Sample records for fuel storage pool

  1. Fuel transfer system

    DOEpatents

    Townsend, Harold E.; Barbanti, Giancarlo

    1994-01-01

    A nuclear fuel bundle fuel transfer system includes a transfer pool containing water at a level above a reactor core. A fuel transfer machine therein includes a carriage disposed in the transfer pool and under the water for transporting fuel bundles. The carriage is selectively movable through the water in the transfer pool and individual fuel bundles are carried vertically in the carriage. In a preferred embodiment, a first movable bridge is disposed over an upper pool containing the reactor core, and a second movable bridge is disposed over a fuel storage pool, with the transfer pool being disposed therebetween. A fuel bundle may be moved by the first bridge from the reactor core and loaded into the carriage which transports the fuel bundle to the second bridge which picks up the fuel bundle and carries it to the fuel storage pool.

  2. Fuel transfer system

    DOEpatents

    Townsend, H.E.; Barbanti, G.

    1994-03-01

    A nuclear fuel bundle fuel transfer system includes a transfer pool containing water at a level above a reactor core. A fuel transfer machine therein includes a carriage disposed in the transfer pool and under the water for transporting fuel bundles. The carriage is selectively movable through the water in the transfer pool and individual fuel bundles are carried vertically in the carriage. In a preferred embodiment, a first movable bridge is disposed over an upper pool containing the reactor core, and a second movable bridge is disposed over a fuel storage pool, with the transfer pool being disposed therebetween. A fuel bundle may be moved by the first bridge from the reactor core and loaded into the carriage which transports the fuel bundle to the second bridge which picks up the fuel bundle and carries it to the fuel storage pool. 6 figures.

  3. The Need for Integrating the Back End of the Nuclear Fuel Cycle in the United States of America

    DOE PAGES

    Bonano, Evaristo J.; Kalinina, Elena A.; Swift, Peter N.

    2018-02-26

    Current practice for commercial spent nuclear fuel management in the United States of America (US) includes storage of spent fuel in both pools and dry storage cask systems at nuclear power plants. Most storage pools are filled to their operational capacity, and management of the approximately 2,200 metric tons of spent fuel newly discharged each year requires transferring older and cooler fuel from pools into dry storage. In the absence of a repository that can accept spent fuel for permanent disposal, projections indicate that the US will have approximately 134,000 metric tons of spent fuel in dry storage by mid-centurymore » when the last plants in the current reactor fleet are decommissioned. Current designs for storage systems rely on large dual-purpose (storage and transportation) canisters that are not optimized for disposal. Various options exist in the US for improving integration of management practices across the entire back end of the nuclear fuel cycle.« less

  4. The Need for Integrating the Back End of the Nuclear Fuel Cycle in the United States of America

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonano, Evaristo J.; Kalinina, Elena A.; Swift, Peter N.

    Current practice for commercial spent nuclear fuel management in the United States of America (US) includes storage of spent fuel in both pools and dry storage cask systems at nuclear power plants. Most storage pools are filled to their operational capacity, and management of the approximately 2,200 metric tons of spent fuel newly discharged each year requires transferring older and cooler fuel from pools into dry storage. In the absence of a repository that can accept spent fuel for permanent disposal, projections indicate that the US will have approximately 134,000 metric tons of spent fuel in dry storage by mid-centurymore » when the last plants in the current reactor fleet are decommissioned. Current designs for storage systems rely on large dual-purpose (storage and transportation) canisters that are not optimized for disposal. Various options exist in the US for improving integration of management practices across the entire back end of the nuclear fuel cycle.« less

  5. A&M. TAN607. Detail of fuel storage pool under construction. Camera ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    A&M. TAN-607. Detail of fuel storage pool under construction. Camera is on berm and facing northwest. Note depth of excavation. Formwork underway for floor and concrete walls of pool; wall between pool and vestibule. At center left of view, foundation for liquid waste treatment plant is poured. Date: August 25, 1953. INEEL negative no. 8541 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  6. Used fuel extended storage security and safeguards by design roadmap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durbin, Samuel G.; Lindgren, Eric Richard; Jones, Robert

    2016-05-01

    In the United States, spent nuclear fuel (SNF) is safely and securely stored in spent fuel pools and dry storage casks. The available capacity in spent fuel pools across the nuclear fleet has nearly reached a steady state value. The excess SNF continues to be loaded in dry storage casks. Fuel is expected to remain in dry storage for periods beyond the initial dry cask certification period of 20 years. Recent licensing renewals have approved an additional 40 years. This report identifies the current requirements and evaluation techniques associated with the safeguards and security of SNF dry cask storage. Amore » set of knowledge gaps is identified in the current approaches. Finally, this roadmap identifies known knowledge gaps and provides a research path to deliver the tools and models needed to close the gaps and allow the optimization of the security and safeguards approaches for an interim spent fuel facility over the lifetime of the storage site.« less

  7. Proliferation resistance assessment of various methods of spent nuclear fuel storage and disposal

    NASA Astrophysics Data System (ADS)

    Kollar, Lenka

    Many countries are planning to build or already are building new nuclear power plants to match their growing energy needs. Since all nuclear power plants handle nuclear materials that could potentially be converted and used for nuclear weapons, they each present a nuclear proliferation risk. Spent nuclear fuel presents the largest build-up of nuclear material at a power plant. This is a proliferation risk because spent fuel contains plutonium that can be chemically separated and used for a nuclear weapon. The International Atomic Energy Agency (IAEA) safeguards spent fuel in all non-nuclear weapons states that are party to the Non-Proliferation Treaty. Various safeguards methods are in use at nuclear power plants and research is underway to develop safeguards methods for spent fuel in centralized storage or underground storage and disposal. Each method of spent fuel storage presents different proliferation risks due to the nature of the storage method and the safeguards techniques that are utilized. Previous proliferation resistance and proliferation risk assessments have mainly compared nuclear material through the whole fuel cycle and not specifically focused on spent fuel storage. This project evaluates the proliferation resistance of the three main types of spent fuel storage: spent fuel pool, dry cask storage, and geological repository. The proliferation resistance assessment methodology that is used in this project is adopted from previous work and altered to be applicable to spent fuel storage. The assessment methodology utilizes various intrinsic and extrinsic proliferation-resistant attributes for each spent fuel storage type. These attributes are used to calculate a total proliferation resistant (PR) value. The maximum PR value is 1.00 and a greater number means that the facility is more proliferation resistant. Current data for spent fuel storage in the United States and around the world was collected. The PR values obtained from this data are 0.49 for the spent fuel pool, 0.42 for dry cask storage, 0.36 for the operating geological repository, and 0.28 for the closed geological repository. Therefore, the spent fuel pool is currently the most proliferation resistant method for storing spent fuel. The extrinsic attributes, mainly involving safeguards measures, affect the total PR value the most. As a result, several recommendations are made to improve the proliferation resistance of spent fuel. These recommendations include employing more advanced safeguards measures, such as verification techniques and remote monitoring, for dry cask storage and the geological repository. Dry cask storage facilities should also be located at the plant and in a secure building to minimize the proliferation risk. Finally, the cost-benefit analysis of increased safeguards needs to be considered. Taking these recommendations into account, the PR values of dry cask storage and the closed geological would be significantly increased, to 0.57 and 0.51, respectively. As a result, with increased safeguards to the safeguards level of the spent fuel pool, dry cask storage would be the most proliferation resistant method to store spent fuel. Therefore, the IAEA should continue to develop remote monitoring and cask storage verification techniques in order to improve the proliferation resistance of spent fuel.

  8. Fuel handling system for a nuclear reactor

    DOEpatents

    Saiveau, James G.; Kann, William J.; Burelbach, James P.

    1986-01-01

    A pool type nuclear fission reactor has a core, with a plurality of core elements and a redan which confines coolant as a hot pool at a first end of the core separated from a cold pool at a second end of the core by the redan. A fuel handling system for use with such reactors comprises a core element storage basket located outside of the redan in the cold pool. An access passage is formed in the redan with a gate for opening and closing the passage to maintain the temperature differential between the hot pool and the cold pool. A mechanism is provided for opening and closing the gate. A lifting arm is also provided for manipulating the fuel core elements through the access passage between the storage basket and the core when the redan gate is open.

  9. Fuel handling system for a nuclear reactor

    DOEpatents

    Saiveau, James G.; Kann, William J.; Burelbach, James P.

    1986-12-02

    A pool type nuclear fission reactor has a core, with a plurality of core elements and a redan which confines coolant as a hot pool at a first end of the core separated from a cold pool at a second end of the core by the redan. A fuel handling system for use with such reactors comprises a core element storage basket located outside of the redan in the cold pool. An access passage is formed in the redan with a gate for opening and closing the passage to maintain the temperature differential between the hot pool and the cold pool. A mechanism is provided for opening and closing the gate. A lifting arm is also provided for manipulating the fuel core elements through the access passage between the storage basket and the core when the redan gate is open.

  10. Dry transfer system for spent fuel: Project report, A system designed to achieve the dry transfer of bare spent fuel between two casks. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dawson, D.M.; Guerra, G.; Neider, T.

    1995-12-01

    This report describes the system developed by EPRI/DOE for the dry transfer of spent fuel assemblies outside the reactor spent fuel pool. The system is designed to allow spent fuel assemblies to be removed from a spent fuel pool in a small cask, transported to the transfer facility, and transferred to a larger cask, either for off-site transportation or on-site storage. With design modifications, this design is capable of transferring single spent fuel assemblies from dry storage casks to transportation casks or visa versa. One incentive for the development of this design is that utilities with limited lifting capacity ormore » other physical or regulatory constraints are limited in their ability to utilize the current, more efficient transportation and storage cask designs. In addition, DOE, in planning to develop and implement the multi-purpose canister (MPC) system for the Civilian Radioactive Waste Management System, included the concept of an on-site dry transfer system to support the implementation of the MPC system at reactors with limitations that preclude the handling of the MPC system transfer casks. This Dry Transfer System can also be used at reactors wi decommissioned spent fuel pools and fuel in dry storage in non-MPC systems to transfer fuel into transportation casks. It can also be used at off-reactor site interim storage facilities for the same purpose.« less

  11. 75 FR 11566 - Firstenergy Nuclear Operating Company, Firstenergy Nuclear Generation Corp., Ohio Edison Company...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-11

    ... with zero soluble boron in the spent fuel pool, and that k eff remains less than or equal to 0.95 for the entire pool with credit for soluble boron under non-accident and accident conditions with a 95... k eff through fuel storage requirements and boron concentration controls in the spent fuel pool. The...

  12. Optimization of spent fuel pool weir gate driving mechanism

    NASA Astrophysics Data System (ADS)

    Liu, Chao; Du, Lin; Tao, Xinlei; Wang, Shijie; Shang, Ertao; Yu, Jianjiang

    2018-04-01

    Spent fuel pool is crucial facility for fuel storage and nuclear safety, and the spent fuel pool weir gate is the key related equipment. In order to achieve a goal of more efficient driving force transfer, loading during the opening/closing process is analyzed and an optimized calculation method for dimensions of driving mechanism is proposed. The result of optimizing example shows that the method can be applied to weir gates' design with similar driving mechanism.

  13. Nuclear Energy Policy

    DTIC Science & Technology

    2007-07-12

    Nuclear Waste Storage Act of 2007. Requires commercial nuclear power plants to transfer spent fuel from pools to dry storage ...enrichment, spent fuel recycling (also called reprocessing), and other fuel cycle facilities that could be used to produce nuclear weapons materials...that had used the leased fuel , along with supplies of fresh nuclear fuel , according to the GNEP concept; see [http://www.gnep.energy.gov].

  14. Characterization of neutron sources from spent fuel casks. [Skyshine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parks, C.V.; Pace, J.V. III

    1987-01-01

    In the interim period prior to the acceptance of spent fuel for disposal by the USDOE, utilities are beginning to choose dry cask storage as an alternative to pool re-racking, transshipments, or new pool construction. In addition, the current MRS proposal calls for interim dry storage of consolidated spent fuel in concrete casks. As part of the licensing requirements for these cask storage facilities, calculations are typically necessary to determine the yearly radiation dose received at the site boundary. Unlike wet facilities, neutron skyshine can be an important contribution to the total boundary dose from a dry storage facility. Calculationmore » of the neutron skyshine is in turn heavily dependent on the source characteristics and source model selected for the analysis. This paper presents the basic source characteristics of the spent fuel stored in dry casks and discusses factors that must be considered in evaluating and modeling the radiation sources for the subsequent skyshine calculation. 4 refs., 1 tab.« less

  15. Horizontal modular dry irradiated fuel storage system

    DOEpatents

    Fischer, Larry E.; McInnes, Ian D.; Massey, John V.

    1988-01-01

    A horizontal, modular, dry, irradiated fuel storage system (10) includes a thin-walled canister (12) for containing irradiated fuel assemblies (20), which canister (12) can be positioned in a transfer cask (14) and transported in a horizontal manner from a fuel storage pool (18), to an intermediate-term storage facility. The storage system (10) includes a plurality of dry storage modules (26) which accept the canister (12) from the transfer cask (14) and provide for appropriate shielding about the canister (12). Each module (26) also provides for air cooling of the canister (12) to remove the decay heat of the irradiated fuel assemblies (20). The modules (26) can be interlocked so that each module (26) gains additional shielding from the next adjacent module (26). Hydraulic rams (30) are provided for inserting and removing the canisters (12) from the modules (26).

  16. Annual report, FY 1979 Spent fuel and fuel pool component integrity.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, A.B. Jr.; Bailey, W.J.; Schreiber, R.E.

    International meetings under the BEFAST program and under INFCE Working Group No. 6 during 1978 and 1979 continue to indicate that no cases of fuel cladding degradation have developed on pool-stored fuel from water reactors. A section from a spent fuel rack stand, exposed for 1.5 y in the Yankee Rowe (PWR) pool had 0.001- to 0.003-in.-deep (25- to 75-..mu..m) intergranular corrosion in weld heat-affected zones but no evidence of stress corrosion cracking. A section of a 304 stainless steel spent fuel storage rack exposed 6.67 y in the Point Beach reactor (PWR) spent fuel pool showed no significant corrosion.more » A section of 304 stainless steel 8-in.-dia pipe from the Three Mile Island No. 1 (PWR) spent fuel pool heat exchanger plumbing developed a through-wall crack. The crack was intergranular, initiating from the inside surface in a weld heat-affected zone. The zone where the crack occurred was severely sensitized during field welding. The Kraftwerk Union (Erlangen, GFR) disassembled a stainless-steel fuel-handling machine that operated for 12 y in a PWR (boric acid) spent fuel pool. There was no evidence of deterioration, and the fuel-handling machine was reassembled for further use. A spent fuel pool at a Swedish PWR was decontaminated. The procedure is outlined in this report.« less

  17. Fission matrix-based Monte Carlo criticality analysis of fuel storage pools

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farlotti, M.; Ecole Polytechnique, Palaiseau, F 91128; Larsen, E. W.

    2013-07-01

    Standard Monte Carlo transport procedures experience difficulties in solving criticality problems in fuel storage pools. Because of the strong neutron absorption between fuel assemblies, source convergence can be very slow, leading to incorrect estimates of the eigenvalue and the eigenfunction. This study examines an alternative fission matrix-based Monte Carlo transport method that takes advantage of the geometry of a storage pool to overcome this difficulty. The method uses Monte Carlo transport to build (essentially) a fission matrix, which is then used to calculate the criticality and the critical flux. This method was tested using a test code on a simplemore » problem containing 8 assemblies in a square pool. The standard Monte Carlo method gave the expected eigenfunction in 5 cases out of 10, while the fission matrix method gave the expected eigenfunction in all 10 cases. In addition, the fission matrix method provides an estimate of the error in the eigenvalue and the eigenfunction, and it allows the user to control this error by running an adequate number of cycles. Because of these advantages, the fission matrix method yields a higher confidence in the results than standard Monte Carlo. We also discuss potential improvements of the method, including the potential for variance reduction techniques. (authors)« less

  18. FRAPCON analysis of cladding performance during dry storage operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richmond, David J.; Geelhood, Kenneth J.

    There is an increasing need in the U.S. and around the world to move used nuclear fuel from wet storage in fuel pools to dry storage in casks stored at independent spent fuel storage installations (ISFSI) or interim storage sites. The NRC limits cladding temperature to 400°C while maintaining cladding hoop stress below 90 MPa in an effort to avoid radial hydride reorientation. An analysis was conducted with FRAPCON-4.0 on three modern fuel designs with three representative used nuclear fuel storage temperature profiles that peaked at 400 °C. Results were representative of the majority of U.S. LWR fuel. They conservativelymore » showed that hoop stress remains below 90 MPa at the licensing temperature limit. Results also show that the limiting case for hoop stress may not be at the highest rod internal pressure in all cases but will be related to the axial temperature and oxidation profiles of the rods at the end of life and in storage.« less

  19. LPT. Shield test facility test building interior (TAN646). Camera facing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LPT. Shield test facility test building interior (TAN-646). Camera facing south. Distant pool contained EBOR reactor; near pool was intended for fuel rod storage. Other post-1970 activity equipment remains in pool. INEEL negative no. HD-40-9-4 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  20. Timely topics on spent fuel storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Selin, I.

    1994-12-31

    The history of spent fuel management in this country has taken several turns, with a final resolution still out of reach. Several repository programs started, stalled ans stopped. The latest effort at Yucca Mountain is progressing but, at best, is years from the early phases of licensing, much less the actual underground disposal of spent fuel. A monitored retrieval storage [MRS] facility was expected to start accepting commercial spent fuel beginning in 1998, but no such facility is clearly on the horizon. All of these recent developments changed the circumstances that we face in spent fuel management. The obvious conclusionmore » is that an increasing number of plants, both operating and permanently shut-down reactors, will have to provide for additional spent fuel storage on-site for a longer period than originally planned, and even after plant decommissioning, prudence requires that provision be made for continual, stand-alone, on-site storage. After pool capacity is reached, most utilities opt for some sort of dry storage. But the dry storage option has triggered an unprecedented amount of local opposition at many sites, further taxing NRC and industry resources.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarta, Jose A.; Castiblanco, Luis A

    With cooperation of the International Atomic Energy Agency (IAEA) and the Department of Energy (DOE) of the United States, several calculations and tasks related to the waste disposal of spent MTR fuel enriched nominally to 93% were carried out for the conversion of the IAN-R1 Research Reactor from MTR-HEU fuel to TRIGA-LEU fuel. In order to remove the spent MTR-HEU fuel of the core and store it safely a program was established at the Instituto de Ciencias Nucleares y Energias Alternativas (INEA). This program included training, acquisition of hardware and software, design and construction of a decay pool, transfer ofmore » the spent HEU fuel elements into the decay pool and his final transport to Savannah River in United States. In this paper are presented data of activities calculated for each relevant radionuclide present in spent MTR-HEU fuel elements of the IAN-R1 Research Reactor and the total activity. The total activity calculated takes in consideration contributions of fission, activation and actinides products. The data obtained were the base for shielding calculations for the decay pool concerning the storage of spent MTR-HEU fuel elements and the respective dosimetric evaluations in the transferring operations of fuel elements into the decay pool.« less

  2. Nuclear Energy Policy

    DTIC Science & Technology

    2008-01-28

    2007. Requires commercial nuclear power plants to transfer spent fuel from pools to dry storage casks and then convey title to the Secretary of Energy...far more economical options for reducing fossil fuel use .15 (For more on federal incentives and the economics of nuclear power, see CRS Report RL33442...uranium enrichment, spent fuel recycling (also called reprocessing), and other fuel cycle facilities that could be used to produce nuclear weapons

  3. Modeling evaporation from spent nuclear fuel storage pools: A diffusion approach

    NASA Astrophysics Data System (ADS)

    Hugo, Bruce Robert

    Accurate prediction of evaporative losses from light water reactor nuclear power plant (NPP) spent fuel storage pools (SFPs) is important for activities ranging from sizing of water makeup systems during NPP design to predicting the time available to supply emergency makeup water following severe accidents. Existing correlations for predicting evaporation from water surfaces are only optimized for conditions typical of swimming pools. This new approach modeling evaporation as a diffusion process has yielded an evaporation rate model that provided a better fit of published high temperature evaporation data and measurements from two SFPs than other published evaporation correlations. Insights from treating evaporation as a diffusion process include correcting for the effects of air flow and solutes on evaporation rate. An accurate modeling of the effects of air flow on evaporation rate is required to explain the observed temperature data from the Fukushima Daiichi Unit 4 SFP during the 2011 loss of cooling event; the diffusion model of evaporation provides a significantly better fit to this data than existing evaporation models.

  4. 76 FR 27094 - Notice; Applications and Amendments to Facility Operating Licenses Involving Proposed No...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-10

    ... the Region I fuel storage racks reflect credit for fuel assembly burnup and soluble boron. Based on... boron concentration of 850 parts per million (ppm) during normal operations, and 1350 ppm during...) racks when considering the presence of soluble boron in the pool water for criticality control and the...

  5. Benchmarking criticality analysis of TRIGA fuel storage racks.

    PubMed

    Robinson, Matthew Loren; DeBey, Timothy M; Higginbotham, Jack F

    2017-01-01

    A criticality analysis was benchmarked to sub-criticality measurements of the hexagonal fuel storage racks at the United States Geological Survey TRIGA MARK I reactor in Denver. These racks, which hold up to 19 fuel elements each, are arranged at 0.61m (2 feet) spacings around the outer edge of the reactor. A 3-dimensional model was created of the racks using MCNP5, and the model was verified experimentally by comparison to measured subcritical multiplication data collected in an approach to critical loading of two of the racks. The validated model was then used to show that in the extreme condition where the entire circumference of the pool was lined with racks loaded with used fuel the storage array is subcritical with a k value of about 0.71; well below the regulatory limit of 0.8. A model was also constructed of the rectangular 2×10 fuel storage array used in many other TRIGA reactors to validate the technique against the original TRIGA licensing sub-critical analysis performed in 1966. The fuel used in this study was standard 20% enriched (LEU) aluminum or stainless steel clad TRIGA fuel. Copyright © 2016. Published by Elsevier Ltd.

  6. Development and Experimental Benchmark of Simulations to Predict Used Nuclear Fuel Cladding Temperatures during Drying and Transfer Operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greiner, Miles

    Radial hydride formation in high-burnup used fuel cladding has the potential to radically reduce its ductility and suitability for long-term storage and eventual transport. To avoid this formation, the maximum post-reactor temperature must remain sufficiently low to limit the cladding hoop stress, and so that hydrogen from the existing circumferential hydrides will not dissolve and become available to re-precipitate into radial hydrides under the slow cooling conditions during drying, transfer and early dry-cask storage. The objective of this research is to develop and experimentallybenchmark computational fluid dynamics simulations of heat transfer in post-pool-storage drying operations, when high-burnup fuel cladding ismore » likely to experience its highest temperature. These benchmarked tools can play a key role in evaluating dry cask storage systems for extended storage of high-burnup fuels and post-storage transportation, including fuel retrievability. The benchmarked tools will be used to aid the design of efficient drying processes, as well as estimate variations of surface temperatures as a means of inferring helium integrity inside the canister or cask. This work will be conducted effectively because the principal investigator has experience developing these types of simulations, and has constructed a test facility that can be used to benchmark them.« less

  7. Analysis of sludge from Hanford K East Basin canisters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makenas, B.J.; Welsh, T.L.; Baker, R.B.

    1997-09-12

    Sludge samples from the canisters in the Hanford K East Basin fuel storage pool have been retrieved and analyzed. Both chemical and physical properties have been determined. The results are to be used to determine the disposition of the bulk of the sludge and to assess the impact of residual sludge on dry storage of the associated intact metallic uranium fuel elements. This report is a summary and review of the data provided by various laboratories. Although raw chemistry data were originally reported on various bases (compositions for as-settled, centrifuged, or dry sludge) this report places all of the datamore » on a common comparable basis. Data were evaluated for internal consistency and consistency with respect to the governing sample analysis plan. Conclusions applicable to sludge disposition and spent fuel storage are drawn where possible.« less

  8. High energy neutron transmission analysis of dry cask storage

    NASA Astrophysics Data System (ADS)

    Greulich, Christopher; Hughes, Christopher; Gao, Yuan; Enqvist, Andreas; Baciak, James

    2017-12-01

    Since the U.S. currently only approves of storing used nuclear fuel in pools or dry casks, the demand for dry cask storage is on the rise due to the continuous operation of currently existing nuclear plants which are reaching or have reached the capacity of their used fuel pools. With the rising demand comes additional pressure to ensure the integrity of dry cask systems. Visual inspection is costly and man-power intensive, so alternative nondestructive testing techniques are desired to insure the continued safe and effective storage of fuel. One such approach being investigated by the University of Florida is neutron based computed tomography. Simulations in MCNP are preformed where D-T energy neutrons are transmitted through the dry cask and measured on the opposite side. If the transmitted signal is clear enough, the interior of the cask can be reconstructed from the measurement of the alterations of neutron signal intensity using standard mathematical techniques developed for medical imaging. Preliminary efforts show a correlation between energy and number of scatters (which is an indication of retention of position information). Work is ongoing to quantify if the correlation is strong enough that an energy discriminator may be used as a filter in future image reconstruction. The calculated transmission probability suggests that an image could be reconstructed with a week of scanning.

  9. Determination of the steam volume fraction in the event of loss of cooling of the spent fuel storage pool

    NASA Astrophysics Data System (ADS)

    Sledkov, R. M.; Galkin, I. Yu.; Stepanov, O. E.; Strebnev, N. A.

    2017-01-01

    When one solves engineering problems related to the cooling of fuel assemblies (FAs) in a spent fuel storage pool (SFSP) and the assessment of nuclear safety of FA storage in an SFSP in the initial event of loss of SFSP cooling, it is essential to determine the coolant density and, consequently, steam volume fractions φ in bundles of fuel elements at a pressure of 0.1-0.5 MPa. Such formulas for calculating φ that remain valid in a wide range of operating parameters and geometric shapes of channels and take the conditions of loss of SFSP cooling into account are currently almost lacking. The results of systematization and analysis of the available formulas for φ are reported in the present study. The calculated values were compared with the experimental data obtained in the process of simulating the conditions of FA cooling in an SFSP in the event of loss of its cooling. Six formulas for calculating the steam volume fraction, which were used in this comparison, were chosen from a total of 11 considered relations. As a result, the formulas producing the most accurate values of φ in the conditions of loss of SFSP cooling were selected. In addition, a relation that allows one to perform more accurate calculations of steam volume fractions in the conditions of loss of SFSP cooling was derived based on the Fedorov formula in the two-group approximation.

  10. Used Nuclear Fuel: From Liability to Benefit

    NASA Astrophysics Data System (ADS)

    Orbach, Raymond L.

    2011-03-01

    Nuclear power has proven safe and reliable, with operating efficiencies in the U.S. exceeding 90%. It provides a carbon-free source of electricity (with about a 10% penalty arising from CO2 released from construction and the fuel cycle). However, used fuel from nuclear reactors is highly toxic and presents a challenge for permanent disposal -- both from technical and policy perspectives. The half-life of the ``bad actors'' is relatively short (of the order of decades) while the very long lived isotopes are relatively benign. At present, spent fuel is stored on-site in cooling ponds. Once the used fuel pools are full, the fuel is moved to dry cask storage on-site. Though the local storage is capable of handling used fuel safely and securely for many decades, the law requires DOE to assume responsibility for the used fuel and remove it from reactor sites. The nuclear industry pays a tithe to support sequestration of used fuel (but not research). However, there is currently no national policy in place to deal with the permanent disposal of nuclear fuel. This administration is opposed to underground storage at Yucca Mountain. There is no national policy for interim storage---removal of spent fuel from reactor sites and storage at a central location. And there is no national policy for liberating the energy contained in used fuel through recycling (separating out the fissionable components for subsequent use as nuclear fuel). A ``Blue Ribbon Commission'' has been formed to consider alternatives, but will not report until 2012. This paper will examine alternatives for used fuel disposition, their drawbacks (e.g. proliferation issues arising from recycling), and their benefits. For recycle options to emerge as a viable technology, research is required to develop cost effective methods for treating used nuclear fuel, with attention to policy as well as technical issues.

  11. Effect of Control Blade History, and Axial Coolant Density and Burnup Profiles on BWR Burnup Credit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ade, Brian J; Marshall, William BJ J; Martinez-Gonzalez, Jesus S

    Oak Ridge National Laboratory (ORNL) and the US Nuclear Regulatory Commission (NRC) have initiated a multiyear project to investigate the application of burnup credit (BUC) for boiling water reactor (BWR) fuel in storage and transportation systems (often referred to as casks) and spent fuel pools (SFPs). This work is divided into two main phases. The first phase investigated the applicability of peak reactivity methods currently used in SFPs to transportation and storage casks and the validation of reactivity calculations and spent fuel compositions within these methods. The second phase focuses on extending BUC beyond peak reactivity. This paper documents themore » analysis of the effects of control blade insertion history, and moderator density and burnup axial profiles for extended BWR BUC.« less

  12. Effects of Lower Drying-Storage Temperature on the Ductility of High-Burnup PWR Cladding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Billone, M. C.; Burtseva, T. A.

    2016-08-30

    The purpose of this research effort is to determine the effects of canister and/or cask drying and storage on radial hydride precipitation in, and potential embrittlement of, high-burnup (HBU) pressurized water reactor (PWR) cladding alloys during cooling for a range of peak drying-storage temperatures (PCT) and hoop stresses. Extensive precipitation of radial hydrides could lower the failure hoop stresses and strains, relative to limits established for as-irradiated cladding from discharged fuel rods stored in pools, at temperatures below the ductile-to-brittle transition temperature (DBTT).

  13. Calculations of the skyshine gamma-ray dose rates from independent spent fuel storage installations (ISFSI) under worst case accident conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pace, J.V. III; Cramer, S.N.; Knight, J.R.

    1980-09-01

    Calculations of the skyshine gamma-ray dose rates from three spent fuel storage pools under worst case accident conditions have been made using the discrete ordinates code DOT-IV and the Monte Carlo code MORSE and have been compared to those of two previous methods. The DNA 37N-21G group cross-section library was utilized in the calculations, together with the Claiborne-Trubey gamma-ray dose factors taken from the same library. Plots of all results are presented. It was found that the dose was a strong function of the iron thickness over the fuel assemblies, the initial angular distribution of the emitted radiation, and themore » photon source near the top of the assemblies. 16 refs., 11 figs., 7 tabs.« less

  14. BWR Spent Nuclear Fuel Integrity Research and Development Survey for UKABWR Spent Fuel Interim Storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bevard, Bruce Balkcom; Mertyurek, Ugur; Belles, Randy

    The objective of this report is to identify issues and support documentation and identify and detail existing research on spent fuel dry storage; provide information to support potential R&D for the UKABWR (United Kingdom Advanced Boiling Water Reactor) Spent Fuel Interim Storage (SFIS) Pre-Construction Safety Report; and support development of answers to questions developed by the regulator. Where there are gaps or insufficient data, Oak Ridge National Laboratory (ORNL) has summarized the research planned to provide the necessary data along with the schedule for the research, if known. Spent nuclear fuel (SNF) from nuclear power plants has historically been storedmore » on site (wet) in spent fuel pools pending ultimate disposition. Nuclear power users (countries, utilities, vendors) are developing a suite of options and set of supporting analyses that will enable future informed choices about how best to manage these materials. As part of that effort, they are beginning to lay the groundwork for implementing longer-term interim storage of the SNF and the Greater Than Class C (CTCC) waste (dry). Deploying dry storage will require a number of technical issues to be addressed. For the past 4-5 years, ORNL has been supporting the U.S. Department of Energy (DOE) in identifying these key technical issues, managing the collection of data to be used in issue resolution, and identifying gaps in the needed data. During this effort, ORNL subject matter experts (SMEs) have become expert in understanding what information is publicly available and what gaps in data remain. To ensure the safety of the spent fuel under normal and frequent conditions of wet and subsequent dry storage, intact fuel must be shown to: 1.Maintain fuel cladding integrity; 2.Maintain its geometry for cooling, shielding, and subcriticality; 3.Maintain retrievability, and damaged fuel with pinhole or hairline cracks must be shown not to degrade further. Where PWR (pressurized water reactor) information is utilized or referenced, justification has been provided as to why the data can be utilized for BWR fuel.« less

  15. Extending Spent Fuel Storage until Transport for Reprocessing or Disposal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlsen, Brett; Chiguer, Mustapha; Grahn, Per

    Spent fuel (SF) must be stored until an end point such as reprocessing or geologic disposal is imple-mented. Selection and implementation of an end point for SF depends upon future funding, legisla-tion, licensing and other factors that cannot be predicted with certainty. Past presumptions related to the availability of an end point have often been wrong and resulted in missed opportunities for properly informing spent fuel management policies and strategies. For example, dry cask storage systems were originally conceived to free up needed space in reactor spent fuel pools and also to provide SFS of up to 20 years untilmore » reprocessing and/or deep geological disposal became available. Hundreds of dry cask storage systems are now employed throughout the world and will be relied upon well beyond the originally envisioned design life. Given present and projected rates for the use of nuclear power coupled with projections for SF repro-cessing and disposal capacities, one concludes that SF storage will be prolonged, potentially for several decades. The US Nuclear Regulatory Commission has recently considered 300 years of storage to be appropriate for the characterization and prediction of ageing effects and ageing management issues associated with extending SF storage and subsequent transport. This paper encourages addressing the uncertainty associated with the duration of SF storage by de-sign – rather than by default. It suggests ways that this uncertainty may be considered in design, li-censing, policy, and strategy decisions and proposes a framework for safely extending spent fuel storage until SF can be transported for reprocessing or disposal – regardless of how long that may be. The paper however is not intended to either encourage or facilitate needlessly extending spent fuel storage durations. Its intent is to ensure a design and safety basis with sufficient margin to accommodate the full range of potential future scenarios. Although the focus is primarily on storage of SF from commercial operation, the principles described are equally applicable to SF from research and production reactors as well as high-level radioactive waste.« less

  16. The shutdown reactor: Optimizing spent fuel storage cost

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pennington, C.W.

    1995-12-31

    Several studies have indicated that the most prudent way to store fuel at a shutdown reactor site safely and economically is through the use of a dry storage facility licensed under 10CFR72. While such storage is certainly safe, is it true that the dry ISFSI represents the safest and most economical approach for the utility? While no one is really able to answer that question definitely, as yet, Holtec has studied this issue for some time and believes that both an economic and safety case can be made for an optimization strategy that calls for the use of both wetmore » and dry ISFSI storage of spent fuel at some plants. For the sake of brevity, this paper summarizes some of Holtec`s findings with respect to the economics of maintaining some fuel in wet storage at a shutdown reactor. The safety issue, or more importantly the perception of safety of spent fuel in wet storage, still varies too much with the eye of the beholder, and until a more rigorous presentation of safety analyses can be made in a regulatory setting, it is not practically useful to argue about how many angels can sit on the head of a safety-related pin. Holtec is prepared to present such analyses, but this does not appear to be the proper venue. Thus, this paper simply looks at certain economic elements of a wet ISFSI at a shutdown reactor to make a prima facie case that wet storage has some attractiveness at a shutdown reactor and should not be rejected out of hand. Indeed, an optimization study at certain plants may well show the economic vitality of keeping some fuel in the pool and converting the NRC licensing coverage from 10CFR50 to 10CFR72. If the economics look attractive, then the safety issue may be confronted with a compelling interest.« less

  17. Recalculation with SEACAB of the activation by spent fuel neutrons and residual dose originated in the racks replaced at Cofrentes NPP

    NASA Astrophysics Data System (ADS)

    Ortego, Pedro; Rodriguez, Alain; Töre, Candan; Compadre, José Luis de Diego; Quesada, Baltasar Rodriguez; Moreno, Raul Orive

    2017-09-01

    In order to increase the storage capacity of the East Spent Fuel Pool at the Cofrentes NPP, located in Valencia province, Spain, the existing storage stainless steel racks were replaced by a new design of compact borated stainless steel racks allowing a 65% increase in fuel storing capacity. Calculation of the activation of the used racks was successfully performed with the use of MCNP4B code. Additionally the dose rate at contact with a row of racks in standing position and behind a wall of shielding material has been calculated using MCNP4B code as well. These results allowed a preliminary definition of the burnker required for the storage of racks. Recently the activity in the racks has been recalculated with SEACAB system which combines the mesh tally of MCNP codes with the activation code ACAB, applying the rigorous two-step method (R2S) developed at home, benchmarked with FNG irradiation experiments and usually applied in fusion calculations for ITER project.

  18. A FRAMEWORK TO DEVELOP FLAW ACCEPTANCE CRITERIA FOR STRUCTURAL INTEGRITY ASSESSMENT OF MULTIPURPOSE CANISTERS FOR EXTENDED STORAGE OF USED NUCLEAR FUEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lam, P.; Sindelar, R.; Duncan, A.

    2014-04-07

    A multipurpose canister (MPC) made of austenitic stainless steel is loaded with used nuclear fuel assemblies and is part of the transfer cask system to move the fuel from the spent fuel pool to prepare for storage, and is part of the storage cask system for on-site dry storage. This weld-sealed canister is also expected to be part of the transportation package following storage. The canister may be subject to service-induced degradation especially if exposed to aggressive environments during possible very long-term storage period if the permanent repository is yet to be identified and readied. Stress corrosion cracking may bemore » initiated on the canister surface in the welds or in the heat affected zone because the construction of MPC does not require heat treatment for stress relief. An acceptance criteria methodology is being developed for flaw disposition should the crack-like defects be detected by periodic Inservice Inspection. The external loading cases include thermal accident scenarios and cask drop conditions with the contribution from the welding residual stresses. The determination of acceptable flaw size is based on the procedure to evaluate flaw stability provided by American Petroleum Institute (API) 579 Fitness-for-Service (Second Edition). The material mechanical and fracture properties for base and weld metals and the stress analysis results are obtained from the open literature such as NUREG-1864. Subcritical crack growth from stress corrosion cracking (SCC), and its impact on inspection intervals and acceptance criteria, is not addressed.« less

  19. ORIGAMI Automator Primer. Automated ORIGEN Source Terms and Spent Fuel Storage Pool Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wieselquist, William A.; Thompson, Adam B.; Bowman, Stephen M.

    2016-04-01

    Source terms and spent nuclear fuel (SNF) storage pool decay heat load analyses for operating nuclear power plants require a large number of Oak Ridge Isotope Generation and Depletion (ORIGEN) calculations. SNF source term calculations also require a significant amount of bookkeeping to track quantities such as core and assembly operating histories, spent fuel pool (SFP) residence times, heavy metal masses, and enrichments. The ORIGEN Assembly Isotopics (ORIGAMI) module in the SCALE code system provides a simple scheme for entering these data. However, given the large scope of the analysis, extensive scripting is necessary to convert formats and process datamore » to create thousands of ORIGAMI input files (one per assembly) and to process the results into formats readily usable by follow-on analysis tools. This primer describes a project within the SCALE Fulcrum graphical user interface (GUI) called ORIGAMI Automator that was developed to automate the scripting and bookkeeping in large-scale source term analyses. The ORIGAMI Automator enables the analyst to (1) easily create, view, and edit the reactor site and assembly information, (2) automatically create and run ORIGAMI inputs, and (3) analyze the results from ORIGAMI. ORIGAMI Automator uses the standard ORIGEN binary concentrations files produced by ORIGAMI, with concentrations available at all time points in each assembly’s life. The GUI plots results such as mass, concentration, activity, and decay heat using a powerful new ORIGEN Post-Processing Utility for SCALE (OPUS) GUI component. This document includes a description and user guide for the GUI, a step-by-step tutorial for a simplified scenario, and appendices that document the file structures used.« less

  20. Application of underwater spectrometric system for survey of ponds of the MR reactor (NRC Kurchatov institute)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stepanov, Vyacheslav; Potapov, Victor; Safronov, Alexey

    2013-07-01

    The underwater spectrometric system for survey the bottom of material science multi-loop reactor MR ponds was elaborated. This system uses CdZnTe (CZT) detectors that allow for spectrometric measurements in high radiation fields. The underwater system was used in the spectrometric survey of the bottom of the MR reactor pool, as well as in the survey located in the MR storage pool of highly radioactive containers and parts of the reactor construction. As a result of these works irradiated nuclear fuel was detected on the bottom of pools, and obtained estimates of the effective surface activity detected radionuclides and created bymore » them the dose rate. (authors)« less

  1. The used nuclear fuel problem - can reprocessing and consolidated storage be complementary?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, C.; Thomas, I.

    2013-07-01

    This paper describes our CISF (Consolidated Interim Storage Facilities) and Reprocessing Facility concepts and show how they can be combined with a geologic repository to provide a comprehensive system for dealing with spent fuels in the USA. The performance of the CISF was logistically analyzed under six operational scenarios. A 3-stage plan has been developed to establish the CISF. Stage 1: the construction at the CISF site of only a rail receipt interface and storage pad large enough for the number of casks that will be received. The construction of the CISF Canister Handling Facility, the Storage Cask Fabrication Facility,more » the Cask Maintenance Facility and supporting infrastructure are performed during stage 2. The construction and placement into operation of a water-filled pool repackaging facility is completed for Stage 3. By using this staged approach, the capital cost of the CISF is spread over a number of years. It also allows more time for a final decision on the geologic repository to be made. A recycling facility will be built, this facility will used the NUEX recycling process that is based on the aqueous-based PUREX solvent extraction process, using a solvent of tri-N-butyl phosphate in a kerosene diluent. It is capable of processing spent fuels at a rate of 5 MT per day, at burn-ups up to 50 GWD per ton of spent fuels and a minimum of 5 years out-of-reactor cooling.« less

  2. Spent fuel pool storage calculations using the ISOCRIT burnup credit tool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kucukboyaci, Vefa; Marshall, William BJ J

    2012-01-01

    In order to conservatively apply burnup credit in spent fuel pool criticality safety analyses, Westinghouse has developed a software tool, ISOCRIT, for generating depletion isotopics. This tool is used to create isotopics data based on specific reactor input parameters, such as design basis assembly type; bounding power/burnup profiles; reactor specific moderator temperature profiles; pellet percent theoretical density; burnable absorbers, axial blanket regions, and bounding ppm boron concentration. ISOCRIT generates burnup dependent isotopics using PARAGON; Westinghouse's state-of-the-art and licensed lattice physics code. Generation of isotopics and passing the data to the subsequent 3D KENO calculations are performed in an automated fashion,more » thus reducing the chance for human error. Furthermore, ISOCRIT provides the means for responding to any customer request regarding re-analysis due to changed parameters (e.g., power uprate, exit temperature changes, etc.) with a quick turnaround.« less

  3. Preliminary study on detection technology of the cladding weld of spent fuel storage pool

    NASA Astrophysics Data System (ADS)

    Qi, Pan; Cui, Hongyan; Feng, Meiming; Shao, Wenbin; Liao, Shusheng; Li, Wei

    2018-04-01

    As the first barrier of the Spent fuel storage pool, the steel cladding using different sizes (length×width) of 304L stainless steel with 3˜6mm thickness plate argon arc welded together which is direct contacted with boric acid water. Environmental humidity between the back of steel cladding and concrete, makes phosphate, chloride ion overflowed from the concrete that corroded on the weld zone with different mechanism. Part of the corrosion defects can penetrate leaded to leakage of boric acid water in penetration position accelerated crack propagation. In view of the above situation and combined with the actual needs of the power plant, the development of effective underwater nondestructive testing means of the weld area for periodic inspection and monitoring is necessary. A single method may lead to the missing of defects detection due to weld reinforcement unpolished. In this paper, eddy current array (ARRAY) and Alternating Current Field Measurement (ACFM) are adapted to test the limit sensitivity and resolution through by the specimens with artificial defects which make their detection abilities close to satisfy engineering requirements. The preliminary study found that Φ0.5mm through-wall hole and with 2mm length and 0.3mm width through-wall crack in the weld can be good inspected.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ibarra, Luis; Sanders, David; Yang, Haori

    The main goal of this study is to evaluate the long-term seismic performance of freestanding and anchored Dry Storage Casks (DSCs) using experimental tests on a shaking table, as well as comprehensive numerical evaluations that include the cask-pad-soil system. The study focuses on the dynamic performance of vertical DSCs, which can be designed as free-standing structures resting on a reinforced concrete foundation pad, or casks anchored to a foundation pad. The spent nuclear fuel (SNF) at nuclear power plants (NPPs) is initially stored in fuel-storage pools to control the fuel temperature. After several years, the fuel assemblies are transferred tomore » DSCs at sites contiguous to the plant, known as Interim Spent Fuel Storage Installations (ISFSIs). The regulations for these storage systems (10 CFR 72) ensure adequate passive heat removal and radiation shielding during normal operations, off-normal events, and accident scenarios. The integrity of the DSCs is important, even if the overpack does not breach, because eventually the spent fuel-rods need to be shipped either to a reprocessing plant or a repository. DSCs have been considered as a temporary storage solution, and usually are licensed for 20 years, although they can be relicensed for operating periods of up to 60 years. In recent years, DSCs have been reevaluated as a potential mid-term solution, in which the operating period may be extended for up to 300 years. At the same time, recent seismic events have underlined the significant risks DSCs are exposed. The consideration of DCSs for storing spent fuel for hundreds of years has created new challenges. In the case of seismic hazard, longer-term operating periods not only lead to larger horizontal accelerations, but also increase the relative effect of vertical accelerations that usually are disregarded for smaller seismic events. These larger seismic demands could lead to casks sliding and tipping over, impacting the concrete pad or adjacent casks. The casks may also slide and collide with other casks or structural components. Also, the different DSC components may impact each other during these events. This study provides a comprehensive evaluation of DSCs subjected to these extreme demands, including the effect of vertical accelerations, and soilstructure interaction.« less

  5. Assess How Changes in Fuel Cycle Operation Impact Safeguards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tobin, Stephen Joseph; Adigun, Babatunde John; Fugate, Michael Lynn

    Since the beginning of commercial nuclear power generation in the 1960s, the ability of researchers to understand and control the isotopic content of spent fuel has improved. It is therefore not surprising that both fuel assembly design and fuel assembly irradiation optimization have improved over the past 50+ years. It is anticipated that the burnup and isotopics of the spent fuel should exhibit less variation over the decades as reactor operators irradiate each assembly to the optimum amount. In contrast, older spent fuel is anticipated to vary more in burnup and resulting isotopics for a given initial enrichment. Modern fuelmore » therefore should be more uniform in composition, and thus, measured safeguards results should be easier to interpret than results from older spent fuel. With spent fuel ponds filling up, interim and long-­term storage of spent fuel will need to be addressed. Additionally after long periods of storage, spent fuel is no longer self-­protecting and, as such, the IAEA will categorize it as more attractive; in approximately 20 years many of the assemblies from early commercial cores will no longer be considered self-­protecting. This study will assess how more recent changes in the reactor operation could impact the interpretation of safeguards measurements. The status quo for spent fuel assay in the safeguards context is that the overwhelming majority of spent fuel assemblies are not measured in a quantitative way except for those assemblies about to be loaded into a difficult or impossible to access location (dry storage or, in the future, a repository). In other words, when the assembly is still accessible to a state actor, or an insider, when it is cooling in a pool, the inspectorate does not have a measurement database that could assist them in re-­verifying the integrity of that assembly. The spent fuel safeguards regime would be strengthened if spent fuel assemblies were measured from discharge to loading into a difficult or impossible to access location. The primary driver for suggesting this shift in approach is the change in robotic technology and information technology in general. It should be possible, with minimal impact to the facility, to measure each assembly every time that it is moved in the pool, with the first measurements being made at discharge. The following conclusions were reached: The total neutron count rate can be accurately predicted at any future moment in time based upon the measured count rate at discharge, provided the initial enrichment and burnup of the assembly is known at discharge. It is expected that the total neutron count rate measured at discharge will be indicative of the initial enrichment and burnup of that assembly. If the automated robot were to focus on measuring the assemblies in the rack without moving them, the time available would increase immensely.« less

  6. Converting Maturing Nuclear Sites to Integrated Power Production Islands

    DOE PAGES

    Solbrig, Charles W.

    2011-01-01

    Nuclear islands, which are integrated power production sites, could effectively sequester and safeguard the US stockpile of plutonium. A nuclear island, an evolution of the integral fast reactor, utilizes all the Transuranics (Pu plus minor actinides) produced in power production, and it eliminates all spent fuel shipments to and from the site. This latter attribute requires that fuel reprocessing occur on each site and that fast reactors be built on-site to utilize the TRU. All commercial spent fuel shipments could be eliminated by converting all LWR nuclear power sites to nuclear islands. Existing LWR sites have the added advantage ofmore » already possessing a license to produce nuclear power. Each could contribute to an increase in the nuclear power production by adding one or more fast reactors. Both the TRU and the depleted uranium obtained in reprocessing would be used on-site for fast fuel manufacture. Only fission products would be shipped to a repository for storage. The nuclear island concept could be used to alleviate the strain of LWR plant sites currently approaching or exceeding their spent fuel pool storage capacity. Fast reactor breeding ratio could be designed to convert existing sites to all fast reactors, or keep the majority thermal.« less

  7. 10 CFR Appendix P to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Pool Heaters

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...-1994. The expression of fuel consumption for oil-fired pool heaters shall be in Btu. 4.2Average annual fossil fuel energy for pool heaters. The average annual fuel energy for pool heater, EF, is defined as... of pool operating hours=4464 h QIN=rated fuel energy input as defined according to 2.9.1 or 2.9.2 of...

  8. Opposed-Flow Flame Spread Across Propanol Pools: Effect of Liquid Fuel Depth

    NASA Technical Reports Server (NTRS)

    Kim, Inchul; Sirignano, William A.

    1999-01-01

    This computational study examines the effect of liquid fuel depth on flame spread across propanol pools with and without forced, opposed air flow. The initial pool temperature is below its closed- cup flash point temperature T(sub cc); so the liquid fuel must be heated sufficiently to create a combustible mixture of fuel vapor before ignition and flame spread can occur. Furthermore, in order for the flame to spread, an approximate rule is that the liquid fuel surface temperature ahead of the flame must be heated above T(sub cc) so that a flammable mixture just above the lean limit exists ahead of the flame. The depth of a liquid fuel pool would affect the heating of the liquid fuel pool and thus the liquid fuel surface temperature ahead of the flame. It has been observed experimentally and numerically that, at normal gravity without forced gas-phase flow and with the initial pool temperature T(sub 0) in a range well below T(sub cc), the flame periodically accelerates and decelerates (pulsates) as it propagates. The depth of a liquid fuel pool would change this range of T(sub 0) since it would affect the heating of the pool.

  9. Radiation Transport Calculation of the UGXR Collimators for the Jules Horowitz Reactor (JHR)

    NASA Astrophysics Data System (ADS)

    Chento, Yelko; Hueso, César; Zamora, Imanol; Fabbri, Marco; Fuente, Cristina De La; Larringan, Asier

    2017-09-01

    Jules Horowitz Reactor (JHR), a major infrastructure of European interest in the fission domain, will be built and operated in the framework of an international cooperation, including the development and qualification of materials and nuclear fuel used in nuclear industry. For this purpose UGXR Collimators, two multi slit gamma and X-ray collimation mechatronic systems, will be installed at the JHR pool and at the Irradiated Components Storage pool. Expected amounts of radiation produced by the spent fuel and X-ray accelerator implies diverse aspects need to be verified to ensure adequate radiological zoning and personnel radiation protection. A computational methodology was devised to validate the Collimators design by means of coupling different engineering codes. In summary, several assessments were performed by means of MCNP5v1.60 to fulfil all the radiological requirements in Nominal scenario (TEDE < 25µSv/h) and in Maintenance scenario (TEDE < 2mSv/h) among others, detailing the methodology, hypotheses and assumptions employed.

  10. Modeling of molecular and particulate transport in dry spent nuclear fuel canisters

    NASA Astrophysics Data System (ADS)

    Casella, Andrew M.

    2007-09-01

    The transportation and storage of spent nuclear fuel is one of the prominent issues facing the commercial nuclear industry today, as there is still no general consensus regarding the near- and long-term strategy for managing the back-end of the nuclear fuel cycle. The debate continues over whether the fuel cycle should remain open, in which case spent fuel will be stored at on-site reactor facilities, interim facilities, or a geologic repository; or if the fuel cycle should be closed, in which case spent fuel will be recycled. Currently, commercial spent nuclear fuel is stored at on-site reactor facilities either in pools or in dry storage containers. Increasingly, spent fuel is being moved to dry storage containers due to decreased costs relative to pools. As the number of dry spent fuel containers increases and the roles they play in the nuclear fuel cycle increase, more regulations will be enacted to ensure that they function properly. Accordingly, they will have to be carefully analyzed for normal conditions, as well as any off-normal conditions of concern. This thesis addresses the phenomena associated with one such concern; the formation of a microscopic through-wall breach in a dry storage container. Particular emphasis is placed on the depressurization of the canister, release of radioactivity, and plugging of the breach due to deposition of suspended particulates. The depressurization of a dry storage container upon the formation of a breach depends on the temperature and quantity of the fill gas, the pressure differential across the breach, and the size of the breach. The first model constructed in this thesis is capable of determining the depressurization time for a breached container as long as the associated parameters just identified allow for laminar flow through the breach. The parameters can be manipulated to quantitatively determine their effect on depressurization. This model is expanded to account for the presence of suspended particles. If these particles are transported with the fill gas into the breach, they may be deposited, leading to a restriction of flow and eventually to the plugging of the breach. This model uses an analytical solution to the problem of particle deposition in convective-diffusive fully-developed laminar flow through a straight cylindrical tube. Since the cylindrical flow geometry is a requirement for the use of this equation, it is assumed that all deposited particles are distributed uniformly both axially and circumferentially along the breach. The model is capable of monitoring the pressure, temperature, quantity of fill gas, breach radius, particle transmission fraction, and flow velocity through the breach as functions of time. The depressurization time can be significantly affected by the release of fission gases or helium generated from alpha decay if the cladding of a fuel rod within the canister is breached. To better quantify this phenomenon, a Monte Carlo model of molecular transport through nano-scale flow pathways in the spent fuel is developed in this thesis. This model is applied to cylindrical, conical, elliptical, and helical pathways. Finally, in order to remove some of the restrictions of the model of canister depressurization accounting for suspended particles, a Monte Carlo program was written to model the movement of particles through the breach. This program is capable of accounting for any transport mechanism specified but is focused in this work on laminar convective-diffusive flow. Each test particle is tracked as it is carried through the breach and if it impacts the breach wall, the three-dimensional location of the impact is recorded. In this way, the axial and circumferential deposition patterns can be recorded. This program can model any flow geometry as long as a velocity profile can be provided. In this thesis, the program is expanded to account for flow through straight and torroidal cylindrical tubes.

  11. Nuclear fuel electrorefiner

    DOEpatents

    Ahluwalia, Rajesh K.; Hua, Thanh Q.

    2004-02-10

    The present invention relates to a nuclear fuel electrorefiner having a vessel containing a molten electrolyte pool floating on top of a cadmium pool. An anodic fuel dissolution basket and a high-efficiency cathode are suspended in the molten electrolyte pool. A shroud surrounds the fuel dissolution basket and the shroud is positioned so as to separate the electrolyte pool into an isolated electrolyte pool within the shroud and a bulk electrolyte pool outside the shroud. In operation, unwanted noble-metal fission products migrate downward into the cadmium pool and form precipitates where they are removed by a filter and separator assembly. Uranium values are transported by the cadmium pool from the isolated electrolyte pool to the bulk electrolyte pool, and then pass to the high-efficiency cathode where they are electrolytically deposited thereto.

  12. Carbon And Nitrogen Storage Of A Mediterranean-Type Shrubland In Response To Post-Fire Succession And Long-Term Experimental Nitrogen Deposition

    NASA Astrophysics Data System (ADS)

    Vourlitis, G. L.; Hentz, C. S.

    2015-12-01

    Mediterranean-type shublands are subject to periodic fire and high levels of atmospheric nitrogen (N) deposition. Little is known how N inputs interact with post-fire secondary succession to affect ecosystem carbon (C) and N storage and cycling. Thus, a field experiment was conducted in a chaparral stand located in NE San Diego County, USA that burned during a wildfire in July 2003 to test the hypotheses that rates of C and N storage would significantly increase in response to experimental N addition. The experimental layout consists of a randomized design where four-10 x 10 m plots received 5 gN m-2 (added N) in the fall of each year since 2003 and four-10 x 10 m plots served as un-manipulated controls. Aboveground biomass C and N pools and fluxes, including biomass and litter C and N pool size, litter production, net primary production (NPP), N uptake, and litter C and N mineralization were measured seasonally (every 3 months) for a period of 10 years. Belowground surface (0-10 cm) soil extractable N, pH, and total soil N and C pools and surface root biomass C and N pools were also measured seasonally for a period of 10 years, while N losses from leaching were measured over a shorted (8 year) period of time. Added N led to a rapid increase in soil extractable N and a decline in soil pH; however, total soil C and N storage have yet to be affected by N input. Added N plots initially had significantly lower C and N storage than control plots; however, rates of aboveground N and C storage became significantly higher added N plots after 4-5 years of exposure. N losses from leaching continue to be significantly higher in added N plots even with an increase in aboveground C and N storage. The impact of N enrichment on ecosystem C and N storage varied depending on the stage of succession, but the eventual N-induced increase in NPP has implications for fuel buildup and future fire intensity. While N enrichment acted to increase aboveground C and N storage, plots exposed to high N inputs lost substantially more N from leaching than control plots. These results indicate that post-fire chaparral shrublands tend to be "leaky" even though they are not yet "N-saturated." Recovering stands in high-N deposition areas will likely be large sources of N to groundwater and/or streams regardless of whether NPP is stimulated by N input.

  13. Real time monitoring of water level and temperature in storage fuel pools through optical fibre sensors.

    PubMed

    Rizzolo, S; Périsse, J; Boukenter, A; Ouerdane, Y; Marin, E; Macé, J-R; Cannas, M; Girard, S

    2017-08-18

    We present an innovative architecture of a Rayleigh-based optical fibre sensor for the monitoring of water level and temperature inside storage nuclear fuel pools. This sensor, able to withstand the harsh constraints encountered under accidental conditions such as those pointed-out during the Fukushima-Daiichi event (temperature up to 100 °C and radiation dose level up to ~20 kGy), exploits the Optical Frequency Domain Reflectometry technique to remotely monitor a radiation resistant silica-based optical fibre i.e. its sensing probe. We validate the efficiency and the robustness of water level measurements, which are extrapolated from the temperature profile along the fibre length, in a dedicated test bench allowing the simulation of the environmental operating and accidental conditions. The conceived prototype ensures an easy, practical and no invasive integration into existing nuclear facilities. The obtained results represent a significant breakthrough and comfort the ability of the developed system to overcome both operating and accidental constraints providing the distributed profiles of the water level (0-to-5 m) and temperature (20-to-100 °C) with a resolution that in accidental condition is better than 3 cm and of ~0.5 °C respectively. These new sensors will be able, as safeguards, to contribute and reinforce the safety in existing and future nuclear power plants.

  14. Irradiation of Microbes from Spent Nuclear Fuel Storage Pool Environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Breckenridge, C.R.; Watkins, C.S.; Bruhn, D.F.

    Microbes have been isolated and identified from spent nuclear fuel storage pools at the Idaho National Engineering and Environmental Laboratory (INEEL). Included among these are Corynebacterium aquaticum, Pseudomonas putida, Comamonas acidovorans, Gluconobacter cerinus, Micrococcus diversus, Rhodococcus rhodochrous, and two strains of sulfate-reducing bacteria (SRB). We examined the sensitivity of these microbes to a variety of total exposures of radiation generated by a 6-MeV linear accelerator (LINAC). The advantage of using a LINAC is that it provides a relatively quick screen of radiation tolerance. In the first set of experiments, we exposed each of the aforementioned microbes along with four additionalmore » microbes, pseudomonas aeruginosa, Micrococcus luteus, Escherchia coli, and Deinococcus radiodurans to exposures of 5 x 10{sup 3} and 6 x 10{sup 4} rad. All microbial specimens withstood the lower exposure with little or no reduction in cell population. Upon exposing the microbes to the larger dose of 6 x 10{sup 4} rad, we observed two distinct groupings: microbes that demonstrate resistance to radiation, and microbes that display intolerance through a dramatic reduction from their initial population. Microbes in the radiation tolerant grouping were exposed to 1.1 x 10{sup 5} rad to examine the extent of their resistance. We observe a correlation between radiation resistance and gram stain. The gram-positive species we examined seem to demonstrate a greater radiation resistance.« less

  15. Carbon dioxide emitted from live stems of tropical trees is several years old.

    PubMed

    Muhr, Jan; Angert, Alon; Negrón-Juárez, Robinson I; Muñoz, Waldemar Alegria; Kraemer, Guido; Chambers, Jeffrey Q; Trumbore, Susan E

    2013-07-01

    Storage carbon (C) pools are often assumed to contribute to respiration and growth when assimilation is insufficient to meet the current C demand. However, little is known of the age of stored C and the degree to which it supports respiration in general. We used bomb radiocarbon ((14)C) measurements to determine the mean age of carbon in CO2 emitted from and within stems of three tropical tree species in Peru. Carbon pools fixed >1 year previously contributed to stem CO2 efflux in all trees investigated, in both dry and wet seasons. The average age, i.e., the time elapsed since original fixation of CO2 from the atmosphere by the plant to its loss from the stem, ranged from 0 to 6 years. The average age of CO2 sampled 5-cm deep within the stems ranged from 2 to 6 years for two of the three species, while CO2 in the stem of the third tree species was fixed from 14 to >20 years previously. Given the consistency of (14)C values observed for individuals within each species, it is unlikely that decomposition is the source of the older CO2. Our results are in accordance with other studies that have demonstrated the contribution of storage reserves to the construction of stem wood and root respiration in temperate and boreal forests. We postulate the high (14)C values observed in stem CO2 efflux and stem-internal CO2 result from respiration of storage C pools within the tree. The observed age differences between emitted and stem-internal CO2 indicate an age gradient for sources of CO2 within the tree: CO2 produced in the outer region of the stem is younger, originating from more recent assimilates, whereas the CO2 found deeper within the stem is older, fueled by several-year-old C pools. The CO2 emitted at the stem-atmosphere interface represents a mixture of young and old CO2. These observations were independent of season, even during a time of severe regional drought. Therefore, we postulate that the use of storage C for respiration occurs on a regular basis challenging the assumption that storage pools serve as substrates for respiration only during times of limited assimilation.

  16. 77 FR 76952 - Rescinding Spent Fuel Pool Exclusion Regulations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-31

    ... [Docket No. PRM-51-29; NRC-2012-0215] Rescinding Spent Fuel Pool Exclusion Regulations AGENCY: Nuclear... NRC institute a rulemaking to rescind the regulations excluding consideration of spent fuel pool...

  17. Conditions inside Water Pooled in a Failed Nuclear Waste Container and its Effect on Radionuclide Release

    NASA Astrophysics Data System (ADS)

    Hamdan, L. K.; Walton, J. C.; Woocay, A.

    2009-12-01

    Nuclear power use is expected to expand in the future, as part of the global clean energy initiative, to meet the world’s surging energy demand, and attenuate greenhouse gas emissions, which are mainly caused by fossil fuels. As a result, it is estimated that hundreds of thousands of metric tons of spent nuclear fuel (SNF) will accumulate. SNF disposal has major environmental (radiation exposure) and security (nuclear proliferation) concerns. Storage in unsaturated zone geological repositories is a reasonable solution for dealing with SNF. One of the key factors that determine the performance of the geological repository is the release of radionuclides from the engineered barrier system. Over time, the nuclear waste containers are expected to fail gradually due to general and localized corrosions and eventually infiltrating water will have access to the nuclear waste. Once radionuclides are released, they will be transported by water, and make their way to the accessible environment. Physical and chemical disturbances in the environment over the container will lead to different corrosion rates, causing different times and locations of penetration. One possible scenario for waste packages failure is the bathtub model, where penetrations occur on the top of the waste package and water pools inside it. In this paper the bathtub-type failed waste container is considered. We shed some light on chemical and physical processes that take place in the pooled water inside a partially failed waste container (bathtub category), and the effects of these processes on radionuclide release. Our study considers two possibilities: temperature stratification of the pooled water versus mixing process. Our calculations show that temperature stratification of the pooled water is expected when the waste package is half (or less) filled with water. On the other hand, when the waste package is fully filled (or above half) there will be mixing in the upper part of water. The effect of these cases on oxygen availability and consequently spent fuel alteration and radionuclide release will be considered.

  18. Cold weather effects on Dresden Unit 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anagnostopoulos, H.

    1995-03-01

    Dresden Unit 1 is in the final stages of a decommissioning effort directed at preparing the unit to enter a SAFSTOR status. Following an extended sub-zero cold wave, about 55,000 gallons of water were discovered in the lowest elevation of the spherical reactor enclosure. Cold weather had caused the freezing and breaking of several service water lines that had not been completely isolated. Two days later, at a regularly scheduled decommissioning meeting, the event was communicated to the decommissioning team, who quickly recognized the potential for freezing of a 42 inches diameter Fuel Transfer Tube that connects the sphere tomore » the Spent Fuel Pool. The team directed that the pool gates between the adjacent Spent Fuel Pool and the Fuel Transfer Pool be installed, and a portable source of heat was installed on the Fuel Transfer Tube. It was later determined that, with the fuel pool gates removed, and with a worst case freeze break at the 502 elevation on the Fuel Transfer Tube (in the Sphere), the fuel in the Spent Fuel Pool could be uncovered to a level 3 below the top of active fuel.« less

  19. Submittal for 2003 Project of the Year K Basins Fuel Transfer System Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    GERBER, M.S.

    2003-01-29

    Fluor Hanford, Inc. is pleased to submit the K Basins Fuel Transfer System (FTS) for consideration by the Project Management Institute as Project of the Year for 2003. The FTS involved installing a unique, unproven system in an inhospitable and deteriorating radiological and hazardous environment, under very stringent requirements and within an extremely condensed schedule, just 19 months, from authorization to full operations. The FTS, therefore, is an excellent example of effective project management, and the dynamic involvement of an integrated team representing a broad spectrum of personnel, disciplines, and services. The FTS is an integral and critical part ofmore » a larger project at Hanford -the Spent Nuclear Fuel Project (SNF). The mission of the SNF Project is to relocate used, or spent, nuclear fuel to safe interim storage, permanently dispose of radioactive debris in the K-Basins, and deactivate all related facilities and prepare them for demolition. Today, the FTS is being used to remove highly radioactive nuclear fuel from an aging, and potentially unstable storage in underground pools of water--the K-Basins--and safely transport it to a processing area to be cleaned, dried and sent to safe storage. The role the FTS plays in successfully completing the mission of the SNF Project is concrete evidence of the intrinsic value of project management and a testimonial to the innovation, ingenuity, and teamwork of many--from workers to management and subcontractors, and regulators to stakeholders. It's a true success story and one that will have a happy ending, safely eliminating the risk of potentially contaminating one of Washington state's most valuable natural resources, the Columbia River. This nomination is dedicated to that Project Team.« less

  20. Fires in storages of LFO: Analysis of hazard of structural collapse of steel-aluminium containers.

    PubMed

    Rebec, A; Kolšek, J; Plešec, P

    2016-04-05

    Pool fires of light fuel oil (LFO) in above-ground storages with steel-aluminium containers are discussed. A model is developed for assessments of risks of between-tank fire spread. Radiative effects of the flame body are accounted for by a solid flame radiation model. Thermal profiles evolved due to fire in the adjacent tanks and their consequential structural response is pursued in an exact (materially and geometrically non-linear) manner. The model's derivation is demonstrated on the LFO tank storage located near the Port of Koper (Slovenia). In support of the model, data from literature are adopted where appropriate. Analytical expressions are derived correspondingly for calculations of emissive characteristics of LFO pool fires. Additional data are collected from experiments. Fire experiments conducted on 300cm diameter LFO pans and at different wind speeds and high-temperature uniaxial tension tests of the analysed aluminium alloys types 3xxx and 6xxx are presented. The model is of an immediate fire engineering practical value (risk analyses) or can be used for further research purposes (e.g. sensitivity and parametric studies). The latter use is demonstrated in the final part of the paper discussing possible effects of high-temperature creep of 3xxx aluminium. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Preliminary Concept of Operations for the Spent Fuel Management System--WM2017

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cumberland, Riley M; Adeniyi, Abiodun Idowu; Howard, Rob L

    The Nuclear Fuels Storage and Transportation Planning Project (NFST) within the U.S. Department of Energy s Office of Nuclear Energy is tasked with identifying, planning, and conducting activities to lay the groundwork for developing interim storage and transportation capabilities in support of an integrated waste management system. The system will provide interim storage for commercial spent nuclear fuel (SNF) from reactor sites and deliver it to a repository. The system will also include multiple subsystems, potentially including; one or more interim storage facilities (ISF); one or more repositories; facilities to package and/or repackage SNF; and transportation systems. The project teammore » is analyzing options for an integrated waste management system. To support analysis, the project team has developed a Concept of Operations document that describes both the potential integrated system and inter-dependencies between system components. The goal of this work is to aid systems analysts in the development of consistent models across the project, which involves multiple investigators. The Concept of Operations document will be updated periodically as new developments emerge. At a high level, SNF is expected to travel from reactors to a repository. SNF is first unloaded from reactors and placed in spent fuel pools for wet storage at utility sites. After the SNF has cooled enough to satisfy loading limits, it is placed in a container at reactor sites for storage and/or transportation. After transportation requirements are met, the SNF is transported to an ISF to store the SNF until a repository is developed or directly to a repository if available. While the high level operation of the system is straightforward, analysts must evaluate numerous alternative options. Alternative options include the number of ISFs (if any), ISF design, the stage at which SNF repackaging occurs (if any), repackaging technology, the types of containers used, repository design, component sizing, and timing of events. These alternative options arise due to technological, economic, or policy considerations. As new developments regularly emerge, the operational concepts will be periodically updated. This paper gives an overview of the different potential alternatives identified in the Concept of Operations document at a conceptual level.« less

  2. Allocation to carbon storage pools in Norway spruce saplings under drought and low CO2.

    PubMed

    Hartmann, Henrik; McDowell, Nate G; Trumbore, Susan

    2015-03-01

    Non-structural carbohydrates (NSCs) are critical to maintain plant metabolism under stressful environmental conditions, but we do not fully understand how NSC allocation and utilization from storage varies with stress. While it has become established that storage allocation is unlikely to be a mere overflow process, very little empirical evidence has been produced to support this view, at least not for trees. Here we present the results of an intensively monitored experimental manipulation of whole-tree carbon (C) balance (young Picea abies (L.) H Karst.) using reduced atmospheric [CO2] and drought to reduce C sources. We measured specific C storage pools (glucose, fructose, sucrose, starch) over 21 weeks and converted concentration measurement into fluxes into and out of the storage pool. Continuous labeling ((13)C) allowed us to track C allocation to biomass and non-structural C pools. Net C fluxes into the storage pool occurred mainly when the C balance was positive. Storage pools increased during periods of positive C gain and were reduced under negative C gain. (13)C data showed that C was allocated to storage pools independent of the net flux and even under severe C limitation. Allocation to below-ground tissues was strongest in control trees followed by trees experiencing drought followed by those grown under low [CO2]. Our data suggest that NSC storage has, under the conditions of our experimental manipulation (e.g., strong progressive drought, no above-ground growth), a high allocation priority and cannot be considered an overflow process. While these results also suggest active storage allocation, definitive proof of active plant control of storage in woody plants requires studies involving molecular tools. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Application of Framework for Integrating Safety, Security and Safeguards (3Ss) into the Design Of Used Nuclear Fuel Storage Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Badwan, Faris M.; Demuth, Scott F

    Department of Energy’s Office of Nuclear Energy, Fuel Cycle Research and Development develops options to the current commercial fuel cycle management strategy to enable the safe, secure, economic, and sustainable expansion of nuclear energy while minimizing proliferation risks by conducting research and development focused on used nuclear fuel recycling and waste management to meet U.S. needs. Used nuclear fuel is currently stored onsite in either wet pools or in dry storage systems, with disposal envisioned in interim storage facility and, ultimately, in a deep-mined geologic repository. The safe management and disposition of used nuclear fuel and/or nuclear waste is amore » fundamental aspect of any nuclear fuel cycle. Integrating safety, security, and safeguards (3Ss) fully in the early stages of the design process for a new nuclear facility has the potential to effectively minimize safety, proliferation, and security risks. The 3Ss integration framework could become the new national and international norm and the standard process for designing future nuclear facilities. The purpose of this report is to develop a framework for integrating the safety, security and safeguards concept into the design of Used Nuclear Fuel Storage Facility (UNFSF). The primary focus is on integration of safeguards and security into the UNFSF based on the existing Nuclear Regulatory Commission (NRC) approach to addressing the safety/security interface (10 CFR 73.58 and Regulatory Guide 5.73) for nuclear power plants. The methodology used for adaptation of the NRC safety/security interface will be used as the basis for development of the safeguards /security interface and later will be used as the basis for development of safety and safeguards interface. Then this will complete the integration cycle of safety, security, and safeguards. The overall methodology for integration of 3Ss will be proposed, but only the integration of safeguards and security will be applied to the design of the UNFSF. The framework for integration of safeguards and security into the UNFSF will include 1) identification of applicable regulatory requirements, 2) selection of a common system that share dual safeguard and security functions, 3) development of functional design criteria and design requirements for the selected system, 4) identification and integration of the dual safeguards and security design requirements, and 5) assessment of the integration and potential benefit.« less

  4. Senate examines measures to improve nuclear safety following Japan disaster

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2012-03-01

    One year after Japan suffered a devastating magnitude 9.0 earthquake and the resulting tsunami and nuclear disaster, the U.S. Nuclear Regulatory Commission (NRC) has taken a number of measures to try to ensure that nuclear plants in the United States are safe from natural hazards. At a U.S. Senate hearing on 15 March, NRC chair Gregory Jaczko announced that the commission had issued three key orders and several requests for information on 12 March that plant licensees must follow, and that NRC also plans to take additional actions. However, the commission is not moving quickly enough in some areas, such as ensuring that all plants are safe from seismic hazards, including those in areas with low seismic activity, according to Jaczko's testimony before the Senate Committee on Environment and Public Works (EPW) and the Subcommittee on Clean Air and Nuclear Safety. The 12 March orders require licensees to have strategies to maintain or restore core cooling, containment, and spent-fuel pool cooling capabilities "following a beyond-design-basis extreme natural event" and have a reliable indication of the water level in spent-fuel storage pools.

  5. Entropy, pumped-storage and energy system finance

    NASA Astrophysics Data System (ADS)

    Karakatsanis, Georgios

    2015-04-01

    Pumped-storage holds a key role for integrating renewable energy units with non-renewable fuel plants into large-scale energy systems of electricity output. An emerging issue is the development of financial engineering models with physical basis to systematically fund energy system efficiency improvements across its operation. A fundamental physically-based economic concept is the Scarcity Rent; which concerns the pricing of a natural resource's scarcity. Specifically, the scarcity rent comprises a fraction of a depleting resource's full price and accumulates to fund its more efficient future use. In an integrated energy system, scarcity rents derive from various resources and can be deposited to a pooled fund to finance the energy system's overall efficiency increase; allowing it to benefit from economies of scale. With pumped-storage incorporated to the system, water upgrades to a hub resource, in which the scarcity rents of all connected energy sources are denominated to. However, as available water for electricity generation or storage is also limited, a scarcity rent upon it is also imposed. It is suggested that scarcity rent generation is reducible to three (3) main factors, incorporating uncertainty: (1) water's natural renewability, (2) the energy system's intermittent components and (3) base-load prediction deviations from actual loads. For that purpose, the concept of entropy is used in order to measure the energy system's overall uncertainty; hence pumped-storage intensity requirements and generated water scarcity rents. Keywords: pumped-storage, integration, energy systems, financial engineering, physical basis, Scarcity Rent, pooled fund, economies of scale, hub resource, uncertainty, entropy Acknowledgement: This research was funded by the Greek General Secretariat for Research and Technology through the research project Combined REnewable Systems for Sustainable ENergy DevelOpment (CRESSENDO; grant number 5145)

  6. 76 FR 39865 - Dominion Transmission, Inc.; Notice of Intent To Prepare an Environmental Assessment for the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-07

    ... Project Dominion is proposing to extend the perimeter of its Woodhull Natural Gas Storage Pool (Pool... Pool Boundary Project and Request for Comments on Environmental Issues The staff of the Federal Energy... the environmental impacts of the proposed Woodhull Storage Pool Boundary Project (Project) involving...

  7. Pinus sylvestris switches respiration substrates under shading but not during drought

    NASA Astrophysics Data System (ADS)

    Hartmann, Henrik; Fischer, Sarah; Hanf, Stefan; Frosch, Torsten; Poppp, Jürgen; Trumbore, Susan

    2015-04-01

    Reduced carbon assimilation during prolonged drought forces trees to rely on stored carbon to maintain vital processes like respiration. It has been shown, however, that the use of carbohydrates, a major carbon storage pool and main respiratory substrate in plants, strongly declines with deceasing plant hydration. Yet, no empirical evidence has been produced to what degree other carbon storage compounds like lipids and proteins may fuel respiration during drought. We exposed young scots pine trees to carbon limitation using either drought or shading and assessed respiratory substrate use by monitoring the respiratory quotient, δ13C of respired CO2and concentrations of the major storage compounds, i.e. carbohydrates (COH), lipids and amino acids. Generally, respiration was dominated by the most abundant substrate. Only shaded trees shifted from carbohydrate-dominated to lipid-dominated respiration and showed progressive carbohydrate depletion. In drought trees respiration was strongly reduced and fueled with carbohydrates from also strongly reduced carbon assimilation. Initial COH content was maintained during drought probably due to reduced COH mobilization and use and the maintained COH content may have prevented lipid catabolism via sugar signaling. Our results suggest that respiratory substrates other than carbohydrates are used under carbohydrate limitation but not during drought. Thus, respiratory substrate change cannot provide an efficient means to counterbalance carbon limitation under natural drought.

  8. Suggestion on the safety classification of spent fuel dry storage in China’s pressurized water reactor nuclear power plant

    NASA Astrophysics Data System (ADS)

    Liu, Ting; Qu, Yunhuan; Meng, De; Zhang, Qiaoer; Lu, Xinhua

    2018-01-01

    China’s spent fuel storage in the pressurized water reactors(PWR) is stored with wet storage way. With the rapid development of nuclear power industry, China’s NPPs(NPPs) will not be able to meet the problem of the production of spent fuel. Currently the world’s major nuclear power countries use dry storage as a way of spent fuel storage, so in recent years, China study on additional spent fuel dry storage system mainly. Part of the PWR NPP is ready to apply for additional spent fuel dry storage system. It also need to safety classificate to spent fuel dry storage facilities in PWR, but there is no standard for safety classification of spent fuel dry storage facilities in China. Because the storage facilities of the spent fuel dry storage are not part of the NPP, the classification standard of China’s NPPs is not applicable. This paper proposes the safety classification suggestion of the spent fuel dry storage for China’s PWR NPP, through to the study on China’s safety classification principles of PWR NPP in “Classification for the items of pressurized water reactor nuclear power plants (GB/T 17569-2013)”, and safety classification about spent fuel dry storage system in NUREG/CR - 6407 in the United States.

  9. TEMperature Pressure ESTimation of a homogeneous boiling fuel-steel mixture in an LMFBR core. [TEMPEST code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pyun, J.J.; Majumdar, D.

    The paper describes TEMPEST, a simple computer program for the temperature and pressure estimation of a boiling fuel-steel pool in an LMFBR core. The time scale of interest of this program is large, of the order of ten seconds. Further, the vigorous boiling in the pool will generate a large contact, and hence a large heat transfer between fuel and steel. The pool is assumed to be a uniform mixture of fuel and steel, and consequently vapor production is also assumed to be uniform throughout the pool. The pool is allowed to expand in volume if there is steel meltingmore » at the walls. In this program, the total mass of liquid and vapor fuel is always kept constant, but the total steel mass in the pool may change by steel wall melting. Because of a lack of clear understanding of the physical phenomena associated with the progression of a fuel-steel mixture at high temperature, various input options have been built-in to enable one to perform parametric studies. For example, the heat transfer from the pool to the surrounding steel structure may be controlled by input values for the heat transfer coefficients, or, the heat transfer may be calculated by a correlation obtained from the literature. Similarly, condensation of vapor on the top wall can be specified by input values of the condensation coefficient; the program can otherwise calculate condensation according to the non-equilibrium model predictions. Meltthrough rates of the surrounding steel walls can be specified by a fixed melt-rate or can be determined by a fraction of the heat loss that goes to steel-melting. The melted steel is raised to the pool temperature before it is joined with the pool material. Several applications of this program to various fuel-steel pools in the FFTF and the CRBR cores are discussed.« less

  10. Do forests best mitigate CO2 emissions to the atmosphere by setting them aside for maximization of carbon storage or by management for fossil fuel substitution?

    PubMed

    Taeroe, Anders; Mustapha, Walid Fayez; Stupak, Inge; Raulund-Rasmussen, Karsten

    2017-07-15

    Forests' potential to mitigate carbon emissions to the atmosphere is heavily debated and a key question is if forests left unmanaged to store carbon in biomass and soil provide larger carbon emission reductions than forests kept under forest management for production of wood that can substitute fossil fuels and fossil fuel intensive materials. We defined a modelling framework for calculation of the carbon pools and fluxes along the forest energy and wood product supply chains over 200 years for three forest management alternatives (FMA): 1) a traditionally managed European beech forest, as a business-as-usual case, 2) an energy poplar plantation, and 3) a set-aside forest left unmanaged for long-term storage of carbon. We calculated the cumulative net carbon emissions (CCE) and carbon parity times (CPT) of the managed forests relative to the unmanaged forest. Energy poplar generally had the lowest CCE when using coal as the reference fossil fuel. With natural gas as the reference fossil fuel, the CCE of the business-as-usual and the energy poplar was nearly equal, with the unmanaged forest having the highest CCE after 40 years. CPTs ranged from 0 to 156 years, depending on the applied model assumptions. CCE and CPT were especially sensitive to the reference fossil fuel, material alternatives to wood, forest growth rates for the three FMAs, and energy conversion efficiencies. Assumptions about the long-term steady-state levels of carbon stored in the unmanaged forest had a limited effect on CCE after 200 years. Analyses also showed that CPT was not a robust measure for ranking of carbon mitigation benefits. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. 78 FR 39781 - Consequence Study of a Beyond-Design-Basis Earthquake Affecting the Spent Fuel Pool for a U.S...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-02

    ... Spent Fuel Pool Study). The purpose of this study was to examine if faster removal of older, colder... NRC Library at http://www.nrc.gov/reading-rm/adams.html . To begin the search, select ``ADAMS Public... of postulated spent fuel pool accidents. The purpose of this study is to examine if faster removal of...

  12. Extended Burnup Credit for BWR Spent Nuclear Fuel in Storage and Transportation Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ade, Brian J; Bowman, Stephen M; Gauld, Ian C

    2015-01-01

    [Full Text] Oak Ridge National Laboratory and the United States Nuclear Regulatory Commission have initiated a multiyear project to investigate the application of burnup credit (BUC) for boiling-water reactor (BWR) fuel in storage and transportation casks. This project includes two phases. The first phase investigates the applicability of peak reactivity methods currently used for spent fuel pools to spent fuel storage and transportation casks and the validation of reactivity (k eff) calculations and depleted fuel compositions. The second phase focuses on extending BUC beyond peak reactivity. This paper documents work performed to date, investigating some aspects of extended BUC, andmore » it also describes the plan to complete the evaluations. The technical basis for application of peak reactivity methods to BWR fuel in storage and transportation systems is presented in a companion paper. Two reactor operating parameters are being evaluated to establish an adequate basis for extended BWR BUC, including investigation of the axial void profile effect and the effect of control blade utilization during operation. A detailed analysis of core simulator data for one cycle of an operating BWR plant was performed to determine the range of void profiles and the variability of the profile experienced during irradiation. While a single cycle does not provide complete data, the data obtained are sufficient to use to determine the primary effects and identify conservative modeling approaches. Using data resulting from a single cycle, the axial void profile is studied by first determining the temporal fidelity necessary in depletion modeling, and then using multiple void profiles to examine the effect of the void profile on cask reactivity. The results of these studies are being used to develop recommendations for conservatively modeling the void profile effects for BWR depletion calculations. The second operational parameter studied is control blade exposure. Control blades are inserted in various locations and at varying degrees during BWR operation based on the reload design. The presence of control blades during depletion hardens the neutron spectrum locally due to both moderator displacement and introduction of a thermal neutron absorber. The reactivity impact of control blade presence is investigated herein, as well as the effect of multiple (continuous and intermittent) exposure periods. The coupled effects of control blade presence on power density, void profile, or burnup profile have not been considered to date but will be addressed in future work.« less

  13. Analysis of dose rates received around the storage pool for irradiated control rods in a BWR nuclear power plant.

    PubMed

    Ródenas, J; Abarca, A; Gallardo, S

    2011-08-01

    BWR control rods are activated by neutron reactions in the reactor. The dose produced by this activity can affect workers in the area surrounding the storage pool, where activated rods are stored. Monte Carlo (MC) models for neutron activation and dose assessment around the storage pool have been developed and validated. In this work, the MC models are applied to verify the expected reduction of dose when the irradiated control rod is hanged in an inverted position into the pool. 2010 Elsevier Ltd. All rights reserved.

  14. The effect of azeotropism on combustion characteristics of blended fuel pool fire.

    PubMed

    Ding, Yanming; Wang, Changjian; Lu, Shouxiang

    2014-04-30

    The effect of azeotropism on combustion characteristics of blended fuel pool fire was experimentally studied in an open fire test space of State Key Laboratory of Fire Science. A 30 cm × 30 cm square pool filled with n-heptane and ethanol blended fuel was employed. Flame images, burning rate and temperature distribution were collected and recorded in the whole combustion process. Results show that azeotropism obviously dominates the combustion behavior of n-heptane/ethanol blended fuel pool fire. The combustion process after ignition exhibits four typical stages: initial development, azeotropic burning, single-component burning and decay stage. Azeotropism appears when temperature of fuel surface reaches azeotropic point and blended fuel burns at azeotropic ratio. Compared with individual pure fuel, the effect of azeotropism on main fire parameters, such as flame height, burning rate, flame puffing frequency and centerline temperature were analyzed. Burning rate and centerline temperature of blended fuel are higher than that of individual pure fuel respectively at azeotropic burning stage, and flame puffing frequency follows the empirical formula between Strouhal and Froude number for pure fuel. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. FACILITY LAYOUT OF FUEL STORAGE BUILDING (CPP603) SHOWING STORAGE BASINS, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FACILITY LAYOUT OF FUEL STORAGE BUILDING (CPP-603) SHOWING STORAGE BASINS, FUEL ELEMENT CUTTING FACILITY, AND DRY GRAPHITE STORAGE FACILITY. INL DRAWING NUMBER 200-0603-00-030-056329. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  16. Congenital platelet function defects

    MedlinePlus

    Platelet storage pool disorder; Glanzmann's thrombasthenia; Bernard-Soulier syndrome; Platelet function defects - congenital ... This disorder may also cause severe bleeding. Platelet storage pool disorder (also called platelet secretion disorder) occurs ...

  17. Feasibility Study For Use Of Commercial Cask Vendor Dry Transfer Systems To Unload Used Fuel Assemblies In L-Area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krementz, Dan; Rose, David; Dunsmuir, Mike

    2014-02-06

    The purpose of this study is to determine whether a commercial dry transfer system (DTS) could be used for loading or unloading used nuclear fuel (UNF) in L-Basin and to determine if a DTS pool adapter could be made for L-Basin Transfer Pit #2 that could accommodate a variety of DTS casks and fuel baskets or canisters up to 24” diameter.[1, 2] This study outlines the technical feasibility of accommodating different vendor dry transfer systems in the L-Basin Transfer Bay with a general work scope. It identifies equipment needing development, facility modifications, and describes the needed analyses and calculations. Aftermore » reviewing the L-Basin Transfer Bay area layout and information on the only DTS system currently in use for the Nuclear Assurance Corporation Legal Weight Truck cask (NAC LWT), the authors conclude that use of a dry transfer cask is feasible. AREVA was contacted and acknowledged that they currently do not have a design for a dry transfer cask for their new Transnuclear Long Cask (TN-LC) cask. Nonetheless, this study accounted for a potential future DTS from AREVA to handle fuel baskets up to 18” in diameter. Due to the layout of the Transfer Bay, it was determined that a DTS cask pool adapter designed specifically for spanning Pit #2 and placed just north of the 70 Ton Cask lid lifting superstructure would be needed. The proposed pool adapter could be used to transition a fuel basket up to 24” in diameter and ~11 feet long from a dry transfer cask to the basin. The 18” and 24” applications of the pool adapter are pending vendor development of dry transfer casks that accommodate these diameters. Once a fuel basket has been lowered into Pit #2 through a pool adapter, a basket cart could be used to move the basket out from under the pool adapter for access by the 5 Ton Crane. The cost to install a dry transfer cask handling system in L-Area capable of handling multiple vendor provided transport and dry transfer casks and baskets with different diameters and lengths would likely be on the same order of magnitude as the Basin Modifications project. The cost of a DTS capability is affected by the number of design variations of different vendor transport and dry transfer casks to be considered for design input. Some costs would be incurred for each vendor DTS to be handled. For example, separate analyses would be needed for each dry transfer cask type such as criticality, shielding, dropping a dry transfer cask and basket, handling and auxiliary equipment, procedures, operator training, readiness assessments, and operational readiness reviews. A DTS handling capability in L-Area could serve as a backup to the Shielded Transfer System (STS) for unloading long casks and could support potential future missions such as the Idaho National Laboratory (INL) Exchange or transferring UNF from wet to dry storage.« less

  18. Studies of Platelet 5-Hydroxytryptamine (Serotonin) in Storage Pool Disease and Albinism

    PubMed Central

    Weiss, Harvey J.; Tschopp, Thomas B.; Rogers, John; Brand, Harvey

    1974-01-01

    Platelets in patients with storage pool disease are markedly deficient in a nonmetabolic (storage) pool of ADP that is important in platelet aggregation. They are also deficient in ATP, although to a lesser degree. In seven patients with this disorder, including one with albinism, platelet 5-hydroxytryptamine (5-HT) levels were reduced in proportion to the reduction in ATP (r = 0.94). Their platelets show diminished capacity to absorb [14C]5-HT, and the type of defect was similar to that produced in normal platelets by reserpine, a drug known to inhibit the uptake of 5-HT by the platelet dense granules. Storage pool-deficient platelets also converted more [3H]5-HT to [3H]5-hydroxyindoleacetic acid than did normal platelets, and the platelets in one of two patients studied contained increased amounts of 5-HT metabolites. The above findings, together with those reported previously, support the conclusion that the capacity of the dense granules (which may be either diminished or functionally abnormal) for storing 5-HT is decreased in storage pool disease; as a result, the 5-HT that enters the platelet may be more exposed to monoamine oxidases present on mitochondrial membranes. This diminished storage capacity (for 5-HT) may also explain why preincubating platelet-rich plasma with 5-HT for 45 min without stirring inhibits subsequent platelet aggregation by 5-HT to a greater degree in patients with storage pool disease than in normal subjects. The latter finding is also consistent with the theory that the aggregation of platelets by 5-HT is mediated by the same receptors on the plasma membrane that are involved in its uptake. The diminished release of platelet-bound [14C]5-HT by collagen that we found in these patients, as well as findings in previous studies, suggests that the release reaction may also be abnormal in storage pool disease. Images PMID:4847252

  19. Concrete Materials with Ultra-High Damage Resistance and Self- Sensing Capacity for Extended Nuclear Fuel Storage Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Mo; Nakshatrala, Kalyana; William, Kasper

    The objective of this project is to develop a new class of multifunctional concrete materials (MSCs) for extended spent nuclear fuel (SNF) storage systems, which combine ultra-high damage resistance through strain-hardening behavior with distributed multi-dimensional damage self-sensing capacity. The beauty of multifunctional concrete materials is two-fold: First, it serves as a major material component for the SNF pool, dry cask shielding and foundation pad with greatly improved resistance to cracking, reinforcement corrosion, and other common deterioration mechanisms under service conditions, and prevention from fracture failure under extreme events (e.g. impact, earthquake). This will be achieved by designing multiple levels ofmore » protection mechanisms into the material (i.e., ultrahigh ductility that provides thousands of times greater fracture energy than concrete and normal fiber reinforced concrete; intrinsic cracking control, electrochemical properties modification, reduced chemical and radionuclide transport properties, and crack-healing properties). Second, it offers capacity for distributed and direct sensing of cracking, strain, and corrosion wherever the material is located. This will be achieved by establishing the changes in electrical properties due to mechanical and electrochemical stimulus. The project will combine nano-, micro- and composite technologies, computational mechanics, durability characterization, and structural health monitoring methods, to realize new MSCs for very long-term (greater than 120 years) SNF storage systems.« less

  20. 75 FR 27463 - List of Approved Spent Fuel Storage Casks: NUHOMS® HD System Revision 1; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-17

    ... Fuel Storage Casks: NUHOMS[supreg] HD System Revision 1; Correction AGENCY: Nuclear Regulatory... fuel storage casks to add revision 1 to the NUHOMS HD spent fuel storage cask system. This action is... Federal Register on May 7, 2010 (75 FR 25120), that proposes to amend the regulations that govern storage...

  1. Technical Basis for Peak Reactivity Burnup Credit for BWR Spent Nuclear Fuel in Storage and Transportation Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marshall, William BJ J; Ade, Brian J; Bowman, Stephen M

    2015-01-01

    Oak Ridge National Laboratory and the United States Nuclear Regulatory Commission have initiated a multiyear project to investigate application of burnup credit for boiling-water reactor (BWR) fuel in storage and transportation casks. This project includes two phases. The first phase (1) investigates applicability of peak reactivity methods currently used in spent fuel pools (SFPs) to storage and transportation systems and (2) evaluates validation of both reactivity (k eff) calculations and burnup credit nuclide concentrations within these methods. The second phase will focus on extending burnup credit beyond peak reactivity. This paper documents the first phase, including an analysis of latticemore » design parameters and depletion effects, as well as both validation components. Initial efforts related to extended burnup credit are discussed in a companion paper. Peak reactivity analyses have been used in criticality analyses for licensing of BWR fuel in SFPs over the last 20 years. These analyses typically combine credit for the gadolinium burnable absorber present in the fuel with a modest amount of burnup credit. Gadolinium burnable absorbers are used in BWR assemblies to control core reactivity. The burnable absorber significantly reduces assembly reactivity at beginning of life, potentially leading to significant increases in assembly reactivity for burnups less than 15–20 GWd/MTU. The reactivity of each fuel lattice is dependent on gadolinium loading. The number of gadolinium-bearing fuel pins lowers initial lattice reactivity, but it has a small impact on the burnup and reactivity of the peak. The gadolinium concentration in each pin has a small impact on initial lattice reactivity but a significant effect on the reactivity of the peak and the burnup at which the peak occurs. The importance of the lattice parameters and depletion conditions are primarily determined by their impact on the gadolinium depletion. Criticality code validation for BWR burnup credit at peak reactivity requires a different set of experiments than for pressurized-water reactor burnup credit analysis because of differences in actinide compositions, presence of residual gadolinium absorber, and lower fission product concentrations. A survey of available critical experiments is presented along with a sample criticality code validation and determination of undercoverage penalties for some nuclides. The validation of depleted fuel compositions at peak reactivity presents many challenges which largely result from a lack of radiochemical assay data applicable to BWR fuel in this burnup range. In addition, none of the existing low burnup measurement data include residual gadolinium measurements. An example bias and uncertainty associated with validation of actinide-only fuel compositions is presented.« less

  2. 78 FR 32077 - List of Approved Spent Fuel Storage Casks: MAGNASTOR® System

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-29

    ... Fuel Storage Casks: MAGNASTOR[supreg] System AGENCY: Nuclear Regulatory Commission. ACTION: Direct... final rule that would have revised its spent fuel storage regulations to include Amendment No. 3 to... All-purpose Storage (MAGNASTOR[supreg]) System listing within the ``List of Approved Spent Fuel...

  3. Electrorefining process and apparatus for recovery of uranium and a mixture of uranium and plutonium from spent fuels

    DOEpatents

    Ackerman, J.P.; Miller, W.E.

    1987-11-05

    An electrorefining process and apparatus for the recovery of uranium and a mixture of uranium and plutonium from spent fuels is disclosed using an electrolytic cell having a lower molten cadmium pool containing spent nuclear fuel, an intermediate electrolyte pool, an anode basket containing spent fuels, two cathodes and electrical power means connected to the anode basket, cathodes and lower molten cadmium pool for providing electrical power to the cell. Using this cell, additional amounts of uranium and plutonium from the anode basket are dissolved in the lower molten cadmium pool, and then purified uranium is electrolytically transported and deposited on a first molten cadmium cathode. Subsequently, a mixture of uranium and plutonium is electrotransported and deposited on a second cathode. 3 figs.

  4. Fuel cell energy storage for Space Station enhancement

    NASA Technical Reports Server (NTRS)

    Stedman, J. K.

    1990-01-01

    Viewgraphs on fuel cell energy storage for space station enhancement are presented. Topics covered include: power profile; solar dynamic power system; photovoltaic battery; space station energy demands; orbiter fuel cell power plant; space station energy storage; fuel cell system modularity; energy storage system development; and survival power supply.

  5. PLOT PLAN OF FUEL STORAGE BUILDING (CPP603) SHOWING STORAGE BASINS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PLOT PLAN OF FUEL STORAGE BUILDING (CPP-603) SHOWING STORAGE BASINS AND PROPOSED LOCATION OF FUEL ELEMENT CUTTING FACILITY. INL DRAWING NUMBER 200-0603-00-706-051287. ALTERNATE ID NUMBER CPP-C-1287. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  6. 46 CFR 108.237 - Fuel storage facilities.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Fuel storage facilities. 108.237 Section 108.237... AND EQUIPMENT Construction and Arrangement Helicopter Facilities § 108.237 Fuel storage facilities. (a) Helicopter fuel storage tanks must be installed as far as practicable from— (1) The landing area; and (2...

  7. 46 CFR 108.237 - Fuel storage facilities.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Fuel storage facilities. 108.237 Section 108.237... AND EQUIPMENT Construction and Arrangement Helicopter Facilities § 108.237 Fuel storage facilities. (a) Helicopter fuel storage tanks must be installed as far as practicable from— (1) The landing area; and (2...

  8. 46 CFR 108.237 - Fuel storage facilities.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Fuel storage facilities. 108.237 Section 108.237... AND EQUIPMENT Construction and Arrangement Helicopter Facilities § 108.237 Fuel storage facilities. (a) Helicopter fuel storage tanks must be installed as far as practicable from— (1) The landing area; and (2...

  9. 46 CFR 108.237 - Fuel storage facilities.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Fuel storage facilities. 108.237 Section 108.237... AND EQUIPMENT Construction and Arrangement Helicopter Facilities § 108.237 Fuel storage facilities. (a) Helicopter fuel storage tanks must be installed as far as practicable from— (1) The landing area; and (2...

  10. 78 FR 40199 - Draft Spent Fuel Storage and Transportation Interim Staff Guidance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-03

    ... NUCLEAR REGULATORY COMMISSION [NRC-2013-0140] Draft Spent Fuel Storage and Transportation Interim... Spent Fuel Storage and Transportation Interim Staff Guidance No. 24 (SFST-ISG-24), Revision 0, ``The Use of a Demonstration Program as Confirmation of Integrity for Continued Storage of High Burnup Fuel...

  11. Refining technology for the recycling of stainless steel radioactive scrap metals, FY 94 bi-annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mizia, R.E.; Atteridge, D.G.; Buckentin, J.

    1994-08-01

    The research addressed under this project is the recycling of metallic nuclear-related by-product materials under the direction of Westinghouse Idaho Nuclear Company (WINCO). The program addresses the recycling of radioactive scrap metals (RSM) for beneficial re-use within the DOE complex; in particular, this program addresses the recycling of stainless steel RSM. It is anticipated that various stainless steel components under WINCO control at the Idaho Falls Engineering Laboratory (INEL), such as fuel pool criticality barriers and fuel storage racks will begin to be recycled in FY94-95. The end product of this recycling effort is expected to be waste and overpackmore » canisters for densified high level waste for the Idaho Waste Immobilization Facility and/or the Universal Canister System for dry (interim) storage of spent fuel. The specific components of this problem area that are presently being, or have been, addressed by CAAMSEC are: (1) the melting/remelting of stainless steel RSM into billet form; (2) the melting/remelting initial research focus will be on the use of radioactive surrogates to study; (3) the cost effectiveness of RSM processing oriented towards privatization of RSM reuse and/or resale. Other components of this problem that may be addressed under program extension are: (4) the melting/remelting of carbon steel; (5) the processing of billet material into product form which shall meet all applicable ASTM requirements; and, (6) the fabrication of an actual prototypical product; the present concept of an end product is a low carbon Type 304/316 stainless steel cylindrical container for densified and/or vitrified high level radioactive waste and/or the Universal Canister System for dry (interim) storage of spent fuel. The specific work reported herein covers the melting/remelting of stainless steel {open_quotes}scrap{close_quotes} metal into billet form and the study of surrogate material removal effectiveness by various remelting techniques.« less

  12. Computational Flame Characterization of New Large Aircraft Immersed in Hydrocarbon Pool Fires

    DTIC Science & Technology

    2013-08-01

    hydrocarbon liquid pool fires, their interaction with engulfed bodies, along with a brief overview of pool fire modeling. An industry-accepted...two-dimensional (2-D) horizontal liquid , heavy hydrocarbon fuel surface. A heavy hydrocarbon is characterized by properties consistent with aviation... jet fuels representing common diesel derivatives, such as Jet A and JP-8. Pool diameters are assumed to be much greater than 1 m to coincide with

  13. Model of large pool fires.

    PubMed

    Fay, J A

    2006-08-21

    A two zone entrainment model of pool fires is proposed to depict the fluid flow and flame properties of the fire. Consisting of combustion and plume zones, it provides a consistent scheme for developing non-dimensional scaling parameters for correlating and extrapolating pool fire visible flame length, flame tilt, surface emissive power, and fuel evaporation rate. The model is extended to include grey gas thermal radiation from soot particles in the flame zone, accounting for emission and absorption in both optically thin and thick regions. A model of convective heat transfer from the combustion zone to the liquid fuel pool, and from a water substrate to cryogenic fuel pools spreading on water, provides evaporation rates for both adiabatic and non-adiabatic fires. The model is tested against field measurements of large scale pool fires, principally of LNG, and is generally in agreement with experimental values of all variables.

  14. 40 CFR 1066.985 - Fuel storage system leak test procedure.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Fuel storage system leak test... Refueling Emission Test Procedures for Motor Vehicles § 1066.985 Fuel storage system leak test procedure. (a... conditions. (3) Leak test equipment must have the ability to pressurize fuel storage systems to at least 4.1...

  15. 76 FR 2277 - List of Approved Spent Fuel Storage Casks: NUHOMS® HD System Revision 1

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-13

    ... Fuel Storage Casks: NUHOMS[supreg] HD System Revision 1 AGENCY: Nuclear Regulatory Commission. ACTION... amend its spent fuel storage cask regulations by revising the Transnuclear, Inc. (TN) NUHOMS[supreg] HD System listing within the ``List of Approved Spent Fuel Storage Casks'' to include Amendment No. 1 to...

  16. SOUTH ELEVATION OF IRRADIATED FUEL STORAGE FACILITY LOCATED IN FUEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SOUTH ELEVATION OF IRRADIATED FUEL STORAGE FACILITY LOCATED IN FUEL STORAGE BUILDING (CPP-603). PHOTO TAKEN LOOKING NORTH. INL PHOTO NUMBER HD-54-15-2. Mike Crane, Photographer, 8/2005 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  17. NORTH ELEVATION OF IRRADIATED FUEL STORAGE FACILITY LOCATED IN FUEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    NORTH ELEVATION OF IRRADIATED FUEL STORAGE FACILITY LOCATED IN FUEL STORAGE BUILDING (CPP-603). PHOTO TAKEN LOOKING SOUTH. INL PHOTO NUMBER HD-54-16-1. Mike Crane, Photographer, 8/2005 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  18. Radioactivity from Fukushima Dai-ichi in air over Europe; part 2: what can it tell us about the accident?

    PubMed

    Kirchner, G; Bossew, P; De Cort, M

    2012-12-01

    It is shown which information can be extracted from the monitoring of radionuclides emitted from the Fukushima Dai-ichi nuclear power plant and transported to Europe. In this part the focus will be on the analysis of the concentration ratios. While (131)I, (134)Cs and (137)Cs were reported by most stations, other detected radionuclides, reported by some, are (95)Nb, (129m)Te, (132)Te, (132)I, (136)Cs and (140)La. From their activity ratios a mean burn-up of 26.7 GWd/t of the fuel from which they originated is estimated. Based on these data, inventories of radionuclides present at the time of the accident are calculated. The caesium activity ratios indicate emissions from the core of unit 4 which had been unloaded into the fuel storage pool prior to the accident. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. CONSTRUCTION PROGRESS PHOTO SHOWING WEST STORAGE BASIN AT FUEL STORAGE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CONSTRUCTION PROGRESS PHOTO SHOWING WEST STORAGE BASIN AT FUEL STORAGE BUILDING (CPP-603). INL PHOTO NUMBER NRTS-51-689. Unknown Photographer, 1950 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  20. Dry Storage of Research Reactor Spent Nuclear Fuel - 13321

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, T.M.; Dunsmuir, M.D.; Leduc, D.R.

    2013-07-01

    Spent fuel from domestic and foreign research reactors is received and stored at the Savannah River Site's L Area Material Storage (L Basin) Facility. This DOE-owned fuel consists primarily of highly enriched uranium in metal, oxide or silicide form with aluminum cladding. Upon receipt, the fuel is unloaded and transferred to basin storage awaiting final disposition. Disposition alternatives include processing via the site's H Canyon facility for uranium recovery, or packaging and shipment of the spent fuel to a waste repository. A program has been developed to provide a phased approach for dry storage of the L Basin fuel. Themore » initial phase of the dry storage program will demonstrate loading, drying, and storage of fuel in twelve instrumented canisters to assess fuel performance. After closure, the loaded canisters are transferred to pad-mounted concrete overpacks, similar to those used for dry storage of commercial fuel. Unlike commercial spent fuel, however, the DOE fuel has high enrichment, very low to high burnup, and low decay heat. The aluminum cladding presents unique challenges due to the presence of an oxide layer that forms on the cladding surface, and corrosion degradation resulting from prolonged wet storage. The removal of free and bound water is essential to the prevention of fuel corrosion and radiolytic generation of hydrogen. The demonstration will validate models predicting pressure, temperature, gas generation, and corrosion performance, provide an engineering scale demonstration of fuel handling, drying, leak testing, and canister backfill operations, and establish 'road-ready' storage of fuel that is suitable for offsite repository shipment or retrievable for onsite processing. Implementation of the Phase I demonstration can be completed within three years. Phases II and III, leading to the de-inventory of L Basin, would require an additional 750 canisters and 6-12 years to complete. Transfer of the fuel from basin storage to dry storage requires integration with current facility operations, and selection of equipment that will allow safe operation within the constraints of existing facility conditions. Examples of such constraints that are evaluated and addressed by the dry storage program include limited basin depth, varying fuel lengths up to 4 m, (13 ft), fissile loading limits, canister closure design, post-load drying and closure of the canisters, instrument selection and installation, and movement of the canisters to storage casks. The initial pilot phase restricts the fuels to shorter length fuels that can be loaded to the canister directly underwater; subsequent phases will require use of a shielded transfer system. Removal of the canister from the basin, followed by drying, inerting, closure of the canister, and transfer of the canister to the storage cask are completed with remotely operated equipment and appropriate shielding to reduce personnel radiation exposure. (authors)« less

  1. Analysis of Transportation Options for Commercial Spent Fuel in the U.S.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalinina, Elena; Busch, Ingrid Karin

    The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S.more » Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage and associated transportation of spent nuclear fuel (SNF) highand associated transportation of spent nuclear fuel (SNF) and high and associated transportation of spent nuclear fuel (SNF) highand associated transportation of spent nuclear fuel (SNF) and high and associated transportation of spent nuclear fuel (SNF) highand associated transportation of spent nuclear fuel (SNF) and highand associated transportation of spent nuclear fuel (SNF) and high and associated transportation of spent nuclear fuel (SNF) high and associated transportation of spent nuclear fuel (SNF) high and associated transportation of spent nuclear fuel (SNF) high and associated transportation of spent nuclear fuel (SNF) high and associated transportation of spent nuclear fuel (SNF) high and associated transportation of spent nuclear fuel (SNF) high and associated transportation of spent nuclear fuel (SNF) highand associated transportation of spent nuclear fuel (SNF) and high and associated transportation of spent nuclear fuel (SNF) high and associated transportation of spent nuclear fuel (SNF) highand associated transportation of spent nuclear fuel (SNF)...« less

  2. Pool-site fuel inspection and examination techniques applied by the Kraftwerk Union Aktiengesellschaft Fuel Service. [PWR; BWR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knaab, H.; Knecht, K.

    The need for pool-site inspection and examination of fuel assemblies was recognized by Kraftwerk Union Aktiengesellschaft with the commissioning of the first nuclear power stations. A wet sipping method has demonstrated high reliability in detection of leaking fuel assemblies. The visual inspection system is a versatile tool. It can be supplemented by attaching devices for oxide thickness measurement or surface replication. Repair of leaking pressurized water reactor fuel assemblies has improved fuel utilization. Applied methods and typical results are described.

  3. Fire safety distances for open pool fires

    NASA Astrophysics Data System (ADS)

    Sudheer, S.; Kumar, Lokendra; Manjunath, B. S.; Pasi, Amit; Meenakshi, G.; Prabhu, S. V.

    2013-11-01

    Fire accidents that carry huge loss with them have increased in the previous two decades than at any time in the history. Hence, there is a need for understanding the safety distances from different fires with different fuels. Fire safety distances are computed for different open pool fires. Diesel, gasoline and hexane are used as fuels for circular pool diameters of 0.5 m, 0.7 m and 1.0 m. A large square pool fire of 4 m × 4 m is also conducted with diesel as a fuel. All the prescribed distances in this study are purely based on the thermal analysis. IR camera is used to get the thermal images of pool fires and there by the irradiance at different locations is computed. The computed irradiance is presented with the threshold heat flux limits for human beings.

  4. PLAN VIEW OF FUEL STORAGE BUILDING (CPP603) SHOWING STORAGE BASINS. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PLAN VIEW OF FUEL STORAGE BUILDING (CPP-603) SHOWING STORAGE BASINS. INL DRAWING NUMBER 200-0603-00-706-051285. ALTERNATE ID NUMBER CPP-D-1285. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  5. DEMONSTRATION OF LONG-TERM STORAGE CAPABILITY FOR SPENT NUCLEAR FUEL IN L BASIN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sindelar, R.; Deible, R.

    2011-04-27

    The U.S. Department of Energy decisions for the ultimate disposition of its inventory of used nuclear fuel presently in, and to be received and stored in, the L Basin at the Savannah River Site, and schedule for project execution have not been established. A logical decision timeframe for the DOE is following the review of the overall options for fuel management and disposition by the Blue Ribbon Commission on America's Nuclear Future (BRC). The focus of the BRC review is commercial fuel; however, the BRC has included the DOE fuel inventory in their review. Even though the final report bymore » the BRC to the U.S. Department of Energy is expected in January 2012, no timetable has been established for decisions by the U.S. Department of Energy on alternatives selection. Furthermore, with the imminent lay-up and potential closure of H-canyon, no ready path for fuel disposition would be available, and new technologies and/or facilities would need to be established. The fuel inventory in wet storage in the 3.375 million gallon L Basin is primarily aluminum-clad, aluminum-based fuel of the Materials Test Reactor equivalent design. An inventory of non-aluminum-clad fuel of various designs is also stored in L Basin. Safe storage of fuel in wet storage mandates several high-level 'safety functions' that would be provided by the Structures, Systems, and Components (SSCs) of the storage system. A large inventory of aluminum-clad, aluminum-based spent nuclear fuel, and other nonaluminum fuel owned by the U.S. Department of Energy is in wet storage in L Basin at the Savannah River Site. An evaluation of the present condition of the fuel, and the Structures, Systems, or Components (SSCs) necessary for its wet storage, and the present programs and storage practices for fuel management have been performed. Activities necessary to validate the technical bases for, and verify the condition of the fuel and the SSCs under long-term wet storage have also been identified. The overall conclusion is that the fuel can be stored in L Basin, meeting general safety functions for fuel storage, for an additional 50 years and possibly beyond contingent upon continuation of existing fuel management activities and several augmented program activities. It is concluded that the technical bases and well-founded technologies have been established to store spent nuclear fuel in the L Basin. Methodologies to evaluate the fuel condition and characteristics, and systems to prepare fuel, isolate damaged fuel, and maintain water quality storage conditions have been established. Basin structural analyses have been performed against present NPH criteria. The aluminum fuel storage experience to date, supported by the understanding of the effects of environmental variables on materials performance, demonstrates that storage systems that minimize degradation and provide full retrievability of the fuel up to and greater than 50 additional years will require maintaining the present management programs, and with the recommended augmented/additional activities in this report.« less

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marschman, Steven C.; Warmann, Stephan A.; Rusch, Chris

    The U.S. Department of Energy Office of Nuclear Energy (DOE-NE), Office of Fuel Cycle Technology, has established the Used Fuel Disposition Campaign (UFDC) to conduct the research and development activities related to storage, transportation, and disposal of used nuclear fuel and high-level radioactive waste. The mission of the UFDC is to identify alternatives and conduct scientific research and technology development to enable storage, transportation and disposal of used nuclear fuel (UNF) and wastes generated by existing and future nuclear fuel cycles. The UFDC Storage and Transportation staffs are responsible for addressing issues regarding the extended or long-term storage of UNFmore » and its subsequent transportation. The near-term objectives of the Storage and Transportation task are to use a science-based approach to develop the technical bases to support the continued safe and secure storage of UNF for extended periods, subsequent retrieval, and transportation. While low burnup fuel [that characterized as having a burnup of less than 45 gigawatt days per metric tonne uranium (GWD/MTU)] has been stored for nearly three decades, the storage of high burnup used fuels is more recent. The DOE has funded a demonstration project to confirm the behavior of used high burnup fuel under prototypic conditions. The Electric Power Research Institute (EPRI) is leading a project team to develop and implement the Test Plan to collect this data from a UNF dry storage system containing high burnup fuel. The Draft Test Plan for the demonstration outlines the data to be collected; the high burnup fuel to be included; the technical data gaps the data will address; and the storage system design, procedures, and licensing necessary to implement the Test Plan. To provide data that is most relevant to high burnup fuel in dry storage, the design of the test storage system must closely mimic real conditions high burnup SNF experiences during all stages of dry storage: loading, cask drying, inert gas backfilling, and transfer to an Independent Spent Fuel Storage Installation (ISFSI) for multi-year storage. To document the initial condition of the used fuel prior to emplacement in a storage system, “sister ” fuel rods will be harvested and sent to a national laboratory for characterization and archival purposes. This report supports the demonstration by describing how sister rods will be shipped and received at a national laboratory, and recommending basic nondestructive and destructive analyses to assure the fuel rods are adequately characterized for UFDC work. For this report, a hub-and-spoke model is proposed, with one location serving as the hub for fuel rod receipt and characterization. In this model, fuel and/or clad would be sent to other locations when capabilities at the hub were inadequate or nonexistent. This model has been proposed to reduce DOE-NE’s obligation for waste cleanup and decontamination of equipment.« less

  7. 77 FR 9591 - List of Approved Spent Fuel Storage Casks: HI-STORM 100, Revision 8

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-17

    ... Fuel Storage Casks: HI-STORM 100, Revision 8 AGENCY: Nuclear Regulatory Commission. ACTION: Proposed... spent fuel storage cask regulations by revising the Holtec International HI-STORM 100 dry cask storage... Amendment No. 8 to CoC No. 1014 and does not include other aspects of the HI-STORM 100 dry storage cask...

  8. Installation Restoration Program. Remedial Investigation Report. Minnesota Air National Guard Base Duluth International Airport, Duluth, Minnesota. Volume 1

    DTIC Science & Technology

    1990-01-01

    There are three above ground storage tanks for the storage of JP-4 jet fuel with ancillary piping, pumps, loading and unloading facilities, and...time daily basis. Workers are present to transfer jet fuel from delivery tncks to the storage tanks and from the storage tanks to fueling trucks...Ground-water flow and contaminant migration at Site 4, the fuel storage area, is generally toward the drainage ditch located immediately north of the

  9. UFD Storage and Transportation - Transportation Working Group Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maheras, Steven J.; Ross, Steven B.

    2011-08-01

    The Used Fuel Disposition (UFD) Transportation Task commenced in October 2010. As its first task, Pacific Northwest National Laboratory (PNNL) compiled a list of structures, systems, and components (SSCs) of transportation systems and their possible degradation mechanisms during extended storage. The list of SSCs and the associated degradation mechanisms [known as features, events, and processes (FEPs)] were based on the list of used nuclear fuel (UNF) storage system SSCs and degradation mechanisms developed by the UFD Storage Task (Hanson et al. 2011). Other sources of information surveyed to develop the list of SSCs and their degradation mechanisms included references suchmore » as Evaluation of the Technical Basis for Extended Dry Storage and Transportation of Used Nuclear Fuel (NWTRB 2010), Transportation, Aging and Disposal Canister System Performance Specification, Revision 1 (OCRWM 2008), Data Needs for Long-Term Storage of LWR Fuel (EPRI 1998), Technical Bases for Extended Dry Storage of Spent Nuclear Fuel (EPRI 2002), Used Fuel and High-Level Radioactive Waste Extended Storage Collaboration Program (EPRI 2010a), Industry Spent Fuel Storage Handbook (EPRI 2010b), and Transportation of Commercial Spent Nuclear Fuel, Issues Resolution (EPRI 2010c). SSCs include items such as the fuel, cladding, fuel baskets, neutron poisons, metal canisters, etc. Potential degradation mechanisms (FEPs) included mechanical, thermal, radiation and chemical stressors, such as fuel fragmentation, embrittlement of cladding by hydrogen, oxidation of cladding, metal fatigue, corrosion, etc. These degradation mechanisms are discussed in Section 2 of this report. The degradation mechanisms have been evaluated to determine if they would be influenced by extended storage or high burnup, the need for additional data, and their importance to transportation. These categories were used to identify the most significant transportation degradation mechanisms. As expected, for the most part, the transportation importance was mirrored by the importance assigned by the UFD Storage Task. A few of the more significant differences are described in Section 3 of this report« less

  10. VIEW OF SOUTH STORAGE BASIN NUMBER 1 OF FUEL STORAGE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF SOUTH STORAGE BASIN NUMBER 1 OF FUEL STORAGE BUILDING (CPP-603). PHOTO TAKEN LOOKING NORTHEAST. INL PHOTO NUMBER HD-54-18-4. Mike Crane, Photographer, 8/2005 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  11. VIEW OF MIDDLE STORAGE BASIN NUMBER 2 OF FUEL STORAGE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF MIDDLE STORAGE BASIN NUMBER 2 OF FUEL STORAGE BUILDING (CPP-603). PHOTO TAKEN LOOKING NORTHEAST. INL PHOTO NUMBER HD-54-17-3. Mike Crane, Photographer, 8/2005 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  12. Decay heat power of spent nuclear fuel of power reactors with high burnup at long-term storage

    NASA Astrophysics Data System (ADS)

    Ternovykh, Mikhail; Tikhomirov, Georgy; Saldikov, Ivan; Gerasimov, Alexander

    2017-09-01

    Decay heat power of actinides and fission products from spent nuclear fuel of power VVER-1000 type reactors at long-term storage is calculated. Two modes of storage are considered: mode in which single portion of actinides or fission products is loaded in storage facility, and mode in which actinides or fission products from spent fuel of one VVER reactor are added every year in storage facility during 30 years and then accumulated nuclides are stored without addition new nuclides. Two values of fuel burnup 40 and 70 MW·d/kg are considered for the mode of storage of single fuel unloading. For the mode of accumulation of spent fuel with subsequent storage, one value of burnup of 70 MW·d/kg is considered. Very long time of storage 105 years accepted in calculations allows to simulate final geological disposal of radioactive wastes. Heat power of fission products decreases quickly after 50-100 years of storage. The power of actinides decreases very slow. In passing from 40 to 70 MW·d/kg, power of actinides increases due to accumulation of higher fraction of 244Cm. These data are important in the back end of fuel cycle when improved cooling system of the storage facility will be required along with stronger radiation protection during storage, transportation and processing.

  13. 46 CFR 108.237 - Fuel storage facilities.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... AND EQUIPMENT Construction and Arrangement Helicopter Facilities § 108.237 Fuel storage facilities. (a) Helicopter fuel storage tanks must be installed as far as practicable from— (1) The landing area; and (2...

  14. Developing a concept for a national used fuel interim storage facility in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, Donald Wayne

    2013-07-01

    In the United States (U.S.) the nuclear waste issue has plagued the nuclear industry for decades. Originally, spent fuel was to be reprocessed but with the threat of nuclear proliferation, spent fuel reprocessing has been eliminated, at least for now. In 1983, the Nuclear Waste Policy Act of 1982 [1] was established, authorizing development of one or more spent fuel and high-level nuclear waste geological repositories and a consolidated national storage facility, called a 'Monitored Retrievable Storage' facility, that could store the spent nuclear fuel until it could be placed into the geological repository. Plans were under way to buildmore » a geological repository, Yucca Mountain, but with the decision by President Obama to terminate the development of Yucca Mountain, a consolidated national storage facility that can store spent fuel for an interim period until a new repository is established has become very important. Since reactor sites have not been able to wait for the government to come up with a storage or disposal location, spent fuel remains in wet or dry storage at each nuclear plant. The purpose of this paper is to present a concept developed to address the DOE's goals stated above. This concept was developed over the past few months by collaboration between the DOE and industry experts that have experience in designing spent nuclear fuel facilities. The paper examines the current spent fuel storage conditions at shutdown reactor sites, operating reactor sites, and the type of storage systems (transportable versus non-transportable, welded or bolted). The concept lays out the basis for a pilot storage facility to house spent fuel from shutdown reactor sites and then how the pilot facility can be enlarged to a larger full scale consolidated interim storage facility. (authors)« less

  15. 78 FR 16619 - List of Approved Spent Fuel Storage Casks: MAGNASTOR® System

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-18

    ...-0308] RIN 3150-AJ22 List of Approved Spent Fuel Storage Casks: MAGNASTOR[supreg] System AGENCY: Nuclear... proposing to amend its spent fuel storage regulations by revising the NAC International, Inc., Modular Advanced Generation Nuclear All-purpose Storage (MAGNASTOR[supreg]) Cask System listing within the ``List...

  16. 78 FR 66858 - Waste Confidence-Continued Storage of Spent Nuclear Fuel

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-07

    ...-2012-0246] RIN 3150-AJ20 Waste Confidence--Continued Storage of Spent Nuclear Fuel AGENCY: Nuclear... its generic determination on the environmental impacts of the continued storage of spent nuclear fuel... revising the generic determination of the environmental impacts of the continued storage of spent nuclear...

  17. A quantitative model and the experimental evaluation of the liquid fuel layer for the downward flame spread of XPS foam.

    PubMed

    Luo, Shengfeng; Xie, Qiyuan; Tang, Xinyi; Qiu, Rong; Yang, Yun

    2017-05-05

    The objective of this work is to investigate the distinctive mechanisms of downward flame spread for XPS foam. It was physically considered as a moving down of narrow pool fire instead of downward surface flame spread for normal solids. A method was developed to quantitatively analyze the accumulated liquid fuel based on the experimental measurement of locations of flame tips and burning rates. The results surprisingly showed that about 80% of the generated hot liquid fuel remained in the pool fire during a certain period. Most of the consumed solid XPS foam didn't really burn away but transformed as the liquid fuel in the downward moving pool fire, which might be an important promotion for the fast fire development. The results also indicated that the dripping propensity of the hot liquid fuel depends on the total amount of the hot liquid accumulated in the pool fire. The leading point of the flame front curve might be the breach of the accumulated hot liquid fuel if it is enough for dripping. Finally, it is suggested that horizontal noncombustible barriers for preventing the accumulation and dripping of liquid fuel are helpful for vertical confining of XPS fire. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Default operational intervention levels (OILs) for severe nuclear power plant or spent fuel pool emergencies.

    PubMed

    McKenna, T; Kutkov, V; Vilar Welter, P; Dodd, B; Buglova, E

    2013-05-01

    Experience and studies show that for an emergency at a nuclear power plant involving severe core damage or damage to the fuel in spent fuel pools, the following actions may need to be taken in order to prevent severe deterministic health effects and reduce stochastic health effects: (1) precautionary protective actions and other response actions for those near the facility (i.e., within the zones identified by the International Atomic Energy Agency) taken immediately upon detection of facility conditions indicating possible severe damage to the fuel in the core or in the spent fuel pool; and (2) protective actions and other response actions taken based on environmental monitoring and sampling results following a release. This paper addresses the second item by providing default operational intervention levels [OILs, which are similar to the U.S. derived response levels (DRLs)] for promptly assessing radioactive material deposition, as well as skin, food, milk and drinking water contamination, following a major release of fission products from the core or spent fuel pool of a light water reactor (LWR) or a high power channel reactor (RBMK), based on the International Atomic Energy Agency's guidance.

  19. Hydrogen: A Promising Fuel and Energy Storage Solution - Continuum

    Science.gov Websites

    Magazine | NREL Hydrogen: A Promising Fuel and Energy Storage Solution Fuel cell electric Ainscough, NREL Hydrogen: A Promising Fuel and Energy Storage Solution Electrolysis-generated hydrogen may provide a solution to fluctuations in renewable-sourced energy. As electricity from renewable resources

  20. Hydrogen storage and integrated fuel cell assembly

    DOEpatents

    Gross, Karl J.

    2010-08-24

    Hydrogen is stored in materials that absorb and desorb hydrogen with temperature dependent rates. A housing is provided that allows for the storage of one or more types of hydrogen-storage materials in close thermal proximity to a fuel cell stack. This arrangement, which includes alternating fuel cell stack and hydrogen-storage units, allows for close thermal matching of the hydrogen storage material and the fuel cell stack. Also, the present invention allows for tailoring of the hydrogen delivery by mixing different materials in one unit. Thermal insulation alternatively allows for a highly efficient unit. Individual power modules including one fuel cell stack surrounded by a pair of hydrogen-storage units allows for distribution of power throughout a vehicle or other electric power consuming devices.

  1. Red blood cell storage in additive solution-7 preserves energy and redox metabolism: a metabolomics approach.

    PubMed

    D'Alessandro, Angelo; Nemkov, Travis; Hansen, Kirk C; Szczepiorkowski, Zbigniew M; Dumont, Larry J

    2015-12-01

    Storage and transfusion of red blood cells (RBCs) has a huge medical and economic impact. Routine storage practices can be ameliorated through the implementation of novel additive solutions (ASs) that tackle the accumulation of biochemical and morphologic lesion during routine cold liquid storage in the blood bank, such as the recently introduced alkaline solution AS-7. Here we hypothesize that AS-7 might exert its beneficial effects through metabolic modulation during routine storage. Apheresis RBCs were resuspended either in control AS-3 or experimental AS-7, before ultrahigh-performance liquid chromatography-mass spectrometry metabolomics analysis. Unambiguous assignment and relative quantitation was achieved for 229 metabolites. AS-3 and AS-7 results in many similar metabolic trends over storage, with AS-7 RBCs being more metabolically active in the first storage week. AS-7 units had faster fueling of the pentose phosphate pathway, higher total glutathione pools, and increased flux through glycolysis as indicated by higher levels of pathway intermediates. Metabolite differences are especially observed at 7 days of storage, but were still maintained throughout 42 days. AS-7 formulation (chloride free and bicarbonate loading) appears to improve energy and redox metabolism in stored RBCs in the early storage period, and the differences, though diminished, are still appreciable by Day 42. Energy metabolism and free fatty acids should be investigated as potentially important determinants for preservation of RBC structure and function. Future studies will be aimed at identifying metabolites that correlate with in vitro and in vivo circulation times. © 2015 AABB.

  2. A comparison of hydrogen, methanol and gasoline as fuels for fuel cell vehicles: implications for vehicle design and infrastructure development

    NASA Astrophysics Data System (ADS)

    Ogden, Joan M.; Steinbugler, Margaret M.; Kreutz, Thomas G.

    All fuel cells currently being developed for near term use in electric vehicles require hydrogen as a fuel. Hydrogen can be stored directly or produced onboard the vehicle by reforming methanol, or hydrocarbon fuels derived from crude oil (e.g., gasoline, diesel, or middle distillates). The vehicle design is simpler with direct hydrogen storage, but requires developing a more complex refueling infrastructure. In this paper, we present modeling results comparing three leading options for fuel storage onboard fuel cell vehicles: (a) compressed gas hydrogen storage, (b) onboard steam reforming of methanol, (c) onboard partial oxidation (POX) of hydrocarbon fuels derived from crude oil. We have developed a fuel cell vehicle model, including detailed models of onboard fuel processors. This allows us to compare the vehicle performance, fuel economy, weight, and cost for various vehicle parameters, fuel storage choices and driving cycles. The infrastructure requirements are also compared for gaseous hydrogen, methanol and gasoline, including the added costs of fuel production, storage, distribution and refueling stations. The delivered fuel cost, total lifecycle cost of transportation, and capital cost of infrastructure development are estimated for each alternative. Considering both vehicle and infrastructure issues, possible fuel strategies leading to the commercialization of fuel cell vehicles are discussed.

  3. Multi-fuel reformers for fuel cells used in transportation: Assessment of hydrogen storage technologies

    NASA Astrophysics Data System (ADS)

    1994-03-01

    This report documents a portion of the work performed on Multi-fuel Reformers for Fuel Cells Used in Transportation. One objective of this program is to develop advanced fuel processing systems to reform methanol, ethanol, natural gas, and other hydrocarbons into hydrogen for use in transportation fuel cell systems, while a second objective is to develop better systems for on-board hydrogen storage. This report examines techniques and technology available for storage of pure hydrogen on board a vehicle as pure hydrogen of hydrides. The report focuses separately on near and far-term technologies, with particular emphasis on the former. Development of lighter, more compact near-term storage systems is recommended to enhance competitiveness and simplify fuel cell design. The far-term storage technologies require substantial applied research in order to become serious contenders.

  4. Comparing the Performance of Three Land Models in Global C Cycle Simulations: A Detailed Structural Analysis: Structural Analysis of Land Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rafique, Rashid; Xia, Jianyang; Hararuk, Oleksandra

    Land models are valuable tools to understand the dynamics of global carbon (C) cycle. Various models have been developed and used for predictions of future C dynamics but uncertainties still exist. Diagnosing the models’ behaviors in terms of structures can help to narrow down the uncertainties in prediction of C dynamics. In this study three widely used land surface models, namely CSIRO’s Atmosphere Biosphere Land Exchange (CABLE) with 9 C pools, Community Land Model (version 3.5) combined with Carnegie-Ames-Stanford Approach (CLM-CASA) with 12 C pools and Community Land Model (version 4) (CLM4) with 26 C pools were driven by themore » observed meteorological forcing. The simulated C storage and residence time were used for analysis. The C storage and residence time were computed globally for all individual soil and plant pools, as well as net primary productivity (NPP) and its allocation to different plant components’ based on these models. Remotely sensed NPP and statistically derived HWSD, and GLC2000 datasets were used as a reference to evaluate the performance of these models. Results showed that CABLE exhibited better agreement with referenced C storage and residence time for plant and soil pools, as compared with CLM-CASA and CLM4. CABLE had longer bulk residence time for soil C pools and stored more C in roots, whereas, CLM-CASA and CLM4 stored more C in woody pools due to differential NPP allocation. Overall, these results indicate that the differences in C storage and residence times in three models are largely due to the differences in their fundamental structures (number of C pools), NPP allocation and C transfer rates. Our results have implications in model development and provide a general framework to explain the bias/uncertainties in simulation of C storage and residence times from the perspectives of model structures.« less

  5. Comparison of the safety-related physical and combustion properties of liquid hydrogen and liquid natural gas in the context of the SF-BREEZE high-speed fuel-cell ferry

    DOE PAGES

    Klebanoff, L. E.; Pratt, J. W.; LaFleur, C. B.

    2016-11-25

    Here, we review liquid hydrogen (LH 2) as a maritime vessel fuel, from descriptions of its fundamental properties to its practical application and safety aspects, in the context of the San Francisco Bay Renewable Energy Electric Vessel with Zero Emissions (SF-BREEZE) high-speed fuel-cell ferry. Since marine regulations have been formulated to cover liquid natural gas (LNG) as a primary propulsion fuel, we frame our examination of LH 2 as a comparison to LNG, for both maritime use in general, and the SF-BREEZE in particular. Due to weaker attractions between molecules, LH 2 is colder than LNG, and evaporates more easily.more » We describe the consequences of these physical differences for the size and duration of spills of the two cryogenic fuels. The classical flammability ranges are reviewed, with a focus on how fuel buoyancy modifies these combustion limits. We examine the conditions for direct fuel explosion (detonation) and contrast them with initiation of normal (laminar) combustion. Direct fuel detonation is not a credible accident scenario for the SF-BREEZE. For both fuels, we review experiments and theory elucidating the deflagration to detonation transition (DDT). LH 2 fires have a shorter duration than energy-equivalent LNG fires, and produce significantly less thermal radiation. The thermal (infrared) radiation from hydrogen fires is also strongly absorbed by humidity in the air. Hydrogen permeability is not a leak issue for practical hydrogen plumbing. We describe the chemistry of hydrogen and methane at iron surfaces, clarifying their impact on steel-based hydrogen storage and transport materials. These physical, chemical and combustion properties are pulled together in a comparison of how a LH 2 or LNG pool fire on the Top Deck of the SF-BREEZE might influence the structural integrity of the aluminum deck. Neither pool fire scenario leads to net heating of the aluminum decking. Overall, LH 2 and LNG are very similar in their physical and combustion properties, thereby posing similar safety risks. For ships utilizing LH 2 or LNG, precautions are needed to avoid fuel leaks, minimize ignition sources, minimize confined spaces, provide ample ventilation for required confined spaces, and to monitor the enclosed spaces to ensure any fuel accumulation is detected far below the fuel/air mix threshold for any type of combustion.« less

  6. Comparison of the safety-related physical and combustion properties of liquid hydrogen and liquid natural gas in the context of the SF-BREEZE high-speed fuel-cell ferry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klebanoff, L. E.; Pratt, J. W.; LaFleur, C. B.

    Here, we review liquid hydrogen (LH 2) as a maritime vessel fuel, from descriptions of its fundamental properties to its practical application and safety aspects, in the context of the San Francisco Bay Renewable Energy Electric Vessel with Zero Emissions (SF-BREEZE) high-speed fuel-cell ferry. Since marine regulations have been formulated to cover liquid natural gas (LNG) as a primary propulsion fuel, we frame our examination of LH 2 as a comparison to LNG, for both maritime use in general, and the SF-BREEZE in particular. Due to weaker attractions between molecules, LH 2 is colder than LNG, and evaporates more easily.more » We describe the consequences of these physical differences for the size and duration of spills of the two cryogenic fuels. The classical flammability ranges are reviewed, with a focus on how fuel buoyancy modifies these combustion limits. We examine the conditions for direct fuel explosion (detonation) and contrast them with initiation of normal (laminar) combustion. Direct fuel detonation is not a credible accident scenario for the SF-BREEZE. For both fuels, we review experiments and theory elucidating the deflagration to detonation transition (DDT). LH 2 fires have a shorter duration than energy-equivalent LNG fires, and produce significantly less thermal radiation. The thermal (infrared) radiation from hydrogen fires is also strongly absorbed by humidity in the air. Hydrogen permeability is not a leak issue for practical hydrogen plumbing. We describe the chemistry of hydrogen and methane at iron surfaces, clarifying their impact on steel-based hydrogen storage and transport materials. These physical, chemical and combustion properties are pulled together in a comparison of how a LH 2 or LNG pool fire on the Top Deck of the SF-BREEZE might influence the structural integrity of the aluminum deck. Neither pool fire scenario leads to net heating of the aluminum decking. Overall, LH 2 and LNG are very similar in their physical and combustion properties, thereby posing similar safety risks. For ships utilizing LH 2 or LNG, precautions are needed to avoid fuel leaks, minimize ignition sources, minimize confined spaces, provide ample ventilation for required confined spaces, and to monitor the enclosed spaces to ensure any fuel accumulation is detected far below the fuel/air mix threshold for any type of combustion.« less

  7. Thermal storage requirements for parabolic dish solar power plants

    NASA Technical Reports Server (NTRS)

    Wen, L.; Steele, H.

    1980-01-01

    The cost effectiveness of a high temperature thermal storage system is investigated for a representative parabolic dish solar power plant. The plant supplies electrical power in accordance with a specific, seasonally varying demand profile. The solar power received by the plant is supplemented by power from fuel combustion. The cost of electricity generated by the solar power plant is calculated, using the cost of mass-producible subsystems (specifically, parabolic dishes, receivers, and power conversion units) now being designed for this type of solar plant. The trade-off between fuel and thermal storage is derived in terms of storage effectiveness, the cost of storage devices, and the cost of fuel. Thermal storage requirements, such as storage capacity, storage effectiveness, and storage cost are established based on the cost of fuel and the overall objective of minimizing the cost of the electricity produced by the system. As the cost of fuel increases at a rate faster than general inflation, thermal storage systems in the $40 to $70/kWthr range could become cost effective in the near future.

  8. 10 CFR 72.214 - List of approved spent fuel storage casks.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General License for Storage of Spent Fuel at Power Reactor Sites § 72.214 List of approved spent...

  9. 10 CFR 72.214 - List of approved spent fuel storage casks.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General License for Storage of Spent Fuel at Power Reactor Sites § 72.214 List of approved spent...

  10. Can Shale Safely Host U.S. Nuclear Waste?

    NASA Astrophysics Data System (ADS)

    Neuzil, C. E.

    2013-07-01

    Even as cleanup efforts after Japan's Fukushima disaster offer a stark reminder of the spent nuclear fuel (SNF) stored at nuclear plants worldwide, the decision in 2009 to scrap Yucca Mountain as a permanent disposal site has dimmed hope for a repository for SNF and other high-level nuclear waste (HLW) in the United States anytime soon. About 70,000 metric tons of SNF are now in pool or dry cask storage at 75 sites across the United States [Government Accountability Office, 2012], and uncertainty about its fate is hobbling future development of nuclear power, increasing costs for utilities, and creating a liability for American taxpayers [Blue Ribbon Commission on America's Nuclear Future, 2012].

  11. 75 FR 27401 - List of Approved Spent Fuel Storage Casks: NUHOMS® HD System Revision 1; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-17

    ... Storage Casks: NUHOMS[reg] HD System Revision 1; Correction AGENCY: Nuclear Regulatory Commission. ACTION... HD spent fuel storage cask system. This action is necessary to correctly specify the effective date... on May 6, 2010 (75 FR 24786), that amends the regulations that govern storage of spent nuclear fuel...

  12. Fuel Storage Tanks at FAA Facilities: Order 1050.15A

    DOT National Transportation Integrated Search

    1997-04-30

    The Federal Aviation Administration (FAA) has over 4,000 fuel storage tanks (FST) in its : inventory. Most of these FSTs are underground storage tanks (UST) that contain fuel for : emergency backup generators providing secondary power to air navigati...

  13. Scoping studies of vapor behavior during a severe accident in a metal-fueling reactor

    NASA Astrophysics Data System (ADS)

    Spencer, B. W.; Marchaterre, J. F.

    1985-04-01

    The consequences of fuel melting and pin failures for a reactivity-insertion type accident in a sodium-cooled, pool-type reactor fueled with a metal alloy fuel were examined. The principal gas and vapor species released are shown to be Xe, Cs, and bond sodium contained within the fuel porosity. Condensation of sodium vapor as it expands into the upper sodium pool in a jet mixing regime may occur as rapidly as the vapor emerges from the disrupted core. If the predictions of rapid direct-contact condensation can be verified experimentally for the sodium system, the ability of vapor expansion to perform appreciable work on the system and the ability of an expanding vapor bubble to transport fuel and fission produce species to the cover gas region where they may be released to the containment are largely eliminated. The radionuclide species except for fission gas are largely retained within the core and sodium pool.

  14. Thermal Analysis of ZPPR High Pu Content Stored Fuel

    DOE PAGES

    Solbrig, Charles W.; Pope, Chad L.; Andrus, Jason P.

    2014-09-17

    The Zero Power Physics Reactor (ZPPR) operated from April 18, 1969, until 1990. ZPPR operated at low power for testing nuclear reactor designs. This paper examines the temperature of Pu content ZPPR fuel while it is in storage. Heat is generated in the fuel due to Pu and Am decay and is a concern for possible cladding damage. Damage to the cladding could lead to fuel hydriding and oxidizing. A series of computer simulations were made to determine the range of temperatures potentially occuring in the ZPPR fuel. The maximum calculated fuel temperature is 292°C (558°F). Conservative assumptions in themore » model intentionally overestimate temperatures. The stored fuel temperatures are dependent on the distribution of fuel in the surrounding storage compartments, the heat generation rate of the fuel, and the orientation of fuel. Direct fuel temperatures could not be measured but storage bin doors, storage sleeve doors, and storage canister temperatures were measured. Comparison of these three temperatures to the calculations indicates that the temperatures calculated with conservative assumptions are, as expected, higher than the actual temperatures. The maximum calculated fuel temperature with the most conservative assumptions is significantly below the fuel failure criterion of 600°C (1,112°F).« less

  15. Electrorefining process and apparatus for recovery of uranium and a mixture of uranium and plutonium from spent fuels

    DOEpatents

    Ackerman, John P.; Miller, William E.

    1989-01-01

    An electrorefining process and apparatus for the recovery of uranium and a mixture of uranium and plutonium from spent fuel using an electrolytic cell having a lower molten cadmium pool containing spent nuclear fuel, an intermediate electrolyte pool, an anode basket containing spent fuel, and two cathodes, the first cathode composed of either a solid alloy or molten cadmium and the second cathode composed of molten cadmium. Using this cell, additional amounts of uranium and plutonium from the anode basket are dissolved in the lower molten cadmium pool, and then substantially pure uranium is electrolytically transported and deposited on the first alloy or molten cadmium cathode. Subsequently, a mixture of uranium and plutonium is electrotransported and deposited on the second molten cadmium cathode.

  16. Fuel storage tanks at FAA facilities : Order 1050.15A : executive summary.

    DOT National Transportation Integrated Search

    1997-04-30

    The Federal Aviation Administration (FAA) has over 4,000 fuel storage tanks (FST) in its inventory. Most of these FSTs are underground storage tanks (UST) that contain fuel for emergency backup generators providing secondary power to air navigational...

  17. Dismantling the nuclear research reactor Thetis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michiels, P.

    The research reactor Thetis, in service since 1967 and stopped in 2003, is part of the laboratories of the institution of nuclear science of the University of Ghent. The reactor, of the pool-type, was used as a neutron-source for the production of radio-isotopes and for activation analyses. The reactor is situated in a water pool with inner diameter of 3 m. and a depth of 7.5 m. The reactor core is situated 5.3 m under water level. Besides the reactor, the pool contains pneumatic loops, handling tools, graphite blocks for neutron moderation and other experimental equipment. The building houses storagemore » rooms for fissile material and sources, a pneumatic circuit for transportation of samples, primary and secondary cooling circuits, water cleaning resin circuits, a ventilation system and other necessary devices. Because of the experimental character of the reactor, laboratories with glove boxes and other tools were needed and are included in the dismantling program. The building is in 3 levels with a crawl-space. The ground-floor contains the ventilation installation, the purification circuits with tanks, cooling circuits and pneumatic transport system. On the first floor, around the reactor hall, the control-room, visiting area, end-station for pneumatic transport, waste-storage room, fuel storage room and the labs are located. The second floor contains a few laboratories and end stations of the two high speed transfer tubes. The lowest level of the pool is situated under ground level. The reactor has been operated at a power of 150 kW and had a max operating power of 250 kW. Belgoprocess has been selected to decommission the reactor, the labs, storage halls and associated circuits to free release the building for conventional reuse and for the removal of all its internals as legal defined. Besides the dose-rate risk and contamination risk, there is also an asbestos risk of contamination. During construction of the installation, asbestos-containing materials were used, which must be removed in controlled conditions. The ventilation system is considered free from nuclear contamination but it contains asbestos. This paper covers the organization of the dismantling work, the technical execution aspect and conclusions already known (dismantling is ongoing as this is written). (authors)« less

  18. MELCOR Model of the Spent Fuel Pool of Fukushima Dai-ichi Unit 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carbajo, Juan J

    2012-01-01

    Unit 4 of the Fukushima Dai-ichi Nuclear Power Plant suffered a hydrogen explosion at 6:00 am on March 15, 2011, exactly 3.64 days after the earthquake hit the plant and the off-site power was lost. The earthquake occurred on March 11 at 2:47 pm. Since the reactor of this Unit 4 was defueled on November 29, 2010, and all its fuel was stored in the spent fuel pool (SFP4), it was first believed that the explosion was caused by hydrogen generated by the spent fuel, in particular, by the recently discharged core. The hypothetical scenario was: power was lost, coolingmore » to the SFP4 water was lost, pool water heated/boiled, water level decreased, fuel was uncovered, hot Zircaloy reacted with steam, hydrogen was generated and accumulated above the pool, and the explosion occurred. Recent analyses of the radioisotopes present in the water of the SFP4 and underwater video indicated that this scenario did not occur - the fuel in this pool was not damaged and was never uncovered the hydrogen of the explosion was apparently generated in Unit 3 and transported through exhaust ducts that shared the same chimney with Unit 4. This paper will try to answer the following questions: Could that hypothetical scenario in the SFP4 had occurred? Could the spent fuel in the SPF4 generate enough hydrogen to produce the explosion that occurred 3.64 days after the earthquake? Given the magnitude of the explosion, it was estimated that at least 150 kg of hydrogen had to be generated. As part of the investigations of this accident, MELCOR models of the SFP4 were prepared and a series of calculations were completed. The latest version of MELCOR, version 2.1 (Ref. 1), was employed in these calculations. The spent fuel pool option for BWR fuel was selected in MELCOR. The MELCOR model of the SFP4 consists of a total of 1535 fuel assemblies out of which 548 assemblies are from the core defueled on Nov. 29, 2010, 783 assemblies are older assemblies, and 204 are new/fresh assemblies. The total decay heat of the fuel in the pool was, at the time of the accident, 2.284 MWt, of which 1.872 MWt were from the 548 assemblies of the last core discharged and 0.412 MWt were from the older 783 assemblies. These decay heat values were calculated at Oak Ridge National Laboratory using the ORIGEN2.2 code (Ref. 2) - they agree with values reported elsewhere (Ref. 3). The pool dimensions are 9.9 m x 12.2 m x 11.8 m (height), and with the water level at 11.5 m, the pool volume is 1389 m3, of which only 1240 m3 is water, as some volume is taken by the fuel and by the fuel racks. The initial water temperature of the SFP4 was assumed to be 301 K. The fuel racks are made of an aluminum alloy but are modeled in MELCOR with stainless steel and B4C. MELCOR calculations were completed for different initial water levels: 11.5 m (pool almost full, water is only 0.3 m below the top rim), 4.4577 m (top of the racks), 4.2 m, and 4.026 m (top of the active fuel). A calculation was also completed for a rapid loss of water due to a leak at the bottom of the pool, with the fuel rapidly uncovered and oxidized in air. Results of these calculations are shown in the enclosed Table I. The calculation with the initial water level at 11.5 m (full pool) takes 11 days for the water to boil down to the top of the fuel racks, 11.5 days for the fuel to be uncovered, 14.65 days to generate 150 kg of hydrogen and 19 days for the pool to be completely dry. The calculation with the initial water level at 4.4577 m, takes 1.1 days to uncover the fuel and 4.17 days to generate 150 kg of hydrogen. The calculation with the initial water level at 4.02 m takes 3.63 days to generate 150 kg of hydrogen this is exactly the time when the actual explosion occurred in Unit 4. Finally, fuel oxidation in air after the pool drained the water in 20 minutes, generates only 10 kg of hydrogen this is because very little steam is available and Zircaloy (Zr) oxidation with the oxygen of the air does not generate hydrogen. MELCOR calculated water levels and hydrogen generated in the SFP4 as a function of time for initial water levels of 4.457 m, 4.2 m and 4.02 m are shown in Figs. 1 and 2. Water levels increase at the beginning due to the expansion of the water during the heat-up from 301 K to 373 K. Boiling occurs after the water temperature reaches 373 K. The total amount of hydrogen generated is ~2000 kg, this amount includes hydrogen generated from Zr, which is the largest amount (~1580 kg), from stainless steel (~360 kg), and from B4C (~60 kg). In theory, it is possible to generate up to 3.4 kg of hydrogen per assembly (from oxidation of Zr in the fuel cladding and box), or a total of 4,525 kg from the hot 1331 assemblies stored in the SFP4. The hydrogen generated from oxidation of steel and B4C will be additional. So the answers to the questions are YES according to these MELCOR calculations, enough hydrogen (150 kg) could be generated in the SFP4 3.64 days after the earthquake to produce ...« less

  19. 10 CFR 51.23 - Temporary storage of spent fuel after cessation of reactor operation-generic determination of no...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Temporary storage of spent fuel after cessation of reactor... Procedures § 51.23 Temporary storage of spent fuel after cessation of reactor operation—generic determination... necessary, spent fuel generated in any reactor can be stored safely and without significant environmental...

  20. 10 CFR 51.23 - Temporary storage of spent fuel after cessation of reactor operation-generic determination of no...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Temporary storage of spent fuel after cessation of reactor... Procedures § 51.23 Temporary storage of spent fuel after cessation of reactor operation—generic determination... necessary, spent fuel generated in any reactor can be stored safely and without significant environmental...

  1. Management of Legacy Spent Nuclear Fuel Wastes at the Chalk River Laboratories: The Challenges and Innovative Solutions Implemented - 13301

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schruder, Kristan; Goodwin, Derek

    2013-07-01

    AECL's Fuel Packaging and Storage (FPS) Project was initiated in 2004 to retrieve, transfer, and stabilize an identified inventory of degraded research reactor fuel that had been emplaced within in-ground 'Tile Hole' structures in Chalk River Laboratories' Waste Management Area in the 1950's and 60's. Ongoing monitoring of the legacy fuel storage conditions had identified that moisture present in the storage structures had contributed to corrosion of both the fuel and the storage containers. This prompted the initiation of the FPS Project which has as its objective to design, construct, and commission equipment and systems that would allow for themore » ongoing safe storage of this fuel until a final long-term management, or disposition, pathway was available. The FPS Project provides systems and technologies to retrieve and transfer the fuel from the Waste Management Area to a new facility that will repackage, dry, safely store and monitor the fuel for a period of 50 years. All equipment and the new storage facility are designed and constructed to meet the requirements for Class 1 Nuclear Facilities in Canada. (authors)« less

  2. 78 FR 78285 - List of Approved Spent Fuel Storage Casks: HI-STORM 100 Cask System; Amendment No. 9

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-26

    ...-2012-0052] RIN 3150-AJ12 List of Approved Spent Fuel Storage Casks: HI-STORM 100 Cask System; Amendment... document proposed to amend the NRC's spent fuel storage regulations by revising the Holtec International HI...

  3. Spent nuclear fuel integrity during dry storage - performance tests and demonstrations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKinnon, M.A.; Doherty, A.L.

    1997-06-01

    This report summarizes the results of fuel integrity surveillance determined from gas sampling during and after performance tests and demonstrations conducted from 1983 through 1996 by or in cooperation with the US DOE Office of Commercial Radioactive Waste Management (OCRWM). The cask performance tests were conducted at Idaho National Engineering Laboratory (INEL) between 1984 and 1991 and included visual observation and ultrasonic examination of the condition of the cladding, fuel rods, and fuel assembly hardware before dry storage and consolidation of fuel, and a qualitative determination of the effects of dry storage and fuel consolidation on fission gas release frommore » the spent fuel rods. The performance tests consisted of 6 to 14 runs involving one or two loading, usually three backfill environments (helium, nitrogen, and vacuum backfills), and one or two storage system orientations. The nitrogen and helium backfills were sampled and analyzed to detect leaking spent fuel rods. At the end of each performance test, periodic gas sampling was conducted on each cask. A spent fuel behavior project (i.e., enhanced surveillance, monitoring, and gas sampling activities) was initiated by DOE in 1994 for intact fuel in a CASTOR V/21 cask and for consolidated fuel in a VSC-17 cask. The results of the gas sampling activities are included in this report. Information on spent fuel integrity is of interest in evaluating the impact of long-term dry storage on the behavior of spent fuel rods. Spent fuel used during cask performance tests at INEL offers significant opportunities for confirmation of the benign nature of long-term dry storage. Supporting cask demonstration included licensing and operation of an independent spent fuel storage installation (ISFSI) at the Virginia Power (VP) Surry reactor site. A CASTOR V/21, an MC-10, and a Nuclear Assurance NAC-I28 have been loaded and placed at the VP ISFSI as part of the demonstration program. 13 refs., 14 figs., 9 tabs.« less

  4. 35. Coal Fuel Elevator (diagonal in center), Fuel Elevator (left), ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    35. Coal Fuel Elevator (diagonal in center), Fuel Elevator (left), Fuel Storage Bins (center), and Power Plant (far center), and Retail Coal Storage Bins (right) Photograph taken by George Harven - Huber Coal Breaker, 101 South Main Street, Ashley, Luzerne County, PA

  5. 34. Coal Fuel Elevator (diagonal in foreground), Fuel Elevator (left), ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    34. Coal Fuel Elevator (diagonal in foreground), Fuel Elevator (left), Fuel Storage Bins (center), and Power Plant (far center), and Retail Coal Storage Bins (right) Photograph taken by George Harven - Huber Coal Breaker, 101 South Main Street, Ashley, Luzerne County, PA

  6. Approach for validating actinide and fission product compositions for burnup credit criticality safety analyses

    DOE PAGES

    Radulescu, Georgeta; Gauld, Ian C.; Ilas, Germina; ...

    2014-11-01

    This paper describes a depletion code validation approach for criticality safety analysis using burnup credit for actinide and fission product nuclides in spent nuclear fuel (SNF) compositions. The technical basis for determining the uncertainties in the calculated nuclide concentrations is comparison of calculations to available measurements obtained from destructive radiochemical assay of SNF samples. Probability distributions developed for the uncertainties in the calculated nuclide concentrations were applied to the SNF compositions of a criticality safety analysis model by the use of a Monte Carlo uncertainty sampling method to determine bias and bias uncertainty in effective neutron multiplication factor. Application ofmore » the Monte Carlo uncertainty sampling approach is demonstrated for representative criticality safety analysis models of pressurized water reactor spent fuel pool storage racks and transportation packages using burnup-dependent nuclide concentrations calculated with SCALE 6.1 and the ENDF/B-VII nuclear data. Furthermore, the validation approach and results support a recent revision of the U.S. Nuclear Regulatory Commission Interim Staff Guidance 8.« less

  7. Stored Carbon Dynamics are Controlled by a Combination of Evolutionary, Physiological, and Ecological Pressures

    NASA Astrophysics Data System (ADS)

    Aubrey, D. P.; Mims, J. T.; Oswald, S. W.; Teskey, R. O.; Mitchell, R. J.

    2016-12-01

    Allocation of assimilated carbon to storage provides a critical carbohydrate buffer when metabolic demands exceed current photosynthetic supply; however, our process-level understanding of controls on carbon storage pools and fluxes remains relatively poor. Recent studies have shifted the paradigm from the concept that stored carbon pools are a sink of low priority that accumulate passively when photosynthetic inputs exceed demand toward the concept that these pools are active sinks of high priority. It follows that allocation toward storage—at the expense of growth—is a trait that would be under selective pressure since species that allocate toward storage should be more resilient to disturbance. Using fire-dependent longleaf pine in a series of manipulative and observational studies, we explore how stored carbon dynamics are controlled by a combination of evolutionary, physiological, and ecological pressures. Our manipulative studies revealed large stored carbon pools in roots that maintained belowground metabolism for a year after current photosynthetic supply was restricted. Likewise, the concentration of stored carbon in the smallest, most metabolically active roots was not influenced until nearly one year later. Our observational studies indicated that stored carbon pools differ among closely related species with overlapping natural distributions, but evolutionary histories of different disturbance frequencies and thus, different selective pressures on carbon storage. Our comparisons of stored carbon pools between longleaf trees growing under xeric or mesic soil moisture regimes indicated that allocation toward storage exhibits plasticity through space and time in response to both short- and long-term variations in resource availability. We expect a continuum of responses to disturbances related to ecological niche and evolutionary adaptation that influence the availability of carbohydrates for metabolic demands. We also expect a continuum in stored carbon pools and metabolic buffering capacity among species as well as spatially, temporally, and developmentally within individual species.

  8. 10 CFR 72.230 - Procedures for spent fuel storage cask submittals.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Procedures for spent fuel storage cask submittals. 72.230 Section 72.230 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C...

  9. 10 CFR 72.240 - Conditions for spent fuel storage cask reapproval.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Conditions for spent fuel storage cask reapproval. 72.240 Section 72.240 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C...

  10. 78 FR 61401 - Entergy Nuclear Operations, Inc.; Big Rock Point; Independent Spent Fuel Storage Installation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-03

    ... NUCLEAR REGULATORY COMMISSION [Docket Nos. 50-155; 72-43 and NRC-2013-0218] Entergy Nuclear Operations, Inc.; Big Rock Point; Independent Spent Fuel Storage Installation AGENCY: Nuclear Regulatory... the Big Rock Point (BRP) Independent Spent Fuel Storage Installation (ISFSI). ADDRESSES: Please refer...

  11. Management self assessment plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Debban, B.L.

    Duke Engineering and Services Hanford Inc., Spent Nuclear Fuel Project is responsible for the operation of fuel storage facilities. The SNF project mission includes the safe removal, processing and transportation of Spent Nuclear Fuel from 100 K Area fuel storage basins to a new Storage facility in the Hanford 200 East Area. Its mission is the modification of the 100 K area fuel storage facilities and the construction of two new facilities: the 100 K Area Cold Vacuum Drying Facility, and the 200 East Area Canister Storage Building. The management self assessment plan described in this document is scheduled tomore » begin in April of 1999 and be complete in May of 1999. The management self assessment plan describes line management preparations for declaring that line management is ready to commence operations.« less

  12. Experimental study of solute transport in pool-pipe system and its significance on karst hydrogeology

    NASA Astrophysics Data System (ADS)

    Zhao, X.; Chang, Y.; Peng, F.; Wu, J.

    2016-12-01

    Study of solute transport in karst conduit is of great significance for prediction and prevention of groundwater pollution in southwest karst region. Solute transport in karst conduit is strongly influenced by pools which often develop along karst conduit. In order to investigate the effect of transient storage within pools on solute transport in the conduit, a pool-pipe system was built in the laboratory and some tracer tests were performed in various flow conditions to characterize the solute transport in different pool-pipe structures. The Qtracer2 program was used to obtain solute transport parameters. We used retardation coefficient R to characterize the difference between the 1-D analytical solution of the classical advection-dispersion equation and experimental results. The experimental results reveal that the concentration peak decreases with the number of pools whereas the dispersion coefficient and dispersivity increase gradually. Adding transient storage increases retardation as tailing of the breakthrough curve(BTC) is growing with the number of pools. This demonstrates that transient storage within pools is transformed to retardation. The symmetrical pool has longer tails compared to the asymmetrical pool. The concentration peak lag behind significantly due to the asymmetrical pool. A decrease in dispersivity and tailing of the BTC is observed in all pipes with the increase of flow velocities. The 1-D analytical solution of the classical advection-dispersion equation is well fitted to BTC of a single pipe in maximum flow velocity but is poorly fitted to other BTCs with appreciable tails. Therefore, it requires an appropriate model to explain tailing of the BTC. The conclusion has important significance for understanding of solute transport process in karst conduit. Future work will focus on using the appropriate model to explain tailing of the BTC.

  13. Coolant Density and Control Blade History Effects in Extended BWR Burnup Credit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ade, Brian J; Marshall, William BJ J; Bowman, Stephen M

    2015-01-01

    Oak Ridge National Laboratory and the US Nuclear Regulatory Commission have initiated a multiyear project to investigate the application of burnup credit (BUC) for boiling water reactor (BWR) fuel in storage and transportation casks. This project includes two phases. The first phase investigates the applicability of peak reactivity methods currently used for spent fuel pools to spent fuel storage and transportation casks and the validation of reactivity (k eff) calculations and predicted spent fuel compositions. The second phase focuses on extending BUC beyond peak reactivity. This paper documents work performed to date investigating some aspects of extended BUC. (The technicalmore » basis for application of peak reactivity methods to BWR fuel in storage and transportation systems is presented in a companion paper.) Two reactor operating parameters are being evaluated to establish an adequate basis for extended BWR BUC: (1) the effect of axial void profile and (2) the effect of control blade utilization during operation. A detailed analysis of core simulator data for one cycle of a modern operating BWR plant was performed to determine the range of void profiles and the variability of the profile experienced during irradiation. Although a single cycle does not provide complete data, the data obtained are sufficient to determine the primary effects and to identify conservative modeling approaches. These data were used in a study of the effect of axial void profile. The first stage of the study was determination of the necessary moderator density temporal fidelity in depletion modeling. After the required temporal fidelity was established, multiple void profiles were used to examine the effect on cask reactivity. The results of these studies are being used to develop recommendations for conservatively modeling the void profile effects for BWR depletion calculations. The second operational parameter studied was control blade history. Control blades are inserted in various locations and at varying degrees during BWR operation based on the core loading pattern. When present during depletion, control blades harden the neutron spectrum locally because they displace the moderator and absorb thermal neutrons. The investigation of the effect of control blades on post operational cask reactivity is documented herein, as is the effect of multiple (continuous and intermittent) exposure periods with control blades inserted. The coupled effects of control blade presence on power density, void profile, or burnup profile will be addressed in future work.« less

  14. Detrital carbon pools in temperate forests: magnitude and potential for landscape-scale assessment

    Treesearch

    John B. Bradford; Peter Weishampel; Marie-Louise Smith; Randall Kolka; Richard A. Birdsey; Scott V. Ollinger; Michael G. Ryan

    2009-01-01

    Reliably estimating carbon storage and cycling in detrital biomass is an obstacle to carbon accounting. We examined carbon pools and fluxes in three small temperate forest landscapes to assess the magnitude of carbon stored in detrital biomass and determine whether detrital carbon storage is related to stand structural properties (leaf area, aboveground biomass,...

  15. High temperature solid oxide regenerative fuel cell for solar photovoltaic energy storage

    NASA Technical Reports Server (NTRS)

    Bents, David J.

    1987-01-01

    A hydrogen-oxygen regenerative fuel cell (RFC) energy storage system based on high temperature solid oxide fuel cell (SOFC) technology is described. The reactants are stored as gases in lightweight insulated pressure vessels. The product water is stored as a liquid in saturated equilibrium with the fuel gas. The system functions as a secondary battery and is applicable to darkside energy storage for solar photovoltaics.

  16. Fuel economy of hybrid fuel-cell vehicles

    NASA Astrophysics Data System (ADS)

    Ahluwalia, Rajesh K.; Wang, X.; Rousseau, A.

    The potential improvement in fuel economy of a mid-size fuel-cell vehicle by combining it with an energy storage system has been assessed. An energy management strategy is developed and used to operate the direct hydrogen, pressurized fuel-cell system in a load-following mode and the energy storage system in a charge-sustaining mode. The strategy places highest priority on maintaining the energy storage system in a state where it can supply unanticipated boost power when the fuel-cell system alone cannot meet the power demand. It is found that downsizing a fuel-cell system decreases its efficiency on a drive cycle which is compensated by partial regenerative capture of braking energy. On a highway cycle with limited braking energy the increase in fuel economy with hybridization is small but on the stop-and-go urban cycle the fuel economy can improve by 27%. On the combined highway and urban drive cycles the fuel economy of the fuel-cell vehicle is estimated to increase by up to 15% by hybridizing it with an energy storage system.

  17. Hydrocarbon characterization experiments in fully turbulent fires.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ricks, Allen; Blanchat, Thomas K.

    As the capabilities of numerical simulations increase, decision makers are increasingly relying upon simulations rather than experiments to assess risks across a wide variety of accident scenarios including fires. There are still, however, many aspects of fires that are either not well understood or are difficult to treat from first principles due to the computational expense. For a simulation to be truly predictive and to provide decision makers with information which can be reliably used for risk assessment the remaining physical processes must be studied and suitable models developed for the effects of the physics. The model for the fuelmore » evaporation rate in a liquid fuel pool fire is significant because in well-ventilated fires the evaporation rate largely controls the total heat release rate from the fire. A set of experiments are outlined in this report which will provide data for the development and validation of models for the fuel regression rates in liquid hydrocarbon fuel fires. The experiments will be performed on fires in the fully turbulent scale range (> 1 m diameter) and with a number of hydrocarbon fuels ranging from lightly sooting to heavily sooting. The importance of spectral absorption in the liquid fuels and the vapor dome above the pool will be investigated and the total heat flux to the pool surface will be measured. The importance of convection within the liquid fuel will be assessed by restricting large scale liquid motion in some tests. These data sets will provide a sound, experimentally proven basis for assessing how much of the liquid fuel needs to be modeled to enable a predictive simulation of a fuel fire given the couplings between evaporation of fuel from the pool and the heat release from the fire which drives the evaporation.« less

  18. COBRA-SFS thermal-hydraulic analysis code for spent fuel storage and transportation casks: Models and methods

    DOE PAGES

    Michener, Thomas E.; Rector, David R.; Cuta, Judith M.

    2017-09-01

    COBRA-SFS, a thermal-hydraulics code developed for steady-state and transient analysis of multi-assembly spent-fuel storage and transportation systems, has been incorporated into the Used Nuclear Fuel-Storage, Transportation and Disposal Analysis Resource and Data System tool as a module devoted to spent fuel package thermal analysis. This paper summarizes the basic formulation of the equations and models used in the COBRA-SFS code, showing that COBRA-SFS fully captures the important physical behavior governing the thermal performance of spent fuel storage systems, with internal and external natural convection flow patterns, and heat transfer by convection, conduction, and thermal radiation. Of particular significance is themore » capability for detailed thermal radiation modeling within the fuel rod array.« less

  19. COBRA-SFS thermal-hydraulic analysis code for spent fuel storage and transportation casks: Models and methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michener, Thomas E.; Rector, David R.; Cuta, Judith M.

    COBRA-SFS, a thermal-hydraulics code developed for steady-state and transient analysis of multi-assembly spent-fuel storage and transportation systems, has been incorporated into the Used Nuclear Fuel-Storage, Transportation and Disposal Analysis Resource and Data System tool as a module devoted to spent fuel package thermal analysis. This paper summarizes the basic formulation of the equations and models used in the COBRA-SFS code, showing that COBRA-SFS fully captures the important physical behavior governing the thermal performance of spent fuel storage systems, with internal and external natural convection flow patterns, and heat transfer by convection, conduction, and thermal radiation. Of particular significance is themore » capability for detailed thermal radiation modeling within the fuel rod array.« less

  20. Evaluating Mineral-Associated Soil Organic Matter Pools as Indicators of Forest Harvesting Disturbance

    NASA Astrophysics Data System (ADS)

    Kellman, L. M.; Gabriel, C. E.

    2015-12-01

    Soil organic matter (SOM) in northern forest soils is associated with a suite of minerals that can confer SOM stability, resulting in the potential for long-term storage of carbon. Increasingly, evidence is suggesting that SOM in certain mineral phases is dynamic and vulnerable to soil disturbance. The objective of this research was to investigate changes in a suite of mineral-associated pools of SOM through depth in a temperate forest soil to determine which mineral-associated carbon pools are most sensitive to forest harvesting disturbance. Sequential selective dissolutions representing increasingly stable SOM pools (soluble minerals (deionized water); humus-mineral complexes (Na-pyrophosphate); poorly crystalline minerals (HCl hydroxylamine); and crystalline secondary minerals (Na-dithionite + HCl)) of mineral soils through depth to 50 cm were carried out in podzolic soils sampled from temperate red spruce forests of contrasting stand age in Nova Scotia, Canada. Results of this analysis point to a loss of carbon from SOM within the B-horizon of the most recently harvested site from the pyrophosphate-extracted humus mineral complexed SOM, suggesting that it is this exchangeable pool that appears to be destabilized following clearcut harvesting at these study sites. This suggests that recovery from this landuse disturbance is dependent upon increasing storage of this SOM pool, and that mineral-associated pools, particularly pyrophosphate-extractable SOM, may be a useful indicator of changes to soil carbon storage following land use change.

  1. Unitized regenerative fuel cell system

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth A. (Inventor)

    2008-01-01

    A Unitized Regenerative Fuel Cell system uses heat pipes to convey waste heat from the fuel cell stack to the reactant storage tanks. The storage tanks act as heat sinks/sources and as passive radiators of the waste heat from the fuel cell stack. During charge up, i.e., the electrolytic process, gases are conveyed to the reactant storage tanks by way of tubes that include dryers. Reactant gases moving through the dryers give up energy to the cold tanks, causing water vapor in with the gases to condense and freeze on the internal surfaces of the dryer. During operation in its fuel cell mode, the heat pipes convey waste heat from the fuel cell stack to the respective reactant storage tanks, thereby heating them such that the reactant gases, as they pass though the respective dryers on their way to the fuel cell stacks retrieve the water previously removed.

  2. Carbon pools and productivity in a 1-km2 heterogeneous forest and peatland mosaic in Minnesota, USA

    Treesearch

    Peter Weishampel; Randall Kolka; Jennifer Y. King

    2009-01-01

    Determining the magnitude of carbon (C) storage in forests and peatlands is an important step towards predicting how regional carbon balance will respond to climate change. However, spatial heterogeneity of dominant forest and peatland cover types can inhibit accurate C storage estimates. We evaluated ecosystem C pools and productivity in the Marcell Experimental...

  3. Carbon storage in managed forests of the northern Great Lake States

    Treesearch

    Jeanette L. Rollinger; Terry F. Strong

    1996-01-01

    Carbon (C) storage in forest ecosystems is a significant part of the total terrestrial C pool, and may potentially be manipulated as an important C sink. The influence of management on C pools must be understood before guidelines can be suggested for maximizing C sequestration in forests. Studies of hardwood, red pine (Pinus resinosa Ait.), aspen and...

  4. Early direct-injection, low-temperature combustion of diesel fuel in an optical engine utilizing a 15-hole, dual-row, narrow-included-angle nozzle.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gehrke, Christopher R.; Radovanovic, Michael S.; Milam, David M.

    2008-04-01

    Low-temperature combustion of diesel fuel was studied in a heavy-duty, single-cylinder optical engine employing a 15-hole, dual-row, narrow-included-angle nozzle (10 holes x 70/mD and 5 holes x 35/mD) with 103-/gmm-diameter orifices. This nozzle configuration provided the spray targeting necessary to contain the direct-injected diesel fuel within the piston bowl for injection timings as early as 70/mD before top dead center. Spray-visualization movies, acquired using a high-speed camera, show that impingement of liquid fuel on the piston surface can result when the in-cylinder temperature and density at the time of injection are sufficiently low. Seven single- and two-parameter sweeps around amore » 4.82-bar gross indicated mean effective pressure load point were performed to map the sensitivity of the combustion and emissions to variations in injection timing, injection pressure, equivalence ratio, simulated exhaust-gas recirculation, intake temperature, intake boost pressure, and load. High-speed movies of natural luminosity were acquired by viewing through a window in the cylinder wall and through a window in the piston to provide quasi-3D information about the combustion process. These movies revealed that advanced combustion phasing resulted in intense pool fires within the piston bowl, after the end of significant heat release. These pool fires are a result of fuel-films created when the injected fuel impinged on the piston surface. The emissions results showed a strong correlation with pool-fire activity. Smoke and NO/dx emissions rose steadily as pool-fire intensity increased, whereas HC and CO showed a dramatic increase with near-zero pool-fire activity.« less

  5. INTERIOR VIEW OF FUEL STORAGE BUILDING (CPP603) LOOKING SOUTHWEST SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW OF FUEL STORAGE BUILDING (CPP-603) LOOKING SOUTHWEST SHOWING STORAGE BASIN IN FOREGROUND, TRANSFER CRANE AND UNLOADER TO LEFT OF NORTH SIDE OF HOT CELL. INL PHOTO NUMBER NRTS-58-157. J. Anderson, Photographer, 1/15/1958 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  6. 10 CFR 72.240 - Conditions for spent fuel storage cask reapproval.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... has been determined by the NRC. The application must be accompanied by a safety analysis report (SAR). The new SAR may reference the SAR originally submitted for the approved spent fuel storage cask design. (c) The design of a spent fuel storage cask will be reapproved if the conditions in § 72.238 are met...

  7. The TMI Regenerative Solid Oxide Fuel Cell

    NASA Technical Reports Server (NTRS)

    Cable, Thomas L.; Ruhl, Robert C.; Petrik, Michael

    1996-01-01

    Energy storage and production in space requires rugged, reliable hardware which minimizes weight, volume, and maintenance while maximizing power output and usable energy storage. Systems generally consist of photovoltaic solar arrays which operate (during sunlight cycles) to provide system power and regenerate fuel (hydrogen) via water electrolysis and (during dark cycles) fuel cells convert hydrogen into electricity. Common configurations use two separate systems (fuel cell and electrolyzer) in conjunction with photovoltaic cells. Reliability, power to weight and power to volume ratios could be greatly improved if both power production (fuel cells) and power storage (electrolysis) functions can be integrated into a single unit. The solid oxide fuel cell (SOFC) based design integrates fuel cell and electrolyzer functions and potentially simplifies system requirements. The integrated fuel cell/electrolyzer design also utilizes innovative gas storage concepts and operates like a rechargeable 'hydrogen-oxygen battery'. Preliminary research has been completed on improved H2/H20 electrode (SOFC anode/electrolyzer cathode) materials for regenerative fuel cells. Tests have shown improved cell performance in both fuel and electrolysis modes in reversible fuel cell tests. Regenerative fuel cell efficiencies, ratio of power out (fuel cell mode) to power in (electrolyzer mode), improved from 50 percent using conventional electrode materials to over 80 percent. The new materials will allow a single SOFC system to operate as both the electolyzer and fuel cell. Preliminary system designs have also been developed to show the technical feasibility of using the design for space applications requiring high energy storage efficiencies and high specific energy. Small space systems also have potential for dual-use, terrestrial applications.

  8. Chemical Safety Alert: Safe Storage and Handling of Swimming Pool Chemicals

    EPA Pesticide Factsheets

    Hazards of pool water treatment and maintenance chemicals (e.g., chlorine), and the protective measures pool owners should take to prevent fires, toxic vapor releases, and injuries. Triggered by improper wetting, mixing, or self-reactivity over time.

  9. Fuel supply and distribution. Fixed base operation

    NASA Technical Reports Server (NTRS)

    Burian, L. C.

    1983-01-01

    Aviation gasoline versus other products, a changing marketplace, the Airline Deregulation Act of 1978, aviation fuel credit card purchases, strategic locations, storage, co-mingling of fuel, and transportation to/from central storage are discussed.

  10. Alkaline regenerative fuel cell systems for energy storage

    NASA Technical Reports Server (NTRS)

    Schubert, F. H.; Reid, M. A.; Martin, R. E.

    1981-01-01

    A description is presented of the results of a preliminary design study of a regenerative fuel cell energy storage system for application to future low-earth orbit space missions. The high energy density storage system is based on state-of-the-art alkaline electrolyte cell technology and incorporates dedicated fuel cell and electrolysis cell modules. In addition to providing energy storage, the system can provide hydrogen and oxygen for attitude control of the satellite and for life support. During the daylight portion of the orbit the electrolysis module uses power provided by the solar array to generate H2 and O2 from the product water produced by the fuel cell module. The fuel cell module supplies electrical power during the dark period of the orbit.

  11. Electrochemical Orbital Energy Storage (ECOES) technology program. [regenerative fuel cell system

    NASA Technical Reports Server (NTRS)

    Mcbryar, H.

    1980-01-01

    The versatility and flexibility of a regenerative fuel cell power and energy storage system is considered. The principal elements of a Regenerative Fuel Cell System combine the fuel cell and electrolysis cell with a photovoltaic solar cell array, along with fluid storage and transfer equipment. The power output of the array (for LEO) must be roughly triple the load requirements of the vehicle since the electrolyzers must receive about double the fuel cell output power in order to regenerate the reactants (2/3 of the array power) while 1/3 of the array power supplies the vehicle base load. The working fluids are essentially recycled indefinitely. Any resupply requirements necessitated by leakage or inefficient reclamation is water - an ideal material to handle and transport. Any variation in energy storage capacity impacts only the fluid storage portion, and the system is insensitive to use of reserve reactant capacity.

  12. 78 FR 16601 - List of Approved Spent Fuel Storage Casks: MAGNASTOR® System

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-18

    ... Storage Casks: MAGNASTOR[supreg] System AGENCY: Nuclear Regulatory Commission. ACTION: Direct final rule. SUMMARY: The U.S. Nuclear Regulatory Commission (NRC) is amending its spent fuel storage regulations by revising the NAC International, Inc. (NAC) Modular Advanced Generation Nuclear All-purpose Storage...

  13. Hydrocarbon characterization experiments in fully turbulent fires : results and data analysis.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suo-Anttila, Jill Marie; Blanchat, Thomas K.

    As the capabilities of numerical simulations increase, decision makers are increasingly relying upon simulations rather than experiments to assess risks across a wide variety of accident scenarios including fires. There are still, however, many aspects of fires that are either not well understood or are difficult to treat from first principles due to the computational expense. For a simulation to be truly predictive and to provide decision makers with information which can be reliably used for risk assessment the remaining physical processes must be studied and suitable models developed for the effects of the physics. The model for the fuelmore » evaporation rate in a liquid fuel pool fire is significant because in well-ventilated fires the evaporation rate largely controls the total heat release rate from the fire. This report describes a set of fuel regression rates experiments to provide data for the development and validation of models. The experiments were performed with fires in the fully turbulent scale range (> 1 m diameter) and with a number of hydrocarbon fuels ranging from lightly sooting to heavily sooting. The importance of spectral absorption in the liquid fuels and the vapor dome above the pool was investigated and the total heat flux to the pool surface was measured. The importance of convection within the liquid fuel was assessed by restricting large scale liquid motion in some tests. These data sets provide a sound, experimentally proven basis for assessing how much of the liquid fuel needs to be modeled to enable a predictive simulation of a fuel fire given the couplings between evaporation of fuel from the pool and the heat release from the fire which drives the evaporation.« less

  14. High Burnup Dry Storage Cask Research and Development Project, Final Test Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2014-02-27

    EPRI is leading a project team to develop and implement the first five years of a Test Plan to collect data from a SNF dry storage system containing high burnup fuel.12 The Test Plan defined in this document outlines the data to be collected, and the storage system design, procedures, and licensing necessary to implement the Test Plan.13 The main goals of the proposed test are to provide confirmatory data14 for models, future SNF dry storage cask design, and to support license renewals and new licenses for ISFSIs. To provide data that is most relevant to high burnup fuel inmore » dry storage, the design of the test storage system must mimic real conditions that high burnup SNF experiences during all stages of dry storage: loading, cask drying, inert gas backfilling, and transfer to the ISFSI for multi-year storage.15 Along with other optional modeling, SETs, and SSTs, the data collected in this Test Plan can be used to evaluate the integrity of dry storage systems and the high burnup fuel contained therein over many decades. It should be noted that the Test Plan described in this document discusses essential activities that go beyond the first five years of Test Plan implementation.16 The first five years of the Test Plan include activities up through loading the cask, initiating the data collection, and beginning the long-term storage period at the ISFSI. The Test Plan encompasses the overall project that includes activities that may not be completed until 15 or more years from now, including continued data collection, shipment of the Research Project Cask to a Fuel Examination Facility, opening the cask at the Fuel Examination Facility, and examining the high burnup fuel after the initial storage period.« less

  15. Consistent quantification of climate impacts due to biogenic carbon storage across a range of bio-product systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guest, Geoffrey, E-mail: geoffrey.guest@ntnu.no; Bright, Ryan M., E-mail: ryan.m.bright@ntnu.no; Cherubini, Francesco, E-mail: francesco.cherubini@ntnu.no

    2013-11-15

    Temporary and permanent carbon storage from biogenic sources is seen as a way to mitigate climate change. The aim of this work is to illustrate the need to harmonize the quantification of such mitigation across all possible storage pools in the bio- and anthroposphere. We investigate nine alternative storage cases and a wide array of bio-resource pools: from annual crops, short rotation woody crops, medium rotation temperate forests, and long rotation boreal forests. For each feedstock type and biogenic carbon storage pool, we quantify the carbon cycle climate impact due to the skewed time distribution between emission and sequestration fluxesmore » in the bio- and anthroposphere. Additional consideration of the climate impact from albedo changes in forests is also illustrated for the boreal forest case. When characterizing climate impact with global warming potentials (GWP), we find a large variance in results which is attributed to different combinations of biomass storage and feedstock systems. The storage of biogenic carbon in any storage pool does not always confer climate benefits: even when biogenic carbon is stored long-term in durable product pools, the climate outcome may still be undesirable when the carbon is sourced from slow-growing biomass feedstock. For example, when biogenic carbon from Norway Spruce from Norway is stored in furniture with a mean life time of 43 years, a climate change impact of 0.08 kg CO{sub 2}eq per kg CO{sub 2} stored (100 year time horizon (TH)) would result. It was also found that when biogenic carbon is stored in a pool with negligible leakage to the atmosphere, the resulting GWP factor is not necessarily − 1 CO{sub 2}eq per kg CO{sub 2} stored. As an example, when biogenic CO{sub 2} from Norway Spruce biomass is stored in geological reservoirs with no leakage, we estimate a GWP of − 0.56 kg CO{sub 2}eq per kg CO{sub 2} stored (100 year TH) when albedo effects are also included. The large variance in GWPs across the range of resource and carbon storage options considered indicates that more accurate accounting will require case-specific factors derived following the methodological guidelines provided in this and recent manuscripts. -- Highlights: • Climate impacts of stored biogenic carbon (bio-C) are consistently quantified. • Temporary storage of bio-C does not always equate to a climate cooling impact. • 1 unit of bio-C stored over a time horizon does not always equate to − 1 unit CO{sub 2}eq. • Discrepancies of climate change impact quantification in literature are clarified.« less

  16. Proceedings of the 6. international conference on stability and handling of liquid fuels. Volume 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giles, H.N.

    1998-12-01

    Volume 1 of these proceedings contain 29 papers related to aviation fuels and long term and strategic storage. Studies investigated fuel contamination, separation processes, measurement techniques, thermal stability, compatibility with fuel system materials, oxidation reactions, and degradation during storage.

  17. Risk Assessment of Structural Integrity of Transportation Casks after Extended Storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ibarra, Luis; Medina, Ricardo; Yang, Haori

    This study assessed the risk of loss of structural integrity of transportation casks and fuel cladding after extended storage. Although it is known that fuel rods discharged from NPPs have a small percentage of rod cladding defects, the behavior of fuel cladding and the structural elements of assemblies during transportation after long-term storage is not well understood. If the fuel degrades during extended storage, it could be susceptible to damage from vibration and impact loads during transport operations, releasing fission-product gases into the canister or the cask interior (NWTRB 2010). Degradation of cladding may occur due to mechanisms associated withmore » hydrogen embrittlement, delayed hydride cracking, low temperature creep, and stress corrosion cracking (SCC) that may affect fuel cladding and canister components after extended storage of hundreds of years. Over extended periods at low temperatures, these mechanisms affect the ductility, strength, and fracture toughness of the fuel cladding, which becomes brittle. For transportation purposes, the fuel may be transferred from storage to shipping casks, or dual-purpose casks may be used for storage and transportation. Currently, most of the transportation casks will be the former case. A risk assessment evaluation is conducted based on results from experimental tests and simulations with advanced numerical models. A novel contribution of this study is the evaluation of the combined effect of component aging and vibration/impact loads in transportation scenarios. The expected levels of deterioration will be obtained from previous and current studies on the effect of aging on fuel and cask components. The emphasis of the study is placed on the structural integrity of fuel cladding and canisters.« less

  18. Carbohydrate storage and light requirements of tropical moist and dry forest tree species.

    PubMed

    Poorter, Lourens; Kitajima, Kaoru

    2007-04-01

    In many plant communities, there is a negative interspecific correlation between relative growth rates and survival of juveniles. This negative correlation is most likely caused by a trade-off between carbon allocation to growth vs. allocation to defense and storage. Nonstructural carbohydrates (NSC) stored in stems allow plants to overcome periods of stress and should enhance survival. In order to assess how species differ in carbohydrate storage in relation to juvenile light requirements, growth, and survival, we quantified NSC concentrations and pool sizes in sapling stems of 85 woody species in moist semi-evergreen and dry deciduous tropical forests in the rainy season in Bolivia. Moist forest species averaged higher NSC concentrations than dry forest species. Carbohydrate concentrations and pool sizes decreased with the light requirements of juveniles of the species in the moist forest but not in the dry forest. Combined, these results suggest that storage is especially important for species that regenerate in persistently shady habitats, as in the understory of moist evergreen forests. For moist forest species, sapling survival rates increased with NSC concentrations and pool sizes while growth rates declined with the NSC concentrations and pool sizes. No relationships were found for dry forest species. Carbon allocation to storage contributes to the growth-survival trade-off through its positive effect on survival. And, a continuum in carbon storage strategies contributes to a continuum in light requirements among species. The link between storage and light requirements is especially strong in moist evergreen forest where species sort out along a light gradient, but disappears in dry deciduous forest where light is a less limiting resource and species sort out along drought and fire gradients.

  19. 78 FR 3853 - Retrievability, Cladding Integrity and Safe Handling of Spent Fuel at an Independent Spent Fuel...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-17

    ... requirement that loaded storage casks also meet transportation requirements. Integration of storage and... transported from the storage location. As part of its evaluation of integration and compatibility between... evaluating compatibility of storage and transportation regulations. As part of its evaluation of integration...

  20. 76 FR 17037 - List of Approved Spent Fuel Storage Casks: HI-STORM Flood/Wind Addition

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-28

    ...-0007] RIN 3150-AI90 List of Approved Spent Fuel Storage Casks: HI-STORM Flood/Wind Addition AGENCY... or the Commission) is proposing to amend its spent fuel storage cask regulations to add the HI-STORM...: June 13, 2011. SAR Submitted by: Holtec International, Inc. SAR Title: Safety Analysis Report on the HI...

  1. Applications of thermal energy storage to process heat storage and recovery in the paper and pulp industry

    NASA Technical Reports Server (NTRS)

    Carr, J. H.; Hurley, P. J.; Martin, P. J.

    1978-01-01

    Applications of Thermal Energy Storage (TES) in a paper and pulp mill power house were studied as one approach to the transfer of steam production from fossil fuel boilers to waste fuel of (hog fuel) boilers. Data from specific mills were analyzed, and various TES concepts evaluated for application in the process steam supply system. Constant pressure and variable pressure steam accumulators were found to be the most attractive storage concepts for this application.

  2. Nuclear Nonproliferation: Concerns With U.S. Delays in Accepting Foreign Research Reactors’ Spent Fuel

    DTIC Science & Technology

    1994-03-01

    transport or storage plans. The return of some of the spent fuel will also depend on the readiness of dry storage . One expert told us that...enriched uranium fuel (HEU), a material that can be used to make nuclear bombs, in civilian nuclear programs worldwide. Research reactors are of...address the environmental impact of transporting the fuel and storing it in both existing and new storage units, possibly by June 1995. Under the

  3. 30 CFR 75.1902 - Underground diesel fuel storage-general requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Underground diesel fuel storage-general... LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Diesel-Powered Equipment § 75.1902 Underground diesel fuel storage—general requirements. (a) All diesel fuel must be stored...

  4. 30 CFR 75.1902 - Underground diesel fuel storage-general requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Underground diesel fuel storage-general... LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Diesel-Powered Equipment § 75.1902 Underground diesel fuel storage—general requirements. (a) All diesel fuel must be stored...

  5. 78 FR 56775 - Waste Confidence-Continued Storage of Spent Nuclear Fuel

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-13

    ... radiological impacts of spent nuclear fuel and high-level waste disposal. DATES: Submit comments on the... determination. The ``Offsite radiological impacts of spent nuclear fuel and high-level waste disposal'' issue.... Geologic Repository--Technical Feasibility and Availability C3. Storage of Spent Nuclear Fuel C3.a...

  6. Regenerative Hydrogen-oxygen Fuel Cell-electrolyzer Systems for Orbital Energy Storage

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.

    1984-01-01

    Fuel cells have found application in space since Gemini. Over the years technology advances have been factored into the mainstream hardware programs. Performance levels and service lives have been gradually improving. More recently, the storage application for fuel cell-electrolyzer combinations are receiving considerable emphasis. The regenerative system application described here is part of a NASA Fuel Cell Program which was developed to advance the fuel cell and electrolyzer technology required to satisfy the identified power generation and energy storage need of the Agency for space transportation and orbital applications to the year 2000.

  7. 75 FR 23821 - Final License Renewal Interim Staff Guidance LR-ISG-2009-01: Aging Management of Spent Fuel Pool...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-04

    ... approach acceptable to the NRC staff for meeting the requirements of 10 CFR part 54. On December 1, 2009... nuclear power plant spent fuel pool neutron-absorbing materials for compliance with part 54... Regulations (10 CFR part 54). The final LR-ISG revises the NRC staff's aging management recommendations...

  8. Management of spent nuclear fuel on the Oak Ridge Reservation, Oak Ridge, Tennessee: Environmental assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-02-01

    On June 1, 1995, DOE issued a Record of Decision [60 Federal Register 28680] for the Department-wide management of spent nuclear fuel (SNF); regionalized storage of SNF by fuel type was selected as the preferred alternative. The proposed action evaluated in this environmental assessment is the management of SNF on the Oak Ridge Reservation (ORR) to implement this preferred alternative of regional storage. SNF would be retrieved from storage, transferred to a hot cell if segregation by fuel type and/or repackaging is required, loaded into casks, and shipped to off-site storage. The proposed action would also include construction and operationmore » of a dry cask SNF storage facility on ORR, in case of inadequate SNF storage. Action is needed to enable DOE to continue operation of the High Flux Isotope Reactor, which generates SNF. This report addresses environmental impacts.« less

  9. Internal combustion engine with compressed air collection system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, P.W.

    1988-08-23

    This patent describes an internal combustion engine comprising cylinders respectively including a pressure port, pistons respectively movable in the cylinders through respective compression strokes, fuel injectors respectively connected to the cylinders and operative to supply, from a fuel source to the respective cylinders, a metered quantity of fuel conveyed by compressed gas in response to fuel injector operation during the compression strokes of the respective cylinders, a storage tank for accumulating and storing compressed gas, means for selectively connecting the pressure ports to the storage tank only during the compression strokes of the respective cylinders, and duct means connecting themore » storage tank to the fuel injectors for supplying the fuel injectors with compressed gas in response to fuel injector operation.« less

  10. 35. FUEL HANDLING BUILDING, INTERIOR LOOKING SOUTHEAST SHOWING TRANSFER CANAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    35. FUEL HANDLING BUILDING, INTERIOR LOOKING SOUTHEAST SHOWING TRANSFER CANAL AREA, DEEP STORAGE AREA, FUEL STORAGE PIT (LOCATION BB) - Shippingport Atomic Power Station, On Ohio River, 25 miles Northwest of Pittsburgh, Shippingport, Beaver County, PA

  11. EAST ELEVATION OF HIGH BAY ADDITION OF FUEL STORAGE BUILDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EAST ELEVATION OF HIGH BAY ADDITION OF FUEL STORAGE BUILDING (CPP-603). INL DRAWING NUMBER 200-0603-00-706-051286. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  12. Helium Leak Detection of Vessels in Fuel Transfer Cell (FTC) of Prototype Fast Breeder Reactor (PFBR)

    NASA Astrophysics Data System (ADS)

    Dutta, N. G.

    2012-11-01

    Bharatiya Nabhikiya Vidyut Nigam (BHAVINI) is engaged in construction of 500MW Prototype Fast Breeder Reactor (PFBR) at Kalpak am, Chennai. In this very important and prestigious national programme Special Product Division (SPD) of M/s Kay Bouvet Engg.pvt. ltd. (M/s KBEPL) Satara is contributing in a major way by supplying many important sub-assemblies like- Under Water trolley (UWT), Airlocks (PAL, EAL) Container and Storage Rack (CSR) Vessels in Fuel Transfer Cell (FTC) etc for PFBR. SPD of KBEPL caters to the requirements of Government departments like - Department of Atomic Energy (DAE), BARC, Defense, and Government undertakings like NPCIL, BHAVINI, BHEL etc. and other precision Heavy Engg. Industries. SPD is equipped with large size Horizontal Boring Machines, Vertical Boring Machines, Planno milling, Vertical Turret Lathe (VTL) & Radial drilling Machine, different types of welding machines etc. PFBR is 500 MWE sodium cooled pool type reactor in which energy is produced by fissions of mixed oxides of Uranium and Plutonium pellets by fast neutrons and it also breeds uranium by conversion of thorium, put along with fuel rod in the reactor. In the long run, the breeder reactor produces more fuel then it consumes. India has taken the lead to go ahead with Fast Breeder Reactor Programme to produce electricity primarily because India has large reserve of Thorium. To use Thorium as further fuel in future, thorium has to be converted in Uranium by PFBR Technology.

  13. Storage, transportation and disposal system for used nuclear fuel assemblies

    DOEpatents

    Scaglione, John M.; Wagner, John C.

    2017-01-10

    An integrated storage, transportation and disposal system for used fuel assemblies is provided. The system includes a plurality of sealed canisters and a cask sized to receive the sealed canisters in side by side relationship. The plurality of sealed canisters include an internal basket structure to receive a plurality of used fuel assemblies. The internal basket structure includes a plurality of radiation-absorbing panels and a plurality of hemispherical ribs generally perpendicular to the canister sidewall. The sealed canisters are received within the cask for storage and transportation and are removed from the cask for disposal at a designated repository. The system of the present invention allows the handling of sealed canisters separately or collectively, while allowing storage and transportation of high burnup fuel and damaged fuel to the designated repository.

  14. 78 FR 73456 - List of Approved Spent Fuel Storage Casks: HI-STORM 100 Cask System; Amendment No. 9

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-06

    ...-2012-0052] RIN 3150-AJ12 List of Approved Spent Fuel Storage Casks: HI-STORM 100 Cask System; Amendment... International HI-STORM 100 Cask System listing within the ``List of Approved Spent Fuel Storage Casks'' to... requirements for the HI-STORM 100U part of the HI-STORM 100 Cask System and updates the thermal model and...

  15. 75 FR 49813 - List of Approved Spent Fuel Storage Casks: MAGNASTOR System, Revision 1, Confirmation of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-16

    ... Storage Casks: MAGNASTOR System, Revision 1, Confirmation of Effective Date AGENCY: Nuclear Regulatory... spent fuel storage regulations at 10 CFR 72.214 to revise the MAGNASTOR System listing to include...

  16. Fuel subassembly leak test chamber for a nuclear reactor

    DOEpatents

    Divona, Charles J.

    1978-04-04

    A container with a valve at one end is inserted into a nuclear reactor coolant pool. Once in the pool, the valve is opened by a mechanical linkage. An individual fuel subassembly is lifted into the container by a gripper; the valve is then closed providing an isolated chamber for the subassembly. A vacuum is drawn on the chamber to encourage gaseous fission product leakage through any defects in the cladding of the fuel rods comprising the subassembly; this leakage may be detected by instrumentation, and the need for replacement of the assembly ascertained.

  17. 14 CFR 139.321 - Handling and storing of hazardous substances and materials.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...) Public protection. (3) Control of access to storage areas. (4) Fire safety in fuel farm and storage areas. (5) Fire safety in mobile fuelers, fueling pits, and fueling cabinets. (6) Training of fueling personnel in fire safety in accordance with paragraph (e) of this section. Such training at Class III...

  18. 14 CFR 139.321 - Handling and storing of hazardous substances and materials.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...) Public protection. (3) Control of access to storage areas. (4) Fire safety in fuel farm and storage areas. (5) Fire safety in mobile fuelers, fueling pits, and fueling cabinets. (6) Training of fueling personnel in fire safety in accordance with paragraph (e) of this section. Such training at Class III...

  19. 14 CFR 139.321 - Handling and storing of hazardous substances and materials.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) Public protection. (3) Control of access to storage areas. (4) Fire safety in fuel farm and storage areas. (5) Fire safety in mobile fuelers, fueling pits, and fueling cabinets. (6) Training of fueling personnel in fire safety in accordance with paragraph (e) of this section. Such training at Class III...

  20. 14 CFR 139.321 - Handling and storing of hazardous substances and materials.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...) Public protection. (3) Control of access to storage areas. (4) Fire safety in fuel farm and storage areas. (5) Fire safety in mobile fuelers, fueling pits, and fueling cabinets. (6) Training of fueling personnel in fire safety in accordance with paragraph (e) of this section. Such training at Class III...

  1. 14 CFR 139.321 - Handling and storing of hazardous substances and materials.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...) Public protection. (3) Control of access to storage areas. (4) Fire safety in fuel farm and storage areas. (5) Fire safety in mobile fuelers, fueling pits, and fueling cabinets. (6) Training of fueling personnel in fire safety in accordance with paragraph (e) of this section. Such training at Class III...

  2. 10 CFR 171.15 - Annual fees: Reactor licenses and independent spent fuel storage licenses.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Annual fees: Reactor licenses and independent spent fuel... REACTOR LICENSES AND FUEL CYCLE LICENSES AND MATERIALS LICENSES, INCLUDING HOLDERS OF CERTIFICATES OF... NRC § 171.15 Annual fees: Reactor licenses and independent spent fuel storage licenses. (a) Each...

  3. 10 CFR 171.15 - Annual fees: Reactor licenses and independent spent fuel storage licenses.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Annual fees: Reactor licenses and independent spent fuel... REACTOR LICENSES AND FUEL CYCLE LICENSES AND MATERIALS LICENSES, INCLUDING HOLDERS OF CERTIFICATES OF... NRC § 171.15 Annual fees: Reactor licenses and independent spent fuel storage licenses. (a) Each...

  4. Safeguards-by-Design: Guidance for Independent Spent Fuel Dry Storage Installations (ISFSI)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trond Bjornard; Philip C. Durst

    2012-05-01

    This document summarizes the requirements and best practices for implementing international nuclear safeguards at independent spent fuel storage installations (ISFSIs), also known as Away-from- Reactor (AFR) storage facilities. These installations may provide wet or dry storage of spent fuel, although the safeguards guidance herein focuses on dry storage facilities. In principle, the safeguards guidance applies to both wet and dry storage. The reason for focusing on dry independent spent fuel storage installations is that this is one of the fastest growing nuclear installations worldwide. Independent spent fuel storage installations are typically outside of the safeguards nuclear material balance area (MBA)more » of the reactor. They may be located on the reactor site, but are generally considered by the International Atomic Energy Agency (IAEA) and the State Regulator/SSAC to be a separate facility. The need for this guidance is becoming increasingly urgent as more and more nuclear power plants move their spent fuel from resident spent fuel ponds to independent spent fuel storage installations. The safeguards requirements and best practices described herein are also relevant to the design and construction of regional independent spent fuel storage installations that nuclear power plant operators are starting to consider in the absence of a national long-term geological spent fuel repository. The following document has been prepared in support of two of the three foundational pillars for implementing Safeguards-by-Design (SBD). These are: i) defining the relevant safeguards requirements, and ii) defining the best practices for meeting the requirements. This document was prepared with the design of the latest independent dry spent fuel storage installations in mind and was prepared specifically as an aid for designers of commercial nuclear facilities to help them understand the relevant international requirements that follow from a country’s safeguards agreement with the IAEA. If these requirements are understood at the earliest stages of facility design, it will help eliminate the costly retrofit of facilities that has occurred in the past to accommodate nuclear safeguards, and will help the IAEA implement nuclear safeguards worldwide, especially in countries building their first nuclear facilities. It is also hoped that this guidance document will promote discussion between the IAEA, State Regulator/SSAC, Project Design Team, and Facility Owner/Operator at an early stage to ensure that new ISFSIs will be effectively and efficiently safeguarded. This is intended to be a living document, since the international nuclear safeguards requirements may be subject to revision over time. More importantly, the practices by which the requirements are met are continuously modernized by the IAEA and facility operators for greater efficiency and cost effectiveness. As these improvements are made, it is recommended that the subject guidance document be updated and revised accordingly.« less

  5. Renewables cannot be stored economically on a well-run power system

    NASA Astrophysics Data System (ADS)

    Swift-Hook, Donald

    2017-11-01

    Economic storage on a power system must rely on arbitrage, buying electrical power when it is cheap and selling when it is dear. In practice, this means a store must buy power at night and sell it during the day. There is no solar power at night [by definition], so solar power cannot be stored economically on a well-run power system. Also renewables [and nuclear] are installed commercially to save fuel but fuel costs the same at night as it does during the day, so there is no arbitrage on fuel-saving to justify storage. Pumped water storage has always been widely used on power systems and is still the only method that is economic today, although many others have been tried, including fuels cells, compressed air and batteries. Devices for power correction and balancing [e.g. capacitor banks and batteries] may physically involve the storage of energy [just as a mobile phone does] but it is misleading to describe them as methods of power system storage, [just as it would be misleading to call a School bus a fuel transportation system, even though it does transport fuel]. When a power system has different sorts of plant generating - coal, gas, nuclear, wind etc - any power being put into storage is from the plant that would need to be switched off [because less power was needed] if storage ceased [e.g. because the store became full or failed]. On a well-run power system, that always has the highest fuel/running cost, but the wind blows free and has zero fuel/running cost, so wind is never [normally] stored unless there is no other plant on line i.e. wind power is the last to be stored.

  6. Something old, something new: Why models need a multi-pool representation of storage reserves

    NASA Astrophysics Data System (ADS)

    Richardson, Andrew; Carbone, Mariah

    2015-04-01

    We know surprisingly little about processes regulating the allocation of photosynthetic assimilates to growth, storage, and other metabolic functions. Storage of nonstructural carbon (NSC, principally sugars and starch) is critically important for woody plants, because these reserves enable sessile, long-lived organisms to tolerate biotic and abiotic stress, including pests, disturbance, and drought. But, critical questions about the size and turnover of these reserves remain unanswered. Labeling studies have generally shown rapid use of new (labeled) NSC and inferred fast mixing between old and new NSC, both of which suggest quick turnover of storage reserves. However, recent studies have shown that some of the reserves stored in stem and root tissue are not only a decade old, but also still available to support new tissue growth following catastrophic disturbance. We characterized the distribution of NSC in the stemwood, branches, and roots of two temperate trees, and we used the continuous label offered by the radiocarbon (14C) bomb spike to estimate the mean age of NSC in different tissues of two temperate trees. NSC in branches and outermost stemwood growth rings had the 14C signature of the current growing season. However, NSC in older above- and below-ground tissues was enriched in 14C, indicating that it was produced from older assimilates. Radial patterns of 14C in stemwood NSC showed strong mixing of NSC across the youngest growth rings, with limited "mixing in" of younger NSC to older rings. Sugars in the outermost 5 growth rings, accounting for two-thirds of the stemwood pool, had a mean age < 1 y, whereas sugars in older growth rings had a mean age > 5 y. Thus, there is not a single, well-mixed "storage pool," and indeed "young" and "old" storage compounds appear to be physically isolated from each other. We will discuss the implications of these results for improving model representation of NSC storage and consumption by forest trees. We will suggest that there are conceptual similarities between modeling NSC pools and modeling soil C pools. We will propose future directions for modeling NSCs and also identify key questions that still need to be answered with new experimental work.

  7. 78 FR 78165 - List of Approved Spent Fuel Storage Casks: HI-STORM 100 Cask System; Amendment No. 9

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-26

    ... Spent Fuel Storage Casks: HI-STORM 100 Cask System; Amendment No. 9 AGENCY: Nuclear Regulatory... storage regulations by revising the Holtec International HI-STORM 100 Cask System listing within the...

  8. Decontamination of outdoor school swimming pools in Fukushima after the nuclear accident in March 2011.

    PubMed

    Saegusa, J; Kurikami, H; Yasuda, R; Kurihara, K; Arai, S; Kuroki, R; Matsuhashi, S; Ozawa, T; Goto, H; Takano, T; Mitamura, H; Nagano, T; Naganawa, H; Yoshida, Z; Funaki, H; Tokizawa, T; Nakayama, S

    2013-03-01

    Because of radioactive fallout resulting from the Fukushima Daiichi Nuclear Power Plant (NPP) accident, water discharge from many outdoor swimming pools in Fukushima was suspended out of concern that radiocesium in the pool water would flow into farmlands. The Japan Atomic Energy Agency has reviewed the existing flocculation method for decontaminating pool water and established a practical decontamination method by demonstrating the process at eight pools in Fukushima. In this method, zeolite powder and a flocculant are used for capturing radiocesium present in pool water. The supernatant is discharged if the radiocesium concentration is less than the targeted level. The radioactive residue is collected and stored in a temporary storage space. Radioactivity concentration in water is measured with a NaI(Tl) or Ge detector installed near the pool. The demonstration results showed that the pool water in which the radiocesium concentration was more than a few hundred Bq L was readily purified by the method, and the radiocesium concentration was reduced to less than 100 Bq L. The ambient dose rates around the temporary storage space were slightly elevated; however, the total increase was up to 30% of the background dose rates when the residue was shielded with sandbags.

  9. 77 FR 21815 - South Carolina Electric And Gas Company (Virgil C. Summer Nuclear Station Units 2 and 3); Order...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-11

    ... (Effective Immediately) I The Licensee identified in this Order holds licenses issued by the U.S. Nuclear... fuel pool. This caused concerns that the pool may have boiled dry, resulting in fuel damage.\\1... shall be whether this Order should be sustained. Pursuant to 10 CFR 2.202(c)(2)(i), the Licensee, or any...

  10. CONSTRUCTION VIEW FUEL STORAGE BUILDING (CPP603) LOOKING EAST SHOWING ASBESTOS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CONSTRUCTION VIEW FUEL STORAGE BUILDING (CPP-603) LOOKING EAST SHOWING ASBESTOS SIDING. INL PHOTO NUMBER NRTS-51-1543. Unknown Photographer, 2/28/1951 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  11. CONSTRUCTION PROGRESS PHOTO SHOWING FUEL STORAGE BUILDING (CPP603) LOOKING NORTHWEST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CONSTRUCTION PROGRESS PHOTO SHOWING FUEL STORAGE BUILDING (CPP-603) LOOKING NORTHWEST. INL PHOTO NUMBER NRTS-50-895. Unknown Photographer, 10/30/1950 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  12. BUILDING PLANS OF FUEL STORAGE BUILDING (CPP603). INL DRAWING NUMBER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    BUILDING PLANS OF FUEL STORAGE BUILDING (CPP-603). INL DRAWING NUMBER 200-0603-61-299-103029. ALTERNATE ID NUMBER 542-31-B-21. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  13. 30 CFR 75.1903 - Underground diesel fuel storage facilities and areas; construction and safety precautions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... percent of the maximum capacity of the fuel storage system; and (7) Provided with a competent concrete... any buildup pressure before heat is applied. (2) Diesel fuel shall not be allowed to enter pipelines...

  14. 30 CFR 75.1903 - Underground diesel fuel storage facilities and areas; construction and safety precautions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... percent of the maximum capacity of the fuel storage system; and (7) Provided with a competent concrete... any buildup pressure before heat is applied. (2) Diesel fuel shall not be allowed to enter pipelines...

  15. 30 CFR 75.1903 - Underground diesel fuel storage facilities and areas; construction and safety precautions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... percent of the maximum capacity of the fuel storage system; and (7) Provided with a competent concrete... any buildup pressure before heat is applied. (2) Diesel fuel shall not be allowed to enter pipelines...

  16. 30 CFR 75.1903 - Underground diesel fuel storage facilities and areas; construction and safety precautions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... percent of the maximum capacity of the fuel storage system; and (7) Provided with a competent concrete... any buildup pressure before heat is applied. (2) Diesel fuel shall not be allowed to enter pipelines...

  17. Initial fuel temperature effects on burning rate of pool fire.

    PubMed

    Chen, Bing; Lu, Shou-Xiang; Li, Chang-Hai; Kang, Quan-Sheng; Lecoustre, Vivien

    2011-04-15

    The influence of the initial fuel temperature on the burning behavior of n-heptane pool fire was experimentally studied at the State Key Laboratory of Fire Science (SKLFS) large test hall. Circular pool fires with diameters of 100mm, 141 mm, and 200 mm were considered with initial fuel temperatures ranging from 290 K to 363 K. Burning rate and temperature distributions in fuel and vessel wall were recorded during the combustion. The burning rate exhibited five typical stages: initial development, steady burning, transition, bulk boiling burning, and decay. The burning rate during the steady burning stage was observed to be relatively independent of the initial fuel temperature. In contrast, the burning rate of the bulk boiling burning stage increases with increased initial fuel temperature. It was also observed that increased initial fuel temperature decreases the duration of steady burning stage. When the initial temperature approaches the boiling point, the steady burning stage nearly disappears and the burning rate moves directly from the initial development stage to the transition stage. The fuel surface temperature increases to its boiling point at the steady burning stage, shortly after ignition, and the bulk liquid reaches boiling temperature at the bulk boiling burning stage. No distinguished cold zone is formed in the fuel bed. However, boiling zone is observed and the thickness increases to its maximum value when the bulk boiling phenomena occurs. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Thermos reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Labrousse, M.; Lerouge, B.; Dupuy, G.

    1978-04-01

    THERMOS is a water reactor designed to provide hot water up to 120/sup 0/C for district heating or for desalination applications. It is a 100-MW reactor based on proven technology: oxide fuel plate elements, integrated primary circuit, and reactor vessel located in the bottom of a pool. As in swimming pool reactors, the pool is used for biological shielding, emergency core cooling, and fission product filtering (in case of an accident). Before economics, safety is the main characteristic of the concept: no fuel failure admitted, core under water in any accidental configuration, inspection of every ''nuclear'' component, and double-wall containment.

  19. Fuel Cell Propulsion Systems for an All-electric Personal Air Vehicle

    NASA Technical Reports Server (NTRS)

    Kohout, Lisa L.; Schmitz, Paul C.

    2003-01-01

    There is a growing interest in the use of fuel cells as a power source for all-electric aircraft propulsion as a means to substantially reduce or eliminate environmentally harmful emissions. Among the technologies under consideration for these concepts are advanced proton exchange membrane and solid oxide fuel cells, alternative fuels and fuel processing, and fuel storage. This paper summarizes the results of a first-order feasibility study for an all-electric personal air vehicle utilizing a fuel cell-powered propulsion system. A representative aircraft with an internal combustion engine was chosen as a baseline to provide key parameters to the study, including engine power and subsystem mass, fuel storage volume and mass, and aircraft range. The engine, fuel tank, and associated ancillaries were then replaced with a fuel cell subsystem. Various configurations were considered including: a proton exchange membrane (PEM) fuel cell with liquid hydrogen storage; a direct methanol PEM fuel cell; and a direct internal reforming solid oxide fuel cell (SOFC)/turbine hybrid system using liquid methane fuel. Each configuration was compared to the baseline case on a mass and range basis.

  20. Fuel Cell Propulsion Systems for an All-Electric Personal Air Vehicle

    NASA Technical Reports Server (NTRS)

    Kohout, Lisa L.

    2003-01-01

    There is a growing interest in the use of fuel cells as a power source for all-electric aircraft propulsion as a means to substantially reduce or eliminate environmentally harmful emissions. Among the technologies under consideration for these concepts are advanced proton exchange membrane and solid oxide fuel cells, alternative fuels and fuel processing, and fuel storage. This paper summarizes the results of a first-order feasibility study for an all-electric personal air vehicle utilizing a fuel cell-powered propulsion system. A representative aircraft with an internal combustion engine was chosen as a baseline to provide key parameters to the study, including engine power and subsystem mass, fuel storage volume and mass, and aircraft range. The engine, fuel tank, and associated ancillaries were then replaced with a fuel cell subsystem. Various configurations were considered including: a proton exchange membrane (PEM) fuel cell with liquid hydrogen storage; a direct methanol PEM fuel cell; and a direct internal reforming solid oxide fuel cell (SOFC)/turbine hybrid system using liquid methane fuel. Each configuration was compared to the baseline case on a mass and range basis.

  1. Feasibility study and preliminary design for fishing (TUNA) vessel fuel storage and distribution. Final report. Export trade information

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-07-01

    The report is divided into the following sections: (1) Introduction; (2) Conclusions and Recommendations; (3) Existing Conditions and Facilities for a Fuel Distribution Center; (4) Pacific Ocean Regional Tuna Fisheries and Resources; (5) Fishing Effort in the FSMEEZ 1992-1994; (6) Current Transshipping Operations in the Western Pacific Ocean; (7) Current and Probale Bunkering Practices of United States, Japanese, Koren, and Taiwanese Offshore-Based Vessels Operating in FSM and Adjacent Waters; (8) Shore-Based Fish-Handling/Processing; (9) Fuels Forecast; (10) Fuel Supply, Storage and Distribution; (11) Cost Estimates; (12) Economic Evaluation of Fuel Supply, Storage and Distribution.

  2. Radiolytic and Thermal Processes Relevant to Dry Storage of Spent Nuclear Fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marschman, Steven C.; Madey,Theodore E.; Haustein, Peter E.

    2000-06-01

    The purpose of this project is to deliver pertinent information that can be used to make rational decisions about the safety and treatment issues associated with dry storage of spent nuclear fuel materials. In particular, we will establish an understanding of: (1) water interactions with failed-fuel rods and metal-oxide materials; (2) the role of thermal processes and radiolysis (solid-state and interfacial) in the generation of potentially explosive mixtures of gaseous H2 and O2; and (3) the potential role of radiation-assisted corrosion during fuel rod storage.

  3. Laser-diagnostic mapping of temperature and soot statistics in a 2-m diameter turbulent pool fire

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kearney, Sean P.; Grasser, Thomas W.

    We present spatial profiles of temperature and soot-volume-fraction statistics from a sooting 2-m base diameter turbulent pool fire, burning a 10%-toluene / 90%-methanol fuel mixture. Dual-pump coherent anti-Stokes Raman scattering and laser-induced incandescence are utilized to obtain radial profiles of temperature and soot probability density functions (pdf) as well as estimates of temperature/soot joint statistics at three vertical heights above the surface of the methanol/toluene fuel pool. Results are presented both in the fuel vapor-dome region at ¼ base diameter and in the actively burning region at ½ and ¾ diameters above the fuel surface. The spatial evolution of themore » soot and temperature pdfs is discussed and profiles of the temperature and soot mean and rms statistics are provided. Joint temperature/soot statistics are presented as spatially resolved conditional averages across the fire plume, and in terms of a joint pdf obtained by including measurements from multiple spatial locations.« less

  4. Laser-diagnostic mapping of temperature and soot statistics in a 2-m diameter turbulent pool fire

    DOE PAGES

    Kearney, Sean P.; Grasser, Thomas W.

    2017-08-10

    We present spatial profiles of temperature and soot-volume-fraction statistics from a sooting 2-m base diameter turbulent pool fire, burning a 10%-toluene / 90%-methanol fuel mixture. Dual-pump coherent anti-Stokes Raman scattering and laser-induced incandescence are utilized to obtain radial profiles of temperature and soot probability density functions (pdf) as well as estimates of temperature/soot joint statistics at three vertical heights above the surface of the methanol/toluene fuel pool. Results are presented both in the fuel vapor-dome region at ¼ base diameter and in the actively burning region at ½ and ¾ diameters above the fuel surface. The spatial evolution of themore » soot and temperature pdfs is discussed and profiles of the temperature and soot mean and rms statistics are provided. Joint temperature/soot statistics are presented as spatially resolved conditional averages across the fire plume, and in terms of a joint pdf obtained by including measurements from multiple spatial locations.« less

  5. Technology, safety and costs of decommissioning reference independent spent fuel storage installations. [Contains glossary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ludwick, J D; Moore, E B

    1984-01-01

    Safety and cost information is developed for the conceptual decommissioning of five different types of reference independent spent fuel storage installations (ISFSIs), each of which is being given consideration for interim storage of spent nuclear fuel in the United States. These include one water basin-type ISFSI (wet) and four dry ISFSIs (drywell, silo, vault, and cask). The reference ISFSIs include all component parts necessary for the receipt, handling and storage of spent fuel in a safe and efficient manner. Three decommissioning alternatives are studied to obtain comparisons between costs (in 1981 dollars), occupational radiation doses, and potential radiation doses tomore » the public. The alternatives considered are: DECON (immediate decontamination), SAFSTOR (safe storage followed by deferred decontamination), and ENTOMB (entombment followed by long-term surveillance).« less

  6. Radiotoxicity and decay heat power of spent nuclear fuel of VVER type reactors at long-term storage.

    PubMed

    Bergelson, B R; Gerasimov, A S; Tikhomirov, G V

    2005-01-01

    Radiotoxicity and decay heat power of the spent nuclear fuel of VVER-1000 type reactors are calculated during storage time up to 300,000 y. Decay heat power of radioactive waste (radwaste) determines parameters of the heat removal system for the safe storage of spent nuclear fuel. Radiotoxicity determines the radiological hazard of radwaste after its leakage and penetration into the environment.

  7. Storage, transportation and disposal system for used nuclear fuel assemblies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scaglione, John M.; Wagner, John C.

    An integrated storage, transportation and disposal system for used fuel assemblies is provided. The system includes a plurality of sealed canisters and a cask sized to receive the sealed canisters in side by side relationship. The plurality of sealed canisters include an internal basket structure to receive a plurality of used fuel assemblies. The internal basket structure includes a plurality of radiation-absorbing panels and a plurality of hemispherical ribs generally perpendicular to the canister sidewall. The sealed canisters are received within the cask for storage and transportation and are removed from the cask for disposal at a designated repository. Themore » system of the present invention allows the handling of sealed canisters separately or collectively, while allowing storage and transportation of high burnup fuel and damaged fuel to the designated repository.« less

  8. Pinus sylvestris switches respiration substrates under shading but not during drought.

    PubMed

    Fischer, Sarah; Hanf, Stefan; Frosch, Torsten; Gleixner, Gerd; Popp, Jürgen; Trumbore, Susan; Hartmann, Henrik

    2015-08-01

    Reduced carbon (C) assimilation during prolonged drought forces trees to rely on stored C to maintain vital processes like respiration. It has been shown, however, that the use of carbohydrates, a major C storage pool and apparently the main respiratory substrate in plants, strongly declines with decreasing plant hydration. Yet no empirical evidence has been produced to what degree other C storage compounds like lipids and proteins may fuel respiration during drought. We exposed young scots pine trees to C limitation using either drought or shading and assessed respiratory substrate use by monitoring the respiratory quotient, δ(13) C of respired CO2 and concentrations of the major storage compounds, that is, carbohydrates, lipids and amino acids. Only shaded trees shifted from carbohydrate-dominated to lipid-dominated respiration and showed progressive carbohydrate depletion. In drought trees, the fraction of carbohydrates used in respiration did not decline but respiration rates were strongly reduced. The lower consumption and potentially allocation from other organs may have caused initial carbohydrate content to remain constant during the experiment. Our results suggest that respiratory substrates other than carbohydrates are used under carbohydrate limitation but not during drought. Thus, respiratory substrate shift cannot provide an efficient means to counterbalance C limitation under natural drought. © 2015 The Authors New Phytologist © 2015 New Phytologist Trust.

  9. 16 CFR 1207.10 - Handling, storage, and marking.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Handling, storage, and marking. 1207.10... REGULATIONS SAFETY STANDARD FOR SWIMMING POOL SLIDES § 1207.10 Handling, storage, and marking. (a) Marking... identification of the manufacturer. (b) Shipping, handling, and storage. The slide shall be designed, constructed...

  10. 16 CFR 1207.10 - Handling, storage, and marking.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Handling, storage, and marking. 1207.10... REGULATIONS SAFETY STANDARD FOR SWIMMING POOL SLIDES § 1207.10 Handling, storage, and marking. (a) Marking... identification of the manufacturer. (b) Shipping, handling, and storage. The slide shall be designed, constructed...

  11. 16 CFR 1207.10 - Handling, storage, and marking.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Handling, storage, and marking. 1207.10... REGULATIONS SAFETY STANDARD FOR SWIMMING POOL SLIDES § 1207.10 Handling, storage, and marking. (a) Marking... identification of the manufacturer. (b) Shipping, handling, and storage. The slide shall be designed, constructed...

  12. 16 CFR 1207.10 - Handling, storage, and marking.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Handling, storage, and marking. 1207.10... REGULATIONS SAFETY STANDARD FOR SWIMMING POOL SLIDES § 1207.10 Handling, storage, and marking. (a) Marking... identification of the manufacturer. (b) Shipping, handling, and storage. The slide shall be designed, constructed...

  13. The TMI regenerable solid oxide fuel cell

    NASA Technical Reports Server (NTRS)

    Cable, Thomas L.

    1995-01-01

    Energy storage and production in space requires rugged, reliable hardware which minimizes weight, volume, and maintenance while maximizing power output and usable energy storage. These systems generally consist of photovoltaic solar arrays which operate during sunlight cycles to provide system power and regenerate fuel (hydrogen) via water electrolysis; during dark cycles, hydrogen is converted by the fuel cell into system. The currently preferred configuration uses two separate systems (fuel cell and electrolyzer) in conjunction with photovoltaic cells. Fuel cell/electrolyzer system simplicity, reliability, and power-to-weight and power-to-volume ratios could be greatly improved if both power production (fuel cell) and power storage (electrolysis) functions can be integrated into a single unit. The Technology Management, Inc. (TMI), solid oxide fuel cell-based system offers the opportunity to both integrate fuel cell and electrolyzer functions into one unit and potentially simplify system requirements. Based an the TMI solid oxide fuel cell (SOPC) technology, the TMI integrated fuel cell/electrolyzer utilizes innovative gas storage and operational concepts and operates like a rechargeable 'hydrogen-oxygen battery'. Preliminary research has been completed on improved H2/H2O electrode (SOFC anode/electrolyzer cathode) materials for solid oxide, regenerative fuel cells. Improved H2/H2O electrode materials showed improved cell performance in both fuel cell and electrolysis modes in reversible cell tests. ln reversible fuel cell/electrolyzer mode, regenerative fuel cell efficiencies (ratio of power out (fuel cell mode) to power in (electrolyzer model)) improved from 50 percent (using conventional electrode materials) to over 80 percent. The new materials will allow the TMI SOFC system to operate as both the electrolyzer and fuel cell in a single unit. Preliminary system designs have also been developed which indicate the technical feasibility of using the TMI SOFC technology for space applications with high energy storage efficiencies and high specific energy. Development of small space systems would also have potential dual-use, terrestrial applications.

  14. The TMI regenerable solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Cable, Thomas L.

    1995-04-01

    Energy storage and production in space requires rugged, reliable hardware which minimizes weight, volume, and maintenance while maximizing power output and usable energy storage. These systems generally consist of photovoltaic solar arrays which operate during sunlight cycles to provide system power and regenerate fuel (hydrogen) via water electrolysis; during dark cycles, hydrogen is converted by the fuel cell into system. The currently preferred configuration uses two separate systems (fuel cell and electrolyzer) in conjunction with photovoltaic cells. Fuel cell/electrolyzer system simplicity, reliability, and power-to-weight and power-to-volume ratios could be greatly improved if both power production (fuel cell) and power storage (electrolysis) functions can be integrated into a single unit. The Technology Management, Inc. (TMI), solid oxide fuel cell-based system offers the opportunity to both integrate fuel cell and electrolyzer functions into one unit and potentially simplify system requirements. Based an the TMI solid oxide fuel cell (SOPC) technology, the TMI integrated fuel cell/electrolyzer utilizes innovative gas storage and operational concepts and operates like a rechargeable 'hydrogen-oxygen battery'. Preliminary research has been completed on improved H2/H2O electrode (SOFC anode/electrolyzer cathode) materials for solid oxide, regenerative fuel cells. Improved H2/H2O electrode materials showed improved cell performance in both fuel cell and electrolysis modes in reversible cell tests. ln reversible fuel cell/electrolyzer mode, regenerative fuel cell efficiencies (ratio of power out (fuel cell mode) to power in (electrolyzer model)) improved from 50 percent (using conventional electrode materials) to over 80 percent. The new materials will allow the TMI SOFC system to operate as both the electrolyzer and fuel cell in a single unit. Preliminary system designs have also been developed which indicate the technical feasibility of using the TMI SOFC technology for space applications with high energy storage efficiencies and high specific energy. Development of small space systems would also have potential dual-use, terrestrial applications.

  15. MISCELLANEOUS SECTIONS AND DETAILS OF FUEL STORAGE BUILDING (CPP603). INL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MISCELLANEOUS SECTIONS AND DETAILS OF FUEL STORAGE BUILDING (CPP-603). INL DRAWING NUMBER 200-0603-61-299-103032. ALTERNATE ID NUMBER 542-31-B-24. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  16. WEST ELEVATION OF FUEL STORAGE BUILDING (CPP603). PHOTO TAKEN LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    WEST ELEVATION OF FUEL STORAGE BUILDING (CPP-603). PHOTO TAKEN LOOKING NORTHEAST. INL PHOTO NUMBER HD-54-20-1. Mike Crane, Photographer, 8/2005 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  17. WEST ELEVATIONS AND SECTIONS OF FUEL STORAGE BUILDING (CPP603). INL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    WEST ELEVATIONS AND SECTIONS OF FUEL STORAGE BUILDING (CPP-603). INL DRAWING NUMBER 200-063-61-299-103031. ALTERNATE ID NUMBER 542-31-B-23. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  18. CONSTRUCTION PROGRESS PHOTO SHOWING EMPLACEMENT STEEL BEAMS FUEL STORAGE BUILDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CONSTRUCTION PROGRESS PHOTO SHOWING EMPLACEMENT STEEL BEAMS FUEL STORAGE BUILDING (CPP-603) LOOKING EAST. INL PHOTO NUMBER NRTS-51-1371. Unknown Photographer, 1/31/1951 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  19. SIDING AND ROOF DETAILS OF FUEL STORAGE BUILDING (CPP603). INL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SIDING AND ROOF DETAILS OF FUEL STORAGE BUILDING (CPP-603). INL DRAWING NUMBER 200-0603-61-299-103033. ALTERNATE ID NUMBER 542-31-B-25. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  20. INTERIOR VIEW OF FUEL STORAGE BUILDING (CPP603) SHOWING CRANE ASSEMBLY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW OF FUEL STORAGE BUILDING (CPP-603) SHOWING CRANE ASSEMBLY FOR TRANSFER PIT. INL PHOTO NUMBER NRTS-51-2404. Unknown Photographer, 5/31/1951 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  1. WEST ELEVATION OF FUEL STORAGE BUILDING (CPP603). PHOTO TAKEN LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    WEST ELEVATION OF FUEL STORAGE BUILDING (CPP-603). PHOTO TAKEN LOOKING NORTHEAST. INL PHOTO NUMBER HD-54-20-3. Mike Crane, Photographer, 8/2005 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  2. Degraded tropical rain forests possess valuable carbon storage opportunities in a complex, forested landscape.

    PubMed

    Alamgir, Mohammed; Campbell, Mason J; Turton, Stephen M; Pert, Petina L; Edwards, Will; Laurance, William F

    2016-07-20

    Tropical forests are major contributors to the terrestrial global carbon pool, but this pool is being reduced via deforestation and forest degradation. Relatively few studies have assessed carbon storage in degraded tropical forests. We sampled 37,000 m(2) of intact rainforest, degraded rainforest and sclerophyll forest across the greater Wet Tropics bioregion of northeast Australia. We compared aboveground biomass and carbon storage of the three forest types, and the effects of forest structural attributes and environmental factors that influence carbon storage. Some degraded forests were found to store much less aboveground carbon than intact rainforests, whereas others sites had similar carbon storage to primary forest. Sclerophyll forests had lower carbon storage, comparable to the most heavily degraded rainforests. Our findings indicate that under certain situations, degraded forest may store as much carbon as intact rainforests. Strategic rehabilitation of degraded forests could enhance regional carbon storage and have positive benefits for tropical biodiversity.

  3. Degraded tropical rain forests possess valuable carbon storage opportunities in a complex, forested landscape

    PubMed Central

    Alamgir, Mohammed; Campbell, Mason J.; Turton, Stephen M.; Pert, Petina L.; Edwards, Will; Laurance, William F.

    2016-01-01

    Tropical forests are major contributors to the terrestrial global carbon pool, but this pool is being reduced via deforestation and forest degradation. Relatively few studies have assessed carbon storage in degraded tropical forests. We sampled 37,000 m2 of intact rainforest, degraded rainforest and sclerophyll forest across the greater Wet Tropics bioregion of northeast Australia. We compared aboveground biomass and carbon storage of the three forest types, and the effects of forest structural attributes and environmental factors that influence carbon storage. Some degraded forests were found to store much less aboveground carbon than intact rainforests, whereas others sites had similar carbon storage to primary forest. Sclerophyll forests had lower carbon storage, comparable to the most heavily degraded rainforests. Our findings indicate that under certain situations, degraded forest may store as much carbon as intact rainforests. Strategic rehabilitation of degraded forests could enhance regional carbon storage and have positive benefits for tropical biodiversity. PMID:27435389

  4. Degraded tropical rain forests possess valuable carbon storage opportunities in a complex, forested landscape

    NASA Astrophysics Data System (ADS)

    Alamgir, Mohammed; Campbell, Mason J.; Turton, Stephen M.; Pert, Petina L.; Edwards, Will; Laurance, William F.

    2016-07-01

    Tropical forests are major contributors to the terrestrial global carbon pool, but this pool is being reduced via deforestation and forest degradation. Relatively few studies have assessed carbon storage in degraded tropical forests. We sampled 37,000 m2 of intact rainforest, degraded rainforest and sclerophyll forest across the greater Wet Tropics bioregion of northeast Australia. We compared aboveground biomass and carbon storage of the three forest types, and the effects of forest structural attributes and environmental factors that influence carbon storage. Some degraded forests were found to store much less aboveground carbon than intact rainforests, whereas others sites had similar carbon storage to primary forest. Sclerophyll forests had lower carbon storage, comparable to the most heavily degraded rainforests. Our findings indicate that under certain situations, degraded forest may store as much carbon as intact rainforests. Strategic rehabilitation of degraded forests could enhance regional carbon storage and have positive benefits for tropical biodiversity.

  5. Electrolysis cell for reprocessing plutonium reactor fuel

    DOEpatents

    Miller, William E.; Steindler, Martin J.; Burris, Leslie

    1986-01-01

    An electrolytic cell for refining a mixture of metals including spent fuel containing U and Pu contaminated with other metals, the cell including a metallic pot containing a metallic pool as one anode at a lower level, a fused salt as the electrolyte at an intermediate level and a cathode and an anode basket in spaced-apart positions in the electrolyte with the cathode and anode being retractable to positions above the electrolyte during which spent fuel may be added to the anode basket and the anode basket being extendable into the lower pool to dissolve at least some metallic contaminants, the anode basket containing the spent fuel acting as a second anode when in the electrolyte.

  6. Electrolysis cell for reprocessing plutonium reactor fuel

    DOEpatents

    Miller, W.E.; Steindler, M.J.; Burris, L.

    1985-01-04

    An electrolytic cell for refining a mixture of metals including spent fuel containing U and Pu contaminated with other metals is claimed. The cell includes a metallic pot containing a metallic pool as one anode at a lower level, a fused salt as the electrolyte at an intermediate level and a cathode and an anode basket in spaced-apart positions in the electrolyte with the cathode and anode being retractable to positions above the electrolyte during which spent fuel may be added to the anode basket. The anode basket is extendable into the lower pool to dissolve at least some metallic contaminants; the anode basket contains the spent fuel acting as a second anode when in the electrolyte.

  7. Hanford Spent Nuclear Fuel Project recommended path forward

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fulton, J.C.

    The Spent Nuclear Fuel Project (the Project), in conjunction with the U.S. Department of Energy-commissioned Independent Technical Assessment (ITA) team, has developed engineered alternatives for expedited removal of spent nuclear fuel, including sludge, from the K Basins at Hanford. These alternatives, along with a foreign processing alternative offered by British Nuclear Fuels Limited (BNFL), were extensively reviewed and evaluated. Based on these evaluations, a Westinghouse Hanford Company (WHC) Recommended Path Forward for K Basins spent nuclear fuel has been developed and is presented in Volume I of this document. The recommendation constitutes an aggressive series of projects to construct andmore » operate systems and facilities to safely retrieve, package, transport, process, and store K Basins fuel and sludge. The overall processing and storage scheme is based on the ITA team`s proposed passivation and vault storage process. A dual purpose staging and vault storage facility provides an innovative feature which allows accelerated removal of fuel and sludge from the basins and minimizes programmatic risks beyond any of the originally proposed alternatives. The projects fit within a regulatory and National Environmental Policy Act (NEPA) overlay which mandates a two-phased approach to construction and operation of the needed facilities. The two-phase strategy packages and moves K Basins fuel and sludge to a newly constructed Staging and Storage Facility by the year 2000 where it is staged for processing. When an adjoining facility is constructed, the fuel is cycled through a stabilization process and returned to the Staging and Storage Facility for dry interim (40-year) storage. The estimated total expenditure for this Recommended Path Forward, including necessary new construction, operations, and deactivation of Project facilities through 2012, is approximately $1,150 million (unescalated).« less

  8. Vibro-acoustic Imaging at the Breazeale Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, James Arthur; Jewell, James Keith; Lee, James Edwin

    2016-09-01

    The INL is developing Vibro-acoustic imaging technology to characterize microstructure in fuels and materials in spent fuel pools and within reactor vessels. A vibro-acoustic development laboratory has been established at the INL. The progress in developing the vibro-acoustic technology at the INL is the focus of this report. A successful technology demonstration was performed in a working TRIGA research reactor. Vibro-acoustic imaging was performed in the reactor pool of the Breazeale reactor in late September of 2015. A confocal transducer driven at a nominal 3 MHz was used to collect the 60 kHz differential beat frequency induced in a spentmore » TRIGA fuel rod and empty gamma tube located in the main reactor water pool. Data was collected and analyzed with the INLDAS data acquisition software using a short time Fourier transform.« less

  9. Radiolytic and Thermal Process Relevant to Dry Storage of Spent Nuclear Fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marschman, Steven C.; Haustein, Peter E.; Madey, Theodore E.

    1999-06-01

    This project involves basic research in chemistry and physics aimed at providing information pertinent to the safe long-term dry storage of spent nuclear fuel (SNF), thousands of tons of which remain in water storage across the DOE complex. The Hanford Site K-Basins alone hold 2300 tons of spent fuel, much of it severely corroded, and similar situations exist at Savannah River and Idaho National Engineering and Environmental Laboratory. DOE plans to remove this fuel and seal it in overpack canisters for ''dry'' interim storage for up to 75 years while awaiting permanent disposition. Chemically bound water will remain in thismore » fuel even after the proposed drying steps, leading to possible long-term corrosion of the containers and/or fuel rods themselves, generation of H2 and O2 gas via radiolysis (which could lead to deflagration or detonation), and reactions of pyrophoric uranium hydrides. No thoroughly tested model is now available to predict fuel behavior during preprocessing, processing, or storage. In a collaborative effort among Rutgers University, Pacific Northwest National Laboratory, and Brookhaven National Laboratory, we are studying the radiolytic reaction, drying processes, and corrosion behavior of actual SNF materials and of pure and mixed-phase samples. We propose to determine what is omitted from current models: radiolysis of water adsorbed on or in hydrates or hydroxides, thermodynamics of interfacial phases, and kinetics of drying. A model will be developed and tested against actual fuel rod behavior to ensure validity and applicability to the problems associated with developing dry storage strategies for DOE-owned SNF.« less

  10. Methodology and Software for Gross Defect Detection of Spent Nuclear Fuel at the Atucha-I Reactor [Novel Methodology and Software for Spent Fuel Gross Defect Detection at the Atucha-I Reactor

    DOE PAGES

    Sitaraman, Shivakumar; Ham, Young S.; Gharibyan, Narek; ...

    2017-03-27

    Here, fuel assemblies in the spent fuel pool are stored by suspending them in two vertically stacked layers at the Atucha Unit 1 nuclear power plant (Atucha-I). This introduces the unique problem of verifying the presence of fuel in either layer without physically moving the fuel assemblies. Given that the facility uses both natural uranium and slightly enriched uranium at 0.85 wt% 235U and has been in operation since 1974, a wide range of burnups and cooling times can exist in any given pool. A gross defect detection tool, the spent fuel neutron counter (SFNC), has been used at themore » site to verify the presence of fuel up to burnups of 8000 MWd/t. At higher discharge burnups, the existing signal processing software of the tool was found to fail due to nonlinearity of the source term with burnup.« less

  11. Methodology and Software for Gross Defect Detection of Spent Nuclear Fuel at the Atucha-I Reactor [Novel Methodology and Software for Spent Fuel Gross Defect Detection at the Atucha-I Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sitaraman, Shivakumar; Ham, Young S.; Gharibyan, Narek

    Here, fuel assemblies in the spent fuel pool are stored by suspending them in two vertically stacked layers at the Atucha Unit 1 nuclear power plant (Atucha-I). This introduces the unique problem of verifying the presence of fuel in either layer without physically moving the fuel assemblies. Given that the facility uses both natural uranium and slightly enriched uranium at 0.85 wt% 235U and has been in operation since 1974, a wide range of burnups and cooling times can exist in any given pool. A gross defect detection tool, the spent fuel neutron counter (SFNC), has been used at themore » site to verify the presence of fuel up to burnups of 8000 MWd/t. At higher discharge burnups, the existing signal processing software of the tool was found to fail due to nonlinearity of the source term with burnup.« less

  12. Last chance for carbon capture and storage

    NASA Astrophysics Data System (ADS)

    Scott, Vivian; Gilfillan, Stuart; Markusson, Nils; Chalmers, Hannah; Haszeldine, R. Stuart

    2013-02-01

    Anthropogenic energy-related CO2 emissions are higher than ever. With new fossil-fuel power plants, growing energy-intensive industries and new sources of fossil fuels in development, further emissions increase seems inevitable. The rapid application of carbon capture and storage is a much heralded means to tackle emissions from both existing and future sources. However, despite extensive and successful research and development, progress in deploying carbon capture and storage has stalled. No fossil-fuel power plants, the greatest source of CO2 emissions, are using carbon capture and storage, and publicly supported demonstration programmes are struggling to deliver actual projects. Yet, carbon capture and storage remains a core component of national and global emissions-reduction scenarios. Governments have to either increase commitment to carbon capture and storage through much more active market support and emissions regulation, or accept its failure and recognize that continued expansion of power generation from burning fossil fuels is a severe threat to attaining objectives in mitigating climate change.

  13. Frankincense tapping reduces the carbohydrate storage of Boswellia trees.

    PubMed

    Mengistu, Tefera; Sterck, Frank J; Fetene, Masresha; Bongers, Frans

    2013-06-01

    Carbohydrates fixed by photosynthesis are stored in plant organs in the form of starch or sugars. Starch and sugars sum to the total non-structural carbohydrate pool (TNC) and may serve as intermediate pools between assimilation and utilization. We examined the impact of tapping on TNC concentrations in stem-wood, bark and root tissues of the frankincense tree (Boswellia papyrifera (Del.) Hochst) in two natural woodlands of Ethiopia. Two tapping treatments, one without tapping (control) and the other with tapping at 12 incisions, are applied on experimental trees. Trees are tapped in the leafless dry period, diminishing their carbon storage pools. If storage pools are not refilled by assimilation during the wet season, when crowns are in full leaf, tapping may deplete the carbon pool and weaken Boswellia trees. The highest soluble sugar concentrations were in the bark and the highest starch concentrations in the stem-wood. The stem-wood contains 12 times higher starch than soluble sugar concentrations. Hence, the highest TNC concentrations occurred in the stem-wood. Moreover, wood volume was larger than root or bark volumes and, as a result, more TNC was stored in the stem-wood. As predicted, tapping reduced the TNC concentrations and pool sizes in frankincense trees during the dry season. During the wet season, these carbon pools were gradually filled in tapped trees, but never to the size of non-tapped trees. We conclude that TNC is dynamic on a seasonal time scale and offers resilience against stress, highlighting its importance for tree carbon balance. But current resin tapping practices are intensive and may weaken Boswellia populations, jeopardizing future frankincense production.

  14. SOUTH, EAST, NORTH ELEVATIONS AND SECTIONS OF FUEL STORAGE BUILDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SOUTH, EAST, NORTH ELEVATIONS AND SECTIONS OF FUEL STORAGE BUILDING (CPP-603). INL DRAWING NUMBER 200-0603-61-299-103030. ALTERNATE ID NUMBER 542-31-B-22. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  15. INTERIOR OF SECOND FLOOR CONTROL ROOM OF FUEL STORAGE BUILDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR OF SECOND FLOOR CONTROL ROOM OF FUEL STORAGE BUILDING (CPP-603). PHOTO TAKEN LOOKING SOUTHWEST. INL PHOTO NUMBER HD-54-19-2. Mike Crane, Photographer, 8/2005 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  16. NORTHERN PORTION OF WEST ELEVATION OF FUEL STORAGE BUILDING (CPP603). ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    NORTHERN PORTION OF WEST ELEVATION OF FUEL STORAGE BUILDING (CPP-603). PHOTO TAKEN LOOKING NORTHEAST. INL PHOTO NUMBER HD-54-20-4. Mike Crane, Photographer, 8/2005 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  17. OBLIQUE PHOTO OF NORTHWEST CORNER OF FUEL STORAGE BUILDING (CPP603). ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OBLIQUE PHOTO OF NORTHWEST CORNER OF FUEL STORAGE BUILDING (CPP-603). PHOTO TAKEN LOOKING SOUTHEAST. INL PHOTO NUMBER HD-54-14-4. Mike Crane, Photographer, 8/2005 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  18. NORTHERN PORTION OF WEST ELEVATION OF FUEL STORAGE BUILDING (CPP603). ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    NORTHERN PORTION OF WEST ELEVATION OF FUEL STORAGE BUILDING (CPP-603). PHOTO TAKEN LOOKING SOUTHEAST. INL PHOTO NUMBER HD-54-20-2. Mike Crane, Photographer, 8/2005 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  19. VIEW OF FECF HOT CELL OF FUEL STORAGE BUILDING (CPP603). ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF FECF HOT CELL OF FUEL STORAGE BUILDING (CPP-603). PHOTO TAKEN LOOKING NORHTWEST. INL PHOTO NUMBER HD-54-18-3. Mike Crane, Photographer, 8/2005 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  20. VIEW OF TRANSFER BASIN CORRIDOR OF FUEL STORAGE BUILDING (CPP603). ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF TRANSFER BASIN CORRIDOR OF FUEL STORAGE BUILDING (CPP-603). PHOTO TAKEN LOOKING NORTH. INL PHOTO NUMBER HD-54-17-2. Mike Crane, Photographer, 8/2005 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  1. OBLIQUE PHOTO OF NORTH ELEVATION OF FUEL STORAGE BUILDING (CPP603). ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OBLIQUE PHOTO OF NORTH ELEVATION OF FUEL STORAGE BUILDING (CPP-603). PHOTO TAKEN LOOKING SOUTH. INL PHOTO NUMBER HD-54-14-3. Mike Crane, Photographer, 8/2005 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  2. 82. GENERAL VIEW FROM NORTH OF FUEL STORAGE AND TRANSFER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    82. GENERAL VIEW FROM NORTH OF FUEL STORAGE AND TRANSFER CONTROL SKID (SKID 2) ON SOUTH END OF SLC-3W FUEL APRON - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  3. Templated assembly of photoswitches significantly increases the energy-storage capacity of solar thermal fuels.

    PubMed

    Kucharski, Timothy J; Ferralis, Nicola; Kolpak, Alexie M; Zheng, Jennie O; Nocera, Daniel G; Grossman, Jeffrey C

    2014-05-01

    Large-scale utilization of solar-energy resources will require considerable advances in energy-storage technologies to meet ever-increasing global energy demands. Other than liquid fuels, existing energy-storage materials do not provide the requisite combination of high energy density, high stability, easy handling, transportability and low cost. New hybrid solar thermal fuels, composed of photoswitchable molecules on rigid, low-mass nanostructures, transcend the physical limitations of molecular solar thermal fuels by introducing local sterically constrained environments in which interactions between chromophores can be tuned. We demonstrate this principle of a hybrid solar thermal fuel using azobenzene-functionalized carbon nanotubes. We show that, on composite bundling, the amount of energy stored per azobenzene more than doubles from 58 to 120 kJ mol(-1), and the material also maintains robust cyclability and stability. Our results demonstrate that solar thermal fuels composed of molecule-nanostructure hybrids can exhibit significantly enhanced energy-storage capabilities through the generation of template-enforced steric strain.

  4. Optimized efficiency of all-electric ships by dc hybrid power systems

    NASA Astrophysics Data System (ADS)

    Zahedi, Bijan; Norum, Lars E.; Ludvigsen, Kristine B.

    2014-06-01

    Hybrid power systems with dc distribution are being considered for commercial marine vessels to comply with new stringent environmental regulations, and to achieve higher fuel economy. In this paper, detailed efficiency analysis of a shipboard dc hybrid power system is carried out. An optimization algorithm is proposed to minimize fuel consumption under various loading conditions. The studied system includes diesel engines, synchronous generator-rectifier units, a full-bridge bidirectional converter, and a Li-Ion battery bank as energy storage. In order to evaluate potential fuel saving provided by such a system, an online optimization strategy for fuel consumption is implemented. An Offshore Support Vessel (OSV) is simulated over different operating modes using the online control strategy. The resulted consumed fuel in the simulation is compared to that of a conventional ac power system, and also a dc power system without energy storage. The results show that while the dc system without energy storage provides noticeable fuel saving compared to the conventional ac system, optimal utilization of the energy storage in the dc system results in twice as much fuel saving.

  5. Fuel Aging in Storage and Transportation (FAST): Accelerated Characterization and Performance Assessment of the Used Nuclear Fuel Storage System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDeavitt, Sean

    2016-08-02

    This Integrated Research Project (IRP) was established to characterize key limiting phenomena related to the performance of used nuclear fuel (UNF) storage systems. This was an applied engineering project with a specific application in view (i.e., UNF dry storage). The completed tasks made use of a mixture of basic science and engineering methods. The overall objective was to create, or enable the creation of, predictive tools in the form of observation methods, phenomenological models, and databases that will enable the design, installation, and licensing of dry UNF storage systems that will be capable of containing UNF for extended period ofmore » time.« less

  6. Thermal energy storage for the Stirling engine powered automobile

    NASA Technical Reports Server (NTRS)

    Morgan, D. T. (Editor)

    1979-01-01

    A thermal energy storage (TES) system developed for use with the Stirling engine as an automotive power system has gravimetric and volumetric storage densities which are competitive with electric battery storage systems, meets all operational requirements for a practical vehicle, and can be packaged in compact sized automobiles with minimum impact on passenger and freight volume. The TES/Stirling system is the only storage approach for direct use of combustion heat from fuel sources not suitable for direct transport and use on the vehicle. The particular concept described is also useful for a dual mode TES/liquid fuel system in which the TES (recharged from an external energy source) is used for short duration trips (approximately 10 miles or less) and liquid fuel carried on board the vehicle used for long duration trips. The dual mode approach offers the potential of 50 percent savings in the consumption of premium liquid fuels for automotive propulsion in the United States.

  7. NASA's Planned Fuel Cell Development Activities for 2009 and Beyond in Support of the Exploration Vision

    NASA Technical Reports Server (NTRS)

    Hoberecht, Mark A.

    2010-01-01

    NASA s Energy Storage Project is one of many technology development efforts being implemented as part of the Exploration Technology Development Program (ETDP), under the auspices of the Exploration Systems Mission Directorate (ESMD). The Energy Storage Project is a focused technology development effort to advance lithium-ion battery and proton-exchange-membrane fuel cell (PEMFC) technologies to meet the specific power and energy storage needs of NASA Exploration missions. The fuel cell portion of the project has as its focus the development of both primary fuel cell power systems and regenerative fuel cell (RFC) energy storage systems, and is led by the NASA Glenn Research Center (GRC) in partnership with the Johnson Space Center (JSC), the Jet Propulsion Laboratory (JPL), the Kennedy Space Center (KSC), academia, and industrial partners. The development goals are to improve stack electrical performance, reduce system mass and parasitic power requirements, and increase system life and reliability.

  8. Consolidated fuel reprocessing program

    NASA Astrophysics Data System (ADS)

    1985-04-01

    A survey of electrochemical methods applications in fuel reprocessing was completed. A dummy fuel assembly shroud was cut using the remotely operated laser disassembly equipment. Operations and engineering efforts have continued to correct equipment operating, software, and procedural problems experienced during the previous uranium compaigns. Fuel cycle options were examined for the liquid metal reactor fuel cycle. In high temperature gas cooled reactor spent fuel studies, preconceptual designs were completed for the concrete storage cask and open field drywell storage concept. These and other tasks operating under the consolidated fuel reprocessing program are examined.

  9. 10 CFR 51.61 - Environmental report-independent spent fuel storage installation (ISFSI) or monitored retrievable...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Environmental report-independent spent fuel storage installation (ISFSI) or monitored retrievable storage installation (MRS) license. 51.61 Section 51.61 Energy... amended at 68 FR 58811, Oct. 10, 2003] ...

  10. High temperature solid oxide regenerative fuel cell for solar photovoltaic energy storage

    NASA Technical Reports Server (NTRS)

    Bents, David J.

    1987-01-01

    A hydrogen-oxygen regenerative fuel cell energy storage system based on high temperature solid oxide fuel cell technology is discussed which has application to darkside energy storage for solar photovoltaics. The forward and reverse operating cycles are described, and heat flow, mass, and energy balance data are presented to characterize the system's performance and the variation of performance with changing reactant storage pressure. The present system weighs less than nickel hydrogen battery systems after 0.7 darkside operation, and it maintains a specific weight advantage over radioisotope generators for discharge periods up to 72 hours.

  11. High temperature solid oxide regenerative fuel cell for solar photovoltaic energy storage

    NASA Astrophysics Data System (ADS)

    Bents, David J.

    A hydrogen-oxygen regenerative fuel cell energy storage system based on high temperature solid oxide fuel cell technology is discussed which has application to darkside energy storage for solar photovoltaics. The forward and reverse operating cycles are described, and heat flow, mass, and energy balance data are presented to characterize the system's performance and the variation of performance with changing reactant storage pressure. The present system weighs less than nickel hydrogen battery systems after 0.7 darkside operation, and it maintains a specific weight advantage over radioisotope generators for discharge periods up to 72 hours.

  12. VIEW OF CRANE LOADING AND UNLOADING AREA OF FUEL STORAGE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF CRANE LOADING AND UNLOADING AREA OF FUEL STORAGE BUILDING (CPP-603). PHOTO TAKEN LOOKING NORTH. INL PHOTO NUMBER HD-54-17-4. Mike Crane, Photographer, 8/2005 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  13. 0BLIQUE PHOTO OF EAST ELEVATION OF FUEL STORAGE BUILDING (CPP603). ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    0BLIQUE PHOTO OF EAST ELEVATION OF FUEL STORAGE BUILDING (CPP-603). PHOTO TAKEN LOOKING WEST. INL PHOTO NUMBER HD-54-15-1. Mike Crane, Photographer, 8/2005 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  14. VIEW OF CRANE LOADING AND UNLOADING AREA OF FUEL STORAGE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF CRANE LOADING AND UNLOADING AREA OF FUEL STORAGE BUILDING (CPP-603). PHOTO TAKEN LOOKING SOUTH. INL PHOTO NUMBER HD-54-17-1. Mike Crane, Photographer, 8/2005 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  15. 81. GENERAL VIEW FROM NORTH OF FUEL STORAGE TANK ON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    81. GENERAL VIEW FROM NORTH OF FUEL STORAGE TANK ON SOUTH END OF SLC-3W FUEL APRON. CORNER OF CONTROL SKID VISIBLE ON LEFT. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  16. Clean Air Program : summary assessment of the safety, health, environmental and system risks of alternative fuel

    DOT National Transportation Integrated Search

    1995-08-01

    This is a handbook of safety, health, and the environmental issues of the production, bulk transport, and bult storage of alternative fuels with emphasis on transport and storage. Fuels included are: 1) compressed natural gas, 2) liquefied natural ga...

  17. Microbial Condition of Water Samples from Foreign Fuel Storage Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berry, C.J.; Fliermans, C.B.; Santo Domingo, J.

    1997-10-30

    In order to assess the microbial condition of foreign nuclear fuel storage facilities, fourteen different water samples were received from facilities outside the United States that have sent spent nuclear fuel to SRS for wet storage. Each water sample was analyzed for microbial content and activity as determined by total bacteria, viable aerobic bacteria, viable anaerobic bacteria, viable sulfate- reducing bacteria, viable acid-producing bacteria and enzyme diversity. The results for each water sample were then compared to other foreign samples and to data from the receiving basin for off- site fuel (RBOF) at SRS.

  18. Electrochemical Energy Storage for an Orbiting Space Station

    NASA Technical Reports Server (NTRS)

    Martin, R. E.

    1981-01-01

    The system weight of a multi hundred kilowatt fuel cell electrolysis cell energy storage system based upon alkaline electrochemical cell technology for use in a future orbiting space station in low Earth orbit (LEO) was studied. Preliminary system conceptual design, fuel cell module performance characteristics, subsystem and system weights, and overall system efficiency are identified. The impact of fuel cell module operating temperature and efficiency upon energy storage system weight is investigated. The weight of an advanced technology system featuring high strength filament wound reactant tanks and a fuel cell module employing lightweight graphite electrolyte reservoir plates is defined.

  19. 30 CFR 57.8520 - Ventilation plan.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... mine openings adjacent to the mine; (9) Locations of permanent underground shops, diesel fuel storage depots, oil fuel storage depots, hoist rooms, compressors, battery charging stations and explosive...

  20. 16 CFR § 1207.10 - Handling, storage, and marking.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Handling, storage, and marking. § 1207.10... REGULATIONS SAFETY STANDARD FOR SWIMMING POOL SLIDES § 1207.10 Handling, storage, and marking. (a) Marking... identification of the manufacturer. (b) Shipping, handling, and storage. The slide shall be designed, constructed...

  1. Dry-vault storage of spent fuel at the CASCAD facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baillif, L.; Guay, M.

    A new modular dry storage vault concept using vertical metallic wells cooled by natural convection has been developed by the Commissariat a l'Energie Atomique and Societe Generale pour les Techniques Nouvelles to accommodate special fuels for high-level wastes. Basic specifications and design criteria have been followed to guarantee a double containment system and cooling to maintain the fuel below an acceptable temperature. The double containment is provided by two static barriers: At the reactor, fuels are placed in containers playing the role of the first barrier; the storage wells constitute the second barrier. Spent fuel placed in wells is cooledmore » by natural convection: a boundary layer is created along the outer side of the well. The heated air rises along the well leading to a thermosiphon flow that extracts the heat released. For heat transfer, studies, computations, and experimental tests have been carried out to calculate and determine the temperature of the containers and the fuel rod temperatures in various situations. The CASCAD vault storage can be applied to light water reactor (LWR) fuels without any difficulties if two requirements are satisfied: (1) Spend fuels have to be inserted in tight canisters. (2) Spent fuels have to be received only after a minimum decay time of 5 yr.« less

  2. High Energy Density Regenerative Fuel Cell Systems for Terrestrial Applications

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth A.

    1999-01-01

    Regenerative Fuel Cell System (RFCS) technology for energy storage has been a NASA power system concept for many years. Compared to battery-based energy storage systems, RFCS has received relatively little attention or resources for development because the energy density and electrical efficiency were not sufficiently attractive relative to advanced battery systems. Even today, RFCS remains at a very low technology readiness level (TRL of about 2 indicating feasibility has been demonstrated). Commercial development of the Proton Exchange Membrane (PEM) fuel cells for automobiles and other terrestrial applications and improvements in lightweight pressure vessel design to reduce weight and improve performance make possible a high energy density RFCS energy storage system. The results from this study of a lightweight RFCS energy storage system for a remotely piloted, solar-powered, high altitude aircraft indicate an energy density up to 790 w-h/kg with electrical efficiency of 53.4% is attainable. Such an energy storage system would allow a solar-powered aircraft to carry hundreds of kilograms of payload and remain in flight indefinitely for use in atmospheric research, earth observation, resource mapping. and telecommunications. Future developments in the areas of hydrogen and oxygen storage, pressure vessel design, higher temperature and higher- pressure fuel cell operation, unitized regenerative fuel cells, and commercial development of fuel cell technology will improve both the energy density and electrical efficiency of the RFCS.

  3. Carbon storage, soil carbon dioxide efflux and water quality in three widths of piedmont streamside management zones

    Treesearch

    Erica F. Wadl; William Lakel; Michael Aust; John Seiler

    2010-01-01

    Streamside management zones (SMZs) are used to protect water quality. Monitoring carbon pools and fluxes in SMZs may a good indicator of the SMZ’s overall function and health. In this project we evaluated some of these pools and fluxes from three different SMZ widths (30.5, 15.3, and 7.6 m) in the Piedmont of Virginia. We quantified carbon storage in the soil (upper 10...

  4. Chemistry and Nanoscience Research | NREL

    Science.gov Websites

    following research areas: Electrical Energy Storage Lithium-ion and radical organic batteries. Hydrogen and Fuel Cells Fuel cells, and hydrogen production and storage. Photovoltaics Organic photovoltaics

  5. Fire effects on temperate forest soil C and N storage.

    PubMed

    Nave, Lucas E; Vance, Eric D; Swanston, Christopher W; Curtis, Peter S

    2011-06-01

    Temperate forest soils store globally significant amounts of carbon (C) and nitrogen (N). Understanding how soil pools of these two elements change in response to disturbance and management is critical to maintaining ecosystem services such as forest productivity, greenhouse gas mitigation, and water resource protection. Fire is one of the principal disturbances acting on forest soil C and N storage and is also the subject of enormous management efforts. In the present article, we use meta-analysis to quantify fire effects on temperate forest soil C and N storage. Across a combined total of 468 soil C and N response ratios from 57 publications (concentrations and pool sizes), fire had significant overall effects on soil C (-26%) and soil N (-22%). The impacts of fire on forest floors were significantly different from its effects on mineral soils. Fires reduced forest floor C and N storage (pool sizes only) by an average of 59% and 50%, respectively, but the concentrations of these two elements did not change. Prescribed fires caused smaller reductions in forest floor C and N storage (-46% and -35%) than wildfires (-67% and -69%), and the presence of hardwoods also mitigated fire impacts. Burned forest floors recovered their C and N pools in an average of 128 and 103 years, respectively. Among mineral soils, there were no significant changes in C or N storage, but C and N concentrations declined significantly (-11% and -12%, respectively). Mineral soil C and N concentrations were significantly affected by fire type, with no change following prescribed burns, but significant reductions in response to wildfires. Geographic variation in fire effects on mineral soil C and N storage underscores the need for region-specific fire management plans, and the role of fire type in mediating C and N shifts (especially in the forest floor) indicates that averting wildfires through prescribed burning is desirable from a soils perspective.

  6. WEST VALLEY DEMONSTRATION PROJECT ANNUAL SITE ENVIRONMENTAL REPORT CALENDAR YEAR 2002

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2003-09-12

    This annual environmental monitoring report for the West Valley Demonstration Project (WVDP or Project) is published to inform those with interest about environmental conditions at the WVDP. In accordance with U.S. Department of Energy (DOE) Order 231.1, Environment, Safety, and Health Reporting, the report summarizes calendar year (CY) 2002 environmental monitoring data so as to describe the performance of the WVDP's environmental management system, confirm compliance with standards and regulations, and highlight important programs. In 2002, the West Valley Demonstration Project, the site of a DOE environmental cleanup activity operated by West Valley Nuclear Services Co. (WVNSCO), was in themore » final stages of stabilizing high-level radioactive waste (HLW) that remained at the site after commercial nuclear fuel reprocessing had been discontinued in the early 1970s. The Project is located in western New York State, about 30 miles south of Buffalo, within the New York State-owned Western New York Nuclear Service Center (WNYNSC). The WVDP is being conducted in cooperation with the New York State Energy Research and Development Authority (NYSERDA). Ongoing work activities at the WVDP during 2002 included: (1) completing HLW solidification and melter shutdown; (2) shipping low-level radioactive waste off-site for disposal; (3) constructing a facility where large high-activity components can be safely packaged for disposal; (4) packaging and removing spent materials from the vitrification facility; (5) preparing environmental impact statements for future activities; (6) removing as much of the waste left behind in waste tanks 8D-1 and 8D-2 as was reasonably possible; (7) removing storage racks, canisters, and debris from the fuel receiving and storage pool, decontaminating pool walls, and beginning shipment of debris for disposal; (8) ongoing decontamination in the general purpose cell and the process mechanical cell (also referred to as the head end cells); (9) planning for cleanup of waste in the plutonium purification cell (south) and extraction cell number 2 in the main plant; (10) ongoing characterization of facilities such as the waste tank farm and process cells; (11) monitoring the environment and managing contaminated areas within the Project facility premises; and (12) flushing and rinsing HLW solidification facilities.« less

  7. Whole-plant allocation to storage and defense in juveniles of related evergreen and deciduous shrub species

    PubMed Central

    Wyka, T.P.; Karolewski, P.; Żytkowiak, R.; Chmielarz, P.; Oleksyn, J.

    2016-01-01

    In evergreen plants, old leaves may contribute photosynthate to initiation of shoot growth in the spring. They might also function as storage sites for carbohydrates and nitrogen (N). We hence hypothesized that whole-plant allocation of carbohydrates and N to storage in stems and roots may be lower in evergreen than in deciduous species. We selected three species pairs consisting of an evergreen and a related deciduous species: Mahonia aquifolium (Pursh) Nutt. and Berberis vulgaris L. (Berberidaceae), Prunus laurocerasus L. and Prunus serotina Ehrh. (Rosaceae), and Viburnum rhytidophyllum Hemsl. and Viburnum lantana L. (Adoxaceae). Seedlings were grown outdoors in pots and harvested on two dates during the growing season for the determination of biomass, carbohydrate and N allocation ratios. Plant size-adjusted pools of nonstructural carbohydrates in stems and roots were lower in the evergreen species of Berberidaceae and Adoxaceae, and the slope of the carbohydrate pool vs plant biomass relationship was lower in the evergreen species of Rosaceae compared with the respective deciduous species, consistent with the leading hypothesis. Pools of N in stems and roots, however, did not vary with leaf habit. In all species, foliage contained more than half of the plant’s nonstructural carbohydrate pool and, in late summer, also more than half of the plant’s N pool, suggesting that in juvenile individuals of evergreen species, leaves may be a major storage site. Additionally, we hypothesized that concentration of defensive phenolic compounds in leaves should be higher in evergreen than in deciduous species, because the lower carbohydrate pool in stems and roots of the former restricts their capacity for regrowth following herbivory and also because of the need to protect their longer-living foliage. Our results did not support this hypothesis, suggesting that evergreen plants may rely predominantly on structural defenses. In summary, our study indicates that leaf habit has consequences for storage economics at the whole-plant level, with evergreen shrub species storing less carbohydrates (but not N) per unit plant biomass than deciduous species. PMID:26507271

  8. Whole-plant allocation to storage and defense in juveniles of related evergreen and deciduous shrub species.

    PubMed

    Wyka, T P; Karolewski, P; Żytkowiak, R; Chmielarz, P; Oleksyn, J

    2016-05-01

    In evergreen plants, old leaves may contribute photosynthate to initiation of shoot growth in the spring. They might also function as storage sites for carbohydrates and nitrogen (N). We hence hypothesized that whole-plant allocation of carbohydrates and N to storage in stems and roots may be lower in evergreen than in deciduous species. We selected three species pairs consisting of an evergreen and a related deciduous species: Mahonia aquifolium (Pursh) Nutt. and Berberis vulgaris L. (Berberidaceae), Prunus laurocerasus L. and Prunus serotina Ehrh. (Rosaceae), and Viburnum rhytidophyllum Hemsl. and Viburnum lantana L. (Adoxaceae). Seedlings were grown outdoors in pots and harvested on two dates during the growing season for the determination of biomass, carbohydrate and N allocation ratios. Plant size-adjusted pools of nonstructural carbohydrates in stems and roots were lower in the evergreen species of Berberidaceae and Adoxaceae, and the slope of the carbohydrate pool vs plant biomass relationship was lower in the evergreen species of Rosaceae compared with the respective deciduous species, consistent with the leading hypothesis. Pools of N in stems and roots, however, did not vary with leaf habit. In all species, foliage contained more than half of the plant's nonstructural carbohydrate pool and, in late summer, also more than half of the plant's N pool, suggesting that in juvenile individuals of evergreen species, leaves may be a major storage site. Additionally, we hypothesized that concentration of defensive phenolic compounds in leaves should be higher in evergreen than in deciduous species, because the lower carbohydrate pool in stems and roots of the former restricts their capacity for regrowth following herbivory and also because of the need to protect their longer-living foliage. Our results did not support this hypothesis, suggesting that evergreen plants may rely predominantly on structural defenses. In summary, our study indicates that leaf habit has consequences for storage economics at the whole-plant level, with evergreen shrub species storing less carbohydrates (but not N) per unit plant biomass than deciduous species. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Fuel Pond Sludge - Lessons Learned from Initial De-sludging of Sellafield's Pile Fuel Storage Pond - 12066

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlisle, Derek; Adamson, Kate

    2012-07-01

    The Pile Fuel Storage Pond (PFSP) at Sellafield was built and commissioned between the late 1940's and early 1950's as a storage and cooling facility for irradiated fuel and isotopes from the two Windscale Pile reactors. The pond was linked via submerged water ducts to each reactor, where fuel and isotopes were discharged into skips for transfer along the duct to the pond. In the pond the fuel was cooled then de-canned underwater prior to export for reprocessing. The plant operated successfully until it was taken out of operation in 1962 when the First Magnox Fuel Storage Pond took overmore » fuel storage and de-canning operations on the site. The pond was then used for storage of miscellaneous Intermediate Level Waste (ILW) and fuel from the UK's Nuclear Programme for which no defined disposal route was available. By the mid 1970's the import of waste ceased and the plant, with its inventory, was placed into a passive care and maintenance regime. By the mid 1990s, driven by the age of the facility and concern over the potential challenge to dispose of the various wastes and fuels being stored, the plant operator initiated a programme of work to remediate the facility. This programme is split into a number of key phases targeted at sustained reduction in the hazard associated with the pond, these include: - Pond Preparation: Before any remediation work could start the condition of the pond had to be transformed from a passive store to a plant capable of complex retrieval operations. This work included plant and equipment upgrades, removal of redundant structures and the provision of a effluent treatment plant for removing particulate and dissolved activity from the pond water. - Canned Fuel Retrieval: Removal of canned fuel, including oxide and carbide fuels, is the highest priority within the programme. Handling and export equipment required to remove the canned fuel from the pond has been provided and treatment routes developed utilising existing site facilities to allow the fuel to be reprocessed or conditioned for long term storage. - Sludge Retrieval: In excess of 300 m{sup 3} of sludge has accumulated in the pond over many years and is made up of debris arising from fuel and metallic corrosion, wind blown debris and bio-organic materials. The Sludge Retrieval Project has provided the equipment necessary to retrieve the sludge, including skip washer and tipper machines for clearing sludge from the pond skips, equipment for clearing sludge from the pond floor and bays, along with an 'in pond' corral for interim storage of retrieved sludge. Two further projects are providing new plant processing routes, which will initially store and eventually passivate the sludge. - Metal Fuel Retrieval: Metal Fuel from early Windscale Pile operations and various other sources is stored within the pond; the fuel varies considerably in both form and condition. A retrieval project is planned which will provide fuel handling, conditioning, sentencing and export equipment required to remove the metal fuel from the pond for export to on site facilities for interim storage and disposal. - Solid Waste Retrieval: A final retrieval project will provide methods for handling, retrieval, packaging and export of the remaining solid Intermediate Level Waste within the pond. This includes residual metal fuel pieces, fuel cladding (Magnox, aluminium and zircaloy), isotope cartridges, reactor furniture, and miscellaneous activated and contaminated items. Each of the waste streams requires conditioning to allow it to be and disposed of via one of the site treatment plants. - Pond Dewatering and Dismantling: Delivery of the above projects will allow operations to progressively remove the radiological inventory, thereby reducing the hazard/risk posed by the plant. This will then allow subsequent dewatering of the pond and dismantling of the structure. (authors)« less

  10. 77 FR 26050 - Burnup Credit in the Criticality Safety Analyses of Pressurized Water Reactor Spent Fuel in...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-02

    ... Pressurized Water Reactor Spent Fuel in Transportation and Storage Casks AGENCY: Nuclear Regulatory Commission... of pressurized water reactor spent nuclear fuel (SNF) in transportation packages and storage casks... for the licensing basis, (b) provide recommendations regarding advanced isotopic depletion and...

  11. Fuel Cells Using the Protic Ionic Liquid and Rotator Phase Solid Electrolyte Principles

    DTIC Science & Technology

    2008-02-13

    Talk “High temperature Polymer Electrolyte Membrane Fuel Cells (HT- PEMFCs ) for Portable Power in Large-Scale Energy Storage Devices”, Paper Number 195...Membrane Fuel Cells (HT- PEMFCs ) for Portable Power in Large-Scale Energy Storage Devices”, Paper Number 195, 212th Meeting of the Electrochemical

  12. 77 FR 37937 - License Renewal Application for Prairie Island Nuclear Generating Plant Independent Spent Fuel...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-25

    ... Prairie Island Nuclear Generating Plant Independent Spent Fuel Storage Installation AGENCY: Nuclear... INFORMATION CONTACT: Pamela Longmire, Ph.D., Project Manager, Licensing Branch, Division of Spent Fuel Storage... February 29, 2012 (ADAMS Accession number ML12065A073), by Prairie Island Nuclear Generating Plant (PINGP...

  13. Evaluating Fuel Leak and Aging Infrastructure at Red Hill, Hawaii, the Largest Underground Fuel Storage Facility in the United States

    EPA Pesticide Factsheets

    Learn about how EPA Region 9, Hawaii’s Department of Health, U.S. Navy, and Defense Logistics Agency are working tprotect human health and the environment at the Red Hill Bulk Fuel Storage Facility in Hawaii.

  14. Nuclear Power Plant Security and Vulnerabilities

    DTIC Science & Technology

    2009-03-18

    Commercial Spent Nuclear Fuel Storage , Public Report...systems that prevent hot nuclear fuel from melting even after the chain reaction has stopped, and storage facilities for highly radioactive spent nuclear ... nuclear fuel cycle facilities must defend against to prevent radiological sabotage and theft of strategic special nuclear material. NRC licensees use

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Yiqi; Shi, Zheng; Lu, Xingjie

    Terrestrial ecosystems have absorbed roughly 30 % of anthropogenic CO 2 emissions over the past decades, but it is unclear whether this carbon (C) sink will endure into the future. Despite extensive modeling and experimental and observational studies, what fundamentally determines transient dynamics of terrestrial C storage under global change is still not very clear. Here we develop a new framework for understanding transient dynamics of terrestrial C storage through mathematical analysis and numerical experiments. Our analysis indicates that the ultimate force driving ecosystem C storage change is the C storage capacity, which is jointly determined by ecosystem C inputmore » (e.g., net primary production, NPP) and residence time. Since both C input and residence time vary with time, the C storage capacity is time-dependent and acts as a moving attractor that actual C storage chases. The rate of change in C storage is proportional to the C storage potential, which is the difference between the current storage and the storage capacity. The C storage capacity represents instantaneous responses of the land C cycle to external forcing, whereas the C storage potential represents the internal capability of the land C cycle to influence the C change trajectory in the next time step. The influence happens through redistribution of net C pool changes in a network of pools with different residence times. Moreover, this and our other studies have demonstrated that one matrix equation can replicate simulations of most land C cycle models (i.e., physical emulators). As a result, simulation outputs of those models can be placed into a three-dimensional (3-D) parameter space to measure their differences. The latter can be decomposed into traceable components to track the origins of model uncertainty. In addition, the physical emulators make data assimilation computationally feasible so that both C flux- and pool-related datasets can be used to better constrain model predictions of land C sequestration. Overall, this new mathematical framework offers new approaches to understanding, evaluating, diagnosing, and improving land C cycle models.« less

  16. Direct hydrogen fuel cell systems for hybrid vehicles

    NASA Astrophysics Data System (ADS)

    Ahluwalia, Rajesh K.; Wang, X.

    Hybridizing a fuel cell system with an energy storage system offers an opportunity to improve the fuel economy of the vehicle through regenerative braking and possibly to increase the specific power and decrease the cost of the combined energy conversion and storage systems. Even in a hybrid configuration it is advantageous to operate the fuel cell system in a load-following mode and use the power from the energy storage system when the fuel cell alone cannot meet the power demand. This paper discusses an approach for designing load-following fuel cell systems for hybrid vehicles and illustrates it by applying it to pressurized, direct hydrogen, polymer-electrolyte fuel cell (PEFC) systems for a mid-size family sedan. The vehicle level requirements relative to traction power, response time, start-up time and energy conversion efficiency are used to select the important parameters for the PEFC stack, air management system, heat rejection system and the water management system.

  17. Radiolytic and thermal process relevant to dry storage of spent nuclear fuels. 1998 annual progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marschman, S.C.; Cowin, J.P.; Orlando, T.M.

    1998-06-01

    'This project involves basic research in chemistry and physics aimed at providing information pertinent to the safe long-term dry storage of spent nuclear fuel (SNF), thousands of tons of which remain in water storage across the DOE complex. The Hanford Site K-Basins alone hold 2,300 tons of spent fuel, much of it severely corroded, and similar situations exist at Savannah River and Idaho National Engineering and Environmental Laboratory. The DOE plans to remove this fuel and seal it in overpack canisters for dry interim storage for up to 75 years while awaiting permanent disposition. Chemically-bound water will remain in thismore » fuel even following proposed drying steps, leading to possible long-term corrosion of the containers and/or fuel rods themselves, generation of H{sub 2} and O{sub 2} gas via radiolysis (which could lead to deflagration or detonation), and reactions of pyrophoric uranium hydrides. No thoroughly tested model is currently available to predict fuel behavior during pre-processing, processing, or storage. In a collaboration between Rutgers University, Pacific Northwest National Laboratory, and Brookhaven National Laboratory, the authors are studying the radiolytic reaction, drying processes, and corrosion behavior of actual SNF materials, and of pure and mixed-phase samples. The authors propose to determine what is omitted from current models: radiolysis of water adsorbed on or in hydrates or hydroxides, thermodynamics of interfacial phases, and kinetics of drying. A model will be developed and tested against actual fuel rod behavior to insure validity and applicability to the problems associated with developing dry storage strategies for DOE-owned SNF. This report summarizes work after eight months of a three-year project.'« less

  18. Bulk Fuel Storage Facility Cape Canaveral Air Force Station, Florida. Environmental Assessment

    DTIC Science & Technology

    2006-11-01

    Potential DESC Fuel Depot Locations............................................2-7 Figure 2-5: Proposed Action Area Soils Map ... Area (FSA) #4, as the location is required to provide secure office space. 4) Maintain fuel operations in compliance with federal, state, and local...at the CCAFS fueling station(s) to Aboveground Storage Tanks (ASTs). Six alternative sites (five locations in the CCAFS Industrial Area and one

  19. Method development and validation for simultaneous determination of IEA-R1 reactor’s pool water uranium and silicon content by ICP OES

    NASA Astrophysics Data System (ADS)

    Ulrich, J. C.; Guilhen, S. N.; Cotrim, M. E. B.; Pires, M. A. F.

    2018-03-01

    IPEN’s research reactor, IEA-R1, an open pool type research reactor moderated and cooled by light water. High quality water is a key factor in preventing the corrosion of the spent fuel stored in the pool. Leaching of radionuclides from the corroded fuel cladding may be prevented by an efficient water treatment and purification system. However, as a safety management policy, IPEN has adopted a water chemistry control which periodically monitors the levels of uranium (U) and silicon (Si) in the pool’s reactor, since IEA-R1 employs U3Si2-Al dispersion fuel. An analytical method was developed and validated for the determination of uranium and silicon by ICP OES. This work describes the validation process, in a context of quality assurance, including the parameters selectivity, linearity, quantification limit, precision and recovery.

  20. New developments and prospects on COSI, the simulation software for fuel cycle analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eschbach, R.; Meyer, M.; Coquelet-Pascal, C.

    2013-07-01

    COSI, software developed by the Nuclear Energy Direction of the CEA, is a code simulating a pool of nuclear power plants with its associated fuel cycle facilities. This code has been designed to study various short, medium and long term options for the introduction of various types of nuclear reactors and for the use of associated nuclear materials. In the frame of the French Act for waste management, scenario studies are carried out with COSI, to compare different options of evolution of the French reactor fleet and options of partitioning and transmutation of plutonium and minor actinides. Those studies aimmore » in particular at evaluating the sustainability of Sodium cooled Fast Reactors (SFR) deployment and the possibility to transmute minor actinides. The COSI6 version is a completely renewed software released in 2006. COSI6 is now coupled with the last version of CESAR (CESAR5.3 based on JEFF3.1.1 nuclear data) allowing the calculations on irradiated fuel with 200 fission products and 100 heavy nuclides. A new release is planned in 2013, including in particular the coupling with a recommended database of reactors. An exercise of validation of COSI6, carried out on the French PWR historic nuclear fleet, has been performed. During this exercise quantities like cumulative natural uranium consumption, or cumulative depleted uranium, or UOX/MOX spent fuel storage, or stocks of reprocessed uranium, or plutonium content in fresh MOX fuel, or the annual production of high level waste, have been computed by COSI6 and compared to industrial data. The results have allowed us to validate the essential phases of the fuel cycle computation, and reinforces the credibility of the results provided by the code.« less

  1. Atomic Processes Relevant to Antimatter Fuel Production and Storage

    DTIC Science & Technology

    1994-05-31

    TO ANTIMATTER FUEL ’ |PRODUCTION AND STORAGE DTIC S nELECTE JUL0 11994 D FINAL REPORT F * 31 MAY 1994 I * Prepared by: J.B.A. Mitchell Dept. of Physics...Atomic Processes Relevant to Antimatter Fuel Production and Storage 12. PERSONAL AUTHOR(S) J.B.A. Mitchell I 3a. TYPE JFRE qT 113b. TIME COVERED 114... antimatter production, this investigation did shed a great deal of light on the recombination process in general and so is worthy of inclusion in this report

  2. Environmental Assessment for Construction and Repair of Fuel Storage and Offloading Facilities at Kirtland Air Force Base

    DTIC Science & Technology

    2005-09-01

    G Ot-T GOO) D. BRENT WILSON, P.E. Base Civil Engineer Kirtland Air Force Base Kirtland AFB Fuel Storage and Ofjloading Facilities Construction...September 2005 A-1 3 77 MSG/CEVQ DEPARTMENT OF THE AIR FORCE 3 77th Civil Engineer Division (AFMC) 2050 Wyoming Blvd SE, Suite 120 Kirtland AFB NM...FINAL FINDING OF NO SIGNIFICANT IMPACT FOR THE FOR CONSTRUCTION AND REP AIR OF FUEL STORAGE AND OFFLOADING FACILITIES AT KIRTLAND AIR FORCE

  3. Progress in hydrogen energy; Proceedings of the National Workshop on Hydrogen Energy, New Delhi, India, July 4-6, 1985

    NASA Astrophysics Data System (ADS)

    Dahiya, R. P.

    1987-06-01

    The present conference on the development status of hydrogen energy technologies considers electrolytic hydrogen production, photoelectrolytic hydrogen production, microorganic hydrogen production, OTEC hydrogen production, solid-state materials for hydrogen storage, and a thin-film hydrogen storage system. Also discussed are the cryogenic storage of hydrogen; liquid hydrogen fuel for ground, air, and naval vehicles; hydrogen-fuel internal combustion engines; the use of hydrogen for domestic, commercial, and industrial applications; hydrogen fuel-cell development; enzyme electrodes for the use of hydrogen-rich fuels in biochemical fuel cells; an analysis of H2-O2 MHD generators; and hydrogen energy technology characterization and evaluation on the basis of an input-output structure.

  4. System and method for determining an ammonia generation rate in a three-way catalyst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Min; Perry, Kevin L; Kim, Chang H

    A system according to the principles of the present disclosure includes a rate determination module, a storage level determination module, and an air/fuel ratio control module. The rate determination module determines an ammonia generation rate in a three-way catalyst based on a reaction efficiency and a reactant level. The storage level determination module determines an ammonia storage level in a selective catalytic reduction (SCR) catalyst positioned downstream from the three-way catalyst based on the ammonia generation rate. The air/fuel ratio control module controls an air/fuel ratio of an engine based on the ammonia storage level.

  5. 75 FR 81031 - Consideration of Environmental Impacts of Temporary Storage of Spent Fuel After Cessation of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-23

    ... Part VI Nuclear Regulatory Commission 10 CFR Part 51 Consideration of Environmental Impacts of... Consideration of Environmental Impacts of Temporary Storage of Spent Fuel After Cessation of Reactor Operation... Commission (NRC or Commission) is revising its generic determination on the environmental impacts of storage...

  6. 86. VIEW OF LIQUID NITROGEN STORAGE FACILITY LOCATED DIRECTLY WEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    86. VIEW OF LIQUID NITROGEN STORAGE FACILITY LOCATED DIRECTLY WEST OF THE SLC-3W FUEL APRON. NOTE HEAT EXCHANGER IN BACKGROUND. CAMERA TOWER LOCATED DIRECTLY IN FRONT OF LIQUID NITROGEN STORAGE TANK. NITROGEN AND HELIUM GAS STORAGE TANKS AT SOUTH END OF FUEL APRON IN LOWER RIGHT CORNER. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  7. SSH2S: Hydrogen storage in complex hydrides for an auxiliary power unit based on high temperature proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Baricco, Marcello; Bang, Mads; Fichtner, Maximilian; Hauback, Bjorn; Linder, Marc; Luetto, Carlo; Moretto, Pietro; Sgroi, Mauro

    2017-02-01

    The main objective of the SSH2S (Fuel Cell Coupled Solid State Hydrogen Storage Tank) project was to develop a solid state hydrogen storage tank based on complex hydrides and to fully integrate it with a High Temperature Proton Exchange Membrane (HT-PEM) fuel cell stack. A mixed lithium amide/magnesium hydride system was used as the main storage material for the tank, due to its high gravimetric storage capacity and relatively low hydrogen desorption temperature. The mixed lithium amide/magnesium hydride system was coupled with a standard intermetallic compound to take advantage of its capability to release hydrogen at ambient temperature and to ensure a fast start-up of the system. The hydrogen storage tank was designed to feed a 1 kW HT-PEM stack for 2 h to be used for an Auxiliary Power Unit (APU). A full thermal integration was possible thanks to the high operation temperature of the fuel cell and to the relative low temperature (170 °C) for hydrogen release from the mixed lithium amide/magnesium hydride system.

  8. Lightweight cryogenic-compatible pressure vessels for vehicular fuel storage

    DOEpatents

    Aceves, Salvador; Berry, Gene; Weisberg, Andrew H.

    2004-03-23

    A lightweight, cryogenic-compatible pressure vessel for flexibly storing cryogenic liquid fuels or compressed gas fuels at cryogenic or ambient temperatures. The pressure vessel has an inner pressure container enclosing a fuel storage volume, an outer container surrounding the inner pressure container to form an evacuated space therebetween, and a thermal insulator surrounding the inner pressure container in the evacuated space to inhibit heat transfer. Additionally, vacuum loss from fuel permeation is substantially inhibited in the evacuated space by, for example, lining the container liner with a layer of fuel-impermeable material, capturing the permeated fuel in the evacuated space, or purging the permeated fuel from the evacuated space.

  9. Sustainable and Renewable Energy Resources — Alternative Forms of Energy

    NASA Astrophysics Data System (ADS)

    Rao, M. C.

    In order to move towards a sustainable existence in our critically energy dependent society there is a continuing need to adopt environmentally sustainable methods for energy production, storage and conversion. A fuel cell is an energy conversion device that generates electricity and heat by electrochemically combining a gaseous fuel and an oxidant gas through electrodes and across an ion conducting electrolyte. The use of fuel cells in both stationary and mobile power applications can offer significant advantages for the sustainable conversion of energy. Currently the cost of fuel cell systems is greater than that of similar, already available products, mainly because of small scale production and the lack of economies of scale. The best fuel for fuel cells is hydrogen and another barrier is fuel flexibility. Benefits arising from the use of fuel cells include efficiency and reliability, as well as economy, unique operating characteristics and planning flexibility and future development potential. By integrating the application of fuel cells, in series with renewable energy storage and production methods, sustainable energy requirements may be realized. As fuel cell application increases and improved fuel storage methods and handlings are developed, it is expected that the costs associated with fuel cell systems will fall dramatically in the future.

  10. Study on Calculation of Liquid Level And Storage of Tanks for LNG-fueled Vessels

    NASA Astrophysics Data System (ADS)

    Li, Kun; Wang, Guoqing; Liu, Chang

    2018-01-01

    As the ongoing development of the application of LNG as a clean energy in waterborne transport industry, the fleet scale of LNG-fueled vessels enlarged and the safety operation has attracted more attention in the industry. Especially the accurate detection of liquid level of LNG tanks is regarded as an important issue to ensure a safe and stable operation of LNG-fueled ships and a key parameter to keep the proper functioning of marine fuel storage system, supply system and safety control system. At present, detection of LNG tank liquid level mainly adopts differential pressure detection method. Liquid level condition could be found from the liquid level reference tables. However in practice, since LNG-fueled vessels are generally not in a stationary state, liquid state within the LNG tanks will constantly change, the detection of storage of tanks only by reference to the tables will cause deviation to some extent. By analyzing the temperature under different pressure, the effects of temperature change on density and volume integration calculation, a method of calculating the liquid level and storage of LNG tanks is put forward making the calculation of liquid level and actual storage of LNG tanks more accurately and providing a more reliable basis for the calculation of energy consumption level and operation economy for LNG-fueled vessels.

  11. 77 FR 60479 - Burnup Credit in the Criticality Safety Analyses of Pressurized Water Reactor Spent Fuel in...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-03

    ... Pressurized Water Reactor Spent Fuel in Transportation and Storage Casks AGENCY: Nuclear Regulatory Commission... 3, entitled, ``Burnup Credit in the Criticality Safety Analyses of PWR [Pressurized Water Reactor... water reactor spent nuclear fuel (SNF) in transportation packages and storage casks. SFST-ISG-8...

  12. 10 CFR 72.8 - Denial of licensing by Agreement States.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General... the storage of spent fuel and reactor-related GTCC waste in an ISFSI or the storage of spent fuel, high-level radioactive waste, and reactor-related GTCC waste in an MRS. [66 FR 51839, Oct. 11, 2001] ...

  13. 10 CFR 72.22 - Contents of application: General and financial information.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN... of spent fuel, high-level radioactive waste, and/or reactor-related GTCC waste from storage. (f) Each applicant for a license under this part to receive, transfer, and possess power reactor spent fuel, power...

  14. 10 CFR 72.8 - Denial of licensing by Agreement States.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General... the storage of spent fuel and reactor-related GTCC waste in an ISFSI or the storage of spent fuel, high-level radioactive waste, and reactor-related GTCC waste in an MRS. [66 FR 51839, Oct. 11, 2001] ...

  15. 75 FR 47536 - Foreign-Trade Zone 202-Los Angeles, CA; Application for Expansion

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-06

    ... Angeles: Proposed Site 25 (665.5 acres)--to include the jet fuel storage and distribution system located... would be as follows: the Los Angeles International Airport jet-fuel storage tanks and delivery system... LAXFUEL Corporation and will be used to provide jet fuel to airlines serving the Los Angeles International...

  16. Optimization to reduce fuel consumption in charge depleting mode

    DOEpatents

    Roos, Bryan Nathaniel; Martini, Ryan D.

    2014-08-26

    A powertrain includes an internal combustion engine, a motor utilizing electrical energy from an energy storage device, and a plug-in connection. A Method for controlling the powertrain includes monitoring a fuel cut mode, ceasing a fuel flow to the engine based upon the fuel cut mode, and through a period of operation including acceleration of the powertrain, providing an entirety of propelling torque to the powertrain with the electrical energy from the energy storage device based upon the fuel cut mode.

  17. Permeation of Military Fuels Through Nitrile-Coated Fabrics Used for Collapsible Fuel Storage Containers

    DTIC Science & Technology

    2014-03-01

    resistance; while decreasing the amount of acrylonitrile content improves low-temperature flexibility, but increases transport rates of military fuels through...tanks do suffer from an increase in total weight and reduced flexibility, which may influence storage, transportation , and setup of the containers...exterior surfaces. The transport of the fuel can be described by Fick’s first law (11): c J=-P x   (1) Where J is the fuel vapor flux, P is

  18. Fire Protection Informational Exchange

    DTIC Science & Technology

    2016-07-01

    0.95 L/min concurrent spray & 274x521 mm pool (66°C) i. Persistent fuels; turbine fuel in spray/pool; lubricant, hydraulic fluid in spray ii...conjugate image plane La Vision sCMOS + Kl long- distance microscope with CF4 objective wire .. " " " " ... in-line hologram image plane La...distance microscope with CF4 objective wire I phase disrurbanc.e (f= 2000 nun) .. " " " " ... in-line hologram image plane La Vision sCNlOS

  19. 75 FR 52892 - Energy Conservation Program for Consumer Products: Test Procedures for Residential Water Heaters...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-30

    .... Treatment of Fossil-Fuel Consumption in Existing Test Procedures for Fossil-Fuel Vented Heaters 2. Specific.... Proposed Test Procedure Amendments for Pool Heaters 1. Treatment of Fossil-Fuel Consumption in Existing.... Fossil-fuel standby mode and off mode energy use is already integrated into the vented [[Page 52895...

  20. Composition and Chemical Stability of Motor Fuels,

    DTIC Science & Technology

    Fuels, *Hydrocarbons, Cycloalkanes, Chemical analysis, Gasoline, Diesel fuels, Fuel additives, Chemical reactions, Stability, Jet engine fuels...Aviation gasoline, Aviation fuels, Chemical composition, Aromatic hydrocarbons, Unsaturated hydrocarbons, Storage, USSR, Translations, Fuel systems, Alkanes

  1. Temporal deconvolution of vascular plant signatures delivered to coastal sediments

    NASA Astrophysics Data System (ADS)

    Vonk, J.; Drenzek, N. J.; Hughen, K. A.; Stanley, R.; Montluçon, D. B.; McIntyre, C.; Southon, J. R.; Santos, G.; Andersson, A.; Sköld, M.; Eglinton, T. I.

    2017-12-01

    Presently, relatively little is known about the amount of time that lapses between the photosynthetic fixation of carbon by vascular land plants and its incorporation into the marine sedimentary record. It is clear that there are multiple potential intermediate storage pools and transport trajectories that vascular plant carbon may experience, and the age of vascular plant carbon accumulating in marine sediments will reflect these different pre-depositional histories. Here we use molecular-level radiocarbon (14C) analysis to develop down-core 14C profiles for higher plant leaf wax-derived fatty acids isolated from sediments from three sites across a 60-degrees latitudinal gradient (Cariaco Basin, Saanich Inlet, and Mackenzie Delta). The sediment profiles were used as a direct measure of the storage and transport times experienced by these biomolecular tracer compounds. Residence times are evaluated by comparing these records to the 14C history of atmospheric CO2. Using a modeling framework, we conclude that there is, in addition to a variable "young" pool, a millennial pool of compounds that consists of 49-78 % of the fractional contribution of organic carbon (OC) that exhibits variable ages for the different depositional settings. For the Mackenzie Delta sediments, we find a mean age of the millennial pool of 28 ky, suggesting pre-aging in permafrost soils, whereas the millennial pool in Saanich Inlet and Cariaco Basin sediments is younger with 7.9 and 2.4-3.2 ky, respectively, suggesting limited storage in terrestrial reservoirs. The "young" pool, conditionally defined as < 50 years showed clear annual contributions for Saanich Inlet and Mackenzie Delta sediments (24% and 16% of young pool, respectively) that can likely be explained by transport of OC from steep hillside slopes near the Saanich Inlet and annual spring flood deposition in the Mackenzie Delta. These results show that a significant fraction of vascular plant C in deltaic and marine settings undergoes pre-aging in terrestrial reservoirs. The age distribution, reflecting storage and transport times, depends on landscape-specific factors such as local topography, hydrographic characteristics, and degree of soil build-up and preservation.

  2. Transient dynamics of terrestrial carbon storage: Mathematical foundation and numeric examples

    DOE PAGES

    Luo, Yiqi; Shi, Zheng; Lu, Xingjie; ...

    2016-09-16

    Terrestrial ecosystems absorb roughly 30% of anthropogenic CO 2 emissions since preindustrial era, but it is unclear whether this carbon (C) sink will endure into the future. Despite extensive modeling, experimental, and observational studies, what fundamentally determines transient dynamics of terrestrial C storage under climate change is still not very clear. Here we develop a new framework for understanding transient dynamics of terrestrial C storage through mathematical analysis and numerical experiments. Our analysis indicates that the ultimate force driving ecosystem C storage change is the C storage capacity, which is jointly determined by ecosystem C input (e.g., net primary production,more » NPP) and residence time. Since both C input and residence time vary with time, the C storage capacity is time-dependent and acts as a moving attractor that actual C storage chases. The rate of change in C storage is proportional to the C storage potential, the difference between the current storage and the storage capacity. The C storage capacity represents instantaneous responses of the land C cycle to external forcing, whereas the C storage potential represents the internal capability of the land C cycle to influence the C change trajectory in the next time step. The influence happens through redistribution of net C pool changes in a network of pools with different residence times. Furthermore, this and our other studies have demonstrated that one matrix equation can exactly replicate simulations of most land C cycle models (i.e., physical emulators). As a result, simulation outputs of those models can be placed into a three-dimensional (3D) parameter space to measure their differences. The latter can be decomposed into traceable components to track the origins of model uncertainty. Moreover, the emulators make data assimilation computationally feasible so that both C flux- and pool-related datasets can be used to better constrain model predictions of land C sequestration. We also propose that the C storage potential be the targeted variable for research, market trading, and government negotiation for C credits.« less

  3. Transient dynamics of terrestrial carbon storage: Mathematical foundation and numeric examples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Yiqi; Shi, Zheng; Lu, Xingjie

    Terrestrial ecosystems absorb roughly 30% of anthropogenic CO 2 emissions since preindustrial era, but it is unclear whether this carbon (C) sink will endure into the future. Despite extensive modeling, experimental, and observational studies, what fundamentally determines transient dynamics of terrestrial C storage under climate change is still not very clear. Here we develop a new framework for understanding transient dynamics of terrestrial C storage through mathematical analysis and numerical experiments. Our analysis indicates that the ultimate force driving ecosystem C storage change is the C storage capacity, which is jointly determined by ecosystem C input (e.g., net primary production,more » NPP) and residence time. Since both C input and residence time vary with time, the C storage capacity is time-dependent and acts as a moving attractor that actual C storage chases. The rate of change in C storage is proportional to the C storage potential, the difference between the current storage and the storage capacity. The C storage capacity represents instantaneous responses of the land C cycle to external forcing, whereas the C storage potential represents the internal capability of the land C cycle to influence the C change trajectory in the next time step. The influence happens through redistribution of net C pool changes in a network of pools with different residence times. Furthermore, this and our other studies have demonstrated that one matrix equation can exactly replicate simulations of most land C cycle models (i.e., physical emulators). As a result, simulation outputs of those models can be placed into a three-dimensional (3D) parameter space to measure their differences. The latter can be decomposed into traceable components to track the origins of model uncertainty. Moreover, the emulators make data assimilation computationally feasible so that both C flux- and pool-related datasets can be used to better constrain model predictions of land C sequestration. We also propose that the C storage potential be the targeted variable for research, market trading, and government negotiation for C credits.« less

  4. Three-Dimensional Ignition and Flame Propagation Above Liquid Fuel Pools: Computational Analysis

    NASA Technical Reports Server (NTRS)

    Cai, Jinsheng; Sirignano, William A.

    2001-01-01

    A three-dimensional unsteady reactive Navier-Stokes code is developed to study the ignition and flame spread above liquid fuels initially below the flashpoint temperature. Opposed air flow to the flame spread due to forced and/or natural convection is considered. Pools of finite width and length are studied in air channels of prescribed height and width. Three-dimensional effects of the flame front near the edge of the pool are captured in the computation. The formation of a recirculation zone in the gas phase similar to that found in two-dimensional calculations is also present in the three-dimensional calculations. Both uniform spread and pulsating spread modes are found in the calculated results.

  5. The role of the megagametophyte in maintaining loblolly pine (Pinus taeda L.) seedling arginase gene expression in vitro.

    PubMed

    Todd, Christopher D; Gifford, David J

    2002-05-01

    Following loblolly pine (Pinus taeda L.) seed germination, storage-protein breakdown in the megagametophyte and in the seedling results in a large increase in the seedling's free amino acid pool. A substantial portion of both the storage proteins and the amino acid pool is arginine, a very efficient nitrogen-storage compound. Free arginine is hydrolyzed in the seedling by the enzyme arginase (EC 3.5.3.1), which is under strong developmental control. At present, regulation of arginase in conifers is not well understood. Here we report the utilization of an in vitro culture system to address the separate impacts of the seedling and megagametophyte tissues on arginase enzyme activity, protein levels and patterns of gene expression. We also describe the generation of an anti-arginase antibody prepared from a histidine-tagged loblolly pine arginase fusion protein expressed in Escherichia coli. Our results indicate that arginase gene expression in the seedling is initiated by the seedling itself and then maintained or up-regulated by the megagametophyte. The contribution of storage-protein breakdown and the free amino acid pool, particularly arginine, in this regulation is also addressed.

  6. 76 FR 17019 - List of Approved Spent Fuel Storage Casks: HI-STORM Flood/Wind Addition

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-28

    ... Storage Casks: HI-STORM Flood/Wind Addition AGENCY: Nuclear Regulatory Commission. ACTION: Direct final... regulations to add the HI-STORM Flood/Wind cask system to the ``List of Approved Spent Fuel Storage Casks... cask designs. Discussion This rule will add the Holtec HI-STORM Flood/Wind (FW) cask system to the list...

  7. Storage characteristics of multiple-donor pooled red blood cells compared to single-donor red blood cell units.

    PubMed

    Mathur, Aabhas; Chowdhury, Raquibul; Hillyer, Christopher D; Mitchell, W Beau; Shaz, Beth H

    2016-12-01

    Each unit of blood donated is processed and stored individually resulting in variability in the amount of red blood cells (RBCs) collected, RBC properties, and the 24-hour posttransfusion RBC survivability. As a result, each unit differs in its ability to deliver oxygen and potentially its effects on the recipient. The goal of this study was to investigate the storage of pooled RBCs from multiple donors in comparison to control standard RBC units. Two units of irradiated, leukoreduced RBCs of same ABO, D, E, C, and K antigen phenotype were collected from each of five donors using apheresis. One unit from each donor was pooled in a 2-L bag and remaining units were used as controls. After being pooled, RBCs were separated in five bags and stored at 4°C along with the controls. Quality indexes were measured on Days 2, 14, and 28 for all the units. Adenosine triphosphate assays for both pooled and controls showed a slight decrease from Day 2 to Day 28 (pooled/control from 5.22/5.24 to 4.35/4.33 µmol/g hemoglobin [Hb]). 2,3-Diphosphoglycerate was successfully rejuvenated for all RBC units on Day 28 (pooled 11.46 µmol/g Hb; control 11.86 µmol/g Hb). The results showed a nonsignificant difference between pooled and control units, with a general trend of lower standard deviation for pooled units when compared to controls. Pooled units have reduced unit-to-unit variability. Future exploration of their immunogenicity is required before using pooled units for transfusion. © 2016 AABB.

  8. Hydrogen as a fuel for today and tomorrow: expectations for advanced hydrogen storage materials/systems research.

    PubMed

    Hirose, Katsuhiko

    2011-01-01

    History shows that the evolution of vehicles is promoted by several environmental restraints very similar to the evolution of life. The latest environmental strain is sustainability. Transport vehicles are now facing again the need to advance to use sustainable fuels such as hydrogen. Hydrogen fuel cell vehicles are being prepared for commercialization in 2015. Despite intensive research by the world's scientists and engineers and recent advances in our understanding of hydrogen behavior in materials, the only engineering phase technology which will be available for 2015 is high pressure storage. Thus industry has decided to implement the high pressure tank storage system. However the necessity of smart hydrogen storage is not decreasing but rather increasing because high market penetration of hydrogen fuel cell vehicles is expected from around 2025 onward. In order to bring more vehicles onto the market, cheaper and more compact hydrogen storage is inevitable. The year 2025 seems a long way away but considering the field tests and large scale preparation required, there is little time available for research. Finding smart materials within the next 5 years is very important to the success of fuel cells towards a low carbon sustainable world.

  9. Unitized Regenerative Fuel Cell System Gas Dryer/Humidifier Analytical Model Development

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth A.; Jakupca, Ian

    2004-01-01

    A lightweight Unitized Regenerative Fuel Cell (URFC) Energy Storage System concept is being developed at the NASA Glenn Research Center (GRC). This Unitized Regenerative Fuel Cell System (URFCS) is unique in that it uses Regenerative Gas Dryers/Humidifiers (RGD/H) that are mounted on the surface of the gas storage tanks that act as the radiators for thermal control of the Unitized Regenerative Fuel Cell System (URFCS). As the gas storage tanks cool down during URFCS charging the RGD/H dry the hydrogen and oxygen gases produced by electrolysis. As the gas storage tanks heat up during URFCS discharging, the RGD/H humidify the hydrogen and oxygen gases used by the fuel cell. An analytical model was developed to simulate the URFCS RGD/H. The model is in the form of a Microsoft (registered trademark of Microsoft Corporation) Excel worksheet that allows the investigation of the RGD/H performance. Finite Element Analysis (FEA) modeling of the RGD/H and the gas storage tank wall was also done to analyze spatial temperature distribution within the RGD/H and the localized tank wall. Test results obtained from the testing of the RGD/H in a thermal vacuum environment were used to corroborate the analyses.

  10. Alternative Fuels Data Center: Propane Vehicles

    Science.gov Websites

    dedicated and bi-fuel vehicles is also comparable. Extra storage tanks can increase range, but the tank size propane or gasoline vehicles have. Likewise, larger storage tanks can increase range, but the additional

  11. U.S. Naval Base, Pearl Harbor, Red Hill Underground Fuel Storage ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    U.S. Naval Base, Pearl Harbor, Red Hill Underground Fuel Storage System, Linear underground system extending from North Road to Icarus Way, Joint Base Pearl Harbor-Hickam, Honolulu, Honolulu County, HI

  12. 10 CFR 72.128 - Criteria for spent fuel, high-level radioactive waste, reactor-related greater than Class C waste...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., reactor-related greater than Class C waste, and other radioactive waste storage and handling. 72.128... STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General Design Criteria § 72.128 Criteria for spent fuel, high-level radioactive waste, reactor...

  13. 10 CFR 72.128 - Criteria for spent fuel, high-level radioactive waste, reactor-related greater than Class C waste...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., reactor-related greater than Class C waste, and other radioactive waste storage and handling. 72.128... STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General Design Criteria § 72.128 Criteria for spent fuel, high-level radioactive waste, reactor...

  14. 75 FR 53353 - Notice of Availability of Final Interim Staff Guidance Document No. 25 “Pressure and Helium...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-31

    ... Guidance Document No. 25 ``Pressure and Helium Leakage Testing of the Confinement Boundary of Spent Fuel...: The Division of Spent Fuel Storage and Transportation (SFST) of the Office of Nuclear Materials Safety... Helium Leakage Testing of the Confinement Boundary of Spent Fuel Dry Storage Systems.'' This ISG...

  15. Sensor system for fuel transport vehicle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Earl, Dennis Duncan; McIntyre, Timothy J.; West, David L.

    An exemplary sensor system for a fuel transport vehicle can comprise a fuel marker sensor positioned between a fuel storage chamber of the vehicle and an access valve for the fuel storage chamber of the vehicle. The fuel marker sensor can be configured to measure one or more characteristics of one or more fuel markers present in the fuel adjacent the sensor, such as when the marked fuel is unloaded at a retail station. The one or more characteristics can comprise concentration and/or identity of the one or more fuel markers in the fuel. Based on the measured characteristics ofmore » the one or more fuel markers, the sensor system can identify the fuel and/or can determine whether the fuel has been adulterated after the marked fuel was last measured, such as when the marked fuel was loaded into the vehicle.« less

  16. Fluid Management of and Flame Spread Across Liquid Pools

    NASA Technical Reports Server (NTRS)

    Ross, H. D.; Miller, F. J.

    2001-01-01

    The goal of our research on flame spread across pools of liquid fuel remains the quantitative identification of the mechanisms that control the rate and nature of flame spread when the initial temperature of the liquid pool is below the fuel's flash point temperature. As described in, four microgravity (mu-g) sounding rocket flights examined the effect of forced opposed airflow over a 2.5 cm deep x 2 cm wide x 30 cm long pool of 1-butanol. Among many unexpected findings, it was observed that the flame spread is much slower and steadier than in 1g where flame spread has a pulsating character. Our numerical model, restricted to two dimensions, had predicted faster, pulsating flame spread in mu-g. In a test designed to achieve a more 2-D experiment, our investigation of a shallow, wide pool (2 mm deep x 78 mm wide x 30 cm long) was unsuccessful in mu-g, due to an unexpectedly long time required to fill the tray. As such, the most recent Spread Across Liquids (SAL) sounding rocket experiment had two principal objectives: 1) determine if pulsating flame spread in deep fuel trays would occur under the conditions that a state-of-the-art computational combustion code and short-duration drop tower tests predict; and 2) determine if a long, rectangular, shallow fuel tray could achieve a visibly flat liquid surface across the whole tray without spillage in the mu-g time allotted. If the second objective was met, the shallow tray was to be ignited to determine the nature of flame spread in mu-g for this geometry. For the first time in the experiment series, two fuel trays - one deep (30 cm long x 2 cm wide x 25 mm deep) and one shallow (same length and width, but 2 mm deep)-- were flown. By doing two independent experiments in a single flight, a significant cost savings was realized. In parallel, the computational objective was to modify the code to improve agreement with earlier results. This last objective was achieved by modifying the fuel mass diffusivity and adding a parameter to correct for radiative and lateral heat loss.

  17. 78 FR 73566 - Standard Format and Content for a License Application for an Independent Spent Fuel Storage...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-06

    ...The U.S. Nuclear Regulatory Commission (NRC) is issuing for public comment draft regulatory guide (DG), DG-3042, ``Standard Format and Content for a License Application for an Independent Spent Fuel Storage Installation or a Monitored Retrievable Storage Facility.'' This draft regulatory guide is proposed revision 2 of Regulatory Guide 3.50, which provides a format that the NRC considers acceptable for submitting the information for license applications to store spent nuclear fuel, high-level radioactive waste, and/or reactor-related Greater than Class C waste.

  18. Report on UQ and PCMM Analysis of Vacuum Drying for UFD S&T Gaps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M. Fluss

    2015-08-31

    This report discusses two phenomena that could affect the safety, licensing, transportation, storage, and disposition of the spent fuel storage casks and their contents (radial hydriding during drying and water retention after drying) associated with the drying of canisters for dry spent fuel storage. The report discusses modeling frameworks and evaluations that are, or have been, developed as a means to better understand these phenomena. Where applicable, the report also discusses data needs and procedures for monitoring or evaluating the condition of storage containers during and after drying. A recommendation for the manufacturing of a fully passivated fuel rod, resistantmore » to oxidation and hydriding is outlined.« less

  19. Chemical hydrogen storage material property guidelines for automotive applications

    NASA Astrophysics Data System (ADS)

    Semelsberger, Troy A.; Brooks, Kriston P.

    2015-04-01

    Chemical hydrogen storage is the sought after hydrogen storage media for automotive applications because of the expected low pressure operation (<20 atm), moderate temperature operation (<200 °C), system gravimetric capacities (>0.05 kg H2/kgsystem), and system volumetric capacities (>0.05 kg H2/Lsystem). Currently, the primary shortcomings of chemical hydrogen storage are regeneration efficiency, fuel cost and fuel phase (i.e., solid or slurry phase). Understanding the required material properties to meet the DOE Technical Targets for Onboard Hydrogen Storage Systems is a critical knowledge gap in the hydrogen storage research community. This study presents a set of fluid-phase chemical hydrogen storage material property guidelines for automotive applications meeting the 2017 DOE technical targets. Viable material properties were determined using a boiler-plate automotive system design. The fluid-phase chemical hydrogen storage media considered in this study were neat liquids, solutions, and non-settling homogeneous slurries. Material properties examined include kinetics, heats of reaction, fuel-cell impurities, gravimetric and volumetric hydrogen storage capacities, and regeneration efficiency. The material properties, although not exhaustive, are an essential first step in identifying viable chemical hydrogen storage material properties-and most important, their implications on system mass, system volume and system performance.

  20. Transient dynamics of terrestrial carbon storage: Mathematical foundation and its applications

    DOE PAGES

    Luo, Yiqi; Shi, Zheng; Lu, Xingjie; ...

    2017-01-12

    Terrestrial ecosystems have absorbed roughly 30% of anthropogenic CO 2 emissions over the past decades, but it is unclear whether this carbon (C) sink will endure into the future. Despite extensive modeling and experimental and observational studies, what fundamentally determines transient dynamics of terrestrial C storage under global change is still not very clear. Here we develop a new framework for understanding transient dynamics of terrestrial C storage through mathematical analysis and numerical experiments. Our analysis indicates that the ultimate force driving ecosystem C storage change is the C storage capacity, which is jointly determined by ecosystem C input (e.g.,more » net primary production, NPP) and residence time. Since both C input and residence time vary with time, the C storage capacity is time-dependent and acts as a moving attractor that actual C storage chases. The rate of change in C storage is proportional to the C storage potential, which is the difference between the current storage and the storage capacity. The C storage capacity represents instantaneous responses of the land C cycle to external forcing, whereas the C storage potential represents the internal capability of the land C cycle to influence the C change trajectory in the next time step. The influence happens through redistribution of net C pool changes in a network of pools with different residence times. Moreover, this and our other studies have demonstrated that one matrix equation can replicate simulations of most land C cycle models (i.e., physical emulators). As a result, simulation outputs of those models can be placed into a three-dimensional (3-D) parameter space to measure their differences. The latter can be decomposed into traceable components to track the origins of model uncertainty. In addition, the physical emulators make data assimilation computationally feasible so that both C flux- and pool-related datasets can be used to better constrain model predictions of land C sequestration. Altogether, this new mathematical framework offers new approaches to understanding, evaluating, diagnosing, and improving land C cycle models.« less

  1. Transient dynamics of terrestrial carbon storage: Mathematical foundation and its applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Yiqi; Shi, Zheng; Lu, Xingjie

    Terrestrial ecosystems have absorbed roughly 30% of anthropogenic CO 2 emissions over the past decades, but it is unclear whether this carbon (C) sink will endure into the future. Despite extensive modeling and experimental and observational studies, what fundamentally determines transient dynamics of terrestrial C storage under global change is still not very clear. Here we develop a new framework for understanding transient dynamics of terrestrial C storage through mathematical analysis and numerical experiments. Our analysis indicates that the ultimate force driving ecosystem C storage change is the C storage capacity, which is jointly determined by ecosystem C input (e.g.,more » net primary production, NPP) and residence time. Since both C input and residence time vary with time, the C storage capacity is time-dependent and acts as a moving attractor that actual C storage chases. The rate of change in C storage is proportional to the C storage potential, which is the difference between the current storage and the storage capacity. The C storage capacity represents instantaneous responses of the land C cycle to external forcing, whereas the C storage potential represents the internal capability of the land C cycle to influence the C change trajectory in the next time step. The influence happens through redistribution of net C pool changes in a network of pools with different residence times. Moreover, this and our other studies have demonstrated that one matrix equation can replicate simulations of most land C cycle models (i.e., physical emulators). As a result, simulation outputs of those models can be placed into a three-dimensional (3-D) parameter space to measure their differences. The latter can be decomposed into traceable components to track the origins of model uncertainty. In addition, the physical emulators make data assimilation computationally feasible so that both C flux- and pool-related datasets can be used to better constrain model predictions of land C sequestration. Altogether, this new mathematical framework offers new approaches to understanding, evaluating, diagnosing, and improving land C cycle models.« less

  2. Alkaline regenerative fuel cell energy storage system for manned orbital satellites

    NASA Technical Reports Server (NTRS)

    Martin, R. E.; Gitlow, B.; Sheibley, D. W.

    1982-01-01

    It is pointed out that the alkaline regenerative fuel cell system represents a highly efficient, lightweight, reliable approach for providing energy storage in an orbiting satellite. In addition to its energy storage function, the system can supply hydrogen and oxygen for attitude control of the satellite and for life support. A summary is presented of the results to date obtained in connection with the NASA-sponsored fuel cell technology advancement program, giving particular attention to the requirements of the alkaline regenerative fuel cell and the low-earth mission. Attention is given to system design guidelines, weight considerations, gold-platinum cathode cell performance, matrix development, the electrolyte reservoir plate, and the cyclical load profile tests.

  3. Closure Report for Corrective Action Unit 342: Area 23 Mercury Fire Training Pit Nevada Test Site, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    C. M. Obi

    2000-04-01

    The purpose of this Closure Report (CR) is to provide documentation of the completed corrective action and to provide data confirming the corrective action. The corrective action was performed following the approved Corrective Action Plan (CAP) (U.S. Department of Energy [DOE], 1999b) and consisted of closure-in-place with partial excavation, disposal, backfilling, administrative controls, and post-closure monitoring. Soil with petroleum hydrocarbon concentrations above the Nevada Division of Environmental Protection (NDEP) Action Level of 100 milligrams per kilogram (mg/kg) (Nevada Administrative Code, 1996) was removed to a depth of 1.5 meters (m) (5 feet [ft]). The excavations were backfilled with clean fillmore » to restore the site and to prevent contact with deeper, closed-in-place soil that exceeded the NDEP Action Level. According to the Corrective Action Investigation Plan (CAIP) (DOE, 1998), the Mercury Fire Training Pit was used from approximately 1965 to the early 1990s to train fire-fighting and emergency response personnel at the NTS and encompasses an area approximately 85 by 115 m (280 by 380 ft). The location of the Mercury Fire Training Pit is shown in Figure 1 and a site plan is shown in Figure 2. The Mercury Fire Training Pit formerly included a bermed bum pit with four small bum tanks; four large above ground storage tanks (ASTS); an overturned bus, a telephone pole storage area; and several areas for burning sheds, pallets, and cables. During the active life of the Mercury Fire Training Pit, training events were conducted at least monthly and sometimes as often as weekly. Fuels burned during these events included off-specification or rust-contaminated gasoline, diesel, and aviation fuel (JP-4). Other items burned during these events included paint, tires, a pond liner, wood, paper, cloth, and copper cable. Approximately 570 liters (L) (150 gallons [gal]) of fuel were used for each training event resulting in an approximate total of 136,000 L (36,000 gal) of fuel used over the life of the Mercury Fire Training Pit. Unburned fuel was allowed to pool on the ground and was left to eventually volatilize or soak into the soil. In addition, fuels from the ASTS and fuels and fluids from the overturned bus leaked or spilled onto the ground. Approximately 19 L to 38 L (5 to 10 gal) of paint were also burned monthly until sometime in the 1970s.« less

  4. Method for storing spent nuclear fuel in repositories

    DOEpatents

    Schweitzer, Donald G.; Sastre, Cesar; Winsche, Warren

    1981-01-01

    A method for storing radioactive spent fuel in repositories containing sulfur as the storage medium is disclosed. Sulfur is non-corrosive and not subject to radiation damage. Thus, storage periods of up to 100 years are possible.

  5. Method for storing spent nuclear fuel in repositories

    DOEpatents

    Schweitzer, D.G.; Sastre, C.; Winsche, W.

    A method for storing radioactive spent fuel in repositories containing sulfur as the storage medium is disclosed. Sulfur is non-corrosive and not subject to radiation damage. Thus, storage periods of up to 100 years are possible.

  6. POOL WATER TREATMENT AND COOLING SYSTEM DESCRIPTION DOCUMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    V. King

    2000-06-19

    The Pool Water Treatment and Cooling System is located in the Waste Handling Building (WHB), and is comprised of various process subsystems designed to support waste handling operations. This system maintains the pool water temperature within an acceptable range, maintains water quality standards that support remote underwater operations and prevent corrosion, detects leakage from the pool liner, provides the capability to remove debris from the pool, controls the pool water level, and helps limit radiological exposure to personnel. The pool structure and liner, pool lighting, and the fuel staging racks in the pool are not within the scope of themore » Pool Water Treatment and Cooling System. Pool water temperature control is accomplished by circulating the pool water through heat exchangers. Adequate circulation and mixing of the pool water is provided to prevent localized thermal hotspots in the pool. Treatment of the pool water is accomplished by a water treatment system that circulates the pool water through filters, and ion exchange units. These water treatment units remove radioactive and non-radioactive particulate and dissolved solids from the water, thereby providing the water clarity needed to conduct waste handling operations. The system also controls pool water chemistry to prevent advanced corrosion of the pool liner, pool components, and fuel assemblies. Removal of radioactivity from the pool water contributes to the project ALARA (as low as is reasonably achievable) goals. A leak detection system is provided to detect and alarm leaks through the pool liner. The pool level control system monitors the water level to ensure that the minimum water level required for adequate radiological shielding is maintained. Through interface with a demineralized water system, adequate makeup is provided to compensate for loss of water inventory through evaporation and waste handling operations. Interface with the Site Radiological Monitoring System provides continuous radiological monitoring of the pool water. The Pool Water Treatment and Cooling System interfaces with the Waste Handling Building System, Site-Generated Radiological Waste Handling System, Site Radiological Monitoring System, Waste Handling Building Electrical System, Site Water System, and the Monitored Geologic Repository Operations Monitoring and Control System.« less

  7. Design tool for estimating chemical hydrogen storage system characteristics for light-duty fuel cell vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brooks, Kriston P.; Sprik, Samuel J.; Tamburello, David A.

    The U.S. Department of Energy (DOE) has developed a vehicle framework model to simulate fuel cell-based light-duty vehicle operation for various hydrogen storage systems. This transient model simulates the performance of the storage system, fuel cell, and vehicle for comparison to DOE’s Technical Targets using four drive cycles/profiles. Chemical hydrogen storage models have been developed for the Framework model for both exothermic and endothermic materials. Despite the utility of such models, they require that material researchers input system design specifications that cannot be easily estimated. To address this challenge, a design tool has been developed that allows researchers to directlymore » enter kinetic and thermodynamic chemical hydrogen storage material properties into a simple sizing module that then estimates the systems parameters required to run the storage system model. Additionally, this design tool can be used as a standalone executable file to estimate the storage system mass and volume outside of the framework model and compare it to the DOE Technical Targets. These models will be explained and exercised with existing hydrogen storage materials.« less

  8. 78 FR 77736 - Sunshine Act Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-24

    ... a.m. Briefing on Spent Fuel Pool Safety and Consideration of Expedited Transfer of Spent Fuel to Dry... Disposition Fukushima Near-Term Task Force (NTTF) Recommendation 1 on Improving NRC's Regulatory Framework...

  9. 76 FR 33121 - List of Approved Spent Fuel Storage Casks: HI-STORM Flood/Wind Addition

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-08

    ... Storage Casks: HI-STORM Flood/Wind Addition AGENCY: Nuclear Regulatory Commission. ACTION: Direct final... regulations to add the Holtec HI-STORM Flood/Wind cask system to the ``List of Approved Spent Fuel Storage... Title 10 of the Code of Federal Regulations Section 72.214 to add the Holtec HI- STORM Flood/Wind cask...

  10. 75 FR 11375 - Revision of Fee Schedules; Fee Recovery for FY 2010

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-10

    ... Spent Fuel Storage/Reactor Decommissioning..... 2.7 0.2 0.2 Test and Research Reactors 0.2 0.0 0.0 Fuel... categories of licenses. The FY 2009 fee is also shown for comparative purposes. Table V--Rebaselined Annual...) Spent Fuel Storage/Reactor 122,000 143,000 Decommissioning Test and Research Reactors (Non-power 87,600...

  11. Carbonate fuel cell and components thereof for in-situ delayed addition of carbonate electrolyte

    DOEpatents

    Johnsen, Richard [Waterbury, CT; Yuh, Chao-Yi [New Milford, CT; Farooque, Mohammad [Danbury, CT

    2011-05-10

    An apparatus and method in which a delayed carbonate electrolyte is stored in the storage areas of a non-electrolyte matrix fuel cell component and is of a preselected content so as to obtain a delayed time release of the electrolyte in the storage areas in the operating temperature range of the fuel cell.

  12. 78. GENERAL VIEW OF SLC3W FUEL APRON FROM NORTH. HELIUM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    78. GENERAL VIEW OF SLC-3W FUEL APRON FROM NORTH. HELIUM AND NITROGEN STORAGE TANKS AND CONTROL SKIDS IN LEFT CENTER. FUEL STORAGE TANK AND CONTROL SKID IN RIGHT BACKGROUND. SLC-3E MST IN DISTANT RIGHT BACKGROUND. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  13. 11. The work area of a typical fuel storage and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. The work area of a typical fuel storage and transfer basin. The wooden floor was built over the 20-foot deep water-filled basin. Buckets filled with irradiated fuel of dummy slugs in the floor and were hung on trolleys attached to the monorail tracks suspended from the ceiling. 85-H807 - B Reactor, Richland, Benton County, WA

  14. Void space inside the developing seed of Brassica napus and the modelling of its function

    PubMed Central

    Verboven, Pieter; Herremans, Els; Borisjuk, Ljudmilla; Helfen, Lukas; Ho, Quang Tri; Tschiersch, Henning; Fuchs, Johannes; Nicolaï, Bart M; Rolletschek, Hardy

    2013-01-01

    The developing seed essentially relies on external oxygen to fuel aerobic respiration, but it is currently unknown how oxygen diffuses into and within the seed, which structural pathways are used and what finally limits gas exchange. By applying synchrotron X-ray computed tomography to developing oilseed rape seeds we uncovered void spaces, and analysed their three-dimensional assembly. Both the testa and the hypocotyl are well endowed with void space, but in the cotyledons, spaces were small and poorly inter-connected. In silico modelling revealed a three orders of magnitude range in oxygen diffusivity from tissue to tissue, and identified major barriers to gas exchange. The oxygen pool stored in the voids is consumed about once per minute. The function of the void space was related to the tissue-specific distribution of storage oils, storage protein and starch, as well as oxygen, water, sugars, amino acids and the level of respiratory activity, analysed using a combination of magnetic resonance imaging, specific oxygen sensors, laser micro-dissection, biochemical and histological methods. We conclude that the size and inter-connectivity of void spaces are major determinants of gas exchange potential, and locally affect the respiratory activity of a developing seed. PMID:23692271

  15. 78 FR 76331 - Sunshine Act Meeting Notice

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-17

    ... a.m. Briefing on Spent Fuel Pool Safety and Consideration of Expedited Transfer of Spent Fuel to Dry... Recommendations to Disposition Fukushima Near-Term Task Force (NTTF) Recommendation 1 on Improving NRC's...

  16. AP1000{sup R} nuclear power plant safety overview for spent fuel cooling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorgemans, J.; Mulhollem, L.; Glavin, J.

    2012-07-01

    The AP1000{sup R} plant is an 1100-MWe class pressurized water reactor with passive safety features and extensive plant simplifications that enhance construction, operation, maintenance, safety and costs. The AP1000 design uses passive features to mitigate design basis accidents. The passive safety systems are designed to function without safety-grade support systems such as AC power, component cooling water, service water or HVAC. Furthermore, these passive features 'fail safe' during a non-LOCA event such that DC power and instrumentation are not required. The AP1000 also has simple, active, defense-in-depth systems to support normal plant operations. These active systems provide the first levelmore » of defense against more probable events and they provide investment protection, reduce the demands on the passive features and support the probabilistic risk assessment. The AP1000 passive safety approach allows the plant to achieve and maintain safe shutdown in case of an accident for 72 hours without operator action, meeting the expectations provided in the U.S. Utility Requirement Document and the European Utility Requirements for passive plants. Limited operator actions are required to maintain safe conditions in the spent fuel pool via passive means. In line with the AP1000 approach to safety described above, the AP1000 plant design features multiple, diverse lines of defense to ensure spent fuel cooling can be maintained for design-basis events and beyond design-basis accidents. During normal and abnormal conditions, defense-in-depth and other systems provide highly reliable spent fuel pool cooling. They rely on off-site AC power or the on-site standby diesel generators. For unlikely design basis events with an extended loss of AC power (i.e., station blackout) or loss of heat sink or both, spent fuel cooling can still be provided indefinitely: - Passive systems, requiring minimal or no operator actions, are sufficient for at least 72 hours under all possible pool heat load conditions. - After 3 days, several different means are provided to continue spent fuel cooling using installed plant equipment as well as off-site equipment with built-in connections. Even for beyond design basis accidents with postulated pool damage and multiple failures in the passive safety-related systems and in the defense-in-depth active systems, the AP1000 multiple spent fuel pool spray and fill systems provide additional lines of defense to prevent spent fuel damage. (authors)« less

  17. METHOD AND APPARATUS FOR HANDLING RADIOACTIVE PRODUCTS

    DOEpatents

    Nicoll, D.

    1959-02-24

    A device is described for handling fuel elements being discharged from a nuclear reactor. The device is adapted to be disposed beneath a reactor within the storage canal for spent fuel elements. The device is comprised essentially of a cylinder pivotally mounted to a base for rotational motion between a vertical position. where the mouth of the cylinder is in the top portion of the container for receiving a fuel element discharged from a reactor into the cylinder, and a horizontal position where the mouth of the cylinder is remote from the top portion of the container and the fuel element is discharged from the cylinder into the storage canal. The device is operated by hydraulic pressure means and is provided with a means to prevent contaminated primary liquid coolant in the reactor system from entering the storage canal with the spent fuel element.

  18. Final Environmental Assessment (EA) for the Revitalization of Military Family Housing Keesler AFB, MS

    DTIC Science & Technology

    2006-03-01

    12,000 square feet each). An Olympic-size swimming pool (approximately 71 feet by 164 feet). Twelve covered bus stops. A skateboard park...11,644 Covered Bus Stop 100 12 1,200 Skateboard Park 10,890 1 10,890 Storage Unit 100 534 53,400 Total N/A N/A 125,134 Location to be determined...Olympic-size Swimming Pool 1 1 Covered Bus Stop 5 4 3 12 Skateboard Park 1 1 Storage Unit 0 294 160 80 534 2.6 ALTERNATIVE 1 (IMMEDIATE

  19. Pragmatic consideration of geologic carbon storage design based upon historic pressure response to oil and gas production in the southern San Joaquin basin

    NASA Astrophysics Data System (ADS)

    Jordan, P. D.

    2015-12-01

    Annual CO2 emissions from large fixed sources in the southern San Joaquin Valley and vicinity in California are about 20 million metric tons per year (MMT/Y). Cumulative net fluid production due to oil and gas extracted from below the minimum depth for geologic carbon storage (taken as 1,500 m) was 1.4 billion m3 at reservoir conditions as of 2010. At an average CO2 storage density of 0.5 metric tons per m3, this implies 35 years of storage capacity at current emission rates just to refill the vacated volume, neglecting possible reservoir consolidation. However, the production occurred from over 300 pools. The production rate relative to average pressure decline in the more productive pools analyzed suggests they could receive about 2 MMT/Y raising the field average pressure to nearly the fracturing pressure. This would require well fields as extensive as those used for production, instead of the single to few wells per project typically envisioned. Even then, the actual allowable injection rate to the larger pools would be less than 2 MMT/Y in order to keep pressures at the injection well below the fracture pressure. This implies storing 20 MMT/Y would require developing storage operations in tens of pools with hundreds, if not over a thousand, wells. This utilization of one of the basins with the most storage capacity in the state would result in reducing the state's fixed source emissions by only one eighth relative to current emissions. The number of fields and wells involved in achieving this suggests a different strategy might provide more capacity at similar cost. Specifically, staging wells that initially produce water in the vicinity of fewer injection wells could result in both more storage. This water could be directed to a shallower zone, or supplied to the surface at a similar cost. The commencement of ocean water desalination in the state indicates the economics of water supply might support treating this water for beneficial use, particularly if it has a lower salinity than sea water.

  20. Annual Peak-Flow Frequency Characteristics and (or) Peak Dam-Pool-Elevation Frequency Characteristics of Dry Dams and Selected Streamflow-Gaging Stations in the Great Miami River Basin, Ohio

    USGS Publications Warehouse

    Koltun, G.F.

    2009-01-01

    This report describes the results of a study to determine frequency characteristics of postregulation annual peak flows at streamflow-gaging stations at or near the Lockington, Taylorsville, Englewood, Huffman, and Germantown dry dams in the Miami Conservancy District flood-protection system (southwestern Ohio) and five other streamflow-gaging stations in the Great Miami River Basin further downstream from one or more of the dams. In addition, this report describes frequency characteristics of annual peak elevations of the dry-dam pools. In most cases, log-Pearson Type III distributions were fit to postregulation annual peak-flow values through 2007 (the most recent year of published peak-flow values at the time of this analysis) and annual peak dam-pool storage values for the period 1922-2008 to determine peaks with recurrence intervals of 2, 5, 10, 25, 50, 100, 200, and 500 years. For one streamflow-gaging station (03272100) with a short period of record, frequency characteristics were estimated by means of a process involving interpolation of peak-flow yields determined for an upstream and downstream gage. Once storages had been estimated for the various recurrence intervals, corresponding dam-pool elevations were determined from elevation-storage ratings provided by the Miami Conservancy District.

  1. Plantation management intensity affects belowground carbon and nitrogen storage in northern California

    Treesearch

    K. J. McFarlane; S. H. Schoenholtz; R. F. Powers

    2009-01-01

    Belowground C and N storage is important in maintaining forestproductivity and to CO2 sequestration. How these pools respondto management is poorly understood. We investigated effectsof repeated applications of complete fertilizer and competing...

  2. Energy storage considerations for a robotic Mars surface sampler

    NASA Technical Reports Server (NTRS)

    O'Donnell, P. M.; Cataldo, R. L.; Gonzalez-Sanabria, O. D.

    1988-01-01

    The characteristics of various energy storage systems (including Ni-Cd, Ni-H2, Ag-Zn, Li-XS, Na-S, PbSO4, and regenerative fuel cell systems) considered for a robotic Mars surface sampler are reviewed. It is concluded that the bipolar nickel-hydrogen battery and the sodium-sulfur battery are both viable candidates as storage systems for the rover's Radioisotope Thermoelectric Generator. For a photovoltaic storage system, the regenerative fuel cell and the bipolar nickel-hydrogen battery are the primary candidates.

  3. Carbon pools along headwater streams with differing valley geometry in Rocky Mountain National Park, Colorado (Abstract)

    Treesearch

    Kathleen A. Dwire; Ellen E. Wohl; Nicholas A. Sutfin; Roberto A. Bazan; Lina Polvi-Pilgrim

    2012-01-01

    Headwaters are known to be important in the global carbon cycle, yet few studies have investigated carbon (C) pools along stream-riparian corridors. To better understand the spatial distribution of C storage in headwater fluvial networks, we estimated above- and below-ground C pools in 100-m-long reaches in six different valley types in Rocky Mountain National Park,...

  4. Benefits of tree mixes in carbon plantings

    NASA Astrophysics Data System (ADS)

    Hulvey, Kristin B.; Hobbs, Richard J.; Standish, Rachel J.; Lindenmayer, David B.; Lach, Lori; Perring, Michael P.

    2013-10-01

    Increasingly governments and the private sector are using planted forests to offset carbon emissions. Few studies, however, examine how tree diversity -- defined here as species richness and/or stand composition -- affects carbon storage in these plantings. Using aboveground tree biomass as a proxy for carbon storage, we used meta-analysis to compare carbon storage in tree mixtures with monoculture plantings. Tree mixes stored at least as much carbon as monocultures consisting of the mixture's most productive species and at times outperformed monoculture plantings. In mixed-species stands, individual species, and in particular nitrogen-fixing trees, increased stand biomass. Further motivations for incorporating tree richness into planted forests include the contribution of diversity to total forest carbon-pool development, carbon-pool stability and the provision of extra ecosystem services. Our findings suggest a two-pronged strategy for designing carbon plantings including: (1) increased tree species richness; and (2) the addition of species that contribute to carbon storage and other target functions.

  5. Partial defect verification of spent fuel assemblies by PDET: Principle and field testing in Interim Spent fuel Storage Facility (CLAB) in Sweden

    DOE PAGES

    Ham, Y.; Kerr, P.; Sitaraman, S.; ...

    2016-05-05

    Here, the need for the development of a credible method and instrument for partial defect verification of spent fuel has been emphasized over a few decades in the safeguards communities as the diverted spent fuel pins can be the source of nuclear terrorism or devices. The need is increasingly more important and even urgent as many countries have started to transfer spent fuel to so called "difficult-to-access" areas such as dry storage casks, reprocessing or geological repositories. Partial defect verification is required by IAEA before spent fuel is placed into "difficult-to-access" areas. Earlier, Lawrence Livermore National Laboratory (LLNL) has reportedmore » the successful development of a new, credible partial defect verification method for pressurized water reactor (PWR) spent fuel assemblies without use of operator data, and further reported the validation experiments using commercial spent fuel assemblies with some missing fuel pins. The method was found to be robust as the method is relatively invariant to the characteristic variations of spent fuel assemblies such as initial fuel enrichment, cooling time, and burn-up. Since then, the PDET system has been designed and prototyped for 17×17 PWR spent fuel assemblies, complete with data acquisition software and acquisition electronics. In this paper, a summary description of the PDET development followed by results of the first successful field testing using the integrated PDET system and actual spent fuel assemblies performed in a commercial spent fuel storage site, known as Central Interim Spent fuel Storage Facility (CLAB) in Sweden will be presented. In addition to partial defect detection initial studies have determined that the tool can be used to verify the operator declared average burnup of the assembly as well as intra-assembly bunrup levels.« less

  6. Partial Defect Verification of Spent Fuel Assemblies by PDET: Principle and Field Testing in Interim Spent Fuel Storage Facility (CLAB) in Sweden

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ham, Y.S.; Kerr, P.; Sitaraman, S.

    The need for the development of a credible method and instrument for partial defect verification of spent fuel has been emphasized over a few decades in the safeguards communities as the diverted spent fuel pins can be the source of nuclear terrorism or devices. The need is increasingly more important and even urgent as many countries have started to transfer spent fuel to so called 'difficult-to-access' areas such as dry storage casks, reprocessing or geological repositories. Partial defect verification is required by IAEA before spent fuel is placed into 'difficult-to-access' areas. Earlier, Lawrence Livermore National Laboratory (LLNL) has reported themore » successful development of a new, credible partial defect verification method for pressurized water reactor (PWR) spent fuel assemblies without use of operator data, and further reported the validation experiments using commercial spent fuel assemblies with some missing fuel pins. The method was found to be robust as the method is relatively invariant to the characteristic variations of spent fuel assemblies such as initial fuel enrichment, cooling time, and burn-up. Since then, the PDET system has been designed and prototyped for 17x17 PWR spent fuel assemblies, complete with data acquisition software and acquisition electronics. In this paper, a summary description of the PDET development followed by results of the first successful field testing using the integrated PDET system and actual spent fuel assemblies performed in a commercial spent fuel storage site, known as Central Interim Spent fuel Storage Facility (CLAB) in Sweden will be presented. In addition to partial defect detection initial studies have determined that the tool can be used to verify the operator declared average burnup of the assembly as well as intra-assembly burnup levels. (authors)« less

  7. Partial defect verification of spent fuel assemblies by PDET: Principle and field testing in Interim Spent fuel Storage Facility (CLAB) in Sweden

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ham, Y.; Kerr, P.; Sitaraman, S.

    Here, the need for the development of a credible method and instrument for partial defect verification of spent fuel has been emphasized over a few decades in the safeguards communities as the diverted spent fuel pins can be the source of nuclear terrorism or devices. The need is increasingly more important and even urgent as many countries have started to transfer spent fuel to so called "difficult-to-access" areas such as dry storage casks, reprocessing or geological repositories. Partial defect verification is required by IAEA before spent fuel is placed into "difficult-to-access" areas. Earlier, Lawrence Livermore National Laboratory (LLNL) has reportedmore » the successful development of a new, credible partial defect verification method for pressurized water reactor (PWR) spent fuel assemblies without use of operator data, and further reported the validation experiments using commercial spent fuel assemblies with some missing fuel pins. The method was found to be robust as the method is relatively invariant to the characteristic variations of spent fuel assemblies such as initial fuel enrichment, cooling time, and burn-up. Since then, the PDET system has been designed and prototyped for 17×17 PWR spent fuel assemblies, complete with data acquisition software and acquisition electronics. In this paper, a summary description of the PDET development followed by results of the first successful field testing using the integrated PDET system and actual spent fuel assemblies performed in a commercial spent fuel storage site, known as Central Interim Spent fuel Storage Facility (CLAB) in Sweden will be presented. In addition to partial defect detection initial studies have determined that the tool can be used to verify the operator declared average burnup of the assembly as well as intra-assembly bunrup levels.« less

  8. Numerical Simulations on the Laser Spot Welding of Zirconium Alloy Endplate for Nuclear Fuel Bundle Assembly

    NASA Astrophysics Data System (ADS)

    Satyanarayana, G.; Narayana, K. L.; Boggarapu, Nageswara Rao

    2018-03-01

    In the nuclear industry, a critical welding process is joining of an end plate to a fuel rod to form a fuel bundle. Literature on zirconium welding in such a critical operation is limited. A CFD model is developed and performed for the three-dimensional non-linear thermo-fluid analysis incorporating buoyancy and Marnangoni stress and specifying temperature dependent properties to predict weld geometry and temperature field in and around the melt pool of laser spot during welding of a zirconium alloy E110 endplate with a fuel rod. Using this method, it is possible to estimate the weld pool dimensions for the specified laser power and laser-on-time. The temperature profiles will estimate the HAZ and microstructure. The adequacy of generic nature of the model is validated with existing experimental data.

  9. Space Station tethered refueling facility operations

    NASA Technical Reports Server (NTRS)

    Kiefel, E. R.; Rudolph, L. K.; Fester, D. A.

    1986-01-01

    The space-based orbital transfer vehicle will require a large cryogenic fuel storage facility at the Space Station. An alternative to fuel storage onboard the Space Station, is on a tethered orbital refueling facility (TORF) which is separated from the Space Station by a sufficient distance to induce a gravity gradient to settle the propellants. Facility operations are a major concern associated with a tethered LO2/LH2 storage depot. A study was carried out to analyze these operations so as to identify the preferred TORF deployment direction (up or down) and whether the TORF should be permanently or intermittently deployed. The analyses considered safety, contamination, rendezvous, servicing, transportation rate, communication, and viewing. An upwardly, intermittently deployed facility is the preferred configuration for a tethered cryogenic fuel storage.

  10. Effect of tank diameter on thermal behavior of gasoline and diesel storage tanks fires.

    PubMed

    Leite, Ricardo Machado; Centeno, Felipe Roman

    2018-01-15

    Studies on fire behavior are extremely important as they contribute in a firefighting situation or even to avoid such hazard. Experimental studies of fire in real scale are unfeasible, implying that reduced-scale experiments must be performed, and results extrapolated to the range of interest. This research aims to experimentally study the fire behavior in tanks of 0.04m, 0.20m, 0.40m, 0.80m and 4.28m diameter, burning regular gasoline or diesel oil S-500. The following parameters were here obtained: burning rates, burning velocities, heat release rates, flame heights, and temperature distributions adjacent to the tank. Such parameters were obtained for each tank diameter with the purpose of correlating the results and understanding the relationship of each parameter for the different geometrical scale of the tanks. Asymptotic results for larger tanks were found as (regular gasoline and diesel oil S-500, respectively): burning rates 0.050kg/(m 2 s) and 0.031kg/(m 2 s), burning velocities 4.0mm/min and 2.5mm/min, heat release rates per unit area 2200kW/m 2 and 1500kW/m 2 , normalized averaged flame heights (H i /D, where H i is the average flame height, D is the tank diameter) 0.9 and 0.8. Maximum temperatures for gasoline pools were higher than for diesel oil pools, and temperature gradients close to the tanks were also higher for the former fuel. The behavior of the maximum temperature was correlated as a function of the tank diameter, the heat release rate of each fuel and the dimensionless distance from the tank. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Evidence for the respiration of ancient terrestrial organic C in northern temperate lakes and streams

    PubMed Central

    McCallister, S. Leigh; del Giorgio, Paul A.

    2012-01-01

    Northern rivers and lakes process large quantities of organic and inorganic carbon from the surrounding terrestrial ecosystems. These external carbon inputs fuel widespread CO2 supersaturation in continental waters, and the resulting CO2 emissions from lakes and rivers are now recognized as a globally significant loss of terrestrial production to the atmosphere. Whereas the magnitude of emissions has received much attention, the pathways of C delivery and processing that generate these emissions are still not well-understood. CO2 outgassing in aquatic systems has been unequivocally linked to microbial degradation and respiration of terrestrial organic carbon (OC), but the nature (i.e., age and source) of this OC respired in surface waters is largely unknown. We present direct radiocarbon measurements of OC respired by bacteria in freshwater aquatic systems, specifically temperate lakes and streams in Québec. Terrestrial OC fuels much of the respiration in these systems, and our results show that a significant fraction of the respired terrestrial OC is old (in the range of 1,000–3,000 y B.P.). Because the bulk OC pools in these lakes is relatively young, our results also suggest selective removal of an old but highly bioreactive terrestrial OC pool and its conversion to CO2 by bacteria. The respiration of ancient 14C-depleted terrestrial C in northern lakes and rivers provides a biological link between contemporary aquatic carbon biogeochemistry and paleo-conditions in the watershed, and it implies the aquatic-mediated return to the atmosphere of C putatively considered permanently stored, thus challenging current models of long-term C storage in terrestrial reservoirs. PMID:23027957

  12. Cosmic Ray Muon Imaging of Spent Nuclear Fuel in Dry Storage Casks

    DOE PAGES

    Durham, J. Matthew; Guardincerri, Elena; Morris, Christopher L.; ...

    2016-04-29

    In this paper, cosmic ray muon radiography has been used to identify the absence of spent nuclear fuel bundles inside a sealed dry storage cask. The large amounts of shielding that dry storage casks use to contain radiation from the highly radioactive contents impedes typical imaging methods, but the penetrating nature of cosmic ray muons allows them to be used as an effective radiographic probe. This technique was able to successfully identify missing fuel bundles inside a sealed Westinghouse MC-10 cask. This method of fuel cask verification may prove useful for international nuclear safeguards inspectors. Finally, muon radiography may findmore » other safety and security or safeguards applications, such as arms control verification.« less

  13. Verification of Spent Nuclear Fuel in Sealed Dry Storage Casks via Measurements of Cosmic-Ray Muon Scattering

    NASA Astrophysics Data System (ADS)

    Durham, J. M.; Poulson, D.; Bacon, J.; Chichester, D. L.; Guardincerri, E.; Morris, C. L.; Plaud-Ramos, K.; Schwendiman, W.; Tolman, J. D.; Winston, P.

    2018-04-01

    Most of the plutonium in the world resides inside spent nuclear reactor fuel rods. This high-level radioactive waste is commonly held in long-term storage within large, heavily shielded casks. Currently, international nuclear safeguards inspectors have no stand-alone method of verifying the amount of reactor fuel stored within a sealed cask. Here we demonstrate experimentally that measurements of the scattering angles of cosmic-ray muons, which pass through a storage cask, can be used to determine if spent fuel assemblies are missing without opening the cask. This application of technology and methods commonly used in high-energy particle physics provides a potential solution to this long-standing problem in international nuclear safeguards.

  14. Installation Restoration Program Phase 2. Confirmation/Quantification Stage 2. Bulk Fuel Storage Area Fuel Spill Investigation.

    DTIC Science & Technology

    1987-10-01

    discharged from these wells was containerized and transported to the base oil separator plant for treatment. It is estimated that approximately 25 percent...and 29). The fly ash is probably associated with the power plant tc the west of the Bulk Fuel Storage Area. Just below the fill, at 13 to 15 feet, is...been widely used in petroleum refineries and fuel terminals in response to similar spill impact situations. Although the collect ion/recov- ery

  15. System and method for controlling an engine based on ammonia storage in multiple selective catalytic reduction catalysts

    DOEpatents

    Sun, MIn; Perry, Kevin L.

    2015-11-20

    A system according to the principles of the present disclosure includes a storage estimation module and an air/fuel ratio control module. The storage estimation module estimates a first amount of ammonia stored in a first selective catalytic reduction (SCR) catalyst and estimates a second amount of ammonia stored in a second SCR catalyst. The air/fuel ratio control module controls an air/fuel ratio of an engine based on the first amount, the second amount, and a temperature of a substrate disposed in the second SCR catalyst.

  16. Fuel treatment effects on tree-based forest carbon storage and emissions under modeled wildfire scenarios

    Treesearch

    M. Hurteau; M. North

    2009-01-01

    Forests are viewed as a potential sink for carbon (C) that might otherwise contribute to climate change. It is unclear, however, how to manage forests with frequent fire regimes to maximize C storage while reducing C emissions from prescribed burns or wildfire. We modeled the effects of eight different fuel treatments on treebased C storage and release over a century,...

  17. Advanced Fuel Cycle Cost Basis – 2017 Edition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dixon, B. W.; Ganda, F.; Williams, K. A.

    This report, commissioned by the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the DOE Nuclear Technology Research and Development (NTRD) Program (previously the Fuel Cycle Research and Development (FCRD) and the Advanced Fuel Cycle Initiative (AFCI)). The report describes the NTRD cost basis development process, reference information on NTRD cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This reportmore » contains reference cost data for numerous fuel cycle cost modules (modules A-O) as well as cost modules for a number of reactor types (R modules). The fuel cycle cost modules were developed in the areas of natural uranium mining and milling, thorium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, managed decay storage, recycled product storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, transuranic, and high-level waste. Since its inception, this report has been periodically updated. The last such internal document was published in August 2015 while the last external edition was published in December of 2009 as INL/EXT-07-12107 and is available on the Web at URL: www.inl.gov/technicalpublications/Documents/4536700.pdf. This current report (Sept 2017) is planned to be reviewed for external release, at which time it will replace the 2009 report as an external publication. This information is used in the ongoing evaluation of nuclear fuel cycles by the NE NTRD program.« less

  18. [Effects of land use change on carbon storage in terrestrial ecosystem].

    PubMed

    Yang, Jingcheng; Han, Xingguo; Huang, Jianhui; Pan, Qingmin

    2003-08-01

    Terrestrial ecosystem is an important carbon pool, which plays a crucial role in carbon biogeochemical cycle. Human activities such as fossil fuel combustion and land use change have resulted in carbon fluxes from terrestrial ecosystem to the atmosphere, which increased the atmospheric CO2 concentration, and reinforced the greenhouse effect. Land use change affects the structure and function of the terrestrial ecosystem, which causes its change of carbon storage. To a great extent, the change of carbon storage lies in the type of ecosystem and the change of land use patterns. The conversion of forest to agricultural land and pasture causes a large reduction of carbon storage in vegetation and soil, and the decrease of soil carbon concentration is mainly caused by the reduction of detritus, the acceleration of soil organic matter decomposition, and the destroy of physical protection to organic matter due to agricultural practices. The loss of soil organic matter appears at the early stage after deforestation, and the loss rate is influenced by many factors and soil physical, chemical and biological processes. The conversion of agricultural land and pasture to forest and many conservative agricultural practices can sequester atmospheric carbon in vegetation and soil. Vegetation can sequester large amounts of carbon from atmosphere, while carbon accumulation in soil varies greatly because of farming history and soil spatial heterogeneity. Conservative agricultural practices such as no-tillage, reasonable cropping system, and fertilization can influence soil physical and chemical characters, plant growth, quality and quantity of stubble, and soil microbial biomass and its activity, and hence, maintain and increase soil carbon concentration.

  19. Key challenges and recent progress in batteries, fuel cells, and hydrogen storage for clean energy systems

    NASA Astrophysics Data System (ADS)

    Chalk, Steven G.; Miller, James F.

    Reducing or eliminating the dependency on petroleum of transportation systems is a major element of US energy research activities. Batteries are a key enabling technology for the development of clean, fuel-efficient vehicles and are key to making today's hybrid electric vehicles a success. Fuel cells are the key enabling technology for a future hydrogen economy and have the potential to revolutionize the way we power our nations, offering cleaner, more efficient alternatives to today's technology. Additionally fuel cells are significantly more energy efficient than combustion-based power generation technologies. Fuel cells are projected to have energy efficiency twice that of internal combustion engines. However before fuel cells can realize their potential, significant challenges remain. The two most important are cost and durability for both automotive and stationary applications. Recent electrocatalyst developments have shown that Pt alloy catalysts have increased activity and greater durability than Pt catalysts. The durability of conventional fluorocarbon membranes is improving, and hydrocarbon-based membranes have also shown promise of equaling the performance of fluorocarbon membranes at lower cost. Recent announcements have also provided indications that fuel cells can start from freezing conditions without significant deterioration. Hydrogen storage systems for vehicles are inadequate to meet customer driving range expectations (>300 miles or 500 km) without intrusion into vehicle cargo or passenger space. The United States Department of Energy has established three centers of Excellence for hydrogen storage materials development. The centers are focused on complex metal hydrides that can be regenerated onboard a vehicle, chemical hydrides that require off-board reprocessing, and carbon-based storage materials. Recent developments have shown progress toward the 2010 DOE targets. In addition DOE has established an independent storage material testing center to verify storage capacity of promising materials. These developments point to a viable path to achieving the DOE/FreedomCAR cost and performance goals. The transition to hydrogen-powered fuel cell vehicles will occur over the next 10-15 years. In the interim, fossil fuel consumption will be reduced by increased penetration of battery/gasoline hybrid cars.

  20. Elevated blood pressure and household solid fuel use in premenopausal women: Analysis of 12 Demographic and Health Surveys (DHS) from 10 countries.

    PubMed

    Arku, Raphael E; Ezzati, Majid; Baumgartner, Jill; Fink, Günther; Zhou, Bin; Hystad, Perry; Brauer, Michael

    2018-01-01

    Approximately three billion people are exposed to household air pollution (HAP) from solid fuel cookstoves. Studies from single settings have linked HAP with elevated blood pressure (BP), but no evidence exists from multi-country analyses. Using nationally representative and internationally comparable data, we examined the association between solid fuel use and BP in 77,605 largely premenopausal women (aged 15-49) from ten resource-poor countries. We obtained data on systolic and diastolic BP, self-reported primary cooking fuel, health and socio-demographic characteristics from 12 Demographic and Health Surveys conducted in Albania, Armenia, Azerbaijan, Bangladesh, Benin, Ghana, Kyrgyzstan, Lesotho, Namibia, and Peru. We estimated associations between history of fuel use [solid fuel (coal or biomass) versus clean fuel (electricity or gas)] with systolic and diastolic BP and hypertension using a meta-analytical approach. Overall, the country-level mean systolic and diastolic BP were 117 (range: 111-127) and 74 (71-83) mmHg, respectively. The country-level mean age of the women was 30.8 years (range: 28.4-32.9). The prevalence of solid fuel use was 46.0% (range: 4.1-95.8). In adjusted, pooled analyses, primary use of solid fuel was associated with 0.58mmHg higher systolic BP (95% CI: 0.23, 0.93) as compared to primary use of clean fuel. The pooled estimates for diastolic BP and pulse pressure were also positive, but the confidence intervals contained zero. The pooled odds of hypertension was [OR = 1.07 (95% CI: 0.99, 1.16)], an effect that was driven by rural participants for whom solid fuel use was associated with a 16% greater odds of hypertension [OR = 1.16 (95% CI: 1.01, 1.35)]. Cooking with solid fuels was associated with small increases in BP and odds of hypertension. Use of cleaner fuels like gas or electricity may reduce cardiovascular risk in developing countries, particularly among rural residents. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Fundamental Studies of Irradiation-Induced Defect Formation and Fission Product Dynamics in Oxide Fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stubbins, James

    2012-12-19

    The objective of this research program is to address major nuclear fuels performance issues for the design and use of oxide-type fuels in the current and advanced nuclear reactor applications. Fuel performance is a major issue for extending fuel burn-up which has the added advantage of reducing the used fuel waste stream. It will also be a significant issue with respect to developing advanced fuel cycle processes where it may be possible to incorporate minor actinides in various fuel forms so that they can be 'burned' rather than join the used fuel waste stream. The potential to fission or transmutemore » minor actinides and certain long-lived fission product isotopes would transform the high level waste storage strategy by removing the need to consider fuel storage on the millennium time scale.« less

  2. The role of thermal energy storage in industrial energy conservation

    NASA Technical Reports Server (NTRS)

    Duscha, R. A.; Masica, W. J.

    1979-01-01

    Thermal Energy Storage for Industrial Applications is a major thrust of the Department of Energy's Thermal Energy Storage Program. Utilizing Thermal Energy Storage (TES) with process or reject heat recovery systems is shown to be extremely beneficial for several applications. Recent system studies resulting from contracts awarded by the Department of Energy (DOE) identified four especially significant industries where TES appears attractive - food processing, paper and pulp, iron and steel, and cement. Potential annual fuel savings with large scale implementation of near term TES systems for these industries is over 9,000,000 bbl of oil. This savings is due to recuperation and storage in the food processing industry, direct fuel substitution in the paper and pulp industry and reduction in electric utility peak fuel use through inplant production of electricity from utilization of reject heat in the steel and cement industries.

  3. Select Generic Dry-Storage Pilot Plant Design for Safeguards and Security by Design (SSBD) per Used Fuel Campaign

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demuth, Scott Francis; Sprinkle, James K.

    As preparation to the year-end deliverable (Provide SSBD Best Practices for Generic Dry-Storage Pilot Scale Plant) for the Work Package (FT-15LA040501–Safeguards and Security by Design for Extended Dry Storage), the initial step was to select a generic dry-storage pilot plant design for SSBD. To be consistent with other DOE-NE Fuel Cycle Research and Development (FCR&D) activities, the Used Fuel Campaign was engaged for the selection of a design for this deliverable. For the work Package FT-15LA040501–“Safeguards and Security by Design for Extended Dry Storage”, SSBD will be initiated for the Generic Dry-Storage Pilot Scale Plant described by the layout ofmore » Reference 2. SSBD will consider aspects of the design that are impacted by domestic material control and accounting (MC&A), domestic security, and international safeguards.« less

  4. Feasible variants for intermediate storage of the spent fuel obtained at NPP Cernavoda, Romania

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radu, M.; Popescu, G.

    1993-12-31

    The 5 CANDU-PHW Reactors of 600 Standard type of Cernavoda Nuclear Power Plant are under construction and the first unit is expected to be commissioned in 1995, group 2 following after 2 years, and then groups 3, 4 and 5 one each year. In this study there are presented feasible variants for intermediate storage of spent fuel, obtained during 30 years of operation from the stations at Cernavoda. From the solutions applied worldwide, both dry and wet storage have been taken into account. In any of the two variants, a unique intermediate storage will be provided and the storage buildingmore » was proposed to be built in 4 different stages. As a first estimation, considering the fact that, by now Romania has only one nuclear plant of CANDU fuel type the dry variant seems to be the best.« less

  5. Cosmic ray muon computed tomography of spent nuclear fuel in dry storage casks

    DOE PAGES

    Poulson, Daniel Cris; Durham, J. Matthew; Guardincerri, Elena; ...

    2016-10-22

    Radiography with cosmic ray muon scattering has proven to be a successful method of imaging nuclear material through heavy shielding. Of particular interest is monitoring dry storage casks for diversion of plutonium contained in spent reactor fuel. Using muon tracking detectors that surround a cylindrical cask, cosmic ray muon scattering can be simultaneously measured from all azimuthal angles, giving complete tomographic coverage of the cask interior. This article describes the first application of filtered back projection algorithms, typically used in medical imaging, to cosmic ray muon scattering imaging. The specific application to monitoring spent nuclear fuel in dry storage casksmore » is investigated via GEANT4 simulations. With a cylindrical muon tracking detector surrounding a typical spent fuel cask, simulations indicate that missing fuel bundles can be detected with a statistical significance of ~18σ in less than two days exposure and a sensitivity at 1σ to a 5% missing portion of a fuel bundle. Finally, we discuss potential detector technologies and geometries.« less

  6. Cosmic ray muon computed tomography of spent nuclear fuel in dry storage casks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poulson, Daniel Cris; Durham, J. Matthew; Guardincerri, Elena

    Radiography with cosmic ray muon scattering has proven to be a successful method of imaging nuclear material through heavy shielding. Of particular interest is monitoring dry storage casks for diversion of plutonium contained in spent reactor fuel. Using muon tracking detectors that surround a cylindrical cask, cosmic ray muon scattering can be simultaneously measured from all azimuthal angles, giving complete tomographic coverage of the cask interior. This article describes the first application of filtered back projection algorithms, typically used in medical imaging, to cosmic ray muon scattering imaging. The specific application to monitoring spent nuclear fuel in dry storage casksmore » is investigated via GEANT4 simulations. With a cylindrical muon tracking detector surrounding a typical spent fuel cask, simulations indicate that missing fuel bundles can be detected with a statistical significance of ~18σ in less than two days exposure and a sensitivity at 1σ to a 5% missing portion of a fuel bundle. Finally, we discuss potential detector technologies and geometries.« less

  7. Cosmic ray muon computed tomography of spent nuclear fuel in dry storage casks

    NASA Astrophysics Data System (ADS)

    Poulson, D.; Durham, J. M.; Guardincerri, E.; Morris, C. L.; Bacon, J. D.; Plaud-Ramos, K.; Morley, D.; Hecht, A. A.

    2017-01-01

    Radiography with cosmic ray muon scattering has proven to be a successful method of imaging nuclear material through heavy shielding. Of particular interest is monitoring dry storage casks for diversion of plutonium contained in spent reactor fuel. Using muon tracking detectors that surround a cylindrical cask, cosmic ray muon scattering can be simultaneously measured from all azimuthal angles, giving complete tomographic coverage of the cask interior. This paper describes the first application of filtered back projection algorithms, typically used in medical imaging, to cosmic ray muon scattering imaging. The specific application to monitoring spent nuclear fuel in dry storage casks is investigated via GEANT4 simulations. With a cylindrical muon tracking detector surrounding a typical spent fuel cask, simulations indicate that missing fuel bundles can be detected with a statistical significance of ∼ 18 σ in less than two days exposure and a sensitivity at 1σ to a 5% missing portion of a fuel bundle. Potential detector technologies and geometries are discussed.

  8. Method for storing nuclear fuel in respositories

    DOEpatents

    Schweitzer, D.G.; Sastre, C.

    A method for storing radioactive spent fuel in repositories containing polyphenyl or silicon oil as the storage medium is disclosed. Polyphenyls and silicon oils are non-corrosive and are not subject to radiation damage. Thus, storage periods of up to 100 years are possible.

  9. 10 CFR 72.4 - Communications.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Communications. 72.4 Section 72.4 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL... Desk, Director, Division of Spent Fuel Storage and Transportation, Office of Nuclear Material Safety...

  10. 10 CFR 72.4 - Communications.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Communications. 72.4 Section 72.4 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL... Desk, Director, Division of Spent Fuel Storage and Transportation, Office of Nuclear Material Safety...

  11. 10 CFR 72.4 - Communications.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Communications. 72.4 Section 72.4 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL... Desk, Director, Division of Spent Fuel Storage and Transportation, Office of Nuclear Material Safety...

  12. 10 CFR 72.4 - Communications.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Communications. 72.4 Section 72.4 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL... Desk, Director, Division of Spent Fuel Storage and Transportation, Office of Nuclear Material Safety...

  13. Managing aging effects on dry cask storage systems for extended long-term storage and transportation of used fuel - rev. 0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chopra, O.K.; Diercks, D.; Fabian, R.

    The cancellation of the Yucca Mountain repository program in the United States raises the prospect of extended long-term storage (i.e., >120 years) and deferred transportation of used fuel at operating and decommissioned nuclear power plant sites. Under U.S. federal regulations contained in Title 10 of the Code of Federal Regulations (CFR) 72.42, the initial license term for an Independent Spent Fuel Storage Installation (ISFSI) must not exceed 40 years from the date of issuance. Licenses may be renewed by the U.S. Nuclear Regulatory Commission (NRC) at the expiration of the license term upon application by the licensee for a periodmore » not to exceed 40 years. Application for ISFSI license renewals must include the following: (1) Time-limited aging analyses (TLAAs) that demonstrate that structures, systems, and components (SSCs) important to safety will continue to perform their intended function for the requested period of extended operation; and (2) a description of the aging management program (AMP) for management of issues associated with aging that could adversely affect SSCs important to safety. In addition, the application must also include design bases information as documented in the most recent updated final safety analysis report as required by 10 CFR 72.70. Information contained in previous applications, statements, or reports filed with the Commission under the license may be incorporated by reference provided that those references are clear and specific. The NRC has recently issued the Standard Review Plan (SRP) for renewal of used-fuel dry cask storage system (DCSS) licenses and Certificates of Compliance (CoCs), NUREG-1927, under which NRC may renew a specific license or a CoC for a term not to exceed 40 years. Both the license and the CoC renewal applications must contain revised technical requirements and operating conditions (fuel storage, surveillance and maintenance, and other requirements) for the ISFSI and DCSS that address aging effects that could affect the safe storage of the used fuel. The information contained in the license and CoC renewal applications will require NRC review to verify that the aging effects on the SSCs in DCSSs/ ISFSIs are adequately managed for the period of extended operation. To date, all of the ISFSIs located across the United States with more than 1,500 dry casks loaded with used fuel have initial license terms of 20 years; three ISFSIs (Surry, H.B. Robinson and Oconee) have received their renewed licenses for 20 years, and two other ISFSIs (Calvert Cliffs and Prairie Island) have applied for license renewal for 40 years. This report examines issues related to managing aging effects on the SSCs in DCSSs/ISFSIs for extended long-term storage and transportation of used fuels, following an approach similar to that of the Generic Aging Lessons Learned (GALL) report, NUREG-1801, for the aging management and license renewal of nuclear power plants. The report contains five chapters and an appendix on quality assurance for aging management programs for used-fuel dry storage systems. Chapter I of the report provides an overview of the ISFSI license renewal process based on 10 CFR 72 and the guidance provided in NUREG-1927. Chapter II contains definitions and terms for structures and components in DCSSs, materials, environments, aging effects, and aging mechanisms. Chapter III and Chapter IV contain generic TLAAs and AMPs, respectively, that have been developed for managing aging effects on the SSCs important to safety in the dry cask storage system designs described in Chapter V. The summary descriptions and tabulations of evaluations of AMPs and TLAAs for the SSCs that are important to safety in Chapter V include DCSS designs (i.e., NUHOMS{reg_sign}, HI-STORM 100, Transnuclear (TN) metal cask, NAC International S/T storage cask, ventilated storage cask (VSC-24), and the Westinghouse MC-10 metal dry storage cask) that have been and continue to be used by utilities across the country for dry storage of used fuel to date. The goal of this report is to help establish the technical basis for extended long-term storage and transportation of used fuel.« less

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montgomery, Rose; Scaglione, John M; Bevard, Bruce Balkcom

    The High Burnup Spent Fuel Data project pulled 25 sister rods (9 from the project assemblies and 16 from similar HBU assemblies) for characterization. The 25 sister rods are all high burnup and cover the range of modern domestic cladding alloys. The 25 sister rods were shipped to Oak Ridge National Laboratory (ORNL) in early 2016 for detailed non-destructive and destructive examination. Examinations are intended to provide baseline data on the initial physical state of the cladding and fuel prior to the loading, drying, and long-term dry storage process. Further examinations are focused on determining the effects of temperatures encounteredmore » during and following drying. Similar tests will be performed on rods taken from the project assemblies at the end of their long-term storage in a TN-32 dry storage cask (the cask rods ) to identify any significant changes in the fuel rods that may have occurred during the dry storage period. Additionally, some of the sister rods will be used for separate effects testing to expand the applicability of the project data to the fleet, and to address some of the data-related gaps associated with extended storage and subsequent transportation of high burnup fuel. A draft test plan is being developed that describes the experimental work to be conducted on the sister rods. This paper summarizes the draft test plan and necessary coordination activities for the multi-year experimental program to supply data relevant to the assessment of the safety of long-term storage followed by transportation of high burnup spent fuel.« less

  15. Construction and startup performance of the Miamisburg salt-gradient solar pond

    NASA Astrophysics Data System (ADS)

    Wittenberg, L. J.; Harris, M. J.

    1981-02-01

    An account is given of the construction and 1.5 years of operation of the Miamisburg, Ohio salt-gradient solar pond which, with 2020 sq m, is the largest solar collector in the U.S. The 18% sodium chloride solution pond has reached storage temperatures of 64 C in July and 28 C in February. Under steady-state conditions, conservative heat-yield estimates on the order of 962 million Btu have been made. The heat is used to warm-up a summer outdoor swimming pool and in winter a recreational building. Installation costs were only $35/sq m, and heat costs based on a 15-year depreciation of installation costs is below that of fuel oil heating, at $9.45 per million Btu. Further study is recommended for maintenance of water clarity, metallic component corrosion and assurance of pond water containment.

  16. Parallelization of KENO-Va Monte Carlo code

    NASA Astrophysics Data System (ADS)

    Ramón, Javier; Peña, Jorge

    1995-07-01

    KENO-Va is a code integrated within the SCALE system developed by Oak Ridge that solves the transport equation through the Monte Carlo Method. It is being used at the Consejo de Seguridad Nuclear (CSN) to perform criticality calculations for fuel storage pools and shipping casks. Two parallel versions of the code: one for shared memory machines and other for distributed memory systems using the message-passing interface PVM have been generated. In both versions the neutrons of each generation are tracked in parallel. In order to preserve the reproducibility of the results in both versions, advanced seeds for random numbers were used. The CONVEX C3440 with four processors and shared memory at CSN was used to implement the shared memory version. A FDDI network of 6 HP9000/735 was employed to implement the message-passing version using proprietary PVM. The speedup obtained was 3.6 in both cases.

  17. Lip and tooth injuries at public swimming pools in Austria.

    PubMed

    Lechner, Katharina; Connert, Thomas; Kühl, Sebastian; Filippi, Andreas

    2017-06-01

    There is an increased risk of orofacial injuries in swimming pool facilities. Nevertheless, only a few studies have addressed this issue. The aim of this study was to identify the frequency of lip and tooth injuries at public swimming pools in Austria. A further aim was to examine which gender and age groups were affected, where and why these injuries occurred, and whether pool attendants had sufficient knowledge of dental first-aid measures. A total of 764 pool attendants in Austria were contacted by telephone and 689 participated in the study (90.2%). The attendants were interviewed retrospectively about accident occurrences in 2014 by a standardized questionnaire. Responses to the provision of first aid and choice of storage medium for avulsed teeth were subsequently evaluated. The frequency of lip injuries was 19.0%, and tooth injuries were 11.3%. Male bathers (P < .05) and children under 12 years (P < .001) most frequently suffered injuries. The waterslide was the most common accident site. The most common cause of lip injuries was slipping on wet surfaces (39.0%), and for tooth injuries it was collisions with other persons or objects (each 28.1%). The pool attendants' responses were predominantly good or sufficient on first aid, with the exception of what storage medium to choose. Tooth rescue boxes were available in only 8.6% of all pool facilities. Orofacial injuries are a frequently occurring problem in swimming pool facilities. The pool attendants' knowledge on first-aid care of tooth injuries could still be improved. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Design tool for estimating chemical hydrogen storage system characteristics for light-duty fuel cell vehicles

    DOE PAGES

    Brooks, Kriston P.; Sprik, Samuel J.; Tamburello, David A.; ...

    2018-04-07

    The U.S. Department of Energy (DOE) developed a vehicle Framework model to simulate fuel cell-based light-duty vehicle operation for various hydrogen storage systems. This transient model simulates the performance of the storage system, fuel cell, and vehicle for comparison to Technical Targets established by DOE for four drive cycles/profiles. Chemical hydrogen storage models have been developed for the Framework for both exothermic and endothermic materials. Despite the utility of such models, they require that material researchers input system design specifications that cannot be estimated easily. To address this challenge, a design tool has been developed that allows researchers to directlymore » enter kinetic and thermodynamic chemical hydrogen storage material properties into a simple sizing module that then estimates system parameters required to run the storage system model. Additionally, the design tool can be used as a standalone executable file to estimate the storage system mass and volume outside of the Framework model. Here, these models will be explained and exercised with the representative hydrogen storage materials exothermic ammonia borane (NH 3BH 3) and endothermic alane (AlH 3).« less

  19. Design tool for estimating chemical hydrogen storage system characteristics for light-duty fuel cell vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brooks, Kriston P.; Sprik, Samuel J.; Tamburello, David A.

    The U.S. Department of Energy (DOE) developed a vehicle Framework model to simulate fuel cell-based light-duty vehicle operation for various hydrogen storage systems. This transient model simulates the performance of the storage system, fuel cell, and vehicle for comparison to Technical Targets established by DOE for four drive cycles/profiles. Chemical hydrogen storage models have been developed for the Framework for both exothermic and endothermic materials. Despite the utility of such models, they require that material researchers input system design specifications that cannot be estimated easily. To address this challenge, a design tool has been developed that allows researchers to directlymore » enter kinetic and thermodynamic chemical hydrogen storage material properties into a simple sizing module that then estimates system parameters required to run the storage system model. Additionally, the design tool can be used as a standalone executable file to estimate the storage system mass and volume outside of the Framework model. Here, these models will be explained and exercised with the representative hydrogen storage materials exothermic ammonia borane (NH 3BH 3) and endothermic alane (AlH 3).« less

  20. Flame spread across liquid pools

    NASA Technical Reports Server (NTRS)

    Ross, Howard; Miller, Fletcher; Schiller, David; Sirignano, William A.

    1993-01-01

    For flame spread over liquid fuel pools, the existing literature suggests three gravitational influences: (1) liquid phase buoyant convection, delaying ignition and assisting flame spread; (2) hydrostatic pressure variation, due to variation in the liquid pool height caused by thermocapillary-induced convection; and (3) gas-phase buoyant convection in the opposite direction to the liquid phase motion. No current model accounts for all three influences. In fact, prior to this work, there was no ability to determine whether ignition delay times and flame spread rates would be greater or lesser in low gravity. Flame spread over liquid fuel pools is most commonly characterized by the relationship of the initial pool temperature to the fuel's idealized flash point temperature, with four or five separate characteristic regimes having been identified. In the uniform spread regime, control has been attributed to: (1) gas-phase conduction and radiation; (2) gas-phase conduction only; (3) gas-phase convection and liquid conduction, and most recently (4) liquid convection ahead of the flame. Suggestions were made that the liquid convection was owed to both vuoyancy and thermocapillarity. Of special interest to this work is the determination of whether, and under what conditions, pulsating spread can and will occur in microgravity in the absence of buoyant flows in both phases. The approach we have taken to resolving the importance of buoyancy for these flames is: (1) normal gravity experiments and advanced diagnostics; (2) microgravity experiments; and (3) numerical modelling at arbitrary gravitational level.

  1. Feasibility study of liquid pool burning in reduced gravity

    NASA Technical Reports Server (NTRS)

    Kanury, A. M.

    1979-01-01

    The feasibility of conducting experiments in the Spacelab on ignition and flame spread with liquid fuel pools which are initially at a temperature lower than the fuel's flash point temperature was studied. Theories were developed for the ignition and flame spread processes, and experiments were conducted to understand the factors influencing the ignition process and the spread rate. The results were employed to devise a conceptual Spacelab experiment which is expected to be feasible for a safe conduct and to be suitable for obtaining crucial data on the concerned processes.

  2. Just-in-Time Compound Pooling Increases Primary Screening Capacity without Compromising Screening Quality.

    PubMed

    Elkin, L L; Harden, D G; Saldanha, S; Ferguson, H; Cheney, D L; Pieniazek, S N; Maloney, D P; Zewinski, J; O'Connell, J; Banks, M

    2015-06-01

    Compound pooling, or multiplexing more than one compound per well during primary high-throughput screening (HTS), is a controversial approach with a long history of limited success. Many issues with this approach likely arise from long-term storage of library plates containing complex mixtures of compounds at high concentrations. Due to the historical difficulties with using multiplexed library plates, primary HTS often uses a one-compound-one-well approach. However, as compound collections grow, innovative strategies are required to increase the capacity of primary screening campaigns. Toward this goal, we have developed a novel compound pooling method that increases screening capacity without compromising data quality. This method circumvents issues related to the long-term storage of complex compound mixtures by using acoustic dispensing to enable "just-in-time" compound pooling directly in the assay well immediately prior to assay. Using this method, we can pool two compounds per well, effectively doubling the capacity of a primary screen. Here, we present data from pilot studies using just-in-time pooling, as well as data from a large >2-million-compound screen using this approach. These data suggest that, for many targets, this method can be used to vastly increase screening capacity without significant reduction in the ability to detect screening hits. © 2015 Society for Laboratory Automation and Screening.

  3. Terrestrial and marine perspectives on modeling organic matter degradation pathways.

    PubMed

    Burd, Adrian B; Frey, Serita; Cabre, Anna; Ito, Takamitsu; Levine, Naomi M; Lønborg, Christian; Long, Matthew; Mauritz, Marguerite; Thomas, R Quinn; Stephens, Brandon M; Vanwalleghem, Tom; Zeng, Ning

    2016-01-01

    Organic matter (OM) plays a major role in both terrestrial and oceanic biogeochemical cycles. The amount of carbon stored in these systems is far greater than that of carbon dioxide (CO2 ) in the atmosphere, and annual fluxes of CO2 from these pools to the atmosphere exceed those from fossil fuel combustion. Understanding the processes that determine the fate of detrital material is important for predicting the effects that climate change will have on feedbacks to the global carbon cycle. However, Earth System Models (ESMs) typically utilize very simple formulations of processes affecting the mineralization and storage of detrital OM. Recent changes in our view of the nature of this material and the factors controlling its transformation have yet to find their way into models. In this review, we highlight the current understanding of the role and cycling of detrital OM in terrestrial and marine systems and examine how this pool of material is represented in ESMs. We include a discussion of the different mineralization pathways available as organic matter moves from soils, through inland waters to coastal systems and ultimately into open ocean environments. We argue that there is strong commonality between aspects of OM transformation in both terrestrial and marine systems and that our respective scientific communities would benefit from closer collaboration. © 2015 John Wiley & Sons Ltd.

  4. Spent nuclear fuel canister storage building conceptual design report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swenson, C.E.

    This Conceptual Design Report provides the technical basis for the Spent Nuclear Fuels Project, Canister Storage Building, and as amended by letter (correspondence number 9555700, M.E. Witherspoon to E.B. Sellers, ``Technical Baseline and Updated Cost Estimate for the Canister Storage Building``, dated October 24, 1995), includes the project cost baseline and Criteria to be used as the basis for starting detailed design in fiscal year 1995.

  5. Final Technical Report: Imaging a Dry Storage Cask with Cosmic Ray Muons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Haori; Hayward, Jason; Chichester, David

    The goal of this project is to build a scaled prototype system for monitoring used nuclear fuel (UNF) dry storage casks (DSCs) through cosmic ray muon imaging. Such a system will have the capability of verifying the content inside a DSC without opening it. Because of the growth of the nuclear power industry in the U.S. and the policy decision to ban reprocessing of commercial UNF, the used fuel inventory at commercial reactor sites has been increasing. Currently, UNF needs to be moved to independent spent fuel storage installations (ISFSIs), as its inventory approaches the limit on capacity of on-sitemore » wet storage. Thereafter, the fuel will be placed in shipping containers to be transferred to a final disposal site. The ISFSIs were initially licensed as temporary facilities for ~20-yr periods. Given the cancellation of the Yucca mountain project and no clear path forward, extended dry-cask storage (~100 yr.) at ISFSIs is very likely. From the point of view of nuclear material protection, accountability and control technologies (MPACT) campaign, it is important to ensure that special nuclear material (SNM) in UNF is not stolen or diverted from civilian facilities for other use during the extended storage.« less

  6. 77 FR 74559 - Energy Conservation Program for Consumer Products: Test Procedures for Residential Water Heaters...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-17

    ... fossil fuel as applicable to a given water heater. Specifically, the standby loss testing in the existing... important to note that fossil-fueled direct heating equipment and pool heaters typically consume both fossil... procedures for direct heating equipment, fossil-fuel energy consumption is accounted for comprehensively over...

  7. National Policy Implications of Storing Nuclear Waste in the Pacific Region,

    DTIC Science & Technology

    1981-01-01

    US Congress, Senate, Committee on Energy and Natural Resources, Pacific Spent Nuclear Fuel Storage , Hearing...selected. 17 One type of shipping cask which has been used to transport spent fuel assemblies to the Nevada Test Site is a leakproof steel cask that can...discussion the following conclusions on the nuclear waste storage issue appear valid. The Reagan decision to reprocess spent fuel has not changed US

  8. Removal or storage of environmental pollutants and alternative fuel sources with inorganic adsorbents via host–guest encapsulation

    DOE PAGES

    Cramer, Alisha J.; Cole, Jacqueline M.

    2017-05-08

    The ever-increasing demands of the modern world continue to place substantial strain on the environment. To help alleviate the damage done to the natural world, the encapsulation of small molecules or ions (guests) into porous inorganic structural frameworks (hosts) provides a potential remedy for some of the environmental concerns facing us today. These concerns include the removal of harmful pollutants from water or air, the safe entrapment of nuclear waste materials, or the purification and storage of small molecules that act as alternative fuel sources. For this study, we review the trends in using inorganic materials as hostmedia for themore » removal or storage of various wastes and alternative fuels. In conclusion, we cover the treatment of water contaminated with dyes or heavy metals, air pollution alleviation via CO 2, SO x, NO x, and volatile organic compound containment, nuclear waste immobilization, and storage for H 2 and methane as alternative fuels.« less

  9. Verification of Spent Nuclear Fuel in Sealed Dry Storage Casks via Measurements of Cosmic-Ray Muon Scattering

    DOE PAGES

    Durham, J. M.; Poulson, D.; Bacon, J.; ...

    2018-04-10

    Most of the plutonium in the world resides inside spent nuclear reactor fuel rods. This high-level radioactive waste is commonly held in long-term storage within large, heavily shielded casks. Currently, international nuclear safeguards inspectors have no stand-alone method of verifying the amount of reactor fuel stored within a sealed cask. In this paper, we demonstrate experimentally that measurements of the scattering angles of cosmic-ray muons, which pass through a storage cask, can be used to determine if spent fuel assemblies are missing without opening the cask. Finally, this application of technology and methods commonly used in high-energy particle physics providesmore » a potential solution to this long-standing problem in international nuclear safeguards.« less

  10. Verification of Spent Nuclear Fuel in Sealed Dry Storage Casks via Measurements of Cosmic-Ray Muon Scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durham, J. M.; Poulson, D.; Bacon, J.

    Most of the plutonium in the world resides inside spent nuclear reactor fuel rods. This high-level radioactive waste is commonly held in long-term storage within large, heavily shielded casks. Currently, international nuclear safeguards inspectors have no stand-alone method of verifying the amount of reactor fuel stored within a sealed cask. In this paper, we demonstrate experimentally that measurements of the scattering angles of cosmic-ray muons, which pass through a storage cask, can be used to determine if spent fuel assemblies are missing without opening the cask. Finally, this application of technology and methods commonly used in high-energy particle physics providesmore » a potential solution to this long-standing problem in international nuclear safeguards.« less

  11. A 37.5-kW point design comparison of the nickel-cadmium battery, bipolar nickel-hydrogen battery, and regenerative hydrogen-oxygen fuel cell energy storage subsystems for low earth orbit

    NASA Technical Reports Server (NTRS)

    Manzo, M. A.; Hoberecht, M. A.

    1984-01-01

    Nickel-cadmium batteries, bipolar nickel-hydrogen batteries, and regenerative fuel cell storage subsystems were evaluated for use as the storage subsystem in a 37.5 kW power system for Space Station. Design requirements were set in order to establish a common baseline for comparison purposes. The storage subsystems were compared on the basis of effective energy density, round trip electrical efficiency, total subsystem weight and volume, and life.

  12. A 37.5-kW point design comparison of the nickel-cadmium battery, bipolar nickel-hydrogen battery, and regenerative hydrogen-oxygen fuel cell energy storage subsystems for low Earth orbit

    NASA Technical Reports Server (NTRS)

    Manzo, M. A.; Hoberecht, M. A.

    1984-01-01

    Nickel-cadmium batteries, bipolar nickel-hydrogen batteries, and regenerative fuel cell storage subsystems were evaluated for use as the storage subsystem in a 37.5 kW power system for space station. Design requirements were set in order to establish a common baseline for comparison purposes. The storage subsystems were compared on the basis of effective energy density, round trip electrical efficiency, total subsystem weight and volume, and life.

  13. Chemical hydrogen storage material property guidelines for automotive applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Semelsberger, Troy; Brooks, Kriston P.

    2015-04-01

    Chemical hydrogen storage is the sought after hydrogen storage media for automotive applications because of the expected low pressure operation (<20 atm), moderate temperature operation (<200 C), system gravimetric capacities (>0.05 kg H2/kg system), and system volumetric capacities (>0.05 kg H2/L system). Currently, the primary shortcomings of chemical hydrogen storage are regeneration efficiency, fuel cost and fuel phase (i.e., solid or slurry phase). Understanding the required material properties to meet the DOE Technical Targets for Onboard Hydrogen Storage Systems is a critical knowledge gap in the hydrogen storage research community. This study presents a set of fluid-phase chemical hydrogen storagemore » material property guidelines for automotive applications meeting the 2017 DOE technical targets. Viable material properties were determined using a boiler-plate automotive system design. The fluid phase chemical hydrogen storage media considered in this study were neat liquids, solutions, and non-settling homogeneous slurries. Material properties examined include kinetics, heats of reaction, fuel-cell impurities, gravimetric and volumetric hydrogen storage capacities, and regeneration efficiency. The material properties, although not exhaustive, are an essential first step in identifying viable chemical hydrogen storage material propertiesdand most important, their implications on system mass, system volume and system performance.« less

  14. Human Milk Adrenomedullin Is Unstable During Cold Storage at 4°C.

    PubMed

    Peila, Chiara; Coscia, Alessandra; Bertino, Enrico; Li Volti, Giovanni; Galvano, Fabio; Barbagallo, Ignazio; Gazzolo, Diego

    2017-11-01

    Under some circumstances human milk (HM) extraction and refrigerated storage may be necessary. Depending on the length and on the type of cold storage, milk may lose some important properties, but current advices on safe HM storage are discordant. Moreover until now no data in literature were present on the effect of prolonged cold storage on biologically active components of the HM such as adrenomedullin (AM). This important peptide is involved in response to hypoxia and inflammation, associated with neovascularization, in several tissues. The aim is to evaluate: (a) the presence of AM in preterm and term HM and (b) the concentration of AM in refrigerated milk at 4°C at 24-hour intervals, up to 96 hours of storage. The experiment was repeated four times. Immediately after collection, each HM sample deriving from each mother was divided into two parts as follows: "Pool" line and "Single Mother" line. One part (Pool line) was pooled and then divided into five aliquots. The other part (Single Mother line) was divided into five aliquots. From each line, one aliquot was analyzed within 3 hours, while the others were stored in the refrigerator for 24, 48, 72, and 96 hours, respectively, and then analyzed. AM levels were determined using a specific ELISA test. AM was detectable in all samples. Its concentration was significantly higher in preterm milk with respect to term milk (p < 0.05). Significant differences were observed during the cold storage: the AM levels decreased steadily during the storage and the remaining concentration at 96 hours is ∼2%. This study provides evidences regarding the presence of AM in HM, regardless of the gestational age. In particular, the refrigeration of fresh HM in controlled conditions significantly affected its bioactivity and nutritional quality related with AM, already at 24 hours.

  15. Combined cooling and purification system for nuclear reactor spent fuel pit, refueling cavity, and refueling water storage tank

    DOEpatents

    Corletti, Michael M.; Lau, Louis K.; Schulz, Terry L.

    1993-01-01

    The spent fuel pit of a pressured water reactor (PWR) nuclear power plant has sufficient coolant capacity that a safety rated cooling system is not required. A non-safety rated combined cooling and purification system with redundant branches selectively provides simultaneously cooling and purification for the spent fuel pit, the refueling cavity, and the refueling water storage tank, and transfers coolant from the refueling water storage tank to the refueling cavity without it passing through the reactor core. Skimmers on the suction piping of the combined cooling and purification system eliminate the need for separate skimmer circuits with dedicated pumps.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rebecca E. Smith

    Internationally, the nuclear industry is represented by both commercial utilities and research institutions. Over the past two decades many of these entities have had to relocate inventories of spent nuclear fuel from underwater storage to dry storage. These efforts were primarily prompted by two factors: insufficient storage capacity (potentially precipitated by an open-ended nuclear fuel cycle) or deteriorating quality of existing underwater facilities. The intent of developing this bibliography is to assess what issues associated with fuel drying have been identified, to consider where concerns have been satisfactorily addressed, and to recommend where additional research would offer the most valuemore » to the commercial industry and the U. S. Department of Energy.« less

  17. Battery and Fuel Cell Development for NASA's Constellation Missions

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle A.

    2009-01-01

    NASA's return to the moon will require advanced battery, fuel cell and regenerative fuel cell energy storage systems. This paper will provide an overview of the planned energy storage systems for the Orion Spacecraft and the Aries rockets that will be used in the return journey to the Moon. Technology development goals and approaches to provide batteries and fuel cells for the Altair Lunar Lander, the new space suit under development for extravehicular activities (EY A) on the Lunar surface, and the Lunar Surface Systems operations will also be discussed.

  18. Battery and Fuel Cell Development for NASA's Exploration Missions

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle A.; Reid, Concha M.

    2009-01-01

    NASA's return to the moon will require advanced battery, fuel cell and regenerative fuel cell energy storage systems. This paper will provide an overview of the planned energy storage systems for the Orion Spacecraft and the Aries rockets that will be used in the return journey to the Moon. Technology development goals and approaches to provide batteries and fuel cells for the Altair Lunar Lander, the new space suit under development for extravehicular activities (EVA) on the Lunar surface, and the Lunar Surface Systems operations will also be discussed.

  19. Azobenzene-functionalized carbon nanotubes as high-energy density solar thermal fuels.

    PubMed

    Kolpak, Alexie M; Grossman, Jeffrey C

    2011-08-10

    Solar thermal fuels, which reversibly store solar energy in molecular bonds, are a tantalizing prospect for clean, renewable, and transportable energy conversion/storage. However, large-scale adoption requires enhanced energy storage capacity and thermal stability. Here we present a novel solar thermal fuel, composed of azobenzene-functionalized carbon nanotubes, with the volumetric energy density of Li-ion batteries. Our work also demonstrates that the inclusion of nanoscale templates is an effective strategy for design of highly cyclable, thermally stable, and energy-dense solar thermal fuels.

  20. Energy storage using high pressure electrolysis and methods for reconversion. [in automobile fuel synthesis

    NASA Technical Reports Server (NTRS)

    Hughes, W. L.

    1973-01-01

    Theoretical and experimental studies on high pressure electrolysis producing hydrogen and oxygen for energy storage and reconversion are reported. Moderate temperature, high pressure hydrogen/oxygen fuel cells with nickel electrodes are investigated for effects of pressure, temperature, and membrane porosity. Test results from an aphodid burner turbine generator combination obtained 40 percent kilowatt hours out of the fuel cell divided by kilowatt hours into the electrolyzer. It is concluded that high pressure hydrogenation of organic materials can be used to synthesize hydrozenes and methanes for making synthetic vehicular fuels.

  1. Estimating the value of electricity storage in PJM: Arbitrage and some welfare effects

    DOE PAGES

    Sioshansi, Ramteen; Denholm, Paul; Jenkin, Thomas; ...

    2008-10-31

    Here, significant increases in prices and price volatility of natural gas and electricity have raised interest in the potential economic opportunities for electricity storage. In this paper, we analyze the arbitrage value of a price-taking storage device in PJM during the six-year period from 2002 to 2007, to understand the impact of fuel prices, transmission constraints, efficiency, storage capacity, and fuel mix. The impact of load-shifting for larger amounts of storage, where reductions in arbitrage are offset by shifts in consumer and producer surplus as well as increases in social welfare from a variety of sources, is also considered.

  2. Hydrogen Storage for Aircraft Applications Overview

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony J.; Kohout, Lisa (Technical Monitor)

    2002-01-01

    Advances in fuel cell technology have brought about their consideration as sources of power for aircraft. This power can be utilized to run aircraft systems or even provide propulsion power. One of the key obstacles to utilizing fuel cells on aircraft is the storage of hydrogen. An overview of the potential methods of hydrogen storage was compiled. This overview identifies various methods of hydrogen storage and points out their advantages and disadvantages relative to aircraft applications. Minimizing weight and volume are the key aspects to storing hydrogen within an aircraft. An analysis was performed to show how changes in certain parameters of a given storage system affect its mass and volume.

  3. Capacity estimation of soil organic carbon pools in the intertidal zone of the Bohai Bay

    NASA Astrophysics Data System (ADS)

    Tian-Yu, Mao; Ting-Ting, Shi; Ya-Juan, Li

    2018-03-01

    Based on the data obtained from the field survey in the intertidal zone of the Binhai New Area of Tianjin Bay in October 2014, the distribution characteristics of soil organic carbon pool in intertidal zone were studied. The results showed that the highest organic carbon content of soil is 22.913g/kg; the average is 16.304g/kg. The soil organic carbon pool in the intertidal zone is in the 6.58-30.40kg/m3, almost close the level of forest soil in the Binhai New Area. Moreover, close to the surrounding wetland such as Yellow River Estuary or Liaohe River Estuary. In conclusion, the soil carbon storage of the beach tidal flats is higher in the coastal zone, and the carbon storage will be significantly reduced after artificial backfilling.

  4. 78 FR 58570 - Environmental Assessment; Entergy Nuclear Operations, Inc., Big Rock Point

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-24

    ... Assessment; Entergy Nuclear Operations, Inc., Big Rock Point AGENCY: Nuclear Regulatory Commission. ACTION... applicant or the licensee), for the Big Rock Point (BRP) Independent Spent Fuel Storage Installation (ISFSI... Rock Point (BRP) Independent Spent Fuel Storage Installation (ISFSI). II. Environmental Assessment (EA...

  5. Storage and stability of mineral-associated soil organic matter pools in genetic horizons of harvested coniferous forest soils

    NASA Astrophysics Data System (ADS)

    Gabriel, C. E.; Kellman, L. M.; Ziegler, S.

    2016-12-01

    Mineral soil organic matter (SOM) is associated with a suite of secondary minerals that can confer stability, resulting in the potential for long-term storage of carbon (C). Not all interactions impart the same level of stability, however; evidence is suggesting that SOM in certain mineral phases is dynamic and vulnerable to soil disturbance, such as forest harvesting. The objective of this research was to characterize SOM-mineral interactions in horizons of harvested soils of contrasting stand age. Sequential selective dissolutions representing increasingly stable SOM pools from soluble minerals (deionized water (DI)), non-crystalline (Na-pyrophosphate), poorly-crystalline minerals (HCl hydroxylamine), to crystalline secondary minerals (Na-dithionite HCl)) were carried out for Ae, Bf and BC horizons sampled from a young and mature forest site (35 and 110 years post-harvest) in Mooseland, Nova Scotia, Canada. Selective dissolution extracts were analyzed for dissolved organic carbon (DOC), its δ13C, Fe and Al. Initial isotopic analysis indicates that separate operational SOM pools were isolated: δ13C values of pyrophosphate-extracted non-crystalline (NC) phases were -27 to -28‰, similar to δ13C of bulk C and to plant-derived humic acids and fungal biomass, whereas the δ13C of DI extracts were more depleted in 13C (1-2 ‰). These SOM pools retained their isotopic signature through depth despite an enrichment in bulk SOM δ13C. NC dominated the C distribution for all horizons, followed by poorly crystalline (PC) minerals, and the C content of these two phases explained the variation in bulk C, while C in crystalline pools were similar for the two sites through depth. The mature site had twice as much C in the NC pool as the young site in the Bf horizons, supported by higher C/Fe+Al ratios, suggesting a change in loading following harvesting. Despite the destabilizing processes that occur with forest harvesting and evidence for the increased destabilization of NC and PC pools of SOM, those pools associated with crystalline OM remain stable, suggesting that the nature of mineral-SOM binding determines its stability and therefore its potential for long-term storage.

  6. An overview—Functional nanomaterials for lithium rechargeable batteries, supercapacitors, hydrogen storage, and fuel cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Hua Kun, E-mail: hua@uow.edu.au

    2013-12-15

    Graphical abstract: Nanomaterials play important role in lithium ion batteries, supercapacitors, hydrogen storage and fuel cells. - Highlights: • Nanomaterials play important role for lithium rechargeable batteries. • Nanostructured materials increase the capacitance of supercapacitors. • Nanostructure improves the hydrogenation/dehydrogenation of hydrogen storage materials. • Nanomaterials enhance the electrocatalytic activity of the catalysts in fuel cells. - Abstract: There is tremendous worldwide interest in functional nanostructured materials, which are the advanced nanotechnology materials with internal or external dimensions on the order of nanometers. Their extremely small dimensions make these materials unique and promising for clean energy applications such as lithiummore » ion batteries, supercapacitors, hydrogen storage, fuel cells, and other applications. This paper will highlight the development of new approaches to study the relationships between the structure and the physical, chemical, and electrochemical properties of functional nanostructured materials. The Energy Materials Research Programme at the Institute for Superconducting and Electronic Materials, the University of Wollongong, has been focused on the synthesis, characterization, and applications of functional nanomaterials, including nanoparticles, nanotubes, nanowires, nanoporous materials, and nanocomposites. The emphases are placed on advanced nanotechnology, design, and control of the composition, morphology, nanostructure, and functionality of the nanomaterials, and on the subsequent applications of these materials to areas including lithium ion batteries, supercapacitors, hydrogen storage, and fuel cells.« less

  7. Characterization of the radiation environment for a large-area interim spent-nuclear-fuel storage facility

    NASA Astrophysics Data System (ADS)

    Fortkamp, Jonathan C.

    Current needs in the nuclear industry and movements in the political arena indicate that authorization may soon be given for development of a federal interim storage facility for spent nuclear fuel. The initial stages of the design work have already begun within the Department of Energy and are being reviewed by the Nuclear Regulatory Commission. This dissertation addresses the radiation environment around an interim spent nuclear fuel storage facility. Specifically the dissertation characterizes the radiation dose rates around the facility based on a design basis source term, evaluates the changes in dose due to varying cask spacing configurations, and uses these results to define some applicable health physics principles for the storage facility. Results indicate that dose rates from the facility are due primarily from photons from the spent fuel and Co-60 activation in the fuel assemblies. In the modeled cask system, skyshine was a significant contribution to dose rates at distances from the cask array, but this contribution can be reduced with an alternate cask venting system. With the application of appropriate health physics principles, occupation doses can be easily maintained far below regulatory limits and maintained ALARA.

  8. High Performance Fuel Cell and Electrolyzer Membrane Electrode Assemblies (MEAs) for Space Energy Storage Systems

    NASA Technical Reports Server (NTRS)

    Valdez, Thomas I.; Billings, Keith J.; Kisor, Adam; Bennett, William R.; Jakupca, Ian J.; Burke, Kenneth; Hoberecht, Mark A.

    2012-01-01

    Regenerative fuel cells provide a pathway to energy storage system development that are game changers for NASA missions. The fuel cell/ electrolysis MEA performance requirements 0.92 V/ 1.44 V at 200 mA/cm2 can be met. Fuel Cell MEAs have been incorporated into advanced NFT stacks. Electrolyzer stack development in progress. Fuel Cell MEA performance is a strong function of membrane selection, membrane selection will be driven by durability requirements. Electrolyzer MEA performance is catalysts driven, catalyst selection will be driven by durability requirements. Round Trip Efficiency, based on a cell performance, is approximately 65%.

  9. 78 FR 9575 - Marketing Order Regulating the Handling of Spearmint Oil Produced in the Far West; Change to...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-11

    ... Administrative Rules Regarding the Transfer and Storage of Excess Spearmint Oil AGENCY: Agricultural Marketing... such oil to the Committee or its designees for storage, from November 1 to December 1. This rule also... storage, from November 1 to December 1. This rule also changes the date that the Committee must pool...

  10. Postfire changes in forest carbon storage over a 300-year chronosequence of Pinus contorta-dominated forests

    Treesearch

    Daniel M. Kashian; William H. Romme; Daniel B. Tinker; Monica G. Turner; Michael G. Ryan

    2013-01-01

    A warming climate may increase the frequency and severity of stand-replacing wildfires, reducing carbon (C) storage in forest ecosystems. Understanding the variability of postfire C cycling on heterogeneous landscapes is critical for predicting changes in C storage with more frequent disturbance. We measured C pools and fluxes for 77 lodgepole pine (Pinus contorta...

  11. Alternative Fuels Data Center

    Science.gov Websites

    Alternative Fuel and Special Fuel Inventory Tax Owners of fuel that have title to a fuel storage for sale to a motor carrier for highway use in Indiana are subject to an inventory tax. The tax rate

  12. 33. Coal Fuel Elevator (diagonal in foreground), Fuel Elevator (left), ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    33. Coal Fuel Elevator (diagonal in foreground), Fuel Elevator (left), Fuel Storage Bins (center), and Power Plant (right) Photographs taken by Joseph E.B. Elliot - Huber Coal Breaker, 101 South Main Street, Ashley, Luzerne County, PA

  13. 76 FR 12825 - List of Approved Spent Fuel Storage Casks: NUHOMS® HD System Revision 1; Confirmation of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-09

    ... definitions for Damaged Fuel Assembly and Transfer Operations; add definitions for Fuel Class and Reconstituted Fuel Assembly; add Combustion Engineering 16x16 class fuel assemblies as authorized contents...

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snepvangers, J.J.M.

    Equipment and results are described connected with irradiation studies of UO/sub 2/ fuels, fuel element testing in pressurized water loops, graphite irradiation, and steel irradiations with and without temperature control. The apparatus described is associated with a 20-Mw pool-type research reactor. (T.F.H.)

  15. Nuclear Fuel Traces Definition in Storage Ponds of Research VVR-2 and OR Reactors in NRC 'Kurchatov Institute'

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stepanov, Alexey; Simirskii, Iurii; Stepanov, Vyacheslav

    2015-07-01

    The Gas Plant complex is the experimental base of the Institute of Nuclear Reactors, which is part of the Kurchatov Institute. In 1954 the commissioning of the first Soviet water-cooled water-moderated research reactor VVR-2 on enriched uranium, and until 1983 the complex operated two research water-cooled water-moderated reactors 3 MW (VVR-2) and 300 kW (OR) capacity, which were dismantled in connection with the overall upgrades of the complex. The complex has three storage ponds in the reactor building. They are sub-surface vessels filled with water (the volume of water in each is about 6 m{sup 3}). In 2007-2013 the spentmore » nuclear fuel from storages was removed for processing to 'Mayk'. Survey of Storage Ponds by Underwater Collimated Spectrometric System shows a considerable layer of slime on the bottom of ponds and traces of spent nuclear fuel in one of the storage. For determination qualitative and the quantitative composition of radionuclide we made complex α-, β-, γ- spectrometric research of water and bottom slimes from Gas Plant complex storage ponds. We found the spent nuclear fuel in water and bottom slime in all storage ponds. Specific activity of radionuclides in the bottom slime exceeded specific activity of radionuclides in the ponds water and was closed to levels of high radioactive waste. Analysis of the obtained data and data from earlier investigation of reactor MR storage ponds showed distinctions of specific activity of uranium and plutonium radionuclides. (authors)« less

  16. 75 FR 2163 - Constellation Energy; Notice of Docketing of Special Nuclear Material License SNM-2505 Amendment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-14

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 72-8; NRC-2010-0011] Constellation Energy; Notice of... Independent Spent Fuel Storage Installation AGENCY: Nuclear Regulatory Commission. ACTION: Notice of license..., Division of Spent Fuel Storage and Transportation, Office of Nuclear Material Safety and Safeguards, U.S...

  17. 10 CFR 72.216 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false [Reserved] 72.216 Section 72.216 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General License for Storage of Spent Fuel at...

  18. Fuel Cells and Electrochemical Energy Storage.

    ERIC Educational Resources Information Center

    Sammells, Anthony F.

    1983-01-01

    Discusses the nature of phosphoric acid, molten carbonate, and solid oxide fuel cells and major features and types of batteries used for electrical energy storage. Includes two tables presenting comparison of major battery features and summary of major material problems in the sodium-sulfur and lithium-alloy metal sulfide batteries. (JN)

  19. Natural Gas Storage Research at Savannah River National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anton, Don; Sulic, Martin; Tamburello, David A.

    As an alternative to imported oil, scientists at the Department of Energy’s Savannah River National Laboratory are looking at abundant, domestically sourced natural gas, as an alternative transportation fuel. SRNL is investigating light, inexpensive, adsorbed natural gas storage systems that may fuel the next generation of automobiles.

  20. 77 FR 60482 - Yankee Atomic Electric Company; Yankee Rowe Independent Spent Fuel Storage Installation, Staff...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-03

    ... Company; Yankee Rowe Independent Spent Fuel Storage Installation, Staff Evaluation; Exemption 1.0... exemption requests, the NRC staff believes that YAEC should be granted exemptions from the following.... Additional information regarding the NRC (staff) evaluation is documented in a Safety Evaluation Report that...

  1. 77 FR 48565 - Maine Yankee Atomic Power Company, Maine Yankee Independent Spent Fuel Storage Installation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-14

    ... Power Company, Maine Yankee Independent Spent Fuel Storage Installation, Exemption--Staff Evaluation 1.0... in its November 29, 2010, letter. After evaluating the exemption requests, the staff determined that... staff evaluation is documented in a Safety Evaluation Report that contains Sensitive Unclassified Non...

  2. 77 FR 33005 - Connecticut Yankee Atomic Power Company; Haddam Neck Independent Spent Fuel Storage Installation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-04

    ... Atomic Power Company; Haddam Neck Independent Spent Fuel Storage Installation, Staff Evaluation... requests, the staff determined CYAPCO should be granted exemptions from the following requirements: 10 CFR... regarding the NRC staff evaluation is documented in a Safety Evaluation Report that contains Sensitive...

  3. Exposure of a liquefied gas container to an external fire.

    PubMed

    Raj, Phani K

    2005-06-30

    In liquefied gas, bulk-storage facilities and plants, the separation distances between storage tanks and between a tank and a line of adjoining property that can be built are governed by local regulations and/or codes (e.g. National Fire Protection Association (NFPA) 58, 2004). Separation distance requirements have been in the NFPA 58 Code for over 60 years; however, no scientific foundations (either theoretical or experimental) are available for the specified distances. Even though the liquefied petroleum gas (LPG) industry has operated safely over the years, there is a question as to whether the code-specified distances provide sufficient safety to LPG-storage tanks, when they are exposed to large external fires. A radiation heat-transfer-based model is presented in this paper. The temporal variation of the vapor-wetted tank-wall temperature is calculated when exposed to thermal radiation from an external, non-impinging, large, 30.5 m (100 ft) diameter, highly radiative, hydrocarbon fuel (pool) fire located at a specified distance. Structural steel wall of a pressurized, liquefied gas container (such as the ASME LP-Gas tank) begins to lose its strength, when the wall temperature approaches a critical temperature, 810 K (1000 degrees F). LP-Gas tank walls reaching close to this temperature will be a cause for major concern because of increased potential for tank failure, which could result in catastrophic consequences. Results from the model for exposure of different size ASME (LP-Gas) containers to a hydrocarbon pool fire of 30.5 m (100 ft) in diameter, located with its base edge at the separation distances specified by NFPA 58 [NFPA 58, Liquefied Petroleum Gas Code, Table 6.3.1, 2004 ed., National Fire Protection Association, Quincy, MA, 2004] indicate that the vapor-wetted wall temperature of the containers never reach the critical temperature under common wind conditions (0, 5 and 10 m/s), with the flame tilting towards the tank. This indicates that the separation distances specified in the code are adequate for non-impingement type of fires. The model can be used to test the efficacy of other similar codes and regulations for other materials.

  4. In-Situ Characterization of Underwater Radioactive Sludge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, A.P.; Clapham, M.J.; Swinson, B.

    2008-07-01

    A fundamental requirement underpinning safe clean-up technologies for legacy spent nuclear fuel (SNF) ponds, pools and wet silos is the ability to characterize the radioactive waste form prior to retrieval. The corrosion products resulting from the long term underwater storage of spent nuclear fuel, reactor components and reprocessing debris present a major hazard to facility decontamination and decommissioning in terms of their radioactive content and physical / chemical reactivity. The ability to perform in-situ underwater non-destructive characterization of sludge and debris in a safe and cost-effective manner offers significant benefits over traditional destructive sampling methods. Several techniques are available formore » underwater measurements including (i) Gross gamma counting, (ii) Low-, Medium- and High- Resolution Gamma Spectroscopy, (iii) Passive neutron counting and (iv) Active Neutron Interrogation. The optimum technique depends on (i) the radioactive inventory (ii) mechanical access restrictions for deployment of the detection equipment, interrogation sources etc. (iii) the integrity of plant records and (iv) the extent to which Acceptable Knowledge which may be used for 'fingerprinting' the radioactive contents to a marker nuclide. Prior deployments of underwater SNF characterization equipment around the world have been reviewed with respect to recent developments in gamma and neutron detection technologies, digital electronics advancements, data transfer techniques, remote operation capabilities and improved field ruggedization. Modeling and experimental work has been performed to determine the capabilities, performance envelope and operational limitations of the future generation of non-destructive underwater sludge characterization techniques. Recommendations are given on the optimal design of systems and procedures to provide an acceptable level of confidence in the characterization of residual sludge content of legacy wet storage facilities such that retrieval and repackaging of SNF sludges may proceed safely and efficiently with support of the regulators and the public. (author)« less

  5. Inspection and Gamma-Ray Dose Rate Measurements of the Annulus of the VSC-17 Concrete Spent Nuclear Fuel Storage Cask

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    P. L. Winston

    2007-09-01

    The air cooling annulus of the Ventilated Storage Cask (VSC)-17 spent fuel storage cask was inspected using a Toshiba 7 mm (1/4”) CCD video camera. The dose rates observed in the annular space were measured to provide a reference for the activity to which the camera(s) being tested were being exposed. No gross degradation, pitting, or general corrosion was observed.

  6. Hybrid chromophore/template nanostructures: a customizable platform material for solar energy storage and conversion.

    PubMed

    Kolpak, Alexie M; Grossman, Jeffrey C

    2013-01-21

    Challenges with cost, cyclability, and/or low energy density have largely prevented the development of solar thermal fuels, a potentially attractive alternative energy technology based on molecules that can capture and store solar energy as latent heat in a closed cycle. In this paper, we present a set of novel hybrid photoisomer/template solar thermal fuels that can potentially circumvent these challenges. Using first-principles computations, we demonstrate that these fuels, composed of organic photoisomers bound to inexpensive carbon-based templates, can reversibly store solar energy at densities comparable to Li-ion batteries. Furthermore, we show that variation of the template material in combination with the photoisomer can be used to optimize many of the key performance metrics of the fuel-i.e., the energy density, the storage lifetime, the temperature of the output heat, and the efficiency of the solar-to-heat conversion. Our work suggests that the solar thermal fuels concept can be translated into a practical and highly customizable energy storage and conversion technology.

  7. Measurements of the response of transport aircraft ceiling panels to fuel pool fires

    NASA Technical Reports Server (NTRS)

    Bankston, C. P.; Back, L. H.

    1985-01-01

    Tests were performed to characterize the responses of various aircraft ceiling panel configurations to a simulated post-crash fire. Attention was given to one currently used and four new ceiling configurations exposed to a fuel pool fire in a circulated air enclosure. The tests were controlled to accurately represent conditions in a real fire. The panels were constructed of fiberglass-epoxy, graphite-phenolic resin, fiberglass-phenolic resin, Kevlar-epoxy, and Kevlar-phenolic resin materials. The phenolic resin-backed sheets performed the best under the circumstances, except when combined with Kevlar, which became porous when charred.

  8. How fresh is maple syrup? Sugar maple trees mobilize carbon stored several years previously during early springtime sap-ascent.

    PubMed

    Muhr, Jan; Messier, Christian; Delagrange, Sylvain; Trumbore, Susan; Xu, Xiaomei; Hartmann, Henrik

    2016-03-01

    While trees store substantial amounts of nonstructural carbon (NSC) for later use, storage regulation and mobilization of stored NSC in long-lived organisms like trees are still not well understood. At two different sites with sugar maple (Acer saccharum), we investigated ascending sap (sugar concentration, δ(13) C, Δ(14) C) as the mobilized component of stored stem NSC during early springtime. Using the bomb-spike radiocarbon approach we were able to estimate the average time elapsed since the mobilized carbon (C) was originally fixed from the atmosphere and to infer the turnover time of stem storage. Sites differed in concentration dynamics and overall δ(13) C, indicating different growing conditions. The absence of temporal trends for δ(13) C and Δ(14) C indicated sugar mobilization from a well-mixed pool with average Δ(14) C consistent with a mean turnover time (TT) of three to five years for this pool, with only minor differences between the sites. Sugar maple trees hence appear well buffered against single or even several years of negative plant C balance from environmental stress such as drought or repeated defoliation by insects. Manipulative investigations (e.g. starvation via girdling) combined with Δ(14) C measurements of this mobilized storage pool will provide further new insights into tree storage regulation and functioning. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  9. Dealing with Historical Discrepancies: The Recovery of National Research Experiment (NRX) Reactor Fuel Rods at Chalk River Laboratories (CRL) - 13324

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vickerd, Meggan

    2013-07-01

    Following the 1952 National Research Experiment (NRX) Reactor accident, fuel rods which had short irradiation histories were 'temporarily' buried in wooden boxes at the 'disposal grounds' during the cleanup effort. The Nuclear Legacy Liabilities Program (NLLP), funded by Natural Resources Canada (NRCan), strategically retrieves legacy waste and restores lands affected by Atomic Energy of Canada Limited (AECL) early operations. Thus under this program the recovery of still buried NRX reactor fuel rods and their relocation to modern fuel storage was identified as a priority. A suspect inventory of NRX fuels was compiled from historical records and various research activities. Sitemore » characterization in 2005 verified the physical location of the fuel rods and determined the wooden boxes they were buried in had degraded such that the fuel rods were in direct contact with the soil. The fuel rods were recovered and transferred to a modern fuel storage facility in 2007. Recovered identification tags and measured radiation fields were used to identify the inventory of these fuels. During the retrieval activity, a discrepancy was discovered between the anticipated number of fuel rods and the number found during the retrieval. A total of 32 fuel rods and cans of cut end pieces were recovered from the specified site, which was greater than the anticipated 19 fuel rods and cans. This discovery delayed the completion of the project, increased the associated costs, and required more than anticipated storage space in the modern fuel storage facility. A number of lessons learned were identified following completion of this project, the most significant of which was the potential for discrepancies within the historical records. Historical discrepancies are more likely to be resolved by comprehensive historical record searches and site characterizations. It was also recommended that a complete review of the wastes generated, and the total affected lands as a result of this historic 1952 NRX accident be undertaken. These lessons and recommendations have lead to changes in how the NLLP is executed in the CRL waste management areas. (authors)« less

  10. Safety engineering in handling fuels and lubricants in civil aviation

    NASA Astrophysics Data System (ADS)

    Protoereiskii, Aleksandr Stepanovich

    The book is concerned with methods of improving working conditions, work hygiene, safety engineering, and fire and explosion prevention during the storage and handling of petroleum products at fuel and lubricant storage facilities. The discussion covers methods of protection against static and atmospheric discharges, lightning protection, safety engineering in fuel and lubricant laboratories, and methods of fire prevention and fire extinction. Attention is also given to methods for administering first aid in case of accidents and poisoning.

  11. Signatures of Extended Storage of Used Nuclear Fuel in Casks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rauch, Eric Benton

    2016-09-28

    As the amount of used nuclear fuel continues to grow, more and more used nuclear fuel will be transferred to storage casks. A consolidated storage facility is currently in the planning stages for storing these casks, where at least 10,000 MTHM of fuel will be stored. This site will have potentially thousands of casks once it is operational. A facility this large presents new safeguards and nuclear material accounting concerns. A new signature based on the distribution of neutron sources and multiplication within casks was part of the Department of Energy Office of Nuclear Energy’s Material Protection, Account and Controlmore » Technologies (MPACT) campaign. Under this project we looked at fingerprinting each cask's neutron signature. Each cask has a unique set of fuel, with a unique spread of initial enrichment, burnup, cooling time, and power history. The unique set of fuel creates a unique signature of neutron intensity based on the arrangement of the assemblies. The unique arrangement of neutron sources and multiplication produces a reliable and unique identification of the cask that has been shown to be relatively constant over long time periods. The work presented here could be used to restore from a loss of continuity of knowledge at the storage site. This presentation will show the steps used to simulate and form this signature from the start of the effort through its conclusion in September 2016.« less

  12. Deposit formation in liquid fuels. II - The effect of selected compounds on the storage stability of Jet A turbine fuel

    NASA Technical Reports Server (NTRS)

    Worstell, J. H.; Daniel, S. R.

    1981-01-01

    The influence of substituted pyridines, pyrroles, indoles, and quinolines on the storage stability of conventional Jet A turbine fuel is evaluated. Significant increases in the amount of deposit formed in accelerated storage tests are found upon addition of these compounds at levels as low as one ppm nitrogen. While the effect is correlated with basicity of the nitrogen compound within a given compound class, the correlation does not hold between classes (pyridines, quinolines, etc.). Steric hindrance at the nitrogen atom greatly inhibits deposit promotion. The characteristics, but not the elemental composition, of deposits vary with the identity of the added nitrogen compound and with deposition temperature.

  13. Combined cooling and purification system for nuclear reactor spent fuel pit, refueling cavity, and refueling water storage tank

    DOEpatents

    Corletti, M.M.; Lau, L.K.; Schulz, T.L.

    1993-12-14

    The spent fuel pit of a pressured water reactor (PWR) nuclear power plant has sufficient coolant capacity that a safety rated cooling system is not required. A non-safety rated combined cooling and purification system with redundant branches selectively provides simultaneously cooling and purification for the spent fuel pit, the refueling cavity, and the refueling water storage tank, and transfers coolant from the refueling water storage tank to the refueling cavity without it passing through the reactor core. Skimmers on the suction piping of the combined cooling and purification system eliminate the need for separate skimmer circuits with dedicated pumps. 1 figures.

  14. Adsorbed radioactivity and radiographic imaging of surfaces of stainless steel and titanium

    NASA Astrophysics Data System (ADS)

    Jung, Haijo

    1997-11-01

    Type 304 stainless steel used for typical surface materials of spent fuel shipping casks and titanium were exposed in the spent fuel storage pool of a typical PWR power plant. Adsorption characteristics, effectiveness of decontamination by water cleaning and by electrocleaning, and swipe effectiveness on the metal surfaces were studied. A variety of environmental conditions had been manipulated to stimulate the potential 'weeping' phenomenon that often occurs with spent fuel shipping casks during transit. In a previous study, few heterogeneous effects of adsorbed contamination onto metal surfaces were observed. Radiographic images of cask surfaces were made in this study and showed clearly heterogeneous activity distributions. Acquired radiographic images were digitized and further analyzed with an image analysis computer package and compared to calibrated images by using standard sources. The measurements of activity distribution by using the radiographic image method were consistent with that using a HPGe detector. This radiographic image method was used to study the effects of electrocleaning for total and specified areas. The Modulation Transfer Function (MTF) of a film-screen system in contact with a radioactive metal surface was studied with neutron activated gold foils and showed more broad resolution properties than general diagnostic x-ray film-screen systems. Microstructure between normal areas and hot spots showed significant differences, and one hot spot appearing as a dot on the film image consisted of several small hot spots (about 10 μm in diameter). These hot spots were observed as structural defects of the metal surfaces.

  15. Development Status of PEM Non-Flow-Through Fuel Cell System Technology for NASA Applications

    NASA Technical Reports Server (NTRS)

    Hoberecht, Mark A.; Jakupca, Ian J.

    2011-01-01

    Today s widespread development of proton-exchange-membrane (PEM) fuel cell technology for commercial users owes its existence to NASA, where fuel cell technology saw its first applications. Beginning with the early Gemini and Apollo programs, and continuing to this day with the Shuttle Orbiter program, fuel cells have been a primary source of electrical power for many NASA missions. This is particularly true for manned missions, where astronauts are able to make use of the by-product of the fuel cell reaction, potable water. But fuel cells also offer advantages for unmanned missions, specifically when power requirements exceed several hundred watts and primary batteries are not a viable alternative. In recent years, NASA s Exploration Technology Development Program (ETDP) funded the development of fuel cell technology for applications that provide both primary power and regenerative fuel cell energy storage for planned Exploration missions that involved a return to the moon. Under this program, the Altair Lunar Lander was a mission requiring fuel cell primary power. There were also various Lunar Surface System applications requiring regenerative fuel cell energy storage, in which a fuel cell and electrolyzer combine to form an energy storage system with hydrogen, oxygen, and water as common reactants. Examples of these systems include habitat modules and large rovers. In FY11, the ETDP has been replaced by the Enabling Technology Development and Demonstration Program (ETDDP), with many of the same technology goals and requirements applied against NASA s revised Exploration portfolio.

  16. Test report : Raytheon / KTech RK30 Energy Storage System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rose, David Martin; Schenkman, Benjamin L.; Borneo, Daniel R.

    2013-10-01

    The Department of Energy Office of Electricity (DOE/OE), Sandia National Laboratories (SNL) and the Base Camp Integration Lab (BCIL) partnered together to incorporate an energy storage system into a microgrid configured Forward Operating Base to reduce the fossil fuel consumption and to ultimately save lives. Energy storage vendors will be sending their systems to SNL Energy Storage Test Pad (ESTP) for functional testing and then to the BCIL for performance evaluation. The technologies that will be tested are electro-chemical energy storage systems comprising of lead acid, lithium-ion or zinc-bromide. Raytheon/KTech has developed an energy storage system that utilizes zinc-bromide flowmore » batteries to save fuel on a military microgrid. This report contains the testing results and some limited analysis of performance of the Raytheon/KTech Zinc-Bromide Energy Storage System.« less

  17. Effects of Soil Texture on Belowground Carbon and Nutrient Storage in a Lowland Amazonian Forest Ecosystem.

    Treesearch

    Whendee L. Silver; Jason Neff; Megan McGroddy; Ed Veldkamp; Michael Keller; Raimundo Cosme

    2000-01-01

    Soil texture plays a key role in belowground C storage in forest ecosystems and strongly influences nutrient availability and retention, particularly in highly weathered soils. We used field data and the Century ecosystem model to explore the role of soil texture in belowground C storage, nutrient pool sizes, and N fluxes in highly weathered soils in an Amazonian...

  18. Fuel Cell and Hydrogen Technologies Program | Hydrogen and Fuel Cells |

    Science.gov Websites

    NREL Fuel Cell and Hydrogen Technologies Program Fuel Cell and Hydrogen Technologies Program Through its Fuel Cell and Hydrogen Technologies Program, NREL researches, develops, analyzes, and validates fuel cell and hydrogen production, delivery, and storage technologies for transportation

  19. Variants of Regenerated Fissile Materials Usage in Thermal Reactors as the First Stage of Fuel Cycle Closing

    NASA Astrophysics Data System (ADS)

    Andrianova, E. A.; Tsibul'skiy, V. F.

    2017-12-01

    At present, 240 000 t of spent nuclear fuel (SF) has been accumulated in the world. Its long-term storage should meet safety conditions and requires noticeable finances, which grow every year. Obviously, this situation cannot exist for a long time; in the end, it will require a final decision. At present, several variants of solution of the problem of SF management are considered. Since most of the operating reactors and those under construction are thermal reactors, it is reasonable to assume that the structure of the nuclear power industry in the near and medium-term future will be unchanged, and it will be necessary to utilize plutonium in thermal reactors. In this study, different strategies of SF management are compared: open fuel cycle with long-term SF storage, closed fuel cycle with MOX fuel usage in thermal reactors and subsequent long-term storage of SF from MOX fuel, and closed fuel cycle in thermal reactors with heterogeneous fuel arrangement. The concept of heterogeneous fuel arrangement is considered in detail. While in the case of traditional fuel it is necessary to reprocess the whole amount of spent fuel, in the case of heterogeneous arrangement, it is possible to separate plutonium and 238U in different fuel rods. In this case, it is possible to achieve nearly complete burning of fissile isotopes of plutonium in fuel rods loaded with plutonium. These fuel rods with burned plutonium can be buried after cooling without reprocessing. They would contain just several percent of initially loaded plutonium, mainly even isotopes. Fuel rods with 238U alone should be reprocessed in the usual way.

  20. 77 FR 24585 - List of Approved Spent Fuel Storage Casks: HI-STORM 100, Revision 8

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-25

    ... Storage Casks: HI-STORM 100, Revision 8 AGENCY: Nuclear Regulatory Commission. ACTION: Direct final rule... revising the Holtec International HI-STORM 100 System listing within the ``List of Approved Spent Fuel...) 72.214, by revising the Holtec International HI-STORM 100 System listing within the ``List of...

  1. Hydrogen Infrastructure Testing and Research Facility Animation | Hydrogen

    Science.gov Websites

    at full pressure. This system provides hydrogen to fill fuel cell forklifts and feeds the high pressure compressor. View Photos High Pressure Storage The high pressure hydrogen storage system consists full pressure. This system provides hydrogen to high pressure research projects and for fuel cell

  2. Hydrogen Infrastructure Testing and Research Facility | Energy Systems

    Science.gov Websites

    hydrogen production through renewable electrolysis, fuel cell manufacturing and testing, high-pressure system provides hydrogen to fill fuel cell forklifts and feeds the high pressure compressor. View Photos High Pressure Storage The high pressure hydrogen storage system consists of four Type II hydrogen tanks

  3. 10 CFR 72.186 - Change to physical security and safeguards contingency plans.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... approval for a period of three years from the date of the change, and shall, within two months after the change is made, submit a report addressed to Director, Division of Spent Fuel Storage and Transportation... THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED...

  4. 10 CFR 72.186 - Change to physical security and safeguards contingency plans.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... approval for a period of three years from the date of the change, and shall, within two months after the change is made, submit a report addressed to Director, Division of Spent Fuel Storage and Transportation... THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED...

  5. 10 CFR 72.186 - Change to physical security and safeguards contingency plans.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... approval for a period of three years from the date of the change, and shall, within two months after the change is made, submit a report addressed to Director, Division of Spent Fuel Storage and Transportation... THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED...

  6. 10 CFR 72.186 - Change to physical security and safeguards contingency plans.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... approval for a period of three years from the date of the change, and shall, within two months after the change is made, submit a report addressed to Director, Division of Spent Fuel Storage and Transportation... THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED...

  7. Natural Gas Storage Research at Savannah River National Laboratory

    ScienceCinema

    Anton, Don; Sulic, Martin; Tamburello, David A.

    2018-01-16

    As an alternative to imported oil, scientists at the Department of Energy’s Savannah River National Laboratory are looking at abundant, domestically sourced natural gas, as an alternative transportation fuel. SRNL is investigating light, inexpensive, adsorbed natural gas storage systems that may fuel the next generation of automobiles.

  8. 76 FR 46329 - Notice of Issuance of Renewed Materials License No. SNM-2504; Department of Energy; Fort St...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-02

    ... Materials License No. SNM-2504; Department of Energy; Fort St. Vrain Independent Spent Fuel Storage... INFORMATION CONTACT: Christopher Staab, Project Manager, Division of Spent Fuel Storage and Transportation... issued renewed Materials License No. SNM-2504 to the Department of Energy (DOE) for the receipt...

  9. 75 FR 9452 - Solicitation of Topics for Discussion at a Spent Fuel Storage and Transportation Licensing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-02

    ... NUCLEAR REGULATORY COMMISSION [NRC-2010-0076] Solicitation of Topics for Discussion at a Spent...: Solicitation of Topics for Discussion at a Spent Fuel Storage and Transportation Licensing Conference. SUMMARY: The U.S. Nuclear Regulatory Commission (NRC) is soliciting input on topics for discussion at a...

  10. 10 CFR 51.23 - Temporary storage of spent fuel after cessation of reactor operation-generic determination of no...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Temporary storage of spent fuel after cessation of reactor operation-generic determination of no significant environmental impact. 51.23 Section 51.23 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) ENVIRONMENTAL PROTECTION REGULATIONS FOR DOMESTIC LICENSING AND RELATED...

  11. Alternative Fuels Data Center: Installing B20 Equipment

    Science.gov Websites

    operations to share the fueling site with you. Secure Permits, Adhere to State Requirements The contractor is storage tanks. The contractor will register storage tanks with the state environmental agency, which must the contractor and client to ensure the completed project meets expectations. Maps & Data U.S

  12. Cleanup Verification Package for the 118-H-6:2, 105-H Reactor Ancillary Support Areas, Below-Grade Structures, and Underlying Soils; the 118-H-6:3, 105-H Reactor Fuel Storage Basin and Underlying Soils; The 118-H-6:3 Fuel Storage Basin Deep Zone Side Slope Soils; the 100-H-9, 100-H-10, and 100-H-13 French Drains; the 100-H-11 and 100-H-12 Expansion Box French Drains; and the 100-H-14 and 100-H-31 Surface Contamination Zones

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M. J. Appel

    2006-06-29

    This cleanup verification package documents completion of removal actions for the 105-H Reactor Ancillary Support Areas, Below-Grade Structures, and Underlying Soils (subsite 118-H-6:2); 105-H Reactor Fuel Storage Basin and Underlying Soils (118-H-6:3); and Fuel Storage Basin Deep Zone Side Slope Soils. This CVP also documents remedial actions for the following seven additional waste sties: French Drain C (100-H-9), French Drain D (100-H-10), Expansion Box French Drain E (100-H-11), Expansion Box French Drain F (100-H-12), French Drain G (100-H-13), Surface Contamination Zone H (100-H-14), and the Polychlorinated Biphenyl Surface Contamination Zone (100-H-31).

  13. Container materials in environments of corroded spent nuclear fuel

    NASA Astrophysics Data System (ADS)

    Huang, F. H.

    1996-07-01

    Efforts to remove corroded uranium metal fuel from the K Basins wet storage to long-term dry storage are underway. The multi-canister overpack (MCO) is used to load spent nuclear fuel for vacuum drying, staging, and hot conditioning; it will be used for interim dry storage until final disposition options are developed. Drying and conditioning of the corroded fuel will minimize the possibility of gas pressurization and runaway oxidation. During all phases of operations the MCO is subjected to radiation, temperature and pressure excursions, hydrogen, potential pyrophoric hazard, and corrosive environments. Material selection for the MCO applications is clearly vital for safe and efficient long-term interim storage. Austenitic stainless steels (SS) such as 304L SS or 316L SS appear to be suitable for the MCO. Of the two, Type 304L SS is recommended because it possesses good resistance to chemical corrosion, hydrogen embrittlement, and radiation-induced corrosive species. In addition, the material has adequate strength and ductility to withstand pressure and impact loading so that the containment boundary of the container is maintained under accident conditions without releasing radioactive materials.

  14. 10 CFR 50.68 - Criticality accident requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... boron is taken, the k-effective of the spent fuel storage racks loaded with fuel of the maximum fuel... flooded with unborated water. If credit is taken for soluble boron, the k-effective of the spent fuel...

  15. 10 CFR 50.68 - Criticality accident requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... boron is taken, the k-effective of the spent fuel storage racks loaded with fuel of the maximum fuel... flooded with unborated water. If credit is taken for soluble boron, the k-effective of the spent fuel...

  16. 10 CFR 50.68 - Criticality accident requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... boron is taken, the k-effective of the spent fuel storage racks loaded with fuel of the maximum fuel... flooded with unborated water. If credit is taken for soluble boron, the k-effective of the spent fuel...

  17. 10 CFR 50.68 - Criticality accident requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... boron is taken, the k-effective of the spent fuel storage racks loaded with fuel of the maximum fuel... flooded with unborated water. If credit is taken for soluble boron, the k-effective of the spent fuel...

  18. 10 CFR 50.68 - Criticality accident requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... boron is taken, the k-effective of the spent fuel storage racks loaded with fuel of the maximum fuel... flooded with unborated water. If credit is taken for soluble boron, the k-effective of the spent fuel...

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marschman, Steven Craig

    While low burn-up fuel [that characterized as having a burn-up of less than 45 gigawatt days per metric ton uranium (GWD/MTU)] has been stored for nearly three decades, the storage of high burn-up used fuels is more recent. The DOE has funded a High Burn-Up (HBU) Confirmatory Data Project to confirm the behavior of used high burn-up fuel under prototypic conditions. The Electric Power Research Institute (EPRI) is leading a project team to develop and implement the Test Plan to collect this data from a UNF dry storage system containing high burn-up fuel. As part of that project, 25 “sister”more » fuel rods have been selected, removed from assemblies, and placed in a fuel container ready for shipment to a national laboratory. This report documents that status of readiness to receive the fuel if that fuel were to be sent to Idaho National Laboratory (INL).« less

  20. The potential pyrophoricity of BMI-SPEC and aluminum plate spent fuels retrieved from underwater storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ebner, M.A.

    1996-08-01

    Physical/chemical factors in U metal and hydride combustion, particularly pyrophoricity in ambient environment, were evaluated for BMI-SPEC and UAl{sub x} plate fuels. Some metal fuels may be highly reactive (spontaneously igniting in air) due to high specific surface area, high decay heat, or a high U hydride content from corrosion during underwater storage. However, for the BMI-SPEC and the aluminum plate fuels, this reactivity is too low to present a realistic threat of uncontrolled spontaneous combustion at ambient conditions. While residual U hydride is expected in these corroded fuels, the hydride levels are expected to be too low and themore » configuration too unfavorable to ignite the fuel meat when the fuels are retrieved from the basin and dried. Furthermore the composition and microstructure of the UAl{sub x} fuels further mitigate that risk.« less

  1. Proton Exchange Membrane Fuel Cells for Electrical Power Generation On-Board Commercial Airplanes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pratt, Joesph W.; Klebanoff, Leonard E.; Munoz-Ramos, Karina

    2011-05-01

    Deployed on a commercial airplane, proton exchange membrane fuel cells may offer emissions reductions, thermal efficiency gains, and enable locating the power near the point of use. This work seeks to understand whether on-board fuel cell systems are technically feasible, and, if so, if they offer a performance advantage for the airplane as a whole. Through hardware analysis and thermodynamic and electrical simulation, we found that while adding a fuel cell system using today’s technology for the PEM fuel cell and hydrogen storage is technically feasible, it will not likely give the airplane a performance benefit. However, when we re-didmore » the analysis using DOE-target technology for the PEM fuel cell and hydrogen storage, we found that the fuel cell system would provide a performance benefit to the airplane (i.e., it can save the airplane some fuel), depending on the way it is configured.« less

  2. Proton exchange membrane fuel cells for electrical power generation on-board commercial airplanes.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curgus, Dita Brigitte; Munoz-Ramos, Karina; Pratt, Joseph William

    2011-05-01

    Deployed on a commercial airplane, proton exchange membrane fuel cells may offer emissions reductions, thermal efficiency gains, and enable locating the power near the point of use. This work seeks to understand whether on-board fuel cell systems are technically feasible, and, if so, if they offer a performance advantage for the airplane as a whole. Through hardware analysis and thermodynamic and electrical simulation, we found that while adding a fuel cell system using today's technology for the PEM fuel cell and hydrogen storage is technically feasible, it will not likely give the airplane a performance benefit. However, when we re-didmore » the analysis using DOE-target technology for the PEM fuel cell and hydrogen storage, we found that the fuel cell system would provide a performance benefit to the airplane (i.e., it can save the airplane some fuel), depending on the way it is configured.« less

  3. Test report :

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rose, David Martin; Schenkman, Benjamin L.; Borneo, Daniel R.

    2013-08-01

    The Department of Energy Office of Electricity (DOE/OE), Sandia National Laboratory (SNL) and the Base Camp Integration Lab (BCIL) partnered together to incorporate an energy storage system into a microgrid configured Forward Operating Base to reduce the fossil fuel consumption and to ultimately save lives. Energy storage vendors have supplied their systems to SNL Energy Storage Test Pad (ESTP) for functional testing and a subset of these systems were selected for performance evaluation at the BCIL. The technologies tested were electro-chemical energy storage systems comprised of lead acid, lithium-ion or zinc-bromide. MILSPRAY Military Technologies has developed an energy storage systemmore » that utilizes lead acid batteries to save fuel on a military microgrid. This report contains the testing results and some limited assessment of the Milspray Scorpion Energy Storage Device.« less

  4. Hydrogen and Fuel Cells | NREL

    Science.gov Websites

    Cells A hydrogen-powered fuel cell electric vehicle driving past NREL's hydrogen fueling station NREL's hydrogen and fuel cell research and development (R&D) focuses on developing, integrating, and demonstrating hydrogen production and delivery, hydrogen storage, and fuel cell technologies for transportation

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Mo; Nakshatrala, Kalyana; William, Kasper

    The objective of this project is to develop a new class of multifunctional concrete materials (MSCs) for extended spent nuclear fuel (SNF) storage systems, which combine ultra-high damage resistance through strain-hardening behavior with distributed multi-dimensional damage self-sensing capacity. The beauty of multifunctional concrete materials is two-fold: First, it serves as a major material component for the SNF pool, dry cask shielding and foundation pad with greatly improved resistance to cracking, reinforcement corrosion, and other common deterioration mechanisms under service conditions, and prevention from fracture failure under extreme events (e.g. impact, earthquake). This will be achieved by designing multiple levels ofmore » protection mechanisms into the material (i.e., ultrahigh ductility that provides thousands of times greater fracture energy than concrete and normal fiber reinforced concrete; intrinsic cracking control, electrochemical properties modification, reduced chemical and radionuclide transport properties, and crack-healing properties). Second, it offers capacity for distributed and direct sensing of cracking, strain, and corrosion wherever the material is located. This will be achieved by establishing the changes in electrical properties due to mechanical and electrochemical stimulus. The project will combine nano-, micro- and composite technologies, computational mechanics, durability characterization, and structural health monitoring methods, to realize new MSCs for very long-term (greater than 120 years) SNF storage systems.« less

  6. Increasing Storm Water Capture for Water Supply using Forecast Informed Reservoir Operations (FIRO) in Orange County, California

    NASA Astrophysics Data System (ADS)

    Hutchinson, A.; Woodside, G.; Ralph, F. M.

    2017-12-01

    Stormwater represents a significant source of water used by the Orange County Water District (OCWD) to recharge the Orange County groundwater basin. Over the last 20 years, OCWD has captured and recharged an average of 50,000 acre-feet per year (afy) of stormwater. Much of this recharge is made possible by the capture of stormwater in the Prado Dam Conservation Pool. OCWD has and continues to work closely with the US Army Corps of Engineers (USACE) to manage the conservation pool and to increase the amount of water that can be temporarily impounded in the conservation pool. Currently, the Conservation Pool is allowed to rise to elevation 498 ft msl (approx. 10,000 af of storage) during the storm season and to 505 ft msl (approx. 20,000 af of storage) during the non-storm season. OCWD has been working with the USACE on a Feasibility Study to permanently allow for storage of stormwater up to elevation 505 msl year-round. Even though increasing the Conservation Pool will increase the amount of stormwater captured, the weather forecasting used to manage the conservation pool can be improved in order to minimize lost opportunities to capture water or unnecessary releases of water to the ocean. To increase the efficiency of stormwater capture, OCWD is partnering with the Center for Western Weather and Water Extremes (http://cw3e.ucsd.edu/) to study the viability of using Forecast-Informed Reservoir Operations (FIRO) at Prado Dam. FIRO represents the next generation of operating water reservoirs using the best available technology. Moreover, given the importance of atmospheric river (AR) storms on water supplies in California, FIRO represents a methodology to take advantage of our increasing understanding of AR storms which are infrequent but provide a large percentage of total precipitation.

  7. Development of Neutron Energy Spectral Signatures for Passive Monitoring of Spent Nuclear Fuels in Dry Cask Storage

    NASA Astrophysics Data System (ADS)

    Harkness, Ira; Zhu, Ting; Liang, Yinong; Rauch, Eric; Enqvist, Andreas; Jordan, Kelly A.

    2018-01-01

    Demand for spent nuclear fuel dry casks as an interim storage solution has increased globally and the IAEA has expressed a need for robust safeguards and verification technologies for ensuring the continuity of knowledge and the integrity of radioactive materials inside spent fuel casks. Existing research has been focusing on "fingerprinting" casks based on count rate statistics to represent radiation emission signatures. The current research aims to expand to include neutron energy spectral information as part of the fuel characteristics. First, spent fuel composition data are taken from the Next Generation Safeguards Initiative Spent Fuel Libraries, representative for Westinghouse 17ˣ17 PWR assemblies. The ORIGEN-S code then calculates the spontaneous fission and (α,n) emissions for individual fuel rods, followed by detailed MCNP simulations of neutrons transported through the fuel assemblies. A comprehensive database of neutron energy spectral profiles is to be constructed, with different enrichment, burn-up, and cooling time conditions. The end goal is to utilize the computational spent fuel library, predictive algorithm, and a pressurized 4He scintillator to verify the spent fuel assemblies inside a cask. This work identifies neutron spectral signatures that correlate with the cooling time of spent fuel. Both the total and relative contributions from spontaneous fission and (α,n) change noticeably with respect to cooling time, due to the relatively short half-life (18 years) of the major neutron source 244Cm. Identification of this and other neutron spectral signatures allows the characterization of spent nuclear fuels in dry cask storage.

  8. Energy Storage for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Perez-Davis, Marla E.; Loyselle, Patricia L.; Hoberecht, Mark A.; Manzo, Michelle A.; Kohout, Lisa L.; Burke, Kenneth A.; Cabrera, Carlos R.

    2001-01-01

    The NASA Glenn Research Center (GRC) has long been a major contributor to the development and application of energy storage technologies for NASAs missions and programs. NASA GRC has supported technology efforts for the advancement of batteries and fuel cells. The Electrochemistry Branch at NASA GRC continues to play a critical role in the development and application of energy storage technologies, in collaboration with other NASA centers, government agencies, industry and academia. This paper describes the work in batteries and fuel cell technologies at the NASA Glenn Research Center. It covers a number of systems required to ensure that NASAs needs for a wide variety of systems are met. Some of the topics covered are lithium-based batteries, proton exchange membrane (PEM) fuel cells, and nanotechnology activities. With the advances of the past years, we begin the 21st century with new technical challenges and opportunities as we develop enabling technologies for batteries and fuel cells for aerospace applications.

  9. Storage Tanks and Dispensers for E85 and Bio-Diesel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Webster, Michael; Frederick, Justin

    2014-02-10

    Project objective is to improve the District's alternative fueling infrastructure by installing storage tanks and dispensers for E-85 and Bio-Diesel at the existing Blackwell Forest Preserve Alternative Fuel Station. The addition of E-85 and Bio-Diesel at this station will continue to reduce our dependency on foreign oil, while promoting the use of clean burning, domestically produced, renewable alternative fuels. In addition, this station will promote strong intergovernmental cooperation as other governmental agencies have expressed interest in utilizing this station.

  10. Operation of the 25kW NASA Lewis Research Center Solar Regenerative Fuel Cell Tested Facility

    NASA Technical Reports Server (NTRS)

    Moore, S. H.; Voecks, G. E.

    1997-01-01

    Assembly of the NASA Lewis Research Center(LeRC)Solar Regenerative Fuel Cell (RFC) Testbed Facility has been completed and system testing has proceeded. This facility includes the integration of two 25kW photovoltaic solar cell arrays, a 25kW proton exchange membrane (PEM) electrolysis unit, four 5kW PEM fuel cells, high pressure hydrogen and oxygen storage vessels, high purity water storage containers, and computer monitoring, control and data acquisition.

  11. FY 2012 USED FUEL DISPOSITION CAMPAIGN TRANSPORTATION TASK REPORT ON INL EFFORTS SUPPORTING THE MODERATOR EXCLUSION CONCEPT AND STANDARDIZED TRANSPORTATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D. K. Morton

    2012-08-01

    Following the defunding of the Yucca Mountain Project, it is reasonable to assume that commercial used fuel will remain in storage for a longer time period than initially assumed. Previous transportation task work in FY 2011, under the Department of Energy’s Office of Nuclear Energy, Used Fuel Disposition Campaign, proposed an alternative for safely transporting used fuel regardless of the structural integrity of the used fuel, baskets, poisons, or storage canisters after an extended period of storage. This alternative assures criticality safety during transportation by implementing a concept that achieves moderator exclusion (no in-leakage of moderator into the used fuelmore » cavity). By relying upon a component inside of the transportation cask that provides a watertight function, a strong argument can be made that moderator intrusion is not credible and should not be a required assumption for criticality evaluations during normal or hypothetical accident conditions of transportation. This Transportation Task report addresses the assigned FY 2012 work that supports the proposed moderator exclusion concept as well as a standardized transportation system. The two tasks assigned were to (1) promote the proposed moderator exclusion concept to both regulatory and nuclear industry audiences and (2) advance specific technical issues in order to improve American Society of Mechanical Engineers Boiler and Pressure Vessel Code, Section III, Division 3 rules for storage and transportation containments. The common point behind both of the assigned tasks is to provide more options that can be used to resolve current issues being debated regarding the future transportation of used fuel after extended storage.« less

  12. Fuel cells for commercial energy

    NASA Astrophysics Data System (ADS)

    Huppmann, Gerhard; Weisse, Eckart; Bischoff, Manfred

    1990-04-01

    The development of various types of fuel cells is described. Advantges and drawbacks are considered for alkaline fuel cells, phosphoric acid fuel cells, and molten carbonate fuel cells. It is shown that their modular construction is particularly adapted to power heat systems. A comparison which is largely in favor of fuel cells, is made between coal, oil, natural gas power stations, and fuel cells. Safety risks in operation are also compared with those of conventional power stations. Fuel cells are particularly suited for dwellings, shopping centers, swimming pools, other sporting installations, and research facilities, whose high current and heat requirements can be covered by power heat coupling.

  13. Implementation of Organ Culture storage of donor corneas: a 3 year study of its impact on the corneal transplant wait list at the Lions New South Wales Eye Bank.

    PubMed

    Devasahayam, Raj; Georges, Pierre; Hodge, Christopher; Treloggen, Jane; Cooper, Simon; Petsoglou, Con; Sutton, Gerard; Zhu, Meidong

    2016-09-01

    Organ Culture corneal storage offers an extended storage time and increased donor pool and tissue assessment opportunities. In September 2011, the Lions New South Wales Eye Bank (LNSWEB) moved from hypothermic storage to Organ Culture corneal storage. This study evaluates the impact of implementation of Organ Culture on donor eye retrieval and the corneal transplant waiting list over a 3 year period in NSW, Australia. Retrospective review of the LNSWEB data from September 2011 to August 2014. Tissue collection, waiting list and tissue utilization data were recorded. The data from September 2008 to August 2011 for Optisol-GS storage was used for comparison. The annual donor and cornea collection rate increased 35 % and 44 % respectively with Organ Culture compared to Optisol-GS storage. The utilization rate of corneal tissue increased from 73.4 % with hypothermic storage to 77.2 % with Organ Culture storage. The transplant wait list decreased by 77.3 % from September 2011 to August 2014 and correlated with the increased rate of corneal transplantation (r = -0.9381, p < 0.0001). No other factors impacting the wait list changed over this period. Corneas not used from either storage method were due to unacceptable endothelial cell density/viability. The contamination rate of corneas stored in Organ Culture medium was low at 1.74 %. The Organ Culture storage method increases the corneal donor pool available to Eye banks. The practical benefits of the extended storage time and increased donor assessment opportunities have directly led to an increase in corneal utilization rate and a significant decrease in recipient wait list time.

  14. 40 CFR 63.1061 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... shall have the meaning given them in the Act and in this section. Capacity means the volume of liquid... or emptying means the partial or complete removal of stored liquid from a storage vessel. Storage vessels that contain liquid only as wall or bottom clingage, or in pools due to bottom irregularities, are...

  15. 40 CFR 63.1061 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... shall have the meaning given them in the Act and in this section. Capacity means the volume of liquid... or emptying means the partial or complete removal of stored liquid from a storage vessel. Storage vessels that contain liquid only as wall or bottom clingage, or in pools due to bottom irregularities, are...

  16. 40 CFR 63.1061 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... shall have the meaning given them in the Act and in this section. Capacity means the volume of liquid... or emptying means the partial or complete removal of stored liquid from a storage vessel. Storage vessels that contain liquid only as wall or bottom clingage, or in pools due to bottom irregularities, are...

  17. 40 CFR 63.1061 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... shall have the meaning given them in the Act and in this section. Capacity means the volume of liquid... or emptying means the partial or complete removal of stored liquid from a storage vessel. Storage vessels that contain liquid only as wall or bottom clingage, or in pools due to bottom irregularities, are...

  18. 40 CFR 63.1061 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... shall have the meaning given them in the Act and in this section. Capacity means the volume of liquid... or emptying means the partial or complete removal of stored liquid from a storage vessel. Storage vessels that contain liquid only as wall or bottom clingage, or in pools due to bottom irregularities, are...

  19. Afforestation effects on soil carbon storage in the United States: a synthesis

    Treesearch

    L.E. Nave; C.W. Swanston; U. Mishra; K.J. Nadelhoffer

    2013-01-01

    Afforestation (tree establishment on nonforested land) is a management option for increasing terrestrial C sequestration and mitigating rising atmospheric carbon dioxide because, compared to nonforested land uses, afforestation increases C storage in aboveground pools. However, because terrestrial ecosystems typically store most of their C in soils, afforestation...

  20. 30 CFR 75.1906 - Transport of diesel fuel.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Transport of diesel fuel. 75.1906 Section 75... diesel fuel. (a) Diesel fuel shall be transported only by diesel fuel transportation units or in safety... fuel storage facilities. (c) Safety cans that leak must be promptly removed from the mine. (d) Diesel...

Top