Sample records for fuel tanks forms

  1. 10. Fuel tanks concrete form plans, elevations and details, sheet ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. Fuel tanks concrete form plans, elevations and details, sheet 95 of 130 - Naval Air Station Fallon, Fuel Tanks, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV

  2. Systems for delivering liquified natural gas to an engine

    DOEpatents

    Bingham, Dennis N.; Wilding, Bruce M.; O'Brien, James E.; Siahpush, Ali S.; Brown, Kevin B.

    2000-01-01

    A fuel delivery system includes a fuel tank configured to receive liquid natural gas. A first conduit extends from a vapor holding portion of the fuel tank to an economizer valve. A second conduit extends from a liquid holding portion of the fuel tank to the economizer valve. Fluid coupled to the economizer valve is a vaporizer which is heated by coolant from the engine and is positioned below the fuel tank. The economizer valve selectively withdraws either liquid natural gas or vaporized natural gas from the fuel tank depending on the pressure within the vapor holding portion of the fuel tank. A delivery conduit extends from the vaporizer to the engine. A return conduit having a check valve formed therein extends from the delivery conduit to the vapor holding portion of the fuel tank for pressurizing the fuel tank.

  3. Approximate Pressure Distribution in an Accelerating Launch-Vehicle Fuel Tank

    NASA Technical Reports Server (NTRS)

    Nemeth, Michael P.

    2010-01-01

    A detailed derivation of the equations governing the pressure in a generic liquid-fuel launch vehicle tank subjected to uniformly accelerated motion is presented. The equations obtained are then for the Space Shuttle Superlightweight Liquid-Oxygen Tank at approximately 70 seconds into flight. This generic derivation is applicable to any fuel tank in the form of a surface of revolution and should be useful in the design of future launch vehicles

  4. Vehicle fuel system

    DOEpatents

    Risse, John T.; Taggart, James C.

    1976-01-01

    A vehicle fuel system comprising a plurality of tanks, each tank having a feed and a return conduit extending into a lower portion thereof, the several feed conduits joined to form one supply conduit feeding fuel to a supply pump and using means, unused fuel being returned via a return conduit which branches off to the several return conduits.

  5. Corrosion of aluminum alloy 2024 by microorganisms isolated from aircraft fuel tanks.

    PubMed

    McNamara, Christopher J; Perry, Thomas D; Leard, Ryan; Bearce, Ktisten; Dante, James; Mitchell, Ralph

    2005-01-01

    Microorganisms frequently contaminate jet fuel and cause corrosion of fuel tank metals. In the past, jet fuel contaminants included a diverse group of bacteria and fungi. The most common contaminant was the fungus Hormoconis resinae. However, the jet fuel community has been altered by changes in the composition of the fuel and is now dominated by bacterial contaminants. The purpose of this research was to determine the composition of the microbial community found in fuel tanks containing jet propellant-8 (JP-8) and to determine the potential of this community to cause corrosion of aluminum alloy 2024 (AA2024). Isolates cultured from fuel tanks containing JP-8 were closely related to the genus Bacillus and the fungi Aureobasidium and Penicillium. Biocidal activity of the fuel system icing inhibitor diethylene glycol monomethyl ether is the most likely cause of the prevalence of endospore forming bacteria. Electrochemical impedance spectroscopy and metallographic analysis of AA2024 exposed to the fuel tank environment indicated that the isolates caused corrosion of AA2024. Despite the limited taxonomic diversity of microorganisms recovered from jet fuel, the community has the potential to corrode fuel tanks.

  6. View of STS-114 External Fuel Tank during separation

    NASA Image and Video Library

    2005-07-26

    S114-E-5122 (26 July 2005) --- The external fuel tank is jettisoned from the Space Shuttle Discovery and falls toward Earth’s atmosphere during the completion of the launch phase of the STS-114 mission. A blue and white Earth forms the backdrop for this image.

  7. Analysis of Tank PMD Rewetting Following Thrust Resettling

    NASA Astrophysics Data System (ADS)

    Weislogel, M. M.; Sala, M. A.; Collicott, S. H.

    2002-10-01

    Recent investigations have successfully demonstrated closed-form analytical solutions of spontaneous capillary flows in idealized cylindrical containers with interior corners. In this report, the theory is extended and applied to complex containers modeling spacecraft fuel tanks employing propellant management devices (PMDs). The specific problem investigated is one of spontaneous rewetting of a typical partially filled liquid fuel/cryogen tank with PMD after thrust resettling. The transients of this flow impact the logistics of orbital maneuvers and potentially tank thermal control. The general procedure to compute the initial condition (mean radius of curvature for the interface) for the closed-form transient flows is first outlined then solved for several 'complex' cylindrical tanks exhibiting symmetry. The utility and limitations of the technique as a design tool are discussed in a summary, which also highlights comparisons with NASA flight data of a model propellant tank with PMD.

  8. Analysis of Tank PMD Rewetting Following Thrust Resettling

    NASA Technical Reports Server (NTRS)

    Weislogel, M. M.; Sala, M. A.; Collicott, S. H.; Rame, Enrique (Technical Monitor)

    2002-01-01

    Recent investigations have successfully demonstrated closed-form analytical solutions of spontaneous capillary flows in idealized cylindrical containers with interior corners. In this report, the theory is extended and applied to complex containers modeling spacecraft fuel tanks employing propellant management devices (PMDs). The specific problem investigated is one of spontaneous rewetting of a typical partially filled liquid fuel/cryogen tank with PMD after thrust resettling. The transients of this flow impact the logistics of orbital maneuvers and potentially tank thermal control. The general procedure to compute the initial condition (mean radius of curvature for the interface) for the closed-form transient flows is first outlined then solved for several 'complex' cylindrical tanks exhibiting symmetry. The utility and limitations of the technique as a design tool are discussed in a summary, which also highlights comparisons with NASA flight data of a model propellant tank with PMD.

  9. MEANS FOR COOLING REACTORS

    DOEpatents

    Wheeler, J.A.

    1957-11-01

    A design of a reactor is presented in which the fuel elements may be immersed in a liquid coolant when desired without the necessity of removing them from the reactor structure. The fuel elements, containing the fissionable material are in plate form and are disposed within spaced slots in a moderator material, such as graphite to form the core. Adjacent the core is a tank containing the liquid coolant. The fuel elements are mounted in spaced relationship on a rotatable shaft which is located between the core and the tank so that by rotation of the shaft the fuel elements may be either inserted in the slots in the core to sustain a chain reaction or immersed in the coolant.

  10. Dual Tank Fuel System

    DOEpatents

    Wagner, Richard William; Burkhard, James Frank; Dauer, Kenneth John

    1999-11-16

    A dual tank fuel system has primary and secondary fuel tanks, with the primary tank including a filler pipe to receive fuel and a discharge line to deliver fuel to an engine, and with a balance pipe interconnecting the primary tank and the secondary tank. The balance pipe opens close to the bottom of each tank to direct fuel from the primary tank to the secondary tank as the primary tank is filled, and to direct fuel from the secondary tank to the primary tank as fuel is discharged from the primary tank through the discharge line. A vent line has branches connected to each tank to direct fuel vapor from the tanks as the tanks are filled, and to admit air to the tanks as fuel is delivered to the engine.

  11. Thermally resistant polymers for fuel tank sealants

    NASA Technical Reports Server (NTRS)

    Webster, J. A.

    1973-01-01

    Imide-linked perfluoroalkylene ether polymers, that were developed for the high temperature fuel tank sealant application, are discussed. Modifications of polymer structure and properties were realized through use of a new aromatic dianhydride intermediate containing an ether-linked perfluoroalkylene segment. Tests of thermal, oxidative and hydrolytic stability, fuel resistance, and adhesion are discussed along with tensile strength and elongation results. Efforts to effect a low temperature condensation of amic acid prepolymer to form imide links inside are described.

  12. 49 CFR 238.423 - Fuel tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ....423 Fuel tanks. (a) External fuel tanks. Each type of external fuel tank must be approved by FRA's... equivalent to a fuel tank that complies with the external fuel tank requirements in § 238.223(a). (b) Internal fuel tanks. Internal fuel tanks shall comply with the requirements specified in § 238.223(b). ...

  13. Permeability of Impacted Coated Composite Laminates

    NASA Technical Reports Server (NTRS)

    Johnson, W. S.; Findley, Benjamin

    2002-01-01

    Composite materials are being considered for use on future generations of Reusable Launch Vehicles (RLVs) for both fuel tanks and fuel feedlines. Through the use of composite materials NASA can reduce the overall weight of the vehicle dramatically. This weight savings can then be translated into an increase in the weight of payload sent into orbit, reducing the cost per pound of payload. It is estimated that by switching to composite materials for fuel tanks the weight of the tanks can be reduced by 40 percent, which translates to a total vehicle weight savings of 14 percent. In this research, carbon/epoxy composites were studied for fuel feedline applications. There are concerns about using composite materials for feedlines and fuel tanks because these materials are extremely vulnerable to impact in the form of inadvertent bumping or dropped tools both during installation and maintenance. Additionally, it has been found that some of the sample feedlines constructed have had leaks, and thus there may be a need to seal preexisting leaks in the composite prior to usage.

  14. Unitized Regenerative Fuel Cell System Gas Dryer/Humidifier Analytical Model Development

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth A.; Jakupca, Ian

    2004-01-01

    A lightweight Unitized Regenerative Fuel Cell (URFC) Energy Storage System concept is being developed at the NASA Glenn Research Center (GRC). This Unitized Regenerative Fuel Cell System (URFCS) is unique in that it uses Regenerative Gas Dryers/Humidifiers (RGD/H) that are mounted on the surface of the gas storage tanks that act as the radiators for thermal control of the Unitized Regenerative Fuel Cell System (URFCS). As the gas storage tanks cool down during URFCS charging the RGD/H dry the hydrogen and oxygen gases produced by electrolysis. As the gas storage tanks heat up during URFCS discharging, the RGD/H humidify the hydrogen and oxygen gases used by the fuel cell. An analytical model was developed to simulate the URFCS RGD/H. The model is in the form of a Microsoft (registered trademark of Microsoft Corporation) Excel worksheet that allows the investigation of the RGD/H performance. Finite Element Analysis (FEA) modeling of the RGD/H and the gas storage tank wall was also done to analyze spatial temperature distribution within the RGD/H and the localized tank wall. Test results obtained from the testing of the RGD/H in a thermal vacuum environment were used to corroborate the analyses.

  15. Fuel-air munition and device

    DOEpatents

    Carlson, Gary A.

    1976-01-01

    An aerially delivered fuel-air munition consisting of an impermeable tank filled with a pressurized liquid fuel and joined at its two opposite ends with a nose section and a tail assembly respectively to complete an aerodynamic shape. On impact the tank is explosively ruptured to permit dispersal of the fuel in the form of a fuel-air cloud which is detonated after a preselected time delay by means of high explosive initiators ejected from the tail assembly. The primary component in the fuel is methylacetylene, propadiene, or mixtures thereof to which is added a small mole fraction of a relatively high vapor pressure liquid diluent or a dissolved gas diluent having a low solubility in the primary component.

  16. 49 CFR 238.223 - Locomotive fuel tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Locomotive fuel tanks. 238.223 Section 238.223... Equipment § 238.223 Locomotive fuel tanks. Locomotive fuel tanks shall comply with either the following or....21: (a) External fuel tanks. External locomotive fuel tanks shall comply with the requirements...

  17. 49 CFR 238.223 - Locomotive fuel tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Locomotive fuel tanks. 238.223 Section 238.223... Equipment § 238.223 Locomotive fuel tanks. Locomotive fuel tanks shall comply with either the following or....21: (a) External fuel tanks. External locomotive fuel tanks shall comply with the requirements...

  18. Optimization of armored spherical tanks for storage on the lunar surface

    NASA Technical Reports Server (NTRS)

    Bents, D. J.; Knight, D. A.

    1992-01-01

    A redundancy strategy for reducing micrometeroid armoring mass is investigated, with application to cryogenic reactant storage for a regenerative fuel cell (RFC) on the lunar surface. In that micrometeoroid environment, the cryogenic fuel must be protected from loss due to tank puncture. The tankage must have a sufficiently high probability of survival over the length of the mission so that the probability of system failure due to tank puncture is low compared to the other mission risk factors. Assuming that a single meteoroid penetration can cause a storage tank to lose its contents, two means are available to raise the probability of surviving micrometeoroid attack to the desired level. One can armor the tanks to a thickness sufficient to reduce probability of penetration of any tank to the desired level or add extra capacity in the form of spare tanks that results in survival of a given number out of the ensemble at the desired level. A combination of these strategies (armoring and redundancy) is investigated. The objective is to find the optimum combination which yields the lowest shielding mass per cubic meter of surviving fuel out of the original ensemble. The investigation found that, for the volumes of fuel associated with multikilowatt class cryo storage RFC's, and the armoring methodology and meteoroid models used, storage should be fragmented into small individual tanks. Larger installations (more fuel) pay less of a shielding penalty than small installations. For the same survival probability over the same time period, larger volumes will require less armoring mass per unit volume protected.

  19. Low cost, SPF aluminum cryogenic tank structure for ALS

    NASA Technical Reports Server (NTRS)

    Anton, Claire E.; Rasmussen, Perry; Thompson, Curt; Latham, Richard; Hamilton, C. Howard; Ren, Ben; Gandhi, Chimata; Hardwick, Dallis

    1992-01-01

    Past production work has shown that cryogenic tank structure for the Shuttle Booster Rockets and the Titan system have very high life cycle costs for the fuel tank structure. The tanks are machined stiffener-skin combination that are subsequently formed into the required contour after machining. The material scrap rate for these configurations are usually high, and the loss of a tank panel due to forming or heat treatment problems is very costly. The idea of reducing the amount of scrap material and scrapped structural members has prompted the introduction of built-up structure for cryogenic tanks to be explored on the ALS program. A build-up structure approach that has shown improvements in life cycle cost over the conventional built-up approach is the use of superplastically formed (SPF) stiffened panels (reducing the overall part count and weight for the tank) resistance spot welded (RSW) to outer tank skin material. The stiffeners provide for general stability of the tank, while the skin material provides hoop direction continuity for the loads.

  20. 49 CFR 238.423 - Fuel tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Fuel tanks. 238.423 Section 238.423 Transportation....423 Fuel tanks. (a) External fuel tanks. Each type of external fuel tank must be approved by FRA's Associate Administrator for Safety upon a showing that the fuel tank provides a level of safety at least...

  1. 49 CFR 238.423 - Fuel tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Fuel tanks. 238.423 Section 238.423 Transportation....423 Fuel tanks. (a) External fuel tanks. Each type of external fuel tank must be approved by FRA's Associate Administrator for Safety upon a showing that the fuel tank provides a level of safety at least...

  2. 49 CFR 238.423 - Fuel tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Fuel tanks. 238.423 Section 238.423 Transportation....423 Fuel tanks. (a) External fuel tanks. Each type of external fuel tank must be approved by FRA's Associate Administrator for Safety upon a showing that the fuel tank provides a level of safety at least...

  3. 49 CFR 238.423 - Fuel tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Fuel tanks. 238.423 Section 238.423 Transportation....423 Fuel tanks. (a) External fuel tanks. Each type of external fuel tank must be approved by FRA's Associate Administrator for Safety upon a showing that the fuel tank provides a level of safety at least...

  4. 40 CFR 52.1120 - Identification of plan.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... a new regulation 310 CMR 7.19 “Interim Sulfur-in-Fuel Limitations for Fossil Fuel Utilization... May 22, 1985, including Method 27, record form, potential leak points, major tank truck leak sources...

  5. 40 CFR 52.1120 - Identification of plan.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... a new regulation 310 CMR 7.19 “Interim Sulfur-in-Fuel Limitations for Fossil Fuel Utilization... May 22, 1985, including Method 27, record form, potential leak points, major tank truck leak sources...

  6. 40 CFR 52.1120 - Identification of plan.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... a new regulation 310 CMR 7.19 “Interim Sulfur-in-Fuel Limitations for Fossil Fuel Utilization... May 22, 1985, including Method 27, record form, potential leak points, major tank truck leak sources...

  7. 40 CFR 52.1120 - Identification of plan.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... a new regulation 310 CMR 7.19 “Interim Sulfur-in-Fuel Limitations for Fossil Fuel Utilization... May 22, 1985, including Method 27, record form, potential leak points, major tank truck leak sources...

  8. 40 CFR 52.1120 - Identification of plan.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... a new regulation 310 CMR 7.19 “Interim Sulfur-in-Fuel Limitations for Fossil Fuel Utilization... May 22, 1985, including Method 27, record form, potential leak points, major tank truck leak sources...

  9. Fuel tank integrity research : fuel tank analyses and test plans

    DOT National Transportation Integrated Search

    2013-04-15

    The Federal Railroad Administrations Office of Research : and Development is conducting research into fuel tank : crashworthiness. Fuel tank research is being performed to : determine strategies for increasing the fuel tank impact : resistance to ...

  10. HEAVY WATER MODERATED NEUTRONIC REACTOR

    DOEpatents

    Szilard, L.

    1958-04-29

    A nuclear reactor of the type which utilizes uranium fuel elements and a liquid coolant is described. The fuel elements are in the form of elongated tubes and are disposed within outer tubes extending through a tank containing heavy water, which acts as a moderator. The ends of the fuel tubes are connected by inlet and discharge headers, and liquid bismuth is circulated between the headers and through the fuel tubes for cooling. Helium is circulated through the annular space between the outer tubes in the tank and the fuel tubes to cool the water moderator to prevent boiling. The fuel tubes are covered with a steel lining, and suitable control means, heat exchange means, and pumping means for the coolants are provided to complete the reactor assembly.

  11. 14 CFR 29.975 - Fuel tank vents and carburetor vapor vents.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.975 Fuel tank vents and carburetor vapor vents. (a) Fuel tank vents. Each fuel tank must be vented from the... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel tank vents and carburetor vapor vents...

  12. 14 CFR 29.975 - Fuel tank vents and carburetor vapor vents.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.975 Fuel tank vents and carburetor vapor vents. (a) Fuel tank vents. Each fuel tank must be vented from the... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tank vents and carburetor vapor vents...

  13. 14 CFR 25.975 - Fuel tank vents and carburetor vapor vents.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.975 Fuel tank vents and carburetor vapor vents. (a) Fuel tank vents. Each fuel tank must be vented from the... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel tank vents and carburetor vapor vents...

  14. 14 CFR 29.975 - Fuel tank vents and carburetor vapor vents.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.975 Fuel tank vents and carburetor vapor vents. (a) Fuel tank vents. Each fuel tank must be vented from the... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel tank vents and carburetor vapor vents...

  15. 14 CFR 29.975 - Fuel tank vents and carburetor vapor vents.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.975 Fuel tank vents and carburetor vapor vents. (a) Fuel tank vents. Each fuel tank must be vented from the... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel tank vents and carburetor vapor vents...

  16. 14 CFR 29.975 - Fuel tank vents and carburetor vapor vents.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.975 Fuel tank vents and carburetor vapor vents. (a) Fuel tank vents. Each fuel tank must be vented from the... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel tank vents and carburetor vapor vents...

  17. 14 CFR 25.975 - Fuel tank vents and carburetor vapor vents.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.975 Fuel tank vents and carburetor vapor vents. (a) Fuel tank vents. Each fuel tank must be vented from the... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tank vents and carburetor vapor vents...

  18. 14 CFR 25.975 - Fuel tank vents and carburetor vapor vents.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.975 Fuel tank vents and carburetor vapor vents. (a) Fuel tank vents. Each fuel tank must be vented from the... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel tank vents and carburetor vapor vents...

  19. 14 CFR 25.975 - Fuel tank vents and carburetor vapor vents.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.975 Fuel tank vents and carburetor vapor vents. (a) Fuel tank vents. Each fuel tank must be vented from the... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel tank vents and carburetor vapor vents...

  20. 14 CFR 25.975 - Fuel tank vents and carburetor vapor vents.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.975 Fuel tank vents and carburetor vapor vents. (a) Fuel tank vents. Each fuel tank must be vented from the... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel tank vents and carburetor vapor vents...

  1. 14 CFR 121.229 - Location of fuel tanks.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Location of fuel tanks. 121.229 Section 121... of fuel tanks. (a) Fuel tanks must be located in accordance with § 121.255. (b) No part of the engine... the wall of an integral tank. (c) Fuel tanks must be isolated from personnel compartments by means of...

  2. ADM. Tanks: from left to right: fuel oil tank, fuel ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ADM. Tanks: from left to right: fuel oil tank, fuel pump house (TAN-611), engine fuel tank, water pump house, water storage tank. Camera facing northwest. Not edge of shielding berm at left of view. Date: November 25, 1953. INEEL negative no. 9217 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  3. 14 CFR 121.229 - Location of fuel tanks.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Location of fuel tanks. 121.229 Section 121... of fuel tanks. (a) Fuel tanks must be located in accordance with § 121.255. (b) No part of the engine... the wall of an integral tank. (c) Fuel tanks must be isolated from personnel compartments by means of...

  4. 46 CFR 58.50-10 - Diesel fuel tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Diesel fuel tanks. 58.50-10 Section 58.50-10 Shipping... AND RELATED SYSTEMS Independent Fuel Tanks § 58.50-10 Diesel fuel tanks. (a) Construction. (1) Tanks... allowed in the construction of independent fuel tanks shall be as indicated in Table 58.50-10(a), except...

  5. 49 CFR 229.217 - Fuel tank.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Fuel tank. 229.217 Section 229.217 Transportation... TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Locomotive Crashworthiness Design Requirements § 229.217 Fuel tank. (a) External fuel tanks. Locomotives equipped with external fuel tanks shall, at a minimum...

  6. 49 CFR 229.217 - Fuel tank.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Fuel tank. 229.217 Section 229.217 Transportation... TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Locomotive Crashworthiness Design Requirements § 229.217 Fuel tank. (a) External fuel tanks. Locomotives equipped with external fuel tanks shall, at a minimum...

  7. 49 CFR 229.217 - Fuel tank.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Fuel tank. 229.217 Section 229.217 Transportation... TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Locomotive Crashworthiness Design Requirements § 229.217 Fuel tank. (a) External fuel tanks. Locomotives equipped with external fuel tanks shall, at a minimum...

  8. 49 CFR 229.217 - Fuel tank.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Fuel tank. 229.217 Section 229.217 Transportation... TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Locomotive Crashworthiness Design Requirements § 229.217 Fuel tank. (a) External fuel tanks. Locomotives equipped with external fuel tanks shall, at a minimum...

  9. Optimization of armored spherical tanks for storage on the lunar surface

    NASA Technical Reports Server (NTRS)

    Bents, D. J.; Knight, D. A.

    1992-01-01

    A redundancy strategy for reducing micrometeroid armoring mass is investigated, with application to cryogenic reactant storage for a regenerative fuel cell (RFC) on the lunar surface. In that micrometeoroid environment, the cryogenic fuel must be protected from loss due to tank puncture. The tankage must have a sufficiently high probability of survival over the length of the mission so that the probability of system failure due to tank puncture is low compared to the other mission risk factors. Assuming that a single meteoroid penetration can cause a storage tank to lose its contents, two means are available to raise the probability of surviving micrometeoroid attack to the desired level. One can armor the tanks to a thickness sufficient to reduce probability of penetration of any tank to the desired level or add extra capacity in the form of space tanks that results in survival of a given number out of the ensemble at the desired level. A combination of these strategies (armor and redundancy) is investigated.

  10. 14 CFR 125.127 - Location of fuel tanks.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Location of fuel tanks. 125.127 Section 125... Requirements § 125.127 Location of fuel tanks. (a) Fuel tanks must be located in accordance with § 125.153. (b... compartment may be used as the wall of an integral tank. (c) Fuel tanks must be isolated from personnel...

  11. 14 CFR 125.127 - Location of fuel tanks.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Location of fuel tanks. 125.127 Section 125... Requirements § 125.127 Location of fuel tanks. (a) Fuel tanks must be located in accordance with § 125.153. (b... compartment may be used as the wall of an integral tank. (c) Fuel tanks must be isolated from personnel...

  12. A distributed fluid level sensor suitable for monitoring fuel load on board a moving fuel tank

    NASA Astrophysics Data System (ADS)

    Arkwright, John W.; Parkinson, Luke A.; Papageorgiou, Anthony W.

    2018-02-01

    A temperature insensitive fiber Bragg grating sensing array has been developed for monitoring fluid levels in a moving tank. The sensors are formed from two optical fibers twisted together to form a double helix with pairs of fiber Bragg gratings located above one another at the points where the fibers are vertically disposed. The sensing mechanism is based on a downwards deflection of the section of the double helix containing the FBGs which causes the tension in the upper FBG to decrease and the tension in the lower FBG to increase with concomitant changes in Bragg wavelength in each FBG. Changes in ambient temperature cause a common mode increase in Bragg wavelength, thus monitoring the differential change in wavelength provides a temperature independent measure of the applied pressure. Ambient temperature can be monitored simultaneously by taking the average wavelength of the upper and lower FBGs. The sensors are able to detect variations in pressure with resolutions better than 1 mmH2O and when placed on the bottom of a tank can be used to monitor fluid level based on the recorded pressure. Using an array of these sensors located along the bottom of a moving tank it was possible to monitor the fluid level at multiple points and hence dynamically track the total fluid volume in the tank. The outer surface of the sensing array is formed from a thin continuous Teflon sleeve, making it suitable for monitoring the level of volatile fluids such as aviation fuel and gasoline.

  13. 33 CFR 183.518 - Fuel tank openings.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Fuel tank openings. 183.518...) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Equipment Standards § 183.518 Fuel tank openings. Each opening into the fuel tank must be at or above the topmost surface of the tank. ...

  14. 33 CFR 183.518 - Fuel tank openings.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Fuel tank openings. 183.518...) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Equipment Standards § 183.518 Fuel tank openings. Each opening into the fuel tank must be at or above the topmost surface of the tank. ...

  15. FLUID MODERATED REACTOR

    DOEpatents

    Wigner, E.P.; Ohlinger, L.A.; Young, G.J.; Weinberg, A.M.

    1957-10-22

    A reactor which utilizes fissionable fuel elements in rod form immersed in a moderator or heavy water and a means of circulating the heavy water so that it may also function as a coolant to remove the heat generated by the fission of the fuel are described. In this design, the clad fuel elements are held in vertical tubes immersed in heavy water in a tank. The water is circulated in a closed system by entering near the tops of the tubes, passing downward through the tubes over the fuel elements and out into the tank, where it is drawn off at the bottom, passed through heat exchangers to give up its heat and then returned to the tops of the tubes for recirculation.

  16. 46 CFR 58.50-10 - Diesel fuel tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Diesel fuel tanks. 58.50-10 Section 58.50-10 Shipping... AND RELATED SYSTEMS Independent Fuel Tanks § 58.50-10 Diesel fuel tanks. (a) Construction. (1) Tanks... not less than 0.031 inch (USSG 22) may be used for tanks up to 30-gallon capacity. 4 For diesel tanks...

  17. 46 CFR 58.50-10 - Diesel fuel tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Diesel fuel tanks. 58.50-10 Section 58.50-10 Shipping... AND RELATED SYSTEMS Independent Fuel Tanks § 58.50-10 Diesel fuel tanks. (a) Construction. (1) Tanks... not less than 0.031 inch (USSG 22) may be used for tanks up to 30-gallon capacity. 4 For diesel tanks...

  18. 46 CFR 119.435 - Integral fuel tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Integral fuel tanks. 119.435 Section 119.435 Shipping... Machinery Requirements § 119.435 Integral fuel tanks. (a) Diesel fuel tanks may not be built integral with... for certification of a vessel, integral fuel tanks must withstand a hydrostatic pressure test of 35 k...

  19. 33 CFR 183.520 - Fuel tank vent systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Fuel tank vent systems. 183.520...) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Equipment Standards § 183.520 Fuel tank vent systems. (a) Each fuel tank must have a vent system that prevents pressure in the tank from exceeding 80...

  20. 46 CFR 182.435 - Integral fuel tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Integral fuel tanks. 182.435 Section 182.435 Shipping...) MACHINERY INSTALLATION Specific Machinery Requirements § 182.435 Integral fuel tanks. (a) Gasoline fuel tanks must be independent of the hull. (b) Diesel fuel tanks may not be built integral with the hull of...

  1. 46 CFR 182.435 - Integral fuel tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Integral fuel tanks. 182.435 Section 182.435 Shipping...) MACHINERY INSTALLATION Specific Machinery Requirements § 182.435 Integral fuel tanks. (a) Gasoline fuel tanks must be independent of the hull. (b) Diesel fuel tanks may not be built integral with the hull of...

  2. 46 CFR 182.435 - Integral fuel tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Integral fuel tanks. 182.435 Section 182.435 Shipping...) MACHINERY INSTALLATION Specific Machinery Requirements § 182.435 Integral fuel tanks. (a) Gasoline fuel tanks must be independent of the hull. (b) Diesel fuel tanks may not be built integral with the hull of...

  3. 46 CFR 182.435 - Integral fuel tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Integral fuel tanks. 182.435 Section 182.435 Shipping...) MACHINERY INSTALLATION Specific Machinery Requirements § 182.435 Integral fuel tanks. (a) Gasoline fuel tanks must be independent of the hull. (b) Diesel fuel tanks may not be built integral with the hull of...

  4. 46 CFR 58.50-5 - Gasoline fuel tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Gasoline fuel tanks. 58.50-5 Section 58.50-5 Shipping... AND RELATED SYSTEMS Independent Fuel Tanks § 58.50-5 Gasoline fuel tanks. (a) Construction—(1) Shape...) Installation. (1) Gasoline fuel tanks used for propulsion shall be located in water-tight compartments separate...

  5. 46 CFR 58.50-5 - Gasoline fuel tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Gasoline fuel tanks. 58.50-5 Section 58.50-5 Shipping... AND RELATED SYSTEMS Independent Fuel Tanks § 58.50-5 Gasoline fuel tanks. (a) Construction—(1) Shape...) Installation. (1) Gasoline fuel tanks used for propulsion shall be located in water-tight compartments separate...

  6. 46 CFR 58.50-5 - Gasoline fuel tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Gasoline fuel tanks. 58.50-5 Section 58.50-5 Shipping... AND RELATED SYSTEMS Independent Fuel Tanks § 58.50-5 Gasoline fuel tanks. (a) Construction—(1) Shape...) Installation. (1) Gasoline fuel tanks used for propulsion shall be located in water-tight compartments separate...

  7. 46 CFR 58.50-5 - Gasoline fuel tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Gasoline fuel tanks. 58.50-5 Section 58.50-5 Shipping... AND RELATED SYSTEMS Independent Fuel Tanks § 58.50-5 Gasoline fuel tanks. (a) Construction—(1) Shape...) Installation. (1) Gasoline fuel tanks used for propulsion shall be located in water-tight compartments separate...

  8. 46 CFR 58.50-5 - Gasoline fuel tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Gasoline fuel tanks. 58.50-5 Section 58.50-5 Shipping... AND RELATED SYSTEMS Independent Fuel Tanks § 58.50-5 Gasoline fuel tanks. (a) Construction—(1) Shape...) Installation. (1) Gasoline fuel tanks used for propulsion shall be located in water-tight compartments separate...

  9. 46 CFR 119.435 - Integral fuel tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Integral fuel tanks. 119.435 Section 119.435 Shipping... Machinery Requirements § 119.435 Integral fuel tanks. (a) Diesel fuel tanks may not be built integral with... for certification of a vessel, integral fuel tanks must withstand a hydrostatic pressure test of 35 k...

  10. 33 CFR 183.520 - Fuel tank vent systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Fuel tank vent systems. 183.520...) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Equipment Standards § 183.520 Fuel tank vent systems. (a) Each fuel tank must have a vent system that prevents pressure in the tank from exceeding 80...

  11. 33 CFR 183.512 - Fuel tanks: Prohibited materials.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Fuel tanks: Prohibited materials... tanks: Prohibited materials. (a) A fuel tank must not be constructed from terneplate. (b) Unless it has an inorganic sacrificial galvanic coating on the inside and outside of the tank, a fuel tank must not...

  12. 14 CFR 23.967 - Fuel tank installation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ....967 Fuel tank installation. (a) Each fuel tank must be supported so that tank loads are not... tank liner is used, it must be supported so that it is not required to withstand fluid loads; (4... securing or loss of the fuel filler cap. (b) Each tank compartment must be ventilated and drained to...

  13. 14 CFR 23.967 - Fuel tank installation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ....967 Fuel tank installation. (a) Each fuel tank must be supported so that tank loads are not... tank liner is used, it must be supported so that it is not required to withstand fluid loads; (4... securing or loss of the fuel filler cap. (b) Each tank compartment must be ventilated and drained to...

  14. 14 CFR 23.967 - Fuel tank installation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ....967 Fuel tank installation. (a) Each fuel tank must be supported so that tank loads are not... tank liner is used, it must be supported so that it is not required to withstand fluid loads; (4... securing or loss of the fuel filler cap. (b) Each tank compartment must be ventilated and drained to...

  15. 14 CFR 23.967 - Fuel tank installation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ....967 Fuel tank installation. (a) Each fuel tank must be supported so that tank loads are not... tank liner is used, it must be supported so that it is not required to withstand fluid loads; (4... securing or loss of the fuel filler cap. (b) Each tank compartment must be ventilated and drained to...

  16. 14 CFR 23.967 - Fuel tank installation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ....967 Fuel tank installation. (a) Each fuel tank must be supported so that tank loads are not... tank liner is used, it must be supported so that it is not required to withstand fluid loads; (4... securing or loss of the fuel filler cap. (b) Each tank compartment must be ventilated and drained to...

  17. NEUTRONIC REACTOR OPERATIONAL METHOD AND CORE SYSTEM

    DOEpatents

    Winters, C.E.; Graham, C.B.; Culver, J.S.; Wilson, R.H.

    1960-07-19

    Homogeneous neutronic reactor systems are described wherein an aqueous fuel solution is continuously circulated through a spherical core tank. The pumped fuel solution-is injected tangentially into the hollow spherical interior, thereby maintaining vigorous rotation of the solution within the tank in the form of a vortex; gaseous radiolytic decomposition products concentrate within the axial vortex cavity. The evolved gas is continuously discharged through a gas- outlet port registering with an extremity of the vortex cavity. and the solution stream is discharged through an annular liquid outlet port concentrically encircling the gas outlet by virtue of which the vortex and its cavity are maintained precisely axially aligned with the gas outlet. A primary heat exchanger extracts useful heat from the hot effluent fuel solution before its recirculation into the core tank. Hollow cylinders and other alternative core- tank configurations defining geometric volumes of revolution about a principal axis are also covered. AEC's Homogeneous Reactor Experiment No. 1 is a preferred embodiment.

  18. 40 CFR 86.232-94 - Vehicle preconditioning.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... vehicle shall be moved to the test area and the following operations performed: (1) The fuel tank(s) shall be filled to approximately the prescribed “tank fuel volume” with the test fuel specified § 86.213. If the existing fuel in the fuel tank(s) does not meet the specifications contained in § 86.213, the...

  19. 77 FR 54850 - Airworthiness Directives; The Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-06

    ... sources in the auxiliary (center) fuel tank, main fuel tanks, and surge tanks caused by a wiring short or... on the rear spar, and installation of a TFE sleeve if necessary. This proposed AD would also add... sources in the auxiliary (center) fuel tank, main fuel tanks, and surge tanks caused by a wiring short or...

  20. Science& Technology Review June 2003

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMahon, D

    This month's issue has the following articles: (1) Livermore's Three-Pronged Strategy for High-Performance Computing, Commentary by Dona Crawford; (2) Riding the Waves of Supercomputing Technology--Livermore's Computation Directorate is exploiting multiple technologies to ensure high-performance, cost-effective computing; (3) Chromosome 19 and Lawrence Livermore Form a Long-Lasting Bond--Lawrence Livermore biomedical scientists have played an important role in the Human Genome Project through their long-term research on chromosome 19; (4) A New Way to Measure the Mass of Stars--For the first time, scientists have determined the mass of a star in isolation from other celestial bodies; and (5) Flexibly Fueled Storage Tank Bringsmore » Hydrogen-Powered Cars Closer to Reality--Livermore's cryogenic hydrogen fuel storage tank for passenger cars of the future can accommodate three forms of hydrogen fuel separately or in combination.« less

  1. 14 CFR 27.975 - Fuel tank vents.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.975 Fuel tank vents. (a) Each fuel tank... system must be designed to minimize spillage of fuel through the vents to an ignition source in the event... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tank vents. 27.975 Section 27.975...

  2. 14 CFR 27.975 - Fuel tank vents.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.975 Fuel tank vents. (a) Each fuel tank... system must be designed to minimize spillage of fuel through the vents to an ignition source in the event... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel tank vents. 27.975 Section 27.975...

  3. 14 CFR 27.975 - Fuel tank vents.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.975 Fuel tank vents. (a) Each fuel tank... system must be designed to minimize spillage of fuel through the vents to an ignition source in the event... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel tank vents. 27.975 Section 27.975...

  4. 14 CFR 27.975 - Fuel tank vents.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.975 Fuel tank vents. (a) Each fuel tank... system must be designed to minimize spillage of fuel through the vents to an ignition source in the event... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel tank vents. 27.975 Section 27.975...

  5. 14 CFR 27.975 - Fuel tank vents.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.975 Fuel tank vents. (a) Each fuel tank... system must be designed to minimize spillage of fuel through the vents to an ignition source in the event... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel tank vents. 27.975 Section 27.975...

  6. 14 CFR 27.971 - Fuel tank sump.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel tank sump. 27.971 Section 27.971 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.971 Fuel tank sump. (a) Each fuel tank...

  7. 14 CFR 29.971 - Fuel tank sump.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel tank sump. 29.971 Section 29.971 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.971 Fuel tank sump. (a) Each fuel tank...

  8. 14 CFR 29.971 - Fuel tank sump.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel tank sump. 29.971 Section 29.971 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.971 Fuel tank sump. (a) Each fuel tank...

  9. 14 CFR 25.971 - Fuel tank sump.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel tank sump. 25.971 Section 25.971 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.971 Fuel tank sump. (a) Each fuel tank...

  10. 14 CFR 29.965 - Fuel tank tests.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel tank tests. 29.965 Section 29.965 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.965 Fuel tank tests. (a) Each fuel tank...

  11. 14 CFR 27.965 - Fuel tank tests.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel tank tests. 27.965 Section 27.965 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.965 Fuel tank tests. (a) Each fuel tank...

  12. 14 CFR 29.965 - Fuel tank tests.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel tank tests. 29.965 Section 29.965 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.965 Fuel tank tests. (a) Each fuel tank...

  13. 14 CFR 25.971 - Fuel tank sump.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel tank sump. 25.971 Section 25.971 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.971 Fuel tank sump. (a) Each fuel tank...

  14. 14 CFR 25.971 - Fuel tank sump.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel tank sump. 25.971 Section 25.971 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.971 Fuel tank sump. (a) Each fuel tank...

  15. 14 CFR 27.965 - Fuel tank tests.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel tank tests. 27.965 Section 27.965 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.965 Fuel tank tests. (a) Each fuel tank...

  16. 14 CFR 27.971 - Fuel tank sump.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel tank sump. 27.971 Section 27.971 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.971 Fuel tank sump. (a) Each fuel tank...

  17. 14 CFR 29.965 - Fuel tank tests.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel tank tests. 29.965 Section 29.965 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.965 Fuel tank tests. (a) Each fuel tank...

  18. 14 CFR 27.971 - Fuel tank sump.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel tank sump. 27.971 Section 27.971 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.971 Fuel tank sump. (a) Each fuel tank...

  19. 14 CFR 25.971 - Fuel tank sump.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel tank sump. 25.971 Section 25.971 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.971 Fuel tank sump. (a) Each fuel tank...

  20. 14 CFR 29.971 - Fuel tank sump.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel tank sump. 29.971 Section 29.971 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.971 Fuel tank sump. (a) Each fuel tank...

  1. 14 CFR 29.971 - Fuel tank sump.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel tank sump. 29.971 Section 29.971 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.971 Fuel tank sump. (a) Each fuel tank...

  2. 14 CFR 27.971 - Fuel tank sump.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel tank sump. 27.971 Section 27.971 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.971 Fuel tank sump. (a) Each fuel tank...

  3. 14 CFR 27.965 - Fuel tank tests.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel tank tests. 27.965 Section 27.965 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.965 Fuel tank tests. (a) Each fuel tank...

  4. Blunt Impact Tests of Retired Passenger Locomotive Fuel Tanks

    DOT National Transportation Integrated Search

    2017-08-01

    The Transportation Technology Center, Inc. conducted impact tests on three locomotive fuel tanks as part of the Federal Railroad Administrations locomotive fuel tank crashworthiness improvement program. Three fuel tanks, two from EMD F40PH locomot...

  5. Blunt impact tests of retired passenger locomotive fuel tanks

    DOT National Transportation Integrated Search

    2017-08-01

    The Transportation Technology Center, Inc. conducted impact tests on three locomotive fuel tanks as part of the Federal Railroad Administrations locomotive fuel tank crashworthiness improvement program. Three fuel tanks, two from EMD F40PH locomot...

  6. 14 CFR Appendix N to Part 25 - Fuel Tank Flammability Exposure and Reliability Analysis

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... flammability exposure time for a fuel tank. (k) Oxygen evolution occurs when oxygen dissolved in the fuel is... evolution from the fuel results in the fuel tank or compartment exceeding the inert level. The applicant must include any times when oxygen evolution from the fuel in the tank or compartment under evaluation...

  7. 14 CFR Appendix N to Part 25 - Fuel Tank Flammability Exposure and Reliability Analysis

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... flammability exposure time for a fuel tank. (k) Oxygen evolution occurs when oxygen dissolved in the fuel is... evolution from the fuel results in the fuel tank or compartment exceeding the inert level. The applicant must include any times when oxygen evolution from the fuel in the tank or compartment under evaluation...

  8. 14 CFR Appendix N to Part 25 - Fuel Tank Flammability Exposure and Reliability Analysis

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... flammability exposure time for a fuel tank. (k) Oxygen evolution occurs when oxygen dissolved in the fuel is... evolution from the fuel results in the fuel tank or compartment exceeding the inert level. The applicant must include any times when oxygen evolution from the fuel in the tank or compartment under evaluation...

  9. NEUTRONIC REACTOR

    DOEpatents

    Wigner, E.P.; Weinberg, A.W.; Young, G.J.

    1958-04-15

    A nuclear reactor which uses uranium in the form of elongated tubes as fuel elements and liquid as a coolant is described. Elongated tubular uranium bodies are vertically disposed in an efficient neutron slowing agent, such as graphite, for example, to form a lattice structure which is disposed between upper and lower coolant tanks. Fluid coolant tubes extend through the uranium bodies and communicate with the upper and lower tanks and serve to convey the coolant through the uranium body. The reactor is also provided with means for circulating the cooling fluid through the coolant tanks and coolant tubes, suitable neutron and gnmma ray shields, and control means.

  10. 76 FR 70377 - Airworthiness Directives; The Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-14

    ... auxiliary fuel tanks. This proposed AD was prompted by fuel system reviews conducted by the manufacturer... systems. As a result of those findings, we issued a regulation titled ``Transport Airplane Fuel Tank... fuel tank systems can prevent ignition sources in the fuel tanks. This requirement applies to type...

  11. 33 CFR 183.514 - Fuel tanks: Labels.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Fuel tanks: Labels. 183.514...) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Equipment Standards § 183.514 Fuel tanks: Labels. (a) Each fuel tank must have a label that meets the requirements of paragraphs (b) through (d) of...

  12. 33 CFR 183.514 - Fuel tanks: Labels.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Fuel tanks: Labels. 183.514...) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Equipment Standards § 183.514 Fuel tanks: Labels. (a) Each fuel tank must have a label that meets the requirements of paragraphs (b) through (d) of...

  13. 14 CFR 25.957 - Flow between interconnected tanks.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.957 Flow between interconnected tanks. If fuel can be pumped from one tank to another in flight, the fuel tank vents and the fuel transfer system must be designed so that no structural damage to the tanks can occur because of overfilling. ...

  14. 14 CFR 25.957 - Flow between interconnected tanks.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.957 Flow between interconnected tanks. If fuel can be pumped from one tank to another in flight, the fuel tank vents and the fuel transfer system must be designed so that no structural damage to the tanks can occur because of overfilling. ...

  15. 14 CFR 25.957 - Flow between interconnected tanks.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.957 Flow between interconnected tanks. If fuel can be pumped from one tank to another in flight, the fuel tank vents and the fuel transfer system must be designed so that no structural damage to the tanks can occur because of overfilling. ...

  16. 14 CFR 25.957 - Flow between interconnected tanks.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.957 Flow between interconnected tanks. If fuel can be pumped from one tank to another in flight, the fuel tank vents and the fuel transfer system must be designed so that no structural damage to the tanks can occur because of overfilling. ...

  17. 14 CFR 25.957 - Flow between interconnected tanks.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.957 Flow between interconnected tanks. If fuel can be pumped from one tank to another in flight, the fuel tank vents and the fuel transfer system must be designed so that no structural damage to the tanks can occur because of overfilling. ...

  18. Exposures to jet fuel and benzene during aircraft fuel tank repair in the U.S. Air Force.

    PubMed

    Carlton, G N; Smith, L B

    2000-06-01

    Jet fuel and benzene vapor exposures were measured during aircraft fuel tank entry and repair at twelve U.S. Air Force bases. Breathing zone samples were collected on the fuel workers who performed the repair. In addition, instantaneous samples were taken at various points during the procedures with SUMMA canisters and subsequent analysis by mass spectrometry. The highest eight-hour time-weighted average (TWA) fuel exposure found was 1304 mg/m3; the highest 15-minute short-term exposure was 10,295 mg/m3. The results indicate workers who repair fuel tanks containing explosion suppression foam have a significantly higher exposure to jet fuel as compared to workers who repair tanks without foam (p < 0.001). It is assumed these elevations result from the tendency for fuel, absorbed by the foam, to volatilize during the foam removal process. Fuel tanks that allow flow-through ventilation during repair resulted in lower exposures compared to those tanks that have only one access port and, as a result, cannot be ventilated efficiently. The instantaneous sampling results confirm that benzene exposures occur during fuel tank repair; levels up to 49.1 mg/m3 were found inside the tanks during the repairs. As with jet fuel, these elevated benzene concentrations were more likely to occur in foamed tanks. The high temperatures associated with fuel tank repair, along with the requirement to wear vapor-permeable cotton coveralls for fire reasons, could result in an increase in the benzene body burden of tank entrants.

  19. 14 CFR 23.975 - Fuel tank vents and carburetor vapor vents.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.975 Fuel tank vents and carburetor vapor vents. (a) Each fuel tank must be vented... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel tank vents and carburetor vapor vents...

  20. 14 CFR 23.975 - Fuel tank vents and carburetor vapor vents.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.975 Fuel tank vents and carburetor vapor vents. (a) Each fuel tank must be vented... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel tank vents and carburetor vapor vents...

  1. 14 CFR 23.975 - Fuel tank vents and carburetor vapor vents.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.975 Fuel tank vents and carburetor vapor vents. (a) Each fuel tank must be vented... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel tank vents and carburetor vapor vents...

  2. 14 CFR 23.975 - Fuel tank vents and carburetor vapor vents.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.975 Fuel tank vents and carburetor vapor vents. (a) Each fuel tank must be vented... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel tank vents and carburetor vapor vents...

  3. 14 CFR 23.975 - Fuel tank vents and carburetor vapor vents.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.975 Fuel tank vents and carburetor vapor vents. (a) Each fuel tank must be vented... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tank vents and carburetor vapor vents...

  4. 75 FR 34661 - Airworthiness Directives; McDonnell Douglas Corporation Model DC-9-81 (MD-81), DC-9-82 (MD-82...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-18

    ... auxiliary fuel tanks, depending on the airplane configuration. This proposed AD results from fuel system... Fuel Tank System Design Review, Flammability Reduction and Maintenance and Inspection Requirements... substantiate that their fuel tank systems can prevent ignition sources in the fuel tanks. This requirement...

  5. 33 CFR 183.550 - Fuel tanks: Installation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Fuel tanks: Installation. 183.550...) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Manufacturer Requirements § 183.550 Fuel tanks: Installation. (a) Each fuel tank must not be integral with any boat structure or mounted on an engine. (b) Each...

  6. 33 CFR 183.510 - Fuel tanks.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Fuel tanks. 183.510 Section 183... SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Equipment Standards § 183.510 Fuel tanks. (a) Each fuel tank in a boat must have been tested by its manufacturer under § 183.580 and not leak when...

  7. 33 CFR 183.510 - Fuel tanks.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Fuel tanks. 183.510 Section 183... SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Equipment Standards § 183.510 Fuel tanks. (a) Each fuel tank in a boat must have been tested by its manufacturer under § 183.580 and not leak when...

  8. 33 CFR 183.550 - Fuel tanks: Installation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Fuel tanks: Installation. 183.550...) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Manufacturer Requirements § 183.550 Fuel tanks: Installation. (a) Each fuel tank must not be integral with any boat structure or mounted on an engine. (b) Each...

  9. 33 CFR 183.510 - Fuel tanks.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Fuel tanks. 183.510 Section 183... SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Equipment Standards § 183.510 Fuel tanks. (a) Each fuel tank in a boat must have been tested by its manufacturer under § 183.580 and not leak when...

  10. 49 CFR 229.97 - Grounding fuel tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Grounding fuel tanks. 229.97 Section 229.97 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Equipment § 229.97 Grounding fuel tanks. Fuel tanks and related piping shall be electrically grounded. ...

  11. 49 CFR 229.97 - Grounding fuel tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Grounding fuel tanks. 229.97 Section 229.97 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Equipment § 229.97 Grounding fuel tanks. Fuel tanks and related piping shall be electrically grounded. ...

  12. 49 CFR 229.97 - Grounding fuel tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Grounding fuel tanks. 229.97 Section 229.97 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Equipment § 229.97 Grounding fuel tanks. Fuel tanks and related piping shall be electrically grounded. ...

  13. 14 CFR 26.39 - Newly produced airplanes: Fuel tank flammability.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Newly produced airplanes: Fuel tank... TRANSPORTATION AIRCRAFT CONTINUED AIRWORTHINESS AND SAFETY IMPROVEMENTS FOR TRANSPORT CATEGORY AIRPLANES Fuel Tank Flammability § 26.39 Newly produced airplanes: Fuel tank flammability. (a) Applicability: This...

  14. 14 CFR 26.39 - Newly produced airplanes: Fuel tank flammability.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Newly produced airplanes: Fuel tank... TRANSPORTATION AIRCRAFT CONTINUED AIRWORTHINESS AND SAFETY IMPROVEMENTS FOR TRANSPORT CATEGORY AIRPLANES Fuel Tank Flammability § 26.39 Newly produced airplanes: Fuel tank flammability. (a) Applicability: This...

  15. 14 CFR 26.39 - Newly produced airplanes: Fuel tank flammability.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Newly produced airplanes: Fuel tank... TRANSPORTATION AIRCRAFT CONTINUED AIRWORTHINESS AND SAFETY IMPROVEMENTS FOR TRANSPORT CATEGORY AIRPLANES Fuel Tank Flammability § 26.39 Newly produced airplanes: Fuel tank flammability. (a) Applicability: This...

  16. 14 CFR 26.39 - Newly produced airplanes: Fuel tank flammability.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Newly produced airplanes: Fuel tank... TRANSPORTATION AIRCRAFT CONTINUED AIRWORTHINESS AND SAFETY IMPROVEMENTS FOR TRANSPORT CATEGORY AIRPLANES Fuel Tank Flammability § 26.39 Newly produced airplanes: Fuel tank flammability. (a) Applicability: This...

  17. 14 CFR 26.39 - Newly produced airplanes: Fuel tank flammability.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Newly produced airplanes: Fuel tank... TRANSPORTATION AIRCRAFT CONTINUED AIRWORTHINESS AND SAFETY IMPROVEMENTS FOR TRANSPORT CATEGORY AIRPLANES Fuel Tank Flammability § 26.39 Newly produced airplanes: Fuel tank flammability. (a) Applicability: This...

  18. Fluid-structure interaction analysis of the drop impact test for helicopter fuel tank.

    PubMed

    Yang, Xianfeng; Zhang, Zhiqiang; Yang, Jialing; Sun, Yuxin

    2016-01-01

    The crashworthiness of helicopter fuel tank is vital to the survivability of the passengers and structures. In order to understand and improve the crashworthiness of the soft fuel tank of helicopter during the crash, this paper investigated the dynamic behavior of the nylon woven fabric composite fuel tank striking on the ground. A fluid-structure interaction finite element model of the fuel tank based on the arbitrary Lagrangian-Eulerian method was constructed to elucidate the dynamic failure behavior. The drop impact tests were conducted to validate the accuracy of the numerical simulation. Good agreement was achieved between the experimental and numerical results of the impact force with the ground. The influences of the impact velocity, the impact angle, the thickness of the fuel tank wall and the volume fraction of water on the dynamic responses of the dropped fuel tank were studied. The results indicated that the corner of the fuel tank is the most vulnerable location during the impact with ground.

  19. Tank Insulation

    NASA Technical Reports Server (NTRS)

    1979-01-01

    For NASA's Apollo program, McDonnell Douglas Astronautics Company, Huntington Beach, California, developed and built the S-IVB, uppermost stage of the three-stage Saturn V moonbooster. An important part of the development task was fabrication of a tank to contain liquid hydrogen fuel for the stage's rocket engine. The liquid hydrogen had to be contained at the supercold temperature of 423 degrees below zero Fahrenheit. The tank had to be perfectly insulated to keep engine or solar heat from reaching the fuel; if the hydrogen were permitted to warm up, it would have boiled off, or converted to gaseous form, reducing the amount of fuel available to the engine. McDonnell Douglas' answer was a supereffective insulation called 3D, which consisted of a one-inch thickness of polyurethane foam reinforced in three dimensions with fiberglass threads. Over a 13-year development and construction period, the company built 30 tanks and never experienced a failure. Now, after years of additional development, an advanced version of 3D is finding application as part of a containment system for transporting Liquefied Natural Gas (LNG) by ship.

  20. 77 FR 70382 - Airworthiness Directives; Eurocopter France Helicopters

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-26

    ... the fuel tank draining system. This proposed AD is prompted by a closed fuel tank drain that, in the... fuel tank compartments' draining system. FAA's Determination These helicopters have been approved by... buoyancy fixed parts, the ASBs describe procedures to modify the fuel tank draining system by removing...

  1. Locomotive fuel tank structural safety testing program : passenger locomotive fuel tank jackknife derailment load test.

    DOT National Transportation Integrated Search

    2010-08-01

    This report presents the results of a passenger locomotive fuel tank load test simulating jackknife derailment (JD) load. The test is based on FRA requirements for locomotive fuel tanks in the Title 49, Code of Federal Regulations (CFR), Part 238, Ap...

  2. 46 CFR 169.629 - Compartments containing gasoline machinery or fuel tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Compartments containing gasoline machinery or fuel tanks... gasoline machinery or fuel tanks. Spaces containing gasoline machinery or fuel tanks must have natural... Standard H-2.5, “Design and Construction; Ventilation of Boats Using Gasoline. ...

  3. 46 CFR 169.629 - Compartments containing gasoline machinery or fuel tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Compartments containing gasoline machinery or fuel tanks... gasoline machinery or fuel tanks. Spaces containing gasoline machinery or fuel tanks must have natural... Standard H-2.5, “Design and Construction; Ventilation of Boats Using Gasoline. ...

  4. 46 CFR 169.629 - Compartments containing gasoline machinery or fuel tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Compartments containing gasoline machinery or fuel tanks... gasoline machinery or fuel tanks. Spaces containing gasoline machinery or fuel tanks must have natural... Standard H-2.5, “Design and Construction; Ventilation of Boats Using Gasoline. ...

  5. 46 CFR 169.629 - Compartments containing gasoline machinery or fuel tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Compartments containing gasoline machinery or fuel tanks... gasoline machinery or fuel tanks. Spaces containing gasoline machinery or fuel tanks must have natural... Standard H-2.5, “Design and Construction; Ventilation of Boats Using Gasoline. ...

  6. 46 CFR 169.629 - Compartments containing gasoline machinery or fuel tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Compartments containing gasoline machinery or fuel tanks... gasoline machinery or fuel tanks. Spaces containing gasoline machinery or fuel tanks must have natural... Standard H-2.5, “Design and Construction; Ventilation of Boats Using Gasoline. ...

  7. 78 FR 68691 - Airworthiness Directives; Fokker Services B.V. Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-15

    ... the main fuel tank vapor space, which could result in a fuel tank explosion and consequent loss of the..., Aerospace Engineer, International Branch, ANM-116, Transport Airplane Directorate, FAA, 1601 Lind Avenue SW... fuel tank vapour space, possibly resulting in a fuel tank explosion and consequent loss of the...

  8. 14 CFR 23.969 - Fuel tank expansion space.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel tank expansion space. 23.969 Section 23.969 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT....969 Fuel tank expansion space. Each fuel tank must have an expansion space of not less than two...

  9. 14 CFR 23.969 - Fuel tank expansion space.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel tank expansion space. 23.969 Section 23.969 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT....969 Fuel tank expansion space. Each fuel tank must have an expansion space of not less than two...

  10. 14 CFR 23.969 - Fuel tank expansion space.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel tank expansion space. 23.969 Section 23.969 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT....969 Fuel tank expansion space. Each fuel tank must have an expansion space of not less than two...

  11. 14 CFR 23.969 - Fuel tank expansion space.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel tank expansion space. 23.969 Section 23.969 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT....969 Fuel tank expansion space. Each fuel tank must have an expansion space of not less than two...

  12. 14 CFR 23.969 - Fuel tank expansion space.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tank expansion space. 23.969 Section 23.969 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT....969 Fuel tank expansion space. Each fuel tank must have an expansion space of not less than two...

  13. 33 CFR 183.552 - Plastic encased fuel tanks: Installation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Plastic encased fuel tanks... § 183.552 Plastic encased fuel tanks: Installation. (a) Each fuel tank encased in cellular plastic foam or in fiber reinforced plastic must have the connections, fittings, and labels accessible for...

  14. 33 CFR 183.552 - Plastic encased fuel tanks: Installation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Plastic encased fuel tanks... § 183.552 Plastic encased fuel tanks: Installation. (a) Each fuel tank encased in cellular plastic foam or in fiber reinforced plastic must have the connections, fittings, and labels accessible for...

  15. 33 CFR 183.552 - Plastic encased fuel tanks: Installation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Plastic encased fuel tanks... § 183.552 Plastic encased fuel tanks: Installation. (a) Each fuel tank encased in cellular plastic foam or in fiber reinforced plastic must have the connections, fittings, and labels accessible for...

  16. 33 CFR 183.552 - Plastic encased fuel tanks: Installation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Plastic encased fuel tanks... § 183.552 Plastic encased fuel tanks: Installation. (a) Each fuel tank encased in cellular plastic foam or in fiber reinforced plastic must have the connections, fittings, and labels accessible for...

  17. 33 CFR 183.552 - Plastic encased fuel tanks: Installation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Plastic encased fuel tanks... § 183.552 Plastic encased fuel tanks: Installation. (a) Each fuel tank encased in cellular plastic foam or in fiber reinforced plastic must have the connections, fittings, and labels accessible for...

  18. 40 CFR 1051.515 - How do I test my fuel tank for permeation emissions?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false How do I test my fuel tank for... Procedures § 1051.515 How do I test my fuel tank for permeation emissions? Measure permeation emissions by... make sure not to overestimate the surface area. (3) Fill the fuel tank with the test fuel specified in...

  19. 40 CFR 1051.515 - How do I test my fuel tank for permeation emissions?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false How do I test my fuel tank for... Procedures § 1051.515 How do I test my fuel tank for permeation emissions? Measure permeation emissions by... make sure not to overestimate the surface area. (3) Fill the fuel tank with the test fuel specified in...

  20. 40 CFR 1051.515 - How do I test my fuel tank for permeation emissions?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false How do I test my fuel tank for... Procedures § 1051.515 How do I test my fuel tank for permeation emissions? Measure permeation emissions by... make sure not to overestimate the surface area. (3) Fill the fuel tank with the test fuel specified in...

  1. 40 CFR 1051.515 - How do I test my fuel tank for permeation emissions?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false How do I test my fuel tank for... Procedures § 1051.515 How do I test my fuel tank for permeation emissions? Measure permeation emissions by... make sure not to overestimate the surface area. (3) Fill the fuel tank with the test fuel specified in...

  2. 40 CFR 1051.515 - How do I test my fuel tank for permeation emissions?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false How do I test my fuel tank for... Procedures § 1051.515 How do I test my fuel tank for permeation emissions? Measure permeation emissions by... make sure not to overestimate the surface area. (3) Fill the fuel tank with the test fuel specified in...

  3. Study of methane fuel for subsonic transport aircraft

    NASA Technical Reports Server (NTRS)

    Carson, L. K.; Davis, G. W.; Versaw, E. F.; Cunnington, G. R., Jr.; Daniels, E. J.

    1980-01-01

    The cost and performance were defined for commercial transport using liquid methane including its fuel system and the ground facility complex required for the processing and storage of methane. A cost and performance comparison was made with Jet A and hydrogen powered aircraft of the same payload and range capability. Extensive design work was done on cryogenic fuel tanks, insulation systems as well as the fuel system itself. Three candidate fuel tank locations were evaluated, i.e., fuselage tanks, wing tanks or external pylon tanks.

  4. Inflight fuel tank temperature survey data

    NASA Technical Reports Server (NTRS)

    Pasion, A. J.

    1979-01-01

    Statistical summaries of the fuel and air temperature data for twelve different routes and for different aircraft models (B747, B707, DC-10 and DC-8), are given. The minimum fuel, total air and static air temperature expected for a 0.3% probability were summarized in table form. Minimum fuel temperature extremes agreed with calculated predictions and the minimum fuel temperature did not necessarily equal the minimum total air temperature even for extreme weather, long range flights.

  5. 33 CFR 183.564 - Fuel tank fill system.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Fuel tank fill system. 183.564...) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Manufacturer Requirements § 183.564 Fuel tank... floating position. (b) Each hose in the tank fill system must be secured to a pipe, spud, or hose fitting...

  6. 46 CFR 169.234 - Integral fuel oil tank examinations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Integral fuel oil tank examinations. 169.234 Section 169... VESSELS Inspection and Certification Drydocking Or Hauling Out § 169.234 Integral fuel oil tank examinations. (a) Each fuel oil tank with at least one side integral to the vessel's hull and located within...

  7. 46 CFR 169.234 - Integral fuel oil tank examinations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Integral fuel oil tank examinations. 169.234 Section 169... VESSELS Inspection and Certification Drydocking Or Hauling Out § 169.234 Integral fuel oil tank examinations. (a) Each fuel oil tank with at least one side integral to the vessel's hull and located within...

  8. 46 CFR 169.234 - Integral fuel oil tank examinations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Integral fuel oil tank examinations. 169.234 Section 169... VESSELS Inspection and Certification Drydocking Or Hauling Out § 169.234 Integral fuel oil tank examinations. (a) Each fuel oil tank with at least one side integral to the vessel's hull and located within...

  9. 46 CFR 169.234 - Integral fuel oil tank examinations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Integral fuel oil tank examinations. 169.234 Section 169... VESSELS Inspection and Certification Drydocking Or Hauling Out § 169.234 Integral fuel oil tank examinations. (a) Each fuel oil tank with at least one side integral to the vessel's hull and located within...

  10. 30 CFR 36.50 - Tests of fuel tank.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Tests of fuel tank. 36.50 Section 36.50 Mineral... MINING PRODUCTS APPROVAL REQUIREMENTS FOR PERMISSIBLE MOBILE DIESEL-POWERED TRANSPORTATION EQUIPMENT Test Requirements § 36.50 Tests of fuel tank. The fuel tank shall be inspected and tested to determine whether: (a...

  11. 30 CFR 36.50 - Tests of fuel tank.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Tests of fuel tank. 36.50 Section 36.50 Mineral... MINING PRODUCTS APPROVAL REQUIREMENTS FOR PERMISSIBLE MOBILE DIESEL-POWERED TRANSPORTATION EQUIPMENT Test Requirements § 36.50 Tests of fuel tank. The fuel tank shall be inspected and tested to determine whether: (a...

  12. 30 CFR 36.50 - Tests of fuel tank.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Tests of fuel tank. 36.50 Section 36.50 Mineral... MINING PRODUCTS APPROVAL REQUIREMENTS FOR PERMISSIBLE MOBILE DIESEL-POWERED TRANSPORTATION EQUIPMENT Test Requirements § 36.50 Tests of fuel tank. The fuel tank shall be inspected and tested to determine whether: (a...

  13. 30 CFR 36.50 - Tests of fuel tank.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Tests of fuel tank. 36.50 Section 36.50 Mineral... MINING PRODUCTS APPROVAL REQUIREMENTS FOR PERMISSIBLE MOBILE DIESEL-POWERED TRANSPORTATION EQUIPMENT Test Requirements § 36.50 Tests of fuel tank. The fuel tank shall be inspected and tested to determine whether: (a...

  14. 30 CFR 36.50 - Tests of fuel tank.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Tests of fuel tank. 36.50 Section 36.50 Mineral... MINING PRODUCTS APPROVAL REQUIREMENTS FOR PERMISSIBLE MOBILE DIESEL-POWERED TRANSPORTATION EQUIPMENT Test Requirements § 36.50 Tests of fuel tank. The fuel tank shall be inspected and tested to determine whether: (a...

  15. 46 CFR 182.470 - Ventilation of spaces containing diesel fuel tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Ventilation of spaces containing diesel fuel tanks. 182... Ventilation of spaces containing diesel fuel tanks. (a) Unless provided with ventilation that complies with § 182.465, a space containing a diesel fuel tank and no machinery must meet the requirements of this...

  16. 46 CFR 182.470 - Ventilation of spaces containing diesel fuel tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Ventilation of spaces containing diesel fuel tanks. 182... Ventilation of spaces containing diesel fuel tanks. (a) Unless provided with ventilation that complies with § 182.465, a space containing a diesel fuel tank and no machinery must meet the requirements of this...

  17. 46 CFR 169.631 - Separation of machinery and fuel tank spaces from accommodation spaces.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Separation of machinery and fuel tank spaces from accommodation spaces. 169.631 Section 169.631 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED... machinery and fuel tank spaces from accommodation spaces. (a) Machinery and fuel tank spaces must be...

  18. 46 CFR 169.631 - Separation of machinery and fuel tank spaces from accommodation spaces.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Separation of machinery and fuel tank spaces from accommodation spaces. 169.631 Section 169.631 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED... machinery and fuel tank spaces from accommodation spaces. (a) Machinery and fuel tank spaces must be...

  19. 40 CFR 86.1231-96 - Vehicle preparation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... vehicles prepare the fuel tank(s) for recording the temperature of the prescribed test fuel, as described... optional during the running loss test. If vapor temperature is not measured, fuel tank pressure need not be... Emission Test Procedures for New Gasoline-Fueled, Natural Gas-Fueled, Liquefied Petroleum Gas-Fueled and...

  20. 40 CFR 86.1231-96 - Vehicle preparation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... vehicles prepare the fuel tank(s) for recording the temperature of the prescribed test fuel, as described... optional during the running loss test. If vapor temperature is not measured, fuel tank pressure need not be... Emission Test Procedures for New Gasoline-Fueled, Natural Gas-Fueled, Liquefied Petroleum Gas-Fueled and...

  1. 40 CFR 86.1231-96 - Vehicle preparation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... vehicles prepare the fuel tank(s) for recording the temperature of the prescribed test fuel, as described... optional during the running loss test. If vapor temperature is not measured, fuel tank pressure need not be... Emission Test Procedures for New Gasoline-Fueled, Natural Gas-Fueled, Liquefied Petroleum Gas-Fueled and...

  2. 40 CFR 86.1231-96 - Vehicle preparation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... vehicles prepare the fuel tank(s) for recording the temperature of the prescribed test fuel, as described... optional during the running loss test. If vapor temperature is not measured, fuel tank pressure need not be... Emission Test Procedures for New Gasoline-Fueled, Natural Gas-Fueled, Liquefied Petroleum Gas-Fueled and...

  3. Method and device for feeding fuel in a fuel system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williamson, E.

    1988-07-26

    This patent describes a device for feeding fuel in a fuel system for a liquid fuel engine, with the fuel system having a fuel tank, fuel lines, multiple microscreen fuel filters, a fuel pump, and engine fuel injectors, with the fuel tank having a fill opening having a perimeter, comprising, in combination: a ball having a size for overfitting and abutting with the perimeter of the fill opening of differing sizes, shapes, and constructions; and means for introducing air pressure greater than atmospheric through the ball and through the fill opening and into the fuel tank, with the ball havingmore » a solid cross section and being generally impermeable to air passage, with the ball being deformable to conform to the perimeter of the fill opening for sealingly engaging the perimeter of the fill opening and having a firmness for transmitting a force applied to the ball in the direction of the fill opening into a sealing force applied by the ball to the fill opening to balance opposing forces created by the introduction of air pressure into the fuel tank and for increasing the air pressure in the fuel tank acting on the fuel to increase the rate of fuel flow from the fuel tank into the fuel line for assisting the fuel pump in moving the fuel from the fuel tank through the fuel lines and through the microscreen filters to the engine fuel injectors while allowing an excessive air pressure to escape from the fill opening around the ball.« less

  4. Synthetic nanocomposite MgH2/5 wt. % TiMn2 powders for solid-hydrogen storage tank integrated with PEM fuel cell.

    PubMed

    El-Eskandarany, M Sherif; Shaban, Ehab; Aldakheel, Fahad; Alkandary, Abdullah; Behbehani, Montaha; Al-Saidi, M

    2017-10-16

    Storing hydrogen gas into cylinders under high pressure of 350 bar is not safe and still needs many intensive studies dedic ated for tank's manufacturing. Liquid hydrogen faces also severe practical difficulties due to its very low density, leading to larger fuel tanks three times larger than traditional gasoline tank. Moreover, converting hydrogen gas into liquid phase is not an economic process since it consumes high energy needed to cool down the gas temperature to -252.8 °C. One practical solution is storing hydrogen gas in metal lattice such as Mg powder and its nanocomposites in the form of MgH 2 . There are two major issues should be solved first. One related to MgH 2 in which its inherent poor hydrogenation/dehydrogenation kinetics and high thermal stability must be improved. Secondly, related to providing a safe tank. Here we have succeeded to prepare a new binary system of MgH 2 /5 wt. % TiMn 2 nanocomposite powder that show excellent hydrogenation/dehydrogenation behavior at relatively low temperature (250 °C) with long cycle-life-time (1400 h). Moreover, a simple hydrogen storage tank filled with our synthetic nanocomposite powders was designed and tested in electrical charging a battery of a cell phone device at 180 °C through a commercial fuel cell.

  5. Exhaust-Stack Nozzle Area and Shape for Individual Cylinder Exhaust-Gas Jet-Propulsion System

    DTIC Science & Technology

    1943-01-01

    ty and con- siderable loss in the availabfity of the energy occurs because of acoustic shock and because the kinetic energy is trans- formed into heat ...plate in the air-intake duct. A tank was installed between the engine and the oriiice plata to damp out pulsations . The fuel flow was measured by a...with a length of flexible tubing. A tap for measuring static pres- sure was locxded in the tank. Tank pressures were main- tained by operation of an

  6. 14 CFR 29.977 - Fuel tank outlet.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.977 Fuel tank outlet. (a) There must be... airplanes, prevent the passage of any object that could restrict fuel flow or damage any fuel system... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel tank outlet. 29.977 Section 29.977...

  7. 14 CFR 25.977 - Fuel tank outlet.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.977 Fuel tank outlet. (a) There must be... airplanes, prevent the passage of any object that could restrict fuel flow or damage any fuel system... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel tank outlet. 25.977 Section 25.977...

  8. 14 CFR 23.977 - Fuel tank outlet.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.977 Fuel... damage any fuel system component. (b) The clear area of each fuel tank outlet strainer must be at least... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel tank outlet. 23.977 Section 23.977...

  9. 14 CFR 23.977 - Fuel tank outlet.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.977 Fuel... damage any fuel system component. (b) The clear area of each fuel tank outlet strainer must be at least... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel tank outlet. 23.977 Section 23.977...

  10. 14 CFR 29.977 - Fuel tank outlet.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.977 Fuel tank outlet. (a) There must be... airplanes, prevent the passage of any object that could restrict fuel flow or damage any fuel system... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel tank outlet. 29.977 Section 29.977...

  11. 14 CFR 25.977 - Fuel tank outlet.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.977 Fuel tank outlet. (a) There must be... airplanes, prevent the passage of any object that could restrict fuel flow or damage any fuel system... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel tank outlet. 25.977 Section 25.977...

  12. 14 CFR 25.977 - Fuel tank outlet.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.977 Fuel tank outlet. (a) There must be... airplanes, prevent the passage of any object that could restrict fuel flow or damage any fuel system... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel tank outlet. 25.977 Section 25.977...

  13. 14 CFR 29.977 - Fuel tank outlet.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.977 Fuel tank outlet. (a) There must be... airplanes, prevent the passage of any object that could restrict fuel flow or damage any fuel system... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel tank outlet. 29.977 Section 29.977...

  14. 14 CFR 29.977 - Fuel tank outlet.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.977 Fuel tank outlet. (a) There must be... airplanes, prevent the passage of any object that could restrict fuel flow or damage any fuel system... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tank outlet. 29.977 Section 29.977...

  15. 14 CFR 25.977 - Fuel tank outlet.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.977 Fuel tank outlet. (a) There must be... airplanes, prevent the passage of any object that could restrict fuel flow or damage any fuel system... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tank outlet. 25.977 Section 25.977...

  16. 14 CFR 23.977 - Fuel tank outlet.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.977 Fuel... damage any fuel system component. (b) The clear area of each fuel tank outlet strainer must be at least... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tank outlet. 23.977 Section 23.977...

  17. 14 CFR 25.977 - Fuel tank outlet.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.977 Fuel tank outlet. (a) There must be... airplanes, prevent the passage of any object that could restrict fuel flow or damage any fuel system... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel tank outlet. 25.977 Section 25.977...

  18. 14 CFR 23.977 - Fuel tank outlet.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.977 Fuel... damage any fuel system component. (b) The clear area of each fuel tank outlet strainer must be at least... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel tank outlet. 23.977 Section 23.977...

  19. 14 CFR 23.977 - Fuel tank outlet.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.977 Fuel... damage any fuel system component. (b) The clear area of each fuel tank outlet strainer must be at least... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel tank outlet. 23.977 Section 23.977...

  20. 14 CFR 29.977 - Fuel tank outlet.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.977 Fuel tank outlet. (a) There must be... airplanes, prevent the passage of any object that could restrict fuel flow or damage any fuel system... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel tank outlet. 29.977 Section 29.977...

  1. Automated Control of a Solar Microgrid-Powered Air Compressor for Use in a Small-Scale Compressed Air Energy Storage System

    DTIC Science & Technology

    2017-06-01

    in the form of fossil fuels for ships, tanks, and aircraft; however, there was still a significant consumption of fossil fuel by means of electrical...Thesis Advisor: Anthony J. Gannon Co-Advisor: Andrea Holmes THIS PAGE INTENTIONALLY LEFT BLANK i REPORT DOCUMENTATION PAGE Form Approved OMB...Unclassified 19. SECURITY CLASSIFICATION OF ABSTRACT Unclassified 20. LIMITATION OF ABSTRACT UU NSN 7540-01-280-5500 Standard Form 298 (Rev. 2

  2. 14 CFR 29.963 - Fuel tanks: general.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel tanks: general. 29.963 Section 29.963 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.963 Fuel tanks: general. (a) Each fuel...

  3. 14 CFR 27.963 - Fuel tanks: general.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel tanks: general. 27.963 Section 27.963 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.963 Fuel tanks: general. (a) Each fuel...

  4. 14 CFR 29.963 - Fuel tanks: general.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tanks: general. 29.963 Section 29.963 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.963 Fuel tanks: general. (a) Each fuel...

  5. 14 CFR 27.963 - Fuel tanks: general.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel tanks: general. 27.963 Section 27.963 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.963 Fuel tanks: general. (a) Each fuel...

  6. 14 CFR 27.963 - Fuel tanks: general.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel tanks: general. 27.963 Section 27.963 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.963 Fuel tanks: general. (a) Each fuel...

  7. 14 CFR 29.963 - Fuel tanks: general.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel tanks: general. 29.963 Section 29.963 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.963 Fuel tanks: general. (a) Each fuel...

  8. 14 CFR 27.963 - Fuel tanks: general.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tanks: general. 27.963 Section 27.963 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.963 Fuel tanks: general. (a) Each fuel...

  9. 14 CFR 29.963 - Fuel tanks: general.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel tanks: general. 29.963 Section 29.963 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.963 Fuel tanks: general. (a) Each fuel...

  10. 14 CFR 29.963 - Fuel tanks: general.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel tanks: general. 29.963 Section 29.963 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.963 Fuel tanks: general. (a) Each fuel...

  11. 14 CFR 27.963 - Fuel tanks: general.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel tanks: general. 27.963 Section 27.963 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.963 Fuel tanks: general. (a) Each fuel...

  12. Interaction between EMP (Electromagnetic Pulses), Lightning and Static Electricity with Aircraft and Missile Avionics Systems

    DTIC Science & Technology

    1986-05-01

    integral fuel tanks, the various conductors in the fuel systems (e.g. pipes, fuel gauge wiring etc.) can be a fuel explosion risk of very high currents...without sparking. The energy contained in the sparking is most certainly a grave fuel explosion risk . Similar hazards must be avoided with any wiring or...conductors parallel to the cable, transmission lines can be formed. This mehod can only be used for shielded cables. The shield must be accessible somewhere

  13. 14 CFR 25.981 - Fuel tank ignition prevention.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.981 Fuel tank... system where catastrophic failure could occur due to ignition of fuel or vapors. This must be shown by... established, as necessary, to prevent development of ignition sources within the fuel tank system pursuant to...

  14. 14 CFR 25.981 - Fuel tank ignition prevention.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.981 Fuel tank... system where catastrophic failure could occur due to ignition of fuel or vapors. This must be shown by... established, as necessary, to prevent development of ignition sources within the fuel tank system pursuant to...

  15. 14 CFR 25.981 - Fuel tank ignition prevention.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.981 Fuel tank... system where catastrophic failure could occur due to ignition of fuel or vapors. This must be shown by... established, as necessary, to prevent development of ignition sources within the fuel tank system pursuant to...

  16. 14 CFR 25.981 - Fuel tank ignition prevention.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.981 Fuel tank... system where catastrophic failure could occur due to ignition of fuel or vapors. This must be shown by... established, as necessary, to prevent development of ignition sources within the fuel tank system pursuant to...

  17. 77 FR 33129 - Airworthiness Directives; The Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-05

    ... modify the fuel quantity indication system (FQIS) wiring or fuel tank systems to prevent development of..., 2012 (77 FR 12506). That NPRM proposed to require modifying the fuel quantity indication system wiring or fuel tank systems to prevent development of an ignition source inside the center fuel tank. That...

  18. 14 CFR 25.981 - Fuel tank ignition prevention.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.981 Fuel tank... system where catastrophic failure could occur due to ignition of fuel or vapors. This must be shown by... established, as necessary, to prevent development of ignition sources within the fuel tank system pursuant to...

  19. 40 CFR 86.232-94 - Vehicle preconditioning.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... vehicle shall be moved to the test area and the following operations performed: (1) The fuel tank(s) shall be filled to approximately the prescribed “tank fuel volume” with the test fuel specified § 86.213... existing fuel must be drained prior to the fuel fill. The test fuel shall be at a temperature less than or...

  20. 40 CFR 86.232-94 - Vehicle preconditioning.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... vehicle shall be moved to the test area and the following operations performed: (1) The fuel tank(s) shall be filled to approximately the prescribed “tank fuel volume” with the test fuel specified § 86.213... existing fuel must be drained prior to the fuel fill. The test fuel shall be at a temperature less than or...

  1. 40 CFR 86.232-94 - Vehicle preconditioning.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... vehicle shall be moved to the test area and the following operations performed: (1) The fuel tank(s) shall be filled to approximately the prescribed “tank fuel volume” with the test fuel specified § 86.213... existing fuel must be drained prior to the fuel fill. The test fuel shall be at a temperature less than or...

  2. Additional experiments on flowability improvements of aviation fuels at low temperatures, volume 2

    NASA Technical Reports Server (NTRS)

    Stockemer, F. J.; Deane, R. L.

    1982-01-01

    An investigation was performed to study flow improver additives and scale-model fuel heating systems for use with aviation hydrocarbon fuel at low temperatures. Test were performed in a facility that simulated the heat transfer and temperature profiles anticipated in wing fuel tanks during flight of long-range commercial aircraft. The results are presented of experiments conducted in a test tank simulating a section of an outer wing integral fuel tank approximately full-scale in height, chilled through heat exchange panels bonded to the upper and lower horizontal surfaces. A separate system heated lubricating oil externally by a controllable electric heater, to transfer heat to fuel pumped from the test tank through an oil-to-fuel heat exchanger, and to recirculate the heated fuel back to the test tank.

  3. 14 CFR 29.957 - Flow between interconnected tanks.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.957 Flow between interconnected tanks. (a) Where tank outlets are interconnected and allow fuel to flow between them due to gravity or flight accelerations, it must be impossible for fuel to flow between tanks in...

  4. 14 CFR 29.957 - Flow between interconnected tanks.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.957 Flow between interconnected tanks. (a) Where tank outlets are interconnected and allow fuel to flow between them due to gravity or flight accelerations, it must be impossible for fuel to flow between tanks in...

  5. 14 CFR 29.957 - Flow between interconnected tanks.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.957 Flow between interconnected tanks. (a) Where tank outlets are interconnected and allow fuel to flow between them due to gravity or flight accelerations, it must be impossible for fuel to flow between tanks in...

  6. 14 CFR 29.957 - Flow between interconnected tanks.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.957 Flow between interconnected tanks. (a) Where tank outlets are interconnected and allow fuel to flow between them due to gravity or flight accelerations, it must be impossible for fuel to flow between tanks in...

  7. 14 CFR 29.957 - Flow between interconnected tanks.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.957 Flow between interconnected tanks. (a) Where tank outlets are interconnected and allow fuel to flow between them due to gravity or flight accelerations, it must be impossible for fuel to flow between tanks in...

  8. The Finite Element Modelling and Dynamic Characteristics Analysis about One Kind of Armoured Vehicles’ Fuel Tanks

    NASA Astrophysics Data System (ADS)

    Gao, Yang; Ge, Zhishang; Zhai, Weihao; Tan, Shiwang; Zhang, Feng

    2018-01-01

    The static and dynamic characteristics of fuel tank are studied for the armoured vehicle in this paper. The CATIA software is applied to build the CAD model of the armoured vehicles’ fuel tank, and the finite element model is established in ANSYS Workbench. The finite element method is carried out to analyze the static and dynamic mechanical properties of the fuel tank, and the first six orders of mode shapes and their frequencies are also computed and given in the paper, then the stress distribution diagram and the high stress areas are obtained. The results of the research provide some references to the fuel tanks’ design improvement, and give some guidance for the installation of the fuel tanks on armoured vehicles, and help to improve the properties and the service life of this kind of armoured vehicles’ fuel tanks.

  9. 14 CFR 25.967 - Fuel tank installations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel tank installations. 25.967 Section 25.967 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.967 Fuel tank installations...

  10. 14 CFR 29.967 - Fuel tank installation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel tank installation. 29.967 Section 29.967 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.967 Fuel tank installation...

  11. 14 CFR 25.967 - Fuel tank installations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tank installations. 25.967 Section 25.967 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.967 Fuel tank installations...

  12. 14 CFR 29.967 - Fuel tank installation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel tank installation. 29.967 Section 29.967 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.967 Fuel tank installation...

  13. 14 CFR 25.967 - Fuel tank installations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel tank installations. 25.967 Section 25.967 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.967 Fuel tank installations...

  14. 14 CFR 29.967 - Fuel tank installation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel tank installation. 29.967 Section 29.967 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.967 Fuel tank installation...

  15. 14 CFR 25.967 - Fuel tank installations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel tank installations. 25.967 Section 25.967 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.967 Fuel tank installations...

  16. 14 CFR 25.967 - Fuel tank installations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel tank installations. 25.967 Section 25.967 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.967 Fuel tank installations...

  17. 14 CFR 29.967 - Fuel tank installation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tank installation. 29.967 Section 29.967 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.967 Fuel tank installation...

  18. 14 CFR 29.967 - Fuel tank installation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel tank installation. 29.967 Section 29.967 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.967 Fuel tank installation...

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daney, D.E.; Edeskuty, F.J.; Daugherty, M.A.

    Hydrogen fueling stations are an essential element in the practical application of hydrogen as a vehicle fuel, and a number of issues such as safety, efficiency, design, and operating procedures can only be accurately addressed by a practical demonstration. Regardless of whether the vehicle is powered by an internal combustion engine or fuel cell, or whether the vehicle has a liquid or gaseous fuel tank, the fueling station is a critical technology which is the link between the local storage facility and the vehicle. Because most merchant hydrogen delivered in the US today (and in the near future) is inmore » liquid form due to the overall economics of production and delivery, we believe a practical refueling station should be designed to receive liquid. Systems studies confirm this assumption for stations fueling up to about 300 vehicles. Our fueling station, aimed at refueling fleet vehicles, will receive hydrogen as a liquid and dispense it as either liquid, high pressure gas, or low pressure gas. Thus, it can refuel any of the three types of tanks proposed for hydrogen-powered vehicles -- liquid, gaseous, or hydride. The paper discusses the fueling station design. Results of a numerical model of liquid hydrogen vehicle tank filling, with emphasis on no vent filling, are presented to illustrate the usefulness of the model as a design tool. Results of our vehicle performance model illustrate our thesis that it is too early to judge what the preferred method of on-board vehicle fuel storage will be in practice -- thus our decision to accommodate all three methods.« less

  20. 33 CFR 183.580 - Static pressure test for fuel tanks.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Static pressure test for fuel... SECURITY (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Tests § 183.580 Static pressure test for fuel tanks. A fuel tank is tested by performing the following procedures in the following...

  1. 33 CFR 183.580 - Static pressure test for fuel tanks.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Static pressure test for fuel... SECURITY (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Tests § 183.580 Static pressure test for fuel tanks. A fuel tank is tested by performing the following procedures in the following...

  2. 33 CFR 183.580 - Static pressure test for fuel tanks.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Static pressure test for fuel... SECURITY (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Tests § 183.580 Static pressure test for fuel tanks. A fuel tank is tested by performing the following procedures in the following...

  3. 33 CFR 183.580 - Static pressure test for fuel tanks.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Static pressure test for fuel... SECURITY (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Tests § 183.580 Static pressure test for fuel tanks. A fuel tank is tested by performing the following procedures in the following...

  4. 33 CFR 183.580 - Static pressure test for fuel tanks.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Static pressure test for fuel... SECURITY (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Tests § 183.580 Static pressure test for fuel tanks. A fuel tank is tested by performing the following procedures in the following...

  5. 33 CFR 183.564 - Fuel tank fill system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Fuel tank fill system. 183.564...) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Manufacturer Requirements § 183.564 Fuel tank fill system. (a) Each fuel fill opening must be located so that a gasoline overflow of up to five...

  6. 49 CFR 172.336 - Identification numbers; special provisions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... accordance with § 172.542(c). (3) On cargo tanks They contain only fuel oil The cargo tank is marked “Fuel... petroleum distillate fuel The identification number for the liquid petroleum distillate fuel having the lowest flash point is displayed. If the cargo tank also contains gasoline and alcohol fuel blends...

  7. Fuel tank crashworthiness : loading scenarios

    DOT National Transportation Integrated Search

    2011-03-16

    The Federal Railroad Administrations Office of Research and Development is conducting research into fuel tank crashworthiness. The breaching of fuel tanks during passenger : rail collisions and derailments increases the potential of serious injury...

  8. 33 CFR 157.33 - Water ballast in fuel oil tanks.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Water ballast in fuel oil tanks... OIL IN BULK Vessel Operation § 157.33 Water ballast in fuel oil tanks. A new vessel may not carry ballast water in a fuel oil tank. [CGD 74-32, 40 FR 48283, Oct. 14, 1975, as amended by USCG-2000-7641, 66...

  9. 14 CFR 25.973 - Fuel tank filler connection.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel tank filler connection. 25.973 Section 25.973 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.973 Fuel tank filler...

  10. 14 CFR 29.973 - Fuel tank filler connection.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel tank filler connection. 29.973 Section 29.973 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.973 Fuel tank filler...

  11. 14 CFR 27.967 - Fuel tank installation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel tank installation. 27.967 Section 27.967 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.967 Fuel tank installation. (a...

  12. 14 CFR 29.973 - Fuel tank filler connection.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel tank filler connection. 29.973 Section 29.973 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.973 Fuel tank filler...

  13. 14 CFR 25.973 - Fuel tank filler connection.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel tank filler connection. 25.973 Section 25.973 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.973 Fuel tank filler...

  14. 14 CFR 25.973 - Fuel tank filler connection.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel tank filler connection. 25.973 Section 25.973 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.973 Fuel tank filler...

  15. 14 CFR 29.973 - Fuel tank filler connection.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel tank filler connection. 29.973 Section 29.973 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.973 Fuel tank filler...

  16. 14 CFR 29.973 - Fuel tank filler connection.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel tank filler connection. 29.973 Section 29.973 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.973 Fuel tank filler...

  17. 14 CFR 27.967 - Fuel tank installation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel tank installation. 27.967 Section 27.967 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.967 Fuel tank installation. (a...

  18. 14 CFR 25.973 - Fuel tank filler connection.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tank filler connection. 25.973 Section 25.973 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.973 Fuel tank filler...

  19. 14 CFR 27.967 - Fuel tank installation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel tank installation. 27.967 Section 27.967 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.967 Fuel tank installation. (a...

  20. 14 CFR 27.967 - Fuel tank installation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tank installation. 27.967 Section 27.967 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.967 Fuel tank installation. (a...

  1. 14 CFR 29.973 - Fuel tank filler connection.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tank filler connection. 29.973 Section 29.973 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.973 Fuel tank filler...

  2. 14 CFR 25.973 - Fuel tank filler connection.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel tank filler connection. 25.973 Section 25.973 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.973 Fuel tank filler...

  3. 14 CFR 27.967 - Fuel tank installation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel tank installation. 27.967 Section 27.967 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.967 Fuel tank installation. (a...

  4. 77 FR 62182 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-12

    ... for fuel tank systems. As a result of those findings, we issued a regulation titled ``Transport Airplane Fuel Tank System Design Review, Flammability Reduction and Maintenance and Inspection Requirements... (STC)) holders to substantiate that their fuel tank systems can prevent ignition sources in the fuel...

  5. Ecodesign of Liquid Fuel Tanks

    NASA Astrophysics Data System (ADS)

    Gicevska, Jana; Bazbauers, Gatis; Repele, Mara

    2011-01-01

    The subject of the study is a 10 litre liquid fuel tank made of metal and used for fuel storage and transportation. The study dealt with separate life cycle stages of this product, compared environmental impacts of similar fuel tanks made of metal and plastic, as well as analysed the product's end-of-life cycle stage, studying the waste treatment and disposal scenarios. The aim of this study was to find opportunities for improvement and to develop proposals for the ecodesign of 10 litre liquid fuel tank.

  6. Investigation of 14.5mm API Self-Sealing/Crashworthy Fuel Tank Material

    DTIC Science & Technology

    1974-09-01

    describes the results of a f-rogram for a crashworthy, 14.5mm API tolerant fuel cell construction developed and subjected co qualification testing. The...Paragraphs 4.6.6.4 and 4.6.6.5), which were not required by contract. Two fuel tanks were built of a construction designated by The Goodyear Tire & Rubber...TABLES 3 INTRODUCTION 4 FUEL TANK MATERIAL DESIGN STUDY (TASK I) 4 QUALIFIC/.TION OF CONSTRUCTION (TASK 11) ........ 5 FUEL TANK GUNFIRE 12

  7. Analysis of temperature and pressure changes in liquefied natural gas (LNG) cryogenic tanks

    NASA Astrophysics Data System (ADS)

    Chen, Q.-S.; Wegrzyn, J.; Prasad, V.

    2004-10-01

    Liquefied natural gas (LNG) is being developed as a transportation fuel for heavy vehicles such as trucks and transit buses, to lessen the dependency on oil and to reduce greenhouse gas emissions. The LNG stations are properly designed to prevent the venting of natural gas (NG) from LNG tanks, which can cause evaporative greenhouse gas emissions and result in fluctuations of fuel flow and changes of fuel composition. Boil-off is caused by the heat added into the LNG fuel during the storage and fueling. Heat can leak into the LNG fuel through the shell of tank during the storage and through hoses and dispensers during the fueling. Gas from tanks onboard vehicles, when returned to LNG tanks, can add additional heat into the LNG fuel. A thermodynamic and heat transfer model has been developed to analyze different mechanisms of heat leak into the LNG fuel. The evolving of properties and compositions of LNG fuel inside LNG tanks is simulated. The effect of a number of buses fueled each day on the possible total fuel loss rate has been analyzed. It is found that by increasing the number of buses, fueled each day, the total fuel loss rate can be reduced significantly. It is proposed that an electric generator be used to consume the boil-off gas or a liquefier be used to re-liquefy the boil-off gas to reduce the tank pressure and eliminate fuel losses. These approaches can prevent boil-off of natural gas emissions, and reduce the costs of LNG as transportation fuel.

  8. 71. VIEW OF FUEL APRON FROM THE NORTHWEST. LEFT TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    71. VIEW OF FUEL APRON FROM THE NORTHWEST. LEFT TO RIGHT: HELIUM TANKS, GASEOUS NITROGEN TANKS, DIESEL FUEL TANK AND BACKUP GENERATOR, AND ROCKET FUEL TANKS. NORTHWEST CORNER OF THE LSB (BLDG. 751) AND LAUNCHER IN BACKGROUND ON LEFT; SOUTH CAMERA TOWER IN BACKGROUND ON RIGHT. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  9. 14 CFR 25.965 - Fuel tank tests.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel tank tests. 25.965 Section 25.965 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.965 Fuel tank tests. (a) It must be...

  10. 14 CFR 25.965 - Fuel tank tests.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tank tests. 25.965 Section 25.965 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.965 Fuel tank tests. (a) It must be...

  11. 14 CFR 25.965 - Fuel tank tests.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel tank tests. 25.965 Section 25.965 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.965 Fuel tank tests. (a) It must be...

  12. 14 CFR 27.973 - Fuel tank filler connection.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel tank filler connection. 27.973 Section 27.973 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.973 Fuel tank filler connection...

  13. 14 CFR 27.973 - Fuel tank filler connection.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel tank filler connection. 27.973 Section 27.973 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.973 Fuel tank filler connection...

  14. 14 CFR 27.973 - Fuel tank filler connection.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tank filler connection. 27.973 Section 27.973 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.973 Fuel tank filler connection...

  15. 14 CFR 25.965 - Fuel tank tests.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel tank tests. 25.965 Section 25.965 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.965 Fuel tank tests. (a) It must be...

  16. 14 CFR 27.973 - Fuel tank filler connection.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel tank filler connection. 27.973 Section 27.973 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.973 Fuel tank filler connection...

  17. 14 CFR 25.965 - Fuel tank tests.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel tank tests. 25.965 Section 25.965 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.965 Fuel tank tests. (a) It must be...

  18. 14 CFR 27.973 - Fuel tank filler connection.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel tank filler connection. 27.973 Section 27.973 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.973 Fuel tank filler connection...

  19. 33 CFR 183.510 - Fuel tanks.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Fuel tanks. 183.510 Section 183.510 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Equipment Standards § 183.510 Fuel tanks. (a) Each...

  20. 33 CFR 183.510 - Fuel tanks.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Fuel tanks. 183.510 Section 183.510 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Equipment Standards § 183.510 Fuel tanks. (a) Each...

  1. 14 CFR 29.969 - Fuel tank expansion space.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tank expansion space. 29.969 Section 29.969 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.969 Fuel tank expansion space...

  2. 14 CFR 27.969 - Fuel tank expansion space.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tank expansion space. 27.969 Section 27.969 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.969 Fuel tank expansion space...

  3. 14 CFR 29.969 - Fuel tank expansion space.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel tank expansion space. 29.969 Section 29.969 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.969 Fuel tank expansion space...

  4. 14 CFR 25.969 - Fuel tank expansion space.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel tank expansion space. 25.969 Section 25.969 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.969 Fuel tank expansion space...

  5. 14 CFR 27.969 - Fuel tank expansion space.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel tank expansion space. 27.969 Section 27.969 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.969 Fuel tank expansion space...

  6. 14 CFR 29.969 - Fuel tank expansion space.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel tank expansion space. 29.969 Section 29.969 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.969 Fuel tank expansion space...

  7. 14 CFR 25.969 - Fuel tank expansion space.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel tank expansion space. 25.969 Section 25.969 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.969 Fuel tank expansion space...

  8. 14 CFR 27.969 - Fuel tank expansion space.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel tank expansion space. 27.969 Section 27.969 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.969 Fuel tank expansion space...

  9. 14 CFR 25.969 - Fuel tank expansion space.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel tank expansion space. 25.969 Section 25.969 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.969 Fuel tank expansion space...

  10. 14 CFR 29.969 - Fuel tank expansion space.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel tank expansion space. 29.969 Section 29.969 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.969 Fuel tank expansion space...

  11. 14 CFR 25.969 - Fuel tank expansion space.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tank expansion space. 25.969 Section 25.969 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.969 Fuel tank expansion space...

  12. 14 CFR 29.969 - Fuel tank expansion space.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel tank expansion space. 29.969 Section 29.969 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.969 Fuel tank expansion space...

  13. 14 CFR 27.969 - Fuel tank expansion space.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel tank expansion space. 27.969 Section 27.969 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.969 Fuel tank expansion space...

  14. 14 CFR 27.969 - Fuel tank expansion space.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel tank expansion space. 27.969 Section 27.969 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.969 Fuel tank expansion space...

  15. 14 CFR 25.969 - Fuel tank expansion space.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel tank expansion space. 25.969 Section 25.969 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.969 Fuel tank expansion space...

  16. 77 FR 42964 - Airworthiness Directives; The Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-23

    ... the potential for ignition sources inside fuel tanks caused by latent failures, alterations, repairs, or maintenance actions, which, in combination with flammable fuel vapors, could result in a fuel tank... for fuel tank systems to satisfy Special Federal Aviation Regulation No. 88 requirements. That AD also...

  17. Results of a conventional fuel tank blunt impact test

    DOT National Transportation Integrated Search

    2015-03-23

    The Federal Railroad Administrations Office of Research : and Development is conducting research into passenger : locomotive fuel tank crashworthiness. A series of impact tests is : being conducted to measure fuel tank deformation under two : type...

  18. 9. Fuel tanks engine piping yard equipment details, sheet 94 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Fuel tanks engine piping yard equipment details, sheet 94 of 130 - Naval Air Station Fallon, Fuel Tanks, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV

  19. 40 CFR 86.532-78 - Vehicle preconditioning.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 1978 and Later New Motorcycles; Test Procedures § 86.532-78 Vehicle preconditioning. (a) The vehicle shall be moved to the test area and the following operations performed: (1) The fuel tank(s) shall be drained through the provided fuel tank(s) drain(s) and charged with the specified test fuel, § 86.513, to...

  20. 40 CFR 86.532-78 - Vehicle preconditioning.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 1978 and Later New Motorcycles; Test Procedures § 86.532-78 Vehicle preconditioning. (a) The vehicle shall be moved to the test area and the following operations performed: (1) The fuel tank(s) shall be drained through the provided fuel tank(s) drain(s) and charged with the specified test fuel, § 86.513, to...

  1. 40 CFR 86.532-78 - Vehicle preconditioning.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 1978 and Later New Motorcycles; Test Procedures § 86.532-78 Vehicle preconditioning. (a) The vehicle shall be moved to the test area and the following operations performed: (1) The fuel tank(s) shall be drained through the provided fuel tank(s) drain(s) and charged with the specified test fuel, § 86.513, to...

  2. 40 CFR 86.532-78 - Vehicle preconditioning.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 1978 and Later New Motorcycles; Test Procedures § 86.532-78 Vehicle preconditioning. (a) The vehicle shall be moved to the test area and the following operations performed: (1) The fuel tank(s) shall be drained through the provided fuel tank(s) drain(s) and charged with the specified test fuel, § 86.513, to...

  3. 40 CFR 86.532-78 - Vehicle preconditioning.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 1978 and Later New Motorcycles; Test Procedures § 86.532-78 Vehicle preconditioning. (a) The vehicle shall be moved to the test area and the following operations performed: (1) The fuel tank(s) shall be drained through the provided fuel tank(s) drain(s) and charged with the specified test fuel, § 86.513, to...

  4. 40 CFR 86.131-96 - Vehicle preparation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Heavy-Duty Vehicles; Test Procedures § 86.131-96 Vehicle preparation. (a) For gasoline- and methanol-fueled vehicles prepare the fuel tank(s) for recording the temperature of the prescribed test fuel, as... optional during the running loss test. If vapor temperature is not measured, fuel tank pressure need not be...

  5. 40 CFR 86.131-96 - Vehicle preparation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Heavy-Duty Vehicles; Test Procedures § 86.131-96 Vehicle preparation. (a) For gasoline- and methanol-fueled vehicles prepare the fuel tank(s) for recording the temperature of the prescribed test fuel, as... optional during the running loss test. If vapor temperature is not measured, fuel tank pressure need not be...

  6. 40 CFR 86.131-96 - Vehicle preparation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Heavy-Duty Vehicles; Test Procedures § 86.131-96 Vehicle preparation. (a) For gasoline- and methanol-fueled vehicles prepare the fuel tank(s) for recording the temperature of the prescribed test fuel, as... optional during the running loss test. If vapor temperature is not measured, fuel tank pressure need not be...

  7. 40 CFR 86.131-96 - Vehicle preparation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Heavy-Duty Vehicles; Test Procedures § 86.131-96 Vehicle preparation. (a) For gasoline- and methanol-fueled vehicles prepare the fuel tank(s) for recording the temperature of the prescribed test fuel, as... optional during the running loss test. If vapor temperature is not measured, fuel tank pressure need not be...

  8. 40 CFR 86.131-96 - Vehicle preparation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Heavy-Duty Vehicles; Test Procedures § 86.131-96 Vehicle preparation. (a) For gasoline- and methanol-fueled vehicles prepare the fuel tank(s) for recording the temperature of the prescribed test fuel, as... optional during the running loss test. If vapor temperature is not measured, fuel tank pressure need not be...

  9. 29 CFR Appendix B to Subpart B of... - Reprint of U.S. Coast Guard Regulations Referenced in Subpart B, for Determination of Coast Guard...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... cargo tanks; or (2) Within or on the boundaries of fuel tanks; or (3) To pipe lines, heating coils, pumps, fittings, or other appurtenances connected to such cargo or fuel tanks. (c) Such inspections... cargo tanks; or (2) Within or on the boundaries of fuel tanks; or (3) To pipe lines, heating coils...

  10. 29 CFR Appendix B to Subpart B of... - Reprint of U.S. Coast Guard Regulations Referenced in Subpart B, for Determination of Coast Guard...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... cargo tanks; or (2) Within or on the boundaries of fuel tanks; or (3) To pipe lines, heating coils, pumps, fittings, or other appurtenances connected to such cargo or fuel tanks. (c) Such inspections... cargo tanks; or (2) Within or on the boundaries of fuel tanks; or (3) To pipe lines, heating coils...

  11. 29 CFR Appendix B to Subpart B of... - Reprint of U.S. Coast Guard Regulations Referenced in Subpart B, for Determination of Coast Guard...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... cargo tanks; or (2) Within or on the boundaries of fuel tanks; or (3) To pipe lines, heating coils, pumps, fittings, or other appurtenances connected to such cargo or fuel tanks. (c) Such inspections... cargo tanks; or (2) Within or on the boundaries of fuel tanks; or (3) To pipe lines, heating coils...

  12. 29 CFR Appendix B to Subpart B of... - Reprint of U.S. Coast Guard Regulations Referenced in Subpart B, for Determination of Coast Guard...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... cargo tanks; or (2) Within or on the boundaries of fuel tanks; or (3) To pipe lines, heating coils, pumps, fittings, or other appurtenances connected to such cargo or fuel tanks. (c) Such inspections... cargo tanks; or (2) Within or on the boundaries of fuel tanks; or (3) To pipe lines, heating coils...

  13. 29 CFR Appendix B to Subpart B of... - Reprint of U.S. Coast Guard Regulations Referenced in Subpart B, for Determination of Coast Guard...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... cargo tanks; or (2) Within or on the boundaries of fuel tanks; or (3) To pipe lines, heating coils, pumps, fittings, or other appurtenances connected to such cargo or fuel tanks. (c) Such inspections... cargo tanks; or (2) Within or on the boundaries of fuel tanks; or (3) To pipe lines, heating coils...

  14. POWER GENERATING NEUTRONIC REACTOR SYSTEM

    DOEpatents

    Vernon, H.C.

    1958-03-01

    This patent relates to reactor systems of the type wherein the cooiing medium is a liquid which is converted by the heat of the reaction to steam which is conveyed directly to a pnime mover such as a steam turbine driving a generatore after which it is condensed and returred to the coolant circuit. In this design, the reactor core is disposed within a tank for containing either a slurry type fuel or an aggregation of solid fuel elements such as elongated rods submerged in a liquid moderator such as heavy water. The top of the tank is provided with a nozzle which extends into an expansion chamber connected with the upper end of the tank, the coolant being maintained in the expansion chamber at a level above the nozzle and the steam being formed in the expansion chamber.

  15. Conventional fuel tank blunt impact tests : test and analysis results

    DOT National Transportation Integrated Search

    2014-04-02

    The Federal Railroad Administrations Office of Research : and Development is conducting research into fuel tank : crashworthiness. A series of impact tests are planned to : measure fuel tank deformation under two types of dynamic : loading conditi...

  16. Test requirements of locomotive fuel tank blunt impact tests

    DOT National Transportation Integrated Search

    2013-10-15

    The Federal Railroad Administrations Office of Research : and Development is conducting research into passenger : locomotive fuel tank crashworthiness. A series of impact tests : are planned to measure fuel tank deformation under two types : of dy...

  17. 8. General layout of power plant, piping and fuel tanks, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. General layout of power plant, piping and fuel tanks, sheet 93 of 130 - Naval Air Station Fallon, Fuel Tanks, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gardiner, D. P.; Bardon, M. F.; Clark, W.

    This study assessed differences in headspace flammability for summertime gasolines and new high-ethanol content fuel blends. The results apply to vehicle fuel tanks and underground storage tanks. Ambient temperature and fuel formulation effects on headspace vapor flammability of ethanol/gasoline blends were evaluated. Depending on the degree of tank filling, fuel type, and ambient temperature, fuel vapors in a tank can be flammable or non-flammable. Pure gasoline vapors in tanks generally are too rich to be flammable unless ambient temperatures are extremely low. High percentages of ethanol blended with gasoline can be less volatile than pure gasoline and can produce flammablemore » headspace vapors at common ambient temperatures. The study supports refinements of fuel ethanol volatility specifications and shows potential consequences of using noncompliant fuels. E85 is flammable at low temperatures; denatured ethanol is flammable at warmer temperatures. If both are stored at the same location, one or both of the tanks' headspace vapors will be flammable over a wide range of ambient temperatures. This is relevant to allowing consumers to splash -blend ethanol and gasoline at fueling stations. Fuels compliant with ASTM volatility specifications are relatively safe, but the E85 samples tested indicate that some ethanol fuels may produce flammable vapors.« less

  19. 14 CFR Appendix N to Part 25 - Fuel Tank Flammability Exposure and Reliability Analysis

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... the performance of a flammability reduction means (FRM) if installed. (c) The following definitions... average fuel temperature within the fuel tank or different sections of the tank if the tank is subdivided... the flight time, and the post-flight time is a constant 30 minutes. (c) Flammable. With respect to a...

  20. 14 CFR Appendix N to Part 25 - Fuel Tank Flammability Exposure and Reliability Analysis

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... the performance of a flammability reduction means (FRM) if installed. (c) The following definitions... average fuel temperature within the fuel tank or different sections of the tank if the tank is subdivided... the flight time, and the post-flight time is a constant 30 minutes. (c) Flammable. With respect to a...

  1. 49 CFR 393.67 - Liquid fuel tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... section. The rules in this section apply to tanks containing or supplying fuel for the operation of... leak more than a total of one ounce by weight of fuel per minute in any position the tank assumes...) Drop test—(i) Procedure. Fill the tank with a quantity of water having a weight equal to the weight of...

  2. Results of a diesel multiple unit fuel tank blunt impact test

    DOT National Transportation Integrated Search

    2017-04-04

    The Federal Railroad Administrations Office of Research and Development is conducting research into passenger locomotive fuel tank crashworthiness. A series of impact tests is being conducted to measure fuel tank deformation under two types of dyn...

  3. 3. View of north elevation of fuel tanks, radar tower ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. View of north elevation of fuel tanks, radar tower in the background, looking southwest - Naval Air Station Fallon, Fuel Tanks, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV

  4. 75 FR 6865 - Airworthiness Directives; The Boeing Company Model 737-700 (IGW) Series Airplanes Equipped With...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-12

    ... deactivation or modification of PATS Aircraft, LLC, auxiliary fuel tanks. This proposed AD results from fuel... for fuel tank systems. As a result of those findings, we issued a regulation titled ``Transport Airplane Fuel Tank System Design Review, Flammability Reduction and Maintenance and Inspection Requirements...

  5. 46 CFR 58.50-15 - Alternate material for construction of independent fuel tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Alternate material for construction of independent fuel...) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Independent Fuel Tanks § 58.50-15 Alternate material for construction of independent fuel tanks. (a) Materials other than those specifically...

  6. 33 CFR 183.516 - Cellular plastic used to encase fuel tanks.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Cellular plastic used to encase....516 Cellular plastic used to encase fuel tanks. (a) Cellular plastic used to encase metallic fuel...-polyurethane cellular plastic used to encase metallic fuel tanks must have a compressive strength of at least...

  7. Raman-based Oxygen and Nitrogen Sensor for Monitoring Empty Airplane Fuel Tanks

    NASA Technical Reports Server (NTRS)

    Chen, Peter C.

    2004-01-01

    The purpose of this project was to develop a Raman-based method for detecting oxygen and nitrogen in empty fuel tanks. The need for such a method comes from the potential danger of allowing explosive oxygen-fuel mixtures to accumulate in empty airplane fuel tanks. An explosion resulting from such a mixture is believed to have caused the Flight TWA 800 disaster in 1996. Recently, (e.g., February 17,2004 press release) the FAA announced its intentions to make fuel tank inerting mandatory. One potential solution to this problem is to use an inert gas such as nitrogen to flood the empty fue1 tanks in order to reduce the concentration of oxygen.

  8. 14 CFR 27.977 - Fuel tank outlet.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.977 Fuel tank outlet. (a) There must be a... rotorcraft, prevent the passage of any object that could restrict fuel flow or damage any fuel system...] Fuel System Components ...

  9. 14 CFR 27.977 - Fuel tank outlet.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.977 Fuel tank outlet. (a) There must be a... rotorcraft, prevent the passage of any object that could restrict fuel flow or damage any fuel system...] Fuel System Components ...

  10. 14 CFR 27.977 - Fuel tank outlet.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.977 Fuel tank outlet. (a) There must be a... rotorcraft, prevent the passage of any object that could restrict fuel flow or damage any fuel system...] Fuel System Components ...

  11. 14 CFR 27.977 - Fuel tank outlet.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.977 Fuel tank outlet. (a) There must be a... rotorcraft, prevent the passage of any object that could restrict fuel flow or damage any fuel system...] Fuel System Components ...

  12. 14 CFR 27.977 - Fuel tank outlet.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.977 Fuel tank outlet. (a) There must be a... rotorcraft, prevent the passage of any object that could restrict fuel flow or damage any fuel system...] Fuel System Components ...

  13. Fuel Storage Tanks at FAA Facilities: Order 1050.15A

    DOT National Transportation Integrated Search

    1997-04-30

    The Federal Aviation Administration (FAA) has over 4,000 fuel storage tanks (FST) in its : inventory. Most of these FSTs are underground storage tanks (UST) that contain fuel for : emergency backup generators providing secondary power to air navigati...

  14. 5. View of east elevation of fuel tanks, radar tower ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. View of east elevation of fuel tanks, radar tower and power plant in background, looking west - Naval Air Station Fallon, Fuel Tanks, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV

  15. 76 FR 78138 - Airworthiness Directives; The Boeing Company Model 777-200, -200LR, -300, and -300ER Series...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-16

    ... routed along the fuel tank boundary structure, and cap sealing certain penetrating fasteners of the main and center fuel tanks. This AD expands the applicability in the existing AD. This AD was prompted by... tank boundary structure or inside the fuel tanks could result in a fire or explosion. We are issuing...

  16. Unitized regenerative fuel cell system

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth A. (Inventor)

    2008-01-01

    A Unitized Regenerative Fuel Cell system uses heat pipes to convey waste heat from the fuel cell stack to the reactant storage tanks. The storage tanks act as heat sinks/sources and as passive radiators of the waste heat from the fuel cell stack. During charge up, i.e., the electrolytic process, gases are conveyed to the reactant storage tanks by way of tubes that include dryers. Reactant gases moving through the dryers give up energy to the cold tanks, causing water vapor in with the gases to condense and freeze on the internal surfaces of the dryer. During operation in its fuel cell mode, the heat pipes convey waste heat from the fuel cell stack to the respective reactant storage tanks, thereby heating them such that the reactant gases, as they pass though the respective dryers on their way to the fuel cell stacks retrieve the water previously removed.

  17. 4. Bulk fuel tanks and pump station. Detail of a ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Bulk fuel tanks and pump station. Detail of a vertical tank. View to southeast. - Conrad Refining Company Oil Refinery, Bulk Tanks & Pump Station, 90 feet northeast of Office & Warehouse Building, Conrad, Pondera County, MT

  18. 1. Bulk fuel tanks and pump station. East side of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Bulk fuel tanks and pump station. East side of tanks. View to northwest. - Conrad Refining Company Oil Refinery, Bulk Tanks & Pump Station, 90 feet northeast of Office & Warehouse Building, Conrad, Pondera County, MT

  19. 3. Bulk fuel tanks and pump station. West side of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Bulk fuel tanks and pump station. West side of tanks. View to southeast. - Conrad Refining Company Oil Refinery, Bulk Tanks & Pump Station, 90 feet northeast of Office & Warehouse Building, Conrad, Pondera County, MT

  20. 2. Bulk fuel tanks and pump station. North side of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Bulk fuel tanks and pump station. North side of tanks. View to southwest. - Conrad Refining Company Oil Refinery, Bulk Tanks & Pump Station, 90 feet northeast of Office & Warehouse Building, Conrad, Pondera County, MT

  1. 75 FR 71346 - Special Conditions: Boeing Model 787-8 Airplane; Lightning Protection of Fuel Tank Structure To...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-23

    ... Boeing Model 787-8 airplane will incorporate a fuel tank nitrogen generation system (NGS) that actively... ignition source in the fuel tank system could not result from any single failure, from any single failure... of fuel systems. We do not intend to apply the alternative standards used under these special...

  2. Fuel storage tanks at FAA facilities : Order 1050.15A : executive summary.

    DOT National Transportation Integrated Search

    1997-04-30

    The Federal Aviation Administration (FAA) has over 4,000 fuel storage tanks (FST) in its inventory. Most of these FSTs are underground storage tanks (UST) that contain fuel for emergency backup generators providing secondary power to air navigational...

  3. 14 CFR 121.316 - Fuel tanks.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Fuel tanks. 121.316 Section 121.316 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS..., FLAG, AND SUPPLEMENTAL OPERATIONS Instrument and Equipment Requirements § 121.316 Fuel tanks. Each...

  4. 14 CFR 121.316 - Fuel tanks.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Fuel tanks. 121.316 Section 121.316 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS..., FLAG, AND SUPPLEMENTAL OPERATIONS Instrument and Equipment Requirements § 121.316 Fuel tanks. Each...

  5. 14 CFR 121.316 - Fuel tanks.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Fuel tanks. 121.316 Section 121.316 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS..., FLAG, AND SUPPLEMENTAL OPERATIONS Instrument and Equipment Requirements § 121.316 Fuel tanks. Each...

  6. 14 CFR 121.316 - Fuel tanks.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Fuel tanks. 121.316 Section 121.316 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS..., FLAG, AND SUPPLEMENTAL OPERATIONS Instrument and Equipment Requirements § 121.316 Fuel tanks. Each...

  7. 14 CFR 121.316 - Fuel tanks.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Fuel tanks. 121.316 Section 121.316 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS..., FLAG, AND SUPPLEMENTAL OPERATIONS Instrument and Equipment Requirements § 121.316 Fuel tanks. Each...

  8. Development and Evaluation of an Airplane Fuel Tank Ullage Composition Model. Volume 2. Experimental Determination of Airplane Fuel Tank Ullage Compositions

    DTIC Science & Technology

    1987-10-01

    Airplane Fuel Tank Ullage Compositions ~C A. J. Roth BOEING MILITARY AIRPLANE COMPANY P. 0. Box 3707 Seattle, Washington 98124-2207 October 1987 FINAL...controlled mission simulations were made using the ModComp computer to control the Simulated Aircraft Fuel Tank Environment ( SAFTEI facility at Wright...of this report. iii PREFACE This is a final report of work conducted under F33615-84-C-2431 and submitted by the Boeing Military Airplane Company

  9. Apparatus and method for grounding compressed fuel fueling operator

    DOEpatents

    Cohen, Joseph Perry; Farese, David John; Xu, Jianguo

    2002-06-11

    A safety system for grounding an operator at a fueling station prior to removing a fuel fill nozzle from a fuel tank upon completion of a fuel filling operation is provided which includes a fuel tank port in communication with the fuel tank for receiving and retaining the nozzle during the fuel filling operation and a grounding device adjacent to the fuel tank port which includes a grounding switch having a contact member that receives physical contact by the operator and where physical contact of the contact member activates the grounding switch. A releasable interlock is included that provides a lock position wherein the nozzle is locked into the port upon insertion of the nozzle into the port and a release position wherein the nozzle is releasable from the port upon completion of the fuel filling operation and after physical contact of the contact member is accomplished.

  10. Detailed studies of aviation fuel flowability

    NASA Technical Reports Server (NTRS)

    Mehta, H. K.; Armstrong, R. S.

    1985-01-01

    Six Jet A fuels, with varying compositions, were tested for low temperature flowability in a 190-liter simulator tank that modeled a section of a wing tank of a wide-body commercial airplane. The insulated tank was chilled by circulating coolant through the upper and lower surfaces. Flow-ability was determined as a function of fuel temperature by holdup, the fraction of unflowable fuel remaining in the tank after otherwise complete withdrawal. In static tests with subfreezing tank conditions, hold up varied with temperature and fuel composition. However, a general correlation of two or three classes of fuel type was obtained by plotting holdup as a function of the difference between freezing point and boundary-layer temperature, measured 0.6 cm above the bottom tank surface. Dynamic conditions of vibrations and slosh or rate of fuel withdrawal had very minor effects on holdup. Tests with cooling schedules to represent extreme, cold-day flights showed, at most, slight holdup for any combination of fuel type or dynamic conditions. Tests that superimposed external fuel heating and recirculation during the cooldown period indicates reduced hold up by modification of the low-temperature boundary layer. Fuel heating was just as effective when initiated during the later times of the tests as when applied continuously.

  11. Credit BG. View looks south southeast toward tank farm, Rogers ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Credit BG. View looks south southeast toward tank farm, Rogers Dry Lake is in the background. Each cylindrical tank is labeled for jet fuel grade JP5. Two 2,000 gallon capacity rectangular tanks in midground are fabricated of concrete for storing hydrocarbons; they were constructed in 1993. Structure at extreme right of view is Building 4515, Jet Fuel Testing Laboratory - Edwards Air Force Base, North Base, Aircraft Fuel Tank Farm, Northeast of A Street, Boron, Kern County, CA

  12. Effects of Aging on PuO2∙xH2O Particle Size in Alkaline Solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delegard, Calvin H.

    Between 1944 and 1989, 54.5 metric tons of the United States’ weapons-grade plutonium and an additional 12.9 metric tons of fuel-grade plutonium were produced and separated from irradiated fuel at the Hanford Site. Acidic high-activity wastes containing around 600 kg of plutonium were made alkaline and discharged to underground storage tanks from separations, isolation, and recycle processes to yield average plutonium concentration of about 0.003 grams per liter (or ~0.0002 wt%) in the ~200 million liter tank waste volume. The plutonium is largely associated with low-solubility metal hydroxide/oxide sludges where its low concentration and intimate mixture with neutron-absorbing elements (e.g.,more » iron) are credited in nuclear criticality safety. However, concerns have been expressed that plutonium, in the form of plutonium hydrous oxide, PuO2∙xH2O, could undergo sufficient crystal growth through dissolution and reprecipitation in the alkaline tank waste to potentially become separable from neutron absorbing constituents by settling or sedimentation. Thermodynamic considerations and laboratory studies of systems chemically analogous to tank waste show that the plutonium formed in the alkaline tank waste by precipitation through neutralization from acid solution probably entered as 2–4-nm PuO2∙xH2O crystallite particles that, because of their low solubility and opposition from radiolytic processes, grow from that point at exceedingly slow rates, thus posing no risk of physical segregation.« less

  13. 46 CFR 125.115 - Oil fuel tank protection.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Oil fuel tank protection. 125.115 Section 125.115... Oil fuel tank protection. (a) An OSV of at least 6,000 GT ITC (500 GRT if GT ITC is not assigned) that is delivered after August 1, 2010, with an aggregate capacity of 600 cubic meters or more of oil fuel...

  14. STS-78 external tank documented after separation

    NASA Image and Video Library

    1996-07-09

    STS078-457-006 (20 June 1996) --- One of the first still pictures recorded by the crew members was this 35mm image of the External Fuel Tank (ET) soon after being jettisoned on launch day. The mission, less than ten minutes old when this picture was made, went on to set a Space Shuttle duration record of almost seventeen-days in Earth-orbit. The Indian Ocean forms the backdrop for the image.

  15. 77 FR 18141 - Airworthiness Directives; Fokker Services B.V. Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-27

    ...) fuel quantity indication system (FQIS) probe and the bottom of the tank structure. This condition, if... the aircraft maintenance program by revising the fuel airworthiness limitations and incorporating... Integral Center Wing Tank (ICWT) Fuel Quantity Indication System (FQIS) probe and the bottom of the tank...

  16. 46 CFR 169.627 - Compartments containing diesel fuel tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Compartments containing diesel fuel tanks. 169.627 Section 169.627 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Machinery and Electrical Ventilation § 169.627 Compartments containing diesel fuel tanks...

  17. 46 CFR 169.627 - Compartments containing diesel fuel tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Compartments containing diesel fuel tanks. 169.627 Section 169.627 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Machinery and Electrical Ventilation § 169.627 Compartments containing diesel fuel tanks...

  18. 12. Interior view, fuel tanks on east side of power ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. Interior view, fuel tanks on east side of power plant, electrical panels on the left and fuel tanks in the center looking north - Naval Air Station Fallon, Power Plant, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV

  19. CFD Modelling of Adsorption Behaviour in AGN Tank with Polyethylene Terephthalate Plastic Waste Based Activated Carbon

    NASA Astrophysics Data System (ADS)

    Yuliusman; Afdhol, M. K.; Sanal, Alristo; Nasruddin

    2018-03-01

    Indonesia imports fuel (fuel oil) in large quantities. Indonesia has reserves of methane gas in the form of natural gas in large numbers but has obstacles in the process of storage. To produce a storage tank to a safe condition then proclaimed to use ANG (Adsorbed Natural Gas) technology. Manufacture of activated PET based activated carbon for storage of natural gas where technology has been widely studied, but still has some shortcomings. Therefore to predict the performance of ANG technology, modeling of ANG tank with Fluent CFD program is done so the condition inside the ANG tank can be known and can be used to increased the performance of ANG technology. Therefore, in this experiment natural gas storage test is done at the ANG tank model using Fluent CFD program. This experiment is begin with preparation tools and material by characterize the natural gas and activated carbon followed by create the mesh and model of ANG tank. The next process is state the characteristic of activated carbon and fluid in this experiment. The last process is run the simulation using the condition that already been stated which is at 27°C and 35 bar during 15 minutes. The result is at adsorption contour we can see that adsorption is higher at the top of the tank because the input of the adsorbent is at the top of the ANG tank so the adsorbate distribution is uneven that cause the adsorbate concentration at the top of the ANG tank is higher than the bottom tank.

  20. CFD analysis of aircraft fuel tanks thermal behaviour

    NASA Astrophysics Data System (ADS)

    Zilio, C.; Longo, G. A.; Pernigotto, G.; Chiacchio, F.; Borrelli, P.; D'Errico, E.

    2017-11-01

    This work is carried out within the FP7 European research project TOICA (Thermal Overall Integrated Conception of Aircraft, http://www.toica-fp7.eu/). One of the tasks foreseen for the TOICA project is the analysis of fuel tanks as possible heat sinks for future aircrafts. In particular, in the present paper, commercial regional aircraft is considered as case study and CFD analysis with the commercial code STAR-CCM+ is performed in order to identify the potential capability to use fuel stored in the tanks as a heat sink for waste heat dissipated by other systems. The complex physical phenomena that characterize the heat transfer inside liquid fuel, at the fuel-ullage interface and inside the ullage are outlined. Boundary conditions, including the effect of different ground and flight conditions, are implemented in the numerical simulation approach. The analysis is implemented for a portion of aluminium wing fuel tank, including the leading edge effects. Effect of liquid fuel transfer among different tank compartments and the air flow in the ullage is included. According to Fuel Tank Flammability Assessment Method (FTFAM) proposed by the Federal Aviation Administration, the results are exploited in terms of exponential time constants and fuel temperature difference to the ambient for the different cases investigated.

  1. The Effect of Diethylene Glycol Monomethyl Ether (DiEGME) on Microbial Contamination of Jet Fuel: A Minimum Concentration Study

    DTIC Science & Technology

    2010-03-01

    added as appropriate. Fuel was filtered with a 0.45µm hydrophobic cellulose nitrate filter (Nalge Nunc, Rochester, NY) prior to use in the test setup...it may not be clear from the images above, biofilms were also present in all 0% test setups. In fuel systems, a biofilm is a microbial growth...formation that typically appears as a sheen, pellicule, or mat that forms between the fuel and water layers or on the interior sides of a tank. Biofilms

  2. Aluminum 2195 T8 Gore Development for Space Launch System Core and Upper Stage

    NASA Technical Reports Server (NTRS)

    Volz, Martin

    2015-01-01

    Gores are pie-shaped panels that are welded together to form the dome ends of rocket fuel tanks as shown in figure 1. Replacing aluminum alloy 2219 with aluminum (Al)-lithium (Li) alloy 2195 as the Space Launch System (SLS) cryogenic tank material would save enormous amounts of weight. In fact, it has been calculated that simply replacing Al 2219 gores with Al 2195 gores on the SLS core stage domes could save approximately 3,800 pound-mass. This is because the Al-Li 2195 alloy exhibits both higher mechanical properties and lower density than the SLS baseline Al 2219 alloy. Indeed, the known advantages of Al 2195 led to its use as a replacement for Al 2219 in the shuttle external tank program. The required thicknesses of Al 2195 gores for either SLS core stage tanks or upper stage tanks will depend on the specific design configurations. The required thicknesses or widths may exceed the current experience base in the manufacture of such gores by the stretch-forming process. Accordingly, the primary objective of this project was to enhance the formability of Al 2195 by optimizing the heat treatment and stretch-forming process for gore thicknesses up to 0.75 inches, which envelop the maximum expected gore thicknesses for SLS tank configurations.

  3. 14 CFR Special Federal Aviation... - Fuel Tank System Fault Tolerance Evaluation Requirements

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel Tank System Fault Tolerance Evaluation Requirements Federal Special Federal Aviation Regulation No. 88 Aeronautics and Space FEDERAL AVIATION..., SFAR No. 88 Special Federal Aviation Regulation No. 88—Fuel Tank System Fault Tolerance Evaluation...

  4. 14 CFR Special Federal Aviation... - Fuel Tank System Fault Tolerance Evaluation Requirements

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel Tank System Fault Tolerance Evaluation Requirements Federal Special Federal Aviation Regulation No. 88 Aeronautics and Space FEDERAL AVIATION..., SFAR No. 88 Special Federal Aviation Regulation No. 88—Fuel Tank System Fault Tolerance Evaluation...

  5. 14 CFR Special Federal Aviation... - Fuel Tank System Fault Tolerance Evaluation Requirements

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel Tank System Fault Tolerance Evaluation Requirements Federal Special Federal Aviation Regulation No. 88 Aeronautics and Space FEDERAL AVIATION..., SFAR No. 88 Special Federal Aviation Regulation No. 88—Fuel Tank System Fault Tolerance Evaluation...

  6. 14 CFR Special Federal Aviation... - Fuel Tank System Fault Tolerance Evaluation Requirements

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel Tank System Fault Tolerance Evaluation Requirements Federal Special Federal Aviation Regulation No. 88 Aeronautics and Space FEDERAL AVIATION..., SFAR No. 88 Special Federal Aviation Regulation No. 88—Fuel Tank System Fault Tolerance Evaluation...

  7. 14 CFR Special Federal Aviation... - Fuel Tank System Fault Tolerance Evaluation Requirements

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel Tank System Fault Tolerance Evaluation Requirements Federal Special Federal Aviation Regulation No. 88 Aeronautics and Space FEDERAL AVIATION..., SFAR No. 88 Special Federal Aviation Regulation No. 88—Fuel Tank System Fault Tolerance Evaluation...

  8. RF Coupling into the Fuel Tank of a Large Transport Aircraft from Intentionally Transmitting Peds in the Passenger Cabin

    NASA Technical Reports Server (NTRS)

    Nguyen, Truong X.; Dudley, Kenneth L.; Scearce, Stephen A.; Ely, Jay J.; Richardson, Robert E.; Hatfield, Michael O.

    2000-01-01

    An investigation was performed to study the potential for radio frequency (RF) power radiated from Portable Electronic Devices (PEDs) to create an arcing/sparking event within the fuel tank of a large transport aircraft. This paper describes the experimental methods used for measuring RF coupling to the fuel tank and Fuel Quantity Indication System (FQIS) wiring from PED sources located in the passenger cabin. To allow comparison of voltage/current data obtained in a laboratory chamber FQIS installation to an actual aircraft FQIS installation, aircraft fuel tank RF reverberation characteristics were also measured. Results from the measurements, along with a survey of threats from typical intentional transmitting PEDs are presented. The resulting worst-case power coupled onto fuel tank FQIS wiring is derived. The same approach can be applied to measure RF coupling into various other aircraft systems.

  9. Floor Plans Fuel Tank Support, Fuel Platform, and LOX ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Floor Plans - Fuel Tank Support, Fuel Platform, and LOX Platform Plans - Marshall Space Flight Center, F-1 Engine Static Test Stand, On Route 565 between Huntsville and Decatur, Huntsville, Madison County, AL

  10. 75 FR 70861 - Airworthiness Directives; Fokker Services B.V. Model F.28 Mark 0100, 1000, 2000, 3000, and 4000...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-19

    ... source can develop in the wing tank vapour space during fuel transfer from bag tank CWT [center wing tank... vapour space during fuel transfer from bag tank CWT [center wing tank], if the electrical power for... with a center wing tank (CWT); and Model F28 Mark 0100 airplanes, serial numbers 11244 through 11441...

  11. Fuels Containing Methane of Natural Gas in Solution

    NASA Technical Reports Server (NTRS)

    Sullivan, Thomas A.

    2004-01-01

    While exploring ways of producing better fuels for propulsion of a spacecraft on the Mars sample return mission, a researcher at Johnson Space Center (JSC) devised a way of blending fuel by combining methane or natural gas with a second fuel to produce a fuel that can be maintained in liquid form at ambient temperature and under moderate pressure. The use of such a blended fuel would be a departure for both spacecraft engines and terrestrial internal combustion engines. For spacecraft, it would enable reduction of weights on long flights. For the automotive industry on Earth, such a fuel could be easily distributed and could be a less expensive, more efficient, and cleaner-burning alternative to conventional fossil fuels. The concept of blending fuels is not new: for example, the production of gasoline includes the addition of liquid octane enhancers. For the future, it has been commonly suggested to substitute methane or compressed natural gas for octane-enhanced gasoline as a fuel for internal-combustion engines. Unfortunately, methane or natural gas must be stored either as a compressed gas (if kept at ambient temperature) or as a cryogenic liquid. The ranges of automobiles would be reduced from their present values because of limitations on the capacities for storage of these fuels. Moreover, technical challenges are posed by the need to develop equipment to handle these fuels and, especially, to fill tanks acceptably rapidly. The JSC alternative to provide a blended fuel that can be maintained in liquid form at moderate pressure at ambient temperature has not been previously tried. A blended automotive fuel according to this approach would be made by dissolving natural gas in gasoline. The autogenous pressure of this fuel would eliminate the need for a vehicle fuel pump, but a pressure and/or flow regulator would be needed to moderate the effects of temperature and to respond to changing engine power demands. Because the fuel would flash as it entered engine cylinders, relative to gasoline, it would disperse more readily and therefore would mix with air more nearly completely. As a consequence, this fuel would burn more nearly completely (and, hence, more cleanly) than gasoline does. The storage density of this fuel would be similar to that of gasoline, but its energy density would be such that the mileage (more precisely, the distance traveled per unit volume of fuel) would be greater than that of either gasoline or compressed natural gas. Because the pressure needed to maintain the fuel in liquid form would be more nearly constant and generally lower than that needed to maintain compressed natural gas in liquid form, the pressure rating of a tank used to hold this fuel could be lower than that of a tank used to hold compressed natural gas. A mixture of natural gas and gasoline could be distributed more easily than could some alternative fuels. A massive investment in new equipment would not be necessary: One could utilize the present fuel-distribution infrastructure and could blend the gasoline and natural gas at almost any place in the production or distribution process - perhaps even at the retail fuel pump. Yet another advantage afforded by use of a blend of gasoline and natural gas would be a reduction in the amount of gasoline consumed. Because natural gas costs less than gasoline does and is in abundant supply in the United States, the cost of automotive fuel and the demand for imported oil could be reduced.

  12. Evaluating and Addressing Potential Hazards of Fuel Tanks Surviving Atmospheric Reentry

    NASA Technical Reports Server (NTRS)

    Kelley, Robert L.; Johnson, Nicholas L.

    2011-01-01

    In order to ensure reentering spacecraft do not pose an undue risk to the Earth's population it is important to design satellites and rocket bodies with end of life considerations in mind. In addition to considering the possible consequences of deorbiting a vehicle, consideration must also be given to the possible risks associated with a vehicle failing to become operational or reach its intended orbit. Based on recovered space debris and numerous reentry survivability analyses, fuel tanks are of particular concern in both of these considerations. Most spacecraft utilize some type of fuel tank as part of their propulsion system. These fuel tanks are most often constructed using stainless steel or titanium and are filled with potentially hazardous substances such as hydrazine and nitrogen tetroxide. For a vehicle which has reached its scheduled end of mission the contents of the tanks are typically depleted. In this scenario the use of stainless steel and titanium results in the tanks posing a risk to people and property do to the high melting point and large heat of ablation of these materials leading to likely survival of the tank during reentry. If a large portion of the fuel is not depleted prior to reentry, there is the added risk of hazardous substance being released when the tank impact the ground. This paper presents a discussion of proactive methods which have been utilized by NASA satellite projects to address the risks associated with fuel tanks reentering the atmosphere. In particular it will address the design of a demiseable fuel tank as well as the evaluation of off the shelf designs which are selected to burst during reentry.

  13. A tank-to-wheel analysis tool for energy and emissions studies in road vehicles.

    PubMed

    Silva, C M; Gonçalves, G A; Farias, T L; Mendes-Lopes, J M C

    2006-08-15

    Currently, oil based fuels are the primary energy source of road transport. The growing need for oil independence and CO(2) mitigation has lead to the increasing importance of alternative fuel usage. CO(2) is produced not only as the fuel is used in the vehicle (tank-to-wheel contribution), but also upstream, from the fuel extraction to the refueling station (well-to-tank contribution), and the life cycle of the fuel production (well-to-wheel contribution) must be considered in order to analyse the global impact of the fuel utilization. A road vehicle tank-to-wheel analysis tool that may be integrated with well-to-tank models was developed in the present study. The integration in a demonstration case study allowed to perform a life cycle assessment concerning the utilization of diesel and natural gas fuels in a specific network line of a bus transit company operating in the city of Porto, Portugal.

  14. Review of the Flammability Hazard of Jet A Fuel Vapor in Civil Transport Aircraft Fuels Tanks

    DOT National Transportation Integrated Search

    1998-06-01

    This report documents the findings of a Fuel Flammability Task Group made up of recognized fuel and combustion specialists investigating the flammability and explosiveness of fuel within an aircraft fuel tank. The task group reviewed all available re...

  15. 46 CFR 160.035-11 - Inspection and testing of lifeboats.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... equipment, provision lockers, water tanks, or fuel tanks aboard. If provision lockers, water tanks, and fuel..., propeller, radio battery, searchlight, etc., if they are to be installed. (i) Boats with independent... course and fuel consumption tests on a time basis shall be made to determine that the fully loaded motor...

  16. 46 CFR 119.470 - Ventilation of spaces containing diesel fuel tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Ventilation of spaces containing diesel fuel tanks. 119... MACHINERY INSTALLATION Specific Machinery Requirements § 119.470 Ventilation of spaces containing diesel... containing a diesel fuel tank and no machinery must meet one of the following requirements: (1) A space of 14...

  17. 46 CFR 119.470 - Ventilation of spaces containing diesel fuel tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Ventilation of spaces containing diesel fuel tanks. 119... MACHINERY INSTALLATION Specific Machinery Requirements § 119.470 Ventilation of spaces containing diesel... containing a diesel fuel tank and no machinery must meet one of the following requirements: (1) A space of 14...

  18. 78 FR 16198 - Airworthiness Directives; The Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-14

    ... determine if wires touch the upper surface of the center upper auxiliary fuel tank, and marking the location, as necessary; inspecting all wire bundles above the center upper auxiliary fuel tank for splices and... requires inspecting to determine if wires touch the upper surface of the center upper auxiliary fuel tank...

  19. 49 CFR 173.172 - Aircraft hydraulic power unit fuel tank.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Aircraft hydraulic power unit fuel tank. 173.172... Class 1 and Class 7 § 173.172 Aircraft hydraulic power unit fuel tank. Aircraft hydraulic power unit... consist of an aluminum pressure vessel made from tubing and having welded heads. Primary containment of...

  20. 49 CFR 173.172 - Aircraft hydraulic power unit fuel tank.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Aircraft hydraulic power unit fuel tank. 173.172... Class 1 and Class 7 § 173.172 Aircraft hydraulic power unit fuel tank. Aircraft hydraulic power unit... consist of an aluminum pressure vessel made from tubing and having welded heads. Primary containment of...

  1. 49 CFR 173.172 - Aircraft hydraulic power unit fuel tank.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Aircraft hydraulic power unit fuel tank. 173.172... Class 1 and Class 7 § 173.172 Aircraft hydraulic power unit fuel tank. Aircraft hydraulic power unit... consist of an aluminum pressure vessel made from tubing and having welded heads. Primary containment of...

  2. 49 CFR 173.172 - Aircraft hydraulic power unit fuel tank.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Aircraft hydraulic power unit fuel tank. 173.172... Class 1 and Class 7 § 173.172 Aircraft hydraulic power unit fuel tank. Aircraft hydraulic power unit... consist of an aluminum pressure vessel made from tubing and having welded heads. Primary containment of...

  3. 49 CFR 173.172 - Aircraft hydraulic power unit fuel tank.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Aircraft hydraulic power unit fuel tank. 173.172... Class 1 and Class 7 § 173.172 Aircraft hydraulic power unit fuel tank. Aircraft hydraulic power unit... consist of an aluminum pressure vessel made from tubing and having welded heads. Primary containment of...

  4. FIELD-PRODUCED JP-8 STANDARD FOR CALIBRATION OF LOWER EXPLOSIVE LIMIT METERS USED BY JET FUEL TANK MAINTENANCE PERSONNEL

    EPA Science Inventory

    Thousands of military personnel and tens of thousands of civilian workers perform jet fuel tank entry procedures. Before entering the confined space of a jet fuel tank, OSHA regulations (29CFR1910.146) require the internal atmosphere be tested with a calibrated, direct-reading...

  5. 40 CFR 1045.145 - Are there interim provisions that apply only for a limited time?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... You may sell or install fuel tanks that do not meet the specified permeation standards without...: (1) You may earn an evaporative emission allowance from one fuel tank certified to EPA's evaporative... this evaporative emission allowance by selling one fuel tank that does not meet the specified...

  6. 40 CFR 1045.145 - Are there interim provisions that apply only for a limited time?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... You may sell or install fuel tanks that do not meet the specified permeation standards without...: (1) You may earn an evaporative emission allowance from one fuel tank certified to EPA's evaporative... this evaporative emission allowance by selling one fuel tank that does not meet the specified...

  7. 40 CFR 1045.145 - Are there interim provisions that apply only for a limited time?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... You may sell or install fuel tanks that do not meet the specified permeation standards without...: (1) You may earn an evaporative emission allowance from one fuel tank certified to EPA's evaporative... this evaporative emission allowance by selling one fuel tank that does not meet the specified...

  8. 46 CFR 56.50-90 - Sounding devices.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... fuel-oil tank may terminate in any space where the risk of ignition of spillage from the pipe might... following requirements are met: (1) In addition to the sounding pipe, the fuel-oil tank has an oil-level... of oil-level gauges with flat glasses and self-closing valves between the gauges and fuel tanks is...

  9. 14 CFR 23.957 - Flow between interconnected tanks.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.957 Flow between interconnected tanks. (a) It must be impossible, in a gravity feed system with interconnected tank outlets, for enough fuel to flow between the tanks to cause an overflow...

  10. 14 CFR 23.957 - Flow between interconnected tanks.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.957 Flow between interconnected tanks. (a) It must be impossible, in a gravity feed system with interconnected tank outlets, for enough fuel to flow between the tanks to cause an overflow...

  11. 14 CFR 23.957 - Flow between interconnected tanks.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.957 Flow between interconnected tanks. (a) It must be impossible, in a gravity feed system with interconnected tank outlets, for enough fuel to flow between the tanks to cause an overflow...

  12. 14 CFR 23.957 - Flow between interconnected tanks.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.957 Flow between interconnected tanks. (a) It must be impossible, in a gravity feed system with interconnected tank outlets, for enough fuel to flow between the tanks to cause an overflow...

  13. 14 CFR 23.957 - Flow between interconnected tanks.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.957 Flow between interconnected tanks. (a) It must be impossible, in a gravity feed system with interconnected tank outlets, for enough fuel to flow between the tanks to cause an overflow...

  14. Seamless Collapsible Fuel Tanks. Phase 1

    DTIC Science & Technology

    1982-03-01

    TITLE (and Subtitle) 5. TYrE OF REPORT & PERIOD COVERED Final Report: Phase I Seamless Collapsible Fuel Tanks April 1980 - March 1982 6. PERFORMING...KEY WORDS (Continue on reverse side it neceessery nd identify by block number) tubular weaving, pillow tanks, fuel resistance , water resistance ...ends x 28 picks per inch in a plain or basket weave. The fabric is then coated both sides with an appropriate fuel- resistant compound, usually a nitrile

  15. Stability Analysis of Intertank Formed Skin/Stringer Compression Panel with Simulated Damage

    NASA Technical Reports Server (NTRS)

    Harper, David W.; Wingate, Robert J.

    2012-01-01

    The External Tank (ET) is a component of the Space Shuttle launch vehicle that contains fuel and oxidizer. During launch, the ET supplies the space shuttle main engines with liquid hydrogen and liquid oxygen. In addition to supplying fuel and oxidizer, it is the backbone structural component of the Space Shuttle. It is comprised of a liquid hydrogen (LH2) tank and a liquid oxygen (LOX) tank, which are separated by an Intertank. The Intertank is a stringer-stiffened cylindrical structure with hat-section stringers that are roll formed from aluminum-lithium alloy Al-2090. Cracks in the Intertank stringers of the STS-133 ET were noticed after a November 5, 2010 launch attempt. The cracks were approximately nine inches long and occurred on the forward end of the Intertank (near the LOX tank), along the fastener line, and were believed to have occurred while loading the ET with the cryogenic propellants. These cracks generated questions about the structural integrity of the Intertank. In order to determine the structural capability of the Intertank with varying degrees of damage, a finite element model (FEM) simulating a 1995 compression panel test was analyzed and correlated to test data. Varying degrees of damage were simulated in the FEM, and non-linear stability analyses were performed. The high degree of similarity between the compression panel and the Intertank provided confidence that the ET Intertank would have similar capabilities.

  16. High-freezing-point fuel studies

    NASA Technical Reports Server (NTRS)

    Tolle, F. F.

    1980-01-01

    Considerable progress in developing the experimental and analytical techniques needed to design airplanes to accommodate fuels with less stringent low temperature specifications is reported. A computer technique for calculating fuel temperature profiles in full tanks was developed. The computer program is being extended to include the case of partially empty tanks. Ultimately, the completed package is to be incorporated into an aircraft fuel tank thermal analyser code to permit the designer to fly various thermal exposure patterns, study fuel temperatures versus time, and determine holdup.

  17. 76 FR 6541 - Airworthiness Directives; Fokker Services B.V. Model F.28 Mark 0100, 1000, 2000, 3000, and 4000...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-07

    ..., an ignition source can develop in the wing tank vapour space during fuel transfer from bag tank CWT..., an ignition source can develop in the wing tank vapour space during fuel transfer from bag tank CWT..., all serial numbers, equipped with a center wing tank (CWT); and Model F.28 [[Page 6543

  18. 46 CFR 71.53-1 - When required.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... by internal examination of at least one forward double-bottom fuel oil tank, and by external... necessary to permit internal examination of the tank or tanks designated by the marine inspector. The owner or operator shall arrange for an examination of the fuel tanks of each vessel during an internal...

  19. 40 CFR 86.1542 - Information required.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (including displacement, number of cylinders, turbocharger used and catalyst usage), fuel system (including number of carburetors, number of carburetor barrels, fuel injection type and fuel tank(s) capacity and...

  20. Experimental Study of an On-board Fuel Tank Inerting System

    NASA Astrophysics Data System (ADS)

    Wu, Fei; Lin, Guiping; Zeng, Yu; Pan, Rui; Sun, Haoyang

    2017-03-01

    A simulated aircraft fuel tank inerting system was established and experiments were conducted to investigate the performance of the system. The system uses hollow fiber membrane which is widely used in aircraft as the air separation device and a simplified 20% scale multi compartment fuel tank as the inerting object. Experiments were carried out to investigate the influences of different operating parameters on the inerting effectiveness of the system, including NEA (nitrogen-enriched air) flow rate, NEA oxygen concentration, NEA distribution, pressure of bleeding air and fuel load of the tank. Results showed that for the multi compartment fuel tank, concentrated flow washing inerting would cause great differences throughout the distribution of oxygen concentration in the fuel tank, and inerting dead zone would exist. The inerting effectiveness was greatly improved and the ullage oxygen concentration of the tank would reduce to 12% successfully when NEA entered three compartments evenly. The time span of a complete inerting process reduced obviously with increasing NEA flow rate and decreasing NEA concentration, but the trend became weaker gradually. However, the reduction of NEA concentration will decrease the utilization efficiency of the bleeding air. In addition, the time span can also be reduced by raising the pressure of bleeding air, which will improve the bleeding air utilization efficiency at the same time. The time span decreases linearly as the fuel load increases.

  1. 40 CFR 86.157-98 - Refueling test procedures for liquefied petroleum gas-fueled vehicles.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... fuel distribution. (c) Vehicle preconditioning. (1) The vehicle fuel tanks are to be filled with fuel that meets the specifications in § 86.113. Fuel tanks shall be filled to 10 percent of nominal fuel.... (2) Within one minute of obtaining the initial FID (or HFID) reading, the dispensed fuel nozzle shall...

  2. 40 CFR 86.157-98 - Refueling test procedures for liquefied petroleum gas-fueled vehicles.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... fuel distribution. (c) Vehicle preconditioning. (1) The vehicle fuel tanks are to be filled with fuel that meets the specifications in § 86.113. Fuel tanks shall be filled to 10 percent of nominal fuel.... (2) Within one minute of obtaining the initial FID (or HFID) reading, the dispensed fuel nozzle shall...

  3. 40 CFR 86.157-98 - Refueling test procedures for liquefied petroleum gas-fueled vehicles.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... fuel distribution. (c) Vehicle preconditioning. (1) The vehicle fuel tanks are to be filled with fuel that meets the specifications in § 86.113. Fuel tanks shall be filled to 10 percent of nominal fuel.... (2) Within one minute of obtaining the initial FID (or HFID) reading, the dispensed fuel nozzle shall...

  4. 40 CFR 86.157-98 - Refueling test procedures for liquefied petroleum gas-fueled vehicles.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... fuel distribution. (c) Vehicle preconditioning. (1) The vehicle fuel tanks are to be filled with fuel that meets the specifications in § 86.113. Fuel tanks shall be filled to 10 percent of nominal fuel.... (2) Within one minute of obtaining the initial FID (or HFID) reading, the dispensed fuel nozzle shall...

  5. 14 CFR 23.997 - Fuel strainer or filter.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel strainer or filter. 23.997 Section 23... Components § 23.997 Fuel strainer or filter. There must be a fuel strainer or filter between the fuel tank..., whichever is nearer the fuel tank outlet. This fuel strainer or filter must— (a) Be accessible for draining...

  6. 14 CFR 23.997 - Fuel strainer or filter.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel strainer or filter. 23.997 Section 23... Components § 23.997 Fuel strainer or filter. There must be a fuel strainer or filter between the fuel tank..., whichever is nearer the fuel tank outlet. This fuel strainer or filter must— (a) Be accessible for draining...

  7. 14 CFR 23.997 - Fuel strainer or filter.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel strainer or filter. 23.997 Section 23... Components § 23.997 Fuel strainer or filter. There must be a fuel strainer or filter between the fuel tank..., whichever is nearer the fuel tank outlet. This fuel strainer or filter must— (a) Be accessible for draining...

  8. 14 CFR 23.997 - Fuel strainer or filter.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel strainer or filter. 23.997 Section 23... Components § 23.997 Fuel strainer or filter. There must be a fuel strainer or filter between the fuel tank..., whichever is nearer the fuel tank outlet. This fuel strainer or filter must— (a) Be accessible for draining...

  9. 14 CFR 23.997 - Fuel strainer or filter.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel strainer or filter. 23.997 Section 23... Components § 23.997 Fuel strainer or filter. There must be a fuel strainer or filter between the fuel tank..., whichever is nearer the fuel tank outlet. This fuel strainer or filter must— (a) Be accessible for draining...

  10. Durability of foam insulation for LH2 fuel tanks of future subsonic transports

    NASA Technical Reports Server (NTRS)

    Sharpe, E. L.; Helenbrook, R. G.

    1978-01-01

    In connection with the potential short-supply of petroleum based fuels, NASA has initiated investigations concerning the feasibility of aircraft using as fuel hydrogen which is to be stored in liquid form. One of the problems to be solved for an operation of such aircraft is related to the possibility of a suitable storage of the liquid hydrogen. A description is presented of an experimental study regarding the suitability of commercially available organic foams as cryogenic insulation for liquid hydrogen tanks under extensive thermal cycling typical of subsonic airline type operation. Fourteen commercially available organic foam insulations were tested. The thermal performance of all insulations was found to deteriorate with increased simulated flight cycles. Two unreinforced polyurethane foams survived over 4200 thermal cycles (representative of approximately 15 years of airline service) without evidence of structural deterioration. The polyurethane foam insulations also exhibited excellent thermal performance.

  11. Thermally resistant polymers for fuel tank sealants

    NASA Technical Reports Server (NTRS)

    Webster, J. A.

    1972-01-01

    Conversion of fluorocarbon dicarboxylic acid to intermediates whose terminal functional groups permit polymerization is discussed. Resulting polymers are used as fuel tank sealers for jet fuels at elevated temperatures. Stability and fuel resistance of the prototype polymers is explained.

  12. 40 CFR 86.1542 - Information required.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...), fuel system (including number of carburetors, number of carburetor barrels, fuel injection type and fuel tank(s) capacity and location), engine code, gross vehicle weight rating, inertia weight class and...

  13. Alternative Fuels Data Center: Propane Vehicles

    Science.gov Websites

    dedicated and bi-fuel vehicles is also comparable. Extra storage tanks can increase range, but the tank size propane or gasoline vehicles have. Likewise, larger storage tanks can increase range, but the additional

  14. 46 CFR 167.15-40 - Integral fuel oil tank examinations-T/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Integral fuel oil tank examinations-T/ALL. 167.15-40 Section 167.15-40 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS PUBLIC NAUTICAL SCHOOL SHIPS Inspections § 167.15-40 Integral fuel oil tank examinations—T/ALL. (a) Each...

  15. 46 CFR 182.460 - Ventilation of spaces containing machinery powered by, or fuel tanks for, gasoline.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Ventilation of spaces containing machinery powered by, or fuel tanks for, gasoline. 182.460 Section 182.460 Shipping COAST GUARD, DEPARTMENT OF HOMELAND..., gasoline. (a) A space containing machinery powered by, or fuel tanks for, gasoline must have a ventilation...

  16. 46 CFR 182.460 - Ventilation of spaces containing machinery powered by, or fuel tanks for, gasoline.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Ventilation of spaces containing machinery powered by, or fuel tanks for, gasoline. 182.460 Section 182.460 Shipping COAST GUARD, DEPARTMENT OF HOMELAND..., gasoline. (a) A space containing machinery powered by, or fuel tanks for, gasoline must have a ventilation...

  17. 46 CFR 182.460 - Ventilation of spaces containing machinery powered by, or fuel tanks for, gasoline.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Ventilation of spaces containing machinery powered by, or fuel tanks for, gasoline. 182.460 Section 182.460 Shipping COAST GUARD, DEPARTMENT OF HOMELAND..., gasoline. (a) A space containing machinery powered by, or fuel tanks for, gasoline must have a ventilation...

  18. 46 CFR 182.460 - Ventilation of spaces containing machinery powered by, or fuel tanks for, gasoline.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Ventilation of spaces containing machinery powered by, or fuel tanks for, gasoline. 182.460 Section 182.460 Shipping COAST GUARD, DEPARTMENT OF HOMELAND..., gasoline. (a) A space containing machinery powered by, or fuel tanks for, gasoline must have a ventilation...

  19. 46 CFR 182.460 - Ventilation of spaces containing machinery powered by, or fuel tanks for, gasoline.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Ventilation of spaces containing machinery powered by, or fuel tanks for, gasoline. 182.460 Section 182.460 Shipping COAST GUARD, DEPARTMENT OF HOMELAND..., gasoline. (a) A space containing machinery powered by, or fuel tanks for, gasoline must have a ventilation...

  20. 40 CFR 86.1772-99 - Road load power, test weight, and inertia weight class determination.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... vehicle under all-electric power to complete the running loss test fuel tank temperature profile test sequence without air conditioning and the same vehicle tested over the running loss test fuel tank... fan modes with the system set at 72 deg. F. The running loss test fuel tank temperature profile test...

  1. 40 CFR 86.1772-99 - Road load power, test weight, and inertia weight class determination.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... vehicle under all-electric power to complete the running loss test fuel tank temperature profile test sequence without air conditioning and the same vehicle tested over the running loss test fuel tank... fan modes with the system set at 72 deg. F. The running loss test fuel tank temperature profile test...

  2. 40 CFR 86.1772-99 - Road load power, test weight, and inertia weight class determination.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... vehicle under all-electric power to complete the running loss test fuel tank temperature profile test sequence without air conditioning and the same vehicle tested over the running loss test fuel tank... fan modes with the system set at 72 deg. F. The running loss test fuel tank temperature profile test...

  3. 46 CFR 167.15-40 - Integral fuel oil tank examinations-T/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Integral fuel oil tank examinations-T/ALL. 167.15-40 Section 167.15-40 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS PUBLIC NAUTICAL SCHOOL SHIPS Inspections § 167.15-40 Integral fuel oil tank examinations—T/ALL. (a) Each...

  4. 46 CFR 167.15-40 - Integral fuel oil tank examinations-T/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Integral fuel oil tank examinations-T/ALL. 167.15-40 Section 167.15-40 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS PUBLIC NAUTICAL SCHOOL SHIPS Inspections § 167.15-40 Integral fuel oil tank examinations—T/ALL. (a) Each...

  5. 46 CFR 167.15-40 - Integral fuel oil tank examinations-T/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Integral fuel oil tank examinations-T/ALL. 167.15-40 Section 167.15-40 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS PUBLIC NAUTICAL SCHOOL SHIPS Inspections § 167.15-40 Integral fuel oil tank examinations—T/ALL. (a) Each...

  6. 40 CFR 1060.520 - How do I test fuel tanks for permeation emissions?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false How do I test fuel tanks for... STATIONARY EQUIPMENT Test Procedures § 1060.520 How do I test fuel tanks for permeation emissions? Measure...) Preconditioning durability testing. Take the following steps before an emission test, in any order, if your...

  7. 40 CFR 1060.520 - How do I test fuel tanks for permeation emissions?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false How do I test fuel tanks for... STATIONARY EQUIPMENT Test Procedures § 1060.520 How do I test fuel tanks for permeation emissions? Measure...) Preconditioning durability testing. Take the following steps before an emission test, in any order, if your...

  8. 40 CFR 1060.520 - How do I test fuel tanks for permeation emissions?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false How do I test fuel tanks for... STATIONARY EQUIPMENT Test Procedures § 1060.520 How do I test fuel tanks for permeation emissions? Measure...) Preconditioning durability testing. Take the following steps before an emission test, in any order, if your...

  9. 40 CFR 1060.520 - How do I test fuel tanks for permeation emissions?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false How do I test fuel tanks for... STATIONARY EQUIPMENT Test Procedures § 1060.520 How do I test fuel tanks for permeation emissions? Measure...) Preconditioning durability testing. Take the following steps before an emission test, in any order, if your...

  10. 40 CFR 1060.520 - How do I test fuel tanks for permeation emissions?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false How do I test fuel tanks for... STATIONARY EQUIPMENT Test Procedures § 1060.520 How do I test fuel tanks for permeation emissions? Measure...) Preconditioning durability testing. Take the following steps before an emission test, in any order, if your...

  11. 76 FR 13534 - Airworthiness Directives; The Boeing Company Model 767-200, -300, -300F, and -400ER Series Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-14

    ... certain motor operated valve actuators for the fuel tanks are installed, and related investigative and... additional inspections to determine if certain motor operated valve actuators for the fuel tanks are... requires an inspection to determine if certain motor operated valve (MOV) actuators for the fuel tanks are...

  12. In-flight and simulated aircraft fuel temperature measurements

    NASA Technical Reports Server (NTRS)

    Svehla, Roger A.

    1990-01-01

    Fuel tank measurements from ten flights of an L1011 commercial aircraft are reported for the first time. The flights were conducted from 1981 to 1983. A thermocouple rake was installed in an inboard wing tank and another in an outboard tank. During the test periods of either 2 or 5 hr, at altitudes of 10,700 m (35,000 ft) or higher, either the inboard or the outboard tank remained full. Fuel temperature profiles generally developed in the expected manner. The bulk fuel was mixed by natural convection to a nearly uniform temperature, especially in the outboard tank, and a gradient existed at the bottom conduction zone. The data indicated that when full, the upper surface of the inboard tank was wetted and the outboard tank was unwetted. Companion NASA Lewis Research Center tests were conducted in a 0.20 cubic meter (52 gal) tank simulator of the outboard tank, chilled on the top and bottom, and insulated on the sides. Even though the simulator tank had no internal components corresponding to the wing tank, temperatures agreed with the flight measurements for wetted upper surface conditions, but not for unwetted conditions. It was concluded that if boundary conditions are carefully controlled, simulators are a useful way of evaluating actual flight temperatures.

  13. Study on Calculation of Liquid Level And Storage of Tanks for LNG-fueled Vessels

    NASA Astrophysics Data System (ADS)

    Li, Kun; Wang, Guoqing; Liu, Chang

    2018-01-01

    As the ongoing development of the application of LNG as a clean energy in waterborne transport industry, the fleet scale of LNG-fueled vessels enlarged and the safety operation has attracted more attention in the industry. Especially the accurate detection of liquid level of LNG tanks is regarded as an important issue to ensure a safe and stable operation of LNG-fueled ships and a key parameter to keep the proper functioning of marine fuel storage system, supply system and safety control system. At present, detection of LNG tank liquid level mainly adopts differential pressure detection method. Liquid level condition could be found from the liquid level reference tables. However in practice, since LNG-fueled vessels are generally not in a stationary state, liquid state within the LNG tanks will constantly change, the detection of storage of tanks only by reference to the tables will cause deviation to some extent. By analyzing the temperature under different pressure, the effects of temperature change on density and volume integration calculation, a method of calculating the liquid level and storage of LNG tanks is put forward making the calculation of liquid level and actual storage of LNG tanks more accurately and providing a more reliable basis for the calculation of energy consumption level and operation economy for LNG-fueled vessels.

  14. Investigation of thermoelastic stresses induced at high altitudes on aircraft external fuel tanks

    NASA Astrophysics Data System (ADS)

    Mousseau, Stephanie Lynn Steber

    As composite technology has grown over the past several decades, the use of composite materials in military applications has become more feasible and widely accepted. Although composite materials provide many benefits, including strength optimization and reduced weight, damage and repair of these materials creates an additional challenge, especially when operating in a marine environment, such as on a carrier deck. This is evident within the Navy, as excessive damage often leads to the scrapping of F/A-18 External Fuel Tanks. This damage comes in many forms, the most elusive of which is delamination. Often the delamination found on the tanks is beyond repairable limits and the cause unknown, making it difficult to predict and prevent. The purpose of this investigation was to study the structure of the Navy's 330 gallon External Fuel Tanks and investigate one potential cause of delamination, stresses induced at high altitudes by cold temperatures. A stress analysis was completed using finite element software, and validation of the model was accomplished through testing of a scale model specimen. Due to the difficulties in modeling and predicting delamination, such as unknown presence of voids and understanding failure criteria, delamination was not modeled in Abaqus, rather stresses were observed and characteristics were studied to understand the potential for delamination within the layup. In addition, studies were performed to understand the effect of material properties and layup sequence on the stress distribution within the tank. Alternative design solutions are presented which could reduce the radial stresses within the tank, and recommendations are made for further study to understand the trade-offs between stress, cost, and manufacturability.

  15. Temperature and flow measurements on near-freezing aviation fuels in a wing-tank model

    NASA Technical Reports Server (NTRS)

    Friedman, R.; Stockemer, F. J.

    1980-01-01

    Freezing behavior, pumpability, and temperature profiles for aviation turbine fuels were measured in a 190-liter tank chilled to simulate internal temperature gradients encountered in commercial airplane wing tanks. When the bulk of the fuel was above the specification freezing point, pumpout of the fuel removed all fuel except a layer adhering to the bottom chilled surfaces, and the unpumpable fraction depended on the fuel temperature near these surfaces. When the bulk of the fuel was at or below the freezing point, pumpout ceased when solids blocked the pump inlet, and the unpumpable fraction depended on the overall average temperature.

  16. Spray sealing: A breakthrough in integral fuel tank sealing technology

    NASA Astrophysics Data System (ADS)

    Richardson, Martin D.; Zadarnowski, J. H.

    1989-11-01

    In a continuing effort to increase readiness, a new approach to sealing integral fuel tanks is being developed. The technique seals potential leak sources by spraying elastomeric materials inside the tank cavity. Laboratory evaluations project an increase in aircraft supportability and reliability, an improved maintainability, decreasing acquisition and life cycle costs. Increased usable fuel volume and lower weight than conventional bladders improve performance. Concept feasibility was demonstrated on sub-scale aircraft fuel tanks. Materials were selected by testing sprayable elastomers in a fuel tank environment. Chemical stability, mechanical properties, and dynamic durability of the elastomer are being evaluated at the laboratory level and in sub-scale and full scale aircraft component fatigue tests. The self sealing capability of sprayable materials is also under development. Ballistic tests show an improved aircraft survivability, due in part to the elastomer's mechanical properties and its ability to damp vibrations. New application equipment, system removal, and repair methods are being investigated.

  17. Fatal car fires from rear-end crashes: the effects of fuel tank placement before and after regulation.

    PubMed Central

    Robertson, L S

    1993-01-01

    A federal standard for fuel tank integrity in cars was applied to 1977 and subsequent models. National data indicate that fatalities per 10,000 occupants in rear-end crashes of small cars, where fire was the most harmful event, were reduced by approximately 57% if the fuel tank was located behind the rear axle and 77% if the tank was situated directly above or in front of the rear axle. PMID:8342730

  18. IET. Jet fuel tank being lowered into position below grade. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    IET. Jet fuel tank being lowered into position below grade. Two tanks already in place. Date: October 18, 1954. INEEL negative no. 12535 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  19. Moving, Moving, Moving- A Giant Rocket Fuel Tank

    NASA Image and Video Library

    2016-10-07

    Technicians moved a giant fuel tank from the Vertical Assembly Center where the tank recently completed friction stir welding to an adjacent work area at NASA's Michoud Assembly Facility in New Orleans. More than 1.7 miles of welds have been completed for core stage hardware at Michoud. This liquid hydrogen fuel tank is the largest piece of the core stage that will provide the fuel for the first flight of NASA's new rocket, the Space Launch System, with the Orion spacecraft in 2018. The tank is more than 130 feet long, and together with the liquid oxygen tank holds 733,000 gallons of propellant to feed the vehicle's four RS-25 engines to produce a total of 2 million pounds of thrust. SLS will have the power and capacity to carry humans to Mars. For more information on the core stage: http://www.nasa.gov/exploration/syste... Video Credit: NASA/MAF/Eric Bordelon

  20. Ice/frost detection using millimeter wave radiometry. [space shuttle external tank

    NASA Technical Reports Server (NTRS)

    Gagliano, J. A.; Newton, J. M.; Davis, A. R.; Foster, M. L.

    1981-01-01

    A series of ice detection tests was performed on the shuttle external tank (ET) and on ET target samples using a 35/95 GHz instrumentation radiometer. Ice was formed using liquid nitrogen and water spray inside a test enclosure containing ET spray on foam insulation samples. During cryogenic fueling operations prior to the shuttle orbiter engine firing tests, ice was formed with freon and water over a one meter square section of the ET LOX tank. Data analysis was performed on the ice signatures, collected by the radiometer, using Georgia Tech computing facilities. Data analysis technique developed include: ice signature images of scanned ET target; pixel temperature contour plots; time correlation of target data with ice present versus no ice formation; and ice signature radiometric temperature statistical data, i.e., mean, variance, and standard deviation.

  1. Alternative Fuels Data Center: CNG Fuel System and Tank Maintenance

    Science.gov Websites

    in this section... Natural Gas Basics Benefits & Considerations Stations Vehicles Availability fuel containers best practices document for more information. CNG Tank Inspection Performing a regular

  2. 14 CFR 25.997 - Fuel strainer or filter.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel strainer or filter. 25.997 Section 25... or filter. There must be a fuel strainer or filter between the fuel tank outlet and the inlet of... fuel tank outlet. This fuel strainer or filter must— (a) Be accessible for draining and cleaning and...

  3. 14 CFR 25.997 - Fuel strainer or filter.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel strainer or filter. 25.997 Section 25... or filter. There must be a fuel strainer or filter between the fuel tank outlet and the inlet of... fuel tank outlet. This fuel strainer or filter must— (a) Be accessible for draining and cleaning and...

  4. 14 CFR 25.997 - Fuel strainer or filter.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel strainer or filter. 25.997 Section 25... or filter. There must be a fuel strainer or filter between the fuel tank outlet and the inlet of... fuel tank outlet. This fuel strainer or filter must— (a) Be accessible for draining and cleaning and...

  5. 14 CFR 25.997 - Fuel strainer or filter.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel strainer or filter. 25.997 Section 25... or filter. There must be a fuel strainer or filter between the fuel tank outlet and the inlet of... fuel tank outlet. This fuel strainer or filter must— (a) Be accessible for draining and cleaning and...

  6. 14 CFR 25.997 - Fuel strainer or filter.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel strainer or filter. 25.997 Section 25... or filter. There must be a fuel strainer or filter between the fuel tank outlet and the inlet of... fuel tank outlet. This fuel strainer or filter must— (a) Be accessible for draining and cleaning and...

  7. 14 CFR 23.343 - Design fuel loads.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... zero fuel to the selected maximum fuel load. (b) If fuel is carried in the wings, the maximum allowable weight of the airplane without any fuel in the wing tank(s) must be established as “maximum zero wing... part and— (1) The structure must be designed to withstand a condition of zero fuel in the wing at limit...

  8. 14 CFR 23.343 - Design fuel loads.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... zero fuel to the selected maximum fuel load. (b) If fuel is carried in the wings, the maximum allowable weight of the airplane without any fuel in the wing tank(s) must be established as “maximum zero wing... part and— (1) The structure must be designed to withstand a condition of zero fuel in the wing at limit...

  9. 14 CFR 23.343 - Design fuel loads.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... zero fuel to the selected maximum fuel load. (b) If fuel is carried in the wings, the maximum allowable weight of the airplane without any fuel in the wing tank(s) must be established as “maximum zero wing... part and— (1) The structure must be designed to withstand a condition of zero fuel in the wing at limit...

  10. 14 CFR 23.343 - Design fuel loads.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... zero fuel to the selected maximum fuel load. (b) If fuel is carried in the wings, the maximum allowable weight of the airplane without any fuel in the wing tank(s) must be established as “maximum zero wing... part and— (1) The structure must be designed to withstand a condition of zero fuel in the wing at limit...

  11. 46 CFR 160.035-5 - Construction of steel motor-propelled lifeboats with and without radio cabin.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... the amount of the fuel in the tank. (i) Steel diesel oil fuel tanks shall have a thickness of not less... shall be fitted in tanks over 30 inches in length. (ii) Fibrous glass reinforced plastic diesel oil fuel... the Commandant. If an electric cranking system consisting of an electric starter motor, generator and...

  12. 78 FR 76775 - Special Conditions: Airbus, Model A350-900 Series Airplane; Lightning Protection of Fuel Tank...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-19

    ... level of safety equivalent to that established by the existing airworthiness standards. DATES: Send your... finding of regulatory adequacy under Sec. 611 of Public Law 92-574, the ``Noise Control Act of 1972.'' The... intended to control fuel tank flammability for all fuel tanks. This NGS is designed to provide a level of...

  13. Hybrid Composites for LH2 Fuel Tank Structure

    NASA Technical Reports Server (NTRS)

    Grimsley, Brian W.; Cano, Roberto J.; Johnston, Norman J.; Loos, Alfred C.; McMahon, William M.

    2001-01-01

    The application of lightweight carbon fiber reinforced plastics (CFRP) as structure for cryogenic fuel tanks is critical to the success of the next generation of Reusable Launch Vehicles (RLV). The recent failure of the X-33 composite fuel tank occurred in part due to microcracking of the polymer matrix, which allowed cryogen to permeate through the inner skin to the honeycomb core. As part of an approach to solve these problems, NASA Langley Research Center (LaRC) and Marshall Space Flight Center (MSFC) are working to develop and investigate polymer films that will act as a barrier to the permeation of LH2 through the composite laminate. In this study two commercially available films and eleven novel LaRC films were tested in an existing cryogenics laboratory at MSFC to determine the permeance of argon at room temperature. Several of these films were introduced as a layer in the composite to form an interleaved, or hybrid, composite to determine the effects on permeability. In addition, the effects of the interleaved layer thickness, number, and location on the mechanical properties of the composite laminate were investigated. In this initial screening process, several of the films were found to exhibit lower permeability to argon than the composite panels tested.

  14. 30 CFR 36.27 - Fuel-supply system.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... tank by a chain or other fastening to prevent loss. (2) The fuel tank shall have a definite position in the equipment assembly, and no provision shall be made for attachment of separate or auxiliary fuel... continuously at full load for approximately four hours. (b) Fuel lines. All fuel lines shall be installed to...

  15. 30 CFR 36.27 - Fuel-supply system.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... tank by a chain or other fastening to prevent loss. (2) The fuel tank shall have a definite position in the equipment assembly, and no provision shall be made for attachment of separate or auxiliary fuel... continuously at full load for approximately four hours. (b) Fuel lines. All fuel lines shall be installed to...

  16. 30 CFR 36.27 - Fuel-supply system.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... tank by a chain or other fastening to prevent loss. (2) The fuel tank shall have a definite position in the equipment assembly, and no provision shall be made for attachment of separate or auxiliary fuel... continuously at full load for approximately four hours. (b) Fuel lines. All fuel lines shall be installed to...

  17. 30 CFR 36.27 - Fuel-supply system.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... tank by a chain or other fastening to prevent loss. (2) The fuel tank shall have a definite position in the equipment assembly, and no provision shall be made for attachment of separate or auxiliary fuel... continuously at full load for approximately four hours. (b) Fuel lines. All fuel lines shall be installed to...

  18. 30 CFR 36.27 - Fuel-supply system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... tank by a chain or other fastening to prevent loss. (2) The fuel tank shall have a definite position in the equipment assembly, and no provision shall be made for attachment of separate or auxiliary fuel... continuously at full load for approximately four hours. (b) Fuel lines. All fuel lines shall be installed to...

  19. 49 CFR 172.336 - Identification numbers; special provisions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... fuels together with a gasoline and alcohol fuel blend containing more than ten percent ethanol, the... gasoline and alcohol fuel blend containing more than ten percent ethanol, the identification number “3475...). (3) On a cargo tank containing only fuel oil, if the cargo tank is marked “Fuel Oil” on each side and...

  20. 49 CFR 172.336 - Identification numbers; special provisions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... fuels together with a gasoline and alcohol fuel blend containing more than ten percent ethanol, the... gasoline and alcohol fuel blend containing more than ten percent ethanol, the identification number “3475...). (3) On a cargo tank containing only fuel oil, if the cargo tank is marked “Fuel Oil” on each side and...

  1. 49 CFR 172.336 - Identification numbers; special provisions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... fuels together with a gasoline and alcohol fuel blend containing more than ten percent ethanol, the... gasoline and alcohol fuel blend containing more than ten percent ethanol, the identification number “3475...). (3) On a cargo tank containing only fuel oil, if the cargo tank is marked “Fuel Oil” on each side and...

  2. Experimental Study of Fuel Heating at Low Temperatures in a Wing Tank Model, Volume 1

    NASA Technical Reports Server (NTRS)

    Stockemer, F. J.

    1981-01-01

    Scale model fuel heating systems for use with aviation hydrocarbon fuel at low temperatures were investigated. The effectiveness of the heating systems in providing flowability and pumpability at extreme low temperature when some freezing of the fuel would otherwise occur is evaluated. The test tank simulated a section of an outer wing tank, and was chilled on the upper and lower surfaces. Turbine engine lubricating oil was heated, and recirculating fuel transferred the heat. Fuels included: a commercial Jet A; an intermediate freeze point distillate; a higher freeze point distillate blended according to Experimental Referee Broadened Specification guidelines; and a higher freeze point paraffinic distillate used in a preceding investigation. Each fuel was chilled to selected temperature to evaluate unpumpable solid formation (holdup). Tests simulating extreme cold weather flight, without heating, provided baseline fuel holdup data. Heating and recirculating fuel increased bulk temperature significantly; it had a relatively small effect on temperature near the bottom of the tank. Methods which increased penetration of heated fuel into the lower boundary layer improved the capability for reducing holdup.

  3. 14 CFR 23.963 - Fuel tanks: General.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel tanks: General. 23.963 Section 23.963 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.963 Fuel...

  4. 14 CFR 23.963 - Fuel tanks: General.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel tanks: General. 23.963 Section 23.963 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.963 Fuel...

  5. 14 CFR 23.965 - Fuel tank tests.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tank tests. 23.965 Section 23.965 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.965 Fuel...

  6. 14 CFR 23.971 - Fuel tank sump.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel tank sump. 23.971 Section 23.971 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.971 Fuel...

  7. 14 CFR 23.971 - Fuel tank sump.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel tank sump. 23.971 Section 23.971 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.971 Fuel...

  8. 14 CFR 23.963 - Fuel tanks: General.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel tanks: General. 23.963 Section 23.963 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.963 Fuel...

  9. 14 CFR 23.965 - Fuel tank tests.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel tank tests. 23.965 Section 23.965 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.965 Fuel...

  10. 14 CFR 23.965 - Fuel tank tests.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel tank tests. 23.965 Section 23.965 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.965 Fuel...

  11. 14 CFR 23.963 - Fuel tanks: General.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel tanks: General. 23.963 Section 23.963 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.963 Fuel...

  12. 14 CFR 23.965 - Fuel tank tests.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel tank tests. 23.965 Section 23.965 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.965 Fuel...

  13. 14 CFR 23.971 - Fuel tank sump.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel tank sump. 23.971 Section 23.971 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.971 Fuel...

  14. 14 CFR 23.965 - Fuel tank tests.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel tank tests. 23.965 Section 23.965 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.965 Fuel...

  15. 14 CFR 23.963 - Fuel tanks: General.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tanks: General. 23.963 Section 23.963 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.963 Fuel...

  16. 14 CFR 23.971 - Fuel tank sump.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel tank sump. 23.971 Section 23.971 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.971 Fuel...

  17. 44. ARAIII Fuel oil tank ARA710. Camera facing west. Perimeter ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    44. ARA-III Fuel oil tank ARA-710. Camera facing west. Perimeter fence at left side of view. Gable-roofed building beyond tank on right is ARA-622. Gable-roofed building beyond tank on left is ARA-610. Ineel photo no. 3-16. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID

  18. Installation Restoration Program. Remedial Investigation Report. Minnesota Air National Guard Base Duluth International Airport, Duluth, Minnesota. Volume 1

    DTIC Science & Technology

    1990-01-01

    There are three above ground storage tanks for the storage of JP-4 jet fuel with ancillary piping, pumps, loading and unloading facilities, and...time daily basis. Workers are present to transfer jet fuel from delivery tncks to the storage tanks and from the storage tanks to fueling trucks...Ground-water flow and contaminant migration at Site 4, the fuel storage area, is generally toward the drainage ditch located immediately north of the

  19. 76 FR 1993 - Airworthiness Directives; The Boeing Company Model DC-9-81 (MD-81), DC-9-82 (MD-82), DC-9-83 (MD...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-12

    ...We are adopting a new airworthiness directive (AD) for the products listed above. This AD requires installing fuel level float and pressure switch in-line fuses on the wing forward spars and forward and aft auxiliary fuel tanks, depending on the airplane configuration. This AD was prompted by fuel system reviews conducted by the manufacturer. We are issuing this AD to prevent the potential of ignition sources inside fuel tanks, which, in combination with flammable fuel vapors, could result in fuel tank explosions and consequent loss of the airplane.

  20. 75 FR 16683 - Airworthiness Directives; The Boeing Company Model 777-200LR and -300ER Series Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-02

    ... eddy current inspection for cracking of the keyway of the fuel tank access door cutout on the left and... frequency eddy current (HFEC) inspection for cracking at the keyway of the fuel tank access door cutout on... frequency eddy current (HFEC) inspection for cracking of the keyway of the fuel tank access door cutout on...

  1. KSC-99pp0517

    NASA Image and Video Library

    1999-05-12

    At Launch Pad 39B, two holes caused by hail on Space Shuttle Discovery's external tank (ET) are visible. Left of the tank is one of the solid rocket boosters. Workers are investigating the damage and potential problems for launch posed by ice forming in the holes, which may number as many as 150 over the entire tank. The average size of the holes is one-half inch in diameter and one-tenth inch deep. The external tank contains the liquid hydrogen fuel and liquid oxygen oxidizer and supplies them under pressure to the three space shuttle main engines in the orbiter during liftoff and ascent. The ET thermal protection system consists of sprayed-on foam insulation. The Shuttle Discovery is targeted for launch of mission STS-96 on May 20 at 9:32 a.m

  2. Effects of Annealing Process on the Formability of Friction Stir Welded Al-Li Alloy 2195 Plates

    NASA Technical Reports Server (NTRS)

    Chen, Po-Shou; Bradford, Vann; Russell, Carolyn

    2011-01-01

    Large rocket cryogenic tank domes have typically been fabricated using Al-Cu based alloys like Al-Cu alloy 2219. The use of aluminum-lithium based alloys for rocket fuel tank domes can reduce weight because aluminum-lithium alloys have lower density and higher strength than Al-Cu alloy 2219. However, Al-Li alloys have rarely been used to fabricate rocket fuel tank domes because of the inherent low formability characteristic that make them susceptible to cracking during the forming operations. The ability to form metal by stretch forming or spin forming without excessive thinning or necking depends on the strain hardening exponent "n". The stain hardening exponent is a measure of how rapidly a metal becomes stronger and harder. A high strain hardening exponent is beneficial to a material's ability to uniformly distribute the imposed strain. Marshall Space Flight Center has developed a novel annealing process that can achieve a work hardening exponent on the order of 0.27 to 0.29, which is approximately 50% higher than what is typically obtained for Al-Li alloys using the conventional method. The strain hardening exponent of the Al-Li alloy plates or blanks heat treated using the conventional method is typically on the order of 0.17 to 0.19. The effects of this novel annealing process on the formability of friction stir welded Al-Li alloy blanks are being studied at Marshall Space Flight Center. The formability ratings will be generated using the strain hardening exponent, strain rate sensitivity and forming range. The effects of forming temperature on the formability will also be studied. The objective of this work is to study the deformation behavior of the friction stir welded Al-Li alloy 2195 blank and determine the formability enhancement by the new annealing process.

  3. 76 FR 482 - Airworthiness Directives; Fokker Services B.V. Model F.28 Mark 1000, 2000, 3000, and 4000 Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-05

    ...: * * * under certain conditions, an ignition source may develop in the wing tank vapour space, due to... tank vapour space, due to insufficient clearance between the wiring along the Fuel Quantity Tank Units... develop in the wing tank vapour space, due to insufficient clearance between the wiring along the Fuel...

  4. 40 CFR 1060.525 - How do I test fuel systems for diurnal emissions?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... fuel tanks, and volume-compensating air bags. (b) You may subtract your fuel tank's permeation...) AIR POLLUTION CONTROLS CONTROL OF EVAPORATIVE EMISSIONS FROM NEW AND IN-USE NONROAD AND STATIONARY... diurnal emission standard. (8) For emission control technologies that rely on a sealed fuel system, you...

  5. 40 CFR 1060.525 - How do I test fuel systems for diurnal emissions?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... fuel tanks, and volume-compensating air bags. (b) You may subtract your fuel tank's permeation...) AIR POLLUTION CONTROLS CONTROL OF EVAPORATIVE EMISSIONS FROM NEW AND IN-USE NONROAD AND STATIONARY... diurnal emission standard. (8) For emission control technologies that rely on a sealed fuel system, you...

  6. Fuel Tank Non-Nuclear Vulnerability Test Program

    DTIC Science & Technology

    1975-02-01

    configurations and structures , for all the threat velocities and obli~quities, alid for all the different fuel tank conditions. This is very unrealistic and can...of operational aircraft. It is, ot. course, imtpractical to simiul~ate all the potential conditions, threat variables, structural materials, and...simulate the structural members of the aircraft to which the aircraft skin and fuel tank walls are attached. The effect that paint, on the aircraft

  7. Saturn Apollo Program

    NASA Image and Video Library

    1964-12-01

    The fuel tank assembly of the Saturn V S-IC (first) stage is readied to be mated to the liquid oxygen tank at the Marshall Space Flight Center. The fuel tank carried kerosene as its fuel. The S-IC stage utilized five F-1 engines that used kerosene and liquid oxygen as propellant. Each engine provided 1,500,000 pounds of thrust. This stage lifted the entire vehicle and Apollo spacecraft from the launch pad.

  8. Saturn Apollo Program

    NASA Image and Video Library

    1964-12-01

    The fuel tank assembly for the Saturn V S-IC (first) stage arrived at the Marshall Space Flight Center, building 4707, for mating to the liquid oxygen tank. The fuel tank carried kerosene as its fuel. The S-IC stage used five F-1 engines, that used kerosene and liquid oxygen as propellant and each engine provided 1,500,000 pounds of thrust. This stage lifted the entire vehicle and Apollo spacecraft from the launch pad.

  9. A Combustion Model for the TWA 800 Center-Wing Fuel Tank Explosion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baer, M.R.; Gross, R.J.

    1998-10-02

    In support of the National Transportation Safety Board investigation of the TWA Flight 800 accident, a combined experimental/computational effort was conducted that focused on quarter-scale testing and simulation of the fuel-air explosion in the Boeing 747 center wing fuel tank. This report summarizes the modeling approach used at Sandia National Laboratories. In this approach approximations are introduced that capture the essential physics associated with turbulent flame propagation in multiple compartment fuel tanks. This model efficiently defines the pressure loading conditions during a jet-fuel air explosion in a fuel tank confinement. Modeling calculations compare favorably with a variety of experimental quarter-scalemore » tests conducted in rigid confinement. The modeling describes well the overpressure history in several geometry configurations. Upon demonstrating a reasonable comparison to experimental observations, a parametric study of eight possible ignition sources is then discussed. Model calculations demonstrate that different loading conditions arise as the location of the ignition event is varied. By comparing the inferred damage and calculated impulses to that seen in the recovered tank, it maybe possible to reduce the number of likely sources. A possible extension of this work to better define tank damage includes coupling the combustion model as a pressure loading routine for structural failure analysis.« less

  10. LH2 fuel tank design for SSTO

    NASA Technical Reports Server (NTRS)

    Wright, Geoff

    1994-01-01

    This report will discuss the design of a liquid hydrogen fuel tank constructed from composite materials. The focus of this report is to recommend a design for a fuel tank which will be able to withstand all static and dynamic forces during manned flight. Areas of study for the design include material selection, material structural analysis, heat transfer, thermal expansion, and liquid hydrogen diffusion. A structural analysis FORTRAN program was developed for analyzing the buckling and yield characteristics of the tank. A thermal analysis Excel spreadsheet was created to determine a specific material thickness which will minimize heat transfer through the wall of the tank. The total mass of the tank was determined by the combination of both structural and thermal analyses. The report concludes with the recommendation of a layered material tank construction. The designed system will include exterior insulation, combination of metal and organize composite matrices and honeycomb.

  11. Study of fuel systems for LH2-fueled subsonic transport aircraft, volume 1

    NASA Technical Reports Server (NTRS)

    Brewer, G. D.; Morris, R. E.; Davis, G. W.; Versaw, E. F.; Cunnington, G. R., Jr.; Riple, J. C.; Baerst, C. F.; Garmong, G.

    1978-01-01

    Several engine concepts examined to determine a preferred design which most effectively exploits the characteristics of hydrogen fuel in aircraft tanks received major emphasis. Many candidate designs of tank structure and cryogenic insulation systems were evaluated. Designs of all major elements of the aircraft fuel system including pumps, lines, valves, regulators, and heat exchangers received attention. Selected designs of boost pumps to be mounted in the LH2 tanks, and of a high pressure pump to be mounted on the engine were defined. A final design of LH2-fueled transport aircraft was established which incorporates a preferred design of fuel system. That aircraft was then compared with a conventionally fueled counterpart designed to equivalent technology standards.

  12. Internal combustion engine with compressed air collection system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, P.W.

    1988-08-23

    This patent describes an internal combustion engine comprising cylinders respectively including a pressure port, pistons respectively movable in the cylinders through respective compression strokes, fuel injectors respectively connected to the cylinders and operative to supply, from a fuel source to the respective cylinders, a metered quantity of fuel conveyed by compressed gas in response to fuel injector operation during the compression strokes of the respective cylinders, a storage tank for accumulating and storing compressed gas, means for selectively connecting the pressure ports to the storage tank only during the compression strokes of the respective cylinders, and duct means connecting themore » storage tank to the fuel injectors for supplying the fuel injectors with compressed gas in response to fuel injector operation.« less

  13. Multiple fuel supply system for an internal combustion engine

    DOEpatents

    Crothers, William T.

    1977-01-01

    A multiple fuel supply or an internal combustion engine wherein phase separation of components is deliberately induced. The resulting separation permits the use of a single fuel tank to supply components of either or both phases to the engine. Specifically, phase separation of a gasoline/methanol blend is induced by the addition of a minor amount of water sufficient to guarantee separation into an upper gasoline phase and a lower methanol/water phase. A single fuel tank holds the two-phase liquid with separate fuel pickups and separate level indicators for each phase. Either gasoline or methanol, or both, can be supplied to the engine as required by predetermined parameters. A fuel supply system for a phase-separated multiple fuel supply contained in a single fuel tank is described.

  14. Passive Fuel Tank Inerting Systems for Ground Combat Vehicles

    DTIC Science & Technology

    1988-09-01

    elastomers and sealants used in currently fielded equipment and redesign of selected hydraulic and gun recoil systems would be necessary to...constraint~s or access problems. "* Fuel Lines.- Fuel lines are routed to use the least amount of line possible. Fuel lines are high-pressure braided ...steel and rubber hose or steel tube construction. "* Fuel Pumps. Fuel pumps are usually mounted internal to the fuel tanks, are of heavy-duty commercial

  15. 14 CFR 25.1553 - Fuel quantity indicator.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel quantity indicator. 25.1553 Section 25... Placards § 25.1553 Fuel quantity indicator. If the unusable fuel supply for any tank exceeds one gallon, or five percent of the tank capacity, whichever is greater, a red arc must be marked on its indicator...

  16. 14 CFR 27.1553 - Fuel quantity indicator.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel quantity indicator. 27.1553 Section 27... § 27.1553 Fuel quantity indicator. If the unusable fuel supply for any tank exceeds one gallon, or five percent of the tank capacity, whichever is greater, a red arc must be marked on its indicator extending...

  17. 14 CFR 29.1553 - Fuel quantity indicator.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel quantity indicator. 29.1553 Section 29... Placards § 29.1553 Fuel quantity indicator. If the unusable fuel supply for any tank exceeds one gallon, or five percent of the tank capacity, whichever is greater, a red arc must be marked on its indicator...

  18. 14 CFR 27.1553 - Fuel quantity indicator.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel quantity indicator. 27.1553 Section 27... § 27.1553 Fuel quantity indicator. If the unusable fuel supply for any tank exceeds one gallon, or five percent of the tank capacity, whichever is greater, a red arc must be marked on its indicator extending...

  19. Fuel cell system for transportation applications

    DOEpatents

    Kumar, Romesh; Ahmed, Shabbir; Krumpelt, Michael; Myles, Kevin M.

    1993-01-01

    A propulsion system for a vehicle having pairs of front and rear wheels and a fuel tank. An electrically driven motor having an output shaft operatively connected to at least one of said pair of wheels is connected to a fuel cell having a positive electrode and a negative electrode separated by an electrolyte for producing dc power to operate the motor. A partial oxidation reformer is connected both to the fuel tank and to the fuel cell receives hydrogen-containing fuel from the fuel tank and water and air and for partially oxidizing and reforming the fuel with water and air in the presence of an oxidizing catalyst and a reforming catalyst to produce a hydrogen-containing gas. The hydrogen-containing gas is sent from the partial oxidation reformer to the fuel cell negative electrode while air is transported to the fuel cell positive electrode to produce dc power for operating the electric motor.

  20. Fuel cell system for transportation applications

    DOEpatents

    Kumar, R.; Ahmed, S.; Krumpelt, M.; Myles, K.M.

    1993-09-28

    A propulsion system is described for a vehicle having pairs of front and rear wheels and a fuel tank. An electrically driven motor having an output shaft operatively connected to at least one of said pair of wheels is connected to a fuel cell having a positive electrode and a negative electrode separated by an electrolyte for producing dc power to operate the motor. A partial oxidation reformer is connected both to the fuel tank and to the fuel cell and receives hydrogen-containing fuel from the fuel tank and uses water and air for partially oxidizing and reforming the fuel in the presence of an oxidizing catalyst and a reforming catalyst to produce a hydrogen-containing gas. The hydrogen-containing gas is sent from the partial oxidation reformer to the fuel cell negative electrode while air is transported to the fuel cell positive electrode to produce dc power for operating the electric motor. 3 figures.

Top