocessing facilities. The Agency will be involved in the design, construction, checkout and initial operation of these new facilities to ensure effective safeguards are implemented. One aspect of the Agency involvement is in the area of design verification. The United States Support Program has initiated a task to develop methods for applying process data collection and validation during the cold commissioning phase of plant construction. This paper summarizes the results of this task. 14 refs., 1 tab.

  20. The search for advanced remote technology in fast reactor reprocessing

    SciTech Connect

    Burch, W.D.; Herndon, J.N.; Stradley, J.G.

    1990-01-01

    Research and development in fast reactor reprocessing has been under way about 20 years in several countries throughout the world. During the past decade in France and the United Kingdom, active development programs have been carried out in breeder reprocessing. Actual fuels from their demonstration reactors have been reprocessed in small-scale facilities. Early US work in breeder reprocessing was carried out at the EBR-II facilities with the early metal fuels, and interest has renewed recently in metal fuels. A major, comprehensive program, focused on oxide fuels, has been carried out in the Consolidated Fuel Reprocessing Program (CFRP) at the Oak Ridge National Laboratory (ORNL) since 1974. Germany and Japan have also carried out development programs in breeder reprocessing, and Japan appears committed to major demonstration of breeder reactors and their fuel cycles. While much of the effort in all of these programs addressed process chemistry and process hardware, a significant element of many of these programs, particularly the CFRP, has been on advancements in facility concepts and remote maintenance features. This paper will focus principally on the search for improved facility concepts and better maintenance systems in the CFRP and, in turn, on how developments at ORNL have influenced the technology elsewhere.

  1. The search for advanced remote technology in fast reactor reprocessing

    SciTech Connect

    Burch, W.D.; Herndon, J.N.; Stradley, J.G. )

    1990-01-01

    Research and development in fast reactor reprocessing has been under way [approximately] 20 yr in several countries. During the past decade, France and the United Kingdom have developed active programs in breeder reprocessing. Actual fuels from their demonstration reactors have been reprocessed in small-scale facilities. Early US work in breeder reprocessing was carried out at the Experimental Breeder Reactor II (EBR-II) facilities with the early metal fuels, and interest has renewed recently in metal fuels. A major, comprehensive program, focused on oxide fuels, has been carried out in the Consolidated Fuel Reprocessing Program (CFRP) at the Oak Ridge National Laboratory (ORNL) since 1974. The Federal Republic of Germany (FRG) and Japan have also carried out development programs in breeder reprocessing, and Japan appears committed to major demonstration of breeder reactors and their fuel cycles. While much of the effort in these programs addressed process chemistry and process hardware, a significant element of many of these programs, particularly the CFRP, has been on advancements in facility concepts and remote maintenance features. This paper focuses on the search for improved facility concepts and better maintenance systems in the CFRP, and, in turn, on how developments at ORNL have influenced the technology elsewhere.

  2. Concentration of 129I in aquatic biota collected from a lake adjacent to the spent nuclear fuel reprocessing plant in Rokkasho, Japan.

    PubMed

    Ueda, Shinji; Kakiuchi, Hideki; Hasegawa, Hidenao; Kawamura, Hidehisa; Hisamatsu, Shun'ichi

    2015-11-01

    The spent nuclear fuel reprocessing plant in Rokkasho, Japan, has been undergoing final testing since March 2006. During April 2006-October 2008, that spent fuel was cut and chemically processed, the plant discharged (129)I into the atmosphere and coastal waters. To study (129)I behaviour in brackish Lake Obuchi, which is adjacent to the plant, (129)I concentrations in aquatic biota were measured by accelerator mass spectrometry. Owing to (129)I discharge from the plant, the (129)I concentration in the biota started to rise from the background concentration in 2006 and was high during 2007-08. The (129)I concentration has been rapidly decreasing after the fuel cutting and chemically processing were finished. The (129)I concentration factors in the biota were higher than those reported by IAEA for marine organisms and similar to those reported for freshwater biota. The estimated annual committed effective dose due to ingestion of foods with the maximum (129)I concentration in the biota samples was 2.8 nSv y(-1).

  3. Effect of reprocessing cycles on the degradation of polypropylene copolymer filled with talc or montmorillonite during injection molding process

    SciTech Connect

    Demori, R.; Mauler, R. S.; Ashton, E.; Weschenfelder, V. F.; Cândido, L. H. A.; Kindlein, W.

    2015-05-22

    Mechanical recycling of polymeric materials is a favorable technique resulting in economic and environmental benefits, especially in the case of polymers with a high production volume as the polypropylene copolymer (PP). However, recycling by reprocessing techniques can lead to thermal, mechanical or thermo-oxidative degradation that can affect the structure of the polymer and subsequently the material properties. PP filled with montmorillonite (MMT) or talc are widely produced and studied, however, its degradation reactions by reprocessing cycles are poorly studied so far. In this study, the effects of reprocessing cycles in the structure and in the properties of the PP/MMT and PP/Talc were evaluated. The samples were mixed with 5% talc or MMT Cloisite C15A in a twin-screw extrusion. After extrusion, this filled material was submitted to five reprocessing cycles through an injection molding process. In order to evaluate the changes induced by reprocessing techniques, the samples were characterized by DSC, FT-IR, Izod impact and tensile strength tests. The study showed that Young modulus, elongation at brake and Izod impact were not affected by reprocessing cycles, except when using talc. In this case, the elongation at brake reduced until the fourth cycle, showing rigidity increase. The DSC results showed that melting and crystallization temperature were not affected. A comparison of FT-IR spectra of the reprocessed indicated that in both samples, between the first and the fifth cycle, no noticeable change has occurred. Thus, there is no evidence of thermo oxidative degradation. In general, these results suggest that PP reprocessing cycles using MMT or talc does not change the material properties until the fifth cycle.

  4. DEVELOPMENT OF A HYDROGEN MORDENITE SORBENT FOR THE CAPTURE OF KRYPTON FROM USED NUCLEAR FUEL REPROCESSING OFF-GAS STREAMS

    SciTech Connect

    Mitchell Greenhalgh; Troy G. Garn; Jack D. Law

    2014-04-01

    A novel new sorbent for the separation of krypton from off-gas streams resulting from the reprocessing of used nuclear fuel has been developed and evaluated. A hydrogen mordenite powder was successfully incorporated into a macroporous polymer binder and formed into spherical beads. The engineered form sorbent retained the characteristic surface area and microporosity indicative of mordenite powder. The sorbent was evaluated for krypton adsorption capacities utilizing thermal swing operations achieving capacities of 100 mmol of krypton per kilogram of sorbent at a temperature of 191 K. A krypton adsorption isotherm was also obtained at 191 K with varying krypton feed gas concentrations. Adsorption/desorption cycling effects were also evaluated with results indicating that the sorbent experienced no decrease in krypton capacity throughout testing.

  5. Characterization and simulation of soft gamma-ray mirrors for their use with spent fuel rods at reprocessing facilities

    DOE PAGES

    Ruz, J.; Descalle, M. A.; Alameda, J. B.; ...

    2016-05-24

    The use of a grazing incidence optic to selectively reflect K-shell fluorescence emission and isotope-specific lines from special nuclear materials is a highly desirable nondestructive analysis method for use in reprocessing fuel environments. Preliminary measurements have been performed, and a simulation suite has been developed to give insight into the design of the x ray optics system as a function of the source emission, multilayer coating characteristics, and general experimental configurations. As a result, the experimental results are compared to the predictions from our simulation toolkit to illustrate the ray-tracing capability and explore the effect of modified optics in futuremore » measurement campaigns.« less

  6. Estimation of 85Kr dispersion from the spent nuclear fuel reprocessing plant in Rokkasho, Japan, using an atmospheric dispersion model.

    PubMed

    Abe, K; Iyogi, T; Kawabata, H; Chiang, J H; Suwa, H; Hisamatsu, S

    2015-11-01

    The spent nuclear fuel reprocessing plant of Japan Nuclear Fuel Limited (JNFL) located in Rokkasho, Japan, discharged small amounts of (85)Kr into the atmosphere during final tests of the plant with actual spent fuel from 31 March 2006 to October 2008. During this period, the gamma-ray dose rates due to discharged (85)Kr were higher than the background rates measured at the Institute for Environmental Sciences and at seven monitoring stations of the Aomori prefectural government and JNFL. The dispersion of (85)Kr was simulated by means of the fifth-generation Penn State/NCAR Mesoscale Model and the CG-MATHEW/ADPIC models (ver. 5.0) with a vertical terrain-following height coordinate. Although the simulated gamma-ray dose rates due to discharged (85)Kr agreed fairly well with measured rates, the agreement between the estimated monthly mean (85)Kr concentrations and the observed concentrations was poor. Improvement of the vertical flow of air may lead to better estimation of (85)Kr dispersion.

  7. Safety research of multi-functional reprocessing process considering nonproliferation based on an ion-exchange method

    SciTech Connect

    Koyama, Shin-ichi; Ozawa, Masaki |; Okada, Ken; Kurosawa, Kiyoko; Suzuki, Tatsuya; Fujii, Yasuhiko

    2007-07-01

    A simplified separation process was proposed based on an ion-exchange technique. A tertiary pyridine-type ion-exchange resin was used in this process to treat the mixed oxide fuel highly irradiated in the experimental fast reactor 'JOYO'. It was demonstrated that the process is a realistic candidate for future reprocessing using hydrochloric acid and a mixed eluent solution of nitric acid and methanol. In order to develop an engineering scale concept, it is indispensable to establish the conditions for safe operation, so two types of experiments were done to obtain fundamental aspects. The corrosion experiment for structural materials in hydrochloric acid at room temperature was done using tantalum, zirconium, niobium, hastelloy and SUS316L. Results showed that tantalum, zirconium, niobium, and hastelloy had good corrosion resistance to hydrochloric acid. The second experiment looked at the thermal hazards of pyridine-type ion-exchange resin and the methanol, or nitric acid eluent system from the viewpoints of fire and explosion safety. No hazardous reactions occurred between the resin and the eluent system. Above 150 deg. C, attention should be paid to the exothermic reactions for the dried resin. (authors)

  8. Metal-organic frameworks for removal of Xe and Kr from nuclear fuel reprocessing plants.

    PubMed

    Liu, Jian; Thallapally, Praveen K; Strachan, Denis

    2012-08-07

    Removal of xenon (Xe) and krypton (Kr) from process off-gases containing 400 ppm Xe, 40 ppm Kr, 78% N(2), 21% O(2), 0.9% Ar, 0.03% CO(2), and so forth using adsorption was demonstrated for the first time. Two well-known metal-organic frameworks (MOFs), HKUST-1 and Ni/DOBDC, which both have unsaturated metal centers but different pore morphologies, were selected as novel adsorbents. Results of an activated carbon were also included for comparison. The Ni/DOBDC has higher Xe/Kr selectivities than those of the activated carbon and the HKUST-1. In addition, results show that the Ni/DOBDC and HKUST-1 can adsorb substantial amounts of Xe and Kr even when they are mixed in air. Moreover, the Ni/DOBDC can successfully separate 400 ppm Xe from 40 ppm Kr and air containing O(2), N(2), and CO(2) with a Xe/Ke selectivity of 7.3 as indicated by our breakthrough results. This shows a promising future for MOFs in radioactive nuclide separations from spent fuels.

  9. Evaluation of Methods for Decladding LWR Fuel for a Pyroprocessing-Based Reprocessing Plant

    DTIC Science & Technology

    1992-10-01

    Liiz 00 zz 00 LAi 0 F-.. 1 0VI V) I. C0 5 7 t AL.11 Fig. 2. Westinghouse PWR fuel assembly. (Source: Westinghouse Electric Company Information...Brochure.) 6 photograph of a Westinghouse PWR fuel assembly. Decladding systems for the LWR- Actinide Recycle (LWR-AR) plant under study will have as a...types, the thickness of the cladding ranges from 0.03 to 0.037 in. 2. Zircaloy-4. This cladding material is used in PWR fuel rods and has as its

  10. Signal transmission techniques for large-scale nuclear fuel reprocessing applications

    SciTech Connect

    Herndon, J.N.; Bible, D.W.

    1985-01-01

    The RCE is currently developing a prototypic microwave-based signal transmission system for reprocessing cell applications. This system, being developed for use in the Advanced Integrated Maintenance System (AIMS), will operate in the 10-GHz frequency range. Provisions are being made for five real-time video channels, three bidirectional data channels at one megabaud data rate each, and two audio channels. The basic utility of the concept has been proven in a laboratory demonstration using gallium arsenide gunn diode transmitter/receivers with horn antennas. Unidirectional transmission of one real-time video channel over a distance of 200 ft was demonstrated. No evidence of multipath interference was detected even when the transmission path was surrounded by metallic reflectors. The microwave signal transmission system for the AIMS application is in final design. Fabrication in the ORNL instrument shops will begin in October 1985, and the system should be operational in the Maintenance Systems Test Area (MSTA) at ORNL in the latter half of 1986.

  11. Regional seismic lines reprocessed using post-stack processing techniques; National Petroleum Reserve, Alaska

    USGS Publications Warehouse

    Miller, John J.; Agena, W.F.; Lee, M.W.; Zihlman, F.N.; Grow, J.A.; Taylor, D.J.; Killgore, Michele; Oliver, H.L.

    2000-01-01

    This CD-ROM contains stacked, migrated, 2-Dimensional seismic reflection data and associated support information for 22 regional seismic lines (3,470 line-miles) recorded in the National Petroleum Reserve ? Alaska (NPRA) from 1974 through 1981. Together, these lines constitute about one-quarter of the seismic data collected as part of the Federal Government?s program to evaluate the petroleum potential of the Reserve. The regional lines, which form a grid covering the entire NPRA, were created by combining various individual lines recorded in different years using different recording parameters. These data were reprocessed by the USGS using modern, post-stack processing techniques, to create a data set suitable for interpretation on interactive seismic interpretation computer workstations. Reprocessing was done in support of ongoing petroleum resource studies by the USGS Energy Program. The CD-ROM contains the following files: 1) 22 files containing the digital seismic data in standard, SEG-Y format; 2) 1 file containing navigation data for the 22 lines in standard SEG-P1 format; 3) 22 small scale graphic images of each seismic line in Adobe Acrobat? PDF format; 4) a graphic image of the location map, generated from the navigation file, with hyperlinks to the graphic images of the seismic lines; 5) an ASCII text file with cross-reference information for relating the sequential trace numbers on each regional line to the line number and shotpoint number of the original component lines; and 6) an explanation of the processing used to create the final seismic sections (this document). The SEG-Y format seismic files and SEG-P1 format navigation file contain all the information necessary for loading the data onto a seismic interpretation workstation.

  12. Economic Study of Spent Nuclear Fuel Storage and Reprocessing Practices in Russia

    SciTech Connect

    C. E. Singer; G. H. Miley

    1997-10-01

    This report describes a study of nuclear power economics in Russia. It addresses political and institutional background factors which constrain Russia's energy choices in the short and intermediate run. In the approach developed here, political and institutional factors might dominate short-term decisions, but the comparative costs of Russia's fuel-cycle options are likely to constrain her long-term energy strategy. To this end, the authors have also formulated a set of policy questions which should be addressed using a quantitative decision modeling which analyzes economic costs for all major components of different fuel cycle options, including the evolution of uranium prices.

  13. Advanced LMFBR fuel cladding susceptability to stress corrosion due to reprocessing impurities

    SciTech Connect

    Henslee, S.P.

    1987-03-01

    The potential degradation of LMFBR fuel cladding alloys by chlorides, when used in metallic fuel systems, was evaluated. The alloys tested were D-9 and HT-9 stainless steels, austenitic and ferritic alloys respectively. These two alloys were tested in parallel with and their performance compared to the austenitic stainless steel Type 316. All alloys were tested for 7400 hours in a stress rupture environment with chloride exposure at either 550/degree/C 650/degree/C. None of the alloys tested were found to exhibit any degradation in time-to-rupture by the presence of chlorides under the conditions imposed during testing. 8 refs., 4 figs., 2 tabs.

  14. Off-Site Monitoring of Nuclear Fuel Reprocessing Plants for Nuclear Weapons Proliferation

    DTIC Science & Technology

    1980-01-01

    weapons proliferation.Countries which cotild not previouwly develop or construct the uranium enrichment facilities required to produce weapon grade U...essentially unusable in a weapon;mormover, the phy- "cical separation of these isotopes is even more difficult than the enrich - Ur• fnt of uranium (ref 2...natural Uranium (ref 5:2),The Kr-85 releases from nuclear reac- "tore are insignificant compared to the releases from nuclear fuel repro- cessing plants

  15. 129I in the environment of the La Hague nuclear fuel reprocessing plant--from sea to land.

    PubMed

    Fréchou, C; Calmet, D

    2003-01-01

    In recent years, particular attention was paid to the long-lived radionuclides discharged with authorized low-level radioactive liquid and gaseous effluents by the nuclear spent fuel reprocessing plants of La Hague and Sellafield. The knowledge of (129)I (half-life=15.7 x 10(6) a) distribution in the environment is required to assess the radiological impact to the environment and population living in the area under the direct influence of La Hague NRP discharges. Measurement difficulties of (129)I in environmental matrices, where it is usually present at trace level, limited data published on (129)I activity levels in the European and more particularly in the French territory. Studies conducted to qualify a new alternative measurement method, direct gamma-X spectrometry with experimental self-absorption correction, led to test samples collected in the La Hague marine and terrestrial environment : seaweeds, lichens, grass, bovine thyroids, etc. All these results, often already published separately for analytical purposes and treated for intercomparison exercises, are presented here together in a radioecological manner. The levels of (129)I activity and (129)I/(127)I ratios in these samples show the spatial and temporal influence of the La Hague NRP in its local near-field environment as well as at the regional scale along the French Channel coast.

  16. FY 2007 LDRD Director's R&D Progress SummaryProposal Title: Developing a Science Base for Fuel Reprocessing Separations in the Global Nuclear Energy Program

    SciTech Connect

    de Almeida, Valmor F; Tsouris, Costas; Birdwell Jr, Joseph F; D'Azevedo, Ed F; Jubin, Robert Thomas; DePaoli, David W; Moyer, Bruce A

    2011-01-01

    This work is aimed at developing an experimentally validated computational capability for understanding the complex processes governing the performance of solvent extraction devices used for separations in nuclear fuel reprocessing. These applications pose a grand challenge due to the combination of complicating factors in a three-dimensional, turbulent, reactive, multicomponent, multiphase/interface fluid flow system. The currently limited process simulation and scale-up capabilities provides uncertainty in the ability to select and design the separations technology for the demonstration plan of the Global Nuclear Energy Partnership (GNEP) program. We anticipate the development of science-based models for technology development and design. This project will position ORNL to address the emerging opportunity by creating an expandable process model validated experimentally. This project has three major thrusts, namely, a prototype experimental station, a continuum modeling and simulation effort, and molecular modeling and kinetics support. Excellent progress has been made in corresponding activities in this first year in: (1) defining, assembling, and operating a relevant prototype system for model validation; (2) establishing a mathematical model for fluid flow and transport; (3) deploying sub-scale molecular modeling.

  17. Estimates of Zenith Total Delay trends from GPS reprocessing with autoregressive process

    NASA Astrophysics Data System (ADS)

    Klos, Anna; Hunegnaw, Addisu; Teferle, Felix Norman; Ebuy Abraha, Kibrom; Ahmed, Furqan; Bogusz, Janusz

    2017-04-01

    Nowadays, near real-time Zenith Total Delay (ZTD) estimates from Global Positioning System (GPS) observations are routinely assimilated into numerical weather prediction (NWP) models to improve the reliability of forecasts. On the other hand, ZTD time series derived from homogeneously re-processed GPS observations over long periods have the potential to improve our understanding of climate change on various temporal and spatial scales. With such time series only recently reaching somewhat adequate time spans, the application of GPS-derived ZTD estimates to climate monitoring is still to be developed further. In this research, we examine the character of noise in ZTD time series for 1995-2015 in order to estimate more realistic magnitudes of trend and its uncertainty than would be the case if the stochastic properties are not taken into account. Furthermore, the hourly sampled, homogeneously re-processed and carefully homogenized ZTD time series from over 700 globally distributed stations were classified into five major climate zones. We found that the amplitudes of annual signals reach values of 10-150 mm with minimum values for the polar and Alpine zones. The amplitudes of daily signals were estimated to be 0-12 mm with maximum values found for the dry zone. We examined seven different noise models for the residual ZTD time series after modelling all known periodicities. This identified a combination of white plus autoregressive process of fourth order to be optimal to match all changes in power of the ZTD data. When the stochastic properties are neglected, ie. a pure white noise model is employed, only 11 from 120 trends were insignificant. Using the optimum noise model more than half of the 120 examined trends became insignificant. We show that the uncertainty of ZTD trends is underestimated by a factor of 3-12 when the stochastic properties of the ZTD time series are ignored and we conclude that it is essential to properly model the noise characteristics of

  18. Metal-Organic Frameworks for Removal of Xe and Kr from Nuclear Fuel Reprocessing Plants

    SciTech Connect

    Liu, Jian; Thallapally, Praveen K.; Strachan, Denis M.

    2012-08-07

    Removal of Xenon (Xe) and Krypton (Kr) from in parts per million (ppm) levels were demonstrated for the first time using two well known metal-organic frameworks (MOFs), HKUST-1 and Ni/DOBDC. Results of an activated carbon were also included for comparison. Ni/DOBDC has higher Xe/Kr selectivities than those of the activated carbon. Moreover, results show that the Ni/DOBDC and HKUST-1 can selectively adsorb Xe and Kr from air even at 1000 ppm concentration. This shows a promising future for MOFs in a radioactive nuclides separation from spent fuel.

  19. On the possibility of reprocessing spent nuclear fuel and radioactive waste by plasma methods

    NASA Astrophysics Data System (ADS)

    Vorona, N. A.; Gavrikov, A. V.; Samokhin, A. A.; Smirnov, V. P.; Khomyakov, Yu. S.

    2015-12-01

    The concept of plasma separation of spent nuclear fuel and radioactive waste is presented. An approach that is based on using an accelerating potential to overcome the energy and angular spread of plasma ions at the separation region inlet and utilizing a potential well to separate spatially the ions of different masses is proposed. It is demonstrated that such separation may be performed at distances of about 1 m with electrical potentials of about 1 kV and a magnetic field of about 1 kG. The estimates of energy consumption and performance of the plasma separation method are presented. These estimates illustrate its potential for technological application. The results of development and construction of an experimental setup for testing the method of plasma separation are presented.

  20. On the possibility of reprocessing spent nuclear fuel and radioactive waste by plasma methods

    SciTech Connect

    Vorona, N. A.; Gavrikov, A. V. Samokhin, A. A.; Smirnov, V. P.; Khomyakov, Yu. S.

    2015-12-15

    The concept of plasma separation of spent nuclear fuel and radioactive waste is presented. An approach that is based on using an accelerating potential to overcome the energy and angular spread of plasma ions at the separation region inlet and utilizing a potential well to separate spatially the ions of different masses is proposed. It is demonstrated that such separation may be performed at distances of about 1 m with electrical potentials of about 1 kV and a magnetic field of about 1 kG. The estimates of energy consumption and performance of the plasma separation method are presented. These estimates illustrate its potential for technological application. The results of development and construction of an experimental setup for testing the method of plasma separation are presented.

  1. NASADEM Initial Production Processing Results: Shuttle Radar Topography Mission (SRTM) Reprocessing with Improvements

    NASA Astrophysics Data System (ADS)

    Buckley, S.; Agram, P. S.; Belz, J. E.; Crippen, R. E.; Gurrola, E. M.; Hensley, S.; Kobrick, M.; Lavalle, M.; Martin, J. M.; Neumann, M.; Nguyen, Q.; Rosen, P. A.; Shimada, J.; Simard, M.; Tung, W.

    2016-12-01

    NASADEM is a significant modernization of SRTM digital elevation model (DEM) data supported by the NASA MEaSUREs program. We are reprocessing the raw radar signal data using improved algorithms and incorporating ICESat and DEM data unavailable during the original processing. The NASADEM products will be freely-available through the Land Processes Distributed Active Archive Center (LPDAAC) at one-arcsecond spacing and delivered by continent: North America, South America, Australia, Eurasia, Africa, and Island Groups. We are in the production phase of the project. This involves radar interferometry (InSAR) processing on thousands of radar datatakes. New phase unwrapping and height ripple error correction (HREC) procedures are applied to the data. The resulting strip DEMs and ancillary information are passed to a back-end processor to create DEM mosaics and new geocoded single-swath products. Manual data quality assessment (QA) and fixes are performed at several steps in the processing chain. Post-production DEM void-filling is described in a companion AGU Fall Meeting presentation. The team completed the InSAR processing for all continents and the manual QA of the strip DEMs for more than half the world. North America strip DEM void areas are reduced by more than 50%. The ICESat data is used for height ripple error correction and as control for continent-scale adjustment of the strip DEMs. These ripples are due to uncompensated mast motion most pronounced after Shuttle roll angle adjustment maneuvers. After an initial assessment of the NASADEM production processing for the Americas, we further refined the selection of ICESat data for control by excluded data over glaciers, snow cover, forest clear cuts, and sloped areas. The HREC algorithm reduces the North America ICESat-SRTM bias from 80 cm to 3 cm and the RMS from 5m to 4m.

  2. Noble gas atmospheric monitoring at reprocessing facilities

    SciTech Connect

    Nakhleh, C.W.; Perry, R.T. Jr.; Poths, J.; Stanbro, W.D.; Wilson, W.B.; Fearey, B.L.

    1997-05-01

    The discovery in Iraq after the Gulf War of the existence of a large clandestine nuclear-weapon program has led to an across-the-board international effort, dubbed Programme 93+2, to improve the effectiveness and efficiency of International Atomic Energy Agency (IAEA) safeguards. One particularly significant potential change is the introduction of environmental monitoring (EM) techniques as an adjunct to traditional safeguards methods. Monitoring of stable noble gas (Kr, Xe) isotopic abundances at reprocessing plant stacks appears to be able to yield information on the burnup and type of the fuel being processed. To estimate the size of these signals, model calculations of the production of stable Kr, Xe nuclides in reactor fuel and the subsequent dilution of these nuclides in the plant stack are carried out for two case studies: reprocessing of PWR fuel with a burnup of 35 GWd/tU, and reprocessing of CAND fuel with a burnup of 1 GWd/tU. For each case, a maximum-likelihood analysis is used to determine the fuel burnup and type from the isotopic data.

  3. Technology development program for Idaho Chemical Processing Plant spent fuel and waste management

    SciTech Connect

    Ermold, L.F.; Knecht, D.A.; Hogg, G.W.; Olson, A.L.

    1993-08-01

    Acidic high-level radioactive waste (HLW) resulting from fuel reprocessing at the Idaho Chemical Processing Plant (ICPP) for the U.S. Department of Energy (DOE) has been solidified to a calcine since 1963 and stored in stainless steel bins enclosed by concrete vaults. Several different types of unprocessed irradiated DOE-owned fuels are also in storage at the ICPP. In April, 1992, DOE announced that spent fuel would no longer be reprocessed to recover enriched uranium and called for a shutdown of the reprocessing facilities at the ICPP. A new Spent Fuel and HLW Technology Development program was subsequently initiated to develop technologies for immobilizing ICPP spent fuels and HLW for disposal, in accordance with the Nuclear Waste Policy Act. The Program elements include Systems Analysis, Graphite Fuel Disposal, Other Spent Fuel Disposal, Sodium-Bearing Liquid Waste Processing, Calcine Immobilization, and Metal Recycle/Waste Minimization. This paper presents an overview of the ICPP radioactive wastes and current spent fuels, and describes the Spent Fuel and HLW Technology program in more detail.

  4. Disposal of defense spent fuel and HLW from the Idaho Chemical Processing Plant

    SciTech Connect

    Ermold, L.F.; Loo, H.H.; Klingler, R.D.; Herzog, J.D.; Knecht, D.A.

    1992-12-01

    Acid high-level radioactive waste (HLW) resulting from fuel reprocessing at the Idaho Chemical Processing Plant (ICPP) for the US Department of Energy (DOE) has been solidified to a calcine since 1963 and stored in stainless steel bins enclosed by concrete vaults. Several different types of unprocessed irradiated DOE-owned fuels are also in storage ate the ICPP. In April, 1992, DOE announced that spent fuel would no longer be reprocessed to recover enriched uranium and called for a shutdown of the reprocessing facilities at the ICPP. A new Spent Fuel and HLW Technology Development program was subsequently initiated to develop technologies for immobilizing ICPP spent fuels and HLW for disposal, in accordance with the Nuclear Waste Policy Act. The Program elements include Systems Analysis, Graphite Fuel Disposal, Other Spent Fuel Disposal, Sodium-Bearing Liquid Waste Processing, Calcine Immobilization, and Metal Recycle/Waste Minimization. This paper presents an overview of the ICPP radioactive wastes and current spent fuels, with an emphasis on the description of HLW and spent fuels requiring repository disposal.

  5. The cost of processing irradiated fuel from light water reactors: An independent assessment

    SciTech Connect

    Gingold, J.E.; Kupp, R.W.; Schaeffer, D.; Klein, R.L. Corp., Pleasantville, NY )

    1991-04-01

    As part of an overall EPRI examination of the merits of employing transuranic elements recovered from spent light water reactor fuel in liquid metal reactors, an assessment was performed of the cost of reprocessing this fuel and recovering the desired minor transuranic elements as well as the contained uranium and plutonium. The analyses were based on a series of groundrules and assumptions which were considered representative of the institutional and economic climate which would prevail at the time when such reprocessing plants would be constructed. Two different processes were considered. The first was the PUREX process, an aqueous process which was employed in the large US reprocessing facilities constructed and planned in the 1970s and currently in use in Europe. The second was a pyrochemical process which has been under development principally for the metal fuels which might be used in the liquid metal reactor. That process was adapted to the processing of the ceramic spent fuel from light water reactors for purposes of this study. Capital, operating, and administrative costs were estimated for the aqueous and pyrochemical plants under both the forms of ownership considered, with an allowance for profit made for the investor-owned plants. After developing the cost data, the price of reprocessing services to the customer was calculated. 2 figs., 17 tabs.

  6. Tritium concentrations in the atmospheric environment at Rokkasho, Japan before the final testing of the spent nuclear fuel reprocessing plant.

    PubMed

    Akata, Naofumi; Kakiuchi, Hideki; Shima, Nagayoshi; Iyogi, Takashi; Momoshima, Noriyuki; Hisamatsu, Shun'ichi

    2011-09-01

    This study aimed at obtaining background tritium concentrations in precipitation and air at Rokkasho where the first commercial spent nuclear fuel reprocessing plant in Japan has been under construction. Tritium concentration in monthly precipitation during fiscal years 2001-2005 had a seasonal variation pattern which was high in spring and low in summer. The tritium concentration was higher than that observed at Chiba City as a whole. The seasonal peak concentration at Rokkasho was generally higher than that at Chiba City, while the baseline concentrations of both were similar. The reason for the difference may be the effect of air mass from the Asian continent which is considered to have high tritium concentration. Atmospheric tritium was operationally separated into HTO, HT and hydrocarbon (CH(3)T) fractions, and the samples collected every 3 d-14 d during fiscal year 2005 were analyzed for these fractions. The HTO concentration as radioactivity in water correlated well with that in the precipitation samples. The HT concentration was the highest among the chemical forms analyzed, followed by the HTO and CH(3)T concentrations. The HT and CH(3)T concentrations did not have clear seasonal variation patterns. The HT concentration followed the decline previously reported by Mason and Östlund with an apparent half-life of 4.8 y. The apparent and environmental half-lives of CH(3)T were estimated as 9.2 y and 36.5 y, respectively, by combining the present data with literature data. The Intergovernmental Panel on Climate Change used the atmospheric lifetime of 12 y for CH(4) to estimate global warming in its 2007 report. The longer environmental half-life of CH(3)T suggested its supply from other sources than past nuclear weapon testing in the atmosphere.

  7. Remote maintenance lessons learned'' on prototypical reprocessing equipment

    SciTech Connect

    Kring, C.T.; Schrock, S.L.

    1990-01-01

    Hardware representative of essentially every major equipment item necessary for reprocessing breeder reactor nuclear fuel has been installed and tested for remote maintainability. This testing took place in a cold mock-up of a remotely maintained hot cell operated by the Consolidated Fuel Reprocessing Program (CFRP) within the Fuel Recycle Division at Oak Ridge National Laboratory (ORNL). The reprocessing equipment tested included a Disassembly System, a Shear System, a Dissolver System, an Automated Sampler System, removable Equipment Racks on which various chemical process equipment items were mounted, and an advanced servomanipulator (ASM). These equipment items were disassembled and reassembled remotely by using the remote handling systems that are available within the cold mock-up area. This paper summarizes the lessons learned'' as a result of the numerous maintenance activities associated with each of these equipment items. 4 refs., 3 figs., 1 tab.

  8. Spent graphite fuel element processing

    SciTech Connect

    Holder, N.D.; Olsen, C.W.

    1981-07-01

    The Department of Energy currently sponsors two programs to demonstrate the processing of spent graphite fuel elements. General Atomic in San Diego operates a cold pilot plant to demonstrate the processing of both US and German high-temperature reactor fuel. Exxon Nuclear Idaho Company is demonstrating the processing of spent graphite fuel elements from Rover reactors operated for the Nuclear Rocket Propulsion Program. This work is done at Idaho National Engineering Laboratory, where a hot facility is being constructed to complete processing of the Rover fuel. This paper focuses on the graphite combustion process common to both programs.

  9. Used nuclear fuel separations process simulation and testing

    SciTech Connect

    Pereira, C.; Krebs, J.F.; Copple, J.M.; Frey, K.E.; Maggos, L.E.; Figueroa, J.; Willit, J.L.; Papadias, D.D.

    2013-07-01

    Recent efforts in separations process simulation at Argonne have expanded from the traditional focus on solvent extraction flowsheet design in order to capture process dynamics and to simulate other components, processing and systems of a used nuclear fuel reprocessing plant. For example, the Argonne Model for Universal Solvent Extraction (AMUSE) code has been enhanced to make it both more portable and more readily extensible. Moving away from a spreadsheet environment makes the addition of new species and processes simpler for the expert user, which should enable more rapid implementation of chemical models that simulate evolving processes. The dyAMUSE (dynamic AMUSE) version allows the simulation of transient behavior across an extractor. Electrochemical separations have now been modeled using spreadsheet codes that simulate the electrochemical recycle of fast reactor fuel. The user can follow the evolution of the salt, products, and waste compositions in the electro-refiner, cathode processors, and drawdown as a function of fuel batches treated. To further expand capabilities in integrating multiple unit operations, a platform for linking mathematical models representing the different operations that comprise a reprocessing facility was adapted to enable systems-level analysis and optimization of facility functions. (authors)

  10. DEVELOPMENT OF CRYSTALLINE CERAMICS FOR IMMOBILIZATION OF ADVANCED FUEL CYCLE REPROCESSING WASTES

    SciTech Connect

    Fox, K.; Brinkman, K.

    2011-09-22

    The Savannah River National Laboratory (SRNL) is developing crystalline ceramic waste forms to incorporate CS/LN/TM high Mo waste streams consisting of perovskite, hollandite, pyrochlore, zirconolite, and powellite phase assemblages. Simple raw materials, including Al{sub 2}O{sub 3}, CaO, and TiO{sub 2} were combined with simulated waste components to produce multiphase crystalline ceramics. Fiscal Year 2011 (FY11) activities included (i) expanding the compositional range by varying waste loading and fabrication of compositions rich in TiO{sub 2}, (ii) exploring the processing parameters of ceramics produced by the melt and crystallize process, (iii) synthesis and characterization of select individual phases of powellite and hollandite that are the target hosts for radionuclides of Mo, Cs, and Rb, and (iv) evaluating the durability and radiation stability of single and multi-phase ceramic waste forms. Two fabrication methods, including melting and crystallizing, and pressing and sintering, were used with the intent of studying phase evolution under various sintering conditions. An analysis of the XRD and SEM/EDS results indicates that the targeted crystalline phases of the FY11 compositions consisting of pyrochlore, perovskite, hollandite, zirconolite, and powellite were formed by both press and sinter and melt and crystallize processing methods. An evaluation of crystalline phase formation versus melt processing conditions revealed that hollandite, perovskite, zirconolite, and residual TiO{sub 2} phases formed regardless of cooling rate, demonstrating the robust nature of this process for crystalline phase development. The multiphase ceramic composition CSLNTM-06 demonstrated good resistance to proton beam irradiation. Electron irradiation studies on the single phase CaMoO{sub 4} (a component of the multiphase waste form) suggested that this material exhibits stability to 1000 years at anticipated self-irradiation doses (2 x 10{sup 10}-2 x 10{sup 11} Gy), but that

  11. A novel technique towards deployment of hydrostatic pressure based level sensor in nuclear fuel reprocessing facility.

    PubMed

    Praveen, K; Rajiniganth, M P; Arun, A D; Sahoo, P; Murty, S A V Satya

    2016-02-01

    A novel approach towards deployment of a hydrostatic pressure based level monitoring device is presented for continuous monitoring of liquid level in a reservoir with high resolution and precision. Some of the major drawbacks such as spurious information of measured level due to change in ambient temperature, requirement of high resolution pressure sensor, and bubbling effect by passing air or any gaseous fluid into the liquid are overcome by using such a newly designed hydrostatic pressure based level monitoring device. The technique involves precise measurement of hydrostatic pressure exerted by the process liquid using a high sensitive pulsating-type differential pressure sensor (capacitive type differential pressure sensor using a specially designed oil manometer) and correlating it to the liquid level. In order to avoid strong influence of temperature on liquid level, a temperature compensation methodology is derived and used in the system. A wireless data acquisition feature has also been provided in the level monitoring device in order to work in a remote area such as a radioactive environment. At the outset, a prototype level measurement system for a 1 m tank is constructed and its test performance has been well studied. The precision, accuracy, resolution, uncertainty, sensitivity, and response time of the prototype level measurement system are found to be less than 1.1 mm in the entire range, 1%, 3 mm, <1%, 10 Hz/mm, and ∼4 s, respectively.

  12. A novel technique towards deployment of hydrostatic pressure based level sensor in nuclear fuel reprocessing facility

    NASA Astrophysics Data System (ADS)

    Praveen, K.; Rajiniganth, M. P.; Arun, A. D.; Sahoo, P.; Satya Murty, S. A. V.

    2016-02-01

    A novel approach towards deployment of a hydrostatic pressure based level monitoring device is presented for continuous monitoring of liquid level in a reservoir with high resolution and precision. Some of the major drawbacks such as spurious information of measured level due to change in ambient temperature, requirement of high resolution pressure sensor, and bubbling effect by passing air or any gaseous fluid into the liquid are overcome by using such a newly designed hydrostatic pressure based level monitoring device. The technique involves precise measurement of hydrostatic pressure exerted by the process liquid using a high sensitive pulsating-type differential pressure sensor (capacitive type differential pressure sensor using a specially designed oil manometer) and correlating it to the liquid level. In order to avoid strong influence of temperature on liquid level, a temperature compensation methodology is derived and used in the system. A wireless data acquisition feature has also been provided in the level monitoring device in order to work in a remote area such as a radioactive environment. At the outset, a prototype level measurement system for a 1 m tank is constructed and its test performance has been well studied. The precision, accuracy, resolution, uncertainty, sensitivity, and response time of the prototype level measurement system are found to be less than 1.1 mm in the entire range, 1%, 3 mm, <1%, 10 Hz/mm, and ˜4 s, respectively.

  13. Catalysts for improved fuel processing

    SciTech Connect

    Borup, R.L.; Inbody, M.A.

    2000-09-01

    This report covers our technical progress on fuel processing catalyst characterization for the specific purpose of hydrogen production for proton-exchange-membrane (PEM) fuel cells. These development efforts support DOE activities in the development of compact, transient capable reformers for on-board hydrogen generation starting from candidate fuels. The long-term objective includes increased durability and lifetime, in addition to smaller volume, improved performance, and other specifications required meeting fuel processor goals. The technical barriers of compact fuel processor size, transient capability, and compact, efficient thermal management all are functions of catalyst performance. Significantly, work at LANL now tests large-scale fuel processors for performance and durability, as influenced by fuels and fuel constituents, and complements that testing with micro-scale catalyst evaluation which is accomplished under well controlled conditions.

  14. Fuel processing device

    DOEpatents

    Ahluwalia, Rajesh K.; Ahmed, Shabbir; Lee, Sheldon H. D.

    2011-08-02

    An improved fuel processor for fuel cells is provided whereby the startup time of the processor is less than sixty seconds and can be as low as 30 seconds, if not less. A rapid startup time is achieved by either igniting or allowing a small mixture of air and fuel to react over and warm up the catalyst of an autothermal reformer (ATR). The ATR then produces combustible gases to be subsequently oxidized on and simultaneously warm up water-gas shift zone catalysts. After normal operating temperature has been achieved, the proportion of air included with the fuel is greatly diminished.

  15. Monolithic Fuel Fabrication Process Development

    SciTech Connect

    C. R. Clark; N. P. Hallinan; J. F. Jue; D. D. Keiser; J. M. Wight

    2006-05-01

    The pursuit of a high uranium density research reactor fuel plate has led to monolithic fuel, which possesses the greatest possible uranium density in the fuel region. Process developments in fabrication development include friction stir welding tool geometry and cooling improvements and a reduction in the length of time required to complete the transient liquid phase bonding process. Annealing effects on the microstructures of the U-10Mo foil and friction stir welded aluminum 6061 cladding are also examined.

  16. Dismantling of Highly Contaminated Process Installations of the German Reprocessing Facility (WAK) - Status of New Remote Handling Technology - 13287

    SciTech Connect

    Dux, Joachim; Friedrich, Daniel; Lutz, Werner; Ripholz, Martina

    2013-07-01

    Decommissioning and dismantling of the former German Pilot Reprocessing Plant Karlsruhe (WAK) including the Vitrification Facility (VEK) is being executed in different Project steps related to the reprocessing, HLLW storage and vitrification complexes /1/. While inside the reprocessing building the total inventory of process equipment has already been dismantled and disposed of, the HLLW storage and vitrification complex has been placed out of operation since vitrification and tank rinsing procedures where finalized in year 2010. This paper describes the progress made in dismantling of the shielded boxes of the highly contaminated laboratory as a precondition to get access to the hot cells of the HLLW storage. The major challenges of the dismantling of this laboratory were the high dose rates up to 700 mSv/h and the locking technology for the removal of the hot cell installations. In parallel extensive prototype testing of different carrier systems and power manipulators to be applied to dismantle the HLLW-tanks and other hot cell equipment is ongoing. First experiences with the new manipulator carrier system and a new master slave manipulator with force reflection will be reported. (authors)

  17. Mesoscale to plant-scale models of nuclear waste reprocessing.

    SciTech Connect

    Noble, David Frederick; O'Hern, Timothy John; Moffat, Harry K.; Nemer, Martin B.; Domino, Stefan Paul; Rao, Rekha Ranjana; Cipiti, Benjamin B.; Brotherton, Christopher M.; Jove-Colon, Carlos F.; Pawlowski, Roger Patrick

    2010-09-01

    Imported oil exacerabates our trade deficit and funds anti-American regimes. Nuclear Energy (NE) is a demonstrated technology with high efficiency. NE's two biggest political detriments are possible accidents and nuclear waste disposal. For NE policy, proliferation is the biggest obstacle. Nuclear waste can be reduced through reprocessing, where fuel rods are separated into various streams, some of which can be reused in reactors. Current process developed in the 1950s is dirty and expensive, U/Pu separation is the most critical. Fuel rods are sheared and dissolved in acid to extract fissile material in a centrifugal contactor. Plants have many contacts in series with other separations. We have taken a science and simulation-based approach to develop a modern reprocessing plant. Models of reprocessing plants are needed to support nuclear materials accountancy, nonproliferation, plant design, and plant scale-up.

  18. Application of curium measurements for safeguarding at reprocessing plants. Study 1: High-level liquid waste and Study 2: Spent fuel assemblies and leached hulls

    SciTech Connect

    Rinard, P.M.; Menlove, H.O.

    1996-03-01

    In large-scale reprocessing plants for spent fuel assemblies, the quantity of plutonium in the waste streams each year is large enough to be important for nuclear safeguards. The wastes are drums of leached hulls and cylinders of vitrified high-level liquid waste. The plutonium amounts in these wastes cannot be measured directly by a nondestructive assay (NDA) technique because the gamma rays emitted by plutonium are obscured by gamma rays from fission products, and the neutrons from spontaneous fissions are obscured by those from curium. The most practical NDA signal from the waste is the neutron emission from curium. A diversion of waste for its plutonium would also take a detectable amount of curium, so if the amount of curium in a waste stream is reduced, it can be inferred that there is also a reduced amount of plutonium. This report studies the feasibility of tracking the curium through a reprocessing plant with neutron measurements at key locations: spent fuel assemblies prior to shearing, the accountability tank after dissolution, drums of leached hulls after dissolution, and canisters of vitrified high-level waste after separation. Existing pertinent measurement techniques are reviewed, improvements are suggested, and new measurements are proposed. The authors integrate these curium measurements into a safeguards system.

  19. Application of a high-level peracetic acid disinfection protocol to re-process antibiotic disinfected skin allografts.

    PubMed

    Lomas, R J; Huang, Q; Pegg, D E; Kearney, J N

    2004-01-01

    Skin allografts, derived from cadaveric donors, are widely used for the treatment of burns and ulcers. Prior to use in clinical situations, these allografts are disinfected using a cocktail of antibiotics and then cryopreserved. Unfortunately, this antibiotic disinfection procedure fails to decontaminate a significant proportion and these contaminated grafts can not be used clinically. We have investigated whether it is possible to apply a second, more potent disinfection procedure to these contaminated grafts and effectively to re-process them for clinical use. Cadaveric skin grafts, treated with antibiotics and cryopreserved, were thawed and a peracetic acid (PAA) disinfection protocol applied. The grafts were then preserved in a high concentration of glycerol or propylene glycol, and properties thought to be essential for successful clinical performance assessed. The cytotoxicity of the grafts was assessed using both extract and contact assays; damage to the skin collagen was assessed using a collagenase susceptibility assay and the capacity of the grafts to elicit an inflammatory response in vitro was assessed by quantifying the production of the pro-inflammatory cytokine TNF-alpha by human peripheral blood mononuclear phagocytes. PAA disinfection, in conjunction with either glycerol or propylene glycol preservation, did not render the grafts cytotoxic, pro-inflammatory, or increase their susceptibility to collagenase digestion. The rates of penetration of glycerol and propylene glycol into the re-processed skin were comparable to those of fresh skin. This study has demonstrated that PAA disinfection combined with immersion in high concentrations of either glycerol or propylene glycol was an effective method for re-processing contaminated skin allografts, and may justify their clinical use.

  20. Noble Gas Measurement and Analysis Technique for Monitoring Reprocessing Facilities

    SciTech Connect

    Charlton, William S

    1999-09-01

    An environmental monitoring technique using analysis of stable noble gas isotopic ratios on-stack at a reprocessing facility was developed. This technique integrates existing technologies to strengthen safeguards at reprocessing facilities. The isotopic ratios are measured using a mass spectrometry system and are compared to a database of calculated isotopic ratios using a Bayesian data analysis method to determine specific fuel parameters (e.g., burnup, fuel type, fuel age, etc.). These inferred parameters can be used by investigators to verify operator declarations. A user-friendly software application (named NOVA) was developed for the application of this technique. NOVA included a Visual Basic user interface coupling a Bayesian data analysis procedure to a reactor physics database (calculated using the Monteburns 3.01 code system). The integrated system (mass spectrometry, reactor modeling, and data analysis) was validated using on-stack measurements during the reprocessing of target fuel from a U.S. production reactor and gas samples from the processing of EBR-II fast breeder reactor driver fuel. These measurements led to an inferred burnup that matched the declared burnup with sufficient accuracy and consistency for most safeguards applications. The NOVA code was also tested using numerous light water reactor measurements from the literature. NOVA was capable of accurately determining spent fuel type, burnup, and fuel age for these experimental results. Work should continue to demonstrate the robustness of this system for production, power, and research reactor fuels.

  1. Controllability of plutonium concentration for FBR fuel at a solvent extraction process in the PUREX process

    SciTech Connect

    Enokida, Youichi; Kitano, Motoki; Sawada, Kayo

    2013-07-01

    Typical Purex solvent extraction systems for the reprocessing of spent nuclear fuel have a feed material containing dilute, 1% in weight, plutonium, along with uranium and fission products. Current reprocessing proposals call for no separation of the pure plutonium. The work described in this paper studied, by computer simulation, the fundamental feasibility of preparing a 20% concentrated plutonium product solution from the 1% feed by adjusting only the feed rates and acid concentrations of the incoming streams and without the addition of redox reagents for the plutonium. A set of process design flowsheets has been developed to realize a concentrated plutonium solution of a 20% stream from the dilute plutonium feed without using redox reagents. (authors)

  2. Reprocessing of nonoptimally exposed holograms

    SciTech Connect

    Phipps, G.S.; Robertson, C.E.; Tamashiro, F.M.

    1980-03-01

    Two reprocessing techniques have been investigated that are capable of correcting the effects of nonoptimum optical density of photographic amplitude holograms recorded on Agfa-Gevaert type 10E75 plates. In some cases a reprocessed hologram will exhibit a diffraction efficiency even higher than that obtainable from a hologram exposed and processed to the optimum density. The SNR of the reprocessed holograms is much higher than that of the same holograms belached with cupric bromide. In some cases the SNR approaches the optimum value for a properly exposed amplitude hologram. Subjective image quality and resolution of reprocessed hologram reconstructins appear to be no different than for normal single-development holograms. Repeated reprocessing is feasible and in some cases desirable as a means of increasing diffraction efficiency.

  3. Cost/performance comparison between pulse columns and centrifugal contactors designed to process Clinch River Breeder Reactor fuel

    SciTech Connect

    Ciucci, J.A. Jr.

    1983-12-01

    A comparison between pulse columns and centrifugal contactors was made to determine which type of equipment was more advantageous for use in the primary decontamination cycle of a remotely operated fuel reprocessing plant. Clinch River Breeder Reactor (CRBR) fuel was chosen as the fuel to be processed in the proposed 1 metric tonne/day reprocessing facility. The pulse columns and centrifugal contactors were compared on a performance and total cost basis. From this comparison, either the pulse columns or the centrifugal contactors will be recommended for use in a fuel reprocessing plant built to reprocess CRBR fuel. The reliability, solvent exposure to radiation, required time to reach steady state, and the total costs were the primary areas of concern for the comparison. The pulse column units were determined to be more reliable than the centrifugal contactors. When a centrifugal contactor motor fails, it can be remotely changed in less than one eight hour shift. Pulse columns expose the solvent to approximately five times as much radiation dose as the centrifugal contactor units; however, the proposed solvent recovery system adequately cleans the solvent for either case. The time required for pulse columns to reach steady state is many times longer than the time required for centrifugal contactors to reach steady state. The cost comparison between the two types of contacting equipment resulted in centrifugal contactors costing 85% of the total cost of pulse columns when the contactors were stacked on three levels in the module. If the centrifugal contactors were all positioned on the top level of a module with the unoccupied volume in the module occupied by other equipment, the centrifugal contactors cost is 66% of the total cost of pulse columns. Based on these results, centrifugal contactors are recommended for use in a remotely operated reprocessing plant built to reprocess CRBR fuel.

  4. High-level endoscope disinfection processes in emerging economies: financial impact of manual process versus automated endoscope reprocessing.

    PubMed

    Funk, S E; Reaven, N L

    2014-04-01

    The use of flexible endoscopes is growing rapidly around the world. Dominant approaches to high-level disinfection among resource-constrained countries include fully manual cleaning and disinfection and the use of automated endoscope reprocessors (AERs). Suboptimal reprocessing at any step can potentially lead to contamination, with consequences to patients and healthcare systems. To compare the potential results of guideline-recommended AERs to manual disinfection along three dimensions - productivity, need for endoscope repair, and infection transmission risk in India, China, and Russia. Financial modelling using data from peer-reviewed published literature and country-specific market research. In countries where revenue can be gained through productivity improvements, conversion to automated reprocessing has a positive direct impact on financial performance, paying back the capital investment within 14 months in China and seven months in Russia. In India, AER-generated savings and revenue offset nearly all of the additional operating costs needed to support automated reprocessing. Among endoscopy facilities in India and China, current survey-reported practices in endoscope reprocessing using manual soaking may place patients at risk of exposure to pathogens leading to infections. Conversion from manual soak to use of AERs, as recommended by the World Gastroenterology Organization, may generate cost and revenue offsets that could produce direct financial gains for some endoscopy units in Russia and China. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Shaping process makes fuels

    SciTech Connect

    Tabak, S.A.; Krambeck, F.J.

    1985-09-01

    The Mobil Olefin to Gasoline and Distillate (MOGD) process is described in which light olefinic compunds can be converted to high quality gasoline and distillate. This process, now ready for commercialization is based on a unique synthetic zeolite catalyst, the shape of which selectively oligomerizes light olefins to higher molecular weight iso-olefins. The highly flexible process can be designed to produce distillate/gasoline ratios of 0/100 to 90/10 for a commercial plant, depending on market requirements. MOGD is applicable to a wide range of feed streams ranging from ethylene to 400 degrees F end point olefinic naphtha. The process has been tested using commercially produced catalyst in refinery-scale equipment.

  6. Modelling of the nitric acid reduction process: Application to materials behavior in reprocessing plants

    SciTech Connect

    Sicsic, D.; Balbaud-Celerier, F.; Tribollet, B.

    2012-07-01

    In France, the recycling process of nuclear waste fuels involves the use of hot concentrated nitric acid. The understanding and the prediction of the structural materials (mainly austenitic stainless steels) behaviour requires the determination of the nitric acid reduction process. Nitric acid is indirectly reduced by an autocatalytic mechanism depending on the cathodic overpotential and the acid concentration. This mechanism has been widely studied. All the authors agree on its autocatalytic nature, characterized by the predominant role of the reduction products. It is also generally admitted that nitric acid or the nitrate ion are not the electro-active species. However, uncertainties remain concerning the nature of the electro-active species, the place where the catalytic species regenerates and the thermodynamic and kinetic behaviour of the reaction intermediates. The aim of this study is to clarify some of these uncertainties by performing an electrochemical investigation of the 4 mol.L -1 nitric acid reduction process at 40 deg. C occurring on an inert electrode (platinum or gold). An inert electrode was chosen as a working electrode in a first step in order to avoid its oxidation and focus the research on the reduction mechanism. This experimental work enabled to suggest a coherent sequence of electrochemical and chemical reactions. Then, a kinetic modelling of this sequence was carried out for a gold rotating disk system. In this objective, a thermodynamic study at 25 deg. C led to the evaluation of the composition of liquid and gaseous phases for nitric acid solutions from 0.5 to 22 mol.L -1. The kinetics of the reduction process of nitric acid 4 mol.L -1 was investigated by cyclic voltammetry and chrono-amperometry on an inert electrode at 40 deg. C. A coupling of chrono-amperometry and FTIR in gaseous phase led to the identification of the gaseous reduction products as a function of the cathodic overpotential. These different results showed that for

  7. The eye movement desensitization and reprocessing procedure prevents defensive processing in health persuasion.

    PubMed

    Dijkstra, Arie; van Asten, Regine

    2014-01-01

    In the present study, the method of eye movement desensitization and reprocessing (EMDR) is studied to understand and prevent defensive reactions with regard to a negatively framed message advocating fruit and vegetable consumption. EMDR has been shown to tax the working memory. Participants from a university sample (n = 124) listened to the persuasive message in a randomized laboratory experiment. In the EMDR condition, they were also instructed to follow with their eyes a dot on the computer screen. The dot constantly moved from one side of the screen to the other in 2 seconds. In addition, a self-affirmation procedure was applied in half of the participants. EMDR led to a significant increase in persuasion, only in recipients in whom the persuasive message could be expected to activate defensive self-regulation (in participants with a moderate health value and in participants with low self-esteem). In those with a moderate health value, EMDR increased persuasion, but only when recipients were not affirmed. In addition, EMDR increased persuasion only in recipients with low self-esteem, not in those with high self-esteem. These results showed that EMDR influenced persuasion and in some way lowered defensive reactions. The similarities and differences in effects of EMDR and self-affirmation further increased our insight into the psychology of defensiveness.

  8. Tritium experiments on components for fusion fuel processing at the Tritium Systems Test Assembly

    SciTech Connect

    Konishi, S.; Yoshida, H.; Naruse, Y. ); Carlson, R.V.; Binning, K.E.; Bartlit, J.R.; Anderson, J.L. )

    1990-01-01

    Under a collaborative agreement between US and Japan, two tritium processing components, a palladium diffuser and a ceramic electrolysis cell have been tested with tritium for application to a Fuel Cleanup System (FCU) for plasma exhaust processing at the Los Alamos National Laboratory. The fundamental characteristics, compatibility with tritium, impurities effects with tritium, and long-term behavior of the components, were studied over a three year period. Based on these studies, an integrated process loop, JAERI Fuel Cleanup System'' equipped with above components was installed at the TSTA for full scale demonstration of the plasma exhaust reprocessing.

  9. Evolution of isotopic composition of reprocessed uranium during the multiple recycling in light water reactors with natural uranium feed

    SciTech Connect

    Smirnov, A. Yu. Sulaberidze, G. A.; Alekseev, P. N.; Dudnikov, A. A.; Nevinitsa, V. A. Proselkov, V. N.; Chibinyaev, A. V.

    2012-12-15

    A complex approach based on the consistent modeling of neutron-physics processes and processes of cascade separation of isotopes is applied for analyzing physical problems of the multiple usage of reprocessed uranium in the fuel cycle of light water reactors. A number of scenarios of multiple recycling of reprocessed uranium in light water reactors are considered. In the process, an excess absorption of neutrons by the {sup 236}U isotope is compensated by re-enrichment in the {sup 235}U isotope. Specific consumptions of natural uranium for re-enrichment of the reprocessed uranium depending on the content of the {sup 232}U isotope are obtained.

  10. Fuel cycles for the 80's

    SciTech Connect

    Not Available

    1980-01-01

    Papers presented at the American Nuclear Society's topical meeting on the fuel cycle are summarized. Present progress and goals in the areas of fuel fabrication, fuel reprocessing, spent fuel storage, accountability, and safeguards are reported. Present governmental policies which affect the fuel cycle are also discussed. Individual presentations are processed for inclusion in the Energy Data Base.(DMC)

  11. Simulation of ground-water flow near the nuclear-fuel reprocessing facility at the Western New York Nuclear Service Center, Cattaraugus County, New York

    USGS Publications Warehouse

    Yager, R.M.

    1987-01-01

    A two-dimensional finite-difference model was developed to simulate groundwater flow in a surficial sand and gravel deposit underlying the nuclear fuel reprocessing facility at Western New York Nuclear Service Center near West Valley, N.Y. The sand and gravel deposit overlies a till plateau that abuts an upland area of siltstone and shale on its west side, and is bounded on the other three sides by deeply incised stream channels that drain to Buttermilk Creek, a tributary to Cattaraugus Creek. Radioactive materials are stored within the reprocessing plant and are also buried within a till deposit at the facility. Tritiated water is stored in a lagoon system near the plant and released under permit to Franks Creek, a tributary to Buttermilk Creek. Groundwater levels predicted by steady-state simulations closely matched those measured in 23 observation wells, with an average error of 0.5 meter. Simulated groundwater discharges to two stream channels and a subsurface drain were within 5% of recorded values. Steady-state simulations used an average annual recharge rate of 46 cm/yr; predicted evapotranspiration loss from the ground was 20 cm/yr. The lateral range in hydraulic conductivity obtained through model calibration was 0.6 to 10 m/day. Model simulations indicated that 33% of the groundwater discharged from the sand and gravel unit (2.6 L/sec) is lost by evapotranspiration, 3% (3.0 L/sec) flows to seepage faces at the periphery of the plateau, 20% (1.6 L/sec) discharges to stream channels that drain a large wetland area near the center of the plateau, and the remaining 8% (0.6 L/sec) discharges to a subsurface french drain and to a wastewater treatment system. Groundwater levels computed by a transient-state simulation of an annual climatic cycle, including seasonal variation in recharge and evapotranspiration, closely matched water levels measured in eight observation wells. The model predicted that the subsurface drain and the stream channel that drains the

  12. EAST ELEVATION OF HIGH BAY ADDITION OF FUEL STORAGE BUILDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EAST ELEVATION OF HIGH BAY ADDITION OF FUEL STORAGE BUILDING (CPP-603). INL DRAWING NUMBER 200-0603-00-706-051286. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  13. CONSTRUCTION PROGRESS PHOTO SHOWING WEST STORAGE BASIN AT FUEL STORAGE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CONSTRUCTION PROGRESS PHOTO SHOWING WEST STORAGE BASIN AT FUEL STORAGE BUILDING (CPP-603). INL PHOTO NUMBER NRTS-51-689. Unknown Photographer, 1950 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  14. Plasma coal reprocessing

    NASA Astrophysics Data System (ADS)

    Messerle, V. E.; Ustimenko, A. B.

    2013-12-01

    Results of many years of investigations of plasma-chemical technologies for pyrolysis, hydrogenation, thermochemical preparation for combustion, gasification, and complex reprocessing of solid fuels and hydrocarbon gas cracking are represented. Application of these technologies for obtaining the desired products (hydrogen, industrial carbon, synthesis gas, valuable components of the mineral mass of coal) corresponds to modern ecological and economical requirements to the power engineering, metallurgy, and chemical industry. Plasma fuel utilization technologies are characterized by the short-term residence of reagents within a reactor and the high degree of the conversion of source substances into the desired products without catalyst application. The thermochemical preparation of the fuel to combustion is realized in a plasma-fuel system presenting a reaction chamber with a plasmatron; and the remaining plasma fuel utilization technologies, in a combined plasma-chemical reactor with a nominal power of 100 kW, whose zone of the heat release from an electric arc is joined with the chemical reaction zone.

  15. Synthetic fuels handbook: properties, process and performance

    SciTech Connect

    Speight, J.

    2008-07-01

    The handbook is a comprehensive guide to the benefits and trade-offs of numerous alternative fuels, presenting expert analyses of the different properties, processes, and performance characteristics of each fuel. It discusses the concept systems and technology involved in the production of fuels on both industrial and individual scales. Chapters 5 and 7 are of special interest to the coal industry. Contents: Chapter 1. Fuel Sources - Conventional and Non-conventional; Chapter 2. Natural Gas; Chapter 3. Fuels From Petroleum and Heavy Oil; Chapter 4. Fuels From Tar Sand Bitumen; Chapter 5. Fuels From Coal; Chapter 6. Fuels From Oil Shale; Chapter 7. Fuels From Synthesis Gas; Chapter 8. Fuels From Biomass; Chapter 9. Fuels From Crops; Chapter 10. Fuels From Wood; Chapter 11. Fuels From Domestic and Industrial Waste; Chapter 12. Landfill Gas. 3 apps.

  16. Microbial fuel cell treatment of fuel process wastewater

    DOEpatents

    Borole, Abhijeet P; Tsouris, Constantino

    2013-12-03

    The present invention is directed to a method for cleansing fuel processing effluent containing carbonaceous compounds and inorganic salts, the method comprising contacting the fuel processing effluent with an anode of a microbial fuel ell, the anode containing microbes thereon which oxidatively degrade one or more of the carbonaceous compounds while producing electrical energy from the oxidative degradation, and directing the produced electrical energy to drive an electrosorption mechanism that operates to reduce the concentration of one or more inorganic salts in the fuel processing effluent, wherein the anode is in electrical communication with a cathode of the microbial fuel cell. The invention is also directed to an apparatus for practicing the method.

  17. Clinical Practice Guidelines for Endoscope Reprocessing

    PubMed Central

    Oh, Hyun Jin

    2015-01-01

    Gastrointestinal endoscopy is effective and safe for the screening, diagnosis, and treatment of gastrointestinal disease. However, issues regarding endoscope-transmitted infections are emerging. Many countries have established and continuously revise guidelines for endoscope reprocessing in order to prevent infections. While there are common processes used in endoscope reprocessing, differences exist among these guidelines. It is important that the reprocessing of gastrointestinal endoscopes be carried out in accordance with the recommendations for each step of the process. PMID:26473117

  18. Processing sunflower oil for fuel

    SciTech Connect

    Backer, L.F.; Jacobsen, L.; Olson, C.

    1982-05-01

    Research on processing of sunflower seed for oil was initiated to evaluate the equipment that might adapt best to on-farm or small factory production facilities. The first devices identified for evaluation were auger press expeller units, primary oil cleaning equipment, and final filters. A series of standard finishing filtration tests were carried out on sunflower oil and sunflower oil - diesel fuel blends using sunflower oil from four different sources.

  19. Advanced Safeguards Approaches for New Reprocessing Facilities

    SciTech Connect

    Durst, Philip C.; Therios, Ike; Bean, Robert; Dougan, A.; Boyer, Brian; Wallace, Richard; Ehinger, Michael H.; Kovacic, Don N.; Tolk, K.

    2007-06-24

    U.S. efforts to promote the international expansion of nuclear energy through the Global Nuclear Energy Partnership (GNEP) will result in a dramatic expansion of nuclear fuel cycle facilities in the United States. New demonstration facilities, such as the Advanced Fuel Cycle Facility (AFCF), the Advanced Burner Reactor (ABR), and the Consolidated Fuel Treatment Center (CFTC) will use advanced nuclear and chemical process technologies that must incorporate increased proliferation resistance to enhance nuclear safeguards. The ASA-100 Project, “Advanced Safeguards Approaches for New Nuclear Fuel Cycle Facilities,” commissioned by the NA-243 Office of NNSA, has been tasked with reviewing and developing advanced safeguards approaches for these demonstration facilities. Because one goal of GNEP is developing and sharing proliferation-resistant nuclear technology and services with partner nations, the safeguards approaches considered are consistent with international safeguards as currently implemented by the International Atomic Energy Agency (IAEA). This first report reviews possible safeguards approaches for the new fuel reprocessing processes to be deployed at the AFCF and CFTC facilities. Similar analyses addressing the ABR and transuranic (TRU) fuel fabrication lines at AFCF and CFTC will be presented in subsequent reports.

  20. The British nuclear fuels CACITOX soil treatment process

    SciTech Connect

    Brierley, K.W.; Hultman, C.W.S.

    1994-12-31

    Contamination of soils by heavy metals and radionuclides is a common problem throughout the world. British Nuclear Fuels plc (BNFL) is extending its patented CACITOX{sup {trademark}} process, originally developed for the treatment of nuclear fuel reprocessing wastes, to the treatment of soils and other materials contaminated with heavy metals and transuranic (TRU) elements. CACITOX{sup {trademark}} is a novel proprietary leaching process which uses a mild, highly selective and environmentally friendly reagent system. It is potentially capable of treating contaminated soils and sediments without depositing unacceptable by-products within the soil matrix or destroying the matrix itself. The low reagent concentrations and its high selectivity result in minimization of secondary waste and conservation of resources. This innovative process is at the heart of BNFL`s development of a modular soil treatment plant, EXCEL*CR{sup {trademark}}. Although many mechanical unit operations employed in the EXCEL*CR{sup {trademark}} plant are similar to conventional soil washing (size classification), it is distinguished by the ability of the process to selectively leach the contaminants from the soil as soluble chemical complexes. This paper describes the CACITOX{sup {trademark}} process and its use in the EXCEL*CR{sup {trademark}} soil treatment plant. The paper outlines the process chemistry, development of its application and reviews progress in the current development program. The design philosophy for the EXCEL*CR{sup {trademark}} plant is further described.

  1. Neural processing of emotions in traumatized children treated with Eye Movement Desensitization and Reprocessing therapy: a hdEEG study

    PubMed Central

    Trentini, Cristina; Pagani, Marco; Fania, Piercarlo; Speranza, Anna Maria; Nicolais, Giampaolo; Sibilia, Alessandra; Inguscio, Lucio; Verardo, Anna Rita; Fernandez, Isabel; Ammaniti, Massimo

    2015-01-01

    Eye Movement Desensitization and Reprocessing (EMDR) therapy has been proven efficacious in restoring affective regulation in post-traumatic stress disorder (PTSD) patients. However, its effectiveness on emotion processing in children with complex trauma has yet to be explored. High density electroencephalography (hdEEG) was used to investigate the effects of EMDR on brain responses to adults’ emotions on children with histories of early maltreatment. Ten school-aged children were examined before (T0) and within one month after the conclusion of EMDR (T1). hdEEGs were recorded while children passively viewed angry, afraid, happy, and neutral faces. Clinical scales were administered at the same time. Correlation analyses were performed to detect brain regions whose activity was linked to children’s traumatic symptom-related and emotional-adaptive problem scores. In all four conditions, hdEEG showed similar significantly higher activity on the right medial prefrontal and fronto-temporal limbic regions at T0, shifting toward the left medial and superior temporal regions at T1. Moreover, significant correlations were found between clinical scales and the same regions whose activity significantly differed between pre- and post-treatment. These preliminary results demonstrate that, after EMDR, children suffering from complex trauma show increased activity in areas implicated in high-order cognitive processing when passively viewing pictures of emotional expressions. These changes are associated with the decrease of depressive and traumatic symptoms, and with the improvement of emotional-adaptive functioning over time. PMID:26594183

  2. Neural processing of emotions in traumatized children treated with Eye Movement Desensitization and Reprocessing therapy: a hdEEG study.

    PubMed

    Trentini, Cristina; Pagani, Marco; Fania, Piercarlo; Speranza, Anna Maria; Nicolais, Giampaolo; Sibilia, Alessandra; Inguscio, Lucio; Verardo, Anna Rita; Fernandez, Isabel; Ammaniti, Massimo

    2015-01-01

    Eye Movement Desensitization and Reprocessing (EMDR) therapy has been proven efficacious in restoring affective regulation in post-traumatic stress disorder (PTSD) patients. However, its effectiveness on emotion processing in children with complex trauma has yet to be explored. High density electroencephalography (hdEEG) was used to investigate the effects of EMDR on brain responses to adults' emotions on children with histories of early maltreatment. Ten school-aged children were examined before (T0) and within one month after the conclusion of EMDR (T1). hdEEGs were recorded while children passively viewed angry, afraid, happy, and neutral faces. Clinical scales were administered at the same time. Correlation analyses were performed to detect brain regions whose activity was linked to children's traumatic symptom-related and emotional-adaptive problem scores. In all four conditions, hdEEG showed similar significantly higher activity on the right medial prefrontal and fronto-temporal limbic regions at T0, shifting toward the left medial and superior temporal regions at T1. Moreover, significant correlations were found between clinical scales and the same regions whose activity significantly differed between pre- and post-treatment. These preliminary results demonstrate that, after EMDR, children suffering from complex trauma show increased activity in areas implicated in high-order cognitive processing when passively viewing pictures of emotional expressions. These changes are associated with the decrease of depressive and traumatic symptoms, and with the improvement of emotional-adaptive functioning over time.

  3. Fusion-Fission Hybrid for Fissile Fuel Production without Processing

    SciTech Connect

    Fratoni, M; Moir, R W; Kramer, K J; Latkowski, J F; Meier, W R; Powers, J J

    2012-01-02

    Two scenarios are typically envisioned for thorium fuel cycles: 'open' cycles based on irradiation of {sup 232}Th and fission of {sup 233}U in situ without reprocessing or 'closed' cycles based on irradiation of {sup 232}Th followed by reprocessing, and recycling of {sup 233}U either in situ or in critical fission reactors. This study evaluates a third option based on the possibility of breeding fissile material in a fusion-fission hybrid reactor and burning the same fuel in a critical reactor without any reprocessing or reconditioning. This fuel cycle requires the hybrid and the critical reactor to use the same fuel form. TRISO particles embedded in carbon pebbles were selected as the preferred form of fuel and an inertial laser fusion system featuring a subcritical blanket was combined with critical pebble bed reactors, either gas-cooled or liquid-salt-cooled. The hybrid reactor was modeled based on the earlier, hybrid version of the LLNL Laser Inertial Fusion Energy (LIFE1) system, whereas the critical reactors were modeled according to the Pebble Bed Modular Reactor (PBMR) and the Pebble Bed Advanced High Temperature Reactor (PB-AHTR) design. An extensive neutronic analysis was carried out for both the hybrid and the fission reactors in order to track the fuel composition at each stage of the fuel cycle and ultimately determine the plant support ratio, which has been defined as the ratio between the thermal power generated in fission reactors and the fusion power required to breed the fissile fuel burnt in these fission reactors. It was found that the maximum attainable plant support ratio for a thorium fuel cycle that employs neither enrichment nor reprocessing is about 2. This requires tuning the neutron energy towards high energy for breeding and towards thermal energy for burning. A high fuel loading in the pebbles allows a faster spectrum in the hybrid blanket; mixing dummy carbon pebbles with fuel pebbles enables a softer spectrum in the critical reactors

  4. Materials used in low-level liquid waste reprocessing/treatment studies at Oak Ridge National Laboratory

    SciTech Connect

    McDaniel, E.W.; Weeren, H.O.; Delzer, D.B.; Sams, T.L.; Tallent, O.K.

    1987-01-01

    The importance of effective waste management in the nuclear fuel cycle cannot be overestimated. At Oak Ridge National Laboratory (ORNL), development work in waste reprocessing and treatment includes the testing and use of various additives for the purpose of facilitating adherence to both process and regulatory performance criteria. Three waste reprocessing/treatment technologies and the associated materials are discussed in this paper: (1) suspension and transfer of sludge from waste storage tanks; (2) treatment to render a waste in compliance with regulatory requirements; and (3) fluoride-rich waste reprocessing. 7 refs., 3 figs.

  5. Idaho Chemical Processing Plant Spent Fuel and Waste Management Technology Development Program Plan

    SciTech Connect

    1993-09-01

    The Department of Energy (DOE) has received spent nuclear fuel (SNF) at the Idaho Chemical Processing Plant (ICPP) for interim storage and reprocessing since 1953. Reprocessing of SNF has resulted in an existing inventory of 1.5 million gallons of radioactive sodium-bearing liquid waste and 3800 cubic meters (m{sup 3}) of calcine, in addition to the 768 metric tons (MT) of SNF and various other fuel materials in inventory. To date, the major activity of the ICPP has been the reprocessing of SNF to recover fissile uranium; however, recent changes in world events have diminished the demand to recover and recycle this material. As a result, DOE has discontinued reprocessing SNF for uranium recovery, making the need to properly manage and dispose of these and future materials a high priority. In accordance with the Nuclear Waste Policy Act (NWPA) of 1982, as amended, disposal of SNF and high-level waste (HLW) is planned for a geological repository. Preparation of SNF, HLW, and other radioactive wastes for disposal may include mechanical, physical, and/or chemical processes. This plan outlines the program strategy of the ICPP Spent Fuel and Waste Management Technology Development Program (SF&WMTDP) to develop and demonstrate the technology required to ensure that SNF and radioactive waste will properly stored and prepared for final disposal. Program elements in support of acceptable interim storage and waste minimization include: developing and implementing improved radioactive waste treatment technologies; identifying and implementing enhanced decontamination and decommissioning techniques; developing radioactive scrap metal (RSM) recycle capabilities; and developing and implementing improved technologies for the interim storage of SNF.

  6. Dry process dependency of dupic fuel cycle

    SciTech Connect

    Park, Kwangheon; Whang, Juho; Kim, Yun-goo; Kim, Heemoon

    1996-12-31

    During the Dry Process, volatile and semi-volatile elements are released from the fuel. The effects of these released radioactive nuclides on DUPIC fuel cycle are analyzed from the view-point of radiation hazard, decay beat, and hazard index. Radiation hazard of fresh and spent DUPIC fuel is sensitive to the method of Dry Process. Decay beat of the fuel is also affected. Hazard index turned out not to be dependent on Dry Process.

  7. Evaluation of the Use of Synroc to Solidify the Cesium and Strontium Separations Product from Advanced Aqueous Reprocessing of Spent Nuclear Fuel

    SciTech Connect

    Julia Tripp; Vince Maio

    2006-03-01

    This report is a literature evaluation on the Synroc process for determining the potential for application to solidification of the Cs/Sr strip product from advanced aqueous fuel separations activities.

  8. Experimental investigation of the distribution of krypton during the removal and fixation of CO/sub 2/ from simulated HTGR fuel reprocessing off-gas by the CO/sub 2/-Ca(OH)/sub 2/ slurry reaction

    SciTech Connect

    Holladay, D.W.

    1982-06-01

    An experimental investigation was conducted to determine the behavior of krypton during the removal and fixation of CO/sub 2/ from simulated HTGR fuel reprocessing off-gas in a mechanically agitated gas-Ca(OH)/sub 2/ slurry contactor. For CO/sub 2/ removal, decontamination factors (DFs) in the range of 10/sup 2/ to 10/sup 3/ were obtained with a single contactor; DFs for CO/sub 2/ of 10/sup 3/ to 10/sup 4/ were obtained during operation of two contactors in series. For the primary CO/sub 2/ removal step in a single contactor, 0.5 to 1% of the krypton in the feed gas was retained in the slurry. Additional treatment resulted in further reduction of the slurry krypton content by a factor of 10/sup 2/. (Overall, evacuation of the product slurry during agitation was the most desirable add-on process.) Thus, the quantity of krypton in the feed that was retained in the product CaCO/sub 3/ slurry could be restricted to 0.01 to 0.001% by using a combination of primary processes and add-on treatments. Models are presented that predict the distributions of both CO/sub 2/ and krypton during gas treatment in Ca(OH)/sub 2/ slurries for both single-contactor and contactors-in-series operation.

  9. NORTH ELEVATION OF IRRADIATED FUEL STORAGE FACILITY LOCATED IN FUEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    NORTH ELEVATION OF IRRADIATED FUEL STORAGE FACILITY LOCATED IN FUEL STORAGE BUILDING (CPP-603). PHOTO TAKEN LOOKING SOUTH. INL PHOTO NUMBER HD-54-16-1. Mike Crane, Photographer, 8/2005 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  10. SOUTH ELEVATION OF IRRADIATED FUEL STORAGE FACILITY LOCATED IN FUEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SOUTH ELEVATION OF IRRADIATED FUEL STORAGE FACILITY LOCATED IN FUEL STORAGE BUILDING (CPP-603). PHOTO TAKEN LOOKING NORTH. INL PHOTO NUMBER HD-54-15-2. Mike Crane, Photographer, 8/2005 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  11. BUILDING PLANS OF FUEL STORAGE BUILDING (CPP603). INL DRAWING NUMBER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    BUILDING PLANS OF FUEL STORAGE BUILDING (CPP-603). INL DRAWING NUMBER 200-0603-61-299-103029. ALTERNATE ID NUMBER 542-31-B-21. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  12. CONSTRUCTION PROGRESS PHOTO SHOWING FUEL STORAGE BUILDING (CPP603) LOOKING NORTHWEST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CONSTRUCTION PROGRESS PHOTO SHOWING FUEL STORAGE BUILDING (CPP-603) LOOKING NORTHWEST. INL PHOTO NUMBER NRTS-50-895. Unknown Photographer, 10/30/1950 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  13. CONSTRUCTION VIEW FUEL STORAGE BUILDING (CPP603) LOOKING EAST SHOWING ASBESTOS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CONSTRUCTION VIEW FUEL STORAGE BUILDING (CPP-603) LOOKING EAST SHOWING ASBESTOS SIDING. INL PHOTO NUMBER NRTS-51-1543. Unknown Photographer, 2/28/1951 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  14. Re-Processing of Mining Waste: An Alternative Way to Secure Metal Supplies of European Union

    NASA Astrophysics Data System (ADS)

    Guézennec, Anne-Gwénaelle; Bodénan, Françoise; Bertrand, Guillaume; Fuentes, Annabelle; Bellenfant, Gael; Lemière, Bruno; d'Hugues, Patrick; Cassard, Daniel; Save, Maurice

    In France, a recently started project handled by the French geological survey (BRGM) is aimed at identifying interesting old mining wastes deposits at the national level and assessing the metal recovery potential of these dumps. By crossing several databases and information from BRGM archives, 95 old mining sites with sizeable tailings dumps were identified. Selection criteria used to draw up this list were chosen mainly on the basis of the "Criticality Report" compiled for the European Commission in 2010, in which 14 mineral raw materials — 12 critical metals- have been explicitly named as highly critical for the industrial development of the European Union. In most of these mines which date back hundreds of years or more, only a single or at best a couple of metals were extracted with processes whose performances were considerably lower than those used today. Knowing the type of ore commodities and the processes characteristics, it has been thus possible to assess the presence of valuable elements for each tailings dump. From this list an Ag-Pb French abandoned mine has then been selected as a case study to evaluate the potential of extraction of metals still remaining in the tailings with special focus on Ag and Sb. A global site characterization methodology is proposed which can be extrapolated to other sites according to key parameters.

  15. Impacts of (14)C discharges from a nuclear fuel reprocessing plant on surrounding vegetation: Comparison between grass field measurements and TOCATTA-χ and SSPAM(14)C model computations.

    PubMed

    Limer, Laura M C; Le Dizès-Maurel, Séverine; Klos, Ryk; Maro, Denis; Nordén, Maria

    2015-09-01

    This article compares and discusses the ability of two different models to reproduce the observed temporal variability in grass (14)C activity in the vicinity of AREVA-NC La Hague nuclear fuel reprocessing plant in France. These two models are the TOCATTA-χ model, which is specifically designed for modelling transfer of (14)C (and tritium) in the terrestrial environment over short to medium timescales (days to years), and SSPAM(14)C, which has been developed to model the transfer of (14)C in the soil-plant-atmosphere with consideration over both short and long timescales (days to thousands of years). The main goal of this article is to discuss the strengths and weaknesses of the models studied, and to investigate if modelling could be improved through consideration of a much higher level of detail of plant physiology and/or higher number of plant compartments. These models have been applied here to the La Hague field data as it represents a medium term data set with both short term variation and a sizeable time series of measurements against which to compare the models. The two models have different objectives in terms of the timescales they are intended to be applied over, and thus incorporate biological processes, such as photosynthesis and plant growth, at different levels of complexity. It was found that the inclusion of seasonal dynamics in the models improved predictions of the specific activity in grass for such a source term of atmospheric (14)C.

  16. Reversible TAD Chemistry as a Convenient Tool for the Design of (Re)processable PCL-Based Shape-Memory Materials.

    PubMed

    Defize, Thomas; Riva, Raphaël; Thomassin, Jean-Michel; Alexandre, Michaël; Herck, Niels Van; Prez, Filip Du; Jérôme, Christine

    2017-01-01

    A chemically cross-linked but remarkably (re)processable shape-memory polymer (SMP) is designed by cross-linking poly(ε-caprolactone) (PCL) stars via the efficient triazolinedione click chemistry, based on the very fast and reversible Alder-ene reaction of 1,2,4-triazoline-3,5-dione (TAD) with indole compounds. Typically, a six-arm star-shaped PCL functionalized by indole moieties at the chain ends is melt-blended with a bisfunctional TAD, directly resulting in a cross-linked PCL-based SMP without the need of post-curing treatment. As demonstrated by the stress relaxation measurement, the labile character of the TAD-indole adducts under stress allows for the solid-state plasticity reprocessing of the permanent shape at will by compression molding of the raw cross-linked material, while keeping excellent shape-memory properties.

  17. Geohydrologic conditions at the nuclear-fuels reprocessing plant and waste-management facilities at the Western New York Nuclear Service Center, Cattaraugus County, New York

    USGS Publications Warehouse

    Bergeron, M.P.; Kappel, W.M.; Yager, R.M.

    1987-01-01

    A nuclear-fuel reprocessing plant, a high-level radioactive liquid-waste tank complex, and related waste facilities occupy 100 hectares (ha) within the Western New York Nuclear Service Center near West Valley, N.Y. The facilities are underlain by glacial and postglacial deposits that fill an ancestrial bedrock valley. The main plant facilities are on an elevated plateau referred to as the north plateau. Groundwater on the north plateau moves laterally within a surficial sand and gravel from the main plant building to areas northeast, east, and southeast of the facilities. The sand and gravel ranges from 1 to 10 m thick and has a hydraulic conductivity ranging from 0.1 to 7.9 m/day. Two separate burial grounds, a 4-ha area for low-level radioactive waste disposal and a 2.9-ha area for disposal of higher-level waste are excavated into a clay-rich till that ranges from 22 to 28 m thick. Migration of an organic solvent from the area of higher level waste at shallow depth in the till suggests that a shallow, fractured, oxidized, and weathered till is a significant pathway for lateral movement of groundwater. Below this zone, groundwater moves vertically downward through the till to recharge a lacustrine silt and fine sand. Within the saturated parts of the lacustrine unit, groundwater moves laterally to the northeast toward Buttermilk Creek. Hydraulic conductivity of the till, based on field and laboratory analyses , ranges from 0.000018 to 0.000086 m/day. (USGS)

  18. The behaviour of (137)Cs in the North Atlantic Ocean assessed from numerical modelling: Releases from nuclear fuel reprocessing factories, redissolution from contaminated sediments and leakage from dumped nuclear wastes.

    PubMed

    Periáñez, R; Suh, Kyung-Suk; Min, Byung-Il

    2016-12-15

    A Lagrangian model which simulates the dispersion of (137)Cs in the North Atlantic has been developed. The model includes water/sediment interactions. It has been tested comparing calculated and measured (137)Cs concentrations in water and sediments of the European Shelf resulting after the releases from the nuclear fuel reprocessing plants of Sellafield and La Hague. Some additional numerical experiments have been carried out. First, the redissolution of (137)Cs from contaminated sediments after the reduction in releases from the reprocessing plants has been studied. This allowed to calculate effective half-lives of (137)Cs in several sub-basins. Later, potential leakage of (137)Cs from dumped nuclear wastes in several locations of the Atlantic has been investigated. Even in worst-case scenarios, these leakages should not lead to any radiological implications.

  19. Data validation and security for reprocessing.

    SciTech Connect

    Tolk, Keith Michael; Merkle, Peter Benedict; DurÔan, Felicia Angelica; Cipiti, Benjamin B.

    2008-10-01

    Next generation nuclear fuel cycle facilities will face strict requirements on security and safeguards of nuclear material. These requirements can result in expensive facilities. The purpose of this project was to investigate how to incorporate safeguards and security into one plant monitoring system early in the design process to take better advantage of all plant process data, to improve confidence in the operation of the plant, and to optimize costs. An existing reprocessing plant materials accountancy model was examined for use in evaluating integration of safeguards (both domestic and international) and security. International safeguards require independent, secure, and authenticated measurements for materials accountability--it may be best to design stand-alone systems in addition to domestic safeguards instrumentation to minimize impact on operations. In some cases, joint-use equipment may be appropriate. Existing domestic materials accountancy instrumentation can be used in conjunction with other monitoring equipment for plant security as well as through the use of material assurance indicators, a new metric for material control that is under development. Future efforts will take the results of this work to demonstrate integration on the reprocessing plant model.

  20. Fuel quality processing study, volume 1

    NASA Technical Reports Server (NTRS)

    Ohara, J. B.; Bela, A.; Jentz, N. E.; Syverson, H. T.; Klumpe, H. W.; Kessler, R. E.; Kotzot, H. T.; Loran, B. L.

    1981-01-01

    A fuel quality processing study to provide a data base for an intelligent tradeoff between advanced turbine technology and liquid fuel quality, and also, to guide the development of specifications of future synthetic fuels anticipated for use in the time period 1985 to 2000 is given. Four technical performance tests are discussed: on-site pretreating, existing refineries to upgrade fuels, new refineries to upgrade fuels, and data evaluation. The base case refinery is a modern Midwest refinery processing 200,000 BPD of a 60/40 domestic/import petroleum crude mix. The synthetic crudes used for upgrading to marketable products and turbine fuel are shale oil and coal liquids. Of these syncrudes, 50,000 BPD are processed in the existing petroleum refinery, requiring additional process units and reducing petroleum feed, and in a new refinery designed for processing each syncrude to produce gasoline, distillate fuels, resid fuels, and turbine fuel, JPGs and coke. An extensive collection of synfuel properties and upgrading data was prepared for the application of a linear program model to investigate the most economical production slate meeting petroleum product specifications and turbine fuels of various quality grades. Technical and economic projections were developed for 36 scenarios, based on 4 different crude feeds to either modified existing or new refineries operated in 2 different modes to produce 7 differing grades of turbine fuels. A required product selling price of turbine fuel for each processing route was calculated. Procedures and projected economics were developed for on-site treatment of turbine fuel to meet limitations of impurities and emission of pollutants.

  1. Fuel quality processing study, volume 1

    NASA Astrophysics Data System (ADS)

    Ohara, J. B.; Bela, A.; Jentz, N. E.; Syverson, H. T.; Klumpe, H. W.; Kessler, R. E.; Kotzot, H. T.; Loran, B. L.

    1981-04-01

    A fuel quality processing study to provide a data base for an intelligent tradeoff between advanced turbine technology and liquid fuel quality, and also, to guide the development of specifications of future synthetic fuels anticipated for use in the time period 1985 to 2000 is given. Four technical performance tests are discussed: on-site pretreating, existing refineries to upgrade fuels, new refineries to upgrade fuels, and data evaluation. The base case refinery is a modern Midwest refinery processing 200,000 BPD of a 60/40 domestic/import petroleum crude mix. The synthetic crudes used for upgrading to marketable products and turbine fuel are shale oil and coal liquids. Of these syncrudes, 50,000 BPD are processed in the existing petroleum refinery, requiring additional process units and reducing petroleum feed, and in a new refinery designed for processing each syncrude to produce gasoline, distillate fuels, resid fuels, and turbine fuel, JPGs and coke. An extensive collection of synfuel properties and upgrading data was prepared for the application of a linear program model to investigate the most economical production slate meeting petroleum product specifications and turbine fuels of various quality grades. Technical and economic projections were developed for 36 scenarios, based on 4 different crude feeds to either modified existing or new refineries operated in 2 different modes to produce 7 differing grades of turbine fuels. A required product selling price of turbine fuel for each processing route was calculated. Procedures and projected economics were developed for on-site treatment of turbine fuel to meet limitations of impurities and emission of pollutants.

  2. Corrosion-Resistant Ti- xNb- xZr Alloys for Nitric Acid Applications in Spent Nuclear Fuel Reprocessing Plants

    NASA Astrophysics Data System (ADS)

    Manivasagam, Geetha; Anbarasan, V.; Kamachi Mudali, U.; Raj, Baldev

    2011-09-01

    This article reports the development, microstructure, and corrosion behavior of two new alloys such as Ti-4Nb-4Zr and Ti-2Nb-2Zr in boiling nitric acid environment. The corrosion test was carried out in the liquid, vapor, and condensate phases of 11.5 M nitric acid, and the potentiodynamic anodic polarization studies were performed at room temperature for both alloys. The samples subjected to three-phase corrosion testing were characterized using scanning electron microscopy (SEM) and energy-dispersive X-ray microanalysis (EDAX). As Ti-2Nb-2Zr alloy exhibited inferior corrosion behavior in comparison to Ti-4Nb-4Zr in all three phases, weldability and heat treatment studies were carried out only on Ti-4Nb-4Zr alloy. The weldability of the new alloy was evaluated using tungsten inert gas (TIG) welding processes, and the welded specimen was thereafter tested for its corrosion behavior in all three phases. The results of the present investigation revealed that the newly developed near alpha Ti-4Nb-4Zr alloy possessed superior corrosion resistance in all three phases and excellent weldability compared to conventional alloys used for nitric acid application in spent nuclear reprocessing plants. Further, the corrosion resistance of the beta heat-treated Ti-4Nb-4Zr alloy was superior when compared to the sample heat treated in the alpha + beta phase.

  3. Dry Processing of Used Nuclear Fuel

    SciTech Connect

    K. M. Goff; M. F. Simpson

    2009-09-01

    Dry (non-aqueous) separations technologies have been used for treatment of used nuclear fuel since the 1960s, and they are still being developed and demonstrated in many countries. Dry technologies offer potential advantages compared to traditional aqueous separations including: compactness, resistance to radiation effects, criticality control benefits, compatibility with advanced fuel types, and ability to produce low purity products. Within the Department of Energy’s Advanced Fuel Cycle Initiative, an electrochemical process employing molten salts is being developed for recycle of fast reactor fuel and treatment of light water reactor oxide fuel to produce a feed for fast reactors. Much of the development of this technology is based on treatment of used Experimental Breeder Reactor II (EBR-II) fuel, which is metallic. Electrochemical treatment of the EBR-II fuel has been ongoing in the Fuel Conditioning Facility, located at the Materials and Fuel Complex of Idaho National Laboratory since 1996. More than 3.8 metric tons of heavy metal of metallic fast reactor fuel have been treated using this technology. This paper will summarize the status of electrochemical development and demonstration activities with used nuclear fuel, including high-level waste work. A historic perspective on the background of dry processing will also be provided.

  4. Fuel processing requirements and techniques for fuel cell propulsion power

    SciTech Connect

    Kumar, R.; Ahmed, S.; Yu, M.

    1993-08-01

    Fuels for fuel cells in transportation systems are likely to be methanol, natural gas, hydrogen, propane, or ethanol. Fuels other than hydrogen wig need to be reformed to hydrogen on-board the vehicle. The fuel reformer must meet stringent requirements for weight and volume, product quality, and transient operation. It must be compact and lightweight, must produce low levels of CO and other byproducts, and must have rapid start-up and good dynamic response. Catalytic steam reforming, catalytic or noncatalytic partial oxidation reforming, or some combination of these processes may be used. This paper discusses salient features of the different kinds of reformers and describes the catalysts and processes being examined for the oxidation reforming of methanol and the steam reforming of ethanol. Effective catalysts and reaction conditions for the former have been identified; promising catalysts and reaction conditions for the latter are being investigated.

  5. Fuel quality/processing study. Volume 3: Fuel upgrading studies

    NASA Technical Reports Server (NTRS)

    Jones, G. E., Jr.; Bruggink, P.; Sinnett, C.

    1981-01-01

    The methods used to calculate the refinery selling prices for the turbine fuels of low quality are described. Detailed descriptions and economics of the upgrading schemes are included. These descriptions include flow diagrams showing the interconnection between processes and the stream flows involved. Each scheme is in a complete, integrated, stand alone facility. Except for the purchase of electricity and water, each scheme provides its own fuel and manufactures, when appropriate, its own hydrogen.

  6. Fluidized-Solid-Fuel Injection Process

    NASA Technical Reports Server (NTRS)

    Taylor, William

    1992-01-01

    Report proposes development of rocket engines burning small grains of solid fuel entrained in gas streams. Main technical discussion in report divided into three parts: established fluidization technology; variety of rockets and rocket engines used by nations around the world; and rocket-engine equation. Discusses significance of specific impulse and ratio between initial and final masses of rocket. Concludes by stating three important reasons to proceed with new development: proposed engines safer; fluidized-solid-fuel injection process increases variety of solid-fuel formulations used; and development of fluidized-solid-fuel injection process provides base of engineering knowledge.

  7. R and D of On-line Reprocessing Technology for Molten-Salt Reactor Systems

    SciTech Connect

    Uhlir, Jan; Tulackova, Radka; Chuchvalcova Bimova, Karolina

    2006-07-01

    The Molten Salt Reactor (MSR) represents one of promising future nuclear reactor concept included in the Generation IV reactors family. The reactor can be operated as the thorium breeder or as the actinide transmuter. However, the future deployment of Molten-Salt Reactors will be significantly dependent on the successful mastering of advanced reprocessing technologies dedicated to their fuel cycle. Here the on-line reprocessing technology connected with the fuel circuit of MSR is of special importance because the reactor cannot be operated for a long run without the fuel salt clean-up. Generally, main MSR reprocessing technologies are pyrochemical, majority of them are fluoride technologies. The proposed flow-sheets of MSR on-line reprocessing are based on a combination of molten-salt / liquid metal extraction and electro-separation processes, which can be added to the gas extraction process already verified during the MSRE project in ORNL. The crucial separation method proposed for partitioning of actinides from fission products is based on successive Anodic dissolution and Cathodic deposition processes in molten fluoride media. (authors)

  8. An updated interpretation of the Hanö Bay Basin, Baltic Sea, based on recently re-processed vintage 2D seismic data

    NASA Astrophysics Data System (ADS)

    Bell, Nicholas; Sopher, Daniel; Juhlin, Christopher

    2014-05-01

    The Hanö Bay Basin is a relatively small, tectonically controlled, Mesozoic basin in the SW Baltic Sea, Northern Europe. In this study a new seismic interpretation has been made of the basin based on re-processed vintage 2D marine seismic data. A large dataset acquired between 1970 and 1984 by Oljeprospektering AB (OPAB) containing seismic lines across the Hanö Bay Basin has recently been made available by the Swedish Geological Survey (SGU). Seismic interpretation studies within the Hanö Bay Basin were last conducted in the mid-1990's. Since this time, computer power and seismic processing methods have advanced. Re-processing of a grid of lines across the Hanö Bay Basin has allowed updated interpretations to be made which more accurately reflect the geological history of the area. Multi channel seismic data from four surveys within the OPAB dataset: NA79, D72, W70 and EA73, along with two wells H1 and H4, were used in this study. An updated interpretation of the pre-Cambrian basement, which exhibits a distinctive, sharply undulating morphology, was undertaken. The basement horizon across parts of the Hanö Bay appears to be very rugose, containing a number of distinctive troughs and peaks that are over 50m in amplitude. Within these basement troughs a set of distinct packages of sediment is observed. These packages are discontinuous and are most prevalent in a small circular area in the central section of the study area. The age of these sediment packages is uncertain, being either early Mesozoic or the erosional remnants of older Paleozoic sediments. Interpretations of the re-processed seismic data indicate, in some areas, that basin fill has occurred in a significantly different way to previous interpretations during the Mesozoic. The model proposed in this study takes into account normal movement on the Christiansø Fault prior to Cretaceous inversion.

  9. Fuel Conditioning Facility Electrorefiner Process Model

    SciTech Connect

    DeeEarl Vaden

    2005-10-01

    The Fuel Conditioning Facility at the Idaho National Laboratory processes spent nuclear fuel from the Experimental Breeder Reactor II using electro-metallurgical treatment. To process fuel without waiting for periodic sample analyses to assess process conditions, an electrorefiner process model predicts the composition of the electrorefiner inventory and effluent streams. For the chemical equilibrium portion of the model, the two common methods for solving chemical equilibrium problems, stoichiometric and non stoichiometric, were investigated. In conclusion, the stoichiometric method produced equilibrium compositions close to the measured results whereas the non stoichiometric method did not.

  10. Mathematical modeling of biomass fuels formation process.

    PubMed

    Gaska, Krzysztof; Wandrasz, Andrzej J

    2008-01-01

    The increasing demand for thermal and electric energy in many branches of industry and municipal management accounts for a drastic diminishing of natural resources (fossil fuels). Meanwhile, in numerous technical processes, a huge mass of wastes is produced. A segregated and converted combustible fraction of the wastes, with relatively high calorific value, may be used as a component of formed fuels. The utilization of the formed fuel components from segregated groups of waste in associated processes of co-combustion with conventional fuels causes significant savings resulting from partial replacement of fossil fuels, and reduction of environmental pollution resulting directly from the limitation of waste migration to the environment (soil, atmospheric air, surface and underground water). The realization of technological processes with the utilization of formed fuel in associated thermal systems should be qualified by technical criteria, which means that elementary processes as well as factors of sustainable development, from a global viewpoint, must not be disturbed. The utilization of post-process waste should be preceded by detailed technical, ecological and economic analyses. In order to optimize the mixing process of fuel components, a mathematical model of the forming process was created. The model is defined as a group of data structures which uniquely identify a real process and conversion of this data in algorithms based on a problem of linear programming. The paper also presents the optimization of parameters in the process of forming fuels using a modified simplex algorithm with a polynomial worktime. This model is a datum-point in the numerical modeling of real processes, allowing a precise determination of the optimal elementary composition of formed fuels components, with assumed constraints and decision variables of the task.

  11. Combustion processes in wildland fuels

    Treesearch

    Charles K. McMahon

    1985-01-01

    Abstract. A 5-year summary of accomplishments, current activities, and planned actions for fire research project SE-2110 are presented. Areas of discussion center on: (1) characterization of wildland smoke, and (2) fuel, fire, and emission relationships. Characterization summaries include physical and chemical properties of smoke, smoke from...

  12. Gloves Reprocessing: Does It Really Save Money?

    PubMed

    Arora, Pankaj; Kumari, Santosh; Sodhi, Jitender; Talati, Shweta; Gupta, Anil Kumar

    2015-12-01

    Gloves are reprocessed and reused in health-care facilities in resource-limited settings to reduce the cost of availability of gloves. The study was done with the aim to compute the cost of reprocessing of gloves so that an economically rationale decision can be taken. A retrospective record-based cross-sectional study was undertaken in a central sterile supply department where different steps during reprocessing of gloves were identified and the cost involved in reprocessing per pair of gloves was calculated. The cost of material and manpower was calculated to arrive at the cost of reprocessing per pair of gloves. The cost of a reprocessed pair of surgical gloves was calculated to be Indian Rupee (INR) 14.33 which was greater than the cost of a new pair of disposable surgical gloves (INR 9.90) as the cost of sterilization of one pair of gloves itself came out to  be INR 10.97. The current study showed that the purchase of sterile disposable single-use gloves is cheaper than the process of recycling. Reprocessing of gloves is not economical on tangible terms even in resource-limited settings, and from the perspective of better infection control as well as health-care worker safety, it further justifies the use of disposable gloves.

  13. Method for photochemical reduction of uranyl nitrate by tri-N-butyl phosphate and application of this method to nuclear fuel reprocessing

    DOEpatents

    De Poorter, Gerald L.; Rofer-De Poorter, Cheryl K.

    1978-01-01

    Uranyl ion in solution in tri-n-butyl phosphate is readily photochemically reduced to U(IV). The product U(IV) may effectively be used in the Purex process for treating spent nuclear fuels to reduce Pu(IV) to Pu(III). The Pu(III) is readily separated from uranium in solution in the tri-n-butyl phosphate by an aqueous strip.

  14. Carbon oxides free fuel processing for fuel cell applications

    NASA Astrophysics Data System (ADS)

    Choudhary, Tushar V.

    Fuel processing represents a very important aspect of fuel cell technology. The widespread utilization of fuel cells will only be possible if CO x-free hydrogen producing technologies are developed. Towards this objective, step-wise reforming of hydrocarbons and catalytic decomposition of ammonia were investigated for hydrogen production. Also, novel Au-based catalysts were synthesized for preferentially eliminating CO in the presence of excess hydrogen. The step-wise reforming of hydrocarbons was investigated for production of CO-free hydrogen for proton exchange membrane fuel cells. Proof of concept pulse reactor experiments employing Ni-based catalysts clearly showed the feasibility of the cyclic step-wise reforming process for clean hydrogen production. Under optimum conditions the CO content in the hydrogen was found to be less than 20 ppm by this process (a large amount of CO is obtained as a by-product from conventional methods of hydrogen production). The step-wise reforming process thus greatly simplifies fuel reforming, as expensive and circuitous post-reforming hydrogen purification processes are eliminated. The process was profoundly influenced by the operating temperature, space velocity and nature of the catalyst support. Catalytic ammonia decomposition was investigated for COx-free hydrogen production for alkaline fuel cells. These studies revealed that Ru, Ir and Ni-based catalysts were active for the process with Ru being the most active and Ni the least. The catalyst supports played a decisive role in determining the ammonia decomposition activity. Partial pressure dependence studies of the reaction rate on model Ir (100) catalysts yielded a positive order (0.9 +/- 0.l) with respect to ammonia and negative order (-0.7 +/- 0.l) with respect to hydrogen. The negative order with respect to hydrogen was attributed to the enhancement in the reverse of the ammonia decomposition reaction in the presence of surface hydrogen atoms. Novel nano-Au catalysts

  15. Process for vaporizing a liquid hydrocarbon fuel

    DOEpatents

    Szydlowski, Donald F.; Kuzminskas, Vaidotas; Bittner, Joseph E.

    1981-01-01

    The object of the invention is to provide a process for vaporizing liquid hydrocarbon fuels efficiently and without the formation of carbon residue on the apparatus used. The process includes simultaneously passing the liquid fuel and an inert hot gas downwardly through a plurality of vertically spaed apart regions of high surface area packing material. The liquid thinly coats the packing surface, and the sensible heat of the hot gas vaporizes this coating of liquid. Unvaporized liquid passing through one region of packing is uniformly redistributed over the top surface of the next region until all fuel has been vaporized using only the sensible heat of the hot gas stream.

  16. Characterization of Used Nuclear Fuel with Multivariate Analysis for Process Monitoring

    SciTech Connect

    Dayman, Kenneth J.; Coble, Jamie B.; Orton, Christopher R.; Schwantes, Jon M.

    2014-01-01

    The Multi-Isotope Process (MIP) Monitor combines gamma spectroscopy and multivariate analysis to detect anomalies in various process streams in a nuclear fuel reprocessing system. Measured spectra are compared to models of nominal behavior at each measurement location to detect unexpected changes in system behavior. In order to improve the accuracy and specificity of process monitoring, fuel characterization may be used to more accurately train subsequent models in a full analysis scheme. This paper presents initial development of a reactor-type classifier that is used to select a reactor-specific partial least squares model to predict fuel burnup. Nuclide activities for prototypic used fuel samples were generated in ORIGEN-ARP and used to investigate techniques to characterize used nuclear fuel in terms of reactor type (pressurized or boiling water reactor) and burnup. A variety of reactor type classification algorithms, including k-nearest neighbors, linear and quadratic discriminant analyses, and support vector machines, were evaluated to differentiate used fuel from pressurized and boiling water reactors. Then, reactor type-specific partial least squares models were developed to predict the burnup of the fuel. Using these reactor type-specific models instead of a model trained for all light water reactors improved the accuracy of burnup predictions. The developed classification and prediction models were combined and applied to a large dataset that included eight fuel assembly designs, two of which were not used in training the models, and spanned the range of the initial 235U enrichment, cooling time, and burnup values expected of future commercial used fuel for reprocessing. Error rates were consistent across the range of considered enrichment, cooling time, and burnup values. Average absolute relative errors in burnup predictions for validation data both within and outside the training space were 0.0574% and 0.0597%, respectively. The errors seen in this

  17. Decommissioning the Fuel Process Building, a Shift in Paradigm for Terminating Safeguards on Process Holdup

    SciTech Connect

    Ivan R. Thomas

    2010-07-01

    INMM Abstract 51st Annual Meeting Decommissioning the Fuel Process Building, a Shift in Paradigm for Terminating Safeguards on Process Holdup The Fuel Process Building at the Idaho Nuclear Technology and Engineering Center (INTEC) is being decommissioned after nearly four decades of recovering high enriched uranium from various government owned spent nuclear fuels. The separations process began with fuel dissolution in one of multiple head-ends, followed by three cycles of uranium solvent extraction, and ending with denitration of uranyl nitrate product. The entire process was very complex, and the associated equipment formed an extensive maze of vessels, pumps, piping, and instrumentation within several layers of operating corridors and process cells. Despite formal flushing and cleanout procedures, an accurate accounting for the residual uranium held up in process equipment over extended years of operation, presented a daunting safeguards challenge. Upon cessation of domestic reprocessing, the holdup remained inaccessible and was exempt from measurement during ensuing physical inventories. In decommissioning the Fuel Process Building, the Idaho Cleanup Project, which operates the INTEC, deviated from the established requirements that all nuclear material holdup be measured and credited to the accountability books and that all nuclear materials, except attractiveness level E residual holdup, be transferred to another facility. Instead, the decommissioning involved grouting the process equipment in place, rather than measuring and removing the contained holdup for subsequent transfer. The grouting made the potentially attractiveness level C and D holdup even more inaccessible, thereby effectually converting the holdup to attractiveness level E and allowing for termination of safeguards controls. Prior to grouting the facility, the residual holdup was estimated by limited sampling and destructive analysis of solutions in process lines and by acceptable knowledge

  18. Study of safeguards system on dry reprocessing for fast breeder reactor

    SciTech Connect

    Li, T. K.; Burr, Tom; Menlove, Howard O.; Thomas, K. E.; Fukushima, M.; Hori, M.

    2002-01-01

    A 'Feasibility Study on the Commercialized Fast Breeder Reactor (FBR) Cycle System' is underway at Japan Nuclear Cycle Development Institute (JNC). Concepts to commercialize the FBR fuel cycle are being created together with their necessary research and development (R&D) tasks. 'Dry,' non-aqueous, processes are candidates for FBR fuel reprocessing. Dry reprocessing technology takes advantage of proliferation barriers, due to the lower decontamination factors achievable by the simple pyrochemical processes proposed. The concentration o f highly radioactive impurities and non-fissile materials in products from a dry reprocess is generally significantly larger than the normal aqueous (Purex) process. However, the safeguards of dry reprocesses have not been widely analyzed. In 2000, JNC and Los Alamos National Laboratoiy (LANL) initiated a joint research program to study the safeguards aspects of dry reprocessing. In this study, the safeguardability of the three options: metal electrorefining, oxide electrowinning, and fluoride volatility processes, are assessed. FBR spent fuels are decladded and powdered into mixed oxides (MOX) at the Head-End process either by oxidation-reduction reactions (metal electrorefining and fluoride volatility) or mechanically (oxide electrowinning). At the oxide electrowinning process, the spent MOX he1 powder is transferred to chloride in molten salt and nuclear materials are extracted onto cathode as oxides. For metal electrorefining process, on the other hand, the MOX fuel is converted to chloride in molten salt, and nuclear materials are extracted onto cathode as a metal fomi. At lhe fluoride volatility process, the MOX fuel powder is converted to U&/PuF6 (gaseous form) in a fluidized bed; plutonium and uranium fluorides are separated by volatilization properties and then are converted to oxides. Since the conceptual design of a dry reprocessing plant is incomplete, the operational mode, vessel capacities, residence times, and campaigns

  19. Plasma method for processing spent nuclear fuel

    SciTech Connect

    Timofeev, A. V.

    2007-11-15

    Plasma methods for processing spent nuclear fuel are analyzed. It is shown that, by ICR heating in a nonuniform magnetic field, the energy of the heated ash ions can be increased substantially, while nuclear fuel ions can be kept cold. Two methods for extracting heated ash ions from a cold plasma flow are considered, specifically, that by increasing the ion gyroradius and that due to ion drift in a curved magnetic field. It is found that the required degree of separation of ash and fuel ions can be achieved in systems with quite moderate parameters.

  20. Fuel processing and thermochemical/photochemical cycles

    NASA Astrophysics Data System (ADS)

    Hunt, Arlon J.

    A long sought goal of energy research has been to find a method to produce hydrogen fuel economically by splitting water using sunlight as the source of energy. Implementing method of producing useful fuels from raw materials using sunlight on a large scale generally involves significant capital and energy costs. Sunlight is an attractive means of providing a renewable source of energy to drive the process after providing the initial capital outlay. However, the combination of capital costs to provide concentrated solar energy and the elaborate and expensive plants required to carry out the chemical processes puts a heavy financial burden on this approach to a clean and renewable energy economy. Solar driven fuel processing methods include thermal decomposition, thermochemical, photochemical, electrochemical, biochemical, and hybrid reactions. The range of approaches to carry out these processes runs the gamut from well established chemical engineering practices with near term predictable costs, to long term basic photochemical processes, the details of which are still speculative.

  1. Systems Analysis of an Advanced Nuclear Fuel Cycle Based on a Modified UREX+3c Process

    SciTech Connect

    E. R. Johnson; R. E. Best

    2009-12-28

    The research described in this report was performed under a grant from the U.S. Department of Energy (DOE) to describe and compare the merits of two advanced alternative nuclear fuel cycles -- named by this study as the “UREX+3c fuel cycle” and the “Alternative Fuel Cycle” (AFC). Both fuel cycles were assumed to support 100 1,000 MWe light water reactor (LWR) nuclear power plants operating over the period 2020 through 2100, and the fast reactors (FRs) necessary to burn the plutonium and minor actinides generated by the LWRs. Reprocessing in both fuel cycles is assumed to be based on the UREX+3c process reported in earlier work by the DOE. Conceptually, the UREX+3c process provides nearly complete separation of the various components of spent nuclear fuel in order to enable recycle of reusable nuclear materials, and the storage, conversion, transmutation and/or disposal of other recovered components. Output of the process contains substantially all of the plutonium, which is recovered as a 5:1 uranium/plutonium mixture, in order to discourage plutonium diversion. Mixed oxide (MOX) fuel for recycle in LWRs is made using this 5:1 U/Pu mixture plus appropriate makeup uranium. A second process output contains all of the recovered uranium except the uranium in the 5:1 U/Pu mixture. The several other process outputs are various waste streams, including a stream of minor actinides that are stored until they are consumed in future FRs. For this study, the UREX+3c fuel cycle is assumed to recycle only the 5:1 U/Pu mixture to be used in LWR MOX fuel and to use depleted uranium (tails) for the makeup uranium. This fuel cycle is assumed not to use the recovered uranium output stream but to discard it instead. On the other hand, the AFC is assumed to recycle both the 5:1 U/Pu mixture and all of the recovered uranium. In this case, the recovered uranium is reenriched with the level of enrichment being determined by the amount of recovered plutonium and the combined amount

  2. SOFC system with integrated catalytic fuel processing

    NASA Astrophysics Data System (ADS)

    Finnerty, Caine; Tompsett, Geoff. A.; Kendall, Kevin; Ormerod, R. Mark

    In recent years, there has been much interest in the development of solid oxide fuel cell technology operating directly on hydrocarbon fuels. The development of a catalytic fuel processing system, which is integrated with the solid oxide fuel cell (SOFC) power source is outlined here. The catalytic device utilises a novel three-way catalytic system consisting of an in situ pre-reformer catalyst, the fuel cell anode catalyst and a platinum-based combustion catalyst. The three individual catalytic stages have been tested in a model catalytic microreactor. Both temperature-programmed and isothermal reaction techniques have been applied. Results from these experiments were used to design the demonstration SOFC unit. The apparatus used for catalytic characterisation can also perform in situ electrochemical measurements as described in previous papers [C.M. Finnerty, R.H. Cunningham, K. Kendall, R.M. Ormerod, Chem. Commun. (1998) 915-916; C.M. Finnerty, N.J. Coe, R.H. Cunningham, R.M. Ormerod, Catal. Today 46 (1998) 137-145]. This enabled the performance of the SOFC to be determined at a range of temperatures and reaction conditions, with current output of 290 mA cm -2 at 0.5 V, being recorded. Methane and butane have been evaluated as fuels. Thus, optimisation of the in situ partial oxidation pre-reforming catalyst was essential, with catalysts producing high H 2/CO ratios at reaction temperatures between 873 K and 1173 K being chosen. These included Ru and Ni/Mo-based catalysts. Hydrocarbon fuels were directly injected into the catalytic SOFC system. Microreactor measurements revealed the reaction mechanisms as the fuel was transported through the three-catalyst device. The demonstration system showed that the fuel processing could be successfully integrated with the SOFC stack.

  3. Pyrochemical processing of DOE spent nuclear fuel

    SciTech Connect

    Laidler, J.J.

    1995-02-01

    A compact, efficient method for conditioning spent nuclear fuel is under development. This method, known as pyrochemical processing, or {open_quotes}pyroprocessing,{close_quotes} provides a separation of fission products from the actinide elements present in spent fuel and further separates pure uranium from the transuranic elements. The process can facilitate the timely and environmentally-sound treatment of the highly diverse collection of spent fuel currently in the inventory of the United States Department of Energy (DOE). The pyroprocess utilizes elevated-temperature processes to prepare spent fuel for fission product separation; that separation is accomplished by a molten salt electrorefining step that provides efficient (>99.9%) separation of transuranics. The resultant waste forms from the pyroprocess, are stable under envisioned repository environment conditions and highly leach-resistant. Treatment of any spent fuel type produces a set of common high-level waste forms, one a mineral and the other a metal alloy, that can be readily qualified for repository disposal and avoid the substantial costs that would be associated with the qualification of the numerous spent fuel types included in the DOE inventory.

  4. Biomass conversion processes for energy and fuels

    NASA Astrophysics Data System (ADS)

    Sofer, S. S.; Zaborsky, O. R.

    The book treats biomass sources, promising processes for the conversion of biomass into energy and fuels, and the technical and economic considerations in biomass conversion. Sources of biomass examined include crop residues and municipal, animal and industrial wastes, agricultural and forestry residues, aquatic biomass, marine biomass and silvicultural energy farms. Processes for biomass energy and fuel conversion by direct combustion (the Andco-Torrax system), thermochemical conversion (flash pyrolysis, carboxylolysis, pyrolysis, Purox process, gasification and syngas recycling) and biochemical conversion (anaerobic digestion, methanogenesis and ethanol fermentation) are discussed, and mass and energy balances are presented for each system.

  5. Radiolytic and Thermal Processes Relevant to Dry Storage of Spent Nuclear Fuels

    SciTech Connect

    Marschman, Steven C.; Madey, Theodore E.; Orlando, Thomas M.; Cowin, James P.; Petrik, Nikolay G.

    2000-09-08

    The scientific and engineering demands of the Department of Energy (DOE) Environmental Restoration and Waste Management tasks are enormous. For example, several thousand metric tons of metallic uranium spent nuclear fuel (SNF) remain in water storage awaiting disposition. Of this inventory, 2300 metric tons are N-Reactor fuel that have been stored for up to 24 years in the Hanford, Washington KBasins. No significant precautions were taken to prevent the fuel from corroding since the fuel rods were intended to be reprocessed. Termination of reprocessing has left these fuels stranded in prolonged water storage and an appreciable quantity of the fuel has corroded. In addition, other defense fuels including the aluminum-clad fuels at the Savannah River Site and Idaho National Engineering Laboratory have corroded during interim storage in water. In 1994, the DOE began to implement a strategy for moving water-stored Hanford fuels into dry interim storage and a Record of Decision 1 ( ROD) documenting this action was put forth by the Department of Energy on March 4, 1996. Several documents 1-4 including this ROD and the final environmental impact statement (FEIS)1, evaluated and documented concerns regarding the potential for releases of radionuclides to the environment. The DOE plans to remove metallic uranium SNF from water storage and seal it in overpack canisters for ''dry'' interim storage, for up to 75 years. Much of the SNF that will be stored will have been severely corroded during water storage. Chemically bound water not removed during proposed drying operations may lead to long-term corrosion and generation of combustible H2 and O2 gas-mixture via radiolysis. No thoroughly tested model is currently available to predict fuel behavior during ''dry'' storage. The PNNL collaborating with the Rutgers University studied the thermo-chemical and radiolytic reactions of actual and prototype SNF materials. The purpose of this project is to deliver pertinent information

  6. Reprocessing Microflare Data

    NASA Technical Reports Server (NTRS)

    Ryan, James M.

    1999-01-01

    The report concerns work on detecting and cataloging solar microflares using an automated. An accompanying figure represents the solar microflare distribution during the period of April 1991 to November 1992, the height of solar activity after the launch of CGRO. It also shows the distribution extending below the distribution obtained at GSFC by manual means. We have implemented significant refinements in the search algorithm. The algorithm in its simplest form searches for transient events and based upon the distribution of the signal among the different BATSE detectors, we can assign it to be of solar origin if the signal distribution conforms to what one expects from a burst or transient from that direction. One of the major problems in an earlier effort was to search for microflares and large flares simultaneously. The requirement for a dynamic range of almost 10(exp 4) resulted in ambiguous identifications at the low side of the distribution. We have since restricted the search to events with peak count rates under 2000/s. Larger events are easily identified in the manual search, so we have chosen not to duplicate that work. The second problem was that missing counts existed below channel 0 in the BATSE Large Area Detector (LAD) data. These have been recovered and are now included in the search process. This provides data below 20 keV, and as we get closer to the thermal part of the spectrum, it provides greater sensitivity. The third problem was that too many BATSE detectors were used in the search. Detectors with pointing directions far from the Sun, although detecting the event, had poorly known responses. Detectors greater than approximately 60 degrees off the Sun are no longer included in the search process. By reducing the systematic errors with the large off-axis detectors we can conduct more rigorous statistical tests of a candidate event to ascertain whether it originated from the solar direction. We have reprocessed the period in the early mission

  7. Alternative Fuel for Portland Cement Processing

    SciTech Connect

    Schindler, Anton K; Duke, Steve R; Burch, Thomas E; Davis, Edward W; Zee, Ralph H; Bransby, David I; Hopkins, Carla; Thompson, Rutherford L; Duan, Jingran; Venkatasubramanian, Vignesh; Stephen, Giles

    2012-06-30

    The production of cement involves a combination of numerous raw materials, strictly monitored system processes, and temperatures on the order of 1500 °C. Immense quantities of fuel are required for the production of cement. Traditionally, energy from fossil fuels was solely relied upon for the production of cement. The overarching project objective is to evaluate the use of alternative fuels to lessen the dependence on non-renewable resources to produce portland cement. The key objective of using alternative fuels is to continue to produce high-quality cement while decreasing the use of non-renewable fuels and minimizing the impact on the environment. Burn characteristics and thermodynamic parameters were evaluated with a laboratory burn simulator under conditions that mimic those in the preheater where the fuels are brought into a cement plant. A drop-tube furnace and visualization method were developed that show potential for evaluating time- and space-resolved temperature distributions for fuel solid particles and liquid droplets undergoing combustion in various combustion atmospheres. Downdraft gasification has been explored as a means to extract chemical energy from poultry litter while limiting the throughput of potentially deleterious components with regards to use in firing a cement kiln. Results have shown that the clinkering is temperature independent, at least within the controllable temperature range. Limestone also had only a slight effect on the fusion when used to coat the pellets. However, limestone addition did display some promise in regards to chlorine capture, as ash analyses showed chlorine concentrations of more than four times greater in the limestone infused ash as compared to raw poultry litter. A reliable and convenient sampling procedure was developed to estimate the combustion quality of broiler litter that is the best compromise between convenience and reliability by means of statistical analysis. Multi-day trial burns were conducted

  8. Processing of driver fuel assemblies at FFTF

    SciTech Connect

    Danko, A.D.; Hicks, D.F.; Arneson, S.O.

    1982-07-01

    The ability to disassemble an irradiated Fast Flux Test Facility (FFTF) Driver Fuel Assembly (DFA) is important both to the continued operation of the FFTF and the future of the Breeder Reactor Program. At the FFTF, DFA's with up to three (3)* kilowatts of decay heat will be placed in the Interim Examination and Maintenance (IEM) Cell for disassembly and nondestructive examination. This process includes sodium removal, duct measurement, duct cutting and pulling, fuel pin removal, and component disposition to other laboratories for destructive examination.

  9. FUEL PROCESSING FOR FUEL CELLS: EFFECTS ON CATALYST DURABILITY AND CARBON FORMATION

    SciTech Connect

    R. BORUP; M. INBODY; B. MORTON; L. BROWN

    2001-05-01

    On-board production of hydrogen for fuel cells for automotive applications is a challenging developmental task. The fuel processor must show long term durability and under challenging conditions. Fuel processor catalysts in automotive fuel processors will be exposed to large thermal variations, vibrations, exposure to uncontrolled ambient conditions, and various impurities from ambient air and from fuel. For the commercialization of fuel processors, the delineation of effects on catalyst activity and durability are required. We are studying fuels and fuel constituent effects on the fuel processor system as part of the DOE Fuel Cells for Transportation program. Pure fuel components are tested to delineate the fuel component effect on the fuel processor and fuel processor catalysts. Component blends are used to simulate ''real fuels'', with various fuel mixtures being examined such as reformulated gasoline and naptha. The aliphatic, napthenic, olefin and aromatic content are simulated to represent the chemical kinetics of possible detrimental reactions, such as carbon formation, during fuel testing. Testing has examined the fuel processing performance of different fuel components to help elucidate the fuel constituent effects on fuel processing performance and upon catalyst durability. Testing has been conducted with vapor fuels, including natural gas and pure methane. The testing of pure methane and comparable testing with natural gas (97% methane) have shown some measurable differences in performance in the fuel processor. Major gasoline fuel constituents, such as aliphatic compounds, napthanes, and aromatics have been compared for their effect on the fuel processing performance. Experiments have been conducted using high-purity compounds to observe the fuel processing properties of the individual components and to document individual fuel component performance. The relative carbon formation of different fuel constituents have been measured by monitoring carbon via

  10. Spectroscopic methods of process monitoring for safeguards of used nuclear fuel separations

    NASA Astrophysics Data System (ADS)

    Warburton, Jamie Lee

    To support the demonstration of a more proliferation-resistant nuclear fuel processing plant, techniques and instrumentation to allow the real-time, online determination of special nuclear material concentrations in-process must be developed. An ideal materials accountability technique for proliferation resistance should provide nondestructive, realtime, on-line information of metal and ligand concentrations in separations streams without perturbing the process. UV-Visible spectroscopy can be adapted for this precise purpose in solvent extraction-based separations. The primary goal of this project is to understand fundamental URanium EXtraction (UREX) and Plutonium-URanium EXtraction (PUREX) reprocessing chemistry and corresponding UV-Visible spectroscopy for application in process monitoring for safeguards. By evaluating the impact of process conditions, such as acid concentration, metal concentration and flow rate, on the sensitivity of the UV-Visible detection system, the process-monitoring concept is developed from an advanced application of fundamental spectroscopy. Systematic benchtop-scale studies investigated the system relevant to UREX or PUREX type reprocessing systems, encompassing 0.01-1.26 M U and 0.01-8 M HNO3. A laboratory-scale TRansUranic Extraction (TRUEX) demonstration was performed and used both to analyze for potential online monitoring opportunities in the TRUEX process, and to provide the foundation for building and demonstrating a laboratory-scale UREX demonstration. The secondary goal of the project is to simulate a diversion scenario in UREX and successfully detect changes in metal concentration and solution chemistry in a counter current contactor system with a UV-Visible spectroscopic process monitor. UREX uses the same basic solvent extraction flowsheet as PUREX, but has a lower acid concentration throughout and adds acetohydroxamic acid (AHA) as a complexant/reductant to the feed solution to prevent the extraction of Pu. By examining

  11. CONSTRUCTION PROGRESS PHOTO SHOWING EXCAVATION PIT FOR MAIN PROCESSING BUILDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CONSTRUCTION PROGRESS PHOTO SHOWING EXCAVATION PIT FOR MAIN PROCESSING BUILDING (CPP-601) LOOKING SOUTH. INL PHOTO NUMBER NRTS-50-693. Unknown Photographer, 1950 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  12. Recycling of nuclear spent fuel with AIROX processing

    SciTech Connect

    Majumdar, D.; Jahshan, S.N.; Allison, C.M.; Kuan, P.; Thomas, T.R.

    1992-12-01

    This report examines the concept of recycling light water reactor (LWR) fuel through use of a dry-processing technique known as the AIROX (Atomics International Reduction Oxidation) process. In this concept, the volatiles and the cladding from spent LWR fuel are separated from the fuel by the AIROX process. The fuel is then reenriched and made into new fuel pins with new cladding. The feasibility of the concept is studied from a technical and high level waste minimization perspective.

  13. Fuel performance in water storage

    SciTech Connect

    Hoskins, A.P.; Scott, J.G.; Shelton-Davis, C.V.; McDannel, G.E.

    1993-11-01

    Westinghouse Idaho Nuclear Company operates the Idaho Chemical Processing Plant (ICPP) at the Idaho National Engineering Laboratory (INEL) for the Department of Energy (DOE). A variety of different types of fuels have been stored there since the 1950`s prior to reprocessing for uranium recovery. In April of 1992, the DOE decided to end fuel reprocessing, changing the mission at ICPP. Fuel integrity in storage is now viewed as long term until final disposition is defined and implemented. Thus, the condition of fuel and storage equipment is being closely monitored and evaluated to ensure continued safe storage. There are four main areas of fuel storage at ICPP: an original underwater storage facility (CPP-603), a modern underwater storage facility (CPP-666), and two dry fuel storage facilities. The fuels in storage are from the US Navy, DOE (and its predecessors the Energy Research and Development Administration and the Atomic Energy Commission), and other research programs. Fuel matrices include uranium oxide, hydride, carbide, metal, and alloy fuels. In the underwater storage basins, fuels are clad with stainless steel, zirconium, and aluminum. Also included in the basin inventory is canned scrap material. The dry fuel storage contains primarily graphite and aluminum type fuels. A total of 55 different fuel types are currently stored at the Idaho Chemical Processing Plant. The corrosion resistance of the barrier material is of primary concern in evaluating the integrity of the fuel in long term water storage. The barrier material is either the fuel cladding (if not canned) or the can material.

  14. Efficacy of a solution-based approach for making sodalite waste forms for an oxide reduction salt utilized in the reprocessing of used uranium oxide fuel

    DOE PAGES

    Riley, Brian J.; Pierce, David A.; Frank, Steven M.; ...

    2015-04-01

    This paper describes the various approaches attempted to make solution-derived sodalite with a LiCl-Li2O oxide reduction salt used to dissolve used uranium oxide fuel so the uranium can be recovered and recycled. The approaches include modified sol-gel and solutionbased synthesis processes. As-made products were mixed with 5 and 10 mass% of a Na2O-B2O3- SiO2 glass binder and these, along with product without a binder, were heated using either a cold-press-and-sinter method or hot uniaxial pressing. The results demonstrate the limitation of sodalite yield due to the fast intermediate reactions between Na+ and Cl- to form halite in solution and Li2Omore » and SiO2 to form lithium silicates (e.g., Li2SiO3 or Li2Si2O5) in the calcined and sintered pellets. The results show that pellets can be made with high sodalite fractions in the crystalline product (~92 mass%) and low porosities using a solution-based approach and this LiCl-Li2O salt but that the incorporation of Li into the sodalite is low.« less

  15. Efficacy of a Solution-Based Approach for Making Sodalite Waste Forms for an Oxide Reduction Salt Utilized in the Reprocessing of Used Uranium Oxide Fuel

    SciTech Connect

    Riley, Brian J.; Pierce, David A.; Frank, Steven M.; Matyas, Josef; Burns, Carolyn A.

    2015-04-01

    This paper describes various approaches for making sodalite with a LiCl-Li2O oxide reduction salt used to recover uranium from used oxide fuel. The approaches include sol-gel and solution-based synthesis processes. As-made products were mixed with 5 and 10 mass% of a Na2O-B2O3-SiO2 glass binder and these, along with product without a binder, were heated using either a cold-press-and-sinter method or hot uniaxial pressing. The results demonstrate the limitation of sodalite yield due to the fast intermediate reactions between Na+ and Cl- to form halite in solution and Li2O and SiO2 to form lithium silicates (e.g., Li2SiO3 or Li2Si2O5) in the calcined and sintered pellets. The results show that pellets can be made with high sodalite fractions (~92 mass%) and low porosities using a solution-based approach and this LiCl-Li2O salt.

  16. Efficacy of a solution-based approach for making sodalite waste forms for an oxide reduction salt utilized in the reprocessing of used uranium oxide fuel

    SciTech Connect

    Riley, Brian J.; Pierce, David A.; Frank, Steven M.; Matyáš, Josef; Burns, Carolyne A.

    2015-04-01

    This paper describes the various approaches attempted to make solution-derived sodalite with a LiCl-Li2O oxide reduction salt used to dissolve used uranium oxide fuel so the uranium can be recovered and recycled. The approaches include modified sol-gel and solutionbased synthesis processes. As-made products were mixed with 5 and 10 mass% of a Na2O-B2O3- SiO2 glass binder and these, along with product without a binder, were heated using either a cold-press-and-sinter method or hot uniaxial pressing. The results demonstrate the limitation of sodalite yield due to the fast intermediate reactions between Na+ and Cl- to form halite in solution and Li2O and SiO2 to form lithium silicates (e.g., Li2SiO3 or Li2Si2O5) in the calcined and sintered pellets. The results show that pellets can be made with high sodalite fractions in the crystalline product (~92 mass%) and low porosities using a solution-based approach and this LiCl-Li2O salt but that the incorporation of Li into the sodalite is low.

  17. Efficacy of a solution-based approach for making sodalite waste forms for an oxide reduction salt utilized in the reprocessing of used uranium oxide fuel

    NASA Astrophysics Data System (ADS)

    Riley, Brian J.; Pierce, David A.; Frank, Steven M.; Matyáš, Josef; Burns, Carolyne A.

    2015-04-01

    This paper describes the various approaches evaluated for making solution-derived sodalite with a LiCl-Li2O oxide reduction salt selected to dissolve used uranium oxide fuel so the uranium can be recovered and recycled. The approaches include modified sol-gel and solution-based synthesis processes. As-made products were mixed with 5 and 10 mass% of a Na2O-B2O3-SiO2 glass binder and these, along with product without a binder, were heated using either a cold-press-and-sinter method or hot uniaxial pressing. The results demonstrate the limitation of sodalite yield due to the fast intermediate reactions between Na+ and Cl- to form halite in solution and Li2O and SiO2 to form lithium silicates (e.g., Li2SiO3 or Li2Si2O5) in the calcined and sintered pellets. The results show that pellets can be made with high sodalite fractions in the crystalline product (∼92 mass%) and low porosities using a solution-based approach and this LiCl-Li2O salt but that the incorporation of Li into the sodalite is low.

  18. Distributed generation - the fuel processing example

    SciTech Connect

    Victor, R.A.; Farris, P.J.; Maston, V.

    1996-12-31

    The increased costs of transportation and distribution are leading many commercial and industrial firms to consider the on-site generation for energy and other commodities used in their facilities. This trend has been accelerated by the development of compact, efficient processes for converting basic raw materials into finished services at the distributed sites. Distributed generation with the PC25{trademark} fuel cell power plant is providing a new cost effective technology to meet building electric and thermal needs. Small compact on-site separator systems are providing nitrogen and oxygen to many industrial users of these gases. The adaptation of the fuel processing section of the PC25 power plant for on-site hydrogen generation at industrial sites extends distributed generation benefits to the users of industrial hydrogen.

  19. Reprocessing in Luminous Disks

    NASA Technical Reports Server (NTRS)

    Bell, K. Robbins; DeVincenzi, Donald L. (Technical Monitor)

    1999-01-01

    We develop and investigate a procedure that accounts for disk reprocessing of photons that originate in the disk itself. Surface temperatures and simple, black body spectral energy distributions (SEDs) of protostellar disks are calculated. In disks that flare with radius, reprocessing of stellar photons results in temperature profiles considerably shallower than r(sup -3/4). Including the disk as a radiation source (as in the case of actively secreting disks) along with the stellar source further flattens the temperature profile. Disks that flare strongly near the star and then smoothly curve over and become shadowed at some distance ("decreasing curvature" disks) exhibit nearly power-law temperature profiles which result in power-law infrared SEDs with slopes in agreement with typical observations of young stellar objects. Disk models in which the photospheric thickness is controlled by the local opacity and in which the temperature decreases with radius naturally show this shape. Uniformly flaring models do not match observations as well; progressively stronger reprocessing at larger radii leads to SEDs that flatten toward the infrared or even have a second peak at the wavelength corresponding (through the Wien law) to the temperature of the outer edge of the disk. In FU Orionis outbursting systems, the dominant source of energy is the disk itself. The details of the reprocessing depend sensitively on the assumed disk shape and emitted temperature profile. The thermal instability outburst models of Bell Lin reproduce trends in the observed SEDs of Fuors with T varies as r(sup -3/4) in the inner disk (r approx. less than 0.25au corresponding to lambda approx. less than 10 microns) and T varies as r(sup -1/2) in the outer disk. Surface irradiation during outburst and quiescence is compared in the region of planet formation (1 - 10 au). The contrast between the two phases is diminished by the importance of the reprocessing of photons from the relatively high mass

  20. Reprocessing in Luminous Disks

    NASA Technical Reports Server (NTRS)

    Bell, K. Robbins; DeVincenzi, Donald L. (Technical Monitor)

    1999-01-01

    We develop and investigate a procedure that accounts for disk reprocessing of photons that originate in the disk itself. Surface temperatures and simple, black body spectral energy distributions (SEDs) of protostellar disks are calculated. In disks that flare with radius, reprocessing of stellar photons results in temperature profiles considerably shallower than r(sup -3/4). Including the disk as a radiation source (as in the case of actively secreting disks) along with the stellar source further flattens the temperature profile. Disks that flare strongly near the star and then smoothly curve over and become shadowed at some distance ("decreasing curvature" disks) exhibit nearly power-law temperature profiles which result in power-law infrared SEDs with slopes in agreement with typical observations of young stellar objects. Disk models in which the photospheric thickness is controlled by the local opacity and in which the temperature decreases with radius naturally show this shape. Uniformly flaring models do not match observations as well; progressively stronger reprocessing at larger radii leads to SEDs that flatten toward the infrared or even have a second peak at the wavelength corresponding (through the Wien law) to the temperature of the outer edge of the disk. In FU Orionis outbursting systems, the dominant source of energy is the disk itself. The details of the reprocessing depend sensitively on the assumed disk shape and emitted temperature profile. The thermal instability outburst models of Bell Lin reproduce trends in the observed SEDs of Fuors with T varies as r(sup -3/4) in the inner disk (r approx. less than 0.25au corresponding to lambda approx. less than 10 microns) and T varies as r(sup -1/2) in the outer disk. Surface irradiation during outburst and quiescence is compared in the region of planet formation (1 - 10 au). The contrast between the two phases is diminished by the importance of the reprocessing of photons from the relatively high mass

  1. Reprocessing of anaesthetic and ventilatory equipment.

    PubMed

    Geiss, H K

    1995-06-01

    Uniform and standardized recommendations for reprocessing of anaesthetic and ventilatory equipment are still lacking. The uncertainty in this field is underscored by the various methods which are described in the literature which include pasteurization, immersion baths, formaldehyde cabinets, automated washers/disinfectors and sterilization procedures like autoclaving, ethylene oxide and gaseous formaldehyde. Based on the classification of anaesthetic and ventilatory equipment as semi-critical items, high level disinfection must be regarded as the appropriate decontamination procedure. In contrast to automated washers the other above-mentioned disinfection procedures lack an integrated and all inclusive reprocessing cycle which consists of cleaning, disinfection, rinsing and drying. In view of the increasing demands of employee safety, environmental suitability, cost-effectiveness and quality assurance in hospital hygiene, only automated washers/disinfectors--either based on hot water disinfection or chemothermic processing--fulfil the basic requirements for safe and standardized reprocessing of anaesthetic and ventilatory equipment.

  2. The behaviour of ¹²⁹I released from nuclear fuel reprocessing factories in the North Atlantic Ocean and transport to the Arctic assessed from numerical modelling.

    PubMed

    Villa, M; López-Gutiérrez, J M; Suh, Kyung-Suk; Min, Byung-Il; Periáñez, R

    2015-01-15

    A quantitative evaluation of the fate of (129)I, released from the European reprocessing plants of Sellafield (UK) and La Hague (France), has been made by means of a Lagrangian dispersion model. Transport of radionuclides to the Arctic Ocean has been determined. Thus, 5.1 and 16.6 TBq of (129)I have been introduced in the Arctic from Sellafield and La Hague respectively from 1966 to 2012. These figures represent, respectively, 48% and 55% of the cumulative discharge to that time. Inventories in the North Atlantic, including shelf seas, are 4.4 and 13.8 TBq coming from Sellafield and La Hague respectively. These figures are significantly different from previous estimations based on field data. The distribution of these inventories among several shelf seas and regions has been evaluated as well. Mean ages of tracers have been finally obtained, making use of the age-averaging hypothesis. It has been found that mean ages for Sellafield releases are about 3.5 year larger than for La Hague releases. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. In Situ fuel processing in a microbial fuel cell.

    PubMed

    Bahartan, Karnit; Amir, Liron; Israel, Alvaro; Lichtenstein, Rachel G; Alfonta, Lital

    2012-09-01

    A microbial fuel cell (MFC) was designed in which fuel is generated in the cell by the enzyme glucoamylase, which is displayed on the surface of yeast. The enzyme digests starch specifically into monomeric glucose units and as a consequence enables further glucose oxidation by microorganisms present in the MFC anode. The oxidative enzyme glucose oxidase was coupled to the glucoamylase digestive enzyme. When both enzymes were displayed on the surface of yeast cells in a mixed culture, superior fuel-cell performance was observed in comparison with other combinations of yeast cells, unmodified yeast, or pure enzymes. The feasibility of the use of the green macroalgae Ulva lactuca in such a genetically modified MFC was also demonstrated. Herein, we report the performance of such fuel cells as a proof of concept for the enzymatic digestion of complex organic fuels in the anode of MFCs to render the fuel more available to microorganisms.

  4. Transformative monitoring approaches for reprocessing.

    SciTech Connect

    Cipiti, Benjamin B.

    2011-09-01

    The future of reprocessing in the United States is strongly driven by plant economics. With increasing safeguards, security, and safety requirements, future plant monitoring systems must be able to demonstrate more efficient operations while improving the current state of the art. The goal of this work was to design and examine the incorporation of advanced plant monitoring technologies into safeguards systems with attention to the burden on the operator. The technologies examined include micro-fluidic sampling for more rapid analytical measurements and spectroscopy-based techniques for on-line process monitoring. The Separations and Safeguards Performance Model was used to design the layout and test the effect of adding these technologies to reprocessing. The results here show that both technologies fill key gaps in existing materials accountability that provide detection of diversion events that may not be detected in a timely manner in existing plants. The plant architecture and results under diversion scenarios are described. As a tangent to this work, both the AMUSE and SEPHIS solvent extraction codes were examined for integration in the model to improve the reality of diversion scenarios. The AMUSE integration was found to be the most successful and provided useful results. The SEPHIS integration is still a work in progress and may provide an alternative option.

  5. TIGA Tide Gauge Data Reprocessing at GFZ

    NASA Astrophysics Data System (ADS)

    Deng, Zhiguo; Schöne, Tilo; Gendt, Gerd

    2014-05-01

    To analyse the tide gauge measurements for the purpose of global long-term sea level change research a well-defined absolute reference frame is required by oceanographic community. To create such frame the data from a global GNSS network located at or near tide gauges are processed. For analyzing the GNSS data on a preferably continuous basis the International GNSS Service (IGS) Tide Gauge Benchmark Monitoring Working Group (TIGA-WG) is responsible. As one of the TIGA Analysis Centers the German Research Centre for Geosciences (GFZ) is contributing to the IGS TIGA Reprocessing Campaign. The solutions of the TIGA Reprocessing Campaign will also contribute to 2nd IGS Data Reprocessing Campaign with GFZ IGS reprocessing solution. After the first IGS reprocessing finished in 2010 some improvements were implemented into the latest GFZ software version EPOS.P8: reference frame IGb08 based on ITRF2008, antenna calibration igs08.atx, geopotential model (EGM2008), higher-order ionospheric effects, new a priori meteorological model (GPT2), VMF mapping function, and other minor improvements. GPS data of the globally distributed tracking network of 794 stations for the time span from 1994 until end of 2012 are used for the TIGA reprocessing. To handle such large network a new processing strategy is developed and described in detail. In the TIGA reprocessing the GPS@TIGA data are processed in precise point positioning (PPP) mode to clean data using the IGS reprocessing orbit and clock products. To validate the quality of the PPP coordinate results the rates of 80 GPS@TIGA station vertical movement are estimated from the PPP results using Maximum Likelihood Estimation (MLE) method. The rates are compared with the solution of University of LaRochelle Consortium (ULR) (named ULR5). 56 of the 80 stations have a difference of the vertical velocities below 1 mm/yr. The error bars of PPP rates are significant larger than those of ULR5, which indicates large time correlated noise in

  6. Pyroprocess for processing spent nuclear fuel

    DOEpatents

    Miller, William E.; Tomczuk, Zygmunt

    2002-01-01

    This is a pyroprocess for processing spent nuclear fuel. The spent nuclear fuel is chopped into pieces and placed in a basket which is lowered in to a liquid salt solution. The salt is rich in ZrF.sub.4 and containing alkali or alkaline earth fluorides, and in particular, the salt chosen was LiF-50 mol % ZrF.sub.4 with a eutectic melting point of 500.degree. C. Prior to lowering the basket, the salt is heated to a temperature of between 550.degree. C. and 700.degree. C. in order to obtain a molten solution. After dissolution the oxides of U, Th, rare earth and other like oxides, the salt bath solution is subject to hydro-fluorination to remove the oxygen and then to a fluorination step to remove U as gaseous UF.sub.6. In addition, after dissolution, the basket contains PuO.sub.2 and undissolved parts of the fuel rods, and the basket and its contents are processed to remove the Pu.

  7. 21 CFR 211.115 - Reprocessing.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 4 2012-04-01 2012-04-01 false Reprocessing. 211.115 Section 211.115 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS: GENERAL CURRENT GOOD MANUFACTURING PRACTICE FOR FINISHED PHARMACEUTICALS Production and Process Controls § 211.115...

  8. 21 CFR 211.115 - Reprocessing.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 4 2013-04-01 2013-04-01 false Reprocessing. 211.115 Section 211.115 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS: GENERAL CURRENT GOOD MANUFACTURING PRACTICE FOR FINISHED PHARMACEUTICALS Production and Process Controls § 211.115...

  9. 21 CFR 211.115 - Reprocessing.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 4 2014-04-01 2014-04-01 false Reprocessing. 211.115 Section 211.115 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS: GENERAL CURRENT GOOD MANUFACTURING PRACTICE FOR FINISHED PHARMACEUTICALS Production and Process Controls § 211.115...

  10. 21 CFR 211.115 - Reprocessing.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 4 2011-04-01 2011-04-01 false Reprocessing. 211.115 Section 211.115 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS: GENERAL CURRENT GOOD MANUFACTURING PRACTICE FOR FINISHED PHARMACEUTICALS Production and Process Controls § 211.115...

  11. 21 CFR 211.115 - Reprocessing.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 4 2010-04-01 2010-04-01 false Reprocessing. 211.115 Section 211.115 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS: GENERAL CURRENT GOOD MANUFACTURING PRACTICE FOR FINISHED PHARMACEUTICALS Production and Process Controls § 211.115...

  12. Next-Generation Online MC&A Technologies for Reprocessing Plants

    SciTech Connect

    Smith, Leon E.; Schwantes, Jon M.; Ressler, Jennifer J.; Douglas, Matt; Anderson, Kevin K.; Fraga, Carlos G.; Durst, Casey; Orton, Chris; Christensen, Robert P.

    2007-08-03

    As power-production nuclear fuel cycles propagate across the globe, a new generation of measurement technologies is needed to support safeguards monitoring of fuel reprocessing facilities. This paper describes the simulation and analysis of two potential technologies for meeting the challenges of 1) direct measurement of fissile isotopic content in irradiated fuel to detect partial defects, and 2) near-real-time monitoring of process chemistry to detect protracted diversion scenarios. Lead slowing-down spectroscopy is the core of the spent fuel assay technology and multi-isotope indicators via high-resolution gamma-ray spectroscopy is the foundation of the process chemistry verification approach. The safeguards context and methods for each technology are described and the results of preliminary performance studies are presented. The quantitative results for both studies are promising but more comprehensive analysis and empirical validation is needed to adequately assess their potential value as next-generation online materials control and accountability measures.

  13. Development of remote disassembly technology for liquid-metal reactor (LMR) fuel

    SciTech Connect

    Bradley, E.C.; Evans, J.H.; Metz, C.F. III; Weil, B.S.

    1990-01-01

    A major objective of the Consolidated Fuel Reprocessing Program (CFRP) is to develop equipment and demonstrate technology to reprocess fast breeder reactor fuel. Experimental work on fuel disassembly cutting methods began in the 1970s. High-power laser cutting was selected as the preferred cutting method for fuel disassembly. Remotely operated development equipment was designed, fabricated, installed, and tested at Oak Ridge National Laboratory (ORNL). Development testing included remote automatic operation, remote maintenance testing, and laser cutting process development. This paper summarizes the development work performed at ORNL on remote fuel disassembly. 2 refs., 1 fig.

  14. Chemical process safety at fuel cycle facilities

    SciTech Connect

    Ayres, D.A.

    1997-08-01

    This NUREG provides broad guidance on chemical safety issues relevant to fuel cycle facilities. It describes an approach acceptable to the NRC staff, with examples that are not exhaustive, for addressing chemical process safety in the safe storage, handling, and processing of licensed nuclear material. It expounds to license holders and applicants a general philosophy of the role of chemical process safety with respect to NRC-licensed materials; sets forth the basic information needed to properly evaluate chemical process safety; and describes plausible methods of identifying and evaluating chemical hazards and assessing the adequacy of the chemical safety of the proposed equipment and facilities. Examples of equipment and methods commonly used to prevent and/or mitigate the consequences of chemical incidents are discussed in this document.

  15. Head-end reprocessing equipment remote maintenance demonstration

    SciTech Connect

    Evans, J.H.; Metz, C.F. III.

    1989-01-01

    Prototype equipment for reprocessing breeder reactor nuclear fuel was installed in the Remote Operation and Maintenance Demonstration (ROMD) area of the Consolidated Fuel Reprocessing Program (CFRP) facility at the Oak Ridge National Laboratory (ORNL) in order to evaluate the design of this equipment in a cold mock-up of a remotely maintained hot cell. This equipment included the Remote Disassembly System (RDS) and the Remote Shear System (RSS). These systems were disassembled and reassembled remotely by using the extensive remote handling systems that are installed in this simulated hot-cell environment. 5 refs., 5 figs.

  16. CONSTRUCTION PROGRESS PHOTO SHOWING MAIN PROCESSING BUILDING (CPP601) LOOKING NORTH. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CONSTRUCTION PROGRESS PHOTO SHOWING MAIN PROCESSING BUILDING (CPP-601) LOOKING NORTH. INL PHOTO NUMBER NRTS-51-1387. Unknown Photographer, 1/31/1951 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  17. SOUTH ELEVATION OF MAIN PROCESSING BUILDING (CPP601) LOOKING NORTH. INL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SOUTH ELEVATION OF MAIN PROCESSING BUILDING (CPP-601) LOOKING NORTH. INL PHOTO NUMBER HD-22-5-3. Mike Crane, Photographer, 11/1998 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  18. CONSTRUCTION VIEW OF MAIN PROCESSING BUILDING (CPP601) LOOKING NORTHWEST. INL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CONSTRUCTION VIEW OF MAIN PROCESSING BUILDING (CPP-601) LOOKING NORTHWEST. INL PHOTO NUMBER NRTS-51-1390. Unknown Photographer, 1/31/1951 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  19. CONSTRUCTION VIEW OF MAIN PROCESSING BUILDING (CPP601) LOOKING EAST. INL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CONSTRUCTION VIEW OF MAIN PROCESSING BUILDING (CPP-601) LOOKING EAST. INL PHOTO NUMBER NRTS-51-1547. Unknown Photographer, 2/28/1951 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  20. FACILITY LAYOUT OF FUEL STORAGE BUILDING (CPP603) SHOWING STORAGE BASINS, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FACILITY LAYOUT OF FUEL STORAGE BUILDING (CPP-603) SHOWING STORAGE BASINS, FUEL ELEMENT CUTTING FACILITY, AND DRY GRAPHITE STORAGE FACILITY. INL DRAWING NUMBER 200-0603-00-030-056329. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  1. PLOT PLAN OF FUEL STORAGE BUILDING (CPP603) SHOWING STORAGE BASINS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PLOT PLAN OF FUEL STORAGE BUILDING (CPP-603) SHOWING STORAGE BASINS AND PROPOSED LOCATION OF FUEL ELEMENT CUTTING FACILITY. INL DRAWING NUMBER 200-0603-00-706-051287. ALTERNATE ID NUMBER CPP-C-1287. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  2. EOS Data Products Latency and Reprocessing Evaluation

    NASA Astrophysics Data System (ADS)

    Ramapriyan, H. K.; Wanchoo, L.

    2012-12-01

    NASA's Earth Observing System (EOS) Data and Information System (EOSDIS) program has been processing, archiving, and distributing EOS data since the launch of Terra platform in 1999. The EOSDIS Distributed Active Archive Centers (DAACs) and Science-Investigator-led Processing Systems (SIPSs) are generating over 5000 unique products with a daily average volume of 1.7 Petabytes. Initially EOSDIS had requirements to make process data products within 24 hours of receiving all inputs needed for generating them. Thus, generally, the latency would be slightly over 24 and 48 hours after satellite data acquisition, respectively, for Level 1 and Level 2 products. Due to budgetary constraints these requirements were relaxed, with the requirement being to avoid a growing backlog of unprocessed data. However, the data providers have been generating these products in as timely a manner as possible. The reduction in costs of computing hardware has helped considerably. It is of interest to analyze the actual latencies achieved over the past several years in processing and inserting the data products into the EOSDIS archives for the users to support various scientific studies such as land processes, oceanography, hydrology, atmospheric science, cryospheric science, etc. The instrument science teams have continuously evaluated the data products since the launches of EOS satellites and improved the science algorithms to provide high quality products. Data providers have periodically reprocessed the previously acquired data with these improved algorithms. The reprocessing campaigns run for an extended time period in parallel with forward processing, since all data starting from the beginning of the mission need to be reprocessed. Each reprocessing activity involves more data than the previous reprocessing. The historical record of the reprocessing times would be of interest to future missions, especially those involving large volumes of data and/or computational loads due to

  3. FY09 PROGRESS: MULTI-ISOTOPE PROCESS (MIP) MONITOR

    SciTech Connect

    Schwantes, Jon M.; Orton, Christopher R.; Fraga, Carlos G.; Christensen, Richard; Laspe, Amy R.; Ward, Rebecca M.

    2009-10-18

    Model and experimental estimates of the Multi-Isotope Process Monitor performance for determining burnup after dissolution and acid concentration during solvent extraction steps during reprocessing of spent nuclear fuel are presented.

  4. 76 FR 44049 - Guidance for Fuel Cycle Facility Change Processes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-22

    ... COMMISSION Guidance for Fuel Cycle Facility Change Processes AGENCY: Nuclear Regulatory Commission. ACTION... for Fuel Cycle Facility Change Processes'' in the Federal Register for a 30 day public comment period.... DG-3037 describes the types of changes for fuel cycle facilities for which licensees are to...

  5. 21 CFR 111.90 - What requirements apply to treatments, in-process adjustments, and reprocessing when there is a...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false What requirements apply to treatments, in-process... established in accordance with § 111.70 is not met? 111.90 Section 111.90 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION CURRENT...

  6. 21 CFR 111.90 - What requirements apply to treatments, in-process adjustments, and reprocessing when there is a...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... established in accordance with § 111.70 is not met? 111.90 Section 111.90 Food and Drugs FOOD AND DRUG... Requirement to Establish a Production and Process Control System § 111.90 What requirements apply to...

  7. 21 CFR 111.90 - What requirements apply to treatments, in-process adjustments, and reprocessing when there is a...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION CURRENT GOOD MANUFACTURING PRACTICE IN MANUFACTURING, PACKAGING, LABELING, OR HOLDING OPERATIONS FOR DIETARY SUPPLEMENTS... rejected dietary supplement or treat or provide an in-process adjustment to a component, packaging, or...

  8. MONOLITHIC FUEL FABRICATION PROCESS DEVELOPMENT AT THE IDAHO NATIONAL LABORATORY_

    SciTech Connect

    G. A. Moore; F. J. Rice; N. E. Woolstenhulme; J-F. Jue; B. H. Park; S. E. Steffler; N. P. Hallinan; M. D. Chapple; M. C. Marshall; B. L. Mackowiak; C. R. Clark; B. H. Rabin

    2009-11-01

    Full-size/prototypic U10Mo monolithic fuel-foils and aluminum clad fuel plates are being developed at the Idaho National Laboratory’s (INL) Materials and Fuels Complex (MFC). These efforts are focused on realizing Low Enriched Uranium (LEU) high density monolithic fuel plates for use in High Performance Research and Test Reactors. The U10Mo fuel foils under development afford a fuel meat density of ~16 gU/cc and thus have the potential to facilitate LEU conversions without any significant reactor-performance penalty. An overview is provided of the ongoing monolithic UMo fuel development effort, including application of a zirconium barrier layer on fuel foils, fabrication scale-up efforts, and development of complex/graded fuel foils. Fuel plate clad bonding processes to be discussed include: Hot Isostatic Pressing (HIP) and Friction Bonding (FB).

  9. Process and composition for stabilized distillate fuel oils

    SciTech Connect

    Reid, D.K.

    1987-03-10

    A process is described for stabilizing distillate fuel oil which comprises adding to the fuel oil an effective stabilizing amount of a mixture of (a) N-(2-aminoethyl)piperazine, (b) triethylenetetramine, and (c) N,N-diethylhydroxylamine.

  10. Process and composition for color stabilized distillate fuel oils

    SciTech Connect

    Reid, D.K.

    1987-03-03

    A process is described for inhibiting color deterioration of distillate fuel oil which comprises adding to the fuel oil an effective inhibiting amount of a mixture of (a) N-(2-aminoethyl) piperazine and (b) N, N-diethylhydroxylamine.

  11. Conceptual designs of NDA instruments for the NRTA system at the Rokkasho Reprocessing Plant

    SciTech Connect

    Li, T.K.; Klosterbuer, S.F.; Menlove, H.O.

    1996-09-01

    The authors are studying conceptual designs of selected nondestructive assay (NDA) instruments for the near-real-time accounting system at the rokkasho Reprocessing Plant (RRP) of Japan Nuclear Fuel Limited (JNFL). The JNFL RRP is a large-scale commercial reprocessing facility for spent fuel from boiling-water and pressurized-water reactors. The facility comprises two major components: the main process area to separate and produce purified plutonium nitrate and uranyl nitrate from irradiated reactor spent fuels, and the co-denitration process area to combine and convert the plutonium nitrate and uranyl nitrate into mixed oxide (MOX). The selected NDA instruments for conceptual design studies are the MOX-product canister counter, holdup measurement systems for calcination and reduction furnaces and for blenders in the co-denitration process, the isotope dilution gamma-ray spectrometer for the spent fuel dissolver solution, and unattended verification systems. For more effective and practical safeguards and material control and accounting at RRP, the authors are also studying the conceptual design for the UO{sub 3} large-barrel counter. This paper discusses the state-of-the-art NDA conceptual design and research and development activities for the above instruments.

  12. MONOLITHIC FUEL FABRICATION PROCESS DEVELOPMENT AT THE IDAHO NATIONAL LABORATORY

    SciTech Connect

    Glenn A. Moore; Francine J. Rice; Nicolas E. Woolstenhulme; W. David SwanK; DeLon C. Haggard; Jan-Fong Jue; Blair H. Park; Steven E. Steffler; N. Pat Hallinan; Michael D. Chapple; Douglas E. Burkes

    2008-10-01

    Within the Reduced Enrichment for Research and Test Reactors (RERTR) program directed by the US Department of Energy (DOE), UMo fuel-foils are being developed in an effort to realize high density monolithic fuel plates for use in high-flux research and test reactors. Namely, targeted are reactors that are not amenable to Low Enriched Uranium (LEU) fuel conversion via utilization of high density dispersion-based fuels, i.e. 8-9 gU/cc. LEU conversion of reactors having a need for >8-9 gU/cc fuel density will only be possible by way of monolithic fuel forms. The UMo fuel foils under development afford fuel meat density of ~16 gU/cc and thus have the potential to facilitate LEU conversions without any significant reactor-performance penalty. Two primary challenges have been established with respect to UMo monolithic fuel development; namely, fuel element fabrication and in-reactor fuel element performance. Both issues are being addressed concurrently at the Idaho National Laboratory. An overview is provided of the ongoing monolithic UMo fuel development effort at the Idaho National Laboratory (INL); including development of complex/graded fuel foils. Fabrication processes to be discussed include: UMo alloying and casting, foil fabrication via hot rolling, fuel-clad interlayer application via co-rolling and thermal spray processes, clad bonding via Hot Isostatic Pressing (HIP) and Friction Bonding (FB), and fuel plate finishing.

  13. Overview of fuel processing options for polymer electrolyte fuel cell systems

    SciTech Connect

    Kumar, R.

    1995-12-31

    The polymer electrolyte fuel cell (PEFC) is being developed for use in heavy- and light-duty transportation applications. While this fuel cell has been used successfully in buses and vans with compressed hydrogen as the on-board fuel [1,2], the fuel cell system must incorporate fuel processing (reforming) for any other on-board fuel to produce the hydrogen or hydrogen-rich fuel gas to be fed to the fuel cell stack. This is true even for alternative methods of storing hydrogen, such as use of a metal hydride or liquefied hydrogen. The ``fuel processing`` needed to recover the hydrogen includes providing the heat of dissociation of the hydride and cooling the hydrogen to the temperature of the fuel cell stack. Discussed below are some of the options being considered for processing of on-board fuels (other than compressed hydrogen) to generate the fuel cell anode gas, and the effects of fuel processing on system design, efficiency, steady-state and dynamic performance, and other factors.

  14. Analysis of nuclear proliferation resistance reprocessing and recycling technologies

    SciTech Connect

    Patricia Paviet-Hartmann; Gary Cerefice; Marcela Stacey; Steven Bakhtiar

    2011-05-01

    The PUREX process has been progressively and continuously improved during the past three decades, and these improvements account for successful commercialization of reprocessing in a few countries. The renewed interest in nuclear energy and the international growth of nuclear electricity generation do not equate – and should not be equated -with increasing proliferation risks. Indeed, the nuclear renaissance presents a unique opportunity to enhance the culture of non-proliferation. With the recent revival of interest in nuclear technology, technical methods for prevention of nuclear proliferation are being revisited. Robust strategies to develop new advanced separation technologies are emerging worldwide for sustainability and advancement of nuclear energy with enhanced proliferation resistance. On the other hand, at this moment, there are no proliferation resistance advanced technologies. . Until now proliferation resistance as it applies to reprocessing has been focused on not separating a pure stream of weapons-usable plutonium. France, as an example, has proposed a variant of the PUREX process, the COEX TM process, which does not result on a pure plutonium product stream. A further step is to implement a process based on group extraction of actinides and fission products associated with a homogeneous recycling strategy (UNEX process in the US, GANEX process in France). Such scheme will most likely not be deployable on an industrial scale before 2030 or so because it requires intensive R&D and robust flowsheets. Finally, future generation recycling schemes will handle the used nuclear fuel in fast neutron reactors. This means that the plutonium throughput of the recycling process may increase. The need is obvious for advanced aqueous recycling technologies that are intrinsically more proliferation resistant than the commercial PUREX process. In this paper, we review the actual PUREX process along with the advanced recycling technologies that will enhance

  15. ORNL experience and perspectives related to processing of thorium and 233U for nuclear fuel

    DOE PAGES

    Croff, Allen G.; Collins, Emory D.; Del Cul, G. D.; ...

    2016-05-01

    Thorium-based nuclear fuel cycles have received renewed attention in both research and public circles since about the year 2000. Much of the attention has been focused on nuclear fission energy production that utilizes thorium as a fertile element for producing fissionable 233U for recycle in thermal reactors, fast reactors, or externally driven systems. Here, lesser attention has been paid to other fuel cycle operations that are necessary for implementation of a sustainable thorium-based fuel cycle such as reprocessing and fabrication of recycle fuels containing 233U.

  16. Inventories of 239+240Pu, 137Cs, and excess 210Pb in sediments from freshwater and brackish lakes in Rokkasho, Japan, adjacent to a spent nuclear fuel reprocessing plant.

    PubMed

    Ueda, Shinji; Ohtsuka, Yoshihito; Kondo, Kunio; Hisamatsu, Shun'ichi

    2009-10-01

    We investigated the vertical profiles of (239+240)Pu, (137)Cs, and excess (210)Pb ((210)Pb(ex)) in sediment core samples obtained from two freshwater lakes and two brackish lakes situated near the first commercial spent nuclear fuel reprocessing plant in Rokkasho, Japan, before the final test of the plant using actual spent nuclear fuel. The inventory of (239+240)Pu in those lakes was larger than that in soil in Rokkasho, which indicated the inflow of (239+240)Pu from the catchment area in addition to direct deposition on the lake surfaces. The (137)Cs inventory in sediments of the brackish lakes was lower than that in the soil, which showed that part of the (137)Cs was removed from the sediments by the brackish water or that it was not deposited into the sediments, because of the high solubility of Cs in brackish water. The (137)Cs inventory in sediments of the freshwater lakes was higher than that of the brackish lakes, and comparable with that in soil except for one core sample out of four. The (239+240)Pu/(137)Cs ratio in freshwater lake sediments was higher than that in soil, and that indicated that part of the (137)Cs was lost from the sediments. The low inventory of (137)Cs may be attributable to competition for absorption sites in sediments with ammonium ions formed in the reducing environment which occurs from summer to fall in the sediments. Those data will be used as background data on the artificial radionuclides in the lakes to assess the effect of released radionuclides on their concentrations.

  17. VIEW OF CRANE LOADING AND UNLOADING AREA OF FUEL STORAGE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF CRANE LOADING AND UNLOADING AREA OF FUEL STORAGE BUILDING (CPP-603). PHOTO TAKEN LOOKING SOUTH. INL PHOTO NUMBER HD-54-17-1. Mike Crane, Photographer, 8/2005 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  18. SOUTH, EAST, NORTH ELEVATIONS AND SECTIONS OF FUEL STORAGE BUILDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SOUTH, EAST, NORTH ELEVATIONS AND SECTIONS OF FUEL STORAGE BUILDING (CPP-603). INL DRAWING NUMBER 200-0603-61-299-103030. ALTERNATE ID NUMBER 542-31-B-22. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  19. VIEW OF CRANE LOADING AND UNLOADING AREA OF FUEL STORAGE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF CRANE LOADING AND UNLOADING AREA OF FUEL STORAGE BUILDING (CPP-603). PHOTO TAKEN LOOKING NORTH. INL PHOTO NUMBER HD-54-17-4. Mike Crane, Photographer, 8/2005 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  20. CONSTRUCTION PROGRESS PHOTO SHOWING EMPLACEMENT STEEL BEAMS FUEL STORAGE BUILDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CONSTRUCTION PROGRESS PHOTO SHOWING EMPLACEMENT STEEL BEAMS FUEL STORAGE BUILDING (CPP-603) LOOKING EAST. INL PHOTO NUMBER NRTS-51-1371. Unknown Photographer, 1/31/1951 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  1. VIEW OF SOUTH STORAGE BASIN NUMBER 1 OF FUEL STORAGE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF SOUTH STORAGE BASIN NUMBER 1 OF FUEL STORAGE BUILDING (CPP-603). PHOTO TAKEN LOOKING NORTHEAST. INL PHOTO NUMBER HD-54-18-4. Mike Crane, Photographer, 8/2005 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  2. VIEW OF MIDDLE STORAGE BASIN NUMBER 2 OF FUEL STORAGE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF MIDDLE STORAGE BASIN NUMBER 2 OF FUEL STORAGE BUILDING (CPP-603). PHOTO TAKEN LOOKING NORTHEAST. INL PHOTO NUMBER HD-54-17-3. Mike Crane, Photographer, 8/2005 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  3. INTERIOR OF SECOND FLOOR CONTROL ROOM OF FUEL STORAGE BUILDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR OF SECOND FLOOR CONTROL ROOM OF FUEL STORAGE BUILDING (CPP-603). PHOTO TAKEN LOOKING SOUTHWEST. INL PHOTO NUMBER HD-54-19-2. Mike Crane, Photographer, 8/2005 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  4. Economic prospects of the Integral Fast Reactor (IFR) fuel cycle

    SciTech Connect

    Chang, Y.I.; Till, C.E.

    1991-01-01

    The IFR fuel cycle based on pyroprocessing involves only few operational steps and the batch-oriented process equipment systems are compact. This results in major cost reductions in all of three areas of reprocessing, fabrication, and waste treatment. This document discusses the economic aspects of this fuel cycle.

  5. PEM Fuel Cell Mechanisms and Processes

    NASA Astrophysics Data System (ADS)

    Wilson, Mahlon

    2000-03-01

    A fuel cell produces electrical energy via an electrochemical reaction. Unlike a conventional battery, the "fuel" and oxidant are supplied to the device from external sources. The device can thus be operated until the fuel (or oxidant) supply is exhausted, which can provide very high energy densities for the overall system. Historically, fuel cells have been of principle interest to the space program because of their high intrinsic conversion efficiencies and benign reaction product (water). Because of these various advantages and ever increasing environmental concerns, most types of fuel cells are attracting greater commercial and government interest. However, the popularity of a relatively new type of fuel cell, the polymer electrolyte membrane (PEM) fuel cell, is rapidly outpacing the others. Unlike most other types of fuel cells, which use liquid electrolytes, the PEM fuel cell uses a quasi-solid electrolyte based on a polymer backbone with side-chains possessing acid-based groups. The numerous advantages of this family of electrolytes make the PEM fuel cell particularly attractive for smaller scale terrestrial applications such as transportation, home-based distributed power, and portable power applications. Despite the many advantages, the conventional PEM introduces some unique challenges that significantly impact the design and operation of PEM-based fuel cells. In this presentation, an overview of PEM fuel cells will be provided starting with the fundamental principles on through the contributions and characteristics of the key components, the basics of PEM fuel cell operation, the considerations of various applications and the ramifications on system design.

  6. Practice comparisons between accelerated resolution therapy, eye movement desensitization and reprocessing and cognitive processing therapy with case examples.

    PubMed

    Hernandez, Diego F; Waits, Wendi; Calvio, Lisseth; Byrne, Mary

    2016-12-01

    Recent outcomes for Cognitive Processing Therapy (CPT) and Prolonged Exposure (PE) therapy indicate that as many as 60-72% of patients retain their PTSD diagnosis after treatment with CPT or PE. One emerging therapy with the potential to augment existing trauma focused therapies is Accelerated Resolution Therapy (ART). ART is currently being used along with evidence based approaches at Fort Belvoir Community Hospital and by report has been both positive for clients as well as less taxing on professionals trained in ART. The following is an in-practice theoretical comparison of CPT, EMDR and ART with case examples from Fort Belvoir Community Hospital. While all three approaches share common elements and interventions, ART distinguishes itself through emphasis on the rescripting of traumatic events and the brevity of the intervention. While these case reports are not part of a formal study, they suggest that ART has the potential to augment and enhance the current delivery methods of mental health care in military environments.

  7. Cost reductions of fuel cells for transport applications: fuel processing options

    NASA Astrophysics Data System (ADS)

    Teagan, W. P.; Bentley, J.; Barnett, B.

    The highly favorable efficiency/environmental characteristics of fuel cell technologies have now been verified by virtue of recent and ongoing field experience. The key issue regarding the timing and extent of fuel cell commercialization is the ability to reduce costs to acceptable levels in both stationary and transport applications. It is increasingly recognized that the fuel processing subsystem can have a major impact on overall system costs, particularly as ongoing R&D efforts result in reduction of the basic cost structure of stacks which currently dominate system costs. The fuel processing subsystem for polymer electrolyte membrane fuel cell (PEMFC) technology, which is the focus of transport applications, includes the reformer, shift reactors, and means for CO reduction. In addition to low cost, transport applications require a fuel processor that is compact and can start rapidly. This paper describes the impact of factors such as fuel choice, operating temperature, material selection, catalyst requirements, and controls on the cost of fuel processing systems. There are fuel processor technology paths which manufacturing cost analyses indicate are consistent with fuel processor subsystem costs of under 150/kW in stationary applications and 30/kW in transport applications. As such, the costs of mature fuel processing subsystem technologies should be consistent with their use in commercially viable fuel cell systems in both application categories.

  8. Use of CAP88 PC to infer differences in the chemical form of 129I emitted from a fuel reprocessing facility.

    PubMed

    Fritz, Brad G; Phillips, Nathan R J

    2013-06-01

    Emissions of (129)I from nuclear fuel separations conducted at the Hanford Site in Washington State have been occurring since the 1940's. Fuel separation on the Hanford Site stopped in 1988, but emissions of (129)I have continued as venting of the PUREX Plant occurred. In this study, atmospheric measurements of (129)I concentrations were coupled with an EPA approved plume dispersion model (CAP88-PC, Version 3.0) to evaluate the effectiveness of the dispersion model for estimating ambient concentrations at the Hanford Site. This evaluation led to the hypothesis that different chemical forms of iodine were being emitted over the years; this hypothesis was developed as an explanation for the model agreeing with measurements over some time periods, but not over all time periods. The model was then run with modified emissions to simulate the short atmospheric half-life of the suspected reactive chemical form of iodine being emitted. This modification resulted in good agreement between the modeled and measured concentrations over the entire 20 year study period (1986-2005), and provided evidence supporting the hypothesis of a reactive form of iodine being emitted. Published by Elsevier Ltd.

  9. Variable area fuel cell process channels

    DOEpatents

    Kothmann, Richard E.

    1981-01-01

    A fuel cell arrangement having a non-uniform distribution of fuel and oxidant flow paths, on opposite sides of an electrolyte matrix, sized and positioned to provide approximately uniform fuel and oxidant utilization rates, and cell conditions, across the entire cell.

  10. Melt processed crystalline ceramic waste forms for advanced nuclear fuel cycles: CRP T21027 1813: Processing technologies for high level waste, formulation of matrices and characterization of waste forms, Task 17208: Final report

    SciTech Connect

    Amoroso, J. W.; Marra, J. C.

    2015-08-26

    A multi-phase ceramic waste form is being developed at the Savannah River National Laboratory (SRNL) for treatment of secondary waste streams generated by reprocessing commercial spent nuclear. The envisioned waste stream contains a mixture of transition, alkali, alkaline earth, and lanthanide metals. Ceramic waste forms are tailored (engineered) to incorporate waste components as part of their crystal structure based on knowledge from naturally found minerals containing radioactive and non-radioactive species similar to the radionuclides of concern in wastes from fuel reprocessing. The ability to tailor ceramics to mimic naturally occurring crystals substantiates the long term stability of such crystals (ceramics) over geologic timescales of interest for nuclear waste immobilization [1]. A durable multi-phase ceramic waste form tailored to incorporate all the waste components has the potential to broaden the available disposal options and thus minimize the storage and disposal costs associated with aqueous reprocessing. This report summarizes results from three years of work on the IAEA Coordinated Research Project on “Processing technologies for high level waste, formulation of matrices and characterization of waste forms” (T21027), and specific task “Melt Processed Crystalline Ceramic Waste Forms for Advanced Nuclear Fuel Cycles” (17208).

  11. Melt processed crystalline ceramic waste forms for advanced nuclear fuel cycles: CRP T21027 1813: Processing technologies for high level waste, formulation of matrices and characterization of waste forms, task 17208: Final report

    SciTech Connect

    Amoroso, J. W.; Marra, J. C.

    2015-08-26

    A multi-phase ceramic waste form is being developed at the Savannah River National Laboratory (SRNL) for treatment of secondary waste streams generated by reprocessing commercial spent nuclear. The envisioned waste stream contains a mixture of transition, alkali, alkaline earth, and lanthanide metals. Ceramic waste forms are tailored (engineered) to incorporate waste components as part of their crystal structure based on knowledge from naturally found minerals containing radioactive and non-radioactive species similar to the radionuclides of concern in wastes from fuel reprocessing. The ability to tailor ceramics to mimic naturally occurring crystals substantiates the long term stability of such crystals (ceramics) over geologic timescales of interest for nuclear waste immobilization [1]. A durable multi-phase ceramic waste form tailored to incorporate all the waste components has the potential to broaden the available disposal options and thus minimize the storage and disposal costs associated with aqueous reprocessing. This report summarizes results from three years of work on the IAEA Coordinated Research Project on “Processing technologies for high level waste, formulation of matrices and characterization of waste forms” (T21027), and specific task “Melt Processed Crystalline Ceramic Waste Forms for Advanced Nuclear Fuel Cycles” (17208).

  12. Distillate Fuel Processing for Marine Fuel Cell Applications

    DTIC Science & Technology

    2000-01-17

    Steinfeld, R. Sanderson, H. Ghezel-Ayagh, S. Abens FuelCell Energy, Inc. 3 Great Pasture Road Danbury, CT 06811 Mark C. Cervi Naval Surface Warfare...in its publications Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the collection of information is estimated to...information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports

  13. Fuel Cell Stations Automate Processes, Catalyst Testing

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Glenn Research Center looks for ways to improve fuel cells, which are an important source of power for space missions, as well as the equipment used to test fuel cells. With Small Business Innovation Research (SBIR) awards from Glenn, Lynntech Inc., of College Station, Texas, addressed a major limitation of fuel cell testing equipment. Five years later, the company obtained a patent and provided the equipment to the commercial world. Now offered through TesSol Inc., of Battle Ground, Washington, the technology is used for fuel cell work, catalyst testing, sensor testing, gas blending, and other applications. It can be found at universities, national laboratories, and businesses around the world.

  14. An advanced hybrid reprocessing system based on UF{sub 6} volatilization and chromatographic separation

    SciTech Connect

    Wei, Yuezhou; Liu, Ruiqin; Wu, Yan; Zu, Jianhua; Zhao, Long; Mimura, Hitoshi; Shi, Weiqun; Chai, Zhifang; Yang, Jinling; Ding, Youqian

    2013-07-01

    To recover U, Pu, MA (Np, Am, Cm) and some specific fission products FPs (Cs, Sr, Tc, etc.) from various spent nuclear fuels (LWR/FBR: Oxide, Metal Fuels), we are studying an advanced hybrid reprocessing system based on UF6 volatilization (Pyro) and chromatographic separation (Aqueous). Spent fuels are de-cladded by means of thermal and mechanical methods and then applied to the fluorination/volatilization process, which selectively recovers the most amount of U. Then, the remained fuel components are converted to oxides and dissolved by HNO{sub 3} solution. Compared to U, since Pu, MA and FPs are significantly less abundant in spent fuels, the scale of the aqueous separation process could become reasonably small and result in less waste. For the chromatographic separation processes, we have prepared different types of porous silica-based organic/inorganic adsorbents with fast diffusion kinetics, improved chemical stability and low pressure drop in a packed column. So they are advantageously applicable to efficient separation of the actinides and FP elements from the fuel dissolved solution. In this work, adsorption and separation behavior of representative actinides and FP elements was studied. Small scale separation tests using simulated and genuine fuel dissolved solutions were carried out to verify the feasibility of the proposed process. (authors)

  15. Process for producing fluid fuel from coal

    DOEpatents

    Hyde, Richard W.; Reber, Stephen A.; Schutte, August H.; Nadkarni, Ravindra M.

    1977-01-01

    Process for producing fluid fuel from coal. Moisture-free coal in particulate form is slurried with a hydrogen-donor solvent and the heated slurry is charged into a drum wherein the pressure is so regulated as to maintain a portion of the solvent in liquid form. During extraction of the hydrocarbons from the coal, additional solvent is added to agitate the drum mass and keep it up to temperature. Subsequently, the pressure is released to vaporize the solvent and at least a portion of the hydrocarbons extracted. The temperature of the mass in the drum is then raised under conditions required to crack the hydrocarbons in the drum and to produce, after subsequent stripping, a solid coke residue. The hydrocarbon products are removed and fractionated into several cuts, one of which is hydrotreated to form the required hydrogen-donor solvent while other fractions can be hydrotreated or hydrocracked to produce a synthetic crude product. The heaviest fraction can be used to produce ash-free coke especially adapted for hydrogen manufacture. The process can be made self-sufficient in hydrogen and furnishes as a by-product a solid carbonaceous material with a useful heating value.

  16. Renewable hydrogen production for fossil fuel processing

    SciTech Connect

    Greenbaum, E.

    1994-09-01

    The objective of this mission-oriented research program is the production of renewable hydrogen for fossil fuel processing. This program will build upon promising results that have been obtained in the Chemical Technology Division of Oak Ridge National Laboratory on the utilization of intact microalgae for photosynthetic water splitting. In this process, specially adapted algae are used to perform the light-activated cleavage of water into its elemental constituents, molecular hydrogen and oxygen. The great potential of hydrogen production by microalgal water splitting is predicated on quantitative measurement of their hydrogen-producing capability. These are: (1) the photosynthetic unit size of hydrogen production; (2) the turnover time of photosynthetic hydrogen production; (3) thermodynamic efficiencies of conversion of light energy into the Gibbs free energy of molecular hydrogen; (4) photosynthetic hydrogen production from sea water using marine algae; (5) the original development of an evacuated photobiological reactor for real-world engineering applications; (6) the potential for using modern methods of molecular biology and genetic engineering to maximize hydrogen production. The significance of each of these points in the context of a practical system for hydrogen production is discussed. This program will be enhanced by collaborative research between Oak Ridge National Laboratory and senior faculty members at Duke University, the University of Chicago, and Iowa State University. The special contribution that these organizations and faculty members will make is access to strains and mutants of unicellular algae that will potentially have useful properties for hydrogen production by microalgal water splitting.

  17. Electrocatalytic and fuel processing studies for portable fuel cells

    NASA Astrophysics Data System (ADS)

    Matter, Paul H.

    In the field of catalysis, the development of alternative catalysts for the oxygen reduction reaction (ORR) in Polymer Electrolyte Membrane Fuel Cell (PEMFC) cathodes has been an ongoing task for researchers over the past two decades. PEM fuel cells are considered to be potential replacements for internal combustion engines in automobiles, and their reduced emissions and better efficiency would have huge payoffs for our environment, and in reducing our nation's dependence on foreign oil. To date, PEMFC cathode over-potentials are still significant, and the only materials discovered to be highly active and stable catalysts in an acidic environment are platinum-based. Despite several major advances in recent years in reducing platinum loading in fuel cell electrodes, the high expense and low availability of platinum will hinder the large-scale commercialization of PEM fuel cells. The most hopeful advances being made in replacing platinum are related to pyrolyzed organic macrocycles with transition metal centers (such as Fe or Co porphyrins and phthalocyanines). Encouragingly, it has recently been discovered that active electrodes could be prepared by heat-treating metal and nitrogen precursors (not necessarily organic macrocycles) together in the presence of a carbon support. In the first study of this dissertation, catalysts for the Oxygen Reduction Reaction (ORR) were prepared by the pyrolysis of acetonitrile over various supports. The supports used included Vulcan Carbon, high purity alumina, silica, magnesia, and these same supports impregnated with Fe, Co, or Ni in the form of acetate salt. The catalysts were characterized by BET surface area analysis, BJH Pore Size Distribution (PSD), conductivity testing, Transmission Electron Microscopy (TEM), Temperature Programmed Oxidation (TPO), Thermo-Gravimetric Analysis (TGA), X-Ray Diffraction (XRD), X-ray Photo-electron Spectroscopy (XPS), Mossbauer Spectroscopy, Rotating Disk Electrode (RDE) half cell testing, and

  18. Solid oxide fuel cell process and apparatus

    DOEpatents

    Cooper, Matthew Ellis [Morgantown, WV; Bayless, David J [Athens, OH; Trembly, Jason P [Durham, NC

    2011-11-15

    Conveying gas containing sulfur through a sulfur tolerant planar solid oxide fuel cell (PSOFC) stack for sulfur scrubbing, followed by conveying the gas through a non-sulfur tolerant PSOFC stack. The sulfur tolerant PSOFC stack utilizes anode materials, such as LSV, that selectively convert H.sub.2S present in the fuel stream to other non-poisoning sulfur compounds. The remaining balance of gases remaining in the completely or near H.sub.2S-free exhaust fuel stream is then used as the fuel for the conventional PSOFC stack that is downstream of the sulfur-tolerant PSOFC. A broad range of fuels such as gasified coal, natural gas and reformed hydrocarbons are used to produce electricity.

  19. Design features and remote maintenance test results for equipment racks designed for reprocessing cell applications

    SciTech Connect

    Schrock, S.L.; Chesser, J.B.; Peishel, F.L.

    1989-01-01

    This paper describes a concept for equipment rack design and cell placement for highly radioactive process cells developed by the Consolidated Fuel Reprocessing Program (CFRP) at the Oak Ridge National Laboratory (ORNL). This concept takes advantage of the dexterity and mobility of advanced bridge-mounted, force-reflecting servomanipulators to minimize cell size and increase facility availability. Several prototype racks have been fabricated and maintenance demonstrations have been performed on equipment mounted on these racks. The results of these tests are also described in this paper. 3 refs., 6 figs.

  20. Renewable hydrogen production for fossil fuel processing

    SciTech Connect

    Greenbaum, E.; Lee, J.W.; Tevault, C.V.

    1995-06-01

    In the fundamental biological process of photosynthesis, atmospheric carbon dioxide is reduced to carbohydrate using water as the source of electrons with simultaneous evolution of molecular oxygen: H{sub 2}O + CO{sub 2} + light {yields} O{sub 2} + (CH{sub 2}O). It is well established that two light reactions, Photosystems I and II (PSI and PSII) working in series, are required to perform oxygenic photosynthesis. Experimental data supporting the two-light reaction model are based on the quantum requirement for complete photosynthesis, spectroscopy, and direct biochemical analysis. Some algae also have the capability to evolve molecular hydrogen in a reaction energized by the light reactions of photosynthesis. This process, now known as biophotolysis, can use water as the electron donor and lead to simultaneous evolution of molecular hydrogen and oxygen. In green algae, hydrogen evolution requires prior incubation under anaerobic conditions. Atmospheric oxygen inhibits hydrogen evolution and also represses the synthesis of hydrogenase enzyme. CO{sub 2} fixation competes with proton reduction for electrons relased from the photosystems. Interest in biophotolysis arises from both the questions that it raises concerning photosynthesis and its potential practical application as a process for converting solar energy to a non-carbon-based fuel. Prior data supported the requirement for both Photosystem I and Photosystem II in spanning the energy gap necessary for biophotolysis of water to oxygen and hydrogen. In this paper we report the at PSII alone is capable of driving sustained simultaneous photoevolution of molecular hydrogen and oxygen in an anaerobically adapted PSI-deficient strain of Chlamydomonas reinhardtii, mutant B4, and that CO{sub 2} competes as an electron acceptor.

  1. Asbestos hazard in the reprocessed textile industry

    SciTech Connect

    Quinn, M.M.; Kriebel, D.; Buiatti, E.; Paci, E.; Sini, S.; Vannucchi, G.; Zappa, M.

    1987-01-01

    Epidemiologic studies have identified an excess risk of lung cancer and mesothelioma among workers in the reprocessed textile industry in Prato, Italy. These studies suggested that there may have been asbestos hazard in this industry although exposure was not known to exist. An industrial hygiene investigation was conducted to determine whether there was previous or current asbestos exposure in the industry. Walk-through surveys, environmental sampling, process documentation, and management and worker interviews were conducted in 13 textile reprocessing establishments. Polypropylene bags that once contained asbestos were found in 2 of the 13. Asbestos bags were cut open and used to cover bales of rags which were then distributed throughout the world. Workers were exposed to asbestos while handling the bags which were contaminated with chrysotile, amosite, and crocidolite. Additional sources of asbestos exposure that may have existed in the past in the industry are also discussed.

  2. Fuel Quality/Processing Study. Volume I. Final report

    SciTech Connect

    O'Hara, J B; Bela, A; Jentz, N E; Syverson, H T; Klumpe, H W; Kessler, R E; Kotzot, H T; Loran, B I

    1981-04-01

    This report presents the results of the Fuel Quality/Processing Study project for production of gas turbine fuels. The objective was to provide a data base for establishing intelligent trade-off between advanced turbine technology and liquid fuel quality. Synthetic fuels to be emphasized include those derived from coal and shale. The intent is to use the data base produced to guide the development of specifications for future synthetic liquid fuels anticipated for use in the time period 1985-2000. It is also to be used as a basis for evaluating the value and benefits of federally sponsored R and D efforts in the field of advanced gas turbine technology. The project assessed relative fuel costs, quality and energy efficiency for a number of fuel sources and processing alternatives. An objective was to accelerate implementation of fuel-flexible combustors for industrial and utility stationary gas turbine systems. This is to be accomplished by generating and demonstrating the technology base for development of reliable gas turbine combustors capable of sustained environmentally acceptable operation when using minimally processed synthetic fuels. The key program results are summarized for the following subject areas: literature survey, on-site fuel pretreatment, existing refineries to upgrade fuels, new refineries to upgrade fuels, and environmental considerations. An inhouse linear programming model served as the basis for determining economic processing paths for the existing refineries and new refineries syncrude upgrading. This involved development of extensive input data comprised of fuel properties, yields, component blending characteristics, incremental capital and operating costs, feed and product costs. Economics are based on March 1980 price levels.

  3. Process for Generating Engine Fuel Consumption Map: Ricardo Cooled EGR Boost 24-bar Standard Car Engine Tier 2 Fuel

    EPA Pesticide Factsheets

    This document summarizes the process followed to utilize the fuel consumption map of a Ricardo modeled engine and vehicle fuel consumption data to generate a full engine fuel consumption map which can be used by EPA's ALPHA vehicle simulations.

  4. Fuel ethanol production: process design trends and integration opportunities.

    PubMed

    Cardona, Carlos A; Sánchez, Oscar J

    2007-09-01

    Current fuel ethanol research and development deals with process engineering trends for improving biotechnological production of ethanol. In this work, the key role that process design plays during the development of cost-effective technologies is recognized through the analysis of major trends in process synthesis, modeling, simulation and optimization related to ethanol production. Main directions in techno-economical evaluation of fuel ethanol processes are described as well as some prospecting configurations. The most promising alternatives for compensating ethanol production costs by the generation of valuable co-products are analyzed. Opportunities for integration of fuel ethanol production processes and their implications are underlined. Main ways of process intensification through reaction-reaction, reaction-separation and separation-separation processes are analyzed in the case of bioethanol production. Some examples of energy integration during ethanol production are also highlighted. Finally, some concluding considerations on current and future research tendencies in fuel ethanol production regarding process design and integration are presented.

  5. An assessment of the attractiveness of material associated with thorium/uranium and uranium closed fuel cycles from a safeguards perspective

    SciTech Connect

    Bathke, Charles Gary; Wallace, Richard K; Hase, Kevin R; Sleaford, Brad W; Ebbinghaus, Bartley B; Collins, Brian W; Bradley, Keith S; Prichard, Andrew W; Smith, Brian W

    2010-01-01

    This paper reports the continued evaluation of the attractiveness of materials mixtures containing special nuclear materials (SNM) associated with various proposed nuclear fuel cycles. Specifically, this paper examines two closed fuel cycles. The first fuel cycle examined is a thorium fuel cycle in which a pressurized heavy water reactor (PHWR) is fueled with mixtures of plutonium/thorium and {sup 233}U/thorium. The used fuel is then reprocessed using the THOREX process and the actinides are recycled. The second fuel cycle examined consists of conventional light water reactors (LWR) whose fuel is reprocessed for actinides that are then fed to and recycled until consumed in fast-spectrum reactors: fast reactors and accelerator driven systems (ADS). As reprocessing of LWR fuel has already been examined, this paper will focus on the reprocessing of the scheme's fast-spectrum reactors' fuel. This study will indicate what is required to render these materials as having low utility for use in nuclear weapons. Nevertheless, the results of this paper suggest that all reprocessing products evaluated so far need to be rigorously safeguarded and provided high levels of physical protection. These studies were performed at the request of the United States Department of Energy (DOE). The methodology and key findings will be presented.

  6. Reprocessing and reuse of urological armamentarium: How correct are we!

    PubMed Central

    Raval, Krutik Vipulbhai; Chaudhari, Rajeev; Khant, Shahil Rameshbhai; Joglekar, Omkar; Patel, Dipen

    2017-01-01

    Healthcare is expensive for a large proportion of the population in spite of high per capita income and good health insurance penetration. In an effort to reduce cost of the procedure, reprocessing of devices was started in the late 1970s. Reprocessing practice includes various measures such as proper cleaning, disinfection, and sterilization procedures. As reprocessing is aimed at reducing cost, there is a potential risk of compromising patient safety due to cross contamination after inadequate sterilization. There is also risk of performance alteration of urological reprocessed devices during sterilization/disinfection processing. Therefore, there is a need for formulating proper guidelines to decide methods of reprocessing for various urological equipment. There is also need to discuss the problematic areas that urologists face and to find their solutions. A PubMed search was made in September 2016, using key words “reprocessing of medical devices,” “Single Use Devices,” “methods of reprocessing of devices in clinical practice,” “use of formalin chamber,” “urological disposable sterilization,” etc., After excluding duplicates, all English articles were reviewed by title and abstract. Full texts of selected articles were obtained, and these articles were cross-referenced to find any other related articles. All the articles were reviewed. A product can be reused if it can be economically reprocessed with validated protocols with preservation of its function. There is no reason to discard it after one use. This practice is useful for controlling economics of a urological case and to reduce the financial burden. Current Food and Drug Administration guidelines are stringent. The contamination described to test the sterilization process in the suggested guidelines actually does never exist in clinical practice. Therefore, new guidelines considering the clinical practice scenario are desirable. PMID:28479760

  7. Full-scale experimental facility for the development technologies for the reprocessing of tritium contaminated light and heavy water wastes by CECE process and cryogenic distillation

    SciTech Connect

    Trenin, V.D.; Alekseev, I.A.; Karpov, S.P.; Bondarenko, S.D.; Vasyanina, T.V.; Konoplev, K.A.; Fedorchenko, O.A.; Uborski, V.V.; Voronina, T.

    1995-10-01

    The problem of the formation and accumulation of the tritiated heavy and light water wastes produced under operation of the various nuclear facilities is considered. It is shown that the tritium contaminated wastes may have a wide spectrum of isotope concentrations of H:D:T and correlation one with other. Reprocessing of these wastes is expensive matter due to the small tritium concentration respectfully to other hydrogen isotopes and as well as the small value of separation factor. It requires the development of the versatile technology. The description of the full scale experimental facility constructed at PNPI is given. 18 refs., 1 fig.

  8. Fuel quality/processing study. Volume 4: On site processing studies

    NASA Technical Reports Server (NTRS)

    Jones, G. E., Jr.; Cutrone, M.; Doering, H.; Hickey, J.

    1981-01-01

    Fuel treated at the turbine and the turbine exhaust gas processed at the turbine site are studied. Fuel treatments protect the turbine from contaminants or impurities either in the upgrading fuel as produced or picked up by the fuel during normal transportation. Exhaust gas treatments provide for the reduction of NOx and SOx to environmentally acceptable levels. The impact of fuel quality upon turbine maintenance and deterioration is considered. On site costs include not only the fuel treatment costs as such, but also incremental costs incurred by the turbine operator if a turbine fuel of low quality is not acceptably upgraded.

  9. Reprocessing technology development for irradiated beryllium

    SciTech Connect

    Kawamura, H.; Sakamoto, N.; Tatenuma, K.

    1995-09-01

    At present, beryllium is under consideration as a main candidate material for neutron multiplier and plasma facing material in a fusion reactor. Therefore, it is necessary to develop the beryllium reprocessing technology for effective resource use. And, we have proposed reprocessing technology development on irradiated beryllium used in a fusion reactor. The preliminary reprocessing tests were performed using un-irradiated and irradiated beryllium. At first, we performed beryllium separation tests using un-irradiated beryllium specimens. Un-irradiated beryllium with beryllium oxide which is a main impurity and some other impurities were heat-treated under chlorine gas flow diluted with Ar gas. As the results high purity beryllium chloride was obtained in high yield. And it appeared that beryllium oxide and some other impurities were removed as the unreactive matter, and the other chloride impurities were separated by the difference of sublimation temperature on beryllium chloride. Next, we performed some kinds of beryllium purification tests from beryllium chloride. And, metallic beryllium could be recovered from beryllium chloride by the reduction with dry process. In addition, as the results of separation and purification tests using irradiated beryllium specimens, it appeared that separation efficiency of Co-60 from beryllium was above 96%. It is considered that about 4% Co-60 was carried from irradiated beryllium specimen in the form of cobalt chloride. And removal efficiency of tritium from irradiated beryllium was above 95%.

  10. Nuclear fuel waste management and disposal concept: Report. Federal environmental assessment review process

    SciTech Connect

    1998-09-01

    The Canadian concept for disposing CANDU reactor waste or high-level nuclear wastes from reprocessing involves underground disposal in sealed containers emplaced in buffer-filled and sealed vaults 500--1,000 meters below ground, in plutonic rock of the Canadian Shield. This document presents the report of a panel whose mandate was to review this concept (rather than a specific disposal project at a specific site) along with a broad range of related policy issues, and to conduct that review in five provinces (including reviews with First Nations groups). It first outlines the review process and then describes the nature of the problem of nuclear waste management. It then presents an overview of the concept being reviewed, its implementation stages, performance assessment analyses performed on the concept, and implications of a facility based on that concept (health, environmental, social, transportation, economic). The fourth section examines the criteria by which the safety and acceptability of the concept should be evaluated. This is followed by a safety and acceptability evaluation from both technical and social perspectives. Section six proposes future steps for building and determining acceptability of the concept, including an Aboriginal participation process, creation of a Nuclear Fuel Waste Management Agency, and a public participation process. The final section discusses some issues outside the panel`s mandate, such as energy policy and renewable energy sources. Appendices include a chronology of panel activities, a review of radiation hazards, comparison between nuclear waste management and the management of other wastes, a review of other countries` approaches to long-term management of nuclear fuel wastes, and details of a siting process proposed by the panel.

  11. Systems and processes for conversion of ethylene feedstocks to hydrocarbon fuels

    DOEpatents

    Lilga, Michael A.; Hallen, Richard T.; Albrecht, Karl O.; Cooper, Alan R.; Frye, John G.; Ramasamy, Karthikeyan Kallupalayam

    2017-05-30

    Systems, processes, and catalysts are disclosed for obtaining fuel and fuel blends containing selected ratios of open-chain and closed-chain fuel-range hydrocarbons suitable for production of alternate fuels including gasolines, jet fuels, and diesel fuels. Fuel-range hydrocarbons may be derived from ethylene-containing feedstocks and ethanol-containing feedstocks.

  12. VIEW OF FECF HOT CELL OF FUEL STORAGE BUILDING (CPP603). ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF FECF HOT CELL OF FUEL STORAGE BUILDING (CPP-603). PHOTO TAKEN LOOKING NORHTWEST. INL PHOTO NUMBER HD-54-18-3. Mike Crane, Photographer, 8/2005 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  13. INTERIOR VIEW OF FUEL STORAGE BUILDING (CPP603) LOOKING SOUTHWEST SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW OF FUEL STORAGE BUILDING (CPP-603) LOOKING SOUTHWEST SHOWING STORAGE BASIN IN FOREGROUND, TRANSFER CRANE AND UNLOADER TO LEFT OF NORTH SIDE OF HOT CELL. INL PHOTO NUMBER NRTS-58-157. J. Anderson, Photographer, 1/15/1958 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  14. OBLIQUE PHOTO OF NORTHWEST CORNER OF FUEL STORAGE BUILDING (CPP603). ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OBLIQUE PHOTO OF NORTHWEST CORNER OF FUEL STORAGE BUILDING (CPP-603). PHOTO TAKEN LOOKING SOUTHEAST. INL PHOTO NUMBER HD-54-14-4. Mike Crane, Photographer, 8/2005 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  15. 0BLIQUE PHOTO OF EAST ELEVATION OF FUEL STORAGE BUILDING (CPP603). ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    0BLIQUE PHOTO OF EAST ELEVATION OF FUEL STORAGE BUILDING (CPP-603). PHOTO TAKEN LOOKING WEST. INL PHOTO NUMBER HD-54-15-1. Mike Crane, Photographer, 8/2005 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  16. OBLIQUE PHOTO OF NORTH ELEVATION OF FUEL STORAGE BUILDING (CPP603). ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OBLIQUE PHOTO OF NORTH ELEVATION OF FUEL STORAGE BUILDING (CPP-603). PHOTO TAKEN LOOKING SOUTH. INL PHOTO NUMBER HD-54-14-3. Mike Crane, Photographer, 8/2005 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  17. SIDING AND ROOF DETAILS OF FUEL STORAGE BUILDING (CPP603). INL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SIDING AND ROOF DETAILS OF FUEL STORAGE BUILDING (CPP-603). INL DRAWING NUMBER 200-0603-61-299-103033. ALTERNATE ID NUMBER 542-31-B-25. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  18. PLAN VIEW OF FUEL STORAGE BUILDING (CPP603) SHOWING STORAGE BASINS. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PLAN VIEW OF FUEL STORAGE BUILDING (CPP-603) SHOWING STORAGE BASINS. INL DRAWING NUMBER 200-0603-00-706-051285. ALTERNATE ID NUMBER CPP-D-1285. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  19. MISCELLANEOUS SECTIONS AND DETAILS OF FUEL STORAGE BUILDING (CPP603). INL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MISCELLANEOUS SECTIONS AND DETAILS OF FUEL STORAGE BUILDING (CPP-603). INL DRAWING NUMBER 200-0603-61-299-103032. ALTERNATE ID NUMBER 542-31-B-24. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  20. VIEW OF TRANSFER BASIN CORRIDOR OF FUEL STORAGE BUILDING (CPP603). ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF TRANSFER BASIN CORRIDOR OF FUEL STORAGE BUILDING (CPP-603). PHOTO TAKEN LOOKING NORTH. INL PHOTO NUMBER HD-54-17-2. Mike Crane, Photographer, 8/2005 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  1. WEST ELEVATION OF FUEL STORAGE BUILDING (CPP603). PHOTO TAKEN LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    WEST ELEVATION OF FUEL STORAGE BUILDING (CPP-603). PHOTO TAKEN LOOKING NORTHEAST. INL PHOTO NUMBER HD-54-20-3. Mike Crane, Photographer, 8/2005 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  2. NORTHERN PORTION OF WEST ELEVATION OF FUEL STORAGE BUILDING (CPP603). ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    NORTHERN PORTION OF WEST ELEVATION OF FUEL STORAGE BUILDING (CPP-603). PHOTO TAKEN LOOKING SOUTHEAST. INL PHOTO NUMBER HD-54-20-2. Mike Crane, Photographer, 8/2005 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  3. WEST ELEVATION OF FUEL STORAGE BUILDING (CPP603). PHOTO TAKEN LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    WEST ELEVATION OF FUEL STORAGE BUILDING (CPP-603). PHOTO TAKEN LOOKING NORTHEAST. INL PHOTO NUMBER HD-54-20-1. Mike Crane, Photographer, 8/2005 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  4. INTERIOR VIEW OF FUEL STORAGE BUILDING (CPP603) SHOWING CRANE ASSEMBLY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW OF FUEL STORAGE BUILDING (CPP-603) SHOWING CRANE ASSEMBLY FOR TRANSFER PIT. INL PHOTO NUMBER NRTS-51-2404. Unknown Photographer, 5/31/1951 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  5. NORTHERN PORTION OF WEST ELEVATION OF FUEL STORAGE BUILDING (CPP603). ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    NORTHERN PORTION OF WEST ELEVATION OF FUEL STORAGE BUILDING (CPP-603). PHOTO TAKEN LOOKING NORTHEAST. INL PHOTO NUMBER HD-54-20-4. Mike Crane, Photographer, 8/2005 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  6. WEST ELEVATIONS AND SECTIONS OF FUEL STORAGE BUILDING (CPP603). INL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    WEST ELEVATIONS AND SECTIONS OF FUEL STORAGE BUILDING (CPP-603). INL DRAWING NUMBER 200-063-61-299-103031. ALTERNATE ID NUMBER 542-31-B-23. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  7. EAST/WEST TRUCK BAY AREA OF TRANSFER BASIN CORRIDOR OF FUEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EAST/WEST TRUCK BAY AREA OF TRANSFER BASIN CORRIDOR OF FUEL STORAGE BUILDING (CPP-603). PHOTO TAKEN LOOKING NORTHWEST. INL PHOTO NUMBER HD-54-19-1. Mike Crane, Photographer, 8/2005 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  8. Fuel quality-processing study. Volume 2: Literature survey

    NASA Technical Reports Server (NTRS)

    Jones, G. E., Jr.; Amero, R.; Murthy, B.; Cutrone, M.

    1981-01-01

    The validity of initial assumptions about raw materials choices and relevant upgrading processing options was confirmed. The literature survey also served to define the on-site (at the turbine location) options for fuel treatment and exhaust gas treatment. The literature survey also contains a substantial compilation of specification and physical property information about liquid fuel products relevant to industrial gas turbines.

  9. Renovation of CPF (Chemical Processing Facility) for Development of Advanced Fast Reactor Fuel Cycle System

    SciTech Connect

    Shinichi Aose; Takafumi Kitajima; Kouji Ogasawara; Kazunori Nomura; Shigehiko Miyachi; Yoshiaki Ichige; Tadahiro Shinozaki; Shinichi Ohuchi

    2008-01-15

    CPF (Chemical Processing Facility) was constructed at Nuclear Fuel Cycle Engineering Laboratories of JAEA (Japan Atomic Energy Agency) in 1980 as a basic research field where spent fuel pins from fast reactor (FR) and high level liquid waste can be dealt with. The renovation consists of remodeling of the CA-3 cell and the laboratory A, installation of globe boxes, hoods and analytical equipments to the laboratory C and the analytical laboratory. Also maintenance equipments in the CA-5 cell which had been out of order were repaired. The CA-3 cell is the main cell in which important equipments such as a dissolver, a clarifier and extractors are installed for carrying out the hot test using the irradiated FR fuel. Since the CPF had specialized originally in the research function for the Purex process, it was desired to execute the research and development of such new, various reprocessing processes. Formerly, equipments were arranged in wide space and connected with not only each other but also with utility supply system mainly by fixed stainless steel pipes. It caused shortage of operation space in flexibility for basic experimental study. Old equipments in the CA-3 cell including vessels and pipes were removed after successful decontamination, and new equipments were installed conformably to the new design. For the purpose of easy installation and rearranging the experimental equipments, equipments are basically connected by flexible pipes. Since dissolver is able to be easily replaced, various dissolution experiments is conducted. Insoluble residue generated by dissolution of spent fuel is clarified by centrifugal. This small apparatus is effective to space-saving. Mini mixer settlers or centrifugal contactors are put on to the prescribed limited space in front of the backside wall. Fresh reagents such as solvent, scrubbing and stripping solution are continuously fed from the laboratory A to the extractor by the reagent supply system with semi-automatic observation

  10. Crystal chemistry of sodium zirconium phosphate based simulated ceramic waste forms of effluent cations (Ba(2+), Sn(4+), Fe(3+), Cr(3+), Ni(2+) and Si(4+)) from light water reactor fuel reprocessing plants.

    PubMed

    Shrivastava, O P; Chourasia, Rashmi

    2008-05-01

    A novel concept of immobilization of light water reactor (LWR) fuel reprocessing waste effluent through interaction with sodium zirconium phosphate (NZP) has been established. Such conversion utilizes waste materials like zirconium and nickel alloys, stainless steel, spent solvent tri-butyl phosphate and concentrated solution of NaNO(3). The resultant multi component NZP material is a physically and chemically stable single phase crystalline product having good mechanical strength. The NZP matrix can also incorporate all types of fission product cations in a stable crystalline lattice structure; therefore, the resultant solid solutions deserve quantification of crystallographic data. In this communication, crystal chemistry of the two types of simulated waste forms (type I-Na(1.49)Zr(1.56)Sn(0.02)Fe(0).(28)Cr(0.07)Ni(0.07)P(3)O(12) and type II-Na(1.35)Ba(0.14)Zr(1.56)Sn(0.02)Fe(0).(28)Cr(0.07)Ni(0.07)P(2.86)Si(0.14)O(12)) has been investigated using General Structure Analysis System (GSAS) programming of the X-ray powder diffraction data. About 4001 data points of each have been subjected to Rietveld analysis to arrive at a satisfactory structural convergence of Rietveld parameters; R-pattern (R(p))=0.0821, R-weighted pattern (R(wp))=0.1266 for type I and R(p)=0.0686, R(wp)=0.0910 for type II. The structure of type I and type II waste forms consist of ZrO(6) octahedra and PO(4) tetrahedra linked by the corners to form a three-dimensional network. Each phosphate group is on a two-fold rotation axis and is linked to four ZrO(6) octahedra while zirconium octahedra lies on a three-fold rotation axis and is connected to six PO(4) tetrahedra. Though the expansion along c-axis and shrinkage along a-axis with slight distortion of bond angles in the synthesized crystal indicate the flexibility of the structure, the waste forms are basically of NZP structure. Morphological examination by SEM reveals that the size of almost rectangular parallelepiped crystallites varies

  11. Kinetic and thermodynamic bases to resolve issues regarding conditioning of uranium metal fuels

    SciTech Connect

    Johnson, A.B.; Ballinger, R.G.; Simpson, K.A.

    1994-12-01

    Numerous uranium - bearing fuels are corroding in fuel storage pools in several countries. At facilities where reprocessing is no longer available, dry storage is being evaluated to preclude aqueous corrosion that is ongoing. It is essential that thermodynamic and kinetic factors are accounted for in transitions of corroding uranium-bearing fuels to dry storage. This paper addresses a process that has been proposed to move Hanford N-Reactor fuel from wet storage to dry storage.

  12. Treatment of oxide spent fuel using the lithium reduction process

    SciTech Connect

    Karell, E.J.; Pierce, R.D.; Mulcahey, T.P.

    1996-05-01

    The wide variety in the composition of DOE spent nuclear fuel complicates its long-term disposition because of the potential requirement to individually qualify each type of fuel for repository disposal. Argonne National Laboratory (ANL) has developed the electrometallurgical treatment technique to convert all of these spent fuel types into a single set of disposal forms, simplifying the qualification process. While metallic fuels can be directly processed using the electrometallurgical treatment technique, oxide fuels must first be reduced to the metallic form. The lithium reduction process accomplishes this pretreatment. In the lithium process the oxide components of the fuel are reduced using lithium at 650 C in the presence of molten LiCl, yielding the corresponding metals and Li{sub 2}O. The reduced metal components are then separated from the LiCl salt phase and become the feed material for electrometallurgical treatment. A demonstration test of the lithium reduction process was successfully conducted using a 10-kg batch of simulated oxide spent fuel and engineering-scale equipment specifically constructed for that purpose. This paper describes the lithium process, the equipment used in the demonstration test, and the results of the demonstration test.

  13. Steps of Reprocessing and Equipments

    PubMed Central

    Lee, Yong Kook

    2013-01-01

    With the increasing interest in endoscopy and the rising number of endoscopic examinations in hospitals, the importance of endoscopic reprocessing is also increasing. Cure facilities that are understaffed and ill-equipped are trying to cope with the problems of insufficient cleaning and high infection risks. To prevent endoscopy-associated infection, the endoscope cleaning, and disinfection guidelines prepared by the Korean Society of Gastrointestinal Endoscopy must be followed. In this review, the steps of endoscopic reprocessing and the equipments required in each step are discussed. PMID:23767039

  14. Vitrification of IFR and MSBR halide salt reprocessing wastes

    SciTech Connect

    Siemer, D.D.

    2013-07-01

    Both of the genuinely sustainable (breeder) nuclear fuel cycles (IFR - Integral Fast Reactor - and MSBR - Molten Salt Breeder Reactor -) studied by the USA's national laboratories would generate high level reprocessing waste (HLRW) streams consisting of a relatively small amount ( about 4 mole %) of fission product halide (chloride or fluoride) salts in a matrix comprised primarily (about 95 mole %) of non radioactive alkali metal halide salts. Because leach resistant glasses cannot accommodate much of any of the halides, most of the treatment scenarios previously envisioned for such HLRW have assumed a monolithic waste form comprised of a synthetic analog of an insoluble crystalline halide mineral. In practice, this translates to making a 'substituted' sodalite ('Ceramic Waste Form') of the IFR's chloride salt-based wastes and fluoroapatite of the MSBR's fluoride salt-based wastes. This paper discusses my experimental studies of an alternative waste management scenario for both fuel cycles that would separate/recycle the waste's halide and immobilize everything else in iron phosphate (Fe-P) glass. It will describe both how the work was done and what its results indicate about how a treatment process for both of those wastes should be implemented (fluoride and chloride behave differently). In either case, this scenario's primary advantages include much higher waste loadings, much lower overall cost, and the generation of a product (glass) that is more consistent with current waste management practices. (author)

  15. Reprocessing of used tires into activated carbon and other products

    SciTech Connect

    Teng, H.; Serio, M.A.; Wojtowicz, M.A.; Bassilakis, R.; Solomon, P.R.

    1995-09-01

    Landfilling used tires which are generated each year in the US is increasingly becoming an unacceptable solution. A better approach, from an environmental and economic standpoint, is to thermally reprocess the tires into valuable products such as activated carbon, other solid carbon forms (carbon black, graphite, and carbon fibers), and liquid fuels. In this study, high surface area activated carbons (> 800 m{sup 2}/g solid product) were produced in relatively high yields by pyrolysis of tires at up to 900 C, followed by activation in CO{sub 2} at the same temperature. The surface areas of these materials are comparable with those of commercial activated carbons. The efficiency of the activation process (gain in specific surface area/loss in mass) was greatest (up to 138 m{sup 2}/g original tire) when large pieces of tire material were used ({approximately} 170 mg). Oxygen pretreatment of tires was found to enhance both the yield and the surface area of the carbon product. High-pressure treatment of tires at low temperatures (< 400 C) is an alternative approach if the recovery of carbon black or fuel oils is the primary objective.

  16. Repository disposal requirements for commercial transuranic wastes (generated without reprocessing)

    SciTech Connect

    Daling, P.M.; Ludwick, J.D.; Mellinger, G.B.; McKee, R.W.

    1986-06-01

    This report forms a preliminary planning basis for disposal of commercial transuranic (TRU) wastes in a geologic repository. Because of the unlikely prospects for commercial spent nuclear fuel reprocessing in the near-term, this report focuses on TRU wastes generated in a once-through nuclear fuel cycle. The four main objectives of this study were to: develop estimates of the current inventories, projected generation rates, and characteristics of commercial TRU wastes; develop proposed acceptance requirements for TRU wastes forms and waste canisters that ensure a safe and effective disposal system; develop certification procedures and processing requirements that ensure that TRU wastes delivered to a repository for disposal meet all applicable waste acceptance requirements; and identify alternative conceptual strategies for treatment and certification of commercial TRU first objective was accomplished through a survey of commercial producers of TRU wastes. The TRU waste acceptance and certification requirements that were developed were based on regulatory requirements, information in the literature, and from similar requirements already established for disposal of defense TRU wastes in the Waste Isolation Pilot Plant (WIPP) which were adapted, where necessary, to disposal of commercial TRU wastes. The results of the TRU waste-producer survey indicated that there were a relatively large number of producers of small quantities of TRU wastes.

  17. High-level disinfection, sterilization, and antisepsis: current issues in reprocessing medical and surgical instruments.

    PubMed

    Seavey, Rose

    2013-05-01

    Technology is rapidly changing many aspects of health care. The intricate design of instruments, the configuration of instrument trays, and evidence-based practice have resulted in the need for complicated and specific reprocessing recommendations from instrument manufacturers. Patient safety depends on instruments that are appropriately cared for and adequately reprocessed. This article covers current issues that sterile processing and operating room professionals must deal with regarding reprocessing of medical and surgical instruments.

  18. Integrated coke, asphalt and jet fuel production process and apparatus

    DOEpatents

    Shang, Jer Y.

    1991-01-01

    A process and apparatus for the production of coke, asphalt and jet fuel m a feed of fossil fuels containing volatile carbon compounds therein is disclosed. The process includes the steps of pyrolyzing the feed in an entrained bed pyrolyzing means, separating the volatile pyrolysis products from the solid pyrolysis products removing at least one coke from the solid pyrolysis products, fractionating the volatile pyrolysis products to produce an overhead stream and a bottom stream which is useful as asphalt for road pavement, condensing the overhead stream to produce a condensed liquid fraction and a noncondensable, gaseous fraction, and removing water from the condensed liquid fraction to produce a jet fuel-containing product. The disclosed apparatus is useful for practicing the foregoing process. the process provides a useful method of mass producing and jet fuels from materials such as coal, oil shale and tar sands.

  19. Galvanic cell for processing of used nuclear fuel

    DOEpatents

    Garcia-Diaz, Brenda L.; Martinez-Rodriguez, Michael J.; Gray, Joshua R.; Olson, Luke C.

    2017-02-07

    A galvanic cell and methods of using the galvanic cell is described for the recovery of uranium from used nuclear fuel according to an electrofluorination process. The galvanic cell requires no input energy and can utilize relatively benign gaseous fluorinating agents. Uranium can be recovered from used nuclear fuel in the form of gaseous uranium compound such as uranium hexafluoride, which can then be converted to metallic uranium or UO.sub.2 and processed according to known methodology to form a useful product, e.g., fuel pellets for use in a commercial energy production system.

  20. Electrochemical fluorination for processing of used nuclear fuel

    DOEpatents

    Garcia-Diaz, Brenda L.; Martinez-Rodriguez, Michael J.; Gray, Joshua R.; Olson, Luke C.

    2016-07-05

    A galvanic cell and methods of using the galvanic cell is described for the recovery of uranium from used nuclear fuel according to an electrofluorination process. The galvanic cell requires no input energy and can utilize relatively benign gaseous fluorinating agents. Uranium can be recovered from used nuclear fuel in the form of gaseous uranium compound such as uranium hexafluoride, which can then be converted to metallic uranium or UO.sub.2 and processed according to known methodology to form a useful product, e.g., fuel pellets for use in a commercial energy production system.

  1. Synergize fuel and petrochemical processing plans with catalytic reforming

    SciTech Connect

    1997-03-01

    Depending on the market, refiner`s plans to produce clean fuels and higher value petrochemicals will weigh heavily on the catalytic reformer`s flexibility. It seems that as soon as a timely article related to catalytic reforming operations is published, a new {open_quotes}boutique{close_quotes} gasoline fuel specification is slapped on to existing fuel standards, affecting reformer operations and processing objectives. Just as importantly, the petrochemical market (such as aromatics) that refiners are targeting, can be very fickle. That`s why process engineers have endeavored to maintain an awareness of the flexibility that technology suppliers are building into modern catalytic reformers.

  2. Rethinking nuclear fuel recycling.

    PubMed

    von Hippel, Frank N

    2008-05-01

    Spent nuclear fuel contains plutonium which can be extracted and used in new fuel. To reduce the amount of long-lived radioactive waste, the U.S. Department of Energy has proposed reprocessing spent fuel in this way and then "burning" the plutonium in special reactors. But reprocesssing is very expensive. Also, spent fuel emits lethal radiation, whereas separated plutonium can be handled easily. So reprocessing invites the possibility that terrorists might steal plutonium and construct an atom bormb. The authors argue against reprocessing and for storing the waste in casks until an underground repository is ready.

  3. Distillate fuel-oil processing for phosphoric acid fuel-cell power plants

    SciTech Connect

    Ushiba, K. K.

    1980-02-01

    The current efforts to develop distillate oil-steam reforming processes are reviewed, and the applicability of these processes for integration with the fuel cell are discussed. The development efforts can be grouped into the following processing approaches: high-temperature steam reforming (HTSR); autothermal reforming (ATR); autothermal gasification (AG); and ultra desulfurization followed by steam reforming. Sulfur in the feed is a key problem in the process development. A majority of the developers consider sulfur as an unavoidable contaminant of distillate fuel and are aiming to cope with it by making the process sulfur-tolerant. In the HTSR development, the calcium aluminate catalyst developed by Toyo Engineering represents the state of the art. United Technology (UTC), Engelhard, and Jet Propulsion Laboratory (JPL) are also involved in the HTSR research. The ATR of distillate fuel is investigated by UTC and JPL. The autothermal gasification (AG) of distillate fuel is being investigated by Engelhard and Siemens AG. As in the ATR, the fuel is catalytically gasified utilizing the heat generated by in situ partial combustion of feed, however, the goal of the AG is to accomplish the initial breakdown of the feed into light gases and not to achieve complete conversion to CO and H/sub 2/. For the fuel-cell integration, a secondary reforming of the light gases from the AG step is required. Engelhard is currently testing a system in which the effluent from the AG section enters the steam-reforming section, all housed in a single vessel. (WHK)

  4. Synthetic fuel formulation and process for producing the same

    SciTech Connect

    Burke, C.L.

    1981-05-05

    A synthetic fuel formulation is disclosed, together with a process of producing such synthetic fuel. Based on its total weight, the fuel is comprised of approximately fifty to about seventy-five percent of an aliphatic hydrocarbon alcohol containing two to eleven carbon atoms, about five to twelve percent water, approximately two or twenty weight percent of a solvent for the alcohol, and about one to about seven weight percent of a hydrocarbon glycol, acetone, and methyl ethyl ketone. Optional ingredients may also be included, such as antirust and anti-foaming agents, as well as an agent to increase the storage life of the fuel. To produce such synthetic fuel, the foregoing ingredients are mixed sequentially, starting with the alcohol and adding thereto the solvent, acetone, optional agents if utilized, methyl ethyl ketone, the glycol, and water.

  5. IFR fuel cycle process equipment design environment and objectives

    SciTech Connect

    Rigg, R.H.

    1993-03-01

    Argonne National laboratory (ANL) is refurbishing the hot cell facility originally constructed with the EBR-II reactor. When refurbishment is complete, the facility win demonstrate the complete fuel cycle for current generation high burnup metallic fuel elements. These are sodium bonded, stainless steel clad fuel pins of U-Zr or U-Pu-Zr composition typical of the fuel type proposed for a future Integral Fast Reactor (IFR) design. To the extent possible, the process equipment is being built at full commercial scale, and the facility is being modified to incorporate current DOE facility design requirements and modem remote maintenance principles. The current regulatory and safety environment has affected the design of the fuel fabrication equipment, most of which will be described in greater detail in subsequent papers in this session.

  6. IFR fuel cycle process equipment design environment and objectives

    SciTech Connect

    Rigg, R.H.

    1993-01-01

    Argonne National laboratory (ANL) is refurbishing the hot cell facility originally constructed with the EBR-II reactor. When refurbishment is complete, the facility win demonstrate the complete fuel cycle for current generation high burnup metallic fuel elements. These are sodium bonded, stainless steel clad fuel pins of U-Zr or U-Pu-Zr composition typical of the fuel type proposed for a future Integral Fast Reactor (IFR) design. To the extent possible, the process equipment is being built at full commercial scale, and the facility is being modified to incorporate current DOE facility design requirements and modem remote maintenance principles. The current regulatory and safety environment has affected the design of the fuel fabrication equipment, most of which will be described in greater detail in subsequent papers in this session.

  7. Disposable Bronchoscope Model for Simulating Endoscopic Reprocessing and Surveillance Cultures.

    PubMed

    Yassin, Mohamed H; Hariri, Rahman; Hamad, Yasir; Ferrelli, Juliet; McKibben, Leeanna; Doi, Yohei

    2017-02-01

    BACKGROUND Endoscope-associated infections are reported despite following proper reprocessing methods. Microbiological testing can confirm the adequacy of endoscope reprocessing. Multiple controversies related to the method and interpretation of microbiological testing cultures have arisen that make their routine performance a complex target. OBJECTIVE We conducted a pilot study using disposable bronchoscopes (DBs) to simulate different reprocessing times and soaking times and to compare high-level disinfection versus ethylene oxide sterilization. We also reviewed the time to reprocessing and duration of the procedures. METHODS Bronchoscopes were chosen because an alternative disposable scope is commercially available and because bronchoscopes are more prone to delays in processing. Disposable bronchoscopes were contaminated using a liquid bacterial suspension and were then incubated for 1-4 hours. Standard processing and high-level disinfection were performed on 36 endoscopes. Ethylene oxide sterilization was performed on 21 endoscopes. Endoscope cultures were performed using the standard "brush, flush, brush" technique. RESULTS After brushing was performed, a final water-flush culture procedure was the most effective method of detecting bacterial persistence on the disposable scopes. Klebsiella pneumoniae was the most commonly recovered organism after reprocessing. Ethylene oxide sterilization did not result in total elimination of viable bacteria. CONCLUSION Routine endoscopy cultures may be required to assess the adequacy of endoscopic processing. Infect Control Hosp Epidemiol 2017;38:136-142.

  8. Role of pyro-chemical processes in advanced fuel cycles

    NASA Astrophysics Data System (ADS)

    Nawada, Hosadu Parameswara; Fukuda, Kosaku

    2005-02-01

    Partitioning and Transmutation (P&T) of Minor Actinides (MAs) and Long-Lived Fission Products (LLFP) arising out of the back-end of the fuel cycle would be one of the key-steps in any future sustainable nuclear fuel cycle. Pyro-chemical separation methods would form a critical stage of P&T by recovering long-lived elements and thus reducing the environmental impact by the back-end of the fuel-cycle. This paper attempts to overview global developments of pyro-chemical process that are envisaged in advanced nuclear fuel cycles. Research and development needs for molten-salt electro-refining as well as molten salt extraction process that are foreseen as partitioning methods for spent nuclear fuels such as oxide, metal and nitride fuels from thermal or fast reactors; high level liquid waste from back-end fuel cycle as well as targets from sub-critical Accelerator Driven Sub-critical reactors would be addressed. The role of high temperature thermodynamic data of minor actinides in defining efficiency of recovery or separation of minor actinides from other fission products such as lanthanides will also be illustrated. In addition, the necessity for determination of accurate high temperature thermodynamic data of minor actinides would be discussed.

  9. Separation of Plutonium from Irradiated Fuels and Targets

    SciTech Connect

    Gray, Leonard W.; Holliday, Kiel S.; Murray, Alice; Thompson, Major; Thorp, Donald T.; Yarbro, Stephen; Venetz, Theodore J.

    2015-09-30

    Spent nuclear fuel from power production reactors contains moderate amounts of transuranium (TRU) actinides and fission products in addition to the still slightly enriched uranium. Originally, nuclear technology was developed to chemically separate and recover fissionable plutonium from irradiated nuclear fuel for military purposes. Military plutonium separations had essentially ceased by the mid-1990s. Reprocessing, however, can serve multiple purposes, and the relative importance has changed over time. In the 1960’s the vision of the introduction of plutonium-fueled fast-neutron breeder reactors drove the civilian separation of plutonium. More recently, reprocessing has been regarded as a means to facilitate the disposal of high-level nuclear waste, and thus requires development of radically different technical approaches. In the last decade or so, the principal reason for reprocessing has shifted to spent power reactor fuel being reprocessed (1) so that unused uranium and plutonium being recycled reduce the volume, gaining some 25% to 30% more energy from the original uranium in the process and thus contributing to energy security and (2) to reduce the volume and radioactivity of the waste by recovering all long-lived actinides and fission products followed by recycling them in fast reactors where they are transmuted to short-lived fission products; this reduces the volume to about 20%, reduces the long-term radioactivity level in the high-level waste, and complicates the possibility of the plutonium being diverted from civil use – thereby increasing the proliferation resistance of the fuel cycle. In general, reprocessing schemes can be divided into two large categories: aqueous/hydrometallurgical systems, and pyrochemical/pyrometallurgical systems. Worldwide processing schemes are dominated by the aqueous (hydrometallurgical) systems. This document provides a historical review of both categories of reprocessing.

  10. Process of producing liquid hydrocarbon fuels from biomass

    DOEpatents

    Kuester, James L.

    1987-07-07

    A continuous thermochemical indirect liquefaction process to convert various biomass materials into diesel-type transportation fuels which fuels are compatible with current engine designs and distribution systems comprising feeding said biomass into a circulating solid fluidized bed gasification system to produce a synthesis gas containing olefins, hydrogen and carbon monoxide and thereafter introducing the synthesis gas into a catalytic liquefaction system to convert the synthesis gas into liquid hydrocarbon fuel consisting essentially of C.sub.7 -C.sub.17 paraffinic hydrocarbons having cetane indices of 50+.

  11. Process of producing liquid hydrocarbon fuels from biomass

    DOEpatents

    Kuester, J.L.

    1987-07-07

    A continuous thermochemical indirect liquefaction process is described to convert various biomass materials into diesel-type transportation fuels which fuels are compatible with current engine designs and distribution systems comprising feeding said biomass into a circulating solid fluidized bed gasification system to produce a synthesis gas containing olefins, hydrogen and carbon monoxide and thereafter introducing the synthesis gas into a catalytic liquefaction system to convert the synthesis gas into liquid hydrocarbon fuel consisting essentially of C[sub 7]-C[sub 17] paraffinic hydrocarbons having cetane indices of 50+. 1 fig.

  12. Optimum catalytic process for alcohol fuels from syngas

    SciTech Connect

    Not Available

    1990-04-28

    The objectives of this contract are to discover and evaluate the catalytic properties of novel homogeneous, heterogeneous, or combination catalytic systems for the production of alcohol fuel extenders from syngas, to evaluate analytically and on the bench scale novel reactor concepts for use in converting syngas to liquid fuel products, and to develop on the bench scale the best combination of chemistry, reactor, and total process configuration to achieve the minimum product cost for conversion of syngas to liquid fuel products. Methanol production and heterogeneous catalysis utilizing transition elements supported on metal oxides with spinel structure are discussed. 12 figs., 16 tabs.

  13. MOPITT V5 reprocessing

    Atmospheric Science Data Center

    2013-08-06

    ... period, MOPITT SIPS personnel became aware of several minor processing problems.   First, a software module called the ... believes these technical problems would only concern a small number of MOPITT data users, these issues could conceivably cause larger ...

  14. Analysis of the ATR fuel element swaging process

    SciTech Connect

    Richins, W.D.; Miller, G.K.

    1995-12-01

    This report documents a detailed evaluation of the swaging process used to connect fuel plates to side plates in Advanced Test Reactor (ATR) fuel elements. The swaging is a mechanical process that begins with fitting a fuel plate into grooves in the side plates. Once a fuel plate is positioned, a lip on each of two side plate grooves is pressed into the fuel plate using swaging wheels to form the joints. Each connection must have a specified strength (measured in terms, of a pullout force capacity) to assure that these joints do not fail during reactor operation. The purpose of this study is to analyze the swaging process and associated procedural controls, and to provide recommendations to assure that the manufacturing process produces swaged connections that meet the minimum strength requirement. The current fuel element manufacturer, Babcock and Wilcox (B&W) of Lynchburg, Virginia, follows established procedures that include quality inspections and process controls in swaging these connections. The procedures have been approved by Lockheed Martin Idaho Technologies and are designed to assure repeatability of the process and structural integrity of each joint. Prior to July 1994, ATR fuel elements were placed in the Hydraulic Test Facility (HTF) at the Idaho National Engineering Laboratory (AGNAIL), Test Reactor Area (TRA) for application of Boehmite (an aluminum oxide) film and for checking structural integrity before placement of the elements into the ATR. The results presented in this report demonstrate that the pullout strength of the swaged connections is assured by the current manufacturing process (with several recommended enhancements) without the need for- testing each element in the HTF.

  15. ORNL experience and perspectives related to processing of thorium and 233U for nuclear fuel

    SciTech Connect

    Croff, Allen G.; Collins, Emory D.; Del Cul, G. D.; Wymer, R. G.; Krichinsky, Alan M.; Spencer, B. B.; Patton, Brad D.

    2016-05-01

    Thorium-based nuclear fuel cycles have received renewed attention in both research and public circles since about the year 2000. Much of the attention has been focused on nuclear fission energy production that utilizes thorium as a fertile element for producing fissionable 233U for recycle in thermal reactors, fast reactors, or externally driven systems. Here, lesser attention has been paid to other fuel cycle operations that are necessary for implementation of a sustainable thorium-based fuel cycle such as reprocessing and fabrication of recycle fuels containing 233U.

  16. ORNL experience and perspectives related to processing of thorium and 233U for nuclear fuel

    SciTech Connect

    Croff, Allen G.; Collins, Emory D.; Del Cul, G. D.; Wymer, R. G.; Krichinsky, Alan M.; Spencer, B. B.; Patton, Brad D.

    2016-05-01

    Thorium-based nuclear fuel cycles have received renewed attention in both research and public circles since about the year 2000. Much of the attention has been focused on nuclear fission energy production that utilizes thorium as a fertile element for producing fissionable 233U for recycle in thermal reactors, fast reactors, or externally driven systems. Here, lesser attention has been paid to other fuel cycle operations that are necessary for implementation of a sustainable thorium-based fuel cycle such as reprocessing and fabrication of recycle fuels containing 233U.

  17. Multivariate analysis of gamma spectra to characterize used nuclear fuel

    NASA Astrophysics Data System (ADS)

    Coble, Jamie; Orton, Christopher; Schwantes, Jon

    2017-04-01

    The Multi-Isotope Process (MIP) Monitor provides an efficient means to monitor the process conditions in used nuclear fuel reprocessing facilities to support process verification and validation. The MIP Monitor applies multivariate analysis to gamma spectroscopy of key stages in the reprocessing stream in order to detect small changes in the gamma spectrum, which may indicate changes in process conditions. This research extends the MIP Monitor by characterizing a used fuel sample after initial dissolution according to the type of reactor of origin (pressurized or boiling water reactor; PWR and BWR, respectively), initial enrichment, burn up, and cooling time. Simulated gamma spectra were used to develop and test three fuel characterization algorithms. The classification and estimation models employed are based on the partial least squares regression (PLS) algorithm. A PLS discriminate analysis model was developed which perfectly classified reactor type for the three PWR and three BWR reactor designs studied. Locally weighted PLS models were fitted on-the-fly to estimate the remaining fuel characteristics. For the simulated gamma spectra considered, burn up was predicted with 0.1% root mean squared percent error (RMSPE) and both cooling time and initial enrichment with approximately 2% RMSPE. This approach to automated fuel characterization can be used to independently verify operator declarations of used fuel characteristics and to inform the MIP Monitor anomaly detection routines at later stages of the fuel reprocessing stream to improve sensitivity to changes in operational parameters that may indicate issues with operational control or malicious activities.

  18. Microwave Processing of Simulated Advanced Nuclear Fuel Pellets

    SciTech Connect

    D.E. Clark; D.C. Folz

    2010-08-29

    Throughout the three-year project funded by the Department of Energy (DOE) and lead by Virginia Tech (VT), project tasks were modified by consensus to fit the changing needs of the DOE with respect to developing new inert matrix fuel processing techniques. The focus throughout the project was on the use of microwave energy to sinter fully stabilized zirconia pellets using microwave energy and to evaluate the effectiveness of techniques that were developed. Additionally, the research team was to propose fundamental concepts as to processing radioactive fuels based on the effectiveness of the microwave process in sintering the simulated matrix material.

  19. Adverse staff health outcomes associated with endoscope reprocessing.

    PubMed

    Gutterman, Elane; Jorgensen, Lindsay; Mitchell, Amber; Fua, Sherry

    2013-01-01

    There are occupational challenges associated with cleaning, disinfecting, storing, and transporting flexible endoscopes. Although the Occupational Safety and Health Administration (OSHA) has set standards to protect the safety of health workers in the United States, the standards are not specific to endoscope reprocessing, and the general standards that are in place are not fully implemented. Furthermore, adverse staff outcomes may not be fully preventable. To assess the evidence for adverse outcomes in staff associated with endoscope reprocessing, a literature review was performed in the PubMed database for articles on this topic published between Jan. 1, 2007 and March 7, 2012. Eight studies were identified, mainly European, which reported numerous adverse outcomes to healthcare personnel associated with endoscope reprocessing including respiratory ailments and physical discomfort. More scientifically rigorous studies are required to comprehensively describe adverse health outcomes in personnel engaged in reprocessing, particularly in the United States, and examine whether increased automation of the reprocessing process leads to decreased adverse health outcomes for staff.

  20. Radionuclide speciation in effluent from La Hague reprocessing plant in France.

    PubMed

    Salbu, B; Skipperud, L; Germain, P; Guéguéniat, P; Strand, P; Lind, O C; Christensen, G

    2003-09-01

    Effluent from the La Hague nuclear fuel reprocessing plant was mixed with seawater in order to investigate the fate of the various radionuclides. Thus, a major objective of the present work is to characterize the effluent from La Hague reprocessing plant and to study how the radionuclide speciation changes with time when discharged into the marine environment. Discharges from the La Hague nuclear reprocessing plant represent an important source of artificially produced radionuclides to the North Sea. The transport, distribution, and biological uptake of radionuclides in the marine environment depends, however, on the physicochemical forms of radionuclides in the discharged effluents and on transformation processes that occur after entering the coastal waters. Information of these processes is needed to understand the transport and long-term distribution of the radionuclides. In the present work, a weekly discharged effluent from the nuclear fuel reprocessing plant at Cap La Hague in France was mixed with coastal water and fractionated with respect to particle size and charged species using ultra centrifugation and hollow fiber ultrafiltration with on line ion exchange. The size distribution pattern of gamma-emitting radionuclides was followed during a 62-h period after mixing the effluent with seawater. 54Mn was present as particulate material in the effluent, while other investigated radionuclides were discharged in a more mobile form or were mobilized after mixing with sea water (e.g., 60Co) and can be transported long distances in the sea. Sediments can act as a sink for less mobile discharged radionuclides (Skipperud et al. 2000). A kinetic model experiment was performed to provide information of the time-dependent distribution coefficients, Kd (t). The retention of the effluent radionuclides in sediments was surprisingly low (Kd 20-50), and the sediments acted as a poor sink for the released radionuclides. Due to the presence of non-reacting radionuclide

  1. Processing of carbon composite paper as electrode for fuel cell

    NASA Astrophysics Data System (ADS)

    Mathur, R. B.; Maheshwari, Priyanka H.; Dhami, T. L.; Sharma, R. K.; Sharma, C. P.

    The porous carbon electrode in a fuel cell not only acts as an electrolyte and a catalyst support, but also allows the diffusion of hydrogen fuel through its fine porosity and serves as a current-carrying conductor. A suitable carbon paper electrode is developed and possesses the characteristics of high porosity, permeability and strength along with low electrical resistivity so that it can be effectively used in proton-exchange membrane and phosphoric acid fuel cells. The electrode is prepared through a combination of two important techniques, viz., paper-making technology by first forming a porous chopped carbon fibre preform, and composite technology using a thermosetting resin matrix. The study reveals an interdependence of one parameter on another and how judicious choice of the processing conditions are necessary to achieve the desired characteristics. The current-voltage performance of the electrode in a unit fuel cell matches that of a commercially-available material.

  2. CONVERTING PYROLYSIS OILS TO RENEWABLE TRANSPORT FUELS: PROCESSING CHALLENGES & OPPORTUNITIES

    SciTech Connect

    Holmgren, Jennifer; Nair, Prabhakar N.; Elliott, Douglas C.; Bain, Richard; Marinangelli, Richard

    2008-03-11

    To enable a sustained supply of biomass-based transportation fuels, the capability to process feedstocks outside the food chain must be developed. Significant industry efforts are underway to develop these new technologies, such as converting cellulosic wastes to ethanol. UOP, in partnership with U.S. Government labs, NREL and PNNL, is developing an alternate route using cellulosic feedstocks. The waste biomass is first subjected to a fast pyrolysis operation to generate pyrolysis oil (pyoil for short). Current efforts are focused on developing a thermochemical platform to convert pyoils to renewable gasoline, diesel and jet fuel. The fuels produced will be indistinguishable from their fossil fuel counterparts and, therefore, will be compatible with existing transport and distribution infrastructure.

  3. Reprocessing system with nuclide separation based on chromatography in hydrochloric acid solution

    SciTech Connect

    Suzuki, Tatsuya; Tachibana, Yu; Koyama, Shi-ichi

    2013-07-01

    We have proposed the reprocessing system with nuclide separation processes based on the chromatographic technique in the hydrochloric acid solution system. Our proposed system consists of the dissolution process, the reprocessing process, the minor actinide separation process, and nuclide separation processes. In the reprocessing and separation processes, the pyridine resin is used as a main separation media. It was confirmed that the dissolution in the hydrochloric acid solution is easily achieved by the plasma voloxidation and by the addition of oxygen peroxide into the hydrochloric acid solution.

  4. Closed Fuel Cycle Waste Treatment Strategy

    SciTech Connect

    Vienna, J. D.; Collins, E. D.; Crum, J. V.; Ebert, W. L.; Frank, S. M.; Garn, T. G.; Gombert, D.; Jones, R.; Jubin, R. T.; Maio, V. C.; Marra, J. C.; Matyas, J.; Nenoff, T. M.; Riley, B. J.; Sevigny, G. J.; Soelberg, N. R.; Strachan, D. M.; Thallapally, P. K.; Westsik, J. H.

    2015-02-01

    with encapsulated nano-sized AgI crystals; Carbon-14 immobilized as a CaCO3 in a cement waste form; Krypton-85 stored as a compressed gas; An aqueous reprocessing high-level waste (HLW) raffinate waste immobilized by the vitrification process; An undissolved solids (UDS) fraction from aqueous reprocessing of LWR fuel either included in the borosilicate HLW glass or immobilized in the form of a metal alloy or titanate ceramics; Zirconium-based LWR fuel cladding hulls and stainless steel (SS) fuel assembly hardware super-compacted for disposal or purified for reuse (or disposal as low-level waste, LLW) of Zr by reactive gas separations; Electrochemical process salt HLW incorporated into a glass bonded Sodalite waste form; and Electrochemical process UDS and SS cladding hulls melted into an iron based alloy waste form. Mass and volume estimates for each of the recommended waste forms based on the source terms from a representative flowsheet are reported. In addition to the above listed primary waste streams, a range of secondary process wastes are generated by aqueous reprocessing of LWR fuel, metal SFR fuel fabrication, and electrochemical reprocessing of SFR fuel. These secondary wastes have been summarized and volumes estimated by type and classification. The important waste management data gaps and research needs have been summarized for each primary waste stream and selected waste process.

  5. Novel Redox Processes for Carbonaceous Fuel Conversion

    NASA Astrophysics Data System (ADS)

    He, Feng

    The current study investigates oxygen carrier development, process intensification, and oxygen carrier attrition behaviors for a number of novel, redox-based energy conversion schemes. (Abstract shortened by ProQuest.).

  6. Fully integrated safeguards and security for reprocessing plant monitoring.

    SciTech Connect

    Duran, Felicia Angelica; Ward, Rebecca; Cipiti, Benjamin B.; Middleton, Bobby D.

    2011-10-01

    Nuclear fuel reprocessing plants contain a wealth of plant monitoring data including material measurements, process monitoring, administrative procedures, and physical protection elements. Future facilities are moving in the direction of highly-integrated plant monitoring systems that make efficient use of the plant data to improve monitoring and reduce costs. The Separations and Safeguards Performance Model (SSPM) is an analysis tool that is used for modeling advanced monitoring systems and to determine system response under diversion scenarios. This report both describes the architecture for such a future monitoring system and present results under various diversion scenarios. Improvements made in the past year include the development of statistical tests for detecting material loss, the integration of material balance alarms to improve physical protection, and the integration of administrative procedures. The SSPM has been used to demonstrate how advanced instrumentation (as developed in the Material Protection, Accounting, and Control Technologies campaign) can benefit the overall safeguards system as well as how all instrumentation is tied into the physical protection system. This concept has the potential to greatly improve the probability of detection for both abrupt and protracted diversion of nuclear material.

  7. Coal liquefaction process wherein jet fuel, diesel fuel and/or ASTM No. 2 fuel oil is recovered

    DOEpatents

    Bauman, Richard F.; Ryan, Daniel F.

    1982-01-01

    An improved process for the liquefaction of coal and similar solid carbonaceous materials wherein a hydrogen donor solvent or diluent derived from the solid carbonaceous material is used to form a slurry of the solid carbonaceous material and wherein the naphthenic components from the solvent or diluent fraction are separated and used as jet fuel components. The extraction increases the relative concentration of hydroaromatic (hydrogen donor) components and as a result reduces the gas yield during liquefaction and decreases hydrogen consumption during said liquefaction. The hydrogenation severity can be controlled to increase the yield of naphthenic components and hence the yield of jet fuel and in a preferred embodiment jet fuel yield is maximized while at the same time maintaining solvent balance.

  8. Advanced Fuels and Combustion Processes for Propulsion

    DTIC Science & Technology

    2010-09-01

    production from biomass steam reforming – Conduct a feasibility analysis of the proposed integrated process Energia Technologies - D. Nguyen & K. Parimi...strength foam material development by Ultramet – Combustion experiments performed U. Of Alabama – End-user input provided by Solar Turbines Major

  9. Proposed pyrometallurgical process for rapid recycle of discharged fuel materials from the integral fast reactor. [Metal fuel

    SciTech Connect

    Burris, L.; Steindler, M.; Miller, W.

    1984-01-01

    The pool-type Integral Fast Reactor (IFR) concept developed by Argonne National Laboratory includes on-site recycle of discharged core and blanket fuel materials. The process and fabrication steps will be demonstrated in the EBR-II Fuel Cycle Facility with IFR fuel irradiated in EBR-II and the Fast Flux Test Facility. The proposed process consists of two major steps: a halide slagging step and an electrorefining step. The fuel is maintained in the metallic form to yield directly a metal product sufficiently decontaminated to allow recycle to the reactor as new fuel. The process is further described and available information to support its feasibility is presented.

  10. Methods of reprocessing complex medical equipment.

    PubMed

    Babb, J R

    1988-02-01

    The choice as to which of the two gaseous processes is best suited to individual hospital needs is a difficult one. Very few items are unable to tolerate 73 degrees C (LTSF) and these few can withstand 37 degrees C or 55 degrees C (EO). Unfortunately, LTSF is a 'moist' process and sterilizers have a poor history of providing sterilization without modification, and consequently few are used. Ethylene oxide is more reliable, but environmental hazards are greater and running costs high. Both processes are time-consuming and the use of sporicidal disinfectants such as glutaraldehyde is often the only practical alternative. Before purchasing any gaseous sterilizer it is essential to consider throughput and the availability of alternative processes. It may prove sensible to share facilities or at least offer a regional facility. It is certainly not worthwhile purchasing expensive gas sterilizers for reprocessing inexpensive single-use items or for those that require disinfection only. Low temperature steam is safe, inexpensive and no special environmental provisions are necessary. It is, however, not a sterilization process. Disinfectants, hot water and steam will continue to be the only suitable methods for reprocessing items outside the hospital sterile supply department or disinfection unit. Concern over the decontamination of blood-stained instruments following use on patients with hepatitis B or HIV has led to an upsurge of interest in boilers and inexpensive bench top ovens and autoclaves. Such processes are likely to prove more effective than disinfectants but should heat treatment prove impractical then 2% glutaraldehyde or 70% alcohol may be used.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Removal efficiency of silver impregnated filter materials and performance of iodie filters in the off-gas of the Karlsruhe reprocessing plant WAK

    SciTech Connect

    Herrmann, F.J.; Herrmann, B.; Hoeflich, V.

    1997-08-01

    An almost quantitative retention of iodine is required in reprocessing plants. For the iodine removal in the off-gas streams of a reprocessing plant various sorption materials had been tested under realistic conditions in the Karlsruhe reprocessing plant WAK in cooperation with the Karlsruhe research center FZK. The laboratory results achieved with different iodine sorption materials justified long time performance tests in the WAK Plant. Technical iodine filters and sorption materials for measurements of iodine had been tested from 1972 through 1992. This paper gives an overview over the most important results, Extended laboratory, pilot plant, hot cell and plant experiences have been performed concerning the behavior and the distribution of iodine-129 in chemical processing plants. In a conventional reprocessing plant for power reactor fuel, the bulk of iodine-129 and iodine-127 is evolved into the dissolver off-gas. The remainder is dispersed over many aqueous, organic and gaseous process and waste streams of the plant. Iodine filters with silver nitrate impregnated silica were installed in the dissolver off-gas of the Karlsruhe reprocessing plant WAK in 1975 and in two vessel vent systems in 1988. The aim of the Karlsruhe iodine research program was an almost quantitative evolution of the iodine during the dissolution process to remove as much iodine with the solid bed filters as possible. After shut down of the WAK plant in December 1990 the removal efficiency of the iodine filters at low iodine concentrations had been investigated during the following years. 12 refs., 2 figs., 2 tabs.

  12. High level radioactive waste processing experience in the US (an overview of the West Valley Demonstration Project)

    SciTech Connect

    Vance, R.F.; Borisch, R.R.

    1993-12-31

    The West Valley Nuclear Fuel Reprocessing Plant was constructed in 1966. Operations were stopped in 1972 after reprocessing 640 Mg (700 tons) of spent fuel. About 560,000 gallons of high-level radioactive liquid wastes from the Purex Process and 8,000 gallons of fuel containing thorium from the THOREX process were stored in underground steel tanks. The DOE contracted with West Valley Nuclear Services to operate the West Valley Demonstration Project for the processing of the radioactive wastes into a borosilicate waste form. This report provides a process overview and status report.

  13. Commercial Nuclear Reprocessing in the United States

    SciTech Connect

    Sherrill, Charles Leland; Balatsky, Galya Ivanovna

    2015-09-09

    The short presentation outline: Reprocessing Overview; Events leading up to Carter’s Policy; Results of the decision; Policy since Nuclear Nonproliferation Act. Conclusions reached: Reprocessing ban has become an easy and visible fix to the public concern about proliferation, but has not completely stopped proliferation; and, Reprocessing needs to become detached from political considerations, so technical research can continue, regardless of the policy decisions we decide to take.

  14. Recent Update of Gastrointestinal Endoscope Reprocessing

    PubMed Central

    Hong, Kyong Hee

    2013-01-01

    As infection-related issues have become one of the most important concerns in endoscopy centers, proper reprocessing of endoscopes has attracted great interest. Compliance with established guidelines for reprocessing is critical to prevent pathogen transmission. However, hospital compliance with guidelines has not been satisfactory. To increase compliance, efforts have focused on developing new and more innovative disinfectants and an automated endoscope reprocessor. Reprocessing must be performed by appropriately trained personnel and regular monitoring of reprocessing is essential for quality assurance to improve compliance. PMID:23767038

  15. Endoscope Reprocessing: Update on Controversial Issues

    PubMed Central

    Choi, Hyun Ho

    2015-01-01

    Several issues concerning endoscope reprocessing remain unresolved based on currently available data. Thus, further studies are required to confirm standard practices including safe endoscope shelf life, proper frequency of replacement of some accessories including water bottles and connecting tubes, and microbiological surveillance testing of endoscopes after reprocessing. The efficacy and cost-effectiveness of newer technology that allows automated cleaning and disinfection is one such controversial issue. In addition, there are no guidelines on whether delayed reprocessing and extended soaking may harm endoscope integrity or increase the bioburden on the external or internal device surfaces. In this review, we discuss the unresolved and controversial issues regarding endoscope reprocessing. PMID:26473115

  16. Pyrolysis process for producing fuel gas

    NASA Technical Reports Server (NTRS)

    Serio, Michael A. (Inventor); Kroo, Erik (Inventor); Wojtowicz, Marek A. (Inventor); Suuberg, Eric M. (Inventor)

    2007-01-01

    Solid waste resource recovery in space is effected by pyrolysis processing, to produce light gases as the main products (CH.sub.4, H.sub.2, CO.sub.2, CO, H.sub.2O, NH.sub.3) and a reactive carbon-rich char as the main byproduct. Significant amounts of liquid products are formed under less severe pyrolysis conditions, and are cracked almost completely to gases as the temperature is raised. A primary pyrolysis model for the composite mixture is based on an existing model for whole biomass materials, and an artificial neural network models the changes in gas composition with the severity of pyrolysis conditions.

  17. Technetium-99 and strontium-90: Abundance determination at ultratrace sensitivity by AMS as signatures of undeclared nuclear reprocessing activity

    SciTech Connect

    McAninch, J.E.; Proctor, I.D.

    1995-03-01

    The purpose of this White Paper is to examine the use of the ultratrace technique Accelerator Mass Spectrometry (AMS) to lower detection limits for {sup 99}Tc and {sup 90}Sr, and to examine the utility of these isotopes as signatures of a convert reprocessing facility. The International Atomic Energy Agency (IAEA) has committed to improving the effectiveness of the IAEA Safeguards System. This is in some degree a result of the discovery in 1991 of an undeclared Iraqi EMIS program. Recommendations from the March 1993 Consultants Group Meeting have resulted in several studies and follow on field trials to identify environmental signatures from covert nuclear fuel reprocessing activity. In particular, the April, 1993 reports of the Standing Advisory Group on Safeguards Implementation (SAGSI) identified the long-lived radioisotopes Technetium-99 and strontium-90 as two reliable signatures of fuel reprocessing activity. This report also suggested pathways in the chemical processing of irradiated fuel where these elements would be volatilized and potentially released in amounts detectable with ultratrace sensitivity techniques. Based on measured {sup 99}Tc background levels compiled from a variety of sources, it is estimated that AMS can provide 10% measurements of environmental levels of {sup 99}Tc in a few minutes using modestly sized samples: a few grams for soils, plants, or animal tissues; one to several liters for rain or seawater samples; and tens to hundreds of cubic meters for air sampling. Small sample sizes and high sample throughput result in significant increases in feasibility, cost effectiveness, and quality of data for a regional monitoring program. Similar results are expected for {sup 90}Sr.

  18. Fate of virginiamycin through the fuel ethanol production process

    USDA-ARS?s Scientific Manuscript database

    Antibiotics are frequently used to prevent and treat bacterial contamination of commercial fuel ethanol fermentations, but there is concern that antibiotic residues may persist in the distillers grains coproducts. A study to evaluate the fate of virginiamycin during the ethanol production process wa...

  19. PROCESS OF DISSOLVING FUEL ELEMENTS OF NUCLEAR REACTORS

    DOEpatents

    Wall, E.M.V.; Bauer, D.T.; Hahn, H.T.

    1963-09-01

    A process is described for dissolving stainless-steelor zirconium-clad uranium dioxide fuel elements by immersing the elements in molten lead chloride, adding copper, cuprous chloride, or cupric chloride as a catalyst and passing chlorine through the salt mixture. (AEC)

  20. Immobilization of fission products arising from pyrometallurgical reprocessing in chloride media

    NASA Astrophysics Data System (ADS)

    Leturcq, G.; Grandjean, A.; Rigaud, D.; Perouty, P.; Charlot, M.

    2005-12-01

    Spent nuclear fuel reprocessing to recover energy-producing elements such as uranium or plutonium can be performed by a pyrochemical process. In such method, the actinides and fission products are extracted by electrodeposition in a molten chloride medium. These processes generate chlorinated alkali salt flows contaminated by fission products, mainly Cs, Ba, Sr and rare earth elements constituting high-level waste. Two possible alternatives are investigated for managing this wasteform; a protocol is described for dechlorinating the fission products to allow vitrification, and mineral phases capable of immobilizing chlorides are listed to allow specification of a dedicated ceramic matrix suitable for containment of these chlorinated waste streams. The results of tests to synthesize chlorosilicate phases are also discussed.

  1. 76 FR 45268 - Reprocessing of Reusable Medical Devices

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-28

    ... HUMAN SERVICES Food and Drug Administration Reprocessing of Reusable Medical Devices AGENCY: Food and... Administration (FDA) is considering factors affecting the reprocessing of reusable medical devices, including reprocessing quality, device design as it relates to the reprocessing of reusable medical devices, reprocessing...

  2. Analysis of on-board fuel processing designs for PEM fuel cell vehicles

    SciTech Connect

    Kartha, S.; Fischer, S.; Kreutz, T.

    1996-12-31

    As a liquid fuel with weight and volume energy densities comparable to those of gasoline, methanol is an attractive energy carrier for mobile power systems. It is available without contaminants such as sulfur, and can be easily reformed at relatively low temperatures with inexpensive catalysts. This study is concerned with comparing the net efficiencies of PEM fuel cell vehicles fueled with methanol and hydrogen, using fuel cell system models developed using ASPEN chemical process simulation software. For both the methanol and hydrogen systems, base case designs are developed and several variations are considered that differ with respect to the degree of system integration for recovery of heat and compressive work. The methanol systems are based on steam reforming with the water-gas shift reaction and preferential oxidation, and the hydrogen systems are based on compressed hydrogen. This analysis is an exercise in optimizing the system design for each fuel, which ultimately entails balancing system efficiency against a host of other considerations, including system complexity, performance, cost, reliability, weight and volume.

  3. FLOOR PLAN OF MAIN PROCESSING BUILDING (CPP601) BASEMENT SHOWING PROCESS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FLOOR PLAN OF MAIN PROCESSING BUILDING (CPP-601) BASEMENT SHOWING PROCESS CORRIDOR AND EIGHTEEN CELLS. TO LEFT IS LABORATORY BUILDING (CPP-602). INL DRAWING NUMBER 200-0601-00-706-051981. ALTERNATE ID NUMBER CPP-E-1981. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  4. INTERIOR PHOTO OF MAIN PROCESSING BUILDING PROCESS MAKEUP AREA (CPP601) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR PHOTO OF MAIN PROCESSING BUILDING PROCESS MAKEUP AREA (CPP-601) LOOKING NORTHWEST. PHOTO TAKEN FROM MIDDLE OF CORRIDOR. INL PHOTO NUMBER HD-50-2-3. Mike Crane, Photographer, 6/2005 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  5. INTERIOR PHOTO OF MAIN PROCESSING BUILDING PROCESS MAKEUP AREA (CPP601) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR PHOTO OF MAIN PROCESSING BUILDING PROCESS MAKEUP AREA (CPP-601) LOOKING SOUTHWEST. PHOTO TAKEN FROM NORTHEAST CORNER. INL PHOTO NUMBER HD-50-4-2. Mike Crane, Photographer, 6/2005 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  6. INTERIOR PHOTO OF MAIN PROCESSING BUILDING PROCESS MAKEUP AREA (CPP601) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR PHOTO OF MAIN PROCESSING BUILDING PROCESS MAKEUP AREA (CPP-601) LOOKING NORTH. PHOTO TAKEN FROM SOUTHWEST CORNER. INL PHOTO NUMBER HD-50-1-3. Mike Crane, Photographer, 6/2005 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  7. INTERIOR PHOTO OF MAIN PROCESSING BUILDING (CPP601) PROCESS MAKEUP AREA ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR PHOTO OF MAIN PROCESSING BUILDING (CPP-601) PROCESS MAKEUP AREA LOOKING SOUTH. PHOTO TAKEN FROM CENTER OF WEST WALL. INL PHOTO NUMBER HD-50-1-4. Mike Crane, Photographer, 6/2005 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  8. INTERIOR PHOTO OF MAIN PROCESSING BUILDING PROCESS MAKEUP AREA (CPP601) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR PHOTO OF MAIN PROCESSING BUILDING PROCESS MAKEUP AREA (CPP-601) LOOKING SOUTH. PHOTO TAKEN FROM MIDDLE OF CORRIDOR. INL PHOTO NUMBER HD-50-3-2. Mike Crane, Photographer, 6/2005 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  9. Defining the Costs of Reusable Flexible Ureteroscope Reprocessing Using Time-Driven Activity-Based Costing.

    PubMed

    Isaacson, Dylan; Ahmad, Tessnim; Metzler, Ian; Tzou, David T; Taguchi, Kazumi; Usawachintachit, Manint; Zetumer, Samuel; Sherer, Benjamin; Stoller, Marshall; Chi, Thomas

    2017-09-20

    Careful decontamination and sterilization of reusable flexible ureteroscopes used in ureterorenoscopy cases prevent the spread of infectious pathogens to patients and technicians. However, inefficient reprocessing and unavailability of ureteroscopes sent out for repair can contribute to expensive operating room (OR) delays. Time-driven activity-based costing (TDABC) was applied to describe the time and costs involved in reprocessing. Direct observation and timing were performed for all steps in reprocessing of reusable flexible ureteroscopes following operative procedures. Estimated times needed for each step by which damaged ureteroscopes identified during reprocessing are sent for repair were characterized through interviews with purchasing analyst staff. Process maps were created for reprocessing and repair detailing individual step times and their variances. Cost data for labor and disposables used were applied to calculate per minute and average step costs. Ten ureteroscopes were followed through reprocessing. Process mapping for ureteroscope reprocessing averaged 229.0 ± 74.4 minutes, whereas sending a ureteroscope for repair required an estimated 143 minutes per repair. Most steps demonstrated low variance between timed observations. Ureteroscope drying was the longest and highest variance step at 126.5 ± 55.7 minutes and was highly dependent on manual air flushing through the ureteroscope working channel and ureteroscope positioning in the drying cabinet. Total costs for reprocessing totaled $96.13 per episode, including the cost of labor and disposable items. Utilizing TDABC delineates the full spectrum of costs associated with ureteroscope reprocessing and identifies areas for process improvement to drive value-based care. At our institution, ureteroscope drying was one clearly identified target area. Implementing training in ureteroscope drying technique could save up to 2 hours per reprocessing event, potentially preventing expensive OR delays.

  10. Process development and fabrication for sphere-pac fuel rods. [PWR; BWR

    SciTech Connect

    Welty, R.K.; Campbell, M.H.

    1981-06-01

    Uranium fuel rods containing sphere-pac fuel have been fabricated for in-reactor tests and demonstrations. A process for the development, qualification, and fabrication of acceptable sphere-pac fuel rods is described. Special equipment to control fuel contamination with moisture or air and the equipment layout needed for rod fabrication is described and tests for assuring the uniformity of the fuel column are discussed. Fuel retainers required for sphere-pac fuel column stability and instrumentation to measure fuel column smear density are described. Results of sphere-pac fuel rod fabrication campaigns are reviewed and recommended improvements for high throughput production are noted.

  11. Process for removal of sulfur compounds from fuel gases

    DOEpatents

    Moore, Raymond H.; Stegen, Gary E.

    1978-01-01

    Fuel gases such as those produced in the gasification of coal are stripped of sulfur compounds and particulate matter by contact with molten metal salt. The fuel gas and salt are intimately mixed by passage through a venturi or other constriction in which the fuel gas entrains the molten salt as dispersed droplets to a gas-liquid separator. The separated molten salt is divided into a major and a minor flow portion with the minor flow portion passing on to a regenerator in which it is contacted with steam and carbon dioxide as strip gas to remove sulfur compounds. The strip gas is further processed to recover sulfur. The depleted, minor flow portion of salt is passed again into contact with the fuel gas for further sulfur removal from the gas. The sulfur depleted, fuel gas then flows through a solid absorbent for removal of salt droplets. The minor flow portion of the molten salt is then recombined with the major flow portion for feed to the venturi.

  12. Method For Processing Spent (Trn,Zr)N Fuel

    DOEpatents

    Miller, William E.; Richmann, Michael K.

    2004-07-27

    A new process for recycling spent nuclear fuels, in particular, mixed nitrides of transuranic elements and zirconium. The process consists of two electrorefiner cells in series configuration. A transuranic element such as plutonium is reduced at the cathode in the first cell, zirconium at the cathode in the second cell, and nitrogen-15 is released and captured for reuse to make transuranic and zirconium nitrides.

  13. Fast Reactor Spent Fuel Processing: Experience and Criticality Safety

    SciTech Connect

    Chad Pope

    2007-05-01

    This paper discusses operational and criticality safety experience associated with the Idaho National Laboratory Fuel Conditioning Facility which uses a pyrometallurgical process to treat spent fast reactor metallic fuel. The process is conducted in an inert atmosphere hot cell. The process starts with chopping metallic fuel elements into a basket. The basket is lowered into molten salt (LiCl-KCl) along with a steel mandrel. Active metal fission products, transuranic metals and sodium metal in the spent fuel undergo chemical oxidation and form chlorides. Voltage is applied between the basket, which serves as an anode, and the mandrel, which serves as a cathode, causing metallic uranium in the spent fuel to undergo electro-chemical oxidation thereby forming uranium chloride. Simultaneously at the cathode, uranium chloride undergoes electro-chemical reduction and deposits uranium metal onto the mandrel. The uranium metal and accompanying entrained salt are placed in a distillation furnace where the uranium melts forming an ingot and the entrained salt boils and subsequently condenses in a separate crucible. The uranium ingots are placed in long term storage. During the ten year operating history, over one hundred criticality safety evaluations were prepared. All criticality safety related limits and controls for the entire process are contained in a single document which required over thirty revisions to accommodate the process changes. Operational implementation of the limits and controls includes use of a near real-time computerized tracking system. The tracking system uses an Oracle database coupled with numerous software applications. The computerized tracking system includes direct fuel handler interaction with every movement of material. Improvements to this system during the ten year history include introduction of web based operator interaction, tracking of moderator materials and the development of a plethora database queries to assist in day to day

  14. Modular, High-Volume Fuel Cell Leak-Test Suite and Process

    SciTech Connect

    Ru Chen; Ian Kaye

    2012-03-12

    Fuel cell stacks are typically hand-assembled and tested. As a result the manufacturing process is labor-intensive and time-consuming. The fluid leakage in fuel cell stacks may reduce fuel cell performance, damage fuel cell stack, or even cause fire and become a safety hazard. Leak check is a critical step in the fuel cell stack manufacturing. The fuel cell industry is in need of fuel cell leak-test processes and equipment that is automatic, robust, and high throughput. The equipment should reduce fuel cell manufacturing cost.

  15. Aqueous Processing Material Accountability Instrumentation

    SciTech Connect

    Robert Bean

    2007-09-01

    Increased use of nuclear power will require new facilities. The U.S. has not built a new spent nuclear fuel reprocessing facility for decades. Reprocessing facilities must maintain accountability of their nuclear fuel. This survey report on the techniques used in current aqueous reprocessing facilities, and provides references to source materials to assist facility design efforts.

  16. The chemical state of fission products in oxide fuels at different stages of the nuclear fuel cycle

    SciTech Connect

    Kleykamp, H.

    1988-03-01

    A survey of work at the Kernforschungszentrum Karlsruhe is presented on the chemical state of selected fission products that are relevant in the fuel cycle of light water reactor (LWR) and fast breeder reactor fuels. The influence of fuel type and irradiation progress on the composition of the Mo-Tc-Ru-Rh-Pd fission product alloys precipitated in the oxide matrix is examined using the respective multicomponent phase diagrams. The kinetics of dissolution of these phases in nitric acid at the reprocessing stage is discussed. Composition and structure of the residues, and the reprecipitation phenomena from highly active waste (HAW), are elucidated. A second metamorphosis of the fission products is recognized during the vitrification process. The formation of Ru(Rh) oxide and Pd(Rh, U, Te) alloys in simulated vitrified HAW concentrate and in HAW concentrate from the reprocessing of irradiated LWR fuels in interpreted on the basis of heterogeneous equilibria.

  17. FUEL CYCLE POTENTIAL WASTE FOR DISPOSITION

    SciTech Connect

    Carter, J.

    2011-01-03

    The United States (U.S.) currently utilizes a once-through fuel cycle where used nuclear fuel (UNF) is stored on-site in either wet pools or in dry storage systems with ultimate disposal in a deep mined geologic repository envisioned. Within the Department of Energy's (DOE) Office of Nuclear Energy (DOE-NE), the Fuel Cycle Research and Development Program (FCR&D) develops options to the current commercial fuel cycle management strategy to enable the safe, secure, economic, and sustainable expansion of nuclear energy while minimizing proliferation risks by conducting research and development of advanced fuel cycles, including modified open and closed cycles. The safe management and disposition of used nuclear fuel and/or nuclear waste is a fundamental aspect of any nuclear fuel cycle. Yet, the routine disposal of used nuclear fuel and radioactive waste remains problematic. Advanced fuel cycles will generate different quantities and forms of waste than the current LWR fleet. This study analyzes the quantities and characteristics of potential waste forms including differing waste matrices, as a function of a variety of potential fuel cycle alternatives including: (1) Commercial UNF generated by uranium fuel light water reactors (LWR). Four once through fuel cycles analyzed in this study differ by varying the assumed expansion/contraction of nuclear power in the U.S. (2) Four alternative LWR used fuel recycling processes analyzed differ in the reprocessing method (aqueous vs. electro-chemical), complexity (Pu only or full transuranic (TRU) recovery) and waste forms generated. (3) Used Mixed Oxide (MOX) fuel derived from the recovered Pu utilizing a single reactor pass. (4) Potential waste forms generated by the reprocessing of fuels derived from recovered TRU utilizing multiple reactor passes.

  18. FUEL CYCLE POTENTIAL WASTE FOR DISPOSITION

    SciTech Connect

    Jones, R.; Carter, J.

    2010-10-13

    The United States (U.S.) currently utilizes a once-through fuel cycle where used nuclear fuel (UNF) is stored on-site in either wet pools or in dry storage systems with ultimate disposal in a deep mined geologic repository envisioned. Within the Department of Energy's (DOE) Office of Nuclear Energy (DOE-NE), the Fuel Cycle Research and Development Program (FCR&D) develops options to the current commercial fuel cycle management strategy to enable the safe, secure, economic, and sustainable expansion of nuclear energy while minimizing proliferation risks by conducting research and development of advanced fuel cycles, including modified open and closed cycles. The safe management and disposition of used nuclear fuel and/or nuclear waste is a fundamental aspect of any nuclear fuel cycle. Yet, the routine disposal of used nuclear fuel and radioactive waste remains problematic. Advanced fuel cycles will generate different quantities and forms of waste than the current LWR fleet. This study analyzes the quantities and characteristics of potential waste forms including differing waste matrices, as a function of a variety of potential fuel cycle alternatives including: (1) Commercial UNF generated by uranium fuel light water reactors (LWR). Four once through fuel cycles analyzed in this study differ by varying the assumed expansion/contraction of nuclear power in the U.S; (2) Four alternative LWR used fuel recycling processes analyzed differ in the reprocessing method (aqueous vs. electro-chemical), complexity (Pu only or full transuranic (TRU) recovery) and waste forms generated; (3) Used Mixed Oxide (MOX) fuel derived from the recovered Pu utilizing a single reactor pass; and (4) Potential waste forms generated by the reprocessing of fuels derived from recovered TRU utilizing multiple reactor passes.

  19. Residuals on medical devices following reprocessing.

    PubMed

    Martiny, H; Floss, H

    2001-08-01

    Micro-organisms may be transmitted by medical devices. A large variety of infectious agents may be involved in infections transmitted by endoscopic procedures. We review a series of examples that demonstrate to what extent micro-organisms can be detected on medical devices and how transmission on to subsequently examined persons due to inadequate reprocessing can occur. Hardly any data are available regarding residuals of process chemicals, although numerous published cases of glutaraldehyde-related colitis demonstrate that this issue requires urgent clarification. A risk of endoscope contamination exists, interalia, if washer-disinfectors are technically defective or are incorrectly operated. In particular, a final rinse water of poor microbiological quality can lead to recontamination of endoscopes.

  20. Environmental Impacts on Nuclear Reprocessing Solvents

    NASA Astrophysics Data System (ADS)

    Gillens, A. R.; Fessenden, J. E.

    2009-12-01

    Nuclear tests have been employed ever since the first nuclear explosion in Alamogordo, NM during the mid-1940s. Nuclear weapons pose a threat to civil society and result in extensive biological (medical) damages. For this reason, treaties banning nuclear tests and weapons have been employed since the 1960s to cease proliferation of weapons. However, as nuclear tests continue in secrecy and actinides, such as plutonium and uranium, are eligible for theft, nuclear forensics is needed to prevent weapons proliferation. In this study, solvents [tributyl phosphate (TBP), dodecane, decanol] used in reprocessing spent nuclear fuel are analyzed using an isotope ratio mass spectrometer, which provides indisputable evidence in identifying the operation in which solvents were used. Solvent samples are observed under variable conditions in the laboratory for different time periods. It is assumed that their carbon isotope values (δ13C) will become more positive (shift heavy) with time. It is found that the solvents are hygroscopic. TBP leaves the most robust signature compared to the other solvents studied and the isotope values for all solvents under all conditions become more positive with time. This study serves as primary research in understanding how solvents behave under variable conditions in the laboratory and how this could be translated to the environment in fate and transport studies.

  1. Safeguards operations in the integral fast reactor fuel cycle

    SciTech Connect

    Goff, K.M.; Benedict, R.W.; Brumbach, S.B.; Dickerman, C.E.; Tompot, R.W.

    1994-08-01

    Argonne National Laboratory is currently demonstrating the fuel cycle for the Integral Fast Reactor (IFR), an advanced reactor concept that takes advantage of the properties of metallic fuel and liquid metal cooling to offer significant improvements in reactor safety, operation, fuel-cycle economics, environmental protection, and safeguards. The IFR fuel cycle employs a pyrometallurgical process using molten salts and liquid metals to recover actinides from spent fuel. The safeguards aspects of the fuel cycle demonstration must be approved by the United States Department of Energy, but a further goal of the program is to develop a safeguards system that could gain acceptance from the Nuclear Regulatory Commission and International Atomic Energy Agency. This fuel cycle is described with emphasis on aspects that differ from aqueous reprocessing and on its improved safeguardability due to decreased attractiveness and diversion potential of all process streams, including the fuel product.

  2. X-ray reprocessing in binaries

    NASA Astrophysics Data System (ADS)

    Paul, Biswajit

    2016-07-01

    We will discuss several aspects of X-ray reprocessing into X-rays or longer wavelength radiation in different kinds of binary systems. In high mass X-ray binaries, reprocessing of hard X-rays into emission lines or lower temperature black body emission is a useful tool to investigate the reprocessing media like the stellar wind, clumpy structures in the wind, accretion disk or accretion stream. In low mass X-ray binaries, reprocessing from the surface of the companion star, the accretion disk, warps and other structures in the accretion disk produce signatures in longer wavelength radiation. X-ray sources with temporal structures like the X-ray pulsars and thermonuclear burst sources are key in such studies. We will discuss results from several new investigations of X-ray reprocessing phenomena in X-ray binaries.

  3. Understanding the transport processes in polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Cheah, May Jean

    Polymer electrolyte membrane (PEM) fuel cells are energy conversion devices suitable for automotive, stationary and portable applications. An engineering challenge that is hindering the widespread use of PEM fuel cells is the water management issue, where either a lack of water (resulting in membrane dehydration) or an excess accumulation of liquid water (resulting in fuel cell flooding) critically reduces the PEM fuel cell performance. The water management issue is addressed by this dissertation through the study of three transport processes occurring in PEM fuel cells. Water transport within the membrane is a combination of water diffusion down the water activity gradient and the dragging of water molecules by protons when there is a proton current, in a phenomenon termed electro-osmotic drag, EOD. The impact of water diffusion and EOD on the water flux across the membrane is reduced due to water transport resistance at the vapor/membrane interface. The redistribution of water inside the membrane by EOD causes an overall increase in the membrane resistance that regulates the current and thus EOD, thereby preventing membrane dehydration. Liquid water transport in the PEM fuel cell flow channel was examined at different gas flow regimes. At low gas Reynolds numbers, drops transitioned into slugs that are subsequently pushed out of the flow channel by the gas flow. The slug volume is dependent on the geometric shape, the surface wettability and the orientation (with respect to gravity) of the flow channel. The differential pressure required for slug motion primarily depends on the interfacial forces acting along the contact lines at the front and the back of the slug. At high gas Reynolds number, water is removed as a film or as drops depending on the flow channel surface wettability. The shape of growing drops at low and high Reynolds number can be described by a simple interfacial energy minimization model. Under flooding conditions, the fuel cell local current

  4. Spent fuel pyroprocessing demonstration

    SciTech Connect

    McFarlane, L.F.; Lineberry, M.J.

    1995-05-01

    A major element of the shutdown of the US liquid metal reactor development program is managing the sodium-bonded spent metallic fuel from the Experimental Breeder Reactor-II to meet US environmental laws. Argonne National Laboratory has refurbished and equipped an existing hot cell facility for treating the spent fuel by a high-temperature electrochemical process commonly called pyroprocessing. Four products will be produced for storage and disposal. Two high-level waste forms will be produced and qualified for disposal of the fission and activation products. Uranium and transuranium alloys will be produced for storage pending a decision by the US Department of Energy on the fate of its plutonium and enriched uranium. Together these activities will demonstrate a unique electrochemical treatment technology for spent nuclear fuel. This technology potentially has significant economic and technical advantages over either conventional reprocessing or direct disposal as a high-level waste option.

  5. Technical and regulatory review of the Rover nuclear fuel process for use on Fort St. Vrain fuel

    SciTech Connect

    Hertzler, T.

    1993-02-01

    This report describes the results of an analysis for processing and final disposal of Fort St. Vrain (FSV) irradiated fuel in Rover-type equipment or technologies. This analysis includes an evaluation of the current Rover equipment status and the applicability of this technology in processing FSV fuel. The analyses are based on the physical characteristics of the FSV fuel and processing capabilities of the Rover equipment. Alternate FSV fuel disposal options are also considered including fuel-rod removal from the block, disposal of the empty block, or disposal of the entire fuel-containing block. The results of these analyses document that the current Rover hardware is not operable for any purpose, and any effort to restart this hardware will require extensive modifications and re-evaluation. However, various aspects of the Rover technology, such as the successful fluid-bed burner design, can be applied with modification to FSV fuel processing. The current regulatory climate and technical knowledge are not adequately defined to allow a complete analysis and conclusion with respect to the disposal of intact fuel blocks with or without the fuel rods removed. The primary unknowns include the various aspects of fuel-rod removal from the block, concentration of radionuclides remaining in the graphite block after rod removal, and acceptability of carbon in the form of graphite in a high level waste repository.

  6. A survey of processes for producing hydrogen fuel from different sources for automotive-propulsion fuel cells

    SciTech Connect

    Brown, L.F.

    1996-03-01

    Seven common fuels are compared for their utility as hydrogen sources for proton-exchange-membrane fuel cells used in automotive propulsion. Methanol, natural gas, gasoline, diesel fuel, aviation jet fuel, ethanol, and hydrogen are the fuels considered. Except for the steam reforming of methanol and using pure hydrogen, all processes for generating hydrogen from these fuels require temperatures over 1000 K at some point. With the same two exceptions, all processes require water-gas shift reactors of significant size. All processes require low-sulfur or zero-sulfur fuels, and this may add cost to some of them. Fuels produced by steam reforming contain {approximately}70-80% hydrogen, those by partial oxidation {approximately}35-45%. The lower percentages may adversely affect cell performance. Theoretical input energies do not differ markedly among the various processes for generating hydrogen from organic-chemical fuels. Pure hydrogen has severe distribution and storage problems. As a result, the steam reforming of methanol is the leading candidate process for on-board generation of hydrogen for automotive propulsion. If methanol unavailability or a high price demands an alternative process, steam reforming appears preferable to partial oxidation for this purpose.

  7. An overview of a nuclear reprocessing plant Human Factors programme.

    PubMed

    Kirwan, Barry

    2003-09-01

    This paper presents a case study of a large Human Factors programme applied in the nuclear fuel reprocessing industry (1987-1991). The paper outlines the key Human Factors issues addressed, as well as the impacts achieved, and gives an indication of the resources utilised (approximately 15 person-years of effort). It also considers the starting point of the programme, in terms of the factors that led to the need for such an extensive programme. Some general lessons learned are given at the end of the paper.

  8. FUEL ELEMENTS FOR NUCLEAR REACTORS AND PROCESS OF MAKING

    DOEpatents

    Roake, W.E.

    1958-08-19

    A process is described for producing uranium metal granules for use in reactor fuel elements. The granules are made by suspending powdered uramiunn metal or uranium hydride in a viscous, non-reactive liquid, such as paraffin oil, aad pouring the resulting suspension in droplet, on to a bed of powdered absorbent. In this manner the liquid vehicle is taken up by the sorbent and spherical pellets of uranium metal are obtained. The

  9. Isotopic enrichment of fuels for D-T fusion reactors

    SciTech Connect

    Misra, B.; Clemmer, R.G.; Finn, P.A.

    1981-01-01

    Isotopic enrichment scenarios using cryogenic distillation were developed for a near-term D-T burning fusion-reactor design (ETF) as well as for a commercial fusion-reactor design (STARFIRE). The analytical results of studies of spent-fuel reprocessing for ETF show that isotopic enrichment can be carried out to meet fuel-purity requirements by a system consisting of a 5-column distillation cascade and two chemical equilibrators. For STARFIRE, the analytical results show that, for a fixed number of columns and chemical equilibrators in a reprocessing syste, the compositions of the recycle streams depend strongly on whether the two fuel streams (plasma exhaust and blanket) are processed separately or mixed and then processed as a single stream.

  10. Safeguards and Non-proliferation Issues as Related to Advanced Fuel Cycle and Advanced Fast Reactor Development with Processing of Reactor Fuel

    SciTech Connect

    Rahmat Aryaeinejad; Jerry D. Cole; Mark W. Drigert; Dee E. Vaden

    2006-10-01

    The goal of this work is to establish basic data and techniques to enable safeguards appropriate to a new generation of nuclear power systems that will be based on fast spectrum reactors and mixed actinide fuels containing significant quantities of "minor" actinides, possibly due to reprocessing, and determination of what new radiation signatures and parameters need to be considered. The research effort focuses on several problems associated with the use of fuel having significantly different actinide inventories that current practice and on the development of innovative techniques using new radiation signatures and other parameters useful for safeguards and monitoring. In addition, the development of new distinctive radiation signatures as an aid in controlling proliferation of nuclear materials has parallel applications to support Gen-IV and current advanced fuel cycle initiative (AFCI) goals as well as the anticipated Global Nuclear Energy Partnership (GNEP).

  11. Fuel quality/processing study. Volume 2: Appendix. Task 1 literature survey

    NASA Technical Reports Server (NTRS)

    Ohara, J. B.; Bela, A.; Jentz, N. E.; Klumpe, H. W.; Kessler, H. E.; Kotzot, H. T.; Loran, B. L.

    1981-01-01

    The results of a literature survey of fuel processing and fuel quality are given. Liquid synfuels produced from coal and oil shale are discussed. Gas turbine fuel property specifications are discussed. On-site fuel pretreatment and emissions from stationary gas turbines are discussed. Numerous data tables and abstracts are given.

  12. Combination and long term stability of the IGS Reprocessing campaign

    NASA Astrophysics Data System (ADS)

    Booker, David; Clarke, Peter J.; Lavallée, David A.

    2010-05-01

    During the relatively short life of the Global Positioning System (GPS) there have been several changes to the analysis procedure, leading to inhomogeneous coordinate time series. Although they have reduced systematic errors in more recent solutions, these changes have modified the apparent periodic signals observed and led to spurious discontinuities. The International GNSS Service (IGS) reprocessing campaign uses the latest operational models and techniques to reprocess the back catalogue of GPS data to produce remove inconsistencies caused by the various model changes, thus producing a homogeneous time series of station coordinates and Earth Rotation Parameters (ERPs). Weekly coordinate and ERP solutions from up to 11 reprocessing analysis centres (ACs) have been aligned to the ITRF and combined using the TANYA software in a rigorous weighted least-squares solution. Analysis of the time series of station coordinates and Helmert transformation parameters between the combined solution and the ITRF shows a at least a 50 percent improvement in the stability of the reprocessed weekly solutions compared with earlier operational products. There is a gradual decrease in the weighted root mean square coordinate difference, both between the combined weekly solutions and the ITRF and between the individual AC solutions and their weekly combination, which reaches a minimum around the end of 2005 with a slight increase thereafter. We observe clear differences in the periodicity of Helmert transformation parameters between the individual AC solutions and the combined solution, which presumably result from variations in AC processing strategy. There is a clear annual or near annual periodic variation in the scale difference between the combined solution and the ITRF05 and some less clear variation between the translation parameters, which needs further analysis as to its cause. Keywords: GPS, ITRF, IGS reprocessing campaign, periodic errors

  13. Characterization of used nuclear fuel with multivariate analysis for process monitoring

    NASA Astrophysics Data System (ADS)

    Dayman, Kenneth J.; Coble, Jamie B.; Orton, Christopher R.; Schwantes, Jon M.

    2014-01-01

    This paper presents initial development of a reactor-type classifier that is used to select a reactor-specific partial least squares model to predict used nuclear fuel burnup. Nuclide activities for prototypic used fuel samples were generated in ORIGEN-ARP and used to investigate techniques to characterize used nuclear fuel in terms of reactor type (pressurized or boiling water reactor) and burnup. A variety of reactor type classification algorithms, including k-nearest neighbors, linear and quadratic discriminant analyses, and support vector machines, were evaluated to differentiate used fuel from pressurized and boiling water reactors. Then, reactor type-specific partial least squares models were developed to predict the burnup of the fuel. Using these reactor type-specific models instead of a model trained for all light water reactors improved the accuracy of burnup predictions. The developed classification and prediction models were combined and applied to a large dataset that included eight fuel assembly designs, two of which were not used in training the models, and spanned the range of the initial 235U enrichment, cooling time, and burnup values expected of future commercial used fuel for reprocessing. Error rates were consistent across the range of considered enrichment, cooling time, and burnup values. Average absolute relative errors in burnup predictions for validation data both within and outside the training space were 0.0574% and 0.0597%, respectively. The errors seen in this work are artificially low, because the models were trained, optimized, and tested on simulated, noise-free data. However, these results indicate that the developed models may generalize well to new data and that the proposed approach constitutes a viable first step in developing a fuel characterization algorithm based on gamma spectra.

  14. Smelting Associated with the Advanced Spent Fuel Conditioning Process

    SciTech Connect

    Hur, J-M.; Jeong, M-S.; Lee, W-K.; Cho, S-H.; Seo, C-S.; Park, S-W.

    2004-10-03

    The smelting process associated with the advanced spent fuel conditioning process (ACP) of Korea Atomic Energy Research Institute was studied by using surrogate materials. Considering the vaporization behaviors of input materials, the operation procedure of smelting was set up as (1) removal of residual salts, (2) melting of metal powder, and (3) removal of dross from a metal ingot. The behaviors of porous MgO crucible during smelting were tested and the chemical stability of MgO in the salt-being atmosphere was confirmed.

  15. Process for converting cellulosic materials into fuels and chemicals

    DOEpatents

    Scott, Charles D.; Faison, Brendlyn D.; Davison, Brian H.; Woodward, Jonathan

    1994-01-01

    A process for converting cellulosic materials, such as waste paper, into fuels and chemicals utilizing enzymatic hydrolysis of the major constituent of paper, cellulose. A waste paper slurry is contacted by cellulase in an agitated hydrolyzer. The cellulase is produced from a continuous, columnar, fluidized-bed bioreactor utilizing immobilized microorganisms. An attritor and a cellobiase reactor are coupled to the agitated hydrolyzer to improve reaction efficiency. The cellulase is recycled by an adsorption process. The resulting crude sugars are converted to dilute product in a fluidized-bed bioreactor utilizing microorganisms. The dilute product is concentrated and purified by utilizing distillation and/or a biparticle fluidized-bed bioreactor system.

  16. Advanced reprocessing developments in Europe contribution of European projects ACSEPT and ACTINET-I3

    SciTech Connect

    Bourg, S.; Poinssot, C.; Geist, A.; Cassayre, L.; Rhodes, C.; Ekberg, C.

    2012-07-01

    Nuclear energy has more than ever to demonstrate that it can contribute safely and on a sustainable way to answer the international increase in energy needs. Actually, in addition to an increased safety of the reactors themselves, its acceptance is still closely associated to our capability to reduce the lifetime of the nuclear waste, to manage them safely and to propose options for a better use of the natural resources. Spent fuel reprocessing can help to reach these objectives. But this cannot be achieved only by optimizing industrial processes through engineering studies. It is of a primary importance to increase our fundamental knowledge in actinide sciences in order to build the future of nuclear energy on reliable and scientifically-founded results, and therefore meet the needs of the future fuel cycles in terms of fabrication and performance of fuels, reprocessing and waste management. At the European level, both the collaborative project ACSEPT and the Integrated Infrastructure Initiative ACTINET-I3 work together to improve our knowledge in actinides chemistry and therefore develop advanced separation processes. These tools are complementary and work in close connection on some specific issues such as the understanding of the selectivity of extracting organic ligands. By offering trans-national access to the main nuclear research facility in Europe, ACTINET-I3 aims at increasing the knowledge in actinide sciences by gathering all the expertise available in European nuclear research institutes or university and giving them the opportunity to come and work in hot-labs (ITU, Atalante...) or beamlines (ESFR, ANKA, PSI) ACSEPT is focused on the development of advanced separation processes, both aqueous and pyrochemical. Head-end steps, fuel re-fabrication, solvent treatment, waste management are also taken into account. In aqueous process development, the SANEX and innovative SANEX flowsheets demonstration were successfully achieved. Chemical systems were

  17. The Fourth (A)ATSR Data Reprocessing

    NASA Astrophysics Data System (ADS)

    Goryl, Philippe; Cocevar, Pauline; Done, Fay; Aatsr Quality Working Group

    2016-08-01

    This paper aims to inform users of the upcoming Fourth Reprocessing of ATSR-1, ATSR-2 and AATSR data. The main objective of the Fourth Reprocessing is to generate (A)ATSR Level 1B data products in a similar format to SLSTR products from Sentinel-3. In this way, users can easily access the 20-year dataset from the ERS and ENVISAT (A)ATSR missions and carry the analysis forward into the Sentinel era. In addition to the product format change, the dataset will build on the improvements implemented in the Third Reprocessing, and will contain further improvements and enhancements, as described below.

  18. NEW MATERIAL NEEDS FOR HYDROCARBON FUEL PROCESSING: Generating Hydrogen for the PEM Fuel Cell

    NASA Astrophysics Data System (ADS)

    Farrauto, R.; Hwang, S.; Shore, L.; Ruettinger, W.; Lampert, J.; Giroux, T.; Liu, Y.; Ilinich, O.

    2003-08-01

    The hydrogen economy is fast approaching as petroleum reserves are rapidly consumed. The fuel cell promises to deliver clean and efficient power by combining hydrogen and oxygen in a simple electrochemical device that directly converts chemical energy to electrical energy. Hydrogen, the most plentiful element available, can be extracted from water by electrolysis. One can imagine capturing energy from the sun and wind and/or from the depths of the earth to provide the necessary power for electrolysis. Alternative energy sources such as these are the promise for the future, but for now they are not feasible for power needs across the globe. A transitional solution is required to convert certain hydrocarbon fuels to hydrogen. These fuels must be available through existing infrastructures such as the natural gas pipeline. The present review discusses the catalyst and adsorbent technologies under development for the extraction of hydrogen from natural gas to meet the requirements for the proton exchange membrane (PEM) fuel cell. The primary market is for residential applications, where pipeline natural gas will be the source of H2 used to power the home. Other applications including the reforming of methanol for portable power applications such as laptop computers, cellular phones, and personnel digital equipment are also discussed. Processing natural gas containing sulfur requires many materials, for example, adsorbents for desulfurization, and heterogeneous catalysts for reforming (either autothermal or steam reforming) water gas shift, preferential oxidation of CO, and anode tail gas combustion. All these technologies are discussed for natural gas and to a limited extent for reforming methanol.

  19. Plate-Based Fuel Processing System Final Report

    SciTech Connect

    Carlos Faz; Helen Liu; Jacques Nicole; David Yee

    2005-12-22

    On-board reforming of liquid fuels into hydrogen is an enabling technology that could accelerate consumer usage of fuel cell powered vehicles. The technology would leverage the convenience of the existing gasoline fueling infrastructure while taking advantage of the fuel cell efficiency and low emissions. Commercial acceptance of on-board reforming faces several obstacles that include: (1) startup time, (2) transient response, and (3) system complexity (size, weight and cost). These obstacles are being addressed in a variety of projects through development, integration and optimization of existing fuel processing system designs. In this project, CESI investigated steam reforming (SR), water-gas-shift (WGS) and preferential oxidation (PrOx) catalysts while developing plate reactor designs and hardware where the catalytic function is integrated into a primary surface heat exchanger. The plate reactor approach has several advantages. The separation of the reforming and combustion streams permits the reforming reaction to be conducted at a higher pressure than the combustion reaction, thereby avoiding costly gas compression for combustion. The separation of the two streams also prevents the dilution of the reformate stream by the combustion air. The advantages of the plate reactor are not limited to steam reforming applications. In a WGS or PrOx reaction, the non-catalytic side of the plate would act as a heat exchanger to remove the heat generated by the exothermic WGS or PrOx reactions. This would maintain the catalyst under nearly isothermal conditions whereby the catalyst would operate at its optimal temperature. Furthermore, the plate design approach results in a low pressure drop, rapid transient capable and attrition-resistant reactor. These qualities are valued in any application, be it on-board or stationary fuel processing, since they reduce parasitic losses, increase over-all system efficiency and help perpetuate catalyst durability. In this program, CESI

  20. Conversion of microalgae to jet fuel: process design and simulation.

    PubMed

    Wang, Hui-Yuan; Bluck, David; Van Wie, Bernard J

    2014-09-01

    Microalgae's aquatic, non-edible, highly genetically modifiable nature and fast growth rate are considered ideal for biomass conversion to liquid fuels providing promise for future shortages in fossil fuels and for reducing greenhouse gas and pollutant emissions from combustion. We demonstrate adaptability of PRO/II software by simulating a microalgae photo-bio-reactor and thermolysis with fixed conversion isothermal reactors adding a heat exchanger for thermolysis. We model a cooling tower and gas floatation with zero-duty flash drums adding solids removal for floatation. Properties data are from PRO/II's thermodynamic data manager. Hydrotreating is analyzed within PRO/II's case study option, made subject to Jet B fuel constraints, and we determine an optimal 6.8% bioleum bypass ratio, 230°C hydrotreater temperature, and 20:1 bottoms to overhead distillation ratio. Process economic feasibility occurs if cheap CO2, H2O and nutrient resources are available, along with solar energy and energy from byproduct combustion, and hydrotreater H2 from product reforming. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Thermostable adenylate kinase technology: a new process indicator and its use as a validation tool for the reprocessing of surgical instruments.

    PubMed

    Hesp, J R; Poolman, T M; Budge, C; Batten, L; Alexander, F; McLuckie, G; O'Brien, S; Wells, P; Raven, N D H; Sutton, J M

    2010-02-01

    Adenylate kinase (tAK), a thermostable enzyme, was assessed as a possible means of providing a quantitative measure of cleaning efficacy suitable for validating the performance of an automated washer disinfector (AWD) during routine use. Two indicator formulations were developed using either a commercially available washer disinfector soil or a protein-based soil. Each indicator consisted of 100 microg (in test soil) of tAK dried on to a steel or plastic surface. These indicators were placed in each basket of a washer disinfector and processed alongside soiled surgical instruments during a standard day's operation. After processing, remaining tAK activity was detected using a rapid enzyme assay (2 min detection time) in a handheld hygiene monitor. The amount of tAK remaining on each indictor after a full AWD cycle was found to range from 0.1 to 0.4 ng, which represented a mean log(10) removal of 5.8+/-0.3. There was no statistical difference in the residual tAK activity between individual runs or the position of the indicator in the machine. The tAK indicator was also used to analyse the protein removal within each component of the wash cycle. These results demonstrated that all phases of the wash process contributed to the removal of the protein load, with the main wash alone being responsible for 3.6-4.0 log(10) reductions in protein activity. We propose that a quantitative cleaning index using such rapid readout indicator devices would provide a valuable addition to the methodologies for validating cleaning processes.

  2. Progress and experiences from the decommissioning of the Eurochemic reprocessing plant

    SciTech Connect

    Gills, R.; Lewandowski, P.; Ooms, B.; Reusen, N.; Van Laer, W.; Walthery, R.

    2007-07-01

    Belgoprocess started the industrial decommissioning of the main process building of the former EUROCHEMIC reprocessing plant in 1990, after completion of a pilot project in which two buildings were emptied and decontaminated to background levels. The remaining structures were demolished and the concrete debris was disposed of as industrial waste and green field conditions restored. The Eurochemic reprocessing plant operated from 1966 to 1974 to process fuel from power reactors and research reactors. The main building is a large concrete structure, comprising a surface area of 55,000 m{sup 2}, concrete volume 12,500 m{sup 3}, and 1,500 Mg of metal components. The building is divided into multiple cells. About 106 individual cell structures have to be dismantled, involving the removal and decontamination of equipment from each cell, the decontamination of the cell walls, ceilings and floors, the dismantling of the ventilation system. Most of the work involves hands-on operations under protective clothing tailored to each specific task. Tool automation and automatic positioning systems are successfully applied. In view of the final demolition of the main process building, the main process building is divided into three parts - each part is isolated from the others. In the middle of 2008, after the removal of the NDA-IPAN/GEA installation, the eastern part will be demolished. The paper presents a status overview of the decommissioning and decontamination activities at the main process building of the former Eurochemic reprocessing plant on the nuclear site of Dessel in Belgium. The specific BELGOPROCESS approach will be highlighted, in which the decommissioning activities are carried out on an industrial scale with special emphasis on cost minimisation, the use of technology on an industrial representative scale and the specific alpha contamination of equipment and building surfaces, requiring that the decommissioning work is done with adequate protective clothing

  3. Femtosecond laser processing of fuel injectors - a materials processing evaluation

    SciTech Connect

    Stuart, B C; Wynne, A

    2000-12-16

    Lawrence Livermore National Laboratory (LLNL) has developed a new laser-based machining technology that utilizes ultrashort-pulse (0.1-1.0 picosecond) lasers to cut materials with negligible generation of heat or shock. The ultrashort pulse laser, developed for the Department of Energy (Defense Programs) has numerous applications in operations requiring high precision machining. Due to the extremely short duration of the laser pulse, material removal occurs by a different physical mechanism than in conventional machining. As a result, any material (e.g., hardened steel, ceramics, diamond, silicon, etc.) can be machined with minimal heat-affected zone or damage to the remaining material. As a result of the threshold nature of the process, shaped holes, cuts, and textures can be achieved with simple beam shaping. Conventional laser tools used for cutting or high-precision machining (e.g., sculpting, drilling) use long laser pulses (10{sup -8} to over 1 sec) to remove material by heating it to the melting or boiling point (Figure 1.1a). This often results in significant damage to the remaining material and produces considerable slag (Figure 1.2a). With ultrashort laser pulses, material is removed by ionizing the material (Figure 1.1b). The ionized plasma expands away from the surface too quickly for significant energy transfer to the remaining material. This distinct mechanism produces extremely precise and clean-edged holes without melting or degrading the remaining material (Figures 1.2 and 1.3). Since only a very small amount of material ({approx} <0.5 microns) is removed per laser pulse, extremely precise machining can be achieved. High machining speed is achieved by operating the lasers at repetition rates up to 10,000 pulses per second. As a diagnostic, the character of the short-pulse laser produced plasma enables determination of the material being machined between pulses. This feature allows the machining of multilayer materials, metal on metal or metal on

  4. On the Reprocessing and Reanalysis of Observations for Climate

    NASA Technical Reports Server (NTRS)

    Bosilovich, Michael G.; Kennedy, John; Dee, Dick; Allan, R.; O'Neill, Alan

    2013-01-01

    The long observational record is critical to our understanding of the Earths climate, but most observing systems were not developed with a climate objective in mind. As a result, tremendous efforts have gone into assessing and reprocessing the data records to improve their usefulness in climate studies. The purpose of this paper is to both review recent progress in reprocessing and reanalyzing observations, and to summarize the challenges that must be overcome in order to improve our understanding of climate and variability. Reprocessing improves data quality through more scrutiny and improved retrieval techniques for individual observing systems, while reanalysis merges many disparate observations with models through data assimilation, yet both aim to provide an climatology of Earth processes. Many challenges remain, such as tracking the improvement of processing algorithms and limited spatial coverage. Reanalyses have fostered significant research, yet reliable global trends in many physical fields are not yet attainable, despite significant advances in data assimilation and numerical modeling. Oceanic reanalyses have made significant advances in recent years, but will only be discussed here in terms of progress toward integrated Earth system analyses. Climate data sets are generally adequate for process studies and large-scale climate variability. Communication of the strengths, limitations and uncertainties of reprocessed observations and reanalysis data, not only among the community of developers, but also with the extended research community, including the new generations of researchers and the decision makers is crucial for further advancement of the observational data records. It must be emphasized that careful investigation of the data and processing methods are required to use the observations appropriately.

  5. PROCESS OF MAKING SHAPED FUEL FOR NUCLEAR REACTORS

    DOEpatents

    O'Leary, W.J.; Fisher, E.A.

    1964-02-11

    A process for making uranium dioxide fuel of great strength, density, and thermal conductivity by mixing it with 0.1 to 1% of a densifier oxide (tin, aluminum, zirconium, ferric, zinc, chromium, molybdenum, titanium, or niobium oxide) and with a plasticizer (0.5 to 3% of bentonite and 0.05 to 2% of methylcellulose, propylene glycol alginate, or ammonium alginate), compacting the mixture obtained, and sintering the bodies in an atmosphere of carbon monoxide or carbon dioxide, with or without hydrogen, or of a nitrogen-hydrogen mixture is described. (AEC)

  6. PROCESS OF MAKING A NEUTRONIC REACTOR FUEL ELEMENT COMPOSITION

    DOEpatents

    Alter, H.W.; Davidson, J.K.; Miller, R.S.; Mewherter, J.L.

    1959-01-13

    A process is presented for making a ceramic-like material suitable for use as a nuclear fuel. The material consists of a solid solution of plutonium dioxide in uranium dioxide and is produced from a uranyl nitrate -plutonium nitrate solution containing uraniunm and plutonium in the desired ratio. The uranium and plutonium are first precipitated from the solution by addition of NH/ sub 4/OH and the dried precipitate is then calcined at 600 C in a hydrogen atmosphere to yield the desired solid solution of PuO/sub 2/ in UO/sub 2/.

  7. Automated catalyst processing for cloud electrode fabrication for fuel cells

    DOEpatents

    Goller, Glen J.; Breault, Richard D.

    1980-01-01

    A process for making dry carbon/polytetrafluoroethylene floc material, particularly useful in the manufacture of fuel cell electrodes, comprises of the steps of floccing a co-suspension of carbon particles and polytetrafluoroethylene particles, filtering excess liquids from the co-suspension, molding pellet shapes from the remaining wet floc solids without using significant pressure during the molding, drying the wet floc pellet shapes within the mold at temperatures no greater than about 150.degree. F., and removing the dry pellets from the mold.

  8. Development of multilayer imprint process for solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Tokumaru, Kazuki; Tsumori, Fujio; Kudo, Kentaro; Osada, Toshiko; Shinagawa, Kazunari

    2017-06-01

    Solid oxide fuel cells (SOFCs) are fuel cells made of ceramics. To increase the SOFC energy density, we developed an SOFC with a wavy electrolyte layer. As a wavy electrolyte has a larger reaction surface area than a flat electrolyte, a higher energy density could be obtained. Our proposed process is named micro-powder imprint (µPI) with a multilayer imprint process that is useful for fabricating a microscale pattern on a ceramic sheet such as an SOFC electrolyte layer. µPI is based on nanoimprint lithography; therefore, it also exhibits the same advantages of high resolution and mass productivity. The starting material for µPI is a compound sheet containing ceramic powder and binder materials consisting of thermoplastic resin. In this study, two different sheets were stacked into one sheet as a multilayer sheet for the µPI process to form a wavy compound sheet. As the initial state of the stacked sheet, including the mechanical properties of each layer, affects the final wavy shape, we changed the material composition. As a result, the SOFCs unit cell with a wavy electrolyte was fabricated. Note that the anode layer was formed at the same time. After adding the cathode layer, we succeeded in preparing a complete cell for testing power generation.

  9. The Himalaya-Bengal Fan source to sink system - new insights by correlation of re-processed seismic data and IODP Expedition 354 results

    NASA Astrophysics Data System (ADS)

    Bergmann, Fenna; Schwenk, Tilmann; Spiess, Volkard; France-Lanord, Christian

    2016-04-01

    connect the sites of the drilling transect by means of seismo-stratigraphic analysis a large seismo-acoustic dataset gathered during cruises SO93 (1994), SO125/126 (1997) and SO188 (2006), all carried out in cooperation between the University of Bremen and the BGR, Hannover, is available. The dataset contains multichannel seismic data acquired with differ-ent seismic sources (GI-Gun/Watergun) to achieve differing subbottom penetration/resolution ratios. Although most of the pre-site survey data were already processed, major improve-ment could be gained by thoroughly (re) processing using new processing techniques and software developments. First processing results show significantly enhanced S/N ratio, reso-lution and reflector coherency. Full processing of the Watergun data was conducted for the first time. This high vertical resolution data has so far never been investigated and comple-ments the database, especially for a more detailed study of the upper few hundred meters of Bengal Fan deposits. First examinations of the watergun data in combination with drilling results proved them to be beneficial for the crucial borehole - seismic correlation and the investigations of the internal levee architecture, especially for the latest active channel-levee system.

  10. PLAN SECTIONS AND DETAILS OF CELL HATCHES MAIN PROCESSING BUILDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PLAN SECTIONS AND DETAILS OF CELL HATCHES MAIN PROCESSING BUILDING (CPP-601). INL DRAWING NUMBER 200-0601-00-291-103256. ALTERNATE ID NUMBER 542-11-F-302. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  11. ARCHITECTURAL FLOOR PLAN OF PROCESS AND ACCESS AREAS HOT PILOT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ARCHITECTURAL FLOOR PLAN OF PROCESS AND ACCESS AREAS HOT PILOT PLANT (CPP-640). INL DRAWING NUMBER 200-0640-00-279-111679. ALTERNATE ID NUMBER 8952-CPP-640-A-2. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  12. AERIAL VIEW OF MAIN PROCESSING BUILDING SHOWING CONSTRUCTION PROGRESS AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    AERIAL VIEW OF MAIN PROCESSING BUILDING SHOWING CONSTRUCTION PROGRESS AND EXCAVATION FOR LABORATORY ON LEFT. INL PHOTO NUMBER NRTS-51-1759. Unknown Photographer, 3/28/1951 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  13. CONSTRUCTION PROGRESS PHOTO SHOWING EXCAVATION PIT FOR MAIN PROCESSING BUILDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CONSTRUCTION PROGRESS PHOTO SHOWING EXCAVATION PIT FOR MAIN PROCESSING BUILDING (CPP-601) LOOKING NORTHWEST. INL PHOTO NUMBER NRTS-50-885. Unknown Photographer, 10/30/1950 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  14. Deep Burn Develpment of Transuranic Fuel for High-Temperature Helium-Cooled Reactors - July 2010

    SciTech Connect

    Snead, Lance Lewis; Besmann, Theodore M; Collins, Emory D; Bell, Gary L

    2010-08-01

    The DB Program Quarterly Progress Report for April - June 2010, ORNL/TM/2010/140, was distributed to program participants on August 4. This report discusses the following: (1) TRU (transuranic elements) HTR (high temperature helium-cooled reactor) Fuel Modeling - (a) Thermochemical Modeling, (b) 5.3 Radiation Damage and Properties; (2) TRU HTR Fuel Qualification - (a) TRU Kernel Development, (b) Coating Development, (c) ZrC Properties and Handbook; and (3) HTR Fuel Recycle - (a) Recycle Processes, (b) Graphite Recycle, (c) Pyrochemical Reprocessing - METROX (metal recovery from oxide fuel) Process Development.

  15. Thermochemical Process Development Unit: Researching Fuels from Biomass, Bioenergy Technologies (Fact Sheet)

    SciTech Connect

    Not Available

    2009-01-01

    The Thermochemical Process Development Unit (TCPDU) at the National Renewable Energy Laboratory (NREL) is a unique facility dedicated to researching thermochemical processes to produce fuels from biomass.

  16. Microbial fuel cell treatment of ethanol fermentation process water

    DOEpatents

    Borole, Abhijeet P [Knoxville, TN

    2012-06-05

    The present invention relates to a method for removing inhibitor compounds from a cellulosic biomass-to-ethanol process which includes a pretreatment step of raw cellulosic biomass material and the production of fermentation process water after production and removal of ethanol from a fermentation step, the method comprising contacting said fermentation process water with an anode of a microbial fuel cell, said anode containing microbes thereon which oxidatively degrade one or more of said inhibitor compounds while producing electrical energy or hydrogen from said oxidative degradation, and wherein said anode is in electrical communication with a cathode, and a porous material (such as a porous or cation-permeable membrane) separates said anode and cathode.

  17. New process converts cellulose waste into high Btu alcohol fuel

    SciTech Connect

    Not Available

    1980-08-01

    In the U.S. about 500 million tons of cellulose ends up in agricultural and municipal waste streams annually. Scientists at New York University have found a way to continuously convert waste cellulose such as sawdust and old newspapers into glucose sugar. It is reported that the process involves a twin-screen extruder and in a small pilot facility the extruder is continuously processing sawdust and newspapers at a rate of 200 pounds per hour. The resulting dark brown sludge contains 30% glucose that can be used to manufacture alcohol. The unreacted material, mainly lignin, can be burned for fuel. It is stated that there is enough energy in this secondary waste to run the alcohol fermentation and distillation process.

  18. Reprocessing of LiH in Molten Chlorides

    NASA Astrophysics Data System (ADS)

    Masset, Patrick J.; Gabriel, Armand; Poignet, Jean-Claude

    2008-06-01

    LiH was used as inactive material to stimulate the reprocessing of lithium tritiate in molten chlorides. The electrochemical properties (diffusion coefficients, apparent standard potentials) were measured by means of transient electrochemical techniques (cyclic voltammetry and chronopotentiometry). At 425 ºC the diffusion coefficient and the apparent standard potential were 2.5 · 10-5 cm2 s-1 and -1.8 V vs. Ag/AgCl, respectively. For the process design the LiH solubility was measured by means of DTA to optimize the LiH concentration in the molten phase. In addition electrolysis tests were carried out at 460 ºC with current densities up to 1 A cm-2 over 24 h. These results show that LiH may be reprocessed in molten chlorides consisting in the production of hydrogen gas at the anode and molten metallic lithium at the cathode.

  19. On the Reprocessing and Reanalysis of Observations for Climate

    NASA Technical Reports Server (NTRS)

    Bosilovich, Michael G.; Kennedy, John; Dee, Dick; ONeill, Alan

    2012-01-01

    The long observational record is critical to our understanding of the Earth s climate, but most observing systems were not developed with a climate objective in mind. As a result, tremendous efforts have gone into assessing and reprocessing the data records to improve their usefulness in climate studies. Many challenges remain, such as tracking the improvement of processing algorithms and limited spatial coverage. Reanalyses have fostered significant research, yet reliable global trends in many physical fields are not yet attainable, despite significant advances in data assimilation and numerical modeling. Communication of the strengths, limitations and uncertainties of reprocessed observations and reanalysis data, not only among the community of developers, but also with the extended research community, including the new generations of researchers and the decision makers is crucial for further advancement of the observational data records. WCRP provides the means to bridge the different motivating objectives on which national efforts focus.

  20. The Effect of Reprocessing on the Tensile Properties of Composites

    NASA Astrophysics Data System (ADS)

    Bodur, Mehmet Safa; Bakkal, Mustafa; Berkalp, Omer Berk; Sadikoglu, Telem Gok

    2011-01-01

    In this study, waste cotton fabric reinforced polymer matrix composite material has been manufactured by a custom made recycling extruder. Composites with different reinforcement ratios as 12,5%wt ( 12,5%wtRPE ) and 25%wt ( 25%wtRPE ) were tested for their mechanical properties such as tensile strength and young's modulus. The material was then granulated down to the size enough to be used in the extrusion process in order to observe the effects of reprocessing. Reprocessing leads to improve Tensile Strength of composite materials and slows down the reduction of tensile strength of polyethylene. It was observed that composite materials were highly affected by the fiber orientation and acts as anisotropic material under the load.