NASA Technical Reports Server (NTRS)
Longwell, J. P.; Grobman, J.
1978-01-01
In connection with the anticipated impossibility to provide on a long-term basis liquid fuels derived from petroleum, an investigation has been conducted with the objective to assess the suitability of jet fuels made from oil shale and coal and to develop a data base which will allow optimization of future fuel characteristics, taking energy efficiency of manufacture and the tradeoffs in aircraft and engine design into account. The properties of future aviation fuels are examined and proposed solutions to problems of alternative fuels are discussed. Attention is given to the refining of jet fuel to current specifications, the control of fuel thermal stability, and combustor technology for use of broad specification fuels. The first solution is to continue to develop the necessary technology at the refinery to produce specification jet fuels regardless of the crude source.
Economic impact of fuel properties on turbine powered business aircraft
NASA Technical Reports Server (NTRS)
Powell, F. D.
1984-01-01
The principal objective was to estimate the economic impact on the turbine-powered business aviation fleet of potential changes in the composition and properties of aviation fuel. Secondary objectives include estimation of the sensitivity of costs to specific fuel properties, and an assessment of the directions in which further research should be directed. The study was based on the published characteristics of typical and specific modern aircraft in three classes; heavy jet, light jet, and turboprop. Missions of these aircraft were simulated by computer methods for each aircraft for several range and payload combinations, and assumed atmospheric temperatures ranging from nominal to extremely cold. Five fuels were selected for comparison with the reference fuel, nominal Jet A. An overview of the data, the mathematic models, the data reduction and analysis procedure, and the results of the study are given. The direct operating costs of the study fuels are compared with that of the reference fuel in the 1990 time-frame, and the anticipated fleet costs and fuel break-even costs are estimated.
NASA Technical Reports Server (NTRS)
Lohmann, R. P.; Fear, J. S.
1982-01-01
In connection with increases in the cost of fuels and the reduced availability of high quality petroleum crude, a modification of fuel specifications has been considered to allow acceptance of poorer quality fuels. To obtain the information upon which a selection of appropriate fuels for aircraft can be based, the Broad Specification Fuels Combustion Technology program was formulated by NASA. A description is presented of program-related investigations conducted by an American aerospace company. The specific objective of Phase I of this program has been to evaluate the impact of the use of broadened properties fuels on combustor design through comprehensive combustor rig testing. Attention is given to combustor concepts, experimental evaluation, results obtained with single stage combustors, the stage combustor concept, and the capability of a variable geometry combustor.
Fireplaces and Fireplace Fuels.
ERIC Educational Resources Information Center
Metz, Ron
This instructional unit is one of 10 developed by students on various energy-related areas that deals specifically with fireplaces and fuels. Its objective is for the student to be able to discuss the structural design, operation, and efficiency of fireplaces and characteristics of different fireplace fuels. Some topics covered are fuels, elements…
Brandon M. Collins; Heather A. Kramer; Kurt Menning; Colin Dillingham; David Saah; Peter A. Stine; Scott L. Stephens
2013-01-01
We built on previous work by performing a more in-depth examination of a completed landscape fuel treatment network. Our specific objectives were: (1) model hazardous fire potential with and without the treatment network, (2) project hazardous fire potential over several decades to assess fuel treatment network longevity, and (3) assess fuel treatment effectiveness and...
Fuel system design concepts for broad property fuels
NASA Technical Reports Server (NTRS)
Versaw, E. F.
1984-01-01
The results of a study assessing the impact of using jet fuel with relaxed specification properties on an aircraft fuel system are given. The study objectives were to identify credible values for specific fuel properties which might be relaxed, to evolve advanced fuel system designs for airframe and engines which would permit use of the specified relaxed properties fuels, and to evaluate performance of the candidate advanced fuel systems and the relaxed property fuels in a typical transport aircraft. The study used, as a baseline, the fuel system incorporated in the Lockheed Tristar. This aircraft is powered by three RB.211-524 Rolls-Royce engines and incorporates a Pratt and Whitney ST6C-421 auxiliary power unit for engine starting and inflight emergency electrical power. The fuel property limits examined are compared with commercial Jet A kerosene and the NASA RFP fuel properties. A screening of these properties established that a higher freezing point and a lower thermal stability would impact fuel system design more significantly than any of the other property changes. Three candidate fuel systems which combine the ability to operate with fuels having both a high freeze point and a low thermal stability are described. All candidates employ bleed air to melt fuel freeze-out prior to starting the APU or an inoperable engine. The effects of incorporating these systems on aircraft weight and engine specific fuel consumption are given.
Thermal analyses of power subsystem components
NASA Technical Reports Server (NTRS)
Morehouse, Jeffrey H.
1990-01-01
The hiatus in the Space Shuttle (Orbiter) program provided time for an in-depth examination of all the subsystems and their past performance. Specifically, problems with reliability and/or operating limits were and continue to be of major engineering concern. The Orbiter Auxiliary Power Unit (APU) currently operates with electric resistance line heaters which are controlled with thermostats. A design option simplification of this heater subsystem is being considered which would use self-regulating heaters. A determination of the properties and thermal operating characteristics of these self-regulating heaters was needed. The Orbiter fuel cells are cooled with a freon loop. During a loss of external heat exchanger coolant flow, the single pump circulating the freon is to be left running. It was unknown what temperature and flow rate transient conditions of the freon would provide the required fuel cell cooling and for how long. The overall objective was the development of the thermal characterization and subsequent analysis of both the proposed self-regulating APU heater and the fuel cell coolant loop subsystem. The specific objective of the APU subsystem effort was to determine the feasibility of replacing the current heater and thermostat arrangement with a self-regulating heater. The specific objective of the fuel cell coolant subsystem work was to determine the tranient coolant temperature and associated flow rates during a loss-of-external heat exchanger flow.
Recovery Act: Advanced Direct Methanol Fuel Cell for Mobile Computing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fletcher, James H.; Cox, Philip; Harrington, William J
2013-09-03
ABSTRACT Project Title: Recovery Act: Advanced Direct Methanol Fuel Cell for Mobile Computing PROJECT OBJECTIVE The objective of the project was to advance portable fuel cell system technology towards the commercial targets of power density, energy density and lifetime. These targets were laid out in the DOE’s R&D roadmap to develop an advanced direct methanol fuel cell power supply that meets commercial entry requirements. Such a power supply will enable mobile computers to operate non-stop, unplugged from the wall power outlet, by using the high energy density of methanol fuel contained in a replaceable fuel cartridge. Specifically this project focusedmore » on balance-of-plant component integration and miniaturization, as well as extensive component, subassembly and integrated system durability and validation testing. This design has resulted in a pre-production power supply design and a prototype that meet the rigorous demands of consumer electronic applications. PROJECT TASKS The proposed work plan was designed to meet the project objectives, which corresponded directly with the objectives outlined in the Funding Opportunity Announcement: To engineer the fuel cell balance-of-plant and packaging to meet the needs of consumer electronic systems, specifically at power levels required for mobile computing. UNF used existing balance-of-plant component technologies developed under its current US Army CERDEC project, as well as a previous DOE project completed by PolyFuel, to further refine them to both miniaturize and integrate their functionality to increase the system power density and energy density. Benefits of UNF’s novel passive water recycling MEA (membrane electrode assembly) and the simplified system architecture it enabled formed the foundation of the design approach. The package design was hardened to address orientation independence, shock, vibration, and environmental requirements. Fuel cartridge and fuel subsystems were improved to ensure effective fuel containment. PROJECT OVERVIEW The University of North Florida (UNF), with project partner the University of Florida, recently completed the Department of Energy (DOE) project entitled “Advanced Direct Methanol Fuel Cell for Mobile Computing”. The primary objective of the project was to advance portable fuel cell system technology towards the commercial targets as laid out in the DOE R&D roadmap by developing a 20-watt, direct methanol fuel cell (DMFC), portable power supply based on the UNF innovative “passive water recovery” MEA. Extensive component, sub-system, and system development and testing was undertaken to meet the rigorous demands of the consumer electronic application. Numerous brassboard (nonpackaged) systems were developed to optimize the integration process and facilitating control algorithm development. The culmination of the development effort was a fully-integrated, DMFC, power supply (referred to as DP4). The project goals were 40 W/kg for specific power, 55 W/l for power density, and 575 Whr/l for energy density. It should be noted that the specific power and power density were for the power section only, and did not include the hybrid battery. The energy density is based on three, 200 ml, fuel cartridges, and also did not include the hybrid battery. The results show that the DP4 system configured without the methanol concentration sensor exceeded all performance goals, achieving 41.5 W/kg for specific power, 55.3 W/l for power density, and 623 Whr/l for energy density. During the project, the DOE revised its technical targets, and the definition of many of these targets, for the portable power application. With this revision, specific power, power density, specific energy (Whr/kg), and energy density are based on the total system, including fuel tank, fuel, and hybridization battery. Fuel capacity is not defined, but the same value is required for all calculations. Test data showed that the DP4 exceeded all 2011 Technical Status values; for example, the DP4 energy density was 373 Whr/l versus the DOE 2011 status of 200 Whr/l. For the DOE 2013 Technical Goals, the operation time was increased from 10 hours to 14.3 hours. Under these conditions, the DP4 closely approached or surpassed the technical targets; for example, the DP4 achieved 468 Whr/l versus the goal of 500 Whr/l. Thus, UNF has successfully met the project goals. A fully-operational, 20-watt DMFC power supply was developed based on the UNF passive water recovery MEA. The power supply meets the project performance goals and advances portable power technology towards the commercialization targets set by the DOE.« less
Diesel Mechanics: Fuel Systems.
ERIC Educational Resources Information Center
Foutes, William
This publication is the third in a series of three texts for a diesel mechanics curriculum. Its purpose is to teach the concepts related to fuel injection systems in a diesel trade. The text contains eight units. Each instructional unit includes some or all of these basic components: unit and specific (performance) objectives, suggested activities…
NASA Technical Reports Server (NTRS)
Meeks, Ellen; Naik, Chitral V.; Puduppakkam, Karthik V.; Modak, Abhijit; Egolfopoulos, Fokion N.; Tsotsis, Theo; Westbrook, Charles K.
2011-01-01
The objectives of this project have been to develop a comprehensive set of fundamental data regarding the combustion behavior of jet fuels and appropriately associated model fuels. Based on the fundamental study results, an auxiliary objective was to identify differentiating characteristics of molecular fuel components that can be used to explain different fuel behavior and that may ultimately be used in the planning and design of optimal fuel-production processes. The fuels studied in this project were Fischer-Tropsch (F-T) fuels and biomass-derived jet fuels that meet certain specifications of currently used jet propulsion applications. Prior to this project, there were no systematic experimental flame data available for such fuels. One of the key goals has been to generate such data, and to use this data in developing and verifying effective kinetic models. The models have then been reduced through automated means to enable multidimensional simulation of the combustion characteristics of such fuels in real combustors. Such reliable kinetic models, validated against fundamental data derived from laminar flames using idealized flow models, are key to the development and design of optimal combustors and fuels. The models provide direct information about the relative contribution of different molecular constituents to the fuel performance and can be used to assess both combustion and emissions characteristics.
Predicting fire severity using surface fuels and moisture
Pamela G. Sikkink; Robert E. Keane
2012-01-01
Fire severity classifications have been used extensively in fire management over the last 30 years to describe specific environmental or ecological impacts of fire on fuels, vegetation, wildlife, and soils in recently burned areas. New fire severity classifications need to be more objective, predictive, and ultimately more useful to fire management and planning. Our...
NASA Technical Reports Server (NTRS)
Nurick, W. H.
1974-01-01
An evaluation of reusable thrust chambers for the space shuttle orbit maneuvering engine was conducted. Tests were conducted using subscale injector hot-fire procedures for the injector configurations designed for a regenerative cooled engine. The effect of operating conditions and fuel temperature on combustion chamber performance was determined. Specific objectives of the evaluation were to examine the optimum like-doublet element geometry for operation at conditions consistent with a fuel regeneratively cooled engine (hot fuel, 200 to 250 F) and the sensitivity of the triplet injector element to hot fuels.
Waste-to-Energy Thermal Destruction Identification for Forward Operating Bases
2016-07-01
waste disposal strategy is to simplify the technology development goals. Specifically, we recommend a goal of reducing total net energy consumption ...to net zero. The minimum objective should be the lowest possible fuel consumption per unit of waste disposed. By shifting the focus from W2E to waste...over long distances increases the risks to military personnel and contractors. Because fuel is a limited resource at FOBs, diesel fuel consumption
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Nicholas R.; Carlsen, Brett W.; Dixon, Brent W.
Dynamic fuel cycle simulation tools are intended to model holistic transient nuclear fuel cycle scenarios. As with all simulation tools, fuel cycle simulators require verification through unit tests, benchmark cases, and integral tests. Model validation is a vital aspect as well. Although compara-tive studies have been performed, there is no comprehensive unit test and benchmark library for fuel cycle simulator tools. The objective of this paper is to identify the must test functionalities of a fuel cycle simulator tool within the context of specific problems of interest to the Fuel Cycle Options Campaign within the U.S. Department of Energy smore » Office of Nuclear Energy. The approach in this paper identifies the features needed to cover the range of promising fuel cycle options identified in the DOE-NE Fuel Cycle Evaluation and Screening (E&S) and categorizes these features to facilitate prioritization. Features were categorized as essential functions, integrating features, and exemplary capabilities. One objective of this paper is to propose a library of unit tests applicable to each of the essential functions. Another underlying motivation for this paper is to encourage an international dialog on the functionalities and standard test methods for fuel cycle simulator tools.« less
Brown, Nicholas R.; Carlsen, Brett W.; Dixon, Brent W.; ...
2016-06-09
Dynamic fuel cycle simulation tools are intended to model holistic transient nuclear fuel cycle scenarios. As with all simulation tools, fuel cycle simulators require verification through unit tests, benchmark cases, and integral tests. Model validation is a vital aspect as well. Although compara-tive studies have been performed, there is no comprehensive unit test and benchmark library for fuel cycle simulator tools. The objective of this paper is to identify the must test functionalities of a fuel cycle simulator tool within the context of specific problems of interest to the Fuel Cycle Options Campaign within the U.S. Department of Energy smore » Office of Nuclear Energy. The approach in this paper identifies the features needed to cover the range of promising fuel cycle options identified in the DOE-NE Fuel Cycle Evaluation and Screening (E&S) and categorizes these features to facilitate prioritization. Features were categorized as essential functions, integrating features, and exemplary capabilities. One objective of this paper is to propose a library of unit tests applicable to each of the essential functions. Another underlying motivation for this paper is to encourage an international dialog on the functionalities and standard test methods for fuel cycle simulator tools.« less
Theresa B. Jain; Mike A. Battaglia; Han-Sup Han; Russell T. Graham; Christopher R. Keyes; Jeremy S. Fried; Jonathan E. Sandquist
2014-01-01
Implementing fuel treatments in every place where it could be beneficial to do so is impractical and not cost effective under any plausible specification of objectives. Only some of the many possible kinds of treatments will be effective in any particular stand and there are some stands that seem to defy effective treatment. In many more, effective treatment costs far...
Using ArcObjects for automating fireshed assessments and analyzing wildfire risk
Alan A. Ager; Bernhard Bahro; Mark Finney
2006-01-01
Firesheds are geographic units used by the Forest Service to delineate areas with similar fire regimes, fire history, and wildland fire risk issues. Fireshed assessment is a collaborative process where specialists design fuel treatments to mitigate wildfire risk. Fireshed assessments are an iterative process where fuel treatments are proposed for specific stands based...
Review of alternative fuels data bases
NASA Technical Reports Server (NTRS)
Harsha, P. T.; Edelman, R. B.
1983-01-01
Based on an analysis of the interaction of fuel physical and chemical properties with combustion characteristics and indicators, a ranking of the importance of various fuel properties with respect to the combustion process was established. This ranking was used to define a suite of specific experiments whose objective is the development of an alternative fuels design data base. Combustion characteristics and indicators examined include droplet and spray formation, droplet vaporization and burning, ignition and flame stabilization, flame temperature, laminar flame speed, combustion completion, soot emissions, NOx and SOx emissions, and the fuels' thermal and oxidative stability and fouling and corrosion characteristics. Key fuel property data is found to include composition, thermochemical data, chemical kinetic rate information, and certain physical properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, W.R.; Giovengo, J.F.
1987-10-01
Light Water Breeder Reactor (LWBR) fuel rods were designed to provide a reliable fuel system utilizing thorium/uranium-233 mixed-oxide fuel while simultaneously minimizing structural material to enhance fuel breeding. The fuel system was designed to be capable of operating successfully under both load follow and base load conditions. The breeding objective required thin-walled, low hafnium content Zircaloy cladding, tightly spaced fuel rods with a minimum number of support grid levels, and movable fuel rod bundles to supplant control rods. Specific fuel rod design considerations and their effects on performance capability are described. Successful completion of power operations to over 160 percentmore » of design lifetime including over 200 daily load follow cycles has proven the performance capability of the fuel system. 68 refs., 19 figs., 44 tabs.« less
Theoretical Investigation For The Effect of Fuel Quality on Gas Turbine Power Plants
NASA Astrophysics Data System (ADS)
AbdulRazzak khudair, Omar; Alwan Abass, Khetam; Saadi Abed, Noor; Hussain Ali, Khalid; AbdulAziz, Saad; Chlaib Shaboot, Ali
2018-05-01
Gas turbine engine power generation is declined dramatically because of the reduction in thermodynamic parameters as a work of turbine, compressor ratio, compressor work, and air mass flow rate and fuel consumption. There are two main objectives of this work, the first is related with the effect of fuel kinds and their quality on the operation of fuel flow divider and its performance specifically gear pump displacement and fuel flow rate to the combustion chambers of gas power plant. AL-DORA gas turbine power plant 35MW was chosen to predict these effects on its performance MATLAB Software program is used to perform thermodynamic calculations. Fuel distribution stage before the process of combustion and as a result of the kind and its quality, chemical reaction will occur between the fuel and the parts of the gear system of each pump of the flow divider, which causes the erosion of the internal pump wall and the teeth of the gear system, thus hampering the pump operation in terms of fuel discharge. The discharge of fuel form the eight external gates of flow divider is decreased and varied when going to the combustion chambers, so that, flow divider does not give reliable mass flow rate due to absence of accurate pressure in each of eight exit pipes. The second objective deals with the stage of fuel combustion process inside the combustion chamber. A comparative study based upon performance parameters, such as specific fuel consumption for gas and gasoil and power generation. Fuel poor quality causes incomplete combustion and increased its consumption, so that combustion products are interacted with the surface of the turbine blades, causing the erosion and create surface roughness of the blade and disruption of gas flow. As a result of this situation, turbulence flow of these gases will increase causing the separation of gas boundary layers over the suction surface of the blade. Therefore the amount of extracted gas will decrease causing retreat work done by turbine, as a result decline of power and gas turbine power plant efficiency causing the drop in the level of electric generation. The fuel quality is found to be a strong function of specific fuel consumption and its effects on the power generation and the efficiency of the gas turbine power plants and hence, the cycle performance shifts towards favorable conditions.
INITIAL ANALYSIS OF TRANSIENT POWER TIME LAG DUE TO HETEROGENEITY WITHIN THE TREAT FUEL MATRIX.
DOE Office of Scientific and Technical Information (OSTI.GOV)
D.M. Wachs; A.X. Zabriskie, W.R. Marcum
2014-06-01
The topic Nuclear Safety encompasses a broad spectrum of focal areas within the nuclear industry; one specific aspect centers on the performance and integrity of nuclear fuel during a reactivity insertion accident (RIA). This specific accident has proven to be fundamentally difficult to theoretically characterize due to the numerous empirically driven characteristics that quantify the fuel and reactor performance. The Transient Reactor Test (TREAT) facility was designed and operated to better understand fuel behavior under extreme (i.e. accident) conditions; it was shutdown in 1994. Recently, efforts have been underway to commission the TREAT facility to continue testing of advanced accidentmore » tolerant fuels (i.e. recently developed fuel concepts). To aid in the restart effort, new simulation tools are being used to investigate the behavior of nuclear fuels during facility’s transient events. This study focuses specifically on the characterizing modeled effects of fuel particles within the fuel matrix of the TREAT. The objective of this study was to (1) identify the impact of modeled heterogeneity within the fuel matrix during a transient event, and (2) demonstrate acceptable modeling processes for the purpose of TREAT safety analyses, specific to fuel matrix and particle size. Hypothetically, a fuel that is dominantly heterogeneous will demonstrate a clearly different temporal heating response to that of a modeled homogeneous fuel. This time difference is a result of the uniqueness of the thermal diffusivity within the fuel particle and fuel matrix. Using MOOSE/BISON to simulate the temperature time-lag effect of fuel particle diameter during a transient event, a comparison of the average graphite moderator temperature surrounding a spherical particle of fuel was made for both types of fuel simulations. This comparison showed that at a given time and with a specific fuel particle diameter, the fuel particle (heterogeneous) simulation and the homogeneous simulation were related by a multiplier relative to the average moderator temperature. As time increases the multiplier is comparable to the factor found in a previous analytical study from literature. The implementation of this multiplier and the method of analysis may be employed to remove assumptions and increase fidelity for future research on the effect of fuel particles during transient events.« less
Bruce McCune; Sarah Jovan; Amanda Hardman
2008-01-01
Forage lichens are pendulous, hairlike species eaten by a wide range of mammals. Our overall goal was to estimate losses of Bryoria, a genus of ecologically important forage species, in forests subjected to disease and fuel reduction treatments at Starkey Experimental Forest in the Blue Mountains of northeastern Oregon. Specific objectives were to...
NASA Astrophysics Data System (ADS)
Ambarita, H.; Sinulingga, E. P.; Nasution, M. KM; Kawai, H.
2017-03-01
In this work, a compression ignition (CI) engine is tested in dual-fuel mode (Diesel-Raw biogas). The objective is to examine the performance and emission characteristics of the engine when some of the diesel oil is replaced by biogas. The specifications of the CI engine are air cooled single horizontal cylinder, four strokes, and maximum output power of 4.86 kW. It is coupled with a synchronous three phase generator. The load, engine revolution, and biogas flow rate are varied from 600 W to 1500 W, 1000 rpm to 1500 rpm, 0 to 6 L/minute, respectively. The electric power, specific fuel consumption, thermal efficiency, gas emission, and diesel replacement ratio are analyzed. The results show that there is no significant difference of the power resulted by CI run on dual-fuel mode in comparison with pure diesel mode. However, the specific fuel consumption and efficiency decrease significantly as biogas flow rate increases. On the other hand, emission of the engine on dual-fuel mode is better. The main conclusion can be drawn is that CI engine without significant modification can be operated perfectly in dual-fuel mode and diesel oil consumption can be decreased up to 87.5%.
NASA Technical Reports Server (NTRS)
1989-01-01
The design and verification requirements are defined which are appropriate to hardware at the detail, subassembly, component, and engine levels and to correlate these requirements to the development demonstrations which provides verification that design objectives are achieved. The high pressure fuel turbopump requirements verification matrix provides correlation between design requirements and the tests required to verify that the requirement have been met.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qu, Jun; Zhou, Yan; Luo, Huimin
The overall objective of this project are as follows: Further develop ionic liquid (IL)-additized lowviscosity engine oils meeting the GF-5/6 specifications and possessing superior lubricating characteristics; Expand the IL additive technology to rear axle lubricants; and Seek a combined improvement in the vehicle fuel economy
NASA Astrophysics Data System (ADS)
Choi, Jongseong
The performance of a hypersonic flight vehicle will depend on existing materials and fuels; this work presents the performance of the ideal scramjet engine for three different combustion chamber materials and three different candidate fuels. Engine performance is explored by parametric cycle analysis for the ideal scramjet as a function of material maximum service temperature and the lower heating value of jet engine fuels. The thermodynamic analysis is based on the Brayton cycle as similarly employed in describing the performance of the ramjet, turbojet, and fanjet ideal engines. The objective of this work is to explore material operating temperatures and fuel possibilities for the combustion chamber of a scramjet propulsion system to show how they relate to scramjet performance and the seven scramjet engine parameters: specific thrust, fuel-to-air ratio, thrust-specific fuel consumption, thermal efficiency, propulsive efficiency, overall efficiency, and thrust flux. The information presented in this work has not been done by others in the scientific literature. This work yields simple algebraic equations for scramjet performance which are similar to that of the ideal ramjet, ideal turbojet and ideal turbofan engines.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bignan, G.; Gonnier, C.; Lyoussi, A.
2015-07-01
Research and development on fuel and material behaviour under irradiation is a key issue for sustainable nuclear energy in order to meet specific needs by keeping the best level of safety. These needs mainly deal with a constant improvement of performances and safety in order to optimize the fuel cycle and hence to reach nuclear energy sustainable objectives. A sustainable nuclear energy requires a high level of performances in order to meet specific needs such as: - Pursuing improvement of the performances and safety of present and coming water cooled reactor technologies. This will require a continuous R and Dmore » support following a long-term trend driven by the plant life management, safety demonstration, flexibility and economics improvement. Experimental irradiations of structure materials are necessary to anticipate these material behaviours and will contribute to their optimisation. - Upgrading continuously nuclear fuel technology in present and future nuclear power plants to achieve better performances and to optimise the fuel cycle keeping the best level of safety. Fuel evolution for generation II, III and III+ is a key stake requiring developments, qualification tests and safety experiments to ensure the competitiveness and safety: experimental tests exploring the full range of fuel behaviour determine fuel stability limits and safety margins, as a major input for the fuel reliability analysis. To perform such accurate and innovative progress and developments, specific and ad hoc instrumentation, irradiation devices, measurement methods are necessary to be set up inside or beside the material testing reactor (MTR) core. These experiments require beforehand in situ and on line sophisticated measurements to accurately determine different key parameters such as thermal and fast neutron fluxes and nuclear heating in order to precisely monitor and control the conducted assays. The new Material Testing Reactor JHR (Jules Horowitz Reactor) currently under construction at CEA Cadarache research centre in the south of France will represent a major Research Infrastructure for scientific studies regarding material and fuel behavior under irradiation. It will also be devoted to medical isotopes production. Hence JHR will offer a real opportunity to perform R and D programs regarding needs above and hence will crucially contribute to the selection, optimization and qualification of these innovative materials and fuels. The JHR reactor objectives, principles and main characteristics associated to specific experimental devices associated to measurement techniques and methodology, their performances, their limitations and field of applications will be presented and discussed. (authors)« less
Best practices for implementing a biodiesel program
DOT National Transportation Integrated Search
2007-10-01
This report gives recommendations on best practices for implementing a biodiesel program. Year round operability, pricing and availability, and fuel efficiency were the specific objectives that were studied. The study was accomplished by contacting o...
NASA Astrophysics Data System (ADS)
Irvan; Trisakti, B.; Husaini, T.; Sitio, A.; Sitorus, TB
2017-06-01
Biogas is a flammable gas produced from the fermentation of organic materials by anaerobic bacteria originating from household waste manure and organic waste including palm oil mill effluent (POME). POME is mainly discharged from the sterilization unit of palm oil processing into crude palm oil. This study utilized biogas produced from liquid waste palm oil for use as fuel in the Otto engine generator 4 - stroke, type STARKE GFH1900LX with a peak power of 1.3 kW, 1.0 kW average power, bore 55 mm, stroke 40 mm, Vd 95 × 10-6 m3, Vc 10 × 10-6 m3, compression ratio of 10.5 : 1, and the number of cylinders = 1. The objective of this study is to evaluate the performance of Otto engine generator fueled with biogas that generated from POME, then comparing its performance fueled by gasoline. The performance included power, torque, specific fuel consumption, thermal efficiency, and the air-fuel ratio. Experiment was conducted by using a variation of the lamp load of 100, 200, 300, 400, and 500 W. The results revealed that the use of biogas as fuel decreased in power, torque, brake thermal efficiency, and air fuel ratio (AFR), while there is an increasing of value specific fuel consumption (SFC).
Electrochemical Membrane for Carbon Dioxide Capture and Power Generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghezel-Ayagh, Hossein
FuelCell Energy, Inc. (FCE), in collaboration with AECOM Corporation (formerly URS Corporation) and Pacific Northwest National Laboratory, has been developing a novel Combined Electric Power and Carbon-dioxide Separation (CEPACS) system. The CEPACS system is based on electrochemical membrane (ECM) technology derived from FCE’s carbonate fuel cell products featuring internal (methane steam) reforming and carrying the trade name of Direct FuelCell®. The unique chemistry of carbonate fuel cells offers an innovative approach for separation of CO 2 from existing fossil-fuel power plant exhaust streams (flue gases). The ECM-based CEPACS system has the potential to become a transformational CO 2-separation technology bymore » working as two devices in one: it separates the CO 2 from the exhaust of other plants such as an existing coal-fired plant and simultaneously produces clean electric power at high efficiency using a supplementary fuel. The development effort was carried out under the U.S. Department of Energy (DOE) cooperative agreement DE-FE0007634. The overall objective of this project was to successfully demonstrate the ability of FCE’s ECM-based CEPACS system technology to separate ≥90% of the CO 2 from a simulated Pulverized Coal (PC) power plant flue gas stream and to compress the captured CO2 to a state that can be easily transported for sequestration or beneficial use. In addition, a key objective was to show, through the technical and economic feasibility study and bench scale testing, that the ECM-based CEPACS system is an economical alternative for CO 2 capture in PC power plants, and that it meets DOE’s objective related to the incremental cost of electricity (COE) for post-combustion CO 2 capture (no more than 35% increase in COE). The project was performed in three budget periods (BP). The specific objective for BP1 was to complete the Preliminary Technical and Economic Feasibility Study. The T&EF study was based on the carbon capture system size suitable for a reference 550 MW PC power plant. The specific objectives for BP2 were to perform (flue gas) contaminant effect evaluation tests, small area membrane tests using clean simulated flue gas, design a flue gas pretreatment system for processing of the gas feed to ECM, update the Technical & Economic Feasibility Study (T&EFS) incorporating results of contaminant effect tests and small area membrane tests, and to prepare a test facility for bench scale testing. The specific objectives for BP3 were to perform bench scale testing (parametric and long-duration testing) of a 11.7 m 2 ECM-based CO 2 capture, purification and compression system, and update (as final) the Technical and Economic Feasibility Study. In addition, an Environmental Health and Safety evaluation (assessment) of the ECM technology was included. This final technical report presents the progress made under the project.« less
NASA Technical Reports Server (NTRS)
Mougin, L. J.
1983-01-01
The best HVAC (heating, ventilating and air conditioning) subsystem to interface with the Engelhard fuel cell system for application in commercial buildings was determined. To accomplish this objective, the effects of several system and site specific parameters on the economic feasibility of fuel cell/HVAC systems were investigated. An energy flow diagram of a fuel cell/HVAC system is shown. The fuel cell system provides electricity for an electric water chiller and for domestic electric needs. Supplemental electricity is purchased from the utility if needed. An excess of electricity generated by the fuel cell system can be sold to the utility. The fuel cell system also provides thermal energy which can be used for absorption cooling, space heating and domestic hot water. Thermal storage can be incorporated into the system. Thermal energy is also provided by an auxiliary boiler if needed to supplement the fuel cell system output. Fuel cell/HVAC systems were analyzed with the TRACE computer program.
Best practices for implementing a biodiesel program : final report, October 2007.
DOT National Transportation Integrated Search
2007-10-01
This report gives recommendations on best practices for implementing a biodiesel program. Year round operability, : pricing and availability, and fuel efficiency were the specific objectives that were studied. The study was : accomplished by contacti...
Thermal storage requirements for parabolic dish solar power plants
NASA Technical Reports Server (NTRS)
Wen, L.; Steele, H.
1980-01-01
The cost effectiveness of a high temperature thermal storage system is investigated for a representative parabolic dish solar power plant. The plant supplies electrical power in accordance with a specific, seasonally varying demand profile. The solar power received by the plant is supplemented by power from fuel combustion. The cost of electricity generated by the solar power plant is calculated, using the cost of mass-producible subsystems (specifically, parabolic dishes, receivers, and power conversion units) now being designed for this type of solar plant. The trade-off between fuel and thermal storage is derived in terms of storage effectiveness, the cost of storage devices, and the cost of fuel. Thermal storage requirements, such as storage capacity, storage effectiveness, and storage cost are established based on the cost of fuel and the overall objective of minimizing the cost of the electricity produced by the system. As the cost of fuel increases at a rate faster than general inflation, thermal storage systems in the $40 to $70/kWthr range could become cost effective in the near future.
Apollo Lunar Module Electrical Power System Overview
NASA Technical Reports Server (NTRS)
Interbartolo, Michael
2009-01-01
Objectives include: a) Describe LM Electrical System original specifications; b) Describe the decision to change from fuel cells to batteries and other changes; c) Describe the Electrical system; and d) Describe the Apollo 13 failure from the LM perspective.
Analysis of railroad energy efficiency in the United States.
DOT National Transportation Integrated Search
2013-05-01
The purpose of this study is to provide information about railroad fuel efficiency that may be useful in evaluating transportation energy policies and assessing the sustainability of potential projects. The specific objectives are to (1) develop rail...
DETERMINATION OF SPECIFIC NEUTRONIC REACTIVITY
Dessauer, G.
1960-05-10
A method is given for production-line determination of the specific neutronic reactivity of such objects as individual nuclear fuel or neutron absorber elements and is notable for rapidity and apparatus simplicity. The object is incorporated in a slightly sub-critical chain fission reactive assembly having a discrete neutron source, thereby establishing a K/sub eff/ within the crucial range of 0.95 to 0.995. The range was found to afford, uniquely, flux- transient damped response in a niatter of seconds simultaneously with acceptable analytical sensitivity. The resulting neutron flux measured at a situs spaced from both object and source within the assembly serves as a calibrable indication of said reactivity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
The aim of the program is to improve the utilization of fuel by commercial trucks and buses by updating and implementing specific approaches for educating and monitoring the trucking industry on methods and means of conserving fuels. The following outlines the marketing plan projects: increase use of program logo by voluntary program members and others; solicit trade publication membership and support; brief Congressional delegations on fuel conservation efforts; increase voluntary program presence before trade groups; increase voluntary program presence at truck and trade shows; create a voluntary program display for use at trade shows and in other areas; review voluntarymore » program graphics; increase voluntary program membership; and produce placemats carrying fuel conservation messages; produce a special edition of Fuel Economy News, emphasizing the driver's involvement in fuel conservation; produce posters carrying voluntary program fuel conservation message. Project objectives, activities, and results for each project are summarized.« less
Zhang, Junfeng (Jim); Smith, Kirk R.
2007-01-01
Objective Nearly all China’s rural residents and a shrinking fraction of urban residents use solid fuels (biomass and coal) for household cooking and/or heating. Consequently, global meta-analyses of epidemiologic studies indicate that indoor air pollution from solid fuel use in China is responsible for approximately 420,000 premature deaths annually, more than the approximately 300,000 attributed to urban outdoor air pollution in the country. Our objective in this review was to help elucidate the extent of this indoor air pollution health hazard. Data sources We reviewed approximately 200 publications in both Chinese- and English-language journals that reported health effects, exposure characteristics, and fuel/stove intervention options. Conclusions Observed health effects include respiratory illnesses, lung cancer, chronic obstructive pulmonary disease, weakening of the immune system, and reduction in lung function. Arsenic poisoning and fluorosis resulting from the use of “poisonous” coal have been observed in certain regions of China. Although attempts have been made in a few studies to identify specific coal smoke constituents responsible for specific adverse health effects, the majority of indoor air measurements include those of only particulate matter, carbon monoxide, sulfur dioxide, and/or nitrogen dioxide. These measurements indicate that pollution levels in households using solid fuel generally exceed China’s indoor air quality standards. Intervention technologies ranging from simply adding a chimney to the more complex modernized bioenergy program are available, but they can be viable only with coordinated support from the government and the commercial sector. PMID:17589590
Technical Assistance to Developers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rockward, Tommy; Borup, Rodney L.; Garzon, Fernando H.
2012-07-17
This task supports the allowance of technical assistance to fuel-cell component and system developers as directed by the DOE. This task includes testing of novel materials and participation in the further development and validation of single cell test protocols. This task also covers technical assistance to DOE Working Groups, the U.S. Council for Automotive Research (USCAR) and the USCAR/DOE Driving Research and Innovation for Vehicle efficiency and Energy sustainability (U.S. Drive) Fuel Cell Technology Team. Assistance includes technical validation of new fuel cell materials and methods, single cell fuel cell testing to support the development of targets and test protocols,more » and regular advisory participation in other working groups and reviews. This assistance is made available to PEM fuel cell developers by request and DOE Approval. The objectives are to: (1) Support technically, as directed by DOE, fuel cell component and system developers; (2) Assess fuel cell materials and components and give feedback to developers; (3) Assist the DOE Durability Working Group with the development of various new material durability Testing protocols; and (4) Provide support to the U.S. Council for Automotive Research (USCAR) and the USCAR/DOE Fuel Cell Technology Team. FY2012 specific technical objectives are: (1) Evaluate novel MPL materials; (2) Develop of startup/ shutdown protocol; (3) Test the impact of hydrophobic treatment on graphite bi-polar plates; (4) Perform complete diagnostics on metal bi-polar plates for corrosion; and (5) Participate and lead efforts in the DOE Working Groups.« less
Emissions tradeoffs associated with cofiring forest biomass with coal: A case study in Colorado, USA
Dan Loeffler; Nathaniel Anderson
2014-01-01
Cofiring forest biomass residues with coal to generate electricity is often cited for its potential to offset fossil fuels and reduce greenhouse gas emissions, but the extent to which cofiring achieves these objectives is highly dependent on case specific variables. This paper uses facility and forest specific data to examine emissions from cofiring forest biomass with...
Biodegradation of Jet Fuel-4 (JP-4) in Sequencing Batch Reactors
1992-06-01
nalw~eo %CUMENTATION PAGE__ _ _ _ _ _ _ _ _O 74S Ab -A258 020 L AW POi~W6 DATI .~ TYP AIMqm ,-& 0 U. glbs A~ I ma"&LFUN Mu BIODEGRADATION OF JET FUEL...Specific Objectives of This Proposal Are: 1. To assess the ability of C. resinae , P. chrysosporium and selected bacterial consortia to degrade individual...chemical components of JP-4. 2. To develop a sequencing batch reactor that utilizes C. resinae to degrade chemical components of JP-4 in contaminated
Trajectory optimization for the national aerospace plane
NASA Technical Reports Server (NTRS)
Lu, Ping
1993-01-01
During the past six months the research objectives outlined in the last semi-annual report were accomplished. Specifically, these are: three-dimensional (3-D) fuel-optimal ascent trajectory of the aerospace plane and the effects of thrust vectoring control (TVC) on the fuel consumption and trajectory shaping were investigated; the maximum abort landing area (footprint) was studied; preliminary assessment of simultaneous design of the ascent trajectory and the vehicle configuration for the aerospace plane was also conducted. The work accomplished in the reporting period is summarized.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Medvedev, Pavel G.
2016-09-01
The primary objective of this report is to document results of BISON analyses supporting Fuel Cycle Research and Development (FCRD) activities. Specifically, the present report seeks to provide explanation for the microstructural features observed during post irradiation examination of the helium-bonded annular U-10Zr fuel irradiated during the AFC-3A experiment. Post irradiation examination of the AFC-3A rodlet revealed microstructural features indicative of the fuel-cladding chemical interaction (FCCI) at the fuel-cladding interface. Presence of large voids was also observed in the same locations. BISON analyses were performed to examine stress and temperature profiles and to investigate possible correlation between the voids andmore » FCCI. It was found that presence of the large voids lead to a formation of circumferential temperature gradients in the fuel that may have redirected migrating lanthanides to the locations where fuel and cladding are in contact. Resulting localized increase of lanthanide concentration is expected to accelerate FCCI. The results of this work provide important guidance to the post irradiation examination studies. Specifically, the hypothesis of lanthanides being redirected from the voids to the locations where the fuel and the cladding are in contact should be verified by conducting quantitative electron microscopy or Electron Probe Micro-Analyzer (EPMA). The results also highlight the need for computer models capable of simulating lanthanide diffusion in metallic fuel and establish a basis for validation of such models.« less
Optimization of diesel engine performance by the Bees Algorithm
NASA Astrophysics Data System (ADS)
Azfanizam Ahmad, Siti; Sunthiram, Devaraj
2018-03-01
Biodiesel recently has been receiving a great attention in the world market due to the depletion of the existing fossil fuels. Biodiesel also becomes an alternative for diesel No. 2 fuel which possesses characteristics such as biodegradable and oxygenated. However, there are facts suggested that biodiesel does not have the equivalent features as diesel No. 2 fuel as it has been claimed that the usage of biodiesel giving increment in the brake specific fuel consumption (BSFC). The objective of this study is to find the maximum brake power and brake torque as well as the minimum BSFC to optimize the condition of diesel engine when using the biodiesel fuel. This optimization was conducted using the Bees Algorithm (BA) under specific biodiesel percentage in fuel mixture, engine speed and engine load. The result showed that 58.33kW of brake power, 310.33 N.m of brake torque and 200.29/(kW.h) of BSFC were the optimum value. Comparing to the ones obtained by other algorithm, the BA produced a fine brake power and a better brake torque and BSFC. This finding proved that the BA can be used to optimize the performance of diesel engine based on the optimum value of the brake power, brake torque and BSFC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fred D. Brent; Lalit Shah; Earl Berry
The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which uses petroleum coke to produce at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals using ChevronTexaco's proprietary gasification technology. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase IImore » is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation. The partners in this project are Texaco Energy Systems LLC or TES (a subsidiary of ChevronTexaco), General Electric (GE), Praxair, and Kellogg Brown & Root (KBR) in addition to the U.S. Department of Energy (DOE). TES is providing gasification technology and Fischer-Tropsch (F-T) technology developed by Rentech, GE is providing combustion turbine technology, Praxair is providing air separation technology, and KBR is providing engineering. Each of the EECP subsystems was assessed for technical risks and barriers. A plan was developed to mitigate the identified risks (Phase II RD&T Plan, October 2000). The potential technical and economic risks to the EECP from Task 2.5 can be mitigated by demonstrating that the end-use products derived from the upgrading of the F-T synthesis total liquid product can meet or exceed current specifications for the manufacture of ethylene and propylene chemicals from F-T naphtha, for the generation of hydrogen from F-T naphtha to power fuel cells, for direct blending of F-T diesels into transportation fuels, for the conversion of F-T heavy product wax to transportation fuels, and the conversion of F-T Heavy product wax to a valuable high melting point food-grade specialty wax product. Product evaluations conducted under Task 2.5 of Phase II successfully mitigated the above technical and economic risks to the EECP with the development of product yields and product qualities for the production of chemicals, transportation fuels, and specialty food-grade waxes from the F-T synthesis products.« less
Simulation modelling for new gas turbine fuel controller creation.
NASA Astrophysics Data System (ADS)
Vendland, L. E.; Pribylov, V. G.; Borisov, Yu A.; Arzamastsev, M. A.; Kosoy, A. A.
2017-11-01
State of the art gas turbine fuel flow control systems are based on throttle principle. Major disadvantage of such systems is that they require high pressure fuel intake. Different approach to fuel flow control is to use regulating compressor. And for this approach because of controller and gas turbine interaction a specific regulating compressor is required. Difficulties emerge as early as the requirement definition stage. To define requirements for new object, his properties must be known. Simulation modelling helps to overcome these difficulties. At the requirement definition stage the most simplified mathematical model is used. Mathematical models will get more complex and detailed as we advance in planned work. If future adjusting of regulating compressor physical model to work with virtual gas turbine and physical control system is planned.
Fabrication and Testing of CERMET Fuel Materials for Nuclear Thermal Propulsion
NASA Technical Reports Server (NTRS)
Hickman, Robert; Broadway, Jeramie; Mireles, Omar
2012-01-01
A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on Nuclear Thermal Propulsion (NTP) is currently being developed for Advanced Space Exploration Systems. The overall goal of the project is to address critical NTP technology challenges and programmatic issues to establish confidence in the affordability and viability of NTP systems. The current technology roadmap for NTP identifies the development of a robust fuel form as a critical near term need. The lack of a qualified nuclear fuel is a significant technical risk that will require a considerable fraction of program resources to mitigate. Due to these risks and the cost for qualification, the development and selection of a primary fuel must begin prior to Authority to Proceed (ATP) for a specific mission. The fuel development is a progressive approach to incrementally reduce risk, converge the fuel materials, and mature the design and fabrication process of the fuel element. A key objective of the current project is to advance the maturity of CERMET fuels. The work includes fuel processing development and characterization, fuel specimen hot hydrogen screening, and prototypic fuel element testing. Early fuel materials development is critical to help validate requirements and fuel performance. The purpose of this paper is to provide an overview and status of the work at Marshall Space Flight Center (MSFC).
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDeavitt, Sean
2016-08-02
This Integrated Research Project (IRP) was established to characterize key limiting phenomena related to the performance of used nuclear fuel (UNF) storage systems. This was an applied engineering project with a specific application in view (i.e., UNF dry storage). The completed tasks made use of a mixture of basic science and engineering methods. The overall objective was to create, or enable the creation of, predictive tools in the form of observation methods, phenomenological models, and databases that will enable the design, installation, and licensing of dry UNF storage systems that will be capable of containing UNF for extended period ofmore » time.« less
Argillite And Crystalline Disposal Research: Accomplishments And Path-Forward.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McMahon, Kevin A.; Jove-Colon, Carlos F.; Wang, Yifeng
The intention of this document is to provide a path-forward for research and development (R&D) for two host rock media-specific (argillite and crystalline) disposal research work packages within the Used Fuel Disposition Campaign (UFDC). The two work packages, Argillite Disposal R&D and Crystalline Disposal R&D, support the achievement of the overarching mission and objectives of the Department of Energy Office of Nuclear Energy Fuel Cycle Technologies Program. These two work packages cover many of the fundamental technical issues that will have multiple implications to other disposal research work packages by bridging knowledge gaps to support the development of the safetymore » case. The path-forward begins with the assumption of target dates that are set out in the January 2013 DOE Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste (http://energy.gov/downloads/strategy-management-and-disposal-used-nuclear-fuel-and-high-levelradioactive- waste). The path-forward will be maintained as a living document and will be updated as needed in response to available funding and the progress of multiple R&D tasks in the Used Fuel Disposition Campaign and the Fuel Cycle Technologies Program. This path forward is developed based on the report of “Used Fuel Disposition Campaign Disposal Research and Development Roadmap (FCR&D-USED- 2011-000065 REV0)” (DOE, 2011). This document delineates the goals and objectives of the UFDC R&D program, needs for generic disposal concept design, and summarizes the prioritization of R&D issues.« less
University of South Carolina Aiken Biofuels Laboratory in Aiken, SC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Garriet W.; Piskorska, Magdalena
2014-10-30
Biological production of hydrogen has been investigated over the past 30 years with the ultimate goal of providing a clean, carbon-neutral fuel. However, based on an extensive literature search and the recommendations of several recent DOE- and DOD-sponsored expert review panels it is obvious that an important element of this research has been largely overlooked - the physiology and diversity of naturally occurring, H2-producing bacteria. The main objective of this project was to develop a technique to extensively screen nitrogen fixing bacteria isolated from unique environments suspected of H2 production. Those showing H2-producing activity were tested on latex based mats,more » which could provide active centers of fuel cells. Specific objectives of the project were to establish a biofuels laboratory at the Aiken County Center for Hydrogen Research, where the following activities were persued.1) Develop a semi-automated apparatus to screen hundreds of bacteria in a short time; 2) Identify bacteria capable of producing hydrogen at rates sufficiently high to power a fuel cell. 3) Embed specific bacteria with high hydrogen production potentials into latex mats that can be incorporated in fuel cells applicable to a variety of industrial settings. During this project we developed screening techniques which include colorimetric and gas chromatographic assays for hydrogen production by bacterial isolates. Isolates were characterized both metabolically and genetically and preserved for future use. Isolates found to produce significant amounts of hydrogen were screened for activity under various environments. Potential isolates were then embedded in latex coatings and assayed for hydrogen production under different environmental conditions« less
University of South Carolina Aiken Biofuels Laboratory in Aiken, SC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Garriet W.
Biological production of hydrogen has been investigated over the past 30 years with the ultimate goal of providing a clean, carbon-neutral fuel. However, based on an extensive literature search and the recommendations of several recent DOE- and DOD-sponsored expert review panels it is obvious that an important element of this research has been largely overlooked - the physiology and diversity of naturally occurring, H2-producing bacteria. The main objective of this project was to develop a technique to extensively screen nitrogen fixing bacteria isolated from unique environments suspected of H2 production. Those showing H2-producing activity were tested on latex based mats,more » which could provide active centers of fuel cells. Specific objectives of the project were to establish a biofuels laboratory at the Aiken County Center for Hydrogen Research, where the following activities were persued.1) Develop a semi-automated apparatus to screen hundreds of bacteria in a short time; 2) Identify bacteria capable of producing hydrogen at rates sufficiently high to power a fuel cell. 3) Embed specific bacteria with high hydrogen production potentials into latex mats that can be incorporated in fuel cells applicable to a variety of industrial settings. During this project we developed screening techniques which include colorimetric and gas chromatographic assays for hydrogen production by bacterial isolates. Isolates were characterized both metabolically and genetically and preserved for future use. Isolates found to produce significant amounts of hydrogen were screened for activity under various environments. Potential isolates were then embedded in latex coatings and assayed for hydrogen production under different environmental conditions« less
Hydrogen quantitative risk assessment workshop proceedings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Groth, Katrina M.; Harris, Aaron P.
2013-09-01
The Quantitative Risk Assessment (QRA) Toolkit Introduction Workshop was held at Energetics on June 11-12. The workshop was co-hosted by Sandia National Laboratories (Sandia) and HySafe, the International Association for Hydrogen Safety. The objective of the workshop was twofold: (1) Present a hydrogen-specific methodology and toolkit (currently under development) for conducting QRA to support the development of codes and standards and safety assessments of hydrogen-fueled vehicles and fueling stations, and (2) Obtain feedback on the needs of early-stage users (hydrogen as well as potential leveraging for Compressed Natural Gas [CNG], and Liquefied Natural Gas [LNG]) and set priorities for %E2%80%9CVersionmore » 1%E2%80%9D of the toolkit in the context of the commercial evolution of hydrogen fuel cell electric vehicles (FCEV). The workshop consisted of an introduction and three technical sessions: Risk Informed Development and Approach; CNG/LNG Applications; and Introduction of a Hydrogen Specific QRA Toolkit.« less
Pulsed Magnetic Welding for Advanced Core and Cladding Steel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Guoping; Yang, Yong
2013-12-19
To investigate a solid-state joining method, pulsed magnetic welding (PMW), for welding the advanced core and cladding steels to be used in Generation IV systems, with a specific application for fuel pin end-plug welding. As another alternative solid state welding technique, pulsed magnetic welding (PMW) has not been extensively explored on the advanced steels. The resultant weld can be free from microstructure defects (pores, non-metallic inclusions, segregation of alloying elements). More specifically, the following objectives are to be achieved: 1. To design a suitable welding apparatus fixture, and optimize welding parameters for repeatable and acceptable joining of the fuel pinmore » end-plug. The welding will be evaluated using tensile tests for lap joint weldments and helium leak tests for the fuel pin end-plug; 2 Investigate the microstructural and mechanical properties changes in PMW weldments of proposed advanced core and cladding alloys; 3. Simulate the irradiation effects on the PWM weldments using ion irradiation.« less
40 CFR 600.107-93 - Fuel specifications.
Code of Federal Regulations, 2010 CFR
2010-07-01
... and Later Model Year Automobiles-Test Procedures § 600.107-93 Fuel specifications. (a) The test fuel... chapter. (c) The test fuel specifications for methanol fuel used in Otto-cycle automobiles are given in § 86.113(a) (3) and (4) of this chapter. (d) The test fuel specifications for methanol fuel used in...
Experimental clean combustor program, phase 2
NASA Technical Reports Server (NTRS)
Roberts, R.; Peduzzi, A.; Vitti, G. E.
1976-01-01
The alternate fuels investigation objective was to experimentally determine the impacts, if any, on exhaust emissions, performance, and durability characteristics of the hybrid and vorbix low pollution combustor concepts when operated on test fuels which simulate composition and property changes which might result from future broadened aviation turbine fuel specifications or use of synthetically derived crude feedstocks. Results of the program indicate a significant increase in CO and small NOX increase in emissions at idle for both combustor concepts, and an increase in THC for the vorbix concept. Minimal impact was observed on gaseous emissions at high power. The vorbix concept exhibited significant increase in exhaust smoke with increasing fuel aromatic content. Altitude stability was not affected for the vorbix combustor, but was substantially reduced for the hybrid concept. Severe carbon deposition was observed in both combustors following limited endurance testing with No. 2 home heat fuel. Liner temperature levels were insensitive to variations in aromatic content over the range of conditions investigated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kontogeorgakos, D.; Derstine, K.; Wright, A.
2013-06-01
The purpose of the TREAT reactor is to generate large transient neutron pulses in test samples without over-heating the core to simulate fuel assembly accident conditions. The power transients in the present HEU core are inherently self-limiting such that the core prevents itself from overheating even in the event of a reactivity insertion accident. The objective of this study was to support the assessment of the feasibility of the TREAT core conversion based on the present reactor performance metrics and the technical specifications of the HEU core. The LEU fuel assembly studied had the same overall design, materials (UO 2more » particles finely dispersed in graphite) and impurities content as the HEU fuel assembly. The Monte Carlo N–Particle code (MCNP) and the point kinetics code TREKIN were used in the analyses.« less
Analyzing Real-World Light Duty Vehicle Efficiency Benefits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonder, Jeffrey; Wood, Eric; Chaney, Larry
Off-cycle technologies represent an important pathway to achieve real-world fuel savings, through which OEMs can potentially receive credit toward CAFE compliance. DOE national labs such as NREL are well positioned to provide objective input on these technologies using large, national data sets in conjunction with OEM- and technology-specific testing. This project demonstrates an approach that combines vehicle testing (dynamometer and on-road) with powertrain modeling and simulation over large, representative datasets to quantify real-world fuel economy. The approach can be applied to specific off-cycle technologies (engine encapsulation, start/stop, connected vehicle, etc.) in A/B comparisons to support calculation of realistic real-world impacts.more » Future work will focus on testing-based A/B technology comparisons that demonstrate the significance of this approach.« less
Numerical Simulation of Metallic Uranium Sintering
NASA Astrophysics Data System (ADS)
Berry, Bruce
Conventional ceramic oxide nuclear fuels are limited in their thermal and life-cycle properties. The desire to operate at higher burnups as is required by current utility economics has proven a formidable challenge for oxide fuel designs. Metallic formulations have superior thermal performance but are plagued by volumetric swelling due to fission gas buildup. In this study, we consider a number of specific microstructure configurations that have been experimentally shown to exhibit considerable resistance to porosity loss. Specifically, a void sizing that is bimodally distributed was shown to resist early pore loss and could provide collection sites for fission gas buildup. We employ the phase field model of Cahn and Hilliard, solved via the finite element method using the open source Multi-User Object Oriented Simulation Environment (MOOSE) developed by INL.
The economic production of alcohol fuels from coal-derived synthesis gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kugler, E.L.; Dadyburjor, D.B.; Yang, R.Y.K.
1995-12-31
The objectives of this project are to discover, (1) study and evaluate novel heterogeneous catalytic systems for the production of oxygenated fuel enhancers from synthesis gas. Specifically, alternative methods of preparing catalysts are to be investigated, and novel catalysts, including sulfur-tolerant ones, are to be pursued. (Task 1); (2) explore, analytically and on the bench scale, novel reactor and process concepts for use in converting syngas to liquid fuel products. (Task 1); (3) simulate by computer the most energy efficient and economically efficient process for converting coal to energy, with primary focus on converting syngas to fuel alcohols. (Task 2);more » (4) develop on the bench scale the best holistic combination of chemistry, catalyst, reactor and total process configuration integrated with the overall coal conversion process to achieve economic optimization for the conversion of syngas to liquid products within the framework of achieving the maximum cost effective transformation of coal to energy equivalents. (Tasks 1 and 2); and (5) evaluate the combustion, emission and performance characteristics of fuel alcohols and blends of alcohols with petroleum-based fuels. (Task 2)« less
40 CFR 86.1213-08 - Fuel specifications.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Emission Test Procedures for New Gasoline-Fueled, Natural Gas-Fueled, Liquefied Petroleum Gas-Fueled and Methanol-Fueled Heavy-Duty Vehicles § 86.1213-08 Fuel specifications. The test fuels listed in 40 CFR part... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Fuel specifications. 86.1213-08...
40 CFR 86.1213-08 - Fuel specifications.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Emission Test Procedures for New Gasoline-Fueled, Natural Gas-Fueled, Liquefied Petroleum Gas-Fueled and Methanol-Fueled Heavy-Duty Vehicles § 86.1213-08 Fuel specifications. The test fuels listed in 40 CFR part... 40 Protection of Environment 20 2012-07-01 2012-07-01 false Fuel specifications. 86.1213-08...
40 CFR 86.1213-08 - Fuel specifications.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Emission Test Procedures for New Gasoline-Fueled, Natural Gas-Fueled, Liquefied Petroleum Gas-Fueled and Methanol-Fueled Heavy-Duty Vehicles § 86.1213-08 Fuel specifications. The test fuels listed in 40 CFR part... 40 Protection of Environment 20 2013-07-01 2013-07-01 false Fuel specifications. 86.1213-08...
40 CFR 86.1213-08 - Fuel specifications.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Emission Test Procedures for New Gasoline-Fueled, Natural Gas-Fueled, Liquefied Petroleum Gas-Fueled and Methanol-Fueled Heavy-Duty Vehicles § 86.1213-08 Fuel specifications. The test fuels listed in 40 CFR part... 40 Protection of Environment 19 2011-07-01 2011-07-01 false Fuel specifications. 86.1213-08...
Stochastic Optimization for Nuclear Facility Deployment Scenarios
NASA Astrophysics Data System (ADS)
Hays, Ross Daniel
Single-use, low-enriched uranium oxide fuel, consumed through several cycles in a light-water reactor (LWR) before being disposed, has become the dominant source of commercial-scale nuclear electric generation in the United States and throughout the world. However, it is not without its drawbacks and is not the only potential nuclear fuel cycle available. Numerous alternative fuel cycles have been proposed at various times which, through the use of different reactor and recycling technologies, offer to counteract many of the perceived shortcomings with regards to waste management, resource utilization, and proliferation resistance. However, due to the varying maturity levels of these technologies, the complicated material flow feedback interactions their use would require, and the large capital investments in the current technology, one should not deploy these advanced designs without first investigating the potential costs and benefits of so doing. As the interactions among these systems can be complicated, and the ways in which they may be deployed are many, the application of automated numerical optimization to the simulation of the fuel cycle could potentially be of great benefit to researchers and interested policy planners. To investigate the potential of these methods, a computational program has been developed that applies a parallel, multi-objective simulated annealing algorithm to a computational optimization problem defined by a library of relevant objective functions applied to the Ver ifiable Fuel Cycle Simulati on Model (VISION, developed at the Idaho National Laboratory). The VISION model, when given a specified fuel cycle deployment scenario, computes the numbers and types of, and construction, operation, and utilization schedules for, the nuclear facilities required to meet a predetermined electric power demand function. Additionally, it calculates the location and composition of the nuclear fuels within the fuel cycle, from initial mining through to eventual disposal. By varying the specifications of the deployment scenario, the simulated annealing algorithm will seek to either minimize the value of a single objective function, or enumerate the trade-off surface between multiple competing objective functions. The available objective functions represent key stakeholder values, minimizing such important factors as high-level waste disposal burden, required uranium ore supply, relative proliferation potential, and economic cost and uncertainty. The optimization program itself is designed to be modular, allowing for continued expansion and exploration as research needs and curiosity indicate. The utility and functionality of this optimization program are demonstrated through its application to one potential fuel cycle scenario of interest. In this scenario, an existing legacy LWR fleet is assumed at the year 2000. The electric power demand grows exponentially at a rate of 1.8% per year through the year 2100. Initially, new demand is met by the construction of 1-GW(e) LWRs. However, beginning in the year 2040, 600-MW(e) sodium-cooled, fast-spectrum reactors operating in a transuranic burning regime with full recycling of spent fuel become available to meet demand. By varying the fraction of new capacity allocated to each reactor type, the optimization program is able to explicitly show the relationships that exist between uranium utilization, long-term heat for geologic disposal, and cost-of-electricity objective functions. The trends associated with these trade-off surfaces tend to confirm many common expectations about the use of nuclear power, namely that while overall it is quite insensitive to variations in the cost of uranium ore, it is quite sensitive to changes in the capital costs of facilities. The optimization algorithm has shown itself to be robust and extensible, with possible extensions to many further fuel cycle optimization problems of interest.
Multi-objective Optimization of Departure Procedures at Gimpo International Airport
NASA Astrophysics Data System (ADS)
Kim, Junghyun; Lim, Dongwook; Monteiro, Dylan Jonathan; Kirby, Michelle; Mavris, Dimitri
2018-04-01
Most aviation communities have increasing concerns about the environmental impacts, which are directly linked to health issues for local residents near the airport. In this study, the environmental impact of different departure procedures using the Aviation Environmental Design Tool (AEDT) was analyzed. First, actual operational data were compiled at Gimpo International Airport (March 20, 2017) from an open source. Two modifications were made in the AEDT to model the operational circumstances better and the preliminary AEDT simulations were performed according to the acquired operational procedures. Simulated noise results showed good agreements with noise measurement data at specific locations. Second, a multi-objective optimization of departure procedures was performed for the Boeing 737-800. Four design variables were selected and AEDT was linked to a variety of advanced design methods. The results showed that takeoff thrust had the greatest influence and it was found that fuel burn and noise had an inverse relationship. Two points representing each fuel burn and noise optimum on the Pareto front were parsed and run in AEDT to compare with the baseline. The results showed that the noise optimum case reduced Sound Exposure Level 80-dB noise exposure area by approximately 5% while the fuel burn optimum case reduced total fuel burn by 1% relative to the baseline for aircraft-level analysis.
40 CFR 600.107-93 - Fuel specifications.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Exhaust Emission Regulations for 1978 and Later Model Year Automobiles-Test Procedures § 600.107-93 Fuel specifications. (a) The test fuel specifications for gasoline-fueled automobiles are given in § 86.113(a) (1) and (2) of this chapter. (b) The test fuel specifications for diesel-fueled automobiles are given in § 86...
40 CFR 86.1771-99 - Fuel specifications.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 20 2013-07-01 2013-07-01 false Fuel specifications. 86.1771-99... Trucks § 86.1771-99 Fuel specifications. (a) The provisions of § 86.113 apply to this subpart, with the... specifications listed in the table in this paragraph (a)(1). Specifications for non-gasoline fuels and all fuel...
40 CFR 86.1771-99 - Fuel specifications.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 20 2012-07-01 2012-07-01 false Fuel specifications. 86.1771-99... Trucks § 86.1771-99 Fuel specifications. (a) The provisions of § 86.113 apply to this subpart, with the... specifications listed in the table in this paragraph (a)(1). Specifications for non-gasoline fuels and all fuel...
40 CFR 600.107-08 - Fuel specifications.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Exhaust Emission Test Procedures § 600.107-08 Fuel specifications. (a) The test fuel specifications for... given in paragraph (b) of this section. (b)(1) Diesel test fuel used for cold temperature FTP testing... alternative fuel for cold temperature FTP testing. (c) Test fuels representing fuel types for which there are...
40 CFR 600.107-08 - Fuel specifications.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Exhaust Emission Test Procedures § 600.107-08 Fuel specifications. (a) The test fuel specifications for... given in paragraph (b) of this section. (b)(1) Diesel test fuel used for cold temperature FTP testing... alternative fuel for cold temperature FTP testing. (c) Test fuels representing fuel types for which there are...
40 CFR 600.107-08 - Fuel specifications.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Exhaust Emission Test Procedures § 600.107-08 Fuel specifications. (a) The test fuel specifications for... given in paragraph (b) of this section. (b)(1) Diesel test fuel used for cold temperature FTP testing... alternative fuel for cold temperature FTP testing. (c) Test fuels representing fuel types for which there are...
Integrated model development for liquid fueled rocket propulsion systems
NASA Technical Reports Server (NTRS)
Santi, L. Michael
1993-01-01
As detailed in the original statement of work, the objective of phase two of this research effort was to develop a general framework for rocket engine performance prediction that integrates physical principles, a rigorous mathematical formalism, component level test data, system level test data, and theory-observation reconciliation. Specific phase two development tasks are defined.
Fuel property effects on USAF gas turbine engine combustors and afterburners
NASA Technical Reports Server (NTRS)
Reeves, C. M.
1984-01-01
Since the early 1970s, the cost and availability of aircraft fuel have changed drastically. These problems prompted a program to evaluate the effects of broadened specification fuels on current and future aircraft engine combustors employed by the USAF. Phase 1 of this program was to test a set of fuels having a broad range of chemical and physical properties in a select group of gas turbine engine combustors currently in use by the USAF. The fuels ranged from JP4 to Diesel Fuel number two (DF2) with hydrogen content ranging from 14.5 percent down to 12 percent by weight, density ranging from 752 kg/sq m to 837 kg/sq m, and viscosity ranging from 0.830 sq mm/s to 3.245 sq mm/s. In addition, there was a broad range of aromatic content and physical properties attained by using Gulf Mineral Seal Oil, Xylene Bottoms, and 2040 Solvent as blending agents in JP4, JP5, JP8, and DF2. The objective of Phase 2 was to develop simple correlations and models of fuel effects on combustor performance and durability. The major variables of concern were fuel chemical and physical properties, combustor design factors, and combustor operating conditions.
Empirical Study of the Stability of Biodiesel and Biodiesel Blends: Milestone Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCormick, R. L.; Westbrook, S. R.
2007-05-01
The objective of this work was to develop a database that supports specific proposals for a stability test and specification for biodiesel and biodiesel blends. B100 samples from 19 biodiesel producers were obtained in December of 2005 and January of 2006 and tested for stability. Eight of these samples were then selected for additional study, including long-term storage tests and blending at 5% and 20% with a number of ultra-low sulfur diesel fuels.
40 CFR 600.107-78 - Fuel specifications.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Exhaust Emission Regulations for 1978 and Later Model Year Automobiles-Test Procedures § 600.107-78 Fuel specifications. (a) The test fuel specifications for gasoline-fueled automobiles are given in paragraph (a)(1) of § 86.113 of this chapter. (b) The test fuel specifications for diesel automobiles are given in...
Approach to proliferation risk assessment based on multiple objective analysis framework
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrianov, A.; Kuptsov, I.; Studgorodok 1, Obninsk, Kaluga region, 249030
2013-07-01
The approach to the assessment of proliferation risk using the methods of multi-criteria decision making and multi-objective optimization is presented. The approach allows the taking into account of the specifics features of the national nuclear infrastructure, and possible proliferation strategies (motivations, intentions, and capabilities). 3 examples of applying the approach are shown. First, the approach has been used to evaluate the attractiveness of HEU (high enriched uranium)production scenarios at a clandestine enrichment facility using centrifuge enrichment technology. Secondly, the approach has been applied to assess the attractiveness of scenarios for undeclared production of plutonium or HEU by theft of materialsmore » circulating in nuclear fuel cycle facilities and thermal reactors. Thirdly, the approach has been used to perform a comparative analysis of the structures of developing nuclear power systems based on different types of nuclear fuel cycles, the analysis being based on indicators of proliferation risk.« less
Coal-water mixture fuel burner
Brown, T.D.; Reehl, D.P.; Walbert, G.F.
1985-04-29
The present invention represents an improvement over the prior art by providing a rotating cup burner arrangement for use with a coal-water mixture fuel which applies a thin, uniform sheet of fuel onto the inner surface of the rotating cup, inhibits the collection of unburned fuel on the inner surface of the cup, reduces the slurry to a collection of fine particles upon discharge from the rotating cup, and further atomizes the fuel as it enters the combustion chamber by subjecting it to the high shear force of a high velocity air flow. Accordingly, it is an object of the present invention to provide for improved combustion of a coal-water mixture fuel. It is another object of the present invention to provide an arrangement for introducing a coal-water mixture fuel into a combustion chamber in a manner which provides improved flame control and stability, more efficient combustion of the hydrocarbon fuel, and continuous, reliable burner operation. Yet another object of the present invention is to provide for the continuous, sustained combustion of a coal-water mixture fuel without the need for a secondary combustion source such as natural gas or a liquid hydrocarbon fuel. Still another object of the present invention is to provide a burner arrangement capable of accommodating a coal-water mixture fuel having a wide range of rheological and combustion characteristics in providing for its efficient combustion. 7 figs.
Impact of future fuel properties on aircraft engines and fuel systems
NASA Technical Reports Server (NTRS)
Rudey, R. A.; Grobman, J. S.
1978-01-01
The effect of modifications in hydrocarbon jet fuels specifications on engine performance, component durability and maintenance, and aircraft fuel system performance is discussed. Specific topics covered include: specific fuel consumption; ignition at relight limits; exhaust emissions; combustor liner temperatures; carbon deposition; gum formation in fuel nozzles, erosion and corrosion of turbine blades and vanes; deposits in fuel system heat exchangers; and pumpability and flowability of the fuel. Data that evaluate the ability of current technology aircraft to accept fuel specification changes are presented, and selected technological advances that can reduce the severity of the problems are described and discussed.
40 CFR 63.7521 - What fuel analyses, fuel specification, and procedures must I use?
Code of Federal Regulations, 2011 CFR
2011-07-01
... fuel specification analyses for hydrogen sulfide and mercury according to the procedures in paragraphs... 40 Protection of Environment 13 2011-07-01 2011-07-01 false What fuel analyses, fuel specification..., Commercial, and Institutional Boilers and Process Heaters Testing, Fuel Analyses, and Initial Compliance...
40 CFR 90.417 - Fuel flow measurement specifications.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Fuel flow measurement specifications... Gaseous Exhaust Test Procedures § 90.417 Fuel flow measurement specifications. (a) Fuel flow measurement is required only for raw testing. Fuel flow is allowed for dilute testing. (b) The fuel flow...
40 CFR 600.107-78 - Fuel specifications.
Code of Federal Regulations, 2010 CFR
2010-07-01
... and Later Model Year Automobiles-Test Procedures § 600.107-78 Fuel specifications. (a) The test fuel... test fuel specifications for diesel automobiles are given in paragraphs (b) (1) and (2) of § 86.113 of... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Fuel specifications. 600.107-78...
The Langley turbo-prop commuter design: A complete project description
NASA Technical Reports Server (NTRS)
Buttram, Greg; Horton, Keith; Keeter, Tim; Millhouse, Paul; Newberry, Kelli; Obyrne, Brian
1991-01-01
The primary objective of this project was to propose and prove the possibility of a new, advanced technology commuter aircraft design. Among the specifications were short to medium range capabilities, low seat per mile cost, fuel efficiency, and passenger comfort. Based on market evaluation, we found that the optimum size for new regional aircraft is around 50 passengers; we have designed our aircraft for this capacity. Turboprop engines provide substantial reductions in operating costs due to lower fuel consumption. We have therefore chosen an advanced turboprop engine. Composite materials, while more expensive to purchase and manufacture, result in decreased costs later through weight savings and ease of replacement.
Combustion of Gaseous Fuels with High Temperature Air in Normal- and Micro-gravity Conditions
NASA Technical Reports Server (NTRS)
Wang, Y.; Gupta, A. K.
2001-01-01
The objective of this study is determine the effect of air preheat temperature on flame characteristics in normal and microgravity conditions. We have obtained qualitative (global flame features) and some quantitative information on the features of flames using high temperature combustion air under normal gravity conditions with propane and methane as the fuels. This data will be compared with the data under microgravity conditions. The specific focus under normal gravity conditions has been on determining the global flame features as well as the spatial distribution of OH, CH, and C2 from flames using high temperature combustion air at different equivalence ratio.
L. Arroyo; S.P. Healey; W.B. Cohen; D. Cocero; J.A. Manzanera
2006-01-01
Knowledge of fuel load and composition is critical in fighting, preventing, and understanding wildfires. Commonly, the generation of fuel maps from remotely sensed imagery has made use of medium-resolution sensors such as Landsat. This paper presents a methodology to generate fuel type maps from high spatial resolution satellite data through object-oriented...
Westerholm, R; Christensen, A; Törnqvist, M; Ehrenberg, L; Rannug, U; Sjögren, M; Rafter, J; Soontjens, C; Almén, J; Grägg, K
2001-05-01
Diesel fuels, classified as environmentally friendly, have been available on the Swedish market since 1991. The Swedish diesel fuel classification is based upon the specification of selected fuel composition and physical properties to reduce potential environmental and health effects from direct human exposure to exhaust. The objective of the present investigation was to compare the most stringent, environmentally classified Swedish diesel fuel (MK1) to the reference diesel fuel used in the "European Program on Emissions, Fuels and Engine Technologies" (EPEFE) program. The study compares measurements of regulated emissions, unregulated emissions, and biological tests from a Volvo truck using these fuels. The regulated emissions from these two fuels (MK1 vs EPEFE) were CO (-2.2%), HC (12%), NOx (-11%), and particulates (-11%). The emissions of aldehydes, alkenes, and carbon dioxide were basically equivalent. The emissions of particle-associated polycyclic aromatic hydrocarbons (PAHs) and 1-nitropyrene were 88% and 98% lower than those of the EPEFE fuel, respectively. The emissions of semi-volatile PAHs and 1-nitropyrene were 77% and 80% lower than those from the EPEFE fuel, respectively. The reduction in mutagenicity of the particle extract varied from -75 to -90%, depending on the tester strain. The reduction of mutagenicity of the semi-volatile extract varied between -40 and -60%. Furthermore, the dioxin receptor binding activity was a factor of 8 times lower in the particle extracts and a factor of 4 times lower in the semi-volatile extract than that of the EPEFE fuel. In conclusion, the MK1 fuel was found to be more environmentally friendly than the EPEFE fuel.
NASA Technical Reports Server (NTRS)
Hicks, Yolanda R.; Tacina, M.
2013-01-01
Combustion performance of a Fischer-Tropsch (FT) jet fuel manufactured by Sasol was compared to JP-8 and a 50-50 blend of the two fuels, using the NASA/Woodward 9 point Lean Direct Injector (LDI) in its baseline configuration. The baseline LDI configuration uses 60deg axial air-swirlers, whose vanes generate clockwise swirl, in the streamwise sense. For all cases, the fuel-air equivalence ratio was 0.455, and the combustor inlet pressure and pressure drop were 10-bar and 4 percent. The three inlet temperatures used were 828, 728, and 617 K. The objectives of this experiment were to visually compare JP-8 flames with FT flames for gross features. Specifically, we sought to ascertain in a simple way visible luminosity, sooting, and primary flame length of the FT compared to a standard JP grade fuel. We used color video imaging and high-speed imaging to achieve these goals. The flame color provided a way to qualitatively compare soot formation. The length of the luminous signal measured using the high speed camera allowed an assessment of primary flame length. It was determined that the shortest flames resulted from the FT fuel.
Kinetics and mechanism of soot formation in hydrocarbon combustion
NASA Technical Reports Server (NTRS)
Frenklach, Michael
1990-01-01
The focus of this work was on kinetic modeling. The specific objectives were: detailed modeling of soot formation in premixed flames, elucidation of the effects of fuel structure on the pathway to soot, and the development of a numerical technique for accurate modeling of soot particle coagulation and surface growth. Those tasks were successfully completed and are briefly summarized.
Rocky Mountain Research Station USDA Forest Service
2004-01-01
Although the use of prescribed fire as a management tool is widespread, there is great variability and uncertainty in the treatment costs. Given specific site variables and management objectives, how much will it cost to use prescribed fire? This paper describes the FASTRACS database, a tool that has been developed to aid managers in addressing this question.
Carpool incentives: analysis of transportation and energy impacts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1976-06-01
The report quantitatively analyzes the impacts of carpooling strategies on travel behavior and energy consumption. It details the effects of 18 candidate strategies on the utilization of different transport modes for work trips and the resultant effects on non-work travel patterns, household auto ownership, and total fuel consumption. Five specific objectives governed the work performed: (1) To collect information on carpooling behavior and analyze existing experience with strategies that may encourage ride-sharing; (2) to predict, by using behavioral travel-demand models, the changes in travel patterns that might result from implementation of such strategies; (3) to translate increased carpooling (or othermore » changes in travel patterns) into decreased fuel consumption; (4) to evaluate the feasibility of implementing particular strategies; (5) to recommend strategies for increasing carpooling and reducing fuel consumption that will be both feasible and effective.« less
A Study on Vehicle Emission Factor Correction Based on Fuel Consumption Measurement
NASA Astrophysics Data System (ADS)
Wang, Xiaoning; Li, Meng; Peng, Bo
2018-01-01
The objective of this study is to address the problem of obvious differences between the calculated and measured emissions of pollutants from motor vehicle by using the existing "Environmental Impact Assessment Specification of Highway Construction Projects". First, a field study collects the vehicle composition ratio, speed, slope, fuel consumption and other essential data. Considering practical applications, the emission factors corresponding to 40km/h and 110km/h and 120km/h velocity are introduced by data fitting. Then, the emission factors of motor vehicle are revised based on the measured fuel consumption, and the pollutant emission modified formula was calculated and compared with the standard recommendation formula. The results show the error between calculated and measured values are within 5%, which can better reflect the actual discharge of the motor vehicle.
QUAD+ BWR Fuel Assembly demonstration program at Browns Ferry plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doshi, P.K.; Mayhue, L.T.; Robert, J.T.
1984-04-01
The QUAD+ fuel assembly is an improved BWR fuel assembly designed and manufactured by Westinghouse Electric Corporation. The design features a water cross separating four fuel minibundles in an integral channel. A demonstration program for this fuel design is planned for late 1984 in cycle 6 of Browns Ferry 2, a TVA plant. Objectives for the design of the QUAD+ demonstration assemblies are compatibility in performance and transparency in safety analysis with the feed fuel. These objectives are met. Inspections of the QUAD+ demonstration assemblies are planned at each refueling outage.
Method for producing hydrocarbon and alcohol mixtures. [Patent application
Compere, A.L.; Googin, J.M.; Griffith, W.L.
1980-12-01
It is an object of this invention to provide an efficient process for extracting alcohols and ketones from an aqueous solution containing the same into hydrocarbon fuel mixtures, such as gasoline, diesel fuel and fuel oil. Another object of the invention is to provide a mixture consisting of hydrocarbon, alcohols or ketones, polyoxyalkylene polymer and water which can be directly added to fuels or further purified. The above stated objects are achieved in accordance with a preferred embodiment of the invention by contacting an aqueous fermentation liquor with a hydrocarbon or hydrocarbon mixture containing carbon compounds having 5 to 18 carbon atoms, which may include gasoline, diesel fuel or fuel oil. The hydrocarbon-aqueous alcohol solution is mixed in the presence or one or more of a group of polyoxyalkylene polymers described in detail hereinafter; the fermentation alcohol being extracted into the hydrocarbon fuel-polyoxyalkylene polymer mixture.
NASA Astrophysics Data System (ADS)
Colella, Whitney G.
Although the fuel cells research and development community has traditionally focused the majority of its efforts on improving the fuel cell stack's voltage (electrical efficiency), combined heat and power (CHP) fuel cell system (FCSs) may achieve a competitive advantage over conventional generators only if the research and development community refocuses its efforts on cultivating other inherent technical qualities of such systems. Based on an analysis of their use within energy markets, these inherent qualities include (1) an ability to vary their electrical load rapidly, (2) an ability to vary their heat to power ratio during operation, and (3) an ability to deliver their waste heat to a useful thermal sink. This article focuses on the last of three design objectives: effectively capturing heat from a CHP FCS. This article (1) delineates the design specifications for a 6 kWe CHP FCS, (2) analyses four possible cooling loop configurations for this system, and (3) concludes which one of these provides the optimal heat recovery performance.
Assessment of MARMOT. A Mesoscale Fuel Performance Code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tonks, M. R.; Schwen, D.; Zhang, Y.
2015-04-01
MARMOT is the mesoscale fuel performance code under development as part of the US DOE Nuclear Energy Advanced Modeling and Simulation Program. In this report, we provide a high level summary of MARMOT, its capabilities, and its current state of validation. The purpose of MARMOT is to predict the coevolution of microstructure and material properties of nuclear fuel and cladding. It accomplished this using the phase field method coupled to solid mechanics and heat conduction. MARMOT is based on the Multiphysics Object-Oriented Simulation Environment (MOOSE), and much of its basic capability in the areas of the phase field method, mechanics,more » and heat conduction come directly from MOOSE modules. However, additional capability specific to fuel and cladding is available in MARMOT. While some validation of MARMOT has been completed in the areas of fission gas behavior and grain growth, much more validation needs to be conducted. However, new mesoscale data needs to be obtained in order to complete this validation.« less
Cost of lower NO x emissions: Increased CO 2 emissions from heavy-duty diesel engines
NASA Astrophysics Data System (ADS)
Krishnamurthy, Mohan; Carder, Daniel K.; Thompson, Gregory; Gautam, Mridul
This paper highlights the effect of emissions regulations on in-use emissions from heavy-duty vehicles powered by different model year engines. More importantly, fuel economy data for pre- and post-consent decree engines are compared. The objective of this study was to determine the changes in brake-specific emissions of NO x as a result of emission regulations, and to highlight the effect these have had on brake-specific CO 2 emission; hence, fuel consumption. For this study, in-use, on-road emission measurements were collected. Test vehicles were instrumented with a portable on-board tailpipe emissions measurement system, WVU's Mobile Emissions Measurement System, and were tested on specific routes, which included a mix of highway and city driving patterns, in order to collect engine operating conditions, vehicle speed, and in-use emission rates of CO 2 and NO x. Comparison of on-road in-use emissions data suggests NO x reductions as high as 80% and 45% compared to the US Federal Test Procedure and Not-to-Exceed standards for model year 1995-2002. However, the results indicate that the fuel consumption; hence, CO 2 emissions increased by approximately 10% over the same period, when the engines were operating in the Not-to-Exceed region.
Performance of diesel engine using diesel B3 mixed with crude palm oil.
Namliwan, Nattapong; Wongwuttanasatian, Tanakorn
2014-01-01
The objective of this study was to test the performance of diesel engine using diesel B3 mixed with crude palm oil in ratios of 95 : 5, 90 : 10, and 85 : 15, respectively, and to compare the results with diesel B3. According to the tests, they showed that the physical properties of the mixed fuel in the ratio of 95 : 5 were closest to those of diesel B3. The performance of the diesel engine that used mixed fuels had 5-17% lower torque and power than that of diesel B3. The specific fuel consumption of mixed fuels was 7-33% higher than using diesel B3. The components of gas emissions by using mixed fuel had 1.6-52% fewer amount of carbon monoxide (CO), carbon dioxide (CO2), sulfur dioxide (SO2), and oxygen (O2) than those of diesel B3. On the other hand, nitric oxide (NO) and nitrogen oxides (NO X ) emissions when using mixed fuels were 10-39% higher than diesel B3. By comparing the physical properties, the performance of the engine, and the amount of gas emissions of mixed fuel, we found out that the 95 : 5 ratio by volume was a suitable ratio for agricultural diesel engine (low-speed diesel engine).
40 CFR 86.1213-94 - Fuel specifications.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 20 2012-07-01 2012-07-01 false Fuel specifications. 86.1213-94 Section 86.1213-94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... Methanol-Fueled Heavy-Duty Vehicles § 86.1213-94 Fuel specifications. Use the fuels specified in subpart N...
40 CFR 86.1213-94 - Fuel specifications.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 20 2013-07-01 2013-07-01 false Fuel specifications. 86.1213-94 Section 86.1213-94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... Methanol-Fueled Heavy-Duty Vehicles § 86.1213-94 Fuel specifications. Use the fuels specified in subpart N...
40 CFR 86.1213-94 - Fuel specifications.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Fuel specifications. 86.1213-94 Section 86.1213-94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... Methanol-Fueled Heavy-Duty Vehicles § 86.1213-94 Fuel specifications. Use the fuels specified in subpart N...
40 CFR 86.1213-94 - Fuel specifications.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 19 2011-07-01 2011-07-01 false Fuel specifications. 86.1213-94 Section 86.1213-94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... Methanol-Fueled Heavy-Duty Vehicles § 86.1213-94 Fuel specifications. Use the fuels specified in subpart N...
40 CFR 86.213-94 - Fuel specifications.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 19 2012-07-01 2012-07-01 false Fuel specifications. 86.213-94 Section...-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.213-94 Fuel specifications. Gasoline... manufacturer and shall be made available to the Administrator upon request. Table—Cold CO Fuel Specifications...
40 CFR 86.213-94 - Fuel specifications.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Fuel specifications. 86.213-94 Section...-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.213-94 Fuel specifications. Gasoline... manufacturer and shall be made available to the Administrator upon request. Table—Cold CO Fuel Specifications...
40 CFR 86.1313-98 - Fuel specifications.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 20 2012-07-01 2012-07-01 false Fuel specifications. 86.1313-98... § 86.1313-98 Fuel specifications. Section 86.1313-98 includes text that specifies requirements that... fuel for diesel engines meeting the specifications in Table N98-2, or substantially equivalent...
40 CFR 86.213-94 - Fuel specifications.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 19 2013-07-01 2013-07-01 false Fuel specifications. 86.213-94 Section...-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.213-94 Fuel specifications. Gasoline... manufacturer and shall be made available to the Administrator upon request. Table—Cold CO Fuel Specifications...
40 CFR 86.1313-98 - Fuel specifications.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 19 2011-07-01 2011-07-01 false Fuel specifications. 86.1313-98... § 86.1313-98 Fuel specifications. Section 86.1313-98 includes text that specifies requirements that... fuel for diesel engines meeting the specifications in Table N98-2, or substantially equivalent...
40 CFR 86.1313-98 - Fuel specifications.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 20 2013-07-01 2013-07-01 false Fuel specifications. 86.1313-98... § 86.1313-98 Fuel specifications. Section 86.1313-98 includes text that specifies requirements that... fuel for diesel engines meeting the specifications in Table N98-2, or substantially equivalent...
40 CFR 86.314-79 - Fuel flow measurement specifications.
Code of Federal Regulations, 2010 CFR
2010-07-01
... percent of the measuring weight. (3) If the mass of fuel consumed is measured electronically (load cell... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Fuel flow measurement specifications....314-79 Fuel flow measurement specifications. (a) The fuel flow rate measurement instrument must have a...
40 CFR 86.314-79 - Fuel flow measurement specifications.
Code of Federal Regulations, 2013 CFR
2013-07-01
... percent of the measuring weight. (3) If the mass of fuel consumed is measured electronically (load cell... 40 Protection of Environment 19 2013-07-01 2013-07-01 false Fuel flow measurement specifications....314-79 Fuel flow measurement specifications. (a) The fuel flow rate measurement instrument must have a...
40 CFR 86.314-79 - Fuel flow measurement specifications.
Code of Federal Regulations, 2012 CFR
2012-07-01
... percent of the measuring weight. (3) If the mass of fuel consumed is measured electronically (load cell... 40 Protection of Environment 19 2012-07-01 2012-07-01 false Fuel flow measurement specifications....314-79 Fuel flow measurement specifications. (a) The fuel flow rate measurement instrument must have a...
40 CFR 86.314-79 - Fuel flow measurement specifications.
Code of Federal Regulations, 2011 CFR
2011-07-01
... percent of the measuring weight. (3) If the mass of fuel consumed is measured electronically (load cell... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Fuel flow measurement specifications....314-79 Fuel flow measurement specifications. (a) The fuel flow rate measurement instrument must have a...
40 CFR 89.415 - Fuel flow measurement specifications.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Fuel flow measurement specifications... Emission Test Procedures § 89.415 Fuel flow measurement specifications. The fuel flow rate measurement instrument must have a minimum accuracy of 2 percent of the engine maximum fuel flow rate. The controlling...
40 CFR 91.417 - Fuel flow measurement specifications.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Fuel flow measurement specifications... Procedures § 91.417 Fuel flow measurement specifications. (a) Fuel flow measurement is required only for raw testing but is allowed for dilute testing. (b) The fuel flow rate measurement instrument must have a...
14 CFR 27.977 - Fuel tank outlet.
Code of Federal Regulations, 2012 CFR
2012-01-01
... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.977 Fuel tank outlet. (a) There must be a... rotorcraft, prevent the passage of any object that could restrict fuel flow or damage any fuel system...] Fuel System Components ...
14 CFR 27.977 - Fuel tank outlet.
Code of Federal Regulations, 2010 CFR
2010-01-01
... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.977 Fuel tank outlet. (a) There must be a... rotorcraft, prevent the passage of any object that could restrict fuel flow or damage any fuel system...] Fuel System Components ...
14 CFR 27.977 - Fuel tank outlet.
Code of Federal Regulations, 2014 CFR
2014-01-01
... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.977 Fuel tank outlet. (a) There must be a... rotorcraft, prevent the passage of any object that could restrict fuel flow or damage any fuel system...] Fuel System Components ...
14 CFR 27.977 - Fuel tank outlet.
Code of Federal Regulations, 2011 CFR
2011-01-01
... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.977 Fuel tank outlet. (a) There must be a... rotorcraft, prevent the passage of any object that could restrict fuel flow or damage any fuel system...] Fuel System Components ...
14 CFR 27.977 - Fuel tank outlet.
Code of Federal Regulations, 2013 CFR
2013-01-01
... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.977 Fuel tank outlet. (a) There must be a... rotorcraft, prevent the passage of any object that could restrict fuel flow or damage any fuel system...] Fuel System Components ...
Alternative Fuels Data Center: E85 Flex Fuel Specification
Flexible-Fuel Automotive Spark-Ignition Engines. Fuel retailers or fleets purchasing E85 should require , there is no concern with carrying over winter fuel into the summer months because flexible-fuel vehicles requirements. D5798-15 Standard Specification for Ethanol Fuel Blends for Flexible-Fuel Automotive Spark
40 CFR 279.72 - On-specification used oil fuel.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 27 2014-07-01 2014-07-01 false On-specification used oil fuel. 279.72... (CONTINUED) STANDARDS FOR THE MANAGEMENT OF USED OIL Standards for Used Oil Fuel Marketers § 279.72 On-specification used oil fuel. (a) Analysis of used oil fuel. A generator, transporter, processor/re-refiner, or...
Estimating externalities of biomass fuel cycles, Report 7
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnthouse, L.W.; Cada, G.F.; Cheng, M.-D.
1998-01-01
This report documents the analysis of the biomass fuel cycle, in which biomass is combusted to produce electricity. The major objectives of this study were: (1) to implement the methodological concepts which were developed in the Background Document (ORNL/RFF 1992) as a means of estimating the external costs and benefits of fuel cycles, and by so doing, to demonstrate their application to the biomass fuel cycle; (2) to develop, given the time and resources, a range of estimates of marginal (i.e., the additional or incremental) damages and benefits associated with selected impact-pathways from a new wood-fired power plant, using amore » representative benchmark technology, at two reference sites in the US; and (3) to assess the state of the information available to support energy decision making and the estimation of externalities, and by so doing, to assist in identifying gaps in knowledge and in setting future research agendas. The demonstration of methods, modeling procedures, and use of scientific information was the most important objective of this study. It provides an illustrative example for those who will, in the future, undertake studies of actual energy options and sites. As in most studies, a more comprehensive analysis could have been completed had budget constraints not been as severe. Particularly affected were the air and water transport modeling, estimation of ecological impacts, and economic valuation. However, the most important objective of the study was to demonstrate methods, as a detailed example for future studies. Thus, having severe budget constraints was appropriate from the standpoint that these studies could also face similar constraints. Consequently, an important result of this study is an indication of what can be done in such studies, rather than the specific numerical estimates themselves.« less
Systems study of fuels from grains and grasses. Quarterly progress report, July--October 1976
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benson, W.; Allen, A.; Athey, R.
1976-11-15
The specific objectives of the project are to determine on a geographic basis the current and potential USA production capability for grain and grass crops, to perform a preliminary screening of conversion processes, and to perform preliminary technical and economic feasibility analyses. The results obtained to date on biomass production, conversion processes, and data management are reported. (JSR)
14 CFR 34.81 - Fuel specifications.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT FUEL VENTING AND EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Test Procedures for Engine Smoke Emissions (Aircraft Gas Turbine Engines) § 34.81 Fuel specifications. Fuel having specifications as provided...
14 CFR 34.81 - Fuel specifications.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT FUEL VENTING AND EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Test Procedures for Engine Smoke Emissions (Aircraft Gas Turbine Engines) § 34.81 Fuel specifications. Fuel having specifications as provided...
NASA Technical Reports Server (NTRS)
Prok, G. M.; Seng, G. T.
1980-01-01
Characterization data and a hydrocarbon compositional analysis are presented for a research test fuel designated as an experimental referee broadened-specification aviation turbine fuel. This research fuel, which is a special blend of kerosene and hydrotreated catalytic gas oil, is a hypothetical representation of a future fuel should it become necessary to broaden current kerojet specifications. It is used as a reference fuel in research investigations into the effects of fuel property variations on the performance and durability of jet aircraft components, including combustors and fuel systems.
Safety and Regulatory Issues of the Thorium Fuel Cycle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ade, Brian; Worrall, Andrew; Powers, Jeffrey
2014-02-01
Thorium has been widely considered an alternative to uranium fuel because of its relatively large natural abundance and its ability to breed fissile fuel (233U) from natural thorium (232Th). Possible scenarios for using thorium in the nuclear fuel cycle include use in different nuclear reactor types (light water, high temperature gas cooled, fast spectrum sodium, molten salt, etc.), advanced accelerator-driven systems, or even fission-fusion hybrid systems. The most likely near-term application of thorium in the United States is in currently operating light water reactors (LWRs). This use is primarily based on concepts that mix thorium with uranium (UO2 + ThO2),more » add fertile thorium (ThO2) fuel pins to LWR fuel assemblies, or use mixed plutonium and thorium (PuO2 + ThO2) fuel assemblies. The addition of thorium to currently operating LWRs would result in a number of different phenomenological impacts on the nuclear fuel. Thorium and its irradiation products have nuclear characteristics that are different from those of uranium. In addition, ThO2, alone or mixed with UO2 fuel, leads to different chemical and physical properties of the fuel. These aspects are key to reactor safety-related issues. The primary objectives of this report are to summarize historical, current, and proposed uses of thorium in nuclear reactors; provide some important properties of thorium fuel; perform qualitative and quantitative evaluations of both in-reactor and out-of-reactor safety issues and requirements specific to a thorium-based fuel cycle for current LWR reactor designs; and identify key knowledge gaps and technical issues that need to be addressed for the licensing of thorium LWR fuel in the United States.« less
Forces on wheels and fuel consumption in cars
NASA Astrophysics Data System (ADS)
Güémez, J.; Fiolhais, M.
2013-07-01
Motivated by real classroom discussions, we analyze the forces acting on moving vehicles, specifically friction on their wheels. In typical front-wheel-drive cars when the car accelerates these forces are in the forward direction in the front wheels, but they are in the opposite direction in the rear wheels. The situation may be intriguing for students, but it may also be helpful and stimulating to clarify the role of friction forces on rolling objects. In this paper we also study the thermodynamical aspects of an accelerating car, relating the distance traveled to the amount of fuel consumed. The fuel consumption is explicitly shown to be Galilean invariant and we identify the Gibbs free energy as the relevant quantity that enters into the thermodynamical description of the accelerating car. The more realistic case of the car's motion with the dragging forces taken into account is also discussed.
Selection of Nuclear Fuel for TREAT: UO 2 vs U 3O 8
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glazoff, Michael Vasily; Van Rooyen, Isabella Johanna; Coryell, Benjamin David
The Transient Reactor Test (TREAT) that resides at the Materials and Fuels Complex (MFC) at Idaho National Laboratory (INL), first achieved criticality in 1959, and successfully performed many transient tests on nuclear fuel until 1994 when its operations were suspended. Resumption of operations at TREAT was approved in February 2014 to meet the U.S. Department of Energy (DOE) Office of Nuclear Energy’s objectives in transient testing of nuclear fuels. The National Nuclear Security Administration’s is converting TREAT from its existing highly enriched uranium (HEU) core to a new core containing low enriched uranium (LEU) (i.e., U-235< 20% by weight). Themore » TREAT Conversion project is currently progressing with conceptual design phase activities. Dimensional stability of the fuel element assemblies, predictable fuel can oxidation and sufficient heat conductivity by the fuel blocks are some of the critical performance requirements of the new LEU fuel. Furthermore, to enable the design team to design fuel block and can specifications, it is amongst the objectives to evaluate TREAT LEU fuel and cladding material’s chemical interaction. This information is important to understand the viability of Zr-based alloys and fuel characteristics for the fabrication of the TREAT LEU fuel and cladding. Also, it is very important to make the right decision on what type of nuclear fuel will be used at TREAT. In particular, one has to consider different oxides of uranium, and most importantly, UO 2 vs U 3O 8. In this report, the results are documented pertaining to the choice mentioned above (UO 2 vs U 3O 8). The conclusion in favor of using UO 2 was made based on the analysis of historical data, up-to-date literature, and self-consistent calculations of phase equilibria and thermodynamic properties in the U-O and U-O-C systems. The report is organized as follows. First, the criteria that were used to make the choice are analyzed. Secondly, existing historical data and current literature were reviewed. This analysis was supplemented by the construction and examination of the U-O and U-O-C phase diagrams at pressure close to negligent, thereby mimicking the conditions in which nuclear fuel is supposed to function inside the zirconium-based cladding in the reactor. Finally, our conclusion in favor of the UO 2 down selection was summarized and explained in the last Section of this document.« less
Help in making fuel management decisions.
Peter J. Roussopoulos; Von J. Johnson
1975-01-01
Describes how to compare predictions of fuel hazard for Northeastern logging slash with a number of fuel hazard "standards." This system provides objective criteria for making fuel management decisions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steinbach, Andrew
2017-05-31
The primary project objective was development of improved polymer electrolyte membrane fuel cell (PEMFC) membrane electrode assemblies (MEAs) which address the key DOE barriers of performance, durability and cost. Additional project objectives were to address commercialization barriers specific to MEAs comprising 3M nanostructured thin film (NSTF) electrodes, including a larger-than-acceptable sensitivity to operating conditions, an unexplained loss of rated power capability with operating time, and slow break-in conditioning. Significant progress was made against each of these barriers, and most DOE 2020 targets were met or substantially approached.
Metrology for Fuel Cell Manufacturing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stocker, Michael; Stanfield, Eric
2015-02-04
The project was divided into three subprojects. The first subproject is Fuel Cell Manufacturing Variability and Its Impact on Performance. The objective was to determine if flow field channel dimensional variability has an impact on fuel cell performance. The second subproject is Non-contact Sensor Evaluation for Bipolar Plate Manufacturing Process Control and Smart Assembly of Fuel Cell Stacks. The objective was to enable cost reduction in the manufacture of fuel cell plates by providing a rapid non-contact measurement system for in-line process control. The third subproject is Optical Scatterfield Metrology for Online Catalyst Coating Inspection of PEM Soft Goods. Themore » objective was to evaluate the suitability of Optical Scatterfield Microscopy as a viable measurement tool for in situ process control of catalyst coatings.« less
40 CFR 89.415 - Fuel flow measurement specifications.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Fuel flow measurement specifications. 89.415 Section 89.415 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Emission Test Procedures § 89.415 Fuel flow measurement specifications. The fuel flow rate measurement...
40 CFR 90.417 - Fuel flow measurement specifications.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Fuel flow measurement specifications. 90.417 Section 90.417 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Gaseous Exhaust Test Procedures § 90.417 Fuel flow measurement specifications. (a) Fuel flow measurement...
Code of Federal Regulations, 2013 CFR
2013-07-01
... (kerosene), and fuel specifically produced to meet military specifications (such as JP-4, JP-8, and F-76...), fuel produced for export, jet fuel, kerosene, and fuel specifically produced to meet military...
Code of Federal Regulations, 2011 CFR
2011-07-01
... (kerosene), and fuel specifically produced to meet military specifications (such as JP-4, JP-8, and F-76...), fuel produced for export, jet fuel, kerosene, and fuel specifically produced to meet military...
Code of Federal Regulations, 2014 CFR
2014-07-01
... (kerosene), and fuel specifically produced to meet military specifications (such as JP-4, JP-8, and F-76...), fuel produced for export, jet fuel, kerosene, and fuel specifically produced to meet military...
Code of Federal Regulations, 2012 CFR
2012-07-01
... (kerosene), and fuel specifically produced to meet military specifications (such as JP-4, JP-8, and F-76...), fuel produced for export, jet fuel, kerosene, and fuel specifically produced to meet military...
Code of Federal Regulations, 2010 CFR
2010-07-01
... (kerosene), and fuel specifically produced to meet military specifications (such as JP-4, JP-8, and F-76...), fuel produced for export, jet fuel, kerosene, and fuel specifically produced to meet military...
NASA Astrophysics Data System (ADS)
Feddema, Rick
Feddema, Rick T. M.S.M.E., Purdue University, December 2013. Effect of Aviation Fuel Type and Fuel Injection Conditions on the Spray Characteristics of Pressure Swirl and Hybrid Air Blast Fuel Injectors. Major Professor: Dr. Paul E. Sojka, School of Mechanical Engineering Spray performance of pressure swirl and hybrid air blast fuel injectors are central to combustion stability, combustor heat management, and pollutant formation in aviation gas turbine engines. Next generation aviation gas turbine engines will optimize spray atomization characteristics of the fuel injector in order to achieve engine efficiency and emissions requirements. Fuel injector spray atomization performance is affected by the type of fuel injector, fuel liquid properties, fuel injection pressure, fuel injection temperature, and ambient pressure. Performance of pressure swirl atomizer and hybrid air blast nozzle type fuel injectors are compared in this study. Aviation jet fuels, JP-8, Jet A, JP-5, and JP-10 and their effect on fuel injector performance is investigated. Fuel injector set conditions involving fuel injector pressure, fuel temperature and ambient pressure are varied in order to compare each fuel type. One objective of this thesis is to contribute spray patternation measurements to the body of existing drop size data in the literature. Fuel droplet size tends to increase with decreasing fuel injection pressure, decreasing fuel injection temperature and increasing ambient injection pressure. The differences between fuel types at particular set conditions occur due to differences in liquid properties between fuels. Liquid viscosity and surface tension are identified to be fuel-specific properties that affect the drop size of the fuel. An open aspect of current research that this paper addresses is how much the type of aviation jet fuel affects spray atomization characteristics. Conventional aviation fuel specifications are becoming more important with new interest in alternative fuels. Optical patternation data and line of sight laser diffraction data show that there is significant difference between jet fuels. Particularly at low fuel injection pressures (0.345 MPa) and cold temperatures (-40 C), the patternation data shows that the total surface area in the spray at 38.1 mm from the pressure swirl injector for the JP-10 fuel type is one-sixth the amount of the JP-8. Finally, this study compares the atomizer performance of a pressure swirl nozzle to a hybrid air blast nozzle. The total surface area for both the hybrid air blast nozzle and the pressure swirl nozzle show a similar decline in atomization performance at low fuel injection pressures and cold temperatures. However, the optical patternator radial profile data and the line of sight laser diffraction data show that the droplet size and spray distribution data are less affected by injection conditions and fuel type in the hybrid air blast nozzle, than they are in the pressure swirl nozzle. One explanation is that the aerodynamic forces associated with the swirler on the hybrid air blast nozzle control the distribution droplets in the spray. This is in contrast to the pressure swirl nozzle droplet distribution that is controlled by internal geometry and droplet ballistics.
14 CFR 34.81 - Fuel specifications.
Code of Federal Regulations, 2012 CFR
2012-01-01
... EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Test Procedures for Engine Smoke Emissions (Aircraft Gas Turbine Engines) § 34.81 Fuel specifications. Fuel having specifications as provided...
NASA Technical Reports Server (NTRS)
Longwell, J. P.; Grobman, J. S.
1977-01-01
The efficient utilization of fossil fuels by future jet aircraft may necessitate the broadening of current aviation turbine fuel specifications. The most significant changes in specifications would be an increased aromatics content and a higher final boiling point in order to minimize refinery energy consumption and costs. These changes would increase the freezing point and might lower the thermal stability of the fuel, and could cause increased pollutant emissions, increased combustor liner temperatures, and poorer ignition characteristics. The effects that broadened specification fuels may have on present-day jet aircraft and engine components and the technology required to use fuels with broadened specifications are discussed.
Elizabeth D. Reinhardt; Robert E. Keane; David E. Calkin; Jack D. Cohen
2008-01-01
Many natural resource agencies and organizations recognize the importance of fuel treatments as tools for reducing fire hazards and restoring ecosystems. However, there continues to be confusion and misconception about fuel treatments and their implementation and effects in fire-prone landscapes across the United States. This paper (1) summarizes objectives, methods,...
40 CFR 91.417 - Fuel flow measurement specifications.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Fuel flow measurement specifications. 91.417 Section 91.417 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Procedures § 91.417 Fuel flow measurement specifications. (a) Fuel flow measurement is required only for raw...
Performance of Diesel Engine Using Diesel B3 Mixed with Crude Palm Oil
Namliwan, Nattapong; Wongwuttanasatian, Tanakorn
2014-01-01
The objective of this study was to test the performance of diesel engine using diesel B3 mixed with crude palm oil in ratios of 95 : 5, 90 : 10, and 85 : 15, respectively, and to compare the results with diesel B3. According to the tests, they showed that the physical properties of the mixed fuel in the ratio of 95 : 5 were closest to those of diesel B3. The performance of the diesel engine that used mixed fuels had 5–17% lower torque and power than that of diesel B3. The specific fuel consumption of mixed fuels was 7–33% higher than using diesel B3. The components of gas emissions by using mixed fuel had 1.6–52% fewer amount of carbon monoxide (CO), carbon dioxide (CO2), sulfur dioxide (SO2), and oxygen (O2) than those of diesel B3. On the other hand, nitric oxide (NO) and nitrogen oxides (NOX) emissions when using mixed fuels were 10–39% higher than diesel B3. By comparing the physical properties, the performance of the engine, and the amount of gas emissions of mixed fuel, we found out that the 95 : 5 ratio by volume was a suitable ratio for agricultural diesel engine (low-speed diesel engine). PMID:24688402
40 CFR 86.113-04 - Fuel specifications.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Heavy-Duty Vehicles; Test Procedures § 86.113-04 Fuel specifications. This section includes text that... exhaust and evaporative emission testing: Table 1 of § 86.113-04—Test Fuel Specifications for Gasoline... method. (2) Manufacturers may use California test fuels, as follows: (i) For model year 2014 and earlier...
40 CFR 86.213-11 - Fuel specifications.
Code of Federal Regulations, 2011 CFR
2011-07-01
...-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.213-11 Fuel specifications. (a) Gasoline... the text in this section follows: Table—Cold CO Fuel Specifications Item ASTM test Cold CO low octane.... Diesel test fuel used for cold temperature FTP testing under part 600 of this chapter must be a winter...
40 CFR 86.213-11 - Fuel specifications.
Code of Federal Regulations, 2013 CFR
2013-07-01
...-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.213-11 Fuel specifications. (a) Gasoline... the text in this section follows: Table—Cold CO Fuel Specifications Item ASTM test Cold CO low octane.... Diesel test fuel used for cold temperature FTP testing under part 600 of this chapter must be a winter...
40 CFR 86.213-11 - Fuel specifications.
Code of Federal Regulations, 2010 CFR
2010-07-01
...-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.213-11 Fuel specifications. (a) Gasoline... the text in this section follows: Table—Cold CO Fuel Specifications Item ASTM test Cold CO low octane.... Diesel test fuel used for cold temperature FTP testing under part 600 of this chapter must be a winter...
40 CFR 86.213-11 - Fuel specifications.
Code of Federal Regulations, 2012 CFR
2012-07-01
...-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.213-11 Fuel specifications. (a) Gasoline... the text in this section follows: Table—Cold CO Fuel Specifications Item ASTM test Cold CO low octane.... Diesel test fuel used for cold temperature FTP testing under part 600 of this chapter must be a winter...
40 CFR 86.213-04 - Fuel specifications.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 19 2013-07-01 2013-07-01 false Fuel specifications. 86.213-04 Section...-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.213-04 Fuel specifications. Gasoline... manufacturer and must be made available to the Administrator upon request. The table listing the cold CO fuel...
40 CFR 86.213-04 - Fuel specifications.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Fuel specifications. 86.213-04 Section...-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.213-04 Fuel specifications. Gasoline... manufacturer and must be made available to the Administrator upon request. The table listing the cold CO fuel...
40 CFR 86.213-04 - Fuel specifications.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 19 2012-07-01 2012-07-01 false Fuel specifications. 86.213-04 Section...-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.213-04 Fuel specifications. Gasoline... manufacturer and must be made available to the Administrator upon request. The table listing the cold CO fuel...
Constrained optimal multi-phase lunar landing trajectory with minimum fuel consumption
NASA Astrophysics Data System (ADS)
Mathavaraj, S.; Pandiyan, R.; Padhi, R.
2017-12-01
A Legendre pseudo spectral philosophy based multi-phase constrained fuel-optimal trajectory design approach is presented in this paper. The objective here is to find an optimal approach to successfully guide a lunar lander from perilune (18km altitude) of a transfer orbit to a height of 100m over a specific landing site. After attaining 100m altitude, there is a mission critical re-targeting phase, which has very different objective (but is not critical for fuel optimization) and hence is not considered in this paper. The proposed approach takes into account various mission constraints in different phases from perilune to the landing site. These constraints include phase-1 ('braking with rough navigation') from 18km altitude to 7km altitude where navigation accuracy is poor, phase-2 ('attitude hold') to hold the lander attitude for 35sec for vision camera processing for obtaining navigation error, and phase-3 ('braking with precise navigation') from end of phase-2 to 100m altitude over the landing site, where navigation accuracy is good (due to vision camera navigation inputs). At the end of phase-1, there are constraints on position and attitude. In Phase-2, the attitude must be held throughout. At the end of phase-3, the constraints include accuracy in position, velocity as well as attitude orientation. The proposed optimal trajectory technique satisfies the mission constraints in each phase and provides an overall fuel-minimizing guidance command history.
Certification of alternative aviation fuels and blend components
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson III, George R.; Edwards, Tim; Corporan, Edwin
2013-01-15
Aviation turbine engine fuel specifications are governed by ASTM International, formerly known as the American Society for Testing and Materials (ASTM) International, and the British Ministry of Defence (MOD). ASTM D1655 Standard Specification for Aviation Turbine Fuels and MOD Defence Standard 91-91 are the guiding specifications for this fuel throughout most of the world. Both of these documents rely heavily on the vast amount of experience in production and use of turbine engine fuels from conventional sources, such as crude oil, natural gas condensates, heavy oil, shale oil, and oil sands. Turbine engine fuel derived from these resources and meetingmore » the above specifications has properties that are generally considered acceptable for fuels to be used in turbine engines. Alternative and synthetic fuel components are approved for use to blend with conventional turbine engine fuels after considerable testing. ASTM has established a specification for fuels containing synthesized hydrocarbons under D7566, and the MOD has included additional requirements for fuels containing synthetic components under Annex D of DS91-91. New turbine engine fuel additives and blend components need to be evaluated using ASTM D4054, Standard Practice for Qualification and Approval of New Aviation Turbine Fuels and Fuel Additives. This paper discusses these specifications and testing requirements in light of recent literature claiming that some biomass-derived blend components, which have been used to blend in conventional aviation fuel, meet the requirements for aviation turbine fuels as specified by ASTM and the MOD. The 'Table 1' requirements listed in both D1655 and DS91-91 are predicated on the assumption that the feedstocks used to make fuels meeting these requirements are from approved sources. Recent papers have implied that commercial jet fuel can be blended with renewable components that are not hydrocarbons (such as fatty acid methyl esters). These are not allowed blend components for turbine engine fuels as discussed in this paper.« less
Energy availabilities for state and local development: projected energy patterns for 1980 and 1985
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vogt, D. P.; Rice, P. L.; Pai, V. P.
1978-06-01
This report presents projections of the supply, demand, and net imports of seven fuel types and four final consuming sectors for BEAs, states, census regions, and the nation for 1980 and 1985. The data are formatted to present regional energy availability from primary extraction, as well as from regional transformation processes. As constructed, the tables depict energy balances between availability and use for each of the specific fuels. The objective of the program is to provide a consistent base of historic and projected energy information within a standard format. Such a framework should aid regional policymakers in their consideration ofmore » regional growth issues that may be influenced by the regional energy system. This basic data must be supplemented by region-specific information which only the local policy analyst can bring to bear in his assessment of the energy conditions which characterize each region. The energy data, coupled with specific knowledge of projected economic growth and employment patterns, can assist EDA in developing its grant-in-aid investment strategy.« less
Transport Studies and Modeling in PEM Fuel Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mittelsteadt, Cortney K.; Xu, Hui; Brawn, Shelly
2014-07-30
This project’s aim was to develop fuel cell components (i.e. membranes, gas-diffusion media (GDM), bipolar plates and flow fields) that possess specific properties (i.e. water transport and conductivity). A computational fluid dynamics model was developed to elucidate the effect of certain parameters on these specific properties. Ultimately, the model will be used to determine sensitivity of fuel cell performance to component properties to determine limiting components and to guide research. We have successfully reached our objectives and achieved most of the milestones of this project. We have designed and synthesized a variety of hydrocarbon block polymer membranes with lower equivalentmore » weight, structure, chemistry, phase separation and process conditions. These membranes provide a broad selection with optimized water transport properties. We have also designed and constructed a variety of devices that are capable of accurately measuring the water transport properties (water uptake, water diffusivity and electro-osmatic drag) of these membranes. These transport properties are correlated to the membranes’ structures derived from X-ray and microscopy techniques to determine the structure-property relationship. We successfully integrated hydrocarbon membrane MEAs with a current distribution board (CBD) to study the impact of hydrocarbon membrane on water transport in fuel cells. We have designed and fabricated various GDM with varying substrate, diffusivity and micro-porous layers (MPL) and characterized their pore structure, tortuosity and hydrophobicity. We have derived a universal chart (MacMullin number as function of wet proofing and porosity) that can be used to characterize various GDM. The abovementioned GDMs have been evaluated in operating fuel cells; their performance is correlated to various pore structure, tortuosity and hydrophobicity of the GDM. Unfortunately, determining a universal relationship between the MacMullin number and these properties was not achieved. We have simulated fuel cell performance, current distribution and water distribution at various values of the water uptake, membrane diffusivity, and electro-osmotic drag coefficient (EODC) and compared modeling results with segmented-cell data for both serpentine and parallel flow-fields. We have developed iterations of fuel cell flow fields to achieve specific water transport and thermal management targets. This work demonstrated the importance of membrane diffusivity on fuel cell performance, the necessity of a high membrane diffusion coefficient, and the desirability of a low EODC at low levels of relative humidity.« less
40 CFR 87.81 - Fuel specifications.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) CONTROL OF AIR POLLUTION FROM AIRCRAFT AND AIRCRAFT ENGINES Test Procedures for Engine Smoke Emissions (Aircraft Gas Turbine Engines) § 87.81 Fuel specifications. Fuel having specifications as provided in § 87...
40 CFR 87.81 - Fuel specifications.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) CONTROL OF AIR POLLUTION FROM AIRCRAFT AND AIRCRAFT ENGINES Test Procedures for Engine Smoke Emissions (Aircraft Gas Turbine Engines) § 87.81 Fuel specifications. Fuel having specifications as provided in § 87...
Solid Polymer Electrolyte (SPE) fuel cell technology program
NASA Technical Reports Server (NTRS)
1979-01-01
The overall objectives of the Phase IV Solid Polymer Electrolyte Fuel Cell Technology Program were to: (1) establish fuel cell life and performance at temperatures, pressures and current densities significantly higher than those previously demonstrated; (2) provide the ground work for a space energy storage system based on the solid polymer electrolyte technology (i.e., regenerative H2/O2 fuel cell); (3) design, fabricate and test evaluate a full-scale single cell unit. During this phase, significant progress was made toward the accomplishment of these objectives.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lindgren, Eric Richard; Durbin, Samuel G
2007-04-01
The objective of this project was to provide basic thermal-hydraulic data associated with a SFP complete loss-of-coolant accident. The accident conditions of interest for the SFP were simulated in a full-scale prototypic fashion (electrically-heated, prototypic assemblies in a prototypic SFP rack) so that the experimental results closely represent actual fuel assembly responses. A major impetus for this work was to facilitate code validation (primarily MELCOR) and reduce questions associated with interpretation of the experimental results. It was necessary to simulate a cluster of assemblies to represent a higher decay (younger) assembly surrounded by older, lower-power assemblies. Specifically, this program providedmore » data and analysis confirming: (1) MELCOR modeling of inter-assembly radiant heat transfer, (2) flow resistance modeling and the natural convective flow induced in a fuel assembly as it heats up in air, (3) the potential for and nature of thermal transient (i.e., Zircaloy fire) propagation, and (4) mitigation strategies concerning fuel assembly management.« less
Increasing Operational Stability in Low NO
NASA Astrophysics Data System (ADS)
Levy, Yeshayahou; Erenburg, Vladimir; Sherbaum, Valery; Ovcharenko, Vitali; Rosentsvit, Leonid; Chudnovsky, Boris; Herszage, Amiel; Talanker, Alexander
2012-03-01
Lean combustion is a method in which combustion takes place under low equivalence ratio and relatively low combustion temperatures. As such, it has the potential to lower the effect of the relatively high activation energy nitrogen-oxygen reactions which are responsible for substantial NO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gehin, Jess C; Oakley, Brian; Worrall, Andrew
2015-01-01
Abstract One of the key objectives of the U.S. Department of Energy (DOE) Nuclear Energy R&D Roadmap is the development of sustainable nuclear fuel cycles that can improve natural resource utilization and provide solutions to the management of nuclear wastes. Recently, an evaluation and screening (E&S) of fuel cycle systems has been conducted to identify those options that provide the best opportunities for obtaining such improvements and also to identify the required research and development activities that can support the development of advanced fuel cycle options. In order to evaluate and screen the E&S study included nine criteria including Developmentmore » and Deployment Risk (D&DR). More specifically, this criterion was represented by the following metrics: Development time, development cost, deployment cost from prototypic validation to first-of-a-kind commercial, compatibility with the existing infrastructure, existence of regulations for the fuel cycle and familiarity with licensing, and existence of market incentives and/or barriers to commercial implementation of fuel cycle processes. Given the comprehensive nature of the study, a systematic approach was needed to determine metric data for the D&DR criterion, and is presented here. As would be expected, the Evaluation Group representing the once-through use of uranium in thermal reactors is always the highest ranked fuel cycle Evaluation Group for this D&DR criterion. Evaluation Groups that consist of once-through fuel cycles that use existing reactor types are consistently ranked very high. The highest ranked limited and continuous recycle fuel cycle Evaluation Groups are those that recycle Pu in thermal reactors. The lowest ranked fuel cycles are predominately continuous recycle single stage and multi-stage fuel cycles that involve TRU and/or U-233 recycle.« less
Alternative aviation turbine fuels
NASA Technical Reports Server (NTRS)
Grobman, J.
1977-01-01
The efficient utilization of fossil fuels by future jet aircraft may necessitate the broadening of current aviation turbine fuel specifications. The most significant changes in specifications would be an increased aromatics content and a higher final boiling point in order to minimize refinery energy consumption and costs. These changes would increase the freezing point and might lower the thermal stability of the fuel and could cause increased pollutant emissions, increased smoke and carbon formation, increased combustor liner temperatures, and poorer ignition characteristics. This paper discusses the effects that broadened specification fuels may have on present-day jet aircraft and engine components and the technology required to use fuels with broadened specifications.
40 CFR 86.513 - Fuel and engine lubricant specifications.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Regulations for 1978 and Later New Motorcycles; Test Procedures § 86.513 Fuel and engine lubricant... of § 86.513—Gasoline Test Fuel Specifications Item Value Procedure 1 Distillation Range: 1. Initial... of § 86.513—Natural Gas Test Fuel Specifications Item Value 1 Methane, CH4 Minimum, 89.0 mole percent...
Code of Federal Regulations, 2013 CFR
2013-07-01
... compliance with the emission limitations, fuel specifications and work practice standards? 63.7530 Section 63... Institutional Boilers and Process Heaters Testing, Fuel Analyses, and Initial Compliance Requirements § 63.7530 How do I demonstrate initial compliance with the emission limitations, fuel specifications and work...
Code of Federal Regulations, 2014 CFR
2014-07-01
... compliance with the emission limitations, fuel specifications and work practice standards? 63.7530 Section 63... Institutional Boilers and Process Heaters Testing, Fuel Analyses, and Initial Compliance Requirements § 63.7530 How do I demonstrate initial compliance with the emission limitations, fuel specifications and work...
40 CFR 279.72 - On-specification used oil fuel.
Code of Federal Regulations, 2012 CFR
2012-07-01
... of § 279.11 by performing analyses or obtaining copies of analyses or other information documenting...-specification used oil fuel. (a) Analysis of used oil fuel. A generator, transporter, processor/re-refiner, or... meets the specifications for used oil fuel under § 279.11, must keep copies of analyses of the used oil...
40 CFR 86.113-94 - Fuel specifications.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Heavy-Duty Vehicles; Test Procedures § 86.113-94 Fuel specifications. (a) [Reserved] (b) Petroleum diesel test fuel. (1) The petroleum fuels employed for testing diesel vehicles shall be clean and bright... test fuel is commercially available. (ii) Information acceptable to the Administrator is provided to...
Refining and blending of aviation turbine fuels.
White, R D
1999-02-01
Aviation turbine fuels (jet fuels) are similar to other petroleum products that have a boiling range of approximately 300F to 550F. Kerosene and No.1 grades of fuel oil, diesel fuel, and gas turbine oil share many similar physical and chemical properties with jet fuel. The similarity among these products should allow toxicology data on one material to be extrapolated to the others. Refineries in the USA manufacture jet fuel to meet industry standard specifications. Civilian aircraft primarily use Jet A or Jet A-1 fuel as defined by ASTM D 1655. Military aircraft use JP-5 or JP-8 fuel as defined by MIL-T-5624R or MIL-T-83133D respectively. The freezing point and flash point are the principle differences between the finished fuels. Common refinery processes that produce jet fuel include distillation, caustic treatment, hydrotreating, and hydrocracking. Each of these refining processes may be the final step to produce jet fuel. Sometimes blending of two or more of these refinery process streams are needed to produce jet fuel that meets the desired specifications. Chemical additives allowed for use in jet fuel are also defined in the product specifications. In many cases, the customer rather than the refinery will put additives into the fuel to meet their specific storage or flight condition requirements.
40 CFR 86.1413 - Fuel specifications.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Trucks; Certification Short Test Procedures § 86.1413 Fuel specifications. (a) The test fuel to be used... section. (b) CST test fuels by option. (1) Test Option 1: Use Cold CO fuel as specified in the table in § 86.213-94. (2) Test Option 2: Use Cold CO fuel, as specified in the table in § 86.213-94; optionally...
40 CFR 86.1413 - Fuel specifications.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Trucks; Certification Short Test Procedures § 86.1413 Fuel specifications. (a) The test fuel to be used... section. (b) CST test fuels by option. (1) Test Option 1: Use Cold CO fuel as specified in the table in § 86.213-94. (2) Test Option 2: Use Cold CO fuel, as specified in the table in § 86.213-94; optionally...
40 CFR 86.1413 - Fuel specifications.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Trucks; Certification Short Test Procedures § 86.1413 Fuel specifications. (a) The test fuel to be used... section. (b) CST test fuels by option. (1) Test Option 1: Use Cold CO fuel as specified in the table in § 86.213-94. (2) Test Option 2: Use Cold CO fuel, as specified in the table in § 86.213-94; optionally...
40 CFR 86.1413 - Fuel specifications.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Trucks; Certification Short Test Procedures § 86.1413 Fuel specifications. (a) The test fuel to be used... section. (b) CST test fuels by option. (1) Test Option 1: Use Cold CO fuel as specified in the table in § 86.213-94. (2) Test Option 2: Use Cold CO fuel, as specified in the table in § 86.213-94; optionally...
Effect of broadened-specification fuels on aircraft engines and fuel systems
NASA Technical Reports Server (NTRS)
Rudey, R. A.
1979-01-01
A wide variety of studies on the potential effects of broadened-specification fuels on future aircraft engines and fuel systems are summarized. The compositions and characteristics of aircraft fuels that may be derived from current and future crude-oil sources are described, and the most critical properties that may effect aircraft engines and fuel systems are identified and discussed. The problems that are most likely to be encountered because of changes in selected fuel properties are explored; and the related effects on engine performance, component durability and maintenance, and aircraft fuel-system performance are examined. The ability of current technology to accept possible future fuel specification changes is assessed and selected technological advances that can reduce the severity of the potential problems are illustrated.
Effect of broadened-specification fuels on aircraft engines and fuel systems
NASA Technical Reports Server (NTRS)
Rudey, R. A.
1979-01-01
A wide variety of studies on the potential effects of broadened-specification fuels on future aircraft engines and fuel systems are summarized. The compositions and characteristics of aircraft fuels that may be derived from current and future crude-oil sources are described, and the most critical properties that may affect aircraft engines and fuel systems are identified and discussed. The problems that are most likely to be encountered because of changes in selected fuel properties are described; and the related effects on engine performance, component durability and maintenance, and aircraft fuel-system performance are discussed. The ability of current technology to accept possible future fuel-specification changes is discussed, and selected technological advances that can reduce the severity of the potential problems are illustrated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kanakia, M.D.; Cuellar, J.P.; Lestz, S.J.
The objectives of this program were to develop laboratory bench fuel-wear test methodology using JP-8 and to evaluate the effects of additives to improve load-carrying capacity of JP-8 for use in diesel-powered ground equipment. A laboratory test using the Cameron-Plint High-Frequency Reciprocating machine evaluated the effects of various chemical and physical parameters influencing the lubricity of the distillate fuels. The test conditions were determined sufficient to eliminate the effect of fluid physical properties such as viscosity. It was shown that the differences in the intrinsic lubricity of the fuels were due to small amounts of chemical additives. Under such conditions,more » the test can be used as a screening tool to find additives for enhancement of JP-8 lubricity. The test has potential to ascertain minimum lubricity level for diesel-powered ground equipment if these requirements are verified with field performance data and determined to be different from the Air Force JP-8 specifications. The dimensionless wear coefficients of Reference No. 2 diesel fuel were shown to be an order of magnitude lower than the jet fuels. In all cases, the wear rates of jet fuels and isoparaffinic solvents were improved by addition of a corrosion inhibitor or antiwear additive to match the lower wear rates of the diesel fuels. Although there was no measurable change in the viscosities of the jet fuel due to the additives, the wear rates changed by an order of magnitude.« less
TVA GIS-based biomass resource assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noon, C.E.
1993-12-31
The focus of this paper is a computer-based system for estimating the costs of supplying wood fuel. The system is being developed for the Tennessee Valley Authority and is referred to as the Biomass Resource Assessment Version One (BRAVO) system. The main objective in developing the BRAVO system is to assist TVA in estimating the costs for supplying wood fuel to any one of its twelve coal-fired plants. The BRAVO system is developed within a Geographic Information System (GIS) platform and is designed to allow a user to perform {open_quotes}what if{close_quotes} analyses related to the costs of wood fuel supply.more » Three types of wood fuel are considered in the BRAVO system: mill residues, logging residues and short-rotation woody crops (SRWC). Each type of wood fuel has unique economic and supply characteristics. The input data for the system includes the specific locations, amount, and prices of the various types of wood fuel throughout the TVA region. The system input is completed by data on political boundaries, power plant locations, road networks and a model for estimating transportation costs as a function of distance. The result is a comprehensive system which includes information on all possible wood fuel supply joints, demand points and product movement costs. In addition, the BRAVO system has been designed to allow a user to perform sensitivity analysis on a variety of supply system parameters. This will enable TVA to thoroughly investigate the financial impacts of issues such as increased competition for wood fuel, environmental policies, fuel taxes, and regional economic cycles.« less
40 CFR 92.113 - Fuel specifications.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test Procedures § 92.113 Fuel specifications. (a) Diesel test fuel. (1) The diesel fuels for testing locomotives or locomotive engines designed...) of this section shall be reported in accordance with § 92.133. (b) Natural gas test fuel (compressed...
40 CFR 92.113 - Fuel specifications.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test Procedures § 92.113 Fuel specifications. (a) Diesel test fuel. (1) The diesel fuels for testing locomotives or locomotive engines designed... section shall be reported in accordance with § 92.133. (b) Natural gas test fuel (compressed natural gas...
40 CFR 92.113 - Fuel specifications.
Code of Federal Regulations, 2014 CFR
2014-07-01
...) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test Procedures § 92.113 Fuel specifications. (a) Diesel test fuel. (1) The diesel fuels for testing locomotives or locomotive engines designed... section shall be reported in accordance with § 92.133. (b) Natural gas test fuel (compressed natural gas...
40 CFR 92.113 - Fuel specifications.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test Procedures § 92.113 Fuel specifications. (a) Diesel test fuel. (1) The diesel fuels for testing locomotives or locomotive engines designed... section shall be reported in accordance with § 92.133. (b) Natural gas test fuel (compressed natural gas...
40 CFR 92.113 - Fuel specifications.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test Procedures § 92.113 Fuel specifications. (a) Diesel test fuel. (1) The diesel fuels for testing locomotives or locomotive engines designed...) of this section shall be reported in accordance with § 92.133. (b) Natural gas test fuel (compressed...
The impact of death awareness on sizes of self-representational objects.
McCabe, Simon; Vail, Kenneth E; Arndt, Jamie
2018-01-01
People seem to have a tendency to increase the relative size of self-representational objects. Prior research suggests that motivational factors may fuel that tendency, so the present research built from terror management theory to examine whether existential motivations - engendered by concerns about death - may have similar implications for self-relevant size biases. Specifically, across two studies (total N = 288), we hypothesized that reminders of death would lead participants to inflate the size of self-representational objects. Both studies suggested that relative to reminders of pain, mortality salience led participants to construct larger clay sculptures of themselves (vs. others; Study 1) and a larger ostensible video game avatar for the self (vs. others; Study 2). © 2017 The British Psychological Society.
Production test IP-376-D, Supplement B Irradiation of MGCR-HDR-3 Test Element
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baars, R.E.
The objective of this supplement to PT-IP-376-D, Irradiation of MGCR-HDR-3 Test Element is to authorize 1000 hours of operation at a maximum test specimen surface temperature of 1700 F. The original production test authorized a test duration of four months at a maximum specimen surface temperature of 1500 F; supplement A authorized extension of the test duration to ten months. The desired increase in surface temperature is requested to demonstrate the general feasibility of operation of the fuel element at 1700 F, and to obtain specific information on the performance of Hastelloy-X cladding and fuel bodies. The increased temperature hasmore » been approved by the Atomic Energy Commission.« less
40 CFR 600.107-08 - Fuel specifications.
Code of Federal Regulations, 2011 CFR
2011-07-01
... specifications. (a) The test fuel specifications for gasoline, diesel, methanol, and methanol-petroleum fuel... accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies may be obtained from the American Society for...
14 CFR 29.977 - Fuel tank outlet.
Code of Federal Regulations, 2014 CFR
2014-01-01
... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.977 Fuel tank outlet. (a) There must be... airplanes, prevent the passage of any object that could restrict fuel flow or damage any fuel system... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel tank outlet. 29.977 Section 29.977...
14 CFR 25.977 - Fuel tank outlet.
Code of Federal Regulations, 2014 CFR
2014-01-01
... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.977 Fuel tank outlet. (a) There must be... airplanes, prevent the passage of any object that could restrict fuel flow or damage any fuel system... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel tank outlet. 25.977 Section 25.977...
14 CFR 29.977 - Fuel tank outlet.
Code of Federal Regulations, 2013 CFR
2013-01-01
... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.977 Fuel tank outlet. (a) There must be... airplanes, prevent the passage of any object that could restrict fuel flow or damage any fuel system... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel tank outlet. 29.977 Section 29.977...
14 CFR 25.977 - Fuel tank outlet.
Code of Federal Regulations, 2013 CFR
2013-01-01
... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.977 Fuel tank outlet. (a) There must be... airplanes, prevent the passage of any object that could restrict fuel flow or damage any fuel system... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel tank outlet. 25.977 Section 25.977...
14 CFR 25.977 - Fuel tank outlet.
Code of Federal Regulations, 2012 CFR
2012-01-01
... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.977 Fuel tank outlet. (a) There must be... airplanes, prevent the passage of any object that could restrict fuel flow or damage any fuel system... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel tank outlet. 25.977 Section 25.977...
14 CFR 29.977 - Fuel tank outlet.
Code of Federal Regulations, 2011 CFR
2011-01-01
... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.977 Fuel tank outlet. (a) There must be... airplanes, prevent the passage of any object that could restrict fuel flow or damage any fuel system... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel tank outlet. 29.977 Section 29.977...
14 CFR 29.977 - Fuel tank outlet.
Code of Federal Regulations, 2010 CFR
2010-01-01
... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.977 Fuel tank outlet. (a) There must be... airplanes, prevent the passage of any object that could restrict fuel flow or damage any fuel system... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tank outlet. 29.977 Section 29.977...
14 CFR 25.977 - Fuel tank outlet.
Code of Federal Regulations, 2010 CFR
2010-01-01
... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.977 Fuel tank outlet. (a) There must be... airplanes, prevent the passage of any object that could restrict fuel flow or damage any fuel system... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tank outlet. 25.977 Section 25.977...
14 CFR 25.977 - Fuel tank outlet.
Code of Federal Regulations, 2011 CFR
2011-01-01
... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.977 Fuel tank outlet. (a) There must be... airplanes, prevent the passage of any object that could restrict fuel flow or damage any fuel system... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel tank outlet. 25.977 Section 25.977...
14 CFR 29.977 - Fuel tank outlet.
Code of Federal Regulations, 2012 CFR
2012-01-01
... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.977 Fuel tank outlet. (a) There must be... airplanes, prevent the passage of any object that could restrict fuel flow or damage any fuel system... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel tank outlet. 29.977 Section 29.977...
40 CFR 86.213 - Fuel specifications.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Passenger Vehicles; Cold Temperature Test Procedures § 86.213 Fuel specifications. (a) Gasoline. Use a gasoline test fuel with ethanol (low-level blend only) or without ethanol as follows: (1) You must certify using service accumulation fuel and E10 test fuel as specified in § 86.113 for any vehicles required to...
Computed tomography of radioactive objects and materials
NASA Astrophysics Data System (ADS)
Sawicka, B. D.; Murphy, R. V.; Tosello, G.; Reynolds, P. W.; Romaniszyn, T.
1990-12-01
Computed tomography (CT) has been performed on a number of radioactive objects and materials. Several unique technical problems are associated with CT of radioactive specimens. These include general safety considerations, techniques to reduce background-radiation effects on CT images and selection criteria for the CT source to permit object penetration and to reveal accurate values of material density. In the present paper, three groups of experiments will be described, for objects with low, medium and high levels of radioactivity. CT studies on radioactive specimens will be presented. They include the following: (1) examination of individual ceramic reactor-fuel (uranium dioxide) pellets, (2) examination of fuel samples from the Three Mile Island reactor, (3) examination of a CANDU (CANada Deuterium Uraniun: registered trademark) nuclear-fuel bundle which underwent a simulated loss-of-coolant accident resulting in high-temperature damage and (4) examination of a PWR nuclear-reactor fuel assembly.
Validation of an Integrated Hydrogen Energy Station
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heydorn, Edward C
This report presents the results of a 10-year project conducted by Air Products and Chemicals, Inc. (Air Products) to determine the feasibility of coproducing hydrogen with electricity. The primary objective was to demonstrate the technical and economic viability of a hydrogen energy station using a high-temperature fuel cell designed to produce power and hydrogen. This four-phase project had intermediate go/no-go decisions and the following specific goals: Complete a technical assessment and economic analysis of the use of high-temperature fuel cells, including solid oxide and molten carbonate, for the co-production of power and hydrogen (energy park concept). Build on the experiencemore » gained at the Las Vegas H2 Energy Station and compare/contrast the two approaches for co-production. Determine the applicability of co-production from a high-temperature fuel cell for the existing merchant hydrogen market and for the emerging hydrogen economy. Demonstrate the concept on natural gas for six months at a suitable site with demand for both hydrogen and electricity. Maintain safety as the top priority in the system design and operation. Obtain adequate operational data to provide the basis for future commercial activities, including hydrogen fueling stations. Work began with the execution of the cooperative agreement with DOE on 30 September 2001. During Phase 1, Air Products identified high-temperature fuel cells as having the potential to meet the coproduction targets, and the molten carbonate fuel cell system from FuelCell Energy, Inc. (FuelCell Energy) was selected by Air Products and DOE following the feasibility assessment performed during Phase 2. Detailed design, construction and shop validation testing of a system to produce 250 kW of electricity and 100 kilograms per day of hydrogen, along with site selection to include a renewable feedstock for the fuel cell, were completed in Phase 3. The system also completed six months of demonstration operation at the wastewater treatment facility operated by Orange County Sanitation District (OCSD, Fountain Valley, CA). As part of achieving the objective of operating on a renewable feedstock, Air Products secured additional funding via an award from the California Air Resources Board. The South Coast Air Quality Management District also provided cost share which supported the objectives of this project. System operation at OCSD confirmed the results from shop validation testing performed during Phase 3. Hydrogen was produced at rates and purity that met the targets from the system design basis, and coproduction efficiency exceeded the 50% target set in conjunction with input from the DOE. Hydrogen production economics, updated from the Phase 2 analysis, showed pricing of $5 to $6 per kilogram of hydrogen using current gas purification systems. Hydrogen costs under $3 per kilogram are achievable if next-generation electrochemical separation technologies become available.« less
Resources of Near-Earth Space: Abstracts
NASA Technical Reports Server (NTRS)
1991-01-01
The objectives are by theory, experiment, and bench-level testing of small systems, to develop scientifically-sound engineering processes and facility specifications for producing propellants and fuels, construction and shielding materials, and life support substances from the lithospheres and atmospheres of lunar, planetary, and asteroidal bodies. Current emphasis is on the production of oxygen, other usefull gases, metallic, ceramic/composite, and related byproducts from lunar regolith, carbonaceous chrondritic asteroids, and the carbon dioxide rich Martian atmosphere.
Fuel characteristics pertinent to the design of aircraft fuel systems
NASA Technical Reports Server (NTRS)
Barnett, Henry C; Hibbard, R R
1953-01-01
Because of the importance of fuel properties in design of aircraft fuel systems the present report has been prepared to provide information on the characteristics of current jet fuels. In addition to information on fuel properties, discussions are presented on fuel specifications, the variations among fuels supplied under a given specification, fuel composition, and the pertinence of fuel composition and physical properties to fuel system design. In some instances the influence of variables such as pressure and temperature on physical properties is indicated. References are cited to provide fuel system designers with sources of information containing more detail than is practicable in the present report.
Design and operation of an outdoor microalgae test facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weissman, J.C.; Tillett, D.M.; Goebel, R.P.
The objective of the project covered in this report is to establish and operate a facility in the American Southwest to test the concept of producing microalgae on a large scale. This microalgae would then be used as a feedstock for producing liquid fuels. The site chosen for this project was an existing water research station in Roswell, New Mexico; the climate and water resources are representative of those in the Southwest. For this project, researchers tested specific designs, modes of operation, and strains of microalgae; proposed and evaluated modifications to technological concepts; and assessed the progress toward meeting costmore » objectives.« less
Impact of broad-specification fuels on future jet aircraft. [engine components and performance
NASA Technical Reports Server (NTRS)
Grobman, J. S.
1978-01-01
The effects that broad specification fuels have on airframe and engine components were discussed along with the improvements in component technology required to use broad specification fuels without sacrificing performance, reliability, maintainability, or safety.
NASA Astrophysics Data System (ADS)
1994-03-01
This report documents a portion of the work performed on Multi-fuel Reformers for Fuel Cells Used in Transportation. One objective of this program is to develop advanced fuel processing systems to reform methanol, ethanol, natural gas, and other hydrocarbons into hydrogen for use in transportation fuel cell systems, while a second objective is to develop better systems for on-board hydrogen storage. This report examines techniques and technology available for storage of pure hydrogen on board a vehicle as pure hydrogen of hydrides. The report focuses separately on near and far-term technologies, with particular emphasis on the former. Development of lighter, more compact near-term storage systems is recommended to enhance competitiveness and simplify fuel cell design. The far-term storage technologies require substantial applied research in order to become serious contenders.
Fuel Cell Technology Status Analysis | Hydrogen and Fuel Cells | NREL
Technology Status Analysis Fuel Cell Technology Status Analysis Get Involved Fuel cell developers interested in collaborating with NREL on fuel cell technology status analysis should send an email to NREL's Technology Validation Team at techval@nrel.gov. NREL's analysis of fuel cell technology provides objective
D. McKenzie; C.L. Raymond; L.-K.B. Kellogg; R.A. Norheim; A.G. Andreu; A.C. Bayard; K.E. Kopper; E. Elman
2007-01-01
Fuel mapping is a complex and often multidisciplinary process, involving remote sensing, ground-based validation, statistical modeling, and knowledge-based systems. The scale and resolution of fuel mapping depend both on objectives and availability of spatial data layers. We demonstrate use of the Fuel Characteristic Classification System (FCCS) for fuel mapping at two...
Method and apparatus for controlling fuel/air mixture in a lean burn engine
Kubesh, John Thomas; Dodge, Lee Gene; Podnar, Daniel James
1998-04-07
The system for controlling the fuel/air mixture supplied to a lean burn engine when operating on natural gas, gasoline, hydrogen, alcohol, propane, butane, diesel or any other fuel as desired. As specific humidity of air supplied to the lean burn engine increases, the oxygen concentration of exhaust gas discharged by the engine for a given equivalence ratio will decrease. Closed loop fuel control systems typically attempt to maintain a constant exhaust gas oxygen concentration. Therefore, the decrease in the exhaust gas oxygen concentration resulting from increased specific humidity will often be improperly attributed to an excessive supply of fuel and the control system will incorrectly reduce the amount of fuel supplied to the engine. Also, the minimum fuel/air equivalence ratio for a lean burn engine to avoid misfiring will increase as specific humidity increases. A relative humidity sensor to allow the control system to provide a more enriched fuel/air mixture at high specific humidity levels. The level of specific humidity may be used to compensate an output signal from a universal exhaust gas oxygen sensor for changing oxygen concentrations at a desired equivalence ratio due to variation in specific humidity specific humidity. As a result, the control system will maintain the desired efficiency, low exhaust emissions and power level for the associated lean burn engine regardless of the specific humidity level of intake air supplied to the lean burn engine.
NASA Technical Reports Server (NTRS)
Breininger, David; Duncan, Brean; Eaton, Mitchell; Johnson, Fred; Nichols, James
2014-01-01
Land cover modeling is used to inform land management, but most often via a two-step process where science informs how management alternatives can influence resources and then decision makers can use this to make decisions. A more efficient process is to directly integrate science and decision making, where science allows us to learn to better accomplish management objectives and is developed to address specific decisions. Co-development of management and science is especially productive when decisions are complicated by multiple objectives and impeded by uncertainty. Multiple objectives can be met by specification of tradeoffs, and relevant uncertainty can be addressed through targeted science (i.e., models and monitoring). We describe how to integrate habitat and fuels monitoring with decision making focused on dual objectives of managing for endangered species and minimizing catastrophic fire risk. Under certain conditions, both objectives might be achieved by a similar management policy, but habitat trajectories suggest tradeoffs. Knowledge about system responses to actions can be informed by applying competing management actions to different land units in the same system state and by ideas about fire behavior. Monitoring and management integration is important to optimize state-specific management decisions and increase knowledge about system responses. We believe this approach has broad utility for and cover modeling programs intended to inform decision making.
Code of Federal Regulations, 2014 CFR
2014-07-01
... PROCEDURES Equipment, Measurement Instruments, Fuel, and Analytical Gas Specifications § 1066.101 Overview. (a) This subpart addresses equipment related to emission testing, as well as test fuels and... specifications for fuels, engine fluids, and analytical gases; these specifications apply for testing under this...
Fuel freeze-point investigations. Final report, September 1982-March 1984
DOE Office of Scientific and Technical Information (OSTI.GOV)
Desmarais, L.A.; Tolle, F.F.
1984-07-01
The objective of this program was to conduct a detailed assessment of the low-temperature environment to which USAF aircraft are exposed for the purpose of defining a maximum acceptable fuel freeze-point and also to define any operational changes required with the use of a high freeze-point fuel. A previous study of B-52, C-141, and KC-135 operational missions indicated that the -58 C freeze point specification was too conservative. Based on recommendations resulting from the previous program, several improvements in the method of analysis were made, such as: expansion of the atmospheric temperature data base, the addition of ground temperature analysis,more » the addition of fuel-freezing analysis to the one-dimensional fuel-temperature computer program, and the examination of heat transfer in external fuel tanks, such as pylon or tip tanks. The B-52, C-141, and KC-135 mission were analyzed again, along with the operational missions of two tactical airplanes, the A-10 and F-15; -50C was determined to be the maximum allowable freeze point for a general-purpose USAF aviation turbine fuel. Higher freeze points can be tolerated if the probability of operational interference is acceptably low or if operational changes can be made. Study of atmospheric temperatures encountered for the missions of the five-study aircraft indicates that a maximum freeze point of -48 C would not likely create any operational difficulties in Northern Europe.« less
Study on the micro direct ethanol fuel cell (Micro-DEFC) performance
NASA Astrophysics Data System (ADS)
Saisirirat, Penyarat; Joommanee, Bordindech
2018-01-01
The direct ethanol fuel cell (DEFC) is selected for this research. DEFC uses ethanol in the fuel cell instead of the more toxic methanol. Ethanol is more attractive than methanol by many reasons. Ethanol is a hydrogen-rich liquid and it has a higher specific energy (8.0 kWh/kg) compared to that of methanol (6.1 kWh/kg). Ethanol can be obtained in great quantity from biomass through a fermentation process from renewable resources such as sugar cane, wheat, corn, and even straw. The use of ethanol would also overcome both the storage and infrastructure challenge of hydrogen for fuel cell applications. The experimental apparatus on the micro direct ethanol fuel cell for measuring the cell performance has been set for this research. The objective is to study the micro direct ethanol fuel cell performance for applying with the portable electronic devices. The cell performance is specified in the terms of cell voltage, cell current and power of the cell at room operating temperature and 1 atm for the pressure and also includes the ethanol fuel consumption. The effect of operating temperature change on the electrical production performance is also studied. The steady-state time for collecting each data value is about 5-10 minutes. The results show that with the increase of concentrations of ethanol by volume, the reactant concentration at the reaction sites increases so the electrochemical rate also increases but when it reaches the saturated point the performance gradually drops.
High energy-density liquid rocket fuel performance
NASA Technical Reports Server (NTRS)
Rapp, Douglas C.
1990-01-01
A fuel performance database of liquid hydrocarbons and aluminum-hydrocarbon fuels was compiled using engine parametrics from the Space Transportation Engine Program as a baseline. Propellant performance parameters are introduced. General hydrocarbon fuel performance trends are discussed with respect to hydrogen-to-carbon ratio and heat of formation. Aluminum-hydrocarbon fuel performance is discussed with respect to aluminum metal loading. Hydrocarbon and aluminum-hydrocarbon fuel performance is presented with respect to fuel density, specific impulse, and propellant density specific impulse.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pawlowski, Alexander; Splitter, Derek A
It is well known that spark ignited engine performance and efficiency is closely coupled to fuel octane number. The present work combines historical and recent trends in spark ignition engines to build a database of engine design, performance, and fuel octane requirements over the past 80 years. The database consists of engine compression ratio, required fuel octane number, peak mean effective pressure, specific output, and combined unadjusted fuel economy for passenger vehicles and light trucks. Recent trends in engine performance, efficiency, and fuel octane number requirement were used to develop correlations of fuel octane number utilization, performance, specific output. Themore » results show that historically, engine compression ratio and specific output have been strongly coupled to fuel octane number. However, over the last 15 years the sales weighted averages of compression ratios, specific output, and fuel economy have increased, while the fuel octane number requirement has remained largely unchanged. Using the developed correlations, 10-year-out projections of engine performance, design, and fuel economy are estimated for various fuel octane numbers, both with and without turbocharging. The 10-year-out projection shows that only by keeping power neutral while using 105 RON fuel will allow the vehicle fleet to meet CAFE targets if only the engine is relied upon to decrease fuel consumption. If 98 RON fuel is used, a power neutral fleet will have to reduce vehicle weight by 5%.« less
Back-end of the fuel cycle - Indian scenario
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wattal, P.K.
Nuclear power has a key role in meeting the energy demands of India. This can be sustained by ensuring robust technology for the back end of the fuel cycle. Considering the modest indigenous resources of U and a huge Th reserve, India has adopted a three stage Nuclear Power Programme (NPP) based on 'closed fuel cycle' approach. This option on 'Recovery and Recycle' serves twin objectives of ensuring adequate supply of nuclear fuel and also reducing the long term radio-toxicity of the wastes. Reprocessing of the spent fuel by Purex process is currently employed. High Level Liquid Waste (HLW) generatedmore » during reprocessing is vitrified and undergoes interim storage. Back-end technologies are constantly modified to address waste volume minimization and radio-toxicity reduction. Long-term management of HLW in Indian context would involve partitioning of long lived minor actinides and recovery of valuable fission products specifically cesium. Recovery of minor actinides from HLW and its recycle is highly desirable for the sustained growth of India's NPPs. In this context, programme for developing and deploying partitioning technologies on industrial scale is pursued. The partitioned elements could be either transmuted in Fast Reactors (FRs)/Accelerated Driven Systems (ADS) as an integral part of sustainable Indian NPP. (authors)« less
Strategie de commande pour un systeme hybride eolien diesel avec stockage d'air comprime =
NASA Astrophysics Data System (ADS)
Perron, Francois
The electrical energy provisioning of isolated sites requires a steady supply of diesel fuel which represents a significant logistical and economic burden. The main objective of this project is to propose a control strategy for an air storage wind diesel hybrid system (SHEDAC) and to evaluate its fuel reduction potential for a given site. This research is conducted within a result validation context. It encompasses the combination of a wind speed and load modeling on an isolated village including a SHEDAC model and the results are tailored to this specific site. Because the pneumatic hybridation of an otherwise unmodified diesel engine is at the core of the suggested approach, a detailed thermodynamic model of the engine behavior as well as a comprehensive friction analysis of its components is presented. Simulation results show that the energy recovery from the pneumatic pathway of the motor is counter productive and an alternative configuration involving an air turbine is proposed. The study of this modified SHEDAC is performed with a specific focus on the efficiency of the compressed air recovery path in an effort to make it as general as possible. Fuel consumption reductions of 49% could be achieved with this system while the recovery efficiency was etaair = 0.5.
Experiment to Characterize Aircraft Volatile Aerosol and Trace-Species Emissions (EXCAVATE)
NASA Technical Reports Server (NTRS)
Anderson, B. E.; Branham, H.-S.; Hudgins, C. H.; Plant, J. V.; Ballenthin, J. O.; Miller, T. M.; Viggiano, A. A.; Blake, D. R.; Boudries, H.; Canagaratna, M.
2005-01-01
The Experiment to Characterize Aircraft Volatile and Trace Species Emissions (EXCAVATE) was conducted at Langley Research Center (LaRC) in January 2002 and focused upon assaying the production of aerosols and aerosol precursors by a modern commercial aircraft, the Langley B757, during ground-based operation. Remaining uncertainty in the postcombustion fate of jet fuel sulfur contaminants, the need for data to test new theories of particle formation and growth within engine exhaust plumes, and the need for observations to develop air quality models for predicting pollution levels in airport terminal areas were the primary factors motivating the experiment. NASA's Atmospheric Effects of Aviation Project (AEAP) and the Ultra Effect Engine Technology (UEET) Program sponsored the experiment which had the specific objectives of determining ion densities; the fraction of fuel S converted from S(IV) to S(VI); the concentration and speciation of volatile aerosols and black carbon; and gas-phase concentrations of long-chain hydrocarbon and PAH species, all as functions of engine power, fuel composition, and plume age.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richter, Tim; Slezak, Lee; Johnson, Chris
2008-12-31
The objective of this project is to reduce the fuel consumption of off-highway vehicles, specifically large tonnage mine haul trucks. A hybrid energy storage and management system will be added to a conventional diesel-electric truck that will allow capture of braking energy normally dissipated in grid resistors as heat. The captured energy will be used during acceleration and motoring, reducing the diesel engine load, thus conserving fuel. The project will work towards a system validation of the hybrid system by first selecting an energy storage subsystem and energy management subsystem. Laboratory testing at a subscale level will evaluate these selectionsmore » and then a full-scale laboratory test will be performed. After the subsystems have been proven at the full-scale lab, equipment will be mounted on a mine haul truck and integrated with the vehicle systems. The integrated hybrid components will be exercised to show functionality, capability, and fuel economy impacts in a mine setting.« less
40 CFR 87.61 - Turbine fuel specifications.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Turbine fuel specifications. 87.61 Section 87.61 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) Definitions. Test Procedures § 87.61 Turbine fuel specifications. Link to an amendment published...
Breininger, David; Duncan, Brean; Eaton, Mitchell J.; Johnson, Fred; Nichols, James
2014-01-01
Land cover modeling is used to inform land management, but most often via a two-step process, where science informs how management alternatives can influence resources, and then, decision makers can use this information to make decisions. A more efficient process is to directly integrate science and decision-making, where science allows us to learn in order to better accomplish management objectives and is developed to address specific decisions. Co-development of management and science is especially productive when decisions are complicated by multiple objectives and impeded by uncertainty. Multiple objectives can be met by the specification of tradeoffs, and relevant uncertainty can be addressed through targeted science (i.e., models and monitoring). We describe how to integrate habitat and fuel monitoring with decision-making focused on the dual objectives of managing for endangered species and minimizing catastrophic fire risk. Under certain conditions, both objectives might be achieved by a similar management policy; other conditions require tradeoffs between objectives. Knowledge about system responses to actions can be informed by developing hypotheses based on ideas about fire behavior and then applying competing management actions to different land units in the same system state. Monitoring and management integration is important to optimize state-specific management decisions and to increase knowledge about system responses. We believe this approach has broad utility and identifies a clear role for land cover modeling programs intended to inform decision-making.
Optimal mission planning of GEO on-orbit refueling in mixed strategy
NASA Astrophysics Data System (ADS)
Chen, Xiao-qian; Yu, Jing
2017-04-01
The mission planning of GEO on-orbit refueling (OOR) in Mixed strategy is studied in this paper. Specifically, one SSc will be launched to an orbital slot near the depot when multiple GEO satellites are reaching their end of lives. The SSc replenishes fuel from the depot and then extends the lifespan of the target satellites via refueling. In the mixed scenario, only some of the target satellites could be served by the SSc, and the remaining ones will be fueled by Pseudo SScs (the target satellite which has already been refueled by the SSc and now has sufficient fuel for its operation as well as the fuel to refuel other target satellites is called Pseudo SSc here). The mission sequences and fuel mass of the SSc and Pseudo SScs, the dry mass of the SSc are used as design variables, whereas the economic benefit of the whole mission is used as design objective. The economic cost and benefit models are stated first, and then a mathematical optimization model is proposed. A comprehensive solution method involving enumeration, particle swarm optimization and modification is developed. Numerical examples are carried out to demonstrate the effectiveness of the model and solution method. Economic efficiencies of different OOR strategies are compared and discussed. The mixed strategy would perform better than the other strategies only when the target satellites satisfy some conditions. This paper presents an available mixed strategy scheme for users and analyzes its advantages and disadvantages by comparing with some other OOR strategies, providing helpful references to decision makers. The best strategy in practical applications depends on the specific demands and user preference.
Oxidation and gum formation in diesel fuels. Interim technical report, May-December 1985
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayo, F.R.
1985-12-20
This Report describes experiments on oxidation and gum formation from n-dodecane, tetralin, and several diesel fuels at 43, 60, and 100 C, with and without added initiators, t-butyl peroxide and 2,2'azobis(2-methylpropionitrile) (ABN). Experiments on gum determination and a manuscript for publication, Gum and Deposit Formation from Jet Turbine and Diesel Fuels at 100 C, are included. One objective of work on this Contract is to relate oxidations of diesel fuels at 100 and 130 C, where experiments can be performed in hours or days, to standard tests for fuel stability at ambient temperatures and 43.3 C (110 F), which requiremore » many weeks. A second objective is to devise a fast test for fuel stability.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurtz, J.; Sprik, S.; Ramsden, T.
2013-11-01
This webinar presentation to the UK Hydrogen and Fuel Cell Association summarizes how the U.S. Department of Energy is enabling early fuel cell markets; describes objectives of the National Fuel Cell Technology Evaluation Center; and presents performance status of fuel cell material handling equipment.
40 CFR 86.1513 - Fuel specifications.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 19 2011-07-01 2011-07-01 false Fuel specifications. 86.1513 Section 86.1513 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED... § 86.1513 Fuel specifications. The requirements of this section are set forth in 40 CFR part 1065...
40 CFR 86.1513 - Fuel specifications.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 20 2012-07-01 2012-07-01 false Fuel specifications. 86.1513 Section 86.1513 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED... § 86.1513 Fuel specifications. The requirements of this section are set forth in 40 CFR part 1065...
40 CFR 86.884-6 - Fuel specifications.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 19 2014-07-01 2014-07-01 false Fuel specifications. 86.884-6 Section 86.884-6 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... New Diesel Heavy-Duty Engines; Smoke Exhaust Test Procedure § 86.884-6 Fuel specifications. The...
40 CFR 86.1513 - Fuel specifications.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 20 2013-07-01 2013-07-01 false Fuel specifications. 86.1513 Section 86.1513 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED... § 86.1513 Fuel specifications. The requirements of this section are set forth in 40 CFR part 1065...
36 CFR 218.3 - Authorized hazardous fuel reduction projects subject to objection.
Code of Federal Regulations, 2010 CFR
2010-07-01
... SERVICE, DEPARTMENT OF AGRICULTURE PREDECISIONAL ADMINISTRATIVE REVIEW PROCESSES Predecisional Administrative Review Process for Hazardous Fuel Reduction Projects Authorized by the Healthy Forests Restoration..., the objection process of this part applies to both the plan amendment and the project. ...
40 CFR 86.1513 - Fuel specifications.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 19 2014-07-01 2014-07-01 false Fuel specifications. 86.1513 Section 86.1513 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED..., and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test Procedures § 86.1513 Fuel...
NASA Astrophysics Data System (ADS)
Ross, K.; Ginn, T. R.; McKone, T. E.; Rice, D. W.
2007-12-01
Alternative fuels for internal combustion engines offer considerable benefits as they provide so-called "sustainable" alternatives to mined fossil fuels, reduce the nation's dependence on imported petroleum, and have the potential to reduce harmful pollutants and exhaust emissions. This has been long recognized: the first appearance and demonstration of an oil based diesel fuel was at the Paris Exhibition in 1900. The Energy Policy Act of 1992 required 75 percent of new federal/state vehicles to accomodate alternative fuels. Modern concerns and overpopulation have dramatically raised the current interest. However, since these are relatively new fuels, the risks and uncertainties associated with environmental and human health effects are as yet unaddressed. As required by Section 43830.8 California Health and Safety Code before adopting new fuel specifications the California Air Resources Board (CARB) is required to prepare a relative "multimedia" evaluation of new fuels, not only with regard to engine performance and emission requirements but also with consideration of health and environmental criteria involving airborne toxics and associated health risks, ozone formation potential, hazardous waste generation and management and surface and groundwater contamination resulting from production, distribution, and use. The assessment is relative to a standard reference fuel. As a preliminary to multimedia risk assessment of biodiesel, we report here on: a brief history of biodiesel; production of biodiesel, fuel quality, and feedstocks used; key properties of six different feedstocks for possible large scale biodiesel production; and California's production challenges. Priority characteristics that pertain to environmental fate and transport and human health are described. The longer-term objective of this study is an overall relative examination of the environmental and health effects of biodiesel within the context of a multimedia assessment.
NASA Technical Reports Server (NTRS)
Taylor, W. F. (Editor)
1979-01-01
Various aspects of the thermal stability problem associated with the use of broadened-specification and nonpetroleum-derived turbine fuels are addressed. The state of the art is reviewed and the status of the research being conducted at various laboratories is presented. Discussions among representatives from universities, refineries, engine and airframe manufacturers, airlines, the Government, and others are presented along with conclusions and both broad and specific recommendations for future stability research and development. It is concluded that significant additional effort is required to cope with the fuel stability problems which will be associated with the potentially poorer quality fuels of the future such as broadened specification petroleum fuels or fuels produced from synthetic sources.
Code of Federal Regulations, 2012 CFR
2012-07-01
... economy values from the tests performed using gasoline or diesel test fuel. (ii)(A) Calculate the 5-cycle city and highway fuel economy values from the tests performed using alcohol or natural gas test fuel...-specific 5-cycle-based fuel economy values for vehicle configurations. 600.207-08 Section 600.207-08...
Code of Federal Regulations, 2013 CFR
2013-07-01
... economy values from the tests performed using gasoline or diesel test fuel. (ii)(A) Calculate the 5-cycle city and highway fuel economy values from the tests performed using alcohol or natural gas test fuel...-specific 5-cycle-based fuel economy values for vehicle configurations. 600.207-08 Section 600.207-08...
40 CFR 86.106-00 - Equipment required; overview.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) [Reserved]. For guidance see § 86.106-96. (a)(3) Fuel, analytical gas, and driving schedule specifications. Fuel specifications for exhaust and evaporative emissions testing and for mileage accumulation for petroleum-fueled and methanol-fueled vehicles are specified in § 86.113. Analytical gases are specified in...
40 CFR 86.106-00 - Equipment required; overview.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) [Reserved]. For guidance see § 86.106-96. (a)(3) Fuel, analytical gas, and driving schedule specifications. Fuel specifications for exhaust and evaporative emissions testing and for mileage accumulation for petroleum-fueled and methanol-fueled vehicles are specified in § 86.113. Analytical gases are specified in...
40 CFR 87.61 - Turbine fuel specifications.
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) CONTROL OF AIR POLLUTION FROM AIRCRAFT AND AIRCRAFT ENGINES Test Procedures for Engine Exhaust Gaseous Emissions (Aircraft and Aircraft Gas Turbine Engines) § 87.61 Turbine fuel specifications. For... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Turbine fuel specifications. 87.61...
40 CFR 87.61 - Turbine fuel specifications.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) CONTROL OF AIR POLLUTION FROM AIRCRAFT AND AIRCRAFT ENGINES Test Procedures for Engine Exhaust Gaseous Emissions (Aircraft and Aircraft Gas Turbine Engines) § 87.61 Turbine fuel specifications. For... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Turbine fuel specifications. 87.61...
40 CFR 86.884-6 - Fuel specifications.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Fuel specifications. 86.884-6 Section 86.884-6 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... Regulations for New Diesel Heavy-Duty Engines; Smoke Exhaust Test Procedure § 86.884-6 Fuel specifications...
40 CFR 86.884-6 - Fuel specifications.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 19 2011-07-01 2011-07-01 false Fuel specifications. 86.884-6 Section 86.884-6 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... Regulations for New Diesel Heavy-Duty Engines; Smoke Exhaust Test Procedure § 86.884-6 Fuel specifications...
40 CFR 86.884-6 - Fuel specifications.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 20 2012-07-01 2012-07-01 false Fuel specifications. 86.884-6 Section 86.884-6 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... Regulations for New Diesel Heavy-Duty Engines; Smoke Exhaust Test Procedure § 86.884-6 Fuel specifications...
40 CFR 86.884-6 - Fuel specifications.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 20 2013-07-01 2013-07-01 false Fuel specifications. 86.884-6 Section 86.884-6 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... Regulations for New Diesel Heavy-Duty Engines; Smoke Exhaust Test Procedure § 86.884-6 Fuel specifications...
STRATEGIES AND TECHNOLOGY FOR MANAGING HIGH-CARBON ASH
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robert Hurt; Eric Suuberg; John Veranth
2002-09-10
The overall objective of the present project is to identify and assess strategies and solutions for the management of industry problems related to carbon in ash. Specific research issues to be addressed include: (1) the effect of parent fuel selection on ash properties and adsorptivity, including a first ever examination of the air entrainment behavior of ashes from alternative (non-coal) fuels; (2) the effect of various low-NOx firing modes on ash properties and adsorptivity; and (3) the kinetics and mechanism of ash ozonation. This data will provide scientific and engineering support of the ongoing process development activities. During this fourthmore » project period we completed the characterization of ozone-treated carbon surfaces and wrote a comprehensive report on the mechanism through which ozone suppresses the adsorption of concrete surfactants.« less
Refinery Integration of By-Products from Coal-Derived Jet Fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caroline Clifford; Andre Boehman; Chunshan Song
2008-03-31
The final report summarizes the accomplishments toward project goals during length of the project. The goal of this project was to integrate coal into a refinery in order to produce coal-based jet fuel, with the major goal to examine the products other than jet fuel. These products are in the gasoline, diesel and fuel oil range and result from coal-based jet fuel production from an Air Force funded program. The main goal of Task 1 was the production of coal-based jet fuel and other products that would need to be utilized in other fuels or for non-fuel sources, using knownmore » refining technology. The gasoline, diesel fuel, and fuel oil were tested in other aspects of the project. Light cycle oil (LCO) and refined chemical oil (RCO) were blended, hydrotreated to removed sulfur, and hydrogenated, then fractionated in the original production of jet fuel. Two main approaches, taken during the project period, varied where the fractionation took place, in order to preserve the life of catalysts used, which includes (1) fractionation of the hydrotreated blend to remove sulfur and nitrogen, followed by a hydrogenation step of the lighter fraction, and (2) fractionation of the LCO and RCO before any hydrotreatment. Task 2 involved assessment of the impact of refinery integration of JP-900 production on gasoline and diesel fuel. Fuel properties, ignition characteristics and engine combustion of model fuels and fuel samples from pilot-scale production runs were characterized. The model fuels used to represent the coal-based fuel streams were blended into full-boiling range fuels to simulate the mixing of fuel streams within the refinery to create potential 'finished' fuels. The representative compounds of the coal-based gasoline were cyclohexane and methyl cyclohexane, and for the coal-base diesel fuel they were fluorine and phenanthrene. Both the octane number (ON) of the coal-based gasoline and the cetane number (CN) of the coal-based diesel were low, relative to commercial fuels ({approx}60 ON for coal-based gasoline and {approx}20 CN for coal-based diesel fuel). Therefore, the allowable range of blending levels was studied where the blend would achieve acceptable performance. However, in both cases of the coal-based fuels, their ignition characteristics may make them ideal fuels for advanced combustion strategies where lower ON and CN are desirable. Task 3 was designed to develop new approaches for producing ultra clean fuels and value-added chemicals from refinery streams involving coal as a part of the feedstock. It consisted of the following three parts: (1) desulfurization and denitrogenation which involves both new adsorption approach for selective removal of nitrogen and sulfur and new catalysts for more effective hydrotreating and the combination of adsorption denitrogenation with hydrodesulfurization; (2) saturation of two-ring aromatics that included new design of sulfur resistant noble-metal catalysts for hydrogenation of naphthalene and tetralin in middle distillate fuels, and (3) value-added chemicals from naphthalene and biphenyl, which aimed at developing value-added organic chemicals from refinery streams such as 2,6-dimethylnaphthalene and 4,4{prime}-dimethylbiphenyl as precursors to advanced polymer materials. Major advances were achieved in this project in designing the catalysts and sorbent materials, and in developing fundamental understanding. The objective of Task 4 was to evaluate the effect of introducing coal into an existing petroleum refinery on the fuel oil product, specifically trace element emissions. Activities performed to accomplish this objective included analyzing two petroleum-based commercial heavy fuel oils (i.e., No. 6 fuel oils) as baseline fuels and three co-processed fuel oils, characterizing the atomization performance of a No. 6 fuel oil, measuring the combustion performance and emissions of the five fuels, specifically major, minor, and trace elements when fired in a watertube boiler designed for natural gas/fuel oil, and determining the boiler performance when firing the five fuels. Two different co-processed fuel oils were tested: one that had been partially hydrotreated, and the other a product of fractionation before hydrotreating. Task 5 focused on examining refining methods that would utilize coal and produce thermally stable jet fuel, included delayed coking and solvent extraction. Delayed coking was done on blends of decant oil and coal, with the goal to produce a premium carbon product and liquid fuels. Coking was done on bench scale and large laboratory scale cokers. Two coals were examined for co-coking, using Pittsburgh seam coal and Marfork coal product. Reactions in the large, laboratory scaled coker were reproducible in yields of products and in quality of products. While the co-coke produced from both coals was of sponge coke quality, minerals left in the coke made it unacceptable for use as anode or graphite grade filler.« less
Biobjective planning of GEO debris removal mission with multiple servicing spacecrafts
NASA Astrophysics Data System (ADS)
Jing, Yu; Chen, Xiao-qian; Chen, Li-hu
2014-12-01
The mission planning of GEO debris removal with multiple servicing spacecrafts (SScs) is studied in this paper. Specifically, the SScs are considered to be initially on the GEO belt, and they should rendezvous with debris of different orbital slots and different inclinations, remove them to the graveyard orbit and finally return to their initial locations. Three key problems should be resolved here: task assignment, mission sequence planning and transfer trajectory optimization for each SSc. The minimum-cost, two-impulse phasing maneuver is used for each rendezvous. The objective is to find a set of optimal planning schemes with minimum fuel cost and travel duration. Considering this mission as a hybrid optimal control problem, a mathematical model is proposed. A modified multi-objective particle swarm optimization is employed to address the model. Numerous examples are carried out to demonstrate the effectiveness of the model and solution method. In this paper, single-SSc and multiple-SSc scenarios with the same amount of fuel are compared. Numerous experiments indicate that for a definite GEO debris removal mission, that which alternative (single-SSc or multiple-SSc) is better (cost less fuel and consume less travel time) is determined by many factors. Although in some cases, multiple-SSc scenarios may perform worse than single-SSc scenarios, the extra costs are considered worth the gain in mission safety and robustness.
Hydrogen Fuel Cell Analysis: Lessons Learned from Stationary Power Generation Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scott E. Grasman; John W. Sheffield; Fatih Dogan
2010-04-30
This study considered opportunities for hydrogen in stationary applications in order to make recommendations related to RD&D strategies that incorporate lessons learned and best practices from relevant national and international stationary power efforts, as well as cost and environmental modeling of pathways. The study analyzed the different strategies utilized in power generation systems and identified the different challenges and opportunities for producing and using hydrogen as an energy carrier. Specific objectives included both a synopsis/critical analysis of lessons learned from previous stationary power programs and recommendations for a strategy for hydrogen infrastructure deployment. This strategy incorporates all hydrogen pathways andmore » a combination of distributed power generating stations, and provides an overview of stationary power markets, benefits of hydrogen-based stationary power systems, and competitive and technological challenges. The motivation for this project was to identify the lessons learned from prior stationary power programs, including the most significant obstacles, how these obstacles have been approached, outcomes of the programs, and how this information can be used by the Hydrogen, Fuel Cells & Infrastructure Technologies Program to meet program objectives primarily related to hydrogen pathway technologies (production, storage, and delivery) and implementation of fuel cell technologies for distributed stationary power. In addition, the lessons learned address environmental and safety concerns, including codes and standards, and education of key stakeholders.« less
Solid Oxide Fuel Cell/Gas Turbine Hybrid Cycle Technology for Auxiliary Aerospace Power
NASA Technical Reports Server (NTRS)
Steffen, Christopher J., Jr.; Freeh, Joshua E.; Larosiliere, Louis M.
2005-01-01
A notional 440 kW auxiliary power unit has been developed for 300 passenger commercial transport aircraft in 2015AD. A hybrid engine using solid-oxide fuel cell stacks and a gas turbine bottoming cycle has been considered. Steady-state performance analysis during cruise operation has been presented. Trades between performance efficiency and system mass were conducted with system specific energy as the discriminator. Fuel cell performance was examined with an area specific resistance. The ratio of fuel cell versus turbine power was explored through variable fuel utilization. Area specific resistance, fuel utilization, and mission length had interacting effects upon system specific energy. During cruise operation, the simple cycle fuel cell/gas turbine hybrid was not able to outperform current turbine-driven generators for system specific energy, despite a significant improvement in system efficiency. This was due in part to the increased mass of the hybrid engine, and the increased water flow required for on-board fuel reformation. Two planar, anode-supported cell design concepts were considered. Designs that seek to minimize the metallic interconnect layer mass were seen to have a large effect upon the system mass estimates.
Computer analysis of effects of altering jet fuel properties on refinery costs and yields
NASA Technical Reports Server (NTRS)
Breton, T.; Dunbar, D.
1984-01-01
This study was undertaken to evaluate the adequacy of future U.S. jet fuel supplies, the potential for large increases in the cost of jet fuel, and to what extent a relaxation in jet fuel properties would remedy these potential problems. The results of the study indicate that refiners should be able to meet jet fuel output requirements in all regions of the country within the current Jet A specifications during the 1990-2010 period. The results also indicate that it will be more difficult to meet Jet A specifications on the West Coast, because the feedstock quality is worse and the required jet fuel yield (jet fuel/crude refined) is higher than in the East. The results show that jet fuel production costs could be reduced by relaxing fuel properties. Potential cost savings in the East (PADDs I-IV) through property relaxation were found to be about 1.3 cents/liter (5 cents/gallon) in January 1, 1981 dollars between 1990 and 2010. However, the savings from property relaxation were all obtained within the range of current Jet A specifications, so there is no financial incentive to relax Jet A fuel specifications in the East. In the West (PADD V) the potential cost savings from lowering fuel quality were considerably greater than in the East. Cost savings from 2.7 to 3.7 cents/liter (10-14 cents/gallon) were found. In contrast to the East, on the West Coast a significant part of the savings was obtained through relaxation of the current Jet A fuel specifications.
NASA Astrophysics Data System (ADS)
Sivaganesan, S.; Chandrasekaran, M.; Ruban, M.
2017-03-01
The present experimental investigation evaluates the effects of using blends of diesel fuel with 20% concentration of Methyl Ester of Jatropha biodiesel blended with various compression ratio. Both the diesel and biodiesel fuel blend was injected at 23º BTDC to the combustion chamber. The experiment was carried out with three different compression ratio. Biodiesel was extracted from Jatropha oil, 20% (B20) concentration is found to be best blend ratio from the earlier experimental study. The engine was maintained at various compression ratio i.e., 17.5, 16.5 and 15.5 respectively. The main objective is to obtain minimum specific fuel consumption, better efficiency and lesser Emission with different compression ratio. The results concluded that full load show an increase in efficiency when compared with diesel, highest efficiency is obtained with B20MEOJBA with compression ratio 17.5. It is noted that there is an increase in thermal efficiency as the blend ratio increases. Biodiesel blend has performance closer to diesel, but emission is reduced in all blends of B20MEOJBA compared to diesel. Thus this work focuses on the best compression ratio and suitability of biodiesel blends in diesel engine as an alternate fuel.
Multi-objective generation scheduling with hybrid energy resources
NASA Astrophysics Data System (ADS)
Trivedi, Manas
In economic dispatch (ED) of electric power generation, the committed generating units are scheduled to meet the load demand at minimum operating cost with satisfying all unit and system equality and inequality constraints. Generation of electricity from the fossil fuel releases several contaminants into the atmosphere. So the economic dispatch objective can no longer be considered alone due to the environmental concerns that arise from the emissions produced by fossil fueled electric power plants. This research is proposing the concept of environmental/economic generation scheduling with traditional and renewable energy sources. Environmental/economic dispatch (EED) is a multi-objective problem with conflicting objectives since emission minimization is conflicting with fuel cost minimization. Production and consumption of fossil fuel and nuclear energy are closely related to environmental degradation. This causes negative effects to human health and the quality of life. Depletion of the fossil fuel resources will also be challenging for the presently employed energy systems to cope with future energy requirements. On the other hand, renewable energy sources such as hydro and wind are abundant, inexhaustible and widely available. These sources use native resources and have the capacity to meet the present and the future energy demands of the world with almost nil emissions of air pollutants and greenhouse gases. The costs of fossil fuel and renewable energy are also heading in opposite directions. The economic policies needed to support the widespread and sustainable markets for renewable energy sources are rapidly evolving. The contribution of this research centers on solving the economic dispatch problem of a system with hybrid energy resources under environmental restrictions. It suggests an effective solution of renewable energy to the existing fossil fueled and nuclear electric utilities for the cheaper and cleaner production of electricity with hourly emission targets. Since minimizing the emissions and fuel cost are conflicting objectives, a practical approach based on multi-objective optimization is applied to obtain compromised solutions in a single simulation run using genetic algorithm. These solutions are known as non-inferior or Pareto-optimal solutions, graphically illustrated by the trade-off curves between criterions fuel cost and pollutant emission. The efficacy of the proposed approach is illustrated with the help of different sample test cases. This research would be useful for society, electric utilities, consultants, regulatory bodies, policy makers and planners.
Preliminary Design of an Autonomous Underwater Vehicle Using Multi-Objective Optimization
2014-03-01
fuel cell PC propulsive coefficient PEMFC proton exchange membrane fuel cell PHP propulsive horsepower PO Pareto optimal PSO particle swarm...membrane fuel cell ( PEMFC ), molten carbonate fuel cell (MCFC), solid oxide fuel cell (SOFC) and direct and indirect methanol fuel cell (DMFC). Figure...of fuel cells in depth, I will note that PEMFCs are smaller and have a lower operating temperature compared to the other types. Those are the main
40 CFR 86.113-07 - Fuel specifications.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Heavy-Duty Vehicles; Test Procedures § 86.113-07 Fuel specifications. Section 86.113-07 includes text... that incorporate sulfur-sensitive technologies, the manufacturer may test the vehicle using a test fuel...., certified to California and EPA standards), the manufacturer may test the vehicle using a test fuel whose...
40 CFR 86.113-07 - Fuel specifications.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Heavy-Duty Vehicles; Test Procedures § 86.113-07 Fuel specifications. Section 86.113-07 includes text... that incorporate sulfur-sensitive technologies, the manufacturer may test the vehicle using a test fuel...., certified to California and EPA standards), the manufacturer may test the vehicle using a test fuel whose...
40 CFR 86.113-07 - Fuel specifications.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Heavy-Duty Vehicles; Test Procedures § 86.113-07 Fuel specifications. Section 86.113-07 includes text... that incorporate sulfur-sensitive technologies, the manufacturer may test the vehicle using a test fuel...., certified to California and EPA standards), the manufacturer may test the vehicle using a test fuel whose...
40 CFR 86.113-07 - Fuel specifications.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Heavy-Duty Vehicles; Test Procedures § 86.113-07 Fuel specifications. Section 86.113-07 includes text... that incorporate sulfur-sensitive technologies, the manufacturer may test the vehicle using a test fuel...., certified to California and EPA standards), the manufacturer may test the vehicle using a test fuel whose...
40 CFR 1065.715 - Natural gas.
Code of Federal Regulations, 2014 CFR
2014-07-01
... PROCEDURES Engine Fluids, Test Fuels, Analytical Gases and Other Calibration Standards § 1065.715 Natural gas... specifications in the following table: Table 1 of § 1065.715—Test Fuel Specifications for Natural Gas Property....051 mol/mol. 1 Demonstrate compliance with fuel specifications based on the reference procedures in...
Pt/Pd electrocatalyst electrons for fuel cells
Stonehart, P.
1981-11-03
This invention relates to improved electrochemical cells and to novel electrodes for use therein. In particular, the present invention comprises a fuel cell used primarily for the consumption of impure hydrogen fuels containing carbon monoxide or carbonaceous fuels where the electrode in contact with the fuel is not substantially poisoned by carbon monoxide. The anode of the fuel cell comprises a Pd/Pt alloy supported on a graphitized or partially graphitized carbon material. Fuel cells which comprise as essential elements a fuel electrode, an oxidizing electrode, and an electrolyte between said electrodes are devices for the direct production of electricity through the electrochemical combustion of a fuel and oxidant. These devices are recognized for their high efficiency as energy conversion units, since unlike conventional combustion engines, they are not subject to the limitations of the Carnot heat cycle. It is the primary object of the present invention to provide an electrode having high electrochemical activity for an electrochemical cell. It is another object of the present invention to provide an electrode having an electro-catalyst which is highly resistant to the corrosive environment of an electrochemical cell.
INTRODUCTION OF BIOMASS AS RENEWABLE ENERGY COMPONENT OF FUTURE TRANSPORTATION FUELS
The long-term objectives of new vehicle/fuel systems require the reduction of petroleum use, reduction of air pollution emissions, and reduction of greenhouse gas (GHG) emissions. In the near term, a major advancement toward these objectives will be made possible by the improved ...
Production of biosolid fuels from municipal sewage sludge: Technical and economic optimisation.
Wzorek, Małgorzata; Tańczuk, Mariusz
2015-08-01
The article presents the technical and economic analysis of the production of fuels from municipal sewage sludge. The analysis involved the production of two types of fuel compositions: sewage sludge with sawdust (PBT fuel) and sewage sludge with meat and bone meal (PBM fuel). The technology of the production line of these sewage fuels was proposed and analysed. The main objective of the study is to find the optimal production capacity. The optimisation analysis was performed for the adopted technical and economic parameters under Polish conditions. The objective function was set as a maximum of the net present value index and the optimisation procedure was carried out for the fuel production line input capacity from 0.5 to 3 t h(-1), using the search step 0.5 t h(-1). On the basis of technical and economic assumptions, economic efficiency indexes of the investment were determined for the case of optimal line productivity. The results of the optimisation analysis show that under appropriate conditions, such as prices of components and prices of produced fuels, the production of fuels from sewage sludge can be profitable. In the case of PBT fuel, calculated economic indexes show the best profitability for the capacity of a plant over 1.5 t h(-1) output, while production of PBM fuel is beneficial for a plant with the maximum of searched capacities: 3.0 t h(-1). Sensitivity analyses carried out during the investigation show that influence of both technical and economic assessments on the location of maximum of objective function (net present value) is significant. © The Author(s) 2015.
Factors influencing specific fuel use in Nebraska
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shelton, D.P.; Von Bargen, K.
1981-01-01
Fuel use data relating to agricultural field operations were collected and analyzed during the Nebraska fuel use survey. The farms surveyed had a mean size of 598 ha and a mean total tractor power rating of 221 kW. Mean operating depth, field speed, and tractor power rating were determined for the major field operations. Mean field speeds were generally in agreement with commonly accepted values. Total annual fuel energy use increased with increasing farm size. Over 87 percent of this energy was used from April through October. Even though total fuel energy was increased, specific fuel energy use decreased withmore » increasing farm size. Specific fuel use for field operations was influenced by the size of area worked, operation depth, field speed, and tractor power rating.« less
Impact of future fuel properties on aircraft engines and fuel systems
NASA Technical Reports Server (NTRS)
Rudey, R. A.; Grobman, J. S.
1978-01-01
From current projections of the availability of high-quality petroleum crude oils, it is becoming increasingly apparent that the specifications for hydrocarbon jet fuels may have to be modified. The problems that are most likely to be encountered as a result of these modifications relate to engine performance, component durability and maintenance, and aircraft fuel-system performance. The effect on engine performance will be associated with changes in specific fuel consumption, ignition at relight limits, at exhaust emissions. Durability and maintenance will be affected by increases in combustor liner temperatures, carbon deposition, gum formation in fuel nozzles, and erosion and corrosion of turbine blades and vanes. Aircraft fuel-system performance will be affected by increased deposits in fuel-system heat exchangers and changes in the pumpability and flowability of the fuel. The severity of the potential problems is described in terms of the fuel characteristics most likely to change in the future. Recent data that evaluate the ability of current-technology aircraft to accept fuel specification changes are presented, and selected technological advances that can reduce the severity of the problems are described and discussed.
Experimental Study of Turbine Fuel Thermal Stability in an Aircraft Fuel System Simulator
NASA Technical Reports Server (NTRS)
Vranos, A.; Marteney, P. J.
1980-01-01
The thermal stability of aircraft gas turbines fuels was investigated. The objectives were: (1) to design and build an aircraft fuel system simulator; (2) to establish criteria for quantitative assessment of fuel thermal degradation; and (3) to measure the thermal degradation of Jet A and an alternative fuel. Accordingly, an aircraft fuel system simulator was built and the coking tendencies of Jet A and a model alternative fuel (No. 2 heating oil) were measured over a range of temperatures, pressures, flows, and fuel inlet conditions.
40 CFR 1065.715 - Natural gas.
Code of Federal Regulations, 2012 CFR
2012-07-01
... PROCEDURES Engine Fluids, Test Fuels, Analytical Gases and Other Calibration Standards § 1065.715 Natural gas... specifications in the following table: Table 1 of § 1065.715—Test Fuel Specifications for Natural Gas Item Value... test fuel not meeting the specifications in paragraph (a) of this section, as follows: (1) You may use...
40 CFR 1065.715 - Natural gas.
Code of Federal Regulations, 2013 CFR
2013-07-01
... PROCEDURES Engine Fluids, Test Fuels, Analytical Gases and Other Calibration Standards § 1065.715 Natural gas... specifications in the following table: Table 1 of § 1065.715—Test Fuel Specifications for Natural Gas Item Value... test fuel not meeting the specifications in paragraph (a) of this section, as follows: (1) You may use...
40 CFR 1065.715 - Natural gas.
Code of Federal Regulations, 2011 CFR
2011-07-01
... PROCEDURES Engine Fluids, Test Fuels, Analytical Gases and Other Calibration Standards § 1065.715 Natural gas... specifications in the following table: Table 1 of § 1065.715—Test Fuel Specifications for Natural Gas Item Value... test fuel not meeting the specifications in paragraph (a) of this section, as follows: (1) You may use...
40 CFR 261.38 - Exclusion of comparable fuel and syngas fuel.
Code of Federal Regulations, 2013 CFR
2013-07-01
... J/g). (B) Viscosity. The viscosity must not exceed: 50 cS, as-fired. (ii) Constituent specifications..., except as provided by paragraph (a)(3)(ii) of this section: (ii) Blending to meet the viscosity specification. A hazardous waste blended to meet the viscosity specification for comparable fuel shall: (A) As...
40 CFR 261.38 - Exclusion of comparable fuel and syngas fuel.
Code of Federal Regulations, 2014 CFR
2014-07-01
... J/g). (B) Viscosity. The viscosity must not exceed: 50 cS, as-fired. (ii) Constituent specifications..., except as provided by paragraph (a)(3)(ii) of this section: (ii) Blending to meet the viscosity specification. A hazardous waste blended to meet the viscosity specification for comparable fuel shall: (A) As...
40 CFR 261.38 - Exclusion of comparable fuel and syngas fuel.
Code of Federal Regulations, 2012 CFR
2012-07-01
... J/g). (B) Viscosity. The viscosity must not exceed: 50 cS, as-fired. (ii) Constituent specifications..., except as provided by paragraph (a)(3)(ii) of this section: (ii) Blending to meet the viscosity specification. A hazardous waste blended to meet the viscosity specification for comparable fuel shall: (A) As...
NASA Technical Reports Server (NTRS)
Grobman, J. S.; Butze, H. F.; Friedman, R.; Antoine, A. C.; Reynolds, T. W.
1977-01-01
Potential problems related to the use of alternative aviation turbine fuels are discussed and both ongoing and required research into these fuels is described. This discussion is limited to aviation turbine fuels composed of liquid hydrocarbons. The advantages and disadvantages of the various solutions to the problems are summarized. The first solution is to continue to develop the necessary technology at the refinery to produce specification jet fuels regardless of the crude source. The second solution is to minimize energy consumption at the refinery and keep fuel costs down by relaxing specifications.
Rocky Mountain Research Station USDA Forest Service
2004-01-01
Effective public education and communication campaigns about wildland fire and fuels management should have clear objectives, and use the right techniques to achieve these objectives. This fact sheet lists seven important considerations for planning or implementing a hazard communication effort.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE PREDECISIONAL ADMINISTRATIVE REVIEW PROCESSES Predecisional Administrative Review Process for Hazardous Fuel Reduction Projects Authorized by the Healthy... subject to the objection process pursuant to 36 CFR part 218, subpart A, and include the following: (i...
NASA Technical Reports Server (NTRS)
Taylor, J. R.
1979-01-01
Six conceptual combustor designs for the CF6-50 high bypass turbofan engine and six conceptual combustor designs for the NASA/GE E3 high bypass turbofan engine were analyzed to provide an assessment of the major problems anticipated in using broad specification fuels in these aircraft engine combustion systems. Each of the conceptual combustor designs, which are representative of both state-of-the-art and advanced state-of-the-art combustion systems, was analyzed to estimate combustor performance, durability, and pollutant emissions when using commercial Jet A aviation fuel and when using experimental referee board specification fuel. Results indicate that lean burning, low emissions double annular combustor concepts can accommodate a wide range of fuel properties without a serious deterioration of performance or durability. However, rich burning, single annular concepts would be less tolerant to a relaxation of fuel properties. As the fuel specifications are relaxed, autoignition delay time becomes much smaller which presents a serious design and development problem for premixing-prevaporizing combustion system concepts.
California Hydrogen Infrastructure Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heydorn, Edward C
2013-03-12
Air Products and Chemicals, Inc. has completed a comprehensive, multiyear project to demonstrate a hydrogen infrastructure in California. The specific primary objective of the project was to demonstrate a model of a real-world retail hydrogen infrastructure and acquire sufficient data within the project to assess the feasibility of achieving the nation's hydrogen infrastructure goals. The project helped to advance hydrogen station technology, including the vehicle-to-station fueling interface, through consumer experiences and feedback. By encompassing a variety of fuel cell vehicles, customer profiles and fueling experiences, this project was able to obtain a complete portrait of real market needs. The projectmore » also opened its stations to other qualified vehicle providers at the appropriate time to promote widespread use and gain even broader public understanding of a hydrogen infrastructure. The project engaged major energy companies to provide a fueling experience similar to traditional gasoline station sites to foster public acceptance of hydrogen. Work over the course of the project was focused in multiple areas. With respect to the equipment needed, technical design specifications (including both safety and operational considerations) were written, reviewed, and finalized. After finalizing individual equipment designs, complete station designs were started including process flow diagrams and systems safety reviews. Material quotes were obtained, and in some cases, depending on the project status and the lead time, equipment was placed on order and fabrication began. Consideration was given for expected vehicle usage and station capacity, standard features needed, and the ability to upgrade the station at a later date. In parallel with work on the equipment, discussions were started with various vehicle manufacturers to identify vehicle demand (short- and long-term needs). Discussions included identifying potential areas most suited for hydrogen fueling stations with a focus on safe, convenient, fast-fills. These potential areas were then compared to and overlaid with suitable sites from various energy companies and other potential station operators. Work continues to match vehicle needs with suitable fueling station locations. Once a specific site was identified, the necessary agreements could be completed with the station operator and expected station users. Detailed work could then begin on the site drawings, permits, safety procedures and training needs. Permanent stations were successfully installed in Irvine (delivered liquid hydrogen), Torrance (delivered pipeline hydrogen) and Fountain Valley (renewable hydrogen from anaerobic digester gas). Mobile fueling stations were also deployed to meet short-term fueling needs in Long Beach and Placerville. Once these stations were brought online, infrastructure data was collected and reported to DOE using Air Products Enterprise Remote Access Monitoring system. Feedback from station operators was incorporated to improve the station user's fueling experience.« less
Multi-Physics Simulation of TREAT Kinetics using MAMMOTH
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeHart, Mark; Gleicher, Frederick; Ortensi, Javier
With the advent of next generation reactor systems and new fuel designs, the U.S. Department of Energy (DOE) has identified the need for the resumption of transient testing of nuclear fuels. DOE has decided that the Transient Reactor Test Facility (TREAT) at Idaho National Laboratory (INL) is best suited for future testing. TREAT is a thermal neutron spectrum nuclear test facility that is designed to test nuclear fuels in transient scenarios. These specific fuels transient tests range from simple temperature transients to full fuel melt accidents. The current TREAT core is driven by highly enriched uranium (HEU) dispersed in amore » graphite matrix (1:10000 U-235/C atom ratio). At the center of the core, fuel is removed allowing for the insertion of an experimental test vehicle. TREAT’s design provides experimental flexibility and inherent safety during neutron pulsing. This safety stems from the graphite in the driver fuel having a strong negative temperature coefficient of reactivity resulting from a thermal Maxwellian shift with increased leakage, as well as graphite acting as a temperature sink. Air cooling is available, but is generally used post-transient for heat removal. DOE and INL have expressed a desire to develop a simulation capability that will accurately model the experiments before they are irradiated at the facility, with an emphasis on effective and safe operation while minimizing experimental time and cost. At INL, the Multi-physics Object Oriented Simulation Environment (MOOSE) has been selected as the model development framework for this work. This paper describes the results of preliminary simulations of a TREAT fuel element under transient conditions using the MOOSE-based MAMMOTH reactor physics tool.« less
Zhai, Haibo; Frey, H Christopher; Rouphail, Nagui M; Gonçalves, Gonçalo A; Farias, Tiago L
2009-08-01
The objective of this research is to evaluate differences in fuel consumption and tailpipe emissions of flexible fuel vehicles (FFVs) operated on ethanol 85 (E85) versus gasoline. Theoretical ratios of fuel consumption and carbon dioxide (CO2) emissions for both fuels are estimated based on the same amount of energy released. Second-by-second fuel consumption and emissions from one FFV Ford Focus fueled with E85 and gasoline were measured under real-world traffic conditions in Lisbon, Portugal, using a portable emissions measurement system (PEMS). Cycle average dynamometer fuel consumption and emission test results for FFVs are available from the U.S. Department of Energy, and emissions certification test results for ethanol-fueled vehicles are available from the U.S. Environmental Protection Agency. On the basis of the PEMS data, vehicle-specific power (VSP)-based modal average fuel and emission rates for both fuels are estimated. For E85 versus gasoline, empirical ratios of fuel consumption and CO2 emissions agree within a margin of error to the theoretical expectations. Carbon monoxide (CO) emissions were found to be typically lower. From the PEMS data, nitric oxide (NO) emissions associated with some higher VSP modes are higher for E85. From the dynamometer and certification data, average hydrocarbon (HC) and nitrogen oxides (NOx) emission differences vary depending on the vehicle. The differences of average E85 versus gasoline emission rates for all vehicle models are -22% for CO, 12% for HC, and -8% for NOx emissions, which imply that replacing gasoline with E85 reduces CO emissions, may moderately decrease NOx tailpipe emissions, and may increase HC tailpipe emissions. On a fuel life cycle basis for corn-based ethanol versus gasoline, CO emissions are estimated to decrease by 18%. Life-cycle total and fossil CO2 emissions are estimated to decrease by 25 and 50%, respectively; however, life-cycle HC and NOx emissions are estimated to increase by 18 and 82%, respectively.
40 CFR 60.17 - Incorporations by reference.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Specification for Biodiesel Fuel Blend Stock (B100) for Middle Distillate Fuels, including Appendices X1 through... Specification for Diesel Fuel Oil, Biodiesel Blend (B6 to B20), including Appendices X1 through X3, (Approved...
Modeling and optimization of a hybrid solar combined cycle (HYCS)
NASA Astrophysics Data System (ADS)
Eter, Ahmad Adel
2011-12-01
The main objective of this thesis is to investigate the feasibility of integrating concentrated solar power (CSP) technology with the conventional combined cycle technology for electric generation in Saudi Arabia. The generated electricity can be used locally to meet the annual increasing demand. Specifically, it can be utilized to meet the demand during the hours 10 am-3 pm and prevent blackout hours, of some industrial sectors. The proposed CSP design gives flexibility in the operation system. Since, it works as a conventional combined cycle during night time and it switches to work as a hybrid solar combined cycle during day time. The first objective of the thesis is to develop a thermo-economical mathematical model that can simulate the performance of a hybrid solar-fossil fuel combined cycle. The second objective is to develop a computer simulation code that can solve the thermo-economical mathematical model using available software such as E.E.S. The developed simulation code is used to analyze the thermo-economic performance of different configurations of integrating the CSP with the conventional fossil fuel combined cycle to achieve the optimal integration configuration. This optimal integration configuration has been investigated further to achieve the optimal design of the solar field that gives the optimal solar share. Thermo-economical performance metrics which are available in the literature have been used in the present work to assess the thermo-economic performance of the investigated configurations. The economical and environmental impact of integration CSP with the conventional fossil fuel combined cycle are estimated and discussed. Finally, the optimal integration configuration is found to be solarization steam side in conventional combined cycle with solar multiple 0.38 which needs 29 hectare and LEC of HYCS is 63.17 $/MWh under Dhahran weather conditions.
Assessment of bio-fuel options for solid oxide fuel cell applications
NASA Astrophysics Data System (ADS)
Lin, Jiefeng
Rising concerns of inadequate petroleum supply, volatile crude oil price, and adverse environmental impacts from using fossil fuels have spurred the United States to promote bio-fuel domestic production and develop advanced energy systems such as fuel cells. The present dissertation analyzed the bio-fuel applications in a solid oxide fuel cell-based auxiliary power unit from environmental, economic, and technological perspectives. Life cycle assessment integrated with thermodynamics was applied to evaluate the environmental impacts (e.g., greenhouse gas emission, fossil energy consumption) of producing bio-fuels from waste biomass. Landfill gas from municipal solid wastes and biodiesel from waste cooking oil are both suggested as the promising bio-fuel options. A nonlinear optimization model was developed with a multi-objective optimization technique to analyze the economic aspect of biodiesel-ethanol-diesel ternary blends used in transportation sectors and capture the dynamic variables affecting bio-fuel productions and applications (e.g., market disturbances, bio-fuel tax credit, policy changes, fuel specification, and technological innovation). A single-tube catalytic reformer with rhodium/ceria-zirconia catalyst was used for autothermal reformation of various heavy hydrocarbon fuels (e.g., diesel, biodiesel, biodiesel-diesel, and biodiesel-ethanol-diesel) to produce a hydrogen-rich stream reformates suitable for use in solid oxide fuel cell systems. A customized mixing chamber was designed and integrated with the reformer to overcome the technical challenges of heavy hydrocarbon reformation. A thermodynamic analysis, based on total Gibbs free energy minimization, was implemented to optimize the operating environment for the reformations of various fuels. This was complimented by experimental investigations of fuel autothermal reformation. 25% biodiesel blended with 10% ethanol and 65% diesel was determined to be viable fuel for use on a truck travelling with diesel engine and truck idling with fuel cell auxiliary power unit system. The customized nozzle used for fuel vaporization and mixing achieved homogenous atomization of input hydrocarbon fuels (e.g., diesel, biodiesel, diesel-biodiesel blend, and biodiesel-ethanol-diesel), and improved the performance of fuel catalytic reformation. Given the same operating condition (reforming temperature, total oxygen content, water input flow, and gas hourly space velocity), the hydrocarbon reforming performance follows the trend of diesel > biodiesel-ethanol-diesel > diesel-biodiesel blend > biodiesel (i.e., diesel catalytic reformation has the highest hydrogen production, lowest risk of carbon formation, and least possibility of hot spot occurrence). These results provide important new insight into the use of bio-fuels and bio-fuel blends as a primary fuel source for solid oxide fuel cell applications.
Low velocity opposed-flow frame spread in a transport-controlled environment DARTFire
NASA Technical Reports Server (NTRS)
West, Jeff; Thomas, Pete; Chao, Ruian; Bhattacharjee, Subrata; Tang, TI; Altenkirch, Robert A.; Olson, Sandra L.
1995-01-01
The overall objectives of the DARTFire project are to uncover the underlying physics and increase understanding of the mechanisms that cause flames to propagate over solid fuels against a low velocity of oxidizer flow in a low-gravity environment. Specific objectives are (1) to analyze experimentally observed flame shapes, measured gas-phase field variables, spread rates, radiative characteristics, and solid-phase regression rates for comparison with previously developed model prediction capability that will be continually extended, and (2) to investigate the transition from ignition to either flame propagation or extinction in order to determine the characteristics of those environments that lead to flame evolution. To meet the objectives, a series of sounding rocket experiments has been designed to exercise several of the dimensional, controllable variables that affect the flame spread process over PMMA in microgravity, i.e., the opposing flow velocity (1-20 cm/s), the external radiant flux directed to the fuel surface (0-2 W/cm(exp 2)), and the oxygen concentration of the environment (35-70%). Because radiative heat transfer is critical to these microgravity flame spread experiments, radiant heating is imposed, and radiant heat loss will be measured. These are the first attempts at such an experimental control and measurement in microgravity. Other firsts associated with the experiment are (1) the control of the low velocity, opposed flow, which is of the same order as diffusive velocities and Stefan flows; (2) state-of-the-art quantitative flame imaging for species-specific emissions (both infrared and ultraviolet) in addition to novel intensified array imaging to obtain a color image of the very dim, low-gravity flames.
A Pebble-Bed Breed-and-Burn Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greenspan, Ehud
2016-03-31
The primary objective of this project is to use three-dimensional fuel shuffling in order to reduce the minimum peak radiation damage of ~550 dpa present Breed-and-Burn (B&B) fast nuclear reactor cores designs (they feature 2-D fuel shuffling) call for to as close as possible to the presently accepted value of 200 dpa thereby enabling earlier commercialization of B&B reactors which could make substantial contribution to energy sustainability and economic stability without need for fuel recycling. Another objective is increasing the average discharge burnup for the same peak discharge burnup thereby (1) increasing the fuel utilization of 2-D shuffled B&B reactorsmore » and (2) reducing the reprocessing capacity required to support a given capacity of FRs that are to recycle fuel.« less
40 CFR 600.114-08 - Vehicle-specific 5-cycle fuel economy calculations.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Vehicle-specific 5-cycle fuel economy calculations. 600.114-08 Section 600.114-08 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy Regulations for 1978 and Later Model Yea...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 31 2012-07-01 2012-07-01 false Vehicle-specific 5-cycle fuel economy... Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy and Carbon-Related Exhaust Emission Test Procedures § 600.114-08...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 30 2011-07-01 2011-07-01 false Vehicle-specific 5-cycle fuel economy... Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy and Carbon-Related Exhaust Emission Regulations for 1978 and Later...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 31 2013-07-01 2013-07-01 false Vehicle-specific 5-cycle fuel economy... Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy and Carbon-Related Exhaust Emission Test Procedures § 600.114-12...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 31 2012-07-01 2012-07-01 false Vehicle-specific 5-cycle fuel economy... Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy and Carbon-Related Exhaust Emission Test Procedures § 600.114-12...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 31 2013-07-01 2013-07-01 false Vehicle-specific 5-cycle fuel economy... Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy and Carbon-Related Exhaust Emission Test Procedures § 600.114-08...
40 CFR 86.113-15 - Fuel specifications.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Heavy-Duty Vehicles; Test Procedures § 86.113-15 Fuel specifications. Section 86.113-15 includes text... transition to an ethanol-blend test fuel for vehicles certified under subpart S of this part. You may use the test fuels specified in § 86.113-04(a) for vehicles that are not yet subject to testing with the new...
Advanced Thermally Stable Coal-Based Jet Fuels
2008-02-01
of hydrotreated refined chemical oil derived jet fuels in the pyrolytic regime. Preprints of Papers-American Chemical Society Division of Fuel...hydrogenation of a mixture of light cycle oil and refined chemical oil met or exceeded all but four JP-8 specifications. The fuel has excellent low-temperature...mixture of light cycle oil and refined chemical oil met or exceeded all but four JP-8 specifications. The fuel has excellent low-temperature viscosity
10 CFR 73.37 - Requirements for physical protection of irradiated reactor fuel in transit.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Requirements for physical protection of irradiated reactor... Requirements for physical protection of irradiated reactor fuel in transit. (a) Performance objectives. (1... of irradiated reactor fuel in excess of 100 grams in net weight of irradiated fuel, exclusive of...
10 CFR 73.37 - Requirements for physical protection of irradiated reactor fuel in transit.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Requirements for physical protection of irradiated reactor... Requirements for physical protection of irradiated reactor fuel in transit. (a) Performance objectives. (1... of irradiated reactor fuel in excess of 100 grams in net weight of irradiated fuel, exclusive of...
Fuel Cell Technology Status Analysis Project: Partnership Opportunities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fact sheet describing the National Renewable Energy Laboratory's (NREL's) Fuel Cell Technology Status Analysis Project. NREL is seeking fuel cell industry partners from the United States and abroad to participate in an objective and credible analysis of commercially available fuel cell products to benchmark the current state of the technology and support industry growth.
Estimating Impacts of Diesel Fuel Reformulation with Vector-based Blending
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hadder, G.R.
2003-01-23
The Oak Ridge National Laboratory Refinery Yield Model has been used to study the refining cost, investment, and operating impacts of specifications for reformulated diesel fuel (RFD) produced in refineries of the U.S. Midwest in summer of year 2010. The study evaluates different diesel fuel reformulation investment pathways. The study also determines whether there are refinery economic benefits for producing an emissions reduction RFD (with flexibility for individual property values) compared to a vehicle performance RFD (with inflexible recipe values for individual properties). Results show that refining costs are lower with early notice of requirements for RFD. While advanced desulfurizationmore » technologies (with low hydrogen consumption and little effect on cetane quality and aromatics content) reduce the cost of ultra low sulfur diesel fuel, these technologies contribute to the increased costs of a delayed notice investment pathway compared to an early notice investment pathway for diesel fuel reformulation. With challenging RFD specifications, there is little refining benefit from producing emissions reduction RFD compared to vehicle performance RFD. As specifications become tighter, processing becomes more difficult, blendstock choices become more limited, and refinery benefits vanish for emissions reduction relative to vehicle performance specifications. Conversely, the emissions reduction specifications show increasing refinery benefits over vehicle performance specifications as specifications are relaxed, and alternative processing routes and blendstocks become available. In sensitivity cases, the refinery model is also used to examine the impact of RFD specifications on the economics of using Canadian synthetic crude oil. There is a sizeable increase in synthetic crude demand as ultra low sulfur diesel fuel displaces low sulfur diesel fuel, but this demand increase would be reversed by requirements for diesel fuel reformulation.« less
Fuel Type Classification and Fuel Loading in Central Interior, Korea: Uiseong-Gun
Myoung Soo Won; Kyo Sang Koo; Myung Bo Lee; Si Young Lee
2006-01-01
The objective of this study is classification of fuel type and calculation of fuel loading to assess forest fire hazard by fuel characteristics at Uiseong-gun, Gyeongbuk located in the central interior of Korea. A database was constructed of eight factors such as forest type and topography using ArcGIS 9.1 GIS programs. An on-site survey was conducted for investigating...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-16
... Program; Petition for Objection to State Operating Permit for Tennessee Valley Authority--Paradise Fossil... for Air Quality to Tennessee Valley Authority (TVA) for its Paradise Fossil Fuel Plant located near... period. Petitioner submitted a petition regarding the Paradise Fossil Fuel Plant on January 9, 2010...
Forest fuel treatments in western North America: merging silvicultural and fire management.
Morris C. Johnson; David L. Peterson
2005-01-01
For many years silviculture and fire management have mostly been separate forestry disciplines with disparate objectives and activities. However, in order to accomplish complex and multiple management objectives related to forest structure, fuels, and fxe disturbance, these two disciplines must be effectively integrated in science and practice. We have linked...
NASA Astrophysics Data System (ADS)
Hooie, D. T.; Harrington, B. C., III; Mayfield, M. J.; Parsons, E. L.
1992-07-01
The primary objective of DOE's Fossil Energy Fuel Cell program is to fund the development of key fuel cell technologies in a manner that maximizes private sector participation and in a way that will give contractors the opportunity for a competitive posture, early market entry, and long-term market growth. This summary includes an overview of the Fuel Cell program, an elementary explanation of how fuel cells operate, and a synopsis of the three major fuel cell technologies sponsored by the DOE/Fossil Energy Phosphoric Acid Fuel Cell program, the Molten Carbonate Fuel Cell program, and the Solid Oxide Fuel Cell program.
Lázaro, M J; Sebastián, D; Suelves, I; Moliner, R
2009-07-01
Carbon nanofiber (CNF) growth by catalytic decomposition of methane in a fixed-bed reactor was studied out to elucidate the influence of some important reaction conditions: temperature, space velocity and reactant partial pressure, in the morphological properties of the carbonaceous material obtained. The main objective is to synthesize a suitable carbonaceous nanomaterial to be used as support in platinum based electrocatalysts for Proton Exchange Membrane Fuel Cells (PEMFC) which improves current carbon blacks. High specific surface area is required in an electrocatalyst support since platinum dispersion is enhanced and so a cost-effective usage and high catalytic activity. Good electrical conductivity of carbon support is also required since the fuel cell power density is improved. With this proposal, characterization was carried out by nitrogen physisorption, XRD, SEM and TPO. The results were analysed by a factorial design and analysis of variance (ANOVA) in order to find an empirical correlation between operating conditions and CNF characteristics. It was found that the highest specific surface area and pore volume were found at 823 K and at a space velocity of 10 L gcat(-1) h(-1). The graphitic character of CNF, which is known to influence the electrical conductivity, presented a maximum value at temperatures between 923 K and 973 K. SEM images showed a narrow size distribution of CNF diameter between 40 and 90 nm and homogeneous appearance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bessette, Norman
The objective of this project provided with funds through the American Recovery and Reinvestment Act of 2009 (ARRA) was to demonstrate a Solid Oxide Fuel Cell (SOFC) generator capable of operation on propane fuel to improve efficiency and reduce emissions over commercially available portable generators. The key objectives can be summarized as: Development of two portable electrical generators in the 1-3kW range utilizing Solid Oxide Fuel Cells and propane fuel; The development and demonstration of a proof-of-concept electro-mechanical propane fuel interface that provides a user friendly capability for managing propane fuel; The deployment and use of the fuel cell portablemore » generators to power media production equipment over the course of several months at multiple NASCAR automobile racing events; The deployment and use of the fuel cell portable generators at scheduled events by first responders (police, fire) of the City of Folsom California; and Capturing data with regard to the systems’ ability to meet Department of Energy (DOE) Technical Targets and evaluating the ease of use and potential barriers to further adoption of the systems.« less
14 CFR 34.61 - Turbine fuel specifications.
Code of Federal Regulations, 2012 CFR
2012-01-01
... be present. Specification for Fuel To Be Used in Aircraft Turbine Engine Emission Testing Property... 34.61 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... Engine Exhaust Gaseous Emissions (Aircraft and Aircraft Gas Turbine Engines) § 34.61 Turbine fuel...
14 CFR 34.61 - Turbine fuel specifications.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Engine Exhaust Gaseous Emissions (Aircraft and Aircraft Gas Turbine Engines) § 34.61 Turbine fuel... be present. Specification for Fuel To Be Used in Aircraft Turbine Engine Emission Testing Property... 34.61 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT...
14 CFR 34.61 - Turbine fuel specifications.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Engine Exhaust Gaseous Emissions (Aircraft and Aircraft Gas Turbine Engines) § 34.61 Turbine fuel... be present. Specification for Fuel To Be Used in Aircraft Turbine Engine Emission Testing Property... 34.61 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT...
More Than 1,000 Fuel Cell Units Deployed Through DOE ARRA Funding (Fact Sheet)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This NREL Hydrogen and Fuel Cell Technical Highlight describes how early market end users are operating 1,111 fuel cell units at 301 sites in 20 states with funding from the U.S. Department of Energy Fuel Cell Technologies Program and analysis by NREL. The American Recovery and Reinvestment Act (ARRA) funded the deployment of approximately 1,000 fuel cell systems in key early markets to accelerate the commercialization and deployment of fuel cells and fuel cell manufacturing, installation, maintenance, and support services. In support of the ARRA fuel cell deployment objectives, NREL analyzes and validates the technology in real-world applications, reports onmore » the technology status, and facilitates the development of fuel cell technologies, manufacturing, and operations in strategic markets-including material handling equipment, backup power, and stationary power-where fuel cells can compete with conventional technologies. NREL is validating hydrogen and fuel cell systems in real-world settings through data collection, analysis, and reporting. The fuel cell and infrastructure analysis provides an independent, third-party assessment that focuses on fuel cell system and hydrogen infrastructure performance, operation, maintenance, use, and safety. An objective of the ARRA fuel cell project-to deploy approximately 1,000 fuel cell systems in key early markets - has been met in two years. By the end of 2011, 504 material handling equipment (MHE) fuel cell units were operating at 8 facilities and 607 backup power fuel cell units were operating at 293 sites. MHE and backup power are two markets where fuel cells are capable of meeting the operating demands, and deployments can be leveraged to accelerate fuel cell commercialization.« less
Preliminary analysis of aircraft fuel systems for use with broadened specification jet fuels
NASA Technical Reports Server (NTRS)
Pasion, A. J.; Thomas, I.
1977-01-01
An analytical study was conducted on the use of broadened specification hydrocarbon fuels in present day aircraft. A short range Boeing 727 mission and three long range Boeing 747 missions were used as basis of calculation for one-day-per-year extreme values of fuel loading, airport ambient and altitude ambient temperatures with various seasonal and climatic conditions. Four hypothetical fuels were selected; two high-vapor-pressure fuels with 35 kPa and 70 kPa RVP and two high-freezing-point fuels with -29 C and -18 C freezing points. In-flight fuel temperatures were predicted by Boeing's aircraft fuel tank thermal analyzer computer program. Boil-off rates were calculated for the high vapor pressure fuels and heating/insulation requirements for the high freezing point fuels were established. Possible minor and major heating system modifications were investigated with respect to heat output, performance and economic penalties for the high freezing point fuels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biswas, Pratim; Al-Dahhan, Muthanna
2012-11-01
Tri-isotropic (TRISO) fuel particle coating is critical for the future use of nuclear energy produced byadvanced gas reactors (AGRs). The fuel kernels are coated using chemical vapor deposition in a spouted fluidized bed. The challenges encountered in operating TRISO fuel coaters are due to the fact that in modern AGRs, such as High Temperature Gas Reactors (HTGRs), the acceptable level of defective/failed coated particles is essentially zero. This specification requires processes that produce coated spherical particles with even coatings having extremely low defect fractions. Unfortunately, the scale-up and design of the current processes and coaters have been based on empiricalmore » approaches and are operated as black boxes. Hence, a voluminous amount of experimental development and trial and error work has been conducted. It has been clearly demonstrated that the quality of the coating applied to the fuel kernels is impacted by the hydrodynamics, solids flow field, and flow regime characteristics of the spouted bed coaters, which themselves are influenced by design parameters and operating variables. Further complicating the outlook for future fuel-coating technology and nuclear energy production is the fact that a variety of new concepts will involve fuel kernels of different sizes and with compositions of different densities. Therefore, without a fundamental understanding the underlying phenomena of the spouted bed TRISO coater, a significant amount of effort is required for production of each type of particle with a significant risk of not meeting the specifications. This difficulty will significantly and negatively impact the applications of AGRs for power generation and cause further challenges to them as an alternative source of commercial energy production. Accordingly, the proposed work seeks to overcome such hurdles and advance the scale-up, design, and performance of TRISO fuel particle spouted bed coaters. The overall objectives of the proposed work are to advance the fundamental understanding of the hydrodynamics by systematically investigating the effect of design and operating variables, to evaluate the reported dimensionless groups as scaling factors, and to establish a reliable scale-up methodology for the TRISO fuel particle spouted bed coaters based on hydrodynamic similarity via advanced measurement and computational techniques. An additional objective is to develop an on-line non-invasive measurement technique based on gamma ray densitometry (i.e. Nuclear Gauge Densitometry) that can be installed and used for coater process monitoring to ensure proper performance and operation and to facilitate the developed scale-up methodology. To achieve the objectives set for the project, the work will use optical probes and gamma ray computed tomography (CT) (for the measurements of solids/voidage holdup cross-sectional distribution and radial profiles along the bed height, spouted diameter, and fountain height) and radioactive particle tracking (RPT) (for the measurements of the 3D solids flow field, velocity, turbulent parameters, circulation time, solids lagrangian trajectories, and many other of spouted bed related hydrodynamic parameters). In addition, gas dynamic measurement techniques and pressure transducers will be utilized to complement the obtained information. The measurements obtained by these techniques will be used as benchmark data to evaluate and validate the computational fluid dynamic (CFD) models (two fluid model or discrete particle model) and their closures. The validated CFD models and closures will be used to facilitate the developed methodology for scale-up, design and hydrodynamic similarity. Successful execution of this work and the proposed tasks will advance the fundamental understanding of the coater flow field and quantify it for proper and safe design, scale-up, and performance. Such achievements will overcome the barriers to AGR applications and will help assure that the US maintains nuclear energy as a feasible option to meet the nation's needs for energy and environmental safety. In addition, the outcome of the proposed study will have a broader impact on other processes that utilize spouted beds, such as coal gasification, granulation, drying, catalytic reactions, etc.« less
CY2013 Annual Report for DOE-ITU INERI 2010-006-E
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kennedy, J. Rory; Rondinella, Vincenzo V.
2014-12-01
New concepts for nuclear energy development are considered in both the USA and Europe within the framework of the Generation-IV International Forum (GIF) as well as in various US-DOE programs (e.g. the Fuel Cycle Research and Development - FCRD) and as part of the European Sustainable Nuclear Energy Technology Platform (SNE-TP). Since most new fuel cycle concepts envisage the adoption of a closed nuclear fuel cycle employing fast reactors, the fuel behavior characteristics of the various proposed advanced fuel forms must be effectively investigated using state of the art experimental techniques before implementation. More rapid progress can be achieved ifmore » effective synergy with advanced (multi-scale) modeling efforts can be achieved. The fuel systems to be considered include minor actinide (MA) transmutation fuel types such as advanced MOX, advanced metal alloy, inert matrix fuel (IMF), and other ceramic fuels like nitrides, carbides, etc., for fast neutronic spectrum conditions. Most of the advanced fuel compounds have already been the object of past examination programs, which included irradiations in research reactors. The knowledge derived from previous experience constitutes a significant, albeit incomplete body of data. New or upgraded experimental tools are available today that can extend the scientific and technological knowledge towards achieving the objectives associated with the new generation of nuclear reactors and fuels. The objectives of this project will be three-fold: (1) to extend the available knowledge on properties and irradiation behavior of high burnup and minor actinide bearing advanced fuel systems; (2) to establish a synergy with multi-scale and code development efforts in which experimental data and expertise on the irradiation behavior of nuclear fuels is properly conveyed for the upgrade/development of advanced modeling tools; (3) to promote the effective use of international resources to the characterization of irradiated fuel through exchange of expertise and information among leading experimental facilities. The priorities in this project will be set according to the down selection procedure of U.S. and European development programs.« less
40 CFR 87.81 - Fuel specifications.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Fuel specifications. 87.81 Section 87.81 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) Definitions. Test Procedures for Engine Smoke Emissions (Aircraft Gas Turbine Engines) § 87.81 Fuel...
40 CFR 86.1513 - Fuel specifications.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test Procedures...
Nanoplasmonic Catalysis for Synthetic Fuel Production
2010-02-22
understanding of the basic mechanism underlying this enhancement with the ultimate goal of producing synthetic fuels, such as hydrogen , methane and...of producing synthetic fuels, such as hydrogen , methane and methanol using visible illumination. Objectives: - Fabricate arrays of metal...in our energy infrastructure. For photocatalysis , this area is especially exciting because it presents a possible route to direct solar-to-fuel
Fuel properties to enable lifted-flame combustion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurtz, Eric
The Fuel Properties to Enable Lifted-Flame Combustion project responded directly to solicitation DE-FOA-0000239 AOI 1A, Fuels and Lubricants for Advanced Combustion Regimes. This subtopic was intended to encompass clean and highly-efficient, liquid-fueled combustion engines to achieve extremely low engine-out nitrogen oxides (NOx) and particulate matter (PM) as a target and similar efficiency as state-of-the-art direct injection diesel engines. The intent of this project was to identify how fuel properties can be used to achieve controllable Leaner Lifted Flame Combustion (LLFC) with low NOx and PM emissions. Specifically, this project was expected to identify and test key fuel properties to enablemore » LLFC and their compatibility with current fuel systems and to enhance combustion models to capture the effect of fuel properties on advanced combustion. Successful demonstration of LLFC may reduce the need for after treatment devices, thereby reducing costs and improving thermal efficiency. The project team consisted of key technical personnel from Ford Motor Company (FMC), the University of Wisconsin-Madison (UW), Sandia National Laboratories (SNL) and Lawrence Livermore National Laboratories (LLNL). Each partner had key roles in achieving project objectives. FMC investigated fuel properties relating to LLFC and sooting tendency. Together, FMC and UW developed and integrated 3D combustion models to capture fuel property combustion effects. FMC used these modeling results to develop a combustion system and define fuel properties to support a single-cylinder demonstration of fuel-enabled LLFC. UW investigated modeling the flame characteristics and emissions behavior of different fuels, including those with different cetane number and oxygen content. SNL led spray combustion experiments to quantify the effect of key fuel properties on combustion characteristics critical for LLFC, as well as single cylinder optical engine experiments to improve fundamental understanding of flame lift-off, generate model validation data, and demonstrate LLFC concurrent with FMC efforts. Additionally, LLNL was added to the project during the second year to develop a detailed kinetic mechanism for a key oxygenate to support CFD modeling. Successful completion of this project allowed the team to enhance fundamental understanding of LLFC, improve the state of current combustion models and increase understanding of desired fuel properties. This knowledge also improves our knowledge of how cost effective and environmentally friendly renewable fuels can assist in helping meet future emission and greenhouse gas regulations.« less
Low temperature fuel behavior studies
NASA Technical Reports Server (NTRS)
Stockemer, F. J.
1980-01-01
Aircraft fuels at low temperatures near the freezing point. The principal objective was an improved understanding of the flowability and pumpability of the fuels in a facility that simulated the heat transfer and temperature profiles encountered during flight in the long range commercial wing tanks.
Hydrogen plant module (HPM) and vehicle fueled by same.
DOT National Transportation Integrated Search
2011-09-29
The goal / objective of the project was to design and fabricate hydrogen plant module (HPM) that is capable of producing : hydrogen fuel onboard a vehicle and that obviates one or more of the present issues related to compressed hydrogen fuel : stora...
40 CFR 600.209-08 - Calculation of vehicle-specific 5-cycle fuel economy values for a model type.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Calculation of vehicle-specific 5-cycle fuel economy values for a model type. 600.209-08 Section 600.209-08 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy Regulations fo...
Extracting alcohols from aqueous solutions. [USDOE patent application
Compere, A.L.; Googin, J.M.; Griffith, W.L.
1981-12-02
The objective is to provide an efficient process for extracting alcohols in aqueous solutions into hydrocarbon fuel mixtures, such as gasoline, diesel fuel and fuel oil. This is done by contacting an aqueous fermentation liquor with a hydrocarbon or hydrocarbon mixture containing carbon compounds having 5-18 carbon atoms, which may include gasoline, diesel fuel or fuel oil. The hydrocarbon-aqueous alcohol solution is then mixed with one or more of a group of polyoxyalkylene polymers to extract the alcohol into the hydrocarbon fuel-polyoxyalkylene polymer mixture.
40 CFR 600.304-12 - Fuel economy label-special requirements for hydrogen fuel cell vehicles.
Code of Federal Regulations, 2012 CFR
2012-07-01
... requirements for hydrogen fuel cell vehicles. 600.304-12 Section 600.304-12 Protection of Environment... MOTOR VEHICLES Fuel Economy Labeling § 600.304-12 Fuel economy label—special requirements for hydrogen fuel cell vehicles. Fuel economy labels for hydrogen fuel cell vehicles must meet the specifications...
40 CFR 600.304-12 - Fuel economy label-special requirements for hydrogen fuel cell vehicles.
Code of Federal Regulations, 2014 CFR
2014-07-01
... requirements for hydrogen fuel cell vehicles. 600.304-12 Section 600.304-12 Protection of Environment... MOTOR VEHICLES Fuel Economy Labeling § 600.304-12 Fuel economy label—special requirements for hydrogen fuel cell vehicles. Fuel economy labels for hydrogen fuel cell vehicles must meet the specifications...
40 CFR 600.304-12 - Fuel economy label-special requirements for hydrogen fuel cell vehicles.
Code of Federal Regulations, 2013 CFR
2013-07-01
... requirements for hydrogen fuel cell vehicles. 600.304-12 Section 600.304-12 Protection of Environment... MOTOR VEHICLES Fuel Economy Labeling § 600.304-12 Fuel economy label—special requirements for hydrogen fuel cell vehicles. Fuel economy labels for hydrogen fuel cell vehicles must meet the specifications...
Used fuel rail shock and vibration testing options analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ross, Steven B.; Best, Ralph E.; Klymyshyn, Nicholas A.
2014-09-25
The objective of the rail shock and vibration tests is to complete the framework needed to quantify loads of fuel assembly components that are necessary to guide materials research and establish a technical basis for review organizations such as the U.S. Nuclear Regulatory Commission (NRC). A significant body of experimental and numerical modeling data exists to quantify loads and failure limits applicable to normal conditions of transport (NCT) rail transport, but the data are based on assumptions that can only be verified through experimental testing. The test options presented in this report represent possible paths for acquiring the data thatmore » are needed to confirm the assumptions of previous work, validate modeling methods that will be needed for evaluating transported fuel on a case-by-case basis, and inform material test campaigns on the anticipated range of fuel loading. The ultimate goal of this testing is to close all of the existing knowledge gaps related to the loading of used fuel under NCT conditions and inform the experiments and analysis program on specific endpoints for their research. The options include tests that would use an actual railcar, surrogate assemblies, and real or simulated rail transportation casks. The railcar carrying the cradle, cask, and surrogate fuel assembly payload would be moved in a train operating over rail track modified or selected to impart shock and vibration forces that occur during normal rail transportation. Computer modeling would be used to help design surrogates that may be needed for a rail cask, a cask’s internal basket, and a transport cradle. The objective of the design of surrogate components would be to provide a test platform that effectively simulates responses to rail shock and vibration loads that would be exhibited by state-of-the-art rail cask, basket, and/or cradle structures. The computer models would also be used to help determine the placement of instrumentation (accelerometers and strain gauges) on the surrogate fuel assemblies, cask and cradle structures, and the railcar so that forces and deflections that would result in the greatest potential for damage to high burnup and long-cooled UNF can be determined. For purposes of this report we consider testing on controlled track when we have control of the track and speed to facilitate modeling.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karner, D.; Francfort, J.E.
2003-01-22
Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy's Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to runmore » CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service's Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents the results of 4,695 miles of testing for one of the blended fuel vehicles, a Ford F-150 pickup truck, operating on up to 50% hydrogen-50% CNG fuel.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karner, D.; Francfort, J.E.
2003-01-16
Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy's Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle, a Dodge Ram Wagon Van, operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline enginesmore » that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service's Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents results of 22,816 miles of testing for the Dodge Ram Wagon Van, operating on CNG fuel, and a blended fuel of 15% hydrogen-85% CNG.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karner, D.; Francfort, James Edward
2003-01-01
Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy’s Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to runmore » CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service’s Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents results of 16,942 miles of testing for one of the blended fuel vehicles, a Ford F-150 pickup truck, operating on up to 30% hydrogen/70% CNG fuel.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karner, D.; Francfort, J.E.
2003-01-22
Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy's Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to runmore » CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service's Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents results of 16,942 miles of testing for one of the blended fuel vehicles, a Ford F-150 pickup truck, operating on up to 30% hydrogen/70% CNG fuel.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Don Karner; Francfort, James Edward
2003-01-01
Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy’s Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to runmore » CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service’s Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents the results of 4,695 miles of testing for one of the blended fuel vehicles, a Ford F-150 pickup truck, operating on up to 50% hydrogen–50% CNG fuel.« less
Advanced Vehicle Testing Activity: Dodge Ram Wagon Van -- Hydrogen/CNG Operations Summary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Don Karner; Francfort, James Edward
2003-01-01
Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy’s Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle, a Dodge Ram Wagon Van, operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline enginesmore » that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service’s Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents results of 22,816 miles of testing for the Dodge Ram Wagon Van, operating on CNG fuel, and a blended fuel of 15% hydrogen–85% CNG.« less
Strategic Minimization of High Level Waste from Pyroprocessing of Spent Nuclear Fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simpson, Michael F.; Benedict, Robert W.
The pyroprocessing of spent nuclear fuel results in two high-level waste streams--ceramic and metal waste. Ceramic waste contains active metal fission product-loaded salt from the electrorefining, while the metal waste contains cladding hulls and undissolved noble metals. While pyroprocessing was successfully demonstrated for treatment of spent fuel from Experimental Breeder Reactor-II in 1999, it was done so without a specific objective to minimize high-level waste generation. The ceramic waste process uses “throw-away” technology that is not optimized with respect to volume of waste generated. In looking past treatment of EBR-II fuel, it is critical to minimize waste generation for technologymore » developed under the Global Nuclear Energy Partnership (GNEP). While the metal waste cannot be readily reduced, there are viable routes towards minimizing the ceramic waste. Fission products that generate high amounts of heat, such as Cs and Sr, can be separated from other active metal fission products and placed into short-term, shallow disposal. The remaining active metal fission products can be concentrated into the ceramic waste form using an ion exchange process. It has been estimated that ion exchange can reduce ceramic high-level waste quantities by as much as a factor of 3 relative to throw-away technology.« less
Testing piezoelectric sensors in a nuclear reactor environment
NASA Astrophysics Data System (ADS)
Reinhardt, Brian T.; Suprock, Andy; Tittmann, Bernhard
2017-02-01
Several Department of Energy Office of Nuclear Energy (DOE-NE) programs, such as the Fuel Cycle Research and Development (FCRD), Advanced Reactor Concepts (ARC), Light Water Reactor Sustainability, and Next Generation Nuclear Power Plants (NGNP), are investigating new fuels, materials, and inspection paradigms for advanced and existing reactors. A key objective of such programs is to understand the performance of these fuels and materials during irradiation. In DOE-NE's FCRD program, ultrasonic based technology was identified as a key approach that should be pursued to obtain the high-fidelity, high-accuracy data required to characterize the behavior and performance of new candidate fuels and structural materials during irradiation testing. The radiation, high temperatures, and pressure can limit the available tools and characterization methods. In this work piezoelectric transducers capable of making these measurements are developed. Specifically, three piezoelectric sensors (Bismuth Titanate, Aluminum Nitride, and Zinc Oxide) are tested in the Massachusetts Institute of Technology Research reactor to a fast neutron fluence of 8.65×1020 nf/cm2. It is demonstrated that Bismuth Titanate is capable of transduction up to 5 × 1020 nf/cm2, Zinc Oxide is capable of transduction up to at least 6.27 × 1020 nf/cm2, and Aluminum Nitride is capable of transduction up to at least 8.65 × 1020 nf/cm2.
NASA Technical Reports Server (NTRS)
Lohmann, R. P.; Szetela, E. J.; Vranos, A.
1978-01-01
The impact of the use of broad specification fuels on the design, performance durability, emissions and operational characteristics of combustors for commercial aircraft gas turbine engines was assessed. Single stage, vorbix and lean premixed prevaporized combustors, in the JT9D and an advanced energy efficient engine cycle were evaluated when operating on Jet A and ERBS (Experimental Referee Broad Specification) fuels. Design modifications, based on criteria evolved from a literature survey, were introduced and their effectiveness at offsetting projected deficiencies resulting from the use of ERBS was estimated. The results indicate that the use of a broad specification fuel such as ERBS, will necessitate significant technology improvements and redesign if deteriorated performance, durability and emissions are to be avoided. Higher radiant heat loads are projected to seriously compromise liner life while the reduced thermal stability of ERBS will require revisions to the engine-airframe fuel system to reduce the thermal stress on the fuel. Smoke and emissions output are projected to increase with the use of broad specification fuels. While the basic geometry of the single stage and vorbix combustors are compatible with the use of ERBS, extensive redesign of the front end of the lean premixed prevaporized burner will be required to achieve satisfactory operation and optimum emissions.
NASA Technical Reports Server (NTRS)
Gummalla, Mallika; Pandy, Arun; Braun, Robert; Carriere, Thierry; Yamanis, Jean; Vanderspurt, Thomas; Hardin, Larry; Welch, Rick
2006-01-01
The objective of this study is to define the functionality and evaluate the propulsion and power system benefits derived from a Solid Oxide Fuel Cell (SOFC) based Auxiliary Power Unit (APU) for a future short range commercial aircraft, and to define the technology gaps to enable such a system. United Technologies Corporation (UTC) Integrated Total Aircraft Power System (ITAPS) methodologies were used to evaluate a baseline aircraft and several SOFC architectures. The technology benefits were captured as reductions of the mission fuel burn, life cycle cost, noise and emissions. As a result of the study, it was recognized that system integration is critical to maximize benefits from the SOFC APU for aircraft application. The mission fuel burn savings for the two SOFC architectures ranged from 4.7 percent for a system with high integration to 6.7 percent for a highly integrated system with certain technological risks. The SOFC APU itself produced zero emissions. The reduction in engine fuel burn achieved with the SOFC systems also resulted in reduced emissions from the engines for both ground operations and in flight. The noise level of the baseline APU with a silencer is 78 dBA, while the SOFC APU produced a lower noise level. It is concluded that a high specific power SOFC system is needed to achieve the benefits identified in this study. Additional areas requiring further development are the processing of the fuel to remove sulfur, either on board or on the ground, and extending the heat sink capability of the fuel to allow greater waste heat recovery, resolve the transient electrical system integration issues, and identification of the impact of the location of the SOFC and its size on the aircraft.
Hedfi, Amor; Boufahja, Fehmi; Ben Ali, Manel; Aïssa, Patricia; Mahmoudi, Ezzeddine; Beyrem, Hamouda
2013-06-01
The objective of this study was to test the hypotheses that (1) free-living marine nematodes respond in a differential way to diesel fuel if it is combined with three trace metals (chromium, copper, and nickel) used as smoke suppressants and that (2) the magnitude of toxicity of diesel fuel differs according to the level of trace metal mixture added. Nematodes from Sidi Salem beach (Tunisia) were subjected separately for 30 days to three doses of diesel fuel and three others of a trace metals mixture. Simultaneously, low-dose diesel was combined with three amounts of a trace metal mixture. Results from univariate and multivariate methods of data evaluation generally support our initial hypothesis that nematode assemblages exhibit various characteristic changes when exposed to different types of disturbances; the low dose of diesel fuel, discernibly non-toxic alone, became toxic when trace metals were added. For all types of treatments, biological disturbance caused severe specific changes in assemblage structure. For diesel fuel-treated microcosms, Marylynnia bellula and Chromaspirinia pontica were the best positive indicative species; their remarkable presence in given ecosystem may predict unsafe seafood. The powerful toxicity of the combination between diesel fuel and trace metals was expressed with only negative bioindicators, namely Trichotheristus mirabilis, Pomponema multipapillatum, Ditlevsenella murmanica, Desmodora longiseta, and Bathylaimus capacosus. Assemblages with high abundances of these species should be an index of healthy seafood. When nematodes were exposed to only trace metals, their response looks special with a distinction of a different list of indicative species; the high presence of seven species (T. mirabilis, P. multipapillatum, Leptonemella aphanothecae, D. murmanica, Viscosia cobbi, Gammanema conicauda, and Viscosia glabra) could indicate a good quality of seafood and that of another species (Oncholaimellus mediterraneus) appeared an index of the opposite situation.
40 CFR 86.213-04 - Fuel specifications.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1994 and Later Model Year Gasoline-Fueled New Light-Duty Vehicles, New Light-Duty Trucks and New Medium-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.213-04 Fuel specifications. Gasoline...
40 CFR 86.213-94 - Fuel specifications.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1994 and Later Model Year Gasoline-Fueled New Light-Duty Vehicles, New Light-Duty Trucks and New Medium-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.213-94 Fuel specifications. Gasoline...
NASA Technical Reports Server (NTRS)
1999-01-01
Through a SBIR contract with Lewis Research Center, ElectroChem, Inc. developed a hydrogen/oxygen fuel cell. The objective for Lewis Research Center's collaboration with ElectroChem was to develop a fuel cell system that could deliver 200-W (minimum) approximately to 10kWh of electrical energy.
Near-ambient solid polymer fuel cell
NASA Technical Reports Server (NTRS)
Holleck, G. L.
1993-01-01
Fuel cells are extremely attractive for extraterrestrial and terrestrial applications because of their high energy conversion efficiency without noise or environmental pollution. Among the various fuel cell systems the advanced polymer electrolyte membrane fuel cells based on sulfonated fluoropolymers (e.g., Nafion) are particularly attractive because they are fairly rugged, solid state, quite conductive, of good chemical and thermal stability and show good oxygen reduction kinetics due to the low specific adsorption of the electrolyte on the platinum catalyst. The objective of this program is to develop a solid polymer fuel cell which can efficiently operate at near ambient temperatures without ancillary components for humidification and/or pressurization of the fuel or oxidant gases. During the Phase 1 effort we fabricated novel integral electrode-membrane structures where the dispersed platinum catalyst is precipitated within the Nafion ionomer. This resulted in electrode-membrane units without interfacial barriers permitting unhindered water diffusion from cathode to anode. The integral electrode-membrane structures were tested as fuel cells operating on H2 and O2 or air at 1 to 2 atm and 10 to 50 C without gas humidification. We demonstrated that cells with completely dry membranes could be self started at room temperature and subsequently operated on dry gas for extended time. Typical room temperature low pressure operation with unoptimized electrodes yielded 100 mA/cm(exp 2) at 0.5V and maximum currents over 300 mA/cm(exp 2) with low platinum loadings. Our results clearly demonstrate that operation of proton exchange membrane fuel cells at ambient conditions is feasible. Optimization of the electrode-membrane structure is necessary to assess the full performance potential but we expect significant gains in weight and volume power density for the system. The reduced complexity will make fuel cells also attractive for smaller and portable power supplies and as replacement for batteries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guan, Jie; Minh, Nguyen
This report summarizes the work performed for the program entitled “High Performance Flexible Reversible Solid Oxide Fuel Cell” under Cooperative Agreement DE-FC36-04GO14351 for the U. S. Department of Energy. The overall objective of this project is to demonstrate a single modular stack that generates electricity from a variety of fuels (hydrogen and other fuels such as biomass, distributed natural gas, etc.) and when operated in the reverse mode, produces hydrogen from steam. This project has evaluated and selected baseline cell materials, developed a set of materials for oxygen and hydrogen electrodes, and optimized electrode microstructures for reversible solid oxide fuelmore » cells (RSOFCs); and demonstrated the feasibility and operation of a RSOFC multi-cell stack. A 10-cell reversible SOFC stack was operated over 1000 hours alternating between fuel cell (with hydrogen and methane as fuel) and steam electrolysis modes. The stack ran very successfully with high power density of 480 mW/cm2 at 0.7V and 80% fuel utilization in fuel cell mode and >6 SLPM hydrogen production in steam electrolysis mode using about 1.1 kW electrical power. The hydrogen generation is equivalent to a specific capability of 2.59 Nm3/m2 with electrical energy demand of 3 kWh/Nm3. The performance stability in electrolysis mode was improved vastly during the program with a degradation rate reduction from 8000 to 200 mohm-cm2/1000 hrs. This was accomplished by increasing the activity and improving microstructure of the oxygen electrode. Both cost estimate and technology assessment were conducted. Besides the flexibility running under both fuel cell mode and electrolysis mode, the reversible SOFC system has the potentials for low cost and high efficient hydrogen production through steam electrolysis. The cost for hydrogen production at large scale was estimated at ~$2.7/kg H2, comparing favorably with other electrolysis techology.« less
Environmentally safe aviation fuels
NASA Technical Reports Server (NTRS)
Liberio, Patricia D.
1995-01-01
In response to the Air Force directive to remove Ozone Depleting Chemicals (ODC's) from military specifications and Defense Logistics Agency's Hazardous Waste Minimization Program, we are faced with how to ensure a quality aviation fuel without using such chemicals. Many of these chemicals are found throughout the fuel and fuel related military specifications and are part of test methods that help qualify the properties and quality of the fuels before they are procured. Many years ago there was a directive for military specifications to use commercially standard test methods in order to provide standard testing in private industry and government. As a result the test methods used in military specifications are governed by the American Society of Testing and Materials (ASTM). The Air Force has been very proactive in the removal or replacement of the ODC's and hazardous materials in these test methods. For example, ASTM D3703 (Standard Test Method for Peroxide Number of Aviation Turbine Fuels), requires the use of Freon 113, a known ODC. A new rapid, portable hydroperoxide test for jet fuels similar to ASTM D3703 that does not require the use of ODC's has been developed. This test has proved, in limited testing, to be a viable substitute method for ASTM D3703. The Air Force is currently conducting a round robin to allow the method to be accepted by ASTM and therefore replace the current method. This paper will describe the Air Force's initiatives to remove ODC's and hazardous materials from the fuel and fuel related military specifications that the Air Force Wright Laboratory.
Nicholas S. Skowronski; Scott Haag; Jim Trimble; Kenneth L. Clark; Michael R. Gallagher; Richard G. Lathrop
2015-01-01
Large-scale fuel assessments are useful for developing policy aimed at mitigating wildfires in the wildland-urban interface (WUI), while finer-scale characterisation is necessary for maximising the effectiveness of fuel reduction treatments and directing suppression activities. We developed and tested an objective, consistent approach for characterising hazardous fuels...
NASA Technical Reports Server (NTRS)
Nickol, Craig L.; Guynn, Mark D.; Kohout, Lisa L.; Ozoroski, Thomas A.
2007-01-01
The objective of this study was to develop a variety of High Altitude Long Endurance (HALE) Unmanned Aerial Vehicle (UAV) conceptual designs for two operationally useful missions (hurricane science and communications relay) and compare their performance and cost characteristics. Sixteen potential HALE UAV configurations were initially developed, including heavier-than-air (HTA) and lighter-than-air (LTA) concepts with both consumable fuel and solar regenerative (SR) propulsion systems. Through an Analysis of Alternatives (AoA) down select process, the two leading consumable fuel configurations (one each from the HTA and LTA alternatives) and an HTA SR configuration were selected for further analysis. Cost effectiveness analysis of the consumable fuel configurations revealed that simply maximizing vehicle endurance can lead to a sub-optimum system solution. An LTA concept with a hybrid propulsion system (solar arrays and a hydrogen-air proton exchange membrane fuel cell) was found to have the best mission performance; however, an HTA diesel-fueled wing-body-tail configuration emerged as the preferred consumable fuel concept because of the large size and technical risk of the LTA concept. The baseline missions could not be performed by even the best HTA SR concept. Mission and SR technology trade studies were conducted to enhance understanding of the potential capabilities of such a vehicle. With near-term technology SR-powered HTA vehicles are limited to operation in favorable solar conditions, such as the long days and short nights of summer at higher latitudes. Energy storage system specific energy and solar cell efficiency were found to be the key technology areas for enhancing HTA SR performance.
Modeling, analysis and control of fuel cell hybrid power systems
NASA Astrophysics Data System (ADS)
Suh, Kyung Won
Transient performance is a key characteristic of fuel cells, that is sometimes more critical than efficiency, due to the importance of accepting unpredictable electric loads. To fulfill the transient requirement in vehicle propulsion and portable fuel cell applications, a fuel cell stack is typically coupled with a battery through a DC/DC converter to form a hybrid power system. Although many power management strategies already exist, they all rely on low level controllers that realize the power split. In this dissertation we design controllers that realize various power split strategies by directly manipulating physical actuators (low level commands). We maintain the causality of the electric dynamics (voltage and current) and investigate how the electric architecture affects the hybridization level and the power management. We first establish the performance limitations associated with a stand-alone and power-autonomous fuel cell system that is not supplemented by an additional energy storage and powers all its auxiliary components by itself. Specifically, we examine the transient performance in fuel cell power delivery as it is limited by the air supplied by a compressor driven by the fuel cell itself. The performance limitations arise from the intrinsic coupling in the fluid and electrical domain between the compressor and the fuel cell stack. Feedforward and feedback control strategies are used to demonstrate these limitations analytically and with simulations. Experimental tests on a small commercial fuel cell auxiliary power unit (APU) confirm the dynamics and the identified limitations. The dynamics associated with the integration of a fuel cell system and a DC/DC converter is then investigated. Decentralized and fully centralized (using linear quadratic techniques) controllers are designed to regulate the power system voltage and to prevent fuel cell oxygen starvation. Regulating these two performance variables is a difficult task and requires a compromise due to the conflicting objectives. The compromise can be mitigated by augmenting the fuel cell power system with an energy buffer such as a battery. We consider two different and popular ways of connecting the battery and the fuel cell to the load and we refer to them as electric architectures. Various controller gains are used to span the fuel cell operation from load-following to load-leveling, and hence, to determine adequate fuel cell-battery sizing (hybridization level) and the associated trends in the system efficiency.
14 CFR 33.7 - Engine ratings and operating limitations.
Code of Federal Regulations, 2011 CFR
2011-01-01
....m., manifold pressure, and time at critical pressure altitude and sea level pressure altitude for... turbine wheel inlet gas. (5) Pressure of— (i) Fuel at the fuel inlet; and (ii) Oil at the main oil gallery... operation. (2) Fuel designation or specification. (3) Oil grade or specification. (4) Hydraulic fluid...
14 CFR 33.7 - Engine ratings and operating limitations.
Code of Federal Regulations, 2014 CFR
2014-01-01
....m., manifold pressure, and time at critical pressure altitude and sea level pressure altitude for... turbine wheel inlet gas. (5) Pressure of— (i) Fuel at the fuel inlet; and (ii) Oil at the main oil gallery... operation. (2) Fuel designation or specification. (3) Oil grade or specification. (4) Hydraulic fluid...
14 CFR 33.7 - Engine ratings and operating limitations.
Code of Federal Regulations, 2012 CFR
2012-01-01
....m., manifold pressure, and time at critical pressure altitude and sea level pressure altitude for... turbine wheel inlet gas. (5) Pressure of— (i) Fuel at the fuel inlet; and (ii) Oil at the main oil gallery... operation. (2) Fuel designation or specification. (3) Oil grade or specification. (4) Hydraulic fluid...
14 CFR 33.7 - Engine ratings and operating limitations.
Code of Federal Regulations, 2013 CFR
2013-01-01
....m., manifold pressure, and time at critical pressure altitude and sea level pressure altitude for... turbine wheel inlet gas. (5) Pressure of— (i) Fuel at the fuel inlet; and (ii) Oil at the main oil gallery... operation. (2) Fuel designation or specification. (3) Oil grade or specification. (4) Hydraulic fluid...
40 CFR 279.72 - On-specification used oil fuel.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 26 2010-07-01 2010-07-01 false On-specification used oil fuel. 279.72 Section 279.72 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF USED OIL Standards for Used Oil Fuel Marketers § 279.72 On...
40 CFR 279.72 - On-specification used oil fuel.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 27 2011-07-01 2011-07-01 false On-specification used oil fuel. 279.72 Section 279.72 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF USED OIL Standards for Used Oil Fuel Marketers § 279.72 On...
40 CFR 279.72 - On-specification used oil fuel.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 28 2013-07-01 2013-07-01 false On-specification used oil fuel. 279.72 Section 279.72 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF USED OIL Standards for Used Oil Fuel Marketers § 279.72 On...
LIGHT WATER REACTOR ACCIDENT TOLERANT FUELS IRRADIATION TESTING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carmack, William Jonathan; Barrett, Kristine Eloise; Chichester, Heather Jean MacLean
2015-09-01
The purpose of Accident Tolerant Fuels (ATF) experiments is to test novel fuel and cladding concepts designed to replace the current zirconium alloy uranium dioxide (UO2) fuel system. The objective of this Research and Development (R&D) is to develop novel ATF concepts that will be able to withstand loss of active cooling in the reactor core for a considerably longer time period than the current fuel system while maintaining or improving the fuel performance during normal operations, operational transients, design basis, and beyond design basis events. It was necessary to design, analyze, and fabricate drop-in capsules to meet the requirementsmore » for testing under prototypic LWR temperatures in Idaho National Laboratory's Advanced Test Reactor (ATR). Three industry led teams and one DOE team from Oak Ridge National Laboratory provided fuel rodlet samples for their new concepts for ATR insertion in 2015. As-built projected temperature calculations were performed on the ATF capsules using the BISON fuel performance code. BISON is an application of INL’s Multi-physics Object Oriented Simulation Environment (MOOSE), which is a massively parallel finite element based framework used to solve systems of fully coupled nonlinear partial differential equations. Both 2D and 3D models were set up to examine cladding and fuel performance.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Black, Billy D.; Akhil, Abbas Ali
This is the final report on a field evaluation by the Department of the Navy of twenty 5-kW PEM fuel cells carried out during 2004 and 2005 at five Navy sites located in New York, California, and Hawaii. The key objective of the effort was to obtain an engineering assessment of their military applications. Particular issues of interest were fuel cell cost, performance, reliability, and the readiness of commercial fuel cells for use as a standalone (grid-independent) power option. Two corollary objectives of the demonstration were to promote technological advances and to improve fuel performance and reliability. From a costmore » perspective, the capital cost of PEM fuel cells at this stage of their development is high compared to other power generation technologies. Sandia National Laboratories technical recommendation to the Navy is to remain involved in evaluating successive generations of this technology, particularly in locations with greater environmental extremes, and it encourages their increased use by the Navy.« less
NASA Technical Reports Server (NTRS)
Szetela, E. J.; Lehmann, R. P.; Smith, A. L.
1979-01-01
An analytical study was conducted to assess the impact of the use of broad specification fuels with reduced hydrogen content on the design, performance, durability, emissions and operational characteristics of combustors for commercial aircraft gas turbine engines. The study was directed at defining necessary design revisions to combustors designed for use of Jet A when such are operated on ERBS (Experimental Referee Broad Specification Fuel) which has a nominal hydrogen content of 12.8 percent as opposed to 13.7 percent in current Jet A. The results indicate that improvements in combustor liner cooling, and/or materials, and methods of fuel atomization will be required if the hydrogen content of aircraft gas turbine fuel is decreased.
Aaron D. Stottlemeyer; Victor B. Shelburne; Thomas A. Waldrop; Sandra Rideout-Hanzak; William C. Bridges
2009-01-01
Prescribed fire has been widely used in the south-eastern United States to meet forest management objectives, but has only recently been reintroduced to the southern Appalachian Mountains. Fuel information is not available to forest managers in this region and direct measurement is often impractical owing to steep, remote topography. The objective of the present study...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fact sheet describing the National Renewable Energy Laboratory's (NREL's) Fuel Cell Technology Status Analysis Project. NREL is seeking fuel cell industry partners from the United States and abroad to participate in an objective and credible analysis of commercially available fuel cell products to benchmark the current state of the technology and support industry growth.
Bio Diesel Cellulosic Ethanol Research Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanlon, Edward A.; Capece, John C.; McAvoy, Eugene
The objective of the project is to create the Hendry County Sustainable Biofuels Center and initiate its research, development, and education programs. The mission is to develop engineering and economic assessment methods to evaluate the natural resources impacts of biomass farming and fuel conversion systems; provide sustainability assessments of specific biofuels productions proposals; develop biomass farming and fuel conversion systems that are compatible with south Florida ecosystem restoration priorities; create ecosystem services opportunities and structures to diversify farm income; monitor the range of research and development activities necessary to the creation of sutstainable biofuels production systems in south Florida, identifymore » gaps in the regional research, and assist in the development and coordination of additional projects to fill out the required knowledge base; prepare the workforce of southwest Florida for employment in biofuels related professions; and assist businesses & governmental design and realize sustainable biofuels projects.« less
DOE R&D Accomplishments Database
1994-01-01
In the early years of the United States space program, lightweight batteries, fuel cells, and solar modules provided electric power for space missions. As missions became more ambitious and complex, power needs increased and scientists investigated various options to meet these challenging power requirements. One of the options was nuclear energy. By the mid-1950s, research had begun in earnest on ways to use nuclear power in space. These efforts resulted in the first radioisotope thermoelectric generators (RTGs), which are nuclear power generators build specifically for space and special terrestrial uses. These RTGs convert the heat generated from the natural decay of their radioactive fuel into electricity. RTGs have powered many spacecraft used for exploring the outer planets of the solar system and orbiting the sun and Earth. They have also landed on Mars and the moon. They provide the power that enables us to see and learn about even the farthermost objects in our solar system.
Advanced energy system program
NASA Astrophysics Data System (ADS)
Trester, K.
1989-02-01
The objectives of the program are to design, develop and demonstrate a natural-gas-fueled, highly recuperated, 50 kW Brayton-cycle cogeneration system for commercial, institutional, and multifamily residential applications. Marketing studies have shown that this Advanced Energy System (AES), with its many unique and cost-effective features, has the potential to offer significant reductions in annual electrical and thermal energy costs to the consumer. Specific advantages of the system that result in low cost of ownership are high electrical efficiency (30 percent, HHV), low maintenance, high reliability and long life (20 years).
Optimal trajectories for hypersonic launch vehicles
NASA Technical Reports Server (NTRS)
Ardema, Mark D.; Bowles, Jeffrey V.; Whittaker, Thomas
1992-01-01
In this paper, we derive a near-optimal guidance law for the ascent trajectory from Earth surface to Earth orbit of a hypersonic, dual-mode propulsion, lifting vehicle. Of interest are both the optimal flight path and the optimal operation of the propulsion system. The guidance law is developed from the energy-state approximation of the equations of motion. The performance objective is a weighted sum of fuel mass and volume, with the weighting factor selected to give minimum gross take-off weight for a specific payload mass and volume.
Combustion of High Molecular Weight Hydrocarbon Fuels and JP-8 at Moderate Pressures
2016-07-26
SECURITY CLASSIFICATION OF: The objective of this research is to characterize combustion of high molecular weight hydrocarbon fuels and jet- fuels (in...Unlimited UU UU UU UU 26-07-2016 1-May-2012 30-Apr-2016 Final Report: Combustion of High Molecular Weight Hydrocarbon Fuels and JP-8 at Moderate...Report: Combustion of High Molecular Weight Hydrocarbon Fuels and JP-8 at Moderate Pressures (Research Area 1: Mechanical Sciences) Report Title The
Camille Stevens-Rumann; Kristen Shive; Peter Fule; Carolyn H. Sieg
2013-01-01
Increasing size and severity of wildfires have led to an interest in the effectiveness of forest fuels treatments on reducing fire severity and post-wildfire fuels. Our objective was to contrast stand structure and surface fuel loadings on treated and untreated sites within the 2002 Rodeo-Chediski Fire area. Data from 140 plots on seven paired treated-untreated sites...
Sue Miller; Theresa Jain; Mike A. Battaglia; Han-Sup Han; Russell T. Graham; Christopher R. Keyes; Jeremy S. Fried; Jonathan E. Sandquist
2014-01-01
Planning for hazardous fuels reduction can be challenging, given that land managers must balance multiple resource objectives. To help managers with planning and implementing fuel treatments, the Rocky Mountain Research Station, with support from the Joint Fire Science Program, has published A Comprehensive Guide to Fuel Management Practices for Dry Mixed Conifer...
Integrating Fuel Treatments into Comprehensive Ecosystem Management
Kevin Hyde; Greg Jones; Robin Silverstein; Keith Stockmann; Dan Loeffler
2006-01-01
To plan fuel treatments in the context of comprehensive ecosystem management, forest managers must meet multiple-use and environmental objectives, address administrative and budget constraints, and reconcile performance measures from multiple policy directives. We demonstrate a multiple criteria approach to measuring success of fuel treatments used in the Butte North...
Quantifying the potential impacts of fuel treatments on wildfire suppression costs
Matthew P. Thompson; Nicole M. Vaillant; Jessica R. Haas; Krista M. Gebert; Keith D. Stockmann
2013-01-01
Modeling the impacts and effects of hazardous fuel reduction treatments is a pressing issue within the wildfire management community. Prospective evaluation of fuel treatment effectiveness allows for comparison of alternative treatment strategies in terms of socioeconomic and ecological impacts and facilitates analysis of tradeoffs across land-management objectives....
46 CFR 182.405 - Fuel restrictions.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 7 2014-10-01 2014-10-01 false Fuel restrictions. 182.405 Section 182.405 Shipping...) MACHINERY INSTALLATION Specific Machinery Requirements § 182.405 Fuel restrictions. The use of alternative fuels, other than diesel fuel or gasoline, as fuel for an internal combustion engine will be reviewed on...
46 CFR 182.405 - Fuel restrictions.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 7 2011-10-01 2011-10-01 false Fuel restrictions. 182.405 Section 182.405 Shipping...) MACHINERY INSTALLATION Specific Machinery Requirements § 182.405 Fuel restrictions. The use of alternative fuels, other than diesel fuel or gasoline, as fuel for an internal combustion engine will be reviewed on...
46 CFR 182.405 - Fuel restrictions.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 7 2013-10-01 2013-10-01 false Fuel restrictions. 182.405 Section 182.405 Shipping...) MACHINERY INSTALLATION Specific Machinery Requirements § 182.405 Fuel restrictions. The use of alternative fuels, other than diesel fuel or gasoline, as fuel for an internal combustion engine will be reviewed on...
46 CFR 182.405 - Fuel restrictions.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 7 2010-10-01 2010-10-01 false Fuel restrictions. 182.405 Section 182.405 Shipping...) MACHINERY INSTALLATION Specific Machinery Requirements § 182.405 Fuel restrictions. The use of alternative fuels, other than diesel fuel or gasoline, as fuel for an internal combustion engine will be reviewed on...
46 CFR 182.405 - Fuel restrictions.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 7 2012-10-01 2012-10-01 false Fuel restrictions. 182.405 Section 182.405 Shipping...) MACHINERY INSTALLATION Specific Machinery Requirements § 182.405 Fuel restrictions. The use of alternative fuels, other than diesel fuel or gasoline, as fuel for an internal combustion engine will be reviewed on...
40 CFR 86.1506 - Equipment required and specifications; overview.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) Emission Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-19
..., ``Revise Shutdown Margin Definition To Address Advanced Fuel Designs'' AGENCY: Nuclear Regulatory... Shutdown Margin Definition to Address Advanced Fuel Designs.'' DATES: Comment period expires on December 19... address newer BWR fuel designs, which may be more reactive at shutdown temperatures above 68[emsp14][deg]F...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 30 2014-07-01 2014-07-01 false Vehicle-specific 5-cycle fuel economy and carbon-related exhaust emission calculations. 600.114-12 Section 600.114-12 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST...
40 CFR 86.157-98 - Refueling test procedures for liquefied petroleum gas-fueled vehicles.
Code of Federal Regulations, 2013 CFR
2013-07-01
... fuel distribution. (c) Vehicle preconditioning. (1) The vehicle fuel tanks are to be filled with fuel that meets the specifications in § 86.113. Fuel tanks shall be filled to 10 percent of nominal fuel.... (2) Within one minute of obtaining the initial FID (or HFID) reading, the dispensed fuel nozzle shall...
40 CFR 86.157-98 - Refueling test procedures for liquefied petroleum gas-fueled vehicles.
Code of Federal Regulations, 2010 CFR
2010-07-01
... fuel distribution. (c) Vehicle preconditioning. (1) The vehicle fuel tanks are to be filled with fuel that meets the specifications in § 86.113. Fuel tanks shall be filled to 10 percent of nominal fuel.... (2) Within one minute of obtaining the initial FID (or HFID) reading, the dispensed fuel nozzle shall...
40 CFR 86.157-98 - Refueling test procedures for liquefied petroleum gas-fueled vehicles.
Code of Federal Regulations, 2011 CFR
2011-07-01
... fuel distribution. (c) Vehicle preconditioning. (1) The vehicle fuel tanks are to be filled with fuel that meets the specifications in § 86.113. Fuel tanks shall be filled to 10 percent of nominal fuel.... (2) Within one minute of obtaining the initial FID (or HFID) reading, the dispensed fuel nozzle shall...
40 CFR 86.157-98 - Refueling test procedures for liquefied petroleum gas-fueled vehicles.
Code of Federal Regulations, 2012 CFR
2012-07-01
... fuel distribution. (c) Vehicle preconditioning. (1) The vehicle fuel tanks are to be filled with fuel that meets the specifications in § 86.113. Fuel tanks shall be filled to 10 percent of nominal fuel.... (2) Within one minute of obtaining the initial FID (or HFID) reading, the dispensed fuel nozzle shall...
Fully Ceramic Microencapsulated Fuel Development for LWR Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snead, Lance Lewis; Besmann, Theodore M; Terrani, Kurt A
2012-01-01
The concept, fabrication, and key feasibility issues of a new fuel form based on the microencapsulated (TRISO-type) fuel which has been specifically engineered for LWR application and compacted within a SiC matrix will be presented. This fuel, the so-called fully ceramic microencapsulated fuel is currently undergoing development as an accident tolerant fuel for potential UO2 replacement in commercial LWRs. While the ability of this fuel to facilitate normal LWR cycle performance is an ongoing effort within the program, this will not be a focus of this paper. Rather, key feasibility and performance aspects of the fuel will be presented includingmore » the ability to fabricate a LWR-specific TRISO, the need for and route to a high thermal conductivity and fully dense matrix that contains neutron poisons, and the performance of that matrix under irradiation and the interaction of the fuel with commercial zircaloy clad.« less
NASA Technical Reports Server (NTRS)
Wey, Chown Chou
1999-01-01
Although the importance of aerosols and their precursors are now well recognized, the characterization of current subsonic engines for these emissions is far from complete. Furthermore, since the relationship of engine operating parameters to aerosol emissions is not known, extrapolation to untested and unbuilt engines necessarily remains highly uncertain. 1997 NASA LaRC engine test, as well as the parallel 1997 NASA LaRC flight measurement, attempts to address both issues by expanding measurements of aerosols and aerosol precursors with fuels containing different levels of fuel sulfur content. The specific objective of the 1997 engine test is to obtain a database of sulfur oxides emissions as well as the non-volatile particulate emission properties as a function of fuel sulfur and engine operating conditions. Four diagnostic systems, extractive and non-intrusive (optical), will be assembled for the gaseous and particulate emissions characterization measurements study. NASA is responsible for the extractive gaseous emissions measurement system which contains an array of analyzers dedicated to examining the concentrations of specific gases (NO, NO(x), CO, CO2, O2, THC, SO2) and the smoke number. University of Missouri-Rolla uses the Mobile Aerosol Sampling System to measure aerosol/particulate total concentration, size distribution, volatility and hydration property. Air Force Research Laboratory uses the Chemical Ionization Mass Spectrometer to measure SO2, SO3/H2SO4, and HN03 Aerodyne Research, Inc. uses Infrared Tunable Diode Laser system to measure SO2, SO3, NO, H2O, and CO2.
36 CFR 218.4 - Authorized hazardous fuel reduction projects not subject to objection.
Code of Federal Regulations, 2010 CFR
2010-07-01
... SERVICE, DEPARTMENT OF AGRICULTURE PREDECISIONAL ADMINISTRATIVE REVIEW PROCESSES Predecisional Administrative Review Process for Hazardous Fuel Reduction Projects Authorized by the Healthy Forests Restoration...
Phase I Final Scientific Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Xijia; Fetvedt, Jeremy; Dimmig, Walker
This Final Scientific Report addresses the accomplishments achieved during Phase I of DE- FE0023985, Coal Syngas Combustor Development for Supercritical CO 2 Power Cycles. The primary objective of the project was to develop a coal syngas-fueled combustor design for use with high-pressure, high-temperature, oxy-fuel, supercritical CO 2 power cycles, with particular focus given to the conditions required by the Allam Cycle. The primary goals, from the Statement of Project Objectives, were to develop: (1) a conceptual design of a syngas-fueled combustor-turbine block for a 300MWe high-pressure, oxy-fuel, sCO2 power plant; (2) the preliminary design of a 5MWt test combustor; andmore » (3) the definition of a combustor test program. Accomplishments for each of these goals are discussed in this report.« less
Thermal Stability of Distillate Hydrocarbon Fuels. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Reddy, Kishenkumar Tadisina; Cernansky, Nicholas P.
1987-01-01
Thermal stability of fuels is expected to become a severe problem in the future due to the anticipated use of broadened specification and alternative fuels. Future fuels will have higher contents of heteroatomic species which are reactive constituents and are known to influence fuel degradation. To study the degradation chemistry of selected model fuels, n-dodecane and n-dodecane plus heteroatoms were aerated by bubbling air through the fuels amd stressed on a modified Jet Fuel Thermal Oxidation Tester facility operating at heater tube temperatures between 200 to 400 C. The resulting samples were fractionated to concentrate the soluble products and then analyzed using gas chromatographic and mass spectrometric techniques to quantify and identify the stable reaction intermediate and product specifically. Heteroatom addition showed that the major soluble products were always the same, with and without heteroatoms, but their distributions varied considerably.
AGR-2: The first irradiation of French HTR fuel in Advanced Test Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
T. Lambert; B. Grover; P. Guillermier
AGR-2, the second irradiation of the US program for qualification of the NGNP fuel, is open to international participation within the scope of the Generation IV International Forum. In this frame, it includes in its multi-capsule irradiation rig an irradiation of French HTR fuel manufactured in the CAPRI line (GAIA facility at CEA/Cadarache and AREVA/CERCA compacting line at Romans). The AGR-2 irradiation is designed to place our first fabrications of HTR particles under operating conditions that are representative of ANTARES project while keeping close to the test range of the German fuel as much as possible, which is the referencemore » in terms of irradiation behavior. A few batches of particles and 12 fuel compacts were produced and characterized in 2009 by CEA and CERCA. The fuel main characteristics are in conformity with our specifications and in compliance with INL requirements. The AGR-2 experiment is based on the design and devices used in the first experiment of the AGR program. The design makes it possible to monitor the irradiation conditions and in particular, the temperature, the power and the fission products released from fuel particles. The in pile equipment consists of a multi-capsule device designed to simultaneously irradiate six independent capsules with temperature control. The out-of-core part consists of the equipment for actively controlling temperature and measuring the fission products release on-line. The target conditions for the irradiation experiment were defined with the aim of comparing the results obtained under irradiation with German particles along with the objectives of reaching burn-up and fluence targets to validate the behavior of our fuel in a significant range (15% FIMA – 5 × 1025 n/m2 at 600 EFPD with centerline fuel temperature about 1100 degrees C). These conditions have to be representative of ANTARES project characteristics. These target conditions were compared with final results from neutron and thermal design studies performed by INL team, and preliminary thermal mechanical ATLAS calculations were carried out by CEA from this pre-design. Despite the mean burn-up achieved in approximately 600 EFPD being a little high (16.3% FIMA max. associated with a low fluence up to 2.85 × 1025 n/m2), this irradiation will nevertheless encompass the range of irradiation effects covered in our experimental objectives (maximum stress peak at start of irradiation then sign inversion of the stress in the SiC layer). In addition, the fluence and burn-up acceleration factors are very similar to those of the German reference experiments. This experimental irradiation began in July 2010 in the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL) and first results have been acquired.« less
Renewable Fuels Module - NEMS Documentation
2017-01-01
This report documents the objectives, analytical approach, and design of the National Energy Modeling System (NEMS) Renewable Fuels Module (RFM) as it relates to the production of the Annual Energy Outlook forecasts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collett, Raymond; Howland, James; Venkiteswaran, Prasad
This report examines the benefits of Parker Hannifin hydraulic hybrid brake energy recovery systems used in commercial applications for vocational purposes. A detailed background on the problem statement being addressed as well as the solution set specific for parcel delivery will be provided. Objectives of the demonstration performed in high start & stop applications included opportunities in fuel usage reduction, emissions reduction, vehicle productivity, and vehicle maintenance. Completed findings during the demonstration period and parallel investigations with NREL, CALSTART, along with a literature review will be provided herein on this research area. Lastly, results identified in the study by thirdmore » parties validated the savings potential in fuel reduction of on average of 19% to 52% over the baseline in terms of mpg (Lammert, 2014, p11), Parker data for parcel delivery vehicles in the field parallels this at a range of 35% - 50%, emissions reduction of 17.4% lower CO2 per mile and 30.4% lower NOx per mile (Gallo, 2014, p15), with maintenance improvement in the areas of brake and starter replacement, while leaving room for further study in the area of productivity in terms of specific metrics that can be applied and studied.« less
40 CFR 1051.205 - What must I include in my application?
Code of Federal Regulations, 2014 CFR
2014-07-01
... emission control devices (AECDs) and all fuel-system components you will install on any production or test... specifications and other basic parameters of the vehicle's design and emission controls. List the fuel type on... scheduled maintenance you did. (g) List the specifications of the test fuel to show that it falls within the...
40 CFR 1051.205 - What must I include in my application?
Code of Federal Regulations, 2012 CFR
2012-07-01
... emission control devices (AECDs) and all fuel-system components you will install on any production or test... specifications and other basic parameters of the vehicle's design and emission controls. List the fuel type on... scheduled maintenance you did. (g) List the specifications of the test fuel to show that it falls within the...
40 CFR 1051.205 - What must I include in my application?
Code of Federal Regulations, 2013 CFR
2013-07-01
... emission control devices (AECDs) and all fuel-system components you will install on any production or test... specifications and other basic parameters of the vehicle's design and emission controls. List the fuel type on... scheduled maintenance you did. (g) List the specifications of the test fuel to show that it falls within the...
40 CFR 1051.205 - What must I include in my application?
Code of Federal Regulations, 2011 CFR
2011-07-01
... emission control devices (AECDs) and all fuel-system components you will install on any production or test... specifications and other basic parameters of the vehicle's design and emission controls. List the fuel type on... scheduled maintenance you did. (g) List the specifications of the test fuel to show that it falls within the...
A physical model for evaluating uranium nitride specific heat
NASA Astrophysics Data System (ADS)
Baranov, V. G.; Devyatko, Yu. N.; Tenishev, A. V.; Khlunov, A. V.; Khomyakov, O. V.
2013-03-01
Nitride fuel is one of perspective materials for the nuclear industry. But unlike the oxide and carbide uranium and mixed uranium-plutonium fuel, the nitride fuel is less studied. The present article is devoted to the development of a model for calculating UN specific heat on the basis of phonon spectrum data within the solid state theory.
Post-closure biosphere assessment modelling: comparison of complex and more stylised approaches.
Walke, Russell C; Kirchner, Gerald; Xu, Shulan; Dverstorp, Björn
2015-10-01
Geological disposal facilities are the preferred option for high-level radioactive waste, due to their potential to provide isolation from the surface environment (biosphere) on very long timescales. Assessments need to strike a balance between stylised models and more complex approaches that draw more extensively on site-specific information. This paper explores the relative merits of complex versus more stylised biosphere models in the context of a site-specific assessment. The more complex biosphere modelling approach was developed by the Swedish Nuclear Fuel and Waste Management Co (SKB) for the Formark candidate site for a spent nuclear fuel repository in Sweden. SKB's approach is built on a landscape development model, whereby radionuclide releases to distinct hydrological basins/sub-catchments (termed 'objects') are represented as they evolve through land rise and climate change. Each of seventeen of these objects is represented with more than 80 site specific parameters, with about 22 that are time-dependent and result in over 5000 input values per object. The more stylised biosphere models developed for this study represent releases to individual ecosystems without environmental change and include the most plausible transport processes. In the context of regulatory review of the landscape modelling approach adopted in the SR-Site assessment in Sweden, the more stylised representation has helped to build understanding in the more complex modelling approaches by providing bounding results, checking the reasonableness of the more complex modelling, highlighting uncertainties introduced through conceptual assumptions and helping to quantify the conservatisms involved. The more stylised biosphere models are also shown capable of reproducing the results of more complex approaches. A major recommendation is that biosphere assessments need to justify the degree of complexity in modelling approaches as well as simplifying and conservative assumptions. In light of the uncertainties concerning the biosphere on very long timescales, stylised biosphere models are shown to provide a useful point of reference in themselves and remain a valuable tool for nuclear waste disposal licencing procedures. Copyright © 2015 Elsevier Ltd. All rights reserved.
Utilization of Alcohol Fuel in Spark Ignition and Diesel Engines.
ERIC Educational Resources Information Center
Berndt, Don; Stengel, Ron
These five units comprise a course intended to prepare and train students to conduct alcohol fuel utilization seminars in spark ignition and diesel engines. Introductory materials include objectives and a list of instructor requirements. The first four units cover these topics: ethanol as an alternative fuel (technical and economic advantages,…
Report on the Audit of Commercial Aviation Fuel Invoice Payments in Europe
1990-01-22
We are providing this final report on the Audit of Commercial Aviation Fuel Invoice Payments in Europe for your information and use. The audit was...vendors for fuel purchases made by U.S. aircrews. The objectives of the audit were to determine whether DOD and the Military Departments were complying
Synthesis of knowledge of hazardous fuels management in loblolly pine forests
Douglas J. Marshall; Michael Wimberly; Bettinger Pete; John Stanturf
2008-01-01
This synthesis provides an overview of hazardous fuels management in loblolly pine (Pinus taeda) forests, as well as a reference guide on prescribed burning and alternative fuel management treatments. Available information is presented on treatment feasibility, approximate costs, and effects on soil, water quality, and wildlife. The objectives of...
Demonstration of Heavy Diesel Hybrid Fleet Vehicles
2015-02-01
Proving Grounds, MD, followed by in-use operator testing at Bangor WA, and San Diego CA. The performance objectives included fuel economy, noise... Fuel Efficiency, Noise Levels. U U U SAR 162 David Cook (805) 982-3477 Page Intentionally Left Blank i COST & PERFORMANCE REPORT Project: #WP...17 6.1.1 Refuse truck Fuel Economy
Quantifying the potential impacts of fuel treatments on wildfire suppression costs volume
Matthew P. Thompson; Nicole M. Vaillant; Jessica R. Haas; Krista M. Gebert; Keith D. Stockmann
2013-01-01
Modeling the impacts and effects of hazardous fuel reduction treatments is a pressing issue within the wildfire management community. Prospective evaluation of fuel treatments allows for comparison of alternative treatment strategies in terms of socioeconomic and ecological impacts and facilitates analysis of tradeoffs across land management objectives (Stockmann et al...
Production of biofuels and biochemicals: in need of an ORACLE.
Miskovic, Ljubisa; Hatzimanikatis, Vassily
2010-08-01
The engineering of cells for the production of fuels and chemicals involves simultaneous optimization of multiple objectives, such as specific productivity, extended substrate range and improved tolerance - all under a great degree of uncertainty. The achievement of these objectives under physiological and process constraints will be impossible without the use of mathematical modeling. However, the limited information and the uncertainty in the available information require new methods for modeling and simulation that will characterize the uncertainty and will quantify, in a statistical sense, the expectations of success of alternative metabolic engineering strategies. We discuss these considerations toward developing a framework for the Optimization and Risk Analysis of Complex Living Entities (ORACLE) - a computational method that integrates available information into a mathematical structure to calculate control coefficients. Copyright 2010 Elsevier Ltd. All rights reserved.
Impact of future fuel properties on aircraft engines and fuel systems
NASA Technical Reports Server (NTRS)
Rudey, R. A.; Grobman, J. S.
1978-01-01
This paper describes and discusses the propulsion-system problems that will most likely be encountered if the specifications of hydrocarbon-based jet fuels must undergo significant changes in the future and, correspondingly, the advances in technology that will be required to minimize the adverse impact of these problems. Several investigations conducted are summarized. Illustrations are used to describe the relative effects of selected fuel properties on the behavior of propulsion-system components and fuel systems. The selected fuel properties are those that are most likely to be relaxed in future fuel specifications. Illustrations are also used to describe technological advances that may be needed in the future. Finally, the technological areas needing the most attention are described, and programs that are under way to address these needs are briefly discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chichester, Heather Jean MacLean; Hayes, Steven Lowe; Dempsey, Douglas
This report summarizes the objectives of the current irradiation testing activities being undertaken by the Advanced Fuels Campaign relative to supporting the development and demonstration of innovative design features for metallic fuels in order to realize reliable performance to ultra-high burnups. The AFC-3 and AFC-4 test series are nearing completion; the experiments in this test series that have been completed or are in progress are reviewed and the objectives and test matrices for the final experiments in these two series are defined. The objectives, testing strategy, and test parameters associated with a future AFC test series, AFC-5, are documented. Finally,more » the future intersections and/or synergies of the AFC irradiation testing program with those of the TREAT transient testing program, emerging needs of proposed Versatile Test Reactor concepts, and the Joint Fuel Cycle Study program’s Integrated Recycle Test are discussed.« less
NASA Technical Reports Server (NTRS)
Suder, Jennifer L.
2004-01-01
Today's form of jet engine power comes from what is called a gas turbine engine. This engine is on average 14% efficient and emits great quantities of green house gas carbon dioxide and air pollutants, Le. nitrogen oxides and sulfur oxides. The alternate method being researched involves a reformer and a solid oxide fuel cell (SOFC). Reformers are becoming a popular area of research within the industry scale. NASA Glenn Research Center's approach is based on modifying the large aspects of industry reforming processes into a smaller jet fuel reformer. This process must not only be scaled down in size, but also decrease in weight and increase in efficiency. In comparison to today's method, the Jet A fuel reformer will be more efficient as well as reduce the amount of air pollutants discharged. The intent is to develop a 10kW process that can be used to satisfy the needs of commercial jet engines. Presently, commercial jets use Jet-A fuel, which is a kerosene based hydrocarbon fuel. Hydrocarbon fuels cannot be directly fed into a SOFC for the reason that the high temperature causes it to decompose into solid carbon and Hz. A reforming process converts fuel into hydrogen and supplies it to a fuel cell for power, as well as eliminating sulfur compounds. The SOFC produces electricity by converting H2 and CO2. The reformer contains a catalyst which is used to speed up the reaction rate and overall conversion. An outside company will perform a catalyst screening with our baseline Jet-A fuel to determine the most durable catalyst for this application. Our project team is focusing on the overall research of the reforming process. Eventually we will do a component evaluation on the different reformer designs and catalysts. The current status of the project is the completion of buildup in the test rig and check outs on all equipment and electronic signals to our data system. The objective is to test various reformer designs and catalysts in our test rig to determine the most efficient configuration to incorporate into the specific compact jet he1 reformer test rig. Additional information is included in the original extended abstract.
Zhao, Shangang; Poursharifi, Pegah; Mugabo, Yves; Levens, Emily J.; Vivot, Kevin; Attane, Camille; Iglesias, Jose; Peyot, Marie-line; Joly, Erik; Madiraju, S.R. Murthy; Prentki, Marc
2015-01-01
Objective α/β-Hydrolase domain-6 (ABHD6) is a newly identified monoacylglycerol (MAG) lipase. We recently reported that it negatively regulates glucose stimulated insulin secretion (GSIS) in the β cells by hydrolyzing lipolysis-derived MAG that acts as a metabolic coupling factor and signaling molecule via exocytotic regulator Munc13-1. Whether ABHD6 and MAG play a role in response to all classes of insulin secretagogues, in particular various fuel and non-fuel stimuli, is unknown. Methods Insulin secretion in response to various classes of secretagogues, exogenous MAG and pharmacological agents was measured in islets of mice deficient in ABHD6 specifically in the β cell (BKO). Islet perifusion experiments and determinations of glucose and fatty acid metabolism, cytosolic Ca2+ and MAG species levels were carried out. Results Deletion of ABHD6 potentiated insulin secretion in response to the fuels glutamine plus leucine and α-ketoisocaproate and to the non-fuel stimuli glucagon-like peptide 1, carbamylcholine and elevated KCl. Fatty acids amplified GSIS in control and BKO mice to the same extent. Exogenous 1-MAG amplified insulin secretion in response to fuel and non-fuel stimuli. MAG hydrolysis activity was greatly reduced in BKO islets without changes in total diacylglycerol and triacylglycerol lipase activity. ABHD6 deletion induced insulin secretion independently from KATP channels and did not alter the glucose induced rise in intracellular Ca2+. Perifusion studies showed elevated insulin secretion during second phase of GSIS in BKO islets that was not due to altered cytosolic Ca2+ signaling or because of changes in glucose and fatty acid metabolism. Glucose increased islet saturated long chain 1-MAG species and ABHD6 deletion caused accumulation of these 1-MAG species at both low and elevated glucose. Conclusion ABHD6 regulates insulin secretion in response to fuel stimuli at large and some non-fuel stimuli by controlling long chain saturated 1-MAG levels that synergize with other signaling pathways for secretion. PMID:26909310
DOE Office of Scientific and Technical Information (OSTI.GOV)
Block, David L
2013-06-30
The Florida Hydrogen Initiative (FHI) was a research, development and demonstration hydrogen and fuel cell program. The FHI program objectives were to develop Florida?s hydrogen and fuel cell infrastructure and to assist DOE in its hydrogen and fuel cell activities The FHI program funded 12 RD&D projects as follows: Hydrogen Refueling Infrastructure and Rental Car Strategies -- L. Lines, Rollins College This project analyzes strategies for Florida's early stage adaptation of hydrogen-powered public transportation. In particular, the report investigates urban and statewide network of refueling stations and the feasibility of establishing a hydrogen rental-car fleet based in Orlando. Methanol Fuelmore » Cell Vehicle Charging Station at Florida Atlantic University ? M. Fuchs, EnerFuel, Inc. The project objectives were to design, and demonstrate a 10 kWnet proton exchange membrane fuel cell stationary power plant operating on methanol, to achieve an electrical energy efficiency of 32% and to demonstrate transient response time of less than 3 milliseconds. Assessment of Public Understanding of the Hydrogen Economy Through Science Center Exhibits, J. Newman, Orlando Science Center The project objective was to design and build an interactive Science Center exhibit called: ?H2Now: the Great Hydrogen Xchange?. On-site Reformation of Diesel Fuel for Hydrogen Fueling Station Applications ? A. Raissi, Florida Solar Energy Center This project developed an on-demand forecourt hydrogen production technology by catalytically converting high-sulfur hydrocarbon fuels to an essentially sulfur-free gas. The removal of sulfur from reformate is critical since most catalysts used for the steam reformation have limited sulfur tolerance. Chemochromic Hydrogen Leak Detectors for Safety Monitoring ? N. Mohajeri and N. Muradov, Florida Solar Energy Center This project developed and demonstrated a cost-effective and highly selective chemochromic (visual) hydrogen leak detector for safety monitoring at any facility engaged in transport, handling and use of hydrogen. Development of High Efficiency Low Cost Electrocatalysts for Hydrogen Production and PEM Fuel Cell Applications ? M. Rodgers, Florida Solar Energy Center The objective of this project was to decrease platinum usage in fuel cells by conducting experiments to improve catalyst activity while lowering platinum loading through pulse electrodeposition. Optimum values of several variables during electrodeposition were selected to achieve the highest electrode performance, which was related to catalyst morphology. Understanding Mechanical and Chemical Durability of Fuel Cell Membrane Electrode Assemblies ? D. Slattery, Florida Solar Energy Center The objective of this project was to increase the knowledge base of the degradation mechanisms for membranes used in proton exchange membrane fuel cells. The results show the addition of ceria (cerium oxide) has given durability improvements by reducing fluoride emissions by an order of magnitude during an accelerated durability test. Production of Low-Cost Hydrogen from Biowaste (HyBrTec?) ? R. Parker, SRT Group, Inc., Miami, FL This project developed a hydrogen bromide (HyBrTec?) process which produces hydrogen bromide from wet-cellulosic waste and co-produces carbon dioxide. Eelectrolysis dissociates hydrogen bromide producing recyclable bromine and hydrogen. A demonstration reactor and electrolysis vessel was designed, built and operated. Development of a Low-Cost and High-Efficiency 500 W Portable PEMFC System ? J. Zheng, Florida State University, H. Chen, Bing Energy, Inc. The objectives of this project were to develop a new catalyst structures comprised of highly conductive buckypaper and Pt catalyst nanoparticles coated on its surface and to demonstrate fuel cell efficiency improvement and durability and cell cost reductions in the buckypaper based electrodes. Development of an Interdisciplinary Hydrogen and Fuel Cell Technology Academic Program ? J. Politano, Florida Institute of Technology, Melbourne, FL This project developed a hydrogen and fuel cell technology academic program at Florida Institute of Technology in Melbourne, Florida. Design and Development of an Advanced Hydrogen Storage System using Novel Materials ? E. Stefanakos, University of South Florida The goal of this project was to design and develop novel conducting polymeric nanomaterials for on-board hydrogen storage. The project approach was to examine synthesis of polyaniline solid state hydrogen storage materials. Advanced HiFoil ? Bipolar Plates ? J. Braun, M. Fuchs, EnerFuel, Inc. The goal of this project was to provide a durable, low cost bipolar plate for high temperature proton exchange membrane fuel cells. The project results produced a durable, low cost bipolar plate with very high in-plane thermal conductivity.« less
46 CFR 182.458 - Portable fuel systems.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 7 2013-10-01 2013-10-01 false Portable fuel systems. 182.458 Section 182.458 Shipping...) MACHINERY INSTALLATION Specific Machinery Requirements § 182.458 Portable fuel systems. (a) Portable fuel systems, including portable tanks and related fuel lines and accessories, are prohibited except where used...
46 CFR 182.458 - Portable fuel systems.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 7 2010-10-01 2010-10-01 false Portable fuel systems. 182.458 Section 182.458 Shipping...) MACHINERY INSTALLATION Specific Machinery Requirements § 182.458 Portable fuel systems. (a) Portable fuel systems, including portable tanks and related fuel lines and accessories, are prohibited except where used...
46 CFR 182.458 - Portable fuel systems.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 7 2011-10-01 2011-10-01 false Portable fuel systems. 182.458 Section 182.458 Shipping...) MACHINERY INSTALLATION Specific Machinery Requirements § 182.458 Portable fuel systems. (a) Portable fuel systems, including portable tanks and related fuel lines and accessories, are prohibited except where used...
40 CFR 1065.120 - Fuel properties and fuel temperature and pressure.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Fuel properties and fuel temperature and pressure. 1065.120 Section 1065.120 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Equipment Specifications § 1065.120 Fuel...
40 CFR 1065.120 - Fuel properties and fuel temperature and pressure.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Fuel properties and fuel temperature and pressure. 1065.120 Section 1065.120 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Equipment Specifications § 1065.120 Fuel...
40 CFR 1065.120 - Fuel properties and fuel temperature and pressure.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Fuel properties and fuel temperature and pressure. 1065.120 Section 1065.120 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Equipment Specifications § 1065.120 Fuel...
40 CFR 1065.120 - Fuel properties and fuel temperature and pressure.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Fuel properties and fuel temperature and pressure. 1065.120 Section 1065.120 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Equipment Specifications § 1065.120 Fuel...
40 CFR 1065.120 - Fuel properties and fuel temperature and pressure.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Fuel properties and fuel temperature and pressure. 1065.120 Section 1065.120 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Equipment Specifications § 1065.120 Fuel...
Design and evaluation of aircraft heat source systems for use with high-freezing point fuels
NASA Technical Reports Server (NTRS)
Pasion, A. J.
1979-01-01
The objectives were the design, performance and economic analyses of practical aircraft fuel heating systems that would permit the use of high freezing-point fuels on long-range aircraft. Two hypothetical hydrocarbon fuels with freezing points of -29 C and -18 C were used to represent the variation from current day jet fuels. A Boeing 747-200 with JT9D-7/7A engines was used as the baseline aircraft. A 9300 Km mission was used as the mission length from which the heat requirements to maintain the fuel above its freezing point was based.
Year One Summary of X-energy Pebble Fuel Development at ORNL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Helmreich, Grant W.; Hunn, John D.; McMurray, Jake W.
2017-06-01
The Advanced Reactor Concepts X-energy (ARC-Xe) Pebble Fuel Development project at Oak Ridge National Laboratory (ORNL) has successfully completed its first year, having made excellent progress in accomplishing programmatic objectives. The primary focus of research at ORNL in support of X-energy has been the training of X-energy fuel fabrication engineers and the establishment of US pebble fuel production capabilities able to supply the Xe-100 pebble-bed reactor. These efforts have been strongly supported by particle fuel fabrication and characterization expertise present at ORNL from the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program.
Fuzzy Logic Based Controller for a Grid-Connected Solid Oxide Fuel Cell Power Plant.
Chatterjee, Kalyan; Shankar, Ravi; Kumar, Amit
2014-10-01
This paper describes a mathematical model of a solid oxide fuel cell (SOFC) power plant integrated in a multimachine power system. The utilization factor of a fuel stack maintains steady state by tuning the fuel valve in the fuel processor at a rate proportional to a current drawn from the fuel stack. A suitable fuzzy logic control is used for the overall system, its objective being controlling the current drawn by the power conditioning unit and meet a desirable output power demand. The proposed control scheme is verified through computer simulations.
Aviation turbine fuels: An assessment of alternatives
NASA Technical Reports Server (NTRS)
1982-01-01
The general outlook for aviation turbine fuels, the effect that broadening permissible aviation turbine fuel properties could have on the overall availability of such fuels, the fuel properties most likely to be affected by use of lower grade petroleum crudes, and the research and technology required to ensure that aviation turbine fuels and engines can function satisfactorily with fuels having a range of fuel properties differing from those of current specification fuel are assessed. Views of industry representatives on alternative aviation turbine fuels are presented.
Passive gamma analysis of the boiling-water-reactor assemblies
NASA Astrophysics Data System (ADS)
Vo, D.; Favalli, A.; Grogan, B.; Jansson, P.; Liljenfeldt, H.; Mozin, V.; Schwalbach, P.; Sjöland, A.; Tobin, S.; Trellue, H.; Vaccaro, S.
2016-09-01
This research focused on the analysis of a set of stationary passive gamma measurements taken on the spent nuclear fuel assemblies from a boiling water reactor (BWR) using pulse height analysis data acquisition. The measurements were performed on 25 different BWR assemblies in 2014 at Sweden's Central Interim Storage Facility for Spent Nuclear Fuel (Clab). This study was performed as part of the Next Generation of Safeguards Initiative-Spent Fuel project to research the application of nondestructive assay (NDA) to spent fuel assemblies. The NGSI-SF team is working to achieve the following technical goals more easily and efficiently than in the past using nondestructive assay (NDA) measurements of spent fuel assemblies: (1) verify the initial enrichment, burnup, and cooling time of facility declaration; (2) detect the diversion or replacement of pins, (3) estimate the plutonium mass, (4) estimate the decay heat, and (5) determine the reactivity of spent fuel assemblies. The final objective of this project is to quantify the capability of several integrated NDA instruments to meet the aforementioned goals using the combined signatures of neutrons, gamma rays, and heat. This report presents a selection of the measured data and summarizes an analysis of the results. Specifically, trends in the count rates measured for spectral lines from the following isotopes were analyzed as a function of the declared burnup and cooling time: 137Cs, 154Eu, 134Cs, and to a lesser extent, 106Ru and 144Ce. From these measured count rates, predictive algorithms were developed to enable the estimation of the burnup and cooling time. Furthermore, these algorithms were benchmarked on a set of assemblies not included in the standard assemblies set used by this research team.
Passive gamma analysis of the boiling-water-reactor assemblies
Vo, D.; Favalli, A.; Grogan, B.; ...
2016-09-01
This research focused on the analysis of a set of stationary passive gamma measurements taken on the spent nuclear fuel assemblies from a boiling water reactor (BWR) using pulse height analysis data acquisition. The measurements were performed on 25 different BWR assemblies in 2014 at Sweden’s Central Interim Storage Facility for Spent Nuclear Fuel (Clab). This study was performed as part of the Next Generation of Safeguards Initiative–Spent Fuel project to research the application of nondestructive assay (NDA) to spent fuel assemblies. The NGSI–SF team is working to achieve the following technical goals more easily and efficiently than in themore » past using nondestructive assay (NDA) measurements of spent fuel assemblies: (1) verify the initial enrichment, burnup, and cooling time of facility declaration; (2) detect the diversion or replacement of pins, (3) estimate the plutonium mass, (4) estimate the decay heat, and (5) determine the reactivity of spent fuel assemblies. The final objective of this project is to quantify the capability of several integrated NDA instruments to meet the aforementioned goals using the combined signatures of neutrons, gamma rays, and heat. This report presents a selection of the measured data and summarizes an analysis of the results. Specifically, trends in the count rates measured for spectral lines from the following isotopes were analyzed as a function of the declared burnup and cooling time: 137Cs, 154Eu, 134Cs, and to a lesser extent, 106Ru and 144Ce. From these measured count rates, predictive algorithms were developed to enable the estimation of the burnup and cooling time. Furthermore, these algorithms were benchmarked on a set of assemblies not included in the standard assemblies set used by this research team.« less
Sensitivity of fire behavior simulations to fuel model variations
Lucy A. Salazar
1985-01-01
Stylized fuel models, or numerical descriptions of fuel arrays, are used as inputs to fire behavior simulation models. These fuel models are often chosen on the basis of generalized fuel descriptions, which are related to field observations. Site-specific observations of fuels or fire behavior in the field are not readily available or necessary for most fire management...
NASA Technical Reports Server (NTRS)
Momenthy, A. M.
1980-01-01
Options for satisfying the future demand for commercial jet fuels are analyzed. It is concluded that the most effective means to this end are to attract more refiners to the jet fuel market and encourage development of processes to convert oil shale and coal to transportation fuels. Furthermore, changing the U.S. refineries fuel specification would not significantly alter jet fuel availability.
Unsteady Flow Interactions Between the LH2 Feed Line and SSME LPFP Inducer
NASA Technical Reports Server (NTRS)
Dorney, Dan; Griffin, Lisa; Marcu, Bogdan; Williams, Morgan
2006-01-01
An extensive computational effort has been performed in order to investigate the nature of unsteady flow in the fuel line supplying the three Space Shuttle Main Engines during flight. Evidence of high cycle fatigue (HCF) in the flow liner one diameter upstream of the Low Pressure Fuel Pump inducer has been observed in several locations. The analysis presented in this report has the objective of determining the driving mechanisms inducing HCF and the associated fluid flow phenomena. The simulations have been performed using two different computational codes, the NASA MSFC PHANTOM code and the Pratt and Whitney Rocketdyne ENIGMA code. The fuel flow through the flow liner and the pump inducer have been modeled in full three-dimensional geometry, and the results of the computations compared with test data taken during hot fire tests at NASA Stennis Space Center, and cold-flow water flow test data obtained at NASA MSFC. The numerical results indicate that unsteady pressure fluctuations at specific frequencies develop in the duct at the flow-liner location. Detailed frequency analysis of the flow disturbances is presented. The unsteadiness is believed to be an important source for fluctuating pressures generating high cycle fatigue.
Direct liquefaction proof-of-concept facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alfred G. Comolli; Peizheng Zhou; HTI Staff
2000-01-01
The main objective of the U.S. DOE, Office of Fossil Energy, is to ensure the US a secure energy supply at an affordable price. An integral part of this program was the demonstration of fully developed coal liquefaction processes that could be implemented if market and supply considerations so required, Demonstration of the technology, even if not commercialized, provides a security factor for the country if it is known that the coal to liquid processes are proven and readily available. Direct liquefaction breaks down and rearranges complex hydrocarbon molecules from coal, adds hydrogen, and cracks the large molecules to thosemore » in the fuel range, removes hetero-atoms and gives the liquids characteristics comparable to petroleum derived fuels. The current processes being scaled and demonstrated are based on two reactor stages that increase conversion efficiency and improve quality by providing the flexibility to adjust process conditions to accommodate favorable reactions. The first stage conditions promote hydrogenation and some oxygen, sulfur and nitrogen removal. The second stage hydrocracks and speeds the conversion to liquids while removing the remaining sulfur and nitrogen. A third hydrotreatment stage can be used to upgrade the liquids to clean specification fuels.« less
Advanced Hybrid Membranes for Next Generation PEMFC Automotive Applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herring, Andrew M; Motz, Andrew R; Kuo, Mei-Chen
The objective of this proposal is to fabricate a low cost high performance hybrid inorganic/polymer membrane that has a proton area specific resistance (ASR) < 0.02 ohm cm2 at the operating temperature of an automotive fuel cell stack (95 - 120°C) at low inlet RH <50% with good mechanical and chemical durability. Additionally the membrane will be optimized for low hydrogen and oxygen crossover with high electrical ASR at all temperatures and adequate proton ASR at lower temperatures. We also seek to gain valuable insights into rapid proton transport at the limit of proton hydration. Additional research will be performedmore » to incorporate the membrane into a 50 cm2 membrane electrode assembly (MEA). The materials at the start of this project are at a TRL of 2, as we have shown that they have proton conductivity under high and dry conditions, but we have not yet consistently shown that they will function in an operational fuel cell. At the project’s end the materials will be at a TRL of 4 and will be integrated into an MEA, demonstrating that they can function with electrodes as a single fuel cell.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dr. Sean M. McDeavitt; Thomas J. Downar; Dr. Temitope A. Taiwo
2009-03-01
The U.S. Department of Energy is developing next generation processing methods to recycle uranium and transuranic (TRU) isotopes from spent nuclear fuel. The objective of the 3-year project described in this report was to develop near-term options for storing TRU oxides isolated through the uranium extraction (UREX+) process. More specifically, a Zircaloy matrix cermet was developed as a storage form for transuranics with the understanding that the cermet also has the ability to serve as a inert matrix fuel form for TRU burning after intermediate storage. The goals of this research projects were: 1) to develop the processing steps requiredmore » to transform the effluent TRU nitrate solutions and the spent Xircaloy cladding into a zireonium matrix cermet sotrage form; and 2) to evaluate the impact of phenomena that govern durability of the storage form, material processing, and TRU utiliztion in fast reactor fuel. This report represents a compilation of the results generated under this program. The information is presented as a brief technical narrative in the following sections with appended papers, presentations and academic theses to provide a detailed review of the project's accomplishments.« less
Hypergolic Propellant Destruction Evaluation Cost Benefit Analysis
NASA Technical Reports Server (NTRS)
Kessel, Kurt
2010-01-01
At space vehicle launch sites such as Vandenberg Air Force Base (VAFB), Cape Canaveral Air Force Station (CCAFS) and Kennedy Space Center (KSC), toxic vapors and hazardous liquid wastes result from the handling of commodities (hypergolic fuels and oxidizers), most notably from transfer operations where fuel and oxidizer are transferred from bulk storage tanks or transfer tankers to space launch vehicles. During commodity transfer at CCAFS and KSC, wet chemical scrubbers (typically containing four scrubbing towers) are used to neutralize fuel saturated vapors from vent systems on tanks and tanker trailers. For fuel vapors, a citric acid solution is used to scrub out most of the hydrazine. Operation of both the hypergolic fuel and oxidizer vapor scrubbers generates waste scrubber liquor. Currently, scrubber liquor from the fuel vapor scrubber is considered non-hazardous. The scrubber liquor is defined as spent citric acid scrubber solution; the solution contains complexed hydrazine I methylhydrazine and is used to neutralize nonspecification hypergolic fuel generated by CCAFS and KSC. This project is a collaborative effort between Air Force Space Command (AFSPC), Space and Missile Center (SMC), the CCAFS, and National Aeronautics and Space Administration (NASA) to evaluate microwave destruction technology for the treatment of non-specification hypergolic fuel generated at CCAFS and KSC. The project will capitalize on knowledge gained from microwave treatment work being accomplished by AFSPC and SMC at V AFB. This report focuses on the costs associated with the current non-specification hypergolic fuel neutralization process (Section 2.0) as well as the estimated costs of operating a mobile microwave unit to treat non-specification hypergolic fuel (Section 3.0), and compares the costs for each (Section 4.0).The purpose of this document is to assess the costs associated with waste hypergolic fuel. This document will report the costs associated with the current fuel neutralization process and also examine the costs of an alternative technology, microwave destruction of waste hypergolic fuel. The microwave destruction system is being designed as a mobile unit to treat non-specification hypergolic fuel at CCAFS and KSC.
Thermal Analysis of a TREAT Fuel Assembly
DOE Office of Scientific and Technical Information (OSTI.GOV)
Papadias, Dionissios; Wright, Arthur E.
2014-07-09
The objective of this study was to explore options as to reduce peak cladding temperatures despite an increase in peak fuel temperatures. A 3D thermal-hydraulic model for a single TREAT fuel assembly was benchmarked to reproduce results obtained with previous thermal models developed for a TREAT HEU fuel assembly. In exercising this model, and variants thereof depending on the scope of analysis, various options were explored to reduce the peak cladding temperatures.
NASA Technical Reports Server (NTRS)
Seng, G. T.
1982-01-01
Characterization data and comparisons of these data are presented for three individual lots of a research test fuel designated as an Experimental Referee Broadened Specification (ERBS) aviation turbine fuel. This research fuel, which is a blend of kerosene and hydrotreated catalytic gas oil, is a representation of a kerojet fuel with broadened properties. To lower the hydrogen content of the ERBS fuel, a blending stock, composed of xylene bottoms and hydrotreated catalytic gas oil, was developed and employed to produce two different ERBS fuel blends. The ERBS fuel blends and the blending stock were also characterized and the results for the blends are compared to those of the original ERBS fuel. The characterization results indicate that with the exception of the freezing point for ERBS lot 2, which was slightly high, the three lots, produced over a 2 year period, met all general fuel requirements. However, although the properties of the fuels were found to be fairly consistent, there were differences in composition. Similarly, all major requirements for the ERBS fuel blends were met or closely approached, and the properties of the blended fuels were found to generally reflect those expected for the proportions of ERBS fuel and blending stock used in their production.
Broad specification fuels technology program, phase 1
NASA Technical Reports Server (NTRS)
Lohmann, R. P.; Jeroszko, R. A.
1982-01-01
An experimental evaluation was conducted to assess the impact of the use of broadened properties fuels on combustor design concepts. Emphasis was placed on establishing the viability of design modifications to current combustor concepts and the use of advanced technology concepts to facilitate operation on Experimental Referee Broad Specification (ERBS) fuel while meeting exhaust emissions and performance specifications and maintaining acceptable durability. Three different combustor concepts, representative of progressively more aggressive technology levels, were evaluated. When operated on ERBS rather than Jet A fuel, a single stage combustor typical of that in the most recent versions of the JT9D-7 engine was found to produce excess carbon monoxide emissions at idle and elevated liner temperatures at high power levels that were projected to reduced liner life by 13 percent. The introduction of improved component technology, such as refined fuel injectors and advanced liner cooling concepts were shown to have the potential of enhancing the fuel flexibility of the single stage combustor.
40 CFR 1065.703 - Distillate diesel fuel.
Code of Federal Regulations, 2014 CFR
2014-07-01
... CONTROLS ENGINE-TESTING PROCEDURES Engine Fluids, Test Fuels, Analytical Gases and Other Calibration... diesel fuel specified for use as a test fuel. See the standard-setting part to determine which grade to... grades are specified in the following table: Table 1 of § 1065.703—Test Fuel Specifications for...
40 CFR 80.167 - Confirmatory testing.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) REGULATION OF FUELS AND FUEL ADDITIVES Detergent Gasoline § 80.167 Confirmatory testing. EPA may test a... national, PADD, or fuel-specific options will generally entail a single vehicle test using the procedures detailed in § 80.165. The test fuel(s) used in conducting confirmatory certification testing will contain...
40 CFR 80.167 - Confirmatory testing.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) REGULATION OF FUELS AND FUEL ADDITIVES Detergent Gasoline § 80.167 Confirmatory testing. EPA may test a... national, PADD, or fuel-specific options will generally entail a single vehicle test using the procedures detailed in § 80.165. The test fuel(s) used in conducting confirmatory certification testing will contain...
40 CFR 80.167 - Confirmatory testing.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) REGULATION OF FUELS AND FUEL ADDITIVES Detergent Gasoline § 80.167 Confirmatory testing. EPA may test a... national, PADD, or fuel-specific options will generally entail a single vehicle test using the procedures detailed in § 80.165. The test fuel(s) used in conducting confirmatory certification testing will contain...
40 CFR 80.167 - Confirmatory testing.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) REGULATION OF FUELS AND FUEL ADDITIVES Detergent Gasoline § 80.167 Confirmatory testing. EPA may test a... national, PADD, or fuel-specific options will generally entail a single vehicle test using the procedures detailed in § 80.165. The test fuel(s) used in conducting confirmatory certification testing will contain...
Code of Federal Regulations, 2010 CFR
2010-01-01
..., corporation, or other business entity. (e) Petroleum distillates means: (1) Jet fuels, including, but not limited to, all commercial and military specification jet fuels; and (2) Diesel fuels and fuel oils...) Wholesale means: (1) All purchases or sales of crude oil or jet fuel; and (2) All purchases or sales of...
Code of Federal Regulations, 2011 CFR
2011-01-01
..., corporation, or other business entity. (e) Petroleum distillates means: (1) Jet fuels, including, but not limited to, all commercial and military specification jet fuels; and (2) Diesel fuels and fuel oils...) Wholesale means: (1) All purchases or sales of crude oil or jet fuel; and (2) All purchases or sales of...
Code of Federal Regulations, 2014 CFR
2014-01-01
..., corporation, or other business entity. (e) Petroleum distillates means: (1) Jet fuels, including, but not limited to, all commercial and military specification jet fuels; and (2) Diesel fuels and fuel oils...) Wholesale means: (1) All purchases or sales of crude oil or jet fuel; and (2) All purchases or sales of...
Code of Federal Regulations, 2012 CFR
2012-01-01
..., corporation, or other business entity. (e) Petroleum distillates means: (1) Jet fuels, including, but not limited to, all commercial and military specification jet fuels; and (2) Diesel fuels and fuel oils...) Wholesale means: (1) All purchases or sales of crude oil or jet fuel; and (2) All purchases or sales of...
Code of Federal Regulations, 2013 CFR
2013-01-01
..., corporation, or other business entity. (e) Petroleum distillates means: (1) Jet fuels, including, but not limited to, all commercial and military specification jet fuels; and (2) Diesel fuels and fuel oils...) Wholesale means: (1) All purchases or sales of crude oil or jet fuel; and (2) All purchases or sales of...
40 CFR 86.1313-94 - Fuel specifications.
Code of Federal Regulations, 2011 CFR
2011-07-01
... reported in accordance with § 86.094-21(b)(3). (c) Methanol-fuel. (1) Methanol fuel used for exhaust and evaporative emission testing and in service accumulation of methanol-fueled engines shall be representative of commercially available methanol fuel and shall consist of at least 50 percent methanol by volume. (i...
Pyrolysis bio-oil upgrading to renewable fuels.
DOT National Transportation Integrated Search
2014-01-01
This study aims to upgrade woody biomass pyrolysis bio-oil into transportation fuels by catalytic hydrodeoxygenation : (HDO) using nanospring (NS) supported catalyst via the following research objectives: (1) develop nanospring-based : catalysts (nan...
NASA Technical Reports Server (NTRS)
Dean, David L.
1995-01-01
McDonnell Douglas Aerospace, as part of its Independent R&D, has initiated development of a clean burning, high performance hybrid fuel for consideration as an alternative to the solid rocket thrust augmentation currently utilized by American space launch systems including Atlas, Delta, Pegasus, Space Shuttle, and Titan. It could also be used in single stage to orbit or as the only propulsion system in a new launch vehicle. Compared to solid propellants based on aluminum and ammonium perchlorate, this fuel is more environmentally benign in that it totally eliminates hydrogen chloride and aluminum oxide by products, producing only water, hydrogen, nitrogen, carbon oxides, and trace amounts of nitrogen oxides. Compared to other hybrid fuel formulations under development, this fuel is cheaper, denser, and faster burning. The specific impulse of this fuel is comparable to other hybrid fuels and is between that of solids and liquids. The fuel also requires less oxygen than similar hybrid fuels to produce maximum specific impulse, thus reducing oxygen delivery system requirements.
Martin-Sanchez, Pedro M; Gorbushina, Anna A; Kunte, Hans-Jörg; Toepel, Jörg
2016-07-01
A wide variety of fungi and bacteria are known to contaminate fuels and fuel systems. These microbial contaminants have been linked to fuel system fouling and corrosion. The fungus Hormoconis resinae, a common jet fuel contaminant, is used in this study as a model for developing innovative risk assessment methods. A novel qPCR protocol to detect and quantify H. resinae in, and together with, total fungal contamination of fuel systems is reported. Two primer sets, targeting the markers RPB2 and ITS, were selected for their remarkable specificity and sensitivity. These primers were successfully applied on fungal cultures and diesel samples demonstrating the validity and reliability of the established qPCR protocol. This novel tool allows clarification of the current role of H. resinae in fuel contamination cases, as well as providing a technique to detect fungal outbreaks in fuel systems. This tool can be expanded to other well-known fuel-deteriorating microorganisms.
Used fuel disposition in crystalline rocks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Y.; Hadgu, Teklu; Kalinina, Elena Arkadievna
The U.S. Department of Energy Office of Nuclear Energy, Office of Fuel Cycle Technology established the Used Fuel Disposition Campaign (UFDC) in fiscal year 2010 (FY10) to conduct the research and development (R&D) activities related to storage, transportation and disposal of used nuclear fuel and high level nuclear waste. The objective of the Crystalline Disposal R&D Work Package is to advance our understanding of long-term disposal of used fuel in crystalline rocks and to develop necessary experimental and computational capabilities to evaluate various disposal concepts in such media.
Under EPA’s Environmental Technology Verification program, which provides objective and scientific third party analysis of new technology that can benefit the environment, a combined heat and power system based on the UTC Fuel Cell's PC25C Fuel Cell Power Plant was evaluated. The...
Temporal optimisation of fuel treatment design in blue gum (Eucalyptus globulus) plantations
Ana Martin; Brigite Botequim; Tiago M. Oliveira; Alan Ager; Francesco Pirotti
2016-01-01
This study was conducted to support fire and forest management planning in eucalypt plantations based on economic, ecological and fire prevention criteria, with a focus on strategic prioritisation of fuel treatments over time. The central objective was to strategically locate fuel treatments to minimise losses from wildfire while meeting budget constraints and demands...
Development of HRJ fuel from Brassica in rotation with wheat for the Western U.S.
USDA-ARS?s Scientific Manuscript database
The aviation industry has expressed a strong interest in the development of renewable jet fuel from oilseed crops within the U.S. to supplement its fuel needs and provide a smaller carbon footprint for its industry. The USDA/NIFA identified objectives within its recent BRDI grant program/proposal to...
Overview and example application of the Landscape Treatment Designer
Alan A. Ager; Nicole M. Vaillant; David E. Owens; Stuart Brittain; Jeff Hamann
2012-01-01
The Landscape Treatment Designer (LTD) is a multicriteria spatial prioritization and optimization system to help design and explore landscape fuel treatment scenarios. The program fills a gap between fire model programs such as FlamMap, and planning systems such as ArcFuels, in the fuel treatment planning process. The LTD uses inputs on spatial treatment objectives,...
Eric Toman; David M. Hix; P. Charles Goebel; Stanley D. Gehrt; Robyn S. Wilson; Jennifer A. Sherry; Alexander Silvis; Priscilla Nyamai; Roger A. Williams; Sarah McCaffrey
2014-01-01
Fuels reduction decisions are made within a larger context of resource management characterized by multiple objectives including ecosystem restoration, wildlife management, commodity production (from timber to nontraditional forest products), and provision of recreation opportunities and amenity values. Implementation of fuels treatments is strongly influenced by their...
Christine Esposito
2006-01-01
Researchers have tried to understand how information about forest management can influence a person's landscape preferences and aesthetic appreciation. These findings are relevant for fuels management projects, since these projects are often characterized by conflicts between aesthetic and ecological objectives. This fact sheet discusses different aspects and ways...
Regulation of Oil Biosynthesis in Algae
2014-10-06
renewed interest in microalgae as potential feed stock for renewable fuels including high energy density aviation fuels. Microalgae accumulate large...mechanisms of TAG accumulation relevant to other microalgae and perhaps dedicated biofuel crop plants. Knowledge and understanding of algal model systems...energy density liquid fuels. Long Term Objectives. Under permissive conditions, i.e. nutrient deprivation, many microalgae accumulate oils (TAGs
Fuel treatment longevity in a Sierra Nevada mixed conifer forest
Scott. L. Stephens; Brandon M. Collins; Gary. Roller
2012-01-01
Understanding the longevity of fuel treatments in terms of their ability to maintain fire behavior and effects within a desired range is an important question. The objective of this study was to determine how fuels, forest structure, and predicted fire behavior changed 7-years after initial treatments. Three different treatments: mechanical only, mechanical plus fire,...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sutton, M; Blink, J A; Greenberg, H R
2012-04-25
The Used Fuel Disposition (UFD) Campaign within the Department of Energy's Office of Nuclear Energy (DOE-NE) Fuel Cycle Technology (FCT) program has been tasked with investigating the disposal of the nation's spent nuclear fuel (SNF) and high-level nuclear waste (HLW) for a range of potential waste forms and geologic environments. The planning, construction, and operation of a nuclear disposal facility is a long-term process that involves engineered barriers that are tailored to both the geologic environment and the waste forms being emplaced. The UFD Campaign is considering a range of fuel cycles that in turn produce a range of wastemore » forms. The UFD Campaign is also considering a range of geologic media. These ranges could be thought of as adding uncertainty to what the disposal facility design will ultimately be; however, it may be preferable to thinking about the ranges as adding flexibility to design of a disposal facility. For example, as the overall DOE-NE program and industrial actions result in the fuel cycles that will produce waste to be disposed, and the characteristics of those wastes become clear, the disposal program retains flexibility in both the choice of geologic environment and the specific repository design. Of course, other factors also play a major role, including local and State-level acceptance of the specific site that provides the geologic environment. In contrast, the Yucca Mountain Project (YMP) repository license application (LA) is based on waste forms from an open fuel cycle (PWR and BWR assemblies from an open fuel cycle). These waste forms were about 90% of the total waste, and they were the determining waste form in developing the engineered barrier system (EBS) design for the Yucca Mountain Repository design. About 10% of the repository capacity was reserved for waste from a full recycle fuel cycle in which some actinides were extracted for weapons use, and the remaining fission products and some minor actinides were encapsulated in borosilicate glass. Because the heat load of the glass was much less than the PWR and BWR assemblies, the glass waste form was able to be co-disposed with the open cycle waste, by interspersing glass waste packages among the spent fuel assembly waste packages. In addition, the Yucca Mountain repository was designed to include some research reactor spent fuel and naval reactor spent fuel, within the envelope that was set using the commercial reactor assemblies as the design basis waste form. This milestone report supports Sandia National Laboratory milestone M2FT-12SN0814052, and is intended to be a chapter in that milestone report. The independent technical review of this LLNL milestone was performed at LLNL and is documented in the electronic Information Management (IM) system at LLNL. The objective of this work is to investigate what aspects of quantifying, characterizing, and representing the uncertainty associated with the engineered barrier are affected by implementing different advanced nuclear fuel cycles (e.g., partitioning and transmutation scenarios) together with corresponding designs and thermal constraints.« less
Development of high-fidelity multiphysics system for light water reactor analysis
NASA Astrophysics Data System (ADS)
Magedanz, Jeffrey W.
There has been a tendency in recent years toward greater heterogeneity in reactor cores, due to the use of mixed-oxide (MOX) fuel, burnable absorbers, and longer cycles with consequently higher fuel burnup. The resulting asymmetry of the neutron flux and energy spectrum between regions with different compositions causes a need to account for the directional dependence of the neutron flux, instead of the traditional diffusion approximation. Furthermore, the presence of both MOX and high-burnup fuel in the core increases the complexity of the heat conduction. The heat transfer properties of the fuel pellet change with irradiation, and the thermal and mechanical expansion of the pellet and cladding strongly affect the size of the gap between them, and its consequent thermal resistance. These operational tendencies require higher fidelity multi-physics modeling capabilities, and this need is addressed by the developments performed within this PhD research. The dissertation describes the development of a High-Fidelity Multi-Physics System for Light Water Reactor Analysis. It consists of three coupled codes -- CTF for Thermal Hydraulics, TORT-TD for Neutron Kinetics, and FRAPTRAN for Fuel Performance. It is meant to address these modeling challenges in three ways: (1) by resolving the state of the system at the level of each fuel pin, rather than homogenizing entire fuel assemblies, (2) by using the multi-group Discrete Ordinates method to account for the directional dependence of the neutron flux, and (3) by using a fuel-performance code, rather than a Thermal Hydraulics code's simplified fuel model, to account for the material behavior of the fuel and its feedback to the hydraulic and neutronic behavior of the system. While the first two are improvements, the third, the use of a fuel-performance code for feedback, constitutes an innovation in this PhD project. Also important to this work is the manner in which such coupling is written. While coupling involves combining codes into a single executable, they are usually still developed and maintained separately. It should thus be a design objective to minimize the changes to those codes, and keep the changes to each code free of dependence on the details of the other codes. This will ease the incorporation of new versions of the code into the coupling, as well as re-use of parts of the coupling to couple with different codes. In order to fulfill this objective, an interface for each code was created in the form of an object-oriented abstract data type. Object-oriented programming is an effective method for enforcing a separation between different parts of a program, and clarifying the communication between them. The interfaces enable the main program to control the codes in terms of high-level functionality. This differs from the established practice of a master/slave relationship, in which the slave code is incorporated into the master code as a set of subroutines. While this PhD research continues previous work with a coupling between CTF and TORT-TD, it makes two major original contributions: (1) using a fuel-performance code, instead of a thermal-hydraulics code's simplified built-in models, to model the feedback from the fuel rods, and (2) the design of an object-oriented interface as an innovative method to interact with a coupled code in a high-level, easily-understandable manner. The resulting code system will serve as a tool to study the question of under what conditions, and to what extent, these higher-fidelity methods will provide benefits to reactor core analysis. (Abstract shortened by UMI.)
Fuel Cells for Space Science Applications
NASA Technical Reports Server (NTRS)
Burke, Kenneth A.
2003-01-01
Fuel cell technology has been receiving more attention recently as a possible alternative to the internal combustion engine for our automobile. Improvements in fuel cell designs as well as improvements in lightweight high-pressure gas storage tank technology make fuel cell technology worth a look to see if fuel cells can play a more expanded role in space missions. This study looks at the specific weight density and specific volume density of potential fuel cell systems as an alternative to primary and secondary batteries that have traditionally been used for space missions. This preliminary study indicates that fuel cell systems have the potential for energy densities of greater than 500 W-hr/kg, greater than 500W/kg and greater than 400 W-hr/liter, greater than 200 W/liter. This level of performance makes fuel cells attractive as high-power density, high-energy density sources for space science probes, planetary rovers and other payloads. The power requirements for these space missions are, in general, much lower than the power levels where fuel cells have been used in the past. Adaptation of fuel cells for space science missions will require down-sizing the fuel cell stack and making the fuel cell operate without significant amounts of ancillary equipment.
Use of bark-derived pyrolysis oils ass a phenol substitute in structural panel adhesives
DOE Office of Scientific and Technical Information (OSTI.GOV)
Louisiana Pacific Corp
2004-03-01
The main objective of this program was to pilot the world's first commercial-scale production of an acceptable phenol formaldehyde (PF) resin containing natural resin (NR) ingredients, for use as an adhesive in Oriented-Strand Board (OSB) and plywood panel products. Natural Resin products, specifically MNRP are not lignin ''fillers''. They are chemically active, natural phenolics that effectively displace significant amounts of phenol in PF resins, and which are extracted from bark-derived and wood-derived bio-oils. Other objectives included the enhancement of the economics of NR (MNRP) production by optimizing the production of certain Rapid Thermal Processing (RTP{trademark}) byproducts, particularly char and activatedmore » carbon. The options were to activate the char for use in waste-water and/or stack gas purification. The preliminary results indicate that RTP{trademark} carbon may ultimately serve as a feedstock for activated carbon synthesis, as a fuel to be used within the wood product mill, or a fuel for an electrical power generating facility. Incorporation of the char as an industrial heat source for use in mill operations was L-P's initial intention for the carbon, and was also of interest to Weyerhaeuser as they stepped into in the project.« less
Northwest Region Clean Energy Application Center
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sjoding, David
2013-09-30
The main objective of the Northwest Clean Energy Application Center (NW CEAC) is to promote and support implementation of clean energy technologies. These technologies include combined heat and power (CHP), district energy, waste heat recovery with a primary focus on waste heat to power, and other related clean energy systems such as stationary fuel cell CHP systems. The northwest states include AK, ID, MT, OR, and WA. The key aim/outcome of the Center is to promote and support implementation of clean energy projects. Implemented projects result in a number of benefits including increased energy efficiency, renewable energy development (when usingmore » opportunity fuels), reduced carbon emissions, improved facility economics helping to preserve jobs, and reduced criteria pollutants calculated on an output-based emissions basis. Specific objectives performed by the NW CEAC fall within the following five broad promotion and support categories: 1) Center management and planning including database support; 2) Education and Outreach including plan development, website, target market workshops, and education/outreach materials development 3) Identification and provision of screening assessments & feasibility studies as funded by the facility or occasionally further support of Potential High Impact Projects; 4) Project implementation assistance/trouble shooting; and 5) Development of a supportive clean energy policy and initiative/financing framework.« less
40 CFR 86.1506 - Equipment required and specifications; overview.
Code of Federal Regulations, 2012 CFR
2012-07-01
... specifications appear in §§ 86.1509 through 86.1511. (2) Fuel and analytical tests. Fuel requirements for idle... Test Procedures § 86.1506 Equipment required and specifications; overview. (a) This subpart contains procedures for performing idle exhaust emission tests on Otto-cycle heavy-duty engines and Otto-cycle light...
40 CFR 86.1506 - Equipment required and specifications; overview.
Code of Federal Regulations, 2011 CFR
2011-07-01
... specifications appear in §§ 86.1509 through 86.1511. (2) Fuel and analytical tests. Fuel requirements for idle... Test Procedures § 86.1506 Equipment required and specifications; overview. (a) This subpart contains procedures for performing idle exhaust emission tests on Otto-cycle heavy-duty engines and Otto-cycle light...
40 CFR 86.1506 - Equipment required and specifications; overview.
Code of Federal Regulations, 2013 CFR
2013-07-01
... specifications appear in §§ 86.1509 through 86.1511. (2) Fuel and analytical tests. Fuel requirements for idle... Test Procedures § 86.1506 Equipment required and specifications; overview. (a) This subpart contains procedures for performing idle exhaust emission tests on Otto-cycle heavy-duty engines and Otto-cycle light...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stubbins, James
2012-12-19
The objective of this research program is to address major nuclear fuels performance issues for the design and use of oxide-type fuels in the current and advanced nuclear reactor applications. Fuel performance is a major issue for extending fuel burn-up which has the added advantage of reducing the used fuel waste stream. It will also be a significant issue with respect to developing advanced fuel cycle processes where it may be possible to incorporate minor actinides in various fuel forms so that they can be 'burned' rather than join the used fuel waste stream. The potential to fission or transmutemore » minor actinides and certain long-lived fission product isotopes would transform the high level waste storage strategy by removing the need to consider fuel storage on the millennium time scale.« less
Low NO/x/ heavy fuel combustor program
NASA Technical Reports Server (NTRS)
Lister, E.; Niedzwiecki, R. W.; Nichols, L.
1980-01-01
The paper deals with the 'Low NO/x/ Heavy Fuel Combustor Program'. Main program objectives are to generate and demonstrate the technology required to develop durable gas turbine combustors for utility and industrial applications, which are capable of sustained, environmentally acceptable operation with minimally processed petroleum residual fuels. The program will focus on 'dry' reductions of oxides of nitrogen (NO/x/), improved combustor durability and satisfactory combustion of minimally processed petroleum residual fuels. Other technology advancements sought include: fuel flexibility for operation with petroleum distillates, blends of petroleum distillates and residual fuels, and synfuels (fuel oils derived from coal or shale); acceptable exhaust emissions of carbon monoxide, unburned hydrocarbons, sulfur oxides and smoke; and retrofit capability to existing engines.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farrell, John
This presentation reports recent progress on light-duty boosted spark-ignition fuels/engines being developed under the Co-Optimization of Fuels and Engines initiative (Co-Optima). Co-Optima is focused on identifying fuel properties that optimize engine performance, independent of composition, allowing the market to define the best means to blend and provide these fuels. However, in support of this, we are pursuing a systematic study of blendstocks to identify a broad range of feasible options, with the objective of identifying blendstocks that can provide target ranges of key fuel properties, identifying trade-offs on consistent and comprehensive basis, and sharing information with stakeholders.
Low NO(x) heavy fuel combustor program
NASA Technical Reports Server (NTRS)
Lister, E.; Niedzwiecki, R. W.; Nichols, L.
1979-01-01
The 'low nitrogen oxides heavy fuel combustor' program is described. Main program objectives are to generate and demonstrate the technology required to develop durable gas turbine combustors for utility and industrial applications, which are capable of sustained, environmentally acceptable operation with minimally processed petroleum residual fuels. The program will focus on 'dry' reductions of oxides of nitrogen, improved combustor durability, and satisfactory combustion of minimally processed petroleum residual fuels. Other technology advancements sought include: fuel flexibility for operation with petroleum distillates, blends of petroleum distillates and residual fuels, and synfuels (fuel oils derived from coal or shale); acceptable exhaust emissions of carbon monoxide, unburned hydrocarbons, sulfur oxides and smoke; and retrofit capability to existing engines.
Data quality objectives for the initial fuel conditioning examinations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lawrence, L.A.
The Data Quality Objectives (DQOs) were established for the response of the first group of fuel samples shipped from the K West Basin to the Hanford 327 Building hot cells for examinations to the proposed Path Forward conditioning process. Controlled temperature and atmosphere furnace testing testing will establish performance parameters using the conditioning process (drying, sludge drying, hydride decomposition passivation) proposed by the Independent Technical Assessment (ITA) Team as the baseline.
Next Generation Environmentally-Friendly Driving Feedback Systems Research and Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barth, Matthew; Boriboonsomsin, Kanok
2014-12-31
The objective of this project is to design, develop, and demonstrate a next-generation, federal safety- and emission-complaint driving feedback system that can be deployed across the existing vehicle fleet and improve fleet average fuel efficiency by at least 2%. The project objective was achieved with the driving feedback system that encourages fuel-efficient vehicle travel and operation through: 1) Eco-Routing Navigation module that suggests the most fuel-efficient route from one stop to the next, 2) Eco-Driving Feedback module that provides sensible information, recommendation, and warning regarding fuel-efficient vehicle operation, and 3) Eco-Score and Eco-Rank module that provides a means for drivingmore » performance tracking, self-evaluation, and peer comparison. The system also collects and stores vehicle travel and operation data, which are used by Algorithm Updating module to customize the other modules for specific vehicles and adapts them to specific drivers over time. The driving feedback system was designed and developed as an aftermarket technology that can be retrofitted to vehicles in the existing fleet. It consists of a mobile application for smart devices running Android operating system, a vehicle on-board diagnostics connector, and a data server. While the system receives and utilizes real-time vehicle and engine data from the vehicle’s controller area network bus through the vehicle’s on-board diagnostic connector, it does not modify or interfere with the vehicle’s controller area network bus, and thus, is in compliance with federal safety and emission regulations. The driving feedback system was demonstrated and then installed on 45 vehicles from three different fleets for field operational test. These include 15 private vehicles of the general public, 15 pickup trucks of the California Department of Transportation that are assigned to individual employees for business use, and 15 shuttle buses of the Riverside Transit Agency that are used for paratransit service. Detailed vehicle travel and operation data including route taken, driving speed, acceleration, braking, and the corresponding fuel consumption, were collected both before and during the test period. The data analysis results show that the fleet average fuel efficiency improvements for the three fleets with the use of the driving feedback system are in the range of 2% to 9%. The economic viability of the driving feedback system is high. A fully deployed system would require capital investment in smart device ($150-$350) and on-board diagnostics connector ($50-$100) as well as paying operating costs for wireless data plan and subscription fees ($20-$30 per month) for connecting to the data server and receiving various system services. For individual consumers who already own a smart device (such as smartphone) and commercial fleets that already use some kind of telematics services, the costs for deploying this driving feedback system would be much lower.« less
Fuel Cells: Power System Option for Space Research
NASA Astrophysics Data System (ADS)
Shaneeth, M.; Mohanty, Surajeet
2012-07-01
Fuel Cells are direct energy conversion devices and, thereby, they deliver electrical energy at very high efficiency levels. Hydrogen and Oxygen gases are electrochemically processed, producing clean electric power with water as the only by product. A typical, Fuel Cell based power system involve a Electrochemical power converter, gas storage and management systems, thermal management systems and relevant control units. While there exists different types of Fuel cells, Proton Exchange Membrane (PEM) Fuel Cells are considered as the most suitable one for portable applications. Generally, Fuel Cells are considered as the primary power system option in space missions requiring high power ( > 5kW) and long durations and also where water is a consumable, such as manned missions. This is primarily due to the advantage that fuel cell based power systems offer, in terms of specific energy. Fuel cells have the potential to attain specific energy > 500Wh/kg, specific power >500W/kg, energy density > 400Whr/L and also power density > 200 W/L. This apart, a fuel cell system operate totally independent of sun light, whereas as battery based system is fully dependent on the same. This uniqueness provides added flexibility and capabilities to the missions and modularity for power system. High power requiring missions involving reusable launch vehicles, manned missions etc are expected to be richly benefited from this. Another potential application of Fuel Cell would be interplanetary exploration. Unpredictable and dusty atmospheres of heavenly bodies limits sun light significantly and there fuel cells of different types, eg, Bio-Fuel Cells, PEMFC, DMFCs would be able to work effectively. Manned or unmanned lunar out post would require continuous power even during extra long lunar nights and high power levels are expected. Regenerative Fuel Cells, a combination of Fuel Cells and Electrolysers, are identified as strong candidate. While application of Fuel Cells in high power requiring missions is well established, as exemplified in Apollo and Space Shuttles, use in low power missions for science probes/rovers form a relatively newer area. Low power small fuel cells of this class are expected to bring in lot of operational convenience and freedom on onboard / extra terrestrial environment. Technological improvisations in the area, especially with regard to miniaturisation, and extra capabilities that the system offers, make it a strong candidate. The paper outlines features of fuel cells power systems, different types and their potential application scenarios, in the present context. It elucidates the extra capabilities and advantages, due to fuel cells, for different missions. Specific case analyses are also included.
NASA Technical Reports Server (NTRS)
Mercer, Carolyn R.; Jankovsky, Amy L.; Reid, Concha M.; Miller, Thomas B.; Hoberecht, Mark A.
2011-01-01
NASA's Exploration Technology Development Program funded the Energy Storage Project to develop battery and fuel cell technology to meet the expected energy storage needs of the Constellation Program for human exploration. Technology needs were determined by architecture studies and risk assessments conducted by the Constellation Program, focused on a mission for a long-duration lunar outpost. Critical energy storage needs were identified as batteries for EVA suits, surface mobility systems, and a lander ascent stage; fuel cells for the lander and mobility systems; and a regenerative fuel cell for surface power. To address these needs, the Energy Storage Project developed advanced lithium-ion battery technology, targeting cell-level safety and very high specific energy and energy density. Key accomplishments include the development of silicon composite anodes, lithiated-mixed-metal-oxide cathodes, low-flammability electrolytes, and cell-incorporated safety devices that promise to substantially improve battery performance while providing a high level of safety. The project also developed "non-flow-through" proton-exchange-membrane fuel cell stacks. The primary advantage of this technology set is the reduction of ancillary parts in the balance-of-plant--fewer pumps, separators and related components should result in fewer failure modes and hence a higher probability of achieving very reliable operation, and reduced parasitic power losses enable smaller reactant tanks and therefore systems with lower mass and volume. Key accomplishments include the fabrication and testing of several robust, small-scale nonflow-through fuel cell stacks that have demonstrated proof-of-concept. This report summarizes the project s goals, objectives, technical accomplishments, and risk assessments. A bibliography spanning the life of the project is also included.
Kehimkar, Benjamin; Hoggard, Jamin C; Marney, Luke C; Billingsley, Matthew C; Fraga, Carlos G; Bruno, Thomas J; Synovec, Robert E
2014-01-31
There is an increased need to more fully assess and control the composition of kerosene-based rocket propulsion fuels such as RP-1. In particular, it is critical to make better quantitative connections among the following three attributes: fuel performance (thermal stability, sooting propensity, engine specific impulse, etc.), fuel properties (such as flash point, density, kinematic viscosity, net heat of combustion, and hydrogen content), and the chemical composition of a given fuel, i.e., amounts of specific chemical compounds and compound classes present in a fuel as a result of feedstock blending and/or processing. Recent efforts in predicting fuel chemical and physical behavior through modeling put greater emphasis on attaining detailed and accurate fuel properties and fuel composition information. Often, one-dimensional gas chromatography (GC) combined with mass spectrometry (MS) is employed to provide chemical composition information. Building on approaches that used GC-MS, but to glean substantially more chemical information from these complex fuels, we recently studied the use of comprehensive two dimensional (2D) gas chromatography combined with time-of-flight mass spectrometry (GC×GC-TOFMS) using a "reversed column" format: RTX-wax column for the first dimension, and a RTX-1 column for the second dimension. In this report, by applying chemometric data analysis, specifically partial least-squares (PLS) regression analysis, we are able to readily model (and correlate) the chemical compositional information provided by use of GC×GC-TOFMS to RP-1 fuel property information such as density, kinematic viscosity, net heat of combustion, and so on. Furthermore, we readily identified compounds that contribute significantly to measured differences in fuel properties based on results from the PLS models. We anticipate this new chemical analysis strategy will have broad implications for the development of high fidelity composition-property models, leading to an improved approach to fuel formulation and specification for advanced engine cycles. Copyright © 2014 Elsevier B.V. All rights reserved.
Fuel quality/processing study. Volume 2: Appendix. Task 1 literature survey
NASA Technical Reports Server (NTRS)
Ohara, J. B.; Bela, A.; Jentz, N. E.; Klumpe, H. W.; Kessler, H. E.; Kotzot, H. T.; Loran, B. L.
1981-01-01
The results of a literature survey of fuel processing and fuel quality are given. Liquid synfuels produced from coal and oil shale are discussed. Gas turbine fuel property specifications are discussed. On-site fuel pretreatment and emissions from stationary gas turbines are discussed. Numerous data tables and abstracts are given.
46 CFR 182.435 - Integral fuel tanks.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 7 2011-10-01 2011-10-01 false Integral fuel tanks. 182.435 Section 182.435 Shipping...) MACHINERY INSTALLATION Specific Machinery Requirements § 182.435 Integral fuel tanks. (a) Gasoline fuel tanks must be independent of the hull. (b) Diesel fuel tanks may not be built integral with the hull of...
46 CFR 182.435 - Integral fuel tanks.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 7 2012-10-01 2012-10-01 false Integral fuel tanks. 182.435 Section 182.435 Shipping...) MACHINERY INSTALLATION Specific Machinery Requirements § 182.435 Integral fuel tanks. (a) Gasoline fuel tanks must be independent of the hull. (b) Diesel fuel tanks may not be built integral with the hull of...
46 CFR 182.435 - Integral fuel tanks.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 7 2010-10-01 2010-10-01 false Integral fuel tanks. 182.435 Section 182.435 Shipping...) MACHINERY INSTALLATION Specific Machinery Requirements § 182.435 Integral fuel tanks. (a) Gasoline fuel tanks must be independent of the hull. (b) Diesel fuel tanks may not be built integral with the hull of...
46 CFR 182.435 - Integral fuel tanks.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 7 2013-10-01 2013-10-01 false Integral fuel tanks. 182.435 Section 182.435 Shipping...) MACHINERY INSTALLATION Specific Machinery Requirements § 182.435 Integral fuel tanks. (a) Gasoline fuel tanks must be independent of the hull. (b) Diesel fuel tanks may not be built integral with the hull of...
DNS of moderate-temperature gaseous mixing layers laden with multicomponent-fuel drops
NASA Technical Reports Server (NTRS)
Clercq, P. C. Le; Bellan, J.
2004-01-01
A formulation representing multicomponent-fuel (MC-fuel) composition as a Probability Distribution Function (PDF) depending on the molar weight is used to construct a model of a large number of MC-fuel drops evaporating in a gas flow, so as to assess the extent of fuel specificity on the vapor composition.
40 CFR Appendix I to Part 92 - Emission Related Locomotive and Engine Parameters and Specifications
Code of Federal Regulations, 2011 CFR
2011-07-01
... injection—non-compression ignition engines. a. Control parameters and calibrations. b. Idle mixture. c. Fuel...(s). i. Injector timing calibration. 4. Fuel injection—compression ignition engines. a. Control... restriction. III. Fuel System. 1. General. a. Engine idle speed. 2. Carburetion. a. Air-fuel flow calibration...
40 CFR Appendix I to Part 92 - Emission Related Locomotive and Engine Parameters and Specifications
Code of Federal Regulations, 2014 CFR
2014-07-01
... injection—non-compression ignition engines. a. Control parameters and calibrations. b. Idle mixture. c. Fuel...(s). i. Injector timing calibration. 4. Fuel injection—compression ignition engines. a. Control... restriction. III. Fuel System. 1. General. a. Engine idle speed. 2. Carburetion. a. Air-fuel flow calibration...
40 CFR Appendix I to Part 92 - Emission Related Locomotive and Engine Parameters and Specifications
Code of Federal Regulations, 2013 CFR
2013-07-01
... injection—non-compression ignition engines. a. Control parameters and calibrations. b. Idle mixture. c. Fuel...(s). i. Injector timing calibration. 4. Fuel injection—compression ignition engines. a. Control... restriction. III. Fuel System. 1. General. a. Engine idle speed. 2. Carburetion. a. Air-fuel flow calibration...
40 CFR Appendix I to Part 92 - Emission Related Locomotive and Engine Parameters and Specifications
Code of Federal Regulations, 2012 CFR
2012-07-01
... injection—non-compression ignition engines. a. Control parameters and calibrations. b. Idle mixture. c. Fuel...(s). i. Injector timing calibration. 4. Fuel injection—compression ignition engines. a. Control... restriction. III. Fuel System. 1. General. a. Engine idle speed. 2. Carburetion. a. Air-fuel flow calibration...
40 CFR 600.107-08 - Fuel specifications.
Code of Federal Regulations, 2010 CFR
2010-07-01
... specifications for gasoline, diesel, methanol, and methanol-petroleum fuel mixtures are given in § 86.113 of this.... Copies may be obtained from the American Society for Testing and Materials, 100 Barr Harbor Drive, P.O...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Calculation and use of vehicle-specific 5-cycle-based fuel economy values for vehicle configurations. 600.207-08 Section 600.207-08 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Fue...
Rover nuclear rocket engine program: Overview of rover engine tests
NASA Technical Reports Server (NTRS)
Finseth, J. L.
1991-01-01
The results of nuclear rocket development activities from the inception of the ROVER program in 1955 through the termination of activities on January 5, 1973 are summarized. This report discusses the nuclear reactor test configurations (non cold flow) along with the nuclear furnace demonstrated during this time frame. Included in the report are brief descriptions of the propulsion systems, test objectives, accomplishments, technical issues, and relevant test results for the various reactor tests. Additionally, this document is specifically aimed at reporting performance data and their relationship to fuel element development with little or no emphasis on other (important) items.
Recent trends in aviation turbine fuel properties
NASA Technical Reports Server (NTRS)
Friedman, R.
1982-01-01
Plots and tables, compiled from Department of Energy (and predecessor agency) inspection reports from 1969 to 1980, present ranges, averages, extremes, and trends for most of the 22 properties of Jet A aviation turbine fuel. In recent years, average values of aromatics content, mercaptan sulfur content, distillation temperature of 10 percent recovered, smoke point, and freezing point show small but recognizable trends toward their specification limits. About 80 percent of the fuel samples had at least one property near specification, defined as within a standard band about the specification limit. By far the most common near-specification properties were aromatics content, smoke point, and freezing point.
History of Sulphur Content Effects on the Thermal Stability of RP-1 under Heated Conditions
NASA Technical Reports Server (NTRS)
Irvine, Solveig A.; Schoettmer, Amanda K.; Bates, Ronald W.; Meyer, Michael L.
2004-01-01
As technologies advance in the aerospace industry, a strong desire has emerged to design more efficient, longer life, reusable liquid hydrocarbon fueled rocket engines. To achieve this goal, a more complete understanding of the thermal stability and chemical makeup of the hydrocarbon propellant is needed. Since the main fuel used in modern liquid hydrocarbon systems is RP-1, there is concern that Standard Grade RP-1 may not be a suitable propellant for future-generation rocket engines due to concern over the outdated Mil-Specification for the fuel. This current specification allows high valued limits on contaminants such as sulfur compounds, and also lacks specification of required thermal stability qualifications for the fuel. Previous studies have highlighted the detrimental effect of high levels of mercaptan sulfur content (^50 ppm) on copper rocket engine materials, but the fuel itself has not been studied. While the role of sulfur in other fuels (e.g., aviation, diesel, and automotive fuels) has been extensively studied, little has been reported on the effects of sulfur levels in rocket fuels. Lower RP-1 sulfur concentrations need to be evaluated and an acceptable sulfur limit established before RP-1 can be recommended for use as the propellant for future launch vehicles. (5 tables, 8 figures, 9 refs.)
Final Progress Report, Renewable and Logistics Fuels for Fuel Cells at the Colorado School of Mines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sullivan, Neal P.
The objective of this program is to advance the current state of technology of solid-oxide fuel cells (SOFCs) to improve performance when operating on renewable and logistics hydrocarbon fuel streams. Outcomes will include: 1.) new SOFC materials and architectures that address the technical challenges associated with carbon-deposit formation and sulfur poisoning; 2.) new integration strategies for combining fuel reformers with SOFCs; 3.) advanced modeling tools that bridge the scales of fundamental charge-transfer chemistry to system operation and control; and 4.) outreach through creation of the Distinguished Lecturer Series to promote nationwide collaboration with fuel-cell researchers and scientists.
A Cross-Sectional Study of Household Biomass Fuel Use among a Periurban Population in Malawi
Piddock, Katy C.; Gordon, Stephen B.; Ngwira, Andrew; Msukwa, Malango; Nadeau, Gilbert; Davis, Kourtney J.; Nyirenda, Moffat J.; Mortimer, Kevin
2016-01-01
Rationale The Global Burden of Disease Study suggests almost 3.5 million people die as a consequence of household air pollution every year. Respiratory diseases including chronic obstructive pulmonary disease and pneumonia in children are strongly associated with exposure to household air pollution. Smoke from burning biomass fuels for cooking, heating, and lighting is the main contributor to high household air pollution levels in low-income countries like Malawi. A greater understanding of biomass fuel use in Malawi should enable us to address household air pollution–associated communicable and noncommunicable diseases more effectively. Objectives To conduct a cross-sectional analysis of biomass fuel use and population demographics among adults in Blantyre, Malawi. Methods We used global positioning system–enabled personal digital assistants to collect data on location, age, sex, marital status, education, occupation, and fuel use. We describe these data and explore associations between demographics and reported fuel type. Measurements and Main Results A total of 16,079 adults participated (nine households refused); median age was 30 years, there was a similar distribution of men and women, 60% were married, and 62% received secondary school education. The most commonly reported occupation for men and women was “salaried employment” (40.7%) and “petty trader and marketing” (23.5%), respectively. Charcoal (81.5% of households), wood (36.5%), and electricity (29.1%) were the main fuels used at home. Only 3.9% of households used electricity exclusively. Lower educational and occupational attainment was associated with greater use of wood. Conclusions This large cross-sectional study has identified extensive use of biomass fuels in a typical sub-Saharan Africa periurban population in which women and people of lower socioeconomic status are disproportionately affected. Biomass fuel use is likely to be a major driver of existing communicable respiratory disease and the emerging noncommunicable disease (especially respiratory and cardiovascular) epidemic in this region. Our data will help inform the rationale for specific intervention studies and the development of appropriately targeted public health strategies to tackle this important and poverty-related global health problem. PMID:24960156
NASA Astrophysics Data System (ADS)
Natarajan, Jayaprakash
Coal derived synthetic gas (syngas) fuel is a promising solution for today's increasing demand for clean and reliable power. Syngas fuels are primarily mixtures of H2 and CO, often with large amounts of diluents such as N2, CO2, and H2O. The specific composition depends upon the fuel source and gasification technique. This requires gas turbine designers to develop fuel flexible combustors capable of operating with high conversion efficiency while maintaining low emissions for a wide range of syngas tact mixtures. Design tools often used in combustor development require data on various fundamental gas combustion properties. For example, laminar flame speed is often an input as it has a significant impact upon the size and static stability of the combustor. Moreover it serves as a good validation parameter for leading kinetic models used for detailed combustion simulations. Thus the primary objective of this thesis is measurement of laminar flame speeds of syngas fuel mixtures at conditions relevant to ground-power gas turbines. To accomplish this goal, two flame speed measurement approaches were developed: a Bunsen flame approach modified to use the reaction zone area in order to reduce the influence of flame curvature on the measured flame speed and a stagnation flame approach employing a rounded bluff body. The modified Bunsen flame approach was validated against stretch-corrected approaches over a range of fuels and test conditions; the agreement is very good (less than 10% difference). Using the two measurement approaches, extensive flame speed information were obtained for lean syngas mixtures at a range of conditions: (1) 5 to 100% H2 in the H2/CO fuel mixture; (2) 300-700 K preheat temperature; (3) 1 to 15 atm pressure, and (4) 0-70% dilution with CO2 or N2. The second objective of this thesis is to use the flame speed data to validate leading kinetic mechanisms for syngas combustion. Comparisons of the experimental flame speeds to those predicted using detailed numerical simulations of strained and untrained laminar flames indicate that all the current kinetic mechanisms tend to over predict the increase in flame speed with preheat temperature for medium and high H2 content fuel mixtures. A sensitivity analysis that includes reported uncertainties in rate constants reveals that the errors in the rate constants of the reactions involving HO 2 seem to be the most likely cause for the observed higher preheat temperature dependence of the flame speeds. To enhance the accuracy of the current models, a more detailed sensitivity analysis based on temperature dependent reaction rate parameters should be considered as the problem seems to be in the intermediate temperature range (˜800-1200 K).
Alternate Fuels for Use in Commercial Aircraft
NASA Technical Reports Server (NTRS)
Daggett, David L.; Hendricks, Robert C.; Walther, Rainer; Corporan, Edwin
2008-01-01
The engine and aircraft Research and Development (R&D) communities have been investigating alternative fueling in near-term, midterm, and far-term aircraft. A drop in jet fuel replacement, consisting of a kerosene (Jet-A) and synthetic fuel blend, will be possible for use in existing and near-term aircraft. Future midterm aircraft may use a biojet and synthetic fuel blend in ultra-efficient airplane designs. Future far-term engines and aircraft in 50-plus years may be specifically designed to use a low- or zero-carbon fuel. Synthetic jet fuels from coal, natural gas, or other hydrocarbon feedstocks are very similar in performance to conventional jet fuel, yet the additional CO2 produced during the manufacturing needs to be permanently sequestered. Biojet fuels need to be developed specifically for jet aircraft without displacing food production. Envisioned as midterm aircraft fuel, if the performance and cost liabilities can be overcome, biofuel blends with synthetic jet or Jet-A fuels have near-term potential in terms of global climatic concerns. Long-term solutions address dramatic emissions reductions through use of alternate aircraft fuels such as liquid hydrogen or liquid methane. Either of these new aircraft fuels will require an enormous change in infrastructure and thus engine and airplane design. Life-cycle environmental questions need to be addressed.
Demonstration of fuel resistant to pellet-cladding interaction. Phase I. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosenbaum, H.S.
1979-03-01
This program has as its ultimate objective the demonstration of an advanced fuel design that is resistant to the failure mechanism known as fuel pellet-cladding interaction (PCI). Two fuel concepts are being developed for possible demonstration within this program: (a) Cu-barrier fuel, and (b) Zr-liner fuel. These advanced fuels (known collectively as barrier fuels) have special fuel cladding designed to protect the Zircaloy cladding tube from the harmful effects of localized stress, and reactive fission products during reactor service. This is the final report for PHASE 1 of this program. Support tests have shown that the barrier fuel resists PCImore » far better than does the conventional Zircaloy-clad fuel. Power ramp tests thus far have shown good PCI resistance for Cu-barrier fuel at burnup > 12 MWd/kg-U and for Zr-liner fuel > 16 MWd/kg-U. The program calls for continued testing to still higher burnup levels in PHASE 2.« less
Michael J. Falkowski; Paul Gessler; Penelope Morgan; Alistair M. S. Smith; Andrew T. Hudak
2004-01-01
Land managers need cost-effective methods for mapping and characterizing fire fuels quickly and accurately. The advent of sensors with increased spatial resolution may improve the accuracy and reduce the cost of fuels mapping. The objective of this research is to evaluate the accuracy and utility of imagery from the Advanced Spaceborne Thermal Emission and Reflection...
Evaluating the ASTER sensor for mapping and characterizing forest fire fuels in northern Idaho
Michael J. Falkowski; Paul Gessler; Penelope Morgan; Alistair M. S. Smith; Andrew T. Hudak
2004-01-01
Land managers need cost-effective methods for mapping and characterizing fire fuels quickly and accurately. The advent of sensors with increased spatial resolution may improve the accuracy and reduce the cost of fuels mapping. The objective of this research is to evaluate the accuracy and utility of imagery from the Advanced Spaceborne Thermal Emission and Reflection...
Characterizing and mapping forest fire fuels using ASTER imagery and gradient modeling
Michael J. Falkowski; Paul E. Gessler; Penelope Morgan; Andrew T. Hudak; Alistair M. S. Smith
2005-01-01
Land managers need cost-effective methods for mapping and characterizing forest fuels quickly and accurately. The launch of satellite sensors with increased spatial resolution may improve the accuracy and reduce the cost of fuels mapping. The objective of this research is to evaluate the accuracy and utility of imagery from the advanced spaceborne thermal emission and...
Embedded system based on PWM control of hydrogen generator with SEPIC converter
NASA Astrophysics Data System (ADS)
Fall, Cheikh; Setiawan, Eko; Habibi, Muhammad Afnan; Hodaka, Ichijo
2017-09-01
The objective of this paper is to design and to produce a micro electrical plant system based on fuel cell for teaching material-embedded systems in technical vocational training center. Based on this, the student can experience generating hydrogen by fuel cells, controlling the rate of hydrogen generation by the duty ration of single-ended primary-inductor converter(SEPIC), drawing the curve rate of hydrogen to duty ratio, generating electrical power by using hydrogen, and calculating the fuel cell efficiency when it is used as electrical energy generator. This project is of great importance insofar as students will need to acquire several skills to be able to realize it such as continuous DC DC conversion and the scientific concept behind the converter, the regulation of systems with integral proportional controllers, the installation of photovoltaic cells, the use of high-tech sensors, microcontroller programming, object-oriented programming, mastery of the fuel cell syste
Combustion of horse manure for heat production.
Lundgren, J; Pettersson, E
2009-06-01
The main objectives of this paper have been to evaluate the use of horse manure and wood-shavings as a fuel for heat production and to provide sets of data on the chemical composition, ash characteristics and ash forming elements of the fuel. Another objective has been to investigate the possibility to use the ash as fertiliser by analysing the heavy metal and nutrient contents. The results showed that the fuel is well suited for combustion for heat production causing low emissions of products of incomplete combustion. The emissions of NO(x) were however high due to the high content of fuel bound nitrogen. Emissions of CO and NO(x) were typically in the range of 30-150 mg/Nm(3) and 280-350 mg/Nm(3) at 10 vol% O(2), respectively. The analysis of the ash showed on sufficiently low concentration of heavy metals to allow recycling.
Radiation and Thermal Effects on Used Nuclear Fuel and Nuclear Waste Forms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weber, William J.; Zhang, Yanwen
This is the final report of the NEUP project “Radiation and Thermal Effects on Used Nuclear Fuel and Nuclear Waste Forms.” This project started on July 1, 2012 and was successfully completed on June 30, 2016. This report provides an overview of the main achievements, results and findings through the duration of the project. Additional details can be found in the main body of this report and in the individual Quarterly Reports and associated Deliverables of this project, which have been uploaded in PICS-NE. The objective of this research was to advance understanding and develop validated models on the effectsmore » of self-radiation from beta and alpha decay on the response of used nuclear fuel and nuclear waste forms during high-temperature interim storage and long-term permanent disposition. To achieve this objective, model used-fuel materials and model waste form materials were identified, fabricated, and studied.« less
A Comprehensive Review of Effect of Biodiesel Additives on Properties, Performance, and Emission
NASA Astrophysics Data System (ADS)
Madiwale, S.; Karthikeyan, A.; Bhojwani, V.
2017-05-01
Objectives:- To presents the literature review on effect of biodiesel additives on properties, performance and on emission. Method:-In the current paper reviews are taken from previous years paper which necessitates the need of addition of additives in the blends of biodiesel and studied the its effect on properties, performance and emissions. Emissions from the diesel powered vehicles mostly damaged the earth’s environment and also increased the overall earth’s temperature. This attracts the need of alternative fuels in the field of transportation sector. Past inventions and research showed that Biodiesel can be used as an alternative fuel for the diesel engine. Biodiesel have good combustion characteristics because of their long chain hydrocarbon structure. However biodiesel possesses few disadvantages such as lower heating value, higher flow ability, much high density and not able to flow at low temperature. Higher rate of fuel consumption is identified and higher level of NOx emissions when biodiesel used in an engine as an alternative fuels. Findings:-Different additives such as antioxidants, improvers for cetane number, cold flow properties improver, etc were investigated by the many researcher and scientists and added in the different feedstock of biodiesel or blends of biodiesel with diesel in different proportions. Directly or indirectly fuel additives can improve the reduction in the emissions, improve the fuel economy, and reduce the dependency of the one’s nation on other. Performances of biodiesel vehicles were drastically improved because of additioninthe blends of biodiesel with diesel fuel in specific percentages to meet the international emission standards. Addition of additives in the biodiesel or in the blends of biodiesel basically changes the high temperature and low temperature flow properties of blends of biodiesel. Current paper finds and compares properties of different additives and its effect on blends of biodiesel properties, performance and on emissions from diesel engines. Improvement:-This paper presents the literature review on effect of biodiesel additives on properties, performance and on emission.
NASA Technical Reports Server (NTRS)
Hass, Neal E.; Cabell, Karen F.; Storch, Andrea M.
2010-01-01
The initial phase of hydrocarbon-fueled ground tests supporting Flight 2 of the Hypersonic International Flight Research Experiment (HIFiRE) Program has been conducted in the NASA Langley Arc-Heated Scramjet Test Facility (AHSTF). The HIFiRE Program, an Air Force-lead international cooperative program includes eight different flight test experiments designed to target specific challenges of hypersonic flight. The second of the eight planned flight experiments is a hydrocarbon-fueled scramjet flight test intended to demonstrate dual-mode to scramjet-mode operation and verify the scramjet performance prediction and design tools. A performance goal is the achievement of a combusted fuel equivalence ratio greater than 0.7 while in scramjet mode. The ground test rig, designated the HIFiRE Direct Connect Rig (HDCR), is a full-scale, heat sink, direct-connect ground test article that duplicates both the flowpath lines and the instrumentation layout of the isolator and combustor portion of the flight test hardware. The primary objectives of the HDCR Phase I tests are to verify the operability of the HIFiRE isolator/combustor across the Mach 6.0-8.0 flight regime and to establish a fuel distribution schedule to ensure a successful mode transition prior to the HiFIRE payload Critical Design Review. Although the phase I test plans include testing over the Mach 6 to 8 flight simulation range, only Mach 6 testing will be reported in this paper. Experimental results presented here include flowpath surface pressure, temperature, and heat flux distributions that demonstrate the operation of the flowpath over a small range of test conditions around the nominal Mach 6 simulation, as well as a range of fuel equivalence ratios and fuel injection distributions. Both ethylene and a mixture of ethylene and methane (planned for flight) were tested. Maximum back pressure and flameholding limits, as well as a baseline fuel schedule, that covers the Mach 5.84-6.5 test space have been identified.
40 CFR 86.1313-2007 - Fuel specifications.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Administrator's satisfaction that this fuel will be the predominant in-use fuel. Such evidence could include such things as copies of signed contracts from customers indicating the intent to purchase and use... submitted evidence to the Administrator demonstrating to the Administrator's satisfaction that this fuel...
40 CFR 86.232-94 - Vehicle preconditioning.
Code of Federal Regulations, 2011 CFR
2011-07-01
... vehicle shall be moved to the test area and the following operations performed: (1) The fuel tank(s) shall be filled to approximately the prescribed “tank fuel volume” with the test fuel specified § 86.213. If the existing fuel in the fuel tank(s) does not meet the specifications contained in § 86.213, the...
High freezing point fuels used for aviation turbine engines
NASA Technical Reports Server (NTRS)
Friedman, R.
1979-01-01
Broadened-specification aviation fuels could be produced from a greater fraction of crude source material with improvements in fuel supply and price. These fuels, particularly those with increased final boiling temperatures, would have higher freezing temperatures than current aviation turbine fuels. For the small but significant fraction of commercial flights where low fuel temperatures make higher freezing-point fuel use unacceptable, adaptations to the fuel or fuel system may be made to accommodate this fuel. Several techniques are discussed. Fuel heating is the most promising concept. One simple design uses existing heat rejection from the fuel-lubricating oil cooler, another uses an engine-driven generator for electrical heating.
Fire Protection Informational Exchange
2016-07-01
0.95 L/min concurrent spray & 274x521 mm pool (66°C) i. Persistent fuels; turbine fuel in spray/pool; lubricant, hydraulic fluid in spray ii...conjugate image plane La Vision sCMOS + Kl long- distance microscope with CF4 objective wire .. " " " " ... in-line hologram image plane La...distance microscope with CF4 objective wire I phase disrurbanc.e (f= 2000 nun) .. " " " " ... in-line hologram image plane La Vision sCNlOS
Subtask 3.11 - Production of CBTL-Based Jet Fuels from Biomass-Based Feedstocks and Montana Coal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Ramesh
The Energy & Environmental Research Center (EERC), in partnership with the U.S. Department of Energy (DOE) and Accelergy Corporation, an advanced fuels developer with technologies exclusively licensed from Exxon Mobil, undertook Subtask 3.11 to use a recently installed bench-scale direct coal liquefaction (DCL) system capable of converting 45 pounds/hour of pulverized, dried coal to a liquid suitable for upgrading to fuels and/or chemicals. The process involves liquefaction of Rosebud mine coal (Montana coal) coupled with an upgrading scheme to produce a naphthenic fuel. The upgrading comprises catalytic hydrotreating and saturation to produce naphthenic fuel. A synthetic jet fuel was preparedmore » by blending equal volumes of naphthenic fuel with similar aliphatic fuel derived from biomass and 11 volume % of aromatic hydrocarbons. The synthetic fuel was tested using standard ASTM International techniques to determine compliance with JP-8 fuel. The composite fuel thus produced not only meets but exceeds the military aviation fuel-screening criteria. A 500-milliliter synthetic jet fuel sample which met internal screening criteria was submitted to the Air Force Research Laboratory (AFRL) at Wright–Patterson Air Force Base, Dayton, Ohio, for evaluation. The sample was confirmed by AFRL to be in compliance with U.S. Air Force-prescribed alternative aviation fuel initial screening criteria. The results show that this fuel meets or exceeds the key specification parameters for JP-8, a petroleum-based jet fuel widely used by the U.S. military. JP-8 specifications include parameters such as freeze point, density, flash point, and others; all of which were met by the EERC fuel sample. The fuel also exceeds the thermal stability specification of JP-8 fuel as determined by the quartz crystalline microbalance (QCM) test also performed at an independent laboratory as well as AFRL. This means that the EERC fuel looks and acts identically to petroleum-derived jet fuel and can be used interchangeably without any special requirements and thus provides a pathway to energy security to the U.S. military and the entire nation. This subtask was funded through the EERC–DOE Joint Program on Research and Development for Fossil Energy-Related Resources Cooperative Agreement No. DE-FC26- 08NT43291. Nonfederal funding was provided by Accelergy Corporation.« less
U.S. Army Methanol-Fueled Administrative Vehicle Demonstration Program
1989-08-01
for either fuel when compared with published production specifications. iii Also, four Chevrolet vehicles, two each with L-4 engines and two with V-6...With Manufacturer’s Production Specifications ... 217 G CRC Deposit Ratings for Inspected Vehicles ...................... 235 Viii LIST OF ILLUSTRATIONS...vehicles within the Government’s administrative fleet and to stimulate further the production and use of methanol-fueled vehicles. This program was
Renewable Hydrogen-Economically Viable: Integration into the U.S. Transportation Sector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurtz, Jennifer; Peters, Mike; Muratori, Matteo
The U.S. transportation sector is expected to meet numerous goals in differing applications. These goals address security, safety, fuel source, emissions reductions, advanced mobility models, and improvements in quality and accessibility. Solutions to meeting these goals include a variety of alternative-fuel technologies, including batteries, fuel cells, synthetic fuels, and biofuels, as well as modifying how current transportation systems are used and integrating new systems, such as storing renewable energy. Overall, there are many combinations of problems, objectives, and solutions.
Fuel Effects on Ignition and Their Impact on Advanced Combustion Engines (Poster)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, J.; Li, H.; Neill, S.
The objective of this report is to develop a pathway to use easily measured ignition properties as metrics for characterizing fuels in advanced combustion engine research--correlate IQT{trademark} measured parameters with engine data. In HCCL engines, ignition timing depends on the reaction rates throughout compression stroke: need to understand sensitivity to T, P, and [O{sub 2}]; need to rank fuels based on more than one set of conditions; and need to understand how fuel composition (molecular species) affect ignition properties.
2013-01-01
of the Safety of Chemicals in Foods , Drugs and Cosmetics – Dermal Toxicity. Association of Food and Drug Officials of the United States, Topeka, KS...Air Force is developing alternative fuels to decrease dependence on foreign oil. All new fuels are potentially hazardous to Air Force personnel and...oil. All new fuels are potentially hazardous to Air Force personnel and require toxicity evaluation. The objective of the dermal irritation study
Emma Vakili; Chad M. Hoffman; Robert E. Keane
2016-01-01
Fuel loading estimates from planar intersect sampling protocols for fine dead down woody surface fuels require an approximation of the mean squared diameter (d2) of 1-h (0-0.63 cm), 10-h (0.63-2.54 cm), and 100-h (2.54-7.62 cm) timelag size classes. The objective of this study is to determine d2 in ponderosa pine (Pinus ponderosa) forests of New Mexico and Colorado,...
40 CFR 86.1206-96 - Equipment required; overview.
Code of Federal Regulations, 2011 CFR
2011-07-01
...-Fueled and Methanol-Fueled Heavy-Duty Vehicles § 86.1206-96 Equipment required; overview. This subpart... methanol-fueled heavy-duty vehicles. Equipment required and specifications are as follows: (a) Evaporative...
40 CFR 86.1206-96 - Equipment required; overview.
Code of Federal Regulations, 2010 CFR
2010-07-01
...-Fueled and Methanol-Fueled Heavy-Duty Vehicles § 86.1206-96 Equipment required; overview. This subpart... methanol-fueled heavy-duty vehicles. Equipment required and specifications are as follows: (a) Evaporative...
Hellier, Paul; Purton, Saul; Ladommatos, Nicos
2015-01-01
The metabolic engineering of photosynthetic microbes for production of novel hydrocarbons presents an opportunity for development of advanced designer biofuels. These can be significantly more sustainable, throughout the production-to-consumption lifecycle, than the fossil fuels and crop-based biofuels they might replace. Current biofuels, such as bioethanol and fatty acid methyl esters, have been developed primarily as drop-in replacements for existing fossil fuels, based on their physical properties and autoignition characteristics under specific combustion regimes. However, advances in the genetic engineering of microalgae and cyanobacteria, and the application of synthetic biology approaches offer the potential of designer strains capable of producing hydrocarbons and oxygenates with specific molecular structures. Furthermore, these fuel molecules can be designed for higher efficiency of energy release and lower exhaust emissions during combustion. This paper presents a review of potential fuel molecules from photosynthetic microbes and the performance of these possible fuels in modern internal combustion engines, highlighting which modifications to the molecular structure of such fuels may enhance their suitability for specific combustion regimes. PMID:25941673
Hellier, Paul; Purton, Saul; Ladommatos, Nicos
2015-01-01
The metabolic engineering of photosynthetic microbes for production of novel hydrocarbons presents an opportunity for development of advanced designer biofuels. These can be significantly more sustainable, throughout the production-to-consumption lifecycle, than the fossil fuels and crop-based biofuels they might replace. Current biofuels, such as bioethanol and fatty acid methyl esters, have been developed primarily as drop-in replacements for existing fossil fuels, based on their physical properties and autoignition characteristics under specific combustion regimes. However, advances in the genetic engineering of microalgae and cyanobacteria, and the application of synthetic biology approaches offer the potential of designer strains capable of producing hydrocarbons and oxygenates with specific molecular structures. Furthermore, these fuel molecules can be designed for higher efficiency of energy release and lower exhaust emissions during combustion. This paper presents a review of potential fuel molecules from photosynthetic microbes and the performance of these possible fuels in modern internal combustion engines, highlighting which modifications to the molecular structure of such fuels may enhance their suitability for specific combustion regimes.
Performance of a small compression ignition engine fuelled by liquified petroleum gas
NASA Astrophysics Data System (ADS)
Ambarita, Himsar; Yohanes Setyawan, Eko; Ginting, Sibuk; Naibaho, Waldemar
2017-09-01
In this work, a small air cooled single cylinder of diesel engine with a rated power of 2.5 kW at 3000 rpm is tested in two different modes. In the first mode, the CI engines run on diesel fuel mode. In the second mode, the CI engine run on liquified petroleum gas (LPG) mode. In order to simulate the load, a generator is employed. The load is fixed at 800 W and engine speed varies from 2400 rpm to 3400 rpm. The out power, specific fuel consumption, and brake thermal efficiency resulted from the engine in both modes are compared. The results show that the output power of the CI engine run on LPG fuel is comparable with the engine run on diesel fuel. However, the specific fuel consumption of the CI engine with LPG fuel is higher 17.53% in average in comparison with the CI engine run on diesel fuel. The efficiency of the CI engine with LPG fuel is lower 21.43% in average in comparison with the CI engine run on diesel fuel.
DOT National Transportation Integrated Search
2003-10-29
The objective of the DOE/NREL evaluation program is to provide comprehensive, unbiased evaluation results of advanced technology vehicle development and operations, evaluation of hydrogen infrastructure development and operation, and descriptions of ...
Nanotechnology Investigated for Future Gelled and Metallized Gelled Fuels
NASA Technical Reports Server (NTRS)
Palaszewski, Bryan A.
2003-01-01
The objective of this research is to create combustion data for gelled and metallized gelled fuels using unique nanometer-sized gellant particles and/or nanometer-sized aluminum particles. Researchers at the NASA Glenn Research Center are formulating the fuels for both gas turbine and pulsed detonation engines. We intend to demonstrate metallized gelled fuel ignition characteristics for pulse detonation engines with JP/aluminum fuel and for gas turbine engines with gelled JP, propane, and methane fuel. The fuels to be created are revolutionary as they will deliver the highest theoretically maximum performance of gelled and metallized gelled fuels. Past combustion work has used micrometer-sized particles, which have limited the combustion performance of gelled and metallized gelled fuels. The new fuel used nanometer-sized aluminum oxide particles, which reduce the losses due to mismatch in the gas and solid phases in the exhaust. Gelled fuels provide higher density, added safety, reduced fuel slosh, reduced leakage, and increased exhaust velocity. Altogether, these benefits reduce the overall size and mass of the vehicle, increasing its flexibility.