Attitudes towards and perceptions of eco-driving and the role of feedback systems.
Harvey, Joan; Thorpe, Neil; Fairchild, Richard
2013-01-01
This paper addresses whether eco-driving may be encouraged by providing drivers with feedback, and how eco-driving attitudes fit with other environmental attitudes. Eight focus groups, including fleet drivers, discussed how feedback and other motives might affect driving behaviour. A survey of 350 respondents investigated attitudes towards saving fuel, the role of incentives and use of eco-friendly products. The focus groups' findings show that the environment is a lower priority than comfort and convenience, that feedback might provide a stimulus to eco-driving and that saving money was less important than saving time. The attitude survey showed that price, convenience, attitudes and eco-driving are not conceptually linked together, that convenience is rated as more important than saving money from fuel efficiency and that although the environment is of concern, it is not a high enough priority to increase fuel efficiency. The findings are discussed in relation to the low level of priority given to environmental concerns and the inability of financial incentives presenting significant challenges in terms of changing the subjective norms of the majority of drivers. This paper, using focus groups and a questionnaire, aims to understand how feedback devices, attitudes and motivation can improve eco-driving behaviours. The incentive to save money by better fuel economy was found to be insufficient, and roles for feedback devices and how information is presented are identified.
Telematics Options and Capabilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hodge, Cabell
This presentation describes the data tracking and analytical capabilities of telematics devices. Federal fleet managers can use the systems to keep their drivers safe, maintain a fuel efficient fleet, ease their reporting burden, and save money. The presentation includes an example of how much these capabilities can save fleets.
Learn About SmartWay Verified Aerodynamic Devices
Installing EPA-verified aerodynamic technologies on your trailer can help fleet and truck owners save fuel. Options include gap reducers, skirts, or tails and can be installed individually or in combination.
In the most recent years, the world energy demand rose quickly. Production of millions of new cars every year, development of electronic devices that use hundreds of watts each, replacing human labor with machines in the factories and many others, lead world oil production close...
Alternative Fuels Data Center: Alternative Fuels Save Money in Indy
Alternative Fuels Save Money in Indy to someone by E-mail Share Alternative Fuels Data Center : Alternative Fuels Save Money in Indy on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels Save Money in Indy on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels Save Money in
Saving Lives With Rocket Power
NASA Technical Reports Server (NTRS)
2000-01-01
Thiokol Propulsion uses NASA's surplus rocket fuel to produce a flare that can safely destroy land mines. Through a Memorandum of Agreement between Thiokol and Marshall Space Flight Center, Thiokol uses the scrap Reusable Solid Rocket Motor (RSRM) propellant. The resulting Demining Device was developed by Thiokol with the help of DE Technologies. The Demining Device neutralizes land mines in the field without setting them off. The Demining Device flare is placed next to an uncovered land mine. Using a battery-triggered electric match, the flare is then ignited. Using the excess and now solidified rocket fuel, the flare burns a hole in the mine's case and ignites the explosive contents. Once the explosive material is burned away, the mine is disarmed and no longer dangerous.
Fuel Reduction for the Mobility Air Forces: Executive Summary
2015-01-01
calculate fuel savings from an enterprise perspective. For example, there is significant literature on drag reduction of winglets ; however, most of this... Winglets . Winglets are wingtip devices designed to improve the lift-to-drag ratio of an aircraft and are more effective than simple wing extensions of...Developing Winglets For C-130, C-5,” Aerospace Daily & Defense Report, October 6, 2011, p. 3; and Vortex Control Technologies, “2013 Program Price List
NASA Astrophysics Data System (ADS)
Wang, Shuaijun; Liu, Chentao; Zhou, Yao
2018-01-01
Based on using the waste heat recycling from high temperature freshwater in marine diesel engine to heat fuel oil tank, lubrication oil tank and settling tank and so on to achieve energy saving, improve fuel efficiency as the goal, study on waste heat utilization device of high-temperature freshwater in the modern marine diesel engine to make the combustion chamber effectively cooled by high-temperature freshwater and the inner liner freshwater temperature heat is effectively utilized and so on to improve the overall efficiency of the power plant of the ship and the diesel optimum working condition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rose, David Martin; Schenkman, Benjamin L.; Borneo, Daniel R.
2013-08-01
The Department of Energy Office of Electricity (DOE/OE), Sandia National Laboratory (SNL) and the Base Camp Integration Lab (BCIL) partnered together to incorporate an energy storage system into a microgrid configured Forward Operating Base to reduce the fossil fuel consumption and to ultimately save lives. Energy storage vendors have supplied their systems to SNL Energy Storage Test Pad (ESTP) for functional testing and a subset of these systems were selected for performance evaluation at the BCIL. The technologies tested were electro-chemical energy storage systems comprised of lead acid, lithium-ion or zinc-bromide. MILSPRAY Military Technologies has developed an energy storage systemmore » that utilizes lead acid batteries to save fuel on a military microgrid. This report contains the testing results and some limited assessment of the Milspray Scorpion Energy Storage Device.« less
Dogan, Ebru; Steg, Linda; Delhomme, Patricia
2011-09-01
Due to the innate complexity of the task drivers have to manage multiple goals while driving and the importance of certain goals may vary over time leading to priority being given to different goals depending on the circumstances. This study aimed to investigate drivers' behavioral regulation while managing multiple goals during driving. To do so participants drove on urban and rural roads in a driving simulator while trying to manage fuel saving and time saving goals, besides the safety goals that are always present during driving. A between-subjects design was used with one group of drivers managing two goals (safety and fuel saving) and another group managing three goals (safety, fuel saving, and time saving) while driving. Participants were provided continuous feedback on the fuel saving goal via a meter on the dashboard. The results indicate that even when a fuel saving or time saving goal is salient, safety goals are still given highest priority when interactions with other road users take place and when interacting with a traffic light. Additionally, performance on the fuel saving goal diminished for the group that had to manage fuel saving and time saving together. The theoretical implications for a goal hierarchy in driving tasks and practical implications for eco-driving are discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.
Development of Energy-Saving Devices for a 20,000DWT River-Sea Bulk Carrier
NASA Astrophysics Data System (ADS)
Chen, Kunpeng; Gao, Yuling; Huang, Zhenping; Dong, Guoxiang
2018-05-01
A reduction of fuel consumption and an increase in efficiency are currently required for river-sea bulk carriers. Pre-swirl and ducted stators are widely used devices in the industry and efficiency gains can be obtained for single-screw and twin-screw vessels. Based on the hydrodynamic characteristics of the 20,000DWT river-sea bulk carrier, in this study, we proposed, designed, and tested a series of pre-swirl energy-saving devices (ESDs). The experimental results demonstrate that the proposed ESDs improved the propulsive efficiency and reduced the delivered power. The results confirm the success of our ESD for the 20,000DWT river-sea bulk carrier. We validated the role of Reynolds-averaged Navier-Stokes (RANS) computational fluid dynamics (CFD) in the twin-skeg river-sea vessel ESD design and found the circumferential arrangement and number of stators to be important factors in the design process.
Unconventional Staging Package Selection Leads to Cost Savings
DOE Office of Scientific and Technical Information (OSTI.GOV)
,
2012-06-07
In late 2010, U.S. Department of Energy (DOE) Deputy Secretary of Energy, Daniel Poneman, directed that an analysis be conducted on the U-233 steel-clad, Zero Power Reactor (ZPR) fuel plates that were stored at Oak Ridge National Laboratory (ORNL), focusing on cost savings and any potential DOE programmatic needs for the special nuclear material (SNM). The NA-162 Nuclear Criticality Safety Program requested retention of these fuel plates for use in experiments at the Nevada National Security Site (NNSS). A Secretarial Initiative challenged ORNL to make the first shipment to the NNSS by the end of the 2011 calendar year, andmore » this effort became known as the U-233 Project Accelerated Shipping Campaign. To meet the Secretarial Initiative, National Security Technologies, LLC (NSTec), the NNSS Management and Operations contractor, was asked to facilitate the receipt and staging of the U-233 fuel plates in the Device Assembly Facility (DAF). Because there were insufficient staging containers available for the fuel plates, NSTec conducted an analysis of alternatives. The project required a staging method that would reduce the staging footprint while addressing nuclear criticality safety and radiation exposure concerns. To accommodate an intermediate staging method of approximately five years, the NSTec project team determined that a unique and unconventional staging package, the AT-400R, was available to meet the project requirements. By using the AT-400R containers, NSTec was able to realize a cost savings of approximately $10K per container, a total cost savings of nearly $450K.« less
Alternative Fuels Data Center: Propane Buses Save Money for Virginia
Schools Propane Buses Save Money for Virginia Schools to someone by E-mail Share Alternative Fuels Data Center: Propane Buses Save Money for Virginia Schools on Facebook Tweet about Alternative Fuels Data Center: Propane Buses Save Money for Virginia Schools on Twitter Bookmark Alternative Fuels
Alternative Fuels Data Center: Renzenberger Inc Saves Money With Propane
Vans Renzenberger Inc Saves Money With Propane Vans to someone by E-mail Share Alternative Fuels Data Center: Renzenberger Inc Saves Money With Propane Vans on Facebook Tweet about Alternative Fuels Data Center: Renzenberger Inc Saves Money With Propane Vans on Twitter Bookmark Alternative Fuels
Luk, Jason M; Kim, Hyung Chul; De Kleine, Robert; Wallington, Timothy J; MacLean, Heather L
2017-08-01
The literature analyzing the fuel saving, life cycle greenhouse gas (GHG) emission, and ownership cost impacts of lightweighting vehicles with different powertrains is reviewed. Vehicles with lower powertrain efficiencies have higher fuel consumption. Thus, fuel savings from lightweighting internal combustion engine vehicles can be higher than those of hybrid electric and battery electric vehicles. However, the impact of fuel savings on life cycle costs and GHG emissions depends on fuel prices, fuel carbon intensities and fuel storage requirements. Battery electric vehicle fuel savings enable reduction of battery size without sacrificing driving range. This reduces the battery production cost and mass, the latter results in further fuel savings. The carbon intensity of electricity varies widely and is a major source of uncertainty when evaluating the benefits of fuel savings. Hybrid electric vehicles use gasoline more efficiently than internal combustion engine vehicles and do not require large plug-in batteries. Therefore, the benefits of lightweighting depend on the vehicle powertrain. We discuss the value proposition of the use of lightweight materials and alternative powertrains. Future assessments of the benefits of vehicle lightweighting should capture the unique characteristics of emerging vehicle powertrains.
NASA Technical Reports Server (NTRS)
2015-01-01
Topics covered include: 3D Endoscope to Boost Safety, Cut Cost of Surgery; Audio App Brings a Better Night's Sleep Liquid Cooling Technology Increases Exercise Efficiency; Algae-Derived Dietary Ingredients Nourish Animals; Space Grant Research Launches Rehabilitation Chair; Vision Trainer Teaches Focusing Techniques at Home; Aircraft Geared Architecture Reduces Fuel Cost and Noise; Ubiquitous Supercritical Wing Design Cuts Billions in Fuel Costs; Flight Controller Software Protects Lightweight Flexible Aircraft; Cabin Pressure Monitors Notify Pilots to Save Lives; Ionospheric Mapping Software Ensures Accuracy of Pilots' GPS; Water Mapping Technology Rebuilds Lives in Arid Regions; Shock Absorbers Save Structures and Lives during Earthquakes; Software Facilitates Sharing of Water Quality Data Worldwide; Underwater Adhesives Retrofit Pipelines with Advanced Sensors; Laser Imaging Video Camera Sees through Fire, Fog, Smoke; 3D Lasers Increase Efficiency, Safety of Moving Machines; Air Revitalization System Enables Excursions to the Stratosphere; Magnetic Fluids Deliver Better Speaker Sound Quality; Bioreactor Yields Extracts for Skin Cream; Private Astronaut Training Prepares Commercial Crews of Tomorrow; Activity Monitors Help Users Get Optimum Sun Exposure; LEDs Illuminate Bulbs for Better Sleep, Wake Cycles; Charged Particles Kill Pathogens and Round Up Dust; Balance Devices Train Golfers for a Consistent Swing; Landsat Imagery Enables Global Studies of Surface Trends; Ruggedized Spectrometers Are Built for Tough Jobs; Gas Conversion Systems Reclaim Fuel for Industry; Remote Sensing Technologies Mitigate Drought; Satellite Data Inform Forecasts of Crop Growth; Probes Measure Gases for Environmental Research; Cloud Computing Technologies Facilitate Earth Research; Software Cuts Homebuilding Costs, Increases Energy Efficiency; Portable Planetariums Teach Science; Schedule Analysis Software Saves Time for Project Planners; Sound Modeling Simplifies Vehicle Noise Management; Custom 3D Printers Revolutionize Space Supply Chain; Improved Calibration Shows Images' True Colors; Micromachined Parts Advance Medicine, Astrophysics, and More; Metalworking Techniques Unlock a Unique Alloy; Low-Cost Sensors Deliver Nanometer-Accurate Measurements; Electrical Monitoring Devices Save on Time and Cost; Dry Lubricant Smooths the Way for Space Travel, Industry; and Compact Vapor Chamber Cools Critical Components.
Alternative Fuels Data Center: Alabama Prisons Adopt Propane, Establish
, Establish Fuel Savings for Years to Come on Facebook Tweet about Alternative Fuels Data Center: Alabama Prisons Adopt Propane, Establish Fuel Savings for Years to Come on Twitter Bookmark Alternative Fuels Data Center: Alabama Prisons Adopt Propane, Establish Fuel Savings for Years to Come on Google Bookmark
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Lei; Holden, Jacob; Gonder, Jeffrey D
The green routing strategy instructing a vehicle to select a fuel-efficient route benefits the current transportation system with fuel-saving opportunities. This paper introduces a navigation API route fuel-saving evaluation framework for estimating fuel advantages of alternative API routes based on large-scale, real-world travel data for conventional vehicles (CVs) and hybrid electric vehicles (HEVs). The navigation APIs, such Google Directions API, integrate traffic conditions and provide feasible alternative routes for origin-destination pairs. This paper develops two link-based fuel-consumption models stratified by link-level speed, road grade, and functional class (local/non-local), one for CVs and the other for HEVs. The link-based fuel-consumption modelsmore » are built by assigning travel from a large number of GPS driving traces to the links in TomTom MultiNet as the underlying road network layer and road grade data from a U.S. Geological Survey elevation data set. Fuel consumption on a link is calculated by the proposed fuel consumption model. This paper envisions two kinds of applications: 1) identifying alternate routes that save fuel, and 2) quantifying the potential fuel savings for large amounts of travel. An experiment based on a large-scale California Household Travel Survey GPS trajectory data set is conducted. The fuel consumption and savings of CVs and HEVs are investigated. At the same time, the trade-off between fuel saving and time saving for choosing different routes is also examined for both powertrains.« less
Alternative Fuels Data Center: Happy Cab Fuels Taxi Fleet With CNG
Happy Cab Fuels Taxi Fleet With CNG Find out how a cab company in Omaha, Nebraska, saves money fueling Go Electric in Florida Feb. 15, 2014 Renzenberger Inc Saves Money With Propane Vans Feb. 1, 2014 Gas School Buses Help Kansas City Save Money Nov. 12, 2011 Metropolitan Utilities District Fuels
Design and evaluation of Continuous Descent Approach as a fuel-saving procedure
NASA Astrophysics Data System (ADS)
Jin, Li
Continuous Descent Approach (CDA), which is among the key concepts of the Next Generation Air Transportation System (NextGen), is a fuel economical procedure, but requires increased separation to accommodate spacing uncertainties among arriving aircraft. Such negative impact is often overlooked when benefits are estimated. Although a considerable number of researches have been devoted to the estimation of potential fuel saving of CDA, few have attempted to explain the fuel saving observed in field tests from an analytical point of view. This research gives insights into the reasons why CDA saves fuel, and a number of design guidelines for CDA procedures are derived. The analytical relationship between speed, altitude, and time-cumulative fuel consumption is derived based on Base of Aircraft Data (BADA) Total Energy Model. Theoretical analysis implies that speed profile has an impact as substantial as, if not more than, vertical profile on the fuel consumption in the terminal area. In addition, CDA is not intrinsically a fuel-saving procedure: whether CDA saves fuel or not is contingent upon whether the speed profile is properly designed or not. Based on this model, the potential fuel savings due to CDA at San Francisco International Airport were estimated, and the accuracy of this estimation is analyzed. Possible uncertainties in this fuel estimation primarily resulted from the modeled CDA procedure and the inaccuracy of BADA. This thesis also investigates the fuel savings due to CDAs under high traffic conditions, counting not only the savings benefiting from optimal vertical profiles but also the extra fuel burn resulting from the increased separations. The simulated CDAs traffic is based on radar track data, and deconflicted by a scheduling algorithm that targets minimized delays. The delays are absorbed by speed change and path stretching, accounting for the air traffic controls that are entailed by CDAs. The fuel burn statistics calculated based on the BADA Total Energy Model reveals that the CDAs save on average 171.87 kg per arrival, but the number is discounted by delay absorption. The savings diminish as the arrival demand increases, and could be even negative due to large delays. The throughput analysis demonstrated that the impact of CDA on airport capacity is insignificant and tolerable. The Atlanta International Airport was used as the testbed for sensitivity analysis, and the New York Metroplex was used as the test bed for throughput analysis.
Fuel-optimal, low-thrust transfers between libration point orbits
NASA Astrophysics Data System (ADS)
Stuart, Jeffrey R.
Mission design requires the efficient management of spacecraft fuel to reduce mission cost, increase payload mass, and extend mission life. High efficiency, low-thrust propulsion devices potentially offer significant propellant reductions. Periodic orbits that exist in a multi-body regime and low-thrust transfers between these orbits can be applied in many potential mission scenarios, including scientific observation and communications missions as well as cargo transport. In light of the recent discovery of water ice in lunar craters, libration point orbits that support human missions within the Earth-Moon region are of particular interest. This investigation considers orbit transfer trajectories generated by a variable specific impulse, low-thrust engine with a primer-vector-based, fuel-optimizing transfer strategy. A multiple shooting procedure with analytical gradients yields rapid solutions and serves as the basis for an investigation into the trade space between flight time and consumption of fuel mass. Path and performance constraints can be included at node points along any thrust arc. Integration of invariant manifolds into the design strategy may also yield improved performance and greater fuel savings. The resultant transfers offer insight into the performance of the variable specific impulse engine and suggest novel implementations of conventional impulsive thrusters. Transfers incorporating invariant manifolds demonstrate the fuel savings and expand the mission design capabilities that are gained by exploiting system symmetry. A number of design applications are generated.
Alternative Fuels Data Center: Easter Seals: Supporting the Mission and
Saving Money with Natural Gas Easter Seals: Supporting the Mission and Saving Money with and Saving Money with Natural Gas on Facebook Tweet about Alternative Fuels Data Center: Easter Seals : Supporting the Mission and Saving Money with Natural Gas on Twitter Bookmark Alternative Fuels Data Center
Reproducible Growth of High-Quality Cubic-SiC Layers
NASA Technical Reports Server (NTRS)
Neudeck, Philip G.; Powell, J. Anthony
2004-01-01
Semiconductor electronic devices and circuits based on silicon carbide (SiC) are being developed for use in high-temperature, high-power, and/or high-radiation conditions under which devices made from conventional semiconductors cannot adequately perform. The ability of SiC-based devices to function under such extreme conditions is expected to enable significant improvements in a variety of applications and systems. These include greatly improved high-voltage switching for saving energy in public electric power distribution and electric motor drives; more powerful microwave electronic circuits for radar and communications; and sensors and controls for cleaner-burning, more fuel-efficient jet aircraft and automobile engines.
Alternative Fuels Data Center: Natural Gas School Buses Help Kansas City
Save Money Natural Gas School Buses Help Kansas City Save Money to someone by E-mail Share Alternative Fuels Data Center: Natural Gas School Buses Help Kansas City Save Money on Facebook Tweet about Alternative Fuels Data Center: Natural Gas School Buses Help Kansas City Save Money on Twitter Bookmark
Shock Absorbers Save Structures and Lives during Earthquakes
NASA Technical Reports Server (NTRS)
2015-01-01
With NASA funding, North Tonawanda, New York-based Taylor Devices Inc. developed fluidic shock absorbers to safely remove the fuel and electrical connectors from the space shuttles during launch. The company is now employing the technology as seismic dampers to protect structures from earthquakes. To date, 550 buildings and bridges have the dampers, and not a single one has suffered damage in the wake of an earthquake.
Fuel Savings and Aerodynamic Drag Reduction from Rail Car Covers
NASA Technical Reports Server (NTRS)
Storms, Bruce; Salari, Kambiz; Babb, Alex
2008-01-01
The potential for energy savings by reducing the aerodynamic drag of rail cars is significant. A previous study of aerodynamic drag of coal cars suggests that a 25% reduction in drag of empty cars would correspond to a 5% fuel savings for a round trip [1]. Rail statistics for the United States [2] report that approximately 5.7 billion liters of diesel fuel were consumed for coal transportation in 2002, so a 5% fuel savings would total 284 million liters. This corresponds to 2% of Class I railroad fuel consumption nationwide. As part of a DOE-sponsored study, the aerodynamic drag of scale rail cars was measured in a wind tunnel. The goal of the study was to measure the drag reduction of various rail-car cover designs. The cover designs tested yielded an average drag reduction of 43% relative to empty cars corresponding to an estimated round-trip fuel savings of 9%.
OTTER: An Optimized Transit Tool And Easy Reference
2016-03-01
as stated in the CNO’s Position Report: 2014. While a number of fuel -saving measures have been implemented in recent years, the effects of...saving measures have been implemented in recent years, the effects of operational transit speed on fuel consumption have not been adequately...their estimated savings As clearly seen, operating configuration has the most effect by far on fuel savings. Source: Fonte S (2009). In 2015
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Lei; Holden, Jacob; Gonder, Jeff
New technologies, such as connected and automated vehicles, have attracted more and more researchers for improving the energy efficiency and environmental impact of current transportation systems. The green routing strategy instructs a vehicle to select the most fuel-efficient route before the vehicle departs. It benefits the current transportation system with fuel saving opportunity through identifying the greenest route. This paper introduces an evaluation framework for estimating benefits of green routing based on large-scale, real-world travel data. The framework has the capability to quantify fuel savings by estimating the fuel consumption of actual routes and comparing to routes procured by navigationmore » systems. A route-based fuel consumption estimation model, considering road traffic conditions, functional class, and road grade is proposed and used in the framework. An experiment using a large-scale data set from the California Household Travel Survey global positioning system trajectory data base indicates that 31% of actual routes have fuel savings potential with a cumulative estimated fuel savings of 12%.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Lei; Holden, Jacob; Gonder, Jeffrey D
New technologies, such as connected and automated vehicles, have attracted more and more researchers for improving the energy efficiency and environmental impact of current transportation systems. The green routing strategy instructs a vehicle to select the most fuel-efficient route before the vehicle departs. It benefits the current transportation system with fuel saving opportunity through identifying the greenest route. This paper introduces an evaluation framework for estimating benefits of green routing based on large-scale, real-world travel data. The framework has the capability to quantify fuel savings by estimating the fuel consumption of actual routes and comparing to routes procured by navigationmore » systems. A route-based fuel consumption estimation model, considering road traffic conditions, functional class, and road grade is proposed and used in the framework. An experiment using a large-scale data set from the California Household Travel Survey global positioning system trajectory data base indicates that 31% of actual routes have fuel savings potential with a cumulative estimated fuel savings of 12%.« less
Alternative Fuels Data Center: Strategies to Conserve Fuel
conserve fuel. Idle Reduction Idle Reduction Find ways to save fuel and money by idling less. Driving save money. Parts and Equipment Parts and Equipment Learn about outfitting your fleet's vehicles with
Alternative Fuels Data Center: Propane Rolls on as Reliable Fleet Fuel
AddThis.com... March 6, 2015 Propane Rolls on as Reliable Fleet Fuel " If we can save the district money alternative fuels program for our buses as a way to save money and clean up the air and environment for our can save the district money and prevent pollution for our kids' sake in the process, I don't see a
Energy consumption characteristics of transports using the prop-fan concept
NASA Technical Reports Server (NTRS)
1976-01-01
The fuel saving and economic potentials of the prop-fan high-speed propeller concept were evaluated for twin-engine commercial transport airplanes designed for 3333.6 km range, 180 passengers, and Mach 0.8 cruise. A fuel saving of 9.7% at the design range was estimated for a prop-fan airplane having wing-mounted engines, while a 5.8% saving was estimated for a design having the engines mounted on the aft body. The fuel savings and cost were found to be sensitive to the propeller noise level and to aerodynamic drag effects due to wing-slipstream interaction. Uncertainties in these effects could change the fuel savings as much as + or - 50%. A modest improvement in direct operating cost (DOC) was estimated for the wing-mounted prop-fan at current fuel prices. This improvement could become substantial in the event of further relative increases in the price of oil. The improvement in DOC requires the achievement of the nominal fuel saving and reductions in propeller and gearbox maintenance costs relative to current experience.
NASA Technical Reports Server (NTRS)
2012-01-01
Topics include: Bioreactors Drive Advances in Tissue Engineering; Tooling Techniques Enhance Medical Imaging; Ventilator Technologies Sustain Critically Injured Patients; Protein Innovations Advance Drug Treatments, Skin Care; Mass Analyzers Facilitate Research on Addiction; Frameworks Coordinate Scientific Data Management; Cameras Improve Navigation for Pilots, Drivers; Integrated Design Tools Reduce Risk, Cost; Advisory Systems Save Time, Fuel for Airlines; Modeling Programs Increase Aircraft Design Safety; Fly-by-Wire Systems Enable Safer, More Efficient Flight; Modified Fittings Enhance Industrial Safety; Simulation Tools Model Icing for Aircraft Design; Information Systems Coordinate Emergency Management; Imaging Systems Provide Maps for U.S. Soldiers; High-Pressure Systems Suppress Fires in Seconds; Alloy-Enhanced Fans Maintain Fresh Air in Tunnels; Control Algorithms Charge Batteries Faster; Software Programs Derive Measurements from Photographs; Retrofits Convert Gas Vehicles into Hybrids; NASA Missions Inspire Online Video Games; Monitors Track Vital Signs for Fitness and Safety; Thermal Components Boost Performance of HVAC Systems; World Wind Tools Reveal Environmental Change; Analyzers Measure Greenhouse Gasses, Airborne Pollutants; Remediation Technologies Eliminate Contaminants; Receivers Gather Data for Climate, Weather Prediction; Coating Processes Boost Performance of Solar Cells; Analyzers Provide Water Security in Space and on Earth; Catalyst Substrates Remove Contaminants, Produce Fuel; Rocket Engine Innovations Advance Clean Energy; Technologies Render Views of Earth for Virtual Navigation; Content Platforms Meet Data Storage, Retrieval Needs; Tools Ensure Reliability of Critical Software; Electronic Handbooks Simplify Process Management; Software Innovations Speed Scientific Computing; Controller Chips Preserve Microprocessor Function; Nanotube Production Devices Expand Research Capabilities; Custom Machines Advance Composite Manufacturing; Polyimide Foams Offer Superior Insulation; Beam Steering Devices Reduce Payload Weight; Models Support Energy-Saving Microwave Technologies; Materials Advance Chemical Propulsion Technology; and High-Temperature Coatings Offer Energy Savings.
Alternative Fuels Data Center: CNG Shuttles Save Fuel Costs for R&R
Go Electric in Florida Feb. 15, 2014 Renzenberger Inc Saves Money With Propane Vans Feb. 1, 2014 Save Money Nov. 12, 2011 Metropolitan Utilities District Fuels Vehicles With Natural Gas Oct. 1, 2011 Hybrid Electric Shuttle Buses Offer Free Rides in Maryland June 18, 2010 Fisher Coachworks Develops Plug
Alternative Fuels Data Center: Hydrogen Powers Fuel Cell Vehicles in
. 15, 2014 Renzenberger Inc Saves Money With Propane Vans Feb. 1, 2014 Photo of an electric vehicle at Natural Gas School Buses Help Kansas City Save Money Nov. 12, 2011 Metropolitan Utilities District Fuels Gas Street Sweepers Improve Air Quality in New York March 11, 2010 Propane Buses Save Money for
Alternative Fuels Data Center: Atlanta Airport Converts Shuttles to CNG
company saves money and conserves fuel with compressed natural gas airport shuttles. For information about . Rental Cars Go Electric in Florida Feb. 15, 2014 Renzenberger Inc Saves Money With Propane Vans Feb. 1 Save Money Nov. 12, 2011 Metropolitan Utilities District Fuels Vehicles With Natural Gas Oct. 1, 2011
How to Cut Costs by Saving School Bus Fuel.
ERIC Educational Resources Information Center
Seiff, Hank
A program started in Washington County, Maryland in 1980 has been successful in saving school bus fuel and bringing down transportation costs incurred by its fleet of 200 buses. Driver training and motivation, as well as a partial transfer to diesel buses, are at the heart of the program. The drivers are taught five fuel saving techniques: cut…
Alternative Fuels Data Center: National Park Saves Natural Resources with
Alternative FuelsA> National Park Saves Natural Resources with Alternative Fuels to someone by E alternative fuel vehicles. For information about this project, contact East Tennessee Clean Fuels Coalition - Television's Original Automotive Magazine Provided by Maryland Public Television Related Videos Photo of a car
Alternative Fuels Data Center: Baton Rouge School District Adds Propane
Renzenberger Inc Saves Money With Propane Vans Feb. 1, 2014 Photo of a school bus Michigan Transports Students Vehicles June 8, 2012 Natural Gas School Buses Help Kansas City Save Money Nov. 12, 2011 Electric Trucks Alternative Fuels Oct. 16, 2010 Propane Buses Save Money for Virginia Schools Feb. 25, 2010 MedCorp Fuels
Alternative Fuels Data Center: Boston Public Schools Moves to Propane
Efficiency March 8, 2014 Renzenberger Inc Saves Money With Propane Vans Feb. 1, 2014 Photo of a school bus to Alternative Fuel Vehicles June 8, 2012 Natural Gas School Buses Help Kansas City Save Money Nov National Park Commits to Alternative Fuels Oct. 16, 2010 Propane Buses Save Money for Virginia Schools Feb
Renewables cannot be stored economically on a well-run power system
NASA Astrophysics Data System (ADS)
Swift-Hook, Donald
2017-11-01
Economic storage on a power system must rely on arbitrage, buying electrical power when it is cheap and selling when it is dear. In practice, this means a store must buy power at night and sell it during the day. There is no solar power at night [by definition], so solar power cannot be stored economically on a well-run power system. Also renewables [and nuclear] are installed commercially to save fuel but fuel costs the same at night as it does during the day, so there is no arbitrage on fuel-saving to justify storage. Pumped water storage has always been widely used on power systems and is still the only method that is economic today, although many others have been tried, including fuels cells, compressed air and batteries. Devices for power correction and balancing [e.g. capacitor banks and batteries] may physically involve the storage of energy [just as a mobile phone does] but it is misleading to describe them as methods of power system storage, [just as it would be misleading to call a School bus a fuel transportation system, even though it does transport fuel]. When a power system has different sorts of plant generating - coal, gas, nuclear, wind etc - any power being put into storage is from the plant that would need to be switched off [because less power was needed] if storage ceased [e.g. because the store became full or failed]. On a well-run power system, that always has the highest fuel/running cost, but the wind blows free and has zero fuel/running cost, so wind is never [normally] stored unless there is no other plant on line i.e. wind power is the last to be stored.
Alternative Fuels Data Center: Alternative Fuel Vehicles Lower Emissions in
improve air quality and save money. For information about this project, contact Clean Fuels Ohio. Download Gas School Buses Help Kansas City Save Money Nov. 12, 2011 Metropolitan Utilities District Fuels Fueling Stations July 1, 2010 Hybrid Electric Shuttle Buses Offer Free Rides in Maryland June 18, 2010
ERIC Educational Resources Information Center
BRI Systems, Inc., Phoenix, AZ.
This publication is a guide for school districts to reduce pupil transportation costs and save energy. The information presented is based upon: (1) energy saving programs implemented by school districts; (2) government and industry research efforts in fuel economy; (3) the successful experiences of commercial trucking fleets to save fuel; and (4)…
Clean Cities 2016 Vehicle Buyer's Guide
DOE Office of Scientific and Technical Information (OSTI.GOV)
2016-02-01
Drivers and fleets are increasingly turning to the hundreds of light-duty, alternative fuel, and advanced technology vehicle models that reduce petroleum use, save on fuel costs, and cut emissions. This guide provides a comprehensive list of the 2016 light-duty models that use alternative fuels or advanced fuel-saving technologies.
Alternative Fuels Data Center: Indiana Transportation Data for Alternative
Indianapolis Convenience Store Chain April 25, 2017 Video thumbnail for Alternative Fuels Save Money in Indy Alternative Fuels Save Money in Indy April 1, 2012 More Case Studies Videos Text Version More Indiana Videos
Field Test of Boiler Primary Loop Temperature Controller
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glanville, P.; Rowley, P.; Schroeder, D.
Beyond these initial system efficiency upgrades are an emerging class of Advanced Load Monitoring (ALM) aftermarket controllers that dynamically respond to the boiler load, with claims of 10% to 30% of fuel savings over a heating season. For hydronic boilers specifically, these devices perform load monitoring, with continuous measurement of supply and, in some cases, return water temperatures. Energy savings from these ALM controllers are derived from dynamic management of the boiler differential, where a microprocessor with memory of past boiler cycles prevents the boiler from firing for a period of time, to limit cycling losses and inefficient operation duringmore » perceived low load conditions. These differ from OTR controllers, which vary boiler setpoint temperatures with ambient conditions while maintaining a fixed differential.« less
Computer analysis of effects of altering jet fuel properties on refinery costs and yields
NASA Technical Reports Server (NTRS)
Breton, T.; Dunbar, D.
1984-01-01
This study was undertaken to evaluate the adequacy of future U.S. jet fuel supplies, the potential for large increases in the cost of jet fuel, and to what extent a relaxation in jet fuel properties would remedy these potential problems. The results of the study indicate that refiners should be able to meet jet fuel output requirements in all regions of the country within the current Jet A specifications during the 1990-2010 period. The results also indicate that it will be more difficult to meet Jet A specifications on the West Coast, because the feedstock quality is worse and the required jet fuel yield (jet fuel/crude refined) is higher than in the East. The results show that jet fuel production costs could be reduced by relaxing fuel properties. Potential cost savings in the East (PADDs I-IV) through property relaxation were found to be about 1.3 cents/liter (5 cents/gallon) in January 1, 1981 dollars between 1990 and 2010. However, the savings from property relaxation were all obtained within the range of current Jet A specifications, so there is no financial incentive to relax Jet A fuel specifications in the East. In the West (PADD V) the potential cost savings from lowering fuel quality were considerably greater than in the East. Cost savings from 2.7 to 3.7 cents/liter (10-14 cents/gallon) were found. In contrast to the East, on the West Coast a significant part of the savings was obtained through relaxation of the current Jet A fuel specifications.
CONOCOPHILLIPS FUEL EFFICIENT HIGH-PERFORMANCE(FEHP) SAE 75W90 REAR AXLE GEAR LUBRICANT
This report is on the Environmental Verification Test of a ConocoPhillips real axle gear lubricant to determine whether it could save vehicle fuel. It determined that a verifyable fuel savings could be measured.
Alternative Fuels Data Center: New Jersey Utility Saves With Alternative
electric car. College Students Engineer Efficient Vehicles in EcoCAR 2 Competition Aug. 2, 2014 Photo of a FuelA> Jersey Utility Saves With Alternative Fuel to someone by E-mail Share Alternative Fuels . For information about this project, contact New Jersey Clean Cities Coalition. Download QuickTime
Alternative Fuels Data Center: Minnesota School District Finds Cost
Savings, Cold-Weather Reliability with Propane Buses Minnesota School District Finds Cost Center: Minnesota School District Finds Cost Savings, Cold-Weather Reliability with Propane Buses on Facebook Tweet about Alternative Fuels Data Center: Minnesota School District Finds Cost Savings, Cold
Improved components for engine fuel savings
NASA Technical Reports Server (NTRS)
Antl, R. J.; Mcaulay, J. E.
1980-01-01
NASA programs for developing fuel saving technology include the Engine Component Improvement Project for short term improvements in existing air engines. The Performance Improvement section is to define component technologies for improving fuel efficiency for CF6, JT9D and JT8D turbofan engines. Sixteen concepts were developed and nine were tested while four are already in use by airlines. If all sixteen concepts are successfully introduced the gain will be fuel savings of more than 6 billion gallons over the lifetime of the engines. The improvements include modifications in fans, mounts, exhaust nozzles, turbine clearance and turbine blades.
Examination of commercial aviation operational energy conservation strategies
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Forty-seven fuel conservation strategies are identified for commercial aviation and the fuel saving potential, costs, constraints, and current implementation levels of these options are examined. This assessment is based on a comprehensive review of published data and discussions with representatives from industry and government. Analyses were performed to quantify the fuel saving potential of each option, and to assess the fuel savings achieved to date by the airline industry. Those options requiring further government support for option implementation were identified, rated, and ranked in accordance with a rating methodology developed in the study. Finally, recommendations are made for future governmentmore » efforts in the area of fuel conservation in commercial aviation.« less
Supersonic transport vis-a-vis energy savings
NASA Technical Reports Server (NTRS)
Cormery, G.
1979-01-01
The energy and economic saving modifications in supersonic transportation are studied. Modifications in the propulsion systems and in the aerodynamic configurations of the Concorde aircraft to reduce noise generation and increase fuel efficiency are discussed. The conversion of supersonic aircraft from fuel oils to synthetic fuels is examined.
Alternative Fuels Data Center: Techniques for Drivers to Conserve Fuel
techniques to save fuel and money. The amount of fuel your vehicle consumes depends heavily on how you drive and money. Vehicles use the most energy when accelerating. Using cruise control on the highway can trips can save you time and money by avoiding unnecessary stopping and starting of your vehicle, which
16 CFR 460.19 - Savings claims.
Code of Federal Regulations, 2014 CFR
2014-01-01
... materials that insulation can cut fuel bills or fuel use, you must have a reasonable basis for the claim. For example, if you say that insulation can “slash” or “lower” fuel bills, or that insulation “saves... use in half,” or “lower fuel bills by 30%,” you must have a reasonable basis for the claim. (b) If you...
16 CFR 460.19 - Savings claims.
Code of Federal Regulations, 2013 CFR
2013-01-01
... materials that insulation can cut fuel bills or fuel use, you must have a reasonable basis for the claim. For example, if you say that insulation can “slash” or “lower” fuel bills, or that insulation “saves... use in half,” or “lower fuel bills by 30%,” you must have a reasonable basis for the claim. (b) If you...
16 CFR 460.19 - Savings claims.
Code of Federal Regulations, 2011 CFR
2011-01-01
... materials that insulation can cut fuel bills or fuel use, you must have a reasonable basis for the claim. For example, if you say that insulation can “slash” or “lower” fuel bills, or that insulation “saves... use in half,” or “lower fuel bills by 30%,” you must have a reasonable basis for the claim. (b) If you...
16 CFR 460.19 - Savings claims.
Code of Federal Regulations, 2010 CFR
2010-01-01
... materials that insulation can cut fuel bills or fuel use, you must have a reasonable basis for the claim. For example, if you say that insulation can “slash” or “lower” fuel bills, or that insulation “saves... use in half,” or “lower fuel bills by 30%,” you must have a reasonable basis for the claim. (b) If you...
16 CFR 460.19 - Savings claims.
Code of Federal Regulations, 2012 CFR
2012-01-01
... materials that insulation can cut fuel bills or fuel use, you must have a reasonable basis for the claim. For example, if you say that insulation can “slash” or “lower” fuel bills, or that insulation “saves... use in half,” or “lower fuel bills by 30%,” you must have a reasonable basis for the claim. (b) If you...
Alternative Fuels Data Center: Delaware Reduces Truck Idling With
and saves money with electrified parking areas. For information about this project, contact State of Florida Feb. 15, 2014 Renzenberger Inc Saves Money With Propane Vans Feb. 1, 2014 Photo of an electric Buses Help Kansas City Save Money Nov. 12, 2011 Metropolitan Utilities District Fuels Vehicles With
Mission aware energy saving strategies for Army ground vehicles
NASA Astrophysics Data System (ADS)
Dattathreya, Macam S.
Fuel energy is a basic necessity for this planet and the modern technology to perform many activities on earth. On the other hand, quadrupled automotive vehicle usage by the commercial industry and military has increased fuel consumption. Military readiness of Army ground vehicles is very important for a country to protect its people and resources. Fuel energy is a major requirement for Army ground vehicles. According to a report, a department of defense has spent nearly $13.6 billion on fuel and electricity to conduct ground missions. On the contrary, energy availability on this plant is slowly decreasing. Therefore, saving energy in Army ground vehicles is very important. Army ground vehicles are embedded with numerous electronic systems to conduct missions such as silent and normal stationary surveillance missions. Increasing electrical energy consumption of these systems is influencing higher fuel consumption of the vehicle. To save energy, the vehicles can use any of the existing techniques, but they require complex, expensive, and time consuming implementations. Therefore, cheaper and simpler approaches are required. In addition, the solutions have to save energy according to mission needs and also overcome size and weight constraints of the vehicle. Existing research in the current literature do not have any mission aware approaches to save energy. This dissertation research proposes mission aware online energy saving strategies for stationary Army ground vehicles to save energy as well as to meet the electrical needs of the vehicle during surveillance missions. The research also proposes theoretical models of surveillance missions, fuzzy logic models of engine and alternator efficiency data, and fuzzy logic algorithms. Based on these models, two energy saving strategies are proposed for silent and normal surveillance type of missions. During silent mission, the engine is on and batteries power the systems. During normal surveillance mission, the engine is on, gear is on neutral position, the vehicle is stationary, and the alternator powers the systems. The proposed energy saving strategy for silent surveillance mission minimizes unnecessary battery discharges by controlling the power states of systems according to the mission needs and available battery capacity. Initial experiments show that the proposed approach saves 3% energy when compared with the baseline strategy for one scenario and 1.8% for the second scenario. The proposed energy saving strategy for normal surveillance mission operates the engine at fuel-efficient speeds to meet vehicle demand and to save fuel. The experiment and simulation uses a computerized vehicle model and a test bench to validate the approach. In comparison to vehicles with fixed high-idle engine speed increments, experiments show that the proposed strategy saves fuel energy in the range of 0-4.9% for the tested power demand range of 44-69 kW. It is hoped to implement the proposed strategies on a real Army ground vehicle to start realizing the energy savings.
Alternative Fuels Data Center: Idle Reduction
Cities Annual Petroleum Savings Clean Cities Annual Petroleum Savings Incentive and Law Additions by Fuel /Technology Type Incentive and Law Additions by Fuel/Technology Type Incentive Additions by Policy Type Incentive Additions by Policy Type More Idle Reduction Data | All Maps & Data Case Studies Massachusetts
Alternative Fuels Data Center: Metropolitan Utilities District Fuels
Go Electric in Florida Feb. 15, 2014 Renzenberger Inc Saves Money With Propane Vans Feb. 1, 2014 Help Kansas City Save Money Nov. 12, 2011 Electric Trucks Deliver at Kansas City Schools Sept. 17, 2011 Quality in New York March 11, 2010 Propane Buses Save Money for Virginia Schools Feb. 25, 2010 Michigan
Alternative Fuels Data Center: Pennsylvania School Buses Run on Natural Gas
reduce petroleum use and save money. For information about this project, contact Eastern Pennsylvania Renzenberger Inc Saves Money With Propane Vans Feb. 1, 2014 Photo of a school bus Michigan Transports Students Natural Gas School Buses Help Kansas City Save Money Nov. 12, 2011 Metropolitan Utilities District Fuels
Autonomy-Enabled Fuel Savings for Military Vehicles: Report on 2016 Aberdeen Test Center Testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ragatz, Adam; Prohaska, Robert; Gonder, Jeff
Fuel savings have never been the primary focus for autonomy-enabled military vehicles. However, studies have estimated that autonomy in passenger and commercial vehicles could improve fuel economy by as much as 22%-33% over various drive cycles. If even a fraction of this saving could be realized in military vehicles, significant cost savings could be realized each year through reduced fuel transport missions, reduced fuel purchases, less maintenance, fewer required personnel, and increased vehicle range. Researchers from the National Renewable Energy Laboratory installed advanced data logging equipment and instrumentation on two autonomy-enabled convoy vehicles configured with Lockheed Martin's Autonomous Mobility Appliquemore » System to determine system performance and improve on the overall vehicle control strategies of the vehicles. Initial test results from testing conducted at the U.S. Army Aberdeen Test Center at the Aberdeen Proving Grounds are included in this report. Lessons learned from in-use testing and performance results have been provided to the project partners for continued system refinement.« less
Winglets Save Billions of Dollars in Fuel Costs
NASA Technical Reports Server (NTRS)
2010-01-01
The upturned ends now featured on many airplane wings are saving airlines billions of dollars in fuel costs. Called winglets, the drag-reducing technology was advanced through the research of Langley Research Center engineer Richard Whitcomb and through flight tests conducted at Dryden Flight Research Center. Seattle-based Aviation Partners Boeing -- a partnership between Aviation Partners Inc., of Seattle, and The Boeing Company, of Chicago -- manufactures Blended Winglets, a unique design featured on Boeing aircraft around the world. These winglets have saved more than 2 billion gallons of jet fuel to date, representing a cost savings of more than $4 billion and a reduction of almost 21.5 million tons in carbon dioxide emissions.
Analyzing Vehicle Fuel Saving Opportunities through Intelligent Driver Feedback
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonder, J.; Earleywine, M.; Sparks, W.
2012-06-01
Driving style changes, e.g., improving driver efficiency and motivating driver behavior changes, could deliver significant petroleum savings. This project examines eliminating stop-and-go driving and unnecessary idling, and also adjusting acceleration rates and cruising speeds to ideal levels to quantify fuel savings. Such extreme adjustments can result in dramatic fuel savings of over 30%, but would in reality only be achievable through automated control of vehicles and traffic flow. In real-world driving, efficient driving behaviors could reduce fuel use by 20% on aggressively driven cycles and by 5-10% on more moderately driven trips. A literature survey was conducted of driver behaviormore » influences, and pertinent factors from on-road experiments with different driving styles were observed. This effort highlighted important driver influences such as surrounding vehicle behavior, anxiety over trying to get somewhere quickly, and the power/torque available from the vehicle. Existing feedback approaches often deliver efficiency information and instruction. Three recommendations for maximizing fuel savings from potential drive cycle improvement are: (1) leveraging applications with enhanced incentives, (2) using an approach that is easy and widely deployable to motivate drivers, and (3) utilizing connected vehicle and automation technologies to achieve large and widespread efficiency improvements.« less
Optimizing Aircraft Trajectories with Multiple Cruise Altitudes in the Presence of Winds
NASA Technical Reports Server (NTRS)
Ng, Hok K.; Sridhar, Banavar; Grabbe, Shon
2014-01-01
This study develops a trajectory optimization algorithm for approximately minimizing aircraft travel time and fuel burn by combining a method for computing minimum-time routes in winds on multiple horizontal planes, and an aircraft fuel burn model for generating fuel-optimal vertical profiles. It is applied to assess the potential benefits of flying user-preferred routes for commercial cargo flights operating between Anchorage, Alaska and major airports in Asia and the contiguous United States. Flying wind optimal trajectories with a fuel-optimal vertical profile reduces average fuel burn of international flights cruising at a single altitude by 1-3 percent. The potential fuel savings of performing en-route step climbs are not significant for many shorter domestic cargo flights that have only one step climb. Wind-optimal trajectories reduce fuel burn and travel time relative to the flight plan route by up to 3 percent for the domestic cargo flights. However, for trans-oceanic traffic, the fuel burn savings could be as much as 10 percent. The actual savings in operations will vary from the simulation results due to differences in the aircraft models and user defined cost indices. In general, the savings are proportional to trip length, and depend on the en-route wind conditions and aircraft types.
Alternative Fuels Data Center: Texas Law Enforcement Vehicles Fill up With
. 15, 2014 Renzenberger Inc Saves Money With Propane Vans Feb. 1, 2014 Photo of an electric vehicle at Natural Gas School Buses Help Kansas City Save Money Nov. 12, 2011 Metropolitan Utilities District Fuels Buses Save Money for Virginia Schools Feb. 25, 2010 Michigan Fleet Reduces Gasoline and Diesel Use Feb
Alternative Fuels Data Center: Natural Gas Fuels School Buses and Refuse
Efficiency March 8, 2014 Renzenberger Inc Saves Money With Propane Vans Feb. 1, 2014 Photo of a school bus Buses Help Kansas City Save Money Nov. 12, 2011 Metropolitan Utilities District Fuels Vehicles With Electric Shuttle Buses Offer Free Rides in Maryland June 18, 2010 Fisher Coachworks Develops Plug-In
Alternative Fuels Data Center: Propane Buses Shuttle Visitors in Maine
Florida Feb. 15, 2014 Renzenberger Inc Saves Money With Propane Vans Feb. 1, 2014 Photo of an electric School Buses Help Kansas City Save Money Nov. 12, 2011 Metropolitan Utilities District Fuels Vehicles Relies on Natural Gas Fueling Stations July 1, 2010 Hybrid Electric Shuttle Buses Offer Free Rides in
Alternative Fuels Data Center: Municipality with a Mission: Georgia Fleet
different alternative fuels, based on mission needs, with the goal of saving money, reducing its combined. The vehicles have logged more than 90,000 problem-free miles and are projected to save the options before investing any time and money in new fuels and technologies. He directed Curtis to the
Alternative Fuels Data Center: South Florida Furnishing Retailer Relies on
Go Electric in Florida Feb. 15, 2014 Renzenberger Inc Saves Money With Propane Vans Feb. 1, 2014 Natural Gas School Buses Help Kansas City Save Money Nov. 12, 2011 Metropolitan Utilities District Fuels Fueling Stations July 1, 2010 Hybrid Electric Shuttle Buses Offer Free Rides in Maryland June 18, 2010
Alternative Fuels Data Center: Biodiesel and Propane Fuel Buses for Dallas
Leads in Alternative Fuel Use and Public Transit Efficiency March 8, 2014 Renzenberger Inc Saves Money Vehicles March 31, 2012 Natural Gas School Buses Help Kansas City Save Money Nov. 12, 2011 Metropolitan Electric Shuttle Buses Offer Free Rides in Maryland June 18, 2010 Fisher Coachworks Develops Plug-In
Alternative Fuels Data Center: North Carolina City Expands Alternative Fuel
Electric in Florida Feb. 15, 2014 Renzenberger Inc Saves Money With Propane Vans Feb. 1, 2014 Photo of an School Buses Help Kansas City Save Money Nov. 12, 2011 Metropolitan Utilities District Fuels Vehicles Electric Shuttle Buses Offer Free Rides in Maryland June 18, 2010 Fisher Coachworks Develops Plug-In
Alternative Fuels Data Center: South Florida Fleet Fuels with Propane
Alternative Fuel Use and Public Transit Efficiency March 8, 2014 Renzenberger Inc Saves Money With Propane Electric Vehicles March 31, 2012 Natural Gas School Buses Help Kansas City Save Money Nov. 12, 2011 Free Rides in Maryland June 18, 2010 Fisher Coachworks Develops Plug-In Electric Bus in Michigan June 3
Alternative Fuels Data Center: Hydraulic Hybrids: A Success in Ann Arbor
off with fuel savings, lower maintenance costs, and increased productivity. American Recovery and regenerative braking system also means huge savings in brake maintenance. Normally, a truck that stops and
Field Test of Boiler Primary Loop Temperature Controller
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glanville, P.; Rowley, P.; Schroeder, D.
Beyond these initial system efficiency upgrades are an emerging class of Advanced Load Monitoring (ALM) aftermarket controllers that dynamically respond to the boiler load, with claims of 10% to 30% of fuel savings over a heating season. For hydronic boilers specifically, these devices perform load monitoring, with continuous measurement of supply and in some cases return water temperatures. Energy savings from these ALM controllers are derived from dynamic management of the boiler differential, where a microprocessor with memory of past boiler cycles prevents the boiler from firing for a period of time, to limit cycling losses and inefficient operation duringmore » perceived low load conditions. These differ from OTR controllers, which vary boiler setpoint temperatures with ambient conditions while maintaining a fixed differential. PARR installed and monitored the performance of one type of ALM controller, the M2G from Greffen Systems, at multifamily sites in the city of Chicago and its suburb Cary, IL, both with existing OTR control. Results show that energy savings depend on the degree to which boilers are over-sized for their load, represented by cycling rates. Also savings vary over the heating season with cycling rates, with greater savings observed in shoulder months. Over the monitoring period, over-sized boilers at one site showed reductions in cycling and energy consumption in line with prior laboratory studies, while less over-sized boilers at another site showed muted savings.« less
Preparing aircraft propulsion for a new era in energy and the environment
NASA Technical Reports Server (NTRS)
Stewart, W. L.; Nored, D. L.; Grobman, J. S.; Feiler, C. E.; Petrash, D. A.
1980-01-01
Improving fuel efficiency, new sources of jet fuel, and noise and emission control are subjects of NASA's aeronautics program. Projects aimed at attaining a 5% fuel savings for existing engines and a 13-22% savings for the next generation of turbofan engines using advanced components, and establishing a basis for turboprop-powered commercial air transports with 30-40% savings over conventional turbofan aircraft at comparable speeds and altitudes, are discussed. Fuel sources are considered in terms of reduced hydrogen and higher aromatic contents and resultant higher liner temperatures, and attention is given to lean burning, improved fuel atomization, higher freezing-point fuel, and deriving jet fuel from shale oil or coal. Noise sources including the fan, turbine, combustion process, and flow over internal struts, and attenuation using acoustic treatment, are discussed, while near-term reduction of polluting gaseous emissions at both low and high power, and far-term defining of the minimum gaseous-pollutant levels possible from turbine engines are also under study.
Alternative Fuels Data Center: Salt Lake City Fuels Vehicles With Natural
Go Electric in Florida Feb. 15, 2014 Renzenberger Inc Saves Money With Propane Vans Feb. 1, 2014 Through Philly March 3, 2012 Natural Gas School Buses Help Kansas City Save Money Nov. 12, 2011 Airport Relies on Natural Gas Fueling Stations July 1, 2010 Hybrid Electric Shuttle Buses Offer Free Rides
Alternative Fuels Data Center: Clean Cities Helps the National Mall Cut
Transit Efficiency March 8, 2014 Renzenberger Inc Saves Money With Propane Vans Feb. 1, 2014 Photo of a Yellowstone National Park Commits to Alternative Fuels Oct. 16, 2010 Propane Buses Save Money for Virginia
Benefits of solar/fossil hybrid gas turbine systems
NASA Technical Reports Server (NTRS)
Bloomfield, H. S.
1978-01-01
The potential benefits of solar/fossil hybrid gas turbine power systems were assessed. Both retrofit and new systems were considered from the aspects of; cost of electricity, fuel conservation, operational mode, technology requirements, and fuels flexibility. Hybrid retrofit (repowering) of existing combustion (simple Brayton cycle) turbines can provide near-term fuel savings and solar experience, while new and advanced recuperated or combined cycle systems may be an attractive fuel saving and economically competitive vehicle to transition from today's gas and oil-fired powerplants to other more abundant fuels.
Benefits of solar/fossil hybrid gas turbine systems
NASA Technical Reports Server (NTRS)
Bloomfield, H. S.
1979-01-01
The potential benefits of solar/fossil hybrid gas turbine power systems were assessed. Both retrofit and new systems were considered from the aspects of cost of electricity, fuel conservation, operational mode, technology requirements, and fuels flexibility. Hybrid retrofit (repowering) of existing combustion (simple Brayton cycle) turbines can provide near-term fuel savings and solar experience, while new and advanced recuperated or combined cycle systems may be an attractive fuel saving and economically competitive vehicle to transition from today's gas and oil-fired powerplants to other more abundant fuels.
An investigation on the fuel savings potential of hybrid hydraulic refuse collection vehicles.
Bender, Frank A; Bosse, Thomas; Sawodny, Oliver
2014-09-01
Refuse trucks play an important role in the waste collection process. Due to their typical driving cycle, these vehicles are characterized by large fuel consumption, which strongly affects the overall waste disposal costs. Hybrid hydraulic refuse vehicles offer an interesting alternative to conventional diesel trucks, because they are able to recuperate, store and reuse braking energy. However, the expected fuel savings can vary strongly depending on the driving cycle and the operational mode. Therefore, in order to assess the possible fuel savings, a typical driving cycle was measured in a conventional vehicle run by the waste authority of the City of Stuttgart, and a dynamical model of the considered vehicle was built up. Based on the measured driving cycle and the vehicle model including the hybrid powertrain components, simulations for both the conventional and the hybrid vehicle were performed. Fuel consumption results that indicate savings of about 20% are presented and analyzed in order to evaluate the benefit of hybrid hydraulic vehicles used for refuse collection. Copyright © 2014 Elsevier Ltd. All rights reserved.
This paper provides the EPA Combined Heat and Power Partnership's recommended methodology for calculating fuel and carbon dioxide emissions savings from CHP compared to SHP, which serves as the basis for the EPA's CHP emissions calculator.
Fuel savings potential of the NASA Advanced Turboprop Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitlow, J.B. Jr.; Sievers, G.K.
1984-01-01
The NASA Advanced Turboprop (ATP) Program is directed at developing new technology for highly loaded, multibladed propellers for use at Mach 0.65 to 0.85 and at altitudes compatible with the air transport system requirements. Advanced turboprop engines offer the potential of 15 to 30 percent savings in aircraft block fuel relative to advanced turbofan engines (50 to 60 percent savings over today's turbofan fleet). The concept, propulsive efficiency gains, block fuel savings and other benefits, and the program objectives through a systems approach are described. Current program status and major accomplishments in both single rotation and counter rotation propeller technologymore » are addressed. The overall program from scale model wind tunnel tests to large scale flight tests on testbed aircraft is discussed.« less
NREL Highlight: Truck Platooning Testing; NREL (National Renewable Energy Laboratory)
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
NREL's fleet test and evaluation team assesses the fuel savings potential of semi-automated truck platooning of line-haul sleeper cabs with modern aerodynamics. Platooning reduces aerodynamic drag by grouping vehicles together and safely decreasing the distance between them via electronic coupling, which allows multiple vehicles to accelerate or brake simultaneously. In 2014, the team conducted track testing of three SmartWay tractor - two platooned tractors and one control tractor—at varying steady-state speeds, following distances, and gross vehicle weights. While platooning improved fuel economy at all speeds, travel at 55 mph resulted in the best overall miles per gallon. The lead truckmore » demonstrated fuel savings up to 5.3% while the trailing truck saved up to 9.7%. A number of conditions impact the savings attainable, including ambient temperature, distance between lead and trailing truck, and payload weight. Future studies may look at ways to optimize system fuel efficiency and emissions reductions.« less
NASA Technical Reports Server (NTRS)
Hahn, Andrew S.
2007-01-01
There is a general consensus building that historically high fuel prices and greater public awareness of the emissions that result from burning fuel are going to be long-term concerns for those who design, build, and operate airliners. The possibility of saving both fuel and reducing emissions has rekindled interest in breaking very long-range airline flights into multiple stages or even adopting in-flight refueling. It is likely that staging will result in lower fuel burn, and recent published reports have suggested that the savings are substantial, particularly if the airliner is designed from the outset for this kind of operation. Given that staging runs against the design and operation historical trend, this result begs for further attention. This paper will examine the staging question, examining both analytic and numeric performance estimation methodologies to quantify the likely amount of fuel savings that can be expected and the resulting design impacts on the airliner.
Cogeneration Technology Alternatives Study (CTAS). Volume 1: Summary
NASA Technical Reports Server (NTRS)
Barna, G. J.; Burns, R. K.; Sagerman, G. D.
1980-01-01
Various advanced energy conversion systems that can use coal or coal-derived fuels for industrial cogeneration applications were compared to provide information needed by DOE to establish research and development funding priorities for advanced-technology systems that could significantly advance the use of coal or coal-derived fuels in industrial cogeneration. Steam turbines, diesel engines, open-cycle gas turbines, combined cycles, closed-cycle gas turbines, Stirling engines, phosphoric acid fuel cells, molten carbonate fuel cells, and thermionics were studied with technology advancements appropriate for the 1985-2000 time period. The various advanced systems were compared and evaluated for wide diversity of representative industrial plants on the basis of fuel energy savings, annual energy cost savings, emissions savings, and rate of return on investment as compared with purchasing electricity from a utility and providing process heat with an on-site boiler. Also included in the comparisons and evaluations are results extrapolated to the national level.
Cogeneration Technology Alternatives Study (CTAS). Volume 2: Comparison and evaluation of results
NASA Technical Reports Server (NTRS)
1984-01-01
CTAS compared and evaluated various advanced energy conversion systems that can use coal or coal-derived fuels for industrial cogeneration applications. The principal aim of the study was to provide information needed by DOE to establish research and development (R&D) funding priorities for advanced-technology systems that could significantly advance the use of coal or coal-derived fuels in industrial cogeneration. Steam turbines, diesel engines, open-cycle gas turbines, combined cycles, closed-cycle gas turbines, Stirling engines, phosphoric acid fuel cells, molten carbonate fuel cells, and thermionics were studied with technology advancements appropriate for the 1985-2000 time period. The various advanced systems were compared and evaluated for a wide diversity of representative industrial plants on the basis of fuel energy savings, annual energy cost savings, emissions savings, and rate of return on investment (ROI) as compared with purchasing electricity from a utility and providing process heat with an on-site boiler.
Auto Drain Valve Water Separator inside the Unit of Komatsu HD 465-7R
NASA Astrophysics Data System (ADS)
Manurung, V. A. T.; Joko W, Y. T.; Poetra, R. I.
2018-02-01
Water separator is a component that separate water from fuel, so the circulating fuel in the fuel system is not contaminated by water. If there is water inside the water separator, it will be carried by into the fuel system and then impacting to the engine performance. It’s such as lowering engine power because the fuel filter is clogged due to the fuel mix with water. Then the real danger is in case of the fuel mixes with the water. It will damage the fuel system components such as blockage of injectors due to corrosion and wear of fuel supply pump. As informed from daily maintenance record data, we have found that the low power engine trouble was caused by the fuel filter that was clogged high enough. Using the fishbone analysis, we got the main problem is there was water in the fuel separator at maximum level and did not discharge. In this condition, it is need optional device to automatically discharge the water from the water separator while maximum level reached, so the operator does not need to drain the water manually. The operator will be warned by buzzing active alarm and flashing caution lamp inside the cabin. By this method, the potential risk of mix up water with fuel would be avoided and the loss of others component failure would be mostly avoided. By using this tool, we can save net quality income around IDR (Indonesia Rupiah) 11,673,519,800.
21st century locomotive technology: quarterly technical status report 26
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lembit Salasoo; Ramu Chandra
2009-08-24
Parasitic losses due to hybrid sodium battery thermal management do not significantly reduce the fuel saving benefits of the hybrid locomotive. Optimal thermal management trajectories were converted into realizable algorithms which were robust and gave excellent performance to limit thermal excusions and maintain fuel savings.
Optimized efficiency of all-electric ships by dc hybrid power systems
NASA Astrophysics Data System (ADS)
Zahedi, Bijan; Norum, Lars E.; Ludvigsen, Kristine B.
2014-06-01
Hybrid power systems with dc distribution are being considered for commercial marine vessels to comply with new stringent environmental regulations, and to achieve higher fuel economy. In this paper, detailed efficiency analysis of a shipboard dc hybrid power system is carried out. An optimization algorithm is proposed to minimize fuel consumption under various loading conditions. The studied system includes diesel engines, synchronous generator-rectifier units, a full-bridge bidirectional converter, and a Li-Ion battery bank as energy storage. In order to evaluate potential fuel saving provided by such a system, an online optimization strategy for fuel consumption is implemented. An Offshore Support Vessel (OSV) is simulated over different operating modes using the online control strategy. The resulted consumed fuel in the simulation is compared to that of a conventional ac power system, and also a dc power system without energy storage. The results show that while the dc system without energy storage provides noticeable fuel saving compared to the conventional ac system, optimal utilization of the energy storage in the dc system results in twice as much fuel saving.
Energy management system saves $250,000 + fuel -with 4-mo payback
DOE Office of Scientific and Technical Information (OSTI.GOV)
Massey, C.L.; Robe, K.
1980-09-01
Innovations made at Hershey Chocolate Company's Oakdale, California plant eliminated simultaneous cool-reheat-cycles by incorporating dead band controls into existing HVAC systems. Calculated savings of the project are about 90% of former heating and cooling energy usage for HVAC operation. Electric power savings amount to about $75,000/y, and natural gas savings about $185,000/y, using 1980 fuel costs, with an approximate 4-month payback. Because of the reduced demand for chilled water, a smaller water chiller carries full plant load for 4 to 5 months of the year without operating two existing 500-ton units.
DOE Office of Scientific and Technical Information (OSTI.GOV)
PARR
Beyond these initial system efficiency upgrades are an emerging class of Advanced Load Monitoring (ALM) aftermarket controllers that dynamically respond to the boiler load, with claims of 10% to 30% of fuel savings over a heating season. For hydronic boilers specifically, these devices perform load monitoring, with continuous measurement of supply and in some cases return water temperatures. Energy savings from these ALM controllers are derived from dynamic management of the boiler differential, where a microprocessor with memory of past boiler cycles prevents the boiler from firing for a period of time, to limit cycling losses and inefficient operation duringmore » perceived low load conditions. These differ from OTR controllers, which vary boiler setpoint temperatures with ambient conditions while maintaining a fixed differential. PARR installed and monitored the performance of one type of ALM controller, the M2G from Greffen Systems, at multifamily sites in the city of Chicago and its suburb Cary, IL, both with existing OTR control. Results show that energy savings depend on the degree to which boilers are over-sized for their load, represented by cycling rates. Also savings vary over the heating season with cycling rates, with greater savings observed in shoulder months. Over the monitoring period, over-sized boilers at one site showed reductions in cycling and energy consumption in line with prior laboratory studies, while less over-sized boilers at another site showed muted savings.« less
NASA Astrophysics Data System (ADS)
Vaskovskaya, T. A.
2014-12-01
This paper offers a new approach to the analysis of price signals from the wholesale electricity and capacity market that is based on the analysis of the influence exerted by input data used in the problem of optimization of the power system operating conditions, namely: parameters of a power grid and power-receiving equipment that might vary under the effect of control devices. It is shown that it would be possible to control nonregulated prices for electricity in the wholesale electricity market by varying the parameters of control devices and energy-receiving equipment. An increase in the effectiveness of power transmission and the cost-effective use of fuel-and-energy resources (energy saving) can become an additional effect of controlling the nonregulated prices.
Mathematical model of marine diesel engine simulator for a new methodology of self propulsion tests
NASA Astrophysics Data System (ADS)
Izzuddin, Nur; Sunarsih, Priyanto, Agoes
2015-05-01
As a vessel operates in the open seas, a marine diesel engine simulator whose engine rotation is controlled to transmit through propeller shaft is a new methodology for the self propulsion tests to track the fuel saving in a real time. Considering the circumstance, this paper presents the real time of marine diesel engine simulator system to track the real performance of a ship through a computer-simulated model. A mathematical model of marine diesel engine and the propeller are used in the simulation to estimate fuel rate, engine rotating speed, thrust and torque of the propeller thus achieve the target vessel's speed. The input and output are a real time control system of fuel saving rate and propeller rotating speed representing the marine diesel engine characteristics. The self-propulsion tests in calm waters were conducted using a vessel model to validate the marine diesel engine simulator. The simulator then was used to evaluate the fuel saving by employing a new mathematical model of turbochargers for the marine diesel engine simulator. The control system developed will be beneficial for users as to analyze different condition of vessel's speed to obtain better characteristics and hence optimize the fuel saving rate.
Freight Wing Trailer Aerodynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graham, Sean; Bigatel, Patrick
2004-10-17
Freight Wing Incorporated utilized the opportunity presented by this DOE category one Inventions and Innovations grant to successfully research, develop, test, patent, market, and sell innovative fuel and emissions saving aerodynamic attachments for the trucking industry. A great deal of past scientific research has demonstrated that streamlining box shaped semi-trailers can significantly reduce a truck's fuel consumption. However, significant design challenges have prevented past concepts from meeting industry needs. Market research early in this project revealed the demands of truck fleet operators regarding aerodynamic attachments. Products must not only save fuel, but cannot interfere with the operation of the truck,more » require significant maintenance, add significant weight, and must be extremely durable. Furthermore, SAE/TMC J1321 tests performed by a respected independent laboratory are necessary for large fleets to even consider purchase. Freight Wing used this information to create a system of three practical aerodynamic attachments for the front, rear and undercarriage of standard semi trailers. SAE/TMC J1321 Type II tests preformed by the Transportation Research Center (TRC) demonstrated a 7% improvement to fuel economy with all three products. If Freight Wing is successful in its continued efforts to gain market penetration, the energy and environmental savings would be considerable. Each truck outfitted saves approximately 1,100 gallons of fuel every 100,000 miles, which prevents over 12 tons of CO2 from entering the atmosphere. If all applicable trailers used the technology, the country could save approximately 1.8 billion gallons of diesel fuel, 18 million tons of emissions and 3.6 billion dollars annually.« less
Potential impacts of Brayton and Stirling cycle engines
NASA Astrophysics Data System (ADS)
Heft, R. C.
1980-11-01
Two engine technologies (Brayton cycle and Stirling cycle) are examined for their potential economic impact and fuel utilization. An economic analysis of the expected response of buyers to the attributes of the alternative engines was performed. Hedonic coefficients for vehicle fuel efficiency, performance and size were estimated for domestic cars based upon historical data. The marketplace value of the fuel efficiency enhancement provided by Brayton or Stirling engines was estimated. Under the assumptions of 10 years for plant conversions and 1990 and 1995 as the introduction data for turbine and Stirling engines respectively, the comparative fuel savings and present value of the future savings in fuel costs were estimated.
Potential impacts of Brayton and Stirling cycle engines
NASA Technical Reports Server (NTRS)
Heft, R. C.
1980-01-01
Two engine technologies (Brayton cycle and Stirling cycle) are examined for their potential economic impact and fuel utilization. An economic analysis of the expected response of buyers to the attributes of the alternative engines was performed. Hedonic coefficients for vehicle fuel efficiency, performance and size were estimated for domestic cars based upon historical data. The marketplace value of the fuel efficiency enhancement provided by Brayton or Stirling engines was estimated. Under the assumptions of 10 years for plant conversions and 1990 and 1995 as the introduction data for turbine and Stirling engines respectively, the comparative fuel savings and present value of the future savings in fuel costs were estimated.
Alternative Fuels Data Center: Kansas Transportation Data for Alternative
Renzenberger Inc Saves Money With Propane Vans Renzenberger Inc Saves Money With Propane Vans Feb. 1, 2014 Save Money Natural Gas School Buses Help Kansas City Save Money Nov. 12, 2011 https://www.youtube.com
Alternative Fuels Data Center: California School District Creates
vehicle charging stations. Rental Cars Go Electric in Florida Feb. 15, 2014 Renzenberger Inc Saves Money School Buses Help Kansas City Save Money Nov. 12, 2011 Electric Trucks Deliver at Kansas City Schools on Natural Gas Fueling Stations July 1, 2010 Hybrid Electric Shuttle Buses Offer Free Rides in
Alternative Fuels Data Center: Smart Car Shopping
vehicle charging stations. Rental Cars Go Electric in Florida Feb. 15, 2014 Renzenberger Inc Saves Money Help Kansas City Save Money Nov. 12, 2011 Metropolitan Utilities District Fuels Vehicles With Natural Free Rides in Maryland June 18, 2010 Fisher Coachworks Develops Plug-In Electric Bus in Michigan June 3
Reactors Save Energy, Costs for Hydrogen Production
NASA Technical Reports Server (NTRS)
2014-01-01
While examining fuel-reforming technology for fuel cells onboard aircraft, Glenn Research Center partnered with Garrettsville, Ohio-based Catacel Corporation through the Glenn Alliance Technology Exchange program and a Space Act Agreement. Catacel developed a stackable structural reactor that is now employed for commercial hydrogen production and results in energy savings of about 20 percent.
Emerging Fuel Cell Technology Being Developed: Offers Many Benefits to Air Vehicles
NASA Technical Reports Server (NTRS)
Walker, James F.; Civinskas, Kestutis C.
2004-01-01
Fuel cells, which have recently received considerable attention for terrestrial applications ranging from automobiles to stationary power generation, may enable new aerospace missions as well as offer fuel savings, quiet operations, and reduced emissions for current and future aircraft. NASA has extensive experience with fuel cells, having used them on manned space flight systems over four decades. Consequently, the NASA Glenn Research Center has initiated an effort to investigate and develop fuel cell technologies for multiple aerospace applications. Two promising fuel cell types are the proton exchange membrane (PEM) and solid oxide fuel cell (SOFC). PEM technology, first used on the Gemini spacecraft in the sixties, remained unutilized thereafter until the automotive industry recently recognized the potential. PEM fuel cells are low-temperature devices offering quick startup time but requiring relatively pure hydrogen fuel. In contrast, SOFCs operate at high temperatures and tolerate higher levels of impurities. This flexibility allows SOFCs to use hydrocarbon fuels, which is an important factor considering our current liquid petroleum infrastructure. However, depending on the specific application, either PEM or SOFC can be attractive. As only NASA can, the Agency is pursuing fuel cell technology for civil uninhabited aerial vehicles (UAVs) because it offers enhanced scientific capabilities, including enabling highaltitude, long-endurance missions. The NASA Helios aircraft demonstrated altitudes approaching 100,000 ft using solar power in 2001, and future plans include the development of a regenerative PEM fuel cell to provide nighttime power. Unique to NASA's mission, the high-altitude aircraft application requires the PEM fuel cell to operate on pure oxygen, instead of the air typical of terrestrial applications.
Survey Evidence on the Willingness of U.S. Consumers to Pay for Automotive Fuel Economy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greene, David L; Evans, David H; Hiestand, John
2013-01-01
Prospect theory, which was awarded the Nobel Prize in Economics in 2002, holds that human beings faced with a risky bet will tend to value potential losses about twice as much as potential gains. Previous research has demonstrated that prospect theory could be sufficient to explain an energy paradox in the market for automotive fuel economy. This paper analyzes data from four random sample surveys of 1,000 U.S. households each in 2004, 2011, 2012 and 2013. Households were asked about willingness to pay for future fuel savings as well as the annual fuel savings necessary to justify a given upfrontmore » payment. Payback periods inferred from household responses are consistent over time and across different formulations of questions. Mean calculated payback periods are short, about 3 years, but there is substantial dispersion among individual responses. Calculated payback periods do not appear to be correlated with the attributes of respondents. Respondents were able to quantitatively describe their uncertainty about both vehicle fuel economy and future fuel prices. Simulation of loss averse behavior based on this stated uncertainty illustrate how loss aversion could lead consumers to substantially undervalue future fuel savings relative to their expected value.« less
NASA Technical Reports Server (NTRS)
Kraus, E. F.; Vanabkoude, J. C.
1976-01-01
The fuel saving potential and cost effectiveness of numerous operational and technical options proposed for reducing the fuel consumption of the U.S. commercial airline fleet was examined and compared. The impact of the most promising fuel conserving options on fuel consumption, passenger demand, operating costs and airline profits when implemented in the U.S. domestic and international airline fleets was determined. A forecast estimate was made of the potential fuel savings achievable in the U.S. scheduled air transportation system. Specifically, the means for reducing the jet fuel consumption of the U.S. scheduled airlines in domestic and international passenger operations were investigated. A design analysis was made of two turboprop aircraft as possible fuel conserving derivatives of the DC-9-30.
Mathematical model of marine diesel engine simulator for a new methodology of self propulsion tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Izzuddin, Nur; Sunarsih,; Priyanto, Agoes
As a vessel operates in the open seas, a marine diesel engine simulator whose engine rotation is controlled to transmit through propeller shaft is a new methodology for the self propulsion tests to track the fuel saving in a real time. Considering the circumstance, this paper presents the real time of marine diesel engine simulator system to track the real performance of a ship through a computer-simulated model. A mathematical model of marine diesel engine and the propeller are used in the simulation to estimate fuel rate, engine rotating speed, thrust and torque of the propeller thus achieve the targetmore » vessel’s speed. The input and output are a real time control system of fuel saving rate and propeller rotating speed representing the marine diesel engine characteristics. The self-propulsion tests in calm waters were conducted using a vessel model to validate the marine diesel engine simulator. The simulator then was used to evaluate the fuel saving by employing a new mathematical model of turbochargers for the marine diesel engine simulator. The control system developed will be beneficial for users as to analyze different condition of vessel’s speed to obtain better characteristics and hence optimize the fuel saving rate.« less
Drive Cycle Analysis, Measurement of Emissions and Fuel Consumption of a PHEV School Bus: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnitt, R.; Gonder, J.
The National Renewable Energy Laboratory (NREL) collected and analyzed real-world school bus drive cycle data and selected similar standard drive cycles for testing on a chassis dynamometer. NREL tested a first-generation plug-in hybrid electric vehicle (PHEV) school bus equipped with a 6.4L engine and an Enova PHEV drive system comprising a 25-kW/80 kW (continuous/peak) motor and a 370-volt lithium ion battery pack. A Bluebird 7.2L conventional school bus was also tested. Both vehicles were tested over three different drive cycles to capture a range of driving activity. PHEV fuel savings in charge-depleting (CD) mode ranged from slightly more than 30%more » to a little over 50%. However, the larger fuel savings lasted over a shorter driving distance, as the fully charged PHEV school bus would initially operate in CD mode for some distance, then in a transitional mode, and finally in a charge-sustaining (CS) mode for continued driving. The test results indicate that a PHEV school bus can achieve significant fuel savings during CD operation relative to a conventional bus. In CS mode, the tested bus showed small fuel savings and somewhat higher nitrogen oxide (NOx) emissions than the baseline comparison bus.« less
Alternative Fuels Data Center: Knoxville Utilities Board Reduces Petroleum
. Rental Cars Go Electric in Florida Feb. 15, 2014 Renzenberger Inc Saves Money With Propane Vans Feb. 1 Kansas City Save Money Nov. 12, 2011 Metropolitan Utilities District Fuels Vehicles With Natural Gas Oct Hybrid Electric Shuttle Buses Offer Free Rides in Maryland June 18, 2010 Fisher Coachworks Develops Plug
Alternative Fuels Data Center: Michigan Converts Vehicles to Propane,
, Reducing Emissions Learn how Detroit reduces emissions and saves money by converting vehicles to run on , 2014 Renzenberger Inc Saves Money With Propane Vans Feb. 1, 2014 Photo of an electric vehicle at a Natural Gas Fueling Stations July 1, 2010 Hybrid Electric Shuttle Buses Offer Free Rides in Maryland June
Alternative Fuels Data Center: Fisher Coachworks Develops Plug-In Electric
vehicle charging stations. Rental Cars Go Electric in Florida Feb. 15, 2014 Renzenberger Inc Saves Money Kansas City Save Money Nov. 12, 2011 Metropolitan Utilities District Fuels Vehicles With Natural Gas Oct Electric Buses Aug. 21, 2010 Hybrid Electric Shuttle Buses Offer Free Rides in Maryland June 18, 2010 Texas
Alternative Fuels Data Center: Virginia Converts Vehicles to Propane in
. 15, 2014 Renzenberger Inc Saves Money With Propane Vans Feb. 1, 2014 Photo of an electric vehicle at School Buses Help Kansas City Save Money Nov. 12, 2011 Metropolitan Utilities District Fuels Vehicles Electric Shuttle Buses Offer Free Rides in Maryland June 18, 2010 Texas Taxis Go Hybrid May 6, 2010
Optimising boiler performance.
Mayoh, Paul
2009-01-01
Soaring fuel costs continue to put the squeeze on already tight health service budgets. Yet it is estimated that combining established good practice with improved technologies could save between 10% and 30% of fuel costs for boilers. Paul Mayoh, UK technical manager at Spirax Sarco, examines some of the practical measures that healthcare organisations can take to gain their share of these potential savings.
Use of a grid simulation model for longer-term analysis of wind energy integration
NASA Astrophysics Data System (ADS)
Bossanyi, E.
A simulation model of an electricity generating system is used to study the integration of wind energy onto the system. Most of the system cost savings achieved are due to the savings of fossil fuels, but in the long term additional savings result from re-optimization of the plant mix. Break-even costs are calculated for wind turbines to become economically viable as fossil fuel savers. This allows the optimum economic penetration level for wind turbines of any given cost to be derived. Break-even costs up to reasonably large penetrations appear to be within reach with modern technology. Results are also given with scenarios of increasing fossil fuel prices and increased nuclear capacity.
NASA Technical Reports Server (NTRS)
Kraft, G. A.
1975-01-01
The fuel savings potential of regenerative turbofans was calculated and compared with that of a reference turbofan. At the design altitude of 10.67 km and Mach 0.80, the turbine-inlet-temperature of the regenerative turbofan was fixed at 1700 K while the overall pressure ratio was varied from 10 to 20. The fan pressure ratio was fixed at 1.6 and the bypass ratio varied from 8 to 10. The heat exchanger design parameters such as pressure drop and effectiveness varied from 4 to 8 percent and from 0.80 to 0.90, respectively. Results indicate a fuel savings due to regeneration of 4.1 percent and no change in takeoff gross weight.
Mechanical Analog Approach to Parameter Estimation of Lateral Spacecraft Fuel Slosh
NASA Technical Reports Server (NTRS)
Chatman, Yadira; Gangadharan, Sathya; Schlee, Keith; Sudermann, James; Walker, Charles; Ristow, James; Hubert, Carl
2007-01-01
The nutation (wobble) of a spinning spacecraft in the presence of energy dissipation is a well-known problem in dynamics and is of particular concern for space missions. Even with modern computing systems, CFD type simulations are not fast enough to allow for large scale Monte Carlo analyses of spacecraft and launch vehicle dynamic behavior with slosh included. Simplified mechanical analogs for the slosh are preferred during the initial stages of design to reduce computational time and effort to evaluate the Nutation Time Constant (NTC). Analytic determination of the slosh analog parameters has met with mixed success and is made even more difficult by the introduction of propellant management devices such as elastomeric diaphragms. By subjecting full-sized fuel tanks with actual flight fuel loads to motion similar to that experienced in flight and measuring the forces experienced by the tanks, these parameters can be determined experimentally. Currently, the identification of the model parameters is a laborious trial-and-error process in which the hand-derived equations of motion for the mechanical analog are evaluated and their results compared with the experimental results. Of particular interest is the effect of diaphragms and bladders on the slosh dynamics and how best to model these devices. An experimental set-up is designed and built to include a diaphragm in the simulated spacecraft fuel tank subjected to lateral slosh. This research paper focuses on the parameter estimation of a SimMechanics model of the simulated spacecraft propellant tank with and without diaphragms using lateral fuel slosh experiments. Automating the parameter identification process will save time and thus allow earlier identification of potential vehicle problems.
NASA Astrophysics Data System (ADS)
Kwon, Hyuk Ju; Yeon, Sang Hun; Lee, Keum Ho; Lee, Kwang Ho
2018-02-01
As various studies focusing on building energy saving have been continuously conducted, studies utilizing renewable energy sources, instead of fossil fuel, are needed. In particular, studies regarding solar energy are being carried out in the field of building science; in order to utilize such solar energy effectively, solar radiation being brought into the indoors should be acquired and blocked properly. Blinds are a typical solar radiation control device that is capable of controlling indoor thermal and light environments. However, slat-type blinds are manually controlled, giving a negative effect on building energy saving. In this regard, studies regarding the automatic control of slat-type blinds have been carried out for the last couple of decades. Therefore, this study aims to provide preliminary data for optimal control research through the controlling of slat angle in slat-type blinds by comprehensively considering various input variables. The window area ratio and orientation were selected as input variables. It was found that an optimal control algorithm was different among each window-to-wall ratio and window orientation. In addition, through comparing and analyzing the building energy saving performance for each condition by applying the developed algorithms to simulations, up to 20.7 % energy saving was shown in the cooling period and up to 12.3 % energy saving was shown in the heating period. In addition, building energy saving effect was greater as the window area ratio increased given the same orientation, and the effects of window-to-wall ratio in the cooling period were higher than those of window-to-wall ratio in the heating period.
Gordon M. Heisler
1991-01-01
Saving energy has recently acquired new importance because of increased concern for dwindling fossil fuel supplies and for the problem of carbon dioxide contributions to global climate change. Many studies have indicated that windbreaks have the ability to save energy for heating buildings. Suggested savings have ranged up 40 percent; though more commonly savings of...
Fuel-Cell-Powered Electric Motor Drive Analyzed for a Large Airplane
NASA Technical Reports Server (NTRS)
Brown, Gerald V.; Choi, Benjamin B.
2005-01-01
Because of its high efficiency, fuel cell technology may be used to launch a new generation of more-electric aeropropulsion and power systems for future aircraft. Electric-motor-driven airplanes using fuel-cell powerplants would be beneficial to the environment because of fuel savings, low noise, and zero carbon-dioxide emissions. In spite of the fuel cell s efficiency benefit, to produce the same shaft drive power, a fuel cell- powered electric-drive system must be definitely heavier than a turbine-drive system. However, the fuel-cell system s overall efficiency from fuel-to-shaft power is higher than for a turbine-drive system. This means that the fuel consumption rate could be lower than for a conventional system. For heavier, fuel-laden planes for longer flights, we might achieve substantial fuel savings. In the airplane industry, in fact, an efficiency gain of even a few percentage points can make a major economic difference in operating costs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalyan Annamalai; John Sweeten; Saqib Mukhtar
2002-01-15
Intensive animal feeding operations create large amounts of animal waste that must be safely disposed of in order to avoid environmental degradation. Cattle feedlots and chicken houses are two examples. In feedlots, cattle are confined to small pens and fed a high calorie grain diet in preparation for slaughter. In chicken houses, thousands of chickens are kept in close proximity. In both of these operations, millions of tons of manure are produced every year. In this project a co-firing technology is proposed which would use manure that cannot be used for fertilizer, for power generation. Since the animal manure hasmore » economic uses as both a fertilizer and as a fuel, it is properly referred to as feedlot biomass (FB) for cow manure, or litter biomass (LB) for chicken manure. The biomass will be used a as a fuel by mixing it with coal in a 90:10 blend and firing it in existing coal fired combustion devices. This technique is known as co-firing, and the high temperatures produced by the coal will allow the biomass to be completely combusted. Therefore, it is the goal of the current research to develop an animal biomass cofiring technology. A cofiring technology is being developed by performing: (1) studies on fundamental fuel characteristics, (2) small scale boiler burner experiments, (3) gasifier experiments, (4) computer simulations, and (5) an economic analysis. The fundamental fuel studies reveal that biomass is not as high a quality fuel as coal. The biomass fuels are higher in ash, higher in moisture, higher in nitrogen and sulfur (which can cause air pollution), and lower in heat content than coal. Additionally, experiments indicate that the biomass fuels have higher gas content, release gases more readily than coal, and less homogeneous. Small-scale boiler experiments revealed that the biomass blends can be successfully fired, and NO{sub x} pollutant emissions produced will be similar to or lower than pollutant emissions when firing coal. This is a surprising result as the levels of N are higher in the biomass fuel than in coal. Further experiments showed that biomass is twice or more effective than coal when used in a reburning process to reduce NO{sub x} emissions. Since crushing costs of biomass fuels may be prohibitive, stoker firing may be cost effective; in order simulate such a firing, future work will investigate the performance of a gasifier when fired with larger sized coal and biomass. It will be a fixed bed gasifier, and will evaluate blends, coal, and biomass. Computer simulations were performed using the PCGC-2 code supplied by BYU and modified by A&M with three mixture fractions for handling animal based biomass fuels in order to include an improved moisture model for handling wet fuels and phosphorus oxidation. Finally the results of the economic analysis show that considerable savings can be achieved with the use of biomass. In the case of higher ash and moisture biomass, the fuel cost savings will be reduced, due to increased transportation costs. A spreadsheet program was created to analyze the fuel savings for a variety of different moisture levels, ash levels, and power plant operating parameters.« less
NASA Astrophysics Data System (ADS)
Li, Jin; Qiu, Zhiling; Hu, Leilei
2018-04-01
The inverter-based regenerative braking power utilization devices can re-utilize the regenerative energy, thus reduce the energy consumption of urban rail transit. In this paper the power absorption principle of the inverter-based device is introduced, then the key influencing factors of energy saving performance are analyzed based on the absorption model. The field operation data verified that the control DC voltage plays an important role and lower control DC voltage yields more energy saving. Also, the one year energy saving performance data of an inverter-based re-utilization device located in NanJing S8 line is provided, and more than 1.2 million kWh energy is recovered in the one year operation.
A life-saving device for ships
NASA Technical Reports Server (NTRS)
Converti, P.
1985-01-01
A life-saving device is described which can be used on either ships or airplanes. The device consists of an airtight container for passengers equipped with elements needed for survival (oxygen, food, medicines, etc.), an energy source, and a parachute. This device can be ejected from the plane or ship when an emergency arises.
Waste heat recovery from adiabatic diesel engines by exhaust-driven Brayton cycles
NASA Technical Reports Server (NTRS)
Khalifa, H. E.
1983-01-01
An evaluation of Bryton Bottoming Systems (BBS) as waste heat recovery devices for future adiabatic diesel engines in heavy duty trucks is presented. Parametric studies were performed to evaluate the influence of external and internal design parameters on BBS performance. Conceptual design and trade-off studies were undertaken to estimate the optimum configuration, size, and cost of major hardware components. The potential annual fuel savings of long-haul trucks equipped with BBS were estimated. The addition of a BBS to a turbocharged, nonaftercooled adiabatic engine would improve fuel economy by as much as 12%. In comparison with an aftercooled, turbocompound engine, the BBS-equipped turbocharged engine would offer a 4.4% fuel economy advantage. If installed in tandem with an aftercooled turbocompound engine, the BBS could effect a 7.2% fuel economy improvement. The cost of a mass-produced 38 Bhp BBS is estimated at about $6460 or 170/Bhp. Technical and economic barriers that hinder the commercial introduction of bottoming systems were identified. Related studies in the area of waste heat recovery from adiabatic diesel engines and NASA-CR-168255 (Steam Rankine) and CR-168256 (Organic Rankine).
Alternative Fuels Data Center: Corporate Fleets Set the Pace for a Green
, 2014 Renzenberger Inc Saves Money With Propane Vans Feb. 1, 2014 Photo of an electric vehicle at a Through Philly March 3, 2012 Natural Gas School Buses Help Kansas City Save Money Nov. 12, 2011 Fueling Stations July 1, 2010 Hybrid Electric Shuttle Buses Offer Free Rides in Maryland June 18, 2010
Alternative Fuels Data Center: Dallas Airport Operates With Alternative
Renzenberger Inc Saves Money With Propane Vans Feb. 1, 2014 Photo of an electric vehicle at a charging station Natural Gas School Buses Help Kansas City Save Money Nov. 12, 2011 Metropolitan Utilities District Fuels Free Rides in Maryland June 18, 2010 Texas Taxis Go Hybrid May 6, 2010 Electric Trolley Boosts Business
Alternative Fuels Data Center: Idle-Reduction Efforts Cut Emissions and
Renzenberger Inc Saves Money With Propane Vans Feb. 1, 2014 Photo of an electric vehicle at a charging station Philly March 3, 2012 Natural Gas School Buses Help Kansas City Save Money Nov. 12, 2011 Metropolitan Relies on Natural Gas Fueling Stations July 1, 2010 Hybrid Electric Shuttle Buses Offer Free Rides in
Alternative Fuels Data Center: Krug Energy Opens Natural Gas Fueling
Cars Go Electric in Florida Feb. 15, 2014 Renzenberger Inc Saves Money With Propane Vans Feb. 1, 2014 Charging Stations Spread Through Philly March 3, 2012 Natural Gas School Buses Help Kansas City Save Money Shuttle Buses Offer Free Rides in Maryland June 18, 2010 Fisher Coachworks Develops Plug-In Electric Bus
Alternative Fuels Data Center: Yellowstone National Park Commits to
Renzenberger Inc Saves Money With Propane Vans Feb. 1, 2014 Photo of an electric vehicle at a charging station Kansas City Save Money Nov. 12, 2011 Electric Trucks Deliver at Kansas City Schools Sept. 17, 2011 San Relies on Natural Gas Fueling Stations July 1, 2010 Hybrid Electric Shuttle Buses Offer Free Rides in
Engine bleed air reduction in DC-10
NASA Technical Reports Server (NTRS)
Newman, W. H.; Viele, M. R.
1980-01-01
An 0.8 percent fuel savings was achieved by a reduction in engine bleed air through the use of cabin air recirculation. The recirculation system was evaluated in revenue service on a DC-10. The cabin remained comfortable with reductions in cabin fresh air (engine bleed air) as much as 50 percent. Flight test verified the predicted fuel saving of 0.8 percent.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2003-07-01
The Energy Smart Guide to Campus Cost Savings covers today's trends in project finance, combined heat& power, clean fuel fleets and emissions trading. The guide is directed at campus facilities and business managers and contains general guidance, contact information and case studies from colleges and universities across the country.
Hydrogen-Oxygen PEM Regenerative Fuel Cell at NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Bents, David J.
2004-01-01
The NASA Glenn Research Center has constructed a closed-cycle hydrogen-oxygen PEM regenerative fuel cell (RFC) to explore its potential use as an energy storage device for a high altitude solar electric aircraft. Built up over the last 2 years from specialized hardware and off the shelf components the Glenn RFC is a complete "brassboard" energy storage system which includes all the equipment required to (1) absorb electrical power from an outside source and store it as pressurized hydrogen and oxygen and (2) make electrical power from the stored gases, saving the product water for re-use during the next cycle. It consists of a dedicated hydrogen-oxygen fuel cell stack and an electrolyzer stack, the interconnecting plumbing and valves, cooling pumps, water transfer pumps, gas recirculation pumps, phase separators, storage tanks for oxygen (O2) and hydrogen (H2), heat exchangers, isolation valves, pressure regulators, nitrogen purge provisions, instrumentation, and other components. It specific developmental functions include: (1) Test fuel cells and fuel cell components under repeated closed-cycle operation (nothing escapes; everything is used over and over again). (2) Simulate diurnal charge-discharge cycles (3) Observe long-term system performance and identify degradation and loss mechanisms. (4) Develop safe and convenient operation and control strategies leading to the successful development of mission-capable, flight-weight RFC's.
NASA Technical Reports Server (NTRS)
Knightly, W. F.
1980-01-01
Various advanced energy conversion systems (ECS) are compared with each other and with current technology systems for their savings in fuel energy, costs, and emissions in individual plants and on a national level. About fifty industrial processes from the largest energy consuming sectors were used as a basis for matching a similar number of energy conversion systems that are considered as candidates which can be made available by the 1985 to 2000 time period. The sectors considered included food, textiles, lumber, paper, chemicals, petroleum, glass, and primary metals. The energy conversion systems included steam and gas turbines, diesels, thermionics, stirling, closed cycle and steam injected gas turbines, and fuel cells. Fuels considered were coal, both coal and petroleum based residual and distillate liquid fuels, and low Btu gas obtained through the on-site gasification of coal. Computer generated reports of the fuel consumption and savings, capital costs, economics and emissions of the cogeneration energy conversion systems (ECS's) heat and power matched to the individual industrial processes are presented for coal fired process boilers. National fuel and emissions savings are also reported for each ECS assuming it alone is implemented.
Influences on Energy Savings of Heavy Trucks Using Cooperative Adaptive Cruise Control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lammert, Michael P; McAuliffe, Brian; Lu, Xiao-Yun
An integrated adaptive cruise control (ACC) and cooperative ACC (CACC) was implemented and tested on three heavy-duty tractor-trailer trucks on a closed test track. The first truck was always in ACC mode, and the followers were in CACC mode using wireless vehicle-vehicle communication to augment their radar sensor data to enable safe and accurate vehicle following at short gaps. The fuel consumption for each truck in the CACC string was measured using the SAE J1321 procedure while travelling at 65 mph and loaded to a gross weight of 65,000 lb, demonstrating the effects of: inter-vehicle gaps (ranging from 3.0 smore » or 87 m to 0.14 s or 4 m, covering a much wider range than previously reported tests), cut-in and cut-out maneuvers by other vehicles, speed variations, the use of mismatched vehicles (standard trailers mixed with aerodynamic trailers with boat tails and side skirts), and the presence of a passenger vehicle ahead of the platoon. The results showed that energy savings generally increased in a non-linear fashion as the gap was reduced. The middle truck saved the most fuel at gaps shorter than 12 m and the trailing truck saved the most at longer gaps, while lead truck saved the least at all gaps. The cut-in and cut-out maneuvers had only a marginal effect on fuel consumption even when repeated every two miles. The presence of passenger-vehicle traffic had a measurable impact. The fuel-consumption savings on the curves was less than on the straight sections.« less
Cogeneration Technology Alternatives Study (CTAS). Volume 5: Cogeneration systems results
NASA Technical Reports Server (NTRS)
Gerlaugh, H. E.; Hall, E. W.; Brown, D. H.; Priestley, R. R.; Knightly, W. F.
1980-01-01
The use of various advanced energy conversion systems is examined and compared with each other and with current technology systems for savings in fuel energy, costs, and emissions in individual plants and on a national level. About fifty industrial processes from the largest energy consuming sectors were used as a basis for matching a similar number of energy conversion systems that are considered as candidate which can be made available by the 1985 to 2000 time period. The sectors considered included food, textiles, lumber, paper, chemicals, petroleum, glass, and primary metals. The energy conversion systems included steam and gas turbines, diesels, thermionics, stirling, closed cycle and steam injected gas turbines, and fuel cells. Fuels considered were coal, both coal and petroleum based residual and distillate liquid fuels, and low Btu gas obtained through the on site gasification of coal. The methodology and results of matching the cogeneration energy conversion systems to approximately 50 industrial processes are described. Results include fuel energy saved, levelized annual energy cost saved, return on investment, and operational factors relative to the noncogeneration base cases.
Thermal storage for industrial process and reject heat
NASA Technical Reports Server (NTRS)
Duscha, R. A.; Masica, W. J.
1978-01-01
Industrial production uses about 40 percent of the total energy consumed in the United States. The major share of this is derived from fossil fuel. Potential savings of scarce fuel is possible through the use of thermal energy storage (TES) of reject or process heat for subsequent use. Three especially significant industries where high temperature TES appears attractive - paper and pulp, iron and steel, and cement are discussed. Potential annual fuel savings, with large scale implementation of near-term TES systems for these three industries, is nearly 9,000,000 bbl of oil.
Alternative Fuels Data Center: Petroleum Reduction Planning Tool
alternative fuel. Values found in Table 1. Fuel Cost Fuel_cost_current Fuel_cost_alt_new Fuel_cost_alt Fuel cost for old vehicle. Fuel cost for new vehicle using conventional vehicle Fuel cost for new vehicle *(Alt_GGE_factor_conv/Alt_GGE_factor)*Alt_GGE_factor*GHG_alt)] Yearly fuel cost savings resulting from fuel and vehicle
NASA Technical Reports Server (NTRS)
1975-01-01
The costs and benefits of the NASA Aircraft Fuel Conservation Technology Program are discussed. Consideration is given to a present worth analysis of the planned program expenditures, an examination of the fuel savings to be obtained by the year 2005 and the worth of this fuel savings relative to the investment required, a comparison of the program funding with that planned by other Federal agencies for energy conservation, an examination of the private industry aeronautical research and technology financial posture for the period FY 76 - FY 85, and an assessment of the potential impacts on air and noise pollution. To aid in this analysis, a computerized fleet mix forecasting model was developed. This model enables the estimation of fuel consumption and present worth of fuel expenditures for selected commerical aircraft fleet mix scenarios.
Kouchri, Farrokh Mohammadzadeh
2012-11-06
A Voice over Internet Protocol (VoIP) communications system, a method of managing a communications network in such a system and a program product therefore. The system/network includes an ENERGY STAR (E-star) aware softswitch and E-star compliant communications devices at system endpoints. The E-star aware softswitch allows E-star compliant communications devices to enter and remain in power saving mode. The E-star aware softswitch spools messages and forwards only selected messages (e.g., calls) to the devices in power saving mode. When the E-star compliant communications devices exit power saving mode, the E-star aware softswitch forwards spooled messages.
DOT National Transportation Integrated Search
1975-06-01
The analyses of the effects of Year-Round Daylight Saving Time were not conslusive because they could not be reliablyseparated from other changes occuring simultaneously including fuel availability constraints, speed limit reductions, Sunday gasoline...
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCoy, G.A.
1983-11-18
The City of Longview can obtain significant fuel savings benefits by converting a portion of their vehicle fleet to operate on either compressed natural gas (CNG) or liquid petroleum gas (LPG) fuels. The conversion of 41 vehicles including police units, sedans, pickups, and light duty trucks to CNG use would offset approximately 47% of the city's 1982 gasoline consumption. The CNG conversion capital outlay of $115,000 would be recovered through fuel cost reductions. The Cascade Natural Gas Corporation sells natural gas under an interruptible tariff for $0.505 per therm, equivalent to slightly less than one gallon of gasoline. The citymore » currently purchases unleaded gasoline at $1.115 per gallon. A payback analysis indicates that 39.6 months are required for the CNG fuel savings benefits to offset the initial or first costs of the conversion. The conversion of fleet vehicles to liquid petroleum gas (LPG) or propane produces comparable savings in vehicle operating costs. The conversion of 59 vehicles including police units, pickup and one ton trucks, street sweepers, and five cubic yard dump trucks would cost approximately $59,900. The annual purchase of 107,000 gallons of propane would offset the consumption of 96,300 gallons of gasoline, or approximately 67% of the city's 1982 usage. Propane is currently retailing for $0.68 to $0.74 per gallon. A payback analysis indicates that 27.7 months are required for the fuel savings benefits to offset the initial LPG conversion costs.« less
NASA Astrophysics Data System (ADS)
Weidinger, Peter; Günther, Kay; Fitzel, Martin; Logvinov, Ruslan; Ilin, Alexander; Ploshikhin, Vasily; Hugger, Florian; Mann, Vincent; Roth, Stephan; Schmidt, Michael
The necessity for weight reduction in motor vehicles in order to save fuel consumption pushes automotive suppliers to use materials of higher strength. Due to their excellent crash behavior high strength steels are increasingly applied in various structures. In this paper some predevelopment steps for a material change from a micro alloyed to dual phase and complex phase steels of a T-joint assembly are displayed. Initially the general weldability of the materials regarding pore formation, hardening in the heat affected zone and hot cracking susceptibility is discussed. After this basic investigation, the computer aided design optimization of a clamping device is shown, in which influences of the clamping jaw, the welding position and the clamping forces upon weld quality are presented. Finally experimental results of the welding process are displayed, which validate the numerical simulation.
Carbon and Energy Saving Financial Opportunities in the Industrial Compressed Air Sector
NASA Astrophysics Data System (ADS)
Vittorini, Diego; Cipollone, Roberto
2017-08-01
The transition towards a more sustainable energy scenario calls for both medium-to-long and short term interventions, with CO2 reduction and fossil fuel saving as main goals for all the Countries in the World. Among all others, one way to support these efforts is the setting-up of immaterial markets able to regulate, in the form of purchase and sales quotas, CO2 emissions avoided and fossil fuels not consumed. As a consequence, the upgrade of those sectors, characterized by high energy impact, is currently more than an option due to the related achievable financial advantage on the afore mentioned markets. Being responsible for about 10% electricity consumption in Industry, the compressed air sector is currently addressed as extremely appealing, when CO2 emissions and burned fossil fuels saving are in question. In the paper, once a standard is defined for compressors performances, based on data from the Compressed Air and Gas Institute and PNEUROP, the achievable energy saving is evaluated along with the effect in terms of CO2 emissions: with reference to those contexts in which mature intangible markets are established, an estimation of the financial benefit from savings sale on correspondent markets is possible, in terms of both avoided CO2 and fossil fuels not burned. The approach adopted allows to extend the analysis results to every context of interest, by applying the appropriate emission factor to the datum on compressor specific consumption.
Potential benefits of a ceramic thermal barrier coating on large power generation gas turbine
NASA Technical Reports Server (NTRS)
Clark, J. S.; Nainiger, J. J.
1977-01-01
Thermal barrier coating design option offers benefit in terms of reduced electricity costs when used in utility gas turbines. Options considered include: increased firing temperature, increased component life, reduced cooling air requirements, and increased corrosion resistance (resulting in increased tolerance for dirty fuels). Performance and cost data were obtained. Simple, recuperated and combined cycle applications were considered, and distillate and residual fuels were assumed. The results indicate that thermal barrier coatings could produce large electricity cost savings if these coatings permit turbine operation with residual fuels at distillate-rated firing temperatures. The results also show that increased turbine inlet temperature can result in substantial savings in fuel and capital costs.
NREL Evaluates Performance of Fast-Charge Electric Buses
DOE Office of Scientific and Technical Information (OSTI.GOV)
2016-09-16
This real-world performance evaluation is designed to enhance understanding of the overall usage and effectiveness of electric buses in transit operation and to provide unbiased technical information to other agencies interested in adding such vehicles to their fleets. Initial results indicate that the electric buses under study offer significant fuel and emissions savings. The final results will help Foothill Transit optimize the energy-saving potential of its transit fleet. NREL's performance evaluations help vehicle manufacturers fine-tune their designs and help fleet managers select fuel-efficient, low-emission vehicles that meet their bottom line and operational goals. help Foothill Transit optimize the energy-saving potentialmore » of its transit fleet. NREL's performance evaluations help vehicle manufacturers fine-tune their designs and help fleet managers select fuel-efficient, low-emission vehicles that meet their bottom line and operational goals.« less
Fuel saver based on electromagnetic induction for automotive engine
NASA Astrophysics Data System (ADS)
Siregar, Houtman P.; Sibarani, Maradu
2007-12-01
In the considered research is designed and analyzed the performance of the fuel saver which is based on electromagnetic induction for automotive diesel engine. The fuel saver which is based on permanent magnet has sold in market and its performance has tested. In comparison to the former fuel saver, in the proposed work is produced fuel saver which is based on electromagnetic induction. The considered research is the continuation of my former work. Performance of the produced fuel saver which is installed in the fuel line of internal combustion engine rig is compared to the performance of the standard internal combustion engine rig Speed of the engine, wire diameter of coil, and number of coil which is coiled in the winding of the the fuel saver are chosen as the testing variables. The considered research has succeeded to design the fuel saver which is based on electromagnetic induction for saving the automotive fuel consumption. Results of the research show that the addition of the fuel saver which is based on electromagnetic induction to the flow of the diesel fuel can significantly save the automative fuel consumption. In addition the designed fuel saver can reduce the opacity of the emission gas.
Energy Savings Measure Packages. Existing Homes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Casey, Sean; Booten, Chuck
2011-11-01
This document presents the most cost effective Energy Savings Measure Packages (ESMP) for existing mixed-fuel and all electric homes to achieve 15% and 30% savings for each BetterBuildings grantee location across the United States. These packages are optimized for minimum cost to homeowners for source energy savings given the local climate and prevalent building characteristics (i.e. foundation types). Maximum cost savings are typically found between 30% and 50% energy savings over the reference home; this typically amounts to $300 - $700/year.
Tanker Fuel Efficiency: Saving Through Receiver Fuel Planning
2014-06-13
engage your weapon.” General James Mattis , 2003 Conclusions The current planning and execution of air refueling missions are costing the DOD...fuel cells, and bio fuels are being explored by scientists and engineers working to reduce the United States’ dependency on foreign oil (Harmon
Cogeneration technology alternatives study. Volume 1: Summary report
NASA Technical Reports Server (NTRS)
1980-01-01
Data and information in the area of advanced energy conversion systems for industrial congeneration applications in the 1985-2000 time period was studied. Six current and thirty-one advanced energy conversion systems were defined and combined with appropriate balance-of-plant equipment. Twenty-six industrial processes were selected from among the high energy consuming industries to serve as a framework for the study. Each conversion system was analyzed as a cogenerator with each industrial plant. Fuel consumption, costs, and environmental intrusion were evaluated and compared to corresponding traditional values. Various cogeneration strategies were analyzed and both topping and bottoming (using industrial by-product heat) applications were included. The advanced energy conversion technologies indicated reduced fuel consumption, costs, and emissions. Typically fuel energy savings of 10 to 25 percent were predicted compared to traditional on-site furnaces and utility electricity. With the variety of industrial requirements, each advanced technology had attractive applications. Overall, fuel cells indicated the greatest fuel energy savings and emission reductions. Gas turbines and combined cycles indicated high overall annual cost savings. Steam turbines and gas turbines produced high estimated returns. In some applications, diesels were most efficient. The advanced technologies used coal-derived fuels, or coal with advanced fluid bed combustion or on-site gasification systems.
NASA Technical Reports Server (NTRS)
1980-01-01
Six current and thirty-six advanced energy conversion systems were defined and combined with appropriate balance of plant equipment. Twenty-six industrial processes were selected from among the high energy consuming industries to serve as a frame work for the study. Each conversion system was analyzed as a cogenerator with each industrial plant. Fuel consumption, costs, and environmental intrusion were evaluated and compared to corresponding traditional values. The advanced energy conversion technologies indicated reduced fuel consumption, costs, and emissions. Fuel energy savings of 10 to 25 percent were predicted compared to traditional on site furnaces and utility electricity. With the variety of industrial requirements, each advanced technology had attractive applications. Fuel cells indicated the greatest fuel energy savings and emission reductions. Gas turbines and combined cycles indicated high overall annual savings. Steam turbines and gas turbines produced high estimated returns. In some applications, diesels were most efficient. The advanced technologies used coal derived fuels, or coal with advanced fluid bed combustion or on site gasifications. Data and information for both current and advanced energy conversion technology are presented. Schematic and physical descriptions, performance data, equipment cost estimates, and predicted emissions are included. Technical developments which are needed to achieve commercialization in the 1985-2000 period are identified.
Fuel savings and emissions reductions from light duty fuel cell vehicles
NASA Astrophysics Data System (ADS)
Mark, J.; Ohi, J. M.; Hudson, D. V., Jr.
1994-04-01
Fuel cell vehicles (FCV's) operate efficiently, emit few pollutants, and run on nonpetroleum fuels. Because of these characteristics, the large-scale deployment of FCV's has the potential to lessen U.S. dependence on foreign oil and improve air quality. This study characterizes the benefits of large-scale FCV deployment in the light duty vehicle market. Specifically, the study assesses the potential fuel savings and emissions reductions resulting from large-scale use of these FCV's and identifies the key parameters that affect the scope of the benefits from FCV use. The analysis scenario assumes that FCV's will compete with gasoline-powered light trucks and cars in the new vehicle market for replacement of retired vehicles and will compete for growth in the total market. Analysts concluded that the potential benefits from FCV's, measured in terms of consumer outlays for motor fuel and the value of reduced air emissions, are substantial.
Fuel Cell Auxiliary Power Study Volume 1: RASER Task Order 5
NASA Technical Reports Server (NTRS)
Mak, Audie; Meier, John
2007-01-01
This study evaluated the feasibility of a hybrid solid oxide fuel cell (SOFC) auxiliary power unit (APU) and the impact in a 90-passenger More-Electric Regional Jet application. The study established realistic hybrid SOFC APU system weight and system efficiencies, and evaluated the impact on the aircraft total weight, fuel burn, and emissions from the main engine and the APU during cruise, landing and take-off (LTO) cycle, and at the gate. Although the SOFC APU may be heavier than the current conventional APU, its weight disadvantage can be offset by fuel savings in the higher SOFC APU system efficiencies against the main engine bleed and extraction during cruise. The higher SOFC APU system efficiency compared to the conventional APU on the ground can also provide considerable fuel saving and emissions reduction, particularly at the gate, but is limited by the fuel cell stack thermal fatigue characteristic.
Carbon and energy saving markets in compressed air
NASA Astrophysics Data System (ADS)
Cipollone, R.
2015-08-01
CO2 reduction and fossil fuel saving represent two of the cornerstones of the environmental commitments of all the countries of the world. The first engagement is of a medium to long term type, and unequivocally calls for a new energetic era. The second delays in time the fossil fuel technologies to favour an energetic transition. In order to sustain the two efforts, new immaterial markets have been established in almost all the countries of the world, whose exchanges (purchases and sales) concern CO2 emissions and equivalent fossil fuels that have not been emitted or burned. This paper goes deep inside two aspects not yet exploited: specific CO2 emissions and equivalent fossil fuel burned, as a function of compressed air produced. Reference is made to the current compressor technology, carefully analysing CAGI's (Compressed Air Gas Institute) data and integrating it with the PNUEROP (European Association of manufacturers of compressors, vacuum pumps, pneumatic tools and allied equipment) contribution on the compressor European market. On the base of energy saving estimates that could be put in place, this article also estimates the financial value of the CO2 emissions and fossil fuels avoided.
NASA Astrophysics Data System (ADS)
Onogaki, Hitoshi; Yokoyama, Shuichi
The temperature control of the environmental examination device has loss of the energy consumption to cool it while warming it. This paper proposed a tempareture control system method with energy saving for the enviromental examination device without using cooling in consideration of temperature characteristics.
Energy Saving Devices on Gas Furnaces.
1980-03-01
AO-A082 0715 JOHNS - MANVILLE SALES CORP DENVER CO RESEARCH AND DEV--ETC FIG 1311 ENERGY SAVING DEVICES ON GAS FURNACES.(U) MAR B0 T E BRISBANE, P B...DEVICES FOR GAS FURNACES THOMAS E. BRISBANE ,o"’ P. B. SHEPHERD JOHNS - MANVILLE SALES CORPORATION RESEARCH & DEVELOPMENT CENTER KEN-CARYL RANCH, DENVER
NASA Astrophysics Data System (ADS)
Moden, R.
An analysis of expected energy savings between 1977 and 1980 under three different solar tax credit scenarios is presented. The results were obtained through the solar heating and cooling of buildings (SHACOB) commercialization model. This simulation provides projected savings of conventional fuels through the installation of solar heating and cooling systems on buildings in the residential and commercial sectors. The three scenarios analyzed considered the tax credits contained in the Windfall Profits Tax of April 1980, the National Tax Act of November 1978, and a case where no tax credit is in effect.
Alternative Fuels Data Center: Propane Fueling Stations
Fueling Station Locations by State More Propane Data | All Maps & Data Case Studies Michigan School Prisons Adopt Propane, Establish Fuel Savings for Years to Come More Propane Case Studies | All Case Studies Publications The Growing Presence of Propane in Pupil Transportation Costs Associated With Propane
Assessment for advanced fuel cycle options in CANDU
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morreale, A.C.; Luxat, J.C.; Friedlander, Y.
2013-07-01
The possible options for advanced fuel cycles in CANDU reactors including actinide burning options and thorium cycles were explored and are feasible options to increase the efficiency of uranium utilization and help close the fuel cycle. The actinide burning TRUMOX approach uses a mixed oxide fuel of reprocessed transuranic actinides from PWR spent fuel blended with natural uranium in the CANDU-900 reactor. This system reduced actinide content by 35% and decreased natural uranium consumption by 24% over a PWR once through cycle. The thorium cycles evaluated used two CANDU-900 units, a generator and a burner unit along with a drivermore » fuel feedstock. The driver fuels included plutonium reprocessed from PWR, from CANDU and low enriched uranium (LEU). All three cycles were effective options and reduced natural uranium consumption over a PWR once through cycle. The LEU driven system saw the largest reduction with a 94% savings while the plutonium driven cycles achieved 75% savings for PWR and 87% for CANDU. The high neutron economy, online fuelling and flexible compact fuel make the CANDU system an ideal reactor platform for many advanced fuel cycles.« less
NASA Technical Reports Server (NTRS)
Sagerman, G. D.; Barna, G. J.; Burns, R. K.
1979-01-01
The Cogeneration Technology Alternatives Study (CTAS), a program undertaken to identify the most attractive advanced energy conversion systems for industrial cogeneration applications in the 1985-2000 time period, is described, and preliminary results are presented. Two cogeneration options are included in the analysis: a topping application, in which fuel is input to the energy conversion system which generates electricity and waste heat from the conversion system is used to provide heat to the process, and a bottoming application, in which fuel is burned to provide high temperature process heat and waste heat from the process is used as thermal input to the energy conversion system which generates energy. Steam turbines, open and closed cycle gas turbines, combined cycles, diesel engines, Stirling engines, phosphoric acid and molten carbonate fuel cells and thermionics are examined. Expected plant level energy savings, annual energy cost savings, and other results of the economic analysis are given, and the sensitivity of these results to the assumptions concerning fuel prices, price of purchased electricity and the potential effects of regional energy use characteristics is discussed.
Alternative Fuels Data Center: Baltimore-Based Bakery Launches Fleet of
propane would reduce maintenance costs and save us money on fuel compared to diesel and gasoline," Bakery knew that wasting time, money, and fuel was not in the company's best interest. That's why their
Gadler, Fredrik; Ding, Yao; Verin, Nathalie; Bergius, Martin; Miller, Jeffrey D; Lenhart, Gregory M; Russell, Mason W
2016-01-01
The objective of this study was to quantify the impact that longer battery life of cardiac resynchronization therapy defibrillator (CRT-D) devices has on reducing the number of device replacements and associated costs of these replacements from a Swedish health care system perspective. An economic model based on real-world published data was developed to estimate cost savings and avoided device replacements for CRT-Ds with longer battery life compared with devices with industry-standard battery life expectancy. Base-case comparisons were performed among CRT-Ds of three manufacturers - Boston Scientific Corporation, St. Jude Medical, and Medtronic - over a 6-year time horizon, as per the available clinical data. As a sensitivity analysis, we evaluated CRT-Ds as well as single-chamber implantable cardioverter defibrillator (ICD-VR) and dual-chamber implantable cardioverter defibrillator (ICD-DR) devices over a longer 10-year period. All costs were in 2015 Swedish Krona (SEK) discounted at 3% per annum. Base-case analysis results show that up to 603 replacements and up to SEK 60.4 million cumulative-associated costs could be avoided over 6 years by using devices with extended battery life. The pattern of savings over time suggests that savings are modest initially but increase rapidly beginning in the third year of follow-up with each year's cumulative savings two to three times the previous year. Evaluating CRT-D, ICD-VR, and ICD-DR devices together over a longer 10-year period, the sensitivity analysis showed 2,820 fewer replacement procedures and associated cost savings of SEK 249.3 million for all defibrillators with extended battery life. Extended battery life is likely to reduce device replacements and associated complications and costs, which may result in important cost savings and a more efficient use of health care resources as well as a better quality of life for heart failure patients in Sweden.
Combined Aero and Underhood Thermal Analysis for Heavy Duty Trucks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vegendla, Prasad; Sofu, Tanju; Saha, Rohit
2017-01-31
Aerodynamic analysis of the medium-duty delivery truck was performed to achieve vehicle design optimization. Three dimensional CFD simulations were carried out for several improved designs, with a detailed external component analysis of wheel covers, side skirts, roof fairings, and rounded trailer corners. The overall averaged aerodynamics drag reduction through the design modifications were shown up to 22.3% through aerodynamic considerations alone, which is equivalent to 11.16% fuel savings. The main identified fuel efficiencies were based on second generation devices, including wheel covers, side skirts, roof fairings, and rounded trailer corners. The important findings of this work were; (i) the optimummore » curvature radius of the rounded trailer edges found to be 125 mm, with an arc length of 196.3 mm, (ii) aerodynamic drag reduction increases with dropping clearance of side skirts between wheels and ground, and (iii) aerodynamic drag reduction increases with an extension of front bumper towards the ground.« less
Alternative Fuels Data Center: Biodiesel Offers an Easy Alternative for
substantial petroleum reductions and cost savings. The University has also purchased a mobile fueling station , particularly because the university chose to implement a relatively unique mobile trailer to fuel their shuttle . The mobile fueling station was the only upfront cost, but Worku says the resulting time efficiencies
A properly adjusted forage harvester can save time and money
USDA-ARS?s Scientific Manuscript database
A properly adjusted forage harvester can save fuel and increase the realizable milk per ton of your silage. This article details the adjustments necessary to minimize energy while maximizing productivity and forage quality....
40 CFR 60.107a - Monitoring of emissions and operations for fuel gas combustion devices.
Code of Federal Regulations, 2011 CFR
2011-07-01
... for fuel gas combustion devices. 60.107a Section 60.107a Protection of Environment ENVIRONMENTAL... Commenced After May 14, 2007 § 60.107a Monitoring of emissions and operations for fuel gas combustion devices. (a) Fuel gas combustion devices subject to SO 2 or H 2 S limit. The owner or operator of a fuel...
40 CFR 60.107a - Monitoring of emissions and operations for fuel gas combustion devices.
Code of Federal Regulations, 2012 CFR
2012-07-01
... for fuel gas combustion devices. 60.107a Section 60.107a Protection of Environment ENVIRONMENTAL... Commenced After May 14, 2007 § 60.107a Monitoring of emissions and operations for fuel gas combustion devices. (a) Fuel gas combustion devices subject to SO 2 or H 2 S limit. The owner or operator of a fuel...
40 CFR 60.107a - Monitoring of emissions and operations for fuel gas combustion devices.
Code of Federal Regulations, 2010 CFR
2010-07-01
... for fuel gas combustion devices. 60.107a Section 60.107a Protection of Environment ENVIRONMENTAL... Commenced After May 14, 2007 § 60.107a Monitoring of emissions and operations for fuel gas combustion devices. (a) Fuel gas combustion devices subject to SO 2 or H 2 S limit. The owner or operator of a fuel...
Fuel Consumption Reduction and Weight Estimate of an Intercooled-Recuperated Turboprop Engine
NASA Astrophysics Data System (ADS)
Andriani, Roberto; Ghezzi, Umberto; Ingenito, Antonella; Gamma, Fausto
2012-09-01
The introduction of intercooling and regeneration in a gas turbine engine can lead to performance improvement and fuel consumption reduction. Moreover, as first consequence of the saved fuel, also the pollutant emission can be greatly reduced. Turboprop seems to be the most suitable gas turbine engine to be equipped with intercooler and heat recuperator thanks to the relatively small mass flow rate and the small propulsion power fraction due to the exhaust nozzle. However, the extra weight and drag due to the heat exchangers must be carefully considered. An intercooled-recuperated turboprop engine is studied by means of a thermodynamic numeric code that, computing the thermal cycle, simulates the engine behavior at different operating conditions. The main aero engine performances, as specific power and specific fuel consumption, are then evaluated from the cycle analysis. The saved fuel, the pollution reduction, and the engine weight are then estimated for an example case.
Turboprop Cargo Aircraft Systems study, phase 1
NASA Technical Reports Server (NTRS)
Muehlbauer, J. C.; Hewell, J. G., Jr.; Lindenbaum, S. P.; Randall, C. C.; Searle, N.; Stone, F. R., Jr.
1980-01-01
The effects of advanced propellers (propfan) on aircraft direct operating costs, fuel consumption, and noiseprints were determined. A comparison of three aircraft selected from the results with competitive turbofan aircraft shows that advanced turboprop aircraft offer these potential benefits, relative to advanced turbofan aircraft: 21 percent fuel saving, 26 percent higher fuel efficiency, 15 percent lower DOCs, and 25 percent shorter field lengths. Fuel consumption for the turboprop is nearly 40 percent less than for current commercial turbofan aircraft. Aircraft with both types of propulsion satisfy current federal noise regulations. Advanced turboprop aircraft have smaller noiseprints at 90 EPNdB than advanced turbofan aircraft, but large noiseprints at 70 and 80 EPNdB levels, which are usually suggested as quietness goals. Accelerated development of advanced turboprops is strongly recommended to permit early attainment of the potential fuel saving. Several areas of work are identified which may produce quieter turboprop aircraft.
Assessment of Energy Efficiency Improvement in the United States Petroleum Refining Industry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morrow, William R.; Marano, John; Sathaye, Jayant
2013-02-01
Adoption of efficient process technologies is an important approach to reducing CO 2 emissions, in particular those associated with combustion. In many cases, implementing energy efficiency measures is among the most cost-effective approaches that any refiner can take, improving productivity while reducing emissions. Therefore, careful analysis of the options and costs associated with efficiency measures is required to establish sound carbon policies addressing global climate change, and is the primary focus of LBNL’s current petroleum refining sector analysis for the U.S. Environmental Protection Agency. The analysis is aimed at identifying energy efficiency-related measures and developing energy abatement supply curves andmore » CO 2 emissions reduction potential for the U.S. refining industry. A refinery model has been developed for this purpose that is a notional aggregation of the U.S. petroleum refining sector. It consists of twelve processing units and account s for the additional energy requirements from steam generation, hydrogen production and water utilities required by each of the twelve processing units. The model is carbon and energy balanced such that crud e oil inputs and major refinery sector outputs (fuels) are benchmarked to 2010 data. Estimates of the current penetration for the identified energy efficiency measures benchmark the energy requirements to those reported in U.S. DOE 2010 data. The remaining energy efficiency potential for each of the measures is estimated and compared to U.S. DOE fuel prices resulting in estimates of cost- effective energy efficiency opportunities for each of the twelve major processes. A combined cost of conserved energy supply curve is also presented along with the CO 2 emissions abatement opportunities that exist in the U.S. petroleum refinery sector. Roughly 1,200 PJ per year of primary fuels savings and close to 500 GWh per y ear of electricity savings are potentially cost-effective given U.S. DOE fuel price forecasts. This represents roughly 70 million metric tonnes of CO 2 emission reductions assuming 2010 emissions factor for grid electricity. Energy efficiency measures resulting in an additional 400 PJ per year of primary fuels savings and close to 1,700 GWh per year of electricity savings, and an associated 24 million metric tonnes of CO 2 emission reductions are not cost-effective given the same assumption with respect to fuel prices and electricity emissions factors. Compared to the modeled energy requirements for the U.S. petroleum refining sector, the cost effective potential represents a 40% reduction in fuel consumption and a 2% reduction in electricity consumption. The non-cost-effective potential represents an additional 13% reduction in fuel consumption and an additional 7% reduction in electricity consumption. The relative energy reduction potentials are mu ch higher for fuel consumption than electricity consumption largely in part because fuel is the primary energy consumption type in the refineries. Moreover, many cost effective fuel savings measures would increase electricity consumption. The model also has the potential to be used to examine the costs and benefits of the other CO 2 mitigation options, such as combined heat and power (CHP), carbon capture, and the potential introduction of biomass feedstocks. However, these options are not addressed in this report as this report is focused on developing the modeling methodology and assessing fuels savings measures. These opportunities to further reduce refinery sector CO 2 emissions and are recommended for further research and analysis.« less
Alternative Fuels Data Center: Local Businesses Get Creative to Offer
employees receive free charging, save money on gas and reduce their carbon footprints. When potential Workplace Charging " Being a business, we're interested in saving money and [workplace charging] has businesses look to save money while lowering their carbon footprint, but Hollywood Woodwork has found a
NASA Astrophysics Data System (ADS)
Burdette, David A., Jr.
Adaptive morphing trailing edge technology offers the potential to decrease the fuel burn of transonic commercial transport aircraft by allowing wings to dynamically adjust to changing flight conditions. Current configurations allow flap and aileron droop; however, this approach provides limited degrees of freedom and increased drag produced by gaps in the wing's surface. Leading members in the aeronautics community including NASA, AFRL, Boeing, and a number of academic institutions have extensively researched morphing technology for its potential to improve aircraft efficiency. With modern computational tools it is possible to accurately and efficiently model aircraft configurations in order to quantify the efficiency improvements offered by mor- phing technology. Coupled high-fidelity aerodynamic and structural solvers provide the capability to model and thoroughly understand the nuanced trade-offs involved in aircraft design. This capability is important for a detailed study of the capabilities of morphing trailing edge technology. Gradient-based multidisciplinary design opti- mization provides the ability to efficiently traverse design spaces and optimize the trade-offs associated with the design. This thesis presents a number of optimization studies comparing optimized config- urations with and without morphing trailing edge devices. The baseline configuration used throughout this work is the NASA Common Research Model. The first opti- mization comparison considers the optimal fuel burn predicted by the Breguet range equation at a single cruise point. This initial singlepoint optimization comparison demonstrated a limited fuel burn savings of less than 1%. Given the effectiveness of the passive aeroelastic tailoring in the optimized non-morphing wing, the singlepoint optimization offered limited potential for morphing technology to provide any bene- fit. To provide a more appropriate comparison, a number of multipoint optimizations were performed. With a 3-point stencil, the morphing wing burned 2.53% less fuel than its optimized non-morphing counterpart. Expanding further to a 7-point stencil, the morphing wing used 5.04% less fuel. Additional studies demonstrate that the size of the morphing device can be reduced without sizable performance reductions, and that as aircraft wings' aspect ratios increase, the effectiveness of morphing trailing edge devices increases. The final set of studies in this thesis consider mission analy- sis, including climb, multi-altitude cruise, and descent. These mission analyses were performed with a number of surrogate models, trained with O(100) optimizations. These optimizations demonstrated fuel burn reductions as large as 5% at off-design conditions. The fuel burn predicted by the mission analysis was up to 2.7% lower for the morphing wing compared to the conventional configuration.
Noblett, Karen L; Dmochowski, Roger R; Vasavada, Sandip P; Garner, Abigail M; Liu, Shan; Pietzsch, Jan B
2017-03-01
Sacral neuromodulation (SNM) is a guideline-recommended third-line treatment option for managing overactive bladder. Current SNM devices are not rechargeable, and require neurostimulator replacement every 3-6 years. Our study objective was to assess potential cost effects to payers of adopting a rechargeable SNM neurostimulator device. We constructed a cost-consequence model to estimate the costs of long-term SNM-treatment with a rechargeable versus non-rechargeable device. Costs were considered from the payer perspective at 2015 reimbursement levels. Adverse events, therapy discontinuation, and programming rates were based on the latest published data. Neurostimulator longevity was assumed to be 4.4 and 10.0 years for non-rechargeable and rechargeable devices, respectively. A 15-year horizon was modeled, with costs discounted at 3% per year. Total budget impact to the United States healthcare system was estimated based on the computed per-patient cost findings. Over the 15-year horizon, per-patient cost of treatment with a non-rechargeable device was $64,111 versus $36,990 with a rechargeable device, resulting in estimated payer cost savings of $27,121. These cost savings were found to be robust across a wide range of scenarios. Longer analysis horizon, younger patient age, and longer rechargeable neurostimulator lifetime were associated with increased cost savings. Over a 15-year horizon, adoption of a rechargeable device strategy was projected to save the United States healthcare system up to $12 billion. At current reimbursement rates, our analysis suggests that rechargeable neurostimulator SNM technology for managing overactive bladder syndrome may deliver significant cost savings to payers over the course of treatment. Neurourol. Urodynam. 36:727-733, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The goals of this study were to explore the magnitude of potential fuel savings (or increased fuel consumption) under different possible combinations of Qualifying Facilities generation and utility displacement, and to identify those combinations which might result in a net increase in fuel consumption. In exploring the impact of cogeneration net heat rate on net savings (or increase) in fuel consumption, the study also addressed the extent to which cogenerator efficiency affects the overall fuel use impact of Public Utility Regulatory Policies Act (PURPA) implementation. This research thus seeks to identify possible scenarios in which PURPA implementation may not resultmore » in the conversation of fossil fuels, and to define possible situations in which the FERC's efficiency standard may lead to energy-inefficient Qualifying Facility development. 9 refs., 6 figs., 6 tabs.« less
Rapid fuel switching from coal to natural gas through effective carbon pricing
NASA Astrophysics Data System (ADS)
Wilson, I. A. Grant; Staffell, Iain
2018-05-01
Great Britain's overall carbon emissions fell by 6% in 2016, due to cleaner electricity production. This was not due to a surge in low-carbon nuclear or renewable sources; instead it was the much-overlooked impact of fuel switching from coal to natural gas generation. This Perspective considers the enabling conditions in Great Britain and the potential for rapid fuel switching in other coal-reliant countries. We find that spare generation and fuel supply-chain capacity must already exist for fuel switching to deliver rapid carbon savings, and to avoid further high-carbon infrastructure lock-in. More important is the political will to alter the marketplace and incentivize this switch, for example, through a stable and strong carbon price. With the right incentives, fuel switching in the power sector could rapidly achieve on the order of 1 GtCO2 saving per year worldwide (3% of global emissions), buying precious time to slow the growth in cumulative carbon emissions.
Alternative Fuels Data Center: Connecticut Transportation Data for
Laboratory Case Studies Video thumbnail for Easter Seals: Supporting the Mission and Saving Money with Natural Gas Easter Seals: Supporting the Mission and Saving Money with Natural Gas May 14, 2018 Video
Future Propulsion Opportunities for Commuter Airplanes
NASA Technical Reports Server (NTRS)
Strack, W. C.
1982-01-01
Commuter airplane propulsion opportunities are summarized. Consideration is given to advanced technology conventional turboprop engines, advanced propellers, and several unconventional alternatives: regenerative turboprops, rotaries, and diesels. Advanced versions of conventional turboprops (including propellers) offer 15-20 percent savings in fuel and 10-15 percent in DOC compared to the new crop of 1500-2000 SHP engines currently in development. Unconventional engines could boost the fuel savings to 30-40 percent. The conclusion is that several important opportunities exist and, therefore, powerplant technology need not plateau.
40 CFR 60.107a - Monitoring of emissions and operations for fuel gas combustion devices and flares.
Code of Federal Regulations, 2013 CFR
2013-07-01
... for fuel gas combustion devices and flares. 60.107a Section 60.107a Protection of Environment... combustion devices and flares. (a) Fuel gas combustion devices subject to SO2 or H2S limit and flares subject to H2S concentration requirements. The owner or operator of a fuel gas combustion device that is...
40 CFR 60.107a - Monitoring of emissions and operations for fuel gas combustion devices and flares.
Code of Federal Regulations, 2014 CFR
2014-07-01
... for fuel gas combustion devices and flares. 60.107a Section 60.107a Protection of Environment... combustion devices and flares. (a) Fuel gas combustion devices subject to SO2 or H2S limit and flares subject to H2S concentration requirements. The owner or operator of a fuel gas combustion device that is...
Oilwell Power Controller (OPC)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-08-01
The Oil Well Power Controller (OPC) prototype units is nearing completion. This device is an oilwell beam pump controller and data logger. Applications for this device have been for an electrical power saving device, pump off control, parafffin detection, demand power load control, chemical treatment data, dynamometer and pump efficiency data. Preliminary results appear vary promising. A total of ten OPC rod pump controllers were assembled and installed on oilwells in several areas of Central and Western United States. Data was analyzed on these wells and forwarded to the participating oil companies. Cost savings on each individual oil well participatingmore » in the OPC testing vary considerably, savings on some situations have been outstanding. In situations where the pump efficiency was determined to be low, the cost savings have been considerable. Cost savings due to preventive maintenance are also present, but are difficult to pin point an exact dollar amount at the present time. A break out of actual cost data obtained on some of the oilwells controlled and monitored with the oilwell power controller.« less
Development of Improved Burnable Poisons for Commercial Nuclear Power Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Renier, J.A.
2002-04-17
Burnable poisons are used in all modern nuclear reactors to permit higher loading of fuel without the necessity of an overly large control rod system. This not only permits a longer core life but can also be used to level the power distribution. Commercial nuclear reactors commonly use B{sub 4}C in separate non-fueled rods and more recently, zirconium boride coatings on the fuel pellets or gadolinium oxide mixed with the fuel. Although the advantages are great, there are problems with using these materials. Boron, which is an effective neutron absorber, transmutes to lithium and helium upon absorption of a neutron.more » Helium is insoluble and is eventually released to the interior of the fuel rod, where it produces an internal pressure. When sufficiently high, this pressure stress could cause separation of the cladding from the fuel, causing overly high centerline temperatures. Gadolinium has several very strongly absorbing isotopes, but not all have large cross sections and result in residual burnable poison reactivity worth at the end of the fuel life. Even if the amount of this residual absorber is small and the penalty in operation small, the cost of this penalty, even if only several days, can be very high. The objective of this investigation was to study the performance of single isotopes in order to reduce the residual negative reactivity left over at the end of the fuel cycle. Since the behavior of burnable poisons can be strongly influenced by their configuration, four forms for the absorbers were studied: homogeneously mixed with the fuel, mixed with only the outer one-third of the fuel pellet, coated on the perimeter of the fuel pellets, and alloyed with the cladding. In addition, the numbers of fuel rods containing burnable poison were chosen as 8, 16, 64, and 104. Other configurations were chosen for a few special cases. An enrichment of 4.5 wt% {sup 235}U was chosen for most cases for study in order to achieve a 4-year fuel cycle. A standard pressurized water reactor fuel core was chosen for the study, and state-of-the-art neutronic reactor core computer codes were used for analysis. Power distribution, fuel burnup, reactivity due to burnable poisons and other fission products, spectrum shift, core reactivity, moderator void coefficients, as well as other parameters were calculated as a function of time and fuel burnup. The results not only showed advantages of separation of burnable poison isotopes but revealed benefits to be achieved by careful selection of the configuration of even naturally occurring elements used as burnable poisons. The savings in terms of additional days of operation is shown in Figure 1, where the savings is plotted for each of six favorable isotopes in the four configurations. The benefit of isotope separation is most dramatic for dysprosium, but even the time savings in the case of gadolinium is several days. For a modern nuclear plant, one day's worth of electricity is worth about one million dollars, so the resulting savings of only a few days is considerable. It is also apparent that the amount of savings depends upon the configuration of the burnable poison.« less
Exploring Fuel-Saving Potential of Long-Haul Truck Hybridization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Zhiming; LaClair, Tim J.; Smith, David E.
We report our comparisons on the simulated fuel economy for parallel, series, and dual-mode hybrid electric long-haul trucks, in addition to a conventional powertrain configuration, powered by a commercial 2010-compliant 15-L diesel engine over a freeway-dominated heavy-duty truck driving cycle. The driving cycle was obtained by measurement during normal driving conditions. The results indicated that both parallel and dual-mode hybrid powertrains were capable of improving fuel economy by 7% to 8%. But there was no significant fuel economy benefit for the series hybrid truck because of internal inefficiencies in energy exchange. When reduced aerodynamic drag and tire rolling resistance weremore » combined with hybridization, there was a synergistic fuel economy benefit for appropriate hybrids that increased the fuel economy benefit to more than 15%. Long-haul hybrid trucks with reduced aerodynamic drag and rolling resistance offered lower peak engine loads, better kinetic energy recovery, and reduced average engine power demand. Therefore, it is expected that hybridization with load reduction technologies offers important potential fuel energy savings for future long-haul trucks.« less
Exploring Fuel-Saving Potential of Long-Haul Truck Hybridization
Gao, Zhiming; LaClair, Tim J.; Smith, David E.; ...
2015-10-01
We report our comparisons on the simulated fuel economy for parallel, series, and dual-mode hybrid electric long-haul trucks, in addition to a conventional powertrain configuration, powered by a commercial 2010-compliant 15-L diesel engine over a freeway-dominated heavy-duty truck driving cycle. The driving cycle was obtained by measurement during normal driving conditions. The results indicated that both parallel and dual-mode hybrid powertrains were capable of improving fuel economy by 7% to 8%. But there was no significant fuel economy benefit for the series hybrid truck because of internal inefficiencies in energy exchange. When reduced aerodynamic drag and tire rolling resistance weremore » combined with hybridization, there was a synergistic fuel economy benefit for appropriate hybrids that increased the fuel economy benefit to more than 15%. Long-haul hybrid trucks with reduced aerodynamic drag and rolling resistance offered lower peak engine loads, better kinetic energy recovery, and reduced average engine power demand. Therefore, it is expected that hybridization with load reduction technologies offers important potential fuel energy savings for future long-haul trucks.« less
NASA Technical Reports Server (NTRS)
Gates, W. R.
1983-01-01
Estimated future energy cost savings associated with the development of cost-competitive solar thermal technologies (STT) are discussed. Analysis is restricted to STT in electric applications for 16 high-insolation/high-energy-price states. The fuel price scenarios and three 1990 STT system costs are considered, reflecting uncertainty over future fuel prices and STT cost projections. STT R&D is found to be unacceptably risky for private industry in the absence of federal support. Energy cost savings were projected to range from $0 to $10 billion (1990 values in 1981 dollars), dependng on the system cost and fuel price scenario. Normal R&D investment risks are accentuated because the Organization of Petroleum Exporting Countries (OPEC) cartel can artificially manipulate oil prices and undercut growth of alternative energy sources. Federal participation in STT R&D to help capture the potential benefits of developing cost-competitive STT was found to be in the national interest.
NASA Astrophysics Data System (ADS)
Gates, W. R.
1983-02-01
Estimated future energy cost savings associated with the development of cost-competitive solar thermal technologies (STT) are discussed. Analysis is restricted to STT in electric applications for 16 high-insolation/high-energy-price states. The fuel price scenarios and three 1990 STT system costs are considered, reflecting uncertainty over future fuel prices and STT cost projections. STT R&D is found to be unacceptably risky for private industry in the absence of federal support. Energy cost savings were projected to range from $0 to $10 billion (1990 values in 1981 dollars), dependng on the system cost and fuel price scenario. Normal R&D investment risks are accentuated because the Organization of Petroleum Exporting Countries (OPEC) cartel can artificially manipulate oil prices and undercut growth of alternative energy sources. Federal participation in STT R&D to help capture the potential benefits of developing cost-competitive STT was found to be in the national interest.
Preliminary Study of Advanced Turboprops for Low Energy Consumption
NASA Technical Reports Server (NTRS)
Kraft, G. A.; Strack, W. C.
1975-01-01
The fuel savings potential of advanced turboprops (operational about 1985) was calculated and compared with that of an advanced turbofan for use in an advanced subsonic transport. At the design point, altitude 10.67 km and Mach 0.80, turbine-inlet temperature was fixed at 1590 K while overall pressure ratio was varied from 25 to 50. The regenerative turboprop had a pressure ratio of only 10 and an 85 percent effective rotary heat exchanger. Variable camber propellers were used with an efficiency of 85 percent. The study indicated a fuel savings of 33 percent, a takeoff gross weight reduction of 15 percent, and a direct operating cost reduction of 18 percent was possible when turboprops were used instead of the reference turbofan at a range of 10 200 km. These reductions were 28, 11, and 14 percent, respectively, at a range of 5500 km. Increasing overall pressure ratio from 25 to 50 saved little fuel and slightly increased takeoff gross weight.
Transportation, Air Pollution, and Climate Change
Learn how emissions reductions, advancements in fuels and fuel economy, and working with industry to find solutions to air pollution problems benefit human and environmental health, create consumer savings and are cost effective.
Results of industrial tests of carbonate additive to fuel oil
NASA Astrophysics Data System (ADS)
Zvereva, E. R.; Dmitriev, A. V.; Shageev, M. F.; Akhmetvalieva, G. R.
2017-08-01
Fuel oil plays an important role in the energy balance of our country. The quality of fuel oil significantly affects the conditions of its transport, storage, and combustion; release of contaminants to atmosphere; and the operation of main and auxiliary facilities of HPPs. According to the Energy Strategy of Russia for the Period until 2030, the oil-refining ratio gradually increases; as a result, the fraction of straight-run fuel oil in heavy fuel oils consistently decreases, which leads to the worsening of performance characteristics of fuel oil. Consequently, the problem of the increase in the quality of residual fuel oil is quite topical. In this paper, it is suggested to treat fuel oil by additives during its combustion, which would provide the improvement of ecological and economic indicators of oil-fired HPPs. Advantages of this method include simplicity of implementation, low energy and capital expenses, and the possibility to use production waste as additives. In the paper, the results are presented of industrial tests of the combustion of fuel oil with the additive of dewatered carbonate sludge, which is formed during coagulation and lime treatment of environmental waters on HPPs. The design of a volume delivery device is developed for the steady additive input to the boiler air duct. The values are given for the main parameters of the condition of a TGM-84B boiler plant. The mechanism of action of dewatered carbonate sludge on sulfur oxides, which are formed during fuel oil combustion, is considered. Results of industrial tests indicate the decrease in the mass fraction of discharged sulfur oxides by 36.5%. Evaluation of the prevented damage from sulfur oxide discharged into atmospheric air shows that the combustion of the fuel oil of 100 brand using carbonate sludge as an additive (0.1 wt %) saves nearly 6 million rubles a year during environmental actions at the consumption of fuel oil of 138240 t/year.
Alternative Fuels Data Center: Cleveland Car Dealership Working Toward a
charging stations. Rental Cars Go Electric in Florida Feb. 15, 2014 Renzenberger Inc Saves Money With Stations Spread Through Philly March 3, 2012 Natural Gas School Buses Help Kansas City Save Money Nov. 12 Natural Gas Street Sweepers Improve Air Quality in New York March 11, 2010 Propane Buses Save Money for
Alternative Fuels Data Center: Rio Rico Fire District Turns Grease Into
Renzenberger Inc Saves Money With Propane Vans Feb. 1, 2014 Photo of a school bus Michigan Transports Students March 31, 2012 Natural Gas School Buses Help Kansas City Save Money Nov. 12, 2011 Electric Trucks Natural Gas Street Sweepers Improve Air Quality in New York March 11, 2010 Propane Buses Save Money for
Alternative Fuels Data Center: Fleet Application for School Transportation
/_kZz_IxCsQA Video thumbnail for Natural Gas School Buses Help Kansas City Save Money Natural Gas School Buses Help Kansas City Save Money Nov. 12, 2011 https://www.youtube.com/embed/VYbBFQEKKCs Video thumbnail for , 2011 https://www.youtube.com/embed/ZJVXELFPywI Video thumbnail for Propane Buses Save Money for
Costs and benefits of bicycling investments in Portland, Oregon.
Gotschi, Thomas
2011-01-01
Promoting bicycling has great potential to increase overall physical activity; however, significant uncertainty exists with regard to the amount and effectiveness of investment needed for infrastructure. The objective of this study is to assess how costs of Portland's past and planned investments in bicycling relate to health and other benefits. Costs of investment plans are compared with 2 types of monetized health benefits, health care cost savings and value of statistical life savings. Levels of bicycling are estimated using past trends, future mode share goals, and a traffic demand model. By 2040, investments in the range of $138 to $605 million will result in health care cost savings of $388 to $594 million, fuel savings of $143 to $218 million, and savings in value of statistical lives of $7 to $12 billion. The benefit-cost ratios for health care and fuel savings are between 3.8 and 1.2 to 1, and an order of magnitude larger when value of statistical lives is used. This first of its kind cost-benefit analysis of investments in bicycling in a US city shows that such efforts are cost-effective, even when only a limited selection of benefits is considered.
Qi, Xuewei; Wu, Guoyuan; Boriboonsomsin, Kanok; ...
2016-01-01
Plug-in hybrid electric vehicles (PHEVs) show great promise in reducing transportation-related fossil fuel consumption and greenhouse gas emissions. Designing an efficient energy management system (EMS) for PHEVs to achieve better fuel economy has been an active research topic for decades. Most of the advanced systems rely either on a priori knowledge of future driving conditions to achieve the optimal but not real-time solution (e.g., using a dynamic programming strategy) or on only current driving situations to achieve a real-time but nonoptimal solution (e.g., rule-based strategy). This paper proposes a reinforcement learning–based real-time EMS for PHEVs to address the trade-off betweenmore » real-time performance and optimal energy savings. The proposed model can optimize the power-split control in real time while learning the optimal decisions from historical driving cycles. Here, a case study on a real-world commute trip shows that about a 12% fuel saving can be achieved without considering charging opportunities; further, an 8% fuel saving can be achieved when charging opportunities are considered, compared with the standard binary mode control strategy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qi, Xuewei; Wu, Guoyuan; Boriboonsomsin, Kanok
Plug-in hybrid electric vehicles (PHEVs) show great promise in reducing transportation-related fossil fuel consumption and greenhouse gas emissions. Designing an efficient energy management system (EMS) for PHEVs to achieve better fuel economy has been an active research topic for decades. Most of the advanced systems rely either on a priori knowledge of future driving conditions to achieve the optimal but not real-time solution (e.g., using a dynamic programming strategy) or on only current driving situations to achieve a real-time but nonoptimal solution (e.g., rule-based strategy). This paper proposes a reinforcement learning–based real-time EMS for PHEVs to address the trade-off betweenmore » real-time performance and optimal energy savings. The proposed model can optimize the power-split control in real time while learning the optimal decisions from historical driving cycles. Here, a case study on a real-world commute trip shows that about a 12% fuel saving can be achieved without considering charging opportunities; further, an 8% fuel saving can be achieved when charging opportunities are considered, compared with the standard binary mode control strategy.« less
Lin, Yuan-Chung; Lee, Wen-Jhy; Chen, Chun-Chi; Chen, Chung-Bang
2006-09-01
Development of emulsified diesel has been driven by the need to reduce emissions from diesel engines and to save energy. Emulsification technology and bio-solution (NOE-7F) were used to produce emulsified diesel in this study. The experimental results indicated that there were no significant separation layers in W13 (13 wt % water + 87 wt % PDF), W16 (16 wt % water + 84 wt % PDF), W19 (19 wt % water + 81 wt % PDF), E13 (13 wt % NOE-7F water + 87 wt % PDF), E16 (16 wt % NOE-7F water + 83 wt % PDF), and E19 (19 wt % NOE-7F water + 81 wt % PDF) after premium diesel fuel (PDF) was emulsified for more than 30 days. In addition, there was no significant increase in damage from using these six emulsified fuels after the operation of the diesel generator for more than one year. The energy saving and reduction of particulate matter (PM) and total polycyclic aromatic hydrocarbons (PAHs) for W13, W16, W19, E13, E16 and E19, respectively, were 3.90%, 30.9%, 27.6%; 3.38%, 37.0%, 34.9%; 2.17%, 22.2%, 15.4%; 5.87%, 38.6%, 49.3%; 5.88%, 57.8%, 58.0%; and 4.75%, 31.1%, 47.3%, compared with PDF. The above results revealed that the bio-solution (NOE-7F) had a catalytic effect which elevated the combustion efficiency and decreased pollutant emissions during the combustion process. Furthermore, bio-solution (NOE-7F) can stabilize the emulsified fuels and enhance energy saving. Thus, emulsified fuels are highly suitable for use as alternative fuels. Due to the increasing price of diesel, emulsified diesel containing NOE-7F has potential for commercial application.
Research on Power Loss of Continuously Variable Transmission Based on Driving Cycles
NASA Astrophysics Data System (ADS)
Fu, Bing; Zhou, Yunshan; Cao, Chenglong; Li, Quan; Zhang, Feitie
2018-01-01
In order to further enhance the fuel economy of vehicles with continuously variable transmission (CVT), a CVT power loss model under dynamic condition is established based on the power loss model of each transmission component and the vehicle dynamic model. With driving cycles 10-15, NEDC and US06 as input, the distribution of CVT power loss and the influence of the main losses to vehicle fuel economy are analysed. The results show that the variation loss, oil pump loss and torque converter loss are the main losses of CVT power loss under driving cycles, and the metal belt and oil pump have relatively larger fuel saving potential. At low speed reducing the pump loss is more effective to fuel saving, while at high speed reducing the variation loss is more effective.
DOT National Transportation Integrated Search
2006-12-18
This study investigated the affect of pavement smoothness on fuel efficiency, specifically examining the miles per gallon in fuel savings for smooth versus rough pavement. The study found a 53% improvement in smoothness which resulted in over 2.4% im...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, Erik
Powering commercial lawn equipment with alternative fuels or advanced engine technology is an effective way to reduce U.S. dependence on petroleum, reduce harmful emissions, and lessen the environmental impacts of commercial lawn mowing. Numerous alternative fuel and fuel-efficient advanced technology mowers are available. Owners turn to these mowers because they may save on fuel and maintenance costs, extend mower life, reduce fuel spillage and fuel theft, and demonstrate their commitment to sustainability.
Moonlight project promotes energy-saving technology
NASA Astrophysics Data System (ADS)
Ishihara, A.
1986-01-01
In promoting energy saving, development of energy conservation technologies aimed at raising energy efficiency in the fields of energy conversion, its transportation, its storage, and its consumption is considered, along with enactment of legal actions urging rational use of energies and implementation of an enlightenment campaign for energy conservation to play a crucial role. Under the Moonlight Project, technical development is at present being centered around the following six pillars: (1) large scale energy saving technology; (2) pioneering and fundamental energy saving technology; (3) international cooperative research project; (4) research and survey of energy saving technology; (5) energy saving technology development by private industry; and (6) promotion of energy saving through standardization. Heat pumps, magnetohydrodynamic generators and fuel cells are discussed.
Saving and Reproduction of Human Motion Data by Using Haptic Devices with Different Configurations
NASA Astrophysics Data System (ADS)
Tsunashima, Noboru; Yokokura, Yuki; Katsura, Seiichiro
Recently, there has been increased focus on “haptic recording” development of a motion-copying system is an efficient method for the realization of haptic recording. Haptic recording involves saving and reproduction of human motion data on the basis of haptic information. To increase the number of applications of the motion-copying system in various fields, it is necessary to reproduce human motion data by using haptic devices with different configurations. In this study, a method for the above-mentioned haptic recording is developed. In this method, human motion data are saved and reproduced on the basis of work space information, which is obtained by coordinate transformation of motor space information. The validity of the proposed method is demonstrated by experiments. With the proposed method, saving and reproduction of human motion data by using various devices is achieved. Furthermore, it is also possible to use haptic recording in various fields.
Study of the costs and benefits of composite materials in advanced turbofan engines
NASA Technical Reports Server (NTRS)
Steinhagen, C. A.; Stotler, C. L.; Neitzel, R. E.
1974-01-01
Composite component designs were developed for a number of applicable engine parts and functions. The cost and weight of each detail component was determined and its effect on the total engine cost to the aircraft manufacturer was ascertained. The economic benefits of engine or nacelle composite or eutectic turbine alloy substitutions was then calculated. Two time periods of engine certification were considered for this investigation, namely 1979 and 1985. Two methods of applying composites to these engines were employed. The first method just considered replacing an existing metal part with a composite part with no other change to the engine. The other method involved major engine redesign so that more efficient composite designs could be employed. Utilization of polymeric composites wherever payoffs were available indicated that a total improvement in Direct Operating Cost (DOC) of 2.82 to 4.64 percent, depending on the engine considered, could be attained. In addition, the percent fuel saving ranged from 1.91 to 3.53 percent. The advantages of using advanced materials in the turbine are more difficult to quantify but could go as high as an improvement in DOC of 2.33 percent and a fuel savings of 2.62 percent. Typically, based on a fleet of one hundred aircraft, a percent savings in DOC represents a savings of four million dollars per year and a percent of fuel savings equals 23,000 cu m (7,000,000 gallons) per year.
NASA Technical Reports Server (NTRS)
Hager, Roy D.; Vrabel, Deborah
1988-01-01
At the direction of Congress, a task force headed by NASA was organized in 1975 to identify potential fuel saving concepts for aviation. The result was the Aircraft Energy Efficiency (ACEE) Program implemented in 1976. An important part of the program was the development of advanced turboprop technology for Mach 0.65 to 0.85 applications having the potential fuel saving of 30 to 50 percent relative to existing turbofan engines. A historical perspective is presented of the development and the accomplishments that brought the turboprop to successful flight tests in 1986 and 1987.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hager, R.D.; Vrabel, D.
1988-01-01
At the direction of Congress, a task force headed by NASA was organized in 1975 to identify potential fuel saving concepts for aviation. The result was the Aircraft Energy Efficiency (ACEE) Program implemented in 1976. An important part of the program was the development of advanced turboprop technology for Mach 0.65 to 0.85 applications having the potential fuel saving of 30 to 50 percent relative to existing turbofan engines. A historical perspective is presented of the development and the accomplishments that brought the turboprop to successful flight tests in 1986 and 1987.
Integrated waste management system costs in a MPC system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Supko, E.M.
1995-12-01
The impact on system costs of including a centralized interim storage facility as part of an integrated waste management system based on multi-purpose canister (MPC) technology was assessed in analyses by Energy Resources International, Inc. A system cost savings of $1 to $2 billion occurs if the Department of Energy begins spent fuel acceptance in 1998 at a centralized interim storage facility. That is, the savings associated with decreased utility spent fuel management costs will be greater than the cost of constructing and operating a centralized interim storage facility.
Automated external defibrillators in schools?
Cornelis, Charlotte; Calle, Paul; Mpotos, Nicolas; Monsieurs, Koenraad
2015-06-01
Automated external defibrillators (AEDs) placed in public locations can save lives of cardiac arrest victims. In this paper, we try to estimate the cost-effectiveness of AED placement in Belgian schools. This would allow school policy makers to make an evidence-based decision about an on-site AED project. We developed a simple mathematical model containing literature data on the incidence of cardiac arrest with a shockable rhythm; the feasibility and effectiveness of defibrillation by on-site AEDs and the survival benefit. This was coupled to a rough estimation of the minimal costs to initiate an AED project. According to the model described above, AED projects in all Belgian schools may save 5 patients annually. A rough estimate of the minimal costs to initiate an AED project is 660 EUR per year. As there are about 6000 schools in Belgium, a national AED project in all schools would imply an annual cost of at least 3960 000 EUR, resulting in 5 lives saved. As our literature survey shows that AED use in schools is feasible and effective, the placement of these devices in all Belgian schools is undoubtedly to be considered. The major counter-arguments are the very low incidence and the high costs to set up a school-based AED programme. Our review may fuel the discussion about Whether or not school-based AED projects represent good value for money and should be preferred above other health care interventions.
NASA Technical Reports Server (NTRS)
Knightly, W. F.
1980-01-01
About fifty industrial processes from the largest energy consuming sectors were used as a basis for matching a similar number of energy conversion systems that are considered as candidate which can be made available by the 1985 to 2000 time period. The sectors considered included food, textiles, lumber, paper, chemicals, petroleum, glass, and primary metals. The energy conversion systems included steam and gas turbines, diesels, thermionics, stirling, closed cycle and steam injected gas turbines, and fuel cells. Fuels considered were coal, both coal and petroleum based residual and distillate liquid fuels, and low Btu gas obtained through the on site gasification of coal. Computer generated reports of the fuel consumption and savings, capital costs, economics and emissions of the cogeneration energy conversion systems (ECS's) heat and power matched to the individual industrial processes are presented. National fuel and emissions savings are also reported for each ECS assuming it alone is implemented. Two nocogeneration base cases are included: coal fired and residual fired process boilers.
Permeability of Impacted Coated Composite Laminates
NASA Technical Reports Server (NTRS)
Johnson, W. S.; Findley, Benjamin
2002-01-01
Composite materials are being considered for use on future generations of Reusable Launch Vehicles (RLVs) for both fuel tanks and fuel feedlines. Through the use of composite materials NASA can reduce the overall weight of the vehicle dramatically. This weight savings can then be translated into an increase in the weight of payload sent into orbit, reducing the cost per pound of payload. It is estimated that by switching to composite materials for fuel tanks the weight of the tanks can be reduced by 40 percent, which translates to a total vehicle weight savings of 14 percent. In this research, carbon/epoxy composites were studied for fuel feedline applications. There are concerns about using composite materials for feedlines and fuel tanks because these materials are extremely vulnerable to impact in the form of inadvertent bumping or dropped tools both during installation and maintenance. Additionally, it has been found that some of the sample feedlines constructed have had leaks, and thus there may be a need to seal preexisting leaks in the composite prior to usage.
NASA Technical Reports Server (NTRS)
Knightly, W. F.
1980-01-01
About fifty industrial processes from the largest energy consuming sectors were used as a basis for matching a similar number of energy conversion systems that are considered as candidate which can be made available by the 1985 to 2000 time period. The sectors considered included food, textiles, lumber, paper, chemicals, petroleum, glass, and primary metals. The energy conversion systems included steam and gas turbines, diesels, thermionics, stirling, closed cycle and steam injected gas turbines, and fuel cells. Fuels considered were coal, both coal and petroleum based residual and distillate liquid fuels, and low Btu gas obtained through the on site gasification of coal. Computer generated reports of the fuels consumption and savings, capital costs, economics and emissions of the cogeneration energy conversion systems (ECS's) heat and power matched to the individual industrial processes are presented. National fuel and emissions savings are also reported for each ECS assuming it alone is implemented. Two nocogeneration base cases are included: coal fired and residual fired process boilers.
NASA Technical Reports Server (NTRS)
Knightly, W. F.
1980-01-01
About fifty industrial processes from the largest energy consuming sectors were used as a basis for matching a similar number of energy conversion systems that are considered as candidate which can be made available by the 1985 to 2000 time period. The sectors considered included food, textiles, lumber, paper, chemicals, petroleum, glass, and primary metals. The energy conversion systems included steam and gas turbines, diesels, thermionics, stirling, closed cycle and steam injected gas turbines, and fuel cells. Fuels considered were coal, both coal and petroleum based residual and distillate liquid fuels, and low Btu gas obtained through the on site gasification of coal. Computer generated reports of the fuel consumption and savings, capital costs, economics and emissions of the cogeneration energy conversion systems (ECS's) heat and power matched to the individual industrial processes are presented. National fuel and emissions savings are also reported for each ECS assuming it alone is implemented. Two nocogeneration base cases are included: coal fired and residual fired process boilers.
Power-Factor Controllers: How Safe?
NASA Technical Reports Server (NTRS)
Long, K.; Christian, W.; Kovacik, J.; Grazyk, T.
1985-01-01
Potential safety problems with power-factor controllers (PFC's) evaluated. Based on study of PFCs in use with appliances, report recommends measures to prevent consumers from misapplying these energy saving devices. Device used on such appliances as refrigerators, sewing machines, pumps, hair dryers, and food processors. When misused, they fail to save energy and may cause damage.
Cost and fuel consumption per nautical mile for two engine jet transports using OPTIM and TRAGEN
NASA Technical Reports Server (NTRS)
Wiggs, J. F.
1982-01-01
The cost and fuel consumption per nautical mile for two engine jet transports are computed using OPTIM and TRAGEN. The savings in fuel and direct operating costs per nautical mile for each of the different types of optimal trajectories over a standard profile are shown.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2012-01-01
Clean Cities Alternative Fuels and Advanced Vehicles Data Center (AFDC) features a wide range of Web-based tools to help vehicle fleets and individual consumers reduce their petroleum use. This brochure lists and describes Clean Cities online tools related to vehicles, alternative fueling stations, electric vehicle charging stations, fuel conservation, emissions reduction, fuel economy, and more.
40 CFR 610.21 - Device functional category and vehicle system effects.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 1 Device categories Characteristics adversely affected Fuel-Air System Carburetors and fuel injection systems All. Air-fuel ratio modifiers (e.g., air bleeds) All. Atomization devices (acoustic and mechanical) All. Vapor Injectors All. Choke controls 1, 2, and 4. Air filters 1, 2, and 4. Fuel-air...
40 CFR 610.21 - Device functional category and vehicle system effects.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 1 Device categories Characteristics adversely affected Fuel-Air System Carburetors and fuel injection systems All. Air-fuel ratio modifiers (e.g., air bleeds) All. Atomization devices (acoustic and mechanical) All. Vapor Injectors All. Choke controls 1, 2, and 4. Air filters 1, 2, and 4. Fuel-air...
Legal Aspects of Fuel Shortage
ERIC Educational Resources Information Center
Hill, Frederick W.
1974-01-01
School administrators are advised to get legal authorization now for as much maneuvering room as can be worked out with vendors of heating fuels and gasoline for school buses. Safeguards for saving gasoline and anti-freeze are outlined. (Author/MF)
Overview of waste heat utilization systems
NASA Technical Reports Server (NTRS)
Bailey, M. M.
1984-01-01
The heavy truck diesel engine rejects a significant fraction of its fuel energy in the form of waste heat. Historically, the Department of Energy has supported technology efforts for utilization of the diesel exhaust heat. Specifically, the Turbocompound and the Organic Rankine Cycle System (ORCS) have demonstrated that meaningful improvements in highway fuel economy can be realized through waste heat utilization. For heat recovery from the high temperature exhaust of future adiabatic diesel engines, the DOE/NASA are investigating a variety of alternatives based on the Rankine, Brayton, and Stirling power cycles. Initial screening results indicate that systems of this type offer a fuel savings advantage over the turbocompound system. Capital and maintenance cost projections, however, indicate that the alternative power cycles are not competitive on an economic payback basis. Plans call for continued analysis in an attempt to identify a cost effective configuration with adequate fuel savings potential.
Review of the UK transport energy outlook: And policy recommendations
NASA Astrophysics Data System (ADS)
1981-12-01
Liquid fuel consumption for transport (excluding international bunkers for ships) in 1979 is analyzed and used to forecast the position at the end of the century. Car population is expected to increase by 6 million to over 20 million, but fuel saving designs mean that fuel consumption increases only slightly. Truck fuel consumption stays the same. Fuel consumption by UK airlines is expected to double. The proportion of a barrel of crude oil which is refined as transport fuel must be increased.
Simulation-based model to explore the benefits of monitoring and control to energy saving opportunities in residential homes; an adaptive algorithm to predict the type of electrical loads; a prototype user friendly interface monitoring and control device to save energy; a p...
Lin, Yuan-Chung; Lee, Wen-Jhy; Chao, How-Ran; Wang, Shu-Li; Tsou, Tsui-Chun; Chang-Chien, Guo-Ping; Tsai, Perng-Jy
2008-05-15
The developments of both biodiesel and emulsified diesel are being driven by the need for reducing emissions from diesel engines and saving energy. Artificial chemical additives are also being used in diesel engines for increasing their combustion efficiencies. But the effects associated with the use of emulsified additive/biodiesel/diesel blends in diesel engines have never been assessed. In this research, the premium diesel fuel (PDF) was used as the reference fuel. A soy-biodiesel was selected as the test biodiesel. A biosolution made of 96.5 wt % natural organic enzyme-7F (NOE-7F) and 3.5 wt % water (NOE-7F water) was used as the fuel additive. By adding additional 1 vol % of surfactant into the fuel blend, a nanotechnology was used to form emulsified biosolution/soy-biodiesel/PDF blends for fueling the diesel engine. We found that the emulsified biosolution/soy-biodiesel/PDF blends did not separate after being kept motionless for 30 days. The above stability suggests that the above combinations are suitable for diesel engines as alternative fuels. Particularly, we found that the emulsified biosolution/soy-biodiesel/PDF blends did have the advantage in saving energy and reducing the emissions of both particulate matters (PM) and polycyclic aromatic hydrocarbons (PAHs) from diesel engines as compared with PDF, soy-biodiesel/PDF blends, and emulsified soy-biodiesel/ PDF blends. The results obtained from this study will provide useful approaches for reducing the petroleum reliance, pollution, and global warming. However, it should be noted that NO(x) emissions were not measured in the present study which warrants the need for future investigation.
Distributed Storage Inverter and Legacy Generator Integration Plus Renewable Solution for Microgrids
2015-07-01
24 6.6 DEMONSTRATION 6: PV + STORAGE SUPPORT MANAGING VARIABLE SOLAR ...Table 2. Energy generated by solar PV for 1 month. .......................................................... 23 Table 3. NG generators energy...saving with solar PV . ........................................................ 24 Table 4. NG generators fuel saving with solar PV
Annualized TASAR Benefit Estimate for Alaska Airlines Operations
NASA Technical Reports Server (NTRS)
Henderson, Jeffrey
2015-01-01
The Traffic Aware Strategic Aircrew Request (TASAR) concept offers onboard automation for the purpose of advising the pilot of traffic compatible trajectory changes that would be beneficial to the flight. A fast-time simulation study was conducted to assess the benefits of TASAR to Alaska Airlines. The simulation compares historical trajectories without TASAR to trajectories developed with TASAR and evaluated by controllers against their objectives. It was estimated that between 8,000 and 12,000 gallons of fuel and 900 to 1,300 minutes could be saved annually per aircraft. These savings were applied fleet-wide to produce an estimated annual cost savings to Alaska Airlines in excess of $5 million due to fuel, maintenance, and depreciation cost savings. Switching to a more wind-optimal trajectory was found to be the use case that generated the highest benefits out of the three TASAR use cases analyzed. Alaska TASAR requests peaked at four to eight requests per hour in high-altitude Seattle center sectors south of Seattle-Tacoma airport.
Annualized TASAR Benefit Estimate for Virgin America Operations
NASA Technical Reports Server (NTRS)
Henderson, Jeffrey
2015-01-01
The Traffic Aware Strategic Aircrew Request (TASAR) concept offers onboard automation for the purpose of advising the pilot of traffic compatible trajectory changes that would be beneficial to the flight. A fast-time simulation study was conducted to assess the benefits of TASAR to Virgin America. The simulation compares historical trajectories without TASAR to trajectories developed with TASAR and evaluated by controllers against their objectives. It was estimated that about 25,000 gallons of fuel and about 2,500 minutes could be saved annually per aircraft. These savings were applied fleet-wide to produce an estimated annual cost savings to Virgin America in excess of $5 million due to fuel, maintenance, and depreciation cost savings. Switching to a more wind-optimal trajectory was found to be the use case that generated the highest benefits out of the three TASAR use cases analyzed. Virgin America TASAR requests peaked at two to four requests per hour per sector in high-altitude Oakland and Salt Lake City center sectors east of San Francisco.
Traffic Aware Strategic Aircrew Requests (TASAR)
NASA Technical Reports Server (NTRS)
Wing, David J.
2014-01-01
The Traffic Aware Strategic Aircrew Request (TASAR) concept offers onboard automation for the purpose of advising the pilot of traffic compatible trajectory changes that would be beneficial to the flight. A fast-time simulation study was conducted to assess the benefits of TASAR to Alaska Airlines. The simulation compares historical trajectories without TASAR to trajectories developed with TASAR and evaluated by controllers against their objectives. It was estimated that between 8,000 and 12,000 gallons of fuel and 900 to 1,300 minutes could be saved annually per aircraft. These savings were applied fleet-wide to produce an estimated annual cost savings to Alaska Airlines in excess of $5 million due to fuel, maintenance, and depreciation cost savings. Switching to a more wind-optimal trajectory was found to be the use case that generated the highest benefits out of the three TASAR use cases analyzed. Alaska TASAR requests peaked at four to eight requests per hour in high-altitude Seattle center sectors south of Seattle-Tacoma airport..
Annualized TASAR Benefits for Virgin America Operations
NASA Technical Reports Server (NTRS)
2014-01-01
The Traffic Aware Strategic Aircrew Request (TASAR) concept offers onboard automation for the purpose of advising the pilot of traffic compatible trajectory changes that would be beneficial to the flight. A fast-time simulation study was conducted to assess the benefits of TASAR to Virgin America. The simulation compares historical trajectories without TASAR to trajectories developed with TASAR and evaluated by controllers against their objectives. It was estimated that about 25,000 gallons of fuel and about 2,500 minutes could be saved annually per aircraft. These savings were applied fleet-wide to produce an estimated annual cost savings to Virgin America in excess of $5 million due to fuel, maintenance, and depreciation cost savings. Switching to a more wind-optimal trajectory was found to be the use case that generated the highest benefits out of the three TASAR use cases analyzed. Virgin America TASAR requests peaked at two to four requests per hour per sector in high-altitude Oakland and Salt Lake City center sectors east of San Francisco.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Charles; Green, Andrew S.; Dahle, Douglas
2013-08-01
The findings of this study indicate that potential exists in non-building applications to save energy and costs. This potential could save billions of federal dollars, reduce reliance on fossil fuels, increase energy independence and security, and reduce greenhouse gas emissions. The Federal Government has nearly twenty years of experience with achieving similar energy cost reductions, and letting the energy costs savings pay for themselves, by applying energy savings performance contracts (ESPC) inits buildings. Currently, the application of ESPCs is limited by statute to federal buildings. This study indicates that ESPCs can be a compatible and effective contracting tool for achievingmore » savings in non-building applications.« less
Alternative Fuels Data Center: Airport Shuttles Run on Propane
" It's a cost-effective, more environmentally conscious way to go, and we feel that's how we want , citing a fuel cost savings plus lower emissions and maintenance costs. "It's a cost-effective, more
Alternative Fuels Data Center: Idle Reduction Benefits and Considerations
money, protects public health and the environment, and increases U.S. energy security. Reducing idle time can also reduce engine wear and associated maintenance costs. Saving Fuel and Money A photo of an
NASA Astrophysics Data System (ADS)
Gates, W. R.
1983-02-01
Estimated future energy cost savings associated with the development of cost-competitive solar thermal technologies (STT) are discussed. Analysis is restricted to STT in electric applications for 16 high-insolation/high-energy-price states. Three fuel price scenarios and three 1990 STT system costs are considered, reflecting uncertainty over future fuel prices and STT cost projections. Solar thermal technology research and development (R&D) is found to be unacceptably risky for private industry in the absence of federal support. Energy cost savings were projected to range from $0 to $10 billion (1990 values in 1981 dollars), depending on the system cost and fuel price scenario. Normal R&D investment risks are accentuated because the Organization of Petroleum Exporting Countries (OPEC) cartel can artificially manipulate oil prices and undercut growth of alternative energy sources. Federal participation in STT R&D to help capture the potential benefits of developing cost-competitive STT was found to be in the national interest. Analysis is also provided regarding two federal incentives currently in use: The Federal Business Energy Tax Credit and direct R&D funding.
NASA Technical Reports Server (NTRS)
Gates, W. R.
1983-01-01
Estimated future energy cost savings associated with the development of cost-competitive solar thermal technologies (STT) are discussed. Analysis is restricted to STT in electric applications for 16 high-insolation/high-energy-price states. Three fuel price scenarios and three 1990 STT system costs are considered, reflecting uncertainty over future fuel prices and STT cost projections. Solar thermal technology research and development (R&D) is found to be unacceptably risky for private industry in the absence of federal support. Energy cost savings were projected to range from $0 to $10 billion (1990 values in 1981 dollars), depending on the system cost and fuel price scenario. Normal R&D investment risks are accentuated because the Organization of Petroleum Exporting Countries (OPEC) cartel can artificially manipulate oil prices and undercut growth of alternative energy sources. Federal participation in STT R&D to help capture the potential benefits of developing cost-competitive STT was found to be in the national interest. Analysis is also provided regarding two federal incentives currently in use: The Federal Business Energy Tax Credit and direct R&D funding.
Alternative Fuels Data Center: Virginia Transportation Data for Alternative
://www.youtube.com/embed/1S7JJHQpc1w Video thumbnail for Propane Buses Save Money for Virginia Schools Propane Buses Save Money for Virginia Schools Feb. 25, 2010 https://www.youtube.com/embed/enxaQ_QooWE Chart Data
Alternative Fuels Data Center: New Hampshire Coalition Helps Devoted
fleet fuel. When you combine the cost savings with the reduction in emissions, you can't beat the Hampshire When news about a propane-related funding opportunity arrived in the inbox of Granite State Clean alternative vehicle fueling in the state," Rebolledo said. "Since that snowy December day when we
Alternative Fuels Data Center: Natural Gas Powers Milk Delivery Trucks in
Money With Propane Vans Feb. 1, 2014 Photo of an electric vehicle at a charging station Companies Power School Buses Help Kansas City Save Money Nov. 12, 2011 Metropolitan Utilities District Fuels Vehicles Relies on Natural Gas Fueling Stations July 1, 2010 Hybrid Electric Shuttle Buses Offer Free Rides in
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mckinly, J.B.
The impact of the Federal Aviation Regulations (FARs) on fuel conservation in the air-transportation system. To date there exist over 89 identifiable fuel-conservation program and research areas. Operational constraints in the areas of FARs and Air Traffic Control (ATC), which hinder further fuel savings in any of the 89 program and research areas, are identified. The nature of this investigation presents an update of analyses from previous FAA, DOE, and NASA publications from a DOE viewpoint. The short duration and cost constraints of this study did not allow an assessment of safety, social, or any of the broader impacts ofmore » the regulations. However, this study was not intended to solve all of the regulatory problems. Rather, this was a cursory review of the FARs intended to pinpoint those fuel inefficient regulations which could be changed to improve the overall fuel-conservation effort in the air transportation industry. The program and research areas identified as being negatively impacted by FARs were analyzed to quantify the fuel savings available through revision or removal of those constraints. A recommended list of new R and D initiatives are proposed in order to improve fuel efficiency of the FARs in the air-transportation industry.« less
Modeling and Parameter Estimation of Spacecraft Fuel Slosh with Diaphragms Using Pendulum Analogs
NASA Technical Reports Server (NTRS)
Chatman, Yadira; Gangadharan, Sathya; Schlee, Keith; Ristow, James; Suderman, James; Walker, Charles; Hubert, Carl
2007-01-01
Prediction and control of liquid slosh in moving containers is an important consideration in the design of spacecraft and launch vehicle control systems. Even with modern computing systems, CFD type simulations are not fast enough to allow for large scale Monte Carlo analyses of spacecraft and launch vehicle dynamic behavior with slosh included. It is still desirable to use some type of simplified mechanical analog for the slosh to shorten computation time. Analytic determination of the slosh analog parameters has met with mixed success and is made even more difficult by the introduction of propellant management devices such as elastomeric diaphragms. By subjecting full-sized fuel tanks with actual flight fuel loads to motion similar to that experienced in flight and measuring the forces experienced by the tanks, these parameters can be determined experimentally. Currently, the identification of the model parameters is a laborious trial-and-error process in which the hand-derived equations of motion for the mechanical analog are evaluated and their results compared with the experimental results. This paper will describe efforts by the university component of a team comprised of NASA's Launch Services Program, Embry Riddle Aeronautical University, Southwest Research Institute and Hubert Astronautics to improve the accuracy and efficiency of modeling techniques used to predict these types of motions. Of particular interest is the effect of diaphragms and bladders on the slosh dynamics and how best to model these devices. The previous research was an effort to automate the process of slosh model parameter identification using a MATLAB/SimMechanics-based computer simulation. These results are the first step in applying the same computer estimation to a full-size tank and vehicle propulsion system. The introduction of diaphragms to this experimental set-up will aid in a better and more complete prediction of fuel slosh characteristics and behavior. Automating the parameter identification process will save time and thus allow earlier identification of potential vehicle performance problems.
Energy Saving in Electric Lighting for the United States Army.
1979-10-05
these reasons. Avoid devices such as power saving buttons which are to be placed in the sockets of incandescent bulbs. They are merely half-wave...using the button or a long-life bulb. Another device to avoid is the pulse or transient suppressor. This device, essentially a voltage clipper...arranged In a geo- metric pattern. It is used to shield a lamp from Lumen: A unit of light output from a lamp. view at certain angles to avoid glare from
Technical aspects of oxygen saving devices.
Brambilla, I; Arlati, S; Chiusa, I; Micallef, E
1990-01-01
Oxygen economizing devices have been extensively studied, both at rest and during muscular exercise, in an attempt to increase the autonomy of a portable oxygen apparatus. The aim of this study is threefold: first, to suggest a simple method to verify in a simple way the technical accuracy of a demand flow oxygen delivery device; second, to suggest how we can monitor in a simple way the clinical efficacy of an economizer; and third, to remember that we can utilize an oxygen saving device to give a better protection than nasal prongs against the worsening of HbO2 desaturation induced by exercise.
Leveraging Intelligent Vehicle Technologies to Maximize Fuel Economy (Presentation)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonder, J.
2011-11-01
Advancements in vehicle electronics, along with communication and sensing technologies, have led to a growing number of intelligent vehicle applications. Example systems include those for advanced driver information, route planning and prediction, driver assistance, and crash avoidance. The National Renewable Energy Laboratory is exploring ways to leverage intelligent vehicle systems to achieve fuel savings. This presentation discusses several potential applications, such as providing intelligent feedback to drivers on specific ways to improve their driving efficiency, and using information about upcoming driving to optimize electrified vehicle control strategies for maximum energy efficiency and battery life. The talk also covers the potentialmore » of Advanced Driver Assistance Systems (ADAS) and related technologies to deliver significant fuel savings in addition to providing safety and convenience benefits.« less
Reduction of energy needs for fish harvesting through the use of sails on fishing vessels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1983-05-10
The fishing industry has been hurt by rising fuel costs. This study was undertaken to determine the fuel savings that might occur if sails were used on fishing vessels as an auxiliary means of propulsion. Attention was also paid to vessel safety, crew efficiency and 'come-home' capabilities as they were effected by the use of sails. A boat was designed, built and equipped for sail assisted fishing operations. Data was collected during sea trials, test runs and actual fishing operations. These data were analysed with the help of the Virginia Institute of Marine Science to determine the fuel savings andmore » the economic viability of the configuration. Assessment of the observations of crew performance and vessel safety were analyzed.« less
Reducing air pollutant emissions at airports by controlling aircraft ground operations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gelinas, C.G.; Fan, H.S.L.
1979-02-01
Potential reductions in air pollutant emissions were determined for four stategies to control aircraft ground operations at two case study airports, Los Angeles and San Francisco International Airports. Safety, cost, and fuel savings associated with strategy implementation were examined. Two strategies, aircraft towing and shutdown of one engine during taxi operations, provided significant emission reductions. However, there are a number of safety problems associated with aircraft towing. The shutdown of one engine while taxiing was found to be the most viable strategy because of substantial emission reductions, cost benefits resulting from fuel savings, and no apparent safety problems.
Wind utilization in remote regions: An economic study. [for comparison with diesel engines
NASA Technical Reports Server (NTRS)
Vansant, J. H.
1973-01-01
A wind driven generator was considered as a supplement to a diesel group, for the purpose of economizing fuel when wind power is available. A specific location on Hudson's Bay, Povognituk, was selected. Technical and economic data available for a wind machine of 10-kilowatt nominal capacity and available wind data for that region were used for the study. After subtracting the yearly wind machine costs from savings in fuel costs, a net savings of $1400 per year is realized. These values are approximate, but are though to be highly conservative.
Freight Wing Trailer Aerodynamics Final Technical Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sean Graham
2007-10-31
Freight Wing Incorporated utilized the opportunity presented by a DOE category two Inventions and Innovations grant to commercialize and improve upon aerodynamic technology for semi-tuck trailers, capable of decreasing heavy vehicle fuel consumption, related environmental damage, and U.S. consumption of foreign oil. Major project goals included the demonstration of aerodynamic trailer technology in trucking fleet operations, and the development and testing of second generation products. A great deal of past scientific research has demonstrated that streamlining box shaped semi-trailers can significantly reduce a truck’s fuel consumption. However, significant design challenges have prevented past concepts from meeting industry needs. Freight Wingmore » utilized a 2003 category one Inventions and Innovations grant to develop practical solutions to trailer aerodynamics. Fairings developed for the front, rear, and bottom of standard semi-trailers together demonstrated a 7% improvement to fuel economy in scientific tests conducted by the Transportation Research Center (TRC). Operational tests with major trucking fleets proved the functionality of the products, which were subsequently brought to market. This category two grant enabled Freight Wing to further develop, test and commercialize its products, resulting in greatly increased understanding and acceptance of aerodynamic trailer technology. Commercialization was stimulated by offering trucking fleets 50% cost sharing on trial implementations of Freight Wing products for testing and evaluation purposes. Over 230 fairings were implemented through the program with 35 trucking fleets including industry leaders such as Wal-Mart, Frito Lay and Whole Foods. The feedback from these testing partnerships was quite positive with product performance exceeding fleet expectations in many cases. Fleet feedback also was also valuable from a product development standpoint and assisted the design of several second generation products intended to further improve efficiency, lower costs, and enhance durability. Resulting products demonstrated a 30% efficiency improvement in full scale wind tunnel tests. The fuel savings of our most promising product, the “Belly Fairing” increased from 4% to 6% in scientific track and operational tests. The project successfully demonstrated the economic feasibility of trailer aerodynamics and positioned the technology to realize significant public benefits. Scientific testing conducted with partners such as the EPA Smartway program and Transport Canada clearly validated the fuel and emission saving potential of the technology. The Smartway program now recommends trailer aerodynamics as a certified fuel saving technology and is offering incentives such as low interest loans. Trailer aerodynamics can save average trucks over 1,100 gallons of fuel an 13 tons of emissions every 100,000 miles, a distance many trucks travel annually. These fuel savings produce a product return on investment period of one to two years in average fleet operations. The economic feasibility of the products was validated by participating fleets, several of which have since completed large implementations or demonstrated an interest in volume orders. The commercialization potential of the technology was also demonstrated, resulting in a national distribution and manufacturing partnership with a major industry supplier, Carrier Transicold. Consequently, Freight Wing is well positioned to continue marketing trailer aerodynamics to the trucking industry. The participation of leading fleets in this project served to break down the market skepticism that represents a primary barrier to widespread industry utilization. The benefits of widespread utilization of the technology could be quite significant for both the transportation industry and the public. Trailer aerodynamics could potentially save the U.S. trucking fleet over a billion gallons of fuel and 20 million tons of emissions annually.« less
ERIC Educational Resources Information Center
American Automobile Association, Falls Church, VA. Traffic Engineering and Safety Dept.
The argument that driver education should be dropped because driver education cars use gas is shortsighted. High school driver education is an excellent vehicle for teaching concepts of energy conservation. A small investment in fuel now can result in major savings of gasoline over a student's lifetime. In addition good driver education courses…
Residential Water Conservation in a Noncrisis Setting: Results of a New Jersey Experiment
NASA Astrophysics Data System (ADS)
Palmini, Dennis J.; Shelton, Theodore B.
1982-08-01
East Brunswick Township, New Jersey, conducted a water conservation program in 1980 by distributing to 564 households free packets of water-saving devices purchased with municipal funds. The program was not a response to a current water supply crisis, and appeals for cooperation were based on the private economic benefits of water conservation. Statistical procedures were developed to measure the proportions of households installing each of the devices distributed, water savings and program costs. Two-thirds of the households receiving the packets installed at least one device. Average annual water savings per home receiving a packet were estimated at 5010 gallons (18.96 kl). Amortized over ten years at a 10% discount rate, the program cost was approximately 35 cents per 1000 gallons of water saved (9.2 cents per kl). The East Brunswick results compare well to the results obtained from similar conservation programs in a pair of California communities during the 1976-1977 drought.
VO2 thermochromic smart window for energy savings and generation
Zhou, Jiadong; Gao, Yanfeng; Zhang, Zongtao; Luo, Hongjie; Cao, Chuanxiang; Chen, Zhang; Dai, Lei; Liu, Xinling
2013-01-01
The ability to achieve energy saving in architectures and optimal solar energy utilisation affects the sustainable development of the human race. Traditional smart windows and solar cells cannot be combined into one device for energy saving and electricity generation. A VO2 film can respond to the environmental temperature to intelligently regulate infrared transmittance while maintaining visible transparency, and can be applied as a thermochromic smart window. Herein, we report for the first time a novel VO2-based smart window that partially utilises light scattering to solar cells around the glass panel for electricity generation. This smart window combines energy-saving and generation in one device, and offers potential to intelligently regulate and utilise solar radiation in an efficient manner. PMID:24157625
VO₂ thermochromic smart window for energy savings and generation.
Zhou, Jiadong; Gao, Yanfeng; Zhang, Zongtao; Luo, Hongjie; Cao, Chuanxiang; Chen, Zhang; Dai, Lei; Liu, Xinling
2013-10-24
The ability to achieve energy saving in architectures and optimal solar energy utilisation affects the sustainable development of the human race. Traditional smart windows and solar cells cannot be combined into one device for energy saving and electricity generation. A VO2 film can respond to the environmental temperature to intelligently regulate infrared transmittance while maintaining visible transparency, and can be applied as a thermochromic smart window. Herein, we report for the first time a novel VO2-based smart window that partially utilises light scattering to solar cells around the glass panel for electricity generation. This smart window combines energy-saving and generation in one device, and offers potential to intelligently regulate and utilise solar radiation in an efficient manner.
The Conceptual Design for a Fuel Assembly of a New Research Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryu, J-S.; Cho, Y-G.; Yoon, D-B.
2004-10-06
A new Research Reactor (ARR) has been under design by KAERI since 2002. In this work, as a first step for the design of the fuel assembly of the ARR, the conceptual design has been carried out. The vibration characteristics of the tubular fuel model and the locking performance of the preliminary designed locking devices were investigated. In order to investigate the effects of the stiffener on the vibration characteristics of the tubular fuel, a modal analysis was performed for the finite element models of the tubular fuels with stiffeners and without stiffeners. The analysis results show that the vibrationmore » characteristics of the tubular fuel with stiffeners are better than those of the tubular fuel without stiffeners. To investigate the locking performance of the preliminary designed locking devices for the fuel assembly of the ARR, the elements of the locking devices were fabricated. Then the torsional resistance, fixing status and vibration characteristics of the locking devices were tested. The test results show that using the locking device with fins on the bottom guide can prevent the torsional motion of the fuel assembly, and that additional springs or guides on the top of the fuel assembly are needed to suppress the lateral motion of the fuel assembly. Based on the modal analysis and experimental results, the fuel assembly and locking devices of the ARR were designed and its prototype was fabricated. The locking performance, pressure drop characteristics and vibration characteristics of the newly designed fuel assembly will be tested in the near future.« less
Feasibility and Design Implications of Fuel Cell Power for Sealift Ships
2010-01-01
Feasibility and Design Implications of Fuel Cell Power for Sealift Ships Jing Suna, John Stebeb, and Colen Kennellb a Department of Naval...studies published so far have focused on ship service power or on propulsion power for small vessels with moderate power requirements. Using a ... a large military cargo ship. A notional solid oxide fuel cell (SOFC) module is proposed and the implications of the technology on fuel savings and
Multicylinder Diesel Engine Tests with Unstabilized Water-in-Fuel Emulsions
DOT National Transportation Integrated Search
1981-06-01
Two diesel engines representative of the four-stroke cycle and two-stroke cycle main propulsion units installed in U.S. Coast Guard WPB class cutters were operated in a test environment in an attempt to demonstrate significant fuel savings associated...
ERIC Educational Resources Information Center
Smil, Vaclaw
1977-01-01
For more than a decade, the Chinese have been using biogas digesters to produce fuel for homes in rural areas. This article discusses the design, operation, and benefits of these digesters. This means of waste treatment helps improve sanitation, produce fertilizer, and save fossil fuels. (MA)
technologies and operational practices which increase fuel efficiency and reduce emissions from goods movement . EPA provides partners with performance benchmarking tools, fleet management best practices, technology is working with partners to test and verify advanced technologies and operational practices that save
Fuel handling apparatus for a nuclear reactor
Hawke, Basil C.
1987-01-01
Fuel handling apparatus for transporting fuel elements into and out of a nuclear reactor and transporting them within the reactor vessel extends through a penetration in the side of the reactor vessel. A lateral transport device carries the fuel elements laterally within the vessel and through the opening in the side of the vessel, and a reversible lifting device raises and lowers the fuel elements. In the preferred embodiment, the lifting device is supported by a pair of pivot arms.
Papageorgiou, A; Barton, J R; Karagiannidis, A
2009-07-01
Waste management activities contribute to global greenhouse gas emissions approximately by 4%. In particular the disposal of waste in landfills generates methane that has high global warming potential. Effective mitigation of greenhouse gas emissions is important and could provide environmental benefits and sustainable development, as well as reduce adverse impacts on public health. The European and UK waste policy force sustainable waste management and especially diversion from landfill, through reduction, reuse, recycling and composting, and recovery of value from waste. Energy from waste is a waste management option that could provide diversion from landfill and at the same time save a significant amount of greenhouse gas emissions, since it recovers energy from waste which usually replaces an equivalent amount of energy generated from fossil fuels. Energy from waste is a wide definition and includes technologies such as incineration of waste with energy recovery, or combustion of waste-derived fuels for energy production or advanced thermal treatment of waste with technologies such as gasification and pyrolysis, with energy recovery. The present study assessed the greenhouse gas emission impacts of three technologies that could be used for the treatment of Municipal Solid Waste in order to recover energy from it. These technologies are Mass Burn Incineration with energy recovery, Mechanical Biological Treatment via bio-drying and Mechanical Heat Treatment, which is a relatively new and uninvestigated method, compared to the other two. Mechanical Biological Treatment and Mechanical Heat Treatment can turn Municipal Solid Waste into Solid Recovered Fuel that could be combusted for energy production or replace other fuels in various industrial processes. The analysis showed that performance of these two technologies depends strongly on the final use of the produced fuel and they could produce GHG emissions savings only when there is end market for the fuel. On the other hand Mass Burn Incineration generates greenhouse gas emission savings when it recovers electricity and heat. Moreover the study found that the expected increase on the amount of Municipal Solid Waste treated for energy recovery in England by 2020 could save greenhouse gas emission, if certain Energy from Waste technologies would be applied, under certain conditions.
Co-Optimization of Fuels and Engines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farrell, John
2016-03-24
The Co-Optimization of Fuels and Engines (Co-Optima) initiative is a new DOE initiative focused on accelerating the introduction of affordable, scalable, and sustainable biofuels and high-efficiency, low-emission vehicle engines. The simultaneous fuels and vehicles research and development (R&D) are designed to deliver maximum energy savings, emissions reduction, and on-road vehicle performance. The initiative's integrated approach combines the previously independent areas of biofuels and combustion R&D, bringing together two DOE Office of Energy Efficiency & Renewable Energy research offices, ten national laboratories, and numerous industry and academic partners to simultaneously tackle fuel and engine research and development (R&D) to maximize energymore » savings and on-road vehicle performance while dramatically reducing transportation-related petroleum consumption and greenhouse gas (GHG) emissions. This multi-year project will provide industry with the scientific underpinnings required to move new biofuels and advanced engine systems to market faster while identifying and addressing barriers to their commercialization. This project's ambitious, first-of-its-kind approach simultaneously tackles fuel and engine innovation to co-optimize performance of both elements and provide dramatic and rapid cuts in fuel use and emissions. This presentation provides an overview of the project.« less
Advanced vehicles: Costs, energy use, and macroeconomic impacts
NASA Astrophysics Data System (ADS)
Wang, Guihua
Advanced vehicles and alternative fuels could play an important role in reducing oil use and changing the economy structure. We developed the Costs for Advanced Vehicles and Energy (CAVE) model to investigate a vehicle portfolio scenario in California during 2010-2030. Then we employed a computable general equilibrium model to estimate macroeconomic impacts of the advanced vehicle scenario on the economy of California. Results indicate that, due to slow fleet turnover, conventional vehicles are expected to continue to dominate the on-road fleet and gasoline is the major transportation fuel over the next two decades. However, alternative fuels could play an increasingly important role in gasoline displacement. Advanced vehicle costs are expected to decrease dramatically with production volume and technological progress; e.g., incremental costs for fuel cell vehicles and hydrogen could break even with gasoline savings in 2028. Overall, the vehicle portfolio scenario is estimated to have a slightly negative influence on California's economy, because advanced vehicles are very costly and, therefore, the resulting gasoline savings generally cannot offset the high incremental expenditure on vehicles and alternative fuels. Sensitivity analysis shows that an increase in gasoline price or a drop in alternative fuel prices could offset a portion of the negative impact.
Shi, Xiao-Qing; Li, Xiao-Nuo; Yang, Jian-Xin
2013-01-01
Transportation is the key industry of urban energy consumption and carbon emissions. The transformation of conventional gasoline vehicles to new energy vehicles is an important initiative to realize the goal of developing low-carbon city through energy saving and emissions reduction, while electric vehicles (EV) will play an important role in this transition due to their advantage in energy saving and lower carbon emissions. After reviewing the existing researches on energy saving and emissions reduction of electric vehicles, this paper analyzed the factors affecting carbon emissions reduction. Combining with electric vehicles promotion program in Beijing, the paper analyzed carbon emissions and reduction potential of electric vehicles in six scenarios using the optimized energy consumption related carbon emissions model from the perspective of fuel life cycle. The scenarios included power energy structure, fuel type (energy consumption per 100 km), car type (CO2 emission factor of fuel), urban traffic conditions (speed), coal-power technologies and battery type (weight, energy efficiency). The results showed that the optimized model was able to estimate carbon emissions caused by fuel consumption more reasonably; electric vehicles had an obvious restrictive carbon reduction potential with the fluctuation of 57%-81.2% in the analysis of six influencing factors, while power energy structure and coal-power technologies play decisive roles in life-cycle carbon emissions of electric vehicles with the reduction potential of 78.1% and 81.2%, respectively. Finally, some optimized measures were proposed to reduce transport energy consumption and carbon emissions during electric vehicles promotion including improving energy structure and coal technology, popularizing energy saving technologies and electric vehicles, accelerating the battery R&D and so on. The research provides scientific basis and methods for the policy development for the transition of new energy vehicles in low-carbon transport.
Gentry, J.R.
1958-09-16
A device is described for handling fuel elements of a neutronic reactor. The device consists of two concentric telescoped contalners that may fit about the fuel element. A number of ratchet members, equally spaced about the entrance to the containers, are pivoted on the inner container and spring biased to the outer container so thnt they are forced to hear against and hold the fuel element, the weight of which tends to force the ratchets tighter against the fuel element. The ratchets are released from their hold by raising the inner container relative to the outer memeber. This device reduces the radiation hazard to the personnel handling the fuel elements.
Energy-saving analysis of hydraulic hybrid excavator based on common pressure rail.
Shen, Wei; Jiang, Jihai; Su, Xiaoyu; Karimi, Hamid Reza
2013-01-01
Energy-saving research of excavators is becoming one hot topic due to the increasing energy crisis and environmental deterioration recently. Hydraulic hybrid excavator based on common pressure rail (HHEC) provides an alternative with electric hybrid excavator because it has high power density and environment friendly and easy to modify based on the existing manufacture process. This paper is focused on the fuel consumption of HHEC and the actuator dynamic response to assure that the new system can save energy without sacrificing performance. Firstly, we introduce the basic principle of HHEC; then, the sizing process is presented; furthermore, the modeling period which combined mathematical analysis and experiment identification is listed. Finally, simulation results show that HHEC has a fast dynamic response which can be accepted in engineering and the fuel consumption can be reduced 21% to compare the original LS excavator and even 32% after adopting another smaller engine.
Energy-Saving Analysis of Hydraulic Hybrid Excavator Based on Common Pressure Rail
Jiang, Jihai; Su, Xiaoyu
2013-01-01
Energy-saving research of excavators is becoming one hot topic due to the increasing energy crisis and environmental deterioration recently. Hydraulic hybrid excavator based on common pressure rail (HHEC) provides an alternative with electric hybrid excavator because it has high power density and environment friendly and easy to modify based on the existing manufacture process. This paper is focused on the fuel consumption of HHEC and the actuator dynamic response to assure that the new system can save energy without sacrificing performance. Firstly, we introduce the basic principle of HHEC; then, the sizing process is presented; furthermore, the modeling period which combined mathematical analysis and experiment identification is listed. Finally, simulation results show that HHEC has a fast dynamic response which can be accepted in engineering and the fuel consumption can be reduced 21% to compare the original LS excavator and even 32% after adopting another smaller engine. PMID:24194683
Profitable solutions to climate, oil, and proliferation.
Lovins, Amory B
2010-05-01
Protecting the climate is not costly but profitable (even if avoided climate change is worth zero), mainly because saving fuel costs less than buying fuel. The two biggest opportunities, both sufficiently fast, are oil and electricity. The US, for example, can eliminate its oil use by the 2040s at an average cost of $15 per barrel ($2000), half by redoubled efficiency and half by alternative supplies, and can save three-fourths of its electricity more cheaply than operating a thermal power station. Integrative design permits this by making big energy savings cheaper than small ones, turning traditionally assumed diminishing returns into empirically observed expanding returns. Such efficiency choices accelerate climate-safe, inexhaustible, and resilient energy supply-notably the "micropower" now delivering about a sixth of the world's electricity and 90% of its new electricity. These cheap, fast, market-financeable, globally applicable options offer the most effective, yet most underestimated and overlooked, solutions for climate, proliferation, and poverty.
Photovoltaics as a terrestrial energy source. Volume 2: System value
NASA Technical Reports Server (NTRS)
Smith, J. L.
1980-01-01
Assumptions and techniques employed by the electric utility industry and other electricity planners to make estimates of the future value of photovoltaic (PV) systems interconnected with U.S. electric utilities were examined. Existing estimates of PV value and their interpretation and limitations are discussed. PV value is defined as the marginal private savings accruing to potential PV owners. For utility-owned PV systems, these values are shown to be the after-tax savings in conventional fuel and capacity displaced by the PV output. For non-utility-owned (distributed) systems, the utility's savings in fuel and capacity must first be translated through the electric rate structure (prices) to the potential PV system owner. Base-case estimates of the average value of PV systems to U.S. utilities are presented. The relationship of these results to the PV Program price goals and current energy policy is discussed; the usefulness of PV output quantity goals is also reviewed.
Dryer cuts fuel usage by equivalent of 6-million scf/yr
DOE Office of Scientific and Technical Information (OSTI.GOV)
List, K.H.; Powers, J.
Drying is an integral part of the production of ZnO pellets, a specific requirement for producing a uniform end product. The dryer has to be able to cure the product for a finite period at temperatures up to 500/sup 0/C in the same unit. Substantial savings have been realized because the dryer has enabled the user to optimize operating conditions. Continuous on-stream operations requiring minimum operator attendance, automatic controls, simplicity of design contruction, and the unit's ability to use waste heat also contribute to these savings. Gas exhausted from a nearby kiln provides the total heat requirement for the dryer.more » Positive delivery of the hot flue gas is assured by a blower and automatically controlled dampers. Annual fuel savings based on the use of waste heat, amounts to an equiv of 6 million scf of natural gas. 1 figure.« less
Advanced Cogeneration Technology Economic Optimization Study (ACTEOS)
NASA Technical Reports Server (NTRS)
Nanda, P.; Ansu, Y.; Manuel, E. H., Jr.; Price, W. G., Jr.
1980-01-01
The advanced cogeneration technology economic optimization study (ACTEOS) was undertaken to extend the results of the cogeneration technology alternatives study (CTAS). Cost comparisons were made between designs involving advanced cogeneration technologies and designs involving either conventional cogeneration technologies or not involving cogeneration. For the specific equipment cost and fuel price assumptions made, it was found that: (1) coal based cogeneration systems offered appreciable cost savings over the no cogeneration case, while systems using coal derived liquids offered no costs savings; and (2) the advanced cogeneration systems provided somewhat larger cost savings than the conventional systems. Among the issues considered in the study included: (1) temporal variations in steam and electric demands; (2) requirements for reliability/standby capacity; (3) availability of discrete equipment sizes; (4) regional variations in fuel and electricity prices; (5) off design system performance; and (6) separate demand and energy charges for purchased electricity.
Chen, Chun-Chi; Lee, Wen-Jhy
2008-01-01
The limited data for using emulsified oil have demonstrated its effectiveness in reducing flue gas pollutant emissions. The presence of a high concentration of toxic organic compounds in industrial wastewaters always presents significant problems. Therefore, this study was undertaken by using wastewater with COD of 9600 mg/L and total petroleum hydrocarbons-gasoline 440 mg/L for making an emulsified oil (wastewater content 20% with 0.1% surfactant) to evaluate the extent of reductions in both criteria pollutants and polycyclic aromatic hydrocarbons. For comparison, two other systems (heavy oil fuel and water-emulsified oil) were also conducted. The wastewater-emulsified oil fuel results in significant reductions in particulate matter (PM), NO(x), SO2, and CO as compared to heavy oil fuel and similar to those from water/oil emulsified fuel; for PM, it is better in wastewater-emulsified oil. The reductions of total PAH flue gas emissions are 38 and 30% for wastewater- and water-emulsified fuel, respectively; they are 63 and 44% for total BaP(eq), respectively. In addition to reducing flue gas pollutant emissions, the results also demonstrate that the use of wastewater-emulsified fuel in boiler operation provides several advantages: (1) safe disposal of industrial wastewater; and (2) energy savings of about 13%. Thus, wastewater/oil-emulsified fuel is highly suitable for use in boilers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morrow, III, William R.; Hasanbeigi, Ali; Xu, Tengfang
2012-12-03
India’s cement industry is the second largest in the world behind China with annual cement production of 168 Mt in 2010 which accounted for slightly greater than six percent of the world’s annual cement production in the same year. To produce that amount of cement, the industry consumed roughly 700 PJ of fuel and 14.7 TWh of electricity. We identified and analyzed 22 energy efficiency technologies and measures applicable to the processes in the Indian cement industry. The Conservation Supply Curve (CSC) used in this study is an analytical tool that captures both the engineering and the economic perspectives ofmore » energy conservation. Using a bottom-up electricity CSC model and compared to an electricity price forecast the cumulative cost-effective plant-level electricity savings potential for the Indian cement industry for 2010- 2030 is estimated to be 83 TWh, and the cumulative plant-level technical electricity saving potential is 89 TWh during the same period. The grid-level CO2 emissions reduction associated with cost-effective electricity savings is 82 Mt CO2 and the electric grid-level CO2 emission reduction associated with technical electricity saving potential is 88 Mt CO2. Compared to a fuel price forecast, an estimated cumulative cost-effective fuel savings potential of 1,029 PJ with associated CO2 emission reduction of 97 Mt CO2 during 2010-2030 is possible. In addition, a sensitivity analysis with respect to the discount rate used is conducted to assess the effect of changes in this parameter on the results. The result of this study gives a comprehensive and easy to understand perspective to the Indian cement industry and policy makers about the energy efficiency potential and its associated cost over the next twenty years.« less
NASA Technical Reports Server (NTRS)
Vanabkoude, J. C.
1976-01-01
The impact of the most promising fuel conserving options on fuel consumption, passenger demand, operating costs, and airline profits when implemented into the U.S. domestic and international airline fleets is assessed. The potential fuel savings achievable in the U.S. scheduled air transportation system over the forecast period, 1973-1990, are estimated.
Fuel Consumption and Emissions from Airport Taxi Operations
NASA Technical Reports Server (NTRS)
Jung, Yoon
2010-01-01
Developed a method to calculate fuel consumption and emissions of phases of taxi operations. Results at DFW showed that up to 18% of fuel can be saved by eliminating stop-and-go situations. Developed an energy efficient and environmentally friendly surface concept: Spot and Runway Departure Advisory (SARDA) tool. The SARDA tool has been identified as a potential candidate for a technology transfer to the FAA.
DOT National Transportation Integrated Search
2008-11-07
"Congress expressed interest in obtaining information on using a national speed limit to reduce fuel consumption. In response to the request, we reviewed existing literature and consulted knowledgeable stakeholders on the following: (1) What is the r...
10 CFR 455.63 - Cost-effectiveness testing.
Code of Federal Regulations, 2011 CFR
2011-01-01
...) The simple payback period of each energy conservation measure (except measures to shift demand, or...), by the estimated annual cost savings accruing from the measure (adjusted for demand charges), as... non-renewable fuels displaced less the annual cost of the renewable fuel, if any, and the annual cost...
10 CFR 455.63 - Cost-effectiveness testing.
Code of Federal Regulations, 2010 CFR
2010-01-01
...) The simple payback period of each energy conservation measure (except measures to shift demand, or...), by the estimated annual cost savings accruing from the measure (adjusted for demand charges), as... non-renewable fuels displaced less the annual cost of the renewable fuel, if any, and the annual cost...
Spent fuel container alignment device and method
Jones, Stewart D.; Chapek, George V.
1996-01-01
An alignment device is used with a spent fuel shipping container including a plurality of fuel pockets for spent fuel arranged in an annular array and having a rotatable cover including an access opening therein. The alignment device includes a lightweight plate which is installed over the access opening of the cover. A laser device is mounted on the plate so as to emit a laser beam through a laser admittance window in the cover into the container in the direction of a pre-established target associated with a particular fuel pocket. An indexing arrangement on the container provides an indication of the angular position of the rotatable cover when the laser beam produced by the laser is brought into alignment with the target of the associated fuel pocket.
NASA Technical Reports Server (NTRS)
Gray, D. E.; Dugan, J. F.
1975-01-01
This paper reports on the exploratory investigation and initial findings of the study of future turbofan concepts to conserve fuel. To date, these studies have indicated a potential reduction in cruise thrust specific fuel consumption in 1990 turbofans of approximately 15% relative to present day new engines through advances in internal aerodynamics, structure-mechanics, and materials. Advanced materials also offer the potential for fuel savings through engine weight reduction. Further studies are required to balance fuel consumption reduction with sound airlines operational economics.
Minimally refined biomass fuel
Pearson, Richard K.; Hirschfeld, Tomas B.
1984-01-01
A minimally refined fluid composition, suitable as a fuel mixture and derived from biomass material, is comprised of one or more water-soluble carbohydrates such as sucrose, one or more alcohols having less than four carbons, and water. The carbohydrate provides the fuel source; water solubilizes the carbohydrates; and the alcohol aids in the combustion of the carbohydrate and reduces the vicosity of the carbohydrate/water solution. Because less energy is required to obtain the carbohydrate from the raw biomass than alcohol, an overall energy savings is realized compared to fuels employing alcohol as the primary fuel.
Brown, V; Moodie, M; Cobiac, L; Mantilla Herrera, A M; Carter, R
2017-05-04
Reducing automobile dependence and improving rates of active transport may reduce the impact of obesogenic environments, thereby decreasing population prevalence of obesity and other diseases where physical inactivity is a risk factor. Increasing the relative cost of driving by an increase in fuel taxation may therefore be a promising public health intervention for obesity prevention. A scoping review of the evidence for obesity or physical activity effect of changes in fuel price or taxation was undertaken. Potential health benefits of an increase in fuel excise taxation in Australia were quantified using Markov modelling to simulate obesity, injury and physical activity related health impacts of a fuel excise taxation intervention for the 2010 Australian population. Health adjusted life years (HALYs) gained and healthcare cost savings from diseases averted were estimated. Incremental cost-effectiveness ratios (ICERs) were reported and results were tested through sensitivity analysis. Limited evidence on the effect of policies such as fuel taxation on health-related behaviours currently exists. Only three studies were identified reporting associations between fuel price or taxation and obesity, whilst nine studies reported associations specifically with physical activity, walking or cycling. Estimates of the cross price elasticity of demand for public transport with respect to fuel price vary, with limited consensus within the literature on a probable range for the Australian context. Cost-effectiveness modelling of a AUD0.10 per litre increase in fuel excise taxation using a conservative estimate of cross price elasticity for public transport suggests that the intervention would be cost-effective from a limited societal perspective (237 HALYs gained, AUD2.6 M in healthcare cost savings), measured against a comparator of no additional increase in fuel excise. Under "best case" assumptions, the intervention would be more cost-effective (3181 HALYs gained, AUD34.2 M in healthcare cost savings). Exploratory analysis suggests that an intervention to increase fuel excise taxation may deliver obesity and physical activity related benefits. Whilst such an intervention has significant potential for cost-effectiveness, potential equity and acceptability impacts would need to be minimised. A better understanding of the effectiveness and cost-effectiveness of a range of transport interventions is required in order to achieve more physically active transport environments.
Jin, Meihua; Jung, Ji-Young; Lee, Jung-Ryun
2016-10-12
With the arrival of the era of Internet of Things (IoT), Wi-Fi Direct is becoming an emerging wireless technology that allows one to communicate through a direct connection between the mobile devices anytime, anywhere. In Wi-Fi Direct-based IoT networks, all devices are categorized by group of owner (GO) and client. Since portability is emphasized in Wi-Fi Direct devices, it is essential to control the energy consumption of a device very efficiently. In order to avoid unnecessary power consumed by GO, Wi-Fi Direct standard defines two power-saving methods: Opportunistic and Notice of Absence (NoA) power-saving methods. In this paper, we suggest an algorithm to enhance the energy efficiency of Wi-Fi Direct power-saving, considering the characteristics of multimedia video traffic. Proposed algorithm utilizes the statistical distribution for the size of video frames and adjusts the lengths of awake intervals in a beacon interval dynamically. In addition, considering the inter-dependency among video frames, the proposed algorithm ensures that a video frame having high priority is transmitted with higher probability than other frames having low priority. Simulation results show that the proposed method outperforms the traditional NoA method in terms of average delay and energy efficiency.
Jin, Meihua; Jung, Ji-Young; Lee, Jung-Ryun
2016-01-01
With the arrival of the era of Internet of Things (IoT), Wi-Fi Direct is becoming an emerging wireless technology that allows one to communicate through a direct connection between the mobile devices anytime, anywhere. In Wi-Fi Direct-based IoT networks, all devices are categorized by group of owner (GO) and client. Since portability is emphasized in Wi-Fi Direct devices, it is essential to control the energy consumption of a device very efficiently. In order to avoid unnecessary power consumed by GO, Wi-Fi Direct standard defines two power-saving methods: Opportunistic and Notice of Absence (NoA) power-saving methods. In this paper, we suggest an algorithm to enhance the energy efficiency of Wi-Fi Direct power-saving, considering the characteristics of multimedia video traffic. Proposed algorithm utilizes the statistical distribution for the size of video frames and adjusts the lengths of awake intervals in a beacon interval dynamically. In addition, considering the inter-dependency among video frames, the proposed algorithm ensures that a video frame having high priority is transmitted with higher probability than other frames having low priority. Simulation results show that the proposed method outperforms the traditional NoA method in terms of average delay and energy efficiency. PMID:27754315
Alternative Fuels Data Center: Cities Clean up With Biofuels
. 15, 2014 Renzenberger Inc Saves Money With Propane Vans Feb. 1, 2014 Photo of an electric vehicle at Charging Stations Spread Through Philly March 3, 2012 Natural Gas School Buses Help Kansas City Save Money Electric Shuttle Buses Offer Free Rides in Maryland June 18, 2010 Fisher Coachworks Develops Plug-In
Alternative Fuels Data Center: Golden Eagle Delivers Beer With Natural Gas
charging stations. Rental Cars Go Electric in Florida Feb. 15, 2014 Renzenberger Inc Saves Money With Charging Stations Spread Through Philly March 3, 2012 Natural Gas School Buses Help Kansas City Save Money Shuttle Buses Offer Free Rides in Maryland June 18, 2010 Fisher Coachworks Develops Plug-In Electric Bus
Alternative Fuels Data Center: Electric Trucks Deliver at Kansas City
vehicle charging stations. Rental Cars Go Electric in Florida Feb. 15, 2014 Renzenberger Inc Saves Money Philly March 3, 2012 Natural Gas School Buses Help Kansas City Save Money Nov. 12, 2011 Metropolitan July 1, 2010 Hybrid Electric Shuttle Buses Offer Free Rides in Maryland June 18, 2010 Fisher Coachworks
Alternative Fuels Data Center: Los Angeles Saves With Hybrid and Plug-In
Electric VehiclesA> Los Angeles Saves With Hybrid and Plug-In Electric Vehicles to someone by E million gallons last year. For information about this project, contact Los Angeles Clean Cities Coalition - Television's Original Automotive Magazine Provided by Maryland Public Television Related Videos Photo of a car
NASA Technical Reports Server (NTRS)
Neudeck, Philip G.
1998-01-01
Silicon carbide (SiC)-based semiconductor electronic devices and circuits are presently being developed for use in high-temperature, high-power, and/or high-radiation conditions under which conventional semiconductors cannot adequately perform. Silicon carbide's ability to function under such extreme conditions is expected to enable significant improvements to a far-ranging variety of applications and systems. These range from greatly improved high-voltage switching [1- 4] for energy savings in public electric power distribution and electric motor drives to more powerful microwave electronics for radar and communications [5-7] to sensors and controls for cleaner-burning more fuel-efficient jet aircraft and automobile engines. In the particular area of power devices, theoretical appraisals have indicated that SiC power MOSFET's and diode rectifiers would operate over higher voltage and temperature ranges, have superior switching characteristics, and yet have die sizes nearly 20 times smaller than correspondingly rated silicon-based devices [8]. However, these tremendous theoretical advantages have yet to be realized in experimental SiC devices, primarily due to the fact that SiC's relatively immature crystal growth and device fabrication technologies are not yet sufficiently developed to the degree required for reliable incorporation into most electronic systems [9]. This chapter briefly surveys the SiC semiconductor electronics technology. In particular, the differences (both good and bad) between SiC electronics technology and well-known silicon VLSI technology are highlighted. Projected performance benefits of SiC electronics are highlighted for several large-scale applications. Key crystal growth and device-fabrication issues that presently limit the performance and capability of high temperature and/or high power SiC electronics are identified.
NASA Technical Reports Server (NTRS)
Neudeck, Philip G.
2006-01-01
Silicon carbide based semiconductor electronic devices and circuits are presently being developed for use in high-temperature, high-power, and high-radiation conditions under which conventional semiconductors cannot adequately perform. Silicon carbide's ability to function under such extreme conditions is expected to enable significant improvements to a far-ranging variety of applications and systems. These range from greatly improved high-voltage switching for energy savings in public electric power distribution and electric motor drives to more powerful microwave electronics for radar and communications to sensors and controls for cleaner-burning more fuel-efficient jet aircraft and automobile engines. In the particular area of power devices, theoretical appraisals have indicated that SiC power MOSFET's and diode rectifiers would operate over higher voltage and temperature ranges, have superior switching characteristics, and yet have die sizes nearly 20 times smaller than correspondingly rated silicon-based devices [8]. However, these tremendous theoretical advantages have yet to be widely realized in commercially available SiC devices, primarily owing to the fact that SiC's relatively immature crystal growth and device fabrication technologies are not yet sufficiently developed to the degree required for reliable incorporation into most electronic systems. This chapter briefly surveys the SiC semiconductor electronics technology. In particular, the differences (both good and bad) between SiC electronics technology and the well-known silicon VLSI technology are highlighted. Projected performance benefits of SiC electronics are highlighted for several large-scale applications. Key crystal growth and device-fabrication issues that presently limit the performance and capability of high-temperature and high-power SiC electronics are identified.
Low-Cost Avionics Simulation for Aircrew Training.
ERIC Educational Resources Information Center
Edwards, Bernell J.
This report documents an experiment to determine the training effectiveness of a microcomputer-based avionics system trainer as a cost-effective alternative to training in the actual aircraft. Participants--26 operationally qualified C-141 pilots with no prior knowledge of the Fuel Saving Advisory System (FSAS), a computerized fuel management…
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2001-06-01
This case study is one in a series on industrial firms who are implementing energy efficient technologies and system improvements into their manufacturing processes. This case study documents the activities, savings, and lessons learned on the Caterpillar's Pontiac Plant project.
Spending for Savings: Energy Awareness at Lincoln Land.
ERIC Educational Resources Information Center
Croteau, Suzanne
1980-01-01
Describes the development and implementation of Lincoln Land Community College's energy awareness program, focusing on: (1) resource management to reduce the consumption of fossil fuels on campus; (2) programs encouraging energy conservation and the production of alcohol fuels; (3) leadership in the field; and (4) planning energy-related…
Alternative Fuels Data Center: Latest Additions
. May 2018 Foothill Transit Agency Battery Electric Bus Progress Report, Data Period Focus: Jan. 2017 Utility Vehicles Autonomy-Enabled Fuel Savings for Military Vehicles: Report on 2016 Aberdeen Test Center Report 2016 Survey of Non-Starch Alcohol and Renewable Hydrocarbon Biofuels Producers Ethanol Strong
26 CFR 48.4082-3 - Diesel fuel and kerosene; visual inspection devices. [Reserved
Code of Federal Regulations, 2012 CFR
2012-04-01
... 26 Internal Revenue 16 2012-04-01 2012-04-01 false Diesel fuel and kerosene; visual inspection devices. [Reserved] 48.4082-3 Section 48.4082-3 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF... Vehicles, Tires, Tubes, Tread Rubber, and Taxable Fuel Taxable Fuel § 48.4082-3 Diesel fuel and kerosene...
26 CFR 48.4082-3 - Diesel fuel and kerosene; visual inspection devices. [Reserved
Code of Federal Regulations, 2011 CFR
2011-04-01
... 26 Internal Revenue 16 2011-04-01 2011-04-01 false Diesel fuel and kerosene; visual inspection devices. [Reserved] 48.4082-3 Section 48.4082-3 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF... Vehicles, Tires, Tubes, Tread Rubber, and Taxable Fuel Taxable Fuel § 48.4082-3 Diesel fuel and kerosene...
26 CFR 48.4082-3 - Diesel fuel and kerosene; visual inspection devices. [Reserved
Code of Federal Regulations, 2013 CFR
2013-04-01
... 26 Internal Revenue 16 2013-04-01 2013-04-01 false Diesel fuel and kerosene; visual inspection devices. [Reserved] 48.4082-3 Section 48.4082-3 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF... Vehicles, Tires, Tubes, Tread Rubber, and Taxable Fuel Taxable Fuel § 48.4082-3 Diesel fuel and kerosene...
26 CFR 48.4082-3 - Diesel fuel and kerosene; visual inspection devices. [Reserved
Code of Federal Regulations, 2010 CFR
2010-04-01
... 26 Internal Revenue 16 2010-04-01 2010-04-01 true Diesel fuel and kerosene; visual inspection devices. [Reserved] 48.4082-3 Section 48.4082-3 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF... Vehicles, Tires, Tubes, Tread Rubber, and Taxable Fuel Taxable Fuel § 48.4082-3 Diesel fuel and kerosene...
Discharge of thoracic patients on portable digital suction: Is it cost-effective?
Southey, Dawn; Pullinger, Diane; Loggos, Spiros; Kumari, Nelam; Lengyel, Emma; Morgan, Ian; Yiu, Patrick; Nandi, Jayanta; Luckraz, Heyman
2015-09-01
A portable suction drainage device for patients undergoing thoracic surgical procedures was introduced into our service in January 2010. Patients who met strict discharge criteria were allowed to continue their treatment at home with the device. They were monitored in a designated follow-up clinic. Data were collected to identify the impact of this service in relation to the duration of follow-up required, bed-days saved, and potential cost/benefits. All patients who underwent a thoracic procedure from March 2012 to April 2014 and required suction postoperatively for air leak were included in the study. Patients were identified as suitable according to the discharge criteria. Data regarding patient demographics were collected prospectively on the thoracic database, and data on the drainage device were logged in a specific data sheet. Visits to the follow-up clinic were also recorded. During the study period, 50 patients stayed a total 1125 days on the portable suction system. Twenty were discharged home, equating to 772 bed-days saved (GBP 270,000 cost-saving). Clinic attendance totalled 162 visits (GBP 24,300 cost reimbursement for attendance). Six (30%) patients were readmitted on 9 occasions due to device malfunction or inability to cope at home. Careful identification of patients suitable for discharge with a portable suction device achieved a significant cost-saving and freed hospital beds, thus allowing increased surgical activity. Patients were also able to be cared for within their home environment and maintain their quality of life. © The Author(s) 2015.
2011-04-26
70% H2, O2 Proton exchange membrane fuel cell ( PEMFC ) Proton exchange membrane Rm temp to 80 °C 40–60% H2, O2, Air Direct methanol fuel cell...Cell PEMFC Proton Exchange Membrane Fuel Cell PV Photovoltaic SHGC Solar Heat Gain Coefficient SIR savings to investment ratio SOFC Solid Oxide
Driving R&D for the Next Generation Work Truck; NREL (National Renewable Energy Laboratory)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melendez, M.
2015-03-04
Improvements in medium- and heavy-duty work truck energy efficiency can dramatically reduce the use of petroleum-based fuels and the emissions of greenhouse gases. The National Renewable Energy Laboratory (NREL) is working with industry partners to develop fuel-saving, high-performance vehicle technologies, while examining fleet operational practices that can simulateneously improve fuel economy, decrease emissions, and support bottom-line goals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2003-07-01
Rohm and Haas conducted a plant-wide energy assessment at its Knoxville, Tennessee, chemicals manufacturing facility. The assessment identified potential annual energy savings of nearly 47,000 MMBtu in steam and fuel and 11,000 MWh in electricity. Annual cost savings were estimated at almost$1.5 million. After the assessment was replicated in California and Kentucky plants, the companys additional estimated cost savings were$500,000 annually. Additional annual energy savings were about 23,000 MMBtu and 6,000 MWh. The assessments also indicated the plants would reduce nitrous oxide emissions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2003-05-01
Rohm and Haas conducted a plant-wide energy assessment at its Knoxville, Tennessee, chemicals manufacturing facility. The assessment identified potential annual energy savings of nearly 47,000 MMBtu in steam and fuel and 11,000 MWh in electricity. Annual cost savings were estimated at almost $1.5 million. After the assessment was replicated in California and Kentucky plants, the company's additional estimated cost savings were $500,000 annually. Additional annual energy savings were about 23,000 MMBtu and 6,000 MWh. The assessments also indicated the plants would reduce nitrous oxide emissions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2003-07-01
The plant-wide energy-efficiency assessment performed in 2001 at the Alcoa World Alumina Arkansas Operations in Bauxite, Arkansas, identified seven opportunities to save energy and reduce costs. By implementing five of these improvements, the facility can save 15,100 million British thermal units per year in natural gas and 8.76 million kilowatt-hours per year in electricity. This translates into approximate annual savings of$925,300 in direct energy costs and non-fuel operating and maintenance costs. The required capital investment is estimated at$271,200. The average payback period for all five projects would be approximately 8 months.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2003-07-01
The plant-wide energy-efficiency assessment performed in 2001 at the Alcoa World Alumina Arkansas Operations in Bauxite, Arkansas, identified seven opportunities to save energy and reduce costs. By implementing five of these improvements, the facility can save 15,100 million British thermal units per year in natural gas and 8.76 million kilowatt-hours per year in electricity. This translates into approximate annual savings of $925,300 in direct energy costs and non-fuel operating and maintenance costs. The required capital investment is estimated at $271,200. The average payback period for all five projects would be approximately 8 months.
Co-Optimization of Fuels and Engines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farrell, John
2016-04-11
The Co-Optimization of Fuels and Engines (Co-Optima) initiative is a new DOE initiative focused on accelerating the introduction of affordable, scalable, and sustainable biofuels and high-efficiency, low-emission vehicle engines. The simultaneous fuels and vehicles research and development (R&D) are designed to deliver maximum energy savings, emissions reduction, and on-road vehicle performance. The initiative's integrated approach combines the previously independent areas of biofuels and combustion R&D, bringing together two DOE Office of Energy Efficiency & Renewable Energy research offices, ten national laboratories, and numerous industry and academic partners to simultaneously tackle fuel and engine research and development (R&D) to maximize energymore » savings and on-road vehicle performance while dramatically reducing transportation-related petroleum consumption and greenhouse gas (GHG) emissions. This multi-year project will provide industry with the scientific underpinnings required to move new biofuels and advanced engine systems to market faster while identifying and addressing barriers to their commercialization. This project's ambitious, first-of-its-kind approach simultaneously tackles fuel and engine innovation to co-optimize performance of both elements and provide dramatic and rapid cuts in fuel use and emissions. This presentation provides an overview of the initiative and reviews recent progress focused on both advanced spark-ignition and compression-ignition approaches.« less
The role of thermal energy storage in industrial energy conservation
NASA Technical Reports Server (NTRS)
Duscha, R. A.; Masica, W. J.
1979-01-01
Thermal Energy Storage for Industrial Applications is a major thrust of the Department of Energy's Thermal Energy Storage Program. Utilizing Thermal Energy Storage (TES) with process or reject heat recovery systems is shown to be extremely beneficial for several applications. Recent system studies resulting from contracts awarded by the Department of Energy (DOE) identified four especially significant industries where TES appears attractive - food processing, paper and pulp, iron and steel, and cement. Potential annual fuel savings with large scale implementation of near term TES systems for these industries is over 9,000,000 bbl of oil. This savings is due to recuperation and storage in the food processing industry, direct fuel substitution in the paper and pulp industry and reduction in electric utility peak fuel use through inplant production of electricity from utilization of reject heat in the steel and cement industries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aggarwal, R.
1978-07-01
Various proposed improvements in the design and operational procedures for bomber/transport aircraft are evaluated. The evaluation is performed in terms of the estimated savings in fuel consumption and in Direct Operating Cost (DOC). As an aid in the evaluation of design modifications, graphs of fuel and DOC savings as a function of the design parameters are developed. These graphs are based on actual mission trajectory data rather than some type trajectory profile. The actual mission data is presented in terms of histograms which provide statistical information concerning altitude, air speed, take-off weight, landing weights, and mission time. Separate analyses aremore » performed on the following aircraft: the B-52G, the B-52H, the KC-135, the C-141, the C-130, and the C-5A.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aggarwal, R.K.
1978-07-01
Various proposed improvements in the design and operational procedures for bomber/transport aircraft are evaluated. The evaluation is performed in terms of the estimated savings in fuel consumption and in Direct Operating Cost (DOC). As an aid in the evaluation of design modifications, graphs of fuel and DOC savings as a function of the design parameters are developed. These graphs are based on actual mission trajectory data rather than some typical trajectory profile. The actual mission data is presented in terms of histograms which provide statistical information concerning altitude, air speed, take-off weight, landing weight, and mission time. Separate analyses aremore » performed on the following aircraft: the B-52G, the B-52H, the KC-135, the C-141, the C-130, and the C-5A. (Author)« less
NASA Technical Reports Server (NTRS)
Wilreker, V. F.; Stiller, P. H.; Scott, G. W.; Kruse, V. J.; Smith, R. F.
1984-01-01
Assessing the performance of a MOD-OA horizontal axis wind turbine connected to an isolated diesel utility, a comprehensive data measurement program was conducted on the Block Island Power Company installation on Block Island, Rhode Island. The detailed results of that program focusing on three principal areas of (1) fuel displacement (savings), (2) dynamic interaction between the diesel utility and the wind turbine, (3) effects of three models of wind turbine reactive power control are presented. The approximate two month duration of the data acquisition program conducted in the winter months (February into April 1982) revealed performance during periods of highest wind energy penetration and hence severity of operation. Even under such conditions fuel savings were significant resulting in a fuel reduction of 6.7% while the MOD-OA was generating 10.7% of the total electrical energy. Also, electrical disturbance and interactive effects were of an acceptable level.
Quantifying autonomous vehicles national fuel consumption impacts: A data-rich approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yuche; Gonder, Jeffrey; Young, Stanley
Autonomous vehicles are drawing significant attention from governments, manufacturers and consumers. Experts predict them to be the primary means of transportation by the middle of this century. Recent literature shows that vehicle automation has the potential to alter traffic patterns, vehicle ownership, and land use, which may affect fuel consumption from the transportation sector. In this paper, we developed a data-rich analytical framework to quantify system-wide fuel impacts of automation in the United States by integrating (1) a dynamic vehicle sales, stock, and usage model, (2) an historical transportation network-level vehicle miles traveled (VMT)/vehicle activity database, and (3) estimates ofmore » automation's impacts on fuel efficiency and travel demand. The vehicle model considers dynamics in vehicle fleet turnover and fuel efficiency improvements of conventional and advanced vehicle fleet. The network activity database contains VMT, free-flow speeds, and historical speeds of road links that can help us accurately identify fuel-savings opportunities of automation. Based on the model setup and assumptions, we found that the impacts of automation on fuel consumption are quite wide-ranging - with the potential to reduce fuel consumption by 45% in our 'Optimistic' case or increase it by 30% in our 'Pessimistic' case. Second, implementing automation on urban roads could potentially result in larger fuel savings compared with highway automation because of the driving features of urban roads. Lastly, through scenario analysis, we showed that the proposed framework can be used for refined assessments as better data on vehicle-level fuel efficiency and travel demand impacts of automation become available.« less
Quantifying autonomous vehicles national fuel consumption impacts: A data-rich approach
Chen, Yuche; Gonder, Jeffrey; Young, Stanley; ...
2017-11-06
Autonomous vehicles are drawing significant attention from governments, manufacturers and consumers. Experts predict them to be the primary means of transportation by the middle of this century. Recent literature shows that vehicle automation has the potential to alter traffic patterns, vehicle ownership, and land use, which may affect fuel consumption from the transportation sector. In this paper, we developed a data-rich analytical framework to quantify system-wide fuel impacts of automation in the United States by integrating (1) a dynamic vehicle sales, stock, and usage model, (2) an historical transportation network-level vehicle miles traveled (VMT)/vehicle activity database, and (3) estimates ofmore » automation's impacts on fuel efficiency and travel demand. The vehicle model considers dynamics in vehicle fleet turnover and fuel efficiency improvements of conventional and advanced vehicle fleet. The network activity database contains VMT, free-flow speeds, and historical speeds of road links that can help us accurately identify fuel-savings opportunities of automation. Based on the model setup and assumptions, we found that the impacts of automation on fuel consumption are quite wide-ranging - with the potential to reduce fuel consumption by 45% in our 'Optimistic' case or increase it by 30% in our 'Pessimistic' case. Second, implementing automation on urban roads could potentially result in larger fuel savings compared with highway automation because of the driving features of urban roads. Lastly, through scenario analysis, we showed that the proposed framework can be used for refined assessments as better data on vehicle-level fuel efficiency and travel demand impacts of automation become available.« less
Jiang, Dong; Hao, Mengmeng; Fu, Jingying; Tian, Guangjin; Ding, Fangyu
2017-09-14
Global warming and increasing concentration of atmospheric greenhouse gas (GHG) have prompted considerable interest in the potential role of energy plant biomass. Cassava-based fuel ethanol is one of the most important bioenergy and has attracted much attention in both developed and developing countries. However, the development of cassava-based fuel ethanol is still faced with many uncertainties, including raw material supply, net energy potential, and carbon emission mitigation potential. Thus, an accurate estimation of these issues is urgently needed. This study provides an approach to estimate energy saving and carbon emission mitigation potentials of cassava-based fuel ethanol through LCA (life cycle assessment) coupled with a biogeochemical process model-GEPIC (GIS-based environmental policy integrated climate) model. The results indicate that the total potential of cassava yield on marginal land in China is 52.51 million t; the energy ratio value varies from 0.07 to 1.44, and the net energy surplus of cassava-based fuel ethanol in China is 92,920.58 million MJ. The total carbon emission mitigation from cassava-based fuel ethanol in China is 4593.89 million kgC. Guangxi, Guangdong, and Fujian are identified as target regions for large-scale development of cassava-based fuel ethanol industry. These results can provide an operational approach and fundamental data for scientific research and energy planning.
NASA Astrophysics Data System (ADS)
Jiang, Dong; Hao, Mengmeng; Fu, Jingying; Tian, Guangjin; Ding, Fangyu
2017-09-01
Global warming and increasing concentration of atmospheric greenhouse gas (GHG) have prompted considerable interest in the potential role of energy plant biomass. Cassava-based fuel ethanol is one of the most important bioenergy and has attracted much attention in both developed and developing countries. However, the development of cassava-based fuel ethanol is still faced with many uncertainties, including raw material supply, net energy potential, and carbon emission mitigation potential. Thus, an accurate estimation of these issues is urgently needed. This study provides an approach to estimate energy saving and carbon emission mitigation potentials of cassava-based fuel ethanol through LCA (life cycle assessment) coupled with a biogeochemical process model—GEPIC (GIS-based environmental policy integrated climate) model. The results indicate that the total potential of cassava yield on marginal land in China is 52.51 million t; the energy ratio value varies from 0.07 to 1.44, and the net energy surplus of cassava-based fuel ethanol in China is 92,920.58 million MJ. The total carbon emission mitigation from cassava-based fuel ethanol in China is 4593.89 million kgC. Guangxi, Guangdong, and Fujian are identified as target regions for large-scale development of cassava-based fuel ethanol industry. These results can provide an operational approach and fundamental data for scientific research and energy planning.
48 CFR 225.7017-1 - Definitions.
Code of Federal Regulations, 2012 CFR
2012-10-01
... photovoltaic device, foreign photovoltaic device, Free Trade Agreement country photovoltaic device...— Covered contract means an energy savings performance contract, a utility service contract, or a private housing contract awarded by DoD, if such contract results in DoD ownership of photovoltaic devices, by...
48 CFR 225.7017-1 - Definitions.
Code of Federal Regulations, 2014 CFR
2014-10-01
... photovoltaic device, foreign photovoltaic device, Free Trade Agreement country photovoltaic device...— Covered contract means an energy savings performance contract, a utility service contract, or a private housing contract awarded by DoD, if such contract results in DoD ownership of photovoltaic devices, by...
48 CFR 225.7017-1 - Definitions.
Code of Federal Regulations, 2013 CFR
2013-10-01
... photovoltaic device, foreign photovoltaic device, Free Trade Agreement country photovoltaic device...— Covered contract means an energy savings performance contract, a utility service contract, or a private housing contract awarded by DoD, if such contract results in DoD ownership of photovoltaic devices, by...
Siryk, Yury Paul; Balytski, Ivan Peter; Korolyov, Volodymyr George; Klishyn, Olexiy Nick; Lnianiy, Vitaly Nick; Lyakh, Yury Alex; Rogulin, Victor Valery
2013-04-30
A plant for producing an oxygen-containing additive for liquid motor fuels comprises an anaerobic fermentation vessel, a gasholder, a system for removal of sulphuretted hydrogen, and a hotwell. The plant further comprises an aerobic fermentation vessel, a device for liquid substance pumping, a device for liquid aeration with an oxygen-containing gas, a removal system of solid mass residue after fermentation, a gas distribution device; a device for heavy gases utilization; a device for ammonia adsorption by water; a liquid-gas mixer; a cavity mixer, a system that serves superficial active and dispersant matters and a cooler; all of these being connected to each other by pipelines. The technical result being the implementation of a process for producing an oxygen containing additive, which after being added to liquid motor fuels, provides an ecologically beneficial component for motor fuels by ensuring the stability of composition fuel properties during long-term storage.
NASA Astrophysics Data System (ADS)
Rawat, Vaishali; Nadkarni, Vihang; Kale, S. N.
2017-01-01
A stand-alone device working on the electrical metamaterial concept, operating at 2.47 GHz (ISM band), using merely 10 μL sample is proposed to detect petrol/ethanol ratio in given hybrid fuel. Systematic shifts in the transmission frequency as well as magnitude are observed, up to a maximum of 160 MHz and 12 dBm with the hybrid fuels. The sensing was fast with an instantaneous recovery, promising an accurate and sensitive device of detection of flex fuel.
Saving energy and protecting environment of electric vehicles
NASA Astrophysics Data System (ADS)
Yuan, Lina; Chen, Huajun; Gong, Jing
2017-05-01
With the concept of low carbon economy, saving energy, and protecting environment spread, the development of the electric promotes the research pace of wireless charging electronic vehicles, which will become the best choice of energy supply in the future. To generalize and exploit the corresponding alternative fuels and the research and development, and promotion of electric vehicles, becomes the effective means to directly reduce the consumption of fuel, effectively relieves the problem of nervous energy and environmental pollution, and really conforms to the requirements of the national strategy of sustainable development in China. This paper introduces the status of electronic cars and wireless charging, expounds the principle of wireless charging, and concludes the full text.
NASA Technical Reports Server (NTRS)
Goldsmith, I. M.; Bowles, J. V.
1980-01-01
It is noted that several NASA-sponsored studies have identified a substantial potential fuel savings for high subsonic speed aircraft utilizing the propfan concept compared to the equivalent technology turbofan aircraft. Attention is given to a feasibility study for propfan-powered short- to medium-haul commercial transport aircraft conducted to evaluate potential fuel savings and identify critical technology requirements using the latest propfan performance data. An analysis is made of the design and performance characteristics of a wing-mounted and two-aft-mounted derivative propfan aircraft configurations, based on a DC-9 Super 80 airframe, which are compared to the baseline turbofan design. Finally, recommendations for further research efforts are also made.
Reduced bleed air extraction for DC-10 cabin air conditioning
NASA Technical Reports Server (NTRS)
Newman, W. H.; Viele, M. R.; Hrach, F. J.
1980-01-01
It is noted that a significant fuel savings can be achieved by reducing bleed air used for cabin air conditioning. Air in the cabin can be recirculated to maintain comfortable ventilation rates but the quality of the air tends to decrease due to entrainment of smoke and odors. Attention is given to a development system designed and fabricated under the NASA Engine Component Improvement Program to define the recirculation limit for the DC-10. It is shown that with the system, a wide range of bleed air reductions and recirculation rates is possible. A goal of 0.8% fuel savings has been achieved which results from a 50% reduction in bleed extraction from the engine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen Xudong, E-mail: chen.xudong@nies.go.jp; National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506; Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa-ku, Nagoya City 464-8601
Research highlights: {yields} Urban symbiosis creates compatibility of industrial development and waste management. {yields} Mechanical technology leads to more CO{sub 2} emission reduction. {yields} Energy recovery technology leads to more fossil fuel saving. {yields} Clean energy makes recycling technologies cleaner. {yields} Demand management is crucial for realizing potential environmental gains of recycling. - Abstract: With the increasing attention on developing a low-carbon economy, it is necessary to seek appropriate ways on reducing greenhouse gas (GHG) emissions through innovative municipal solid waste management (MSWM), such as urban symbiosis. However, quantitative assessments on the environmental benefits of urban symbiosis, especially in developingmore » countries, are limited because only a limited number of planned synergistic activities have been successful and it is difficult to acquire detailed inventory data from private companies. This paper modifies and applies a two-step simulation system and used it to assess the potential environmental benefits, including the reduction of GHG emissions and saving of fossil fuels, by employing various Japanese plastics recycling/energy-recovery technologies in Shenyang, China. The results showed that among various recycling/energy-recovery technologies, the mechanical waste plastics recycling technology, which produces concrete formwork boards (NF boards), has the greatest potential in terms of reducing GHG emissions (1.66 kg CO{sub 2}e/kg plastics), whereas the technology for the production of refuse plastic fuel (RPF) has the greatest potential on saving fossil fuel consumption (0.77 kgce/kg-plastics). Additional benefits can be gained by applying combined technologies that cascade the utilization of waste plastics. Moreover, the development of clean energy in conjunction with the promotion of new waste plastics recycling programs could contribute to additional reductions in GHG emissions and fossil fuel consumption.« less
Alternative Fuels Data Center: Propane Powers School Buses in Tuscaloosa,
Efficiency March 8, 2014 Renzenberger Inc Saves Money With Propane Vans Feb. 1, 2014 Photo of a school bus and Plug-In Electric Vehicles March 31, 2012 Natural Gas School Buses Help Kansas City Save Money Nov Electric Shuttle Buses Offer Free Rides in Maryland June 18, 2010 Electric Trolley Boosts Business in
Alternative Fuels Data Center: New Hampshire Cleans up with Biodiesel Buses
Public Transit Efficiency March 8, 2014 Renzenberger Inc Saves Money With Propane Vans Feb. 1, 2014 Photo Help Kansas City Save Money Nov. 12, 2011 Electric Trucks Deliver at Kansas City Schools Sept. 17, 2011 Shuttle Buses Offer Free Rides in Maryland June 18, 2010 Fisher Coachworks Develops Plug-In Electric Bus
Alternative Fuels Data Center: Frito-Lay Delivers With Electric Truck Fleet
. Rental Cars Go Electric in Florida Feb. 15, 2014 Renzenberger Inc Saves Money With Propane Vans Feb. 1 Through Philly March 3, 2012 Natural Gas School Buses Help Kansas City Save Money Nov. 12, 2011 Electric Shuttle Buses Offer Free Rides in Maryland June 18, 2010 Fisher Coachworks Develops Plug-In
Alternative Fuels Data Center: Recycled Cooking Oil Powers Biodiesel
Renzenberger Inc Saves Money With Propane Vans Feb. 1, 2014 Photo of the front of a red truck Salt Lake City Buses Help Kansas City Save Money Nov. 12, 2011 Electric Trucks Deliver at Kansas City Schools Sept. 17 Electric Buses Aug. 21, 2010 Hybrid Electric Shuttle Buses Offer Free Rides in Maryland June 18, 2010
Simulating ideal assistive devices to reduce the metabolic cost of walking with heavy loads.
Dembia, Christopher L; Silder, Amy; Uchida, Thomas K; Hicks, Jennifer L; Delp, Scott L
2017-01-01
Wearable robotic devices can restore and enhance mobility. There is growing interest in designing devices that reduce the metabolic cost of walking; however, designers lack guidelines for which joints to assist and when to provide the assistance. To help address this problem, we used musculoskeletal simulation to predict how hypothetical devices affect muscle activity and metabolic cost when walking with heavy loads. We explored 7 massless devices, each providing unrestricted torque at one degree of freedom in one direction (hip abduction, hip flexion, hip extension, knee flexion, knee extension, ankle plantarflexion, or ankle dorsiflexion). We used the Computed Muscle Control algorithm in OpenSim to find device torque profiles that minimized the sum of squared muscle activations while tracking measured kinematics of loaded walking without assistance. We then examined the metabolic savings provided by each device, the corresponding device torque profiles, and the resulting changes in muscle activity. We found that the hip flexion, knee flexion, and hip abduction devices provided greater metabolic savings than the ankle plantarflexion device. The hip abduction device had the greatest ratio of metabolic savings to peak instantaneous positive device power, suggesting that frontal-plane hip assistance may be an efficient way to reduce metabolic cost. Overall, the device torque profiles generally differed from the corresponding net joint moment generated by muscles without assistance, and occasionally exceeded the net joint moment to reduce muscle activity at other degrees of freedom. Many devices affected the activity of muscles elsewhere in the limb; for example, the hip flexion device affected muscles that span the ankle joint. Our results may help experimentalists decide which joint motions to target when building devices and can provide intuition for how devices may interact with the musculoskeletal system. The simulations are freely available online, allowing others to reproduce and extend our work.
Simulating ideal assistive devices to reduce the metabolic cost of walking with heavy loads
Silder, Amy; Uchida, Thomas K.; Hicks, Jennifer L.; Delp, Scott L.
2017-01-01
Wearable robotic devices can restore and enhance mobility. There is growing interest in designing devices that reduce the metabolic cost of walking; however, designers lack guidelines for which joints to assist and when to provide the assistance. To help address this problem, we used musculoskeletal simulation to predict how hypothetical devices affect muscle activity and metabolic cost when walking with heavy loads. We explored 7 massless devices, each providing unrestricted torque at one degree of freedom in one direction (hip abduction, hip flexion, hip extension, knee flexion, knee extension, ankle plantarflexion, or ankle dorsiflexion). We used the Computed Muscle Control algorithm in OpenSim to find device torque profiles that minimized the sum of squared muscle activations while tracking measured kinematics of loaded walking without assistance. We then examined the metabolic savings provided by each device, the corresponding device torque profiles, and the resulting changes in muscle activity. We found that the hip flexion, knee flexion, and hip abduction devices provided greater metabolic savings than the ankle plantarflexion device. The hip abduction device had the greatest ratio of metabolic savings to peak instantaneous positive device power, suggesting that frontal-plane hip assistance may be an efficient way to reduce metabolic cost. Overall, the device torque profiles generally differed from the corresponding net joint moment generated by muscles without assistance, and occasionally exceeded the net joint moment to reduce muscle activity at other degrees of freedom. Many devices affected the activity of muscles elsewhere in the limb; for example, the hip flexion device affected muscles that span the ankle joint. Our results may help experimentalists decide which joint motions to target when building devices and can provide intuition for how devices may interact with the musculoskeletal system. The simulations are freely available online, allowing others to reproduce and extend our work. PMID:28700630
Air transportation energy consumption - Yesterday, today, and tomorrow
NASA Technical Reports Server (NTRS)
Mascy, A. C.; Williams, L. J.
1975-01-01
The energy consumption by aviation is reviewed and projections of its growth are discussed. Forecasts of domestic passenger demand are presented, and the effect of restricted fuel supply and increased fuel prices is considered. The most promising sources for aircraft fuels, their availability and cost, and possible alternative fuels are reviewed. The energy consumption by various air and surface transportation modes is identified and compared on typical portal-to-portal trips. A measure of the indirect energy consumed by ground and air modes is defined. Historical trends in aircraft energy intensities are presented and the potential fuel savings with new technologies are discussed.
Alternative Fuels Data Center: State Alternative Fuel and Advanced Vehicle
2014 to 2015, the number of tax incentives decreased. Significantly, Georgia repealed its successful tax incentive program. Aside from political and budgetary drivers, the decrease in new tax incentives see their savings more immediately (e.g., rebates, vouchers), rather than waiting until tax season
. . . While Others Conserve Cash by Converting from Gasoline to Propane.
ERIC Educational Resources Information Center
Rasmussen, Scott A.
1988-01-01
Since 1983, when the David Douglas Public Schools (Portland, Oregon) converted 30 buses to propane fuel, the district has saved $75,000 in fuel and maintenance costs. Propane is priced consistently lower than gasoline and burns cleaner. Since propane engines do not require a carburetor, there are fewer maintenance problems. (MLH)
DOT National Transportation Integrated Search
2014-01-01
Reducing the environmental impact of facilities and operations has become an important function for many organizations. In many : cases, such as utility and fuel use, reducing these impacts can also be coupled to financial savings. The Kansas Departm...
Tankering Fuel on U.S. Air Force Transport Aircraft: An Assessment of Cost Savings
2015-01-01
2012, Fort Belvoir, Va., undated-c. As of September 29, 2014 : http://www.energy.dla.mil/library/Pages/Publications.aspx Federal Aviation...1978. ———, Water in Aviation Fuel, AC 20-125, November 12, 1985. Fregnani, Guerreiro, José Alexandre Tavares, Carlos Müller, and Anderson Ribeiro
Alternative Fuels Data Center: Minnesota Transportation Data for
Energy Laboratory Case Studies Video thumbnail for Minnesota School District Finds Cost Savings, Cold Reliability with Propane Buses Jan. 26, 2016 Video thumbnail for Minneapolis Makes EV-Charging History Record Minnesota Videos on YouTube Video thumbnail for GE Showcases Innovation in Alternative Fuel Vehicles GE
Cogeneration Technology Alternatives Study (CTAS) Volume 5: Analytical approach and results
NASA Technical Reports Server (NTRS)
1980-01-01
Data and information in the area of advanced energy conversion systems for industrial cogeneration applications in the 1985 to 2000 time period are provided. Six current and thirty-six advanced energy conversion systems were defined and combined with appropriate balance of plant equipment. Twenty-six industrial processes were selected from among the high energy consuming industries to serve as a framework for the study. Each conversion system was analyzed as a cogenerator with each industrial plant. Fuel consumption, costs, and environmental intrusion were evaluated and compared to corresponding traditional values. Various cogeneration strategies were analyzed and both topping and bottoming (using industrial by-product heat) applications were included. The advanced energy conversion technologies indicated reduced fuel consumption, costs, and emissions. Typically fuel energy savings of 10 to 25 percent were predicted compared to traditional on site furnaces and utility electricity. Gas turbines and combined cycles indicated high overall annual cost savings. Steam turbines and gas turbines produced high estimated returns. In some applications, diesels were most efficient. The advanced technologies used coal derived fuels, or coal with advanced fluid bed combustion or on site gasification systems.
Preliminary engineering analysis for clothes washers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biermayer, Peter J.
1996-10-01
The Engineering Analysis provides information on efficiencies, manufacturer costs, and other characteristics of the appliance class being analyzed. For clothes washers, there are two classes: standard and compact. Since data were not available to analyze the compact class, only clothes washers were analyzed in this report. For this analysis, individual design options were combined and ordered in a manner that resulted in the lowest cumulative cost/savings ratio. The cost/savings ratio is the increase in manufacturer cost for a design option divided by the reduction in operating costs due to fuel and water savings.
History of Significant Vehicle and Fuel Introductions in the United States
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shirk, Matthew; Alleman, Teresa; Melendez, Margo
This is one of a series of reports produced as a result of the Co-Optimization of Fuels & Engines (Co-Optima) project, a Department of Energy (DOE)-sponsored multi-agency project initiated to accelerate the introduction of affordable, scalable, and sustainable biofuels and high-efficiency, low-emission vehicle engines. The simultaneous fuels and vehicles research and development is designed to deliver maximum energy savings, emissions reduction, and on-road performance.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Vehicle Information and Cost Savings Act, as amended, 15 U.S.C. 1901 et seq. (2) Average fuel economy has the meaning given it in section 501(4) of the Act, 15 U.S.C. 2001(4). (3) Fuel economy has the meaning given it in section 501(6) of the Act, 15 U.S.C. 2001(6). (4) Fuel economy data means any measurement or...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Vehicle Information and Cost Savings Act, as amended, 15 U.S.C. 1901 et seq. (2) Average fuel economy has the meaning given it in section 501(4) of the Act, 15 U.S.C. 2001(4). (3) Fuel economy has the meaning given it in section 501(6) of the Act, 15 U.S.C. 2001(6). (4) Fuel economy data means any measurement or...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Vehicle Information and Cost Savings Act, as amended, 15 U.S.C. 1901 et seq. (2) Average fuel economy has the meaning given it in section 501(4) of the Act, 15 U.S.C. 2001(4). (3) Fuel economy has the meaning given it in section 501(6) of the Act, 15 U.S.C. 2001(6). (4) Fuel economy data means any measurement or...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Vehicle Information and Cost Savings Act, as amended, 15 U.S.C. 1901 et seq. (2) Average fuel economy has the meaning given it in section 501(4) of the Act, 15 U.S.C. 2001(4). (3) Fuel economy has the meaning given it in section 501(6) of the Act, 15 U.S.C. 2001(6). (4) Fuel economy data means any measurement or...
Analysis of Multi-Flight Common Routes for Traffic Flow Management
NASA Technical Reports Server (NTRS)
Sheth, Kapil; Clymer, Alexis; Morando, Alex; Shih, Fu-Tai
2016-01-01
This paper presents an approach for creating common weather avoidance reroutes for multiple flights and the associated benefits analysis, which is an extension of the single flight advisories generated using the Dynamic Weather Routes (DWR) concept. These multiple flight advisories are implemented in the National Airspace System (NAS) Constraint Evaluation and Notification Tool (NASCENT), a nation-wide simulation environment to generate time- and fuel-saving alternate routes for flights during severe weather events. These single flight advisories are clustered together in the same Center by considering parameters such as a common return capture fix. The clustering helps propose routes called, Multi-Flight Common Routes (MFCR), that avoid weather and other airspace constraints, and save time and fuel. It is expected that these routes would also provide lower workload for traffic managers and controllers since a common route is found for several flights, and presumably the route clearances would be easier and faster. This study was based on 30-days in 2014 and 2015 each, which had most delays attributed to convective weather. The results indicate that many opportunities exist where individual flight routes can be clustered to fly along a common route to save a significant amount of time and fuel, and potentially reducing the amount of coordination needed.
Aerodynamically-Actuated Radical Shape-Change Concept
NASA Technical Reports Server (NTRS)
Ivanco, Thomas G.; Ivanco, Marie L.; Ancel, Ersin; Grubb, Amanda L.; Prasad, Supranamaaya
2017-01-01
Aerodynamically-actuated radical shape change (AARSC) is a novel concept that enables flight vehicles to conduct a mission profile containing radically different flight regimes while possibly mitigating the typical penalties incurred by radical geometric change. Weight penalties are mitigated by utilizing a primary flight control to generate aerodynamic loads that then drive a shape-change actuation. The flight mission profile used to analyze the AARSC concept is that of a transport aircraft that cruises at a lower altitude than typical transports. Based upon a preliminary analysis, substantial fuel savings are realized for mission ranges below 2000 NM by comparison to a state-of-the-art baseline, with an increasing impact as mission range is reduced. The predicted savings are so significant at short-haul ranges that the shape-change concept rivals the fuel-burn performance of turboprop aircraft while completing missions in less time than typical jet aircraft. Lower-altitude cruise has also been sought after in recent years for environmental benefits, however, the performance penalty to conventional aircraft was prohibitive. AARSC may enable the opportunity to realize the environmental benefits of lower-altitude emissions coupled with mission fuel savings. The findings of this study also reveal that the AARSC concept appears to be controllable, turbulence susceptibility is likely not an issue, and the shape change concept appears to be mechanically and aerodynamically feasible.
2016-09-01
innovative solutions to current problems. One such innovation that could potentially save the Marine Corps money , while increasing its ability to prepare...the Marine Corps money , while increasing its ability to prepare for and conduct its mission, is the use of commercial mobile devices. This research...problems. One such innovation that could potentially save the USMC money , while increasing the ability to prepare for and conduct its mission is the
Fuel cell-fuel cell hybrid system
Geisbrecht, Rodney A.; Williams, Mark C.
2003-09-23
A device for converting chemical energy to electricity is provided, the device comprising a high temperature fuel cell with the ability for partially oxidizing and completely reforming fuel, and a low temperature fuel cell juxtaposed to said high temperature fuel cell so as to utilize remaining reformed fuel from the high temperature fuel cell. Also provided is a method for producing electricity comprising directing fuel to a first fuel cell, completely oxidizing a first portion of the fuel and partially oxidizing a second portion of the fuel, directing the second fuel portion to a second fuel cell, allowing the first fuel cell to utilize the first portion of the fuel to produce electricity; and allowing the second fuel cell to utilize the second portion of the fuel to produce electricity.
NASA Astrophysics Data System (ADS)
Grafton, R. Quentin; Ward, Michael B.; To, Hang; Kompas, Tom
2011-08-01
Household survey data for 10 countries are used to quantify and test the importance of price and nonprice factors on residential water demand and investigate complementarities between household water-saving behaviors and the average volumetric price of water. Results show (1) the average volumetric price of water is an important predictor of differences in residential consumption in models that include household characteristics, water-saving devices, attitudinal characteristics and environmental concerns as explanatory variables; (2) of all water-saving devices, only a low volume/dual-flush toilet has a statistically significant and negative effect on water consumption; and (3) environmental concerns have a statistically significant effect on some self-reported water-saving behaviors. While price-based approaches are espoused to promote economic efficiency, our findings stress that volumetric water pricing is also one of the most effective policy levers available to regulate household water consumption.
NASA Astrophysics Data System (ADS)
Saadon, S.; Abu Talib, A. R.
2016-10-01
Due to energy shortage and global warming, issues of energy saving have become more important. To increase the energy efficiency and reduce the fuel consumption, waste heat recovery is a significant method for energy saving. The organic Rankine cycle (ORC) has great potential to recover the waste heat from the core jet exhaust of a turbofan engine and use it to produce power. Preliminary study of the design concept and thermodynamic performance of this ORC system would assist researchers to predict the benefits of using the ORC system to extract the exhaust heat engine. In addition, a mathematical model of the heat transfer of this ORC system is studied and developed. The results show that with the increment of exhaust heat temperature, the mass flow rate of the working fluid, net power output and the system thermal efficiency will also increase. Consequently, total consumption of jet fuel could be significantly saved as well.
Up Close and Personal: The Value of Feedback in Implementing an Individual Energy-Saving Adaptation
ERIC Educational Resources Information Center
Pollard, Carol Elaine
2016-01-01
Purpose: The purpose of this research is to explore the drivers of computer-related sustainability behavior at a medium-sized US university and the extent to which an inexpensive energy-saving device installed on 146 administrator, faculty and general staff workstations achieved significant savings in kWh, CO[subscript 2] kg and dollars.…
Mission Benefits Analysis of Logistics Reduction Technologies
NASA Technical Reports Server (NTRS)
Ewert, Michael K.; Broyan, James Lee, Jr.
2013-01-01
Future space exploration missions will need to use less logistical supplies if humans are to live for longer periods away from our home planet. Anything that can be done to reduce initial mass and volume of supplies or reuse or recycle items that have been launched will be very valuable. Reuse and recycling also reduce the trash burden and associated nuisances, such as smell, but require good systems engineering and operations integration to reap the greatest benefits. A systems analysis was conducted to quantify the mass and volume savings of four different technologies currently under development by NASA s Advanced Exploration Systems (AES) Logistics Reduction and Repurposing project. Advanced clothing systems lead to savings by direct mass reduction and increased wear duration. Reuse of logistical items, such as packaging, for a second purpose allows fewer items to be launched. A device known as a heat melt compactor drastically reduces the volume of trash, recovers water and produces a stable tile that can be used instead of launching additional radiation protection. The fourth technology, called trash-to-gas, can benefit a mission by supplying fuel such as methane to the propulsion system. This systems engineering work will help improve logistics planning and overall mission architectures by determining the most effective use, and reuse, of all resources.
Mission Benefits Analysis of Logistics Reduction Technologies
NASA Technical Reports Server (NTRS)
Ewert, Michael K.; Broyan, James L.
2012-01-01
Future space exploration missions will need to use less logistical supplies if humans are to live for longer periods away from our home planet. Anything that can be done to reduce initial mass and volume of supplies or reuse or recycle items that have been launched will be very valuable. Reuse and recycling also reduce the trash burden and associated nuisances, such as smell, but require good systems engineering and operations integration to reap the greatest benefits. A systems analysis was conducted to quantify the mass and volume savings of four different technologies currently under development by NASA fs Advanced Exploration Systems (AES) Logistics Reduction and Repurposing project. Advanced clothing systems lead to savings by direct mass reduction and increased wear duration. Reuse of logistical items, such as packaging, for a second purpose allows fewer items to be launched. A device known as a heat melt compactor drastically reduces the volume of trash, recovers water and produces a stable tile that can be used instead of launching additional radiation protection. The fourth technology, called trash ]to ]supply ]gas, can benefit a mission by supplying fuel such as methane to the propulsion system. This systems engineering work will help improve logistics planning and overall mission architectures by determining the most effective use, and reuse, of all resources.
Study of effects of injector geometry on fuel-air mixing and combustion
NASA Technical Reports Server (NTRS)
Bangert, L. H.; Roach, R. L.
1977-01-01
An implicit finite-difference method has been developed for computing the flow in the near field of a fuel injector as part of a broader study of the effects of fuel injector geometry on fuel-air mixing and combustion. Detailed numerical results have been obtained for cases of laminar and turbulent flow without base injection, corresponding to the supersonic base flow problem. These numerical results indicated that the method is stable and convergent, and that significant savings in computer time can be achieved, compared with explicit methods.
Energy-Saving Traffic Scheduling in Hybrid Software Defined Wireless Rechargeable Sensor Networks
Wei, Yunkai; Ma, Xiaohui; Yang, Ning; Chen, Yijin
2017-01-01
Software Defined Wireless Rechargeable Sensor Networks (SDWRSNs) are an inexorable trend for Wireless Sensor Networks (WSNs), including Wireless Rechargeable Sensor Network (WRSNs). However, the traditional network devices cannot be completely substituted in the short term. Hybrid SDWRSNs, where software defined devices and traditional devices coexist, will last for a long time. Hybrid SDWRSNs bring new challenges as well as opportunities for energy saving issues, which is still a key problem considering that the wireless chargers are also exhaustible, especially in some rigid environment out of the main supply. Numerous energy saving schemes for WSNs, or even some works for WRSNs, are no longer suitable for the new features of hybrid SDWRSNs. To solve this problem, this paper puts forward an Energy-saving Traffic Scheduling (ETS) algorithm. The ETS algorithm adequately considers the new characters in hybrid SDWRSNs, and takes advantage of the Software Defined Networking (SDN) controller’s direct control ability on SDN nodes and indirect control ability on normal nodes. The simulation results show that, comparing with traditional Minimum Transmission Energy (MTE) protocol, ETS can substantially improve the energy efficiency in hybrid SDWRSNs for up to 20–40% while ensuring feasible data delay. PMID:28914816
Energy-Saving Traffic Scheduling in Hybrid Software Defined Wireless Rechargeable Sensor Networks.
Wei, Yunkai; Ma, Xiaohui; Yang, Ning; Chen, Yijin
2017-09-15
Software Defined Wireless Rechargeable Sensor Networks (SDWRSNs) are an inexorable trend for Wireless Sensor Networks (WSNs), including Wireless Rechargeable Sensor Network (WRSNs). However, the traditional network devices cannot be completely substituted in the short term. Hybrid SDWRSNs, where software defined devices and traditional devices coexist, will last for a long time. Hybrid SDWRSNs bring new challenges as well as opportunities for energy saving issues, which is still a key problem considering that the wireless chargers are also exhaustible, especially in some rigid environment out of the main supply. Numerous energy saving schemes for WSNs, or even some works for WRSNs, are no longer suitable for the new features of hybrid SDWRSNs. To solve this problem, this paper puts forward an Energy-saving Traffic Scheduling (ETS) algorithm. The ETS algorithm adequately considers the new characters in hybrid SDWRSNs, and takes advantage of the Software Defined Networking (SDN) controller's direct control ability on SDN nodes and indirect control ability on normal nodes. The simulation results show that, comparing with traditional Minimum Transmission Energy (MTE) protocol, ETS can substantially improve the energy efficiency in hybrid SDWRSNs for up to 20-40% while ensuring feasible data delay.
METHOD AND APPARATUS FOR HANDLING RADIOACTIVE PRODUCTS
Nicoll, D.
1959-02-24
A device is described for handling fuel elements being discharged from a nuclear reactor. The device is adapted to be disposed beneath a reactor within the storage canal for spent fuel elements. The device is comprised essentially of a cylinder pivotally mounted to a base for rotational motion between a vertical position. where the mouth of the cylinder is in the top portion of the container for receiving a fuel element discharged from a reactor into the cylinder, and a horizontal position where the mouth of the cylinder is remote from the top portion of the container and the fuel element is discharged from the cylinder into the storage canal. The device is operated by hydraulic pressure means and is provided with a means to prevent contaminated primary liquid coolant in the reactor system from entering the storage canal with the spent fuel element.
Strong, Tough Glass Composites Developed for Solid Oxide Fuel Cell Seals
NASA Technical Reports Server (NTRS)
Bansal, Narottam P.; Choi, Sung R.
2005-01-01
A fuel cell is an electrochemical device that continuously converts the chemical energy of a fuel directly into electrical energy. It consists of an electrolyte, an anode, and a cathode. Various types of fuel cells are available, such as direct methanol fuel cells, alkaline fuel cells, proton-exchange-membrane fuel cells, phosphoric acid fuel cells, molten carbonate fuel cells, and solid oxide fuel cells (SOFCs). The salient features of an SOFC are all solid construction and high-temperature electrochemical-reaction-based operation, resulting in clean, efficient power generation from a variety of fuels. SOFCs are being developed for a broad range of applications, such as portable electronic devices, automobiles, power generation, and aeronautics.
Real Time Energy Management Control Strategies for Hybrid Powertrains
NASA Astrophysics Data System (ADS)
Zaher, Mohamed Hegazi Mohamed
In order to improve fuel efficiency and reduce emissions of mobile vehicles, various hybrid power-train concepts have been developed over the years. This thesis focuses on embedded control of hybrid powertrain concepts for mobile vehicle applications. Optimal robust control approach is used to develop a real time energy management strategy for continuous operations. The main idea is to store the normally wasted mechanical regenerative energy in energy storage devices for later usage. The regenerative energy recovery opportunity exists in any condition where the speed of motion is in opposite direction to the applied force or torque. This is the case when the vehicle is braking, decelerating, or the motion is driven by gravitational force, or load driven. There are three main concepts for regernerative energy storing devices in hybrid vehicles: electric, hydraulic, and flywheel. The real time control challenge is to balance the system power demand from the engine and the hybrid storage device, without depleting the energy storage device or stalling the engine in any work cycle, while making optimal use of the energy saving opportunities in a given operational, often repetitive cycle. In the worst case scenario, only engine is used and hybrid system completely disabled. A rule based control is developed and tuned for different work cycles and linked to a gain scheduling algorithm. A gain scheduling algorithm identifies the cycle being performed by the machine and its position via GPS, and maps them to the gains.
Automatic voltage imbalance detector
Bobbett, Ronald E.; McCormick, J. Byron; Kerwin, William J.
1984-01-01
A device for indicating and preventing damage to voltage cells such as galvanic cells and fuel cells connected in series by detecting sequential voltages and comparing these voltages to adjacent voltage cells. The device is implemented by using operational amplifiers and switching circuitry is provided by transistors. The device can be utilized in battery powered electric vehicles to prevent galvanic cell damage and also in series connected fuel cells to prevent fuel cell damage.
NASA Technical Reports Server (NTRS)
Bochem, J. H.; Mossman, D. C.; Lanier, P. D.
1977-01-01
The feasibility of incorporating optimal concepts into a practical system was determined. Various earlier theoretical analyses were confirmed, and insight was gained into the sensitivity of fuel conservation strategies to nonlinear and second order aerodynamic and engine characteristics. In addition to the investigation of optimal trajectories the study ascertained combined fuel savings by utilizing various procedure-oriented improvements such as delayed flap/decelerating approaches and great circle navigation.
Building a Business Case for Compressed Natural Gas in Fleet Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitchell, G.
2015-03-19
Natural gas is a clean-burning, abundant, and domestically produced source of energy. Compressed natural gas (CNG) has recently garnered interest as a transportation fuel because of these attributes and because of its cost savings and price stability compared to conventional petroleum fuels. The National Renewable Energy Laboratory (NREL) developed the Vehicle Infrastructure and Cash-Flow Evaluation (VICE) model to help businesses and fleets evaluate the financial soundness of CNG vehicle and CNG fueling infrastructure projects.
NASA Technical Reports Server (NTRS)
1986-01-01
Coal slurries are "clean" pulverized coal mixed with oil or water. Significant fuel savings can be realized when using coal slurries. Advanced Fuels Technology (AFT) utilized a COSMIC program, (Calculation of Complex Chemical Equilibrium Compositions), which provides specific capabilities for determining combustion products. The company has developed a cleaning process that removes much of the mineral sulphur and ash from the coals.
Alternative Fuels Data Center: Saving Fuel in the Garden State with Truck
. " Chuck Feinberg, Coordinator New Jersey Clean Cities Coalition Long-haul truck drivers throughout ," said Chuck Feinberg of the New Jersey Clean Cities Coalition (NJCCC). The Garden State has two major sites--one in the northern part of the state, at the New Jersey Turnpike's Vince Lombardi Travel
Alternative Fuels Data Center: Idle Reduction Related Links
and the windshield free of snow and ice for hours without idling. Bergstrom, Inc. Bergstrom more than 12 hours of idle-free temperature control, while also providing: fuel savings (up to 2,500 configurations. Idle Free Systems, Inc. Idle Free Systems, Inc. is a provider of year-round idle elimination
Alternative Fuels Data Center: Indiana Sanitation Department Plans to
Money With Propane Vans Feb. 1, 2014 Photo of a school bus Michigan Transports Students in Hybrid Natural Gas School Buses Help Kansas City Save Money Nov. 12, 2011 Metropolitan Utilities District Fuels Electric Shuttle Buses Offer Free Rides in Maryland June 18, 2010 Fisher Coachworks Develops Plug-In
Alternative Fuels Data Center: Natural Gas Delivery Vans Support McShan
FloristA> Natural Gas Delivery Vans Support McShan Florist to someone by E-mail Share Alternative Natural Gas Delivery Vans Support McShan Florist Watch how a Dallas, Texas, florist reduces emissions and saves money fueling delivery vans with compressed natural gas. For information about this project
DOT National Transportation Integrated Search
2014-01-01
Reducing the environmental impact of facilities and operations has become an important function for many organizations. In many cases, such as utility and fuel use, reducing these impacts can also be coupled to financial savings. The Kansas Departmen...
Alternative Fuels Data Center: Tennessee Transportation Data for
Atlas from the National Renewable Energy Laboratory Case Studies Video thumbnail for Idle Reduction Videos Text Version More Tennessee Videos on YouTube Video thumbnail for Natural Gas Vehicles Make a ://www.youtube.com/embed/sQDKR_c-NZo Video thumbnail for National Park Saves Natural Resources with Alternative Fuels
Thermally-Constrained Fuel-Optimal ISS Maneuvers
NASA Technical Reports Server (NTRS)
Bhatt, Sagar; Svecz, Andrew; Alaniz, Abran; Jang, Jiann-Woei; Nguyen, Louis; Spanos, Pol
2015-01-01
Optimal Propellant Maneuvers (OPMs) are now being used to rotate the International Space Station (ISS) and have saved hundreds of kilograms of propellant over the last two years. The savings are achieved by commanding the ISS to follow a pre-planned attitude trajectory optimized to take advantage of environmental torques. The trajectory is obtained by solving an optimal control problem. Prior to use on orbit, OPM trajectories are screened to ensure a static sun vector (SSV) does not occur during the maneuver. The SSV is an indicator that the ISS hardware temperatures may exceed thermal limits, causing damage to the components. In this paper, thermally-constrained fuel-optimal trajectories are presented that avoid an SSV and can be used throughout the year while still reducing propellant consumption significantly.
ECASTAR: Energy conservation. An assessment of systems, technologies and requirements
NASA Technical Reports Server (NTRS)
1975-01-01
A methodology was presented for a systems approach to energy conservation actions and their potentials and impacts in the United States. Constraints affecting the approach were ranked, and the most important ones are the present economic and technical conditions. The following unresolved issues were identified: consumptive lifestyles vs. conservation ethic, environmental standards vs. energy conservation, capital availability, decentralization and vertical integration vs. centralization, fuel rich regions vs. fuel poor regions, supply vs. end use conservation, life cycle costing vs. initial cost, mandatory savings vs. voluntary savings, labor intensive vs. capital intensive, price control vs. free market. The following recommendations were made: provide action/impact assessment, establish regional energy centers, improve technology articulation with government, design total energy systems, utilize existing systems approach expertise.
Fuel-cell engine stream conditioning system
DuBose, Ronald Arthur
2002-01-01
A stream conditioning system for a fuel cell gas management system or fuel cell engine. The stream conditioning system manages species potential in at least one fuel cell reactant stream. A species transfer device is located in the path of at least one reactant stream of a fuel cell's inlet or outlet, which transfer device conditions that stream to improve the efficiency of the fuel cell. The species transfer device incorporates an exchange media and a sorbent. The fuel cell gas management system can include a cathode loop with the stream conditioning system transferring latent and sensible heat from an exhaust stream to the cathode inlet stream of the fuel cell; an anode humidity retention system for maintaining the total enthalpy of the anode stream exiting the fuel cell related to the total enthalpy of the anode inlet stream; and a cooling water management system having segregated deionized water and cooling water loops interconnected by means of a brazed plate heat exchanger.
Dampers, reclaimers and pumps - oh my!
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, D.; Wyatt, E.
1997-07-01
Residential energy retrofitters often hear much hype about new products designed to increased the efficiency of domestic water heating. This article examines how much energy these devices really save and how they save it. Topics covered include the following: nonelectronic flue dampers; recovering heat from wastewater; water that`s neither hear not there, the demand pump which improves continuous recirculation of water; cost savings. 1 fig.
Comparative effectiveness of the SNaP™ Wound Care System.
Hutton, David W; Sheehan, Peter
2011-04-01
Diabetic lower extremity wounds cause substantial burden to healthcare systems, costing tens of thousands of dollars per episode. Negative pressure wound therapy (NPWT) devices have been shown to be cost-effective at treating these wounds, but the traditional devices use bulky electrical pumps that require a durable medical equipment rental-based procurement process. The Spiracur SNaP™ Wound Care System is an ultraportable NPWT system that does not use an electric pump and is fully disposable. It has superior healing compared to standard of care with modern dressings and comparable healing to traditional NPWT devices while giving patients greater mobility and giving clinicians a simpler procurement process. We used a mathematical model to analyse the costs of the SNaP™ system and compare them to standard of care and electrically powered NPWT devices. When compared to standard of care, the SNaP™ system saves over $9000 per wound treated and more than doubles the number of patients healed. The SNaP system has similar healing time to powered NPWT devices, but saves $2300 in Medicare payments or $2800 for private payers per wound treated. Our analysis shows that the SNaP™ system could save substantial treatment costs in addition to allowing patients greater freedom and mobility. © 2011 The Authors. © 2011 Blackwell Publishing Ltd and Medicalhelplines.com Inc.
ONU Power Saving Scheme for EPON System
NASA Astrophysics Data System (ADS)
Mukai, Hiroaki; Tano, Fumihiko; Tanaka, Masaki; Kozaki, Seiji; Yamanaka, Hideaki
PON (Passive Optical Network) achieves FTTH (Fiber To The Home) economically, by sharing an optical fiber among plural subscribers. Recently, global climate change has been recognized as a serious near term problem. Power saving techniques for electronic devices are important. In PON system, the ONU (Optical Network Unit) power saving scheme has been studied and defined in XG-PON. In this paper, we propose an ONU power saving scheme for EPON. Then, we present an analysis of the power reduction effect and the data transmission delay caused by the ONU power saving scheme. According to the analysis, we propose an efficient provisioning method for the ONU power saving scheme which is applicable to both of XG-PON and EPON.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2017-03-01
Hybrid utility trucks, with auxiliary power sources for on-board equipment, significantly reduce unnecessary idling resulting in fuel costs savings, less engine wear, and reduction in noise and emissions.
76 FR 30243 - Minimum Security Devices and Procedures
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-24
... DEPARTMENT OF THE TREASURY Office of Thrift Supervision Minimum Security Devices and Procedures.... Title of Proposal: Minimum Security Devices and Procedures. OMB Number: 1550-0062. Form Number: N/A. Description: The requirement that savings associations establish a written security program is necessitated by...
Automated procedures for sizing aerospace vehicle structures /SAVES/
NASA Technical Reports Server (NTRS)
Giles, G. L.; Blackburn, C. L.; Dixon, S. C.
1972-01-01
Results from a continuing effort to develop automated methods for structural design are described. A system of computer programs presently under development called SAVES is intended to automate the preliminary structural design of a complete aerospace vehicle. Each step in the automated design process of the SAVES system of programs is discussed, with emphasis placed on use of automated routines for generation of finite-element models. The versatility of these routines is demonstrated by structural models generated for a space shuttle orbiter, an advanced technology transport,n hydrogen fueled Mach 3 transport. Illustrative numerical results are presented for the Mach 3 transport wing.
System and method for networking electrochemical devices
Williams, Mark C.; Wimer, John G.; Archer, David H.
1995-01-01
An improved electrochemically active system and method including a plurality of electrochemical devices, such as fuel cells and fluid separation devices, in which the anode and cathode process-fluid flow chambers are connected in fluid-flow arrangements so that the operating parameters of each of said plurality of electrochemical devices which are dependent upon process-fluid parameters may be individually controlled to provide improved operating efficiency. The improvements in operation include improved power efficiency and improved fuel utilization in fuel cell power generating systems and reduced power consumption in fluid separation devices and the like through interstage process fluid parameter control for series networked electrochemical devices. The improved networking method includes recycling of various process flows to enhance the overall control scheme.
Maya-Cornejo, J; Ortiz-Ortega, E; Álvarez-Contreras, L; Arjona, N; Guerra-Balcázar, M; Ledesma-García, J; Arriaga, L G
2015-02-14
A membraneless nanofluidic fuel cell with flow-through electrodes that works with several fuels (individually or mixed): methanol, ethanol, glycerol and ethylene-glycol in alkaline media is presented. For this application, an efficient Cu@Pd electrocatalyst was synthesized and tested, resulting outstanding performance until now reported, opening the possibility of power nano-devices for multi-uses purposes, regardless of fuel re-charge employed.
Micro hollow cathode discharge jets utilizing solid fuel
NASA Astrophysics Data System (ADS)
Nikic, Dejan
2017-10-01
Micro hollow cathode discharge devices with a solid fuel layer embedded between the electrodes have demonstrated an enhanced jetting process. Outlined are series of experiments in various pressure and gas conditions as well as vacuum. Examples of use of these devices in series and parallel configurations are presented. Evidence of utilization of solid fuel is obtained through optical spectroscopy and analysis of remaining fuel layer.
Scheffer, Karl D.
1984-07-03
Air is caused to flow through the resin bonded mold to aid combustion of the resin binder to form a low BTU gas fuel. Casting heat is recovered for use in a waste heat boiler or other heat abstraction equipment. Foundry air pollution is reduced, the burned portion of the molding sand is recovered for immediate reuse and savings in fuel and other energy is achieved.
Scheffer, K.D.
1984-07-03
Air is caused to flow through the resin bonded mold to aid combustion of the resin binder to form a low Btu gas fuel. Casting heat is recovered for use in a waste heat boiler or other heat abstraction equipment. Foundry air pollutis reduced, the burned portion of the molding sand is recovered for immediate reuse and savings in fuel and other energy is achieved. 5 figs.
Fuel conservation through active control of rotor clearances
NASA Technical Reports Server (NTRS)
Beitler, R. S.; Saunders, A. A.; Wanger, R. P.
1980-01-01
Under the NASA-sponsored Energy Efficient Engine (EEE) Project, technology is being developed which will significantly reduce the fuel consumption of turbofan engines for subsonic transport aircraft. One technology concept being pursued is active control of rotor tip clearances. Attention is given to rotor tip clearance considerations and an overview of preliminary study results as well as the General Electric EEE clearance control approach is presented. Finally, potential fuel savings with active control of rotor clearances for a typical EEE mission are predicted.
Cost-effectiveness of reducing sulfur emissions from ships.
Wang, Chengfeng; Corbett, James J; Winebrake, James J
2007-12-15
We model cost-effectiveness of control strategies for reducing SO2 emissions from U.S. foreign commerce ships traveling in existing European or hypothetical U.S. West Coast SO(x) Emission Control Areas (SECAs) under international maritime regulations. Variation among marginal costs of control for individual ships choosing between fuel-switching and aftertreatment reveals cost-saving potential of economic incentive instruments. Compared to regulations prescribing low sulfur fuels, a performance-based policy can save up to $260 million for these ships with 80% more emission reductions than required because least-cost options on some individual ships outperform standards. Optimal simulation of a market-based SO2 control policy for approximately 4,700 U.S. foreign commerce ships traveling in the SECAs in 2002 shows that SECA emissions control targets can be achieved by scrubbing exhaust gas of one out of ten ships with annual savings up to $480 million over performance-based policy. A market-based policy could save the fleet approximately $63 million annually under our best-estimate scenario. Spatial evaluation of ship emissions reductions shows that market-based instruments can reduce more SO2 closer to land while being more cost-effective for the fleet. Results suggest that combining performance requirements with market-based instruments can most effectively control SO2 emissions from ships.
Laadan, Oren; Nieh, Jason; Phung, Dan
2012-10-02
Methods, media and systems for managing a distributed application running in a plurality of digital processing devices are provided. In some embodiments, a method includes running one or more processes associated with the distributed application in virtualized operating system environments on a plurality of digital processing devices, suspending the one or more processes, and saving network state information relating to network connections among the one or more processes. The method further include storing process information relating to the one or more processes, recreating the network connections using the saved network state information, and restarting the one or more processes using the stored process information.
NASA Astrophysics Data System (ADS)
Kim, Jung-Hun; Choi, Jung-Eun; Choi, Bong-Jun; Chung, Seok-Ho; Seo, Heung-Won
2015-06-01
Energy-saving devices for 317K VLCC have been developed from a propulsion standpoint. Two ESD candidates were designed via computational tools. The first device WAFon composes of flow-control fins adapted for the ship wake to reduce the loss of rotational energy. The other is WAFon-D, which is a WAFon with a duct to obtain additional thrust and to distribute the inflow velocity on the propeller plane uniform. After selecting the candidates from the computed results, the speed performances were validated with model-tests. The hydrodynamic characteristics of the ESDs may be found in improved hull and propulsive efficiencies through increased wake fraction.
Reducing CO2 emissions and energy consumption of heat-integrated distillation systems.
Gadalla, Mamdouh A; Olujic, Zarko; Jansens, Peter J; Jobson, Megan; Smith, Robin
2005-09-01
Distillation systems are energy and power intensive processes and contribute significantly to the greenhouse gases emissions (e.g. carbon dioxide). Reducing CO2 emissions is an absolute necessity and expensive challenge to the chemical process industries in orderto meetthe environmental targets as agreed in the Kyoto Protocol. A simple model for the calculation of CO2 emissions from heat-integrated distillation systems is introduced, considering typical process industry utility devices such as boilers, furnaces, and turbines. Furnaces and turbines consume large quantities of fuels to provide electricity and process heats. As a result, they produce considerable amounts of CO2 gas to the atmosphere. Boilers are necessary to supply steam for heating purposes; besides, they are also significant emissions contributors. The model is used in an optimization-based approach to optimize the process conditions of an existing crude oil atmospheric tower in order to reduce its CO2 emissions and energy demands. It is also applied to generate design options to reduce the emissions from a novel internally heat-integrated distillation column (HIDiC). A gas turbine can be integrated with these distillation systems for larger emissions reduction and further energy savings. Results show that existing crude oil installations can save up to 21% in energy and 22% in emissions, when the process conditions are optimized. Additionally, by integrating a gas turbine, the total emissions can be reduced further by 48%. Internal heat-integrated columns can be a good alternative to conventional heat pump and other energy intensive close boiling mixtures separations. Energy savings can reach up to 100% with respect to reboiler heat requirements. Emissions of these configurations are cut down by up to 83%, compared to conventional units, and by 36%, with respect to heat pump alternatives. Importantly, cost savings and more profit are gained in parallel to emissions minimization.
Evaluation of advanced lift concepts and fuel conservative short-haul aircraft, volume 1
NASA Technical Reports Server (NTRS)
Renshaw, J. H.; Bowden, M. K.; Narucki, C. W.; Bennett, J. A.; Smith, P. R.; Ferrill, R. S.; Randall, C. C.; Tibbetts, J. G.; Patterson, R. W.; Meyer, R. T.
1974-01-01
The performance and economics of a twin-engine augmentor wing airplane were evaluated in two phases. Design aspects of the over-the-wing/internally blown flap hybrid, augmentor wing, and mechanical flap aircraft were investigated for 910 m. field length with parametric extension to other field lengths. Fuel savings achievable by application of advanced lift concepts to short-haul aircraft were evaluated and the effect of different field lengths, cruise requirements, and noise levels on fuel consumption and airplane economics at higher fuel prices were determined. Conclusions and recommendations are presented.
Modeling fuel treatment impacts on fire suppression cost savings: A review
Matthew P. Thompson; Nathaniel M. Anderson
2015-01-01
High up-front costs and uncertain return on investment make it difficult for land managers to economically justify large-scale fuel treatments, which remove trees and other vegetation to improve conditions for fire control, reduce the likelihood of ignition, or reduce potential damage from wildland fire if it occurs. In the short-term, revenue from harvested forest...
Alternative Fuels Data Center: Emergency Alternatives
Magazine Provided by Maryland Public Television Related Videos Photo of a car Hydrogen Powers Fuel Cell Vehicles in California Nov. 18, 2017 Photo of a car Smart Car Shopping Nov. 4, 2017 Photo of a truck Natural Gas Vehicles Make a Difference in Tennessee Oct. 28, 2017 Photo of a truck National Park Saves
Alternative Fuels Data Center: School Buses Go Green in Virginia
Gloucester County Public Schools put five Blue Bird propane school buses on the road. Funds from EPA and VDEQ October 2009 to November 2010, the five buses saved almost $7,000 in fuel and maintenance costs and could see, touch, and ride propane buses. And now, Gloucester's success is helping to make the case for
NASA Technical Reports Server (NTRS)
Nainiger, J. J.; Burns, R. K.; Easley, A. J.
1982-01-01
A performance and operational economics analysis is presented for an integrated-gasifier, combined-cycle (IGCC) system to meet the steam and baseload electrical requirements. The effect of time variations in steam and electrial requirements is included. The amount and timing of electricity purchases from sales to the electric utility are determined. The resulting expenses for purchased electricity and revenues from electricity sales are estimated by using an assumed utility rate structure model. Cogeneration results for a range of potential IGCC cogeneration system sizes are compared with the fuel consumption and costs of natural gas and electricity to meet requirements without cogeneration. The results indicate that an IGCC cogeneration system could save about 10 percent of the total fuel energy presently required to supply steam and electrical requirements without cogeneration. Also for the assumed future fuel and electricity prices, an annual operating cost savings of 21 percent to 26 percent could be achieved with such a cogeneration system. An analysis of the effects of electricity price, fuel price, and system availability indicates that the IGCC cogeneration system has a good potential for economical operation over a wide range in these assumptions.
Trim drag reduction concepts for horizontal takeoff single-stage-to-Orbit vehicles
NASA Technical Reports Server (NTRS)
Shaughnessy, John D.; Gregory, Irene M.
1991-01-01
The results of a study to investigate concepts for minimizing trim drag of horizontal takeoff single-stage-to-orbit (SSTO) vehicles are presented. A generic hypersonic airbreathing conical configuration was used as the subject aircraft. The investigation indicates that extreme forward migration of the aerodynamic center as the vehicle accelerates to orbital velocities causes severe aerodynamic instability and trim moments that must be counteracted. Adequate stability can be provided by active control of elevons and rudder, but use of elevons to produce trim moments results in excessive trim drag and fuel consumption. To alleviate this problem, two solution concepts are examined. Active control of the center of gravity (COG) location to track the aerodynamic center decreases trim moment requirements, reduces elevon deflections, and leads to significant fuel savings. Active control of the direction of the thrust vector produces required trim moments, reduces elevon deflections, and also results in significant fuel savings. It is concluded that the combination of active flight control to provide stabilization, (COG) position control to minimize trim moment requirements, and thrust vectoring to generate required trim moments has the potential to significantly reduce fuel consumption during ascent to orbit of horizontal takeoff SSTO vehicles.
NASA Technical Reports Server (NTRS)
1979-01-01
The relative attractiveness of various hybrid/electric power train configurations and electrical and mechanical drive-line components was studied. The initial screening was concerned primarily with total vehicle weight and economic factors and identified the hybrid power train combinations which warranted detailed evaluation over various driving cycles. This was done using a second-by-second vehicle simulation program which permitted the calculations of fuel economy, electricity usage, and emissions as a function of distance traveled in urban and highway driving. Power train arrangement possibilities were examined in terms of their effect on vehicle handling, safety, serviceability, and passenger comfort. A dc electric drive system utilizing a separately excited motor with field control and battery switching was selected for the near term hybrid vehicle. Hybrid vehicle simulations showed that for the first 30 mi (the electric range of the vehicle) in urban driving, the fuel economy was 80 mpg using a gasoline engine and 100 mpg using a diesel engine. In urban driving the hybrid would save about 75% of the fuel used by the conventional vehicle and in combined urban/highway driving the fuel saving is about 50%.
Cogeneration Technology Alternatives Study (CTAS). Volume 3: Industrial processes
NASA Technical Reports Server (NTRS)
Palmer, W. B.; Gerlaugh, H. E.; Priestley, R. R.
1980-01-01
Cogenerating electric power and process heat in single energy conversion systems rather than separately in utility plants and in process boilers is examined in terms of cost savings. The use of various advanced energy conversion systems are examined and compared with each other and with current technology systems for their savings in fuel energy, costs, and emissions in individual plants and on a national level. About fifty industrial processes from the target energy consuming sectors were used as a basis for matching a similar number of energy conversion systems that are considered as candidate which can be made available by the 1985 to 2000 time period. The sectors considered included food, textiles, lumber, paper, chemicals, petroleum, glass, and primary metals. The energy conversion systems included steam and gas turbines, diesels, thermionics, stirling, closed cycle and steam injected gas turbines, and fuel cells. Fuels considered were coal, both coal and petroleum based residual and distillate liquid fuels, and low Btu gas obtained through the on site gasification of coal. An attempt was made to use consistent assumptions and a consistent set of ground rules specified by NASA for determining performance and cost. Data and narrative descriptions of the industrial processes are given.
The benefits of grid-scale storage on Oahu
Ellison, James F.; Rashkin, Lee J.; Serio, Joseph; ...
2017-12-23
The Hawaiian Electric Company intends to procure grid-scale Battery Energy Storage System (“BESS”) capacity. The purpose of this study is to determine whether providing contingency reserve or time-of-day shifting is of more benefit to the Oahu grid, and to better understand the relationship between BESS size and level of benefit. This is an independent study by Sandia, and is not being used to support the regulatory case for BESS capacity by Hawaiian Electric. The study team created a production cost model of the Oahu grid using data primarily from the Hawaiian Electric Company. The proposed BESS supplied contingency reserve inmore » one set of runs and time-of-day shifting in another. Supplying contingency reserve led to larger savings than time-of-day energy shifting. Assuming a renewable reserve and a quick-start reserve, and $15/MMBtu for Low-Sulphur Fuel Oil, the 50-MW/25-MWh, 100-MW/50-MWh, and 150-MW/75-MWh systems supplying contingency reserve provided, respectively, savings of 9.6, 15.6, and 18.3 million USD over system year 2018. Over the range of fuel prices tested, these cost savings were found to be directly proportional to the cost of fuel. Lastly, as the focus is the operational benefit of BESS capacity, the capacity value of the BESS was not included in benefit calculations.« less
NASA Technical Reports Server (NTRS)
Keitz, J. F.
1982-01-01
The impact of more timely and accurate weather data on airline flight planning with the emphasis on fuel savings is studied. This summary report discusses the results of each of the four major tasks of the study. Task 1 compared airline flight plans based on operational forecasts to plans based on the verifying analyses and found that average fuel savings of 1.2 to 2.5 percent are possible with improved forecasts. Task 2 consisted of similar comparisons but used a model developed for the FAA by SRI International that simulated the impact of ATc diversions on the flight plans. While parts of Task 2 confirm the Task I findings, inconsistency with other data and the known impact of ATC suggests that other Task 2 findings are the result of errors in the model. Task 3 compares segment weather data from operational flight plans with the weather actually observed by the aircraft and finds the average error could result in fuel burn penalties (or savings) of up to 3.6 percent for the average 8747 flight. In Task 4 an in-depth analysis of the weather forecast for the 33 days included in the study finds that significant errors exist on 15 days. Wind speeds in the area of maximum winds are underestimated by 20 to 50 kts., a finding confirmed in the other three tasks.
The benefits of grid-scale storage on Oahu
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ellison, James F.; Rashkin, Lee J.; Serio, Joseph
The Hawaiian Electric Company intends to procure grid-scale Battery Energy Storage System (“BESS”) capacity. The purpose of this study is to determine whether providing contingency reserve or time-of-day shifting is of more benefit to the Oahu grid, and to better understand the relationship between BESS size and level of benefit. This is an independent study by Sandia, and is not being used to support the regulatory case for BESS capacity by Hawaiian Electric. The study team created a production cost model of the Oahu grid using data primarily from the Hawaiian Electric Company. The proposed BESS supplied contingency reserve inmore » one set of runs and time-of-day shifting in another. Supplying contingency reserve led to larger savings than time-of-day energy shifting. Assuming a renewable reserve and a quick-start reserve, and $15/MMBtu for Low-Sulphur Fuel Oil, the 50-MW/25-MWh, 100-MW/50-MWh, and 150-MW/75-MWh systems supplying contingency reserve provided, respectively, savings of 9.6, 15.6, and 18.3 million USD over system year 2018. Over the range of fuel prices tested, these cost savings were found to be directly proportional to the cost of fuel. Lastly, as the focus is the operational benefit of BESS capacity, the capacity value of the BESS was not included in benefit calculations.« less
Optimization to reduce fuel consumption in charge depleting mode
Roos, Bryan Nathaniel; Martini, Ryan D.
2014-08-26
A powertrain includes an internal combustion engine, a motor utilizing electrical energy from an energy storage device, and a plug-in connection. A Method for controlling the powertrain includes monitoring a fuel cut mode, ceasing a fuel flow to the engine based upon the fuel cut mode, and through a period of operation including acceleration of the powertrain, providing an entirety of propelling torque to the powertrain with the electrical energy from the energy storage device based upon the fuel cut mode.
Trim Transportation Fuel Costs.
ERIC Educational Resources Information Center
Black, J. Dickson
1982-01-01
The change from gasoline power to compressed natural gas for 34 school buses in Bentonville (Arkansas) has saved the school district money, reduced its maintenance needs, and increased bus safety. (MLF)
Code of Federal Regulations, 2012 CFR
2012-10-01
... OF TRANSPORTATION PASSENGER AUTOMOBILE AVERAGE FUEL ECONOMY STANDARDS § 531.1 Scope. This part... Information and Cost Savings Act, as amended, for passenger automobiles. [43 FR 28204, June 29, 1978] ...
Code of Federal Regulations, 2011 CFR
2011-10-01
... OF TRANSPORTATION PASSENGER AUTOMOBILE AVERAGE FUEL ECONOMY STANDARDS § 531.1 Scope. This part... Information and Cost Savings Act, as amended, for passenger automobiles. [43 FR 28204, June 29, 1978] ...
Code of Federal Regulations, 2010 CFR
2010-10-01
... OF TRANSPORTATION PASSENGER AUTOMOBILE AVERAGE FUEL ECONOMY STANDARDS § 531.1 Scope. This part... Information and Cost Savings Act, as amended, for passenger automobiles. [43 FR 28204, June 29, 1978] ...
Code of Federal Regulations, 2013 CFR
2013-10-01
... OF TRANSPORTATION PASSENGER AUTOMOBILE AVERAGE FUEL ECONOMY STANDARDS § 531.1 Scope. This part... Information and Cost Savings Act, as amended, for passenger automobiles. [43 FR 28204, June 29, 1978] ...
Code of Federal Regulations, 2014 CFR
2014-10-01
... OF TRANSPORTATION PASSENGER AUTOMOBILE AVERAGE FUEL ECONOMY STANDARDS § 531.1 Scope. This part... Information and Cost Savings Act, as amended, for passenger automobiles. [43 FR 28204, June 29, 1978] ...
ERIC Educational Resources Information Center
Moon, Daniel
2002-01-01
Advises schools on how to establish an automated external defibrillator (AED) program. These laptop-size devices can save victims of sudden cardiac arrest by delivering an electrical shock to return the heartbeat to normal. Discusses establishing standards, developing a strategy, step-by-step advice towards establishing an AED program, and school…
NASA Astrophysics Data System (ADS)
Zhang, Tao; Wang, Qing-Ming
A fuel cell is a device that can convert chemical energy into electricity directly. Among various types of fuel cells, both polymer electrolyte membrane fuel cells (PEMFCs) and direct methanol fuel cells (DMFCs) can work at low temperature (<80 °C). Therefore, they can be used to supply power for commercial portable electronics such as laptop computers, digital cameras, PDAs and cell phones. The focus of this paper is to investigate the performance of a miniaturized DMFC device using a micropump to deliver fuel. The core of this micropump is a piezoelectric ring-type bending actuator and the associated nozzle/diffuser for directing fuel flow. Based on the experimental measurements, it is found that the performance of the fuel cell can be significantly improved if enough fuel flow is induced by the micropump at anode. Three factors may contribute to the performance enhancement including replenishment of methanol, decrease of diffusion resistance and removal of carbon dioxide. In comparison with conventional mini pumps, the size of the piezoelectric micropump is much smaller and the energy consumption is much lower. Thus, it is very viable and effective to use a piezoelectric valveless micropump for fuel delivery in miniaturized DMFC power systems.
Food-related energy requirements.
Hirst, E
1974-04-12
I have used data from input-output studies to determine the quantities of primary and electric energy consumed in the agricultural, processing, transportation, wholesale and retail trade, and household sectors for personal consumption of food. Before one draws conclusions from these results, it is important to note the assumptions and approximations used in this analysis. First, the economic input-output data published by the Department of Commerce are subject to a number of inaccuracies, including lack of complete coverage for an industry, restriction of data for proprietary reasons, and use of different time periods for different data. Second, aggregation can combine within the same sector industries whose energy intensities differ widely. For example, eating and drinking establishments probably consume more energy per dollar of sales (because of refrigerators, stoves, and freezers) than do department stores. However, both types of establishment are included in retail trade. Thus energy use for food-related retail trade may be underestimated because of aggregation. Third, the energy coefficients are subject to error. In particular, the coefficients for the agricultural and trade sectors are vulnerable because energy use within these sectors is not well documented. Finally, the scaling factor used to estimate food-related energy use for the 1960's is approximate, in that it neglects the possibility that these energy coefficients changed differently with time. Because of these limitations, which are described more fully by Herendeen (6), a number of important issues were not addressed here. such as relative energy requirements for fresh, frozen, and canned vegetables; and for soybeans as compared to beef. This analysis shows that the U.S. food cycle consumes a considerable amount of energy, about 12 percent of the total national energy budget. The residential sector, which accounts for 30 percent of the total, is the most energy-intensive sector in terms of energy consumed per dollar of food-related expenditure. This is because food-related expenditures in homes are primarily for fuel to operate kitchen appliances and automobiles. The electricity consumed in these activities constitutes 22 percent of the total amount used in the United States. More than half of the electricity is used in homes, and more than two-thirds in the trade and household sectors. Thus agriculture and processing consume little electricity relative to the total amount used. From past trends, it appears that the amount of energy used in food-related activities will continue to increase at a rate faster than the population, principally because of growing affluence, that is, the use of processed foods, purchase of meals away from home, and the use of kitchen appliances equipped with energy-intensive devices, such as refrigerators with automatic icemakers. However, fuel shortages, rapidly increasing fuel prices, the growing need to import oil, and a host of other problems related to our use of energy suggest that these past trends will not continue. Fortunately, there are many ways to reduce the amounts of energy used for food-related activities. In the home, for example, smaller refrigerators with thicker insulation would use less electricity than do present units. If closer attention were given to the use of ranges and ovens (for example, if oven doors were not opened so often) energy would be saved. Changes in eating habits could also result in energy savings. Greater reliance on vegetable and grain products, rather than meats, for protein would reduce fuel use. Similarly, a reduction in the amounts of heavily processcd foods consumed-TV dinners and frozen desserts-would save energy. Retailers could save energy by using closed freezers to store food and by reducing the amount of lighting they use. Processors could use heat recovery methods, more efficient processes, and less packaging. Shipping more food by train rather than by truck would also cut energy use. Farmers could reduce their fuel use by combining operations (for example, by harrowing, planting, and fertilizing in the same operation), by reducing tillage practices, by increasing thc use of diesel rather than gasoline engines, and by increasing labor inputs. A partial return to organic farming (that is, greater use of animal manure and crop rotation) would save energy because chemical fertilizers require large energy inputs for their production.
40 CFR 610.23 - Operator interaction effects.
Code of Federal Regulations, 2010 CFR
2010-07-01
... degree of sensitivity of device effectiveness to variances in installation, operation and maintenance; (b..., operation and maintenance; (c) The extent to which device installation or use, or the effects of such... between total cost of ownership of the device (purchase price plus maintenance costs) and the cost savings...
40 CFR 65.140 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
... FEDERAL AIR RULE Closed Vent Systems, Control Devices, and Routing to a Fuel Gas System or a Process § 65..., shutdown, and malfunction provisions in § 65.6) apply to routing emissions to processes, fuel gas systems, closed vent systems, control devices, and recovery devices where another subpart expressly references the...
40 CFR 63.1326 - Batch process vents-recordkeeping provisions.
Code of Federal Regulations, 2011 CFR
2011-07-01
...): (i) For an incinerator or non-combustion control device, the percent reduction of organic HAP or TOC... introduced with combustion air or used as a secondary fuel and is not mixed with the primary fuel, the... scrubber or other halogen reduction device following a combustion device to control halogenated batch...
Alternative Fuels Data Center: Case Studies
goal of saving money, reducing its environmental impact, and increasing employees' satisfaction. Learn Legislation Data & Tools Widgets Data Downloads APIs About Project Assistance News & Features Spanish
Starch saccharification and fermentation of uncooked sweet potato roots for fuel ethanol production.
Zhang, Peng; Chen, Caifa; Shen, Yanhu; Ding, Tielin; Ma, Daifu; Hua, Zichun; Sun, Dongxu
2013-01-01
An energy-saving ethanol fermentation technology was developed using uncooked fresh sweet potato as raw material. A mutant strain of Aspergillus niger isolated from mildewed sweet potato was used to produce abundant raw starch saccharification enzymes for treating uncooked sweet potato storage roots. The viscosity of the fermentation paste of uncooked sweet potato roots was lower than that of the cooked roots. The ethanol fermentation was carried out by Zymomonas mobilis, and 14.4 g of ethanol (87.2% of the theoretical yield) was produced from 100g of fresh sweet potato storage roots. Based on this method, an energy-saving, high efficient and environment-friendly technology can be developed for large-scale production of fuel ethanol from sweet potato roots. Copyright © 2012 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rose, David Martin; Schenkman, Benjamin L.; Borneo, Daniel R.
The Department of Energy Office of Electricity (DOE/OE), Sandia National Laboratories (SNL) and the Base Camp Integration Lab (BCIL) partnered together to incorporate an energy storage system into a microgrid configured Forward Operating Base to reduce the fossil fuel consumption and to ultimately save lives. Energy storage vendors will be sending their systems to SNL Energy Storage Test Pad (ESTP) for functional testing and then to the BCIL for performance evaluation. The technologies that will be tested are electro-chemical energy storage systems comprising of lead acid, lithium-ion or zinc-bromide. GS Battery and EPC Power have developed an energy storage systemmore » that utilizes zinc-bromide flow batteries to save fuel on a military microgrid. This report contains the testing results and some limited analysis of performance of the GS Battery, EPC Power HES RESCU.« less
Light Pipe Energy Savings Calculator
NASA Astrophysics Data System (ADS)
Owens, Erin; Behringer, Ernest R.
2009-04-01
Dependence on fossil fuels is unsustainable and therefore a shift to renewable energy sources such as sunlight is required. Light pipes provide a way to utilize sunlight for interior lighting, and can reduce the need for fossil fuel-generated electrical energy. Because consumers considering light pipe installation may be more strongly motivated by cost considerations than by sustainability arguments, an easy means to examine the corresponding costs and benefits is needed to facilitate informed decision-making. The purpose of this American Physical Society Physics and Society Fellowship project is to create a Web-based calculator to allow users to quantify the possible cost savings for their specific light pipe application. Initial calculations show that the illumination provided by light pipes can replace electric light use during the day, and in many cases can supply greater illumination levels than those typically given by electric lighting. While the installation cost of a light pipe is significantly greater than the avoided cost of electricity over the lifetime of the light pipe at current prices, savings may be realized if electricity prices increase.
NASA Technical Reports Server (NTRS)
Bailey, M. M.
1985-01-01
Three alternative power cycles were compared in application as an exhaust-gas heat-recovery system for use with advanced adiabatic diesel engines. The power cycle alternatives considered were steam Rankine, organic Rankine with RC-1 as the working fluid, and variations of an air Brayton cycle. The comparison was made in terms of fuel economy and economic payback potential for heavy-duty trucks operating in line-haul service. The results indicate that, in terms of engine rated specific fuel consumption, a diesel/alternative-power-cycle engine offers a significant improvement over the turbocompound diesel used as the baseline for comparison. The maximum imporvement resulted from the use of a Rankine cycle heat-recovery system in series with turbocompounding. The air Brayton cycle alternatives studied, which included both simple-cycle and compression-intercooled configurations, were less effective and provided about half the fuel consumption improvement of the Rankine cycle alternatives under the same conditions. Capital and maintenance cost estimates were also developed for each of the heat-recovery power cycle systems. These costs were integrated with the fuel savings to identify the time required for net annual savings to pay back the initial capital investment. The sensitivity of capital payback time to arbitrary increases in fuel price, not accompanied by corresponding hardware cost inflation, was also examined. The results indicate that a fuel price increase is required for the alternative power cycles to pay back capital within an acceptable time period.
Time- and cost-saving apparatus for analytical sample filtration
William R. Kenealy; Joseph C. Destree
2005-01-01
Simple and cost-effective protocols were developed for removing particulates from samples prior to analysis by high performance liquid chromatography and gas chromatography. A filter and vial holder were developed for use with a 96-well filtration plate. The device saves preparation time and costs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Engelmeier, R.L.
A technique has been described for fabrication of a radiation therapy stent that can help to stabilize the head when adjustable alignment devices are used to position a patient during radiation therapy. The technique can save time for the radiotherapist, enhance accuracy in treatment, increase patient comfort, and save the dentist time in stent fabrication.
Portable electrocardiogram device using Android smartphone.
Brucal, S G E; Clamor, G K D; Pasiliao, L A O; Soriano, J P F; Varilla, L P M
2016-08-01
Portable electrocardiogram (ECG) capturing device can be interfaced to a smart phone installed with an android-based application (app). This app processes and analyses the data sent by the device to provide an interpretation of the patient/user's heart current condition (e.g.: beats per minute, heart signal waveform, R-R interval). The ECG recorded by the app is stored in the smart phone's Secure Digital (SD) card and cloud storage which can be accessed remotely by a physician to aid in providing medical diagnosis. The project aims to help patients living at a far distance from hospitals and experience difficulty in consulting their physician for regular check-ups, and assist doctors in regularly monitoring their patient's heart condition. The hardware data acquisition device and software application were subjected to trials in a clinic with volunteer-patients to measure the ECG and heart rate, data saving speed on the SD card, success rate of the saved data and uploaded file. Different ECG tests using the project prototype were done for 12 patients/users and yielded a reading difference of 7.61% in an R-R interval reading and 5.35% in heart rate reading as compared with the cardiologist's conventional 12-electrode ECG machine. Using the developed ECG device, it took less than 5 seconds to save ECG reading using SD card and approximately 2 minutes to upload via cloud.
Microfabricated fuel heating value monitoring device
Robinson, Alex L [Albuquerque, NM; Manginell, Ronald P [Albuquerque, NM; Moorman, Matthew W [Albuquerque, NM
2010-05-04
A microfabricated fuel heating value monitoring device comprises a microfabricated gas chromatography column in combination with a catalytic microcalorimeter. The microcalorimeter can comprise a reference thermal conductivity sensor to provide diagnostics and surety. Using microfabrication techniques, the device can be manufactured in production quantities at a low per-unit cost. The microfabricated fuel heating value monitoring device enables continuous calorimetric determination of the heating value of natural gas with a 1 minute analysis time and 1.5 minute cycle time using air as a carrier gas. This device has applications in remote natural gas mining stations, pipeline switching and metering stations, turbine generators, and other industrial user sites. For gas pipelines, the device can improve gas quality during transfer and blending, and provide accurate financial accounting. For industrial end users, the device can provide continuous feedback of physical gas properties to improve combustion efficiency during use.
Emission control devices, fuel additive, and fuel composition changes.
Piver, W T
1977-01-01
Emission control devices are installed to meet the exhaust standards of the Clean Air Act for carbon monoxide and hydrocarbons, and it is necessary to know, from a public health point of view, how exhaust emissions may be affected by changes in fuel additives and fuel composition. Since these topics are concerned with developing technologies, the available literature on exhaust emission characteristics and the limited information on health effects, is reviewed. PMID:71235
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-22
... objective of the rule is to promote utilization of domestic photovoltaic devices under energy savings... 0750-AH43 Defense Federal Acquisition Regulation Supplement; Utilization of Domestic Photovoltaic... Authorization Act for Fiscal Year 2011. The section provides that photovoltaic devices to be utilized in...
Essays in energy, environment and technological change
NASA Astrophysics Data System (ADS)
Zhou, Yichen Christy
This dissertation studies technological change in the context of energy and environmental economics. Technology plays a key role in reducing greenhouse gas emissions from the transportation sector. Chapter 1 estimates a structural model of the car industry that allows for endogenous product characteristics to investigate how gasoline taxes, R&D subsidies and competition affect fuel efficiency and vehicle prices in the medium-run, both through car-makers' decisions to adopt technologies and through their investments in knowledge capital. I use technology adoption and automotive patents data for 1986-2006 to estimate this model. I show that 92% of fuel efficiency improvements between 1986 and 2006 were driven by technology adoption, while the role of knowledge capital is largely to reduce the marginal production costs of fuel-efficient cars. A counterfactual predicts that an additional 1/gallon gasoline tax in 2006 would have increased the technology adoption rate, and raised average fuel efficiency by 0.47 miles/gallon, twice the annual fuel efficiency improvement in 2003-2006. An R&D subsidy that would reduce the marginal cost of knowledge capital by 25% in 2006 would have raised investment in knowledge capital. This subsidy would have raised fuel efficiency only by 0.06 miles/gallon in 2006, but would have increased variable profits by 2.3 billion over all firms that year. Passenger vehicle fuel economy standards in the United States will require substantial improvements in new vehicle fuel economy over the next decade. Economic theory suggests that vehicle manufacturers adopt greater fuel-saving technologies for vehicles with larger market size. Chapter 2 documents a strong connection between market size, measured by sales, and technology adoption. Using variation consumer demographics and purchasing pattern to account for the endogeneity of market size, we find that a 10 percent increase in market size raises vehicle fuel efficiency by 0.3 percent, as compared to a mean improvement of 1.4 percent per year over 1997-2013. Historically, fuel price and demographic-driven market size changes have had large effects on technology adoption. Furthermore, fuel taxes would induce firms to adopt fuel-saving technologies on their most efficient cars, thereby polarizing the fuel efficiency distribution of the new vehicle fleet.
ERIC Educational Resources Information Center
BRI Systems, Inc., Phoenix, AZ.
This handbook offers a practical approach for pupil transportation energy management by suggesting ideas to save fuel in the purchasing, planning, routing, scheduling, driving, and maintenance areas of the pupil transportation operation. The handbook is divided into seven parts. Part 1 and 2 provide insight into energy management in pupil…
Ejector device for direct injection fuel jet
Upatnieks, Ansis [Livermore, CA
2006-05-30
Disclosed is a device for increasing entrainment and mixing in an air/fuel zone of a direct fuel injection system. The device comprises an ejector nozzle in the form of an inverted funnel whose central axis is aligned along the central axis of a fuel injector jet and whose narrow end is placed just above the jet outlet. It is found that effective ejector performance is achieved when the ejector geometry is adjusted such that it comprises a funnel whose interior surface diverges about 7.degree. to about 9.degree. away from the funnel central axis, wherein the funnel inlet diameter is about 2 to about 3 times the diameter of the injected fuel plume as the fuel plume reaches the ejector inlet, and wherein the funnel length equal to about 1 to about 4 times the ejector inlet diameter. Moreover, the ejector is most effectively disposed at a separation distance away from the fuel jet equal to about 1 to about 2 time the ejector inlet diameter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2004-05-01
In an energy-efficiency study at its refinery near Salt Lake City, Utah, Chevron focused on light hydrocarbons processing. The company found it could recover hydrocarbons from its fuel gas system and sell them. By using process simulation models of special distillation columns and associated reboilers and condensers, Chevron could predict the performance of potential equipment configuration changes and process modifications. More than 25,000 MMBtu in natural gas could be saved annually if a debutanizer upgrade project and a new saturated gas plant project were completed. Together, these projects would save $4.4 million annually.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-25
... fuel economy standards in our Nation's history--standards that will save families money at the pump... foundation in science, technology, engineering, and math for every student will help ensure our youth have...
Apparatus and method for burning a lean, premixed fuel/air mixture with low NOx emission
Kostiuk, Larry W.; Cheng, Robert K.
1996-01-01
An apparatus for enabling a burner to stably burn a lean fuel/air mixture. The burner directs the lean fuel/air mixture in a stream. The apparatus comprises an annular flame stabilizer; and a device for mounting the flame stabilizer in the fuel/air mixture stream. The burner may include a body having an internal bore, in which case, the annular flame stabilizer is shaped to conform to the cross-sectional shape of the bore, is spaced from the bore by a distance greater than about 0.5 mm, and the mounting device mounts the flame stabilizer in the bore. An apparatus for burning a gaseous fuel with low NOx emissions comprises a device for premixing air with the fuel to provide a lean fuel/air mixture; a nozzle having an internal bore through which the lean fuel/air mixture passes in a stream; and a flame stabilizer mounted in the stream of the lean fuel/air mixture. The flame stabilizer may be mounted in the internal bore, in which case, it is shaped and is spaced from the bore as just described. In a method of burning a lean fuel/air mixture, a lean fuel/air mixture is provided, and is directed in a stream; an annular eddy is created in the stream of the lean fuel/air mixture; and the lean fuel/air mixture is ignited at the eddy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGrath, W.J.; McNamara, M.M.
1981-10-01
The New York City Police Department (NYCPD) Automated Fuel Monitoring system is briefly described from the original study, through system design, to implementation. The system provides complete control of fuel usage for an agency with 4,000 motor vehicles and 25,000 vehicle operators. As far as is known, it is the largest system of its kind installed to date. The system can be scaled up or down to meet the needs of other governmental units. Estimated annual cost savings to NYCPD are $2,000,000.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGrath, W.J.; McNamara, M.M.
1981-11-16
The New York City Police Department (NYCPD) Automated Fuel Monitoring system is briefly described from the original study, through system design, to implementation. The system provides complete control of fuel usage for an agency with 4,000 motor vehicles and 25,000 vehicle operators. As far as is known, it is the largest system of its kind installed to date. The system can be scaled up or down to meet the needs of other governmental units. Estimated annual cost savings to NYCPD are $2,000,000.
Improving aircraft energy efficiency
NASA Technical Reports Server (NTRS)
Povinelli, F. P.; Klineberg, J. M.; Kramer, J. J.
1976-01-01
Investigations conducted by a NASA task force concerning the development of aeronautical fuel-conservation technology are considered. The task force estimated the fuel savings potential, prospects for implementation in the civil air-transport fleet, and the impact of the technology on air-transport fuel use. Propulsion advances are related to existing engines in the fleet, to new production of current engine types, and to new engine designs. Studies aimed at the evolutionary improvement of aerodynamic design and a laminar flow control program are discussed and possibilities concerning the use of composite structural materials are examined.
Marina, Olga A [Richland, WA; Stevenson, Jeffry W [Richland, WA
2010-03-02
The present invention provides novel compositions that find advantageous use in making electrodes for electrochemical cells and electrochemical devices such as solid oxide fuel cells, electrolyzers, sensors, pumps and the like, the compositions comprising cerium-modified doped strontium titanate. The invention also provides novel methods for making and using anode material compositions and solid oxide fuel cells and solid oxide fuel cell assemblies having anodes comprising the compositions.
Marina, Olga A [Richland, WA; Stevenson, Jeffry W [Richland, WA
2010-11-23
The present invention provides novel compositions that find advantageous use in making electrodes for electrochemical cells and electrochemical devices such as solid oxide fuel cells, electrolyzers, sensors, pumps and the like, the compositions comprising cerium-modified doped strontium titanate. The invention also provides novel methods for making and using anode material compositions and solid oxide fuel cells and solid oxide fuel cell assemblies having anodes comprising the compositions.
The role of lithium batteries in modern health care
NASA Astrophysics Data System (ADS)
Holmes, Curtis F.
Since the implantation of the first lithium-powered pacemaker in 1972, biomedical devices powered by lithium batteries have played a significant role in saving lives and providing health-improving therapy. Today a wide variety of devices performing functions from managing cardiac rhythm to relieving pain and administering drugs is available to clinicians. Newer devices such as ventricular assist devices and implantable hearing devices are powered by lithium ion secondary batteries.
Huang, Runze; Riddle, Matthew; Graziano, Diane; ...
2015-05-08
Additive manufacturing (AM) holds great potential for improving materials efficiency, reducing life-cycle impacts, and enabling greater engineering functionality compared to conventional manufacturing (CM) processes. For these reasons, AM has been adopted by a growing number of aircraft component manufacturers to achieve more lightweight, cost-effective designs. This study estimates the net changes in life-cycle primary energy and greenhouse gas emissions associated with AM technologies for lightweight metallic aircraft components through the year 2050, to shed light on the environmental benefits of a shift from CM to AM processes in the U.S. aircraft industry. A systems modeling framework is presented, with integratesmore » engineering criteria, life-cycle environmental data, and aircraft fleet stock and fuel use models under different AM adoption scenarios. Estimated fleetwide life-cycle primary energy savings in a rapid adoption scenario reach 70-174 million GJ/year in 2050, with cumulative savings of 1.2-2.8 billion GJ. Associated cumulative emission reduction potentials of CO2e were estimated at 92.8-217.4 million metric tons. About 95% of the savings is attributed to airplane fuel consumption reductions due to lightweighting. In addition, about 4050 tons aluminum, 7600 tons titanium and 8100 tons of nickel alloys could be saved per year in 2050. The results indicate a significant role of AM technologies in helping society meet its long-term energy use and GHG emissions reduction goals, and highlight barriers and opportunities for AM adoption for the aircraft industry.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Runze; Riddle, Matthew; Graziano, Diane
Additive manufacturing (AM) holds great potential for improving materials efficiency, reducing life-cycle impacts, and enabling greater engineering functionality compared to conventional manufacturing (CM) processes. For these reasons, AM has been adopted by a growing number of aircraft component manufacturers to achieve more lightweight, cost-effective designs. This study estimates the net changes in life-cycle primary energy and greenhouse gas emissions associated with AM technologies for lightweight metallic aircraft components through the year 2050, to shed light on the environmental benefits of a shift from CM to AM processes in the U.S. aircraft industry. A systems modeling framework is presented, with integratesmore » engineering criteria, life-cycle environmental data, and aircraft fleet stock and fuel use models under different AM adoption scenarios. Estimated fleetwide life-cycle primary energy savings in a rapid adoption scenario reach 70-174 million GJ/year in 2050, with cumulative savings of 1.2-2.8 billion GJ. Associated cumulative emission reduction potentials of CO2e were estimated at 92.8-217.4 million metric tons. About 95% of the savings is attributed to airplane fuel consumption reductions due to lightweighting. In addition, about 4050 tons aluminum, 7600 tons titanium and 8100 tons of nickel alloys could be saved per year in 2050. The results indicate a significant role of AM technologies in helping society meet its long-term energy use and GHG emissions reduction goals, and highlight barriers and opportunities for AM adoption for the aircraft industry.« less
Li, Xiaoyi; Liang, Renrong; Tao, Juan; Peng, Zhengchun; Xu, Qiming; Han, Xun; Wang, Xiandi; Wang, Chunfeng; Zhu, Jing; Pan, Caofeng; Wang, Zhong Lin
2017-04-25
Due to the fragility and the poor optoelectronic performances of Si, it is challenging and exciting to fabricate the Si-based flexible light-emitting diode (LED) array devices. Here, a flexible LED array device made of Si microwires-ZnO nanofilm, with the advantages of flexibility, stability, lightweight, and energy savings, is fabricated and can be used as a strain sensor to demonstrate the two-dimensional pressure distribution. Based on piezo-phototronic effect, the intensity of the flexible LED array can be increased more than 3 times (under 60 MPa compressive strains). Additionally, the device is stable and energy saving. The flexible device can still work well after 1000 bending cycles or 6 months placed in the atmosphere, and the power supplied to the flexible LED array is only 8% of the power of the surface-contact LED. The promising Si-based flexible device has wide range application and may revolutionize the technologies of flexible screens, touchpad technology, and smart skin.
Testing of a De Nora polymer electrolyte fuel cell stack of 1 kW for naval applications
NASA Astrophysics Data System (ADS)
Schmal, D.; Kluiters, C. E.; Barendregt, I. P.
In a previous study calculations were carried out for a navy frigate with respect to the energy consumption of a propulsion/electricity generation system based on fuel cells. The fuel consumption for the 'all-fuel cell' ship was compared with the consumption of the current propulsion/electricity generation system based on gas turbines and diesel engines; it showed potential energy savings of a fuel cell based system amounting from 25 to 30%. On the basis of these results and taking into account various military aspects it was decided to start tests with a polymer electrolyte fuel cell (PEFC) stack. For this purpose a De Nora 1 kW PEFC was chosen. Results of the first tests after installation are satisfying.
Proton Exchange Membrane Fuel Cells for Electrical Power Generation On-Board Commercial Airplanes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pratt, Joesph W.; Klebanoff, Leonard E.; Munoz-Ramos, Karina
2011-05-01
Deployed on a commercial airplane, proton exchange membrane fuel cells may offer emissions reductions, thermal efficiency gains, and enable locating the power near the point of use. This work seeks to understand whether on-board fuel cell systems are technically feasible, and, if so, if they offer a performance advantage for the airplane as a whole. Through hardware analysis and thermodynamic and electrical simulation, we found that while adding a fuel cell system using today’s technology for the PEM fuel cell and hydrogen storage is technically feasible, it will not likely give the airplane a performance benefit. However, when we re-didmore » the analysis using DOE-target technology for the PEM fuel cell and hydrogen storage, we found that the fuel cell system would provide a performance benefit to the airplane (i.e., it can save the airplane some fuel), depending on the way it is configured.« less
Proton exchange membrane fuel cells for electrical power generation on-board commercial airplanes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curgus, Dita Brigitte; Munoz-Ramos, Karina; Pratt, Joseph William
2011-05-01
Deployed on a commercial airplane, proton exchange membrane fuel cells may offer emissions reductions, thermal efficiency gains, and enable locating the power near the point of use. This work seeks to understand whether on-board fuel cell systems are technically feasible, and, if so, if they offer a performance advantage for the airplane as a whole. Through hardware analysis and thermodynamic and electrical simulation, we found that while adding a fuel cell system using today's technology for the PEM fuel cell and hydrogen storage is technically feasible, it will not likely give the airplane a performance benefit. However, when we re-didmore » the analysis using DOE-target technology for the PEM fuel cell and hydrogen storage, we found that the fuel cell system would provide a performance benefit to the airplane (i.e., it can save the airplane some fuel), depending on the way it is configured.« less
40 CFR 266.109 - Low risk waste exemption.
Code of Federal Regulations, 2012 CFR
2012-07-01
... of fuel fired to the device shall be fossil fuel, fuels derived from fossil fuel, tall oil, or, if... comparable to fossil fuel. Such fuels are termed “primary fuel” for purposes of this section. (Tall oil is a...
40 CFR 266.109 - Low risk waste exemption.
Code of Federal Regulations, 2014 CFR
2014-07-01
... of fuel fired to the device shall be fossil fuel, fuels derived from fossil fuel, tall oil, or, if... comparable to fossil fuel. Such fuels are termed “primary fuel” for purposes of this section. (Tall oil is a...
40 CFR 266.109 - Low risk waste exemption.
Code of Federal Regulations, 2011 CFR
2011-07-01
... of fuel fired to the device shall be fossil fuel, fuels derived from fossil fuel, tall oil, or, if... comparable to fossil fuel. Such fuels are termed “primary fuel” for purposes of this section. (Tall oil is a...
40 CFR 266.109 - Low risk waste exemption.
Code of Federal Regulations, 2010 CFR
2010-07-01
... of fuel fired to the device shall be fossil fuel, fuels derived from fossil fuel, tall oil, or, if... comparable to fossil fuel. Such fuels are termed “primary fuel” for purposes of this section. (Tall oil is a...
40 CFR 266.109 - Low risk waste exemption.
Code of Federal Regulations, 2013 CFR
2013-07-01
... of fuel fired to the device shall be fossil fuel, fuels derived from fossil fuel, tall oil, or, if... comparable to fossil fuel. Such fuels are termed “primary fuel” for purposes of this section. (Tall oil is a...
Locking support for nuclear fuel assemblies
Ledin, Eric
1980-01-01
A locking device for supporting and locking a nuclear fuel assembly within a cylindrical bore formed by a support plate, the locking device including a support and locking sleeve having upwardly extending fingers forming wedge shaped contact portions arranged for interaction between an annular tapered surface on the fuel assembly and the support plate bore as well as downwardly extending fingers having wedge shaped contact portions arranged for interaction between an annularly tapered surface on the support plate bore and the fuel assembly whereby the sleeve tends to support and lock the fuel assembly in place within the bore by its own weight while facilitating removal and/or replacement of the fuel assembly.
NASA Astrophysics Data System (ADS)
Smith, Amanda D.
Combined heat and power (CHP) systems produce electricity and useful heat from fuel. When power is produced near a building which consumes power, transmission losses are averted, and heat which is a byproduct of power production may be useful to the building. That thermal energy can be used for hot water or space heating, among other applications. This dissertation focuses on CHP systems using natural gas, a common fuel, and systems serving commercial buildings in the United States. First, the necessary price difference between purchased electricity and purchased fuel is analyzed in terms of the efficiencies of system components by comparing CHP with a conventional separate heat and power (SHP) configuration, where power is purchased from the electrical grid and heat is provided by a gas boiler. Similarly, the relationship between CDE due to electricity purchases and due to fuel purchases is analyzed as well as the relationship between primary energy conversion factors for electricity and fuel. The primary energy conversion factor indicates the quantity of source energy necessary to produce the energy purchased at the site. Next, greenhouse gas emissions are investigated for a variety of commercial buildings using CHP or SHP. The relationship between the magnitude of the reduction in emissions and the parameters of the CHP system is explored. The cost savings and reduction in primary energy consumption are evaluated for the same buildings. Finally, a CHP system is analyzed with the addition of a thermal energy storage (TES) component, which can store excess thermal energy and deliver it later if necessary. The potential for CHP with TES to reduce cost, emissions, and primary energy consumption is investigated for a variety of buildings. A case study is developed for one building for which TES does provide additional benefits over a CHP system alone, and the requirements for a water tank TES device are examined.
Development of combined low-emissions burner devices for low-power boilers
NASA Astrophysics Data System (ADS)
Roslyakov, P. V.; Proskurin, Yu. V.; Khokhlov, D. A.
2017-08-01
Low-power water boilers are widely used for autonomous heat supply in various industries. Firetube and water-tube boilers of domestic and foreign manufacturers are widely represented on the Russian market. However, even Russian boilers are supplied with licensed foreign burner devices, which reduce their competitiveness and complicate operating conditions. A task of developing efficient domestic low-emissions burner devices for low-power boilers is quite acute. A characteristic property of ignition and fuel combustion in such boilers is their flowing in constrained conditions due to small dimensions of combustion chambers and flame tubes. These processes differ significantly from those in open combustion chambers of high-duty power boilers, and they have not been sufficiently studied yet. The goals of this paper are studying the processes of ignition and combustion of gaseous and liquid fuels, heat and mass transfer and NO x emissions in constrained conditions, and the development of a modern combined low-emissions 2.2 MW burner device that provides efficient fuel combustion. A burner device computer model is developed and numerical studies of its operation on different types of fuel in a working load range from 40 to 100% of the nominal are carried out. The main features of ignition and combustion of gaseous and liquid fuels in constrained conditions of the flame tube at nominal and decreased loads are determined, which differ fundamentally from the similar processes in steam boiler furnaces. The influence of the burner devices design and operating conditions on the fuel underburning and NO x formation is determined. Based on the results of the design studies, a design of the new combined low-emissions burner device is proposed, which has several advantages over the prototype.
Energy: Conservation, Energy Briefs
ERIC Educational Resources Information Center
Nation's Schools and Colleges, 1975
1975-01-01
A comprehensive energy conservation program at College of the Holy Cross has saved nearly one-third of the fuel oil and one-fifth of the electricity used at the college; briefs on boilers, lights, design. (Author/MLF)
The Importance of Powertrain Downsizing in a Benefit-Cost Analysis of Vehicle Lightweighting
NASA Astrophysics Data System (ADS)
Ward, J.; Gohlke, D.; Nealer, R.
2017-04-01
Reducing vehicle weight is an important avenue to improve energy efficiency and decrease greenhouse gas emissions from our cars and trucks. Conventionally, models have estimated acceptable increased manufacturing cost as proportional to the lifetime fuel savings associated with reduced vehicle weight. Vehicle lightweighting also enables a decrease in powertrain size and significant reductions in powertrain cost. Accordingly, we propose and apply a method for calculating the maximum net benefits and breakeven cost of vehicle lightweighting that considers both efficiency and powertrain downsizing for a conventional internal combustion engine vehicle, a battery electric vehicle with a range of 300 miles (BEV300), and a fuel cell electric vehicle (FCEV). We find that excluding powertrain downsizing cost savings undervalues the potential total net benefits of vehicle lightweighting, especially for the BEV300 and FCEV.
Test report : Raytheon / KTech RK30 Energy Storage System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rose, David Martin; Schenkman, Benjamin L.; Borneo, Daniel R.
2013-10-01
The Department of Energy Office of Electricity (DOE/OE), Sandia National Laboratories (SNL) and the Base Camp Integration Lab (BCIL) partnered together to incorporate an energy storage system into a microgrid configured Forward Operating Base to reduce the fossil fuel consumption and to ultimately save lives. Energy storage vendors will be sending their systems to SNL Energy Storage Test Pad (ESTP) for functional testing and then to the BCIL for performance evaluation. The technologies that will be tested are electro-chemical energy storage systems comprising of lead acid, lithium-ion or zinc-bromide. Raytheon/KTech has developed an energy storage system that utilizes zinc-bromide flowmore » batteries to save fuel on a military microgrid. This report contains the testing results and some limited analysis of performance of the Raytheon/KTech Zinc-Bromide Energy Storage System.« less
Air transportation energy efficiency - Alternatives and implications
NASA Technical Reports Server (NTRS)
Williams, L. J.
1976-01-01
Results from recent studies of air transportation energy efficiency alternatives are discussed, along with some of the implications of these alternatives. The fuel-saving alternatives considered include aircraft operation, aircraft modification, derivative aircraft, and new aircraft. In the near-term, energy efficiency improvements should be possible through small improvements in fuel-saving flight procedures, higher density seating, and higher load factors. Additional small near-term improvements could be obtained through aircraft modifications, such as the relatively inexpensive drag reduction modifications. Derivatives of existing aircraft could meet the requirements for new aircraft and provide energy improvements until advanced technology is available to justify the cost of a completely new design. In order to obtain significant improvements in energy efficiency, new aircraft must truly exploit advanced technology in such areas as aerodynamics, composite structures, active controls, and advanced propulsion.
Aircraft Photovoltaic Power-Generating System.
NASA Astrophysics Data System (ADS)
Doellner, Oscar Leonard
Photovoltaic cells, appropriately cooled and operating in the combustion-created high radiant-intensity environment of gas-turbine and jet engines, may replace the conventional (gearbox-driven) electrical power generators aboard jet aircraft. This study projects significant improvements not only in aircraft electrical power-generating-system performance, but also in overall aircraft performance. Jet -engine design modifications incorporating this concept not only save weight (and thus fuel), but are--in themselves --favorable to jet-engine performance. The dissertation concentrates on operational, constructional, structural, thermal, optical, radiometrical, thin-film, and solid-state theoretical aspects of the overall project. This new electrical power-generating system offers solid-state reliability with electrical power-output capability comparable to that of existing aircraft electromechanical power-generating systems (alternators and generators). In addition to improvements in aircraft performance, significant aircraft fuel- and weight-saving advantages are projected.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burton, E.; Wang, L.; Gonder, J.
This presentation discusses the fuel savings potential from future in-motion wireless power transfer. There is an extensive overlap in road usage apparent across regional vehicle population, which occurs primarily on high-capacity roads--1% of roads are used for 25% of the vehicle miles traveled. Interstates and highways make up between 2.5% and 4% of the total roads within the Consolidated Statistical Areas (CSAs), which represent groupings of metropolitan and/or micropolitan statistical areas. Mileage traveled on the interstates and highways ranges from 54% in California to 24% in Chicago. Road electrification could remove range restrictions of electric vehicles and increase the fuelmore » savings of PHEVs or HEVs if implemented on a large scale. If 1% of the road miles within a geographic area are electrified, 25% of the fuel used by a 'fleet' of vehicles enabled with the technology could be displaced.« less
Alternative Fuels Data Center: Equipment Options for E85 Fueling Systems
equipment includes an overfill protection device, a leak detection device, shear valves, fill and vapor caps protection, leak detection, shear valves, fill and vapor caps, adaptors, containment sumps, and all
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davidsmeier, T.; Koehl, R.; Lanham, R.
2008-07-15
The current design and fabrication process for RERTR fuel plates utilizes film radiography during the nondestructive testing and characterization. Digital radiographic methods offer a potential increases in efficiency and accuracy. The traditional and digital radiographic methods are described and demonstrated on a fuel plate constructed with and average of 51% by volume fuel using the dispersion method. Fuel loading data from each method is analyzed and compared to a third baseline method to assess accuracy. The new digital method is shown to be more accurate, save hours of work, and provide additional information not easily available in the traditional method.more » Additional possible improvements suggested by the new digital method are also raised. (author)« less
The Design of Connection Solid Oxide Fuel Cell (SOFC) Integrated Grid with Three-Phase Inverter
NASA Astrophysics Data System (ADS)
Darjat; Sulistyo; Triwiyatno, Aris; Thalib, Humaid
2018-03-01
Fuel cell technology is a relatively new energy-saving technology that has the potential to replace conventional energy technologies. Among the different types of generation technologies, fuel cells is the generation technologies considered as a potential source of power generation because it is flexible and can be placed anywhere based distribution system. Modeling of SOFC is done by using Nernst equation. The output power of the fuel cell can be controlled by controlling the flow rate of the fuels used in the process. Three-phase PWM inverter is used to get the form of three-phase voltage which same with the grid. In this paper, the planning and design of the SOFC are connected to the grid.
Alternate aircraft fuels: Prospects and operational implications
NASA Technical Reports Server (NTRS)
Witcofski, R. D.
1977-01-01
The potential use of coal-derived aviation fuels was assessed. The studies addressed the prices and thermal efficiencies associated with the production of coal-derived aviation kerosene, liquid methane and liquid hydrogen and the air terminal requirements and subsonic transport performance when utilizing liquid hydrogen. The fuel production studies indicated that liquid methane can be produced at a lower price and with a higher thermal efficiency than aviation kerosene or liquid hydrogen. Ground facilities of liquefaction, storage, distribution and refueling of liquid hydrogen fueled aircraft at airports appear technically feasibile. The aircraft studies indicate modest onboard energy savings for hydrogen compared to conventional fuels. Liquid hydrogen was found to be superior to both aviation kerosene and liquid methane from the standpoint of aircraft engine emissions.
Split-personality transmission: shifts like an automatic, saves fuel like a manual
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scott, D.
1981-11-01
The design, operation and performance of a British-invented automatic transmission which claims to result in fuel economy valves equal to those attained with manual shifts are described. Developed for both 4-speed and 6-speed transmissions, this transmission uses standard parts made for existing manual transmissions, rearranges the gear pairings, and relies on a microcomputer to pick the optimal shift points according to load requirements. (LCL)
USSR Report, International Affairs
1986-10-07
the comprehensive utilization of coal and devel- opment of improved methods assuring a more effective use of low-quality coals, low- calory lignites...promising trend of the joint activity in this sphere. Thus, cyclone furnaces for burning low-quality fuel and fuel wastes save up to 10-20 per cent of...structure of the developing countries should be refined and made concrete and we should move from studying particular classes and strata to a comprehensive
Energy Efficient Engine integrated core/low spool design and performance report
NASA Technical Reports Server (NTRS)
Stearns, E. Marshall
1985-01-01
The Energy Efficient Engine (E3) is a NASA program to create fuel saving technology for future transport aircraft engines. The E3 technology advancements were demonstrated to operate reliably and achieve goal performance in tests of the Integrated Core/Low Spool vehicle. The first build of this undeveloped technology research engine set a record for low fuel consumption. Its design and detailed test results are herein presented.
Rieke, Peter C [Pasco, WA; Coffey, Gregory W [Richland, WA; Pederson, Larry R [Kennewick, WA; Marina, Olga A [Richland, WA; Hardy, John S [Richland, WA; Singh, Prabhaker [Richland, WA; Thomsen, Edwin C [Richland, WA
2010-07-20
The present invention provides novel compositions that find advantageous use in making electrodes for electrochemical cells. Also provided are electrochemical devices that include active oxygen reduction electrodes, such as solid oxide fuel cells, sensors, pumps and the like. The compositions comprises a copper-substituted ferrite perovskite material. The invention also provides novel methods for making and using the electrode compositions and solid oxide fuel cells and solid oxide fuel cell assemblies having cathodes comprising the compositions.
Fuel cells for low power applications
NASA Astrophysics Data System (ADS)
Heinzel, A.; Hebling, C.; Müller, M.; Zedda, M.; Müller, C.
Electronic devices show an ever-increasing power demand and thus, require innovative concepts for power supply. For a wide range of power and energy capacity, membrane fuel cells are an attractive alternative to conventional batteries. The main advantages are the flexibility with respect to power and capacity achievable with different devices for energy conversion and energy storage, the long lifetime and long service life, the good ecological balance, very low self-discharge. Therefore, the development of fuel cell systems for portable electronic devices is an attractive, although also a challenging, goal. The fuel for a membrane fuel cell might be hydrogen from a hydride storage system or methanol/water as a liquid alternative. The main differences between the two systems are the much higher power density for hydrogen fuel cells, the higher energy density per weight for the liquid fuel, safety aspects and infrastructure for fuel supply for hydride materials. For different applications, different system designs are required. High power cells are required for portable computers, low power methanol fuel cells required for mobile phones in hybrid systems with batteries and micro-fuel cells are required, e.g. for hand held PCs in the sub-Watt range. All these technologies are currently under development. Performance data and results of simulations and experimental investigations will be presented.
Scientific Inquiry into Home Electronic Technology Usage
ERIC Educational Resources Information Center
Lazaros, Edward J.; Spotts, Thomas H.; Verdon, Jessica E.
2010-01-01
This activity promotes ways to save electricity in the home. Students identify electronic devices in the home and examine wattage, hours of use per month, estimated wattage per month, kilowatt hours per month, average retail price per kilowatt hour in each state, and the estimated cost per month. Students gain an appreciation for how saving power…
Early decision-analytic modeling - a case study on vascular closure devices.
Brandes, Alina; Sinner, Moritz F; Kääb, Stefan; Rogowski, Wolf H
2015-10-27
As economic considerations become more important in healthcare reimbursement, decisions about the further development of medical innovations need to take into account not only medical need and potential clinical effectiveness, but also cost-effectiveness. Already early in the innovation process economic evaluations can support decisions on development in specific indications or patient groups by anticipating future reimbursement and implementation decisions. One potential concept for early assessment is value-based pricing. The objective is to assess the feasibility of value-based pricing and product design for a hypothetical vascular closure device in the pre-clinical stage which aims at decreasing bleeding events. A deterministic decision-analytic model was developed to estimate the cost-effectiveness of established vascular closure devices from the perspective of the Statutory Health Insurance system. To identify early benchmarks for pricing and product design, three strategies of determining the product's value are explored: 1) savings from complications avoided by the new device; 2) valuation of the avoided complications based on an assumed willingness-to-pay-threshold (the efficiency frontier approach); 3) value associated with modifying the care pathways within which the device would be applied. Use of established vascular closure devices is dominated by manual compression. The hypothetical vascular closure device reduces overall complication rates at higher costs than manual compression. Maximum cost savings of only about €4 per catheterization could be realized by applying the hypothetical device. Extrapolation of an efficiency frontier is only possible for one subgroup where vascular closure devices are not a dominated strategy. Modifying care in terms of same-day discharge of patients treated with vascular closure devices could result in cost savings of €400-600 per catheterization. It was partially feasible to calculate value-based prices for the novel closure device which can be used to inform product design. However, modifying the care pathway may generate much more value from the payers' perspective than modifying the device per se. Manufacturers should thus explore the feasibility of combining reimbursement of their product with arrangements that make same-day discharge attractive also for hospitals. Due to the early nature of the product, the results are afflicted with substantial uncertainty.
Survey of driver aid devices for improved fuel economy.
DOT National Transportation Integrated Search
1976-11-30
This report presents a brief summarization of available information pertaining to devices offered to aid the driver in improving his driving habits in order to reduce fuel consumption. Principal emphasis is placed on characterizing the available devi...
Impact of Airspace Charges on Transatlantic Aircraft Trajectories
NASA Technical Reports Server (NTRS)
Sridhar, Banavar; Ng, Hok K.; Linke, Florian; Chen, Neil Y.
2015-01-01
Aircraft flying over the airspace of different countries are subject to over-flight charges. These charges vary from country to country. Airspace charges, while necessary to support the communication, navigation and surveillance services, may lead to aircraft flying routes longer than wind-optimal routes and produce additional carbon dioxide and other gaseous emissions. This paper develops an optimal route between city pairs by modifying the cost function to include an airspace cost whenever an aircraft flies through a controlled airspace without landing or departing from that airspace. It is assumed that the aircraft will fly the trajectory at a constant cruise altitude and constant speed. The computationally efficient optimal trajectory is derived by solving a non-linear optimal control problem. The operational strategies investigated in this study for minimizing aircraft fuel burn and emissions include flying fuel-optimal routes and flying cost-optimal routes that may completely or partially reduce airspace charges en route. The results in this paper use traffic data for transatlantic flights during July 2012. The mean daily savings in over-flight charges, fuel cost and total operation cost during the period are 17.6 percent, 1.6 percent, and 2.4 percent respectively, along the cost- optimal trajectories. The transatlantic flights can potentially save $600,000 in fuel cost plus $360,000 in over-flight charges daily by flying the cost-optimal trajectories. In addition, the aircraft emissions can be potentially reduced by 2,070 metric tons each day. The airport pairs and airspace regions that have the highest potential impacts due to airspace charges are identified for possible reduction of fuel burn and aircraft emissions for the transatlantic flights. The results in the paper show that the impact of the variation in fuel price on the optimal routes is to reduce the difference between wind-optimal and cost-optimal routes as the fuel price increases. The additional fuel consumption is quantified using the 30 percent variation in fuel prices during March 2014 to March 2015.
40 CFR 266.110 - Waiver of DRE trial burn for boilers.
Code of Federal Regulations, 2014 CFR
2014-07-01
... percent of fuel fired to the device shall be fossil fuel, fuels derived from fossil fuel, tall oil, or, if... comparable to fossil fuel. Such fuels are termed “primary fuel” for purposes of this section. (Tall oil is a...
40 CFR 266.110 - Waiver of DRE trial burn for boilers.
Code of Federal Regulations, 2010 CFR
2010-07-01
... percent of fuel fired to the device shall be fossil fuel, fuels derived from fossil fuel, tall oil, or, if... comparable to fossil fuel. Such fuels are termed “primary fuel” for purposes of this section. (Tall oil is a...
40 CFR 266.110 - Waiver of DRE trial burn for boilers.
Code of Federal Regulations, 2012 CFR
2012-07-01
... percent of fuel fired to the device shall be fossil fuel, fuels derived from fossil fuel, tall oil, or, if... comparable to fossil fuel. Such fuels are termed “primary fuel” for purposes of this section. (Tall oil is a...
40 CFR 266.110 - Waiver of DRE trial burn for boilers.
Code of Federal Regulations, 2013 CFR
2013-07-01
... percent of fuel fired to the device shall be fossil fuel, fuels derived from fossil fuel, tall oil, or, if... comparable to fossil fuel. Such fuels are termed “primary fuel” for purposes of this section. (Tall oil is a...
40 CFR 266.110 - Waiver of DRE trial burn for boilers.
Code of Federal Regulations, 2011 CFR
2011-07-01
... percent of fuel fired to the device shall be fossil fuel, fuels derived from fossil fuel, tall oil, or, if... comparable to fossil fuel. Such fuels are termed “primary fuel” for purposes of this section. (Tall oil is a...
New diesel injection nozzle flow measuring device
NASA Astrophysics Data System (ADS)
Marčič, Milan
2000-04-01
A new measuring device has been developed for diesel injection nozzle testing, allowing measuring of the steady flow through injection nozzle and the injection rate. It can be best applied for measuring the low and high injection rates of the pintle and single hole nozzle. In steady flow measuring the fuel pressure at the inlet of the injection nozzle is 400 bar. The sensor of the measuring device measures the fuel charge, resulting from fuel rubbing in the fuel injection system, as well as from the temperature gradient in the sensor electrode. The electric charge is led to the charge amplifier, where it is converted into electric current and amplified. The amplifier can be used also to measure the mean injection rate value.
Three-dimensional ionic conduction in the strained electrolytes of solid oxide fuel cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Yupei; Zou, Minda; Lv, Weiqiang
2016-05-07
Flexible power sources including fuel cells and batteries are the key to realizing flexible electronic devices with pronounced foldability. To understand the bending effects in these devices, theoretical analysis on three-dimensional (3-D) lattice bending is necessary. In this report, we derive a 3-D analytical model to analyze the effects of electrolyte crystal bending on ionic conductivity in flexible solid-state batteries/fuel cells. By employing solid oxide fuel cells as a materials' platform, the intrinsic parameters of bent electrolyte materials, including lattice constant, Young's modulus, and Poisson ratio, are evaluated. Our work facilitates the rational design of highly efficient flexible electrolytes formore » high-performance flexible device applications.« less
NASA Astrophysics Data System (ADS)
Howard, R. G.
The active solar energy system for a recreation hall for senior citizens in Wisconsin, is equipped with 1290 square feet of evacuated tube collectors, 3000 gallons of water in a tank, and a natural gas fired furnace for auxiliary space heating and a natural gas fired domestic water heater. The solar fraction, solar savings ratio, conventional fuel savings, system performance factor, and solar system coefficient of performance are given as well as performance data for the collector, storage, domestic hot water, and space heating subsystems, operating energy, energy savings, and weather conditions. Predicted performance data are also given for comparison with the measured data.
ERIC Educational Resources Information Center
Herman, Dan
1999-01-01
Explains how advances in diesel and alternative fuels has caused schools to reconsider their use for their bus fleets. Reductions in air pollution emissions, cost-savings developments, and the economies experienced from less downtime and maintenance requirements are explored. (GR)
NASA Astrophysics Data System (ADS)
Sorrentino, Marco; Pianese, Cesare
The exploitation of an SOFC-system model to define and test control and energy management strategies is presented. Such a work is motivated by the increasing interest paid to SOFC technology by industries and governments due to its highly appealing potentialities in terms of energy savings, fuel flexibility, cogeneration, low-pollution and low-noise operation. The core part of the model is the SOFC stack, surrounded by a number of auxiliary devices, i.e. air compressor, regulating pressure valves, heat exchangers, pre-reformer and post-burner. Due to the slow thermal dynamics of SOFCs, a set of three lumped-capacity models describes the dynamic response of fuel cell and heat exchangers to any operation change. The dynamic model was used to develop low-level control strategies aimed at guaranteeing targeted performance while keeping stack temperature derivative within safe limits to reduce stack degradation due to thermal stresses. Control strategies for both cold-start and warmed-up operations were implemented by combining feedforward and feedback approaches. Particularly, the main cold-start control action relies on the precise regulation of methane flow towards anode and post-burner via by-pass valves; this strategy is combined with a cathode air-flow adjustment to have a tight control of both stack temperature gradient and warm-up time. Results are presented to show the potentialities of the proposed model-based approach to: (i) serve as a support to control strategies development and (ii) solve the trade-off between fast SOFC cold-start and avoidance of thermal-stress caused damages.
Dynamic Weather Routes: A Weather Avoidance Concept for Trajectory-Based Operations
NASA Technical Reports Server (NTRS)
McNally, B. David; Love, John
2011-01-01
The integration of convective weather modeling with trajectory automation for conflict detection, trial planning, direct routing, and auto resolution has uncovered a concept that could help controllers, dispatchers, and pilots identify improved weather routes that result in significant savings in flying time and fuel burn. Trajectory automation continuously and automatically monitors aircraft in flight to find those that could potentially benefit from improved weather reroutes. Controllers, dispatchers, and pilots then evaluate reroute options to assess their suitability given current weather and traffic. In today's operations aircraft fly convective weather avoidance routes that were implemented often hours before aircraft approach the weather and automation does not exist to automatically monitor traffic to find improved weather routes that open up due to changing weather conditions. The automation concept runs in real-time and employs two keysteps. First, a direct routing algorithm automatically identifies flights with large dog legs in their routes and therefore potentially large savings in flying time. These are common - and usually necessary - during convective weather operations and analysis of Fort Worth Center traffic shows many aircraft with short cuts that indicate savings on the order of 10 flying minutes. The second and most critical step is to apply trajectory automation with weather modeling to determine what savings could be achieved by modifying the direct route such that it avoids weather and traffic and is acceptable to controllers and flight crews. Initial analysis of Fort Worth Center traffic suggests a savings of roughly 50% of the direct route savings could be achievable.The core concept is to apply trajectory automation with convective weather modeling in real time to identify a reroute that is free of weather and traffic conflicts and indicates enough time and fuel savings to be considered. The concept is interoperable with today's integrated FMS/datalink. Auxiliary(lat/long) waypoints define a minimum delay reroute between current position and a downstream capture fix beyond the weather. These auxiliary waypoints can be uplinked to equipped aircraft and auto-loaded into the FMS. Alternatively, for unequipped aircraft, auxiliary waypoints can be replaced by nearby named fixes, but this could reduce potential savings. The presentation includes an overview of the automation approach and focuses on several cases in terms of potential savings, reroute complexity, best auxiliary waypoint solution vs. named fix solution, and other metrics.
Application of advanced technologies to derivatives of current small transport aircraft
NASA Technical Reports Server (NTRS)
Renze, P. P.; Terry, J. E.
1981-01-01
Mission requirements of the derivative design were the same as the baseline to readily identify the advanced technology benefits achieved. Advanced technologies investigated were in the areas of propulsion, structures and aerodynamics and a direct operating cost benefit analysis conducted to identify the most promising. Engine improvements appear most promising and combined with propeller, airfoil, surface coating and composite advanced technologies give a 21-25 percent DOC savings. A 17 percent higher acquisition cost is offset by a 34 percent savings in fuel used.
A microfabricated low cost enzyme-free glucose fuel cell for powering low-power implantable devices
NASA Astrophysics Data System (ADS)
Oncescu, Vlad; Erickson, David
In the past decade the scientific community has showed considerable interest in the development of implantable medical devices such as muscle stimulators, neuroprosthetic devices, and biosensors. Those devices have low power requirements and can potentially be operated through fuel cells using reactants present in the body such as glucose and oxygen instead of non-rechargeable lithium batteries. In this paper, we present a thin, enzyme-free fuel cell with high current density and good stability at a current density of 10 μA cm -2. A non-enzymatic approach is preferred because of higher long term stability. The fuel cell uses a stacked electrode design in order to achieve glucose and oxygen separation. An important characteristic of the fuel cell is that it has no membrane separating the electrodes, which results in low ohmic losses and small fuel cell volume. In addition, it uses a porous carbon paper support for the anodic catalyst layer which reduces the amount of platinum or other noble metal catalysts required for fabricating high surface area electrodes with good reactivity. The peak power output of the fuel cell is approximately 2 μW cm -2 and has a sustainable power density of 1.5 μW cm -2 at 10 μA cm -2. An analysis on the effects of electrode thickness and inter electrode gap on the maximum power output of the fuel cell is also performed.
High volumetric power density, non-enzymatic, glucose fuel cells.
Oncescu, Vlad; Erickson, David
2013-01-01
The development of new implantable medical devices has been limited in the past by slow advances in lithium battery technology. Non-enzymatic glucose fuel cells are promising replacement candidates for lithium batteries because of good long-term stability and adequate power density. The devices developed to date however use an "oxygen depletion design" whereby the electrodes are stacked on top of each other leading to low volumetric power density and complicated fabrication protocols. Here we have developed a novel single-layer fuel cell with good performance (2 μW cm⁻²) and stability that can be integrated directly as a coating layer on large implantable devices, or stacked to obtain a high volumetric power density (over 16 μW cm⁻³). This represents the first demonstration of a low volume non-enzymatic fuel cell stack with high power density, greatly increasing the range of applications for non-enzymatic glucose fuel cells.
High volumetric power density, non-enzymatic, glucose fuel cells
Oncescu, Vlad; Erickson, David
2013-01-01
The development of new implantable medical devices has been limited in the past by slow advances in lithium battery technology. Non-enzymatic glucose fuel cells are promising replacement candidates for lithium batteries because of good long-term stability and adequate power density. The devices developed to date however use an “oxygen depletion design” whereby the electrodes are stacked on top of each other leading to low volumetric power density and complicated fabrication protocols. Here we have developed a novel single-layer fuel cell with good performance (2 μW cm−2) and stability that can be integrated directly as a coating layer on large implantable devices, or stacked to obtain a high volumetric power density (over 16 μW cm−3). This represents the first demonstration of a low volume non-enzymatic fuel cell stack with high power density, greatly increasing the range of applications for non-enzymatic glucose fuel cells. PMID:23390576
A micro alkaline direct ethanol fuel cell with platinum-free catalysts
NASA Astrophysics Data System (ADS)
Verjulio, R. W.; Alcaide, F.; Álvarez, G.; Sabaté, N.; Torres-Herrero, N.; Esquivel, J. P.; Santander, J.
2013-11-01
This paper presents the fabrication and characterization of a micro alkaline direct ethanol fuel cell. The device has been conceived as a feasibility demonstrator, using microtechnologies for the fabrication of the current collectors and traditional techniques for the membrane electrode assembly production. The fuel cell works in passive mode, as expected for the simplicity required for micro power systems. Non-noble catalysts have been used in order to implement the main advantage of alkaline systems, showing the feasibility of such a device as a potential very-low-cost power device at mini- and micro scales.
Fuel conservation possibilities for terminal area compatible aircraft
NASA Technical Reports Server (NTRS)
1975-01-01
Design features and operational procedures are identified, which would reduce fuel consumption of future transport aircraft. The fuel-saving potential can be realized during the last decade of this century only if the necessary research and technology programs are implemented in the areas of composite primary structure, airfoil/wing design, and stability augmentation systems. The necessary individual R and T programs are defined. The sensitivity to fuel usage of several design parameters (wing geometry, cruise speed, propulsion) is investigated, and the results applied to a candidate 18, 140-kg (40,000-lb) payload, 5556-km (3000-nmi) transport design. Technical and economic comparisons are made with current commercial aircraft and other advanced designs.
Investigation of fuel savings for an aircraft due to optimization of the center of gravity
NASA Astrophysics Data System (ADS)
Liu, Yitao; Yang, Zhenbo; Deng, Junxiang; Zhu, Junjie
2018-03-01
The aircraft’s center of gravity (CG) has a significant influence on the safety and efficiency, which are determined to a large degree by keeping the CG position within the forward and aft limits. Improper loading reduces the aerodynamics efficiency of an aircraft, resulting in higher flight drag. This paper focuses on the theoretical analysis of the influence of variable CG parameter on the fuel consumption. A new model is developed to predict the fuel consumption rate for an aircraft with it’s CG at different position. The numerical result indicates that a more aft CG position produces less drag and, in turn, requires less fuel consumption.
NASA Technical Reports Server (NTRS)
Trujillo, Anna C.
1996-01-01
In 1993, fuel accounted for approximately 15 percent of an airline's expenses. Fuel consumption increases as fuel reserves increase because of the added weight to the aircraft. Calculating fuel reserves is a function of Federal Aviation Regulations, airline company policy, and factors that impact or are impacted by fuel usage enroute. This research studied how pilots and dispatchers determined the fuel needed for a flight and identified areas where improvements in methods may yield measurable fuel savings by (1) listing the uncertainties that contribute to adding contingency fuel, (2) obtaining the pilots' and dispatchers' perspective on how often each uncertainty occurred, and (3) obtaining pilots' and dispatchers' perspective on the fuel used for each occurrence. This study found that for the majority of the time, pilots felt that dispatchers included enough fuel. As for the uncertainties that flight crews and dispatchers account for, air traffic control accounts for 28% and weather uncertainties account for 58 percent. If improvements can be made in these two areas, a great potential exists to decrease the reserve required, and therefore, fuel usage without jeopardizing safety.
NASA Astrophysics Data System (ADS)
Bachmann, F.; de Oliveira, R.; Sigg, A.; Schnyder, V.; Delpero, T.; Jaehne, R.; Bergamini, A.; Michaud, V.; Ermanni, P.
2012-07-01
Emission reduction from civil aviation has been intensively addressed in the scientific community in recent years. The combined use of novel aircraft engine architectures such as open rotor engines and lightweight materials offer the potential for fuel savings, which could contribute significantly in reaching gas emissions targets, but suffer from vibration and noise issues. We investigated the potential improvement of mechanical damping of open rotor composite fan blades by comparing two integrated passive damping systems: shape memory alloy wires and piezoelectric shunt circuits. Passive damping concepts were first validated on carbon fibre reinforced epoxy composite plates and then implemented in a 1:5 model of an open rotor blade manufactured by resin transfer moulding (RTM). A two-step process was proposed for the structural integration of the damping devices into a full composite fan blade. Forced vibration measurements of the plates and blade prototypes quantified the efficiency of both approaches, and their related weight penalty.
Potential Fuel Savings of Specific ATC System Improvements.
1982-02-01
to today’s fuel/cost conscious airspace user. To the extent they are needed to resolve actual conflicts between aircraft competing for the use of...evolved over t : the years. They are rarely, if ever, traceable to an excessive mber of aircraft competing for the same airspace, based on real-time...there were 24 northbound arrivals via RIC, while there were 71 potentially competing southbound overflights via J14. However, the most popular cruise
A Cost Estimation Analysis of U.S. Navy Ship Fuel-Savings Techniques and Technologies
2009-09-01
readings to the boiler operator. The PLC will provide constant automatic trimming of the excess oxygen based upon real time SGA readings. An SCD...the author): The Aegis Combat System is controlled by an advanced, automatic detect-and-track, multi-function three-dimensional passive...subsequently offloaded. An Online Wash System would reduce these maintenance costs and improve fuel efficiency of these engines by keeping the engines
Fuel Savings through Aircraft Modification: A Cost Analysis
2009-06-01
tanker aircraft with winglets and submit a report to the congressional defense committees by May 1, 2009. This research summarizes the main issues...that decision-makers should consider in the investment in a winglet modification program. The factors that should be included in any decision, such...addition of winglets to the KC-135R could reduce the future fuel expenditures between $177 million and $1.1 billion over the modification costs by 2042
Ubiquitous Supercritical Wing Design Cuts Billions in Fuel Costs
NASA Technical Reports Server (NTRS)
2015-01-01
A Langley Research Center engineer’s work in the 1960s and ’70s to develop a wing with better performance near the speed of sound resulted in a significant increase in subsonic efficiency. The design was shared with industry. Today, Renton, Washington-based Boeing Commercial Airplanes, as well as most other plane manufacturers, apply it to all their aircraft, saving the airline industry billions of dollars in fuel every year.
2011-06-23
contract; information required to be in the offeror’s proposal; and factors and significant subfactors, and their relative importance, which will...development and testing, alternative fuels, alternative fuel sources, and small-scale cogeneration . 1. On-Board Vehicle Power The purpose of the On...savings of 20 percent, greater heating and cooling capacity , and provision of full 30 kilowatts of electrical power output in all environments
Case outsourcing medical device reprocessing.
Haley, Deborah
2004-04-01
IN THE INTEREST OF SAVING MONEY, many hospitals are considering extending the life of some single-use medical devices by using medical device reprocessing programs. FACILITIES OFTEN LACK the resources required to meet the US Food and Drug Administration's tough quality assurance standards. BY OUTSOURCING, hospitals can reap the benefits of medical device reprocessing without assuming additional staffing and compliance burdens. OUTSOURCING enables hospitals to implement a medical device reprocessing program quickly, with no capital investment and minimal effort.
Consideration of Fuel Requirements for Supersonic Transport Operation
NASA Technical Reports Server (NTRS)
Stickle, Joseph W.
1965-01-01
An analysis of the interaction of operational environment and aircraft characteristics of the supersonic transport (SST) in the areas of design-range and reserve-fuel requirements has been made. Design-range requirements are considered in relation to the effects of wind, temperature, flight-level assignment, and payload variation. An approach toward combining en route and holding reserve requirements while maintaining protection equivalent to that provided subsonic jet transport operations by the present civil air regulation en route plus holding reserves is given. This approach results in a savings in reserve fuel over that required by separate requirements.
40 CFR 610.10 - Program purpose.
Code of Federal Regulations, 2013 CFR
2013-07-01
... DEVICES Test Procedures and Evaluation Criteria General Provisions § 610.10 Program purpose. (a) The... standardized procedures, the performance of various retrofit devices applicable to automobiles for which fuel... statistical analysis of data from vehicle tests, the evaluation program will determine the effects on fuel...
40 CFR 610.10 - Program purpose.
Code of Federal Regulations, 2014 CFR
2014-07-01
... DEVICES Test Procedures and Evaluation Criteria General Provisions § 610.10 Program purpose. (a) The... standardized procedures, the performance of various retrofit devices applicable to automobiles for which fuel... statistical analysis of data from vehicle tests, the evaluation program will determine the effects on fuel...
40 CFR 610.10 - Program purpose.
Code of Federal Regulations, 2011 CFR
2011-07-01
... DEVICES Test Procedures and Evaluation Criteria General Provisions § 610.10 Program purpose. (a) The... standardized procedures, the performance of various retrofit devices applicable to automobiles for which fuel... statistical analysis of data from vehicle tests, the evaluation program will determine the effects on fuel...
40 CFR 610.10 - Program purpose.
Code of Federal Regulations, 2012 CFR
2012-07-01
... DEVICES Test Procedures and Evaluation Criteria General Provisions § 610.10 Program purpose. (a) The... standardized procedures, the performance of various retrofit devices applicable to automobiles for which fuel... statistical analysis of data from vehicle tests, the evaluation program will determine the effects on fuel...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1990-01-01
This bibliography contains citations of selected patents concerning fuel control devices, and methods used to regulate speed and load in internal combustion engines. Techniques utilized to control air-fuel ratios by sensing pressure, temperature, and exhaust composition, and the employment of electronic and feedback devices are discussed. Methods used for engine protection and optimum fuel conservation are considered. (This updated bibliography contains 327 citations, 160 of which are new entries to the previous edition.)
Koch, L.J.; Hutter, E.
1960-02-01
A remotely operable handling device specifically adapted for the handling of vertically disposed fuel rods in a nuclear reactor was developed. The device consists essentially of an elongated tubular member having a gripping device at the lower end of the pivoted jaw type adapted to grip an enlarged head on the upper end of the workpiece. The device includes a sensing element which engages the enlarged head and is displaced to remotely indicate when the workpiece is in the proper position to be engaged by the jaws.
ERIC Educational Resources Information Center
American School and University, 1981
1981-01-01
Schools in Wilton (Connecticut) cut electric consumption 39 percent by replacing existing lamps with new types of energy saving lamps. Fuel oil consumption dropped 53 percent largely through attention paid to the operation of boilers and oil burners. (Author/MLF)
Rotorcraft convertible engines for the 1980s
NASA Technical Reports Server (NTRS)
Eisenberg, J. D.
1982-01-01
Two rotorcraft studies were executed. The goal was to identify attractive techniques for implementing convertible powerplants for the ABC, Folded Tilt Rotor, and X-wing type high speed, high-L/D rotorcraft; to determine the DOC and fuel savings benefits achieved thereby; and to define research required to bring these powerplants into existence by the 1990's. These studies are reviewed herein and the different methods of approach are pointed out as well as the key findings. Fan shaft engines using variable inlet guide vanes or torque converters, and turboprop powerplants appear attractive. Savings in DOC and fuel consumption of over 15 percent are predicted in some cases as a result of convertible engine use rather than using separate engines for the thrust and the shaft functions. Areas of required research are fan performance (including noise), integrated engine/rotorcraft control, torque converters, turbine design, airflow for rotorcraft torque control, bleed for lift flow, and transmissions and clutches.
Guatemala switch to crude saves over $1 million a month
DOE Office of Scientific and Technical Information (OSTI.GOV)
de Biasi, V.
1980-03-01
In a two-step program designed to reduce fuel costs and improve operating efficiency, Empresa Electrica de Guatemala has modified two General Electric PG 5341 gas turbines at Laguna to run on crude oil and installed heat recovery equipment for repowering two existing steam turbines. The gas turbines, nominally rated at around 19,000 kW for base load operation at 70/sup 0/F average ambient temperature and 4000 feet altitude, were installed in 1977-78 as a base load backup to hydro power during the dry season. Original plan was to put them into immediate service as simple cycle units and then convert tomore » combined cycle operation. Priorities were shifted to switch over from distillate to crude oil firing before going ahead with the combined cycle istallation. Their economic evaluation showed the initial investment would be paid off in a few months by the savings in fuel costs.« less
NASA Astrophysics Data System (ADS)
Guo, Jason
2018-03-01
This research paper talks about the economic costs of climate change, as well as the costs involved in responding to climate change with alternative fuels. This paper seeks to show that climate change, although seemingly costly in the short run, will both save future generations trillions of dollars and serve as a good economic opportunity. Scientists have long argued that the fate of humanity depends on a shift towards renewable energy. However, this paper will make clear that there is also an economic struggle. By embracing alternative fuels, we will not only lessen the danger and the frequency of these natural disasters but also strengthen the world’s financial state. Although a common argument against responding to climate change is that it is too expensive to make the switch, this research shows that in the future, it will save millions of lives and trillions of dollars. The only question left for policymakers is whether they will grasp this energy source shift.
An Anomalous External Force on the MAP Spacecraft
NASA Technical Reports Server (NTRS)
Starin, Scott R.; Bay, P. Michael; Wollack, Edward J.; Fink, Dale R.; Ward, David K.; ODonnell, James R., Jr.; Bauer, Frank H. (Technical Monitor)
2002-01-01
A common theme in discussions of the Microwave Anisotropy Probe (MAP) is the attainment of mission goals for minimal cost. One area of cost savings was a reduction in the fuel budget required. To reach orbit around the L2 notation point of the Earth-Sun system, the MAP spacecraft was guided very close to the Moon, allowing a gravity-assisted trajectory out to L2. In order to property time the lunar swing-by, MAP followed a trajectory of three-and-a-half highly elliptical phasing loops. At each perigee of this trajectory MAP executed a thruster maneuver to increase orbit velocity; maneuvers were required at one or both clothe first two perigees (called P1 and P2) and at the third and final perigee (P-final). The preference was for successful maneuvers at all three perigees because this scheme provided a small, additional fuel savings.
Airline flight planning: The weather connection
NASA Technical Reports Server (NTRS)
Steinberg, R.
1981-01-01
Airline flight planning has shown little improvement in accuracy since the introduction of computerized techniques in 1964. This has primarily been, because both the type of weather product utilized by the carriers and the way they have employed it has remained unchanged over the past 15 years. The airlines now have an opportunity to make a significant advance in this area with attendant benefits in fuel savings. Most the technological ingredients are in place, but it will take increased cooperation between government and the private sector if cost effective improvements are to be made on a reasonable time scale. This paper reviews the meteorological basis for the present method of flight planning and analyzes its impact on current flight operations. A new approach is suggested for developing a weather data base, for flight planning, which has the potential of providing a fuel savings of between 2 and 3 percent on long distance flights.
NASA Technical Reports Server (NTRS)
Keitz, J. F.
1982-01-01
The impact of more timely and accurate weather data on airline flight planning with the emphasis on fuel savings is studied. This volume of the report discusses the results of Task 1 of the four major tasks included in the study. Task 1 compares flight plans based on forecasts with plans based on the verifying analysis from 33 days during the summer and fall of 1979. The comparisons show that: (1) potential fuel savings conservatively estimated to be between 1.2 and 2.5 percent could result from using more timely and accurate weather data in flight planning and route selection; (2) the Suitland forecast generally underestimates wind speeds; and (3) the track selection methodology of many airlines operating on the North Atlantic may not be optimum resulting in their selecting other than the optimum North Atlantic Organized Track about 50 percent of the time.
Integration of energy management concepts into the flight deck
NASA Technical Reports Server (NTRS)
Morello, S. A.
1981-01-01
The rapid rise of fuel costs has become a major concern of the commercial aviation industry, and it has become mandatory to seek means by which to conserve fuel. A research program was initiated in 1979 to investigate the integration of fuel-conservative energy/flight management computations and information into today's and tomorrow's flight deck. One completed effort within this program has been the development and flight testing of a fuel-efficient, time-based metering descent algorithm in a research cockpit environment. Research flights have demonstrated that time guidance and control in the cockpit was acceptable to both pilots and ATC controllers. Proper descent planning and energy management can save fuel for the individual aircraft as well as the fleet by helping to maintain a regularized flow into the terminal area.
NASA Technical Reports Server (NTRS)
2009-01-01
Topics covered include: Image-Capture Devices Extend Medicine's Reach; Medical Devices Assess, Treat Balance Disorders; NASA Bioreactors Advance Disease Treatments; Robotics Algorithms Provide Nutritional Guidelines; "Anti-Gravity" Treadmills Speed Rehabilitation; Crew Management Processes Revitalize Patient Care; Hubble Systems Optimize Hospital Schedules; Web-based Programs Assess Cognitive Fitness; Electrolyte Concentrates Treat Dehydration; Tools Lighten Designs, Maintain Structural Integrity; Insulating Foams Save Money, Increase Safety; Polyimide Resins Resist Extreme Temperatures; Sensors Locate Radio Interference; Surface Operations Systems Improve Airport Efficiency; Nontoxic Resins Advance Aerospace Manufacturing; Sensors Provide Early Warning of Biological Threats; Robot Saves Soldier's Lives Overseas (MarcBot); Apollo-Era Life Raft Saves Hundreds of Sailors; Circuits Enhance Scientific Instruments and Safety Devices; Tough Textiles Protect Payloads and Public Safety Officers; Forecasting Tools Point to Fishing Hotspots; Air Purifiers Eliminate Pathogens, Preserve Food; Fabrics Protect Sensitive Skin from UV Rays; Phase Change Fabrics Control Temperature; Tiny Devices Project Sharp, Colorful Images; Star-Mapping Tools Enable Tracking of Endangered Animals; Nanofiber Filters Eliminate Contaminants; Modeling Innovations Advance Wind Energy Industry; Thermal Insulation Strips Conserve Energy; Satellite Respondent Buoys Identify Ocean Debris; Mobile Instruments Measure Atmospheric Pollutants; Cloud Imagers Offer New Details on Earth's Health; Antennas Lower Cost of Satellite Access; Feature Detection Systems Enhance Satellite Imagery; Chlorophyll Meters Aid Plant Nutrient Management; Telemetry Boards Interpret Rocket, Airplane Engine Data; Programs Automate Complex Operations Monitoring; Software Tools Streamline Project Management; Modeling Languages Refine Vehicle Design; Radio Relays Improve Wireless Products; Advanced Sensors Boost Optical Communication, Imaging; Tensile Fabrics Enhance Architecture Around the World; Robust Light Filters Support Powerful Imaging Devices; Thermoelectric Devices Cool, Power Electronics; Innovative Tools Advance Revolutionary Weld Technique; Methods Reduce Cost, Enhance Quality of Nanotubes; Gauging Systems Monitor Cryogenic Liquids; Voltage Sensors Monitor Harmful Static; and Compact Instruments Measure Heat Potential.
Development of the HyStEP Device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Terry A.; Ainscough, Christopher; Terlip, Danny
2016-04-05
With the introduction of more fuel cell electric vehicles (FCEVs) on U.S. roadways, especially in California, the need for available hydrogen refueling stations is growing. While funding from the California Energy Commission is helping to solve this problem, solutions need to be developed and implemented to help reduce the time to commission a hydrogen station. The current practice of hydrogen station acceptance can take months because each vehicle manufacturer conducts their own testing and evaluation. This process is not practical or sufficient to support the timely development of a hydrogen fueling station network. To address this issue, as part ofmore » the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project Sandia National Laboratories and the National Renewable Energy Laboratory along with a team of stakeholders and contractor Powertech Labs has developed the Hydrogen Station Equipment Performance (HyStEP) Device. The HyStEP Device is intended to be a surrogate for FCEVs that can be used to collect data on hydrogen station fueling performance. The device includes three Type IV 70 MPa tanks capable of storing a total of 9 kg H2 that are instrumented with pressure and temperature sensors. The tanks can be used individually or in parallel to simulate small, medium, and large fuel systems. The tanks are connected to a 70 MPa receptacle equipped with pressure and temperature sensor as well as infrared communications integrated with a data acquisition, analysis, and control system. The HyStEP Device is capable of performing tests defined in the test method standard CSA HGV 4.3 and providing the data needed to ensure that hydrogen stations meet the fueling protocol standard SAE J2601-2014. These include IrDA communication tests, fault detection tests, and communication and non-communication fueling.« less